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Abstract

We investigated the effects of proximal grouping of numbers, problem-solving goals to
make 100, and prior knowledge on students’ solution strategies in an online mathematics
game. Logistic regression on 857 problem-level data points from 227 middle-school
students showed that students were more likely to use productive solution strategies on
addition and multiplication problems when proximity supported number grouping, 100
was the problem-solving goal, and students had high prior knowledge. Furthermore,
when proximity and number goals did not support problem-solving, students with low
prior knowledge were less likely to use productive solution strategies on multiplication
problems than students with high prior knowledge. Findings demonstrate that the effects
of perceptual and number features on solution strategies vary by students’ prior
knowledge.
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Introduction

Mathematics problems can often be solved with several different strategies. For example,
the equation 3(2+x)=18 can be solved with a three-step standard strategy (distribute 3 into the
parentheses, subtract 6 from both sides, divide both sides by 3) or a two-step efficient strategy



(divide both sides by 3, subtract 2 from both sides). Although efficient and flexible problem
solving is a primary goal in mathematics education (NGA Center & CCSSO, 2010), students
often apply standard procedures without noticing important patterns in problem structures that
afford more efficient strategies (Carpenter et al., 1980; Star & Rittle-Johnson, 2008). Prior
studies have demonstrated that perceptual and conceptual problem structures (Alibali et al.,
2018; Geary et al., 2004; Landy & Goldstone 2010; Lemaire & Callies, 2009), and students’
prior knowledge (Siegler, 1988), impact problem-solving performance. In this study, we
examined the effects of proximal grouping of numbers, problem-solving goals of making 100,
and students’ prior knowledge on subsequent solution strategies (Figure 1) within a mathematical
game in which students transform expressions to reach an equivalent goal (Figure 2).
Factors That May Affect Students’ Solution Strategies

Proximal grouping of numbers. Empirical work suggests that algebraic reasoning is
grounded in perceptual processes (Alibali & Nathan, 2012; Goldstone et al., 2010). For instance,
students use proximity as a perceptual cue to group symbols (e.g., 2 + 3×4; Landy & Goldstone,
2007); and students solve expressions incorrectly when the symbols are spaced in a manner that
is incongruent with the order of operations (e.g., 2+3 × 4; Braithwaite et al., 2016). Here, we
operationalize proximal grouping as the location of numbers within the problem (e.g., 3+5+4 vs.
3+4+5) rather than the physical spacing of numbers and operations. Drawing on the Gestalt laws
of perceptual organization (Hartmann, 1935), stimuli that are proximal in terms of spatial
location are more likely to be grouped together than are stimuli that are distal. Thus, we
hypothesize that students are more likely to make a productive first step towards the goal when
the numbers to be added are adjacent to each other as opposed to far apart.

Problem-solving goals of making 100. The mathematical system in the United States
has an underlying base-10 structure. Base-10 structure knowledge is a key predictor of students’
mathematics performance (Geary, 2006; NCTM, 2000; NRC, 2001), and is related to advanced
problem-solving strategies (Laski et al., 2014). Adults are faster and more accurate on addition
problems summing to 10 (Aiken & Williams, 1973; Krueger & Hallford, 1984) and problems in
which answers are multiples of 5 (Campbell, 1995). State mathematics standards tend to focus on
students’ facility in making 10 and 100 (NGA Center & CCSSO, 2010). Furthermore, curricular
activities often focus on addition and subtraction with 10 or 100 (University of Chicago School
Mathematics Project, 2014; Pearson Education, Inc, 2008). Given this focus on 10s and multiples
of 10s, we anticipate that 100 will be easier to create combinations for as compared to other
numbers and hypothesize that students will be more likely to use productive solution strategies if
the goal is to make 100.

Prior knowledge. To use efficient solution strategies, students need to have knowledge
of underlying concepts and procedures (Star & Rittle-Johnson, 2008). Middle-school students
with higher mathematics achievement are more likely to solve algebraic equations using fewer
steps compared to students with lower achievement (Newton et al., 2019). Furthermore, sixth



graders were more likely to use more efficient strategies that involve fewer steps during
algebraic equation solving after receiving instruction on multiple strategies, suggesting that
mathematical knowledge affects strategy choices (Star & Rittle-Johnson, 2008). Here, we
hypothesize that students with higher prior algebraic knowledge will be more likely to make a
productive first step than students with lower prior algebraic knowledge.
The Present Study

The goal of this study was to understand how proximal grouping of numbers, problem
solving goals of making 100, and prior knowledge affect students’ solution strategies in an
interactive online mathematics game. Our three research questions were:

1) Do proximal grouping, goals of making 100, and prior knowledge uniquely
influence students’ solution strategies?

2) Do these factors interact to affect students’ solution strategies?
3) Are these effects consistent across addition and multiplication?

Method

Participants
A sample of 227 students from six middle schools in the Southern U.S. was included in

analyses, drawn from a larger randomized control trial examining the efficacy of an online
mathematical game. Of 227 students (56% male), most (96%) were in sixth grade, and the rest
(4%) were in seventh grade. Over half of the sample was Asian (53%), followed by White
(36%), Hispanic (4%), and other ethnicities (7%).

Materials
This study analyzed log data collected in an interactive online mathematics game where

students explored algebraic notations by performing mouse or touch-based gestures to move
symbols according to mathematical principles. On each problem, students saw two mathematical
expressions—a start state, which is transformable, and a goal state, which is perceptually
different but mathematically equivalent to the start state (Figure 2). The game objective is to
transform the start state into the goal state.

Problem structure. For both addition and multiplication, we designed a quartet of problems
in the game that varied on the proximal grouping of numbers in the start state and making 100
in the goal state (Table 1). For instance, transforming 44+56+a+72+28 into 100+a+100
involves proximal grouping in the start state and making 100 in the goal state (i.e., 44 and 56
are adjacent and make 100). Transforming 47+33+b+52+68 into 99+b+101 involves
non-proximal grouping of numbers and making non-100 (i.e., 47 and 52 are far apart and make
99). Dummy variables were created for analyses (proximal grouping = 1; making 100 = 1).



Measures
Prior knowledge. Prior algebra knowledge was measured with 11 items, each scored as

correct (1) or incorrect (0), selected from two previously validated measures (Rittle-Johnson et
al., 2011; Star et al., 2014). An example item is 5(y-2)=-3(y-2)+4, solving for y.

Solution strategies. Solution strategies were measured by whether or not students made a
productive mathematical transformation to reach the goal state. We coded students’ first

mathematical transformation (i.e., “first step”) to measure their productivity because their first
step impacts the subsequent steps in reaching the goal state. Specifically, a first step was

productive if it moved students closer to the goal state of the problem. For example, transforming
the start state “47+33+b+52+68” into “99+33+b+68” is productive because the student moved
closer to the goal state by combining 47 and 52 to make 99 (Table 2). However, transforming the
start state into “ 80+b+52+68” by combining 47 and 33 is not productive because “80” is not

related to any numbers in the goal state. We coded first steps as productive (1) or non-productive
(0). The intraclass correlation coefficient of the coding was .92, indicating excellent reliability.

Data Analysis Plan
We performed binary logistic regression analyses because the outcome (productivity of solution
strategies) was binary. We considered hierarchical binary logistic regression modeling because

problem-level data were nested within student-level data. However, the result of the
unconditional models showed that there were no significant variations among students for both
addition and multiplication problems. Thus, we conducted one-level binary logistic regression
analyses using problem-level data. The number of problem-level data points included was 857

for addition and 871 for multiplication problems. We used IBM SPSS Statistics 25 for analyses.

Results

Before performing data analyses, we computed frequencies for students’ solution
strategies for each problem (Table 3; note that not all students completed each problem).

Main Effects for Addition Problems
Model 1.1 with proximal grouping, making 100, and prior knowledge predicting the probability
of making a productive first step on addition problems indicated that the three predictors were
significantly associated with students’ productivity, and explained 35.7% of the variance in the
probability of making a productive first step (Table 4). The log odds of making a productive
first step was positively related to proximal grouping (B = 3.163, p < .001), making 100 (B =

2.363, p < .001), and prior knowledge (B = .127, p = .017). Students were more likely to make a
productive mathematical transformation when numbers to be combined were adjacent to each

other, the goal was to make 100, and when the students had higher prior knowledge.



Interaction Effects for Addition Problems
Next, we tested an interaction term of proximal grouping by making 100 (Model 1.2 in Table
4), as well as interaction terms of proximal grouping by prior knowledge and making 100 by

prior knowledge (Model 1.3 in Table 5). The results indicated no statistically significant
interactions between these variables. Finally, we tested a three-way interaction among the three
predictors (Model 1.4 in Table 5), and this interaction was also not statistically significant
(Figure 3).

Main Effects and Interactions for Multiplication Problems
We repeated the analyses for multiplication problems to test if these effects replicate

across operations. Model 2.1 containing three predictors as main effects explained 26.9% of the
variance in the outcome variable (Table 6). The log odds of making a productive first step was
positively related to proximal grouping (B = 2.436, p < .001), making 100 (B = 1.148, p < .001),
and prior knowledge (B = .139, p = .001).

For Model 2.2 (Table 6), the interaction term (proximal grouping by making 100) was
added, and the model explained 28.1% of the variance in the probability of making a productive
first step. Students were significantly less likely to make a productive first step when the
proximal grouping and number goals did not support problem solving compared to the other
three types of problems. Next, we added two interaction terms with prior knowledge to the
model (Model 2.3 in Table 7). The making 100 by prior knowledge interaction was significant
(B = -.265, p = .003), whereas the proximal grouping by prior knowledge interaction was not
significant. Students with low prior knowledge were significantly less likely to make a
productive first step when the number goal was non-100, whereas the effect of number goal was
not significant for students with high prior knowledge. Finally, we tested a three-way interaction
among proximal grouping, making 100, and prior knowledge (Model 2.4 in Table 7). The result
showed a significant three-way interaction (B = -.239, p = .001). Students with low prior
knowledge were less likely to make a productive first step when the numbers to be combined
were not adjacent and the number goal was to make non-100 compared to students with high
prior knowledge (Figure 3).

Discussion

This study examined the effects of perceptual (proximal grouping of numbers) and
conceptual (problem-solving goals to make 100) problem structures, and prior knowledge on
middle-school students’ solution strategies within an interactive online mathematics game. For
both addition and multiplication problems, students were more likely to make a productive
mathematical transformation when numbers to combine were adjacent, the goal was to make



100, and when the students had a higher level of prior knowledge. The three-way interaction
among proximal grouping, making 100, and prior knowledge was only significant for
multiplication problems. Specifically, students with low prior knowledge were less likely to
make a productive first step when the proximal grouping and number goals did not support
problem solving compared to students with high prior knowledge.

Although this study only examined students’ first mathematical transformation as a
measure of productive problem solving, the findings revealed the ways in which perceptual
features and numbers influence students’ solution strategies. Future studies could investigate
these effects with other measures of solution strategies (e.g., number of steps made, sequence of
transformations), and the relations between problem structure and other student behaviors in the
game, such as pause time before solving.

These results suggest it may be helpful to teach students to notice important patterns in
problem structures and build upon their familiarity with 100 to use it as an anchor for
decomposition in multi-digit problem solving, which may promote uses of more efficient
solution strategies. Overall, results extend past work demonstrating the effects of perceptual
features and numbers within experimental settings into a digital context.
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Table 1
The Design of Problem
Structure

Making

100

Proximal Grouping

Yes (1) No (0)

Yes (1) P10: (S) 44+56+a+72+28→ (G) 100+a+100
P24: (S) 25*4*b*50*2 → (G) 100*b*100

No (0) P13: (S) 15+87+c+62+32 → (G) 102+c+98
P30: (S) 8*12*d*3*32 → (G) 96*d*96

Note. S = Start state. G = Goal state.

P7: (S) 11+55+y+89+45 → (G) 100+y+100 P32:
(S) 10*20*a*10*5 → (G) a*100*100

P14: (S) 47+33+b+52+68 → (G) 99+b+101 P26:
(S) 4*6*c*24*16 → (G) 96*96*c

Table 2

Examples of Productivity of Students’ Solution Strategies

Start state Goal state Productive first steps Non-productive first steps

47+33+b+52+68 99+b+101 • 99+33+b+68
• 47+b+52+101
• 33+b+99+68

• 47+101+b+52
• 47+52+33+b+68a

• 47+b+52+33+68a

• 80+b+52+68 • 47+33+b+120

aTransformations that involved commuting (i.e., moving numbers to be added closer together)
were considered productive in bringing the student closer to the goal state.
Table 3

List of Problems by Problem Structure and Frequencies of Students’ Solution Strategies

Problem structure Number (%) of
students with a

productive first step
Number (%) of students with a
non productive first step

Problem 10 (n = 219): S:
44+56+a+72+28 G: 100+a+100

Problem 7 (n = 213): S:



11+55+y+89+45 G:
100+y+100

Problem 13 (n = 221): S:
15+87+c+66+32 G: 102+c+98

Problem 14 (n = 204): S:
47+33+b+52+68 G: 99+b+101

Problem 24 (n = 217): S:
25*4*b*50*2
G: 100*b*100

Problem 32 (n = 211): S:
10*20*a*10*5 G: a*100*100

Problem 30 (n = 222): S:
8*12*d*3*32
G: 96*d*96

Problem 26 (n = 221): S:
4*6*c*24*16
G: 96*96*c
Proximal Grouping, Making
100

Non-Proximal Grouping,

Making 100

Proximal Grouping, Making
non-100

Non-Proximal Grouping,
Making non-100

Proximal Grouping, Making
100

Non-Proximal Grouping,
Making 100

Proximal Grouping, Making
non-100

Non-Proximal Grouping,
Making non-100
218 (99.5%) 1 (0.5%) 204

(95.8%) 9 (4.2%) 217 (98.2%)

4 (1.8%) 137 (67.2%) 67

(32.8%)

209 (96.3%) 8 (3.7%) 181

(85.5%) 30 (14.2%) 215

(96.8%) 7 (3.2%) 134 (60.6%)

87 (39.4%)

Note. S = Start state. G = Goal state.
Table 4

The Main Effects of Three Predictors and the Interaction Effect (Proximal Grouping ×Making
100) on Students’ Solution Strategies for Addition Problems (N = 857 problems)

Predictors Model 1.1 Model 1.2 B SE Exp(B) p B SE Exp(B) p

Intercept -.082 .366 .921 .823 -.099 .367 .906 .788

Proximal grouping

(ref.: non-proximal grouping) 3.163 .474 23.646
*** .000 3.311 .528 27.402*** .000

Making 100

(ref.: making non-100) 2.363 .356 10.622
*** .000 2.440 .374 11.469*** .000



Prior knowledge .127 .053 1.135*.017 .127 .053 1.136*.017

Proximal grouping ×

Making 100 - - - - -1.039 1.183 .354 .380

Model Statistics R2
Nagelkerke=.357 χ²(3) = 155.721,

p < .001
*p < .05, **p < .01, ***p < .001

R2
Nagelkerke=.359

χ²(4) = 156.365, p < .001

Table 5

The Interaction Effects of Proximal Grouping, Making 100, and Prior Knowledge on Students’
Solution Strategies for Addition Problems (N = 857 problems)

Predictors Model 1.3 Model 1.4 B SE Exp(B) p B SE Exp(B) p

Intercept -.573 .417 .564 .170 -.159 .372 .853 .669

Proximal grouping

(ref.: non-proximal grouping) 5.890 1.666 361.535
*** .000 3.469 .551 32.099*** .000

Making 100

(ref.: making non-100) 3.964 1.036 52.664
*** .000 2.518 .380 12.403*** .000 Prior knowledge .205 .063

1.227** .001 .135 .054 1.144*.013

Proximal grouping ×

Prior knowledge -.403 .208 .668 .053 - - - -

Making 100 ×

Prior knowledge -.252 .143 .777 .079 - - - - Proximal grouping ×

Making 100 × Prior knowledge
- - - - -.261 .135 .770 .053



Model Statistics R2
Nagelkerke= .372 (χ²(5) = 162.704,

p < .001)

*p < .05, **p < .01, ***p < .001
R2

Nagelkerke= .363
(χ²(4) = 158.409, p < .001)

Table 6

The Main Effects of Three Predictors and the Interaction Effect (Proximal Grouping ×Making
100) on Students’ Solution Strategies for Multiplication Problems (N = 871 problems)

Predictors Model 2.1 Model 2.2 B SE Exp(B) p B SE Exp(B) p

Intercept -.368 .295 .692 .212 -.476 .300 .621 .113

Proximal grouping

(ref.: non-proximal grouping) 2.436 .289 11.433
*** .000 3.032 .410 20.743*** .000

Making 100

(ref.: making non-100) 1.148 .220 3.153
*** .000 1.399 .244 4.050*** .000

Prior knowledge .139 .042 1.149** .001 .142 .042 1.153** .001

Proximal grouping ×

Making 100 - - - - -1.571 .581 .208
** .007

Model Statistics R2
Nagelkerke= .269 (χ²(3) =

145.984, p < .001)
*p < .05, **p < .01, ***p < .001

R2
Nagelkerke= .281

(χ²(4) = 153.106, p < .001)

Table 7

The Interaction Effects of Proximal Grouping, Making 100, and Prior Knowledge on Students’
Solution Strategies for Multiplication Problems (N = 871 problems)

Predictors Model 2.3 Model 2.4 B SE Exp(B) p B SE Exp(B) p

Intercept -1.134 .391 .322** .004 -.596 .310 .551 .055

Proximal grouping



(ref.: non-proximal grouping) 3.506 .793 33.328
*** .000 3.014 .386 20.372*** .000

Making 100

(ref.: making non-100) 2.813 .620 16.654
*** .000 1.397 .240 4.045*** .000 Prior knowledge .261 .059

1.298*** .000 .162 .044 1.176*** .000

Proximal grouping ×

Prior knowledge -.168 .115 .846 .144 - - - -

Making 100 ×

Prior knowledge -.265 .090 .767
** .003 - - - - Proximal grouping ×

Making 100 × Prior knowledge
- - - - -.239 .075 .787** .001

Model Statistics R2
Nagelkerke= .287 (χ²(5) = 156.297,

p < .001)

*p < .05, **p < .01, ***p < .001
R2

Nagelkerke= .284
(χ²(4) = 154.942, p < .001)

Figure 1. Logic model linking student-level and problem-level predictors to the outcome
variable of interest (students’ solution strategies), for both addition and multiplication
problems.



Figure 2. An example of a problem consisting of a start state (47+33+b+52+68) and a
goal state (99+b+101)



Figure 3. Interaction Plots for Productivity of First Steps (Note that students were divided into
two groups by a mean-split of the prior knowledge score(M=7))


