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This paper describes our work to determine the naturalistic images that first-time second-
semester university calculus students possess for series convergence. We found that the students 
we interviewed most frequently determined whether a series converged by imagining a process 
of appending summands into a running total and examining whether this running total appeared 
to approach an asymptotic value. We provide examples and three corresponding implications of 
this “asymptotic running total” that informed students’ actions while determining series 
convergence or the value of convergence. Our paper adds to the research literature by 
confirming students’ meanings for limits reported for other topics (e.g., limit of sequence, 
function, Taylor series) apply to infinite series and proposing relationships between previously 
reported meanings for series convergence. 
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Introduction and Literature Review 
Infinite series convergence is a central mathematical topic applied across many branches of 

mathematics and other disciplines such as physics and engineering (Azevedo, 2021). The topic 
of infinite series also incorporates many other pivotal topics in advanced mathematics, such as 
sequence, limit, and infinity (Martin, 2013). Research related to infinite series has focused on the 
state of curricula and instruction (e.g., González-Martín et al., 2011; Lindaman & Gay, 2012); 
effective interventions to promote productive student thinking about limit or convergence 
(Martin et al., 2011; Roh, 2008, 2010b, 2010a; Swinyard & Larsen, 2012); and how students 
conceive of series convergence, the sequence of partial sums or the symbolic forms of 
representation students utilize to express series (Barahmand, 2021; Eckman & Roh, accepted; 
Kidron, 2002; Kidron & Vinner, 1983; Martin, 2013; Martínez-Planell et al., 2012; Strand et al., 
2012; Strand & Larsen, 2013).  

Most of the reports about students’ meanings for infinite series describe students who have 
previously received (or are currently receiving) instruction on this topic. The purpose of this 
study is to examine how first-time university second-semester calculus students consider the 
concept of series convergence before receiving formal instruction on sequences and series. 
Documenting students’ naturalistic images for infinite series before they receive formal 
instruction can (1) assist instructors in better anticipating students’ initial perceptions of series 
convergence and (2) help researchers better describe students’ acquisition of rigorous and 
productive meanings for convergence. We summarize the goals of this study with the following 
research questions: (1) What meanings for series convergence do first-time university calculus 
students conceive before receiving formal instruction on infinite series? (2) How do the 
implications of these students’ meanings for convergence inform their actions for determining 
whether a series converges and the value to which a convergent series converges? 

Theoretical Perspective 
In this study, we attempt to describe individual students’ meanings for series convergence 

and their utilization of these meanings to reason about various series. We adopt a radical 
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constructivist (Glasersfeld, 1995; Thompson et al., 2014) approach for the term meaning. 
Thompson et al. (2014) described a meaning as the space of implications resulting from 
assimilating a situation. We consider assimilation, in this case, to refer to an individual’s ability 
to consider her situation as analogous to previous experience (Glasersfeld, 1995) such that her 
subsequent actions are selected from the implications elicited by the meaning in her mind.  

The concept of meaning can effectively describe student thinking and actions for reasoning 
about series convergence. Suppose that a student, while examining the series 1 + ଵ

ଶ
+ ଵ

ସ
+ ⋯ +

ଵ
ଶ೙షభ + ⋯, conceives a dynamic image of adding consecutive summands and decides to track the 
value of the “moving sum” generated through this process. We call this “moving sum” a running 
total. An implication of the student’s evoked meaning for the series might involve a belief that if 
the running total approaches a particular value, then the series converges. An alternative 
implication of the meaning might include the notion that if the running total does not approach 
an asymptotic value, the series does not converge. The student’s subsequent actions to determine 
whether the running total approaches an asymptotic value are grounded in the implication 
evoked as part of the student’s meaning for series convergence. In the results section, we propose 
an overarching meaning for series that the students in this study appeared to possess and the 
implications that informed the students’ actions to determine convergence.  

Research Methodology 
In this report, we detail the meanings and implications that students exhibited for series 

convergence during a set of individual 90-minute clinical interviews (Clement, 2000) that 
simultaneously functioned as a selection and pre-test interview for a constructivist teaching 
experiment (Steffe & Thompson, 2000). The purpose of the teaching experiment was to offer 
calculus students specific tasks designed for developing productive meanings for series 
convergence while documenting the evolution of their corresponding symbolization for series 
convergence. The virtual clinical interviews were conducted during the Fall 2021 semester, prior 
to formal coursework on sequences and series, at a large public university in the United States. 
Our analysis and results focus on two students, Monica and Sylvia (pseudonyms), who were 
first-time second-semester calculus enrollees at the university level. 

 We presented the students with six infinite series in expanded form (see Table 1). We 
chose not to present infinite series using summation notation to mitigate students’ potential 
difficulties interpreting this notation (Strand et al., 2012; Strand & Larsen, 2013). Series 1-4 
reflect various behaviors of sequences of partial sums (i.e., monotone convergent, monotone 
divergent, oscillating convergent, oscillating divergent). Series 5-6 reflect series types that have 
been reported as problematic for students, such as the decimal expansion of an irrational number 
(Kidron, 2002; Kidron & Vinner, 1983) and variations of Grandi’s series (Bagni, 2005; 
Martínez-Planell et al., 2012). 

For each series, we asked the student two questions adopted from the sequences and series 
unit in Larson and Edwards (2015): (1) Does the series converge? and (2) If the series 
converges, what value does the series converge to? After the student responded to the two 
questions for each series, we presented each question in a generalized form to determine what 
students believed about convergence and the value of convergence for any series. 

After compiling and transcribing the interviews, we identified and analyzed individual 
moments of the interviews in the spirit of grounded theory (Strauss & Corbin, 1998). We 
considered a new moment to begin when a student either (1) encountered a new series, (2) 
changed their thinking about whether a series converged, or (3) proposed a particular value to 
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which they believed the series converged. For each moment, we recorded whether a student 
believed the series converged, the convergent value (if applicable), the meaning that students 
appeared to exhibit for series convergence, and how the students’ actions to determine series 
convergence might be viewed as implications of their meaning. We found that the two students 
reported in this study appeared to have a similar meaning for series convergence and that three 
distinct implications of this meaning emerged as the students interacted with various series. 

 
Table 1: The six series presented to students during the interviews 

Series  Rule Expanded Form Series type Sequence of 
Partial Sums 

Value of 
Convergence 

1 ෍
3

√𝑛

ஶ

௡ୀ଴

 
3

√1
+

3
√2

+
3

√3
+ ⋯ p-series 

(0 < 𝑝 < 1) 

Monotone 
increasing 
divergent 

 

2 ෍
2(−1)௡ିଵ

𝑛ହ

ஶ

௡ୀଵ

 2
1ହ −

2
2ହ +

2
3ହ − ⋯ 

Alternating 
p-series 
(𝑝 > 1) 

Oscillating 
convergent ≈ 1.94 

3 
෍ ෍ൣ10ିଶ௡ିଵ − 10ିଶ(௡ାଵ)ିଵ𝑖൧

ଽଽ

௜ୀଵ

ஶ

௡ୀଵ

  

= ෍
495

10000
൬

1
100൰

௞ஶ

௞ୀ଴

 

ଽଽ
ଵ଴య + ଽ଼

ଵ଴య + ⋯ + ଵ
ଵ଴య +  

ଽଽ
ଵ଴ఱ + ⋯ + ଵ

ଵ଴ఱ +  
ଽଽ

ଵ଴ళ + ⋯ + ଵ
ଵ଴ళ + ⋯  

Geometric 
Monotone 
increasing 
convergent 

1
20 

4 ෍
(200 − 2𝑛)(−1)௡

𝑛 + 1

ஶ

௡ୀ଴

 200
1

−
198

2
+

196
3

− ⋯ Alternating 
series 

Oscillating 
divergent  

5 
෍ 𝑎௜

ஶ

௜ୀ଴

 

(where 𝑎௜ corresponds to the 𝑖௧௛ 
decimal place of 𝜋 and 𝑎଴ = 3.) 

3 + .1 + .04 + ⋯ 

Decimal 
expansion of 

irrational 
number 

Monotone 
increasing 
convergent 

𝜋 

6 ෍(.07) ∙ (−1)௡
ஶ

௡ୀ଴

 . 07 − .07 + .07 − ⋯ 
Alternating 

series 
(Grandi’s) 

Oscillating 
divergent  

Results 
The results comprise two sections. The first section explains the students’ meaning of series 

convergence as analogous to a running total approaching an asymptotic value. The second 
section describes three distinct implications of this meaning that informed the students’ actions 
to determine the convergence and convergence value of various types of series. We reflect on 
potential relationships between the implications in the discussion section.  

 
Table 2: The evolution of students’ responses to the question “'RHV�WKH�VHULHV�FRQYHUJH"´ 
 Series 1 Series 2 Series 3 Series 4 Series 5 Series 6 

Monica 
Converge Y N Y N Y Y Y Y Y N 
Value Unsure  Unsure  0 𝜋 4 3.2 

and 4 
Any upper 

bound 
 

Sylvia 

Converge Y N Y N Y N Y Y Y N 
Value 4  Unknown 

value 
larger 
than 4 

 2  200 𝜋 0  
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Students’ Meaning for Convergence as a Running Total Approaching an Asymptotic Value 
Monica provided normative final responses for each series’ convergence except series 3 and 

4, while Sylvia provided normative responses for series 2, 5, and 6 (see Table 2; “Y” and “N” 
stand for “Yes” and “No”). However, in instances where both students believed that the series 
converged (i.e., series 2, series 4, series 5), the students proposed differing convergence values. 

Both students exhibited similar meanings for series convergence, which appeared to involve 
imagining a dynamic running total approaching an asymptotic value as additional summands are 
calculated into the running total. We call this meaning an asymptotic running total meaning. 
Monica’s response to the final interview question regarding general series convergence provides 
an image of her asymptotic running total meaning. Note that in each of the following transcripts, 
the ellipses (…) refer to omitted text. 

Monica: OK. So for the first question [How can I tell whether a series converges?]. The 
first thing I thought of was, kind of like with the limits thing, where are we approaching 
with every new, like, next iteration of this series? Are we approaching a value or 
infinity?... [In] the one where we were adding and subtracting and then adding and 
subtracting [series 4], but the numbers were decreasing, you still saw like a general trend 
towards, a number, which in that case was zero. So that’s what I would say when I’m 
thinking about, how can I tell whether [the] series converges… Like I’m interested in, 
what it’s approaching [i.e., the running total] and how adding on each next piece of the 
series is getting it closer to that value. 

Int:   OK. 
Monica: So then the last one [series 6] where it [i.e., subsequent summand] was like 

essentially undoing what the previous one had done. That was why I said it [series 6] 
wasn’t converging. Because there was not like one overall direction it was going. 

Int:   OK. Now, when you say one direction “it” was going. Just to clarify, what do you 
mean by the “it” that’s going somewhere? 

Monica: The series as a whole, or like the sum of the series as a whole [i.e., running total]. 
So like, if I were to take…like one plus two plus three plus four. And on this like, huge 
number line and I just go up all the way to like a very large number, and that number that 
was getting big, closer and closer to infinity. And then I went to the 200th part of that 
series. I can be like, Yeah, that’s still getting close to infinity, and I could go to the 
1000th part and it would be like, yeah, it still goes to infinity. 

In Monica’s initial comment she states that a convergent series will exhibit a “general trend” or 
“overall direction” towards a particular value. When the interviewer asked Monica to clarify the 
“it” moving towards the asymptotic value, Monica stated that she envisioned instantiations of the 
running total after summing various numbers of summands (i.e., 200 or 1000 summands). 
However, there is no indication that Monica coordinated these instantiations of the running total 
with an index to form the sequence of partial sums. For this reason, we use the terminology 
summand and running total in place of normative terminology (e.g., term, partial sum, sequence 
of partial sums) to make clear that we do not consider either student to have constructed explicit 
sequences through their reasoning about series convergence.  
Implications of Asymptotic Running Total Meaning for Determining Series Convergence 

In this section, we report three distinctive implications of the students’ asymptotic running 
total meaning which contextualize students’ actions while determining series convergence. The 
three implications we describe are decreasing summands convergence, monotone running total 
divergence, and running total recreation through grouping. 
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Implication 1: Decreasing summands convergence. One implication of an asymptotic 
running total meaning is that a student might believe that if each consecutive summand in an 
infinite series is smaller than the previous summand, the running total will eventually trend 
toward one specific value, suggesting that the series will converge. We call this implication 
decreasing summands convergence. In conventional mathematics, the notion of decreasing 
summands is a necessary but insufficient property of a convergent series (the most famous 
example of this principle is the harmonic series, ∑ ଵ

௡
ஶ
௡ୀଵ ).  

Both students’ actions in various moments related to series 1 appeared to align with the 
decreasing summands convergence implication of the asymptotic running total meaning. We 
constructed series 1 to reflect a divergent p-series with a monotone increasing sequence of partial 
sums (see Table 1). We provide an example from Sylvia’s reasoning about series 1 as evidence 
of the decreasing summands convergence implication. 

Sylvia: OK, now I’m thinking that the series doesn’t converge and like it [i.e., running total] 
keeps adding up and getting bigger and approaches like infinity or something like that. 

Int:  OK. 
Sylvia: Wait… 
Int:  OK… can you say a little bit more about any of the stuff that you’re thinking? 
Sylvia: Um…if you picture like a perfect square root like three over the square root of nine is 

three over three, and that’s one [ ଷ
√ଽ

= ଷ
ଷ

= 1]. But then if you had like three over the 

square root of 81, that’s one-third [ ଷ
√଼ଵ

= ଵ
ଷ
]. So…each item in a series that you’re adding 

on [brings up hand and mimics placing summands of series sequentially] is getting 
smaller. Yes, it is getting smaller. So it’s going to… converge to something, but it’s not 
going to be four. [brief pause] Yes, that’s my view. 

In Sylvia’s initial conception of the convergence of series 1, she argued that series 1 does not 
converge because the running total will perpetually increase. She later determined that each 
subsequent summand is smaller than the previous summands, which lead to her declaration that 
the series converges to an unknown value. In this moment, Sylvia’s asymptotic running total 
meaning implies that decreasing summands suggest convergence. However, we note that the 
decreasing summands convergence implication was insufficient for Sylvia to make a substantive 
claim regarding the value to which series 1 might converge.  

Implication 2: Monotone running total divergence. Another implication of an asymptotic 
running total meaning is that a student might believe that since the running total perpetually 
increases (or decreases) in a monotone series, the running total will eventually surpass every 
potential upper bound (i.e., asymptotic value) that might indicate convergence. We call this 
implication monotone running total divergence.  

Both students’ actions in various moments related to series 3 aligned with the monotone 
running total divergence implication (Monica’s actions related to series 1 also aligned with this 
meaning during certain moments). The authors constructed series 3, a convergent geometric 
series, by expanding each summand of the original geometric series into a finite arithmetic series 
that summed to the summand in the geometric series. Consequently, the expanded form of series 
3 resembled a double summation (see Table 1). We provide an instance of Monica’s reasoning 
about series 3 as an instance of the monotone running total divergence implication. 
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Monica: Um. [pause] So. In this case… we’re adding very, very, very small fractions [i.e., 
summands], but they’re always going to be positive numbers and then we’re adding all of 
them together. This one [series 3]…the rate of growth would be significantly slower. 

Int:   OK. 
Monica: But it would still, if you just did this forever [makes a gesture to the right 

indicating extending series indefinitely]…it [i.e., the running total] would just continue to 
increase. 

Int:   OK. So if I’m just summarizing what you’ve said, you’re saying that this third 
series does not converge. And the reason why is once again, similar to the first series, all 
of the fractions [i.e., summands] are positive, they’re all being added together. And so 
therefore, our value [i.e., running total] will never stop growing. And so as we continue 
on indefinitely, we’ll approach infinity. 

Monica: Right. 
In Monica’s comments, she noted that all of the summands in series 3 are positive and that 
although the rate at which the running total will grow is slow, the running total will never stop 
increasing. The interviewer then rephrased Monica’s comment to determine whether Monica 
imagined that a monotone running total implies non-convergence, which Monica confirmed. In 
Sylvia’s case, she recognized that although the summands for series 1 and series 3 both decrease 
in value, she claimed that series 1 converged and series 3 did not. Sylvia acknowledged the 
apparent contradiction in her reasoning but was unable to reconcile the issue.  

Implication 3: Running total recreation through grouping. A final implication of an 
asymptotic running total meaning is that a student might believe that if she groups the terms in 
an alternating series to construct a uni-directional running total, the series will converge. We call 
this implication running total recreation through grouping.  

Both students’ actions related to various moments related to series 4 appeared to align with 
the running total recreation through grouping implication (Sylvia’s actions related to series 2 
were nearly identical to her actions for series 4). We constructed series 4 to reflect an alternating 
divergent series with a linearly decreasing numerator and linearly increasing denominator (see 
Table 1). Monica tenuously claimed that series 4 converged to zero and Sylvia confidently 
claimed the series converged to 200 (the value of the initial summand). 

 We provide Monica’s rationale for claiming that series 4 converges to zero in the 
transcript below.  

Monica: I think that if I were to say that it [series 4] does converge, then I would also say 
that it converges to zero. 

Int:   OK. Can you say a little bit more about that? 
Monica: …So in this case, instead of seeing like each individual adding on a fraction is one 

thing [places hands close together with small space between], I’m kind of grouping them 
together, where we are subtracting and adding and that, I’m grouping that together in my 
head. 

Int:   OK, could you could you like, mark on the screen what it is that you’re grouping 
together just so that I’m sure that I know? 

Monica:  Yes. So I would put these together [draws a bracket above second and third 
summand] and then I would put these together [draws a bracket above the fourth and fifth 
summand]… and I take the number 200 and I, do these two things do it [cursor indicates 
second and third summands], I’m going to have a number here [moves cursor between 
third summand and minus sign separating third and fourth summand] that’s less than 
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200, but still very close to it. So basically, what I’ve decided is if you were to sum these 
two values [moves cursor back to indicate second and third summands], you would have 
a very small number and you subtract those… So that, that’s what makes me think that 
this [i.e., the running total] is getting smaller and smaller and smaller and smaller. 

In her response, Monica envisioned a running total that started at 200 (the value of the first 
summand) and noticed that by grouping each pair of consecutive summands after the first 
summand, she could construct a new series that had a distinctive pattern of 200 +
(small negative value) + (small negative value) + ⋯. Based upon her reconstruction of series 
4 by grouping, Monica perceived a running total that approached an asymptotic value of zero.  

 In the transcript below, we provide Sylvia’s rationale for claiming that series 4 converged 
to 200, which involved a different grouping action than Monica. 

Sylvia: So I’m going to say that this one [series 4] converges. And I think I’m going to follow 
the same logic that I did with [series 2,] that it kind of…drops some and increases a little 
bit less than it dropped [draws concave-up curve starting from (0, 200) that stops before 
reaching 𝑦 = 200], if that makes sense. And then it, like each wave gets smaller [draws 
more waves with decreasing amplitudes that progressively move closer and closer to 
horizontal line at y = 200]. And I would say my guess is that it converges to 200. 

[omitted dialogue] 
Int:  So, can you explain a little bit more to me about how you’re…seeing that come about 

[convergence to 200]? 
Sylvia: So I guess like, if we start at 200, we subtract 99, we’ll get 101, and then you add one 

ninety-six over three [ଵଽ଺
ଷ

], and that number is smaller than 99. Yes. And so you’re going 
to go back up and essentially cancel out some of the, the subtraction that you did. But not 
like all the way, like you’re not going to get back up to 200. 

Int:  OK. 
Sylvia: And then you’re going to go down a little bit more, but not as great as just went up. 

And then, like, follow that pattern. 
Int:  So there. So it’s like you’re imagining that every time we jump up, we’re jumping up 

farther than we drop down. And so over time, we’re slowly moving back up towards 200. 
Sylvia: Yes. 

In her response, Sylvia’s stated that the running total begins at 200, drops to 101, and then 
begins to move back toward 200 in progressively smaller “waves.” Sylvia constructed her 
“waves” by recognizing that the sum of the third and fourth summand would be a positive value, 
and every subsequent pair of summands would yield positive—albeit decreasing—values. Sylvia 
then reconstructed series 4 as 101 + (small positive value) + (small positive value) + ⋯ and 
envisioned that the running total would eventually approach the asymptotic value of 200, the 
initial summand of the series.  

Discussion and Conclusion 
Our findings provide unique and relevant contributions to the mathematics education 

literature. For instance, our description of the asymptotic running total meaning provides 
valuable insight into how students might initially perceive series convergence in university 
calculus courses. The three implications we described both emerge from and deepen the 
explanatory power of the asymptotic running total meaning. The first implication, decreasing 
summands convergence, emerges from an asymptotic running total meaning when a student 
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imagines that if the summands in a series tend toward zero, the running total will eventually 
stabilize around a particular value. The second implication, monotone running total divergence, 
emerges when a student envisions that a never-ending string of non-zero summands imply that 
the running total will perpetually increase and eventually surpass all potential asymptotic values. 
The third implication, running total recreation through grouping, emerges when a student 
considers that she can regroup the terms in an alternating series to create a uni-directional 
running total. For the students in our study, recreating the series resulted in not only a uni-
directional running total, but a plausible (in the students’ minds) candidate for the asymptotic 
value to which the recreated running total might converge. In this manner, the three implications 
provide a connection between students’ actions while considering the convergence of individual 
series and their overarching image of convergence as a running total approaching an asymptote.  

Our findings both complement and extend work done by previous researchers. For example, 
the asymptotic running total meaning indicates that students consider series convergence as a 
dynamic process of approaching an asymptote, which has been previously reported about 
students’ meanings for the limit of sequences (e.g., Roh, 2008) and functions (e.g., Swinyard & 
Larsen, 2012). Our findings also provide analogous results and additional insight into Martin’s 
(2013) report on students’ thinking for Taylor series convergence. For instance, Martin’s (2013) 
dynamic partial sum image in the Taylor series case is analogous to the asymptotic running total 
meaning for the infinite series case. However, our report extends the findings of Martin (2013) 
by reporting new implications of the asymptotic running total meaning (e.g., running total 
recreation through grouping) and providing a meaning-implication relationship between images 
that were previously reported distinctly (i.e., dynamic partial sum and termwise).    

Our data did not provide sufficient evidence to make rigorous claims about relationships 
between the three implications described in the results section. Still, we make two anecdotal 
comments about potential relationships. First, both students’ actions tended to align with the 
decreasing summands convergence implication after constructing and reasoning about closed-
form rules for the general summand in a series. In contrast, the monotone running total 
divergence implication often emerged during moments when the students could not construct a 
closed-form rule for the general summand or reasoned about the running total without 
referencing a closed-form rule for summand values. Second, the monotone running total 
divergence implication did not emerge during moments after students regrouped an alternating 
series. Rather, the students’ responses indicated that although the regrouped series’ running total 
would perpetually increase or decrease, the inherent oscillation of the original running total was 
sufficient to render the monotone running total divergence implication irrelevant. 

We anticipate that our ongoing analysis of the teaching experiment data from which this 
report emerged will provide insight into effective instructional interventions to foster productive 
student meanings for series convergence. In particular, we hope to discern how to leverage 
students’ naturalistic images of a series as a running total to construct a productive meaning for 
the sequence of partial sums, which Martínez-Planell et al. (2012) stated is pivotal to 
comprehending the formal definition of a series as the limit of its sequence of partial sums. We 
also hope to investigate possible relationships between the three implications we have described 
and uncover additional meanings and implications that first-time second-semester calculus 
students possess for series convergence. 
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