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This report documents how one undergraduate student used set-based reasoning to reinvent 
logical principles related to conditional statements and their proofs. This learning occurred in a 
teaching experiment intended to foster abstraction of these logical relationships by comparing 
the predicate and inference structures among various proofs (in number theory and geometry). 
We document the progression of Theo’s emergent set-based model from a model-of the truth of 
statements to a model-for logical relationships. This constitutes some of the first evidence for 
how such logical concepts can be abstracted in this way and provides evidence for the viability 
of the learning progression that guided the instructional design. 
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Teaching logic for the purpose of supporting students’ apprenticeship into mathematical 
proving imposes fundamental challenges regarding how the content-general relationships of 
logic can be operationalized within students’ reasoning about particular mathematical concepts. 
Scholars affirm that this requires that logic be understood in both its syntactic and semantic 
aspects (Barrier, Durand-Guerrier, & Blossier, 2009; Durand-Guerrier, Boero, Douek, Epp, & 
Tanguay, 2012). In other words, students must be able to reason about the form of statements 
and arguments as well as the way they refer to mathematical objects. Previous studies find that 
logic taught syntactically often does not foster understandings that are useful in context (e.g., 
Hawthorne & Rasmussen, 2014), and textbooks downplay the referential aspects of logic 
(Dawkins, Zazkis, & Cook, 2020). How then are students to abstract logical relationships that 
generalize across contexts and yet interface with their meanings for particular concepts? How do 
such logical understandings become functional for comprehending mathematical proofs?  

In our ongoing investigations of these questions (Dawkins, 2017, 2019; Dawkins & Roh, 
2020), we have found that set-based reasoning can provide a unifying structure by which 
students abstract key logical relationships. Set-based reasoning is propitious for student thinking 
and it provides a clear means by which students can interpret statements about very different 
topics as being in some sense the same (Hub & Dawkins, 2018). We claim the two questions 
above can be answered by guiding students to formulate logical understandings by comparing 
interpretations and generalizing their reasoning about mathematical texts in particular contexts.  

In this report, we share a case study that illustrates one student’s pathway to reinventing 
some basic logical principles of conditional statements: proof by universal generalization, 
converse independence, and contrapositive equivalence. As we shall explore, Theo’s 
construction of these new logical relationships depended on his coordination of two ways of 
thinking: properties defining sets of objects and proofs showing implications between properties 
as relating such sets. Our teaching experiment methodology (Steffe & Thompson, 2000) allows 
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us to provide a detailed account of Theo’s learning process, rooted in his meanings and activity 
(Piaget & Garcia, 1991; Thompson, 2013). This account of a student abstracting logical 
relationships is a novel contribution to the literature. We analyze the episode using the emergent 
models framework to document the emergence of a new mathematical reality (Gravemeijer, 
1999), namely that of content-general logical structure rooted in set relationships. We highlight 
Theo’s learning pathway to demonstrate the viability of the learning progression, which closely 
matched what we intended in the instructional design.  

 
Conceptual Analysis of the Logic of Conditionals 

In our prior teaching experiments (Dawkins, 2017; Hub & Dawkins, 2018), we guided 
students to reinvent logical principles by comparing their interpretations of mathematical 
statements of the same logical form. In this experiment, we extended this task sequence by 
asking students to read theorems paired with 2-4 proofs each and to determine whether each 
proof proved its associated theorem. We encouraged students to associate to each property the 
set of objects that makes it true (reasoning about predicates, Dawkins, 2017). This allowed them 
to formulate generalizable truth-conditions for the statements and generalizable interpretations of 
the proofs. In this section, we shall present a conceptual analysis (Thompson, 2008) of these set-
based understandings to clarify what we intended students to learn.  

Each theorem was a universally quantified conditional: “For any [𝑥 ∈ 𝑆], if [𝑃(𝑥)], then 
[𝑄(𝑥)].” We use brackets since the statements/proofs that students saw always had particular 
objects and properties in these slots (e.g., “For every integer 𝑥, if 𝑥 is a multiple of 6, then 𝑥 is a 
multiple of 3” and “For all quadrilaterals ∎𝐴𝐵𝐶𝐷, if ∎𝐴𝐵𝐶𝐷 is a rhombus, then it is a 
parallelogram”). Each proof was either a direct proof, a proof/disproof of the converse, a proof 
by contraposition, or a proof/disproof of the inverse (see Table 1). No proofs contained errors. 
All the proofs (as opposed to disproofs) used universal generalization. The principle of universal 
generalization (Copi, 1954) states that a proof regarding an arbitrary particular justifies the claim 
for the whole set of such objects. Choosing such an arbitrary particular is conventionally 
expressed using the imperative “let” and assigning a property to an object. The argument that 
follows must depend only on that property and thereby the argument will carry to all objects with 
the property (Alcock & Simpson, 2002). Such proofs that “property 𝑃 implies property 𝑄” 
justify a subset relationship: the set of objects with 𝑃 is a subset of the set of objects with 𝑄. This 
is the truth-condition for such conditional statements, which we refer to as the subset meaning 
(Hub & Dawkins, 2018). Such statements are false when there is an object with property 𝑃 and 
not property 𝑄. To connect the subset meaning to proofs, students must relate chains of inference 
to the underlying sets of objects. Proofs establish implication relationships among properties, 
which are tantamount to containment relationships between the sets of objects with the 
properties. Counterexamples show lack of set containment and property implication.  

Notice that the direct proof of a conditional and the proof of its converse (if both possible) 
deal with the same two sets of objects. They prove two facts about those sets: the 𝑄’s contain the 
𝑃’s and vis-versa. In this case the two sets are equal, meaning the exact same objects have the 
two properties. Since not every implication involves two equal sets, these two proofs are taken as 
independent (the converse proof does not prove the original theorem). However, the 
contrapositive proof is understood to prove the theorem as the contrapositive statement is 
equivalent to the original theorem (arguments for this will appear in the results section). Since 
we expected students to abstract these structures from reading statements and proofs, we 
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purposefully maintained a parallel structure to the proofs. The disproofs are somewhat oddly 
stated, but we intended for them to match the same first-line/last-line structure to help students 
associate each proof to the statement it is normatively understood to prove or disprove.  

Table 1: Forms of proof presented for comparison 

 

 
Guided Reinvention and Emergent Models 

Our instructional sequence was inspired by the Realistic Mathematics Education design 
heuristics of guided reinvention and emergent models (Freudenthal, 1991; Gravemeijer, 1999). 
Guided reinvention entails providing students with experientially real situations they can easily 
imagine and from which they might elaborate key mathematical ideas. The emergent models 
heuristic describes how students may first develop a model-of the situation. They then elaborate 
the model by applying it to new situations until the model becomes a new body of understanding 
apart from the situation(s) it interpreted. The model then becomes a model-for reasoning about 
new problems and concepts. The model’s elaboration for mathematical exploration constitutes 
the establishment of a new mathematical reality for the student. The key distinction between 
model-of and model-for is the extent to which the structure of the model reflects the original 
situation or alternatively comes to take on its own internal meaning for the student.  

To apply these tools to teaching logic to undergraduates, we first wondered what kind of 
experientially real activity would lead students to perceive questions about logical structure. 
Logic generalizes across language and proofs, which led us to engage students in comparative 
reading of statements and proofs of parallel form. By focusing them on set structure, students can 
develop a model-of how each statement refers to sets of objects (reasoning about predicates) and 
what it means for conditional statements to be true and false (in terms of set relations). By 
considering how this set structure repeats across various statements and proof texts, students may 
extend their model-for reasoning about content-general logical relationships.  

Context independence is a key aspect of how we study students’ models. Students often draw 
the contrapositive inference in a particular context. For instance, they may infer that since all 
multiples of 6 are multiples of 3, a number that is not a multiple of 3 cannot be a multiple of 6. 
While this relates to a logical principle, it is not a logical understanding for that student if they 
only apply it locally. We call an understanding logical to the extent it generalizes across 
contexts. Only content-general understandings will support students in reasoning about the 
logical relationship between any conditional statement and its contrapositive statement/proof.  
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Methods 
As part of a grant project developing constructivist models of students’ learning of logical 

principles through guided reinvention, we conducted 8-12 session teaching experiments with 
pairs of undergraduate students recruited from Calculus 3 classes at two large public universities 
in the United States. The site for this study’s data is a Hispanic Serving Institutions (HSIs). 
Students volunteered to participate and completed a screening survey to verify that they did not 
already know the target concepts to be taught (see Roh & Lee, 2018). The experiment featured in 
this paper was conducted remotely once per week over Zoom using OneNote as a shared space 
for reading and writing. The two participants chose the pseudonyms Theorem (which we 
abbreviate as “Theo” for clarity) and Phil. The lead author served as the teacher/researcher and 
the other three authors acted as outside observers (Steffe & Thompson, 2000). Each session 
lasted between 60 and 90 minutes and participants were compensated monetarily for their time.  

This experiment consisted of an intake interview with a pre-test, nine instructional sessions, 
and an exit interview with a post-test. During the exit interview, we asked students to choose 
how they wanted to be identified in terms of their ethnic and gender identities and how those 
identities were significant for their mathematics learning at university. Theo identified himself as 
a white, non-Hispanic male. At the time of the study, he was in his first year of university as a 
finance and mathematics double major. He described himself as “passionate” about mathematics. 
Phil, an engineering technology major, identified himself as a Hispanic male. The two students 
worked productively and respectfully together, though they generally operated in parallel rather 
than interactively. We focus on Theo in this report because of the clear evidence of his 
progression toward our learning goals. Our models of other students’ learning progressions will 
appear in other reports. Theo constitutes a clear existence proof for our intended learning path.  

Consistent with teaching experiment methodology (Steffe & Thompson, 2000), the research 
team continuously made conjectures about the two students’ understandings and tested those 
conjectures through questioning and iterative task design. The research team met once or twice 
between sessions to analyze and plan for subsequent sessions. All sessions were recorded on at 
least two or three screens: the interviewer screen that moved between pages in OneNote and two 
screens dedicated to capturing Theo and Phil’s pages respectively. All main study sessions were 
transcribed. Our retrospective analysis drew upon field notes, transcripts, and compiled video.  

 

 
Figure 1: Sequence of proof reading tasks. 
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Teaching Progression 
In the first two instructional sessions of the experiment, Theo and Phil read sequences of 

universally quantified conditional statements and considered the relationships between the sets of 
objects that made the if-part true and objects that made the then-part true (hereafter the “if-set” 
and “then-set”). We intended them to formulate the subset meaning (see Conceptual Analysis) 
for such statements and the conditions for a counterexample. In the next three sessions, they read 
theorems and proofs as shown in Figure 1. Theorems 1-4 were chosen to intentionally vary the 
relationships between the underlying sets (proper subset in 1 and 3; set equality in 2 and 4) and 
to vary the mathematical context (number theory in 1 and 2; geometry in 3 and 4). In the sixth 
session, which is the last featured in this report due to space limitations, Theo reviewed all of the 
theorems and proofs and his decisions about which proved the associated theorems. We call this 
the Comparison Task. We sought for him to systematize the relationship between the logical 
form of the proof and whether it proved the given theorem (evidence of a model-for logical 
reasoning that generalizes across context).  

 
Results 

Developing Set-Based Meanings (Days 1-2) 
In the intake interview, Theo read a direct proof, inverse proof, converse proof, and 

contrapositive proof of the claim “For any integer 𝑥, if 𝑥 is not a multiple of 3, then 𝑥2 − 1 is a 
multiple of 3.” He affirmed the direct proof proved the theorem and denied that the other three 
did. His rejection of the converse proof was based on whether the middle section of the argument 
worked, not based on its reverse order from the theorem. Productively, he showed early evidence 
of associating an equation such as 𝑥 = 3𝑘 + 1 to a set of values (reasoning with predicates).  

On the first day of instruction, once Theo and Phil had assigned truth values to all the given 
conditionals, the interviewer asked the students to explain the relationship between the if-sets 
and then-sets. Theo initially drew a diagram showing the then-set as a circle nested within the 
circle for the if-set. He then thought about a specific statement (Theorem 1) and revised his 
answer to say, “Because if you think of it, one to 100, that'd’be more multiples of 3. So that’s the 
larger set in these multiples of 6. That’s a subset.” Over those first two days, the pair came to 
confirm this interpretation of the set relationship for true conditional statements. They also 
agreed that a conditional was false whenever an element of the if-set was outside the then-set.  

Theo generally represented complement sets using separate circles rather than the inside and 
outside of a given circle. In reasoning about Theorem 1 and its contrapositive statement, Theo 
drew three circles that corresponded to the equations 𝑥 = 3𝑘, 𝑦 = 3𝑘 − 1, and 𝑧 = 3𝑘 − 2. This 
reflects a common tendency to replace negative categories with a positive description (Dawkins, 
2017). He then drew a smaller circle inside the 𝑥 circle to represent the multiples of 6. This 
pattern of representing a partition by separate circles persisted throughout the experiment.  
Reading Number Theory Proofs (Days 3-4) 

During the third and fourth teaching sessions, Theo eventually adopted normative answers as 
to whether each proof proved the associated theorem based on his set-based reasoning developed 
in the first two days. At the beginning of Day 3, the interviewer asked Theo to summarize what 
he had learned the previous two days. He reported:  

It’s true if the statement, if it exists inside then or is the same size as then… If the condition 
exists outside of the parameters of the then statement. Like if it goes beyond the bubbles or 
diagrams that we created, if it extends beyond it then that's when it's not true. 
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We note two things about this explanation. First, Theo acknowledged that either the if-set may 
be contained in the then-set or they may be equal. Second, he referred to the parts of the 
statement as having physical extension in space and being contained by one another. This 
constituted his initial model-of interpreting statements by which he determined whether 
conditional statements were true or false. Each part of the statement corresponded to a group of 
objects and those objects could be imagined as taking up a region enclosed by a closed curve.  

Theo affirmed that Proof 1.1 (direct) proved Theorem 1. He did so focusing on the steps 
within the proof, not the order from first to last line. He denied Proof 1.2 (converse), saying:  

I don’t agree with this theorem [sic] because we’re trying to say that if it’s a multiple of six 
then it’s a multiple of three, not if it’s a multiple of three then it’s a multiple of six. It kind of 
goes into what we were saying last week, if the condition falls outside of the realm of all 
possibilities and the then statement, then it doesn’t hold up, it’s not true. 

In the first part of the quote, Theo restated Theorem 1 as what “we’re trying to say” and 
contrasted it with what Proof 1.2 is addressing, which he articulated as the converse conditional. 
He thus attended to the order of the theorem and the first/last-lines of the proof in order to 
distinguished the meaning of the theorem from what the proof accomplished and to show conflict 
between the two. He then elaborated what the proof (which presents the counterexample 15) 
proved: that the if-condition for the converse “falls outside the realm” of the then-statement. He 
thus shifted back into the language of sets of objects as spatial regions.  

Both Theo and Phil agreed that Proof 1.3 (a proof by contraposition) proved Theorem 1. 
They had read the theorem and contrapositive statement on Day 1 and then noted then that the 
contrapositive should be true based on the fact that all multiples of 6 are multiples of 3. It is 
worth noting that Proof 1.3 contains 19 lines and explores how a number having a remainder of 1 
or 2 when divided by 3 means it has a remainder of 1, 2, 4, or 5 when divided by 6. The 
interviewer invited Theo to draw a diagram for how he understood the proof to ascertain how he 
was making sense of the complex case structure.  

Int:  Okay. Can y’all try to use the diagrams that we were using the last two times we met? 
We have this kind of meaning for what the theorem says in terms of the group of 
multiples of 3 covering the group of multiples of 6. Can y’all try to explain to me how is 
it that Proof 1.3 proves it using that idea? 

Theo: I think you got to look at, it would be the pattern of all the non-multiples of three and 
you could be like, 1, 2, 4, 5, 7, 8. And you have that subset of numbers, and then you 
have the other subset that’s three and obviously they're not in each other. However, the 
multiples of six does not exist inside the non-multiples of three. It only lives inside the 
multiples of three… It’s talking about the subspace when 𝑥 is not a multiple of three [see 
Figure 2], which is going to be this whole range of numbers on the left side. And 
basically, it proves that there exists no of this smaller subset that’s on the right side, the 
blue circle that exists in the non-multiples of three, not even like a cross over even.  
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Figure 2: Theo’s diagram for Proof 1.3 

In this argument, Theo justified Proof 1.3 using what Hub and Dawkins (2018) called the empty 
intersection meaning, namely that “if 𝑥 is not a multiple of 3, then 𝑥 is not a multiple of 6” is 
true because there is no overlap between non-multiples of 3 and multiples of 6. While this is 
distinct from the subset meaning developed on the first two days, it supported Theo in perceiving 
symmetry between Proof 1.1 and Proof 1.3. He explained, “[Proof] 1.3 shows that the [multiple 
of 6] circle doesn’t exist in the circle of non-multiples of three, while proof 1.1 would show it 
exists in the circle with multiples of three.” By this point he was comfortable treating the 
complement of multiples of 3 as a category. However, his notation and reasoning in some sense 
expressed that 𝑥 was not in the set of multiples, rather than saying it had the property of being a 
non-multiple. His empty intersection meaning similarly negated the “element of” relation, not the 
property of being a multiple of 6. We have found this preference common, meaning students 
often avoid treating a negative property as constituting a predicate (Dawkins, 2017). Theo’s 
justification is similar to the arguments Yopp’s students produced for how contrapositive proofs 
eliminate counterexamples (Yopp, 2017).  

During Day 4, Theo affirmed Proof 2.1 (direct) and denied Proof 2.2 (converse). He did so 
using an analogy to Theorem 1 and Proof 1.2 (converse), desiring consistency. He explained:  

In this case, the if and the then are the same set. But, if you switch them around in a set 
where they’re not the same, then it doesn’t necessarily work out that way. In this example, it 
works out, but switching the if and then doesn’t necessarily mean it will work out every time. 

This argument marks a key development in Theo’s thinking because his model-of the set 
structure allows him to make an analogy between Theorem 1 and Theorem 2 that determines 
how the proofs do or do not support the theorems. In Dawkins and Roh (under review) we 
discuss a prior study participant who similarly recognized the analogy, but she denied that it held 
force. That participant perceived that the difference between subset situations and equal set 
situations meant the proof relationships for Theorem 1 do not apply to Theorem 2. It is unclear 
why Theo took a different interpretation. Still, it shows how his set-theoretic model had become 
a model-for reasoning about more abstract relationships between theorems and proofs. However, 
we learned in the next sessions that his model still carried some contextual dependence.  
Reading Geometry Proofs (Day 5) 

Recall that our operating definition for a student’s understanding as being logical is that it 
generalizes across semantic content. Theo’s use of his set-theoretic model showed that to some 
extent he was attending to logical structure on the number theory tasks. In contrast with his prior 
reasoning, on Day 5 Theo affirmed that a Proof 4.1 (converse) proved the theorem and he denied 
that Proof 4.2 (contrapositive) did so. Initially Theo and Phil judged that Proof 4.2 was irrelevant 
to Theorem 4. Though Phil later developed an indirect argument for why Proof 4.2 supported the 
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theorem, neither judged that it proved. Theo also had trouble applying his subset meaning to this 
theorem because he represented the if-set (kite and parallelogram) using two overlapping circles 
to show what is shared between the two properties. He then identified that the conclusion 
(rhombi) existed in the overlap, which led him to imagine the then-set as nested within the if-set. 
We hypothesize that the three-set structure and the more complex nature of negating the 
hypothesis kept Theo from structuring these theorem/proof pairs as he had on previous tasks.  
Comparison Task (Day 6) 

On Day 6, we presented Theo with all of the theorems and proofs from the previous three 
sessions along with his decision about whether each proof proved the theorem or not. We asked 
him to look for patterns among the proofs, his decisions, and how the proofs did or did not prove 
the associated theorem. He began by grouping all the direct proofs and affirming they all proved 
their associated theorem: “You start by saying like, okay, we have this if, it meets such criteria 
and then like, it continues on to conclude, okay, this criteria can be put inside this larger space.” 
He initially placed Proof 4.1 (converse) in this group, and then removed it since it started with 
“the then.” He then grouped the first three (dis)proofs of converse, omitting Proof 4.1. Later he 
decided to move Proof 4.1 into that group. When asked about his claim that Proof 4.1 proved the 
theorem, he decided to change his decision “to be consistent.” He explained the pattern among 
the proofs that proved the theorem: “We're going to have to start by looking at the smallest 
subspace, I’m saying for the other yeses (sic), excluding 1.3, because that’s doing it from the 
other way. But proving the converse doesn’t necessarily prove the theorem.”  

Theo grouped all the rest of the proofs (inverse and contrapositive) together as not direct or 
converse. We explain this in terms of his set-based model, which operated with the structure of 
if-sets, then-sets, and everything else. Since his model did not include the complement of the if-
set, he did not distinguish the order of inverse and contrapositive. Theo’s groupings demonstrate 
how the structure of the proofs reflected the structure of the sets, not the statements per se.  

The interviewer asked Theo to explain again his argument for why Proof 1.3 proved, which 
he did in terms of his empty intersection meaning. The interviewer then asked him to apply the 
same argument to Proof 4.2. Upon considering he decided Proof 4.2 proved, explaining:  

Because I think when we do it like the same way in 1.3, we’re saying, okay, it has this 
property that it’s a non-rhombus. And if it’s not a rhombus, it either exists in the space that, 
like we don't have to look at it like is not a kite or is not a parallelogram… So it’s basically 
saying that the non-rhombi don’t have properties of both… Which is basically saying that the 
space where they have both of the properties is rhombi. 

By adapting his empty-intersection argument, Theo began to construct contrapositive 
equivalence as a logical concept rooted in his set-based model-for reasoning about proofs.  

 
Discussion and Conclusions 

We proffer this account of Theo’s learning as an account of how logical understandings can 
emerge from set-based reasoning about the structure of conditional statements and their proofs. 
We argue that Theo’s ability to see necessity in logical relationships (e.g., converse proofs 
cannot prove for consistency) and to generalize logical arguments (e.g., applying his empty 
intersection argument from Proof 1.3 to Proof 4.2) as evidence that his set-theoretic model 
constituted a new mathematical reality for reasoning about logic (Dawkins & Cook, 2017).  

To further illustrate what was involved in Theo’s learning, we highlight some shifts in 
Theo’s ways of talking about the statements and categories in the statements. First, he became 
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comfortable talking about negative categories such as non-rhombus. Second, he shifted rather 
fluidly between using a) set language interpreted as spatial regions such as “smallest subspace,” 
b) property language such as “meets such criteria,” and c) syntactic/temporal order language of 
“if,” “then,” and “start.” In this way, Theo coordinated quantification, property relations, and 
statement syntax to give meaning to these complex proof texts. What is more, these 
understandings allowed him to perceive theorems/proofs about number theory categories and 
geometric categories as the same, since they all shared set-theoretic structure. We conjecture that 
developing negative categories and exploring how properties stand for whole classes of objects 
are essential parts of his construction of a logic of conditional statements and proofs.  

We began with questions about how students’ understanding of logical relationships can 
interact with their content-specific reasoning. We claim that Theo’s learning progression 
provides an actionable answer to this question. Specifically, logical concepts can be reinvented 
in context via the emergence of set-based models for the truth and falsehood conditions and the 
structure of mathematical proofs. Ongoing work is seeking to understand other students’ 
pathway to these abstractions to create generalizable learning sequences for undergraduate 
students’ introduction to mathematical proving.  
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