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Abstract 

Words read correctly per minute (WCPM) is the reporting score metric in oral reading fluency 

(ORF) assessments, which is popularly utilized as part of curriculum-based measurements to 

screen at-risk readers and to monitor progress of students who receive interventions. Just like 

other types of assessments with multiple forms, equating would be necessary when WCPM 

scores are obtained from multiple ORF passages to be compared both between and within 

students. This paper proposes a model-based approach for equating WCPM scores. A simulation 

study was conducted to evaluate the performance of the model-based equating approach along 

with some observed-score equating methods with external anchor test design.  

Keywords: oral reading fluency, curriculum-based measurement, words read correctly per 

minute, model-based approach, equating  
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Equating Oral Reading Fluency Scores: A Model-Based Approach 

Oral reading fluency (ORF) has been regarded as an important indicator of overall 

reading competency and assessed frequently as part of curriculum-based measurements to screen 

at-risk readers and to monitor progress of students who receive interventions. In a typical 

administration of ORF assessment, a student is given a grade-level text to read, and the number 

of words read correctly per minute (WCPM) is computed based on the observed number of 

correctly read words and the observed reading time. WCPM scores have been the most 

commonly-used measure in ORF assessments in classrooms, as well as in national-level 

assessments (e.g., White et al., 2021). Previous research provided empirical evidence on the 

predictive and concurrent validity of WCPM scores (e.g., Fuchs et al., 2001; Hasbrouck & 

Tindal, 2006). Despite their prevalent use and practical applications, observed WCPM scores 

have considerable psychometric limitations such as inaccurate standard errors (Christ & 

Silberglitt, 2007; Nese et al., 2013) and dependence to specific passages read by students (Betts 

et al., 2009; Francis et al., 2008), which potentially reduces the reliability and validity of reported 

scores.  

Passage dependence of the observed WCPM scores points to the variability in passage 

difficulties in ORF assessments. In other words, a student may have different WCPM scores by 

reading an easy or hard passage at the same grade-level. In a similar vein, two students with the 

same level of ORF ability may yield different WCPM scores due to reading passages that have 

different difficulty levels. Also referred to as “passage effects” (Cummings, et al., 2013), this 

variability in passage difficulties may produce a considerable amount of systematic error, as 

much as 10% (around 22 WCPM; Chaparro et al., 2018). Such a large magnitude of error in ORF 

scores can be crucial, especially for students who are identified to be at risk of poor reading 
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outcomes. Moreover, it would be difficult to distinguish the change of ORF scores due to true 

student growth versus passage dissimilarity, which would jeopardize the validity of longitudinal 

ORF assessments (Albano et al., 2018; Albano & Rodriguez, 2012). Thus, test developers of 

ORF assessments need to correct for varying passage difficulties with appropriate methods for 

more precise measurement of ORF.  

Commonly accepted practices for handling passage effects include evaluating passage 

difficulties through readability indices (e.g., Flesh-Kincaid) and increasing the number of 

passages read by the student at each session. However, these strategies can generally be 

insufficient for establishing passage equivalence (Betts et al., 2009; Cummings et al., 2013; 

Francis et al., 2008; Stoolmiller et al., 2013). For example, the same passage may yield a 

different readability index score based on a specific index used, which creates another 

complexity in handling passage effects in ORF assessments through readability indices (Good & 

Kaminski, 2002; Yi, 2021). Also, Albano and Rodriguez (2012) highlighted the difficulty of 

obtaining parallel passages based on such readability indices.  

As a more comprehensive approach to account for passage effects, test score equating 

procedures have been used by some researchers and practitioners.  The main motivation for 

equating is to ensure that WCPM scores from different passages can be used interchangeably. In 

addition to a horizontal equating of WCPM scores that aims to account for within-grade passage 

effects, a vertical equating across grade-levels is thought to be an important effort, especially for 

monitoring progress of young readers over multiple years. Referred to as observed-score 

equating methods in psychometric literature, researchers mostly have adapted mean, linear, and 

equipercentile equating methods (Albano & Rodriguez, 2012; Santi et al., 2016; Stoolmiller et 

al., 2013) to equate observed WCPM scores across passages. These observed-score equating 
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procedures are sample specific. Therefore, unless one has a population-representative equating 

sample, the results of equating would not be generalizable to other samples. This will make the 

use of observed-score equating procedures difficult to justify for the purpose of a pre-equating. 

On the other hand, a model-based approach to ORF assessment data has a potential to 

overcome these shortcomings. An estimation approach of model-based WCPM scores has 

recently been introduced by Kara et al. (2020) based on a latent-variable psychometric model for 

ORF assessment data (Potgieter et al., 2017) as part of an effort to develop an improved 

computer-based ORF assessment system (Nese & Kamata, 2014-2018). Model-based WCPM 

scores are in the form of expected WCPM values estimated with the latent-variable model that 

incorporates person and passage parameters. Please note that we explicitly distinguish the 

traditional WCPM scores from the model-based WCPM scores by referring the former to as 

observed WCPM scores in this paper. 

Strengths of the model-based WCPM scores such as higher reliability and availability of 

conditional measurement errors have been demonstrated by Nese and Kamata (2021). In addition 

to having better psychometric characteristics, the model-based WCPM scores can eliminate the 

need for post-equating. More specifically, the equating procedure by the model-based approach 

allows one to develop a pool of passages where all passage parameters are calibrated into the 

same scale by the common-item nonequivalent group (NEG) design. Similar to item response 

theory (IRT) approach for equating test scores, an equated passage pool allows one to estimate 

student-level speed and accuracy latent factor scores comparable to each other, no matter which 

set of passages the student read. As a result, it will be also possible to place the model-based 

WCPM scores on a common scale.  
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This study aims to introduce a model-based approach to equate WCPM scores based on 

Kara et al. (2020) and to provide a numerical demonstration with simulated data. In the 

numerical demonstrations, we designed a simulation study to compare performance of the 

proposed model-based approach with traditional observed-score equating methods. The structure 

of the paper is as follows. We first describe the procedures of the proposed model-based 

approach for equating WCPM scores, including a brief presentation of the model-based WCPM 

score estimation. Next, we briefly provide information about two observed-score equating 

methods, namely, linear and equipercentile equating. In the following sections, we describe the 

details of the simulation study, present the results, and conclude with a discussion section.  

Equating WCPM Scores 

Model-Based Estimation of WCPM Scores 

Estimation of the model-based WCPM scores has recently been introduced by Kara et al. 

(2020) based on a latent-variable psychometric model with speed and accuracy components 

(Potgieter et al., 2017). Note that this model-based approach is different from the latent variable 

approach demonstrated in Stoolmiller et al. (2013) and Santi et al. (2016), which use observed 

WCPM scores as the observed indicators of the latent ORF ability in a confirmatory factor 

model. These factor models can be considered as congeneric models in the classical test theory, 

which is essentially a model for weighted summed observed scores. Rather, the model for current 

approach was developed as a joint factor model of speed and accuracy, which is a modification 

of the hierarchical speed and accuracy model (van der Linden, 2007). In this model, passage-

level observed reading times and the number of correctly read words are used as the observed 

indicators of two separate latent factors, namely, one latent factor for speed and another latent 

factor for accuracy.  
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The speed component of the model uses the same log-normal factor model as in van der 

Linden (2007). Thus, the natural logarithm of 𝑡!", time taken (in seconds) to read passage i by 

person j, assumed to have a distribution function as 

 
𝑓#𝑡!"; 𝜏" , 𝛼! , 𝛽!) =

𝛼!
𝑡!"√2𝜋

exp 1−
𝛼!#

2 3ln#𝑡!") − #𝛽! − 𝜏")6
#7, (1) 

   
where 𝜏" is the latent speed ability for person 𝑗. 𝛽! and 𝛼! are the time intensity and 

discrimination parameters for passage 𝑖, respectively. Since the magnitude of the time intensity 

parameter depends on the passage length (i.e., a longer passage takes more time to read), it 

would be desirable to rescale the time intensity parameter such as in a scale of reading time per 

10 words. This rescaled time intensity parameter can be formulated as 𝛽$! = 𝛽! − log(𝑛!/10), 

where 𝑛! is the number of the words that passage i contains.  

Accuracy component of the model uses a binomial-count factor model. The number of 

the words read correctly in passage i (out of 𝑛! words available) by person j is assumed to be 

drawn from a binomial distribution with a success probability (i.e., reading the word correctly) of 

𝑝!" per word. Using a logit link function and the same parametrization as the two-parameter IRT 

model, 𝑝!" is further modeled as  

 
𝑝!" =

exp3𝑎!#𝜃" − 𝑏!)6
1 + exp3𝑎!#𝜃" − 𝑏!)6

, (2) 

   
where 𝜃" is the latent accuracy ability of person j. 𝑎! and 𝑏! are discrimination and difficulty 

parameters of passage i in terms of reading accuracy.  

Similar to true scores estimated based on an IRT model, a model-based WCPM score for 

person j (𝑓G") is calculated from the person and passage parameter estimates obtained from the 

speed and accuracy components defined above. Following the traditional definition that WCPM 



EQUATING ORAL READING FLUENCY SCORES 10 
 

is a rate of accurate reading per 60 seconds, 𝑓G" is calculated as the expected value of the total 

number of words read correctly 𝐸[𝑈."] divided by the expected value of the total reading time in 

seconds 𝐸[𝑇."] and further multiplied by a constant of 60 as follows:  

 
𝑓" =

𝐸3𝑈⋅"6
𝐸3𝑇⋅"6

× 60, (3) 

   
where 

 
𝐸3𝑈."6 =O𝑛!𝑝!"

'

!()

 (4) 

   
in which 𝑛! is the number of words in passage i, k is the number of passages read by person j, 

and 𝑝!" is defined in Eq. 2. Similarly,  

 
𝐸3𝑇."6 = OexpP𝛽$! + log Q

𝑛!
10R − 𝜏" +

1
2𝛼!#

S ,
'

!()

 (5) 

   
where 𝜏", and 	𝛼! are defined in Eq. 1, while 𝛽$! is the rescaled time intensity parameter such that 

𝐸3𝑇."6 is on the original scale of reading time (in seconds). A more detailed derivation of  𝐸3𝑇."6 

can be found in Kara et al. (2020).  

Note that 𝜃 and 𝜏 must be estimated based on the set of passages that the student read. 

However, 𝐸3𝑈."6 and 𝐸3𝑇."6, as well as 𝑓", can be computed for a set of passages that the student 

read or did not read. For the latter case, passage parameters should have been calibrated into the 

same scale as the passages that student read to estimate 𝜃 and 𝜏. This is a key idea to equating 

WCPM scores by the model-based approach, which will be described in more detail in the next 

section. Estimation of all model parameters including the model-based WCPM scores can be 

done by adopting a Bayesian approach. Readers are referred to Kara et al. (2020) for more details 

regarding the parameter estimation and further details of the latent-variable model. 
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Proposed Equating Method for Model-Based WCPM Scores  

Being a latent-variable psychometric model, the measurement model for ORF assessment 

data by Potgieter et al. (2017) has the same advantages of traditional IRT models in equating 

studies. In our application of the latent-variable ORF model, passages are analogous to items. As 

indicated by Kolen and Brennan (2004), IRT models’ strengths stem from modeling response 

data at the item-level unlike the classical test theory, which focuses on test-level data (i.e., 

observed total scores). For the ORF latent-variable model, time intensity and difficulty 

parameters, as well as two types of discrimination parameters for each passage, are estimated 

from the time and accuracy components of the model. At the person level, speed and accuracy 

ability parameters are estimated first. Then, a model-based WCPM score is ultimately estimated 

as a measure of the ORF ability. We propose a four-step approach to produce equated model-

based WCPM scores as follows. 

In Step 1, the passage parameters are estimated and equated (i.e., calibrated on the same 

scale) as demonstrated in Eqs. 1 and 2. In the current study, we performed a concurrent 

calibration under an NEG common-passage design, where all passage parameters from the 

combined data were concurrently estimated by treating missing observations from unassigned 

passages as missing data. As a result, this step would establish a pool of passages with passage 

parameters calibrated on the same scale. 

In Step 2, data from students are collected by using selected passages from Step 1. Then, 

the accuracy parameter θ and the speed parameter τ are estimated as shown in Eqs. 1 and 2, 

assuming the passage parameters are known based on the performed calibration in Step 1. Also, 

variance of τ and the covariance between τ and θ that estimated from Step 1 are treated as known 

parameter values in this step. Since the model parameters for passages are already equated in 
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Step 1, the estimated θ and τ are comparable between students, as well as within students across 

multiple testing occasions, regardless of what set of passages they read from the equated passage 

pool.  

In Step 3, a set of passages is selected from the calibrated passage pool (created in Step 1) 

for the purpose of computing the model-based WCPM scores. We call this set of selected 

passages as the reference passages. The reference passages can be passages other than the 

student read to estimate 𝜃 and 𝜏, as long as the reference passages and the passages the student 

read are from the same calibrated passage pool. Note that this step is necessary to obtain WCPM 

scores in a common scale, unless all students have read the same set of passages. Since the scale 

of WCPM scores is passage dependent, model-based WCPM scores would not be equated 

without a reference passage set, although the estimated 𝜃 and 𝜏 in Step 2 are equated.  

In Step 4, equated model-based WCPM scores are derived from the estimated θ, τ, and 

the passage parameters of the reference passages (see f in Eq. 3). Equated model-based WCPM 

scores would be obtained as a result of equated 𝜃 and 𝜏 in Step 2 and the use of a reference 

passage set in Step 3.  Note that a model-based WCPM score depends on 𝐸3𝑈."6 and 𝐸3𝑇."6 (Eqs. 

4 and 5), which further depend on what passages are selected as the reference passages.   

Equating Observed WCPM Scores with Traditional Methods 

Equating observed WCPM scores from different passages has been mostly done by the 

mean, linear, and equipercentile equating methods (e.g., Albano & Rodriguez, 2012; Santi et al., 

2016; Stoolmiller et al., 2013). This study focused on linear and equipercentile equating methods 

to be compared with the model-based approach.  

When applying the observed score equating methods, appropriate equating designs are 

necessary to control the confounding effects from differences between groups who take two test 
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forms, X and Y, on the difficulty estimates of the two test forms. The equivalent group (EG) 

design assumes the groups are sampled from the same target population T. Thus, the groups are 

considered to be randomly equivalent. This design assumes no confounding effects from non-

equivalency of the two groups. On the other hand, the NEG design assumes the two groups are 

sampled from two different populations, P and Q. Therefore, the confounding effects due to 

differences between the groups should be controlled statistically, which is usually achieved by 

the nonequivalent group with anchor test (NEAT) design. Specifically, an anchor test V is taken 

by both groups and the scores from V are used to control the differences between groups.  

In the context of ORF assessments, the “groups” refer to samples of students that read 

different sets of passages, which are analogous to “test forms”. Also, the “anchor test” is 

analogous to a set of common passages that are read by both groups of students. Below, we 

provide brief descriptions of the linear and equipercentile equating methods. Readers are referred 

to Santi et al. (2016) for a more detailed information about these methods as well as their 

application to observed WCPM score equating.  

Linear Equating. Linear equating is essentially a linear conversion that sets the 

standardized deviation scores to be equal for the two forms. Let 𝜇(𝑋) and 𝜇(𝑌) be the score 

means and 𝜎(𝑋) and 𝜎(𝑌) be the standard deviation scores for Form X and Form Y, respectively. 

For linear equating with the EG design, the formula for the linear conversion is 

 
𝑙*(𝑥) = 𝜎(𝑌) [

𝑥 − 𝜇(𝑋)
𝜎(𝑋) \ + 𝜇(𝑌). (6) 

   
For linear equating with the NEG design, the formula for the linear conversion becomes  

 
𝑙*+(𝑥) =

𝜎+(𝑌)
𝜎+(𝑋)

[𝑥 − 𝜇+(𝑋)] + 𝜇+(𝑌), (7) 

   
where s indicates the synthetic population.  
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Equipercentile Equating. Equipercentile equating maps scores on Form X that have the 

same percentile ranks to scores on Form Y. For the EG design, Braun and Holland (1982) 

indicated that the equipercentile equating function is 𝒆𝒀(𝒙) = 𝑮-𝟏[𝑭(𝒙)], where 𝑮-𝟏 is the 

inverse of the cumulative distribution function G. For the NEG design, the equipercentile 

function for the synthetic population is 𝒆𝒀𝒔(𝒙) = 𝑸𝒔-𝟏[𝑷𝒔(𝒙)], where 𝑷𝒔 is the percentile rank 

function for Form X, while 𝑸𝒔-𝟏 is the percentile function. 

Simulation Study 

A simulation study was conducted to evaluate the performance of the model-based 

equating method in comparison to the observed-score linear and equipercentile equating methods 

for equating WCPM scores.  

Equating Data Collection Design  

The current study assumed the NEAT design (Kolen & Brennan, 2004) for observed and 

model-based score equating. Each group was assumed to read a unique set of passages and a set 

of common passages, which were used to estimate passage parameters by linking two groups. 

Common passages were treated as external anchors. In other words, they were not part of the 

WCPM score estimations. In addition, observed-score equating methods that assumed the EG 

condition were included to evaluate the impact of the violation of the group equivalence 

assumption.  

Under the NEAT design, Tucker’s linear method and the frequency estimation 

equipercentile method were used to estimate the synthetic population parameters in the equating 

functions. The two methods differ in terms of their statistical assumptions and complexity. 

Tucker’s linear method is simpler and is expected to perform better with small sample sizes, 
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while frequency estimation equipercentile requires large sample sizes to yield accurate parameter 

estimates.  

Simulation Conditions  

We assumed two groups of students, where one group read a set of 6 easy passages 

(referred to as Group E, hereafter) and the other group read a set of 6 hard passages (referred to 

as Group H, hereafter) based on the time intensity and accuracy difficulty parameters.  In 

addition to group-specific passage sets, Group E and Group H were also assumed to have read a 

set of common passage(s) with medium time intensity and difficulty levels. Common passage(s) 

were treated as external anchors, namely, they were not part of the ORF scoring. Three 

manipulated factors in the simulation study were (a) the sample size per group (100, 300, or 

500), (b) the number of anchor passages (1 or 3), and (c) population ORF ability discrepancy 

controlled by speed and accuracy parameters (no discrepancy, small or large). Note that the 

condition with no population ORF ability discrepancy is the condition where the EG assumption 

holds (i.e., random equivalence). By crossing all three factors, 18 total conditions were identified 

for data generations. 

These simulation factors were selected due to their relevance to anticipated equating 

methods performance (model-based and/or observed-score methods). We also aimed to identify 

realistic conditions in order to draw more generalizable conclusions. Specifically, the chosen 

levels of the sample size reflect small to large sample sizes in ORF assessments reported in 

empirical studies (e.g., Nese et al., 2015). In addition, equipercentile equating is known to 

require larger samples for more accurate ORF score equating (e.g., Santi et al., 2016). The 

number of anchor passages is expected to affect the performance of the observed-score and 

model-based equating methods with the NEAT design. Population discrepancy is expected to 
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affect the estimation accuracy of the observed-score equating methods with the EG design. It 

may also affect the performance of the model-based and observed-score equating methods with 

the NEAT design.  

Data Generation  

True passage parameters were selected from a calibrated passage pool as part of a previously 

conducted study (Potgieter et al., 2017). ORF data were collected for 150 passages, where 

approximately 150 students read each passage on average. The selection of the easy and hard 

passage sets was performed by the inspection of time intensity and difficulty parameters of the 

calibrated passages. After excluding some outlier values, easy passages were identified from the 

calibrated passage pool which had difficulty and time intensity parameters close to the lowest 

values. Similarly, hard passages were ones which had calibrated parameter values close to the 

highest values in the passage pool. Common passages were also selected from the pool with 

medium-level difficulty and intensity parameters. Also, during the passage selection, we 

prioritized passages with close to 50 words to control a possible impact of different passage 

lengths. The average difference between easy and hard passage sets were .651 and .180 for 

difficulty and time intensity parameters, respectively. Actual passage parameters and the number 

of the words for all passages are provided in Table 1. 

Speed and accuracy ability parameters (𝜃 and 𝜏) were generated from the multivariate 

normal distribution by altering means, depending on the population discrepancy for each 

condition. On the other hand, variances of speed ability and the covariance between speed and 

accuracy ability were fixed by using the values obtained from the formerly calibrated passage 

pool. Values of the model hyperparameters in different simulation conditions are summarized in 

Table 2. Fifty data sets were generated for each of the 18 simulation conditions. Reading time in 
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seconds and the numbers of words read correctly per passage were generated by the latent-

variable ORF model described earlier (Kara et al., 2020).   

Equating Procedures and Analyses  

The WCPM scores from Group E are equated to those from Group H. Observed WCPM 

scores were computed using the generated reading time and correctly read word count data, by 

dividing the total number of words read correctly by the total reading time in seconds and 

multiplied by 60. The WCPM scores were rounded to integers before applying the observed-

score equating procedures to be consistent with WCPM score reporting in practice. Under the 

NEG assumption, Tucker’s linear and frequency estimation equipercentile equating methods 

with loglinear presmoothing (Holland & Thayer, 2000) were performed. Under the EG 

assumption, linear and presmoothed equipercentile equating methods were performed.  

For the model-based equating, we followed the steps described earlier in the previous 

section. Note that a concurrent calibration of passage parameters was performed for each 

replication of the simulation. Thus, equating errors associated with passage parameters were 

incorporated into the process. Then, model-based WCPM scores were obtained using Eq. 3, 

where person parameters (i.e., accuracy and speed) were estimated using the same Bayesian 

MCMC technique as in Kara et al. (2020). More specifically, we first estimated accuracy and 

speed parameters (𝜃 and 𝜏) of simulated students in Group E for each generated dataset (for easy 

passages). Then, we used these estimated 𝜃 and 𝜏 to obtain the model-based WCPM scores with 

passage parameters in the hard passage set. As a result, the model-based WCPM scores were 

equated to the scale of scores in Group H, because all WCPM scores were computed for the 

same set of hard passages.  
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As per the Bayesian estimation, we set the number of iterations as 40000, the number of 

burning as 20000, and number of thinning as two to alleviate autocorrelations. Three chains were 

run with initial values set as 𝜎01	= -0.5, 𝜎1-#	|𝜃"= 30; 𝜎01	= -0.1, 𝜎1-#|𝜃" 	= 60; 𝜎01	= 0.1, 𝜎1-#|𝜃" 	= 

20. Model convergence was assessed by the potential scale reduction factor (PSRF; Brooks & 

Gelman, 1998) with PSRF < 1.1 indicating adequate convergence. In addition, the effective 

sample size (ESS) > 400 was used as a rule to indicate satisfactory precision of the Bayesian 

estimation (Zitzmann & Hecht, 2019).  

Observed-score linear and equipercentile equating were performed by using the R 

package equate (Version 2.0-5; Albano, 2016). As per model-based equating, we used R package 

R2jags (Su & Yajima, 2015) to interface with JAGS (version 4.3.0; Plummer, 2015). JAGS 

syntax for the passage calibration and final equating step with fixed parameter values are 

provided in the Appendix. We used R (Version 4.1.2; R Core Team, 2016) for all our analyses 

and visualizations. 

In summary, we performed four observed-score equating methods, namely, linear and 

equipercentile equating with EG and NEG (i.e., NEAT) designs. As mentioned earlier, methods 

with the EG assumption were included in the simulation to demonstrate the effects of their 

misuse, when the group equivalency assumption is not met. The performance of these observed-

score equating methods were compared to the model-based equating under the 18 conditions 

elaborated above.  

Evaluation Criteria  

As indicated earlier, the direction of equating was from Group E to Group H. In other 

words, WCPM scores from easy passages were equated to hard passages, as if Group E read the 

hard passages. Thus, we examined the degree to which equated ORF scores of Group E was 
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close to their true (i.e., population) values. Population WCPM scores of Group E on the hard 

passages were computed by using Eq. 3 with the population speed and accuracy abilities (𝜃 and 

𝜏) and the true values of the hard passages’ parameters. Thus, equated WCPM scores were 

compared to these population (i.e., true) WCPM values for the hard passages.  

Equating errors were evaluated using the following three measures: absolute relative bias 

(ARB), standard error (SE), and root mean squared error (RMSE). Given R replications and true 

WCPM score 𝑓" from person j, the ARB of WCPM score estimate 𝑓G was calculated as: 

 
𝐴𝑅𝐵#𝑓") = h

1
𝑅 ∑ 𝑓G"3

4() − 𝑓"
𝑓"

h. (8) 

   
The SE of WCPM score estimate 𝑓G was calculated as: 

 

𝑆𝐸#𝑓") = k
1
𝑅OP𝑓G" −

∑ 𝑓G"3
4()

𝑅 S
#3

4()

.	 (9) 

   
Finally, the RMSE of WCPM score estimate 𝑓G was calculated as: 

 

𝑅𝑀𝑆𝐸#𝑓") = k
1
𝑅O#𝑓G" − 𝑓")

#
3

4()

. (10) 

   
The averages of the above outcome measures across persons were computed for the 

group which took the easy passages (Group E) to evaluate the impacts of the manipulated 

factors.  

Results 

Results from the simulation study are summarized in terms of the average ARB, SE, and 

RMSE values for the equated WCPM scores for Group E (the group who took easy passages) in 

Figures 1 - 3. Results for the observed-score equating methods with EG design were not shown 
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in the figures due to large recovery index values compared to methods with NEAT design. 

Rather, we provided our interpretations of the results for observed-score equating methods with 

EG design in relevant paragraphs. In all conditions, the ORF models’ estimation converged with 

PSRF < 1.1 and ESS > 400 for all person parameters in all replications. 

The average ARB values for the equated WCPM scores with the three equating methods 

that assume the NEAT design are graphically summarized in Figure 1. As expected, the 

large population discrepancy led to higher average ARB for all three methods. Under all 

simulation conditions, model-based equating outperformed the linear and equipercentile equating 

methods. The difference in average ARB values was larger between the observed and model-

based methods under the large population discrepancy condition. Having more anchor passages 

contributed to lower the average bias for all three methods, especially when the difference 

between groups’ ORF ability was large. The effect of sample size, however, was not as 

prominent as the other simulation factors. In other words, we did not observe a consistent 

decrease in average ARB values by increasing the sample size. On the other hand, the effect of 

wrongly assuming group equivalence with linear and equipercentile equating methods was 

severe. Although not plotted in Figure 1, the average ARB values for these methods that 

assumed equivalent groups were much higher than the scale of the vertical axis in Figure 1 can 

capture: over 0.2 and 0.4 with small and large levels of population discrepancy, respectively. 

Note that the ARB values evaluated above were the averages across all observations in 

each simulation condition. These averages were below .05 for all three methods with no and 

small population discrepancy conditions. Also, they were all below .05 for all three methods 

under large population discrepancy conditions with three anchor passages. With a large 

population discrepancy and a single anchor passage, only model-based method displayed the 
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average ARB below .05 with all sample sizes. To further examine the performance of the three 

equating methods that assumed the NEAT design, we provided the visuals for individual ARB 

values per sample size in the supplementary material. 

The average SE values of the equated WCPM scores are summarized in Figure 2. As 

expected, larger sample sizes led to smaller average SE for the observed-score equating methods 

with the NEAT design. Furthermore, a large population discrepancy led to higher average SE for 

all three equating methods, yet the effect of the number of anchor passages was not prominent. 

Average SE values were always lower for the model-based approach under all simulation 

conditions. Although not shown in Figure 2, for the two observed-score equating methods with 

the EG assumption, the average SE values were close to their counterparts that assumed the 

NEAT design, when there was no population discrepancy. Interestingly, under the conditions 

with a large population discrepancy, the two observed-score methods with the EG assumption 

had lower average SE values (around 5.5 for all sample sizes and number of anchor passages), 

which may be counterintuitive. Our interpretation was that it was because they performed 

consistently worse, due to an incorrect assumption about group equivalency. 

The average RMSE values of the equated WCPM scores are presented in Figure 

3. Overall, the pattern was similar to the results for average ARB, which is an indication that a 

majority of errors were due to systematic errors (bias), rather than sampling fluctuations (SE), 

except that RMSE displayed some impacts of sample sizes attributed to the SEs, especially for 

the equipercentile equating. Larger sample sizes would be needed for the equipercentile equating 

to perform as good as the linear equating, when there was a non-zero population discrepancy. 

The effect of number of anchor passages was not prominent yet a slight decrease was observed 

with the increase of number of anchor passages, when the population discrepancy was large. In 



EQUATING ORAL READING FLUENCY SCORES 22 
 

sum, the model-based equating method performed consistently better than other equating 

methods in all simulation conditions in terms of average RMSE. Lastly, the average RMSE for 

the observed-score methods with EG assumption were much larger than the scale of the vertical 

axis in Figure 3: 15 and 35 for the conditions with small and large population discrepancy, 

respectively. Thus, the wrong assumption of the group equivalency by the observed-score 

equating methods resulted in substantially larger total equating errors, compared to methods that 

assumed the NEAT design.   

Discussion 

In this paper, we demonstrated the model-based approach for equating WCPM scores in 

ORF assessments based on a latent-variable measurement model (Kara et al., 2020). We 

conducted a simulation study to evaluate the performance of the model-based equating method in 

comparison with traditionally used observed-score equating methods, linear and equipercentile 

equating.  

Overall, the results demonstrated that the model-based approach performed satisfactorily 

well under all simulation conditions. This was encouraging for the use of the model-based 

approach to equate WCPM scores. For example, Babcock and Hodge (2020) showed the utility 

of the Rasch model for performing equating on traditionally-scored exams with relatively low 

sample sizes. Their findings are in line with ours: we demonstrated that the latent-variable 

model-based approach performed as good as or better than the traditional observed-score 

equating methods. On the other hand, the performance of the observed-score equating methods 

depended on specific conditions. This was not surprising since it is known that the accuracy of 

the traditional equating methods depends on the degree to which the underlying assumptions, 

such as linearity for the linear equating, are met (Albano & Rodriguez, 2012). Nevertheless, the 
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observed-score equating methods performed equally well as the model-based approach, when the 

discrepancy was small or non-existent in terms of the population ORF abilities between groups.  

In addition, the results demonstrated dramatic impacts of the EG assumption for the 

observed-score equating methods. These methods did not perform well, unless the EG 

assumption was met in the data. Since the assumption of having equivalent groups would be 

realistically hard to ensure in real-life conditions, this strong assumption required by the classical 

equating methods are likely to be violated. This was also pointed out by Albano and Rodriguez 

(2012), stating that the traditional WCPM scores as part of classroom-based measurements were 

not designed to meet such assumptions. Therefore, it is paramount to employ an equating method 

that incorporates the assumption of group nonequivalence, such as an observed-score equating 

method with a NEAT design or the model-based equating approach, which does not rely on such 

an assumption, as demonstrated in this paper. In addition to a horizontal equating, these methods 

should be preferred especially for vertical equating, where groups are comprised of students from 

different grade-levels, where population discrepancies in ORF speed and accuracy abilities 

naturally exist. Thus, adopting an equating method with a NEAT design or the model-based 

approach would be an optimal choice for WCPM score equating for the purpose of progress 

monitoring over multiple years.  

Equating ORF assessment scores is essential to ensure score comparability both between 

and within students. Besides its better overall performance in terms of more accurate equated 

scores, the model-based equating approach for WCPM scores potentially provides several other 

practical advantages to researchers and practitioners. First, a calibrated passage pool allows 

practitioners to build reading passage forms of various difficulties. It is also important to note 

that building such a calibrated passage pool would not require a complete design where all 
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students are expected to read all passages. This is thought to be an important aspect of adopting a 

model-based approach not only for equating studies but also for the measurement of ORF ability. 

Second, similar to the advantage of IRT-based test scoring, having a calibrated passage pool can 

be a basis for a potential future development of pre-equated ORF assessment forms and a 

computer adaptive test version of an ORF assessment.  

In addition to its advantages in scoring and scaling, it has been demonstrated that the 

model-based approach to ORF assessment data has an advantage over the traditional observed-

score approach, because it allows the computation of standard errors for each estimated WCPM 

score, namely, conditional standard errors of measurement (CSEM; Nese & Kamata, 2021). On 

the other hand, with the observed WCPM scores, only one equivalent quantity can be computed 

for the entire sample of students (namely, SEM: standard error of measurement).  Based on these 

additional advantages of the model-based approach to ORF assessment data and the results from 

our study, it is recommended that model-based equating method to be considered for equating 

WCPM scores. 

There are several limitations in our study, mainly associated with the simulation we 

conducted. Specifically, the results from the simulation are limited to handful of factors 

manipulated that are sample size per group, number of anchor passages, and level of discrepancy 

in groups’ ORF ability. The performance of the observed-score and model-based equating 

methods may differ with other levels of these factors and/or other factors that were not 

considered, such as the level of test difficulty discrepancy, which was a fixed factor. 

Nevertheless, it is worth noting that the two passage sets (easy and hard) were formed based on a 

previously calibrated passage pool. Thus, this level of difficulty discrepancy in the two sets of 

passages is expected to reflect a realistic condition. On the other hand, the number of unique 
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passages read by each group (i.e., the test length) was also a fixed factor. Moreover, we did not 

consider the varying lengths of passages by intentionally selecting passages with approximately 

50 words. Future studies can focus on factors not considered here and relevant to other realistic 

ORF assessment conditions. 
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Tables 

Table 1 

True Passage Parameter Values  

Passage 
Difficulty a b a b0 

Number 
of Words 

Easy 0.500 -2.771 6.176 1.723 47 
0.444 -2.923 5.747 1.768 49 
0.557 -2.760 4.841 1.711 50 
0.505 -2.856 5.064 1.750 50 
0.447 -2.949 4.408 1.705 50 
0.476 -2.877 3.936 1.752 49 

Hard 0.569 -2.270 5.808 1.963 47 
0.569 -2.370 4.559 1.972 54 
0.603 -2.072 5.566 1.879 50 
0.618 -2.164 4.239 1.863 49 
0.571 -2.304 3.795 1.894 49 
0.588 -2.049 5.248 1.916 50 

Medium* 0.575 -2.425 6.821 1.806 54 
0.573 -2.479 4.726 1.810 49 
0.544 -2.423 4.648 1.812 50 

*Common passages. First set of parameters were used for conditions with one anchor passage.  
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Table 2 

True Person Hyperparameter Values 

 Group E Group H 
Population 
Discrepancy 

No (Eq. 
Groups) 

Q𝜃𝜏R~𝑀𝑉𝑁 Q
0
0R Q

1 . 16
. 16 . 16R Q𝜃𝜏R~𝑀𝑉𝑁 Q

0
0R Q

1 . 16
. 16 . 16R 

Small Q𝜃𝜏R~𝑀𝑉𝑁 Q
. 25
. 1 R Q

1 . 16
. 16 . 16R Q𝜃𝜏R~𝑀𝑉𝑁 Q

−.25
−.1 R Q

1 . 16
. 16 . 16R 

Large Q𝜃𝜏R~𝑀𝑉𝑁 Q
. 5
. 2R Q

1 . 16
. 16 . 16R Q𝜃𝜏R~𝑀𝑉𝑁 Q

−.5
−.2R Q

1 . 16
. 16 . 16R 

Note. Group E and Group H are the two groups that are assumed to read a set of easy or hard 

passages, respectively.  
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Figures 

 

Figure 1. Average absolute relative bias (ARB) of the equated WCPM scores 
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Figure 2. Average standard error (SE) of the equated WCPM scores 
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Figure 3. Average root mean square error (RMSE) of the equated WCPM scores 
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Appendix 

JAGS Syntax for the Concurrent Calibration Step 

model{ 
      for (j in 1:J){ 
      for (i in 1:I){ 
      res[j,i]~dbin(p[j,i], nw[j,i]) 
      logit(p[j,i]) <- a[i]*(theta[j]-b[i]) 
      log_tim[j,i]~dnorm(mu[j,i], prec.t[i]) #variance=1/alpha^2, so precision=alpha^2 
      mu[j,i] <- beta[i]-tau[j] 
      } 
      theta[j]~dnorm(0,1) 
      tau[j]~dnorm(mtau[j], ptau) #distribution of tau conditional on theta 
      mtau[j] <- cvr*theta[j] #cvr is the covariance between tau and theta 
      } 
      for(i in 1:I){ 
      prec.t[i] <- pow(alpha[i], 2) 
      alpha[i] ~dnorm(0, 0.01) T(0,) 
      b[i]~dnorm(0, 0.01) 
      beta[i]~dnorm(0, 0.01) 
      a[i]~dnorm(0, 0.01) T(0,) 
      }   
      ptau~dgamma(0.01, 0.01) #conditional precision of tau 
      vtau <- 1/ptau 
      tau.var <- vtau + (pow(cvr,2)) #tau.var is the variance of tau’s marginal distribution 
      cvr~dnorm(0, 0.01) 
      crl <- cvr/sqrt(tau.var) 
      } 
 

JAGS Syntax for the Final Step of the Model-Based Equating 

Note that in the syntax below, all passage parameters, the variance of tau, and the covariance 

between theta and tau are treated as known quantities and supplied along with data values during 

the JAGS estimation.  

model{ 
      for (j in 1:J){ 
      for (i in 1:I){ 
      res[j,i]~dbin(p[j,i], nw[j,i]) 
      logit(p[j,i]) <- a[i]*(theta[j]-b[i]) 
      tim[j,i]~dnorm(mu[j,i], prec.t[i])  
      mu[j,i] <- beta[i]-tau[j] 
      } 
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      theta[j]~dnorm(0, 1) 
      tau[j]~dnorm(mtau[j], ptau) 
      mtau[j] <- cvr*theta[j]  
      } 
      for(i in 1:I){ 
       prec.t[i] <- pow(alpha[i],2) 
      }   
      } 

  



EQUATING ORAL READING FLUENCY SCORES 38 
 

Supplementary Material 

Absolute relative bias (ARB) values for individual true word read correctly per minute (WCPM) 
scores are plotted in Figures S1-S3. Note that the horizontal line reflects the .05 threshold value 
for reference, which is considered to be the acceptable threshold in simulation studies (Hoogland 
& Boomsma, 1998). All values below this threshold were faded out for ease of interpretation. It 
was observed that the equipercentile equating had larger ARB values for the extreme low and high 
WCPM scores compared to linear and model-based methods with the nonequivalent group with 
anchor test (NEAT) design. It is also worth noting that ARB yielded by the linear and 
equipercentile equating methods was larger for true scores that were at the tails of the score 
distribution. On the other hand, the performance of the model-based method was less affected by 
specific true score levels. 
 

 

Figure S1. Absolute relative bias (ARB) for equated WCPM scores under conditions with N = 
100  
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Figure S2. Absolute relative bias (ARB) for equated WCPM scores under conditions with N = 
300 
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Figure S3. Absolute relative bias (ARB) for equated WCPM scores under conditions with N = 
500 
 
Hoogland, J. J., & Boomsma, A. (1998). Robustness studies in covariance structure modeling: An 

overview and a meta-analysis. Sociological Methods & Research, 26(3), 329-367. 
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