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This paper reports on a study of learners’ use of immersive spatial diagrams to make arguments 
about three-dimensional geometric figures. Immersive spatial diagrams allow learners to use the 
movement of their bodies to control their point of view, while immersed in three-dimensional 
digital renderings. We present analysis of two pairs of pre-service elementary teachers’ 
argumentation about the shearing of pyramids, using the ck¢-enriched Toulmin Model of 
Argumentation (Pedemonte & Balacheff, 2016) to link the affordances of immersive spatial 
diagrams to the learners’ mathematical reasoning. We share how one pair of learners took 
points of view bending beside and standing within the pyramid to describe how the space inside 
is transformed without reference to one- or two-dimensional components of the representation. 

Keywords: Measurement, Technology, Geometry and Spatial Reasoning 

Diagrammatic Representations of Three-Dimensional Figures 
Three-dimensional geometric figures are often represented with diagrams on two-

dimensional canvases in school geometry (Clements et al., 2017; Dimmel & Herbst, 2015; Dorko 
& Speer, 2015, 2013; Duval, 2006; Pittalis & Christou, 2010; Stevens et al., 2015), mediated 
through projection or cross-section. These frozen perspectives split learners’ attention between 
spatially navigating the diagram and attending to the features of the mathematical figure. While 
3D dynamic geometry software (e.g., Cabri3D) allows learners to make visual observations from 
many points of view (Mithalal & Balacheff, 2019), these points of view are often controlled by 
two-dimensional (e.g., touch, mouse) or keystroke-based input systems. Learners have difficulty 
working with two-dimensional representations of three-dimensional figures without spatial 
observation of the 3D shape (Pittalis & Christou, 2010). 

Further, it is often impracticable to change the perspective while continuously manipulating 
the figure. Continuous manipulations of a diagram are important because they support learners’ 
reasoning in school geometry. The continuous manipulation of dragging can support learners 
noticing the spatial properties of the diagram that are mathematically necessary (Clements, 2003; 
Laborde, 2005) and dragging can also allow for geometric transformations to be represented as 
“continuous and temporal” processes (Ng & Sinclair, 2015, p. 85). Observations of two-
dimensional representations of three-dimensional figures may focus learners’ struggles on 
navigation and manipulation of the diagram rather than on discerning which spatial properties of 
the diagram are incidental or mathematically necessary. 

Physical spatial inscriptions (e.g., 3D pens) are one alternative to two-dimensional renderings 
of three-dimensional figures. Using physical materials (e.g., extruded plastics), diagrams can 
take up space and be manipulated by the learners’ grasp (Ng & Sinclair, 2018). Further, learners 
can vary their point of view as they might with any other physical object – by walking, turning 
and bending their body and turning their head. However, physical spatial inscriptions have 
material constraints and are not generally able to be manipulated continuously with nonrigid 
transformations. 

Immersive spatial diagrams are digitally rendered diagrams that share the learners’ spatial 
environment, like physical spatial inscriptions, but also offer the digitally rendered flexibility of 
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3D dynamic geometry software (Bock & Dimmel, 2020; Dimmel et al., 2020). Immersive spatial 
diagrams can be rendered using various consumer-ready devices: virtual-reality head-mounted-
displays (e.g., HTC Vive, Oculus Rift), augmented-reality head-mounted-displays (e.g., 
Microsoft Hololens), and mixed-reality head-mounted-displays (e.g., Varjo XR-3). These 
diagrams bring learners into a world where space-occupying objects can have the dynamic 
properties of digital renderings or bring those dynamic spatial objects onto the learners’ physical 
world. Immersive spatial diagrams offer learners an opportunity to explore the properties of 
spatial representations governed by mathematical laws rather than the laws of physics. 

By combining embodied control over point of view, continuous transformations, and a three-
dimensional visual experience of the diagram, immersive spatial diagrams offer learners new 
modes of interactions with representations of three-dimensional figures. In this study, we 
explored how learners interacted with an immersive spatial diagram — a dynamic, digital, three-
dimensional representation of a pyramid bound between parallel planes, focused on the 
affordances that allow learners to use their body to access multiple points of view.  We asked: 
How do the points of view that learners take while immersed in a spatial diagram shape their 
argumentation about geometric transformations? 

 
Theoretical Framework: ck¢-enriched Toulmin Model of Argumentation 

We used the conception-knowing-concept (ck¢) enriched Toulmin model of argumentation 
(Pedemonte & Balacheff, 2016) to analyze the arguments that learners constructed while using 
an immersive spatial diagram. The ck¢-enriched Toulmin model of argumentation situates 
Balacheff & Gaudin’s (2010) conception-knowing-concept models’ rich description of learners’ 
reasoning about a mathematical context within the Toulmin (1958) model’s transformation of 
observed data into a claim through inference. The ck¢ model describes mathematical conceptions 
in terms of observable components of the interactions between learners and their environment 
(Balacheff & Gaudin, 2002, 2010; DeJarnette, 2018; Herbst, 2005; Mithalal & Balacheff, 2019). 
We chose this model to highlight how the points of view available to learners, as a constraint on 
their observations used for data in their argument, shaped their claims and inferences with a rich 
mathematical characterization. Components of the (ck¢) enriched Toulmin model are explained 
in greater detail with application to spatial diagrams in Bock and Dimmel (2020). 

 
Mathematical Context: Shearing of Pyramids 

The mathematical context for the study was the shearing of a pyramid between parallel 
planes. In plane figures, a transformation is a shearing transformation if a figure can be bound 
between parallel lines such that the lengths of the parallel cross-sections of the figure are 
preserved by the transformation (Ng & Sinclair, 2015). Shearing can be extended as a volume-
preserving transformation of 3-dimensional figures bound between parallel planes. Consider a 
pyramid whose apex is bound to a plane parallel to its base (Figure 1: ABCDE). 
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Figure 1: Pyramid ABCDE is sheared to form Pyramid ABCDE’ 

Any non-empty intersection of a pyramid and a plane parallel to its base is either the apex of 
the pyramid or a dilated copy of the base of the pyramid. In the case of a dilated copy of the base 
(Figure 1: FGHI), this cross-section is translated as the apex of the pyramid moves along a plane 
parallel to its base (Figure 1: F’G’H’I’). Then the area of the cross-section and the volume of the 
pyramid are preserved under the shearing transformation. 

Figure 1 illustrates some difficulties with visual observations of three-dimensional geometric 
transformations mediated through a two-dimensional canvas. It is not immediately obvious if the 
cross-sections of the pyramid are (at least approximately) congruent. While a diagram, on its 
own, is not sufficient to prove geometric relationships, accurate diagrams are powerful heuristics 
that can suggest what relationships one ought to try to prove (Larkin & Simon, 1987). However, 
the two-dimensional diagram of a pyramid is caught in a conflict between seeing and knowing 
(Parzysz, 1988): perspectives that allow the pyramid to be seen as a figure that occupies space 
distort the polygonal cross-sections of the pyramid. As a result, it is difficult to show how the 
cross-section is transformed while showing how the cross-section relates to the volume of the 
pyramid. 

 
Design of the Virtual Environment 

We designed a virtual environment (Bock et al., 2020) where learners could explore the 
shearing of a pyramid with an immersive spatial diagram (Figure 2A). Learners could use pinch, 
drag and throw gestures to manipulate the apex of the pyramid, which was bound within a plane 
parallel to its base (Figure 2B). An open-palm gesture, parallel to the pyramid’s base controlled 
the position of a cross-secting plane (Figure 2C). Instead of offering numeric representations of 
measure, a cube with volume equal to the volume of the pyramid and a square with area equal to 
the surface area of the pyramid could be loaded into the environment (Figure 2D). Finally, the 
participants had previously explored an analogous case of a triangle bound to parallel lines 
(described in Bock & Dimmel, 2020), which was also available for reference. 

 

Figure 2: The Virtual Environment  
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Pedagogical Rationale 
The environment was designed to provide immersed participants with direct embodied 

control over their point of view; it featured a gesture-based interface that allowed immersed 
participants to move the apex of the pyramid and investigate its cross-sections. By excluding 
numeric measures, we hoped to discourage learners from using routine empirical calculations 
(e.g., calculating the area of the base as the square of the length of the sides, calculating the 
volume as the product of the area of the base and the height) to reason about the effects of the 
shearing transformation on the pyramid. We hypothesized that learners would instead make 
arguments using the congruence of stacks of cross-secting planes to make sense of the shearing 
of the pyramid – either as units of area, or as approximations to small units of volume. 

 
Methods 

This study used a case-study methodology (Yin, 2012), where a set of arguments made using 
a diagram was the unit for a case. We analyzed a set of arguments constructed by pre-service 
elementary teachers using an immersive spatial diagram at a public university in the United 
States. Participants worked collaboratively with asymmetric roles. One participant was immersed 
in the environment, via a head-mounted display, the other participant, who was not immersed in 
the virtual environment, viewed a real-time projected video of the immersed participants’ 
interactions on a television screen. Though the learners’ views of and roles in the environment 
were different, collaborative interactions have been analyzed in other settings with similar 
immersed and non-immersed roles where the non-immersed learner’s view was mediated 
through a two-dimensional projection (Price et al., 2020, p. 216). We considered their co-
constructed arguments as the unit of analysis. 
Participants 

Below, we analyze the argumentation of two pairs of participants. All four participants 
identified as female. The first pair of participants were a junior and senior pre-service elementary 
teacher with concentrations in mathematics and art, respectively. The second pair of participants 
were two first-year pre-service elementary teachers without selected concentrations. Each 
participant is referred to using a pseudonym. 

We archived the participants’ experiences using first person composite, mixed-reality 
composite (BluePrint Reality, 2017; Sheftel & Williams, 2019), and third-person physical views 
as well as a microphone for recording dialog between participants and interviewers (see Bock & 
Dimmel, 2020, p. 13). The mixed-reality view blends together the virtual with the actual, 
offering an observer’s perspective on how the immersed participant navigated the immersive 
environment. We used these video records to identify episodes where participants made 
geometric arguments about the effects of shearing on the measures of the pyramid. We then used 
these episodes to construct ck¢-enriched Toulmin models of each argument. 
Example of Analysis 

We analyzed three arguments from two pairs of participants using the ck¢-enriched Toulmin 
model of argumentation. We report here on one excerpt of one of those analyses, as a means of 
illustrating how we applied the ck¢-enriched Toulmin Model. Each of the components of the 
ck¢-enriched Toulmin models are developed from the video records and transcriptions. Figure 3 
shows an enriched Toulmin model for an argument made by Emily and Olivia. 
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Figure 3. Model of Emily and Olivia’s Second Argument 

This excerpt explains the data element of the model in Figure 3, beginning after Emily and 
Olivia had experimented with manipulating the pyramid but had not begun developing an 
argument. Emily “sent” the apex of the pyramid into the distance by pinching, grasping and 
throwing the vertex. Emily waved goodbye as the apex was thrown along a line in a plane 
parallel to the pyramid’s base.  

 

Figure 4: Emily’s Points of View 

As the apex continued to move away, Emily remarked that the pyramid “looks like its getting 
bigger” while her gaze looked along the length of the pyramid’s nearest face (Figure 4A). Emily 
then walked beside the pyramid (Figure 4B), bent down, and remarked that “if you look at 
it...then it's getting so thin?”. While in that position, Emily explained “whatever space was being 
taken up this way...it's just being taken up this way [gesturing along the length of the pyramid’s 
face].” In this excerpt, Emily describes two visual observations: the pyramid “looks like it’s 
getting bigger” and “if you look at it...then it’s getting so thin.” Emily’s explanation of how the 
space inside the pyramid is being “taken up” showed that these observations serve as data 
(feedback from the virtual environment) to be transformed into their claim about the pyramid 
(see Figure 3). 

 
Results 

For each argument, a ck¢-enriched Toulmin model of argumentation was developed; these 
models are presented below and are accompanied by brief narratives. In our analysis, we were 
interested in how the feedback from the learner’s environment – the data – shaped the 
mathematically rich descriptions of their conceptions in the operator and control structure. The 
data component of the model informs how the participants’ interactions with the environment 
might have shaped their argumentation. The operator and control structure help to understand 
whether the learners used their interactions with the diagram to understand the shearing 
transformation differently then they might in other contexts. 



Proceedings of the 43rd Annual Meeting of PME-NA 

—————————————————————————————————————————————————————————— 
Olanoff, D., Johnson, K., & Spitzer, S. (2021). Proceedings of the forty-third annual meeting of the North American 
Chapter of the International Group for the Psychology of Mathematics Education. Philadelphia, PA. 
 

1673 

A Point of View Within the Spatial Diagram: Emily and Olivia’s Arguments 
Emily and Olivia made two arguments about the shearing of a pyramid. In their first 

argument Emily and Olivia claimed that when you “send” or throw the apex of the pyramid into 
the distance within its plane, its volume will be conserved. Emily wore the head-mounted-
display, while Olivia observed a mixed-reality third-person view on a large television screen and 
took three points of view within the virtual environment – standing beside the pyramid and 
dragging the apex of the pyramid locally (Figure 3A), bending down alongside the pyramid after 
the apex had been thrown (Figure 3B), and standing with her legs intersecting the pyramid 
(Figure 3C). While standing inside the pyramid, Emily remarked “this kind of looks like a road, I 
feel like Dorothy... I wish I could see my legs and see them being chopped off by the planes 
[faces of the pyramid].”  Emily and Olivia used these observations from these three points of 
view to develop an argument that explained how it would be plausible that the space inside the 
pyramid is redistributed by the shearing transform such that the volume is conserved. 

 

Figure 5. Model of Emily and Olivia’s First Argument 

After Emily and Olivia constructed this argument, the interviewers prompted: “is there 
anything else about the pyramid?... is there anything else about the pyramid changing?”  Emily 
noted that the “length” [altitude] of the sides is becoming “super, super long... this looks 
infinitely long.” While not infinite, the apex of the pyramid continued to move indefinitely into 
the distance. The interviewers prompted “so are you saying that a pyramid with infinitely long 
sides [faces] can have a finite volume?”  Emily and Olivia then constructed another argument 
(Figure 5) to describe how the space inside the pyramid would need to change if the pyramid’s 
volume is constant. Olivia described how “it would have to also get infinitely thin [as it is 
sheared], if it's not flattening out then I don’t know where the space inside would like go,” 
repeating gesture where she had her palms facing together and then pushed her palms together 
while tilting horizontally (Figure 5A). In this argument, Emily and Olivia reframed the warrant 
and control to be in terms of continuous and temporal transformations – describing how the 
pyramid is “flattening out”, “getting infinitely thinner”, and would need to “continuously change 
this way for it to continuously change that way”. Emily and Olivia added a rebuttal that the 
height of the pyramid must be constant, however it was not clear why they attended to this 
measure. 

Points of View from Above and Beside the Diagram: Abigail and Madison’s Arguments 
Abigail and Madison made an argument about the unbounded shearing of a pyramid where 

the only points they used were above and beside the pyramid. Abigail and Madison’s argument  
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included an argument about the area and perimeter preserving properties of shearing on a triangle 
to conclude that the volume and surface area of the pyramid would be analogously preserved 
under shearing (Figure 6).  Abigail and Madison used a set of visual observations of the 
measures of the angles of the vertices at the base of the triangle and their line segments (Figure 
6B) and visual observations of the behavior of the faces of the pyramid (Figure 6A) as they 
sheared each of the figures. While Abigail and Madison’s warrant would not be understood to 
support their claim in a school mathematics context, the ck¢-enriched Toulmin model situates 
their conception within the feedback – or data – from their environment. During these 
observations, Abigail and Madison did not ‘send’ the triangle or the pyramid, so they did not 
have disconfirming feedback for their conclusions.  

Figure 6. Model of Abigail and Madison’s Argument 

Discussion 
In a school mathematics setting, the arguments developed by each pair of participants might 

feel incomplete – their arguments would need to be refined to be a rigorous explanation of the 
properties of the shearing transformation. With the lens of the ck¢-enriched Toulmin model we 
can look past a superficial evaluation of correctness to understand how the affordances of 
immersive spatial diagrams and the environment design supported their arguments, and the 
contexts where these diagrams might be useful in a less exploratory pedagogical setting. 
Points of View 

Both pairs of participants used their control over the point of view in the environment in 
ways that would be impracticable to replicate outside of immersive spatial diagrams: they used 
gestures to manipulate diagrammatic representations of pyramids and triangles while walking, 
bending, and turning their heads to make visual observations. Emily and Olivia took two points 
of view that would be difficult to replicate with two-dimensional diagrams: bending down beside 
and standing inside the pyramid. Emily took these points of view in order to share visual 
observations with Olivia and the interviewers as they constructed their argument. While we 
anticipated that participants might put their heads inside the pyramid, we did not anticipate the 
use of these points of view in the environment design. In contrast, Abigail and Madison engaged 
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with the diagram using each of the novel affordances of immersive spatial diagrams but their 
visual observations of the triangle and pyramid are practicable to recreate with a two-
dimensional dynamic representation of the figures. 
Dimensionality 

Emily and Olivia’s argument had another unique feature – they described the continuous 
transformations of the space inside the pyramid and the triangle without describing lower-
dimensional quantities. The points of view Emily shared beside and within the pyramid and 
Emily and Olivia’s description of cross-sections of the pyramid through Emily’s legs suggest 
that immersive spatial diagrams offer learners an opportunity to engage with three-dimensional 
mathematical figures without reconstruction from two-dimensional or one-dimensional elements. 
In contrast, Abigail and Madison’s argument might have been better supported by the 
environment if measurement tools for angles, lengths and areas were available in the 
environment. Measurement of the triangle’s angles or segments might have suggested that they 
do not correlate as Abigail and Madison suspected; measure of the faces of the pyramids might 
have suggested a changing surface area as the pyramid was sheared. This is a constraint of the 
environment design – not of immersive spatial diagrams – but also a feature that is easily 
accessible in many traditional dynamic geometric environments. 

Existing research on immersive spatial diagrams has focused on representing mathematical 
figures with numeric representations of length and symbolic representations of area and volume 
(Lai et al., 2016), rigid transformations of static shapes (Gecu‐Parmaksiz & Delialioglu, 2019), 
and gesture-based construction (Dimmel & Bock, 2017). This study was designed to explore 
how learners used points of view with immersive spatial diagrams to reason – and struggle with 
– the properties of continuous geometric transformations of three-dimensional figures. The 
results of this study explore two cases where learners investigated the shearing of three-
dimensional figures, an extension of research on how learners reason about the shearing in plane 
geometry (Bock & Dimmel, 2020; Ng & Sinclair, 2015). In one case, the pair of participants 
identified mathematically relevant spatial invariants (volume of the pyramid, height of the 
pyramid) and described how these properties might relate to the shape of the pyramid for the 
spatial invariants to be plausible. However, the participants’ argument did not relate properties of 
the figure to explain why the shearing transformation necessarily preserves volume. This is 
consistent with expectations from learners use of two-dimensional dynamic geometry 
environments, where dragging affordances have been linked to identification of spatial invariants 
(Clements, 2003). This process of “learning [to] identif[y] of visually relevant spatiographic 
invariants attached to geometrical invariants” is an important to the learning of geometry, 
alongside deductive reasoning from theoretical statements (Laborde, 2005, p. 177). 

 
Conclusion 

Emily and Olivia struggled productively to describe continuous transformations of volume 
without reducing to lower-dimensional elements, confidently reasoning from visual observations. 
This addresses a key constraint of two-dimensional representations of three-dimensional 
geometrical objects — that the figures must be analyzed through reconstruction from lower-
dimensional components of the representation (Mithalal & Balacheff, 2019). Further research is 
needed to explore how spatial diagrams can be designed for learners to see or attend to one-, 
two-, or three-dimensional elements of figures, analogous to diagrammatic representations of 
two-dimensional figures (Duval, 2006, p. 116). Finally, there is an opportunity to explore how 
learners’ analysis of three-dimensional figures without reconstruction from one- and two-
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dimensional elements might be designed into geometric construction environments and where 
this might best support learners’ reasoning in school geometry. 
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