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1. Objectives
One of the beautiful things about mathematics is that there are multiple pathways to solving any
problem. However, students often do not take the time to understand the problem or explore
alternative and possibly more efficient strategies before solving (Carpenter, Corbitt, Kepner,
Lindquist, & Reys, 1980). Rushing through problems may result in more errors and less efficient
strategies, and lead to less positive views of mathematics. The objective of this study is to
examine if and how thinking time, defined as the amount of time from the start of the problem to
the students first action to solve, influences the efficiency of problem-solving strategy. We
utilize data recorded in Graspable Math (GM; Ottmar, Landy, Goldstone, & Weitnauer, 2015;
Weitnauer, Landy, & Ottmar, 2016), a web-based mathematical tool, to test the associations
between thinking time and problem-solving efficiency, defined as the number of steps taken to
solve the problem. We hypothesize that longer thinking time before solving would predict more
efficient strategies.

2. Theoretical framework
According to Polya’s mathematical problem-solving process (1957) there are four stages to
successful problem-solving: 1) understand the problem, 2) devise a plan, 3) carry out the plan, and 4)
check for the correctness of the solution. Polya viewed problem-solving as a process and
differentiated between thinking and doing when solving math problems. As such, mathematical
problem-solving at each stage requires procedural, conceptual, and flexible thinking (Star & Rittle
Johnson, 2008), and involves cognitive, metacognitive, and affective processes (Schoenfeld, 2017;
Mayer, 1998). Encouraging students to think more deeply about the problem and plan different
strategies may help students become more proficient, efficient, and flexible problem solvers.

Studies suggest that thinking about and reflecting on the problem-solving strategies before
actively solving have positive effects on performance. For instance, adults who paused longer prior
to making their first move in the Tower of Hanoi task completed the task with fewer moves, and
they reported using that pause time for planning (Welsh, Cicerello, Cuneo, & Brennan, 1995).
Similarly, prompting preschoolers to pause and reflect on instructions before making a response
leads to substantial improvement in performance on the Dimensional Change Card Sort task
(Espinet, Anderson, & Zelazo, 2013). The benefits of pausing also emerge in classroom
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discourse and student learning. When teachers are prompted to wait a few seconds between
utterances, teachers are more likely to ask questions that require application of concepts as
opposed to fact retrievals or repeating students’ responses (Tobin, 1986); students also ask more
questions (Rowe, 1986; Ingram & Elliot, 2014) and show higher achievement (Tobin, 1986,
1987). These studies suggest that longer thinking time may be associated with better problem
solving performance.
Affective components of mathematics may also contribute to problem-solving performance.

For example, Hoffman (2010) found that self-efficacy was positively related to
problem-solving efficiency, whereas math anxiety was negatively related to problem-solving
accuracy. The negative impact of math anxiety is also observed in problem-solving strategies.
Students with high math anxiety are more likely to use less sophisticated strategies compared to
students with low math anxiety (Ramirez, Chang, Maloney, Levine, & Beilock, 2016). Together,
the findings suggest that problem-solving efficiency may be influenced by cognitive as well as
affective processes.

Here, we examine (1) whether the amount of thinking time before solving a math
problem is associated with steps taken to solve that problem; (2) whether thinking time predicts
problem-solving efficiency above and beyond students’ algebra knowledge, math self-efficacy
and math anxiety; and (3) whether algebra knowledge or affective disposition moderates the
relation between thinking time and problem-solving efficiency.

3. Methods
We utilized data recorded in Graspable Math (GM), a web-based dynamic mathematics

tool where students can explore algebraic notations by performing mouse-based gestures (e.g.
moving, combining, and substituting symbols) that apply mathematical transformations to
expressions. The GM system responds to the users’ gesture-actions by enacting valid
transformations (e.g., turning 2x+5x into 7x when users tap “+”) and provides error feedback by
shaking (e.g., the expression 2+7x shakes when users attempt to add the 2 and the 7x) and by not
enacting the invalid transformation.

We analyzed data collected for a larger study examining the usability and feasibility of
GM in three high-school classrooms during algebra instruction across three consecutive days. In
the study, students completed a brief assessment on algebra knowledge (e.g., 5(y–2) = –3(y–
2)+4, solve for y; adapted from Star, Rittle-Johnson & Durkin, 2016), and a questionnaire on
math self-efficacy (e.g., “I can learn math even if the work is hard”; adapted from Midgley et al.,
2000) and anxiety (e.g., “My mind goes blank when I work on math problems”; adapted from
Kaya, 2008). Then, students solved math problems using GM. All materials were administered
online, and students completed the study at their own pace on their own device.

4. Data sources and materials
Participants
A total of 41 ninth-grade students were included in the following analyses. They completed the
algebra assessment and the questionnaire, and were present for at least two of the three study



sessions.
Goal State Activity
We used data from the Goal State Activity in GM (Ottmar et al., 2015) to examine the relation
between thinking time and problem-solving efficiency. In this activity, students were presented
with a starting expression and a mathematically equivalent goal state (Figure 1). Their task was
to transform the expression into the specified goal state using a series of gesture-actions that

were learned and practiced in the sessions. In the example of 6 − 3 + 5 × 2 (Figure 2), students
can (1) tap “−” to subtract 3 from 6, (2) tap “×” to multiply 5 and 2, then (3) drag 3 to

the right of 10 to reach the goal state of 10+3. Because GM enacts all valid mathematical
transformations, students may take alternative paths to reach the goal state (e.g., (1) multiply 5
and 2, (2) add -3 and 10, (3) add 6 and 7, then (4) decompose 13 into 10 and 3). The unlimited
potential paths to a goal state provided an ideal context for examining math problem-solving
efficiency.

Because the larger study was designed to test the feasibility and usability of GM, most of
the problems that students completed (54 of the 70 problems) were designed to teach the gestures
or practice mathematically valid actions, and therefore only required one or two gesture-action
steps to reach the goal state. For this paper, we focused on the remaining 16 problems that
required at least three steps to reach the goal and were designed to prompt greater variation in
problem-solving strategies and efficiency.
Measures

For each goal state problem, we recorded (a) the total time spent on the problem from
when the problem appeared on the screen to reaching the goal state, (b) the thinking time, and (c)
the steps taken to solve the problem. Thinking time represented the amount of time from when
the problem appeared to the first action of a student’s successful attempt to solve the problem.
For each problem, we calculated the percent thinking time (thinking time/total time), and used
this as the focal predictor in analyses. The steps to solve the problem represented the number of
steps students took on their successful attempt to reach the goal state. We also calculated step
efficiency by taking the ratio of the minimum steps required and the number of steps the student
actually took to reach the goal state. For instance, if a problem required at least three steps to
reach the goal state and the student took four steps, the student’s step efficiency on that given
problem would be 3/4 or .75. We calculated step efficiency for each problem to account for the
fact that the minimum steps varied across problems and that students completed a different
number of problems in the study. Finally, we calculated each student’s average percent thinking
time and step efficiency across all the problems they completed, and used these values as the
predictor or outcome respectively for research questions 2 and 3.

The total score on the algebra assessment, the average self-report rating on the math self
efficacy questions, and the average self-report rating on the math anxiety questions were
included as covariates (RQ2) or moderators (RQ3) in the analyses.

5. Results



Descriptive analyses
The total number of problems each student completed varied because students solved

these problems at their own pace. Most students (n=36) completed at least 12 of the 16 problems
(M=13.98, SD=2.35), and all students completed at least 8 problems. The large standard
deviations of the percent thinking time and the steps to solve suggested that there were individual
differences in these two measures and provided the premise for examining their associations both
within individual problems and overall across students (Table 1).
RQ1: Association between percent thinking time and steps taken to solve a problem

We conducted Spearman’s correlations between percent thinking time and steps taken to
solve for each of the 16 problems to examine whether longer thinking time was associated with
fewer steps to solve the problem. Next, we conducted an independent sample t-test for each
problem to examine whether there were differences in steps taken to solve between students with
long vs. short thinking time (based on median split).

The correlations between percent thinking time and steps were statistically significant for
11 problems, suggesting that longer thinking time was associated with fewer steps to solve the
problem. Although the correlations for the remaining five problems did not reach statistical
significance, they were all in the expected negative direction. The t-tests revealed a similar
pattern of results. Students with long thinking time took fewer steps to solve nine problems.
Although the remaining seven problems did not reach statistical significance, six of them were in
the expected direction (Table 2).
RQ2: Average percent thinking time predicts step efficiency
We conducted two linear regression models using average percent thinking time as the focal
predictor of average step efficiency. The baseline model tested the influence of algebra
knowledge, math self-efficacy, and math anxiety on average step efficiency, and revealed that
they did not significantly predict students’ average step efficiency. Next, adding average percent
thinking time to the baseline model revealed that average percent thinking time significantly
predicted average step efficiency and accounted for 17% of the variance in average step
efficiency above and beyond algebra knowledge and affective disposition (model 2), F(1,
37)=8.18, p=.007 (Table 3). These results suggest that students who spent more time thinking
had higher step efficiency.
RQ3: Moderating effects of algebra knowledge, math self-efficacy, and math anxiety To
explore whether the relation between thinking time and step efficiency varied across students
with different levels of algebra knowledge, math self-efficacy, or math anxiety, we expanded the
regression model in RQ2 and added the interaction term between percent thinking time and
algebra knowledge (model 3), math self-efficacy (model 4), or math anxiety (model 5). None of
these interactions were significant (Table 3) suggesting that the relation between percent thinking
time and step efficiency did not significantly differ across students with high vs. low algebra
knowledge, math self-efficacy, or math anxiety.

6. Significance



In summary, we found that (a) students who took longer to think about the problems
solved individual problems with fewer steps, (b) thinking time significantly predicted step
efficiency above and beyond students’ algebra knowledge or their affective disposition towards
mathematics, and (c) the relation between thinking time and step efficiency was not moderated
by students’ knowledge in algebra, math self-efficacy, or math anxiety.
The findings provide initial support for the notion that thinking time predicts problem solving

efficiency, and have implications research and practice. Future studies should examine the
potential cognitive and affective mechanisms underlying the association between thinking

time and problem-solving efficiency in mathematics. For instance, thinking time may be
associated with students’ inhibitory control and pausing to think may be a pathway through
which inhibition influences mathematics performance. Based on the research, teachers may
consider encouraging students to take time to plan out their strategy before solving a problem in
order to improve students’ problem-solving efficiency.
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