
Proceedings of the 43rd Annual Meeting of PME-NA 

—————————————————————————————————————————————————————————— 
Olanoff, D., Johnson, K., & Spitzer, S. (2021). Proceedings of the forty-third annual meeting of the North American 
Chapter of the International Group for the Psychology of Mathematics Education. Philadelphia, PA. 
 

1830 

 REVEALING MATHEMATICAL ACTIVITY IN NON-FORMAL LEARNING SPACES  
 

Caro Williams-Pierce 
University of Maryland 

carowp@umd.edu 

Nihal Katirci 
University of Maryland 

nkatirci@umd.edu 

Amber Simpson 
University of Binghamton, 

SUNY 
asimpson@binghamton.edu 

 

Ekta Shokeen 
University of Maryland 

eshokeen@umd.edu 

 

Janet Bih 
University of Maryland 

bihjane@umd.edu 

We offer this synthesized framework as a tool to reveal mathematical activity in a non-formal 
makerspace. In particular, we connect research at different grain sizes to illustrate and explain 
how mathematics plays a crucial, if often implicit, role in this activity. We begin with describing 
the Approximate Number System and the Ratio-Processing System, explain how those systems 
connect to both embodied cognition and Thompson’s (1994) conceptualization of quantities. We 
then examine how prediction and anticipation relate, with a particular emphasis on how social 
feedback guided the emergent mathematical activity. Finally, we synthesize across the two 
frameworks, in order to better reveal mathematical activity in low-notation environments, as the 
first step towards a framework for understanding mathematical learning in non-formal and low-
notation contexts.  

Keywords: Informal Education, Learning Theory, Technology 

Identifying mathematical cognition in non-formal contexts where formal notation plays very 
little role can be a difficult proposition. In particular, mathematical notation-based performances 
are often taken as evidence of mathematical learning, and a tempting corollary is that 
mathematical learning is thus evidenced by mathematical notation. As a consequence, learners 
engaging in activities that have little or no formal notation can be seen as not engaging in 
mathematical learning, even when they may be experiencing a mathematical activity that merely 
lacks the explicit outward signs of such learning. In our research on mathematical play in a non-
formal makerspace (Shokeen et al., 2020; Katirci et al., 2021), we have developed a new 
framework for identifying mathematical activity in a low-notation environment, and we share 
that framework here.  

We build a theoretical argument that takes a multi-pronged approach: first, we develop a 
theoretical framework that builds from two primitive structures in the brain - the Approximate 
Number System and the Ratio-Processing System (Matthews et al., 2015) - tie those neural 
structures to Alibali and Nathan’s (2012) embodied cognition view of perception and action, and 
interpret both of those frameworks through Thompson’s (1994) conceptualization of quantities. 
Second, we describe a framework based upon prediction (Bieda & Nathan, 2009) and 
anticipation (Tzur, 2007) as components of mathematical learning, and tie those directly to our 
work on feedback and failure (Williams-Pierce, 2019). Lastly, we illustrate (or apply) the 
synthesis of these frameworks as a way to better identify and understand the mathematical 
activity that is taking place in the social context of an informal collaborative group. 
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Methodological Background 
Our primary methodological approach for this paper is theoretical but we built our theory 

directly through observing and analyzing video data with the aim of examining it for evidence of 
mathematical play. In this section, we describe that video data. In the later sections, we provide 
illustrative examples of that data in order to illuminate how our comprehensive framework 
revealed mathematical learning and activity.  

Our video data is composed of three video records of the same 20 minutes of a collaborative 
robotics activity with five fourth-grade students (2 M; 3F). Two of the video records were from 
the perspective of two students wearing GoPro cameras, while the third was a standing camera 
that captured the entire group’s activity from a slight distance. The activity took place within the 
context of a physical classroom, although it was treated as a non-formal makerspace, and the 
participants were present voluntarily. The robotics activity had two phases: Phase 1, the group 
put masking tape on the floor to establish a path for a different group (who did not consent to be 
videotaped); and Phase 2, the group moved to the masking tape path established by the other 
group, and sought to measure the path and program a robot, Dash, to successfully travel it. 
Figure 1 illustrates the group putting down the masking tape path in Phase 1 (A), the iPad 
interface for programming Dash (B), and an image from the standing camera of the group 
measuring the path and watching Dash move in Phase 2 (C).  

 

   
Figure 1: (A) Phase 1; (B) iPad interface; (C) Phase 2. 

 
The research team who analyzed the data is composed of four regular members with varying 

areas of expertise. Two are experts in embodied cognition, in both physical and digital learning 
contexts; one specializes in mathematics learning in makerspaces (and originally collected the 
video data); one specializes in mathematical play. All four have considerable expertise with 
mathematics learning in both formal and informal contexts. The multidisciplinary nature of the 
team is how we developed our comprehensive framework over time, as our collaboration during 
analysis revealed both the need and the expertise for developing this framework.  

 
Theoretical Background A: Approximate Number System to Quantities 

In this section, we discuss on how perceptions, gesture, action, and the physical context relate 
to Thompson’s (1994) conceptualization of quantities. We begin by describing the underlying 
neural systems that influence perception of magnitude (section A1); describe how perception, 
gesture, and action are complexly related in cognition (section A2); then describe how 
Thompson’s quantities (1994) fit into that theoretical system (section A3). 
A1: Underlying Neural Systems  

Our physical bodies have perceptual systems that influence our cognition. Alibali and Nathan 
(2012) describe perception and simulations of perception: “When humans perceive objects, they 
automatically activate actions appropriate for manipulating or interacting with those objects 
(Ellis & Tucker, 2000; Tucker & Ellis, 1998). Thus, imagining an object can evoke simulations 
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of perception (i.e., of the actions associated with perceiving the object) or of potential actions 
involved in interacting with the object” (p. 254). These perceptions and the perceptual systems 
that underlie them can have primitive neurological bases. For example, the Approximate Number 
System (ANS) ties estimation of a number of objects directly to certain animal neuron activation 
patterns, including humans (e.g., Dehaene, 1997; Matthews et al., 2015). A human adult, 
glancing at a set of three objects on a table, immediately subitizes: they know automatically and 
without conscious thought that there are three objects present (e.g., Miller, 1994). If that human 
adult is shown three objects repeatedly, the part of their brain responding to those three objects 
begins firing less actively as the perceiver becomes habituated to the number of objects being 
subitized. In such situation, if a fourth object is added, there is a small increase in relevant brain 
activity; whereas if three more objects are added (making six in total), a larger increase in 
relevant activity occurs. In other words, when the number of objects being perceived increases 
slightly, there is little increase in brain activity; but if the number increases considerably, so does 
the brain activity (e.g., Dehaene, 1997; Piazza et al., 2004).  

Building upon the ANS, Matthews et al. (2015) describe the Ratio-Processing System (RPS) 
as a neural system in which we intuitively and immediately perceive and compare magnitudes of 
objects. (Although Matthews et al. (2015) describes quantities as an inherent quality of 
magnitude of an object or representation, we instead refer to that as magnitude, and reserve the 
term quantity for Thompson’s (1994) definition.) With the ANS and the RPS as primitive 
structures that perceive and compare magnitudes, certain components of perception are built 
directly into our brains. Building upon those structures into more complex forms of perception 
(such as recognizing relevant tools in our environment, the social structures of a group, and so 
on), is more complex. Specifically, perception and action are reciprocal: our perception guides 
our action, and in turn our action reflects and guides our perception. These actions and 
perceptions are grounded in our physical environment, including the social, material, and 
structural aspects of our surroundings (Alibali & Nathan, 2012) and our neurological structures 
(Matthews et al., 2015). 
A2: Perception, Action, and Gesture  

Perception, whether based upon primitive numerical structures or otherwise, leads to action 
(such as gesture, physical movement upon the environment, or spoken language), and that action 
leads back into our perception. This feedback loop of perception, action, and imagining is 
described as mental simulation (Alibali & Nathan, 2012), and together compose the embodied 
nature of our cognition. This feedback loop can be evidenced through spoken or written 
language, physical movements that impact the physical world, or - often - can only be inferred by 
an outside observer through expression of gestures. These gestures are communicative acts that 
reveal perception and action in a variety of ways, such as through pointing (deictic) gestures that 
connect spoken language with objects or people in the physical environment or representational 
(such as iconic or metaphoric) gestures that directly reflect the state of perceptions and planned 
actions of the gesture. Consequently, we rely upon action and gesture as both composing and 
revealing perception, action, and their composite into cognition.  

We now describe Thompson’s (1994) conceptualization of quantities, then tie this 
conceptualization into Alibali and Nathan (2012) and Matthews et al. (2015) through illustrative 
examples of our data. 
A3: The Role of Quantity in Perception, Action, and Gesture  

Thompson (1994) specifically defines quantity as a conceptual entity - that is, quantity does 
not reside in the object, but rather in the perceiver. As noted above, our references to magnitude 
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should be taken to refer to both Matthews et al.’s (2015) use of the term quantity, and to the 
perceived quality of an object or representation of taking up space (re: Thompson’s (1994) 
definition).  

Thompson (1994) goes on to define quantity as a schematic that involves “an object, a 
quality of the object, an appropriate unit or dimension, and a process by which to assign a 
numerical value to the quality” (p. 184). For example, a piece of masking tape that is “too big” 
(as stated by Peter; see Figure 2-A) indicates that the speaker perceives the magnitude of the 
tape, and compares it to some internal standard in order to determine that the piece needs to be 
shortened (See Figure 2-B&C). This perception and comparison of magnitudes (one physical, 
one imagined) occurs through Matthews et al.’s (2015) primitive structures. Then, the judgment 
of “too big” indicates that the speaker is perceiving the length of the masking tape as a quantity 
by Thompson’s (1994) definition: the masking tape is the object; the length of the piece of 
masking tape is the quality they are considering; and the internal standard for magnitude is an 
appropriate unit or dimension. Although our participants did not have access to a measuring tape 
in order to assign a numerical value to the quality of length, they would have been able to do that 
measuring if the tool had been present (as they used such a tool in Phase 2). In other words, the 
speaker who says “too big” is using quantity as conceptualized by Thompson (1994), and that 
quantity is perceived and compared with a simulated perception (Alibali & Nathan, 2012) of 
appropriate unit or dimension. This perception and comparison of length is rooted in the 
speaker’s ANS and RPS: although a lack of discrete or explicit measurement makes it difficult to 
determine how their ANS is contributing, the comparison of the physical length’s magnitude 
with their imagined unit’s magnitude can be directly attributed to their RPS.  

 

   
Figure 2: (A) “Too big!”; (B) Shortened the piece; (C) Final decision- cut the tape 

 
The speaker’s comparison of the magnitude of the tape with their internal standard presents a 

communicative problem, as they must externalize their internal standard in some fashion for their 
group mates. One potential method of externalizing might be gesturing what “too long” is - while 
this does not externalize the internal standard, it indicates what magnitude the speaker is 
considering to be too much, which implies that the desired length of tape should be shorter. 
Another potential method was to engage the action of ripping the tape in half: this would serve to 
indicate what an appropriate length of tape would be, while requiring fellow perceivers to 
examine the magnitude of a resulting piece of tape in order to evaluate whether the new pieces 
are perhaps “too short.” When a piece was too short, the choice of actions was different: they 
were crumpled up and thrown away, or used to extend a pre-existing length of tape already on 
the floor. While these actions and gestures may differ, they each indicate the same perception of 
magnitude, the quantification of that magnitude, and a comparison to an internal standard. 

Now we shift to our second theoretical background.  
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Theoretical Background B: Prediction to Social Feedback 
Now that we’ve described how perception, action, and gesture relate to magnitudes and 

quantities, we will focus on detailing prediction (Bieda & Nathan, 2009) and anticipation (Tzur, 
2007) as components of mathematical learning, and tie them directly to our previous work on 
feedback and failure (Williams-Pierce, 2019). We then focus specifically on how prediction, 
anticipation, feedback, and failure contribute to social feedback with illustrations from our data. 
We focus on social feedback in particular due to its crucial role in the collaborative mathematical 
activity present in our data. We introduce Theoretical Background B with as little reference to 
Theoretical Background A as possible, as we plan on focusing on that final step of synthesis in 
our Synthesis of Theories section. As the majority of the mathematical reasoning that occurs in 
this activity is grounded directly in perception and quantities, and much of it also involves 
mental simulation (i.e., aspects of Theoretical Background B), we give less mathematical 
examples here that do not require attention to quantities or mental simulation. 
B1: Prediction and Anticipation  

Bieda and Nathan (2009) describe prediction as looking at a pattern, and predicting a later 
instance of that pattern, whether near or far. The vast majority of our prediction examples in the 
data are intertwined with students perceiving and simulating quantities, but we present two 
examples of prediction that rely less upon quantities, both of which revolve around the teacher-
facilitator warning the teams that they were running out of time. During Phase 1, the students 
changed their tape-laying pattern from trying to make the path ‘zig-zag’ (Shokeen et al., 2020, 
accepted), to simply placing a single long piece of tape to complete the path across the room. In 
other words, they were predicting that following their zig-zag pattern would not result in 
completing a path across the room, so they adjusted their activity accordingly to ensure they 
reached across the room within the allotted amount of time. A similar moment happened towards 
the end of Phase 2 when the teacher-facilitator gave a 45 second warning that the activity was 
almost over. One of the students from the other team was overheard by the target team saying, 
“We are not gonna make it” and Ryan responded across the room to them as he kept measuring 
the tape paths: “Neither are we.” In that moment, Ryan was looking ahead in time, and 
predicting that if they continued programming Dash as their current speed, they would not be 
able to get Dash to the end of the tape path. As mentioned earlier, these are not particularly rich 
examples, mathematically, but the students are looking at the results of their activity thus far, 
comparing how much time that activity took, and predicting the results of continuing with 
exactly the same activity in the short amount of time that is left. In the first example, they 
modified their activity in order to achieve their goal of getting across the room; in the second 
example, there was no such modification available to similarly speed up their progress.  

We now shift from prediction to Tzur’s (2007) description of two stages in mathematical 
activity: participation and anticipation. During the participatory first stage, the learner has a 
mathematical understanding that emerges only when prompted by the activity at hand, and 
cannot be independently demonstrated without the contextual cues or tools. Tzur (2007) 
describes the “the well-known ‘oops’ experience” (p. 277) in the participatory first stage, where 
a student does something, notices a mistake as it manifests in their activity, and goes on to adjust 
it in the moment. During the anticipatory second stage, however, “the learner can independently 
call up and utilize an anticipated activity-effect relationship proper for solving a given problem 
situation” (p. 278) - in other words, they are able to use their mathematical understanding 
without engaging in the activity first. In our activity, participation and anticipation often 
manifested through prediction, feedback, and failure. We give specific examples about 



Proceedings of the 43rd Annual Meeting of PME-NA 

—————————————————————————————————————————————————————————— 
Olanoff, D., Johnson, K., & Spitzer, S. (2021). Proceedings of the forty-third annual meeting of the North American 
Chapter of the International Group for the Psychology of Mathematics Education. Philadelphia, PA. 
 

1835 

anticipation and its relationship to prediction in Section B3, as failure and feedback (Section B2) 
play a critical role in identifying Tzur’s (2007) stages within this activity. 
B2: Feedback and Failure 

Our initial goal when we began analyzing this data was to identify how zones of 
mathematical play that emerged in concert with mathematical video games (Williams-Pierce & 
Thevenow-Harrison, 2021) might manifest in this new non-formal context. We began by 
attending particularly to feedback and failure, as Williams-Pierce (2019) defined failure and 
feedback as tightly paired in digital contexts and crucial to mathematical play. In particular, it is 
through failing and getting feedback that players, through their own actions, engage in learning 
the underlying mathematical content in the game (Williams-Pierce, 2019). This type of paired 
feedback and failure is instantaneous and often direct, in both videogames and the current 
activity. For example, in Phase 2, if the path in front of Dash was measured to be 80 cm and the 
programmer enters that measurement into the code, but Dash goes too far and ends up off the 
path, Dash’s location manifests failure paired with feedback. The programmer then learns from 
the feedback (Dash has gone too far) to input a smaller distance into the program. This 
occurrence of failure and feedback is similar to that found in videogames, but we also found that 
social feedback played a crucial role in this non-formal collaborative context: students observing 
Dash’s failure to stop at the correct spot on the tape often amplified the feedback of Dash’s 
location - in this case, one student said, “That is a little far away” (too far). As a result, the 
programmer reprogrammed Dash to go 70 cm instead of 80, and Dash stopped at the desired 
location on the tape path. In short, in this type of situation, the paired feedback and failure may 
be direct - as in video games - may have social components, or may be fully social.  

In fact, in Phase 1 the paired feedback and failure was often fully social. For example, at one 
moment, Peter was holding the roll of tape, and tearing off pieces to hand out to other students, 
who spontaneously formed a line to wait their turn for a piece of tape. Ryan, however, tried to 
cut in line immediately after they had just placed a piece of tape, but Peter did not let them, 
forcing them to go to the back of the line to wait their turn. This is an example of social feedback 
and failure: Ryan was essentially informed that they were performing a social activity that was 
not permitted within this community, and given feedback on how to actually get their next piece 
of tape in an appropriate fashion. As another example of social feedback, students would often 
disagree on how long a piece of tape should be, or what angle it should be placed relative to the 
path. However, this paired feedback and failure relies heavily upon perceiving or mentally 
simulating quantities, so we will discuss that further in the Synthesis of Theories section.  
B3: The Relationships between Prediction, Anticipation, and Social Feedback 

Prediction, anticipation, and social feedback have a complex but crucial relationship. For 
example, when Dash went too far in the Phase 2 example above, the students had input a 
centimeter measurement that they anticipated and predicted would lead Dash to the correct 
location on the tape. Consequently, when Dash stopped at the wrong place, the students received 
that paired feedback and failure, and amplified that feedback and failure through talking about it 
(e.g., social feedback). However, often feedback and failure are not clearly evident, because if 
what the students predicted would happen did, they had no need to remark upon it. In situations 
like this, where feedback and failure are missing, and the students move on to the next step, we 
concluded that they were content with their previous work. We also posit that this may be an 
indicator that students have shifted from participatory to anticipatory, because they have 
learned/internalized what to do or not to do, which results in no failure and often no social 
feedback.  For example, in Phase 2, students are using a measuring tape and a pencil to measure 
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a part of the path, and then write their measurement of that strip of tape on the path. After 
measuring and writing down the measurement, they move directly on to measuring the next part 
of the path without commenting, because they have successfully completed a step of the 
measurement. Measuring by itself is an activity that can be successful or unsuccessful in itself, 
even before Dash enacts the measurement – but the data showed no example of the students 
accidentally flipping the measuring tape to the inches side, or noticing any other potential 
measuring issues that could happen. This illustrates the other side of the ‘oops moment,’ because 
it is a ‘we measured the path appropriately and are not surprised by it’ moment. Sometimes, the 
students are successful but remark on their success, such as when Aaron coded Dash to traverse 
the first three lines and the angles within them, and after Dash ended up in the correct spot, 
Aaron said, “That’s perfect!” We consider this to be an example of social feedback paired with 
success, rather than failure, and an illustration of the participatory stage rather than anticipatory, 
because they were at least mildly surprised that it worked (e.g., they lacked confidence in their 
prediction), unlike when using the measuring tape.  

 
Synthesis of Theories 

This section is the culminating synthesis of the theoretical groundings introduced above. In 
particular, we will describe how quantities and embodied cognition relate to prediction and 
anticipation, through the lens of failure and feedback in this context. We give two examples - one 
from each Phase - detailing exactly how the students were engaged in the activity, and conclude 
with another example that highlights the role of social feedback in particular. 

In Phase 1, as students were placing down tape, they were using their perception of length 
and angle to guide their placement. At one point, Ryan places down tape at what he perceives to 
be and says is a “ten degree angle.” The teacher-facilitator notices, and says it is “too tight” for 
Dash to traverse. Then Ryan pulls up that tape and re-places it, using his perception of quantities 
to increase the angle. This is an example of using perceived acceptable quantities of angle: Ryan 
uses his own perception of length and angle to mark 10 degrees, which he perceives as a 
perfectly appropriate angle for Dash to execute; then Ryan adjusted his understanding of an 
appropriate (perceived) angle quantity according to external guidance by the teacher, who knows 
Dash’s limitations. This is an example of participatory first stage, where they have an oops! 
moment, but the shift to anticipatory second stage occurs immediately, as we see by a complete 
lack of other too-tight angles in Ryan and the group’s remaining activity. Similar quantity and 
perception-based moments occur around the length of the masking tape, such as when Aaron is 
placing a long piece of tape, and Peter says, “But that’s too long though.” Aaron immediately 
adjusts the tape length by ripping some of it off, so that Peter’s perception of an acceptable 
quantity of tape is respected. All of these interactions are based directly upon perceptions of 
quantity - whether of length or angle - and involve nuancing each students’ view of what an 
appropriate quantity is for the task at hand. 

In Phase 2, as students code a new length of the path for Dash, they are using quantities that 
have already been evaluated (measured) by their teammates with the measuring tape. However, 
in re-coding a length that they’ve already tested with Dash, they are using two different 
evaluated quantities alongside perceptual quantities. The centimeter measurement written on the 
path is one evaluated quantity, while the second – how far Dash was programmed to go – is 
another evaluated quantity, while the comparison between the two is purely perceptual. The two 
different evaluated quantities are both technically centimeters, but evaluated in two different 
ways: the first is ‘centimeters as measured by the measuring tape’; while the second is 



Proceedings of the 43rd Annual Meeting of PME-NA 

—————————————————————————————————————————————————————————— 
Olanoff, D., Johnson, K., & Spitzer, S. (2021). Proceedings of the forty-third annual meeting of the North American 
Chapter of the International Group for the Psychology of Mathematics Education. Philadelphia, PA. 
 

1837 

‘centimeters as enacted by Dash.’ When those two evaluated quantities do not match up, the 
students must perceptually evaluate the difference between the two, and mentally simulate a 
comparison that supports them in re-programming Dash accurately. When Dash is programmed, 
the students are predicting that Dash needs to go the programmed distance in order to reach the 
correct spot; and they respond to the failure or success of that prediction accordingly, indicating 
their placement in the participatory or anticipatory stages.  

The role of social feedback was particularly crucial, as there was a lack of mathematizing 
tools: each student had to use their own perception and mental simulation of quantities, as no 
more precise method was at hand. For example, at one point in Phase 1, the students decided that 
they wanted to lay the path underneath two chairs that are tucked under a table. As one student 
began laying the tape underneath the chairs, another student, Hannah, said something in a 
doubtful tone (not captured on audio), while tracing the floor under the chairs. Aaron says, “No 
no, that would work” and Ryan agrees, also tracing the floor under the chairs. As Hannah spoke, 
she was mentally simulating her perception of the size (quantities) of Dash, comparing that 
mental simulation with her perception of the space available underneath the chair, and 
visualizing a conflict between those two perception-based simulations such that Dash would run 
into the chair, rather than go smoothly underneath it. Aaron and Ryan, though, are either 
engaging in different mental simulations – one in which Dash fits under the chairs – or are 
merely thinking of Dash following the path (a participatory view), while Hannah was 
anticipating, and using that anticipation to predict that some issues would arise. Aaron and Ryan 
keep placing the tape, and then Peter joins to place the last piece of tape that brings the path out 
from under the chairs. As Peter finishes, he says, “We should move the chairs out, too, if it 
doesn’t fit,” and Ryan says, “Yeah.” Then, when Phase 1 is ending, and the group is leaving their 
tape path for the other group to use, this group runs back to remove the chair from the path, 
indicating that the mental simulations of others (Peter and Hannah) have convinced the others 
that Dash probably will not fit - in other words, this is a moment of social feedback. 

 
Conclusion 

We offer this synthesized framework as a tool to reveal mathematical activity in a non-formal 
makerspace. In particular, we connected research at different grain sizes to illustrate and explain 
how mathematics plays a crucial, if often implicit, role in this activity. We began with describing 
the Approximate Number System and the Ratio-Processing System (Matthews et al., 2015), 
explaining how those systems connect to both embodied cognition (Alibali & Nathan, 2012) and 
Thompson’s (1994) conceptualization of quantities. We then examined how prediction (Bieda & 
Nathan, 2009) and anticipation (Tzur, 2007) relate, with a particular emphasis on how social 
feedback guided the emergent mathematical activity. Finally, we synthesized across the two 
frameworks, in order to better illustrate the implicit mathematical activity in our data.  

This theoretical framework is the first step in our efforts to better identify mathematical 
cognition in low-notation environments. We have connected multiple layers of research that 
emphasize mathematical cognition, and used it to reveal mathematical activity - and our next 
goal in this line of research is to connect that non-formal, low-notation mathematical activity 
with direct identification of the resulting learning. As yet, we do not claim a direct relationship 
between the revealed mathematical activity and learning, but rather focus on establishing the 
necessary groundwork for investigating that relationship. However, as increasing numbers of 
educators examine mathematical learning in informal environments such as ours, we consider the 
ability to identify the types of implicit, perceptual, and embodied mathematical cognition that 
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emerge from these environments to be a necessary contribution to the field. Additionally, this 
identification requires using knowledge and frameworks from multiple fields examining different 
layers - from neurons to social interactions - in order to solidly ground each moment of 
mathematical activity. We offer this framework as the first step in this endeavor.  
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