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Isomorphism and homomorphism appear throughout abstract algebra, yet how algebraists 
characterize these concepts, especially homomorphism, remains understudied. Based on 
interviews with nine research-active mathematicians, we highlight new sameness-based 
conceptual metaphors and three new clusters of metaphors: sameness/formal definition, 
changing perspectives, and generalizations beyond algebra. Implications include a way to 
articulate a conceptual purpose for homomorphism beyond its relationship to isomorphism: 
namely, as a tool for changing perspectives when problem-solving.   
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Isomorphism and homomorphism are widely recognized as central to introductory abstract 
algebra coursework—not only do research-based curricula expressly focus on their development 
(Larsen, 2013) but they also serve crucial roles in fundamental theorems of algebra (e.g., the 
First Isomorphism Theorem (Gallian, 2009), also referred to as the Fundamental Homomorphism 
Theorem (Fraleigh, 2003)). Furthermore, isomorphism can be viewed as a type of sameness that 
expands on students’ prior experiences with equality and congruence (Rupnow & Johnson, 2021) 
and serves an important classification role for objects like groups and rings (Randazzo & 
Rupnow, 2021). Nevertheless, limited research has focused explicitly on how mathematicians 
understand homomorphism’s utility in abstract algebra. 

 To address this gap, we examine nine research-active mathematicians’ language for 
isomorphism and homomorphism. In so doing, we expand on Rupnow (2021)’s characterization 
of instructors’ language, especially with respect to homomorphism. Furthermore, we provide 
insight into conceptual purposes for homomorphism beyond relating it to isomorphism. 

Literature Review and Theoretical Perspective 
Researchers have long been interested in understanding students’ views of isomorphism and 

enhancing students’ problem-solving around isomorphism. Early research examined how 
students approached determining whether groups were isomorphic (Dubinsky et al., 1994; Leron 
et al., 1995) or approached proving theorems related to isomorphism (Weber & Alcock, 2004; 
Weber, 2002). More recent work has created a local instructional theory for isomorphism 
(Larsen, 2013), built on students’ approaches to proofs using isomorphism (Melhuish, 2018), and 
delved into the function-nature of isomorphism (Melhuish et al., 2020).  

Researchers have also begun examining students’ views of homomorphism. Though many 
early studies examined conceptions of homomorphism in service of examining students’ 
understanding of isomorphism (e.g., Larsen et al., 2013; Weber, 2001), more recent work has 
examined conceptions of homomorphism independently. Hausberger (2017) highlighted 
homomorphism’s description as a “structure-preserving function” in textbooks, as well as what 
students took away from tasks intended to help students abstract the notion of ring 
homomorphism from their experiences with groups. Like with isomorphism, recent attention has 
often focused on how students coordinate the homomorphism concept and their function 
knowledge (Melhuish et al., 2020) as well as metaphors students use for homomorphism 
(Melhuish & Fagan, 2018; Rupnow, 2017). 
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In contrast to the many student-focused studies, limited research has been conducted on 
mathematicians’ views of isomorphism or homomorphism. Weber and Alcock (2004) examined 
mathematicians’ understandings in the context of proof while Ioannou and Nardi (2010) studied 
mathematicians’ use of images in the classroom. Recent work has focused more on instructors’ 
conceptual metaphors (described below) for isomorphism and homomorphism. Rupnow (2021) 
interviewed and observed instruction of two abstract algebra instructors, neither of whom did 
research in abstract algebra, and found four clusters of isomorphism and homomorphism 
metaphors: sameness, sameness/mapping, mapping, and the formal definition. Rupnow and 
Sassman (2021) built upon this by examining survey results from 197 mathematicians and 
observed examples of metaphors from each of these four clusters. To extend this work, we 
interviewed nine mathematicians with research specialties related to abstract algebra or category 
theory to see whether a larger population and a more research-oriented group of mathematicians 
invoked other types of conceptual metaphors for isomorphism or, especially, homomorphism. 

Conceptual metaphors are a theoretical lens aimed at revealing individuals’ structure of 
thought based on their choices of language (e.g., Lakoff & Johnson 1980; Lakoff & Núñez, 
1997). Specifically, cross-domain conceptual mappings are used to connect one’s cognitive 
structure for a target concept (e.g., isomorphism, homomorphism) to one’s more developed 
thoughts in source domains (e.g., sameness, structure-preservation). For instance, “A 
homomorphism is a method for gaining information” is a conceptual metaphor that gives 
information about a target domain (homomorphism) by relating it to a more developed source 
domain with which people have had other experiences (a method for gaining information). We 
acknowledge that this theoretical perspective imposes the researchers’ view on the 
mathematicians’ statements; that is, we do not claim that the mathematicians intended to speak 
metaphorically in their responses (Steen, 2001). Nevertheless, we believe this lens does permit 
insight into how understandings can be clustered and the types of reasoning that can be 
employed when thinking about or using isomorphism and homomorphism. 

Conceptual metaphors have influenced examinations of students’ understandings of bases in 
linear algebra (Adiredja & Zandieh, 2020) as well as been used as a framework for examining 
college students’ beliefs about mathematics (Olsen et al., 2020). More closely tied to this study, 
conceptual metaphors have been used to examine understandings of functions in high school and 
linear algebra (Zandieh et al., 2016) and in abstract algebra (Melhuish et al., 2020; Rupnow, 
2017), as well as mathematicians’ views of isomorphism and homomorphism (Rupnow, 2021; 
Rupnow & Sassman, 2021). Here we aim to extend the framework proposed in Rupnow (2021) 
to incorporate new clusters of metaphors based on new ideas raised by the mathematicians in this 
study. We thereby answer two research questions: What conceptual metaphors do research 
mathematicians employ to characterize (1) isomorphism and (2) homomorphism? 

Methods 
Data were collected from Zoom interviews conducted with nine mathematicians, given 

gender-neutral pseudonyms in this paper. These mathematicians had previously completed a 
survey about sameness in mathematics and were selected from those who had provided clear 
responses to the survey and had characterized themselves as research-active in abstract algebra, 
category theory, or a field interacting with abstract algebra. All participants had taught abstract 
algebra and/or category theory at least once (one once, three 2-5 times, four 6-10 times, and one 
11+ times). The interviews focused on how participants characterized isomorphism and 
homomorphism for research, teaching, and laypeople (e.g., “How, if at all, does isomorphism 
play a role in your research?”, “How would you describe a homomorphism to a layperson?”). 
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Two researchers coded the interviews separately using the conceptual metaphors for 
isomorphism and homomorphism in Rupnow (2021) as codes (e.g., operation-preserving, 
journey) and then met to discuss coding and reach consensus. Each talk-turn was coded with all 
metaphors that appeared within that talk-turn. Although each phrase could only be associated 
with one metaphor, a talk-turn could contain multiple sentences and multiple metaphors. When 
new metaphors arose that were not clearly aligned with existing codes, these were added to the 
codebook, and interviews were iteratively reexamined in light of the new codes. This process 
aligns with codebook thematic analysis (Braun et al., 2019) in which an a priori codebook 
provides structure to the analysis, but space is made for emergent themes to be incorporated. 

Results 
We found that the original four metaphor clusters in Rupnow (2021) (sameness, 

sameness/mapping, mapping, and formal definition) were represented in this data as well, with 
some new codes being added to the sameness and mapping clusters. Additionally, three new 
clusters (sameness/formal definition, changing perspectives, and generalizations) were added to 
the framework to accommodate the new language used by participants in this study. 
Sameness 

This cluster contains codes referring to isomorphism or homomorphism as encoding 
information about the sameness of objects. This includes codes originally from Rupnow (2021), 
such as generic sameness, where participants described isomorphic objects as objects that are 
(essentially) the same, and same properties, where participants described isomorphic objects as 
those that have the same properties or invariants (e.g., cardinality). Several new codes were also 
included in this cluster and are discussed below. 

Two participants were given the code indistinguishable when they described isomorphic 
objects as exact copies or not distinct from one another. For example, Avery said: 

I’m trying to teach [students] that isomorphism is measuring sameness so that they actually 
start to think of isomorphic objects as no longer being distinct… I might try to get them to 
stop distinguishing between isomorphic objects, and therefore, we can talk about the dihedral 
group of order 8 as opposed to different models of that group. 

While Avery appears to be encouraging students to avoid viewing different manifestations of the 
dihedral group of order 8 as different, this identity-focused interpretation was not necessary to be 
coded as indistinguishable. Note that participants here were still thinking of isomorphic objects 
as being “the same,” but used more specific language than those coded with generic sameness.  

The code embedding was used when participants described homomorphisms as an 
embedding or a mapping into part of a larger object. This code also included sameness of 
homomorphic images in terms of the structure of one object appearing in another object or a 
copy of one object “sitting inside” another object. For instance, Indy remarked: 

[S]o I say, an isomorphism is an exact copy. These things are exactly the same. But a 
homomorphism,…maybe we don’t have this bijection anymore. But somehow some of this 
structure is appearing in this other object. And the ways that that could happen—one of the 
ways is maybe—I have an exact copy sitting inside this larger object. 

This quote was also given the code indistinguishable due to the comment about an isomorphism 
being an exact copy, which highlights the similarity between these two ideas: indistinguishable 
refers to isomorphisms as producing exact copies, whereas embedding refers to homomorphisms 
producing copies inside a larger object. 
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The code logical equivalence was given to participants who described an isomorphism or 
homomorphism as a transfer of knowledge in which truth values or facts about objects are 
preserved. When discussing different ways of writing isomorphic groups, Blair remarked: 

And so it’s okay if we pick different ways of writing down what ultimately results in the 
same structure…At the end of the day, they’re going to have the same structure because 
they’re isomorphic in the logical sense as well. Any statement of group theory that is true 
about one of those structures will be true if and only if it’s true in the other structure. 

Others talked about isomorphism in terms of classification problems and were given the code 
classification. For instance, Hayden said: 

So I think the example of the classification of finite simple groups in the 20th century is just 
one of the tools of 20th century algebra. But that statement properly understood suggests that 
we’ve written sometimes in infinite families…what all the finite simple groups are up to 
isomorphism, not what they all are but up to isomorphism… 

Notice they specify these classification problems are not listing all possible objects, just those 
“up to isomorphism”, which relates to Avery’s focus on “the dihedral group of order 8” above—
these participants seem to view isomorphism as the “sameness” that matters in abstract algebra.  
Sameness/Mapping 

This cluster contains codes about isomorphism or homomorphism that showcase sameness 
via mappings, which are all included in Rupnow (2021). In particular, five participants spoke of 
isomorphism as a renaming/relabeling, or described isomorphic objects as the same, except for 
their names. Others were coded with matching when they talked about matching or pairing up 
elements between isomorphic objects in some way. The code equivalence classes was given to 
homomorphism-focused responses that explicitly mentioned equivalence classes or cosets. This 
code also included responses talking about homomorphisms in terms of an “orderly collapsing 
where things line up,” or the process of “stacking [elements] into the same bins” (Indy). These 
latter types of responses make it clear why this code was included in this category, as they 
emphasize the sameness of a grouping of elements under a homomorphism. Note here that the 
idea of “lining things up” is what is implying the existence of equivalence classes; the word 
“collapsing” is coded with structure loss in the changing perspectives cluster below. 
Mapping 

This category includes responses that talk about isomorphisms and homomorphisms as 
functions or maps between mathematical objects, focusing on the map or process of mapping 
rather than the objects. The code generic mapping was given to participants who described 
isomorphism or homomorphism generally in terms of a function, morphism, arrow, map, or 
correspondence, whereas the code journey was given to participants who were explicit about the 
directionality of the map or used some sort of movement metaphor (e.g., elements being “sent 
to” one another). Both of these codes are included in Rupnow (2021). 

The new code invertibility was given to four participants who highlighted the necessity of an 
isomorphism being reversible or comprised of maps that compose to the identity. Greer provides 
a clear example of the former: 

I mean, all the things I really think about when I think about the way isomorphisms would 
occur in the non-mathematical world maybe, really are sort of reversible processes. So now I 
was just thinking about cyphers and codes,…and that’s a really concrete example of the way 
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an isomorphism would work. It’s even within the English language, but it’s turning all 
messages in English to other messages in English in a completely reversible process. 

Notice Greer’s explanation of isomorphism for a non-mathematician focuses on the reversibility 
of isomorphism. Finley provides an example of the identity-focused version of invertibility: 

An isomorphism between groups is a homomorphism from G to H together with a 
homomorphism from H to G so that the composites are identities. But then, you could also 
say an isomorphism is a bijective homomorphism because that’s a theorem that in the 
category of groups, the categorical isomorphisms coincide with the bijective 
homomorphisms. So I usually will present those two different ways. 

Observe Finley distinguishes between bijective homomorphisms and homomorphisms with 
inverses that are also homomorphisms—although the definitions coincide in abstract algebra, 
they do not when generalizing to other contexts (e.g., continuous bijections need not have 
continuous inverses in topology). 

The new code transformation was given to two participants who talked about isomorphism 
or homomorphism as a process that morphs or transforms one object into another (similar to 
Zandieh et al., 2016). For instance, Greer said: 

I use the word mechanism like an isomorphism really is a process to me. It’s a process of 
turning one object into another in some sense. It’s not turning the objects into each other, it’s 
reframing your thinking from…one object to another object, I would say. Objects themselves 
are distinct. Completely distinct to me, and they’re identified by isomorphisms. 

Notice that Greer characterizes isomorphic objects as being distinct, in contrast to the examples 
given the indistinguishable code above. 
Formal Definition 

These are codes given to responses that utilized the formal definition to reason about 
isomorphism or homomorphism. All of these codes are included in Rupnow (2021). The code 
literal formal definition includes instances of describing an isomorphism as a bijection, often 
with special properties, or describing isomorphic objects as simply objects that have an 
isomorphism between them. While this code included responses using the literal string of 
symbols in the homomorphism property in Rupnow (2021), these types of responses did not exist 
in this study, likely because the mathematicians were not asked to engage in problem-solving. 

Several participants also defined isomorphism based on homomorphism, and vice versa. The 
code special homomorphism was given to responses describing isomorphism in terms of 
homomorphism, either formally (e.g., “an isomorphism is a bijective homomorphism”, Finley) or 
informally (e.g., “I think of isomorphism as homomorphism plus extra things”, Greer). Similarly, 
the code isomorphism without bijectivity was used for responses that focused on describing 
homomorphism by relating to isomorphism (e.g., “[Homomorphism is] ‘Sort of an isomorphism’ 
is what comes to my mind. So we still want to preserve the structure, but maybe we don’t insist 
on one-to-oneness anymore or one-to-one correspondence”, Cameron). 
Sameness/Formal Definition 

Codes here include crucial parts of the formal definition (i.e., structure/operation 
preservation), but stated in an informal way. These two codes were originally included in the 
formal definition category in Rupnow (2021) because they were generally used as unexplained 
stand-ins for the homomorphism property/homomorphism by those participants. However, we 
now view them as a separate cluster because participants here seemed to use them to explain 
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what they meant by sameness (e.g., “preserving the algebraic structure, same algebraic 
structure”, Dallas). Cameron illustrates both structure-preserving and operation-preserving: 

And so when I cite preservation of structure, I mean that all these [mathematical sub-]fields 
have a notion of isomorphism in there. And you’re usually referring to a bijection which 
preserves the structure of whatever it is you’re looking at. So in topology, it’s like a bijection 
that preserves continuity in both directions. And in abstract algebra, it’s a bijection that 
preserves your multiplication, addition operations, whatever. In graph theory, it’s a bijection 
that preserves adjacency. 

We note here that the ideas of operation-preservation and structure-preservation are very similar, 
and Cameron seems to be using them interchangeably in the context of abstract algebra, though 
the notion of structure-preservation could carry over to other mathematical sub-fields as well. 
Changing Perspectives 

The metaphors in this category are all new codes involving responses that emphasize how 
homomorphisms force a change of perspective (quotient group construction, structure loss), or 
that explicitly mention using isomorphisms or homomorphisms to change perspective for the 
purpose of aiding mathematical research (information gain). 

Two participants were given the code quotient group construction when they mentioned that 
homomorphisms arise from quotient groups or vice versa. Blair talked about viewing these two 
concepts interchangeably, even though students may see them as distinct initially. 

And a quotient object is exactly how you make rigorous this notion of collapsing down and 
the most important result… is that homomorphisms are the same things as quotients… a 
really important idea for students is that a group homomorphism between two groups is the 
same thing as a certain type of equivalence relation, a certain type of quotient group as well. 

This quote mentions the idea of “collapsing” in relation to homomorphism, so was given the 
code structure loss as well, which involved responses talking about homomorphisms in terms of 
collapsing or similar ideas such as simplifying, losing, or ignoring structure. For example, 
Emerson describes homomorphism in the following way: “[T]aking a homomorphism is 
preserving some structure but losing something along the way. Hopefully, something that you 
are trying to ignore or that you don’t care as much about as the stuff you’re trying to preserve.” 
The similar concept of getting only partial or limited information from a homomorphism was 
also included here. Greer observed: 

I think describing a homomorphism to a layperson… I want to say that it’s about maybe 
collapsing and simplifying structure in mathematics, but I think it’s actually a pretty foreign 
idea to the real world, this idea that you can take something you care about and record only 
partial information, and still learn something about whatever you’re studying, but maybe not. 

Thus, while only partial information is retained from a homomorphism, Greer believes that 
homomorphisms are still helpful in learning something about the relevant objects. 

Four participants used metaphors related to information gain. This code captures the idea that 
homomorphisms are used to gain understanding about one or both of the objects involved. For 
example, Blair gave the following reason for using homomorphisms in their research but was 
relatively vague on the details about what sort of information is gained from this. 

And a great example of that would be like group actions. A group acts on a metric space. 
And even if you—a group action is a homomorphism from a group into the isometry group 
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of this metric space. And even if you didn’t understand that much about the metric—or you 
knew some things about the metric space, you knew some things about the groups, the 
information can go both ways. You can use things you learn about the metric space to learn 
things about the group, and you can use algebra that you can actually compute in the group to 
learn things about the metric space. So, you can gain knowledge in both directions. 

Others, like Hayden, referred to this information gain as part of their mathematical tool set:  
It’s our basic tool in moving around between algebraic objects [we] want to sort of exhibit. 
Often when you’re trying to find out something about some object, you will apply some 
homomorphism to it to understand it, maybe in a simpler context. That’s part of the grammar 
of doing research in algebra. 

Isomorphisms were similarly mentioned as useful for shifting perspectives to gain information 
(e.g., “isomorphisms are used in my research, I would say, to build bridges between two different 
ways of thinking,” Greer). 
Generalizations 

Here we include generalizations and analogues of isomorphism and homomorphism across 
different branches of mathematics. Five participants noted that isomorphisms are an example of 
an equivalence relation. Blair uses this idea to talk about isomorphisms broadly in any category. 

So everything I do when I talk about two things being equal or the same, there’s always some 
explicit or implicit notion of an equivalence relation. It’s up to something. And every 
equivalence relation gives rise to some notion of isomorphism in the right category. 

Blair seems to be speaking about isomorphism in the category theoretical sense here, which 
includes the algebraic notion. 

In a similar vein, all nine participants brought up other branch analogues to isomorphism in 
abstract algebra. Some of these were in response to being asked whether they view isomorphism 
in a specific context or more broadly. For example, Dallas made connections to analogous 
concepts in topology: “But the concept of isomorphism… extends kind of beyond just algebra.… 
So I think of concepts like homeomorphism, diffeomorphism, or homotopy equivalence even as 
being analogous to isomorphism.” Finley also talked about isomorphism existing outside of 
algebra: “I think most mathematicians will think of [isomorphism] as a general thing across 
mathematics. But for me, the reason… is because it’s a thing in category theory, and then you 
can apply it in any category.” Again, we see the idea of category theory being a way to talk about 
these concepts in a more general way. 

Some other branch analogues were also discussed in response to the final interview 
questions, which specifically asked about these analogues: “Some people answering the survey 
saw connections between isomorphism/homomorphism and equivalent fractions or 
congruence/similarity in geometry. Do you agree that there is some level of similarity between 
these contexts? Do you think it would be helpful to highlight these similarities with students?” 
Indy compared equivalent fractions to the relabeling conception of isomorphism: “I think 
equivalent fractions is kind of an interesting notion in the sense that they’re the same number, 
but they’re written differently. So it is kind of this idea of, we have different names for the same 
object.” However, they didn’t feel like similar triangles were a strong enough analogy to use for 
homomorphism: “The similar triangles… that one I don’t like as much because… you’re only 
zooming in and out. You’re not even kind of like folding it… I feel like the similar triangles 
would give an impression of too much rigidity.” This comment brings up the importance of 
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being careful how analogues are used in the classroom, in order to avoid encouraging too narrow 
or loose conceptions about isomorphism or homomorphism. 

Discussion 
Isomorphism and homomorphism have a variety of conceptual facets to them. As previously 

observed, they can be interpreted formally through their definitions, through the lens of 
sameness, as mappings, and as sameness-focused mappings (Rupnow, 2021). One way we add to 
prior work is by noting new ways that sameness (e.g., indistinguishable) and mapping (e.g., 
invertible, transformation) metaphors can manifest. While these metaphors were only used by a 
few mathematicians, we note that they reveal opposite views of how much sameness is conveyed 
by isomorphism. For indistinguishable, objects linked by the isomorphism are not worth viewing 
as different—in all important ways they are the same. In contrast, transformation emphasizes 
differences still exist, even for isomorphic objects. Although these perspectives are in tension, 
they provide complimentary views depending on what is important for a specific context. 

Furthermore, even the four original clusters do not fully capture ways in which isomorphism 
and homomorphism are understood. Here we see formal definitions conveying a type of 
sameness (formal definition/sameness cluster) through operation-preservation and structure-
preservation. Though these metaphors can be used as stand-ins for the homomorphism property, 
the preservation aspect also highlights the sameness of elements’ interactions with each other. 
We also see ways in which isomorphism and homomorphism are part of a broader system of 
interconnected ideas, permitting connections to similar concepts in other parts of mathematics 
(generalizations cluster). These connections can be viewed thematically (equivalence relations) 
or as specific other instantiations (other branch analogues like homeomorphism). Finally, the 
changing perspectives cluster highlights a route for viewing problems in new ways when 
problem solving. Specifically, these mathematicians working in or near algebra/category theory 
provide homomorphism a purpose of its own rather than viewing homomorphism as important 
only for its relationship to isomorphism or for having a tenuous connection to sameness.  

Furthermore, the changing perspectives cluster highlights potential routes for future research. 
For instance, considering these homomorphism purposes did not arise in the prior study and were 
only noted by four mathematicians here, how prevalent are these notions? Similarly, would math 
instructors who teach but do not research algebra benefit from explicit conversations and 
professional development on this topic to make their teaching more relevant? Alternatively, do 
students find the changing perspectives cluster relevant if they are not interested in pursuing 
higher level math courses? Further explorations of such connections between instructors’ 
understandings and teaching as well as teaching and students’ understandings seem justified. 

Finally, this examination of experts’ language highlights desirable conceptions for students. 
Prior work has carefully examined students’ use of properties and approaches to determining 
whether groups are isomorphic (e.g., Dubinsky et al., 1994; Leron et al., 1995) as well as focused 
on the function nature of isomorphism and homomorphism (e.g., Melhuish et al., 2020). Here we 
highlight a framework that permits and structures simultaneous examination of both while 
connecting to analogous topics in other mathematical subfields. Future research could examine 
the benefits of using particular clusters of metaphors, contexts in which different clusters are 
optimal, and ways to foster explicit connections among these metaphor clusters in the classroom. 
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