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We report the design of an analog technology, what we refer to as a SunRule, that uses sunlight 
to model multiplication. Physical models that explore multiplication are fixtures in elementary 
mathematics classrooms. Our interest in physical models of multiplication was driven by an 
overarching design problem: How could a physical tool realize a continuous model of 
multiplication? That is, how could we represent continuous, variable quantities with physical 
things? We identify specific challenges the SunRule was designed to solve. We explain the 
mathematical underpinnings of the device and report a teaching experiment during which pre-
service teachers explored the device in small, socially-distanced groups. We consider how 
explorations with the SunRule create opportunities for mathematically rich instructional 
activities that are also essentially connected to being outside.  

Keywords: Technology, Measurement, Geometry and Spatial Reasoning, Design Experiments.  

Introduction 
Sunlight provides an abundant, renewable, accessible source of naturally occurring parallel 

lines. It is the rare example of a mathematical contextualization with which nearly all children 
are familiar. Despite its familiarity and universality, sunlight plays almost no part in K-12 
mathematics classrooms. Furthermore, while sunlight is among the closest physical realizations 
to the Euclidean ideal for parallel lines, there is scant research about how K-12 students might 
use sunlight and the real-world parallel rays it provides to engage in mathematical activities. But 
in the shadow of the global pandemic, when so much of schooling has moved to screens, there is 
an urgent need for outdoor, socially-distance-able activities that have robust mathematical 
designs – i.e., designs where mathematical concepts are intrinsic to the activity. To respond to 
this need, we report the design of an analog technology, what we refer to as a SunRule, that uses 
sunlight to model multiplication. We explain the mathematical underpinnings of the device and 
report an initial teaching experiment where pre-service teachers explored the device in groups. 
We consider how investigating multiplication with the SunRule can challenge familiar notions of 
contextualized mathematics.  

 
Background & Design Problem 

The sun shadows phenomenon 
Sunlight and what has been described as the sun shadows phenomenon was used as a tool by 

Garuti and Boero (1992) to investigate geometric proportionality as a physical phenomenon with 
11 and 12 year olds. This study offered promise that embedding problem situations in a context 
in which directly experiencing the geometrical-physical aspect is paramount may move students 
from an additive model to a multiplicative one. Building on this early success, the Genoa Group 
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(Boero, Garuti, & Mariotti, 1996a; Douek, 1999) used the overarching approach of examining 
heights of objects and the lengths of the shadows they cast to pursue a wide range of research 
questions within the sun shadows field-of-experience (Boero, 1989). Topics included 
argumentation, conjecture, proof construction, and angle concepts, among others. They all shared 
the structure of teaching experiments that capitalized on shadows cast by the sun (either 
imagined or observed and recorded experimentally) to explore problem situations in different 
dynamical ways (Boero, Garuti & Mariotti, 1996b). Students produced, through open problem 
solving situations, meaningful conjectures from a space geometry point of view. Douek (1999) 
also demonstrated the link between context-related arguments, mathematical modelling, and 
conceptualization of geometric ideas. The present study extends this work to use geometric 
proportionality of shadows cast by the parallel rays of the sun (Decamp & Hosson, 2012) to 
generate products of real numbers. 
Models of multiplication 

Various physical and visual aids are used to model multiplication in elementary classrooms 
(Kosko, 2019). There are discrete models that involve arranging things, such as playing chips, 
into equal-sized groups. For example, the problem (2)(3) could be represented as two groups of 
three things each or else three groups of two things each. Discrete models frame multiplication as 
a kind of repeated addition, and this is one of the most widely-used models to conceptually 
define multiplication (Hurst, 2015; Vest, 1985). But discrete models are harder to physically 
realize with fractions and decimals. Visual models that use area to represent multiplication are an 
alternative. For example, the numbers to be multiplied could be arranged as the length and width 
of a rectangle, and the area of the rectangle would be the product (Reys et al, 2014; National 
Governors Association 2010, 25). An advantage of this continuous model is that it applies to any 
of the kinds of numbers children encounter in school (Kosko, 2019). A drawback is that it 
models unidimensional numbers—that is, single points on a number line—as areas, thereby 
misrepresenting products as two-dimensional (McLoughlin & Droujkova, 2013).  
Physical models are pedagogically compelling because they can create diverse avenues for 
exploration and learning (Clements, 2000; Domino, 2010). Our interest in physical models of 
multiplication has been driven by an overarching design problem: How could a physical, 
manipulable tool realize a continuous model of multiplication? That is, how could we represent 
continuous, variable quantities with physical things?  

 
Design Framework 

Diagrammatic multiplication 
Our answer to this question was inspired by a geometric interpretation of multiplication that 

is predicated on the following observation:  
the hypotenuse of the right triangle determined by an object and its shadow must be parallel 
to the hypotenuse of any other object and its shadow. Hence, knowing the shadow of one 
object (we call this object the unit) gives us a way to deduce the shadow of any other object. 
(McLoughlin & Droujkova, 2013, p. 2) 
From this observation, McLoughlin and Droujkova (2013) developed a diagrammatic 

definition that models multiplication as continuous directed scaling—i.e., the length of one 
segment is a positive or negative multiplier that stretches the length of another segment in the 
positive or negative direction (Dimmel & Pandiscio, 2020). We initially realized this geometric 
definition of multiplication in a dynamic diagram that had draggable points (see Figure 1).  
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Figure 1. A dynamic diagram that realizes a geometric definition of multiplication. The 

yellow and blue points can be dragged along their respective axes to increase or decrease 
the lengths of the yellow and blue segments. The line that intersects the vertical axis 

determines the product of these lengths, which is represented by the green point.  

 
In these diagrams, the “parallel to the hypotenuse” condition described above was satisfied 

by constructing a parallel line whose point of intersection with the y-axis would specify the 
product. The dynamic diagram we developed allowed students to use continuous transformations 
to explore ranges of products, such as products for pairs of numbers that are between 0 and 1 
(Thompson & Saldanha, 2003). Because physical models for exploring arithmetic are common in 
elementary mathematics classrooms (e.g., Base Ten blocks, Cuisenaire rods, Pattern Blocks, 
Unifix cubes, chips and counters), we sought to design a physical embodiment of the 
multiplication diagram.  
The variable altitude and variable length design problems 

The keystone of the geometric definition of multiplication is parallel lines. Fortunately, 
sunlight offers a readily available, renewable, and abundant supply of naturally occurring parallel 
rays. The problem with using the sun as the source for parallel lines is that, at any time, the sun 
appears in one (and only one) position in the sky, and this position determines the proportion 
between an object’s height and the length of its shadow (Douek, 1999). Thus, to multiply 
numbers in general requires control over the position of the sun. We refer to this as the variable 
altitude design problem.  

Of course the sun cannot be moved, but there is nevertheless a solution to the variable 
altitude problem: We can change the apparent altitude of the sun by varying the angle of 
inclination of a surface onto which shadows are cast. By increasing the angle of inclination of a 
surface (i.e., the shadow plane), we decrease the lengths of any shadows falling upon it; by 
decreasing the angle of inclination, we increase the lengths of those shadows. Thus, by varying 
angles of inclination, it is possible to control the apparent altitude of the sun from 90 degrees 
(directly overhead, no shadow) to 0 degrees (sun on the horizon, undefined/infinite shadow).  

The inclined plane provides control over the multiplier in a multiplication product – by 
varying the angle of inclination of a shadow plane, it is possible to stretch or shrink the length of 
the shadow of whatever object has been determined to be the multiplicative unit. What remains is 
a means to vary the multiplicand. This requires some method for increasing/decreasing length. 
We refer to this as the variable length design problem. The historical solution to this problem 
was the slide rule, an arithmetic aid that reigned from the 17th century until it was abandoned for 
electronic calculators in the 1970s (Cajori, 1909; Tympas, 2017, 7-8). We adapted the sliding 
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action of a slide rule, though not its logarithmic scales, to solve the variable length design 
problem.  

Figure 2 shows a prototype of a device that embodies solutions to the variable length and 
variable altitude design problems. We refer to this device as a SunRule. It is not, strictly 
speaking, a combination of a sundial and slide rule; however the name is apt because it combines 
essential elements of each device (e.g., gnomons1, adjustable scales) in novel ways. 

 

 
Figure 2. A SunRule consists of a ruled board (shadow plane) and rods that are orthogonal 

to the ruled board. By changing the angle of the shadow plane, one changes the length of 
the shadow of the shorter rod, which serves as the multiplicative unit. The height of the 

longer gnomon represents the multiplicand. The device works because rays from the sun 
are parallel.  

 
Method 

Our initial plan was to analyze how pairs of elementary mathematics teacher candidates 
explored the SunRule. That plan is on hold until it becomes safe for pairs of students to interact 
in close proximity. In an effort to persevere through the challenge of data collection during the 
pandemic, we developed a handheld version of a SunRule that could be constructed from 
common household items (Figure 3). Thus, multiple devices could be built, which allowed 
students to interact at safe distances. 

 

 
Figure 3. A handhels SunRule, constructed by elementary teacher candidates. The SunRule 

shows that (3)(4) = 12. Photo by Meg Pandiscio (2020). 

 
In Figure 3, there is a longer gnomon (bottom) and a shorter gnomon (top). The shorter gnomon 
functions as a unit length. The unit length and the factor by which its shadow is stretched define 
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a multiplier; in this case, that multiplier is (3), since the device has been inclined so that the 
length of the unit shadow extends (3) units. The height of the longer gnomon can be adjusted by 
sliding it up or down; the height of this gnomon specifies the multiplicand, which in this case is 
(4). The product is (12), shown here by the length of the shadow of the adjustable gnomon.  

We report here an initial teaching activity where elementary teacher candidates built 
SunRules and used them to explore multiplication. We frame the initial teaching activity as a 
teaching experiment (Steffe & Thompson, 2000), where the second author was in the role of 
researcher-teacher. The purpose of the experiment was to generate hypotheses about how 
interacting with a SunRule creates opportunities for pre-service teachers to explore multiplication 
conceptually. 
Context 

During Fall, 2020, the second author taught an elementary mathematics methods course that 
convened in a hybrid in-person/online format. To comply with limits on indoor gatherings, the 
in-person students were split across two, five-student sections of the course that met on different 
days. The SunRule activity was planned as a two-class lesson that would allow elementary 
mathematics teacher candidates to explore a physical model of multiplication. For the first part 
of the activity, students worked with the second author to build SunRules. For the second part of 
the activity, students explored the SunRules outside, in small groups, while wearing masks and 
maintaining social distance. Both in-person sections of the course completed the first part of the 
activity. Students were told that the device had something to do with mathematics and that it 
needed to be used outside, on a sunny day. Figure 4 shows a selection of student-constructed 
SunRules.  

 

 
Figure 4. SunRules constructed by elementary mathematics teacher candidates. Photo by 

Meg Pandiscio (2020). 

 
Data collection 

For the second part of the activity, five students from one section of the course2 explored the 
SunRules in groups of two and three. The students within each group maintained social 
distancing throughout the activity, and the groups were separated by approximately twenty feet. 
Fixed video cameras recorded the activity of each group. The second author moved back and 
forth between the groups to facilitate their explorations of the device, following a semi-structured 
protocol. The protocol was designed to provide gradually more directed guidance to the groups 
of students. An example of a minimally directed question is, “What does the tool do?” An 
example of a more directed question is, “What are the ways that the lengths of the shadows of 



Proceedings of the 43rd Annual Meeting of PME-NA 

—————————————————————————————————————————————————————————— 
Olanoff, D., Johnson, K., & Spitzer, S. (2021). Proceedings of the forty-third annual meeting of the North American 
Chapter of the International Group for the Psychology of Mathematics Education. Philadelphia, PA. 
 

1683 

the gnomons could be varied?” The second author posed questions from the protocol to each 
group, as needed, to keep the students from getting stuck and spur them toward investigations of 
its mathematical opportunities. Below, we describe two episodes that capture how students 
explored and interacted with the SunRule. Episodes were identified by reviewing the video 
records of the teaching experiment and looking for instances where the tile of the shadow plane 
or the height of the gnomon was adjusted.  

 
Episode 1: Sara’s initial encounter with the SunRule 

One group consisted of two students, Zak and Sara3. The second author launched the 
exploration activity for them by asking, “Any idea what this box does?” Sara replied, “Not yet”, 
though as she said this, she had positioned the SunRule so that it was aligned with the azimuth of 
the sun, which caused the shadows of the gnomons to fall in parallel along its ruled surface 
(Figure 5). 

 

 
Figure 5. While Sara declares that she does not know what the device does, she has oriented 

the device the way that it was designed to be oriented.  

 
In this instance, Sara has guessed – in the technical sense of Wobbrock et al (2005) – how to 

interact with the device. She may not know what it does, but she already knows how it must be 
positioned in order to do it. Her next moves were to change the angle of inclination of the device. 
She tilted the device toward and then away from the sun, which caused the shadows of the 
gnomons to shorten and then lengthen (Figures 6, 7). As she varied the angle of inclination, she 
and Zak speculated that the device indicated a relationship between the sun and the shadows.  

 

 
Figure 6. Sara inclines the device more toward the sun, which increases the sun’s apparent 

altitude and causes the shadows of the gnomons to shorten.  
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Figure 7. Sara inclines the device less toward the sun, which decreases the sun’s apparent 

altitude and causes the shadows of the gnomons to lengthen.  
 

Sara noted the significance of the angle of inclination to the length of the shadows, “It really 
depends on how you hold it, like, if you tilt it towards (sic) the sun, then the shadows become 
very short, if you tilt it away from the sun the shadows get a lot longer.” These initial interactions 
that varied the lengths of the shadows by changing the angle of inclination are the core of the 
mathematical design of the SunRule. This feature was salient for Sara almost immediately and 
suggests that the grounding predicate for the geometric definition of multiplication (block quote, 
above) is a natural and potentially powerful embodiment for a continuous scaling conception of 
multiplication. 

 
Episode 2: Modeling division with the SunRule 

After 10 minutes of open-ended exploration, both groups had zeroed in on the idea of the 
shadows varying in a constant ratio as the angle of inclination of the device was increased or 
decreased. As neither group had connected their observations about ratio to the operation of 
multiplication, the second author assembled the groups in a socially-distanced semicircle. He 
summarized the ratio ideas each group had discussed, and then stated that a mathematical 
operation the device could model is multiplication. Sara then demonstrated how the device could 
be used to show that (2)(3) = 6. The second author adjourned the groups to their respective 
places and asked them to continue exploring how the device could be used to model products.  

In their discussion of multiplication, Zak and Sara realized that the device could also be used 
to represent division. Zak demonstrated this idea, which he attributed to Sara, by showing how 
the multiplication problem (5)(2) = 10 could be interpreted as the division problem (10)/(5) = 2 
(Figure 8).   

 

 
Figure 8. Zak positions the SunRule to show the quotient that (10)/(5) = 2.  

 
To multiply with the SunRule, the angle of tilt varies the length of the shadow of the unit 

gnomon. This increase/decrease in the length of the unit shadow amounts to a scale factor that is 
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applied to the length of the shadow of the other gnomon. To complete the product, one sets the 
height of the longer gnomon equal to the number that is being multiplied. The shadow of this 
gnomon is the answer. Zak and Sara realized that to represent division with the SunRule would 
require reversing this process; or, as Zak said: “there is an inverse relationship between 
multiplication and division.”  

To use the SunRule to divide two numbers, set the height of the adjustable gnomon to be the 
divisor. Then, vary the angle of inclination of the SunRule so that the length of the adjustable 
gnomon’s shadow is the number that is being divided. The quotient will then be given by the 
length of the unit gnomon’s shadow. Sara made the connection to division within moments of 
demonstrating how the device represented multiplication. She and Zak conjectured that division 
should be possible to represent with the device and then worked out how that was possible. Zak 
demonstrated this, while narrating his SunRule manipulations. Zak pointed to the long shadow 
and said “10 divided by 5” and then pointed to the adjustable gnomon.  He then said “equals 2” 
as he pointed to the shadow cast by the unit gnomon. He further noted that “2 is then the answer 
and it's the short shadow.” Sara and Zak's explorations of the connection between multiplication 
and division underscore the rich pedagogical opportunities of the SunRule.  

 
Discussion and Reflections 

The teaching experiment reported here documented pre-service teachers’ initial encounters 
with a physical device for modeling multiplication through continuous movements – e.g., tilting 
the device more or less, sliding the gnomon up or down. The movements made by Sara to vary 
the angle of inclination of the shadow plane and Sara and Zak’s linking of multiplication to 
division offer preliminary indications that the device worked as it was designed to work. Zak’s 
and Sara’s explorations of the SunRule suggested that it can be used to explore how 
multiplication and division are conceptually linked; we plan to develop and explore this 
hypothesis in follow up teaching experiments.  

The SunRule’s connection to the real world is immediate, rather than applied or abstracted. 
The SunRule doesn’t apply mathematics to explain the world, rather, it uses an affordance of the 
world (sunlight) to model a mathematical operation (multiplication). Simultaneously, it shares a 
mathematically valid and robust representation of multiplication that is often missing in 
elementary school classrooms—that of multiplication as continuous scaling (Dimmel & 
Pandiscio, 2020; Kosko, 2019). By using a feature of the world to build a robust mathematical 
model, the SunRule represents an inversion of what is typically encountered in 
authentic/contextualized/real world mathematics.  

The COVID-19 pandemic has triggered a reconsideration of how we gather. For schools, this 
has meant adapting instruction to remote, hybrid, or outdoor modalities, among other 
innovations, some of which will (hopefully) endure even when it is safe again to gather indoors. 
The SunRule provides a concrete material context for doing a mathematical activity outside—not 
simply for the sake of being outside, but because being outside is essential to use the device to do 
mathematical work. It provides a variable, tangible device for modeling families of 
multiplication problems and probing their mathematical structure. Beyond arithmetical utility, 
activities with the SunRule could pull students away from screens and create opportunities for 
students and teachers to reflect on how the geometry of sunlight is integrated with its design. 
These would be enviable outcomes at any time, and they are especially urgent in the face of the 
disruptions to teaching and learning brought on by the pandemic.   
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Notes 
1 This is the name for the part of a sundial that casts a shadow. 
2 The other section’s opportunity was precluded by inclement weather. 
3 All names pseudonyms. 
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