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Emergent graphical shape thinking (Moore & Thompson, 2015) is a way of reasoning that is 
critical across numerous STEM fields. However, evidence indicates that the underlying 
component ideas for emergent thinking are underdeveloped in school mathematics education 
(e.g., Thompson & Carlson, 2017), and few studies directly report on students’ development of 
this way of thinking. We present the results of a teaching experiment conducted with eighth-
grade students to support stable meanings for emergent graphical shape thinking. We focus on 
the in-the-moment meanings expressed by a pair of students as they engaged in a sequence of 
tasks that we conjecture could support stable meanings for constructing and interpreting graphs. 

Keywords: Algebra and Algebraic Thinking, Middle School Education, Learning Trajectories 
and Progressions  

Across STEM fields, constructing and interpreting graphs is a crucial skill (e.g., Glazer, 
2011; Potgieter et al., 2008). For instance, in a study looking at the use of graphical 
representations across numerous science textbooks and practitioner journals, Paoletti et al. 
(2020) determined that, at least implicitly, an individual must engage in emergent graphical 
shape thinking (hereafter emergent thinking) to interpret most graphs in these sources. Moore 
and Thompson (2015) defined emergent thinking as conceiving a graph simultaneously in terms 
of “what is made (a trace) and how it is made (covariation)” (2015, p. 785). Specifically, with a 
conception of a point as a multiplicative object, a student can conceive of a graph in terms of an 
emergent, progressive trace generated by the point’s movement and dictated by the covarying 
quantities’ magnitudes represented on the axes. The resulting graph represents the tracking of the 
two quantities’ simultaneous covariation. Although there is some evidence that students in 
grades 6-12 can engage in emergent thinking in-the-moment (e.g., Ellis et al., 2015; Johnson, 
2015), other research suggests that pre-service (e.g., Moore & Thompson, 2015; Moore et al., 
2019) and in-service (e.g., Thompson et al., 2017) mathematics teachers in the United States 
often do not reason emergently in tasks designed to elicit such reasoning. Therefore, there is a 
need to examine how to productively support students in developing emergent thinking. 

In this report, we address the research questions: How do two eighth-grade students develop 
meanings for graphs that entail emergent thinking? To investigate this question, we conducted a 
teaching experiment (Steffe & Thompson, 2000). In this report, we examine the work of two 
eighth-grade students as they completed the Faucet Task (Paoletti, 2019). Prior to this, we define 
components of emergent thinking to help readers understand how the task could support 
students’ developing meanings for graphs. We then describe the in-the-moment meanings 
(Thompson, 2016) the two students developed as they engaged in the task. Finally, we share the 
results of a task developed by Thompson et al. (2017) that the students completed after the 
instructional sequence to determine whether such meanings may have become part of the 
students’ stable meanings for constructing and interpreting graphs. 
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Components of Emergent Thinking 
Covariational Reasoning and Multiplicative Objects 

Several researchers (see Thompson & Carlson, 2017, for a review) have explored ways in 
which students’ covariational reasoning can support them in developing productive meanings for 
various mathematical ideas. Researchers have contended covariational reasoning is 
developmental (Carlson et al., 2002; Saldanha & Thompson, 1998). Initially, a student is likely 
to coordinate two quantities by thinking “of one, then the other, then the first, then the second, 
and so on” (Saldanha & Thompson, 1998, p. 299) until the student has developed an operative 
image of covariation that entails a relationship between quantities that results from imagining 
both quantities being tracked for some duration. Saldanha and Thompson (1998) elaborated: 

[Covariational reasoning] entails coupling the two quantities, so that, in one’s understanding, 
a multiplicative object is formed of the two. As a multiplicative object, one tracks either 
quantity’s value with the immediate, explicit, and persistent realization that, at every 
moment, the other quantity also has a value. (p. 299) 

Saldanha and Thompson’s use of multiplicative object stems from Piaget’s notion of ‘and’ as a 
multiplicative operator (the Cartesian product). Thompson et al. (2017) noted, “A person forms a 
multiplicative object from two quantities when she mentally unites their attributes to make a new 
attribute that is, simultaneously, one and the other” (p. 98). Hence, covariational reasoning 
entails understanding the simultaneity of two quantities’ values in relation to each other. 
Reasoning in a Coordinate System 

To represent and coordinate two conceived quantities, students can construct a coordinate 
system (Lee, 2016; Lee et al., 2020). In the Cartesian coordinate system, once a student has 
conceived that quantities’ magnitudes can be represented via line segments, the student can 
consider changes in the lengths of these segments, oriented orthogonally on horizontal and 
vertical axes, as the situational quantities covary. With such a coordinate system in mind, a 
student can then conceive of a point as a multiplicative object (Lee, 2016; Lee et al., 2020; 
Thompson, 2011) that simultaneously represents the two covarying quantities via the two 
segments’ magnitudes. Such a meaning is a prerequisite for reasoning about (or imagining) a 
graph as representing an emergent trace of a point representing covarying quantities. 

 
Setting and Methods 

The middle school where the study took place serves a diverse student population (over 75% 
students of color) in the northeastern United States. We conducted the teaching experiment in an 
accelerated eighth grade math class with eight students who had completed high school level 
Algebra I and Geometry courses. The experiment occurred over five days in June after 
administration of the Geometry end-of-course assessment. The first author, who was not the 
students’ normal teacher, served as the classroom teacher-researcher (TR). 

All portions of the teaching experiment were video- and audio-recorded. The two focus 
students for this study, Kendis (female, African American) and Camila (female, Hispanic), were 
a pre-established group in the class. During the instruction, Kendis and Camila used a 
Chromebook computer to view and manipulate interactive applets and recorded their work on 
paper worksheets and a dry-erase board. To analyze this data, we watched the videos to identify 
occurrences providing insights into each student’s in-the-moment meanings for constructing, 
interpreting, or representing quantities and relationships between quantities (Thompson, 2008). 
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Additionally, we collected data from the uv-Task described in Thompson et al. (2017) one 
day after the instruction concluded. In the uv-Task, a coordinate system is shown, and bolded 
segments representing quantities v and u (on the horizontal and vertical axes, respectively) vary 
as the animation plays. (The animated task can be seen at http://bit.ly/CovaryMagnitudes.) 
Consistent with Thompson et al.’s (2017) methods, we gave participants a paper with a set of 
axes and the initial segments representing v and u shown, and the animation was played six 
times. The students were asked to sketch a graph that depicted the value of u relative to the value 
of v (see Figure 1 (left) for an accurate graph). Using the rubric from Thompson et al. (2017) 
shown in Figure 1 (right), we independently coded the student responses on the shape of the 
sketched graph (92% interrater reliability). Although the uv-Task was not explicitly designed to 
measure emergent thinking, we contend imagining the graph as the trace of the (imagined) point 
corresponding to the endpoints of the two segments as they covary is required to produce a more 
accurate graph shape; we infer scoring a 2 or higher is likely indicative of a person engaging in 
emergent thinking. 
 

    
Figure 1: (left) The accurate graph and (right) the scoring rubric for shape of the sketched 

graph on the uv-Task (Thompson et al., 2017). 
 

Kendis and Camila’s Development of Emergent Thinking 
In the sections that follow, we present evidence that Kendis and Camila developed in-the-

moment meanings for graphs that entailed emergent thinking. We first present evidence of their 
construction of component meanings to highlight how this thinking developed. 
Constructing Quantities and Reasoning Covariationally 

Critical to thinking emergently is conceiving of two covarying quantities. To help students 
construct quantities situationally, the TR presented the class with a GeoGebra applet 
(https://www.geogebra.org/m/rdxkrwek) intended to represent a faucet with hot and cold knobs 
(Figure 2). The TR directed students to use sliders to represent turning each knob on or off; 
changing the sliders changes the representations of amount of water (width of the rectangle 
below the faucet) and temperature (color of the rectangle). We intended for students to reason 
about the changing amount of water and temperature as two quantities to coordinate.  
 
 

http://bit.ly/CovaryMagnitudes
https://www.geogebra.org/m/rdxkrwek


Proceedings of the 43rd Annual Meeting of PME-NA 

—————————————————————————————————————————————————————————— 
Olanoff, D., Johnson, K., & Spitzer, S. (2021). Proceedings of the forty-third annual meeting of the North American 
Chapter of the International Group for the Psychology of Mathematics Education. Philadelphia, PA. 
 

502 

       
Figure 2: Screenshots of part one of the Faucet Task (turning cold water on). 

 

The TR asked, “What are some of the things that this applet is trying to represent?” Camila 
stated, “the more to the right you dragged [the slider], the wider it [the rectangle below the 
faucet] got.” Kendis added that the width of the rectangle represents “how much water comes out 
of the faucet.” When the TR drew students’ attention to the changing colors of the rectangle, 
Kendis volunteered that the color represented “temperature,” and she explained that turning each 
knob outwards (cold on and hot off) would result in lowering the water temperature. Kendis’s 
responses demonstrated that she conceptualized two situational quantities. 

Next, to support the students in coordinating two covarying quantities, the TR asked students 
to make predictions for what would happen to the amount and temperature of the water in four 
scenarios, assuming that both the hot and cold knobs start halfway on. Each scenario consisted of 
turning one knob either all the way on or off. By making predictions for changes in both amount 
and temperature of water in each scenario, we provided students opportunities to coordinate 
simultaneous changes in two quantities and thereby understand the simultaneity of the two 
quantities changing as a multiplicative object. As evidence of such reasoning, when asked what 
would happen if the hot knob were turned all the way off, Kendis responded, “the water is going 
to get colder, and it’ll be less [water].” Kendis’s response explicitly described changes in the 
magnitudes of both quantities, indicating her meaning that the quantities simultaneously covary. 
Constructing and Using a Coordinate System 

The next prompts were designed to develop two ideas related to constructing and using a 
coordinate system: using line segments to represent quantities and understanding a point in a 
coordinate system as a multiplicative object. These components support emergent thinking. 

Using line segments to represent quantities. In the next prompt, students accessed a 
revised applet that included (a) a vertical (graduated, but unlabeled) thermometer (colored red) to 
represent the water temperature and (b) a horizontal pink line segment that corresponded to the 
width of the rectangle that represented the water stream (Figure 3, left). The positioning of the 
segments as vertical and horizontal was designed to foreshadow the creation of a coordinate 
system using segments to represent quantities’ values on the vertical and horizontal axes. 
 

           
Figure 3: Screenshots of (left) part two and (right) part three of the Faucet Task. 
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The TR then asked students to describe how the segments varied for the same four knob-
turning scenarios as before. Our goal was to provide opportunities to connect the lengths of the 
segments to the previously established quantities. To exemplify the productivity of such 
opportunities, consider a dialogue about turning the cold knob off between Camila and the TR: 

Camila: Um, you turn the cold to the left, and then the temperature will increase, and the red 
line will get longer because of that. And the pink line will be shorter. [TR asks 
Camila to repeat.] The red line is going to get longer. 

TR:  It’s going to get longer? Why? 
Camila: Because you’re eliminating the cold water, so the hot is left, and the hot water 

increases the temperature. 
TR:  [TR restates what Camila said.]…[A]nd then the pink segment’s going to go? 
Camila: It’s going to get shorter. 
TR:  It’s going to get shorter because there’s going to be? 
Camila: Less water overall. 

In this dialogue, Camila connects changes in the quantities in the situation (temperature and 
amount of water) to changes in the lengths of the corresponding line segments, indicating that 
she understood the segments as representing the situational quantities. Further, we note Camila 
readily transferred this reasoning when presented with the segments on the coordinate system. 

Understanding a point in a coordinate system as a multiplicative object. Shortly after the 
previous exchange, the TR showed students a new applet. This applet included a coordinate 
system with the pink segment (representing amount of water) positioned along the horizontal 
axis, the red segment (representing temperature) positioned along the vertical axis, and a point 
with position corresponding to the endpoints of both segments (Figure 3, right). The TR directed 
students to describe the motion of the point as they explored the applet to provide an opportunity 
to conceive of relationships between the point’s movement and variations in both segments. 

While working as a pair, Camila and Kendis had the following conversation with the TR: 
TR:  So how is this point moving around the screen? 
Camila:  In accordance with the… 
Kendis:  [moves fists horizontally back and forth] 
TR:  In accordance with what? 
Kendis:  The, the temperature… [crosstalk] 
Camila:  [crosstalk] Temperature. 
Kendis:  …and the, and how much water was coming out. 
TR:  With both? 
Kendis:  [nods and gestures a vertical line with hand] It stays in line with both of them. 

We interpreted Kendis’s reference to “both of them” as the segments representing amount of 
water and temperature. We inferred that Kendis’s horizontal gesture was intended to show that 
the top endpoint of the temperature segment and the point on the coordinate system formed a 
horizontal line (and similar for the vertical gesture and the amount of water segment). We infer 
Kendis understood that the point’s movement was dictated by the two quantities’ magnitudes 
represented by segments; the point served as a multiplicative object in the coordinate system.  

Using the same applet, the TR told students to investigate a point’s movement in several 
scenarios. Responding to a scenario starting with both knobs turned halfway on, and asked to 
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predict how the quantities will change when they turn hot all the way on, both Kendis and 
Camila related segment lengths to the situational quantities. Kendis stated: 

Yeah, this is going to go up [traces finger along the vertical axis from the origin upward 
beyond the length of the red segment]… more temperature…. [traces finger along the 
horizontal axis from the origin to the right beyond the length of the pink segment] It’s going 
to move to the right and up. 

In response to Kendis’s reasoning, Camila used the Chromebook to do a Google Image search 
for a compass and produced a drawing (reproduced in Figure 4a). We infer that Camila 
interpreted the described action (“move to the right and up”) as occurring simultaneously, and 
the diagonal line segment represented her understanding of the point’s movement. 

Indicative of not yet explicitly connecting the coordinate point to the situational 
multiplicative object she had constructed earlier, Kendis initially disagreed with Camila’s 
representation, stating: 

[I]t’s going this way [traces right along the horizontal axis, as in (1) in Figure 4b] and, look, 
it’s going to stay in a line with [the red segment], so it’s just going to move over and up 
[traces from the point to the right a short distance (2) and then up (3) in Figure 4b]. 

 

        
(a)    (b)    (c) 

Figure 4: (a) Recreation of Camila’s drawing. (b, c) Recreations of Kendis’ hand motions.  
 
Although both Camila and Kendis understood where the point would end up relative to its 

starting position, they conceptualized the point’s movement differently. Consistent with the 
developmental nature of covariational reasoning (Saldanha & Thompson, 1998), Kendis initially 
conceived of the changes in the underlying segments as sequential (the point would move to the 
right, then up) as opposed to the simultaneous movement Camila had described.  

As the pair continued to discuss the scenarios, evidence emerged that Kendis also began to 
explicitly connect the motion of the point with the simultaneously covarying situational 
quantities. For instance, when predicting the point’s movement when the two knobs start halfway 
on and the hot knob is turned off, Kendis described “[the red segment]’s gonna go down, and 
then [points to the horizontal axis] it’s less water also so it’s gonna go diagonal [making a 
diagonal cutting motion with her hand].” Immediately after this, Kendis silently engaged in a 
series of movements. She first motioned horizontally to the left from the point as if indicating a 
decreasing amount of water (indicated by (1) in Figure 4c), then motioned down as if indicating 
a decreasing temperature of water ((2) in Figure 4c). Critically, and differing from her earlier 
activity, after these two motions, Kendis lastly motioned diagonally down-and-to-the-left ((3) in 
Figure 4c) to indicate that the point would move in such a way to reflect the simultaneous 
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variations of the two segment and quantities magnitudes. We took this as evidence of Kendis’s 
formation of a multiplicative object. 
Reasoning Emergently and Interpreting Graphs in Multiple Ways 

For the final activity in the Faucet Task, the TR provided students with several graphs that 
we told them resulted from turning the knobs. The TR asked students to determine what position 
each knob was in initially and what action(s) occurred. It is important to note that the graphs 
were undirected (i.e., no starting or ending point was identified). Thus, each graph had at least 
two possible interpretations. Through this activity, we intended to provide students the 
opportunity to reason emergently by interpreting (at least) one possible trace of the graph. 

As the pair discussed the actions that would produce a graph (Figure 5 (left)) that was 
moving “down and to the right,” Camila reasoned that the action was turning the cold knob on. 
She stated, “It’s going down in temperature and to the right, so it means you’re increasing water, 
and it’s going down, so it means you have to be adding cold water.” Camila’s reasoning moved 
between imagining the tracing of a point on the graph, the underlying quantities and how they 
covary, and the action in the situation. We infer she was reasoning emergently. 
 

            
Figure 5: Two trace graphs the TR asked students to interpret. 

 

Kendis and Camila did not independently consider that more than one action could produce 
the same graph. However, during the class discussion of Figure 5 (left), another group described 
an interpretation of the graph as turning the cold knob off (reading the graph from right to left). 
Once the discussion revealed that reading the graph as a trace from right to left could be 
produced by a different action that would result in the same final graph, Camila was able to 
apply this idea to describe two different possible productions of the graph in Figure 5 (right):  

Camila: First step is to turn the cold on, then turn the hot one on. 
TR:  [T]hey’re both starting completely off, turning cold on then turning hot on…. [S]o in 

terms of the two quantities, how did you know that was [trails off]? 
Camila: Well, it continued to go to the right, so it means [the amount of water]’s increasing in 

quantity, and then, after the second transition, it’s going up in temperature, which 
means you’re going to be adding hot water. So, the first one we started off as cold 
adding it, and then we had to add more of hotter temperature. 

TR:  … Could there be another way this plays out? 
Camila: Hot water off. 
TR:  Hot water, so you start with both of them on, turn hot water off get to here… 
Camila: And then the cold is at halfway and then you could also turn it off.  

We take Camila’s independent description of two different action sequences that would produce 
the graph as strong evidence that she was engaging in in-the-moment emergent thinking.  



Proceedings of the 43rd Annual Meeting of PME-NA 

—————————————————————————————————————————————————————————— 
Olanoff, D., Johnson, K., & Spitzer, S. (2021). Proceedings of the forty-third annual meeting of the North American 
Chapter of the International Group for the Psychology of Mathematics Education. Philadelphia, PA. 
 

506 

 
uv-Task Results 

As shown above, the work on the Faucet Task provided evidence of Kendis and Camila 
developing in-the-moment emergent thinking. We hypothesized that repeated experiences with 
such thinking in different contexts would allow emergent thinking to become part of the 
students’ stable meanings for constructing or interpreting graphs. The remaining sessions of the 
teaching experiment provided students with seven additional opportunities to construct and five 
additional opportunities to interpret graphs in different tasks and contexts. We use the results 
from the uv-Task (Table 1) to provide some evidence that such opportunities were productive for 
both Kendis and Camila, as well as their classmates, in developing stable meanings (Thompson, 
2016) for constructing and interpreting graphs that entail emergent shape thinking. 

Table 1 presents the results of US secondary mathematics teachers as reported in Thompson 
et al. (2017) and our participants’ results on the uv-Task. We interpreted a score of 0/IDK (“I 
don’t know”) on this task as no evidence of employing covariational reasoning, a score of 1 as 
evidence of employing gross covariational reasoning (Thompson & Carlson, 2017), and a score 
of 2 or greater as evidence of employing some level of emergent reasoning. Kendis and Camila 
each received a score of 2 for the shape of their sketched graphs (see Figure 6). These scores, 
which exceeded the performance of over 70% of US mathematics teachers in the Thompson et 
al. (2017) study, indicated to us that Kendis and Camila may have developed emergent thinking 
as a component of their stable meanings for constructing or interpreting graphs, as evidenced by 
their ability to apply such reasoning in an unfamiliar, decontextualized situation. 
 

Table 1: Scores on the Shape of Sketched Graph Rubric for the uv-Task 
 0/IDK 1 2 3 4 
US teachers (n = 121) 65 (53.7%) 22 (18.2%) 11 (9.1%) 14 (11.6%) 9 (7.4%) 
8th graders (n = 8) 2 (25.0%) 0 (0.0%) 4 (50.0%) 1 (12.5%) 1 (12.5%) 

     
Figure 6: (left) Camila’s graph and (right) Kendis’s graph in response to the uv-Task. 

 
Conclusion 

Addressing our research question, we described two students’ activity as they engaged in an 
instructional sequence that emphasized aspects of covariational reasoning (Thompson & Carlson, 
2017) and reasoning within a coordinate system (Lee, 2016; Lee et al., 2020) to support them in 
developing emergent thinking. We highlight that despite individual differences in students’ in-
the-moment meanings during instruction, each student demonstrated evidence of stable meanings 
that entailed emergent thinking by the end of the study; each student conceived graphs as “what 
is made (a trace) and how it is made (covariation)” (Moore & Thompson, 2015, p. 785). We add 
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to the literature by providing a proof-of-concept that at least some middle school students can 
develop emergent thinking as part of their stable meanings for graphs. 

Although our quantitative results present students’ performance on a task relative to a sample 
of U.S. mathematics teachers (Thompson et al., 2017), we do not intend for comparisons to be 
drawn between these populations. Rather, we intend to provide a frame of reference that conveys 
the non-trivial nature of constructing meanings that entail emergent thinking. Our study 
demonstrates that a purposeful learning progression can develop eighth-grade students’ stable 
meanings for graphs via emergent reasoning; we conjecture other populations (e.g., teachers) 
could develop comparable meanings if provided similar opportunities.  

We acknowledge that the small sample size and the use of an accelerated math class limit the 
generalizability of our findings. Given the importance of emergent thinking as a way of 
interpreting graphs across STEM fields (Paoletti et al., 2020), it is critical to continue to 
investigate ways to develop such meanings throughout school mathematics education. 
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