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In this paper, we describe a framework for characterizing students’ graphical reasoning, 
focusing on providing an empirically-based list of students’ graphical resources. The graphical 
forms framework builds on the knowledge-in-pieces perspective of cognitive structure to 
describe the intuitive ideas, called “graphical forms”, that are activated and used to interpret 
and construct graphs. In this study, we expand on the current knowledge base related to the 
specific graphical forms used by students. Based on data involving pairs of students interpreting 
and constructing graphs we present a list of empirically documented graphical forms and 
organize them according to similarity. We end with implications regarding graphical forms’ 
utility in understanding how students construct graphical meanings and how instructors can 
support students in graphical reasoning. 
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Interpreting and constructing graphs that model mathematical or physical contexts is a 
critical competency across disciplinary fields (Driver et al., 1996; National Council of Teachers 
of Mathematics, 2000; National Research Council, 2012). While much previous work has 
examined student difficulties and non-normative reasoning related to graphing (Beichner, 1994; 
Glazer, 2011; Leinhardt et al., 1990; McDermott et al., 1987; Shah & Hoeffner, 2001), more 
work is needed that leverages students’ knowledge related to creating and interpreting graphs. A 
new framework has recently been developed that identifies specific types of knowledge 
resources called graphical forms, that permits a finer-grained examination of how students think 
or reason about graphs (Rodriguez et al., 2019b). The purpose of this paper is to extend the work 
on graphical forms by empirically documenting and organizing a large set of graphical forms that 
students used to create or interpret graphs. This work permits researchers greater clarity on the 
cognitive work involved in constructing and interpreting graphs, and helps instructors know what 
types of knowledge students can develop or use for productive graphical activity. 

 
Brief Literature Review on Student Graphical Thinking 

Past research on graphical thinking has documented students’ difficulties (e.g., Beichner, 
1994; McDermott et al., 1987), with the consensus being that students’ ability to interpret graphs 
depends on interaction between students’ prior knowledge and the nature and content of the 
graphing task (Glazer, 2011; Leinhardt et al., 1990; Shah & Hoeffner, 2001). Some work has 
emphasized the nature of assumptions and conventions associated with graphical interpretation 
(Moore et al., 2019), including work that described students’ use of intuitive rules to interpret 
graphs (Eshach, 2014). According to Eshach (2014), students develop a set of intuitive rules that 
share a similar ontology to diSessa’s (1993) phenomenological primitives (discussed in more 
detail later) in the sense that they are constructed based on experiences. However, intuitive rules 
are more broadly useful and are not specific to explaining a physical phenomenon. This approach 
to considering how students interpret graphs is insightful in the way it provides explanatory 
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power for students’ reasoning that moves beyond identification of misconceptions (Beichner, 
1994; Elby, 2000; McDermott et al., 1987). 

Much of the literature indicates the role context plays in students’ ability to extract 
information from graphical representations. For example, students tend to perform better when 
presented with decontextualized graphs in comparison to analogous graphs involving chemistry 
or physics content (Bollen et al., 2016; Ivanjek et al., 2016; Planinic et al., 2012, 2013; Potgieter 
et al., 2008). To examine context-specific graphs, recent work by the first author and colleagues 
has focused on students’ graphical reasoning in chemistry, specifically in the context of chemical 
kinetics (Rodriguez et al., 2018, 2019a, 2019b, 2019c, 2019d, 2020a), which is concerned with 
modeling the rate of chemical reactions. A limited number of knowledge resources, called 
graphical forms, have been discussed in these studies, including steepness as rate, straight means 
constant, and curve means change. In some cases, graphical forms such as steepness as rate 
seem to have a particularly strong cuing priority, which, in part, could be influenced by students’ 
tendency to inappropriately force time onto expressions and graphical representations that do not 
include time as a variable (Bowen et al., 1999; delMas et al., 2005; Jones, 2017; Popova & Bretz, 
2018; Rodriguez et al., 2019d, 2020a, 2020b). In this paper, we build on this work by presenting 
several graphical forms empirically observed in students’ graphical reasoning. 

 
Theoretical Perspective: Graphical Forms 

Knowledge-in-Pieces & Symbolic Forms 
The construct of graphical forms is rooted in the knowledge-in-pieces (KiP) paradigm, a 

cognitive model that characterizes the structure of knowledge and the mechanism associated with 
conceptual change (diSessa, 1993). The salient feature of the KiP view is the manifold ontology 
of cognitive structure, in which knowledge is conceptualized as a network of fine-grained 
cognitive units that are activated in concert because of perceptual cuing. These cognitive units, 
which we call knowledge elements and resources interchangeably (see also Hammer, 2000), may 
reflect a variety of types of knowledge, such as ideas related to concepts, epistemology, or 
ontology. Building within the KiP paradigm, Sherin (2001) introduced the “symbolic forms” 
framework to describe mathematical resources related to symbolic equations. According to 
Sherin (2001), this involves associating an idea (conceptual schema) to a pattern in an equation 
(symbol template). Based on the introductory physics (classical mechanics) context in which the 
symbolic forms framework was initially developed, the symbolic forms characterized by Sherin 
(2001) reflected ideas associated with algebraic manipulations such as combining terms, 
proportional reasoning, and the role of a coefficient in scaling or tuning an expression.  
Graphical Forms 

The graphical forms framework reflects a natural extension of symbolic forms, providing the 
language to further characterize students’ mathematical resources. Like symbolic forms, 
reasoning involving graphical forms is characterized by focusing on a structural feature and 
subsequently associating an idea (Rodriguez et al., 2019b). Whereas the symbolic forms 
framework focuses on the ideas assigned to patterns in equations, the graphical forms framework 
augments this work by emphasizing the ideas assigned to patterns in a graph. Previously, the 
specific feature attended to in a representation has been framed as a registration (Lee & Sherin, 
2006; Roschelle, 1991), which in the context of graphical reasoning can vary in size—an 
individual may attend to and associate an idea with the entire graph or a specific region of the 
graph (Rodriguez et al., 2019b).  
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Although these resources may be activated and applied in less useful contexts, it is important 
to acknowledge that students have these broadly useful cognitive tools for reasoning that have 
the potential to guide students in the sensemaking process. Therefore, consistent with the 
knowledge-in-pieces perspective, research and instruction should emphasize providing insight 
regarding how we can support students in productively using the resources they have, rather than 
focusing only on cataloging misconceptions (Cooper & Stowe, 2018). Students seem to 
commonly draw on graphical forms such as steepness as rate, which can result in sophisticated 
conclusions regarding physical processes. In the context of interpreting graphs, this often 
involves initially anchoring reasoning in mathematics by drawing inferences using graphical 
forms and subsequently assigning discipline-specific principles to explain the observed graphical 
shape (Bain et al., 2019; Rodriguez et al., 2019, 2019a, 2019b, 2019c). In the case of 
constructing graphs, the reverse is observed in which students consider the physical scenario and 
subsequently utilize graphical forms as part of the drawing process to create a graphical shape 
that aligns with the phenomena (Rodriguez et al., 2020a).  

The goal of this study is to begin to develop an empirical library of graphical forms, 
mirroring the current list available for symbolic forms (Rodriguez et al., 2019b); necessitating a 
clear definition of what constitutes a graphical form. As part of this process, we drew on extant 
education research related to graphical reasoning and Sherin’s (2001) description of symbolic 
forms to consider the implications for the graphical analog. First, we draw attention to the idea 
that symbolic forms focused more on meaning than conventions. Second, symbolic forms 
emphasized the information communicated by an equation, without drawing an explicit 
connection to what an equation fundamentally is in an ontological sense. Moreover, to narrow 
the scope of the framework we decided to define graphical forms as assigning meaning to the 
curve itself, as opposed to other aspects of a graph such as the axes and graph labels (Kosslyn, 
1989). In summary, our definition of a graphical form was refined to consist of a specific aspect 
of the graphical curve itself (e.g., a graphical pattern) and an intuitive conceptual schema 
associated with that aspect. Thus, our definition excludes beliefs about the nature of the graph, 
knowledge elements associated with the axes, or general knowledge about functions. 

 
Methods 

This paper reports on one set of outcomes from a larger study on students’ graphical activity 
in relation to real-world contexts. In the study, twelve students across two universities at the 
beginning of first-semester calculus were recruited to participate in two separate interviews that 
occurred within a one-week timespan. One interview focused on constructing graphs that model 
real-world situations and the other interview focused on interpreting graphs. For space 
constraints, we do not present all nine tasks here, but have provided in Figure 1 one graph 
construction and one graph interpretation prompt that we drawn on in the Results section. The 
students were interviewed in pairs, and are given the pseudonyms Anna and Aria, Berto and 
Blaine, Cindy and Caleb, Donato and Demyan, Ellie and Eric, and Fiona and Felicity. 
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(A) Graph Construction (B) Graph Interpretation  
 A homeowner mows the lawn once a 
week on Wednesday afternoon for 4 
weeks in a row. Then the mower breaks 
and he decides not to mow the lawn for 
the rest of the summer. Graph the height 
of the grass as a function of time 
throughout the summer. 

 
Figure 1: Prompts discussed in this paper. 

 
Following transcription, initial data analysis involved dividing the interviews into bounded 

episodes based on content discussed to establish a codable unit (Campbell et al., 2013) and 
providing a narrative general overview of the student discussion within the episode (i.e., 
narrative coding) (Heisterkamp & Talanquer, 2015; Rodriguez et al., 2020b). Subsequently, we 
used a line-by-line analysis to analyze each statement within the episodes, focusing on the 
resources implied by what the student said—and did as they made the statement—also 
considering the context surrounding the statement, including nonverbal cues such as gestures. 
The process of identifying graphical resources involved a combination of deductive (previously 
identified graphical forms from the literature) and inductive analysis (identifying new graphical 
forms and other graphical resources). To refine our definition of graphical forms, we discussed 
together the various graphical resources we documented, which involved combining codes and 
creating new codes, some of which were determined to constitute graphical forms and others 
which were characterized more generally as “other” resources related to graphing. 

 
Results and Discussion 

We begin by providing examples of graphical forms observed in the data that have 
previously been identified in the extant literature. We then discuss new graphical forms 
identified and provide an overview list with the various graphical forms identified in the data. 
Previously Identified Graphical Forms 

Across the dataset various graphical forms were identified, some of which were previously 
discussed in the literature, such as steepness as rate, which involves students associating ideas 
about rate with the relative steepness of the graph (Rodriguez et al., 2018, 2019a, 2019b, 2019c, 
2020a, 2020b). Given that this graphical form has been discussed in detail in previous work, we 
will not focus too much on it here, except to say that it was the one of the most frequent 
graphical form observed in the dataset, further building a case for its relatively high cuing 
priority, phenomenological basis, and its important role in graphical reasoning. For some of the 
previously identified graphical forms, as part of the process of developing a list, we also built on 
the prior descriptions, such as modifying straight means constant in favor of the more precise 
language straight means constant rate. This was to specify that students were focusing on rate as 
opposed to values. To illustrate this, one of the graph creation prompts involved a scenario 
related to modeling the height of grass over time (Figure 1A). When working through this 
prompt, Blaine and Berto initially drew the graph provided in Figure 2A, with Blaine describing 
the straight lines they drew as follows:  

Blaine: So grass grows, um, it grows at a pretty constant rate, and you cut it every once, one 
or two weeks in the summer, at least where I live. Um, and then you would cut it.  
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In this instance, Blaine’s reasoning can be characterized as straight means constant rate, due to 
the emphasis on rate. Similar to steepness as rate, associations such as Blaine’s above that drew 
a connection between straight lines and a constant rate were frequently observed in the dataset. 
Revisiting the distinction between specifying what is constant when describing a straight line, 
later in the interview Berto and Blaine drew a plateau as part of their graph (Figure 2B): 

Interviewer: … what do those horizontal flat points represent to you again? 
Blaine: No growth. 

Here, Blaine is no longer referring to rate being constant, but rather the height of the grass being 
constant (“not growing”), indicated by the horizontal straight line (horizontal as constant value).  
 

(A) Berto & Blaine  (B) Berto & Blaine  

  
Figure 2: Two Types of “Straight”: Linear-Straight as Constant Rate (A) and Horizontal-

Straight as Constant Value (B). 
 
New Graphical Forms 

Although there is not space to provide student examples of all the new graphical forms 
identified, based on the contexts associated with the graphs provided, we discuss some of the 
graphical forms that emerged from the data that have not yet been discussed in the literature. For 
example, the nature of the grass prompt discussed previously (Figure 1A) resulted in students 
discussing ideas related to discontinuity, which we characterized using the graphical form jump 
discontinuity means sudden. Here, the graphical pattern of a jump/break in the graph was 
intuitively associated with a sudden event, such as when cutting the lawn results in a sudden 
decrease in height. As with other graphical forms, the name selected is intended to be descriptive 
for ease of communication and presentation. Another example of a new graphical form 
associated with the prompt in Figure 1A is open/closed dot pair as existence, as exemplified by 
Dontao and Demyan: 

Demyan: … I want to show that the height is like, this is something continual, like grass 
didn't like stop, uh, existing there [i.e., at the discontinuity] for like a very split 
microsecond while it was cut… 

Donato: Yeah. I think that, in that case, you would do the like open circle here, closed circle 
there, but yeah, again, I don't think that happens- 

Demyan: And if that is what, what, what counts, like if that makes it clear in mathematical 
terms that the grass is still around, it's just, you know, cut from the edge or from the 
bottom at three inches, then yeah, I'm down for that change. 

The graph drawn by the students did not initially have open and solid dots (only slanted lines), 
which bothered Demyan because it seemed to imply that the grass was no longer there because 
the graph was not connected (continuous). After discussing it with one another, they adopted the 
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solid-open dot notation utilized by other students in the sample (Figure 2) to express the concept 
of existence at a particular point.  

When analyzing student responses to the construction and interpretation prompts, we also 
noted graphical forms related to how features in the graph suggest realism or indicate the graph 
involves empirical data. For example, revisiting the grass prompt with Aria and Anna:  

Interviewer: And what does that mean that it's like a straight line segment and then a 
straight line segment, like as opposed to like a curve?... 

Anna: Then we would assume it just grows at a constant rate over time, but I guess that's not 
true either. Cause there's a lot of factors that can affect the growing that isn't just time. 

Aria: Yeah. Like bugs. 
Anna: Yeah. But we're not looking at that. We're literally just looking at if grass grew in 

terms of time and not in terms of other things. So realistically that's probably not what it 
looks like. It probably is more gradual because of other factors. 

Here, the students above, as well as other students for multiple prompts, were hesitant to draw 
straight lines because that implies a direct linear relationship between the variables. We 
characterize this reasoning as curves mean realistic, in which students opted to draw curved lines 
to account for unknown factors and avoid making assumptions about the relationship between 
the variables. Moreover, this graphical form was complemented with jagged means data, which 
is related to curves mean realistic in the sense that a jagged graph with multiple sporadic 
increasing and decreasing regions is far from an “ideal” and “clean” linear plot. This idea was 
observed when students were asked to interpret the graph provided in Figure 1B: 

Sally: Well, it's varying changes [Figure 1B]. It's not I guess constant in a way. 
Samuel: Yeah, it's not like a smooth function, it's staggered in a way, I guess. 
Interviewer: What do you mean by staggered? 
Samuel: It was drawn like, like that [draws a graph with rigid lines]. … I feel like it's just 

data plotted on the graph. 
Sally: Yeah, and it's more abrupt, I guess. 

For the students, the jagged nature of the graph indicates the plot involves empirical, collected 
data. Combined with curves mean realistic, jagged means data reflects a productive idea for 
thinking about the relationship between variables and what is expected when collecting data.  
List of Empirically Identified Graphical Forms 

Having discussed a few graphical forms in detail in the previous section, in this section, we 
now present the various graphical forms observed from our students as they created or 
interpreted graphs (Table 1). We have organized the graphical forms into “clusters” in terms of 
which forms deal with similar aspects of a graph, such as points or slopes.  
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Table 1: List of graphical forms, organized into clusters of related graphical aspects (e.g., 
patterns) 

Graphical form Graphical pattern Conceptual schema 
Point Cluster   
1. Point as instance 

 
A single point on a curve is a single 
instance 

2. Big dot as focal point 
 

A large dot indicates a special 
instance or event 

3. Connecting as transition 
 

Connecting dots transitions from one 
instance/event to another 

4. Open/closed dot pair as 
existence  

The closed dot defines “exists”, open 
dot defines “nonexistence” 

Slopes Cluster   
1. Steepness as rate 

 
The steepness of the graph indicates 
the rate of change  

2. Straight means constant 
rate  

A straight line indicates the rate is 
constant 

3. Curve means changing 
rate  

A curving graph indicates the rate is 
changing 

Cardinal Direction Cluster 
1. Horizontal as constant 

value 
 

 
Horizontal implies a constant (“y”) 
value 

2. Vertical as constant value 
       

Vertical implies a constant (“x”) value 

3. Vertical as simultaneous  
        

Vertical means simultaneous “y” 
values at one “x” value 

4. Running along axis 

   

The more parallel the graph is to one 
axis implies more change in that axis’ 
variable 

Global Trend Cluster   
1. Shape directionality 

      
Up-right means increasing and down-
right means decreasing 

2. Wavy means variation 
 

Lots of up/down implies a lot of 
variation 

3. Plateau as levelling off 
 

Plateauing means variable is 
“levelling off” to a stable value 

4. Periodic means repeated 

 

A periodic graph means a repeating 
situation 

Smoothness Cluster   
1. Straight lines as idealized 

 
Straight lines give rough 
approximation of graph segments 

2. Curved means realistic 
 

Curved graphs are more “realistic” for 
real-world quantities 

3. Smoothness as strength of 
relationship 

  

A smoother graph implies a stronger 
relationship between “x” and “y” (and 
vice versa) 

4. Jagged implies data 
  

A jagged graph implies it depicts real-
world data 

Two Graphs Cluster   

vs. vs. 

vs. 

vs. 

or 

vs. 
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1. Intersection means same 
 

Intersection means same values at that 
instant 

2.  Transformation as same 
  

Shifting or stretching does not change 
the basic x-y relationship 

Local Feature Cluster   
1. “U” as max/min 

 
Top of a hill or bottom of a valley is a 
max or min 

2. Jump discontinuity means 
sudden  

Jump discontinuity implies a very 
sudden change 

3. Cusp as event 
  

A cusp implies an event occurred at 
that instance 

Position Cluster   
1. Distance as value 

(horizontal or vertical) 
 

The distance from an axis indicates 
the other variable’s value 

2. Displacement as 
difference (horizontal or 
vertical)  

The displacement between points 
indicates the difference in values 

 
Implications and Conclusion 

Building on Sherin’s (2001) work related to exploring how students use knowledge resources 
to reason about equations, our work has detailed many resources students used to reason about 
graphs. It is important to note that context likely plays an important role in the activation of these 
graphical forms (diSessa et al., 2016; Elby, 2000; Hammer et al., 2005). Thus, if students were 
provided different graphical shapes or alternative coordinate systems, we would likely observe 
additional graphical forms. In this way we do not claim Table 1 to be an exhaustive list of all 
graphical forms, but we do believe it represents many important forms. Further, additional types 
of graphing knowledge resources exist that do not fit the strict definition of graphical forms. For 
example, we also saw students use knowledge about the axes or functions in creating or 
interpreting graphs. Beliefs about the nature of graphs also were important resources the students 
drew on (see Hammer et al., 2005; Hammer & Elby, 2003 for more on belief resources). 
However, the point of this work is to better understand the conceptual schemas coupled with 
specific graphical patterns (such as steepness or points) that students used in both creating and 
interpreting graphs. Future work will unpack the additional resources we observed and how 
graphical forms and these other types of resources worked in concert when students created 
graphs or interpreted graphs. 

Our work has important theoretical and pedagogical implications. Theoretically, we have 
extended the initial work on graphical forms (Rodriguez et al., 2018, 2019a, 2019b, 2019c, 
2020a, 2020b) to an identification of a large set of graphical forms. Such identification allows 
researchers to see finer-grained aspects of student reasoning when creating or interpreting 
graphs. It can also help researchers code for these specific knowledge resources when studying 
students’ graphical activity, or in examining how or when specific resources might be used. 
Pedagogically, our work is useful for instructors in identifying knowledge they may wish to help 
their students develop or to draw on during in-class graphical activity. It also helps instructors 
gain insight into the thinking their students might be doing in-the-moment as they interpret 
graphs or model a situation with a graph. Lastly, our results are important in demonstrating 
productive knowledge resources that students have and can use to create or interpret graphs. In 

or 

or 

or 

or 
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other words, our work helps show what students can bring to problem-solving tasks in terms of 
graphical reasoning, rather than focusing on what they lack.  
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