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Abstract

Missing data are exceedingly common across a variety of disciplines, such as educational, social, and

behavioral science areas. Missing not at random (MNAR) mechanism where missingness is related to

unobserved data is widespread in real data and has detrimental consequence. However, the existing

MNAR-based methods have potential problems such as leaving the data incomplete and failing to

accommodate incomplete covariates with interactions, non-linear terms, and random slopes. We propose a

Bayesian latent variable imputation approach to impute missing data due to MNAR (and other missingness

mechanisms) and estimate the model of substantive interest simultaneously. In addition, even when the

incomplete covariates involves interactions, non-linear terms, and random slopes, the proposed method can

handle missingness appropriately. Computer simulation results suggested that the proposed Bayesian latent

variable selection model (BLVSM) was quite effective when the outcome and/or covariates were MNAR.

Except when the sample size was small, estimates from the proposed BLVSM tracked closely with those

from the complete data analysis. With a small sample size, when the outcome was less predictable from the

covariates, the missingness proportions of the covariates and the outcome were larger, and the missingness

selection processes of the covariates and the outcome were more MNAR and MAR, the performance of

BLVSM was less satisfactory. When the sample size was large, BLVSM always performed well. In

contrast, the method with an MAR assumption provided biased estimates and undercoverage confidence

intervals when the missingness was MNAR. The robustness and the implementation of BLVSM in real data

were also illustrated. The proposed method is available in the Blimp software application, and the paper

includes a data analysis example illustrating its use.
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A Bayesian Latent Variable Selection Model for Nonignorable Missingness

Missing data are exceedingly common across a variety of disciplines such as the educational, social,

and behavioral sciences. Participants drop out of studies or omit responses for a variety of reasons, some of

which are benign, but others of which can have serious consequences on the validity of a statistical analysis

if the missing values aren’t dealt with properly. Mainstream missing data handling methods typically

assume a missing at random (MAR) mechanism, whereby the probability of missingness is only related to

observed scores (Little & Rubin, 2014). For example, students could opt out of achievement testing for

reasons related to background variables such as socioeconomic status, language proficiency but not to

achievement itself. The MAR assumption is reasonable in many cases, but there are also many situations

where missingness is related to unobserved scores themselves (Little & Rubin, 2014). This type of

missingness process is called a missing not at random mechanism (MNAR; also known as nonignorable

missingness). For example, in education, students with low achievement could have missing values on an

achievement test because they fail to finish the exam. Hence, the missingness of the achievement scores is

due to the unobserved ability. In medical trial settings, values of physical measures could be missing

because patients die during the treatment period. Therefore, the missingness of physical measure scores is

due to the unobserved physical status, even after conditioning on the observed data. Additionally, in

substance use cessation studies, participants may skip a blood or urine test because they are using

substances and will have positive test results. In this case, the missingness of test results is directly related

to the unobserved test results.

If the true underlying missingness mechanism is MNAR but an MAR-based analysis procedure is

used, previous research has shown that parameter estimates will generally be biased (Enders, 2011;

Fitzmaurice et al., 2012; Graham, 2009; Yang & Maxwell, 2014). The fundamental problem is that it is

difficult to fully rule out the possibility of MNAR mechanism because the observed data carry no

information about the unobserved scores and their associations with other variables. This makes correcting
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for MNAR inherently complex because missingness depends on the unobserved information. In practice, it

is necessary to simultaneously estimate the analysis model of substantive interest and an additional model

for the nonresponse process (e.g., a regression model where the outcome or covariate predicts its own

binary missing data indicator). In other words, an MNAR mechanism requires that we model the joint

distribution of the data and missingness, p (y, r). In our generic notation, p (y) represents the distribution

induced by the substantive model (e.g., a linear regression model) and p (r) denotes the corresponding

distribution of missingness model where r is the missing data indicator. In principle, MNAR processes can

apply to the outcome or predictors in a substantive model. Existing literature focuses on the nonignorable

missingness on the outcome, except that Ibrahim et al. (1999) and Ibrahim et al. (2005) briefly showed how

to handle nonignorable covariates. This paper is the first one which presents all combinations of

missingness mechanisms, whereas the previous literature focuses on missing outcome or missing

covariates separately. Additionally, there are three distinctions between Ibrahim’s work and our work,

which will be elaborated later. As a brief preview, our proposed Bayesian procedure uses probit regression

with latent variables to model missingness.

There are two broad MNAR modeling frameworks: the selection model and pattern mixture model.

Heckman (1976; 1979) originally proposed the selection model for an MNAR process on the outcome, and

Glynn et al. (1986), Little (1993; 1994), and Rubin (1987) proposed the general form of the

pattern-mixture model. The two frameworks both integrate a missingness model that captures the

propensity for missing data in the analysis, but they factorize the joint distribution and operationalize the

missingness model differently. The selection model framework partitions the joint distribution of the data

and missingness as p (y, r) = p (y) p (r|y). The second term, p (r|y), says that missingness is modeled as a

function of the incomplete variable y (Heckman, 1976, 1979). As noted previously, this representation

often entails the simultaneous estimation of two models: a regression model for the outcome of substantive

interest, and a second model with y’s missing data indicator as a function of y and possibly other variables.
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In contrast, the pattern-mixture model framework partitions the joint distribution as p (y, r) = p (r) p (y|r).

The second term, p (y|r), describes how the model of substantive interest depends on the missing data

pattern (e.g., Little, 1993). This representation reverses the role of r, such that the substantive analysis

model parameters vary across missing data patterns. In this framework, the model of substantive interest

can be estimated separately for each missing data pattern (usually with a set of identification constraints),

or the missing data patterns can appear as dummy-coded covariates in the analysis (Hedeker & Gibbons,

1997). Ibrahim et al. (1999), Huang et al. (2005), and Ibrahim et al. (2005) provided and summarized

methods to handle MNAR in generalized linear models. The former two focused on the selection model,

and the latter discussed the pattern mixture model. Galimard et al. (2016) and Galimard et al. (2018)

extended selection models to multiple incomplete covariates in the chained equations framework. In

addition, a good deal of methodological research has developed variants of these approaches for

longitudinal data. For example, Diggle & Kenward (1994) outlined a selection model for longitudinal data

analyses. P. S. Albert & Follmann (2000), Follmann & Wu (1995), Wu & Bailey (1989), and Wu & Carroll

(1988) proposed another type of longitudinal selection model called a random coefficient selection model

(also referred to as the shared parameter approach) whereby random effects predict missingness. Extending

the Diggle & Kenward selection model, Daniels & Hogan (2008) proposed a Bayesian selection model

when longitudinal outcomes are missing. Within the pattern-mixture model framework, Roy (2003)

introduced a pattern-mixture method treating class membership as a latent variable. Other applications

have combined features of pattern-mixture model and selection model or have otherwise developed

variants of the two frameworks (e.g., Beunckens et al., 2008; Dantan et al., 2008; Demirtas & Schafer,

2003; Foster et al., 2004; Galimard et al., 2016; Gottfredson et al., 2014; Hafez et al., 2015; Roy & Daniels,

2008; Yuan & Little, 2009; Mason et al., 2012; Muthén et al., 2011). It is important to emphasize that the

selection and pattern mixture models are not exchangeable representations of the joint distribution. For

example, we would not expect pattern mixture models to accurately capture a process aligned with
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p (y, r) = p (y) p (r|y), nor would we expect our method to yield unbiased estimates if the true process is

p (y, r) = p (r) p (y|r). This is an inherent feature of MNAR modeling and not Bayesian estimation, per se.

The major limitation of existing MNAR methods is that they focus on incomplete outcomes and

don’t necessarily provide a mechanism for handling MNAR explanatory variables except the

expectation–maximization (EM) algorithm proposed by Ibrahim et al. (1999) and Ibrahim et al. (2005).

Recent studies have described fully Bayesian estimation and imputation approaches that allow for MAR

covariates with interactions, non-linear terms, and random slopes (e.g., Bartlett et al. 2015; Enders et al.

Advance online publication; Erler et al. 2019, 2016; Goldstein et al. 2014; Kim et al. 2015, 2018; Lüdtke et

al. 2020; Zhang & Wang 2017). We refer to these methods generically as model-based estimation and

imputation because they essentially tailor missing values to the substantive model of interest. These

approaches yield Bayesian estimates of the model parameters, and they also generate imputations that can

be analyzed in the frequentist framework with Rubin’s pooling rules (Rubin, 1987). As mentioned

previously, our approach readily accommodates an MNAR process for any variable in the model including

covariates, and thus it is a generalization of existing model-based imputation.

The purpose of this study is to outline a fully Bayesian latent variable selection model (BLVSM) to

impute missing data and estimate parameters of interest where either covariates or outcomes follow an

MNAR (or MAR) process. The method falls in the class of selection models outlined by Heckman and

others (Diggle & Kenward, 1994; Heckman, 1976, 1979; Huang et al., 2005; Ibrahim et al., 1999), and we

apply a Bayesian estimation procedure that simultaneously estimates the substantive regression model and

a probit regression model that invokes latent missingness variables. Besides direct Bayesian inference,

multiple imputations are a natural by-product of the Markov Chain Monte-Carlo (MCMC) estimation

algorithm. These imputations can be analyzed in the frequentist framework in lieu of direct Bayesian

inference to answer various of new research questions, without requiring any special software. Our

approach can accommodate general missing data patterns and the following scenarios: the outcome is
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MAR or MNAR with a) complete covariates, b) incomplete covariates with an MAR mechanism, and c)

incomplete covariates with MNAR mechanism. It also can be applied when the outcome is complete but

covariates are MAR or MNAR. Importantly, we extend the work in Enders et al. (Advance online

publication), where the substantive analysis model supports incomplete MAR non-linear functions such as

interactive and polynomial effects. This model-based estimation and imputation procedure extends to

accommodate incomplete MNAR covariates with a variety of metrics (continuous, binary, ordinal, or

nominal). The proposed procedure is ready in a forthcoming release of the software Blimp 3 (Keller et al.,

2019). We are unaware of existing approaches and software that can handle these combinations of features,

although the R package ’mdmb’ can estimate some selection models.

The outline of this paper is as follows: in “A Typical Selection Model” section, an overview of

selection model is given. In “Bayesian Estimation of a Selection Model with MAR Covariates” and

“Bayesian Estimation of a Selection Model with MNAR Covariates” sections, we present the proposed

fully Bayesian latent variable selection model (BLVSM) when covariates are MAR and MNAR,

respectively. In “Simulation Study 1: MAR Covariates”, “Simulation Study 2: MNAR Covariates”, and

“Simulation Study 3: Misspecification” sections, the performance of BLVSM when covariates are MAR

and MNAR and when the selection model is misspecified is thoroughly examined via simulations,

respectively. In “A Real Data Example” section, a real data example is provided to illustrate BLVSM. We

end the paper with some concluding remarks in “Conclusion” section.

A Typical Selection Model

In this paper, we consider the case where the missingness is a function of the unseen scores and

possibly other variables. To illustrate the missing data handling procedure for a MNAR mechanism, we

start by focusing on an incomplete outcome. We consider a simple regression model where y has missing

values and missingness is a function of the y scores themselves. As illustrated earlier, a selection model
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consists of two components: the substantive model p (y) and the missingness model p (r|y).

yi = β0 + β1xi + εi εi ∼ N
(
0, σ2ε

)
(1)

r∗yi = γ0 + γ1yi + ζi ζi ∼ N (0, 1)

The first part of Equation (1) presents the substantive model p (y). We introduce a binary missing

data indicator ri, where ri = 0 if yi is observed and ri = 1 if yi is missing. The second part of Equation (1)

presents the missingness model p (r|y), which is a probit regression model defining missingness as a

normally distributed latent variable (Johnson & Albert, 2006). r∗yi is a continuous latent missingness

variable for individual i that represents an individual’s latent propensity or proclivity for missing data. For

example, in an education context, yi could be an achievement test score that is potentially missing for

reasons related to achievement ability itself (i.e., a student may fail to finish the exam and thus it leads a

missing value), and r∗yi represents how likely a student fail to finish the exam. The fixed part of the

missingness model, γ0 + γ1yi, defines the conditional mean (expected value) of the latent variable. In other

words, the fixed part defines the systematic influence of missingness due to the unobserved outcome scores.

The residual ζi is standard normal with variance fixed at one for identification. Accordingly, the probit

regression can be written as

Pr (ri = 1|yi) = 1− Φ (γ0 + γ1yi) , (2)

where Φ () is the cumulative distribution function of the standard normal distribution. γ0 + γ1yi is the

predicted z-score of missingness propensity and Φ ( ) returns the proportion of the area below that z score

in a standard normal curve. The probit regression model additionally incorporates a threshold parameter κ

that divides the standard normal latent distribution into two segments, such that ri = 0 if r∗yi < κ and

ri = 1 if r∗yi ≥ κ. That is, the latent missingness scores increase to a cut-point, above which the score
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becomes missing. Note that κ is typically fixed at zero to avoid redundancy with the regression intercept,

but the model can also be parameterized by eliminating the intercept and estimating the threshold. Because

estimating the threshold parameter is known to exhibit slow convergence behavior (Cowles, 1996), we

adopt the former approach and fix the threshold at zero.

Bayesian Estimation of BLVSM with MAR Covariates

In this section, we describe the MCMC estimation steps for the case where the outcome in the

substantive model is MNAR and the covariates are MAR. The Bayesian framework views the substantive

regression model parameters, missingness model parameters, missing outcome scores, covariate model

parameters, and missing covariate scores as variables to be estimated. The Gibbs sampler breaks this

complex multivariate problem involving parameters and missing values into a series of simpler univariate

problems, each of which draws one of the unknown quantities at random from a probability distribution

that conditions on the current values of all other unknowns, which will be elaborated later (Gelfand &

Smith, 1990). After providing the posterior distribution of each variable, we illustrate how to estimate each

variable by Gibbs sampling procedure.

To illustrate our proposed Bayesian latent variable selection model (BLVSM), we consider a

single-level substantive model with multiple covariates,

y = Xβ + ε, (3)

where y is a N × 1 vector of the outcome measures for N individuals,X is a N × (K + 1) matrix for the

K covariates and one intercept, β is a (K + 1)× 1 vector for the K + 1 regression coefficients, ε is a

N × 1 vector for independently distributed errors, and ε ∼ N
(
0, σ2εI

)
. As noted previously, our model

specification readily accommodates incomplete interactive or curvilinear effects (Enders et al., Advance

online publication), and it thus extends recent research (Bartlett et al., 2015; Du et al., Manuscript



A Bayesian Latent Variable Selection Model 11

submitted for publication; Erler et al., 2016; Goldstein et al., 2014; Grund et al., 2018; Ibrahim et al., 2002;

Kim et al., 2015, 2018; Zhang & Wang, 2017) by accommodating an MNAR process for the outcome

and/or an MNAR process for the covariates (presented in the next section). This combination of features is

a new contribution to the literature, although researchers have worked on MAR covariates or MNAR

outcome separately. To this end, consider the following moderated regression model, examples of which

are exceedingly common in the literature (Aiken et al., 1991),

yi = β0 + β1x1i + β2x2i + β3x1ix2i + εi, (4)

εi ∼ N
(
0, σ2ε

)
.

In this case

X =



1 x1,1 x1,2 x1,1x1,2

1 x2,1 x2,2 x2,1x2,2

...
...

...
...

1 xN,1 xN,2 xN,1xN,2


, β =



β0

β1

β2

β3


.

The missingness of y is a function of the y scores themselves and x1 is incomplete due to an MAR process,

and hence x1x2 is incomplete. Indeed, regardless of whether the covariates are complete or incomplete, the

posterior distributions of substantive model parameters, missingness model, and missing outcome are not

affected.

As mentioned above, when a missing outcome, yi, is related to the unobserved scores (e.g., yi itself)

for individual i, we introduce a binary missing data indicator, ri, for which 1 indicates a missing outcome

and 0 indicates an observed outcome. We generalize Equation (1) that the missingness not only depends on

the unobserved yi but also other variables to provide a more general form. Accordingly, an underlying
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continuous latent missingness variable r∗yi could be directly modeled by a regression model

r∗y = Zγ + ζ, (5)

where r∗y is a N × 1 vector of latent missingness propensities for N individuals, Z = (1,y,M) is a

N × (2 + P ) matrix,M is a N × P matrix for causes of missingness other than y itself, such as auxiliary

variables, γ is a (2 + P )× 1 vector, and ζ is a N × 1 vector of error term with ζ ∼ N (0, I). Past

literature suggests that ifM incorporate the predictors in the substantive modelX or other predictors

highly correlated with y, collinearity problems may occur and be detrimental to estimation (for details

refer to Puhani, 2000; Stolzenberg & Relles, 1990, 1997). As discussed later, this does not appear to be the

case with BLVSM, and we will recommend including variables from the substantive model in the

missingness model. Latent variable scores r∗yi follow a truncated normal distribution, such that r∗yi is above

the threshold (κ = 0) if yi is missing (i.e., ri = 1) and below the threshold if yi is complete (i.e., ri = 0).

Posterior Distributions of Substantive Model Parameters

We estimate the aforementioned selection model using an iterative MCMC algorithm, Gibbs

sampling, that draws each unknown from a probability distribution that conditions on all other unknowns.

The remainder of this section gives the full conditional distributions for the estimation steps. To begin,

augmenting the likelihood with the latent missingness variable r∗y gives

p
(
y, r∗y|γ,β, σ

2
ε

)
= p

(
y|β, σ2

ε

)
p
(
r∗y|γ,y,M

)
=
(
2πσ2

ε

)−N
2 exp

(
− (y −Xβ)

′
(y −Xβ)

2σ2
ε

)
× (2π)

−N
2 exp

−
(
r∗y −Zγ

)′ (
r∗y −Zγ

)
2

 ,

(6)

where Z = (1,y,M). We employ independent priors that p (β) ∝ 1 for all coefficients in β,

p
(
σ2ε
)

= IG (a, a), and p (γ) = N (0, b) for all coefficients in γ. Note that p (γ) needs to be weakly
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informative, as some prior information is often needed to facilitate convergence, particularly in small

samples. We will elaborate this point later in Simulation Study 1.

Based on the priors and the likelihood (Equation 6), the joint posterior distribution of γ, β, and σ2ε is

constructed by Bayes’ theorem,

p
(
γ,β, σ2

ε |y, r∗y
)
∝ p

(
y, r∗y|γ,β, σ

2
ε

)
p
(
γ,β, σ2

ε

)
∝
(
σ2
ε

)−N
2 −a−1 exp

(
−2a+ (y −Xβ)

′
(y −Xβ)

2σ2
ε

)
× (7)

exp

−
(
r∗y −Zγ

)′ (
r∗y −Zγ

)
2

× exp(−γ′γ
2b

)

Based on the joint posterior distribution of γ, β, and σ2ε , we can derive the conditional posterior

distributions one by one. Specifically, the conditional posterior distribution of β is a multivariate normal

distribution with · indicating the variables and parameters conditional on

p (β|·) = MN
(
β̂ =

(
X ′X

)−1
X ′y, σ2ε

(
X ′X

)−1)
. (8)

The conditional posterior distribution of σ2ε is an Inverse-Gamma distribution,

p
(
σ2ε |·

)
= IG

(
N

2
+ a,

(y −Xβ)′ (y −Xβ)

2
+ a

)
. (9)

In words, Equation (8) says that the substantive model’s regression coefficients are drawn from a

multivariate normal distribution. The center and spread of this distribution align with ordinary least squares

estimates of the coefficients and their parameter covariance matrix, respectively, because of the specified

prior. Equation (9) says that the substantive model’s residual variance is drawn at random from a

right-skewed inverse gamma distribution. The center and spread of this distribution is determined by the

degrees of freedom, residual sum of squares, and prior information. Note that the conditional posterior
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distributions of β and σ2ε are exactly the same as those from any linear regression problem using the same

priors regardless of whether the outcome and covariates are incomplete.

Posterior Distributions of Missingness Model Parameters and Missing Outcome

Given the latent missingness propensity r∗, the coefficients of the missingness model have a

posterior with a similar form as β. That is, the MCMC algorithm draws a vector of regression coefficients

from a multivariate normal distribution. The residual variance is not an estimated parameter here, as it is

fixed at 1.

p (γ|·) = MN

(
γ̂ = Σ−11 Z ′r∗y, Σ1 =

(
1

b
× I +Z ′Z

)−1)
. (10)

In words, Equation (10) says that the selection model’s regression coefficients are drawn from a

multivariate normal distribution. The center and variance are determined by the latent data and current

imputed data. All that is left is to define the distributions of the latent variable scores r∗y and the missing

values of y. Latent variable scores can be modeled by a truncated normal distribution,

p
(
r∗yi|·

)
=


N (Ziγ, 1) I (κ = 0,∞) ri = 1

N (Ziγ, 1) I (−∞, κ = 0) ri = 0

, (11)

where I denotes the indicator function, Zi denotes the ith row of Z for individual i, and the threshold κ is

fixed at 0. In words, this equation says that latent missingness scores are drawn from one of two normal

distributions, both of which are centered at the predicted z-score from the regression equation (the mean of

the normal distribution) and have a fixed variance equal to 1. Specifically, if yi is observed, a latent score

should be drawn from the region of the normal curve below 0 (the fixed threshold parameter), as this area

corresponds to the region occupied by indicator scores of r = 0. Otherwise, if yi is missing, a latent score
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should be drawn from the region of the normal curve above the threshold, as this area corresponds to the

region occupied by indicator scores of r = 1.

The posterior predictive distribution of the missing outcome values has a complex mean and

variance structure that depends on the parameters of both the substantive model and missingness model.

Conceptually, the mean of the normal distribution is a predicted value, but that prediction accounts for y’s

role as an outcome in the substantive model and a predictor in the selection model. The variance of the

imputations similarly depends on terms from both models. Specifically, the posterior predictive distribution

is proportional to the augmented likelihood in Equation (6) 1

p
(
y|r∗y,γ,β, σ

2
ε

)
∝ p

(
y, r∗y|γ,β, σ

2
ε

)
= MN

Xβ + γyσ
2
ε

(
r∗y −Z−yγ−y

)
1 + γ2yσ

2
ε

,
σ2ε

1 + γ2yσ
2
ε

I

 , (12)

where γy is the regression coefficient for y in the missingness model, γ−y are the regression coefficients

except for y in the missingness model, and Z−y are the predictors in the missingness model except y.

Because Equation (12) is tedious to derive, alternatively, we can use the Metropolis-Hastings algorithm to

empirically construct the posterior distribution and estimate the missing outcome scores from this

distribution (Gilks et al., 1996; Hastings, 1970). The Metropolis-Hastings algorithm can used to draw the

posterior samples of other parameters (i.e., β , σ2ε , and r∗y). Please see the supplemental materials for more

information for the Metropolis-Hastings algorithm.

Posterior Distributions of Missing Covariates and Covariate Model Parameters

We assume that some of the covariates in the substantive model are partially observed and that

missingness for the covariates depends on the fully observed covariates, the outcome, and/or other

auxiliary variables. Suppose there are Q partially observed predictors (i.e., x1, ..., xQ) and K −Q fully



A Bayesian Latent Variable Selection Model 16

observed predictors (i.e., xQ+1, ..., xK). We factorize the joint distribution of all incomplete covariates as

p (y, x1, ..., xQ|xQ+1, ..., xK) = p (y|x1, ..., xK) p (x1, ..., xQ|xQ+1, ..., xK) ,

where p (y, x1, ..., xQ|xQ+1, ..., xK) is the joint distribution for all incomplete covariates and the outcome,

p (y|x1, ..., xK) is the distribution of y induced by the substantive model (i.e., a normal distribution,

conditional on the covariates and possibly curvilinear or interactive terms), and p (x1, ..., xQ|xQ+1, ..., xK)

is the joint distribution of the incomplete covariates and represents the covariate model (e.g., a normal

distribution for continuous and latent categorical covariates). We assume that the conditional distribution of

the incomplete covariate variables, p (x1, ..., xQ|xQ+1, ..., xK), is a multivariate normal distribution, such

that the incomplete covariates are linearly related. Based on this assumption, we can specify the full

conditional distribution for each incomplete covariate given all other incomplete and complete covariates

as a univariate normal distribution. This is the so-called “separate” specification or fully conditional

specification for covariates (Du et al., Manuscript submitted for publication; Enders, in press; Enders et al.,

Advance online publication). Alternatively, a “sequential” specification of the joint distribution (Erler et

al., 2016, 2019; Ibrahim et al., 2002; Lüdtke et al., 2020) can accommodate non-linear relations among

incomplete covariates, and this approach is equivalent to the separate specification when assuming

multivariate normality (for more details, please refer to Du et al., Manuscript submitted for publication).

Due to the scope and word limitation of this paper, we illustrate details of the sequential specification when

covariates are MAR and outcome is MNAR in the supplemental materials. The focus of the main text is the

separate or fully conditional specification because the separate specification is easier to implement and

calculate especially for applied researchers. It is generally harder to implement the sequential specification

because the researcher needs to work out how to factorize the joint distribution to achieve the desired

model. Under a separate specification, the researcher just needs to specify the needed univariate covariate



A Bayesian Latent Variable Selection Model 17

model and nothing else. Our software Blimp can accommodate either specification because the sequential

specification is an important alternate and is the only option when researchers would like to model

nonlinear relations between covariates.

In the moderated regression example (Equation 4), to impute x1 (or any of the covariates),we must

derive its conditional distribution given all of the other variables including the outcome. Generally, we

denote that xq (q = 1, ..., Q; e.g., x1 in Equation (4)) is the target of imputation at a particular set, and x−q

is set of all remaining covariates including the complete covariates except xq, that is

x−q =
{
x1, ..., x(q−1), x(q+1), ..., xQ, xQ+1, ..., xK

}
(e.g., x−1 = {x2} in Equation (4)). p (xq|x−q) is a

linear regression of xq on all other covariates which is the covariate model, and p (y|xq,x−q) is the

distribution of y induced by the substantive model (e.g., Equation (3)). We refer to this as the “separate”

specification because each incomplete predictor requires a unique regression. Because xq appears in both

terms on the right side of the substantive model and on the left side of the covariate model, its posterior

distribution has a complex form that depends on the product of two normal distributions. The resulting

distribution of xq given all other variables is (Du et al., Manuscript submitted for publication; Enders et al.,

Advance online publication; Erler et al., 2016; Kim et al., 2015)

p (xq|y,x−q) ∝ p (y|xq,x−q) p (xq|x−q) . (13)

In words, Equation (13) says that the distribution of xq given all other variables depends on the distribution

of y induced by the substantive model (xq is a covariate in that model) and a normal distribution induced

by the regression of xq on all other predictors (i.e., the covariate model). Deriving the distribution of

missing values involves multiplying all distributions that feature xq then performing algebra that combines

the component distributions into a single function of that covariate. We give the distribution below in
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Equation (16). Particularly, the covariate model of xq is p
(
xq|X−q,ψq, σ

2
e,q

)
,

xq = X−qψq + eq, (14)

where xq is a N × 1 vector of the target of imputation covariate for N individuals,

X−q = (1,XInc,−q,Xobs) is a N ×K matrix (e.g.,X−1 = (1,X2) in Equation (4)),XInc,−q denotes

all the incomplete covariates except xq for N individuals,Xobs = (xQ+1, ..., xK) denotes all the

observed covariate for N individuals, ψq is a K × 1 vector for for K regression coefficients, eq is a n× 1

vector, and eq ∼ N
(
0, σ2e,qI

)
. When assuming that the missing predictor is conditional on auxiliary

variables, the auxiliary variables enter Equation (14) as predictors. When using the separate specification, it

implies that the incomplete covariates follow a multivariate normal distribution and thus restrict incomplete

covariates to be linearly related. Therefore,X−q cannot contain curvilinear or interaction terms involving

any incomplete covariates, although the incomplete curvilinear and interaction terms can appear in the

substantive model. If one prefers to use the sequential specification for the covariate model, the details are

provided in the supplemental materials (e.g., Erler et al., 2016; Lüdtke et al., 2020).

Note that we assume the missingness of the outcome does not depend on the unobserved values of

xq in the above model. If the missing outcome is not only related to the unobserved outcome itself but also

conditional on the incomplete covariates in the substantive model (e.g.,M = X). Then the posterior

distribution of xq should consider its influence on the underlying continuous latent missingness variable of

the outcome r∗y by

p (xq|·) ∝ p
(
y|X,β, σ2ε

)
p
(
xq|X−q,ψq, σ

2
e,q

)
p
(
r∗y|γ,y,xq,X−q

)
. (15)

But this missingness assumption may cause a collinearity problem.

Back to the moderated regression example in Equation (4), there is no need to specify a model for
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x1x2, as the lower-order terms are sampled from a distribution that accounts for their role in the product.

Kim et al. (2015) show that estimating the lower-order scores in this fashion is equivalent to sampling x1

and the x1x2 product as a pair. We estimate x1 by Equation (13) and compute x1x2 based on the imputed

x1 and x2. The covariate model for x1, p (x1|x2), is defined as a linear regression x1i = ψ0 + ψ1x2i + ei

with ei ∼ N
(
0, σ2e

)
. The posterior distribution of x1 based on Equation (13) is

p
(
x1i(miss)|yi, x2i

)
∝ p (yi|x1i, x2i) p (x1i|x2i)

= N

(
σ2e (β1 + β3x2i) (yi − β0 − β2x2i) + σ2ε (ψ0 + ψ1x2i)

σ2e (β1 + β3x2i)
2 + σ2ε

,
σ2εσ

2
e

σ2e (β1 + β3x2i)
2 + σ2ε

)
.

(16)

The distribution of xq imputations is a normal distribution, albeit a complicated one with a mean and

variance that depend on two sets of model parameters. The mean is a function of the substantive model’s

parameters as well as the covariate model’s parameters. The variance similarly depends on two models

(note that the variance is heteroscedastic and depends on a participant’s moderator score). As an aside, a

result similar to Equation (16) cannot be derived for incomplete curvilinear effects (e.g.,

yi = β0 + β1x1i + β2x2i + β3x
2
1i + εi with incomplete x1) (Lüdtke et al., 2020). However, the absence of

an analytical form for this posterior distribution is not problematic in practice, as we can use the

Metropolis-Hastings algorithm to estimate the missing covariates. This strategy provides a more general

solution across a variety of analytic scenarios, including the ones we examine here. Note that the procedure

is not limited to a single incomplete covariate.

For the posterior distributions of coefficients in the covariate model, ψq and σ2e,q, we employ a

Jeffreys prior where p (ψ) ∝ 1 for all coefficients in ψq and p
(
σ2e,q
)
∝ 1

σ2
e,q

for the covariate model. The

posterior distributions of ψq and σ2e,q have exactly the same forms as the coefficients in substantive model.

After imputing the missing covariates, the conditional posterior distributions of the substantive model

parameters, the conditional posterior distribution of the regression coefficients in probit regression, and the
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posterior distribution of the latent propensity r∗y, and the posterior predictive distribution of yi(miss) are the

same as the ones when the covariates are complete (please see the previous section). More details are

presented in the supplemental materials.

When the covariates have a missing completely at random (MCAR) mechanism where the

probability of missingness of the covariates is unrelated to either observed or unobserved variables, we still

can use the illustrated methodology in this section to impute missing covariates and missing outcome, and

estimate the substantive model.

As mentioned previously, the previous approach readily accommodates incomplete binary, ordinal,

and nominal covariates with MAR missingness mechanisms, as does our later extension for NMAR

covariates. We just need to extend the previous equations to incorporate a cumulative probit model for

ordinal variables or a multinomial probit model for nominal responses (e.g., Agresti, 2018; J. H. Albert &

Chib, 1993; Johnson & Albert, 2006; McCulloch & Rossi, 1994). Take a binary covariate as an example,

where we can use a binary probit regression to model the incomplete responses. In this scenario, the model

introduces an underlying normally distributed random variable for an incomplete binary covariate, with the

variance of the latent covariate is usually fixed at 1 for identification (this is the same probit model used for

MNAR missingness on the outcome). A threshold divides the distribution of the latent continuous covariate

into two segments, such that the latent continuous covariate is below the threshold when the binary variable

equals zero and above the threshold when the binary variable equals one. Compared to the continuous

covariates, instead of specifying Equation (14) for incomplete binary covariate, we specify Equation (14)

for each latent continuous covariate and conditional on all other latent continuous covariates. Note that this

latent continuous covariate is different from the aforementioned latent missingness propensity r∗ when a

variable is MNAR, although it does use the same probit regression framework. We refer the interested

reader to Du et al. (Manuscript submitted for publication) and Enders et al. (Advance online publication).
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Markov Chain Monte Carlo (MCMC) computational algorithm

We propose a Gibbs sampling algorithm to sample β , σ2ε , γ , r∗yi, and yi(miss) from their

aforementioned posterior distributions, and to obtain the posterior inferences based on the Monte Carlo

samples (Gelfand & Smith, 1990). The Gibbs sampling algorithm is an iterative procedure that estimates

the variables one at a time in a sequence (Gelfand & Smith, 1990): estimate regression coefficients while

holding all other variables that their current values; estimate the residual variance while holding all other

variables constant, and so forth. More specifically, it invokes the following steps: (a) estimate the

substantive model regression coefficients and residual variance, (b) estimate the selection model’s

regression coefficients, (c) estimate the missingness propensity scores, (d) estimate outcome’ missing

values (e) estimate the covariate model’s regression coefficients and residual variance, and (f) estimate

covariates’ missing values. Each of these steps treats the current values of all other unknowns as fixed

constants. When the posterior distribution is not accessible or difficult to derive, the Metropolis-Hastings

algorithm draws the posterior samples.

The MCMC algorithm gives a posterior distribution of each parameter, and we can use these

quantities to conduct Bayesian inference for the substantive model parameters (i.e., β and σ2ε ).

Alternatively, one can save the imputations of missing data at regular intervals in the MCMC chain (e.g.,

save a data set every 1000 iterations) and use the filled-in data sets for a multiple imputation analysis

(Rubin, 1987; Schafer, 1997). When frequentist estimation (e.g., ordinary least squares estimation) is

applied to the imputed complete data to estimate the parameters in the substantive model, this leads to a

hybrid procedure (Bayesian techniques are used for imputation and frequentist methods are used for

parameter estimation).

The full cadre of step-by-step Gibbs sampler procedure is given below.

0. Initialization step: set initial values for β(0) , σ2(0)ε , γ(0), and r∗(0)y , and y(0)i(miss) (for the

individuals who have missing outcome). For the individuals who have missing covariates, set initial values
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for x(0)q , ψq
(0), and σ2(0)e,q .

1. In the tth iteration, given covariates in the substantive model (X), the imputed outcomes in the

previous iteration (y(t−1)), and the residual variance of the substantive model in the previous iteration

(σ2(t−1)ε ), sample β(t) from Equation (8).

2. GivenX , y(t−1), and β(t), sample σ2(t)ε from Equation (9).

3. Given y(t−1), the predictorsM in the missingness model, and r∗y
(t−1), sample γ(t) from

Equation (10).

4. For all individuals, given r, y(t−1) and γ(t), sample r∗(t)y from Equation (11).

5. For the individual i who has missing outcome (i.e., ri = 1), given the covariates and/or auxiliary

variables, β(t) , σ2(t)ε , γ(t), and r∗(t)yi , sample y(t)i(miss) from Equation (12). Repeat step 5 for all individuals

who have missing outcome and obtain a set of updated imputed outcomes, y(t).

6. For the qth incomplete predictor, givenX−q
(t−1) and σ2(t−1)e,q , sample ψq

(t) from Equation (2) in

the supplemental materials.

7. For the qth incomplete predictor, givenX−q
(t−1) and ψq

(t), sample σ2(t)e,q from Equation (3) in

the supplemental materials.

8. For the individual i who has the qth missing covariate, given y(t)i ,X−qi
(t−1), β(t) , σ2(t)ε , ψq

(t),

and σ2(t)e,q , sample x(t)qi(miss) from Equation (13) by Metropolis-Hastings algorithm. Repeat steps 6 to 8 for

all individuals who have missing covariates and impute all covariates. The missing interaction terms can be

calculated by the updated components. For example, (x1ix2i)
(t) = x

(t)
1i × x

(t)
2i .

9. Repeat steps 1 to 8 until the MCMC chains reach convergence and provide sufficient posterior

samples.
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Bayesian Estimation of BLVSM with MNAR Covariates

In this section, we further extend the previous ideas by allowing missingness of an incomplete

covariate to depend on the unobserved covariate variable itself. Additionally, the missing covariate can

depend on the unobserved scores of other covariates, observed covariates, auxiliary variables, and the

outcome. The missingness of the outcome may also be conditional on the unobserved outcome scores or

the unobserved covariate scores, or it can be MAR (or even MCAR). As mentioned previously, the

literature and existing methods of MNAR generally have focused on MNAR outcomes, except a few

studies investigating MNAR covariates (Huang et al., 2005; Ibrahim et al., 1999, 2005). The existing

literature has worked on MNAR covariates, MNAR outcome, MAR covariates, or MAR outcome. Our

approach is more general than the previous models because it can accommodate MNAR covariates, MAR

covariates, MAR/MNAR outcome, or all of them simultaneously. Although putting the models in the

previous literature together also can accommodate all of the aforementioned cases, this paper is the first

one which systematically presents all cases. Additionally, there are three major differences between our

work and the work from Ibrahim’s group. First, Ibrahim et al. (1999) and Ibrahim et al. (2005) proposed

algorithms to handle MNAR covariates in the expectation–maximization (EM) framework, whereas we use

Bayesian statistics. As a Bayesian method, our method can use informative priors and incorporate prior

information (e.g., from existing papers or pilot results). Second, Ibrahim et al. (1999) and Ibrahim et al.

(2005) focused on the sequential specification which we present in the supplemental material, whereas we

focus on the separate or fully conditional specification which may be more widely used when researchers

assume a linear relationship between covariates. Third, our separate specification assumes that the

missingness latent variables (propensities) are independent after controlling for the influence of the cause

of missingness, whereas Ibrahim’s sequential specification assumes that the missingness latent variables

are still correlated after controlling for the influence of the cause of missingness. However, Ibrahim’s

sequential specification may cause nonconvergence and we may need to simplify the model by assuming
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that the missingness latent variables are independent after controlling for the influence of cause of

missingness, which is kind of back to the separate specification. We refer audiences to the supplemental

material for more details about the sequential specification.

Suppose there are Q partially observed covariates which are MNAR, and K −Q fully observed

covariates. Similar to the case where the outcome is MNAR. A missing indicator rx,q is used to indicate the

missingness of the qth missing covariate xq. rx,q does not apply to the interaction terms in the substantive

model. An underlying random variable r∗x,q captures the latent propensity of missingness for the qth

missing covariate xq. When we assume the missingness of xq is conditional on the unobserved xq and the

other covariates, the missingness or selection model is

r∗x,q = Xγx,q + ζx,q, (17)

where r∗x,q is a N × 1 vector of latent missingness propensities of xq for N individuals,

X = (1,xq,X−q) is a N × (K + 1) matrix andX−q are the covariates other than xq, γx,q is a

(K + 1)× 1 vector, and ζx,q is a N × 1 vector following N (0, I) (as mentioned above, the residual

variance is fixed at one for identification). The missing indicator rx,q is conditional on the propensity r∗x,q

through a probit regression, P (rx,q = 1|X) = Φ (Xγx,q). This is the same model as before. The r∗x,q

variable is a latent missingness variable scaled as a z-score, and the right side of the expression features

potential predictors of missingness (typically, xq plus other substantive model variables).

Besides the missingness probit model of rx,q, a regressive covariate model specifies the relation

between xq and all other covariates, p
(
xq|X−q,ψq, σ

2
e,q

)
, which is the same as Equation (14) if the

separate specification is used. Thus, the joint conditional distribution of xq and its latent missingness

variable r∗x,q is factored into three components: the substantive model, the covariate model of xq, and the
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missingness model of xq,

p
(
xq, r

∗
x,q|y,X−q,β, σ

2
ε ,ψq, σ

2
e,q,γx,q

)
∝ p

(
y|xq,X−q,β, σ

2
ε

)
p
(
xq|X−q,ψq, σ

2
e,q

)
p
(
r∗x,q|γx,q,X

)
.

(18)

If one prefers to use the sequential specification for the covariate model and the missingness model, the

details are provided in the supplemental materials. With the sequential specification, we can accommodate

the nonlinear relations between the covariates and latent missingness variables.

When interaction or curvilinear terms in the substantive model are incomplete, each missing

covariate appears multiple times in the substantive model and we need to extract it from all the relevant

components. We use the example where there is one partially observed covariate x1 and one partially

observed interaction term. The substantive model, the missingness probit model for y, the regressive

covariate model for x1, and the missingness probit model for x1 are respectively

yi = β0 + β1x1i + β2x2i + β3x1ix2i + εi εi ∼ N
(
0, σ2ε

)
(19)

r∗yi = γ0 + γ1y + ζi ei1 ∼ N (0, 1)

x1i = ψ1,0 + ψ1,1x2i + ei1 ei1 ∼ N
(
0, σ2e,1

)
r∗x,1i = γx,1,0 + γx,1,1x1i + ζx,1i ζx,1i ∼ N (0, 1) .

x1 appears in both x1 and x1x2. Based on Equation (18), for individual i, the conditional posterior
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distribution of x1i is

p (x1i|·) ∝ p
(
yi|x1i, x2i,β, σ2ε

)
p
(
x1i|x2i,ψ1, σ

2
e,1

)
p
(
r∗x,1i|x1i, x2i,γx,1

)
(20)

= N

σ2e,1 (β1 + β3x2i) (yi − β0 − β2x2i) + σ2ε (ψ1,0 + ψ1,1x2i) + σ2e,1σ
2
εγx1,1

(
r∗x,1i − γx1,0

)
(β1 + β3x2i)

2 σ2e,1 + σ2ε + γ2x1,1σ
2
e,1σ

2
ε

,

σ2e,1σ
2
ε

(β1 + β3x2i)
2 σ2e,1 + σ2ε + γ2x1,1σ

2
e,1σ

2
ε

)
.

The analytical form for imputing x1i is complex, and it is specific to the particular substantive model,

Equation (19). Generally, the Metropolis-Hastings algorithm is suggested to draw the posterior samples in

practice, as this algorithm allows the procedure to extend to covariate sets with an arbitrary composition

and general missing data patterns. Nevertheless, the equation follows the same basic form as before. That

is, the mean and variance combines information from three regressions – the substantive model, the

covariate model, and the selection model in which x1 plays a role. If x1 plays a role in multiple selection

models, we need to consider all of them.

The posterior predictive distribution of r∗x,qi is conditional on the missing predictor indicator rx,qi

and imputed predictorsXi (Xi = (1, x1i) in the example of Equation (19)),

p
(
r∗x,qi|·

)
=


N (Xiγx,q, 1) I (κ = 0,∞) rx,qi = 1

N (Xiγx,q, 1) I (−∞, κ = 0) rx,qi = 0

. (21)

In words, this equation says that latent missingness scores are drawn from one of two normal distributions,

both of which are centered at the predicted z-score from the regression equation (the mean of the normal

distribution) and have a fixed variance equal to 1. Specifically, if xqi is observed, a latent score should be

drawn from the region of the normal curve below 0 (the fixed threshold parameter), as this area corresponds

to the region occupied by indicator scores of rx,qi = 0. Otherwise, if xqi is missing, a latent score should
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be drawn from the region of the normal curve above the threshold, as this area corresponds to the region

occupied by indicator scores of rx,qi = 1.

We employ weakly informative prior p (γx,q) = N (0, b) for all coefficients in γx,q in the

missingness model of xq to facilitate convergence in MNAR case, as for γ in the missingness model of y.

Similar to Equation (10), the conditional posterior distribution of γx,q is a multivariate normal distribution,

p (γx,q|·) = MN

(
ˆγx,q = Σ−11 X ′r∗x,q, Σ1 =

(
1

b
× I +X ′X

)−1)
. (22)

X = (1, x1) in the example of Equation (19). In words, Equation (22) says that the selection model’s

regression coefficients are drawn from a multivariate normal distribution, and the center and variance are

determined by the latent data and current imputed data. The conditional posterior distribution of σ2e,q is the

same as Equation (3) in the supplemental materials, and the conditional posterior distribution of ψq is the

same as Equation (2) in the supplemental materials. After imputing the missing covariates, the conditional

posterior distributions of the substantive model parameters, the conditional posterior distribution of the

regression coefficients in probit regression for y, and the posterior distribution of the latent propensity r∗y

for y, and the posterior predictive distribution of yi(miss) are the same as the ones when the covariates are

MAR/complete.

When a categorical covariate has a MNAR mechanism, we will need two probit regression models

(one for the binary covariate and another for its missingness model), and we will need both the latent

covariate and the latent missingness propensity. For example, suppose x1 is a incomplete binary variable

with a MNAR mechanism. First, x∗1 is the latent x1. x∗1 does not appear in the substantive analysis but only

is used to in the covariate model to impute the missing x1. The first probit regression model describes the

distribution of x∗1 . A threshold (usually fixed at 0) divides the normal distribution of x∗1 into two segments,

such that the x∗1 is below the threshold if x1 = 0 and above the threshold if x1 = 1. Second, the latent
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missingness propensity r∗x,1 provides a latent missingness propensity for x∗1. The second probit regression

model is a missingness model, which captures how x∗1 influence the missingness propensity of r∗x,1. This

missingness model is the same as Equation (17) with a difference that the propensity is on the latent

covariate and the predictors in the probit model are also on the latent variable scales. For example,

r∗x,1 = γx,1,0 + γx,1,1x
∗
1 + ζx,1. We will illustrate more details in Simulation Study S2 in the supplemental

materials.

Markov Chain Monte Carlo (MCMC) computational algorithm

The step-by-step Gibbs sampler procedure when the outcome is MNAR and the covariates are

MNAR is given below. The first five steps generate estimates for the substantive analysis model, the

missingness model, and missing outcomes. Steps 6-7 generate estimates for the parameters in the covariate

model. Steps 8-10 target on the missingness model for covariates and missing covariates.

0. Initialization step: set initial values for β(0) , σ2(0)ε , γ(0), and r∗(0)y , and y(0)i(miss) (for the

individuals who have missing outcome). For the individuals who have missing predictors, set initial values

for x(0)q , ψq
(0), σ2(0)e,q , γx,q(0), and r∗x,q

(0),

1-7. Steps 1-7 are exactly the same as the ones in the section of MAR covariates.

8. For the qth incomplete predictor, givenX−q
(t−1) and r∗x,q

(t−1), sample γx,q(t) from Equation

(22).

9. For all individuals, givenX(t−1) and γx,q(t), sample r∗x,q
(t) from Equation (21).

10. For the individual i who has the qth missing predictor, sample x(t)qi(miss) from Equation (18) by

Metropolis-Hastings algorithm. Repeat steps 6 to 10 for all individuals who have missing covariates and

impute all covariates.

11. Repeat steps 1 to 10 until the MCMC chains reach convergence and provide sufficient posterior

samples.
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Simulation Study 1: MAR Covariates

Simulation Study 1: Simulation Design

This simulation study examines the performance of the proposed Bayesian latent variable selection

model, BLVSM, when x1 is MAR and y is MNAR. We also conducted a simulation where y is MNAR and

covariates are complete (see Simulation Study S1 in the supplemental materials). The substantive model

for the simulation is the widely-used moderated regression model in Equation (4). The missing values on

the outcome y were generated as a function of y itself and the missing values on x1 were generated as a

function of x2. We varied the values of the following four factors. (1) The first factor is the sample size

(SZ= 50, 100, 200, 500, or 1000). (2) The second factor is the missing data proportion/probability for y

(Py = 0.1, 0.2, or 0.4). (3) The third factor is the pseudo coefficient of determination between the cause of

missingness and the latent propensities of y, R2
r∗y

= 0.1, 0.25, or 0.5 (McKelvey & Zavoina, 1975). When

R2
r∗y

is large, the MNAR selection process of y is strong and the missingness of y heavily depends on y.

When R2
r∗y

is 0, the missingness of y is independent from y, which leads to a missing completely at random

(MCAR) case whereby the probability of missingness is not related to any observed variables or

unobserved variables. Because in practice, we don’t know the true missingness mechanism, it is important

to check whether estimating a model for the missingness negatively impacts the substantive analysis when

the MNAR selection process is very weak and almost MCAR. (4) The fourth factor is the missing data

proportion for x1 (Px1 = 0.1, 0.2, or 0.4). (5) The fifth factor is the pseudo coefficient of determination

between x2 and the latent propensities of x1 (R2
r∗x1

= 0.1, 0.25, or 0.5). When R2
r∗x1

is large, the MAR

selection process of x1 is strong. When R2
r∗x1

is 0, the missingness of x1 does not depend on x2 or any

observed/unobserved scores, which is a MCAR case. The coefficient of determination in the substantive

model R2
y ( the proportion of the variance in the outcome that is predictable from the covariates, x1, x2,

and x1x2) is fixed at 0.13, a medium effect size (Cohen, 1988). By fixing the mean and variance of y at

E(y) = 5 and var(y) = 10, fixing the means of x1 and x2 at 0, fixing the regression coefficients at 1, and
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fixing the correlation between x1 and x2 at 0.3, we can solve the variances of x1 and x2 and the residual

variance σ2ε given a specific value of R2
y (the mean and variance of the interaction term is determined by

formulas in Bohrnstedt & Goldberger (1969)).

We used a probit regression equation to link missingness probabilities of y to the values of y

(r∗yi = γ0 + γ1yi + ζi with ζi ∼ N (0, 1)) and another probit regression equation to link missingness

probabilities of x1 to the values of x2 (r∗x,1i = γx,1,0 + γx,1,1x2i + ζx,1i, ζx,1i ∼ N (0, 1)). Using a latent

variable formulation for probit regression (Agresti, 2018; Johnson & Albert, 2006), we derived γ0, γ1,

γx,1,0, and γx,1,1 that produced the desired missing data proportion Py, R2
y, Px1 and R2

r∗x1
values. Finally,

we sampled a missing data indicator for each observation (0 = observed, 1 = missing) from a binomial

distribution with success rate equal to that observation’s missingness probability from the probit regression

model, and we deleted scores with indicator values of one. But when we estimate the missing covariates,

we do not need to estimate its probit model. Instead, we specify a covariate model

x1i = ψ0 + ψ1x2i + ei, ei ∼ N
(
0, σ2e

)
and use Equation (13) to impute the missing x1. There were 1000

replications under each condition.

As a comparison, we first applied the ordinary least squares estimation (OLS) to the original

complete data. The results from the complete data are treated as the simulation baselines. We also applied a

misspecified Bayesian method with assuming that both x1 and y are MAR to the incomplete data. When

we assume the outcome is MAR, we simply draw y from N
(
β0 + β1x1i + β2x2i + β3x1ix2i, σ

2
ε

)
and

ignore the missingness model. In addition to the Bayesian summaries of the model parameters (we refer it

to as the full Bayesian approach), we also saved imputed data sets and applied multiple imputation

inference. More specifically, we used our proposed approach to impute missing data, saved 20 complete

sets of data from the posterior samples of the converged chains, and conducted multiple imputation (20

imputations were suggested by Graham et al. (2007)). We used the OLS estimator to fit Equation (4) to the

multiply imputed data sets, and pooled estimates and standard errors based on Rubin’s pooling rules (see
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Rubin (1976) and Schafer (1997) for more details).

The following priors of the model parameters were used: p (β) ∝ 1, p
(
σ2ε
)

= IG (1, 1), p (ψ) ∝ 1,

p
(
σ2e,q
)
∝ 1

σ2
e,q

, and p (γ) = N (0, var = 10). The priors on β and ψ are the Jeffreys prior, which is widely

known as noninformative because it gives whole parameter space an equal prior probability. The priors on

γ and σ2ε are all weakly informative priors which contain little information but facilitate convergence.

IG (1, 1) is a flat distribution, which gives an almost equal prior probability in a relatively wide parameter

space, and N (0, var = 10) has a relatively large prior variance.2 The initial burn-in period was 104, after

that we checked convergence every 2× 104 iterations, and all the iterations before the converged 2× 104

iterations were treated as the final burn-in period. Geweke (1992) convergence diagnostic was used. If after

20 times, the chain still did not converge, we claimed nonconvergence. The simulation was coded in R.

We compared the performance of BLVSM with that of the misspecified method with an MAR

assumption, based on the accuracy of the point estimates via the bias and relative bias, and both the

accuracy and precision via the coverage rates of the 95% confidence intervals (CI) or posterior credible

intervals for each parameter of interest. Denote a parameter of interest by θ. The bias and relative bias are

calculated by averaging θ̂r − θ and θ̂r−θ
θ × 100% (when θ 6= 0) respectively across the 1000 replications,

where θ̂r is the point estimate from the rth replication. θ̂r was calculated using the posterior mean or mode.

We consider average relative bias (averaging over 1000 replications) lower than 10% as ignorable

(L. K. Muthén & Muthén, 2002). The OLS estimation from the complete-data (pre-deletion) is used as a

reference. Both the quantile-based probability (QBP) interval and the highest posterior density (HPD)

interval were obtained as credible intervals. The coverage rate was calculated as the proportion of the 95%

credible/confidence intervals covering the true parameter value. We considered coverage rates between

91% and 98% as satisfactory (L. K. Muthén & Muthén, 2002).
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Simulation Study 1: Simulation Results

The convergence rates in all conditions were over 94% for BLVSM, and they were 100% for the

misspecified method with an MAR assumption. This finding is practically important because modeling an

MNAR process is computationally challenging relative to an MAR analysis. The fact that the more

complicated modeling task reduced convergence rates by only 6% across a wide range of conditions is

encouraging. The detailed summaries of each method under each condition are found in the supplemental

materials. The main findings on the performance of each method are summarized below.

We first focus on BLVSM. In terms of biases, when the sample size exceeded 200 (SZ > 200), the

biases were negligible. When the sample size was less than or equal to 200 (SZ ≤ 200), the posterior

mode – the most likely value for a parameter from its posterior distribution – was found to be less biased

than the posterior mean for σ2ε , γ0, and γ1. The posterior mode and mean were similar for β0, β1, β2, and

β3 which are the main focus of the substantive model. The point estimates from multiple imputation were

very close to the posterior means for the full Bayesian approach. As such, we focus on the the posterior

mode from the full Bayesian approach. We found that the influence of the sample size (SZ), the

missingness proportion (Py), the pseudo coefficient of determination between y and the latent propensities

of y (R2
r∗y

), the missingness proportion of x1 (Px1), and the pseudo coefficient of determination between the

x2 and the latent propensities of x1 (R2
r∗x1

) were consistent for β0, β1, β2, and β3. In the interest of space,

we select the minimum and maximum values of Py, R2
r∗y

, Px1, and R2
r∗x1

to illustrate the bias results in

figures. More specifically, the average relative biases of β3 are presented in Figure 1, the average relative

biases of β0 and β1 are presented in Figure 2, and the average relative biases of β2 and σ2ε are presented in

Figure 3. In figures, each cell represents a combination of different levels of Py, R2
r∗y

, Px1, and R2
r∗x1

, and

different lines represent the relative biases from BLVSM with an MNAR process, the misspecified model

with an MAR assumption, and the complete data respectively. The row panel effects reflect the influence

from Px1 and R2
r∗x1

, and the column panel effects reflect the influence from Py and R2
r∗y

. When the sample
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size was greater than or equal to 200, the relative biases of β0, β1, β2, β3, and σ2ε were ignorable and very

close to the OLS estimates from the complete-data. We found that when the sample size was less than or

equal to 100, BLVSM provided smaller biases for β0, β1, β2, and β3 when (1) the missingness proportion

of y was smaller (see cells across column panels with different Py in Figures 1-3), (2) the MNAR selection

process of y was weaker (see cells across column panels with different R2
r∗y

in Figures 1-3), (3) the

missingness proportion of x1 was smaller (see cells across row panels with different Px1 in Figures 1-3),

and (4) the MAR selection process of x1 was weaker (see cells across row panels with different R2
r∗x1

a in

Figures 1-3). But the positive biases of the σ2ε estimates were smaller with a larger R2
r∗y

and a larger Px1

(see Figure 3). When the MNAR selection process was weak, incorporating the latent missingness model

in BLVSM did not negatively impact the substantive analysis and again provided unbiased estimates.

Next, consider the misspecified method with an MAR assumption. In terms of biases, when the

MNAR selection process was strong (R2
r∗y
≥ 0.25), the estimates of β0, β1, β2, β3, and σ2ε in the

misspecified method with an MAR assumption were underestimated relative to their true values (i.e., >

10% relative bias) and increasing sample size did not effectively improve the point estimates. Only when

the MNAR selection process was weak (R2
r∗y

= 0.1) could the misspecified model with an MAR

assumption approximate the complete-data estimates; the MAR-based analysis was still inferior to BLVSM

in this case, although the difference was not practically significant (see Figures 1-3).

[Figures 1-3]

In terms of the coverage rates, the QBP intervals had slightly better coverage rates than the HPD

intervals in both BLVSM and the misspecified Bayesian method with an MAR assumption. The differences

between the confidence intervals from multiple imputation and the QBP intervals in the full Bayesian

approach were trivial. As such, we focus on the QBP intervals in the full Bayesian approach. The coverage

rates for β0, β1, β2, and σ2ε are presented in Figure 4 after fixing R2
r∗x1

= 0.5 and Px1 = 0.4 (the most

severe MAR case for the incomplete covariate) and selecting the minimum and maximum values of Py and
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R2
r∗y

(i.e., the missingness proportion of y and strength of the selection mechanism, respectively). The

effects of Py, R2
r∗y

, and the sample size are the column panel effect, row panel effect, and the x-axis effect

within each cell, respectively. For BLVSM, the coverage rates of β0, β1, β2, and σ2ε were close to the

nominal level (95%) except when the sample size was less than or equal to 100 (see the x-axis effect in

Figure 4). With a small sample size, there could be undercoverage. For the misspecified method with an

MAR assumption, the coverage rates for β0, β1, β2, and σ2ε were far below the nominal level and even

close to 0 in some cases (see Figure 4). Even when the MNAR selection process was weak (R2
r∗y

= 0.1),

severe undercoverage was observed.

[Figure 4]

Turning to the covariate model, the estimates of ψ0, ψ1, and σ2e were unbiased and coverage rates

were acceptable from BLVSM across all the manipulated conditions (see the supplemental materials). For

these particular parameters, the misspecified method with an MAR assumption provided similar but slightly

worse estimates than the correctly-specified model, BLVSM. When the sample size was greater than or

equal to 50 (SZ ≥ 50), the estimated ψ0, ψ1, and σ2e from the MNAR and MAR methods were essentially

the same as the OLS estimates from the complete-data. Besides the parameters in the substantive and

covariate models, BLVSM estimates γ0 and γ1 in the missingness model for y. The estimation of these

coefficients was challenging, and we observed negative biases and undercoverage of credible intervals

when the sample size was not large enough (SZ ≤ 200, see the supplemental materials). This was an

interesting and encouraging finding, given that the substantive model parameters were largely unaffected

by the biases in the missingness model or at least achieved their optimal properties at a smaller sample size.
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Simulation Study 2: MNAR Covariates

Simulation Study 2: Simulation Design

The moderated regression model in Equation (4) again served as the substantive model for the

simulation. This simulation study examined the performance of the proposed method when both x1 and y

are MNAR. The missing values on the outcome y were generated as a function of y itself and the missing

values on x1 were generated as a function of x1 itself. The conditions were the same as the second

simulation (SZ, Py, R2
r∗y

, and Px1) except that the fifth factor is the pseudo coefficient of determination

between x1 and the latent propensities of x1 which reflects the strength of MNAR selection process of x1

(R2
r∗x1

= 0.1, 0.25, or 0.5). We used a probit regression equation to link missingness probabilities of y to the

values of y (r∗yi = γ0 + γ1yi + ζi with ζi ∼ N (0, 1)) and another probit regression equation to link

missingness probabilities of x1 to the values of x1 (r∗x,1i = γx,1,0 + γx,1,1x1i + ζx,1i, ζx,1i ∼ N (0, 1)).

When we estimate the missing x1, we not only estimate the probit model but also estimate the covariate

model x1i = ψ0 + ψ1x2i + ei, ei ∼ N
(
0, σ2e

)
. The coefficient of determination in the substantive model

R2
y is fixed at 0.13.

As a comparison, we applied the OLS estimator to the original complete data and applied the MAR

method with assuming that both x1 and y are MAR assumption to the incomplete data. When we assume

x1 is MAR, we draw x1 from Equation (13). In addition, we conducted multiple imputation. The following

priors of the model parameters were used: p (β) ∝ 1, p
(
σ2ε
)

= IG (1, 1), p (ψ) ∝ 1, p
(
σ2e,q
)
∝ 1

σ2
e,q

,

p (γ) = N (0, 10) and p (γx,q) = N (0, 10) (weakly informative prior to facilitate convergence). The

burn-in period is the same as Study 1.

Simulation Study 2: Simulation Results

The convergence rates of all conditions were again over 94% when modeling an MNAR process on

both the outcome and the explanatory variable. Given the complexity of this modeling problem, we found
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this result very encouraging. The detailed summaries of each method under each condition are in the

supplemental materials, and the main findings are summarized below.

We again focus on the posterior mode from the full Bayesian approach. We select the minimum and

maximum values of Py, R2
r∗y

, Px1 and the pseudo coefficient of determination between x1 and the latent

missingness propensities of x1 (i.e., R2
r∗x1

) to illustrate the bias results (Figures 5-7). In figures, each cell

represents a combination of different levels of Py, R2
r∗y

, Px1, and R2
r∗x1

, and different lines represent the

relative biases from BLVSM with an MNAR process, the misspecified model with an MAR assumption,

and the complete data respectively. The row panel effects reflect the influence from Px1 and R2
r∗x1

, and the

column panel effects reflect the influence from Py and R2
r∗y

. We found that when the sample size was

greater than or equal to 200, the relative biases of β0, β1, β2, β3, and σ2ε were ignorable and very close to

the OLS estimates from the complete-data. When the sample size was less than or equal to 100, relative

biases for β0, β1, β2, and β3 in the Bayesian latent variable approach decreased as (1) the missingness

proportions of x1 and y decreased (see cells with different Py and Px1 in Figures 5-7), (2) the MNAR

selection process of y became weaker (see cells across column panels with different R2
r∗y

in Figures 5-7),

and (3) the MNAR selection process of x1 became weaker (see cells across row panels with different R2
r∗x1

in Figures 5-7). But a larger R2
r∗y

decreased the positive biases of the σ2ε estimate (see Figure 7). In contrast,

the misspecified method with an MAR assumption had the pattern of underestimating β0, β1, β2, β3, and

σ2ε unless when the MNAR selection processes of the outcome and x1 were weak (R2
r∗y

= R2
r∗x1

= 0.1).

[Figures 5-7]

Turning to coverage rates, the influence from Px1 and R2
r∗x1

on the QBP coverage rates for β0, β1, β2,

and σ2ε was not large. Therefore, the coverage rates for β0, β1, β2, and σ2ε are presented in Figure 8 for the

R2
r∗x1

= 0.5 and Px1 = 0.4 (the severest missingness case) conditions along with the minimum and

maximum values of R2
r∗y

and Py. Similar to Simulation Study 1, the coverage rates of β0, β1, β2, and σ2ε

from BLVSM were close to the nominal level (95%) except when the sample size was small (e.g.,



A Bayesian Latent Variable Selection Model 37

SZ = 50 or 100; see Figure 8). The coverage rates for β0, β1, β2, and σ2ε from the misspecified method

with an MAR assumption were again too low (see Figure 8).

[Figure 8]

In addition to the substantive model, we examined the covariate model and missingness model

parameters. The estimates of ψ0, ψ1, and σ2e in the covariate model were unbiased, and coverage rates were

acceptable from BLVSM across most conditions, except when the sample size was small (see the

supplemental materials). When the sample size was greater than or equal to 100, the estimates of ψ0, ψ1,

and σ2e from BLVSM were essentially the same as the OLS estimates from the complete-data. However,

different from the Study 1 where the covariate is MAR, in the current simulation study, the misspecified

method with an MAR assumption produced biased point estimates and considerable undercoverage relative

to the correctly specified model even with a large sample size, particularly when the MNAR selection

process was strong (e.g., a large value of R2
r∗x1

). Finally, considering the missingness model parameters in

BLVSM, γ0, γ1, γx,1,0, and γx,1,1, we observed biases and undercoverage when the sample size was less

than or equal to 500 (see the supplemental materials), but this bias apparently had no material impact on

the substantive analysis. Again, it is encouraging that bias was relegated to a part of the analysis that is not

of substantive interest.

As mentioned previously, BLVSM readily extends to accommodate categorical covariates as well.

We conducted an additional simulation to generalize the result of Simulation Study 2 to binary covariates.

This extra simulation study considered the same scenario as Simulation Study 2, but with x1 as a binary

variable. The performance of BLVSM was similar to that in the case of continuous covariates. In the

interest of space, we refer interested readers to Simulation Study 2S in the supplemental materials for

additional details.
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Simulation Study 3: Misspecification

The challenging part of using MNAR methods is that we cannot identify or prove which selection

model or missingness mechanism are the true ones. Ibrahim et al. (2005) summarized two different views

on specifying the selection model. First, one can let data empirically determine the selection model by

comparing the model fit index. One can then use the likelihood ratio or AIC to evaluate the fit of each

model. However, “it is often the case that little information is contained in the data regarding alternative

nonignorable models” (page 341). Alternatively, one can view a set of MNAR analyses with different

selection models as a sensitivity analysis that examines how stable substantive model parameter estimates

are across different missingness models. Our method and related software provide the opportunity to

conduct sensitivity analysis with various selection models. The previous simulations clearly show that

failing to model an MNAR process (e.g., by fitting an MAR analysis to data where the true process is

MNAR) is detrimental. Thus, the practical danger for researchers is specifying a model with too few

predictors of missingness, as it will usually be difficult to know which covariates to include in a given

selection model. One potential remedy for this model specification problem is to deploy rich models that

include all variables in the selection model. The question is whether misspecifying the selection model in

this way has a detrimental effect on the substantive model parameters.

To provide some practical guidelines, we conducted additional simulations that examined the impact

of misspecifying missingness models by including too many (or too few) predictors. Ibrahim et al. (2005)

cautioned against making the selection model too complex and suggested that the main-effects model

usually is adequate. Thus, our simulation only focused on the main-effects model (i.e., the missingness

model included all variables in the substantive analysis but did not include interaction effects). Past

literature on selection models suggests that including predictors from the analysis model may induce

collinearity problems that are detrimental to estimation (for details refer to Puhani, 2000; Stolzenberg &

Relles, 1990, 1997). The simulations in this section suggest that this finding does not extend to BLVSM,
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and we ultimately recommend including all variables from the substantive model in the missingness model.

Simulation Study 3: Simulation Design

The moderated regression model in Equation (4) again served as the substantive model for the

simulation. We considered three types of missingness scenarios. First, x1 was missing due to y, which

indicated a MAR scenario. In this scenario, we considered three selection models:

r∗x,1i = γx,1,0 + γx,1,1x1i + ζx,1i (misspecified), r∗x,1i = γx,1,0 + γx,1,1yi + ζx,1i (correctly specified), and

r∗x,1i = γx,1,0 + γx,1,1x1i + γx,1,2x2i + γx,1,3yi + ζx,1i (over-specified). Second, x1 was missing

completely at random (MCAR). In this scenario, we considered two over-specified selection models:

r∗x,1i = γx,1,0 + γx,1,1x1i + ζx,1i and r∗x,1i = γx,1,0 + γx,1,1x1i + γx,1,2x2i + γx,1,3yi + ζx,1i. The first two

scenarios investigate the situation where a researcher incorrectly applies a selection model to an analysis

where the missingness model is unnecessary. In the third scenario, x1 was missing due to both x1 and y,

which indicated a mixture of MAR and MNAR processes. In this scenario, we considered three selection

models: r∗x,1i = γx,1,0 + γx,1,1x1i + ζx,1i (misspecified), r∗x,1i = γx,1,0 + γx,1,1x1i + γx,1,2yi + ζx,1i

(correctly specified), and r∗x,1i = γx,1,0 + γx,1,1x1i + γx,1,2x2i + γx,1,3yi + ζx,1i (over-specified). We also

conducted additional simulations that considered similarly misspecifications of the outcome’s missingness

model, but the results were similar to that for missingness on the covariate. Therefore, we focus on these

three representative simulations. The simulation conditions were as follows. The sample size (SZ) varied

as 200, 500, and 1000. The coefficient of determination in the substantive model R2
y was fixed at 0.13. The

missing data proportion for x1 (Px1) was 0.2. and the pseudo coefficient of determination between the

cause of missingness and the latent propensities of x1 (R2
r∗x1

) was 0.25.

Simulation Study 3: Simulation Results

The convergence rates of all conditions and scenarios were 100%. We present the relative biases of

posterior mode estimates (when the true value is 0, absolute biases are presented instead) and the coverage
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rates of QBP intervals in Table 1. Specifically, we focus on the estimates of substantive models and

selection models when the selection models are over-specified. For example, in the first scenario, when the

selection model is specified as r∗x,1i = γx,1,0 + γx,1,1x1i + γx,1,2x2i + γx,1,3yi + ζx,1i, the true values of

γx,1,1 and γx,1,2 are 0.

When x1 was missing due to y (Scenario 1, an MAR process), estimates were biased if we

misspecified the fitted selection model by omitting the true cause of missingness (i.e.,

r∗x,1i = γx,1,0 + γx,1,1x1i + ζx,1i). Regardless of how much we increased the sample size, the biases in the

substantive model estimates did not decrease, and the coverage rates actually got worse. When the

selection model was correctly specified in the sense that it included only the true cause of missingness (i.e.,

r∗x,1i = γx,1,0 + γx,1,1yi + ζx,1i), the bias values and coverage rates were within the acceptable range, even

with a sample size as small as 200. When the selection model was over-specified by including all variables

from the substantive analysis model as predictors (i.e.,

r∗x,1i = γx,1,0 + γx,1,1x1i + γx,1,2x2i + γx,1,3yi + ζx,1i), performance was generally quite good. Although

the biases of some parameters (in both the substantive model and the selection model) were relatively large

with a sample size of 200, the coverage rates of the parameters of the substantive model were otherwise

acceptable. Additionally, when the sample size increased, the biases of the parameters in both the

substantive model and the selection model decreased and were near zero. Specifically, the estimates of

γx,1,1 and γx,1,2 were very close to the true value 0. That is, x1 and x2 should have no influence on the

missingness of x1.

Next, consider the situation where x1 was missing completely at random (Scenario 2). In this case,

the fitted selection models (i.e., r∗x,1i = γx,1,0 + γx,1,1x1i + ζx,1i and

r∗x,1i = γx,1,0 + γx,1,1x1i + γx,1,2x2i + γx,1,3yi + ζx,1i) are over-specified because there are no causes of

missingness. Although the biases of some parameters (in both the substantive model and the selection

model) were relatively large with a sample size of 200, but the biases and coverage rates of the parameters
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of the substantive model were otherwise acceptable. Similar to the Scenario 1, when the sample size

increased, the biases of the parameters in both the substantive model and the selection model decreased and

approximated zero. Specifically, the estimates of γx,1,1, γx,1,2, and γx,1,3 were very close to the true value

0. That is, the two covariates and outcome should have no influence on the missingness of x1.

Finally, consider the scenario where x1 was missing due to both x1 and y (Scenario 3). If we omitted

one of the true causes of missingness in the selection model (i.e., r∗x,1i = γx,1,0 + γx,1,1x1i + ζx,1i), the

biases of estimates and coverage rates of the parameters in the substantive model were unacceptable,

regardless of the sample size. When the selection model is correctly specified

(r∗x,1i = γx,1,0 + γx,1,1x1i + γx,1,2yi + ζx,1i), the parameter estimates and coverage rates were acceptable

even with a sample size of 200. Finally, when the selection model was over-specified by including

unnecessary predictors (i.e., r∗x,1i = γx,1,0 + γx,1,1x1i + γx,1,2x2i + γx,1,3yi + ζx,1i), the biases of the

parameters in both the substantive model and the selection model decreased as the sample size increased.

The biases of the substantive model and selection model parameters reached acceptable levels (e.g., < 10%

relative bias) at a sample size of 500 and 1000, respectively. Consistent with the findings from the previous

two simulation studies, the substantive model parameter estimates were acceptable even when the

missingness model parameter estimates were biased.

[Table 1]

The simulations investigating misspecifications provide the following conclusions: (1) omitting the

true cause of missingness caused biases and disrupted coverage rates, (2) correct specification yielded

accurate estimates and acceptable coverage rates even with a relatively small sample size (i.e., 200), and (3)

adding extra, unnecessary predictors to the missingness part of the selection model caused biases when the

sample size was relatively small, but the coverage rates were close to the nominal level. In the current

simulation, as the sample size increased to 500, the biases of substantive model parameter estimates due to

over-specification generally diminished to below the 10% threshold. We would like to highlight that when
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the missingness model is over-specified, the true parameters of the unnecessary predictors are 0 although in

samples they are never estimated to be exactly 0. Simulation Study 3 shows that the estimates from the

over-specified model can have ignorable biases and acceptable coverage rates. Our conclusions seem to

offer a fairly clear prescription for researchers applying these models: specify selection models that are

more inclusive, including all variables in the analysis model. This strategy provides a realistic possibility of

obtaining approximately unbiased parameter estimates in sample sizes that are typical of the behavior

sciences, whereas adopting a more restrictive specification that may omit potential predictors of

missingness risks inducing substantial biases. We illustrate this approach in the ensuing real data analysis

example.

A Real Data Example

In a marital satisfaction study at the University of California, Los Angeles, a sample of 431

first-married couples were asked to rate their marriage on a 8-item scale twice in 2012 and 2014

respectively. The sum of the ratings was treated as an index of marital satisfaction. We are interested in

whether wives’ marital satisfaction at the first wave (WS1) had an influence on the husbands’ marital

satisfaction at the second wave (HS2) after controlling husbands’ marital satisfaction at the first wave

(HS1), husbands’ education levels (EDU), and husbands’ stress levels (STR). Therefore, the substantive

model is

HS2 = β0 + β1HS1 + β2WS1 + β3EDU + β4STR+ ε, (23)

ε ∼ N
(
0, σ2ε

)

The missing proportions in the husbands’ marital satisfaction scores at the two waves and the wives’

marital satisfaction scores at the second wave were 13.2%, 22.3%, and 13.0%, respectively. The education

and stress level scores of husbands were complete.
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All MAR- and MNAR-based methods including BLVSM rely heavily on untestable assumptions of

missingness. We cannot prove the missingness is MNAR or MAR. Similarly, we cannot prove whether a

specific MNAR selection model is appropriate for a given data set. Given the inherent uncertainty

associated with conducting NMAR analysis, we followed recommendations from Ibrahim et al. (2002) by

conducting sensitivity analysis that apply different assumptions of missingness to the same data.

Additionally, following our conclusions from Simulation Study 3, we modeled NMAR processes with rich

selection models that included all variables in the substantive analyses (i.e., HS1, WS1, HS2, EDU , and

STR) as the predictors. When the MCMC chains had difficulty in converging, we simplified the selection

models by removing predictor variables. In this real data example, we considered eight assumptions

(Tables 1 and 2). We used the forthcoming Blimp 3 application (Keller et al., 2019) to apply BLVSM, and

the Blimp code (both separate and sequential specifications) is illustrated in the Appendix. A typical

application might consist of the substantive regression, an selection model for outcome’s missingness that

features all variables from the substantive model, and a selection model for a covariate’s missingness, again

with all variables from the analysis as predictors. As mentioned previously, Blimp allows for binary,

ordinal, or nominal covariates (and categorical outcomes), and it readily accommodates interactive or

non-linear effects. Depending on the assumptions, it is possible to fit these models in other packages. For

example, specialized Bayesian programs like WinBugs or JAGS could certainly estimate these models.

Based on the R technical manual and Lüdtke et al. (2020), the R package ’mdmb’ (Robitzsch and Luedtke,

2019) can handle an MAR or MNAR outcome and covariates. The ’mdmb’ package uses the sequential

approach. Bayesian estimation can be used in conjunction with a structural equation modeling framework

such as Mplus (L. Muthén & Muthén, 1998–2017) to incorporate selection models for an outcome or a

covariate, with two caveats (even when users specify syntax by themselves). First, incomplete covariates

are assumed to be normally distributed, although outcomes can be binary and ordinal. Second, because the

SEM framework is grounded in the multivariate normality assumption, interactive or non-linear effects
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with missing data would be estimated with potentially substantial biases (e.g., Bartlett et al., 2015; Enders

et al., 2018; Erler et al., 2016; Kim et al., 2015; Seaman et al., 2012; Van Buuren et al., 2006).

In the first analysis, we assumed the covariates (HS1 and WS1) and the outcome (HS2) were

missing at random (MAR). We used five MCMC chains with different starting values, and the

Gelman–Rubin diagnostic (Gelman & Rubin, 1992) was used to check the convergence of the five chains

after the burning period (Gelman & Rubin, 1992). As mentioned in the simulation studies, we can get

Bayesian estimates of β0, β1, β2, β3, β4 and σ2ε from the MCMC algorithm in the full Bayesian approach,

and we can also generate multiple imputations. We report the posterior mode estimates, the posterior

standard deviations (i.e., standard deviation from posterior samples; SD), the quantile-based probability

(QBP) credible intervals, and the deviance information criterion (DIC) in Table 1. We reject H0 : β = 0

when the QBP interval does not cover 0. In addition to the full Bayesian inferences, we applied multiple

imputation with 100 imputed sets of data from the posterior samples by BLVSM (each chain provided 20

sets of data). The R and Mplus code for pooling the estimates and standard errors are illustrated in the

Appendix. The point estimates, standard errors, the Akaike information criterion (AIC), and the Bayesian

information criterion (BIC) are in Table 2. Both the full Bayesian and multiple imputation results showed

that wives’ marital satisfaction at the first wave (WS1) could significantly predict husbands’ marital

satisfaction at the second wave (HS2) after controlling for other variables, and β̂2 was about 0.2.

Additionally, the husbands’ marital satisfaction at the first wave (HS1) and husbands’ education levels

(EDU) could significantly predict husbands’ marital satisfaction at the second wave.

Although our simulation results suggest that over-parameterizing a selection model by incorporating

an inclusive set of covariates is not problematic at current sample size, specifying complex selection

models may not be feasible in every dataset. We reduce model complexity by removing predictor variables

in the selection models if the complex selection models fail to converge because the data contain

insufficient information to estimate such a complex model. Additionally, we would not recommend treating
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all variables are MNAR, as it seems unlikely that such models would converge in practice. Rather, we

suggest a model-building procedure that researchers assume one variable is MNAR first (when such a

process is theoretically justified), and move to the analyses where two and more variables are MNAR. This

is the process we applied here.

In the second analysis, we assumed that WS1 and HS2 were MAR and HS1 was MNAR, where

the missingness of HS1 depended on HS1, WS1, HS2, EDU , and STR. Using both the full Bayesian

approach and multiple imputation based on BLVSM, the estimated coefficients and posterior standard

deviations/multiple imputation errors of the substantive model are in Table 2. In addition, we provide the

estimates of the probit missingness model for HS1 (e.g., γHS1|HS1 andγHS1|HS2 ) in Table 2. We

compared the substantive parameter estimates in the current analysis to the ones in the first analysis

without any selection model. As a practical guide, we investigated how much the estimates changed in

posterior standard deviation units (SD; we used the SDs in the first analysis, which were similar in

magnitude to the imputation-based standard errors). We found the estimates and hypothesis testing results

of the substantive model did not noticeably differ from those with only MAR assumptions (the first

analysis), and largest change (e.g., in β̂2 ) was equivalent to about 0.7 SDs.

Third, we assumed that HS1 and HS2 were MAR, and WS1 was MNAR, with the missingness of

WS1 depended on HS1, WS1, HS2, EDU , and STR. Compared to the first analysis, β̂1 changed about

1.4 posterior SDs (β̂1 was 0.636 and 0.558 in the first and third assumptions, respectively) and other

estimates changed less than 1 posterior SD (see Table 2).

Fourth, we assumed that HS1 and WS1 were MAR, and HS2 was MNAR. In this analysis,

different from the previous analyses, wives’ marital satisfaction at the first wave failed to predict husbands’

marital satisfaction at the second wave (β2). Compared to the first analysis, most of the estimates changed

more than 1 SD. More specifically, σ̂2ε changed about 6.8 SDs, β̂1 changed about 1.6 SDs (β̂1 was 0.636

and 0.548 in the first and fourth assumptions, respectively), and β̂2 changed about 1.5 SDs (β̂2 was 0.214
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and 0.13 in the first and fourth assumptions, respectively; see Table 2). We tried to explore why the

estimates changed dramatically. We removed the predictors in the selection model one by one and found

when HS1 was removed, the estimates and inferences were similar to those in the first analysis.

After pairing the substantive analysis with one selection model, we next fitted models that

incorporated a pair of selection models. Then in the fifth model, we assumed that HS1 and WS1 were

MNAR and HS2 was MAR. Including all variables as predictors in the missingness model led to

nonconvergence, therefore we did not include the outcome, HS2, in the selection models. There is no clear

guideline of how to simplify the selection model. We suggest removing one variable at a time, The

estimates of the substantive model and selection models are in Table 3. This model had the smallest DIC,

AIC, and BIC. The estimates and hypothesis testing results of the substantive model did not noticeably

differ from those in the first analysis with only MAR assumptions. The largest change is that β̂4 changed

about 0.2 SDs (see Table 3 for estimates).

In the sixth model, we assumed that HS1 and HS2 were MNAR, and WS1 was MAR. Compared

to the first analysis, β2 was not significant anymore and most of the estimates changed more than 1 SD

(e.g., σ̂2ε changed about 8.1 SDs, β̂0 changed about 3.4 SDs, and β̂2 changed about 1.8 SDs; see Table 3 for

estimates). The change of the estimates probably is probably due to assuming HS2 was MNAR based on

the results in the fourth assumption.

In the seventh models, we assumed that WS1 and HS2 were MNAR, and HS1 was MAR.

However, in the seventh model, including all variables as predictors in the missingness model led to

nonconvergence, therefore we did not include the outcome, HS2, in the missingness model of WS1.

Compared to the first analysis, β2 was not significant anymore and most of the estimates changed more

than 1 SD (e.g., σ̂2ε changed about 6 SDs and β̂2 changed about 2.3 SDs; see Table 3 for estimates). Again,

we think the change of the estimates is due to assuming HS2 was MNAR.

Finally, in the eighth model, we assumed HS1, WS1 and HS2 were all MNAR. However, the five
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chains did not converge, even when we only include one predictor in the missingness model and used

6× 104 iterations. Because the posterior distributions of multiple parameters converged to two different

modes, we did not pursue this model. We suggest that researchers should be cautious when assuming more

than one covariate are MNAR, paying careful attention to convergence diagnostics such as the

Gelman–Rubin diagnostic statistic.

Considered as a whole, when we assumed HS2 was MNAR (the fourth, sixth, and seventh

assumptions), the influence of wives’ marital satisfaction at the first wave on husbands’ marital satisfaction

at the second wave (β2) was no longer significant, which was different from the result obtained when HS2

was MAR. We also found when excluding HS1 from predictors in the selection model of HS2 in the

model 3, the results were more consistent with the other models. The difficulty with the discrepancy

between the models is that a researcher cannot verify which model is more plausible based on the data. If

one’s substantive knowledge suggests that the NMAR process might be plausible, then a reasonable course

of action is to present multiple sets of results (e.g., including the full sensitivity analysis in an online

supplement). We don’t necessarily view such discrepancies across models as insurmountable or inherently

problematic, nor do we feel that it is necessary for a researcher to choose one set of results - in fact, there is

little basis for such a choice beyond one’s expert opinion about the plausibility of different processes.

Online supplemental documents offer researchers unlimited space with which to report multiple sets of

results, and we find it just fine to declare that different assumptions about the missingness process led to

somewhat different conclusions for certain model parameters. This won’t always be the case, but

sometimes it will. Certainly, reporting two sets of results is a better alternative that choosing just one,

particularly when that choice involves effects that are significant under one assumption and non-significant

under another. We believe the importance of this exercise stems from doing a thorough job of trying to

understand if, how, and why one’s analysis results are sensitive to missing data assumptions, not choosing

“the” best model.
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[Tables 2-3]

Conclusion

In real data analysis, usually a missing at random mechanism (MAR; missingness is related to

observed data but not to the unobserved values of itself) or missing completely at random mechanism

(MCAR; missingness is unrelated to either observed or unobserved data) is assumed. However, it is

possible that the underlying missingness mechanism is MNAR. If we ignore the possibility of an MNAR

selection process by inappropriately applying an MAR-based procedure, previous research and our own

simulations have shown that parameter estimates generally were biased (Enders, 2011; Fitzmaurice et al.,

2012; Graham, 2009; Yang & Maxwell, 2014). Building on one of the major MNAR modeling frameworks

– the selection model – this paper outlined a Bayesian latent variable selection model, BLVSM, that

accommodates an MNAR process on the outcome, covariates, or both. This procedure offers a number of

compelling advantages: it (a) has a strong theoretical foundation in the Bayesian framework, (b) can be

either applied in a full Bayesian framework where parameters in the substantive model are calculated in

MCMC steps, or in a multiple imputation framework where the missing data are imputed by MCMC steps

and the parameters in the substantive model are estimated by frequentist methods later, (c) easily handles

complete or incomplete covariates (due to MCAR, MAR, or MNAR), (d) allows the incomplete MAR or

MNAR covariates to involve interactions, non-linear terms, and random slopes, and (e) accommodates

categorical variables. The procedure is implemented in a forthcoming release of the software package

Blimp (Keller et al., 2019). We are unaware of other packages that offer these modeling possibilities,

although the R package ’mdmb’ can estimate some selection models in the EM framework.

Computer simulation results suggest that BLVSM is quite effective when the outcome is MNAR and

the covariates are complete, MAR, or MNAR (regardless of whether covariates are continuous or binary).

Except when the sample size was small (e.g., SZ ≤ 100), estimates tracked closely with those from a
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complete-data analysis. More specifically, the substantive model parameter estimates were unbiased and

their coverage rates were acceptable, even when parameters of the missingness model exhibited bias (these

parameters required large samples to achieve their optimal properties). Moreover, convergence failures

were rare, even when simultaneously modeling an MNAR process for the outcome and covariate. In

addition, we found that the following factors influenced the performance of BLVSM: the sample size, the

coefficient of determination in the substantive model, the missingness proportion of y, the strength of

MNAR selection process of y, the missingness proportion of covariates, and the strength of MAR/MNAR

selection process of covariates. With a relatively small sample size, when the outcome was less predictable

from the covariates, the missingness proportions of the covariates and the outcome were larger, and the

missingness process of the covariates and the outcome were more MNAR and/or MAR, the performance of

BLVSM was less satisfactory. When the sample size was large, the factors barely influenced the

performance. Multiple imputation as a hybrid approach provided similar results as the full Bayesian

method, thus researchers have various options for applying our approach. As noted in the introduction, the

literature has largely focussed on MNAR processes for the outcome variable except some work

investigating MNAR covariates (Huang et al., 2005; Ibrahim et al., 1999, 2005). Our approach is quite

flexible because it can accommodate MNAR covariates, MAR covariates, MAR/MNAR outcome, or all of

them simultaneously. Although putting the models in the previous literature together also can

accommodate all of the aforementioned cases, this paper is the first one which systematically presents all

cases. Additionally, our work and the work from Ibrahim’s group have differences in terms of estimation

method and assumptions.

We explored the robustness of the proposed method in Simulation Study 3. Based on the results, we

suggest specifying an inclusive selection model for each variable. When MCMC chains have difficulty in

converging, we can simplify the selection models to make the computation process easier. Although we

suggest an inclusive selection model, in practice, it is not feasible to include all variables as predictors in
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the selection model because it may lead to nonconvergence. Based on prior knowledge and existing

theories, researchers can select several important predictors to enter the selection model. Based on our

simulation results, there is no need to force the selection model to have only one or two predictors. We also

suggest conducting sensitivity analysis to investigate how much the results change across missingness

assumptions and missingness models. More specifically, we suggest a model-building procedure. We begin

with assuming all variables are MAR. Then we assume one variable is MNAR (when such a process is

theoretically justified), and move to the analyses where two and more variables are MNAR, as we

illustrated in the real data example.

Due to the scope and word limitation of this paper, we only focus on the missingness patterns that

can be handled by selection models. BLVSM has not generalized to other missingness patterns such as

pattern mixture models yet.

In sum, our paper outlined a new Bayesian latent variable selection model for an MNAR process.

When missingness is truly MNAR, computer simulations suggest that the proposed model can offer

substantial improvement over methods that apply an incorrect MAR assumption. The Blimp application

offers a user-friendly environment for implementing BLVSM.
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Appendix

Blimp code for BLVSM, and R and Mplus code for Multiple Imputation

###########################################################################

######## BLIMP CODE FOR HS1 , WS1, AND HS2 ARE MAR (SEPARATE SPECIFICATION )

###########################################################################

DATA: i n p u t d a t a . c sv ;

VARIABLES : HS1 WS1 EDU STR HS2 ;

ORDINAL: ;

NOMINAL: ;

MISSING : 999 ;

CLUSTERID : ;

MODEL: HS2 ~ HS1 WS1 EDU STR ;

SEED : 90291 ;

BURN: 10000 ;

THIN : 10000 ; # Each imputed d a t a s e t i s s ave e v e r y 10000 i t e r a t i v e s ;

NIMPS : 100 ;

CHAINS : 5 p r o c e s s o r s 5 ;

OPTIONS : p s r c o v a r i a t e m o d e l ;

SAVE:

s e p a r a t e = imp ∗ . d a t ; # Save 100 imputed d a t a s e t s f o r Mplus

s t a c k e d = imps . d a t ; # Save 1 compi led imputed d a t a s e t f o r R

###########################################################################

######## BLIMP CODE FOR WS1 IS MAR, AND HS1 AND HS2 ARE MNAR (SEPARATE SPECIFICATION )

###########################################################################

DATA: i n p u t d a t a . c sv ;

VARIABLES : HS1 WS1 EDU STR HS2 ;

ORDINAL: ;

NOMINAL: ;

MISSING : 999 ;

CLUSTERID : ;

MODEL:
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HS2 ~ HS1 WS1 EDU STR ;

HS1 . m i s s i n g ~ WS1 HS1 EDU STR ;

HS2 . m i s s i n g ~ WS1 HS1 HS2 EDU STR ;

SEED : 90291 ;

BURN: 15000 ;

THIN : 10000 ;

NIMPS : 100 ;

CHAINS : 5 p r o c e s s o r s 5 ;

OPTIONS : p s r c o v a r i a t e m o d e l ;

SAVE:

s e p a r a t e = imp ∗ . d a t ;

s t a c k e d = imps . d a t ;

###########################################################################

######## BLIMP CODE FOR WS1 IS MAR, AND HS1 AND HS2 ARE MNAR (SEQUENTIAL SPECIFICATION )

###########################################################################

DATA: i n p u t d a t a . c sv ;

VARIABLES : HS1 WS1 EDU STR HS2 ;

ORDINAL: ;

NOMINAL: ;

MISSING : 999 ;

CLUSTERID : ;

MODEL: HS2 ~ HS1 WS1 EDU STR ;

# S q u e n t i a l c o v a r i a t e model

HS1 ~ WS1 EDU STR ;

WS1 ~ EDU STR ;

# S q u e n t i a l s e l e c t i o n model

HS2 . m i s s i n g ~ WS1 HS1 HS2 EDU STR HS1 . m i s s i n g ;

HS1 . m i s s i n g ~ WS1 HS1 HS2 EDU STR ;

SEED : 90291 ;

BURN: 15000 ;

THIN : 10000 ;

NIMPS : 100 ;

CHAINS : 5 p r o c e s s o r s 5 ;
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OPTIONS : p s r c o v a r i a t e m o d e l ;

SAVE:

s e p a r a t e = imp ∗ . d a t ;

s t a c k e d = imps . d a t ;

###########################################################################

######## MPLUS CODE

######## 100 c o p i e s o f d a t a s e t s must be a r r a n g e d as imp1 . da t , imp2 . da t , . . . , imp100 . d a t .

###########################################################################

DATA:

f i l e = impnames . d a t ;

t y p e = i m p u t a t i o n ;

VARIABLE :

names = HS1 WS1 EDU STR HS2 ;

u s e v a r i a b l e s = HS1 WS1 EDU STR HS2 ; # d s h i d h s i d ;

MODEL:

HS2 on HS1 WS1 EDU STR ;

OUTPUT:

s t d y x ;

###########################################################################

######## R CODE

###########################################################################

# R e q u i r e d p a c k a g e s

l i b r a r y ( mitml )

l i b r a r y ( r s t u d i o a p i )

# s e t working d i r e c t o r y t o l o c a t i o n o f R s c r i p t

se twd ( d i rname ( r s t u d i o a p i : : g e t A c t i v e D o c u m e n t C o n t e x t ( ) $ p a t h ) )

impda ta <− r e a d . t a b l e ( p a s t e 0 ( getwd ( ) , " / imps . d a t " ) )

names ( impda ta ) <− c ( " i m p u t a t i o n " , "HS1 " , "WS1" , "EDU" , "STR " , "HS2 " )

# a n a l y z e d a t a and poo l e s t i m a t e s

i m p l i s t <− as . mitml . l i s t ( s p l i t ( impdata , i m p d a t a $ i m p u t a t i o n ) )
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a n a l y s i s <− wi th ( i m p l i s t , lm ( HS2 ~ HS1+WS1+EDU+STR) )

e s t i m a t e s <− t e s t E s t i m a t e s ( a n a l y s i s , v a r . comp = T , d f . com = NULL)

e s t i m a t e s
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Footnotes

1The procedure is that multiplying the two components in Equation (6) and finding a normal

distribution for y which has the same kernel as the product.

2Based on our pilot simulations, if we used noninformative prior for γ (i.e., p (γ) ∝ 1), sometimes we

could get converged results but sometimes not, which depended on the data. The default prior for

coefficients in probit regression with missing data is N (0, 5) in Mplus. We found that prior variance of 5,

10 or 15 did not yield observably different results, and it could ensure convergence results in almost all

cases. In addition, r∗ is scaled as a z-score, and we checked various probit regressions to capture the

relation of y and r∗ under different scenarios. We found that γ was not large across conditions. Therefore,

we use the prior variance of 10 in the normal prior of γ, which is still quite large but small enough to

induce additional information that facilitates convergence. In real data analysis, researchers can modify this

weakly informative prior based on each specific data.
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Table 1: Simulations of misspecification

β0 β1 β2 β3 σ2ε γx,1,1 (x1i) γx,1,2 (x2i) γx,1,3 (yi)
Scenario 1 x1 was missing due to y (MAR)

r∗x,1i = γx,1,0 + γx,1,1x1i + ζx,1i
SZ=200 Biases -0.048 0.409 -0.281 -0.317 -0.099

Coverage rates 0.800 0.680 0.871 0.888 0.853
SZ=500 Biases -0.049 0.440 -0.291 -0.278 -0.088

Coverage rates 0.594 0.310 0.730 0.827 0.759
SZ=1000 Biases -0.048 0.434 -0.291 -0.278 -0.084

Coverage rates 0.330 0.067 0.518 0.672 0.560
r∗x,1i = γx,1,0 + γx,1,1yi + ζx,1i

SZ=200 Biases 0.002 -0.014 0.005 -0.066 -0.023
Coverage rates 0.944 0.958 0.951 0.943 0.944

SZ=500 Biases -0.001 0.016 -0.004 -0.014 -0.012
Coverage rates 0.941 0.952 0.971 0.946 0.966

SZ=1000 Biases 0.000 -0.003 0.005 -0.009 -0.006
Coverage rates 0.950 0.953 0.959 0.942 0.951

r∗x,1i = γx,1,0 + γx,1,1x1i + γx,1,2x2i + γx,1,3yi + ζx,1i
SZ=200 Biases -0.011 -0.124 0.018 -0.191 -0.031 (0.096) (0.008) 0.118

Coverage rates 0.955 0.931 0.949 0.927 0.935 0.894 0.945 0.945
SZ=500 Biases -0.007 -0.049 0.016 -0.089 -0.014 (-0.009) (0.009) 0.053

Coverage rates 0.951 0.941 0.966 0.936 0.963 0.927 0.945 0.945
SZ=1000 Biases -0.003 -0.028 0.018 -0.049 -0.008 (-0.019) (0.005) 0.029

Coverage rates 0.959 0.950 0.943 0.936 0.957 0.936 0.939 0.939

Scenario 2 x1 was complete missing at random (MCAR)
r∗x,1i = γx,1,0 + γx,1,1x1i + ζx,1i

SZ=200 Biases 0.004 -0.072 0.012 -0.091 -0.020 (-0.031)
Coverage rates 0.946 0.953 0.955 0.936 0.940 0.909

SZ=500 Biases 0.000 -0.010 0.001 -0.025 -0.010 (0.035)
Coverage rates 0.939 0.949 0.968 0.950 0.963 0.935

SZ=1000 Biases 0.001 -0.009 0.005 -0.014 -0.006 (-0.031)
Coverage rates 0.950 0.959 0.961 0.948 0.949 0.909

r∗x,1i = γx,1,0 + γx,1,1x1i + γx,1,2x2i + γx,1,3yi + ζx,1i
SZ=200 Biases 0.005 -0.232 0.052 -0.187 -0.012 (0.128) (0.005) (-0.008)

Coverage rates 0.952 0.925 0.958 0.931 0.947 0.863 0.911 0.911
SZ=500 Biases 0.002 -0.125 0.034 -0.089 -0.004 (0.014) (0.016) (-0.001)

Coverage rates 0.944 0.946 0.969 0.939 0.970 0.911 0.922 0.922
SZ=1000 Biases 0.001 -0.087 0.028 -0.055 -0.002 (-0.007) (0.006) (-0.001)

Coverage rates 0.946 0.944 0.946 0.941 0.953 0.916 0.934 0.934

Scenario 3 x1 was missing due to both x1 and y (a mixture of MNAR and MAR)
r∗x,1i = γx,1,0 + γx,1,1x1i + ζx,1i

SZ=200 Biases -0.040 0.328 -0.252 -0.293 -0.086
Coverage rates 0.839 0.775 0.886 0.896 0.877

SZ=500 Biases -0.042 0.369 -0.268 -0.241 -0.077
Coverage rates 0.684 0.480 0.760 0.859 0.817

SZ=1000 Biases -0.042 0.373 -0.277 -0.251 -0.076
Coverage rates 0.430 0.160 0.520 0.760 0.590

r∗x,1i = γx,1,0 + γx,1,1x1i + γx,1,2yi + ζx,1i
SZ=200 Biases -0.007 -0.060 -0.007 -0.150 -0.028

Coverage rates 0.949 0.946 0.944 0.931 0.937
SZ=500 Biases -0.005 0.008 -0.010 -0.047 -0.014

Coverage rates 0.940 0.942 0.957 0.945 0.958
SZ=1000 Biases -0.002 -0.002 0.001 -0.019 -0.008

Coverage rates 0.952 0.951 0.960 0.937 0.953
r∗x,1i = γx,1,0 + γx,1,1x1i + γx,1,2x2i + γx,1,3yi + ζx,1i

SZ=200 Biases -0.010 -0.134 0.042 -0.157 -0.032 0.327 (0.031) 0.120
Coverage rates 0.959 0.936 0.948 0.942 0.952 0.92 0.935 0.935

SZ=500 Biases -0.004 -0.080 0.021 -0.098 -0.008 -0.184 (0.034) 0.067
Coverage rates 0.958 0.940 0.957 0.935 0.945 0.93 0.944 0.944

SZ=1000 Biases -0.004 -0.029 0.011 -0.046 -0.004 0.067 (0.006) 0.023
Coverage rates 0.958 0.943 0.946 0.944 0.952 0.941 0.943 0.943

Note: The biases inside the parentheses are absolute biases, and the biases outside the parentheses are
relative biases.
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Table 2: Real Data Example

Assumption 1 WS1, HS1, HS2 are MAR

β0 β1 β2 β3 β4 σ2ε

Full Bayesian

Estimate 7.438* 0.636* 0.214* -0.154* -0.045 9.423

Standard deviation 2.162 0.055 0.056 0.056 0.092 0.754

Credible interval (3.055, (0.52, (0.101, (-0.268, (-0.209, (8.223,

11.546) 0.737) 0.319) -0.049) 0.151) 11.183)

DIC 2198.318

Multiple Imputation

Estimate 7.301* 0.628* 0.210* -0.157* -0.026 9.636

Standard Error 2.196 0.056 0.055 0.058 0.092

AIC 2206.187 BIC 2230.584

Assumption 2 WS1 and HS2 are MAR, and HS1 is MNAR

β0 β1 β2 β3 β4 σ2ε γHS1|0 γHS1|HS1 γHS1|WS1 γHS1|EDU γHS1|STR γHS1|HS2

Full Bayesian

Estimate 8.132* 0.629* 0.173* -0.152* -0.027 9.484 -13.278* -0.139 0.533* -0.069 -0.036 -0.084

Standard deviation 2.282 0.056 0.061 0.056 0.092 0.77 2.388 0.099 0.087 0.045 0.077 0.085

Credible interval (3.543 (0.519 (0.065 (-0.265 (-0.213 (8.276 (-17.795 (-0.319 (0.384 (-0.164 (-0.198 (-0.223

12.514) 0.74) 0.303) -0.046) 0.149) 11.309) -8.389) 0.074) 0.729) 0.014) 0.106) 0.11)

DIC 2201.439

Multiple Imputation

Estimate 8.194* 0.627* 0.18* -0.156* -0.033 9.676

Standard Error 2.257 0.056 0.06 0.056 0.092

AIC 2208.006 BIC 2232.403

Assumption 3 HS1 and HS2 are MAR, and WS1 is MNAR

β0 β1 β2 β3 β4 σ2ε γWS1|0 γWS1|HS1 γWS1|WS1 γWS1|EDU γWS1|STR γWS1|HS2

Full Bayesian

Estimate 9.118* 0.558* 0.219* -0.162* -0.026 9.638 -15.678* 0.616* -0.1 -0.034 0.06 -0.164*

Standard deviation 2.234 0.057 0.057 0.056 0.093 0.785 2.325 0.092 0.059 0.04 0.076 0.056

Credible interval (4.944 (0.449 (0.101 (-0.268 (-0.226 (8.404 (-20.183 (0.47 (-0.194 (-0.113 (-0.095 (-0.277

13.697) 0.672) 0.324) -0.05) 0.139) 11.478) -11.083) 0.833) 0.038) 0.043) 0.206) -0.057)

DIC 2208.460

Multiple Imputation

Estimate 9.643* 0.552* 0.213* -0.161* -0.049 9.806

Standard Error 2.18 0.057 0.058 0.055 0.092

AIC 2213.795 BIC 2238.191

Assumption 4 WS1 and HS1 are MAR, and HS2 is MNAR

β0 β1 β2 β3 β4 σ2ε γHS2|0 γHS2|HS1 γHS2|WS1 γHS2|EDU γHS2|STR γHS2|HS2

Full Bayesian

Estimate 14.862* 0.548* 0.13 -0.233* -0.024 14.522 -9.217* -0.318* -0.162* 0.032 -0.07 0.655*

Standard deviation 2.606 0.068 0.067 0.063 0.106 1.365 2.321 0.047 0.036 0.043 0.077 0.088

Credible interval (10.176 (0.417 (-0.007 (-0.364 (-0.246 (12.262 (-13.947 (-0.417 (-0.232 (-0.041 (-0.249 (0.503

20.381) 0.682) 0.258) -0.116) 0.174) 17.571) -4.899) -0.232) -0.089) 0.128) 0.051) 0.846)

DIC 2381.857

Multiple Imputation

Estimate 15.385* 0.548* 0.122 -0.238* -0.033 14.625

Standard Error 2.584 0.067 0.065 0.063 0.105

AIC 2385.629 BIC 2410.026

Note: * indicates p < 0.05 in multiple imputation and QBP interval excluding 0 in full Bayesian framework.
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Table 3: Real Data Example (continued)
Assumption 5 HS2 is MAR, HS1 and WS1 are MNAR

β0 β1 β2 β3 β4 σ2ε γHS1|0 γHS1|HS1 γHS1|WS1 γHS1|EDU γHS1|STR

Full Bayesian

Estimate 7.786* 0.633* 0.204* -0.158* -0.029 9.426 -13.622* -0.305* 0.655* -0.081 -0.068

Standard deviation 2.155 0.056 0.054 0.056 0.092 0.749 2.239 0.085 0.081 0.055 0.097

Credible interval (3.242 (0.519 (0.098 (-0.268 (-0.204 (8.24 (-18.309 (-0.493 (0.511 (-0.187 (-0.276

11.712) 0.737) 0.309) -0.05) 0.157) 11.166) -9.517) -0.157) 0.83) 0.031) 0.107)

γWS1|0 γWS1|HS1 γWS1|WS1 γWS1|EDU γWS1|STR

-14.592* -0.301* 0.662* -0.084 -0.116

2.37 0.089 0.085 0.057 0.104

(-19.296 (-0.503 (0.535 (-0.184 (-0.336

-9.998) -0.16) 0.872) 0.036) 0.072)

DIC 2198.275

Multiple Imputation

Estimate 7.181 0.634 0.203 -0.152 -0.017 9.617

Standard Error 2.209 0.057 0.05 0.057 0.094

AIC 2205.353 BIC 2229.750

Assumption 6 WS1 is MAR, HS1 and HS2 are MNAR

Full Bayesian

β0 β1 β2 β3 β4 σ2ε γHS1|0 γHS1|HS1 γHS1,WS1 γHS1,EDU γHS1,STR γHS1,HS2

Estimate 14.867* 0.563* 0.116 -0.232* -0.016 15.56 -6.803* -0.128* -0.108 0.035 -0.055 0.336*

Standard deviation 2.903 0.081 0.08 0.065 0.11 1.436 1.707 0.059 0.064 0.036 0.066 0.054

Credible interval (9.209 (0.401 (-0.028 (-0.364 (-0.231 (13.154 (-10.201 (-0.241 (-0.207 (-0.029 (-0.202 (0.248

20.679) 0.718) 0.285) -0.109) 0.199) 18.773) -3.54) -0.008) 0.044) 0.111) 0.058) 0.461)

γHS2|0 γHS2|HS1 γHS2|WS1 γHS2|EDU γHS2|STR γHS2|HS2

-9.662* -0.296* -0.188* 0.028 -0.112 0.68*

2.2 0.047 0.04 0.044 0.083 0.088

(-14.188 (-0.396 (-0.271 (-0.051 (-0.291 (0.527

-5.586) -0.21) -0.114) 0.121) 0.034) 0.872)

DIC 2410.992

Multiple Imputation

Estimate 14.855* 0.558* 0.131 -0.236* -0.019 15.814

Standard Error 2.866 0.079 0.081 0.064 0.109

AIC 2419.306 BIC 2443.703

Assumption 7 HS1 is MAR, WS1 and HS2 are MNAR

Full Bayesian

β0 β1 β2 β3 β4 σ2ε γWS1|0 γWS1|HS1 γWS1|WS1 γWS1|EDU γWS1|STR

Estimate 10.574* 0.703* 0.088 -0.209* 0.033 13.945 -16.392* 0.541* -0.139* -0.012 0.02

Standard deviation 2.423 0.058 0.066 0.062 0.104 1.277 2.354 0.068 0.053 0.039 0.079

Credible interval (5.803 (0.591 (-0.044 (-0.333 (-0.17 (11.883 (-21.025 (0.41 (-0.231 (-0.092 (-0.145

15.323) 0.82) 0.216) -0.09) 0.239) 16.884) -11.846) 0.676) -0.021) 0.063) 0.164)

γHS2|0 γHS2|HS1 γHS2|WS1 γHS2|EDU γHS2|STR γHS2|HS2

-12.653* -0.219* -0.177* 0.022 -0.068 0.68*

2.206 0.048 0.039 0.042 0.077 0.085

(-17.062 (-0.32 (-0.258 (-0.056 (-0.234 (0.533

-8.401) -0.131) -0.106) 0.11) 0.07) 0.867)

DIC 2366.208

Multiple Imputation

Estimate 10.586* 0.704* 0.086 -0.212* 0.04 14.391

Standard Error 2.472 0.06 0.07 0.061 0.105

AIC 2378.813 BIC 2403.210

Note: * indicates p < 0.05 in multiple imputation and QBP interval excluding 0 in full Bayesian framework.
The smallest AIC, BIC, and DIC are highlighted in bold.
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Figure Captions

Figure 1. Average relative biases of β3 from the Bayesian latent variable selection model, the misspecified

method with an MAR assumption, and the ordinary least squares estimation (OLS) with the original

complete data in Simulation Study 1 (MNAR selection process of Y is denoted as R2
r∗y

, Y missingness is

denoted as Py, MAR selection process of X1 is denoted as R2
r∗x1

, and X1 missingness is denoted as Px1)

Figure 2. Average relative biases of β0 and β1 from the Bayesian latent variable selection model, the

misspecified method with an MAR assumption, and the ordinary least squares estimation (OLS) with the

original complete data in Simulation Study 1 (MNAR selection process of Y is denoted as R2
r∗y

, Y

missingness is denoted as Py, MAR selection process of X1 is denoted as R2
r∗x1

, and X1 missingness is

denoted as Px1)

Figure 3. Average relative biases of β2 and σ2ε from the Bayesian latent variable selection model, the

misspecified method with an MAR assumption, and the ordinary least squares estimation (OLS) with the

original complete data in Simulation Study 1 (MNAR selection process of Y is denoted as R2
r∗y

, Y

missingness is denoted as Py, MAR selection process of X1 is denoted as R2
r∗x1

, and X1 missingness is

denoted as Px1)

Figure 4. Coverage rates of β0, β1, β2, β3, and σ2ε from the Bayesian latent variable selection model and

the misspecified method with an MAR assumption in Simulation Study 1 (MNAR selection process of Y is

denoted as R2
r∗y

and Y missingness is denoted as Py)

Figure 5. Average relative biases of β3 from the Bayesian latent variable selection model, the misspecified

method with an MAR assumption, and the ordinary least squares estimation (OLS) with the original

complete data in Simulation Study 2 (MNAR selection process of Y is denoted as R2
r∗y

, Y missingness is

denoted as Py, MNAR selection process of X1 is denoted as R2
r∗x1

, and X1 missingness is denoted as Px1)

Figure 6. Average relative biases of β0 and β1 from the Bayesian latent variable selection model, the

misspecified method with an MAR assumption, and the ordinary least squares estimation (OLS) with the

original complete data in Simulation Study 2 (MNAR selection process of Y is denoted as R2
r∗y

, Y
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missingness is denoted as Py, MNAR selection process of X1 is denoted as R2
r∗x1

, and X1 missingness is

denoted as Px1)

Figure 7. Average relative biases of β2 and σ2ε from the Bayesian latent variable selection model, the

misspecified method with an MAR assumption, and the ordinary least squares estimation (OLS) with the

original complete data in Simulation Study 2 (MNAR selection process of Y is denoted as R2
r∗y

, Y

missingness is denoted as Py, MNAR selection process of X1 is denoted as R2
r∗x1

, and X1 missingness is

denoted as Px1)

Figure 8. Coverage rates of β0, β1, β2, β3, and σ2ε from the Bayesian latent variable selection model and

the misspecified method with an MAR assumption in Simulation Study 2 (MNAR selection process of Y is

denoted as R2
r∗y

and Y missingness is denoted as Py)
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Figure 1: Average relative biases of β3 from the Bayesian latent variable selection model, the misspecified
method with an MAR assumption, and the ordinary least squares estimation (OLS) with the original
complete data in Simulation Study 1 (MNAR selection process of Y is denoted as R2

r∗y
, Y missingness

is denoted as Py, MAR selection process of X1 is denoted as R2
r∗x1

, and X1 missingness is denoted as Px1)
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Figure 2: Average relative biases of β0 and β1 from the Bayesian latent variable selection model, the
misspecified method with an MAR assumption, and the ordinary least squares estimation (OLS) with
the original complete data in Simulation Study 1 (MNAR selection process of Y is denoted as R2

r∗y
, Y

missingness is denoted as Py, MAR selection process of X1 is denoted as R2
r∗x1

, and X1 missingness is
denoted as Px1)
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Figure 3: Average relative biases of , β2 and σ2ε from the Bayesian latent variable selection model, the
misspecified method with an MAR assumption, and the ordinary least squares estimation (OLS) with
the original complete data in Simulation Study 1 (MNAR selection process of Y is denoted as R2

r∗y
, Y

missingness is denoted as Py, MAR selection process of X1 is denoted as R2
r∗x1

, and X1 missingness is
denoted as Px1)
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Figure 4: Coverage rates of β0, β1, β2, β3, and σ2ε from the Bayesian latent variable selection model and
the misspecified method with an MAR assumption in Simulation Study 1 (MNAR selection process of Y is
denoted as R2

r∗y
and Y missingness is denoted as Py)
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Figure 5: Average relative biases of β3 from the Bayesian latent variable selection model, the misspecified
method with an MAR assumption, and the ordinary least squares estimation (OLS) with the original
complete data in Simulation Study 2 (MNAR selection process of Y is denoted as R2

r∗y
, Y missingness

is denoted as Py, MNAR selection process of X1 is denoted as R2
r∗x1

, and X1 missingness is denoted as Px1)
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Figure 6: Average relative biases of β0 and β1 from the Bayesian latent variable selection model, the
misspecified method with an MAR assumption, and the ordinary least squares estimation (OLS) with
the original complete data in Simulation Study 2 (MNAR selection process of Y is denoted as R2

r∗y
, Y

missingness is denoted as Py, MNAR selection process of X1 is denoted as R2
r∗x1

, and X1 missingness is
denoted as Px1)
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Figure 7: Average relative biases of β2 and σ2ε from the Bayesian latent variable selection model, the
misspecified method with an MAR assumption, and the ordinary least squares estimation (OLS) with
the original complete data in Simulation Study 2 (MNAR selection process of Y is denoted as R2

r∗y
, Y

missingness is denoted as Py, MNAR selection process of X1 is denoted as R2
r∗x1

, and X1 missingness is
denoted as Px1)
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Figure 8: Coverage rates of β0, β1, β2, β3, and σ2ε from the Bayesian latent variable selection model and
the misspecified method with an MAR assumption in Simulation Study 2 (MNAR selection process of Y is
denoted as R2

r∗y
and Y missingness is denoted as Py)


