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Abstract: The concept of equivalence can be elusive to students and can be confounded with 

unproductive understandings of the equals sign. Using the game-based digital algebraic 

notation system, From Here to There! (FH2T), students explore ideas of equivalence by 

dynamically transforming expressions or equations among mathematically equivalent states. 

In fall of 2019, 409 middle-school students completed a randomized control trial where they 

worked in either GM or an online problem set control over four half-hour sessions during their 

math block. We found that students in the FH2T condition showed enhanced performance 

over the control (p=.043, ηp
2 =.010). We will describe the FH2T technology, describe our 

results, and discuss implications for the usefulness of digital environments in mathematics 

education. 

 

Keywords: Algebra and Algebraic Thinking, Technology, Instructional Activities, Middle School 

Education  

Introduction 
Student misunderstandings or misconceptions about equivalence and the equals sign have been noted as 

inhibiting success in upper-level STEM disciplines (National Mathematics Advisory Panel, 2008). A common 

misconception that students have is viewing the equals sign as marking or calling for a computation, such as 

interpreting “4+1=5” as “four and one makes five.” While this description is accurate in this case, over 

identifying “makes” with the equals sign can be unproductive. For example, students who rigidly associate 

“makes” with the equals sign may claim equations like “4+1=2+3” as not valid because there is a sum on the 

right-hand side of the equals sign, rather than a single number. More generally, these types of operational 

understandings are associated with difficulty in equation solving (Knuth, Stephens, McNeil, & Alibali, 2006). A 

robust perspective, in contrast, is when the equals sign is viewed as a relational symbol such that there is an 

equivalence relation between the expressions on each side of the symbol (Kieran, 2007).  

Much of the research on students’ understanding of mathematical equivalence overlaps with students’ 

understanding of the equals sign (Blanton, Stephens, Knuth, Gardiner, Isler, 2015; Kieran, 2007; Knuth, et al., 

2006). Notably, Rittle-Johnson and colleagues (2011) point out that by 4 years of age, most children have 

understandings of numerical equivalence – whether two sets have equal quantities of items – but issues of 

equivalence become entangled with issues of notation as students work with bigger numbers, more complex 

operations, and generalized forms with variables. In our work, we untangle equivalence from the equals sign 

with goal state tasks in FH2T. In FH2T, students used Graspable Math (GM), a dynamic algebraic notation tool, 

to transform an initial expression into a mathematically equivalent goal state using permissible gesture-actions 

(Figure 1). Numbers and expressions are virtual objects on the screen and can be moved, combined, or re-

represented (through factoring or decomposition, for example) in GM and FH2T. Th task provides opportunity 

to create and notice equivalent states of expressions throughout transformations.  
 

 
Figure 1. The FH2T game has 14 worlds (left), with 18 problems per world (center). A sample FH2T task with a 

transformable expression “0+1•1+2•2+3•3+4•4+5” and a Goal of “15+20” (right). 

 

In fall of 2019, we conducted a randomized control trial with middle-school students. Students were 

randomly assigned to one of two interventions: FH2T and an online problem set control. Student performance 
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on two arithmetic equivalence and four algebraic conceptual items in pre- and post-tests were compared within 

and across conditions to explore how practice with FH2T may be associated with performance.  

Theoretical framework 
The operational vs. relational dichotomy in students’ perspectives of the equals sign is well-documented 

(Blanton et al., 2015; Carpenter, Franke, & Levi, 2003; McNeil, Grandau, Knuth, Alibali, Stephens, Krill, 

2006). Stephens and colleagues (2013) adds nuance to that discussion by differentiating between a relational-

computational view, where students understand that two sides of the equals sign calculate to the same value, and 

a relational-structural view, where students understand that a particular expression is just one of myriad ways to 

represent that quantity. This subtle difference is tied to a structural understanding of algebra (Kieran, 2007), 

where students may see some algebraic expressions as “single objects or as being composed of several objects" 

(CCSS.Math.Practice.MP7).  

Landy, Allen, and Zednik (2014) proposed that sense making of symbolic notation with its structures 

and rules happens through perceptual and sensorimotor systems. Sensorimotor mechanisms are not simply ways 

to translate marks on a page or readying them to be cognitively recognized, they are constitutive aspects of 

symbol manipulation. Thus, the capacity for symbolic reasoning is in part the ability to “perceptually group, 

detect symmetry in, and otherwise perceptually organize symbolic notations,” (Landy et al., 2014, p. 1) –  to 

notice and manipulate objects within the notation. Potentially, training one’s perceptual and sensorimotor 

systems in symbolic notation may result in more effective reasoning about the relationships represented by the 

symbols (Kellman, Massey, & Son, 2010). This is not to say that blindly or rotelya manipulating equations will 

result in a robust understanding of algebraic notation, but rather to point out that sensorimotor experiences of 

procedural routines can help to reinforce understandings of allowable transformations and support developing 

conceptual understandings.  
 

 
Figure 2. Sample transformations from a FH2T gesture guide. 

 

Grounded in this theory, GM is designed as a virtual environment where algebraic objects (numbers, 

terms, or expressions) can be manipulated by a mouse click or a finger on a touchscreen, and the system behaves 

dynamically according to the mechanics of algebraic notation (Figure  2; Weitnauer, Landy, Ottmar, 2016). For 

instance, enacting operations such as division involves dropping one object on top of another or touching the 

operator in between two adjacent objects. Other mouse- or touch-actions enact additional algebraic 

transformations such as distribution, factoring, and properties of equality. When a mathematically impermissible 

move is attempted, the system gives a perceptual response by shaking those terms and does not enact the move. 

GM provides an environment that allows for playing with algebraic expressions and equations as virtual objects. 

Prior work revealed that GM may be effective for decreasing notation errors and improving mathematical 

understanding for elementary and middle school students (e.g., Daigle et al.,2019). For this study, the GM 

environment is presented to students through From Here to There! (FH2T, Ottmar, et al., 2015), a hierarchical, 

self-paced goal state tasks arranged in worlds (i.e., math topics) inside a universe.  

Research methods 
Our study involved a student-level between-subjects randomized trial of FH2T and problem sets in 

ASSISTments, an online homework platform (Heffernan and Heffernan, 2014). We utilized a pretest-

intervention-posttest design with four 30-minute intervention sessions covering the four operations, order of 

operations, and balancing equations, and two 45-minute assessment sessions before and after the intervention. 

Students in the FH2T condition solved goal state tasks, while students in the problem set control worked 

through items compiled from three open-source mathematics curricula: Engage NY (2014), Utah Math Project 

(2016), and Illustrative Math (2017). The control condition included a combination of computations and word 

problems, with answer types including short answer, multiple choice, and open response. The control students 
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saw one item at a time, and had the opportunity to request three hints and the final solution. The mathematical 

performance assessment consisted of six items: two items on mathematical equivalence (Rittle-Johnson et al., 

2011), and four items on the conceptual understanding of equivalence in algebra (Star et al., 2014). 

All participants came from a large, urban district in southeastern United States, and the analytic sample 

consisted of 409 middle school students (55% White, 23% Asian, 14% Hispanic and 7% Black; 227 males 182 

females) who completed pre- and post-tests. Teachers were self-selected to have their classes participate, and the 

majority of students (343) were in 6th grade advanced level classrooms. The student population of the 

participating schools is comprised of 10% English Language Learners and about 30% identified as high needs, 

including but not limited to low income, limited English proficiency, or having identified learning disabilities.  

Results 
First, we examined whether students in the two conditions performed comparably on the pretest. An 

independent sample t-test on the pretest scores revealed that the baseline scores did not significantly differ 

between conditions, p = .982. Next, we examined the effects of condition on students’ performance by 

conducting a 2 (pre- vs. post-tests) × 2 (FH2T vs. control) repeated measures ANOVA on the scores. The 

analysis revealed a main effect of time on the scores suggesting that students in both conditions showed 

improvement from pretest (M = 3.89, SD = 1.63) to posttest (M = 4.23, SD = 1.57), F(1, 407) = 28.73, p < .001, 

ηp
2 = .066.. The significant Time × Condition interaction was an interaction of magnitude, F(1, 407) = 4.14, p = 

.043, ηp
2 = .010. Students in the FH2T condition showed greater improvement compared to students in the 

problem set condition (Figure 3). The effect of condition was not significant, p = .370. 

 
Figure 3. Time by Condition interaction on test scores. Error bars represent the standard deviation. 

 

Last, we estimated the effects of condition by conducting a multiple linear regression predicting 

posttest score. The baseline model estimating the influences of pretest, instruction level, and grade on the 

posttest score revealed that all three variables were significant predictors of the posttest scores, and together they 

accounted for 50.7% of the variance in the posttest score. Adding condition to the model revealed that students 

in the FH2T condition scored 0.15 standard deviation (SE=.07) higher on the posttest compared to students in 

the problem set condition, and the condition accounted for an additional 0.6% of the variance in students’ 

posttest scores above and beyond the covariates, p=.03. In summary, we found (a) students in both conditions 

improved their performance on mathematical equivalence from pretest to posttest and (b) students in the FH2T 

condition showed greater improvement on the posttest compared to students in the problem set condition. 

Conclusion 
Despite major efforts in research, curricula development, and policy, students still struggle with understanding 

equivalence and the equals sign. This study showed improved performance on arithmetic and algebraic 

equivalence items using FH2T, a gamified version of GM as compared to a control condition of online problem 

sets with hints and feedback. Most of the student participants were considered strong in mathematics, bringing 

into question the generalizability of these results, but the comparison with the control condition indicates 

students using FH2T experienced some benefit over traditional problem sets with extra support. Considering 

that FH2T (and GM) was built to augment perceptual learning of algebraic notation, these results provide some 

evidence supporting the notion that students’ algebraic reasoning may be partially comprised of perceptual-

motor routines (Goldstone et al., 2010, 2017). On first glance, FH2T (and GM) seems to have students 

mechanically match active expressions to goal states, but this study suggests that there is something more going 

on. Potentially, students’ experience of moving and transforming algebraic objects reinforced by the error 

feedback and visual changes to the expressions helps students to attend to relevant details and generalize 

notation mechanics. Furthermore, the experience of transforming expressions and equations into perceptually 

different but mathematically equivalent states may support conceptual understanding of equivalence. Future 

directions include explorations of clickstream data that were produced through this intervention. Through this 

data, students’ actions within each task and solution choices can be to reconstructed and synthesized, and we can 

begin to uncover potential mechanisms of learning in online platforms. Additionally, we are interested in 
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interviewing students as they work through tasks to develop understandings of how students formulate strategies 

for reaching the goal states, and how they choose to work within the FH2T goal state environment.  
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