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We report findings from an investigation of one teacher’s instruction as he guided students 
through the proofs of 21 theorems in a Grade 8 Honors Geometry course. We describe a routine 
involving four distinct phases, including Setting up the Proof and Concluding the Proof. Results 
from an end-of-course proof test are also presented to attest to the effectiveness of the teacher’s 
approach. By engaging with descriptions of the theorem-proving routine, one can learn about 
different strategies that may support students to learn to prove theorems, such as asking students 
to put forth claims in the form of conjectures or other statements that they believe are true and 
seeking justifications for these claims as well as sanctioning a theorem once proven.  
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Purpose of the Study 
In 1994, Alan Schoenfeld noted: “Proof is not a thing separable from mathematics, as it 

appears to be in our curricula; it is an essential component of doing, communicating, and 
recording mathematics” (p. 76). Yet, despite the fact that reasoning and proving are considered 
central to the discipline of mathematics, and geometry is typically the place in the school 
mathematics curriculum where proof is taught, the teaching of proof in school geometry has been 
considered to be a failure in almost all countries (Balacheff, 1988). Acknowledging this failure, 
Battista (2007) posed the question: “How can proof skills best be developed in students?” (p. 
888). To address this question, in this mixed-methods study, we focus on the development of 
proof skills with respect to the “instructional situation” (Herbst, Nachlieli, & Chazan, 2011) of 
proving theorems. Proving theorems is an activity that differs from doing proofs of 
“configurations” (Herbst & Miyakawa, 2008, p. 470) whereby students are typically provided 
with “Given” information, a “Prove” statement, and a figure to go along with the proof. Research 
conducted by Otten and colleagues (Otten, Gilbertson, Males, & Clark, 2014; Otten, Males, & 
Gilbertson, 2014) suggested that U.S. textbooks primarily engage students in proving 
configurations rather than theorems. This is a problematic situation if one agrees with 
Schoenfeld’s (1994) argument that proof is an essential component of doing mathematics.   

Because we agree with Reid and Knipping (2010) who suggested that recommended changes 
to how teachers teach proof must be based on detailed understandings of how teachers currently 
teach proof, we designed a study that involved spending significant time in teachers’ classrooms. 
After determining that the students of one of the teachers in the study, who we call Shane, were 
outperforming other teachers’ students in seemingly similar courses on an end-of-course proof 
test, we observed 22 of Shane’s lessons during the 2018-2019 academic year. For this paper, we 
posed the following research question: How did a teacher whose students were overall 
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“successful” on an end-of-course proof test teach his students to prove theorems in geometry? 
We operationalize what is meant by “successful” in subsequent sections of this paper.  

 
Theoretical Framework 

In order to frame the purpose of the study, justify the study methodology, and focus and 
guide the reporting and discussion of the results (Cai et al., 2019), we review three areas of 
literature. We first describe past results from the end-of-course assessment used in this study. 
Next, we describe research on “doing proofs” in U.S. geometry classrooms to support the need 
for the study. Last, we highlight research-based competencies for proving to frame the findings.   
Students’ Past Performance on an End-of-Course Proof Test 

In Senk’s (1985) paper titled, “How Well Do Students Write Geometry Proofs?” Senk 
described some of her research instruments and summarized some key findings from her (1983) 
dissertation. Senk’s (1985) research question was: To what extent do secondary school geometry 
students in the United States write proofs similar to the theorems or exercises in commonly used 
geometry texts? Her results were part of the larger Cognitive Development and Achievement in 
Secondary School Geometry (CDASSG) Project. To answer her research question, Senk 
administered three forms of the CDASSG end-of-course proof test. Each form contained six 
items. The first item required students to fill-in-the-blanks of a two-column proof. The second 
item required a translation from a verbal statement to an appropriate “figure,” “given,” and “to 
prove.” The last four items required students to write full proofs (Senk, 1985). Senk administered 
the CDASSG assessments to 1520 students in 74 classes from 11 schools in five states in 1981. 
Each item was scored on a four-point scale, and students were considered “successful” if they 
scored at least 3 out of 4 possible points. Students scored a 3 if their proof steps followed 
logically from previous ones but contained minor errors. Overall, Senk (1985) concluded that 
only about 30% of students in the full-year geometry courses that covered proof reached a 75% 
mastery of proof (i.e., were “successful” on the test overall). Senk also concluded that proofs of 
textbook theorems were difficult for many students. For example, only 32% of students were 
successful in proving the theorem that the diagonals of a rectangle are congruent, and 34% of 
students scored a 0 on this proof. A common error was citing the theorem in the proof (i.e., using 
circular reasoning). Across the three forms, an average of approximately 13% of students were 
successful on all six tasks with only 3% of students receiving perfect scores on all six.       
“Doing Proofs” in U.S. School Geometry 

Building on the past work of Lampert (1993) and Schoenfeld (1986, 1988, 1989) who 
documented the role that proof has traditionally played in classroom teaching and learning, 
Herbst and colleagues examined both students’ and teachers’ perspectives on what “doing 
proofs” is like in American high school geometry classrooms. Herbst and Brach (2006) reported 
findings from 29 interviews with 16 students in five categories: Statements, Initial Conditions, 
Concepts, Targets of the Work of Proving, and The Work of Proving. Several findings from 
Herbst and Brach’s study are relevant to this study, especially students’ claims that:  

• It is customary that the “given” and prove” will be specified in the problem statement, 
• Students are rarely asked to prove theorems, and 
• The first thing in proving is to mark the givens on the diagram.  
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Herbst’s and colleagues’ (2009) study of teachers’ views outlined a set of 25 norms for the 
instructional situation of “doing proofs,” including the following norms about the division of 
labor - the teacher or textbook is responsible for: 

• Establishing the givens in terms of properties of a figure represented in a diagram, and 
• Providing a diagram that fairly represents the objects to be used in the proof. 

The 25th norm was that every single statement or reason is produced in a handful of seconds. 
Overall, this research demonstrates that when “doing proofs” it is the teacher, not the students, 
who seems to carry much of the cognitive load.  
Developing Competencies for Proving 

Cirillo and colleagues’ research has focused on understanding the conditions in which 
teachers currently teach proof in geometry with the ultimate goal of improving the teaching and 
learning of proof (see, e.g., Cirillo & Hummer, 2019). After observing that the classroom 
teachers with whom she worked were unsure about how to teach proof and were particularly 
unclear about how to begin teaching proof, Cirillo et al. (2017) developed a pedagogical 
framework for teaching proof based on the research literature and classroom observations. The 
pedagogical framework decomposes proof so that understanding of the larger goal (i.e., doing 
proofs) can be built up sequentially by teaching particular sub-goals of proof over time. The sub-
goals of proof included in the framework that are particularly relevant to this study include: 
Knowing Geometric Concepts, Conjecturing, Working with Diagrams, Drawing Conclusions, 
Understanding Theorems, and Understanding the Nature of Proof. Particularly relevant 
competencies, which are nested within the sub-goals, include: Being able to turn a conjecture 
into a testable conditional statement; knowing how to read a diagram and understanding what 
can and cannot be assumed from a diagram; using axioms, postulates, definitions, and theorems 
to draw valid conclusions from some “Given” information; and being able to identify the 
hypothesis and conclusion of a conditional statement and then writing particular “Given and 
“Prove” statements, typically making use of a generic figure (see the full framework in Cirillo & 
May, 2021). Many of these competencies were also observed in Cirillo and Hummer’s (2021) 
smartpen interview study in the work of students who were “successful” in completing proofs 
during the clinical interviews. For example, the following competencies were observed in the 
work of students who were successful with the proofs - students: productively attended to the 
“Given” information; used the diagram as a resource; identified warrants as postulates, axioms, 
definitions, or theorems; and attended to important details in their proofs.       

 
Methods 

In this paper we share results from a sub-study of a larger study focused on improving the 
teaching and learning of proof in secondary geometry. The larger project, Proof in Secondary 
Classrooms (Cirillo, 2015-2020), is a mixed methods study that took place in the mid-Atlantic 
region of the United States. Here, we focus on a subset of participants from the larger study who 
did not receive the study treatment (i.e., they were in the control group).  
Context and Data  

Across the three years of the sub-study, with the help of the research project staff, six 
teachers who taught a total of 464 Grade 8 Honors Geometry students administered Senk’s 
(1983) CDASSG assessment at the end of the school year. It is important to note that prior to 
adopting the CDASSG for our study, through an alignment analysis, we concluded that the 
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CDASSG was, in fact, well aligned with current standards and textbooks being used in the study 
classrooms. The assessments were scored, and results were analyzed each summer. Beginning in 
Year 1 of the test administration, we noticed that, in comparison to the other sections of Grade 8 
Honors students, one teacher’s students consistently scored higher on the CDASSG assessment. 
More specifically, we noticed that in Year 1, the students (n=43) of the teacher, who we call 
Shane, earned a mean score of 19.05 out of 24 possible points on the six-item proof assessment 
(i.e., 79%); whereas the Grade 8 Honors Geometry students (n=129) in other teachers’ 
classes earned a mean score of 8.5 out of 24 (i.e., 35%). Upon noticing this, we became 
interested in observing Shane’s teaching, and we asked to observe his proof-focused 
lessons. Consequently, we conducted 22 classroom observations in one section of Shane’s Grade 
8 Honors Geometry course during the 2018-2019 school year. We requested that Shane invite us 
in when he first introduced proof up until and including lessons focused on quadrilateral proofs.  
Qualitative Data Analysis  

Phase 1: Identifying a reduced data set. The research team initially watched and developed 
timelines of the 22 classroom observation videos. These timelines identified the portions of the 
class that were dedicated to various classroom activities such as whole-class work, 
seatwork, and going over homework; within each activity, researchers included descriptions of 
the content covered. Of the 22 observations, we identified 11 observations where theorems were 
proved in the whole-class setting. Within these 11 observations, a total of 21 theorems were 
proved, comprising of approximately 6 hours and 23 minutes of video data. Transana Multiuser 
3.32d (Woods, 2020) was used to transcribe and create a collection of video clips of each 
theorem-proof (i.e., proofs of actual theorems rather than “configurations” (Herbst & Miyakawa, 
2008) including the Pre-Proof activities). The video clip collection was then further analyzed.  

Phase 2: Identifying themes. The research team watched all 21 video clips of the whole-
class theorem-proofs, as well as any related activities conducted prior to the theorem-proof (i.e., 
pre-proof activities) and looked for patterns within these data. We identified three distinct 
activities that occurred during the teaching of theorem-proofs: Setting up the Proof, Making and 
Justifying Claims, and Concluding the Proof.   

Phase 3: Coding the themes. We developed codes to further analyze the three activities. 
Codebooks for each activity were developed using constant comparative analysis (Boeije, 
2002). The codebooks were continuously revised and improved as each activity was coded in 
teams of two. Each pair of researchers independently coded at least 3 of the 21 theorem-
proofs for their specific activity. After achieving above 80% interrater agreement (i.e., 90% for 
Setting Up the Proof, 92% for Making and Justifying Claims, and 92% for Concluding the 
Proof) and reconciling differences, coders worked independently to code the remaining data.  
Quantitative Data Analysis  

To provide further information about Shane’s students’ performance on the end-of-course 
CDASSG proof assessment in comparison to other similar students’ performance on the same 
assessment, we analyzed results from two particular items of the CDASSG. More specifically, 
we focused on results from Senk’s CDASSG Items 4 and 5. These two items were selected 
because across all three forms of the CDASSG, the items were similar in nature and explicitly 
required students to write full proofs. In particular, each form of the test included a proof of a 
theorem for one of the two items (e.g., the measures of the angles of a triangle sum to 180֯ or the 
diagonals of a rectangle are congruent), and the second item was a configuration proof involving 
triangle congruence. Following Senk, we report the percentage of students who were 
“Successful” and “Not Successful” on these items, where “Successful” means that students 
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scored at least 3 out of 4 points on the item. Results across three years of the study are shared for 
Shane’s Grade 8 Honors Geometry students and for all other Grade 8 Honors Geometry students 
in the study who were also in the control group (i.e., did not receive the project treatment).   

 
Results 

We share findings from five related analyses. We begin by exploring the four parts of 
Shane’s theorem-proving routine: Pre-Proof: Making and Justifying Claims; Setting up the 
Proof; During-the-Proof: Making and Justifying Claims; and Concluding the Proof (see Figure 
1). We then share additional quantitative data from the Grade 8 Honors Geometry student 
assessment results. This last finding is included to provide evidence of the effectiveness of 
Shane’s approach to teaching proof. We begin by describing the two Making and Justifying 
Claims activities since they are closely related to one another.   
 

 
Figure 1: Shane’s Routine for Proving Theorems 

 
Making and Justifying Claims in Pre-Proof and During-the-Proof Activities 

We considered student-generated claims and justifications that were made both during “Pre-
Proof” activities, which preceded Setting up the Proof, as well as “During-the-Proof,” which 
followed Setting up the Proof. We only considered claims and justifications that were made by 
the students, rather than the teacher. Claims that were truly generated by the students without 
teacher support were made 44% of the time, and claims that were generated by the students as a 
result of question-and-answer exchanges between Shane and the students occurred 56% of the 
time. Throughout all 21 whole-class discussions of the theorem-proofs, Shane used the word 
“believe” 130 times, asking questions such as: “What do you believe is true?,” “Do you believe 
it’s always true?,” and “Do you have a reason for why you believe that?” 

Pre-Proof Claims and Justifications. Pre-Proof activities included exploring definitions to 
better understand the geometric objects involved in the proof (e.g., developing or stating 
definitions of isosceles triangles or parallelograms) and making claims that were sometimes 
unsupported and considered to be conjectures or were valid conclusions that could be drawn 
from a proof assumption. Across the 21 theorems, we identified 28 claims made during the Pre-
Proof activities. Three of these claims were related to establishing a definition of the geometric 
object centrally involved in the proof. Fifteen of the claims were conjectures that would 
ultimately be considered “worth proving;” that is, the students conjectured the proof idea through 
a discovery process led by Shane prior to the Setting-Up-the-Proof activity that followed. Two of 
the 28 claims were generated through a combination of some assumption that could be made 
about a diagram and a postulate (e.g., AB + BC = AC by the Line Segment Addition Postulate). 
The remaining eight claims were conclusions that could be drawn from the premise of the proof. 
For example, if Shane presented some quadrilateral ABCD that was assumed to be a 
parallelogram (i.e., eventually the proof hypothesis or “Given” statement), then students would 
state a valid claim that the two pairs of opposite sides of the quadrilateral were parallel. The 
justification for this claim would be the definition of parallelogram. By engaging students in a 
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routine that involved Pre-Proof activities focused on claims and, where applicable, justifications, 
Shane provided students with opportunities to explore or “experience” mathematical objects 
(Schoenfeld, 1986) and develop conjectures prior to working on proofs about those objects.  

During-the-Proof Claims and Justifications. Four codes were developed for Claims and 
Justifications made During the Proof. Across the 21 theorems, we identified 60 student-generated 
claims made during the proof. The first code, which was related to stating the proof assumption 
and justifying it by “Given” only occurred once. We hypothesize that this aspect of proving 
needed to be carried out only once so that students would understand this proof requirement. The 
next two activity codes were similar to activities that occurred during the Pre-Proof. There were 
11 instances of students stating claims that were conclusions drawn directly from the “Given” 
statement. The justification for such claims was typically the definition of the mathematical 
object that was the subject of the theorem (e.g., definition of parallelogram), but, at times, it was 
also appropriate to use a theorem about the mathematical object to justify a claim made directly 
from the “Given” statement. Also, similar to an activity described above, there were six claims 
generated through combinations of a postulate and an appropriate assumption that could be made 
about the diagram. The majority of student-generated claims (n=41) were related to the 
statements and reasons that followed once the initial conclusions were drawn from the 
hypothesis and any valid, relevant assumptions made about the diagram were identified. 
Setting up the Proof 

Setting up the Proof involved a range of activities including: working with the theorem as a 
conditional statement, developing the “Given” and “Prove” statements, and developing or 
working with a diagram for the proof. During the Setting-up-the-Proof activities, Shane attended 
to different aspects of setting up the proof, working on different competencies across the 21 
theorems, over time. For example, for 8 of the 21 theorems, rather than providing students with 
the conditional statements of the theorems to be proved, Shane drew from the conjectures 
students developed during the Pre-Proof activities. Since these conjectures were often written 
using “everyday language,” such as “Opposite sides of a parallelogram are congruent,” when 
Setting up the Proof, Shane led discussions that supported his students to identify the 
assumptions (or hypotheses) in the conjecture (e.g., [If] a quadrilateral is a parallelogram) as well 
as the conclusions of the conjecture (e.g., [then] the opposite sides are congruent). For 11 of 21 
theorems, students were not provided with the “Given” and “Prove” statements but rather had to 
participate in developing them during the whole-class discussions. For 6 of 11 of these theorems, 
students also played a role in generating the particular figures that would be used in the proof. 
Six of the 21 theorems proved during the observations were converses of other theorems that the 
class had also proved. Thus, it is unsurprising that discussions about the truth values of the 
converses of six of the theorems occurred. Last, for 12 of 21 of the theorems, a figure was 
provided for the students, but it was not marked. For example, for parallelogram proofs, Shane 
had pre-populated parallelograms labeled ABCD on his advanced organizer, but for each of the 
theorems, the diagrams still needed to be marked to reflect what students knew to be true from 
what they determined to be the “Given” information. Across the 21 theorems, by modifying what 
information was provided and what Shane left blank for the students to develop, Shane provided 
students with opportunities to develop different competencies needed to set up the proofs.  
Concluding the Proof 

Across the 21 theorem-proofs, Shane’s facilitation of Concluding the Proof activities 
included three noteworthy features. For 9 of the 16 theorems that did not have “names” such as 
The Midpoint Theorem or the Base Angles Theorem, Shane concluded the proofs by developing 
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a shorthand version of the theorem that students could use moving forward. For example, Shane 
suggested that students could write “⊥ lines →  Adjacent s” rather than writing out the full 
text of the theorem: “If the two lines are perpendicular, then they form congruent adjacent 
angles.” Referring to the shorthand notation, Shane stated, “Your options are either to write 
something like this, or you may just write the whole thing.” Second, for 12 of the 21 theorems, 
Shane restated or rephrased the theorem after the class proved it, typically in a way that seemed 
intended to foster an understanding of what the class had just proved. For example, after proving 
the converse of the Isosceles Triangle or Base Angles Theorem, Shane stated: “So if you do have 
a pair of angles that are congruent in the triangle, it does imply that the sides opposite them are 
congruent, which implies it is an isosceles triangle.” Last, upon completing 9 of the 21 theorem-
proofs, Shane explained to students or reminded them that once a theorem was proven, it could 
be used in future proofs. For example, after writing shorthand notation for the third of four 
parallelogram theorems that they would prove that day, Shane asked his students, “So now we 
have how many properties of parallelograms we can use?” After establishing that they had three 
theorems plus the definition of parallelogram, Shane asked students to prove the fourth theorem 
of the day and reminded them: “Remember now, we, you can use any properties that we have 
already proved. So now you can use everything except for the one you’re trying to prove.” In 
doing so, Shane established that once a theorem was proved it could be used to prove other 
theorems; he also reminded the students not to engage in circular reasoning.  
Proof Assessment Results 

As explained in the Methods section, we calculated results for two of the full-proof items 
from Senk’s (1983) CDASSG assessment that were administered in this study. For two groups of 
students - Shane’s Grade 8 Honors students and Grade 8 Honors students who had teachers other 
than Shane (i.e., “non-Shane”) - we calculated the numbers and percentages of students who 
were “Successful” (i.e., scored at least a 3 out of 4 points) on both Items 4 and 5, on either Item 
4 or 5 but not both, and on neither Item 4 nor Item 5. As can be seen in Table 1, there were large 
differences between the results of the two groups of students. Acknowledging that the student 
populations for the two studies differed, as another point of comparison, in Senk’s (1983) study, 
approximately 43% of students were successful on Item 4 and approximately 37% of students 
were successful on Item 5. Percentages of success for the same items in our study were 77% and 
84% for Shane’s students, respectively, and 30% and 25% for non-Shane students, respectively. 
This is noteworthy given that the students in this sub-study were all Grade 8 Honors students, 
whereas the students in Senk’s study included a population of Honors and non-Honors students.  
 

Table 1: Student Assessment Results for Shane’s Students Compared to Other (Non-
Shane) Grade 8 Honors Students 

 
Number (%) of  

Students  
Successful on both 4 & 5 

Number (%) of  
Students Successful on 

either 4 or 5, but not both 

Number (%) of  
Students Successful on 

neither 4 nor 5 
Shane’s 
Students 
(n=128) 

83 
(64.8%) 

40 
(31.3%) 

5 
(3.9%) 

Non-Shane’s 
Students 
(n=336) 

53 
(15.8%) 

78 
(23.2%) 

205 
(61.0%) 
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Discussion and Conclusions 

As noted by Herbst and Miyakawa (2008), while all theorems have proofs, in U.S. geometry 
classrooms, not every theorem is proved. The study reported here is significant in that it 
describes a routine for proving theorems - an activity that is apparently lacking in many U.S. 
classrooms. Furthermore, our assessment results provide evidence that the strategies employed 
by Shane seemed to be reasonably effective given that nearly two-thirds of Shane’s students 
were successful on the two full-proof tasks analyzed for this study. It is interesting to note that 
the percentage of Shane’s students who were successful on both proof items analyzed (about 
65%) is very close to the percentage of students from non-Shane classrooms who were not 
successful on either proof task (61%). One limitation of this study, however, is that due to space 
constraints, we did not report more sophisticated statistical analyses controlling for various 
factors, and we did not determine statistical significance when taking these factors into account.  

In contrast to reports by Cirillo and colleagues (2017), who noted that proof is often taught in 
a show-and-tell manner, we saw evidence that, in Shane’s classroom, students were expected to 
make claims and provide justifications for their claims. This was evident in the way that Shane 
continuously asked students questions about what they believed to be true during the 21 theorem-
proof episodes. Summing together codes from the Pre-Proof and During-Proof activities, it is 
also noteworthy that, within the data set of 21 theorem-proofs, we identified a total of 19 
instances of students drawing conclusions directly from the hypothesis of the theorem. This is 
important because drawing valid conclusions from the proof assumptions has been identified as 
an important competency in proving, particularly for beginning a chain of reasoning, a skill in 
which many students struggle (Senk, 1985; Cirillo and Hummer, 2019, 2021). Also, there were 8 
instances, in total, of students generating claims through a combination of a postulate and an 
assumption about the diagram. Cirillo and Hummer (2019) pointed out that making valid 
assumptions about diagrams is an under-recognized, but important proof competency.   

Across the three features Shane incorporated during the Concluding the Proof activity, one 
important take-away is that these activities often seemed to accomplish what Herbst and 
Miyakawa (2008) identified as “sanctioning” the theorem, which involves explicitly declaring it 
as having that label. Shane sanctioned theorems by restating them, establishing shorthand 
notation for writing them, and acknowledging that they could now be used in future proofs.      

Herbst and colleagues (2006, 2009) provided evidence which suggests that teachers heavily 
control the work of proving in American classrooms. Although, as evidenced by the data, 
through his question-and-answer exchanges to support students’ development of claims, and 
through the ways Shane scaffolded the Setting up the Proof activities by alternating which 
competencies students had opportunities to practice while proving any one theorem, Shane did 
seem to provide students with more opportunities to authentically engage in proving theorems 
than research suggests is typical. To start, in contrast to the claim made by Herbst and Brach 
(2006), that students were not expected to prove theorems, Shane did expect his students, not 
only to prove theorems, but to heavily participate in proving them. For numerous theorems, 
Shane also expected students to participate in sketching their own diagrams and in determining 
the “Given” and “Prove” statements from the conjecture or the conditional statement. Thus, in 
contrast to the teachers from Herbst and colleagues’ (2009) study, Shane did, in fact, seem to 
expect his students to carry a good deal of the cognitive load. To be clear, we are not suggesting 
that we disagree with the norms put forth by Herbst and colleagues. Rather, we mention these 
norms to demonstrate that Shane’s approach seems to be unusual, and, given his students’ test 



Proceedings of the 43rd Annual Meeting of PME-NA 

—————————————————————————————————————————————————————————— 
Olanoff, D., Johnson, K., & Spitzer, S. (2021). Proceedings of the forty-third annual meeting of the North American 
Chapter of the International Group for the Psychology of Mathematics Education. Philadelphia, PA. 
 

536 

results, is worthy of examination. One question that this study raises is related to how effective 
Shane’s teaching approach would be with a non-Honors student population. In other words, 
would Shane’s approach work well for heterogeneous groups of more “typical” students?       
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