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Abstract
Item-level fit analysis not only serves as a complementary check to global fit analysis, it is also
essential in scale development because the fit results will guide item revision and/or deletion (Liu &
Maydeu-Olivares, 2014). During data collection, missing response data may likely happen due to
various reasons. Chi-square-based item fit indices (e.g., Yen’s Q1, McKinley and Mill’s G2, Orlando
and Thissen’s S-X2 and S-G2) are the most widely used statistics to assess item-level fit. However, the
role of total scores with complete data used in S-X2 and S-G2 is different from that with incomplete
data. As a result, S-X2 and S-G2 cannot handle incomplete data directly. To this end, we propose
several modified versions of S-X2 and S-G2 to evaluate item-level fit when response data are in-
complete, named as Mimpute-X

2 and Mimpute-G
2, of which the subscript “impute” denotes different

imputation methods. Instead of using observed total scores for grouping, the new indices rely on
imputed total scores by either a single imputation method or three multiple imputation methods
(i.e., two-way with normally distributed errors, corrected item-mean substitution with normally
distributed errors and response function imputation). The new indices are equivalent to S-X2 and S-
G2 when response data are complete. Their performances are evaluated and compared via sim-
ulation studies; the manipulated factors include test length, sources of misfit, misfit proportion, and
missing proportion. The results from simulation studies are consistent with those of Orlando and
Thissen (2000, 2003), and different indices are recommended under different conditions.
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Introduction

The existence of missing data has always been a challenge in psychometrics research. During data
collection, missing response data may likely happen due to various reasons. Some of the resulting
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missing responses are partly due to special test design, under which some items are not administered
and therefore missing by design (e.g., NEAP). Another type of missingness occur because of the
respondent’s behavior during the test, such as failing to reach the end of a test due to test speedness, or
he/she decided to omit the item after reading it (Mislevy&Wu, 1996). From statistical perspective, the
types of missing mechanism are summarized (Little & Rubin, 2002; Rubin, 1976) as missing
completely at random (MCAR), missing at random (MAR) and missing not at random (MNAR).

Under the MCAR assumption, the probability of missingness is the same for all respondents,
such that the observed data are a simple random sample of the hypothetical complete data. Under
the MAR assumption, the probability of missingness depends solely on the observed values of
some other variables but not the missing value. Under the MNAR assumption, the probability of
missing data on a particular variable depends on themissing variables such as possiblemissing responses
or latent variables, even after controlling for the observed values of other variables (Enders & Baraldi,
2018). Mathematically, the missing mechanism can be expressed as follows,

pðdata j complete variablesÞ ¼ pðdata jobserved variables, missing variablesÞ

¼
8<: pðdataÞ, if data areMCAR,

pðdataj observed variablesÞ, if data areMAR,
pðdata jobserved variables, missing variablesÞ, if data areMNAR

When the missing mechanism isMCAR orMAR, the missingness is deemed ignorable when to
estimate parameters. On the contrary, the missingness is non-ignorable for MNAR and hence
estimating model parameters solely on observed data would produce bias. To handle missing data
that satisfy the MCAR or MAR assumptions, one popular way is listwise deletion, and another
widely used way is to impute the missing data.

To evaluate item fit when response data are complete, numerous statistical procedures have been
introduced in IRT literature. Among them, Chi-square-based item fit indices (e.g., Yen’s Q1 (1981),
McKinley and Mill’s G2 (1985), Stone’s χ2* and G2* (2000), Orlando and Thissen’s S-X2 and S-G2)
have been applied in various scenarios. For instance, they are used to examine model misspecification
under dichotomous or/and polytomous items (Chon et al., 2010; Kang & Chen, 2008; Liang &Wells,
2009), to test violation of the monotonicity assumption of the item response function (IRF; Orlando &
Thissen, 2003), to test itemmisfit due toQ-matrixmisspecification (Wang et al., 2015), to identify item
misfit in multidimensional or hierarchical item response models (Li & Rupp, 2011; Zhang & Stone,
2008; Zhang et al., 2018). Stone’s χ2* and G2*, which can be treated as a Bayesian version ofQ1 and
G2, were used to detect item parameter drift (LaHuis et al., 2011; Stone & Zhang, 2003).

The posterior predictive model checking (PPMC)method (Sinharay, 2005; 2006) was also used
to assess item fit as under a Bayesian estimation framework (e.g., Markov chain Monte Carlo).
Furthermore, under the residual analysis framework, Haberman (2009) and Haberman et al.
(2013) used generalized residuals to assess item fit. Above mentioned indices used different forms
of discrepancy measures to quantify the discrepancy between model prediction and observation,
on the other hand, the Lagrange multiplier (LM) test (Glas & Suárez-Falcón, 2003) was used to
identify item misfit due to violation of local independence.

Moreover, the root integrated squared error (RISE, Douglas & Cohen, 2001) was presented to
assess item fit for parametric IRT using nonparametric information, and the limited information fit
statistics (Bartholomew&Leung, 2002; Cai et al., 2006; Maydeu-Olivares & Joe, 2005; Reiser, 2008)
was proposed using the marginal tables to detect local dependence (Liu &Maydeu-Olivares, 2013) or
identify the source ofmisfit (Liu&Maydeu-Olivares, 2014). Recently, in order to assess latent variable
distribution fit in IRT, Li and Cai (2018) proposed Satorra–Bentler type moment adjustment of
Pearson’s χ2, and compared with the unadjusted index and Maydeu-Olivares and Joe’s M2.
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Previous studies examining the behavior of item fit indices have not mentioned incomplete
response data. As a widely used family of item fit indices, current Chi-square-based item fit indices
rely on person’s θ estimates (e.g., Yen’s Q1 and McKinley and Mill’s G2) or total scores (e.g.,
Orlando and Thissen’s S-X2 and S-G2) for grouping individuals. S-X2 and S-G2 outperformQ1 and
G2 with completed data (e.g., Chon et al., 2010; Kang & Chen, 2008; Orlando & Thissen, 2000;
2003). As S-X2 and S-G2 rely on total scores, and the role of total scores for complete data is not the
same as that for incomplete data, it may be problematic to assess item-level fit using Q1, G

2, S-X2

or S-G2 for incomplete data. The primary goal of this study, thus, is to propose an effective item fit
index to detect item misfit when the observed response matrix is incomplete.

This remainder of this article is organized as follows: first, we briefly review the IRT models.
Then, the modified S-X2 and S-G2 indices, namely the Mimpute-X

2 and Mimpute-G
2 for incomplete

dichotomous response data,1 are proposed. Third, a simulation study is conducted to investigate the
performances of the proposed indices to detect item misfit. Finally, we end with concluding remarks.

Method

Model Description

In this study, we consider a family of unidimensional binary IRT models (Baker & Kim, 2004): the
one-parameter logistic (1PL), two-parameter logistic (2PL) and three-parameter logistic (3PL) models.
The probability of examinee j (j = 1,…, N) answers item i (i = 1,…, I) correctly can be expressed as

pij ¼ p
�
yij ¼ 1

��ai, bi, ci, θj� ¼ ci þ 1� ci
1þ exp

�� D
�
aiθj � bi

��, (1)

where yij denotes the response2 of examinee j on item i, θj is the latent trait (i.e., ability) of
examinee j, and ai, bi, ci are the ith item’s intercept, slope, and lower asymptote parameters,
respectively. Here, the lower asymptote parameter can represent the guessing behavior. D is the
scaling constant, which is set to 1 here. The formula of the 2PL model can be obtained by setting
ci = 0 for all i in equation (1), analogously, the formula of the 1PLmodel can be obtained by setting
both ai =1 and ci = 0 for all i in equation (1).

Accurate parameter estimation is the basis for statistical inference; biased parameter estimation
maymislead the subsequent statistical analysis. When themissing data aremissing not at random, the
missingmechanism needs to be properly modeled during parameter estimation to avoid any potential
bias. Although there exists a literature on modeling non-ignorable missing data with IRT (Debeer
et al., 2017; Köhler et al., 2015; Liu & Wang, 2016; Lu & Wang, 2020; Rose et al., 2016), each
modeling approach is only specific to one type of non-ignorable missing mechanism that it is hard to
find a one-size-fits-all approach. As an exploratory research on item-level fit assessment with missing
data, we will only focus on the simplest scenario (i.e., missing completely at random) in this study.

Latent Trait Estimation-Based Indices

Both Q1 and G2 are computed based on grouping individuals according to their latent trait es-
timation. Examinees are rank-ordered and partitioned into 10 homogeneous subgroups based on bθ.
Then Q1 and G2 for item i can be written as

Q1i ¼
X10
k¼1

NkðOik � EikÞ2
Eikð1� EikÞ andG2

i ¼ 2
X10
k¼1

Nk

�
Oik ln

Oik

Eik
þð1� OikÞln 1� Oik

1� Eik

�
, (2)
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where k (k = 1, …, 10) represents a homogeneous group of examinees, Nk is the number of
examinees in group k, Oik and Eik are the observed and expected proportions of correct responses
for item i in group k. Here Eik equals the mean predicted probability of a correct response from the
model in each interval. The degrees of freedom (df) associated with Q1 and G2 are both 10� m,
where m is the number of item parameters.

Number-Correct Score-Based Indices

Orlando and Thissen (2000) proposed item fit indices S-X2 and S-G2 based on number-correct
scores (NC scores; i.e., total scores) for dichotomous items. The forms of S-X2 and S-G2 for item i
are

S � X 2
i ¼

XI�1

k¼1

Nk
ðOik � EikÞ2
Eikð1� EikÞand S � G2

i ¼ 2
XI�1

k¼1

Nk

�
Oik ln

Oik

Eik
� ð1� OikÞln 1� Oik

1� Eik

�
, (3)

where k = 1, …, I � 1 denotes the subgroup, which is classified depend on NC scores, I denotes
the test length. As the proportion of examinees who answered item i correctly is always 0 (or 1) at
the two extremes (i.e., NC scores equals 0 or I), only I � 1 subgroups are considered to detect item
misfit. Here Nk,Oik, and Eik have the same meanings as equation (2). The calculation of Eikwill be
provided in the following subsection. The df associated with S-X2 and S-G2 are both I � 1� m,
where m is the number of item parameters for each item.

When response data are incomplete, classification of examinees based on NC scores may be
mis-specified, as the role of NC scores for incomplete data is not the same as that for complete
data. For instance, for a test with 20 items, one respondent answers 10 items correctly and 10 items
incorrectly, his/her NC score is 10, another respondent answers 10 items correctly, 4 items in-
correctly, and the responses of 6 items are missing, his/her NC score is also 10. Obviously, the
ability of the second respondent may be higher than the first one with a high probability. Although
their NC scores are the same, it may be problematic to classify them into the same subgroup.

Number-Correct Imputed Score-Based Indices

To handle incomplete data, we propose to first impute the missing data and then apply S-X2 and S-
G2 to the imputed complete data. Specifically, the strategy for assessing item fit of an IRT model
with/without missing data can be summarized as follows: (1) Estimate the item parameters based
on a specified model; (2) impute the missing part of response data using different imputation
methods (i.e., single imputation method, two-way with normally distributed errors (TWE),
corrected item-mean substitution with normally distributed errors (CIMSE) and response function
(RF) imputation),3 then classify the examinees into K subgroups according to the “complete”
observed total score; (3) calculate the observed and predicted frequencies of correctly/incorrectly
responses for each item and each subgroup; (4) calculateMimpute-X

2 andMimpute-G
2 by computing

the discrepancy between observed and predicted values.
The expressions of Mimpute-X

2 and Mimpute-G
2 for a dichotomous item i are as follows:

Mimpute � X 2
i ¼

XI�1

k¼1

ðfik � NkEikÞ2
NkEikð1� EikÞ, (4)

and
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Mimpute � G2
i ¼ 2

XI�1

k¼1

�
fik ln

	
fik

NkEik



� ðNkEik � fikÞln

	
Nk � fik

Nk � NkEik


�
, (5)

where Nk denotes the number of examinees in group k (k = 1, …, I) using the imputed response
data, and I � 1 subgroups are considered. fik denotes the number of examinees whose (imputed)
response on item i is correct in the kth group, and Eik denotes the expected proportion of correct
response for item i in the kth group. Hence, NkEik is the corresponding predicted frequency of
correctly responses. Please note that Equations (4) and (5) are essentially the same as Equation (3),
except that the statistics are calculated using the imputed data, whereas S-X2 and S-G2 are
computed based on the complete observed data. Eik has the same form as S-X2 and S-G2,

Eik ¼

Z
piðθÞf *iðk � 1jθÞfðθÞdθZ

f ðkjθÞfðθÞdθ
, (6)

where pi(θ) is the IRF of item i, f(k|θ) is the NC score likelihood given particular θ for score k,
f*i(k � 1|θ) is the NC score likelihood given particular θ for score k � 1 excluding item i, andf(θ)
denotes the prior distribution of θ. The calculation is the same as that in Orlando and Thissen
(2000).

The df associated with Mimpute-X
2 and Mimpute-G

2 both equal I � 1� m and their asymptotic
distributions are the same, where m is the number of item parameters. Obviously, Mimpute-X

2 and
Mimpute-G

2 are the general version of S-X2 and S-G2, which can handle both complete data and
incomplete data.

Hereafter, Q1, S-X
2, and Mimpute-X

2 are named as χ2–type indices as they rely on the χ2

statistics; G2, S-G2, and Mimpute-G
2 are named as LR-type indices as they rely on the likelihood

ratio (LR) test.

Imputation methods

In this article, the single imputation method and three multiple imputation methods4 (i.e., two-way
with normally distributed errors, corrected item-mean substitution with normally distributed errors
and response function imputation) are considered, as the single imputation method is the simplest
method, and these three multiple imputation methods perform similarly and they are recom-
mended by van Ginkel et al. (2007). These methods are introduced briefly below.

Single imputation method. As the simplest imputation method, the final imputed value of the
missing response using the single imputation method is the row-mean score.

Two-way with normally distributed errors (TW-E). Bernaards and Sijtsma (2000) defined
TWij = PMj + IMi –OM as the temporary value of the imputed score of examinee j on item i, where
PMj denotes the mean of the observed item scores of examinee j, IMi is the mean of the observed
item scores of item i, andOM denotes the mean of all observed item scores. A random error εij was
added to TWij, which was distributed normally with mean 0 and varianceP

i, j2obsðyij � TWijÞ2=ð#obs� 1Þ, where obs denotes the set of all observed cells (Bernaards &
Sijtsma, 2000) and #obs is the corresponding size. Then let TWijðEÞ ¼ TWij þ εij, the imputed
value in cell (i, j) of the response matrix is obtained by rounding TWij(E) to the nearest integer.

Corrected item-Mean Substitution with Normally Distributed Errors. The temporary imputed value in
cell (i, j) is defined as (Huisman, 1998)
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CIMSij ¼
 

PMjP
i2obsðjÞIMi

.
#obsðjÞ

!
× IMi,

where obs(j) denotes the set of observed cells for examinee j. A similar random error was added to
CIMSij, which had the same distribution as that of TWij(E). The final imputed value in cell (i, j) is
obtained by rounding CIMSij(E) to the nearest integer.

Response function imputation. Sijtsma and van der Ark (2003) defined bRð�iÞj ¼ PMj × ðI � 1Þ as the
estimated value of the rest-score of examinee j on item i. Then, we can obtain Pðyij ¼ 1jRð�iÞj ¼
rÞ ¼ #ðyi:¼1,bRð�iÞ:¼rÞ

#ðbRð�iÞ:¼rÞ
when r is an integer, and when r is not an integer, Pðyij ¼ 1jRð�iÞj ¼ rÞ can be

approximated by the linear interpolation method. Interested readers can refer to Sijtsma and van
der Ark (2003) for details. Then the imputed value in cell (i, j) can be drawn from a Bernoulli
distribution with a successful probability Pðyij ¼ 1jRð�iÞj ¼ rÞ:

Simulation Study

The main purpose of the simulation study is to examine the performances of Mimpute-X
2 and

Mimpute-G
2, and to compare them with S-X2, Q1 and G

2. Hereafter, these four imputation methods
are named as data-based imputation methods. Furthermore, treating all missing responses as
wrong is also compared as an alternative imputation method.

For all conditions, the item parameters were calibrated via the expectation-maximization (EM)
algorithm implemented by the R “mirt” package and the person parameters were obtained using
the maximum likelihood estimation (MLE).

Simulation Design

This simulation study was designed to examine the performances of the proposed indices to
differentiate mis-specified item response functions. Five factors and their varied conditions
were considered: (1) test length (Orlando & Thissen, 2000),10 (small) and 40 (large); (2)
sample size (Orlando & Thissen, 2000), 500 (small) and 1000 (large); (3) missing pro-
portion, 0.01 (extra small), 0.1 (medium), and 0.2 (large); (4) item misfit proportion (Wang
et al., 2015), 0.1 (small) and 0.4 (large); and (5) five different true data generation models
and three different calibration models (details were provided in Table 1). The missing
mechanism considered in this study was missing at random completely. To generate the
response data, the distributions used to generate item parameters were presented in the 4th
column in Table 1, and the latent traits were simulated from standard normal N(0, 1). 500
replications were done for each condition.

The first three generation models are a mixture of 1PL and 2PL models, a mixture of 1PL and
3PL models, and a mixture of 2PL and 3PL models, in which the misfit items conform to the more
complex model, and the response data are fitted using the other one. In other words, well-fit items
conform to the simpler model.

The fourth type of misfit items conforms to a 4-parameter logistic (4PL) model (Barton & Lord,
1981), in other words, the probability of answering correctly will never reach 1. It is expressed by

pðy ¼ 1ja, b, c, d, θÞ ¼ cþ d � c

1þ exp½� Dðaθ � bÞ�, (7)
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where a, b, c, and D are the same as in Equation (1), d denotes the upper asymptote parameter,
which is drawn from Beta(8, 2). The upper asymptote parameter can represent the slipping
behavior. The response data are fitted using a 3PL model.

The fifth type of misfit items violates the monotonicity assumption of IRF, the probability of a
correct response is described by Thissen (1986) and Wainer and Thissen (1987) and can be
expressed by

pðy ¼ 1ja, b, c, d, θÞ ¼ c

1þexpfD½aθ � ðb� eÞ�g þ
1

1þ expfDðaθ � bÞg, (8)

where a, b, c, and D are the same as in Equation (1), e is a positive number, which is drawn from
logN(0, 0.5)×U(0, 2), and larger e leads to a larger dip in the curve. Here, the response data are also
fitted using a 3PL model.

To evaluate and compare the performances of the item fit indices, false positive rates (FPRs)
and correct detection rates (CDRs) are calculated with α ¼ 0:05. The FPR is defined as the
proportion of well-fit items that are mistakenly flagged, and it is computed per replication and
averaged over 500 replications. The CDR is defined as the proportion of misfit items that are
correctly detected, and it is also computed per replication and averaged over 500 replications.
Moreover, 95% confidence intervals (CIs) for the true rejection rates are reported to account for
sampling error associated with expected rejecting rates

CI95% ¼ α ± 1:96 × ½αð1� αÞ=R�1=2,
where R is the number of replications and α is the significant level (which is set to .05). In this
study, the expected 95% CI is [0.031, 0.069].

Simulation Results

Comparison of different imputation methods. To further evaluate the performances of different
imputation methods, Analysis of Variance (ANOVA)5 is done for the p-values of modified item fit
indices when test length is small, as the 500 replications can be treated as 500 independent
observations. Furthermore, when the null hypothesis is rejected, post hoc multiple comparison test
is done to find out which methods differ. The effect size measures (i.e., η2) for small test length
cases are summarized in the online supplement, and the average η2 is calculated respectively for

Table 1. Summary of simulation design.

Scenario Well fit item Misfit item Parameter generation

1 p ¼ 1
1þexp½�Dðθ�bÞ� p ¼ 1

1þexp½�Dðaθ�bÞ� a ∼ logN(0, 0.5)
b ∼ logN(0, 0.5) × N(0, 1)
c ∼ logitN(-1.1, 0.5)
d ∼ Beta(8, 2)
e ∼ logN(0, 0.5) × U(0, 2)

2 p ¼ 1
1þexp½�Dðθ�bÞ� p ¼ c þ 1�c

1þexp½�Dðaθ�bÞ�
3 p ¼ 1

1þexp½�Dðaθ�bÞ� p ¼ c þ 1�c
1þexp½�Dðaθ�bÞ�

4 p ¼ c þ 1�c
1þexp½�Dðaθ�bÞ� p ¼ c þ d�c

1þexp½�Dðaθ�bÞ�
5 p ¼ c þ 1�c

1þexp½�Dðaθ�bÞ� p ¼ c
1þ expfD½aθ � ðb� eÞ�g

þ 1
1þ expfDðaθ � bÞg
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misfit and well fit items and is presented in Table 2. Hereafter, P.mix denotes the mixed proportion,
P.miss denotes the missing proportion.

When the missing proportion was extra small, η2 is equal to or approximately equals to 0 expect
for misfit items in Scenarios 4–5. For other conditions, η2s for misfit items are smaller than those
for well fit items in Scenarios 1–2, but larger in Scenarios 3–5. Larger missing proportion leads to
larger η2.

In addition, based on the results from ANOVA and post hoc multiple comparisons, it can
be concluded that when the missing proportion is extra small, there are no significant
differences among four data-based imputation methods for misfit items in Scenarios 4–5, and
there are no significant differences among all the imputation methods for other scenarios and
well fit items in Scenarios 4–5. The difference between the performance of treating all
missing responses as wrong and performances of data-based imputation methods are
significant.

When the missing proportion is medium, there is no significant difference among four
data-based imputation methods for misfit items in Scenarios 1–3 and well fit items in
Scenarios 4–5; there is no significant difference between TW-E and RF or among SI, CIMS-E
and RF for well fit items in Scenario 1; the difference between CIMS-E imputation method
and other data-based imputation methods is significantly for well fit items in Scenarios 2–3;
the difference between SI method and other data-based imputation methods is significant for
misfit items in Scenarios 4–5. When the missing proportion is large, CIMS-E is significantly
different from other data-based imputation methods for misfit items in Scenario 1 and well fit
items in Scenarios 1–3; there is significant difference between SI and other imputation
methods for misfit items in Scenarios 3–5; there is no significant difference among all the
data-based imputation methods for most misfit items in Scenarios 2 and well fit items in
Scenarios 4–5.

Overall, the differences between TW-E and RF are not significant for the bulk of items in the
small test length cases. Obviously, the type of imputation method has little/no effect when the
missing proportion is extra small, as under this condition there are few differences among different
types of NC imputed scores.

Table 2. Summary of average η2 for Mimpute-X
2 with small test length.

N P. mix P. miss

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5

Misfit Fit Misfit Fit Misfit Fit Misfit Fit Misfit Fit

500 0.1 0.01 0 .000 .002 .000 .002 .000 .048 .001 .030 .001
0.1 .010 .015 .048 .022 .115 .033 .148 .046 .105 .035
0.2 .035 .054 .062 .065 .189 .057 .190 .065 .163 .063

0.4 0.01 .000 .000 .001 .001 .002 .001 .031 .001 .038 .001
0.1 .008 .014 .038 .045 .070 .071 .099 .095 .107 .061
0.2 .030 .047 .058 .123 .111 .092 .121 .110 .155 .086

1000 0.1 0.01 0 .000 .002 .000 .003 .001 .081 .001 .040 .002
0.1 .009 .032 .048 .043 .159 .054 .114 .077 .105 .071
0.2 .042 .078 .056 .103 .215 .070 .206 .079 .139 .137

0.4 0.01 0 .000 .001 .002 .002 .001 .045 .002 .046 .002
0.1 .013 .031 .048 .085 .104 .110 .101 .145 .108 .098
0.2 .036 .073 .058 .152 .136 .095 .105 .120 .114 .092

Note. “Misfit” denotes the average of η2 for misfit items, and “Fit” denotes the average of η2 for well-fit items.
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False positive rate and correct detection rate

Tables 3 and 4 display the comparison among different χ2–based indices (i.e., Q1, S-X
2 and five

Mimpute-X
2) through FPRs and CDRs, respectively. In these tables, the entries under the M-X2

column are the smallest FRPs (in Table 3) among different Mimpute-X
2 and the corresponding

CDRs (in Table 4). The full results of FPRs and CDRs are shown in the online supplementary.
Obviously, S-X2 cannot handle the cases with large test length and medium to large missing
proportion. The highest number of entries of FPRs contained in 95% CI was in Scenario 2, and the
lowest number was in Scenarios 4.

When the response data are generated by the 1PL model mixed with the 2PL model (i.e.
Scenario 1), the values presented in Table 3 were mostly fromMSI-X

2 orMTWE-X
2. Larger missing

proportion leads to larger FPRs of S-X2 andM-X2with small test length and smaller FPRwith large
test length, the corresponding FPR of Q1 reverses. In terms of CDR, larger missing proportion
leads to smaller CDRs of all indices except for S-X2 with not small missing proportions and large
test length. Q1 outperformed when test length was large, but underperformed when test length is
small.

When the response data is generated by the 1PL model mixed with the 3PL model (i.e.,
Scenario 2), the trends of FPRs and CDRs are similar to those in Scenario 1, but there are more
entries of FPRs which are contained in 95% CI. The FPRs in theM-X2 column are mostly from
MSI-X

2 or MTWE-X
2. The modified indices outperform compared to other indices, the FPRs of

Q1 with small test length and extra small missing proportion are too large. Regarding with
CDRs, S-X2 underperforms compared to modified indices.

When the generation model is the 2PL model mixed with the 3PL model (i.e., Scenario 3),
the values in the M-X2 column are mostly from MSI-X

2, MTWE-X
2, or MRF-X

2. The trends of
FPRs in missing proportion are almost similar to Scenario 1, but larger missing proportion
leads to larger CDRs of all types of indices with small test length and smaller CDRs of indices
except S-X2 with large test length. The FPRs of Q1 are extremely large for small test length
and mostly smallest for large test length. And the suitable values of CDRs are too small,
which means that it is hard to distinguish the difference between the 2PL model and the 3PL
model.

In Scenarios 4–5, most of values in the M-X2 column are from MSI-X
2, especially when test

length is large. The trends are both similar to Scenario 3. Comparing to Scenario 3, the FPRs and
CDRs become larger for small test length and smaller for large test length. Note that the per-
formance of SI method is significantly different from multiple imputation methods for misfit
items, though the results of MSI-X

2 were presented in Tables 3 and 4, this index is not recom-
mended due to its extreme small CDR.

In sum, Q1 performs respectably when test length is large. Comparing the performances of
item fit indices among Scenarios 1–3, they perform the best to distinguish 1PL model and
3PL model, and worst to distinguish 2PL model and 3PL model. When the scenarios become
more complex (i.e., Scenarios 4–5), their performances to distinguish two different models
becomes better.

Comparison of χ2–type indices and LR-type indices

In Scenario 1, the FPR ofQ1 is smaller thanG2when test length is small, and similar or larger than
G2when test length is large, the CDRs ofQ1 andG

2 are similar. In Scenario 2,Q1 has smaller FPR
and larger CDR thanG2. In Scenario 3, the FPR ofQ1 is similar to or larger thanG2with small test
length, and smaller than G2 with large test length, their CDRs are similar. And in Scenarios 4–5,
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both FPR and CDR of Q1 are larger than G2. The modified χ2–type indices mostly have larger
FPRs and CDRs than the modified LR2–type indices, the differences between their CDRs are quite
apparent with small test length in Scenarios 2 and 5. It appears that most of LR2–type indices have
smaller FPRs and smaller CDRs than χ2–type indices.

Conclusions

Data collection cannot in the nature of things be free frommissingness for various reasons. Current
Chi-square-based item fit indices rely on either latent trait estimation or total score. However,
when the response data are incomplete, it is unreasonable to compare examinees’ total scores
without any pretreatment. To this end, we modify S-X2 and S-G2, which perform well to assess
item-level fit for complete data (Orlando & Thissen, 2000; 2003; Wang et al., 2015; Zhang et al.,
2018), to fill in the gap using different data imputation methods.

Across all simulation conditions, the modified indices using two-way with normally distributed
errors imputation are recommended for UIRT models due to their appropriate false positive rates,
acceptable correct detection rates and insignificant difference with other data-based imputation
methods. When test length is large, the performances ofQ1 andG

2 are also recommended because
of easy operating and acceptable FPRs and CDRs. When missing proportion is extra small, any
item fit indices mentioned in this study can be used. Compared to S-X2, allMimpute-X

2 andMimpute-
G2 with data-based imputation methods perform more stably in terms of FPRs. Mimpute-X

2 and
Mimpute-G

2with multiple imputation methods performwell to detect model misspecification due to
non-invariant discrimination parameters, non-monotonic ICCs and slipping behavior, and perform
poorly to detect model misspecification due to guessing behavior. The performances ofMSI-X

2 and
MSI-G

2 are not significantly different from the modified indices with multiple imputation method
to detect model misspecification due to guessing/slipping behavior.

The missing mechanism considered in this article is missing completely at random, we use the
NC imputed score as the matching criterion when constructing the discrepancy measure, which
can be easily extended to deal with a variety of missing data scenarios. Furthermore, as the
utilization of S-X2 in many areas were reported in the literature, it is easy to extend this study to
deal with polytomous data (Kang & Chen, 2008), multiple choice items (Thissen & Steinberg,
1984) and different multivariate factor structures (Zhang & Stone, 2008; Li & Rupp, 2011; Zhang
et al., 2018). In addition, it would be worthwhile to examine the performances of the proposed
indices to detect other sources of misfit. Finally, the performance of other item fit statistics (e.g.,
residual analysis, LM test, and PPMC) in the presence of missing data should be investigated in
future research.
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Notes

1. The subscript “impute” represents different imputation methods, which will be introduced in later
sections.

2. In this study, the intercept/slope parameterization is used, which is equivalent to the discrimination/
difficulty parameterization.

3. The detailed imputation methods were described in next subsection.
4. Notations are deferred to Equation (1).
5. Null hypothesis (H0) is the performances of these imputation methods are equivalent.
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