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Abstract 

When reasoning about science studies, people often make causal theory errors by inferring or accepting a causal 
claim based on correlational evidence. While humans naturally think in terms of causal relationships, reasoning about 
science findings requires understanding how evidence supports—or fails to support—a causal claim. This study 
investigated college students’ thinking about causal claims presented in brief media reports describing behavioral 
science findings. How do science students reason about causal claims from correlational evidence? And can their 
reasoning be improved through instruction clarifying the nature of causal theory error? We examined these questions 
through a series of written reasoning exercises given to advanced college students over three weeks within a psy-
chology methods course. In a pretest session, students critiqued study quality and support for a causal claim from a 
brief media report  suggesting an association between two variables. Then, they created diagrams depicting possible 
alternative causal theories. At the beginning of the second session, an instructional intervention introduced students 
to an extended example of a causal theory error through guided questions about possible alternative causes. Then, 
they completed the same two tasks with new science reports immediately and again 1 week later. The results show 
students’ reasoning included fewer causal theory errors after the intervention, and this improvement was maintained 
a week later. Our findings suggest that interventions aimed at addressing reasoning about causal claims in correla-
tional studies are needed even for advanced science students, and that training on considering alternative causal 
theories may be successful in reducing casual theory error.
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Significance statement
Causal theory error—defined as  making a causal claim 
based on correlational evidence—is ubiquitous in science 
publications, classrooms, and media reports of scientific 
findings. Previous studies have documented causal the-
ory error as occurring on a par with correct causal con-
clusions. However, no previous studies have identified 
effective interventions to improve causal reasoning about 
correlational findings. This study examines an example-
based intervention to guide students in reasoning about 
plausible alternative causal theories consistent with 

the correlational evidence. Following the intervention, 
advanced college students in a research methods course 
offered more critiques of causal claims and generated 
more alternative theories, and then maintained these 
gains a week later. Our results suggest that causal theory 
error is  common even in college science courses, but 
interventions focusing on considering alternative theo-
ries to a presented causal claim may be helpful. Because 
behavioral science communications in the media are 
increasingly available, helping people improve their abil-
ity to assess whether evidence from science studies sup-
port making changes in behavior, thinking, and policies is 
an important contribution to science education.

Open Access

Cognitive Research: Principles
and Implications

*Correspondence:  seifert@umich.edu
Department of Psychology, University of Michigan, 530 Church St, Ann 
Arbor, MI 48109, USA

http://orcid.org/0000-0001-5889-5167
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s41235-021-00347-5&domain=pdf


Page 2 of 22Seifert et al. Cognitive Research: Principles and Implications             (2022) 7:4 

Introduction
Causal claims from research studies shared on social 
media often exceed the strength of scientific evidence 
(Haber et  al., 2018). This occurs in journal articles as 
well; for example, a  recent study  in  Proceedings of the 
National Academy of Sciences reported a statistical asso-
ciation between higher levels of optimism and longer life 
spans, concluding, “…optimism serves as a psychological 
resource that promotes health and longevity” (Lee et al., 
2019, p. 18,360). Given evidence of association, people 
(including scientists) readily make a mental leap to infer 
a causal relationship. This error in reasoning—cum hoc 
ergo propter hoc (“with this, therefore because of this”)—
occurs when two coinciding events are assumed to be 
related through cause and effect. A press release for the 
article above offered, “If you’re happy and you know it… 
you may live longer” (Topor, 2019). But will you? What 
critical thinking is needed to assess this claim?

Defining causal theory error
The tendency to infer causation from correlation—
referred to here as causal theory error—is arguably the 
most ubiquitous and wide-ranging error found in science 
literature (Bleske-Rechek et  al., 2018; Kida, 2006; Rein-
hart et  al., 2013; Schellenberg, 2020; Stanovich, 2009), 
classrooms (Kuhn, 2012; Mueller & Coon, 2013; Sloman 
& Lagando, 2003), and media reports (Adams et al., 2019; 
Bleske-Rechek et  al., 2018; Sumner et  al., 2014). While 
science pedagogy informs us that, “correlation does not 
imply causation” (Stanovich, 2010), the human cognitive 
system is “built to see causation as governing how events 
unfold” (Sloman & Lagnado, 2015, p. 32); consequently, 
people interpret almost all events through causal rela-
tionships (Corrigan & Denton, 1996; Hastie, 2015; Tver-
sky & Kahneman, 1977; Sloman, 2005), and act upon 
them with unwarranted certainty (Kuhn, 2012). Claims 
about causal relationships from correlational findings are 
used to guide decisions about health, behavior, and pub-
lic policy (Bott et al., 2019; Huggins-Manley et al., 2021; 
Kolstø et  al., 2006; Lewandowsky et  al., 2012). Increas-
ingly, science media reports promote causal claims while 
omitting much of the information needed to evaluate the 
scientific evidence (Zimmerman et al., 2001), and editors 
may modify media report headlines to make such reports 
more eye-catching (Jensen, 2008). As a result, causal 
theory error is propagated in a third of press releases and 
over 80% of their associated media stories (Sumner et al., 
2014).

The ability to reason about causal relationships is fun-
damental to science education (Blalock, 1987; Jenkins, 
1994; Kuhn, 1993, 2005; Miller, 1996; Ryder, 2001), and 
U.S. standards aim to teach students to critically reason 
about covariation starting in middle school (Lehrer & 

Schauble, 2006; National Science Education Standards, 
1996; Next Generation Science Standards, 2013). To 
infer causation, a controlled experiment involving direct 
manipulation and random assignment to treatment and 
control conditions is the “gold standard” (Hatfield et al., 
2006; Koch & Wüstemann, 2014; Reis & Judd, 2000; Sul-
livan, 2011). However, for many research questions, col-
lecting experimental evidence from human subjects is 
expensive, impractical, or unethical (Bensley et al., 2010; 
Stanovich, 2010), so causal conclusions are sometimes 
drawn without experimental evidence (Yavchitz et  al., 
2012). A prominent example is the causal link between 
cigarette smoking and causes of death: “For reasons dis-
cussed, we are of the opinion that the associations found 
between regular cigarette smoking and death … reflect 
cause and effect relationships” (Hammond & Horn, 1954, 
p. 1328). Nonexperimental evidence (e.g., longitudi-
nal data)—along with, importantly, the lack of plausible 
alternative explanations—sometimes leads scientists to 
accept a causal claim supported only by correlational evi-
dence (Bleske-Rechek et al., 2018; Marinescu et al., 2018; 
Pearl & Mackenzie, 2018; Reinhart et  al., 2013; Schel-
lenberg, 2020). With no hard-and-fast rules regarding 
the evidence necessary  to conclude causation, the quali-
ties of the evidence offered are evaluated to determine 
the appropriateness of causal claims from science  stud-
ies (Kuhn, 2012; Morling, 2014; Picardi & Masick, 2013; 
Steffens et al., 2014; Sloman, 2005).

Theory‑evidence coordination in causal reasoning
To reason about claims from scientific evidence, Kuhn 
and colleagues propose a broad-level process of theory-
evidence coordination (Kuhn, 1993; Kuhn et  al., 1988), 
where people use varied strategies to interpret the impli-
cations of evidence and align it with their theories (Kuhn 
& Dean, 2004; Kuhn et  al., 1995). In one study, people 
read a scenario about a study examining school features 
affecting students’ achievement (Kuhn et al, 1995, p. 29). 
Adults examined presented   data points  and detected 
simple covariation to (correctly) conclude that, “having 
a teacher assistant causes higher student achievement” 
(Kuhn et al, 1995). Kuhn (2012) suggests theory-evidence 
coordination includes generating some conception as to 
why an association “makes sense” by drawing on back-
ground knowledge to make inferences, posit mecha-
nisms, and consider the plausibility of a causal conclusion 
(Kuhn et  al., 2008). Assessments of causal relationship 
are biased in the direction of prior expectations and 
beliefs (e.g., Billman et al., 1992; Fugelsang & Thompson, 
2000, 2003; Wright & Murphy, 1984). In general, people 
focus on how, “…the evidence demonstrates (or at least 
illustrates) the theory’s correctness, rather than that the 
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theory remains likely to be correct in spite of the evi-
dence” (Kuhn & Dean, 2004, p. 273).

However, in causal theory error, the process of theory-
evidence coordination may require less attention to evi-
dence. Typically, media reports of science studies present 
a summary of associational evidence that corroborates 
a presented theoretical causal claim (Adams et al., 2019; 
Bleske-Rechek et al., 2018; Mueller, 2020; Sumner et al., 
2014). Because the evidence is often summarized as a 
probabilistic association (for example, a statistical cor-
relation between two variables), gathering more evidence 
from instances cannot confirm or disconfirm the causal 
claim (unlike reasoning about instances, as in Kuhn 
et  al., 1995). Instead, the reasoner must evaluate a pre-
sented causal theory by considering alternative theories 
also corresponding with the evidence, disproving internal 
validity (that the presented causal claim is the only pos-
sibility). In the student achievement example (Kuhn et al., 
1995), a causal theory error occurs by failing to consider 
that the theory—”having a teacher assistant causes higher 
student achievement”—is not the only causal theory con-
sistent with the evidence; for example, they may co-occur 
in schools due to a third variable, such as school funding. 
In the case of causal theory error, the presented causal 
claim is consistent with the evidence; however, the non-
experimental evidence cannot support only the presented 
causal claim. Rather than an error in coordinating theory 
and evidence (Kuhn, 1993; Kuhn et al., 1995), we propose 
that  causal theory error   arises from failure to examine 
the uniqueness of a given causal theory .

Theory-evidence coordination is often motivated by 
contextually rich, elaborate, and familiar content along 
with existing beliefs, but these may also interfere with 
proficient scientific thinking (Billman et al., 1992; Fugel-
sang & Thompson, 2000, 2003; Halpern, 1998; Koehler, 
1993; Kuhn et  al., 1995; Wright & Murphy, 1984). Eve-
ryday contexts more readily give rise to personal beliefs, 
prior experiences, and emotional responses (Shah et al., 
2017); when congruent or desirable with a presented 
claim, these may increase plausibility and judgments of 
quality (Michal et  al., 2021; Shah et  al., 2017). Analytic, 
critical thinking may occur more readily when informa-
tion conflicts with existing beliefs (Evans & Curtis-Hol-
mes, 2005; Evans, 2003a, b; Klaczynski, 2000; Kunda, 
1990; Nickerson, 1998; Sá et al., 1999; Sinatra et al., 2014). 
Consequently, learning to recognize causal theory error 
may require guiding students in “reasoning through” 
their own related beliefs to identify how they may align—
and not align—with the evidence given. Our approach in 
this study  takes advantage of students’ ability to access 
familiar contexts and world knowledge to create their 
own alternative causal theories.

Prevalence of causal theory error
Prior research on causal reasoning has typically exam-
ined the formation of causal inferences drawn from 
observing feature co-occurrence in examples (e.g., 
Kuhn et al., 1995; Cheng, 1997; Fugelsang & Thompson, 
2000, 2003; Griffiths & Tenenbaum, 2005; see also Slo-
man & Lagnado, 2015). Fewer studies have asked people 
to evaluate causal claims based on summary evidence 
(such as stating there is a correlation between two vari-
ables). A study by Steffens and colleagues (2014) asked 
college students to judge the appropriateness of claims 
from evidence in health science reports. Students were 
more likely to reject causal claims (e.g., ‘School lunches 
cause childhood obesity”) from correlational than from 
experimental studies. However, each report in the study 
explicitly stated, “Random assignment is a gold standard 
for experiments, because it rules out alternative explana-
tions. This procedure [does, does not] allow us to rule out 
alternative explanations” (Steffens et  al., 2014; p. 127). 
Given that each reported study was labelled as allowing 
(or not allowing) a causal claim (Steffens et  al., 2014), 
these findings may overestimate people’s ability to avoid 
causal theory errors.

A field study recruiting people in restaurants to evalu-
ate research reports provides evidence that causal theory 
errors are quite common. In this study (Bleske-Rechek 
et  al., 2015), people read a research scenario linking 
two variables (e.g., playing video games and aggressive 
playground behavior) set in either experimental (ran-
dom assignment to groups) or non-experimental (sur-
vey) designs. Then, they selected appropriate inferences 
among statements including causal links (e.g., “Video 
games cause more aggression”), reversed causal links 
(“Aggression causes more video game playing”), and asso-
ciations (e.g., “Boys who spend more time playing video 
games tend to be more aggressive”). Across three sce-
narios, 63% of people drew causal inferences from non-
experimental data, just as often as from experimental 
findings. Further, people were more likely to infer direc-
tions of causality that coincided with common-sense 
notions (e.g., playing games leads to more aggression 
rather than the reverse) (Bleske-Rechek et al., 2015).

Another study by Xiong et  al. (2020) found similarly 
high rates of endorsing causal claims from correlational 
evidence. With a crowdsourced sample, descriptions of 
evidence were presented in text format, such as, "When 
students eat breakfast very often (more than 4 times a 
week), their GPA is around 3.5; while when students eat 
breakfast not very often (less than four times a week), 
their GPA is around 3.0,” or with added bar graphs, line 
graphs, or scatterplots (Xiong, et al., 2020, p. 853). Causal 
claims (e.g., “If students were to eat breakfast more 
often, they would have higher GPAs”) were endorsed by 
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67–76% of adults compared to 85% (on average) for cor-
relational claims (“Students who more often eat breakfast 
tend to have higher GPA”) (Xiong, et  al., 2020, p. 858). 
Finally, Adams et al. (2017) suggested people do not con-
sistently distinguish among descriptions of “moderate” 
causal relationships, such as, “might cause,” and “associ-
ated with,” even though the wording establishes a logi-
cal distinction between causation and association. These 
studies demonstrate that causal theory error in interpret-
ing science findings is pervasive, with most people taking 
away an inappropriate causal conclusion from associa-
tional evidence (Zweig & Devoto, 2015).

Causal theory error in science students
However, compared to the general public, those with col-
lege backgrounds (who on average have more science 
education) have been shown to have better science eval-
uation skills (Amsel et  al., 2008; Huber & Kuncel, 2015; 
Kosonen & Winne, 1995; Norcross et al., 1993). College 
students make better causal judgments when reason-
ing about science, including taking in given information, 
reasoning through to a conclusion, and tracking what 
they know and don’t know from it (Koehler, 1993; Kuhn, 
2012). Might science literacy (Miller, 1996) help college 
students be more successful in avoiding causal theory 
error? Norris et al. (2003) found that only about a third of 
college students can correctly distinguish between causal 
and correlational statements in general science texts. 
And teaching scientific content alone may not improve 
scientific reasoning, as in cross-cultural studies showing 
Chinese students outperform U.S. students on measures 
of science content but perform equally on measures of 
scientific reasoning (Bao et al., 2009; Crowell & Schunn, 
2016). College-level science classes (as many as eight) 
fail to predict performance on everyday reasoning tasks 
compared to high school students (Norris & Phillips, 
1994; Norris et  al., 2003). Despite more science educa-
tion, college students still struggle to accurately judge 
whether causal inferences are warranted (Norris et  al., 
2003; Rodriguez et al., 2016a, b).

Because media reports typically describe behavio-
ral studies (e.g., Bleske-Rechek et al., 2018; Haber et al., 
2018), psychology students may fare better (Hall & Seery, 
2006). Green and Hood (2013) suggest psychology stu-
dents’ epistemological beliefs benefit from an emphasis 
on critical thinking, research methods, and integrating 
knowledge from multiple theories. Hofer (2000) found 
that first year psychology students believe knowledge is 
less certain and more changing in psychology than in sci-
ence more generally. And Renken and colleagues (2015) 
found that psychology-specific epistemological beliefs, 
such as the subjective nature of knowledge, influence stu-
dents’ academic outcomes. Psychology exposes students 

to both correlational and experimental studies, foster-
ing distinctions about the strength of empirical evidence 
(Morling, 2014; Reinhart et  al., 2013; Stanovich, 2009). 
Mueller and Coon (2013) found students in an introduc-
tory psychology class interpreted correlational findings 
with just 28% error on average, improving to just 7% 
error at the end of the term. To consider causal theory 
error among psychology students, we recruited a con-
venience sample of advanced undergraduate majors in a 
research methods course. These students may be more 
prepared to evaluate causal claims in behavioral studies 
reported in the media.

Correcting causal theory error
To attempt to remedy causal theory error, the present 
study investigates whether students’ reasoning about 
causal claims in science studies can be improved through 
an educational intervention. In a previous classroom 
study, Mueller and Coon (2013) introduced a special 
curriculum over a term in an introductory psychology 
course. By  emphasizing how to interpret correlational 
findings, the rate of causal theory error decreased by 
21%. Our study used a similar pre/post design to assess 
base rates of causal theory error and determine the 
impact of a single, short instructional intervention. Our 
intervention was based on guidelines from science learn-
ing studies identifying example-based instruction (Shafto 
et al., 2014; Van Gog & Rummel, 2010) and self-explana-
tion (Chi et al., 1989). Renkl and colleagues found exam-
ples improve learning by promoting self-explanations of 
concepts through spontaneous, prompted, and trained 
strategies (Renkl et  al., 1998; Stark et  al., 2002, 2011). 
Even incorrect examples can be beneficial in learning to 
avoid errors (Durkin & Rittle-Johnson, 2012; Siegler & 
Chen, 2008). Based on evidence that explicit description 
of the error within an example facilitates learning (Große 
& Renkl, 2007), our intervention presented a causal the-
ory  error made in an example and explained why the 
specific causal inference was not warranted given the evi-
dence (Stark et al., 2011).

Following Berthold and Renkl’s paradigm (2009, 
2010), our intervention incorporated working through 
an extended example using world knowledge (Kuhn, 
2012). To facilitate drawing on their own past experi-
ences, the example study selected was relevant for recent 
high school graduates likely to have pre-existing beliefs 
and attitudes (both pro and con) toward the presented 
causal claim (Bleske-Rechek et  al., 2015; Michal et  al., 
2021). Easily accessible world knowledge related to the 
study findings may assist students in identifying how 
independent thinking outside of the presented informa-
tion can inform their assessment of causal claims. We 
encouraged students to think on their own about possible 
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causal theories by going “beyond the given information” 
(Bruner, 1957). Open-ended prompts asked students to 
think through what would happen in the absence of the 
stated cause, whether a causal mechanism is evident, and 
whether the study groups differed in some way. Then, 
students generated their own alternative causal theories, 
including simple cause-chain and reverse cause-chain 
models, and potential third variables causing both (com-
mon causes) (Pearl, 1995, 2000; Shah et al., 2017).

To support students in identifying alternative causal 
theories, our intervention included visualizing causal 
models through the creation of diagrams. Creating dia-
grams after reading scientific material has been linked 
with better understanding of causal and dynamic rela-
tionships (Ainsworth & Loizou, 2003; Bobek & Tver-
sky, 2016; Gobert & Clement, 1999). Students viewing 
diagrams generate more self-explanations (Ainsworth 
& Loizou, 2003), and training students to construct 
their own diagrams (“drawing to learn”) may promote 
additional frames for understanding difficult concepts 
(Ainsworth & Scheiter, 2021). Diagramming causal rela-
tionships may help students identify causal theories 
and assist them in considering alternatives. For simplic-
ity, students diagrammed headlines from actual media 
reports making a causal claim; for example, ‘‘Sincere 
smiling promotes longevity” (Mueller, 2020). Assessing 
causal theory error with headlines minimizes extraneous 
study descriptions that may alter interpretations (Adams 
et al., 2017; Mueller & Coon, 2013).

We expected our short intervention to support stu-
dents in learning to avoid causal theory error; specifically, 
we predicted that students would be more likely to notice 
when causal claims from associational evidence were 
unwarranted through increased consideration of alterna-
tive causal theories following the intervention.

Method
Participants
Students enrolled in a psychology research methods 
course at a large midwestern U.S. university were invited 
to participate in the study over three consecutive weeks 
during lecture sessions. The students enrolled during 
their third or fourth year of college study after completing 

introductory and advanced psychology courses and a 
prerequisite in statistics. The three study sessions (pre-
test, intervention, and post-test) occurred in weeks 3–5 
of the 14-week course, prior to any instruction or read-
ings on correlational or experimental methodology. Of 
240 students enrolled, 97 (40%) completed the voluntary 
questionnaires for the study in all three sessions and were 
included in the analyses.

Materials
Intervention
The text-based intervention explained how to perform 
theory-evidence coordination when presented with a 
causal claim through an extended example (see Appendix 
1). The example described an Educational Testing Ser-
vice (ETS) study reporting that 84% of top-tier workers 
(receiving the highest pay) had taken Algebra 2 classes 
in high school. Based on this evidence, legislatures in 
20 states raised high school graduation requirements to 
include Algebra 2 (Carnevale et  al., 2009). The study’s 
lead author, Anthony Carnevale, acknowledged this as 
a causal theory error, noting, “The causal relationship is 
very, very weak. Most people don’t use Algebra 2 in col-
lege, let alone in real life. The state governments need to 
be careful with this” (Whoriskey, 2011).

The intervention presented a short summary of the 
study followed by a series of ten questions in a work-
sheet format. The first two questions addressed the 
evidence for the causal claim and endorsement of the 
causal theory error, followed by five questions to prompt 
thinking about alternative explanations for the observed 
association, including reasoning by considering counter-
factuals, possible causal mechanisms, equality of groups, 
self-selection bias, and potential third variables. For the 
final three questions, students were shown causal dia-
grams to assess their endorsement of the causal claim, 
the direction of causation, and potential third variables. 
The intervention also explicitly described this as an error 
in reasoning and ended with advice about the need to 
consider alternative causes when causal claims are made 
from associational evidence.

Fig. 1  Graphical depiction of questionnaire content for each session in the longitudinal study
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Dependent measures
To investigate both students’ understanding of theory-
evidence coordination in evaluating a study and their 
ability to generate alternative theories to the causal 
claim, we included two tasks—Study Critique and Dia-
gram Generation—in each session (pretest, intervention, 
and post-test) as repeated measures (see Fig.  1). Each 
task included brief study descriptions paraphrased from 
actual science media reports (Mueller, 2020). To counter 
item-specific effects, three separate problem sets were 
generated pairing Critique and Diagram problems at 
random (see Appendix 2). The three problem sets were 
counterbalanced across students  by assigning them at 
random to alternate forms so that each set of problems 
occurred equally frequently at each session.

In the Study Critique task, a short media story 
(between 100 and 150 words) was presented for evalua-
tion; for example:

“…Researchers have recently become interested in 
whether listening to music actually helps students 
pay attention and learn new information. A recent 
study was conducted by researchers at a large mid-
western university. Students (n = 450) were surveyed 
prior to final exams in several large, lecture-based 
courses, and asked whether they had listened to 
music while studying for the final. The students who 
listened to music had, on average, higher test scores 
than students who did not listen to music while 
studying. The research team concluded that students 
who want to do well on their exams should listen to 
music while studying.”

First, two rating items assessed the perceived quality 
of the study and its support for the claim with 5-point 
Likert scales, with “1” indicating low-quality and an 
unsupported claim, and “5” indicating high-quality and a 
supported claim. For both scales, higher scores indicate 
causal theory error (i.e., high quality study does support 
the causal claim). Next, an open-ended question asked 
for “a critical evaluation of the study’s method and claims, 
and what was good and bad about it” (see Appendix 3). 
Responses were qualitatively coded using four emergent 
themes: (1) pointing to causal theory error (correlation 
is not causation), (2) the study methodology (not experi-
mental), (3) the identification of alternative theories such 
as third variables, and (4) additional studies are needed 
to support a causal claim. Each theme addresses a weak-
ness in reasoning from the study’s correlational evidence 
to make a causal claim. Other issues mentioned infre-
quently and not scored as critiques included sample size, 
specialized populations, lack of doctor’s recommenda-
tion, and statistical analyses. Two authors worked inde-
pendently to code a subset of the responses (10%), and 

the Cohen’s Kappa value computed using SPSS was κ = 
0.916, indicating substantial agreement beyond chance 
on the Landis and Koch (1977) benchmarks. One author 
then scored the remaining responses. Higher scores on 
this Critique Reasons measure indicate greater ability to 
critique causal claims from associational data.

The Diagram Generation task included instructions 
with sample causal diagrams (Elwert, 2013) to illus-
trate how to depict relationships between variables (see 
Appendix 4); all students completed these correctly, indi-
cating they understood the task. Then, a short “headline” 
causal claim was presented, such as, “Smiling increases 
longevity,” (Abel & Kruger, 2010) and students were 
asked to diagram possible relationships between the two 
variables. The Alternative Theories measure captured 
the number of distinct alternative causal relationships 
generated in diagrams, scored as a count of deductive 
categories including: (a) direct causal chain, (b) reverse 
direction chain, (c) common cause (a third variable 
causes both), and (d) multiple-step chains, with possible 
scores ranging from 0 to 4. Two authors worked inde-
pendently to code a subset of the responses (10%), and 
the Cohen’s Kappa value computed using SPSS was κ = 
0.973, indicating substantial agreement beyond chance 
on the Landis and Koch (1977) benchmarking scale. One 
author then scored the remainder of the responses. A 
higher Alternative Theories score reflects greater ability 
to generate different alternative causal explanations for 
an observed association.

Procedure
The study took place during lecture sessions for an 
advanced psychology course over three weeks in the 
first third of the term. At the beginning of the lecture 
each week, students were asked to complete a study 
questionnaire. In the pretest session, students were ran-
domly assigned to one of three alternate forms, and they 
received corresponding forms in the intervention and 
post-test sessions so that the specific science reports 
and headlines included in each student’s questionnaires 
were novel to them across sessions. Students were given 
10  min to complete the intervention worksheet and 
15 min to complete each questionnaire.

Results
Understanding the intervention
To determine how students understood the interven-
tion and whether it was successful, we performed a 
qualitative analysis of open-ended responses. The exam-
ple study presented summary data (percentages) of for-
mer students in high- and low-earning careers who took 
high school algebra and concluded that taking advanced 
algebra improves career earnings. Therefore, correct 
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responses on the intervention reject this causal claim to 
avoid causal theory error. However, 66% of the students 
reported in their open-ended responses that they felt the 
study was convincing, and 63% endorsed the causal the-
ory error as a “good decision” by legislators. To examine 
differences in students’ reasoning, we divided the sample 
based on responses to these two initial questions.

The majority (n = 67) either endorsed the causal claim 
as convincing or agreed with the decision based on it (or 
both), and these students were more likely to cite “strong 
correlation” (25%; χ2 = 9.88, p = 0.0012, Φ = 0.171) and 
“foundational math is beneficial” (35%); χ2 = 8.278, 
p = 0.004, Φ = 0.164) as reasons. Students who rejected 
the causal claim (did not find the study convincing nor 

the decision supported; n = 33) showed signs of difficulty 
in articulating reasons for this judgment; however, 27% 
clearly identified causal theory error more often in their 
reasons (χ2 = 10.624, p = 0.001, Φ = 0.183). As Table  1 
shows, the two groups’ responses differ more initially 
(consistent with their judgments about the causal claim), 
but become more aligned on later questions.

On the final two questions, larger differences occur 
when considering possible alternative “third variables” 
responsible for both higher earnings and taking more 
algebra (“smarter,” “richer,” “better schools,” and “headed 
to college anyway”). More of these potential “third vari-
ables” were endorsed as plausible more often by students 
initially rejecting compared to accepting the causal claim. 

Table 1  Intervention response frequencies for students rejecting versus endorsing causal claims

Significant differences: 1χ2 = 7.756, p = .005, Φ = .14; 2χ2 = 6.229, p = .013, Φ = .125

Open-ended response categories Rejected (n = 29%) Endorsed (71%)

How does no requirement affect future opportunities?

Positively 24% 12%
1Negatively 7% 35%

Neither 62% 45%

Not Sure 7% 7%

Why might taking algebra result in better jobs?

Looks good for jobs 44% 27%

Increases math skills 27% 30%

Learn creative problem solving 11% 19%

Shows college readiness 7% 14%

In what ways might students taking algebra differ from students who don’t take it?

Highly motivated 20% 17%

Higher intelligence 16% 16%

Interested in math/STEM careers 26% 24%

Want to go to college 13% 12%

Parent/peer pressures 7% 11%

Thinking back, why might students in the study have decided to take algebra?

Interested in learning math/careers 30% 22%

To get into college 4% 18%

Required for careers 14% 6%

Thinking back, why might students in the study have decided not take algebra?

Too challenging/difficult 14% 22%

Not related to their field/career 11% 8%

No interest in learning it 6% 12%

Alternative theories explain finding (smarter, college-bound, richer, better schools)?
2Endorsed 3 or 4 86% 60%

Endorsed two 7% 25%

Endorsed one or none 6% 14%

Does this causal diagram make sense to you (yes/no responses)?

Taking algebra causes better jobs? 75% 66%

Better jobs cause taking algebra? 3% 7%

Being smart causes both? 90% 79%
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On a final question, in which three alternative causal 
diagrams (direct cause, reverse cause, third variable) 
were presented to illustrate possible causal relationships 
between Algebra 2 and top tier jobs, over 75% of both 
groups endorsed a third variable model. Based on these 
open-ended response measures, it appears most students 
understood the intervention, and most were able to rea-
son about and accept  alternatives to the stated causal 
claim.

Analysis of causal theory error
We planned to conduct repeated measures ANOVAs 
with linear contrasts based on expected improvements 
on all three dependent variables (Study Ratings, Cri-
tique Reasons, and Alternative Theories) across Sessions 
(pre-test, immediately post-intervention, and delayed 
post-test). In this repeated-measures design, each stu-
dent completed three questionnaires including the 
same six test problems appearing in differing orders. 
Approximately equal numbers of students completed 
each of three forms (n = 31, 34, 32). A repeated meas-
ures analysis with Ordering (green, white, or yellow) 
as a between-groups factor found no main effects, with 
no significant differences for Ratings (F(2, 94) = 0.996, 
p = 0.373), Reasons (F(2, 93) = 2.64, p = 0.08), or Theories 
(F(2, 93) = 1.84, p = 0.167). No further comparisons were 
made comparing order groups.

Study critiques: Ratings
The Ratings measures included two assessments: (1) the 
perceived quality of the study and (2) its support for the 
causal claim, with higher scores indicating causal theory 
error (i.e., a “high” quality study and “good” support for 
a causal claim). At pretest, ratings averaged above the 
midpoint of the 5-point rating scale for both quality and 
support, indicating that on average, students considered 
the study to be of good quality with moderate support for 
the causal claim. Immediately following the intervention, 
students ratings showed  similar endorsments of study 
quality and support for a causal claim (see Table 2).

However, on the post-test one week later, ratings for 
both quality and support showed significant decreases. 
Planned linear contrasts showed a small improvement 
in rejecting a causal claim over the three sessions in both 
quality and support ratings, indicating less causal theory 

error at post-test. Using Tukey’s LSD test, the quality and 
support ratings in the post-test session were both signifi-
cantly different from the pretest session (p = 0.015; 0.043) 
and intervention session (p = 0.014; 0.027), while the 
pretest and intervention means did not differ (p = 0.822; 
0.739), respectively.

Both study quality and causal support ratings remained 
at pre-test levels after the intervention, but decreased 
in the final post-test session. About half (48%) of these 
advanced psychology students rated studies with corre-
lational evidence as “supporting” a causal claim (above 
scale midpoint) on the pretest, with about the same num-
ber at the intervention session; however, at the post-test 
session, above mid-point support declined to 37%. This 
suggests students may view the ratings tasks as assess-
ing consistency between theory and evidence (the A → B 
causal claim matches the study findings). For example, 
one student gave the study the highest quality rating and 
a midscale rating for support, but wrote in their open-
ended critique that the study was, “bad—makes causa-
tion claims.” Another gave ratings of “4” on both scales 
but wrote that, “The study didn’t talk about other factors 
that could explain causal links, and as a correlation study, 
it can’t determine cause.” These responses suggest stu-
dents may recognize a correspondence between the stated 
theory and the evidence in a study, yet reject the stated 
causal claim as unique. On the post-test, average rat-
ings decreased, perhaps because students became more 
critical about what “support for a causal claim” entails. 
To avoid causal theory error, people must reason that the 
causal theory offered in the claim is not a unique expla-
nation for the association, and this may not be reflected 
in ratings of study quality and support for causal claims.

Study critiques: Reasons
A second measure of causal reasoning was the number 
of Critique Reasons in the open-ended responses, scored 
as a count of coded themes related to causality (rang-
ing from 0 to 4). These included stating that the study 
(a) was only correlational, (b) was not an experiment, (c) 
included other variables affecting the outcomes, and (d) 
required additional studies to support a causal claim. A 
planned linear contrast indicated a small improvement in 
Critiques scores after the pretest session, F(1, 94) = 9.318. 
p < 0.003, ηp

2 = 0.090, with significant improvement from 

Table 2  Rating scale averages and standard deviations for pre-test, intervention, and post-test sessions

Linear contrasts with 1, 96 degrees of freedom, *p < .05

Pre-test Intervention Post-test F p ηp
2

Quality 3.15 (.894) 3.19 (.939) 2.86 (.890) 6.10 0.015* .060

Support 3.37 (.961) 3.42 (.981) 3.10 (.941) 4.207 0.043* .042
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pretest (M = 1.25; SD = 0.854) to intervention (M = 1.56, 
SD = 0.841) and post-test (M = 1.58, SD = 0.875). The 
intervention and post-test means were not different by 
Tukey’s LSD test (p = 0.769), but both differed from the 
pretest (intervention p = 0.009, post-test p = 0.003). The 
percentage of students articulating more than one cor-
rect reason to reject a causal claim increased from 31% 
on the pre-test to 47% immediately after the intervention, 
and this improvement was maintained on the post-test 
one week later, as shown in Fig. 2.

When considering “what’s good, and what’s bad” about 
the study, students were more successful in identify-
ing causal theory error following the intervention, and 
they maintained this gain at the post-test. For example, 
in response to the claim that “controlling mothers cause 
kids to overeat,” one student wrote, “There may be a cor-
relation between the 2 variables, but that does not nec-
essarily mean that one causes the other. There could be 
another answer to why kids have more body fat.” Another 
wrote, “This is just a correlation, not a causal study. There 

Fig. 2  Average number of critique reasons in students’ open-ended responses across sessions. Error bars represent within-subjects standard error 
of the mean (Cousineau, 2005)

Fig. 3  Average number of alternative causal theories generated by students across sessions. Error bars represent within-subjects standard error of 
the mean (Cousineau, 2005)
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could be another variable that might be playing a role. 
Maybe more controlling mothers make their kids study 
all day and don’t let them play, which could lead to fat 
buildup. So, the controlling mother causes lack of exer-
cise, which leads to fat kids.” This suggests students fol-
lowed the guidance in the  intervention by questioning 
whether the study supports the causal claim as unique, 
and generated their own alternative causal theories.

Alternative theories
In the Diagram task, students created their own repre-
sentations of possible alternative causal relationships for 
a causal claim. These causal theories were counted by cat-
egory, including: (a) direct causal chain, (b) reverse direc-
tion chain, (c) common cause (a third variable causes 
both), and (d) multiple-step chains (intervening causal 
steps), with scores ranging from 0 to 4 (the same diagram 
with different variables did not increase the score). A 
planned linear contrast showed a significant increase in 
the number of alternative theories included in students’ 
diagrams (F(1,93) = 30.935, p < 0.001, ηp

2 = 0.25) from 
pre-test (M = 1.68, SD = 0.985) to intervention (M = 2.44, 
SD = 1.429), and the gain was maintained at post-test 
(M = 2.40, SD = 1.469) (see Fig. 3). The pretest mean was 
significantly different (by Tukey’s LSD) from both the 
intervention and the post-test mean (both p’s < 0.001), but 
the intervention and post-test means were not signifi-
cantly different, p = 0.861. Students provided more (and 
different) theories about potential causes immediately 
after the intervention, and this improvement was main-
tained on the post-test a week later.

On the Diagram task, students increased the num-
ber of different alternative theories generated after the 

intervention, including direct cause, reversed cause-
chain, third variables causing both (common cause), and 
multiple causal steps. This may reflect an increased abil-
ity to consider alternative forms of causal theories to the 
presented causal theory. Students also maintained this 
gain of 43% in generating alternatives on the post-test 
measure one week later. Most tellingly, while 34% offered 
just one alternative theory on the pre-test, no students 
gave just one alternative following the intervention or 
at post-test. While many described reverse-direction or 
third-variable links as alternatives (see Fig. 4, left), some 
offered more novel, complex causal patterns (Fig.  4, 
right). This improved ability to generate alternative the-
ories to a presented causal claim suggests students may 
have acquired a foundational approach for avoiding 
causal theory errors in the future.

Discussion
The present study documents students’ improvement in 
avoiding causal theory error when reasoning about sci-
entific findings following a simple, short intervention. 
The intervention guided students through an extended 
example of a causal theory error, and included questions 
designed to scaffold students’ thinking about whether a 
causal claim uniquely accounts for an observed asso-
ciation. Immediately following the intervention and in 
a delayed test, students increased their reports of prob-
lems with causal claims, and generated more alternative 
causal theories. While causal theory errors have been 
documented in multiple-choice measures (Bleske-Rechek 
et  al., 2018; Mueller & Coon, 2013; Xiong et  al., 2020), 
this study examined evidence of causal theory errors in 
students’ open-ended responses to claims in science 

Fig. 4  Example diagrams depicting alternative causal theories from a student in the post-test session. On the left, diagrams showing direct cause, 
reverse cause, and third-variable theories; on right, a more complex theory with multiple steps and paths



Page 11 of 22Seifert et al. Cognitive Research: Principles and Implications             (2022) 7:4 	

media reports. This is the first documented interven-
tion associated with significant improvement in avoiding 
causal theory error from science reports.

Qualities of successful interventions
The intervention was designed following recommen-
dations from example-based instruction (Shafto et  al., 
2014; Siegler & Chen, 2008; Van Gog & Rummel, 2010). 
Worked examples may be especially important in learn-
ing to reason about new problems (Renkl et  al., 1998), 
along with explicitly stating the causal theory error and 
explanation within the example (Große & Renkl, 2007; 
Stark et  al., 2011). Our intervention also emphasized 
recognizing causal theory errors in others’ reasoning, 
which may be easier to learn than attempting to correct 
one’s own errors. Finally, introducing diagramming as 
a means for visually representing causal theories (Ains-
worth & Loizou, 2003; Bobek & Tversky, 2016; Gobert 
& Clement, 1999) may have been helpful in generating 
alternative theories by using real-world knowledge to “go 
beyond the information given” (Bruner, 1957; Waldmann 
et  al., 2006). To facilitate this thinking, the extended 
example was selected for relevance to students based in 
their own experiences (e.g., interest in math driving their 
course selections), found to be important in other stud-
ies (Bleske-Rechek et  al., 2015; Michal et  al., 2021). The 
success of the intervention may be facilitated by an exam-
ple of causal theory error that “hit close to home” for stu-
dents through relevance, personal experience, and prior 
beliefs and attitudes.

In particular, our intervention emphasizing alternative 
causal theories may assist students in learning to reason 
about causal claims from correlational studies. Consid-
ering multiple causal theories requires original thinking 
because students must posit additional variables (e.g., 
third variables not stated in the problem) and unstated 
causal relationships (e.g., reversed causes, multiple 
causes and effects). When successful, their alternative 
theories may help to raise doubt about the internal valid-
ity of the study because   the presented causal theory is 
not unique. The findings show that after the intervention, 
students provided more of their own competing theories, 
confirming the existence of alternative causes consist-
ent with the correlational evidence. In reasoning about 
causes and  associations, the process of theory-evidence 
coordination appears to require less attention to evidence 
and more attention to alternative theories. In the context 
of evaluating summaries of science reports (such as those 
frequently found in the media), considering theory-evi-
dence correspondence  cannot disconfirm causal  claims; 
instead, reasoning about other causal theories consistent 
with the evidence may help to identify when a causal the-
ory is not unique, avoiding causal theory error.

The intervention was immediately followed by decrease 
in causal theory error appearing in students’ study cri-
tiques and alternative theories. However, almost half of 
the students still rated studies with correlational evidence 
as “high quality” and “supporting a causal claim” imme-
diately  after the intervention even while raising issues 
with the claim  in their written reasons for their ratings. 
This suggests students may interpret “study quality” and 
“support for claim” ratings  questions by assessing the 
consistency of the correlational evidence and causal the-
ory, while also recognizing that the study cannot uniquely 
account for the finding without   experimental meth-
odology. This suggests open-ended questions may pro-
vide information about causal reasoning processes  not 
evident from ratings of support or  endorsement of  the 
causal claim alone, as in multiple choice measures (Shou 
& Smithson, 2015).

In prior work on causal reasoning, people viewed  a 
series of presented  data points   to arrive at a causal 
theory through a process of theory-evidence coordi-
nation (Kuhn, 1993; Kuhn et  al., 1995), and use  varied 
strategies to determine whether evidence aligns with 
theories (Kuhn & Dean, 2004; Kuhn et  al., 1995). But 
when summary findings from a study are presented 
(as in the present study; see also  Adams et  al., 2017; 
Bleske-Rechek et  al., 2015; Xiong et  al., 2020), it is not 
possible to examine inconsistencies in presented evi-
dence  to test alternative theories; instead, the theory-
evidence coordination process may  focus on addressing 
whether a presented  theory uniquely accounts for the 
observed association. Further studies are needed to bet-
ter understand how to support students in consider-
ing correlational findings, and how people reason about 
theory and evidence from study summaries  in science 
communications.

Effective science learning interventions
These results are consistent with prior studies showing 
that the use of visualizations can improve science learn-
ing (Mayer, 2005, 2020). As noted by Gobert and Clem-
ent (1999), creating diagrams from scientific material has 
been linked with better understanding of causation and 
dynamics, and drawing has been shown to assist learn-
ers in some circumstances (Fiorella & Zhang, 2018). In 
the diagram generation task in our study, students were 
asked to create their own drawings of possible causal 
relationships as alternatives to a presented causal claim. 
Considering their own models  of alternative causal theo-
ries in the intervention appeared to have a positive effect 
on students’ later reasoning. Self-generated explanations 
supported by visual representations have been shown to 
improve learners’ understanding of scientific data (Ains-
worth & Loizou, 2003; Bobek & Tversky, 2016; Gobert & 
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Clement, 1999; Rhodes et al., 2014; Tal & Wansink, 2016). 
Previous studies on causal theory error have employed 
close-ended tasks (Adams et  al., 2017; Bleske-Rocher 
et al., 2018; Xiong et al., 2020), but our findings suggest 
structuring the learning tasks to allow students to bring 
their own examples to bear may be especially impactful 
(Chi et al., 1994; Pressley et al., 1992).

Studies of example-based instruction (Shafto et  al., 
2014; Van Gog & Rummel, 2010) show improvement in 
learning through spontaneous, prompted, and trained 
self-explanations of examples (Ainsworth & Loizou, 2003; 
Chi, 2000; Chi et  al., 1989). In particular, the present 
study supports the importance of examples to illustrate 
errors in scientific reasoning. Learning from examples 
of error has been successful in other studies (Durkin & 
Rittle-Johnson, 2012; Ohlsson, 1996; Seifert & Hutchins, 
1992; Siegler & Chen, 2008), and instructing students on 
recognizing common errors in reasoning about science 
may hold promise (Stadtler et al., 2013). Because students 
may struggle to recognize errors in their own thinking, 
it may be helpful to provide experience through expo-
sure to others’ errors to build recognition skills. There 
is some suggestion that science students are better able 
to process “hedges” in study claims, where less direct 
wording (such as “associated” and “predicts”) resulted 
in lower causality ratings compared to direct (“makes”) 
claims (Adams et al., 2017; Durik et al., 2008). Learning 
about hedges and qualifiers used in science writing may 
help students understand the probabilistic nature of cor-
relational evidence (Butler, 1990; Durik et al., 2008; Horn, 
2001; Hyland, 1998; Jensen, 2008; Skelton, 1988).

These results are also consistent with theories of cog-
nitive processes in science education showing reason-
ing is often motivated by familiar content and existing 
beliefs that may influence scientific thinking (Billman 
et  al., 1992; Fugelsang & Thompson, 2000, 2003; Koe-
hler, 1993; Kuhn et al., 1995; Wright & Murphy, 1984). In 
this study, when asked to explain their reasons for why 
the study is convincing, students also invoked heuristic 
thinking in responses, such as, “…because that’s what I’ve 
heard before,” or “…because that makes sense to me.” As a 
quick alternative to careful, deliberate reasoning (Kahne-
man, 2011), students may gloss over the need to consider 
unstated alternative relationships among the variables, 
leading to errors in reasoning (Shah et  al., 2017). Fur-
thermore, analytic thinking approaches like causal rea-
soning require substantial effort due to limited cognitive 
resources (Shah et  al., 2017); so, students may take a 
heuristic approach when considering evidence and favor 
it when it fits with previous beliefs (Michal et  al., 2021; 
Shah et al., 2017). Some studies suggest analytic thinking 
may be fostered by  considering information conflicting 
with beliefs (Evans & Curtis-Holmes, 2005; Evans, 2003a, 

b; Klaczynski, 2000; Koehler, 1993; Kunda, 1990; Nicker-
son, 1998; Sá et al., 1999; Sinatra et al., 2014).

Limitations and future research
Our study examined understanding causal claims from 
scientific studies within a classroom setting, provid-
ing a foundation for students’ later spontaneous causal 
reasoning in external settings. However, application of 
these skills outside of the classroom may be less success-
ful. For students, connecting classroom learning about 
causal theory errors to causal claims arising unexpect-
edly in other sources is likely more challenging (Hatfield 
et  al., 2006). There is evidence that students can make 
use of statistical reasoning skills gained in class when 
approached through an unexpected encounter in another 
context (Fong et al., 1986), but more evidence is needed 
to determine whether the benefits of this intervention 
extend to social media reports.

As in Mueller and Coon’s (2013) pre/post classroom 
design, our study provided all students with the interven-
tion by pedagogical design. While the study took place 
early in the term, it is possible that students showed 
improvement over the sessions due to other course activ-
ities (though correlational versus experimental design 
was not yet addressed). Additional experimental studies 
are needed to rule out possible external influences due to 
the course instruction; for example, students may, over 
the two-week span of the study, have become more skep-
tical about claims from studies given their progress in 
learning about research methods. As a consequence, stu-
dents may have become critical of all studies (including 
those with experimental evidence) rather than identifying 
concerns specific to claims from correlational studies. In 
addition, the advanced psychology students in this study 
may have prior knowledge about science experiments 
and  more readily understand the intervention materi-
als, but other learners may find them less convincing or 
more challenging. Psychology students may also experi-
ence training distinguishing them from other science stu-
dents, such as an emphasis on critical thinking (Halpern, 
1998), research methods (Picardi & Masick, 2013), and 
integrating knowledge from multiple theories (Green & 
Hood, 2013; Morling, 2014). They may also hold differ-
ent epistemological beliefs, such as that knowledge is less 
certain and more changing (Hofer, 2000) or more subjec-
tive in nature (Renken et al., 2015). Future research with 
more diverse samples at varying levels of science educa-
tion may suggest how novice learners may  benefit from 
instruction on causal theory error and how it may impact 
academic outcomes.

The longitudinal design of this classroom study 
extended across 2  weeks and  resulted in high attri-
tion; with attendance optional, only 40% of the enrolled 
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students attended all three sessions and were included 
in the study. However, this subsample scored similarly 
(M = 146.25, SD = 13.4) to nonparticipants (M = 143.2, 
SD = 13.7) on final course scores, t(238) = 1.16, p = .123. 
Non-graded participation may also have limited stu-
dents’ motivation  during the study; for example, the 
raw number of diagrams generated dropped after the first 
session (though quality increased in later sessions). Con-
sequently, the findings may underestimate the impact of 
the intervention when administered as part of a curric-
ulum. Further studies are also needed to determine the 
impact of specific intervention features, consider alterna-
tive types of evidence (such as experimental studies), and 
examine the qualities of examples that motivate students 
to create alternative theories.

Finally, the present study examines only science reports 
of survey studies with just two variables and a presumed 
causal link, as commonly observed in media reports 
focusing on just 1 predictor and 1 outcome variable 
(Mueller, 2020). For both science students and the pub-
lic, understanding more complex causal models arising 
from varied evidence will likely require even more sup-
port for assessment of causal claims (Grotzer & Shane 
Tutwiler, 2014). While the qualities of evidence required 
to support true causal claims is clear (Stanovich, 2009, 
2010), causal claims in non-experimental studies are 
increasingly widespread in the science  literature (Baron 
& Kenny, 1986; Brown et al., 2013; Kida, 2006; Morling, 
2014; Reinhart et  al., 2013; Schellenberg, 2020). Bleske-
Rechek et  al. (2018) found that half of psychology jour-
nal articles offered unwarranted direct causal claims 
from non-experimental evidence, with similar findings 
in health studies (Lazarus et al., 2015). That causal claims 
from associational evidence appear in peer-reviewed 
journals (Bleske-Rechek et  al., 2018; Brown et  al., 2013; 
Lazarus et  al., 2015; Marinescu et  al., 2018) suggests a 
new characterization is needed that acknowledges how 
varied forms of evidence are used in scientific arguments 
for causal claims. As Hammond and Horn (1954) noted 
about cigarette smoking and death, accumulated associa-
tional evidence in the absence of alternative causal theo-
ries may justify the assumption of a  causal relationship 
even in the absence of a true experiment.

Implications
Learning to assess the quality of scientific studies is a 
challenging agenda for science education (Bromme & 
Goldman, 2014). Science reports in the media appear 
quite different than those in journals, and often include 
limited information to help the reader recognize the 
study design as correlational or experimental, or to detect 
features such as random assignment to groups (Adams 
et  al., 2017; Morling, 2014). Studies described in media 

reports often highlight a single causal claim and ignore 
alternatives even when identified explicitly in the associ-
ated journal article (Adams et al., 2019; Mueller & Coon, 
2013; Sumner et  al., 2014). Reasoning “in a vacuum” 
is often required given partial information in science 
summaries, and reasoning about the potential meaning 
behind observed associations is a key skill to gain from 
science education. In fact, extensive training in scien-
tific methods (e.g., random assignment, experiment, 
randomized controlled trials) may not be as critical as 
acknowledging the human tendency to see a cause behind 
associated events (Ahn et  al., 1995; Johnson & Seifert, 
1994; Sloman, 2005). Consequently, causal theory errors 
are ubiquitous in many diverse settings where underlying 
causes are unknown, and learning to use more caution in 
drawing causal conclusions in general is warranted.

However, leaving the task of correcting causal theory 
error to the learner falls short; instead, both science and 
media communications need to provide more  accurate 
information (Adams et al., 2017, 2019; Baram-Tsabari & 
Osborne, 2015; Bott et  al., 2019; Yavchitz et  al., 2012). 
Our findings suggest that science media reports should 
include both  alternative causal theories and explicit 
warnings about causal theory error. More cautious claims 
and explicit caveats about associations provide greater 
clarity to media reports without harming interest or 
uptake of information (Adams, et  al., 2019; Bott et  al., 
2019), while exaggerated causal claims in journal articles 
has been linked to exaggeration in media reports (Sum-
ner et al., 2014). For example, press releases about health 
science studies aligning claims (in the headline and text) 
with the type of evidence presented (correlational vs. 
randomized controlled trial) resulted in later media arti-
cles with more cautious headlines and claims (Adams 
et  al., 2019). Hedges and qualifiers are frequently used 
in academic writing to accurately capture the probabilis-
tic nature of conclusions and are evaluated positively in 
these contexts (Horn, 2001; Hyland, 1998; Jensen, 2008; 
Skelton, 1988). For example, Durik and colleagues (2008) 
found that hedges qualifying interpretative statements 
did not lead to more  negative perceptions  of research. 
Prior work has demonstrated that headlines alone can 
introduce misinformation (Dor, 2003; Ecker et al., 2014a, 
b; Lewandowsky et  al., 2012), so qualifiers must appear 
with causal claims.

The implications of our study for teaching about causal 
theory error are particularly important for psychology 
and other social, behavioral, and health sciences where 
associational evidence is frequently encountered (Adams 
et  al., 2019; Morling, 2014). Science findings are used 
to advance recommendations for behavior and public 
policies in a wide variety of areas (Adams et  al., 2019). 
While many people believe they understand science 
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experiments, the point of true  experiments—to identify 
a cause for a given effect—may not be sufficiently promi-
nent in science education (Durant, 1993). Addressing 
science literacy may require changing the focus toward 
recognizing causal theory error rather than creating 
expectations that all  causal claims can be documented 
through experimental science. Because people see asso-
ciations all around  them (Sloman, 2005; Sloman & 
Lagnado, 2015), it is critical that science reports acknowl-
edge  that their presented findings stop far short of a 
"gold standard" experiment (Adams et al., 2019; Sumner 
et  al., 2014;  Hatfield et  al., 2006; Koch & Wüstemann, 
2014; Reis & Judd, 2000; Sullivan, 2011). Understand-
ing the low base rate of true experiments in science and 
the challenges in establishing causal relationships is key 
to appreciating the value of the scientific enterprise. Sci-
ence education must aim to create science consumers 
able to engage in argument from evidence (NTSA Frame-
work, 2012, p. 73), recognizing that  interpretation is 
required even with true experiments through evaluating 
internal and external validity. By encouraging people to 
consider the meaning of scientific evidence in the world, 
they may be more likely to recognize causal theory errors 
in everyday life. The present study provides some evi-
dence for a small step in this direction.

Conclusions
The tendency to infer causation from correlation—
referred to here as causal theory error—is arguably the 
most ubiquitous and wide-ranging error found in science 
literature, classrooms, and media reports. Evaluating a 
probabilistic association from a science study requires 
a different form of theory-evidence coordination than 
in other causal reasoning tasks; in particular, evaluat-
ing  a presented  causal claim from a correlational study 
requires assessing the plausibility of alternative causal 
theories also consistent with the evidence. This study 
provides evidence that college students commit frequent 
causal theory error in interpreting science reports as cap-
tured in open-ended reasoning about the validity of a 
presented causal claim. This is the first identified inter-
vention associated with significant, substantial changes 
in students’ ability to avoid causal theory error from 
claims in science reports. Because science communica-
tions are increasingly available in media  reports, help-
ing people improve their ability to assess whether studies 
support potential changes in behavior, thinking, and poli-
cies is an important direction for cognitive research and 
science education.

Appendix 1
Intervention in session 2

(Labels shown in italics did not appear in participants’ 
materials.)

Please read the following packet and answer the ques-
tions to the best of your ability as you go along.

Algebra 2 and career success
In 2006, researchers at Educational Testing Service 

(ETS) conducted an experiment in which they followed 
students for 12  years starting in 8th grade. They found 
that 84% of the top-tier workers (receiving the highest 
pay) had taken Algebra 2 classes in high school. In con-
trast, only 50% of those in the lowest pay tier had taken 
Algebra 2. This result suggests that requiring students to 
take Algebra 2 would benefit all students and can pre-
pare them for better jobs after high school. Twenty states, 
including Michigan, have passed laws making Algebra 
2 a graduation requirement for all of their high school 
students.

1. Evidence quality Does the ETS study convince you 
that taking Algebra 2 would be beneficial for students? 
Why or why not?

2. Causal theory error Do you think that requiring 
Algebra 2 based on the ETS study was a good decision for 
the state? Why or why not?

The Algebra 2 requirement has now fallen out of favor 
in some states, and they are now reversing or watering 
down their Algebra 2 requirement. In Michigan, students 
can now take a “Career Technical Education” course 
instead of Algebra 2.

3. Counterfactual How do you think that no required 
Algebra 2 course will affect Michigan students’ career 
opportunities?

Some people (and legislators) view the ETS study as 
proving that taking Algebra 2 causes students to have 
better chances of getting top-tier jobs. That certainly 
seems plausible because having math skills should help 
you get a good job!

4. Causal mechanism Why might taking Algebra 2 lead 
to students getting a better job?

However, it is not necessarily true that taking Algebra 
2 would lead directly to getting better jobs. It is possible 
that the connection between Algebra 2 and higher job 
status is that the students who took Algebra 2 differed in 
other ways from people who did not.

5. Equality of groups In what ways might students 
in Algebra 2 differ from students who don’t take it? 
Who chooses to take Algebra 2? Try to think of other 
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differences that might lead some students toward top-tier 
jobs. List at least 2 different things.

6. Self-selection Think back to the ETS study, when 
students had to choose whether to take Algebra 2. Why 
would a high school student decide to take it, and why 
would a student decide not to take it? Try to think of at 
least one new reason a student would take it, and one 
reason not to take it.

7. Third variables Think about the reasons listed below, 
and judge whether each reason might also explain why 
algebra students end up in better jobs. Mark each sen-
tence with a “T” for true and “F” for false based on 
whether you think it is a good reason.

A: Students who chose Algebra 2 were also smarter, 
so they did well in school and got better jobs.
B: Students who chose Algebra 2 were also going to 
college, so they ended up in better jobs.
C: Students who chose Algebra 2 were from richer 
families who help them end up in better jobs.
D: Students who chose Algebra 2 went to better high 
schools (with more math classes), and therefore they 
ended up in better jobs.

From the previous questions, notice that there are 
other reasons that students might both have taken Alge-
bra 2 and gotten a top-tier job. It might look like what 
the students learned in Algebra 2 helped them get good 
jobs, but it could have been one of these other reasons 
that was the real cause.

Description of causal theory error The Michigan legis-
lators seem to make a mistake in their decision making 
(as all people sometimes do) called the “correlation-to-
causation” error. Just because two things are related (like 
Algebra 2 and better jobs), you can’t decide that one 
causes the other. Taking Algebra 2 and getting a good 
job may both be caused by something else; for example, 
being good in school, being in a good school, or having 
parents that are doctors. This is called a “third variable” 
explanation, where two things “go together” because of 
some other (third) cause.

Take a moment to pause and think: Most of us already 
know that “correlation does not imply causation;” but 
many times, especially when the cause makes sense, we 
forget to question our assumptions and make a causal 
theory error.

If any two variables A and B are related, it can mean 
one of several things:

It could mean that A causes B.
It could mean that B causes A.

It could mean that C causes both A and B. Or, A and 
B both can cause C.

It could be really complicated, in which A causes B 
which causes more A, and so on. Or, that A causes B, but 
C also impacts B. Whenever you evaluate evidence, it is 
important to think through these various possibilities.

In this next exercise, you will have a chance to evalu-
ate evidence like the ETS study about Algebra 2. You will 
be asked to draw simple pictures to show possible rea-
sons why two variables like Algebra 2 and job quality are 
related.

Take Algebra 2 Top-tier job

8. Correcting causal theory error Does this model make 
sense? Y or N

You already wrote down why Algebra 2 might help peo-
ple get good jobs; for example, good jobs may require 
math skills.

Now consider:

Top-tier job Take Algebra 2

9. Direction of causation Does this model make sense? 
Y or N

Probably not, because taking Algebra 2 usually happens 
before graduating and getting a job. So that is not a likely 
cause.

Take Algebra 2

Top-tier Job

Be smart

10. Identify third variable Does this model make sense? 
Y or N

It’s a good one… But you might have an even more 
complicated model in mind, like this next one:



Page 16 of 22Seifert et al. Cognitive Research: Principles and Implications             (2022) 7:4 

Take Algebra 2

Top-tier job

College bound

Organized

Smart

Have family 
resources

Have good teachers
Work after school

will reveal dozens of individuals poring over their lap-
tops and books with earphones wedged into their ears. 
Researchers have recently become interested in whether 
listening to music actually helps students pay attention 
and learn new information. A recent study was con-
ducted by researchers at a large midwestern university. 
Students (n = 450) were surveyed prior to final exams in 
several large, lecture-based courses, and asked whether 
or not they had listened to music while studying for the 
final. The students who listened to music had, on aver-
age, higher test scores than students who did not listen to 
music while studying. The research team concluded that 
students who want to do well on their exams should lis-
ten to music while studying.

Computers‑glasses
A recent study funded by the National Institute of Health 
links extended computer use to an increase in glasses 
and contacts use. Researchers recruited 600 employees 
from the NYC area and administered a survey on com-
puter use. Of the respondents who used the computer 
for 30+ h a week, 2/3 wore corrective lenses or contacts 
and had severe myopia (nearsightedness) or hyperopia 
(farsightedness). In contrast, people who did not use 
computers extensively at work were less likely to report 
wearing corrective lenses: only 10% of people who used 
computers less than 30  h a week at their jobs required 

Clearly, there are many other causes that may help you 
end up in a top-tier job. So how do you decide which 
ones to choose?

Complex causal models How do scientists decide which 
is the right model? They tend to use other information, 
like variables they know are potentially relevant, clear 
causal explanations, other known relationships, and so 
forth. In other words, a simple correlation is not enough 
information to know for sure, but when combined with 
more information, you may be able to piece together a 
convincing explanation. But this takes some work on 
your part, so be ready to slow down and think when you 
consider evidence.

Advice When you read a media article about a scientific 
study, you may not have all the information you need to 
evaluate a causal model. But when you’re reading about a 
causal model, be extra careful if the cause seems to “make 
sense:” That is a good time to question yourself about 
other possible causes for the observed evidence. Ready to 
try this right now?

Appendix 2
Task materials
Silence or music
Although some people prefer to work in silence, many 
people opt to listen to music while working or study-
ing. In fact, a brief glimpse into a library or coffee shop 
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corrective lenses. To avoid harming your eyes, the 
researchers recommend avoiding too many hours using 
a computer each day. If it is impossible to avoid screen 
time on the job, they recommend speaking with an oph-
thalmologist about what you might do to counteract the 
negative consequences of screen time.

Parent‑self control
An important aspect of parenting is to help children 
develop their self-control skills. Developmental scien-
tists have long been interested in how parenting practices 
impact children’s ability to make their own choices. As 
part of a recent study, researchers measured children’s 
body fat and surveyed mothers about the amount of con-
trol they exert over their children’s eating. The results of 
this study, conducted with 400 children aged 3 to 5, found 
that those with the most body fat had the most “control-
ling” mothers when it came to the amount of food eaten. 
This shows that, “when mothers exert more control over 
their children’s eating, the children display less self-
control,” researchers said. Researchers recommend that 
parents should avoid being too controlling, and let their 
children learn to develop their own skills.

Church‑health
Now, please diagram possible relationships between vari-
ables suggested by this news headline: “Church attend-
ance boosts immunity.” Be sure to label the circles and 
links in your diagrams.

Then, write a caption below each diagram to describe 
the relationships.

Smiling‑longevity
Now, please diagram possible relationships between vari-
ables suggested by this news headline: “Sincere smiling 
promotes longevity.” Be sure to label the circles and links 
in your diagrams.

Then, write a caption below each diagram to describe 
the relationships.

Breast‑feeding and Intelligence
Now, please diagram possible relationships between 
variables suggested by this news headline: “Breast-fed 

children found smarter.” Be sure to label the circles and 
links in your diagrams.

Then, write a caption below each diagram to describe 
the relationships.

Appendix 3
Study critique task
Silence or music

1.	 Please rate the quality of the study described above.

Low quality 1 2 3 4 5 High quality

2.	 To what extent do you think that the study supports 
the conclusion that one should listen to music while 
studying?

Not at all 1 2 3 4 5 Very much

3.	 Please write your critical evaluation of the study and 
its conclusions: What is good, and bad, about this 
news report?

Example response showing causal theory error:
“Good: Studies different groups, reaches a reasonable 
conclusion based off of the analysed data. Bad: Makes 
no reference to the type of food the mothers were 
controlling the children to eat, etc.” 

Example response avoiding causal theory error:
“The study was conducted well for a correlation find-
ing but not for causation. Therefore, the conclusions 
the news report and study made cannot be sup-
ported.”
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Appendix 4
Causal diagram task
Instructions

Diagramming task and example student responses:
Now, please diagram possible relationships between vari-
ables suggested by this news headline: “Breast-fed chil-
dren found smarter.” Be sure to label the circles and links 
in your diagrams.

Then, write a caption below each diagram to describe 
the relationships.
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Example responses
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