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Abstract
Causal inference regarding a hypothesized mediation mechanism relies on the assumptions that there are no
omitted pretreatment confounders (i.e., confounders preceding the treatment) of the treatment–mediator, treat-
ment–outcome, and mediator–outcome relationships, and there are no posttreatment confounders (i.e., con-
founders affected by the treatment) of the mediator–outcome relationship. It is crucial to conduct a sensitivity
analysis to determine if a potential violation of the assumptions would easily change analytic conclusions. This
article proposes a simulation-based method to assess the sensitivity to unmeasured pretreatment confounding,
assuming no posttreatment confounding. It allows one to (a) quantify the strength of an unmeasured pretreat-
ment confounder through its conditional associations with the treatment, mediator, and outcome; (b) simulate
the confounder from its conditional distribution; and (c) finally assess its influence on both the point estimation
and estimation efficiency by comparing the results before and after adjusting for the simulated confounder in
the analysis. The proposed sensitivity analysis strategy can be implemented for any causal mediation analysis
method. It is applicable to both randomized experiments and observational studies and to mediators and out-
comes of different scales. A visualization tool is provided for vivid representations of the sensitivity analysis
results. An R package mediationsens has been developed for researchers to implement the proposed method
easily (https://cran.r-project.org/web/packages/mediationsens/index.html).

Translational Abstract
Causal mediation analysis is essential for investigating the mechanisms through which an intervention
operates. Causal inference regarding a hypothesized mediation mechanism might be invalidated if there
are omitted pretreatment confounders (i.e., confounders preceding the treatment) of the treatment-media-
tor, treatment-outcome, and mediator–outcome relationships, or in the presence of posttreatment con-
founders (i.e., confounders affected by the treatment) of the mediator-outcome relationship. However,
this has not received enough attention in psychological studies. After a review of the existing causal
mediation analysis methods and the approaches that assess the sensitivity of mediation analysis results
to unmeasured pretreatment confounding, we propose a simulation-based sensitivity analysis strategy,
assuming no posttreatment confounding. The method has five primary advantages. First, it enables
applied researchers to intuitively quantify the strength of an unmeasured pretreatment confounder.
Second, by simulating the unmeasured confounder from its conditional distribution and adjusting for it
in the analysis, the method accurately reflects the influence of unmeasured pretreatment confounding on
both the causal effect estimates and their sampling variability, while most existing sensitivity analysis
methods ignore the latter. Third, a convenient tool is provided for visualization of sensitivity analysis
results. Fourth, it is applicable to both randomized experiments and observational studies and to media-
tors and outcomes of different scales. Fifth, it can assess the sensitivity of results obtained from different
causal mediation analysis approaches. The broad utility of the proposed method is illustrated through a
re-analysis of the Job Search Intervention Study. We have also developed an R package that implements
the proposed method (https://cran.r-project.org/web/packages/mediationsens/index.html).
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Questions of mediation are essential for understanding causal
pathways by which an intervention affects outcomes. A hypothe-
sized mediation mechanism often involves a change in the media-
tor induced by the treatment, subsequently leading to a change in
the outcome. The total treatment effect can be decomposed into an
indirect effect operating through the mediator and a direct effect
transmitted through all the other possible mechanisms. Identifica-
tion of the indirect and direct effects relies on assumptions that
(a) there are no omitted pretreatment covariates (i.e., covariates
preceding the treatment) that confound the treatment–mediator
and the treatment–outcome relationships; and (b) there are no
posttreatment covariates (i.e., covariates that are affected by the
treatment) or omitted pretreatment covariates that confound the
mediator–outcome relationship. These assumptions are referred to
as sequential ignorability (e.g., Imai, Keele, & Tingley, 2010;
Imai, Keele, & Yamamoto, 2010; Ten Have et al., 2004). The va-
lidity of Assumption (b) is a major concern. This is because even if
Assumption (a) can be satisfied in a randomized experiment,
Assumption (b) typically does not hold, given that mediator values
are usually generated through a natural process. It is crucial to con-
duct a sensitivity analysis to determine if potential violations of an
identification assumption would easily change causal inference
regarding the hypothesized mediation mechanism. However, its im-
portance has not received enough attention in psychological studies.
There are two types of violations of the identification assump-

tions. First, one may arbitrarily omit some observed confounders
from the analysis to avoid model overfitting. To assess the influ-
ence of such omissions, one may simply compare the results
before and after including the omitted variables in the analysis.
Second, some confounders are unmeasured. We focus on the latter
in this study. Various strategies have been developed to evaluate
potential bias in the indirect and direct effect estimates as func-
tions of sensitivity parameters, which imply departures from the
identification assumptions due to unmeasured confounding. A
review can be found in the section of existing sensitivity analysis
methods for mediation analysis.
In addition to the point estimation, unmeasured confounding

would also affect the sampling variability of the indirect and direct
effect estimates. When assessing the sensitivity of a total treatment
effect to an unmeasured confounder at a given strength, Cinelli
and Hazlett (2020) proved that, accounting for the unmeasured
confounder in the analysis would reduce the standard error of the
treatment effect estimate by reducing the variance of residuals,
while increasing the standard error via the decrease in the degrees
of freedom and the partial correlation of the unmeasured con-
founder with the treatment. We argue that it would affect the sam-
pling variability of the indirect and direct effect estimates in the
same way, while the uncertainty of the unmeasured confounder
and the partial correlation between the unmeasured confounder
and the mediator would also play a role.
Ignoring such changes in the sampling variability would lead to

an inaccurate assessment of the influence of unmeasured confound-
ing on statistical inference. However, in the literature of mediation
analysis, only the L.O.V.E.-based methods (Cox et al., 2013; Liu
and Wang, 2020) and the method that Imai and colleagues devel-
oped (Imai, Keele, and Tingley, 2010; Imai, Keele, and Yamamoto,
2010) accounted for the influence of unmeasured pretreatment con-
founding on the sampling variability of the indirect and direct effect

estimates. Nevertheless, the former is not applicable when the treat-
ment interacts with the mediator in affecting the outcome, while the
latter relies on a sensitivity parameter that lacks intuitive interpreta-
tions. Not only in causal mediation analysis, but in causal inference
in general, there have been few discussions on how potential viola-
tions of identification assumptions would affect sampling variabili-
ty. With a focus on total treatment effect, Carnegie et al. (2016)
assessed the influence of unmeasured confounding on both the point
estimate and its standard error by generating an unmeasured con-
founder from its conditional distribution and adjusting for it in the
estimation. Dorie et al. (2016) further incorporated Bayesian addi-
tive regression trees into this strategy.

This article, motivated by Cinelli and Hazlett (2020) and Carne-
gie et al. (2016), proposes a simulation-based sensitivity analysis
method for causal mediation analysis, assuming no posttreatment
confounders of the mediator–outcome relationship. It allows one to
specify a departure from the sequential ignorability assumption
through the conditional associations of an unmeasured pretreatment
confounder with the treatment, mediator, and outcome, simulate the
confounder from its conditional distribution, and finally assess its
influence by comparing the indirect and direct effect estimates
before and after adjusting for it in the analysis. The proposed
approach (a) accurately reflects the influence of unmeasured pre-
treatment confounding at a given strength on estimation efficiency,
(b) enables psychological researchers to intuitively quantify sensi-
tivity parameters, (c) provides a convenient tool for visualization of
sensitivity analysis results, (d) is applicable to both randomized
experiments and observational studies and to mediators and out-
comes of different scales, and (e) can be implemented for different
causal mediation analysis methods, as reviewed in the Mediation
Analysis Methods section.

We organize this article as follows. We first introduce an applica-
tion example. After defining the causal mediation effects under the
potential outcomes framework and clarifying the identification
assumptions, we review different causal mediation analysis methods
and the existing sensitivity analysis methods for assessing the sensi-
tivity of causal mediation analysis results to unmeasured pretreat-
ment confounders. Based on the derived conditional distribution of
the unmeasured pretreatment confounder, we delineate the sensitiv-
ity analysis algorithm. We assess the performance of the proposed
sensitivity analysis method through simulations. We also illustrate
the method with a real-data application and visualize the sensitivity
analysis results. Finally, we discuss the strengths and limitations of
the method.

Motivating Example

This work is motivated by the Job Search Intervention study
(JOBS II; Vinokur et al., 1995), which examined the impact of a
job training intervention on unemployed job seekers through a
randomized field experiment. The intervention program consisted
of five 4-hour training sessions, aiming at enhancing participants’
capability and motivation for obtaining new jobs and improving
their mental health. The study randomly assigned a sample of
1,801 unemployed workers who lost their jobs no longer than 13
weeks ago. Six-hundred and 71 individuals were assigned to the
experimental group, which participated in the JOBS intervention
program, and 1,130 were assigned to the control group, which
received a booklet very briefly introducing job search methods.
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The goal of this application is to reevaluate the hypothesized
mediation mechanism that Imai, Keele, and Tingley (2010) tested.
Under the hypothesized mechanism, the JOBS intervention program
enhances one’s job search self-efficacy, which further decreases his
or her depression level. In other words, participants’ confidence in
their job searching ability mediates the effect of the job training
intervention on their depression level. The mediator and the out-
come were respectively measured by one’s confidence in six job
search skills and symptoms of depression in follow-up interviews.
The baseline covariates, collected 2 weeks before the intervention,
contain participants’ level of depression and demographics, such as
age, gender, education, ethnic/racial identification, marital status,
occupation, family income, and economic hardship.

Definition of the Causal Mediation Effects

Let T denote the treatment assignment. In the JOBS II example,
T = 1 (or T = 0) implies that an individual was randomly assigned
to the intervention (or the control group). We useM to indicate the
focal mediator, which was measured after the treatment assign-
ment and before the assessment of the outcome. It takes the values
of 1 if an individual’s job search self-efficacy (i.e., confidence
level in job search skills) is high and 0 if not. We use Y to repre-
sent the outcome, that is, one’s depression level. The goal of a
mediation analysis is to decompose the total effect of T on Y into
an indirect effect that operates through M and a direct effect trans-
mitted through other pathways.
We define the causal indirect and direct effects under the poten-

tial outcomes framework (Neyman & Iwaszkiewicz, 1935; Rubin,
1978). We use Mi (t) to denote individual i’s potential job search
self-efficacy under the treatment condition t, where t = 0, 1. For
each individual, there are two potential mediator values, while
only the one under the individual’s actual treatment condition is
observable. Similarly, the same individual’s potential depression
level is defined as Yi (t) when the treatment condition is set to t.
Given that the potential outcome depends on both the treatment
and the potential mediator, the potential outcome under treatment
condition t can be alternatively written as Yi (t, Mi (t)). These are
defined under the stable unit treatment value assumption (SUTVA;
Rubin, 1980, 1986, Rubin, 1990), which implies that there is only
one version of each treatment condition, and there is no interfer-
ence between individuals.
Additionally, we use Yi (1, Mi (0)) to denote individual i’s

potential depression level if assigned to the intervention group
while his or her job search self-efficacy took the value as if under
the control condition. This enables us to define individual i’s “nat-
ural indirect effect” (Pearl, 2001) as

NIEi ¼ Yi 1;Mi 1ð Þ� �
� Yi 1;Mi 0ð Þ� �

;

which represents the impact of the intervention on individual i’s
depression level transmitted solely through the intervention-induced
change in job search self-efficacy from Mi (0) to Mi (1), while the
treatment status stays at the intervention condition. Similarly, indi-
vidual i’s “natural direct effect” (Pearl, 2001) is defined as

NDEi ¼ Yi 1;Mi 0ð Þ� �
� Yi 0;Mi 0ð Þ� �

;

which represents the impact of the intervention on individual i’s
depression level while his or her potential mediator is held

constant at the value that would be realized under the control con-
dition, Mi (0). By averaging each effect over all the individuals in
the population, we define the population average natural indirect
and direct effects as

NIE ¼ E Yi 1;Mi 1ð Þ� �� �
� E Yi 1;Mi 0ð Þ� �� �

;

NDE ¼ E Yi 1;Mi 0ð Þ� �� �
� E Yi 0;Mi 0ð Þ� �� �

:

The sum of NIE and NDE is equal to the total effect of treat-
ment assignment on the outcome. Alternatively, the total effect
can be decomposed into the sum of E[Yi (0, Mi (1))] – E[Yi (0, Mi

(0))] and E[Yi (1, Mi (1))] – E[Yi (0, Mi (1))]. The two decomposi-
tions would be different in the presence of an interaction between
the treatment and the mediator. We focus on the NIE and NDE
defined as above in this article, while the extensions to the alterna-
tive decomposition are straightforward.

Identification Assumptions

While Yi (t, Mi (t)) is observed only if individual i was assigned
to treatment group t, Yi (t, Mi (t0)), where t = t0, is never observ-
able. To identify the population average natural indirect and direct
effects, we need to relate the unobservable quantities to observed
data. The identification1 of the natural indirect and direct effects
relies on the sequential ignorability assumption (e.g., Imai,
Keele, & Tingley, 2010; Imai, Keele, & Yamamoto, 2010; Ten
Have et al., 2004). The assumption includes two ignorability
assumptions.

First, the treatment assignment is ignorable given pretreatment
covariates X. This assumption can be formally written as

Yi t
0;mð Þ; Mi tð Þ

� �
╨ TijX i ¼ x;

where 0 , Pr(Ti = tjXi = x) , 1 for t, t0 = 0, 1. That is, given pre-
treatment covariates X, the treatment assignment is independent of
potential outcomes and potential mediators. In other words, there
is no omitted confounding of the treatment-mediator or treat-
ment–outcome relationship. The assumption holds in randomized
experiments by design.

Second, the mediator is ignorable within and across treatment
conditions given pretreatment covariates X. It can be formal-
ized as

Yi t
0;mð Þ� �

╨Mi tð ÞjTi ¼ t;X i ¼ x;

where 0 , Pr(Mi (t) = mjTi = t, Xi = x) , 1 for t, t' = 0,1. That is,
given pretreatment covariates X, the potential mediator is inde-
pendent of potential outcomes within and across treatment condi-
tions. In other words, there are no omitted pretreatment covariates
that confound the mediator–outcome relationship, and there are no
posttreatment confounders of the mediator–outcome relationship.
The latter is a strong assumption and can be relaxed, which we
will discuss in the last section. The ignorability assumption of the

1
“Identification” refers to the identification of causal effects, rather than

model identification as in locating a unique parameter solution.
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mediator implies that, among the individuals who were assigned
to the same treatment group and share the same pretreatment cova-
riates, the mediator is as if randomized. Unlike the ignorability of
the treatment, the ignorability of the mediator may not hold even
in a randomized experiment because the mediator is generated in a
natural process. For example, among the unemployed job seekers
with the same observed pretreatment covariates, those who were
more motivated to find new jobs before the intervention might be
more confident in their job search skills after the intervention and
are also expected to have lower depression levels, no matter which
treatment group they were assigned to. Therefore, the observed
association between the job search self-efficacy and the final
depression level might be partly due to the confounding of one’s
motivation to find new jobs at baseline. Ignoring it would bias the
indirect and direct effects estimates.

Mediation Analysis Methods

Methods Under the Traditional Linear Additive Framework

In the traditional mediation analysis (MacKinnon, 2008; Mac-
Kinnon & Dwyer, 1993), one usually regresses a continuous medi-
ator on the treatment and pretreatment covariates and regresses a
continuous outcome on the treatment, mediator, and pretreatment
covariates, ignoring a possible interaction between the treatment
and the mediator in the outcome model. The direct effect is eval-
uated via the coefficient of the treatment in the outcome model,
and the indirect effect is often evaluated via the product of the
coefficient of the treatment in the mediator model and the coeffi-
cient of the mediator in the outcome model. In addition to the
identification assumptions, causal interpretations of the effects
also rely on a strong assumption that the treatment does not inter-
act with the mediator when affecting the outcome, which is usually
violated in real applications. For example, in JOBS II, the impact
of job search self-efficacy on depression level may be stronger for
participants assigned to the job training intervention than for those
assigned to the control group, because of more support in the train-
ing program.
In the recent years, various causal mediation analysis methods

have been developed to accommodate the treatment-by-mediator
interaction and carefully adjust for confounders of the treat-
ment–mediator, treatment–outcome, and mediator–outcome rela-
tionships, while they vary in the degree of reliance on correct
model specifications.

Regression-Based Methods

Some researchers modified the traditional mediation analysis by
incorporating a treatment-by-mediator interaction in the outcome
model.

M ¼ bm0 þ bmt T þXbmx þ em; em � N 0;r2
m

� �
; (1)

Y ¼ by0 þ byt T þ bymM þ bytmTM þXbyx þ ey; ey � N 0;r2
y

� 	
:

(2)

Under the sequential ignorability assumption, VanderWeele and
Vansteelandt (2009) identified the causal mediation effects for a

binary treatment, a continuous mediator, and a continuous out-
come as:

NIE ¼ bym þ bytm
� �

bmt ;

NDE ¼ byt þ bytm bm0 þ E X½ �bmx
� �

;

where E[X] = 0 if X is standardized. There are more than two pa-
rameters involved in the estimands, rendering the estimation and
inference more complex than the traditional mediation analysis
that ignores the treatment-by-mediator interaction. Valeri and
Vanderweele (2013) extended the above identification results to
the scenarios where one or both of the mediator and outcome are
binary, by replacing the linear models in Equation 1 or/and Equa-
tion 2 with logistic regression(s).

Imai, Keele, and Tingley (2010) and Imai, Keele, and Yama-
moto (2010) developed a simulation-based strategy that does not
require closed forms of the NIE and NDE estimands and is thus
more flexible. By simulating model parameters from their sam-
pling distributions, one could simply simulate the potential out-
comes and estimate the NIE and NDE through mean contrasts of
the potential outcomes. If the mediator and outcome models are
the same as Equations 1 and 2, the NIE and NDE estimates are
expected to be identical with those obtained based on Vander-
Weele and Vansteelandt (2009). By applying the algorithm to
bootstrapped samples, Imai, Keele, and Tingley (2010) and Imai,
Keele, and Yamamoto (2010) further enabled its application to
semiparametric or nonparametric mediator and outcome models
and thus relaxed functional form assumptions. The algorithm is
applicable to continuous and discrete mediators and outcomes.

Weighting-Based Method

While the regression-based methods are vulnerable to model
misspecifications, the weighting-based method does not rely on a
parametric outcome model and thus relaxes functional and distri-
butional assumptions. Under the ignorability assumption of the
treatment assignment,

E Yi t;Mi tð Þð Þ½ � ¼ E WTiYi j Ti ¼ t½ � (3)

for t = 0,1, whereWTi ¼ Pr Ti ¼ tð Þ
Pr Ti ¼ tjXi ¼ xð Þ is well known as an inverse

probability of treatment weighting (IPTW) scheme (Horvitz &
Thompson, 1952; Robins, 2000; Rosenbaum, 1987; Schafer &
Kang, 2008), which removes treatment selection by equalizing the
treatment assignment probability of all the individuals, as in a
randomized experiment. The denominator can be predicted based
on a treatment model of T on X. Wti = 1 if the treatment is
randomized.

Under the ignorability assumption of both the treatment and the
mediator,

E Yi 1; Mi 0ð Þ� �� �
¼ E WTiWMiYi j Ti ¼ 1½ �; (4)

where WMi ¼ Pr Mi ¼ mjTi ¼ 0;Xi ¼ xð Þ
Pr Mi ¼ mjTi ¼ 1;Xi ¼ xð Þ, which is named as ratio-of-me-

diator-probability weighting (RMPW) by Hong (2010), is equiva-
lent to the weights proposed by others (e.g., Huber, 2014; Lange et
al., 2012; Tchetgen & Shpitser, 2012). WMi transforms a treated
individual’s probability of having high job search self-efficacy to
resemble that under the control condition within levels of
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pretreatment covariates. For each treated individual, the denomina-
tor and the numerator of the weight can be predicted based on the
mediator model fitted to the treated group and that fitted to the
control group, respectively. The counterfactual quantity, E[Yi (1,
Mi (0))], can therefore be related to the observed values of the out-
come in the treated group.
The NIE and NDE can be estimated via weighted mean con-

trasts of the outcome, which does not require an outcome model.
Therefore, the weighting-based method reduces model-based
assumptions. It is applicable to continuous and discrete media-
tors and outcomes. If the mediator is continuous, one may esti-
mate RMPW based on the ratio of conditional densities of M or
use a mathematical equivalent of RMPW that is constructed
based on conditional probabilities of T given M and X
(Huber, 2014).

Imputation-Based Method

Vansteelandt et al. (2012) developed an imputation-based
method that does not require a mediator model. They imputed the
potential outcome Y(t, M(t)) with the observed outcome in treat-
ment group t. To impute the potential outcome Y(t, M(t0)), where
t = t0, they fitted an outcome model as shown in Equation 2 and
predicted the outcome for everyone in the treatment group t0 while
forcing T to be equal to t. Subsequently, they estimated the NIE
and NDE through a so-called natural effect model, which regresses
the imputed potential outcomes on t, t0, and X. As Vansteelandt
et al. (2012) pointed out, the method ignores extrapolation uncer-
tainty and thus may underestimate the sampling variability of the
estimates.

Multiply Robust Methods

By combining the weighting-based and the imputation- or regres-
sion-based methods, multiply robust estimation strategies can pro-
vide consistent indirect and direct effect estimates when at most
one of the treatment, mediator, and outcome models is misspecified
(e.g., Tchetgen & Shpitser, 2012; Vansteelandt et al., 2012; Zheng
& van der Laan, 2012).
All these causal mediation analysis methods require that there be

no unmeasured pretreatment confounding of the treatment–mediator,
treatment–outcome, or mediator–outcome relationship, and that
there be no posttreatment confounding of the mediator–outcome
relationship. Even though the treatment assignment is random
in the JOBS II study, it does not guarantee the ignorability of the me-
diator. The mediator–outcome relationship may still be confounded
after conditioning on observed pretreatment covariates. It becomes
necessary to conduct a sensitivity analysis to assess the extent to
which causal inference about the natural indirect and direct effects
would be invalidated by potential violations of the identification
assumptions.

Existing Sensitivity Analysis Methods for Mediation
Analysis

Various strategies have been developed to evaluate the sensitivity
of causal mediation analysis results to unmeasured pretreatment
confounding under the assumption that there is no posttreatment
confounder of the mediator–outcome relationship. By reviewing the

existing methods, this section aims to highlight the limitations that
we will address in this study.

Methods Under the Traditional Linear Additive Framework

Researchers have developed sensitivity analysis methods under
the traditional mediation analysis framework that focuses on contin-
uous mediators and outcomes and ignores the treatment-by-media-
tor interaction. Harring et al. (2017) utilized a phantom variable,
which is a latent variable with predetermined mean and variance, to
assess a model’s sensitivity to an unmeasured pretreatment con-
founder given its conditional associations with the mediator and the
outcome. However, they did not offer a solution to evaluating its
impact on statistical inference of the indirect effect. Neither did
they assess the influence of a violation of the treatment ignorability
assumption. Other researchers (Cox et al., 2013; Liu & Wang,
2020) extended the L.O.V.E. (left out variables error) method
(Mauro, 1990). Cox et al. (2013) studied how unmeasured pretreat-
ment confounding affects both the estimation and inference of the
indirect and direct effects given its correlations with the treatment,
mediator, and outcome. The method relies on sample correlations
among all the observed variables in the mediator and outcome mod-
els. As Mauro (1990) acknowledged, it may become unwieldy
when the number of observed pretreatment covariates is very large.
Even though the large pool of observed pretreatment covariates can
be replaced with their linear combination, it may result in bias in
the sensitivity analysis results.

Regression-Based Methods

Multiple sensitivity analysis methods have been developed for
the regression-based causal mediation analysis that accounts for
the treatment-by-mediator interaction. Assuming that the ignora-
bility assumption of the treatment assignment holds, and that there
is an unmeasured pretreatment confounder of the mediator–out-
come relationship U, which is binary and independent of X,
VanderWeele (2010) derived the bias in each of the NIE and NDE
estimates as the product of two sensitivity parameters, (a) the
conditional association between U and Y given T, M, and X,
and (b) the conditional association between U and T given M
and X. M would become a collider of the U–T relationship if
both U and T affect M. Correspondingly, conditioning on M
would create an association between U and T (Pearl, 1988).
Therefore, sensitivity parameter (b) reflects the conditional
association between U and M, but in a nonintuitive way. In
addition, the derivation of the bias relies on strong model-based
assumptions that the sensitivity parameter (a) is constant across
levels of T, M, and X, and the sensitivity parameter (b) is con-
stant across levels of M and X.

By relaxing the strong assumptions, Ding and VanderWeele
(2016) derived bounds of the bias as functions of the sensitivity
parameters similar to those proposed by VanderWeele (2010). An
alternative sensitivity parameter that can directly reflect the U–M
association results in weaker bounds than the true bounds (Smith
& VanderWeele, 2019).

An important limitation of the above methods is that they ignore
the influence of unmeasured confounding on the sampling vari-
ability of the effect estimates. In contrast, Imai, Keele, and Tingley
(2010) and Imai, Keele, and Yamamoto (2010) took the change
into account. Assuming that the ignorability assumption of the
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treatment assignment holds, Imai, Keele, and Tingley (2010) and
Imai, Keele, and Yamamoto (2010) proposed the correlation
between the error terms of the two models, q, as the only sensitiv-
ity parameter. Hence, we refer to the method as the “q-based
method” in the rest of the article. The magnitude of q increases as
unmeasured pretreatment confounding of the mediator–outcome
relationship becomes stronger. They derived both the point estima-
tors of NIE and NDE and the corresponding standard error estima-
tors as functions of q. The derivation relies on the mediator and
outcome models in Equations 1 and 2. If the mediator or the out-
come is binary, the corresponding model is replaced with a probit
model. Unlike the mediation analysis method that Imai, Keele, and
Tingley (2010) and Imai, Keele, and Yamamoto (2010) developed,
the sensitivity analysis method is not applicable to semiparametric
or nonparametric mediator and outcome models. In addition,
because it is hard to determine whether the value of q for remov-
ing the effects or changing their significance is likely to exist or
not, it is implausible to conclude whether the analytic results are
sensitive based on q without comparisons to other studies. If
researchers want to assess the influence of the omission of a partic-
ular confounder, they may find it difficult to quantify the corre-
sponding error correlation based on prior knowledge about the
confounder.
To ease interpretations, Imai, Keele, and Tingley (2010) and

Imai, Keele, and Yamamoto (2010) proposed another R2-based
method with two optional sets of sensitivity parameters, the pro-
portions of the unexplained variances in the initial mediator and
outcome models that are explained by unmeasured pretreatment
confounders (partial R2) or the proportions of the variances that
unmeasured pretreatment confounders can explain after being
included in the mediator and outcome models (R2). Because their
magnitudes can be assessed independently, it becomes more intui-
tive to interpret the sensitivity analysis results. However, the
method does not consider the change in sampling variability.

Weighting-Based Methods

All the above regression-based methods rely heavily on correct
specifications of the mediator and outcome models and do not assess
the sensitivity to a potential violation of the ignorability assumption
of the treatment in observational studies. Hong et al. (2018) over-
came these limitations by utilizing the weighting-based identification
results in Equations 3 and 4. Sensitivity parameters, constructed
based on weights, indirectly reflect the U – T, U – M, and U – Y
associations. The sensitivity parameters can be used to assess the
degree of violation of the identification assumptions only through
comparisons across variables or studies. Also based on the weight-
ing-based mediation analysis method, Tchetgen and Shpitser (2012)
proposed sensitivity parameters that involve counterfactual terms
and are thus hard to quantify. In addition, these strategies do not
assess the extent to which unmeasured confounding would affect the
sampling variability of the causal effect estimates, and they are only
applicable to the weighting-based causal mediation analysis.

Limitations

While each of the above sensitivity analysis methods has its
unique strengths, it has at least three of the following six limitations:

1. Ignoring the treatment-by-mediator interaction.

2. Lacking intuitive interpretations of the sensitivity
parameters.

3. Failing to consider the influence of unmeasured con-
founding on the sampling variability of the causal effect
estimates.

4. Failing to assess the sensitivity to a potential violation of
the ignorability assumption of the treatment in observatio-
nal studies.

5. Can be applied to only one mediation analysis method.

6. Relying on correct specifications of both the mediator and
outcome models.

Table 1 lists the limitations of each method.
To overcome limitations 1 - 5, we develop a simulation-based

sensitivity analysis method, which quantifies the strength of an
unmeasured pretreatment confounder through its conditional associ-
ations with the treatment, mediator, and outcome. The idea is to
repeatedly generate an unmeasured pretreatment confounder at a
given strength from its conditional distribution and assess its influ-
ence by comparing the estimation results before and after adjusting
for the simulated unmeasured confounder. Same as the methods
reviewed above, we assume that there are no posttreatment con-
founders of the mediator–outcome relationship. A discussion of
sensitivity analysis for assessing the influence of posttreatment con-
founding can be found in the Discussion section.

Conditional Distribution of an Unmeasured
Pretreatment Confounder

For illustration purposes, we consider a randomized experi-
ment and extend our method to observational studies in
Supplemental Appendix A. When the treatment is randomized,
the ignorability of treatment naturally holds, while the plausibil-
ity of the ignorability assumption of the mediator relies on the
richness of the observed pretreatment covariates. Same as the
existing sensitivity analysis methods, we now consider the case
in which there is an additional unmeasured pretreatment covari-
ate U that is independent of the observed covariates X and may
confound the mediator–outcome relationship. In other words, U
represents the part of the unmeasured pretreatment confounder
that remains unexplained by X, and the ignorability of the media-
tor will be satisfied given both X and U.

Table 1
Limitations of the Existing Sensitivity Analysis Methods

Methods Limitations

Traditional—Harring et al. (2017) (1), (3), (4), (5), (6)
Traditional—Cox et al. (2013) (1), (5), (6)
Regression-based—VanderWeele (2010) (2), (3), (4), (5), (6)
Regression-based—Ding and VanderWeele (2016) (2), (3), (4), (5), (6)
Regression-based—Imai, Keele, and Tingley (2010;
q-based) (2), (4), (5), (6)

Regression-based—Imai, Keele, and Yamamoto
(2010; R2-based) (3), (4), (5), (6)

Weighting-based (2), (3), (5)
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Yi t
0;mð Þ� �

╨Mi tð ÞjT ¼ t; X ¼ x; U ¼ u:

The goal of this study is to understand what the estimates of
NIE and NDE and their sampling variability would have been had
we accounted for unmeasured pretreatment confounding at various
strengths, so that we could assess the degree to which the ignora-
bility assumption must be violated for the original conclusion to
be changed. To reach this goal, we derive a conditional distribu-
tion of U based on our assumptions about its relationship with the
outcome and the mediator. Given random draws of U from its con-
ditional distribution, we can estimate the NIE and NDE after
adjusting for U in the analysis.
When T is randomized, we obtain the following complete data

likelihood,

Pr Y;M;U; T j Xð Þ ¼ Pr Y j M;U;T;Xð Þ 3 Pr M j U;T;Xð Þ
3 Pr Uð Þ 3 Pr Tð Þ:

(5)

For mathematical convenience, it is usually assumed that U is
binary (e.g., Imbens, 2003; VanderWeele, 2010). Similarly, we
focus on a binary U, so that we can factorize the distribution of U
conditional on the observed data as

Pr U ¼ 1 j Y;M;T;Xð Þ

¼ f Y j M; T;X;U ¼ 1ð Þ 3 Pr M j T;X;U ¼ 1ð Þ 3 Pr U ¼ 1ð ÞX1

u¼0
f Y j M;T;X;U ¼ uð Þ 3 Pr MjT;X;U ¼ uð Þ 3 Pr U ¼ uð Þ

:

(6)

An extension for applications to a continuous U can be found in
Supplemental Appendix A.
By fitting a regression of Y onM, T,X, andU and a regression ofM

on T,X, andU, we could use the coefficients ofU in the twomodels to
intuitively represent the confounding role ofU, or in other words, how
severe the ignorability assumption of the mediator is violated. Differ-
ent from the analytic models as reviewed in the section of Mediation
Analysis Methods, the models here serve as data generating models,
which rely on parametric assumptions of the U-M and U-Y relation-
ships. The analytic models are consistent with the observed part of the
data generating models (1) for both the mediator and the outcome in
application of the regression-based mediation analysis methods; (2)
for the mediator in application of the weighting-based mediation anal-
ysis method; and (3) for the outcome in application of the imputation-
basedmediation analysis method.
We focus on a continuous outcome and a binary mediator, as in

the JOBS II example, while making extensions for mediators and
outcomes of different scales in Supplemental Appendix A. Specifi-
cally, we assume that

Y j M; T;X;U �
N by0 þ byt T þ bymM þ bytmTM þXbyx þ byuU; r2

Y j M;T;X;U

� 	
;

(7)

M j T;X;U � Bernoulli
1

1þ exp � bm0 þ bmt T þXbmx þ bmu U
� �� �

 !
;

(8)

U � Bernoulli pð Þ; (9)

where sensitivity parameters are denoted by byu, which represents
the association between U and Y conditional on M, T, and X; bmu ,
which represents the association between U and M conditional on
T, and X; and p, which is the probability of U = 1 and determines
the marginal distribution of the binary variable U. The interpreta-
tions of the sensitivity parameters are straightforward and intuitive,
especially for applied researchers. If the regressions are standar-
dized, the magnitudes of byu and bmu can be directly used to assess
the extent to which the ignorability assumption of the mediator is
violated. In observational studies, the ignorability assumption of the
treatment may be violated, and thus the conditional association
between the unmeasured confounder and the treatment needs to be
introduced as an additional sensitivity parameter. Details can be
found in Supplemental Appendix A.

Based on Equation 6 and the distribution assumptions in Equa-
tions 7–9,2 we could easily obtain the distribution of U conditional
on Y,M, T, X. The challenge is that, except for the given sensitivity
parameters byu and bmu , the parameters in Equations 7 and 8 are
unknown. Let the vector of these parameters be h ¼ by; bm;ð
r2
Y j M;T;X;UÞ0, where by ¼ by0;

�
byt ;b

y
m;b

y
tm; b

y
x
0Þ0 is a vector of the

outcome model coefficients and bm ¼ bm0 ;b
m
t ; b

m
x
0� �0 is a vector of

the mediator model coefficients. The estimation of these parameters
relies on U, while U needs to be drawn from the conditional distri-
bution determined by these parameters. To solve the problem, we
adopt a stochastic EM algorithm (Nielsen, 2000) that iterates
between the following steps:

Stochastic E-Step

Given values of h(k) and the specified sensitivity parameter values,
we simulate U for each individual from its conditional distribution.

M-Step

Given the simulated values of U, we find the parameters that
maximize the complete data log-likelihood and let them be h(kþ1).

To obtain initial values h(1), we simulate U for each individual
from its marginal distribution, as represented in (9). We then iter-
ate between Stochastic E-step and M-step until convergence.

Sensitivity Analysis Algorithm

Sensitivity assessment becomes possible through a comparison
of the analysis results obtained from any causal mediation analysis
method before and after adjusting for U. To evaluate the influence
of U with different strengths and marginal distributions, we specify
a plausible range of sensitivity parameter values. Given each com-
bination of sensitivity parameters, we repeatedly generate U from
its conditional distribution, obtain the indirect and direct effect esti-
mates and their standard errors by adjusting for each random draw
of U, and finally use Rubin’s (1987) rules to combine the estimates

2 The outcome and mediator models are not restricted to Equations (7) and
(8). The model specifications can be modified based on one's assumptions
about the data generating process. The components of the models that
are unrelated toU can be semiparametric or nonparametric. As the simulation
section concludes, if a potential interaction between U and T or M exists
theoretically, we need to control for these interactions in Equations (7) and
(8). Correspondingly, more sensitivity parameters are involved.
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across replications. This allows us to capture the influence of U on
not only estimation bias but also estimation efficiency. To be spe-
cific, the sensitivity analysis takes the following steps:

Step 1. At each given value of p, we specify a range of possi-
ble values for byu and b

m
u and divide them into a grid.

Step 2. Given the sensitivity parameter values in each cell of
the grid, we generate U based on its conditional distribution,
as described in the previous section.

Step 3. Given the sensitivity parameter values and the simu-
lated U, we estimate the adjusted NIE (or NDE), d, and its
standard error, rd̂ , using a method as introduced in the sec-
tion of Mediation Analysis Methods, depending on which
method is used in the original analysis.

Step 4. The estimates obtained from Step 3 are based on one
random draw from the conditional distribution of U. To
account for the uncertainty of U and to obtain more accurate
estimates of the NIE and NDE, we repeat Step 2 and Step 3
K times for each pair of sensitivity parameters.

Step 5. Let the adjusted estimate of NIE (or NDE) in each rep-
lication be d̂k, where k = 1, . . . , K. By taking the average over

the K estimates, we obtain the final estimate d̂ ¼ 1
K

XK

k¼1
d̂k:

To reflect both the average uncertainty of the estimate within

each random draw of U, VW ¼ 1
K

XK

k¼1
r2
d̂k
, and the variation

in the estimate between multiple draws of U, VB ¼ 1
K�1XK

k¼1
ðd̂k � d̂Þ2, we estimate the standard error estimate of d̂

as r̂d̂ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VW þ 1þ 1

K

� �
VB

q
, by following Rubin’s rules as

widely used in multiple imputation. The higher K is, the more

precise d̂ will be.

Step 6. The above procedure assesses the sensitivity to U at
different strengths, given its marginal distribution. To further
evaluate the influence of the marginal distribution of U, we
repeat the procedure at different values of p.

When the sampling distributions of the NIE and NDE estimates
are nonsymmetric, as is usually encountered in small samples that
are common in psychological research, it is inaccurate to make statis-
tical inference simply based on standard errors of the estimates.
Unlike the q-based method, which bounds the 95% confidence inter-
vals by two times standard errors away from the adjusted effect esti-
mates, we recommend a combination of bootstrap estimation with
the above procedure (Schomaker & Heumann, 2018). Specifically,
we generate B bootstrap samples and apply Steps 2–4 to each boot-
strap sample. Therefore, there are K adjusted NIE and NDE estimates
associated with each bootstrap sample. Taking the average over the
K estimates in each bootstrap sample yields B adjusted estimates,
based on which we construct the confidence interval for each effect.

Simulations

The basic idea of the proposed sensitivity analysis method is
to generate the unmeasured pretreatment confounder from its

conditional distribution and adjust for it in the estimation of
NIE and NDE based on the causal mediation analysis method
adopted in the initial analysis. Whether the method can accu-
rately evaluate the bias due to unmeasured pretreatment con-
founding is determined by whether it can recover the true NIE
and NDE. This depends on (a) the specification of generating
models of the outcome and mediator, which determines the con-
ditional distribution of the unmeasured confounder, and (b) the
robustness of the chosen causal mediation analysis method to
possible misspecifications of the models.

Therefore, with a focus on a randomized binary treatment, a bi-
nary mediator, a continuous outcome, and a binary unmeasured pre-
treatment confounder, we run simulations to assess, if all the
functional and distributional assumptions of the mediator and out-
come are satisfied or if part of them is violated, to what extent the
proposed sensitivity analysis strategy would approximate the true
NIE and NDE when incorporated with the regression-based and
weighting-based causal mediation analysis methods. As introduced
in the section of Mediation Analysis Methods, there are two estima-
tion strategies for the regression-based analysis, one based on
closed forms of the estimands and the other based on simulations.
We choose the former because the latter is more time consuming.
We expect that the simulation results have implications for the mul-
tiply robust methods, as they are combinations of the methods.

In addition, an important goal of the proposed strategy is to
keep the advantage of the q-based method that it can account for
the influence of unmeasured confounding on the estimation effi-
ciency, while overcoming its limitations as listed in Table 1.
Therefore, we also assess the influence of unmeasured pretreat-
ment confounding on the sampling variability of the NIE and
NDE estimates and compare the proposed method with the
q-based method under various scenarios.

Simulation Setup

We begin the simulations by generating the treatment indicator
T from a Bernoulli distribution with Pr(T) = .5, generating three in-
dependent observed confounders, X1, X2, and X3, each from a
standard normal distribution, and generating one confounder that
will be omitted from the original analysis, U, from a Bernoulli dis-
tribution with Pr(U) = .5. We then generate the mediator and the
outcome based on the following models:

Y ¼ by0 þ byt T þ bymM þ bytmTM þ byx1X1 þ byx2X2 þ byx3X3

þ bytx1TX1 þ bytx2TX2 þ bytx3TX3 þ byuU þ byutUT þ e;

e � N 0;r2
� �

;

log
p

1� p

� �
¼ bm0 þ bmt T þ bmx1X1 þ bmx2X2 þ bmx3X3 þ bmtx1TX1

þ bmtx2TX2 þ bmtx3TX3 þ bmu U þ bmutUT;

where

by0 ¼ 1; byt ¼ 1; bym ¼ 1; bytm ¼ 0:5; byx1 ¼ 0:3;

byx2 ¼ 0:2; byx3 ¼ 0:1; bm0 ¼ 0:1;

bmt ¼ 0:2; bmx1 ¼ 0:3; bmx2 ¼ 0:2; bmx3 ¼ �0:1; r ¼ 0:6:
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In Scenario 1, to evaluate the performance of the proposed method
when both the outcome model and the mediator model are correctly
specified, we specify bytx1 ¼ bytx2 ¼ bytx3 ¼ bmtx1 ¼ bmtx2 ¼ bmtx3 ¼
byut ¼ bmut ¼ 0 in both the data generation and sensitivity analysis.
In Scenario 2, to assess the influence of a violation of the distri-

butional assumption of the continuous outcome, we modify Sce-
nario 1 by changing the distribution of e to C(.01, .01) and
rescaling it to keep its mean at 0 and standard deviation at r = .6
in the data generation but keep assuming e to be normal in the sen-
sitivity analysis. For the evaluation of a violation of the distribu-
tional assumption of the binary mediator, we replace the logit
model with the following probit model when generating the
mediator,

p ¼ U bm0 þ bmt T þ bmx1X1 þ bmx2X2 þ bmx3X3 þ bmtx1TX1
�

þ bmtx2TX2 þ bmtx3TX3 þ bmu =1:6
� �

U þ bmutUTÞ;

where A denotes the cumulative distribution function of the stand-
ard normal distribution. In the implementation of the proposed
method, we keep using a logit model as shown in Equation 8.
Because a logit coefficient equals 1.6 times a probit coefficient
(e.g., Amemiya, 1981), we specify the sensitivity parameter
reflecting the conditional association between U and M, which is a
logit coefficient, as 1:6 3 ðbmu =1:6Þ ¼ bmu .
Because the q-based method only allows a probit model to be

fitted to a binary mediator, Scenario 1, which generates the media-
tor from a logit model, assesses how the q-based method is
affected by a violation of the distributional assumption of the me-
diator. Scenario 2, which generates the mediator from a probit
model, assesses the performance of the q-based method when all
the functional and distributional assumptions are met.
In Scenario 3, to assess the influence of violations of the func-

tional assumptions of the mediator or the outcome, we vary the coef-
ficients of X-by-T and U-by-T interactions in the data generation
while always setting them to 0 in the sensitivity analysis. Specifi-
cally, we separately evaluate the influence of misspecifications in (a)
the observed part of the outcome model, (b) the observed part of
the mediator model, (c) the unobserved part of the outcome model,
and (d) the unobserved part of the mediator model, by respectively
specifying in the data generation (a) bytx1 ¼ bytx2 ¼ bytx3 ¼ 1; bmtx1 ¼
bmtx2 ¼ bmtx3 ¼ byut ¼ bmut ¼ 0; ðbÞ bmtx1 ¼ bmtx2 ¼ bmtx3 ¼ 1;bytx1 ¼ bytx2 ¼
bytx3 ¼ byut ¼ bmut ¼ 0; ðcÞ byut ¼ 1; bytx1¼ bytx2 ¼ bytx3¼ bmtx1¼ bmtx2 ¼
bmtx3 ¼ bmut ¼ 0; and ðdÞ bmut ¼ 1; bytx1 ¼ bytx2 ¼ bytx3 ¼ bmtx1 ¼ bmtx2 ¼
bmtx3 ¼ byut ¼ 0:
To evaluate the performance of the sensitivity analysis strat-

egies with the change of the strength of unmeasured confounding,
we set each of the sensitivity parameters, bmu and byu, to �2, �1, 0,
1, and 2. This yields a 5 3 5 grid, including 25 conditions within
each of the above scenarios. For the application of the q-based
method, we calculate q as the correlation between the error terms
of the outcome model and the latent mediator model that do not
adjust for U, given each pair of bmu and byu.
We make 1,000 replications for each combination of the sensi-

tivity parameters in each scenario. For each replication, we obtain
the adjusted NIE and NDE estimates that account for unmeasured
confounding at a given strength by applying the proposed and
q-based methods. For the proposed approach, we repeatedly draw

U 100 times (K = 100) from its conditional distribution and adopt
various mediation analysis methods to estimate the NIE and NDE
by adjusting for U. By comparing the adjusted estimates to the
true effects, which can be calculated based on the true model pa-
rameter values, we assess the ability of the sensitivity analysis
methods to recover the true effects.

To better illustrate the influence of unmeasured confounding on
both the point estimation and the sampling variability, we also
estimate the NIE and NDE without U and with true values of U
based on each mediation analysis method in Scenario 1. Such esti-
mations are not considered in the other two scenarios, which are
targeted at assessing the influence of violations of the distribu-
tional or functional assumptions on the ability of the sensitivity
analysis methods to recover the true effects.

Simulation Results

We present the simulation results in Figures B1–B14 in Supple-
mental Appendix B, each of which is a 5 3 5 grid. The columns
and rows respectively represent the sensitivity parameters byu and
bmu . Each cell of the grid is composed of multiple boxplots, each
displaying the sampling distribution of the NIE/NDE estimate
obtained from the method as labeled. A detailed introduction to
the labels can be found below each figure. Each red line represents
the true NIE/NDE in the corresponding cell.

Both the Mediator and Outcome Models Are Correctly
Specified

As represented in Figures B1 and B2, when either sensitivity pa-
rameter is 0, the red lines in the first two boxplots in each grid align
with the medians of the boxplots. This indicates that, when there is
no unmeasured confounding and when the models are correctly
specified, both the regression- and weighting-based analysis meth-
ods provide unbiased NIE and NDE estimates.

When both sensitivity parameters are nonzero, the red lines devi-
ate from the medians of the first two boxplots in each grid, and the
deviations increase as the magnitudes of the sensitivity parameters
become larger. This reveals that, when the confounding role of U is
not negligible, ignoring U in the analysis would bias both the NIE
and NDE estimates, no matter whether the regression- or weight-
ing-based analysis method is adopted. The bias increases with the
strength of the unmeasured confounding. Nevertheless, both the
proposed and q-based sensitivity analysis strategies can recover
the true effects (as represented by boxplots 5–6 in each grid in
Figures B1 and B2 and boxplot 3 in each grid in Figures B3 and
B4), just as if the true U is adjusted for in the analysis (as repre-
sented by boxplots 3 and 4 in each grid in Figures B1 and B2).

A comparison of the spreads of the sampling distributions as
represented in the first two boxplots and those in boxplots 3 and 4
in each grid in Figures B1 and B2 shows that, should U be
observed, controlling for U in the analysis would either increase or
decrease the sampling variability of the NIE and NDE estimates,
depending on the factors explicated in the introduction section.
This verifies the importance of considering the change in the sam-
pling variability of the focal effect estimates in a sensitivity analy-
sis. As represented by boxplots 5–6 in each grid in Figures B1 and
B2 and boxplot 3 in each grid in Figures B3 and B4, due to the
uncertainty of U, sensitivity analysis strategies sometimes provide

1008 QIN AND YANG

T
hi
s
do
cu
m
en
ti
s
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

Ps
yc
ho
lo
gi
ca
lA

ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le
is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al
us
e
of

th
e
in
di
vi
du
al
us
er

an
d
is
no
tt
o
be

di
ss
em

in
at
ed

br
oa
dl
y.

https://doi.org/10.1037/met0000340.supp
https://doi.org/10.1037/met0000340.supp
https://doi.org/10.1037/met0000340.supp
https://doi.org/10.1037/met0000340.supp
https://doi.org/10.1037/met0000340.supp
https://doi.org/10.1037/met0000340.supp
https://doi.org/10.1037/met0000340.supp
https://doi.org/10.1037/met0000340.supp
https://doi.org/10.1037/met0000340.supp
https://doi.org/10.1037/met0000340.supp
https://doi.org/10.1037/met0000340.supp
https://doi.org/10.1037/met0000340.supp
https://doi.org/10.1037/met0000340.supp
https://doi.org/10.1037/met0000340.supp


slightly less precise effect estimates than the analysis adjusting for
true U.

The Distributional Assumption of the Outcome or the
Mediator Is Violated

As represented in the first two boxplots in each grid in Figures
B3 and B4 and boxplot 7 in each grid in Figures B1 and B2, using
a link function different from the one used in the generation of a
binary mediator does not affect the proposed or q-based strategies’
ability to recover the true NIE and NDE. Similarly, Figures B5
and B6 reflect that, when the normal assumption of a continuous
outcome is violated, both the q-based and proposed methods can
still recover the true effects. We expect that the same conclusion
applies to a continuous mediator or a binary outcome.

The Functional Assumptions of the Outcome or theMediator
Are Violated

As shown in Figures B7–B14, the omission of the X-by-T interac-
tion or the U-by-T interaction from the outcome or mediator model
would bias the adjusted estimates of both NIE and NDE. When the
outcome model is misspecified, the proposed method generates a
slightly smaller bias in the adjusted estimates when implemented in
the weighting-based causal mediation analysis than in the regres-
sion-based analysis. Nevertheless, the difference is small. This is
because, although the weighting-based approach is robust to misspe-
cifications of the outcome model, such misspecifications would pull
the simulated U away from its true conditional distribution.

Summary

The proposed sensitivity analysis strategy performs similarly to
the q-based method in most scenarios. The two methods capture the
influence of unmeasured pretreatment confounding on the estimation
efficiency to the similar extent. Both methods can recover the true
effects when the mediator and outcome models are correctly speci-
fied or under violations of distributional assumptions of the outcome
or the mediator. Misspecification of the mediator model or the out-
come model would bias the adjusted effect estimates. If a potential
interaction between the unmeasured confounder and the treatment or
the mediator exists, we need to modify the conditional distribution
of the unmeasured confounder accordingly and control for these
interactions in the adjusted causal mediation analysis. Correspond-
ingly, more sensitivity parameters are involved.

Application

In this application, we use the same data as Imai, Keele, and
Tingley (2010). As described in the section about the JOBS II
intervention study, we investigate whether a job training interven-
tion (T) reduces participants’ level of depression (Y) by enhancing
their job search self-efficacy (M). There are 899 individuals
remaining in the sample after deletion of all the observations that
contain missing values. Hence, as Imai, Keele, and Tingley (2010)
acknowledged, the analysis is for illustrative purposes and not for
inference about the program efficacy. The data include all the pre-
treatment covariates to increase the credibility of the sequential
ignorability assumption. A binary mediator was constructed by
splitting one’s original score of job search self-efficacy at the sam-
ple median. Different from Imai, Keele, and Tingley (2010), we

standardize the outcome and continuous covariates, to facilitate
the interpretations of the sensitivity parameters. Hence, the follow-
ing analytic results are in different scales from those reported in
Imai, Keele, and Tingley (2010).

We employ in the original analysis the weighting-based causal
mediation analysis method. The intervention program increased the
rate of high confidence level in job search skills by 8% (SE = .03,
t = 2.27, p = .02).3 The natural indirect effect is estimated to be
�.033 (SE = .015, t = �2.20, p = .03), and the natural direct effect
is estimated to be �.064 (SE = .071, t = �.90, p = .37). The results
indicate that the increase in job search self-efficacy induced by the
intervention significantly decreased participants’ depression level.

The above results are obtained based on the assumption that the
relationship between job search self-efficacy and depression level is
unconfounded given the observed pretreatment covariates. However,
the assumption may not hold. As illustrated in the section of identifi-
cation assumptions, one’s motivation to find new jobs at baseline is
a potential unmeasured pretreatment confounder. Ignoring it in the
analysis may bias the NIE and NDE estimates. With such a specific
unmeasured confounder in mind, an analyst may determine the sen-
sitivity parameter values based on existing data or previous empiri-
cal findings. Alternatively, one may compare its unique confounding
role to those of the observed confounders based on existing data,
previous empirical findings, or theoretical reasoning, so that the
coefficients of the observed covariates in the mediator and outcome
models could be used as referent values for determining specific val-
ues or a plausible range of the sensitivity parameters (e.g., Carnegie
et al., 2016; Hong et al., 2021; Imbens, 2003). For example, one may
argue that the conditional associations of motivation with the medi-
ator and the outcome do not exceed those of the baseline depres-
sion level. By respectively setting byu and bmu to be equal to the
coefficient estimates of the baseline depression level in the out-
come and mediator models, we estimate the NIE to be �.031
(SE = .014, t = �2.21, p = .03) and the NDE to be �.066 (SE =
.072, t = �.92, p = .36). The results indicate that an additional
adjustment of motivation would have little influence on the esti-
mation and inference results, and thus the original analytic
results are expected to be robust to the omission of motivation to
find new jobs at baseline from the analysis. Similarly, should
there be a set of potential unmeasured pretreatment confounders,
one could evaluate their collective influence by comparing their
joint confounding role to the observed covariates.

In addition, we provide a convenient tool for researchers to vis-
ually assess how strong the unmeasured confounding needs to be
for the sign or statistical significance of the original conclusions to
be changed. We first set the unconditional probability of U at p =
.5 and specify for each sensitivity parameter a range three times
wider than that of the coefficients of the observed covariates in the
corresponding model. In this example, we set bmu to range between
�3 and 3 and byu to range between �1.5 and 1.5. We then divide
all the possible values of bmu and byu within the range into a 20 3
20 grid and generate 5,000 draws of the unmeasured pretreatment

3 Since the estimator of the weight is consistent, the weighting-based
NIE and NDE estimates, as weighted mean contrasts of the outcome, are
approximately normal as the sample size increases. Given the sample size
of this example, we assess the significance of the effects based on t tests
rather than bootstrapping.

SENSITIVITY ANALYSIS FOR CAUSAL MEDIATION STUDIES 1009

T
hi
s
do
cu
m
en
ti
s
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

Ps
yc
ho
lo
gi
ca
lA

ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le
is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al
us
e
of

th
e
in
di
vi
du
al
us
er

an
d
is
no
tt
o
be

di
ss
em

in
at
ed

br
oa
dl
y.

https://doi.org/10.1037/met0000340.supp
https://doi.org/10.1037/met0000340.supp
https://doi.org/10.1037/met0000340.supp
https://doi.org/10.1037/met0000340.supp
https://doi.org/10.1037/met0000340.supp
https://doi.org/10.1037/met0000340.supp
https://doi.org/10.1037/met0000340.supp
https://doi.org/10.1037/met0000340.supp
https://doi.org/10.1037/met0000340.supp


confounder U for each cell.4 Figures 1 and 2 respectively illustrate
the sensitivity analysis result for the natural indirect effect and that
for the natural direct effect.
Each black contour represents the combinations of sensitivity pa-

rameters that lead to the same effect estimate as indicated by the num-
ber on the contour. For example, as shown in Figure 1, if
the coefficient of U in the standardized outcome regression on the
treatment, mediator, and observed covariates (byu) is �.5, and if the
coefficient ofU in the standardized logistic regression of the mediator
on the treatment and observed covariates (bmu ) is 1, the NIE estimate is
increased from �.033 to �.024 after adjustment for U. Because the
treatment is randomized in this application, the total effect of treatment
assignment on the outcome, that is, the sum of NIE and NDE, is
unbiased. Hence, the number on the contour in Figure 1 and the num-
ber on the corresponding contour in Figure 2 always add up to the total
effect estimate, .097. At the same parameter values in the above exam-
ple (byu ¼ �0:5; bmu ¼ 1), the NDE estimate is�.073.
The sensitivity parameters along the red dashed curves reduce

the estimate to zero. As shown in Figure 1, if byu is equal to 1, for
the NIE to be removed, bmu needs to be around �2. Each blue dot-
ted curve corresponds to the boundary at which the significance of
the effect is changed at the significance level of .05. The effect is
insignificant on the side that contains the zero line. For example,
the NIE is significant in the original analysis. If byu is equal to .5,
for the NIE to become insignificant, bmu must be smaller than �1.
The larger the magnitudes of the sensitivity parameters are for
removing the effects or changing their significance, the less sensi-
tive the results are. Each black curve tends to be parallel to an ad-
jacent black curve but not to an adjacent blue dotted curve,
especially in Figure 1 for the NIE in this application. This indi-
cates the change in sampling variability after adjustment for U.
Ignoring it would lead to misleading conclusions about the influ-
ence of unmeasured pretreatment confounding on the significance
of the causal effects. Therefore, it is crucial to account for the
change in sampling variability in the sensitivity analysis.
Each dot corresponds to the conditional associations of each

observed covariate with Y and M, which are used to calibrate the
strength of the sensitivity parameters. Both Figure 1 and Figure 2 indi-
cate that, for the original causal conclusions about the indirect and
direct effects to be changed, an unmeasured pretreatment confounder
must be much stronger than the most important observed pretreatment
confounder. Given that this is highly unlikely, the results are insensitive
to an unmeasured pretreatment confounder whose marginal distribu-
tion is Bernoulli (.5). To further evaluate the influence of the marginal
distribution ofU, we draw two additional sets of sensitivity plots when
p = .1 and p = .9, respectively, as shown in Supplemental Appendix C.
Clearly, it becomes even harder to change the original conclusionwhen
themarginal probability ofU is further away from .5.

Alternative Sensitivity Parameters Based on Partial R2

In addition to the conditional association between U and Y and
that between U and M, byu and bmu , we could also assess the con-
founding role of U through partial R2 values, that is, the proportions
of the unexplained variances in the initial mediator and outcome
models that are explained by U (e.g., Imai, Keele, & Tingley, 2010;
Imai, Keele, & Yamamoto, 2010). Some researchers prefer partial R2

values (e.g., Imbens, 2003) because partial R2 values always range
between 0 and 1. When specific information about the confounding

role of U is unavailable, one can choose common partial R2 values
within the range and thus avoid specifying implausible values for the
sensitivity parameters. It also eases the specification of sensitivity pa-
rameter values if there is more than one potential unmeasured pre-
treatment confounders. When Y orM is binary, one has to construct a
pseudo partial R2 (e.g., McKelvey & Zavoina, 1975) based on the
variation in the latent index of the binary variable, which lacks intui-
tive interpretations. Hence, we propose partial R2 as alternative sensi-
tivity parameters only for continuous Y and M, while byu and bmu are
more intuitive sensitivity parameters when Y orM is binary.

Following Cinelli and Hazlett (2020), we express byu and bmu as

functions of partial R2 values, R�2
Y and R�2

M . Specifically,

byu ¼
covðY?T;M;X; U?T;M;XÞ

var U?T;M;Xð Þ ¼ sdðY?T;M;XÞR�
Y

sd U?T;M;Xð Þ

¼ sdðY?T;M;XÞR�
Y

sd U?T;Xð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� R�2

M

q ¼ sdðY?T;M;XÞR�
Y

sd Uð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� R�2

M

q ; (10)

where sd(Y\T,M,X) denotes the standard deviation of Y after
removing the components linearly explained by T, M, and X;
R�
Y ¼ corðY?T;M;X; U?T;M;XÞ indicates the partial correlation

between Y and U, with the effects of T, M, X removed from
both Y and U, and correspondingly R�2

Y represents the propor-
tion of the unexplained variance in the initial outcome model
that is explained by U. Similarly, R�

M ¼ corðM?T;X; U?T;XÞ
indicates the partial correlation between M and U, with the
effects of T and X removed from both M and U, and correspond-
ingly R�2

M represents the proportion of the unexplained variance
in the initial mediator model that is explained by U, that is,

R�2
M ¼ 1� var M?T;X;Uð Þ

var M?T;Xð Þ . Due to the symmetry of partial R2; R�2
M ¼

1� var U?T;X;Mð Þ
var U?T;Xð Þ , and thus sd U?T;M;Xð Þ ¼ sd U?T;Xð Þ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� R�2

M

q
,

in which sd(U\T,X) = sd(U) because U \ {T ,X}. Similarly,

bmu ¼ covðM?T;X; U?T;XÞ
var U?T;Xð Þ ¼ R�

Msd M?T;Xð Þ
sd U?T;Xð Þ ¼ R�

Msd M?T;Xð Þ
sd Uð Þ ;

(11)

where sd(M\T,X) denotes the standard deviation of M unexplained
by T and X.

With R�2
Y and R�2

M as sensitivity parameters, one can divide the
whole range of their plausible values between 0 and 1 into a grid.
Because sd(Y\T,M,X) and sd (M\T,X) can be calculated based on
observed data, and sd(U) is known given the marginal distribution
of U, one can calculate the values of byu and bmu corresponding to
each pair of R�2

Y and R�2
M and apply the proposed sensitivity analy-

sis algorithm.
In observational studies, one may further express the conditional

association between the unmeasured confounder and the treatment
as a function of the proportion of the unexplained variance in the
initial treatment model that is explained by U.

4 In this application, it is sufficient to divide all the possible values of bmu
and byu within the range into a 10 by 10 grid and generate 20 draws of the
unmeasured pretreatment confounder U for each cell. We refined the grid
and increased the number of repetitions for improving the smoothness of
the curves in the following visualization of the sensitivity analysis results.
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Discussion

In this article, we review the existing causal mediation analysis
methods under the sequential ignorability assumption and intro-
duce sensitivity analysis methods for assessing the sensitivity of
mediation analysis results to unmeasured pretreatment confound-
ing. To overcome the limitations of the existing sensitivity analy-
sis methods, we propose a simulation-based strategy and provide a
convenient tool for psychological researchers to visually represent
the sensitivity analysis results. The method allows users to intui-
tively quantify the strength of unmeasured pretreatment confound-
ing through unmeasured pretreatment confounders’ conditional
associations with the treatment, mediator, and outcome or the cor-
responding partial R2 values. Given values of the sensitivity pa-
rameters, we simulate the unmeasured confounder from its
conditional distribution. By comparing the causal mediation analy-
sis results before and after adjusting for the simulated confounder,
we capture the influence of unmeasured pretreatment confounding
on both estimation bias and estimation efficiency, while the latter
is nontrivial but usually ignored in most existing sensitivity analy-
sis strategies. We have verified this through simulations. Although
the q-based method shares the same strength, our method has its
own advantages. First, while the magnitude of q is meaningful
only through comparisons across studies, our sensitivity parameters
can be used independently to intuitively assess the confounding role
of unmeasured pretreatment confounders. Second, while the q-based
method assumes that the ignorability assumption of the treatment
holds, our method can assess sensitivity to a potential violation of the
assumption. Third, unlike the q-based method and the other existing
sensitivity analysis strategies, our method is compatible with various

causal mediation analysis methods and therefore enjoys broad applic-
ability. Fourth, while the q-based method assumes the adjusted NIE
and NDE estimates to be normally distributed, which may be vio-
lated in small samples and thus lead to inaccurate statistical inference,
we offer a solution based on a bootstrap procedure.

For illustration purposes, we have presented our method with a bi-
nary treatment, a binary mediator, a continuous outcome, and a binary
unmeasured pretreatment confounder, in a randomized experiment.
The strategy can be easily extended for applications to (a) a continuous
outcome and a continuous mediator, (b) a binary outcome and a binary
mediator, or (c) a binary outcome and a continuous mediator, by using
appropriate regression models in the derivation of the conditional dis-
tribution of the unmeasured confounder. The unmeasured pretreatment
confounder can be either binary or continuous in each scenario. We
have also extended the approach to observational studies in which the
relationship between the treatment and the outcome and that between
the treatment and the mediator are also confounded. Details can be
found in Supplemental Appendix A. All the extensions have been
incorporated into the R package mediationsens.

Important topics remain. First, we assume no posttreatment con-
founding of the mediator–outcome relationship and focus on evaluating
sensitivity to unmeasured pretreatment confounding. However, in prac-
tice, covariates that confound the relationship between the mediator and
the outcome might be affected by the treatment. For example, the job
training program may stimulate one’s preference for working, which
might lead to higher job search self-efficacy and lower depression lev-
els. Nevertheless, sensitivity analysis strategies for posttreatment con-
founders are still minimal. As Avin et al. (2005) showed, the indirect
and direct effects are not identifiable in the presence of posttreatment

Figure 1
Sensitivity Analysis Plot for the Natural Indirect Effect When p = 0.5

Note. p denotes the unconditional probability of U. Each black contour represents the combi-
nations of sensitivity parameters that lead to the same effect estimate as indicated by the num-
ber on the contour. The sensitivity parameters along the red dashed curves reduce the estimate
to zero. Each blue dotted curve corresponds to the boundary at which the significance of the
effect is changed at the significance level of 0.05. The effect is insignificant on the side that
contains the zero line. Each dot corresponds to the conditional associations of each observed
covariate with Y and M, which are used to calibrate the strength of the sensitivity parameters.
See the online article for the color version of this figure.
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confounders if an interaction exists between the treatment and the medi-
ator. Nevertheless, one may still hope to examine plausible estimates of
the indirect and direct effects in such settings and evaluate their sensitiv-
ity to the omission of observed or unmeasured posttreatment confound-
ing. Imai and Yamamoto (2013) and Vansteelandt and Vanderweele
(2012) proposed sensitivity analysis methods for evaluating the influ-
ence of an observed posttreatment confounder. VanderWeele and Chiba
(2014) is also applicable to unmeasured posttreatment confounding.
However, all these strategies ignore the influence of posttreatment con-
founders on the estimation efficiency. We leave it to our future research
for investigating to what extent a posttreatment confounder must be
associated with the mediator and the outcome for the original causal in-
ference about the indirect and direct effects to be altered. Second, we
assume that the treatment, mediator, and outcome are measured without
errors. However, this assumption is often violated, especially in psycho-
logical and behavioral sciences. Liu andWang (2020) assessed the joint
consequences of measurement errors and unmeasured pretreatment
confounding, by using the reliability levels of the treatment, mediator,
and outcome to quantify the degree of violation of the no-measure-
ment-error assumption. However, this method does not apply when the
treatment is not randomized, the mediator or the outcome is discrete, or
there exists an treatment-by-mediator interaction. It would be of future
research interest to extend the proposed method for examining the influ-
ence of co-occurrence of measurement errors and unmeasured pretreat-
ment confounding.
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