
   
 

 
 
 
 

Distribution Statement A 
Approved for public release: distribution unlimited. 

 

 
 
 
 
 
 
 
 

ADL Enterprise Learner Record 
Repository Systems Integration 

Plan 
 
 

11 May 2021 
 

 
 
 
 
 
 
 
 
 
 

This work was supported by the U.S. Advanced Distributed Learning (ADL) Initiative 
(24361820D0001). The views and conclusions contained in this document are those 

of the authors and should not be interpreted as representing the official policies, either 
expressed or implied, of the ADL Initiative or the U.S. Government. The U.S. 

Government is authorized to reproduce and distribute reprints for Government purposes. 

dkluzik
Cleared



ELRR Systems Integration Plan 

ii 
 

Document Control Information 

Document Name Systems Integration Plan 

Client Advanced Distributed Learning (ADL) Initiative 

Task Order Name Enterprise Leaner Record Repository 

Document Owner Eric Flamer, Adjoa Adusei-Poku (Deloitte Consulting LLP) 

Document Version 1.2 

Document Status Update to Baseline 

 
Document Edit History 

Version Date Additions/Modifications Prepared/Revised by 

1.0 3/15/2021 Baseline submitted to ADL Deloitte 

1.1 3/29/2021 ADL comments submitted and 
reviewed with Deloitte team. ADL 

1.2 4/12/2021 

Addressed all of ADL’s comments 
related to document structuring, level 
of detail updates, and syntax. Deloitte 

added a new section (3.0) to 
specifically outline interfaces between 
ADL TLA sandbox and ELRR Prototype 

components. 

Deloitte 

1.3 5/6/2021 Accepted ADL QA comments submitted 
to the Deloitte team. Deloitte 

 
Distribution of Final Document 
The following people are designated recipients of the final version of this document: 

Name Organization/Title 

Dr. Sae Schatz Contracting Officer Representative 

Ashley Howell Government Technical Point of Contact 

Brent Smith Government Technical Lead 

Florian Tolk Government Solution Engineer 

 
 



ELRR Systems Integration Plan 

iii 
 

Table of Contents 
 
1.0 Introduction ........................................................................................................................................... 1 

1.1 Deliverable Purpose ............................................................................................................................ 1 

1.2 Deliverable Scope ............................................................................................................................... 1 

2.0 ELRR Prototype Integration Plan and Strategy ................................................................................ 2 

2.1 ELRR Overview ................................................................................................................................. 2 

2.2 ELRR Prototype Deployment Strategy .............................................................................................. 5 

2.3 System Integration Roles and Responsibilities ................................................................................... 6 

2.4 Assumptions ....................................................................................................................................... 7 

3.0 ELRR Integration Approach with ADL TLA .................................................................................. 10 

3.1 Authoritative Learner Record Store (LRS) ....................................................................................... 10 

3.2 Competency and Skills System (CaSS) ............................................................................................ 11 

3.3 Enterprise Course Catalog (ECC) ..................................................................................................... 11 

3.4 DATASIM ........................................................................................................................................ 12 

4.0 Appendix .............................................................................................................................................. 13 

Appendix A – References ....................................................................................................................... 13 

Appendix B - Hardware / Software ........................................................................................................ 14 

Appendix C - Deployment Scripts .......................................................................................................... 16 

Appendix C-1 Security, Networking, and Identity and Access Management .................................... 16 

Appendix C-2 Terraform .................................................................................................................... 17 

Appendix C-3 ELRR Storage / Databases ......................................................................................... 17 

Appendix C-4 ELRR Application ...................................................................................................... 24 

Appendix C-5 ELRR Presentation ..................................................................................................... 28 

Appendix D: Key Terms ......................................................................................................................... 31 

 



ELRR Systems Integration Plan 

1 
 

1.0 Introduction 

1.1 Deliverable Purpose 

The Enterprise Learner Record Repository (ELRR) is one of three Enterprise Digital Learning 
Modernization (EDLM) lines of effort supported by the ADL Initiative. Today, learner records 
for Department of Defense (DoD) personnel are stored in disparate locations, along with 
inconsistent data formats, which complicates the transport, management, and governance of the 
learner records across and within DoD organizations.  
The goal of the ELRR is to aggregate learner records across multiple systems and organizations 
to provide a centralized location for DoD personnel to view and interact with their learning and 
development data. The aim of this document is to provide: a summary overview of the ELRR 
Prototype’s initial implementation; guidance on the required interfaces between the ELRR 
Prototype and the ADL Total Learning Architecture (TLA) reference implementation in an 
Amazon Web Services (AWS) sandbox environment; a corresponding integration approach; and 
a stakeholder engagement strategy to support a reference implementation of the ELRR 
Prototype. 
The Deloitte Team, comprised of Deloitte practitioners and our Lingatech sub-contractors, will 
perform system integration activities to support an ELRR Prototype Test and Evaluation (T&E) 
period during the months of May and June 2021. ELRR Prototype implementation efforts will 
begin within the ADL’s TLA environment starting in May and conclude in August 2021 after the 
completed government acceptance testing activities. Beyond September 2021, ADL may 
continue to mature, test and harden the implemented ELRR Prototype in pursuit of the 
appropriate accreditations required to support additional testing within stakeholder environments 
using live learner data, which may include integration with other DoD systems. 

1.2 Deliverable Scope 

The scope of the ELRR Prototype Systems Integration Plan (SIP) is to provide technical 
guidance for integrating ELRR Prototype with ADL TLA sandbox components, such as the 
Authoritative Learner Record Store (LRS), Competency and Skills System (CaSS), and 
Enterprise Course Catalog (ECC), along with a recommended resource mixture to conduct the 
integration activities. The intended audiences for this document are developers or engineers who 
are familiar with TLA standards and core cloud computing principles. Readers are not required 
to know all the details about each standard. However, some knowledge of xAPI basic concepts is 
advantageous for reading this document. Readers should also have a fundamental understanding 
of how data are exchanged across the internet including how to represent and exchange data 
using JavaScript Object Notation (JSON), and how to access Representational State Transfer 
(REST) Application Programming Interfaces (API) on the web. An understanding of 
infrastructure-as-code (IaC) concepts, such as Terraform, is recommended. 

  



ELRR Systems Integration Plan 

2 
 

2.0 ELRR Prototype Integration Plan and Strategy 

The following section outlines the core components of the ELRR Prototype, the ELRR Prototype 
deployment approach, and an integration strategy with target ADL TLA systems. The ELRR 
Prototype consists of three core components: Presentation, Application / Data Mesh, and Data 
Storage. Components are defined as independently deployable software services which, 
combined together, comprise the system. Components are made up of one or more software 
packages, libraries, or modules, depending on the technology used to construct the solution. 
(Component source code is typically modeled as a repository, although packages, libraries, and 
modules are often modeled as repositories as well.) The development team will continue to 
review the existing TLA core services prior to T&E activities starting in June 2021 in order to 
assess if additional TLA core services connections are required for the ELRR data model, and 
configuration details (e.g., API keys, API endpoints, schemas) are accessible. A detailed 
description of the ELRR Prototype components is defined within Section 2.1. 
The ELRR Prototype application deployment approach relies on repeatable, well-defined steps 
that involve compiling code, building the application, conducting automated unit tests, 
provisioning servers, and uploading code to GitHub. Our deployment approach is orchestrated by 
a continuous integration / continuous delivery (CI/CD) pipeline, which uses industry leading 
software—such as Terraform, Jenkins, and SonarQube—to operate. Leveraging the CI/CD 
pipeline enables quicker releases and improves code quality resulting in less bugs following a 
release. Refer to Section 2.2 for more detailed information on the ELRR Prototype deployment 
approach. 
Once the ELRR infrastructure is deployed, the next step is to integrate with source systems 
within the ADL TLA sandbox. The three ADL TLA source systems used by the ELRR Prototype 
to develop complete learner profiles include the Authoritative LRS, CASS, and ECC. 
Additionally, the ELRR Prototype connects with the Data and Training Analytics Simulated 
Input Modeler (DATASIM) to produce xAPI records to conduct unit testing for the ELRR. Refer 
to Section 3.0 for detailed information regarding the ELRR Prototype integration strategy with 
ADL TLA sandbox. 

2.1 ELRR Overview 

The ELRR is designed to offer flexibility in automating machine-to-machine connectivity 
between source LRS systems, while offering learning managers and learners the ability to look at 
learning progress across the enterprise and view learner details through an ELRR Portal front-
end. The data underpinning the ELRR is sourced from multiple source systems, such as an LRS, 
by custom connectors, known as ELRR Agents, which transform and standardize input learner 
and competency data. The ELRR Agents are designed to load data from a specific data source 
and run 'on-demand' when data is queued via Apache Kafka. Once invoked, the ELRR Agents 
load the data into an initial “Local Staging” database to aggregate the raw data from the various 
ADL TLA data sources. Once the data have been stored within the Local Staging database, 
ELRR Agents conduct additional data transformations and validations before loading the data 
into the ELRR Storage database. The ELRR Storage acts as the authoritative data source for 
ELRR, and data is presented to DoD learning managers and learners on the ELRR Portal front-
end. 



ELRR Systems Integration Plan 

3 
 

Please refer to Figure 1 below for a visual representation of the components and connections 
comprising the ELRR. While the figure depicts an AWS-hosted environment, the ELRR can 
likely run on other major cloud providers (e.g., Azure, Google Cloud Platform) or on-premise 
environments with minor modifications. A general assessment of what modifications would be 
needed to prepare ELRR for another cloud provider is included within "The development team 
will have access to an AWS cloud environment" rationale in Section 2.4 Assumptions. 

Figure 1 – ELRR Infrastructure 

 

Zone 1 - ELRR Presentation 

The ELRR Presentation layer represents the user-facing components of the ELRR to enable 
users to interact with the aggregated learner data. The front-end offers views for learners, system 
administrators, and training and career managers with tailored data. The ELRR Presentation 
layer consists of the following proposed components: 

• ELRR Portal – The user interface facilitating discovery of aggregated enterprise learner 
records by learners, training and career managers, and system administrators. This is the 
web application, which contains two main portals, ELRR Learner and ELRR Admin 
portals. The ELRR Learner portal enables record consumers (e.g., learners, training and 
career managers) to view aggregated learner records and to discover enterprise learner 
record data. To support maintenance and governance of learner records, the ELRR 
Admin portal provides system administrators a view of imports, endpoints and errors. 

• ELRR Auth - The enterprise authentication client configured with the ADL TLA 
reference architecture identity and access management solution, KeyCloak. When a user 
signs in through KeyCloak their role (e.g., learner, training or career manager, system 
admin) will dictate what data the user will see on the ELRR Portal. The roles within 



ELRR Systems Integration Plan 

4 
 

KeyCloak ensure all users within the ELRR have the least amount of access to ELRR to 
conduct their job. For more information regarding KeyCloak, please refer to Appendix A: 
References "KeyCloak (ADL TLA)". 

Zone 2 - ELRR Application / Data Mesh  

The ELRR Application / Data Mesh contains the business or functional process logic for the 
ELRR Prototype. This process logic is critical for receiving, transforming, validating, and storing 
learner record data from ADL TLA systems. Below is a description of the expected common 
services and how they will be used for the ELRR Prototype: 

• API Gateway – enables data to be transferred from the Authoritative LRS to the ELRR. 
The learner records are transferred individually from the Authoritative LRS as JavaScript 
Object Notation (JSON) to the API Gateway, which routes the learner record to the 
correct Kafka topic. The API Gateway can consist of many different paths and 
components that are defined by a configuration file. The xAPI specification allows for 
validation of the Authoritative LRS learner records, which can improve ELRR data 
quality by rejecting records that do not match the expected structure. The API Gateway 
delivers scalability and reliability to the ELRR by adding additional API paths for future 
ELRR data model enhancements, in addition to being able to handle large amount of 
simultaneous learner records requests.  

• Kafka / Zookeeper – provides the streaming service to manage the various data streams 
from the Authoritative LRS. Kafka stores these data streams on partitions, known as 
'Topics', which are aligned to the data source to enable auditability and governance of the 
source data. The streaming service operates within a publish-subscribe construct and 
provides a ledger of all communications between ELRR and source systems. The Kafka 
ledger ensures that any data streams successfully loaded into Kafka will be processed, 
thus improving ELRR reliability. For more information on Apache Kafka, please refer to 
Appendix A: References "Apache Kafka". 

• ELRR Agents - are fine-grained services that execute the ELRR business logic by 
interacting with the Learner Profile, CaSS and ECC systems. Some of the ELRR 
Agent(s) are associated with a Kafka 'Topic' and execute their business logic to 
transform, validate, and load data into ELRR databases, Local Staging and ELRR 
Storage. Due to the highly specified function, ELRR Agents can rapidly scale to meet 
high demand for data ingest into the ELRR.    

Zone 3 - ELRR Storage / Database 

The ELRR Storage / Database contains the persistent storage in a relational database 
management system, comprised of the following planned components: 

• ELRR Local Staging - stores the consolidated xAPI statements from ADL's 
Authoritative LRS, according to the TLA MOM standard. Learning event and learner 
state records are in the JSON format defined for the xAPI (IEEE P9274), in addition to 
profile, competency data from CaSS, and course metadata from ECC source systems. In 



ELRR Systems Integration Plan 

5 
 

the future, this component will accommodate other DoD organization authoritative 
learner record stores (e.g., Navy’s MyNavy Learning (MNL) or Army’s Army Training 
Information System (ATIS) LRS). 

• ELRR Storage - is the ELRR application database, which stores the aggregated learner 
records. The data model is similar to the ELRR Local Staging database; however, it also 
includes metadata to enhance learner records. The ELRR Portal leverages this database to 
populate the front-end screens used by learners, training and career managers, and system 
administrators. 

2.2 ELRR Prototype Deployment Strategy 

The internal ELRR Prototype application development leverages a robust CI/CD pipeline that 
enables quality and secure application builds of the ELRR. The CI/CD pipelines offer more 
consistency and trust that the latest versions of the ELRR will operate as intended within the 
ADL TLA sandbox. Underpinning the CI/CD pipeline is Jenkins, an industry-leading open 
source CI/CD pipeline automation tool, to help orchestrate the build, testing, and deployment of 
applications. Code quality is achieved through SonarQube, performing static code analysis for 
the ELRR to catch errors within code prior to a deployment. 
In alignment with the ELRR development approach, the goal for the CI/CD is to offer a 
consistent and repeatable experience to install and configure ELRR within an existing ADL TLA 
sandbox. The software utilized for the ELRR platform has been carefully selected to maintain 
portability to any cloud environment across the various major cloud providers. At the time of this 
document release, the ELRR Prototype has only been tested/verified on the AWS platform; 
though with slight modifications, developers may leverage other cloud providers. 
In the future, ELRR will be deployed using IaC scripts with Terraform and configuration 
management with Ansible, as specified in Steps 5 and 6 in Figure 2 below. The IaC scripts using 
Terraform define all facets of the ELRR application from networking, servers, and storage to 
deliver a repeatable, consistent deployment experience. Once the infrastructure has been built, 
Ansible uses defined 'playbooks' to specify the installation and configuration of applications. For 
example, a Terraform IaC script can be used to build the Kafka / Zookeeper server 
specifications, storage, and networking to run a cluster of servers at the run of a single command. 
Once Terraform completes the build of the infrastructure, an Ansible playbook starts the Kafka / 
Zookeeper application via Docker-Compose and conducts additional application configuration, 
along with unit tests to ensure the application has been successfully deployed. Using Terraform 
and Ansible together mitigates the risk of user error when deploying the ELRR Prototype. IaC 
secures the deployment of the infrastructure by easily scripting the specifications of each 
resource and it can be duplicated across multiple environments. 
 
 
 
 
 



ELRR Systems Integration Plan 

6 
 

 
Figure 2 – ELRR Prototype CI/CD Pipeline Supporting the Planned System Integration 

 

2.3 System Integration Roles and Responsibilities 

To support the deployment of the ELRR Prototype into the ADL TLA sandbox environment, the 
following staffing plan, roles and quantity, are accounted for in Table 1 below.  

Table 1 – ELRR Integration Roles and Responsibilities 

ELRR Prototype 
Role ELRR Prototype Responsibilities 

Development 
Engineers (x2) 

 Verifies the network and firewall rules (e.g., ports) have been 
opened to ensure communication between ELRR and ADL TLA 
sandbox components. Refer to Appendix C-1 "Security, 
Networking, and Identity and Access Management" for a 
complete list of firewall rules for ELRR. 

 Maintains and executes deployment scripts for the ELRR 
components, such as ELRR Portal, ELRR Auth, xAPI Gateway, 
Kafka / Zookeeper, ELRR Staging, Local Storage, and ELRR 
Storage. Validates administrator access to each ELRR 
component. 

 Maintains and executes installation and configuration of the 
software for ELRR components. The process is executed by 
automated Ansible scripts, which install the application with 
Docker Compose, configure the application and conduct 
automated unit tests to validate the ELRR components are 
running as expected.  

 Troubleshoots issues with related to ELRR deployment, 
installation, and configuration scripts. 

Data Engineers  
(x2) 

 Establishes, executes and monitors API connections between 
Authoritative LRS and the xAPI Gateway. Verifies if the 
Authoritative LRS requests to xAPI Gateway match the expected 
data structure. 



ELRR Systems Integration Plan 

7 
 

ELRR Prototype 
Role ELRR Prototype Responsibilities 

 Designs, configures, and monitors the Kafka / Zookeeper 
pipelines for each ADL TLA sandbox component connection. 
Validates that xAPI Gateway and ELRR Agents can send and 
receive data to Kafka / ZooKeeper. 

 Establishes, executes and monitors connections between the 
ELRR Agents and target systems (e.g., Kafka / ZooKeeper, ELRR 
Local Staging, ELRR Storage, CaSS, ECC). Verifies the ability to 
query data from CaSS and ECC, post a message to Kafka / 
ZooKeeper, and load data into ELRR Local Staging and ELRR 
Storage. 

 Troubleshoots issues with related to connections between ADL 
TLA sandbox components and ELRR xAPI Gateway and ELRR 
Agents, in addition to internal ELRR connections to ELRR Local 
Staging and ELRR Storage. 

Tester  
(x2) 

 Conducts unit testing of ELRR components to validate if individual 
components are functioning as expected. Baseline unit tests are 
developed to test ELRR component functionality based on PWS 
requirements. 

 Executes systems integration test cases that verify the 
connections between internal ELRR components, in addition to 
external ADL TLA sandbox components. Verifies end-to-end 
processes within ELRR from collecting, processing, and 
storing data from ADL TLA sandbox components and visualizing 
with in the ELRR Portal.  

 Captures test results within an Application Lifecycle Management 
tool for defect tracking and mitigation. Coordinates with the ELRR 
development team to verify the mitigation of defects. 

Project Manager  
(x1) 

 Manages scope and schedule as defined in the ELRR technical 
management work plan. 

 Supports overall project functional activities, including 
stakeholder management, risk and issue resolution, and 
stakeholder communications. 

2.4 Assumptions 

In relation to the guidance provided within the ELRR Prototype SIP, the following assumptions 
have been made within Table 2 below. 

Table 2 – ELRR Prototype SIP Assumptions 

Assumption Rationale 

The ADL TLA sandbox 
environment will be 
stood-up and 
validated 

The ELRR Prototype relies on multiple systems within the ADL TLA 
sandbox, such as Authoritative LRS and CaSS, to load learner records 
into ELRR. Since these source systems have separate development 
teams, installation and configuration of an ADL TLA sandbox is outside 
the scope of the ELRR development team. Many of the ADL TLA sandbox 
systems remain in active development so bugs and errors when 



ELRR Systems Integration Plan 

8 
 

Assumption Rationale 
deploying the applications are likely, which results in troubleshooting 
and takes away time spent on ELRR Prototype development. The ELRR 
Prototype development team will work with ADL on a timeline for 
accessing the ADL TLA sandbox and any necessary credentials to access 
the environment. 

Deloitte will rely on 
an ADL-provided, 
ELRR-aligned LRS for 
system 
implementation and 
testing 

The TLA LRS, corresponding xAPI profiles/services, and Kafka messaging 
service represent a significant set of application layer services that are 
vital to the intended system operation of the TLA implementation within 
the ADL TLA sandbox. Similar to the assumption rationale above, these 
systems remain in active development and are complex, which increases 
the likelihood for bugs during deployment. 

The development team requested its own dedicated version of the ADL-
deployed LRS to lower the complexity of the ELRR Prototype integration, 
increase the likelihood of timely integration testing, and provide Deloitte 
with the ability to successfully perform ELRR-specific regression testing 
as it tracks ELRR anomalies throughout the ELRR Prototype test period. 

Learner records in 
the scope of the 
ELRR Prototype will 
conform to the xAPI 
standard 

The development team expects that all planned learner records for use 
in the ELRR Prototype will match the formatting and standards set forth 
in the xAPI standard. The ELRR Agent scripts are built based on the xAPI 
standard format, so any modifications to the xAPI format or other data 
format will result in additional development scope to accommodate 
additional formats and standards. ADL will notify the development team 
of any proposed or upcoming changes to the xAPI standard, and the 
development team will provide an assessment on the level of effort 
needed to accommodate the change within a current or future release. 

The ELRR Prototype 
will lack some 
security controls by 
design 

The ELRR Prototype will conform to a certain degree of security 
requirements, but ultimately will use simulated learner record data 
because the key outcome of the prototype is the successful 
demonstration of the evidentiary chain, rather than full or partial 
attainment of a future security level. The development team will work 
with ADL and C5ISR project stakeholders to identify security-related 
requirements as part of the development process, document these 
requirements, prioritize them as required. 

The development 
team will have access 
to an AWS cloud 
environment 

 

All the ELRR code can be deployed on all major cloud environments 
(e.g., Azure, Google Cloud Platform, AWS) with minor modifications to 
the underlying IaC scripts. These minor modifications may include 
service names (e.g., Elastic Compute Cloud (EC2) to Azure Virtual 
Machine (VM)) and virtual machine types (e.g., t2.medium vs. 
Standard_B2s). The following guide has been written specifically for an 
AWS environment deployment: this document will be specific to AWS 
machine types, as described in Appendix B - Hardware / Software - 
Hardware / Software.  
Additionally, cloud providers have inconsistent services that are certified 
at hardened security environments (Impact Level (IL) 2, IL4, IL5, IL6). 
For example, at the time of this draft, Azure Kubernetes Service (AKS) is 
certified up to IL5, while Amazon Elastic Kubernetes Service (EKS) is 
certified up to IL4. The development team will continue to monitor the 
Scope in Service pages, linked within Appendix A – References 
"Services in Scope", for the major cloud environments, and will work 



ELRR Systems Integration Plan 

9 
 

Assumption Rationale 
with ADL to support the transition from the AWS environment to EDLM 
Azure IL 4 environment. 

Additional 
coordination with the 
ECC Prototype 
Development team is 
anticipated 

The ECC Prototype development team will also be integrating with the 
ADL TLA sandbox environment during the same timeline as ELRR (e.g., 
May – August 2021). While the ECC is a target source system, 
development timelines may not align for the ECC to be integrated as 
part of this ELRR release. The ELRR development team, along with ADL, 
will continue to coordinate with the ECC development team prior to and 
as part of system integration activities to align on an implementation 
timeline. 

Schema Server 
components remain 
undetermined and 
outside of the current 
scope 

Across both ELRR and ECC Prototype projects, the concept of an 
enterprise service bus or middleware service for linked data remains a 
work in progress without a comprehensive timeline for design, 
development, or implementation into the ADL TLA reference 
implementation or corresponding ADL TLA sandbox environment. The 
ECC Prototype development team will implement an initial Experience 
Schema Service as part of the ECC Prototype, which will not support 
ELRR schema server use cases. 

 

  



ELRR Systems Integration Plan 

10 
 

3.0 ELRR Integration Approach with ADL TLA 

The ELRR Prototype relies on establishing connections to existing components within the ADL 
TLA sandbox to acquire, aggregate, validate, and display consolidated learner records. The three 
ADL TLA source systems used by the ELRR Prototype to develop complete learner profiles 
include the Authoritative LRS, CaSS, and ECC. If an organization has multiple components, 
such as multiple LRSs, the ELRR is able to scale with connections to additional systems. The 
ELRR communicates with the ADL TLA sandbox systems through the xAPI Gateway, which 
manages all of the learner record requests into the ELRR. To conform with modern application 
development standards, the xAPI Gateway utilizes a RESTful API, which is compatible with the 
existing ADL TLA sandbox components. The xAPI Gateway conducts initial data quality checks 
and only accepts requests from components deployed to the ADL’s TLA sandbox that meet pre-
determined schema standards, such as xAPI standards. 
While the xAPI Gateway is the external facing interface to the ADL TLA sandbox components, 
there are internal components within ELRR, Kafka / Zookeeper and ELRR Agents, that queue 
the requests from the xAPI Gateway and execute business logic to transform, validate, and store 
the learner records within the Local Storage and ELRR Storage databases. To assist with unit 
testing, the ELRR connects with DATASIM to produce xAPI records to verify the ELRR 
application is functioning as expected.  

3.1 Authoritative Learner Record Store (LRS) 

The Authoritative LRS is a core data source within the ADL TLA sandbox that stores 
consolidated xAPI statements from multiple edge systems, known as 'noisy' LRSs. The xAPI 
statements track a learner's progress and actions throughout courses and quizzes towards 
competency mastery. The data ingested is standardized according to the TLA MOM standard.  
The Authoritative LRS provides critical live data regarding DoD learner's progress towards 
associated competency areas. Assuming organizations may have multiple LRS systems, the 
ELRR will connect to the source Authoritative LRS systems, aggregate DoD learner's data into a 
centralized database and display learner metrics on the ELRR Portal user interface. The ELRR 
receives learner records from the Authoritative LRS via requests to the ELRR xAPI Gateway. 
Once a request is received, the ELRR xAPI Gateway will queue the response within the 
respective Topic within the ELRR Kafka instance. Based on the Topic the data is queued within 
on ELRR Kafka / ZooKeeper instance, the respective ELRR Agent will upload the record to the 
ELRR Storage database. 
The identified system interfaces between an Authoritative LRS and ELRR are depicted within 
Table 3 below. 

Table 3 – Authoritative LRS / ELRR System Interfaces 

ELRR 
Component Interfaces Connection 

Duration 
Connection 
Frequency 

ELRR xAPI 
Gateway 

API Keys; LRS REST response schema; LRS 
REST response header; LRS IP address / VPC; 

ELRR xAPI Gateway endpoint URL 
Ephemeral On-demand 



ELRR Systems Integration Plan 

11 
 

ELRR 
Component Interfaces Connection 

Duration 
Connection 
Frequency 

ELRR Kafka API Keys; Kafka API Broker; Kafka Topic Ephemeral On-demand 

ELRR Agents Kafka Topic Ephemeral On-demand 

3.2 Competency and Skills System (CaSS)  

CaSS enables users and other systems to define, store, manage, and access data objects called 
“competencies” that are organized into structured collections called “frameworks”, which report, 
store, and retrieve assertions about the competencies held by an individual. CaSS acts as a data 
source into the ELRR Local Staging Area to build a robust metadata profile for learners. ELRR 
Agents will transform and standardize competency data from CaSS. The ELRR will connect to 
CaSS through a VPC Peering Connection. ELRR Agents will connect to CaSS to transform 
standardized user competency data and store data in the ELRR Local Staging Area. 
The identified system interfaces between CaSS and ELRR are depicted within Table 4 below. 

Table 4 – CaSS / ELRR System Interfaces 

ELRR 
Component Interfaces Connection 

Duration 
Connection 
Frequency 

ELRR Agents VPC Gateway Endpoint; Kafka Topics Ephemeral On-demand 

ELRR Local 
Staging Area API Endpoint Ephemeral On-demand 

3.3 Enterprise Course Catalog (ECC) 

The ECC is a learning experience discovery service designed to aggregate metadata describing 
learning experiences from various internal sources as well as external sources. The ELRR will 
connect to the ECC through a VPC Peering Connection. ELRR Agents will connect to the ECC's 
API endpoint to retrieve course details based on courses the user has completed from the ECC 
Experience Index Service. 
The identified system interfaces between the ECC and ELRR are depicted within Table 5 below. 

Table 5 – ECC / ELRR System Interfaces 

ELRR 
Component Interfaces Connection 

Duration 
Connection 
Frequency 

ELRR Agents VPC Gateway Endpoint; Kafka Topics Ephemeral On-demand 

ELRR Local 
Staging Area API Endpoint Ephemeral On-demand 

 

 



ELRR Systems Integration Plan 

12 
 

3.4 DATASIM 

If a stakeholder organization does not have an operational LRS capturing a high volume of 
learner records, the DATASIM application can be used to simulate xAPI statements for the LRS. 
The development team uses DATASIM to facilitate unit testing for the ELRR. 
The identified system interfaces between DATASIM and the ELRR are depicted within Table 6 
below. 

Table 6 – DATASIM / ELRR System Interfaces 

ELRR 
Component Interfaces Connection 

Duration 
Connection 
Frequency 

ELRR xAPI 
Gateway 

API Keys; LRS REST response schema; LRS 
REST response header; LRS IP address / VPC; 

ELRR xAPI Gateway endpoint URL 
Ephemeral On-demand 

ELRR Kafka API Keys; Kafka API Broker; Kafka Topic Ephemeral On-demand 

ELRR Agents Kafka Topic Ephemeral On-demand 



ELRR Systems Integration Plan 

13 
 

4.0 Appendix 

Appendix A – References 

Name Description Location 

ADL TLA    
Quick Start 

Provides an overview, including 
technical specifications, for the 
ADL. 

https://adlnet.gov/guides/tla/ 

Apache         
Kafka 

The Apache Kafka platform 
provides a distributed 
publish/subscribe messaging 
topology built around streams of 
different data topics. 

https://adlnet.gov/guides/tla/servic
e-definitions/TLA-Reference-
Implementation.html#kafka-

gateway 

KeyCloak 
(ADL TLA) 

Details on ADL TLA reference 
implementation of KeyCloak for 
identity and access management. 

https://adlnet.gov/guides/tla/servic
e-definitions/Authentication-and-

Identity-
Management.html#keycloak 

OpenAPI 
Specification 

(OAS) 

The OpenAPI Specification (OAS) 
defines a standard, language-
agnostic interface to RESTful APIs, 
which allows both humans and 
computers to discover and 
understand the capabilities of the 
service without access to source 
code, documentation, or through 
network traffic inspection. 

https://swagger.io/specification/ 

Services             
in Scope 

Cloud providers must meet strict 
security requirements set by US 
Department of Defense, from IL2 
through IL6. While cloud providers 
have dozens of services, only 
certain services have passed audits 
to verify they meet the IL 
requirements. The linked web 
pages are updated periodically as 
services are verified for ILs. 

AWS: https://aws.amazon.com/co
mpliance/services-in-scope/ 

Azure: https://docs.microsoft.com
/en-us/azure/azure-

government/compliance/azure-
services-in-fedramp-

auditscope#azure-government-
services-by-audit-scope 

xAPI Standard 
(IEEE P9274) 

This Standard describes a JSON 
data model format and a RESTful 
APIs for communication between 
Activities experienced by an 
individual, group, or other entity 
and an LRS.  

https://standards.ieee.org/project/
9274_1_1.html 

 
  

https://adlnet.gov/guides/tla/
https://adlnet.gov/guides/tla/service-definitions/TLA-Reference-Implementation.html#kafka-gateway
https://adlnet.gov/guides/tla/service-definitions/TLA-Reference-Implementation.html#kafka-gateway
https://adlnet.gov/guides/tla/service-definitions/TLA-Reference-Implementation.html#kafka-gateway
https://adlnet.gov/guides/tla/service-definitions/TLA-Reference-Implementation.html#kafka-gateway
https://adlnet.gov/guides/tla/service-definitions/Authentication-and-Identity-Management.html#keycloak
https://adlnet.gov/guides/tla/service-definitions/Authentication-and-Identity-Management.html#keycloak
https://adlnet.gov/guides/tla/service-definitions/Authentication-and-Identity-Management.html#keycloak
https://adlnet.gov/guides/tla/service-definitions/Authentication-and-Identity-Management.html#keycloak
https://swagger.io/specification/
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/services-in-scope/
https://docs.microsoft.com/en-us/azure/azure-government/compliance/azure-services-in-fedramp-auditscope#azure-government-services-by-audit-scope
https://docs.microsoft.com/en-us/azure/azure-government/compliance/azure-services-in-fedramp-auditscope#azure-government-services-by-audit-scope
https://docs.microsoft.com/en-us/azure/azure-government/compliance/azure-services-in-fedramp-auditscope#azure-government-services-by-audit-scope
https://docs.microsoft.com/en-us/azure/azure-government/compliance/azure-services-in-fedramp-auditscope#azure-government-services-by-audit-scope
https://docs.microsoft.com/en-us/azure/azure-government/compliance/azure-services-in-fedramp-auditscope#azure-government-services-by-audit-scope
https://docs.microsoft.com/en-us/azure/azure-government/compliance/azure-services-in-fedramp-auditscope#azure-government-services-by-audit-scope
https://standards.ieee.org/project/9274_1_1.html
https://standards.ieee.org/project/9274_1_1.html


ELRR Systems Integration Plan 

14 
 

Appendix B - Hardware / Software 

ELRR Prototype Hardware 

Table 7 – ELRR Hardware 

Component Service Type Operating 
System 

Storage 
(GB) Count 

API Gateway EC2 t2.medium Ubuntu 
18.04 

20 (gp2-
ssd) [weekl

y 
snapshots] 

1 

ELRR Portal EC2 t2.medium Ubuntu 
18.04 

20 (gp2-
ssd) [weekl

y 
snapshots] 

1 

ELRRAUTH EC2 t3.large Ubuntu 
18.04 

8 (gp2-
ssd) 1 

DATASIM EC2 t2.small Ubuntu 
18.04 

20 (gp2-
ssd) 1 

ELRR Local Staging 
Area Database 

EC2 t3.xlarge Ubuntu 
18.04 

100 (gp2-
ssd) 1 

ELRR Database EC2 t2.medium Ubuntu 
18.04 

100 (gp2-
ssd) 1 

Jenkins EC2 t2.medium Ubuntu 
18.04 

65 (gp2-
ssd) 1 

Jenkins Slave EC2 t2.medium Ubuntu 
18.04 

8 (gp2-
ssd) 1 

ELRR Prototype Software 

Table 8 – ELRR Software 

Configuration Item 
(CI) Name Version 

Security / 
Authentication 

KeyCloak 7.0.x 

Node Version Manager (NVM) 0.35.3 

Application 

Nginx 1.14.0 

Elasticsearch 7.11 

Kafka 2.6.x 

Django 3.1.x 

Spring Boot 2.4.x 



ELRR Systems Integration Plan 

15 
 

Configuration Item 
(CI) Name Version 

Data / Storage Postgres 13.1 

Container Docker 20.10.x 

Container 
Orchestration 

Kubernetes 1.19.x 

Operating System Linux/Ubuntu 18.04 

Administration 

Terraform 3.32.0 

Ansible 2.10.5 

Jenkins 2.222.1 

Languages 
Java (JDK) 14 

Python 3.9.x 

 

  



ELRR Systems Integration Plan 

16 
 

Appendix C - Deployment Scripts 

Appendix C-1 Security, Networking, and Identity and Access Management 

The necessary firewall ports for ELRR, based on the specified component/infrastructure, is 
outlined within Table 9 below. 

Table 9 – ELRR Firewall Ports 

Component Ports (Ingress) Ports (Egress) 

xAPI Gateway 

:22 (per IP) 
:80  Public 
:443 Public 
:9092 (per IP) 

All Traffic 

ELRR Portal 

:22 (per IP) 
:80  Public 
:443 Public 
:8080 (per IP) 
:5432 (per IP) 

All Traffic 

ELRRAUTH 
:22 (per IP) 
:80  Public 
:443 Public 

All Traffic 

Kafka / Zookeeper 

:22 (per IP) 
:80  Public 
:443 Public 
:9092 (per IP) 
:2181 (per IP) 
:2888 (per IP) 

All Traffic 

ELRR Agents 

:22 (per IP) 
:80  (per IP) 
:443 (per IP) 
:9092 (per IP) 
:5432 (per IP) 

All Traffic 

DATASIM 

:22 (per IP) 
:80  Public 
:443 Public 
:9091 (per IP) 
:9090 (per IP) 

All Traffic 

ELRR Local Staging :22 (per IP) 
:5432 (per IP) 

All Traffic 

ELRR Storage :22 (per IP) 
:5432 (per IP) 

All Traffic 

Jenkins / Jenkins Agent 

:22 (per IP) 
:80  Public 
:443 Public 
:8080 (per IP) 
:5986 (per IP) 

All Traffic 

 



ELRR Systems Integration Plan 

17 
 

 

Appendix C-2 Terraform 

The ELRR will be deployed with IaC approach using Terraform. Terraform is a cloud agnostic 
deployment tool that can deploy any resources described in the Terraform templates to most 
major cloud providers. Terraform CLI is used to deploy templates into specified cloud accounts. 
Terraform will create necessary resources to host ELRR components in a highly available and 
secure way. Additionally, scripting environment definitions and components mitigates user error 
when creating resources via the console, while reducing the amount of time to construct the 
environment. Once Terraform templates have been created, the Deployment Engineer will install 
Terraform and run the following commands to initialize, plan and apply Terraform. 
The first command when running Terraform should always be 'terraform init'. Terraform Init 
initializes the working directory that contain Terraform scripts whether it was created locally or 
cloned from a Github or another version control repository. 

# initialize the working directory 
  
terraform init 

Next, once Terraform configuration scripts are complete and the working directory has been 
initialized, it is critical to run 'terraform plan' prior to running 'terraform apply'. ‘Terraform 
plan’ lists out each resource it is planning on creating based on what is in the Terraform scripts. 
Terraform analyzes the scripts and displays the output on the command line interface for review. 
If there are any errors in the scripts, Terraform will list each error with specific file name and 
line number for reference. 

# plan out the resources that will be created based on templates 
  
terraform plan 

Finally, after ‘terraform plan’ runs without any errors and the system operator is satisfied with 
the resources to be created from the scripts, running 'terraform apply' will verify and start 
creating resources. Similar to 'terraform plan', 'terraform apply' will do a final check of the 
scripts and require the system operator to confirm this is the action to be performed in the 
environment with a simple yes or no answer in the command line. It will tail the log and status 
directly on the command line interface. 

# apply Terraform templates and start creating defined resources 
  
terraform apply 

 

Appendix C-3 ELRR Storage / Databases 

The ELRR system relies on two core databases, ELRR Local Staging Area and ELRR Profile, to 
support learner progress and other associated metadata from ADL TLA, such as Learner Profiles 
and Competency records via CaSS. These databases serve as an enterprise aggregation of 



ELRR Systems Integration Plan 

18 
 

transactional data for learners across multiple LRSs. The ELRR platform utilizes DATASIM to 
generate synthetic xAPI data for unit testing of the API Gateway.  

ELRR Local Staging Area Database 

The ELRR Local Staging Area database offers centralized storage of all xAPI requests from 
connected Authoritative LRS systems. The Authoritative LRS systems send requests to the 
ELRR API Gateway, which routes to the ELRR Local Staging Area database, parses the request, 
and updates the xAPI request body to conform to the xAPI JSON IEEE P9274 format. The 
ELRR Local Staging Area in the ELRR reference implementation runs on PostgreSQL v13.1 

ELRR Local Staging Area Installation 

Once the virtual machine has been started, execute the below bash/shell script to install the 
necessary components for Docker. 

1 
2 
3 
4 
5 
6 
7 

#!/bin/bash 
  
sudo apt-get update 
sudo apt-get install docker 
sudo apt-get install docker-io 
sudo groupadd docker 
sudo usermod -aG docker $USER 

ELRR Local Staging Area Configuration 

Based on the ELRR reference implementation, Docker Compose will be used to build a 
PostgreSQL database on the virtual machine. Create a new file called `docker-compose.yml` and 
copy/paste the following code. 

1 
2 
3 
4 
5 
6 
7 
8 
9 
 

10 
 

11 
12 
13 

## docker-compose.yml 
  
version: '3.0' 
services: 
    postgres: 
        image: postgres:13.1 
        restart: always 
        environment: 
          - POSTGRES_USER=${POSTGRES_USER_STAGING} #update based on secrets              
          defined in .env file 
          - POSTGRES_PASSWORD=${POSTGRES_PASS_STAGING} #update based on  
          secrets defined in .env file 
        logging: 
          options: 
            max-size: 10m 



ELRR Systems Integration Plan 

19 
 

14 
15 
16 
17 
18 

            max-file: "3" 
        ports: 
          - '5438:5432' 
        volumes: 
          - ./postgres-data:/var/lib/postgresql/data 

Within the same directory as the above `docker-compose.yml` run the following command: 

1 sudo docker-compose up -d 

ELRR Local Staging Area Create Tables 

Once the container is up and running, setting-up of the database and creating the reference tables 
can begin, along with their specified schemas, for the ELRR Local Staging Area database. The 
table schemas will be based on the xAPI JSON IEEE P9274 format. Depending on the number of 
source Authoritative LRS systems, there could be multiple tables per ELRR Local Staging Area 
database. 

ELRR Profile Database 

The ELRR Profile database offers an enterprise view into xAPI requests from all connected 
Authoritative LRS systems, along with enriched data from CaSS. The ELRR Profile database 
subscribes to the ELRR Local Staging Area database’s topic within Kafka, which triggers a call 
from the API Gateway to move records from the ELRR Local Staging Area to the ELRR Profile 
database. Once the record is within the ELRR Profile database, a separate request is sent to CaSS 
with a unique learner identifier to request additional information, which is then appended to the 
learner record within the ELRR Profile database. The records within the ELRR Profile database 
persist for analysis and review by learning managers and individual learners via the ELRR 
Portal. The ELRR Profile database in the ELRR reference implementation runs on Postgres 
v13.1. 

ELRR Profile Installation 

1 
2 
3 
4 
5 
6 
7 

#!/bin/bash 
  
sudo apt-get update 
sudo apt-get install docker 
sudo apt-get install docker-io 
sudo groupadd docker 
sudo usermod -aG docker $USER 

ELRR Profile Configuration 



ELRR Systems Integration Plan 

20 
 

Based on the ELRR reference implementation, Docker Compose will be used to build a 
PostgreSQL database on the virtual machine. Create a new file called `docker-compose.yml` and 
copy/paste the following code. 

1 
2 
3 
4 
5 
6 
7 
8 
9 
 

10 
 

11 
12 
13 
14 
15 
16 
17 
18  

## docker-compose.yml  
 
version: '3.0' 
services: 
    postgres: 
        image: postgres:13.1 
        restart: always 
        environment: 
          - POSTGRES_USER=${POSTGRES_USER_PROFILE} #update based on secrets   
          defined in .env file 
          - POSTGRES_PASSWORD=${POSTGRES_PASS_PROFILE} #update based on    
          secrets defined in .env file 
        logging: 
          options: 
            max-size: 10m 
            max-file: "3" 
        ports: 
          - '5438:5432' 
        volumes: 
          - ./postgres-data:/var/lib/postgresql/data 

Within the same directory as the above `docker-compose.yml` run the following command: 

1 sudo docker-compose up -d 

 ELRR Profile Create Tables 

Once the container is up and running, setup of the and creation of the reference tables can begin, 
along with their specified schemas, for the ELRR Local Staging Area database. The table 
schemas will be based on the IEEE ELR 1484.2 format. 

DATASIM (Testing / Validation) 

To assist with unit testing of the ELRR, the ELRR reference implementation uses DATASIM to 
simulate xAPI data that can be leveraged within the ELRR pipeline to validate data architecture 
and performance testing of the application. 

DATASIM Installation 

1 #!/bin/bash 



ELRR Systems Integration Plan 

21 
 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

 

if [ ! -d "/home/datasim/code/datasim" ] 

then 

 

if [ ! -d "/tmp/ssm" ] 

then 

echo "ssm Folder not found, making it" >> /home/ubuntu/startlog.txt 

sudo mkdir /tmp/ssm 

fi 

cd /tmp/ssm 

wget https://s3.amazonaws.com/ec2-downloads-windows/SSMAgent/latest/debian_amd64/amazon-ssm-agent.deb 

sudo dpkg -i amazon-ssm-agent.deb 

sudo systemctl enable amazon-ssm-agent 

 

 

echo "making home folder" >> /home/ubuntu/startlog.txt 

 

if [ ! -d "/home/datasim" ] 

then 

echo "Datasim Folder not found, making it" >> /home/ubuntu/startlog.txt 

sudo mkdir /home/datasim 

fi 

cd /home/datasim 

echo "runningupdate" >> /home/ubuntu/startlog.txt 

sudo apt update 

echo "installing openjdk and curl" >> /home/ubuntu/startlog.txt 

sudo apt-get install openjdk-8-jre -y >> /home/ubuntu/startlog.txt 

sudo apt-get install curl -y >> /home/ubuntu/startlog.txt 

if [ ! -d "/home/datasim/code" ] 

then 



ELRR Systems Integration Plan 

22 
 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

echo "code Folder not found, making it" >> /home/ubuntu/startlog.txt 

sudo mkdir ./code 

fi 

sudo chmod -R 777 code >> /home/ubuntu/startlog.txt 

cd ./code >> /home/ubuntu/startlog.txt 

echo "run install script 1" >> /home/ubuntu/startlog.txt 

sudo curl -O https://download.clojure.org/install/linux-install-1.10.1.754.sh 

sudo chmod +x linux-install-1.10.1.754.sh 

sudo ./linux-install-1.10.1.754.sh >> /home/ubuntu/startlog.txt 

echo "sleeping..." >> /home/ubuntu/startlog.txt 

sleep 20 

#git clone https://github.com/nvm-sh/nvm.git ~/.nvm >> /home/ubuntu/startlog.txt 

curl -sL https://raw.githubusercontent.com/creationix/nvm/v0.35.3/install.sh -o install_nvm.sh 

echo "run install script 2" >> /home/ubuntu/startlog.txt 

sudo chmod +x install_nvm.sh >> /home/ubuntu/startlog.txt 

echo "changed mod" >> /home/ubuntu/startlog.txt 

. ./install_nvm.sh >> /home/ubuntu/startlog.txt 

echo "sleeping..." >> /home/ubuntu/startlog.txt 

sleep 20 

export NVM_DIR="$HOME/.nvm" 

[ -s "$NVM_DIR/nvm.sh" ] && \. "$NVM_DIR/nvm.sh"  # This loads nvm 

[ -s "$NVM_DIR/bash_completion" ] && \. "$NVM_DIR/bash_completion"  # This loads nvm bash_completion 

echo "downloaded nvm binaries" >> /home/ubuntu/startlog.txt 

source ~/.bashrc >> /home/ubuntu/startlog.txt 

#for pid in `lslocks -rn | grep /var/lib/dpkg/lock|awk '{print $2}'`; 

#do 

#    sudo kill $pid; 

#done 

echo "installing nvm" >> /home/ubuntu/startlog.txt 

nvm install 14.15.1 >> /home/ubuntu/startlog.txt 

https://github.com/nvm-sh/nvm.git


ELRR Systems Integration Plan 

23 
 

62 

63 

64 

65 

66 

67 

68 

69 

70 

71 

72 

73 

74 

75 

76 

77 

78 

79 

80 

81 

82 

83 

84 

85 

86 

87 

88 

89 

90 

91 

echo "nvm installed" >> /home/ubuntu/startlog.txt 

nvm use 14.15.1 >> /home/ubuntu/startlog.txt 

echo "installing git make and wrap..." >> /home/ubuntu/startlog.txt 

sudo apt-get install git -y >> /home/ubuntu/startlog.txt 

sudo apt-get install make -y >> /home/ubuntu/startlog.txt 

sudo apt-get install rlwrap -y >> /home/ubuntu/startlog.txt 

echo "git make and wrap installed" >> /home/ubuntu/startlog.txt 

 

echo "cloning ELRR Repo..." >> /home/ubuntu/startlog.txt 

git clone https://github.com/US-ELRR/Misc.git >> /home/ubuntu/startlog.txt 

echo "cloned ELRR Repo; cloning DATASIM repo..." >> /home/ubuntu/startlog.txt 

git clone https://github.com/yetanalytics/datasim.git >> /home/ubuntu/startlog.txt 

cd datasim/ 

touch .lein-env && echo "{:credentials generic:generic }" > .lein-env 

echo "cloned DATASIM repo. Added credential file" >> /home/ubuntu/startlog.txt 

cd .. 

echo "cloning DATASIM-UI repo..." >> /home/ubuntu/startlog.txt 

git clone https://github.com/yetanalytics/datasim-ui.git >> /home/ubuntu/startlog.txt 

echo "cloned DATASIM-UI repo" >> /home/ubuntu/startlog.txt 

 

echo "Updating DATASIM/DATASIM-UI config with Public" >> /home/ubuntu/startlog.txt 

export PUBLIC_DNS=`curl http://169.254.169.254/latest/meta-data/public-hostname 2>/dev/null` 

sudo sed -i 's/localhost/'$PUBLIC_DNS'/g' /home/datasim/code/datasim-ui/dev.cljs.edn 

sudo sed -

i 's/localhost/'$PUBLIC_DNS'/g' /home/datasim/code/datasim/src/server/com/yetanalytics/datasim/server.clj 

echo "Creating DATASIM bundle..." >> /home/ubuntu/startlog.txt 

cd datasim/ 

sleep 2 

make clean >> /home/ubuntu/startlog.txt 

sleep 2 



ELRR Systems Integration Plan 

24 
 

92 

93 

94 

95 

96 

97 

98 

99 

100 

101 

102 

103 

104 

105 

106 

make bundle >> /home/ubuntu/startlog.txt 

sleep 90 

echo "Created DATASIM bundle. Launching DATASIM API server..." >> /home/ubuntu/startlog.txt 

screen -dm -S "DATASIM" make server 

sleep 60 

echo "DATASIM API server launched." >> /home/ubuntu/startlog.txt 

cd ../datasim-ui/ 

echo "Launching DATASIM-UI FIG..." >> /home/ubuntu/startlog.txt 

screen -dm -S "DATASIM-UI-FIG" make fig 

sleep 60 

echo "DATASIM-UI FIG launched. Launching DATASIM-UI SASS server..." >> /home/ubuntu/startlog.txt 

screen -dm -S "DATASIM-UI-SASS" make build-sass 

sleep 60 

echo "DATASIM-UI SASS server launched." >> /home/ubuntu/startlog.txt 

fi 

 Appendix C-4 ELRR Application 

The core of the ELRR is an enterprise API gateway (referred here as the xAPI Gateway), that 
handles requests and responses from ADL TLA core systems (e.g., CaSS, Authoritative LRS, 
Learner Profiles, ECC). The incoming requests are funneled through secure data pipelines / 
topics within Apache Kafka messaging bus. The Kafka cluster has the ability to scale to meet the 
demand of a production learning system with thousands of concurrent data streams / topic 
requests. The requests are brokered from Kafka to the API Gateway where the requests are 
routed to the appropriate source system. 

xAPI Gateway 

The xAPI Gateway is the API gateway for the ELRR application. The xAPI Gateway contains 
the API specification that defines the schema and paths associated with the ELRR REST API 
design. 

API Gateway Installation 

The ELRR leverages a lightweight NGINX API Gateway to handle a high-velocity of REST API 
requests, while offering ease of maintainability. The ELRR reference implementation leverages 
Docker to install and run the NGINX as an API gateway. 



ELRR Systems Integration Plan 

25 
 

1 
2 

3 

4 

5 

6 

7 

8 

#!/bin/bash 

  

sudo apt-get update 

sudo apt-get install docker 

sudo apt-get install docker-io 

sudo groupadd docker 

sudo usermod -aG docker $USER 

sudo apt-get install nginx 

 API Gateway Configuration - API Specification 

Once the NGINX server has been installed and is running, it is necessary to define the API 
specification that defines how the API Gateway will handle incoming requests. An industry 
standard specification is the OpenAPI Specification (OAS), which specifies the API paths, 
request / response schemas, and status codes. For more information on OAS, refer to Appendix 
A – References "OpenAPI Specification (OAS)". The API specification file allows for fine-
grained control on form validation where requests for meeting specific criteria (e.g., correct 
timestamp format, integers vs. float) will be granted a response, therefore improving data quality 
within ELRR. The files are written in YAML Ain't Markup Language (YAML) and can be 
transferred to most major API Gateway tools, if a developer does not wish to use the NGINX 
API Gateway within the reference implementation. Another benefit of OAS is that 
documentation of the API is automatically generated, which assists with readability and 
maintainability of the ELRR solution. 

API Gateway Configuration - Security and Authentication 

In future development, the ELRR API Gateway will only accept requests from authenticated 
sources by using protected API keys. Limiting requests to sources with API keys secures the 
ELRR application from being attacked by malicious actors. To further combat against external 
malicious actors, the ELRR will employ rate limiters to mitigate the impact of a Distributed 
Denial of Service (DDoS) attack on the API Gateway. The xAPI Gateway reference NGINX 
architecture enables the ability to apply rate limits to specific requests, so authenticated requests 
from an expected API key would have a higher rate limit than a request from a non-authenticated 
source. 

ELRR Kafka / Messaging Bus 

The ELRR reference implementation utilizes Kafka as the messaging bus between core ADL 
TLA systems and the ELRR platform. The implementation is a cluster of brokers and clients that 
connect to source systems via individual high-performance Transmission Control Protocol (TCP) 
that handles the requests/responses. Kafka ensures that on a specific broker TCP connection 



ELRR Systems Integration Plan 

26 
 

requests / responses are handled on a first-come-first-serve basis. A Kafka broker can handle 
multiple TCP connections from various sources simultaneously, within reasonable limits. 

ELRR Kafka / Messaging Bus Installation 

For development purposes, a clustered Kafka deployment will be used for the ELRR. An 
additional pre-requisite for Kafka is Apache ZooKeeper to assist with the management of 
distributed requests / responses across the Kafka brokers. The initial deployment approach 
involves using Docker Compose to stand-up a virtual cluster on a single VM, an example of the 
shell script and docker-compose.yml file is below. 

1 
2 

3 

4 

5 

6 

7 

8 

9 

#!/bin/bash 

  

sudo apt-get update 

sudo apt-get install docker 

sudo apt-get install docker-io 

sudo groupadd docker 

sudo usermod -aG docker $USER 

sudo curl -
L "https://github.com/docker/compose/releases/download/1.28.5/docker-
compose-$(uname -s)-$(uname -m)" -o /usr/local/bin/docker-compose 

sudo chmod +x /usr/local/bin/docker-compose 

Create a new file called `docker-compose.yml` with the following code* Note: the ELRR 
Development Team is exploring leveraging existing ADL TLA Kafka implementation to utilize 
defined security and control parameters. 

1 
2 

3 

4 

5 

6 

7 

8 

9 

10 

## docker-compose.yml 

  

version: '3.0' 

services: 

  zookeeper: 

    image: wurstmeister/zookeeper 

    ports: 

      - "2181:2181" 

  kafka-1: 

https://github.com/docker/compose/releases/download/1.28.5/docker-compose-$(uname
https://github.com/docker/compose/releases/download/1.28.5/docker-compose-$(uname


ELRR Systems Integration Plan 

27 
 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

    image: wurstmeister/kafka 

    ports: 

      - "9095:9092" 

    environment: 

      KAFKA_ADVERTISED_HOST_NAME: kafka1.test.local 

      KAFKA_ADVERTISED_PORT: 9095 

      KAFKA_ZOOKEEPER_CONNECT: zookeeper:2181 

      KAFKA_LOG_DIRS: /kafka/logs 

      KAFKA_BROKER_ID: 500 

      KAFKA_offsets_topic_replication_factor: 3 

    volumes: 

      - /var/run/docker.sock:/var/run/docker.sock 

      - ${KAFKA_DATA}/500:/kafka 

  

  kafka-2: 

    image: wurstmeister/kafka 

    ports: 

      - "9096:9092" 

    environment: 

      KAFKA_ADVERTISED_HOST_NAME: kafka2.test.local 

      KAFKA_ADVERTISED_PORT: 9096 

      KAFKA_ZOOKEEPER_CONNECT: zookeeper:2181 

      KAFKA_LOG_DIRS: /kafka/logs 

      KAFKA_BROKER_ID: 501 

      KAFKA_offsets_topic_replication_factor: 3 

    volumes: 

      - /var/run/docker.sock:/var/run/docker.sock 

      - ${KAFKA_DATA}/501:/kafka 

  

  kafka-3: 



ELRR Systems Integration Plan 

28 
 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

    image: wurstmeister/kafka 

    ports: 

      - "9097:9092" 

    environment: 

      KAFKA_ADVERTISED_HOST_NAME: kafka1.test.local 

      KAFKA_ADVERTISED_PORT: 9097 

      KAFKA_ZOOKEEPER_CONNECT: zookeeper:2181 

      KAFKA_LOG_DIRS: /kafka/logs 

      KAFKA_BROKER_ID: 502 

      KAFKA_offsets_topic_replication_factor: 3 

    volumes: 

      - /var/run/docker.sock:/var/run/docker.sock 

      - ${KAFKA_DATA}/502:/kafka 

 Within the same directory as the above `docker-compose.yml` run the following command: 

1 sudo docker-compose up -d 

 ELRR Kafka / Messaging Bus Topics 

Once the Kafka server has been installed and is running, the next step is to build the topics 
associated for the ELRR. These topics are associated with the portions of the ELRR data model, 
and based on the request, multiple data sources (e.g., Authoritative LRS, CaSS), can publish to 
the same topic. The xAPI Gateway 'subscribes' to various topics, which enables a scalable, 
durable messaging system send / receive the stream of requests / responses from the back-end 
services. When a new message is published to an ELRR topic the information is stored within 
Kafka's storage and can be queried for further analysis and troubleshooting. The duration the 
records are stored within the Kafka brokers can be tuned based on an organizations data retention 
policy. 

Appendix C-5 ELRR Presentation 

The ELRR Portal will serve as the presentation layer that enables learners and record managers 
the ability to view their learning progress. Additionally, learning managers may access an 
administration application to update specific learner records.  

ELRR Portal 



ELRR Systems Integration Plan 

29 
 

The ELRR Portal represents the user-facing interface that facilitates the discovery of aggregated 
enterprise learner records by learners and observers/reviewers. The ELRR Portal will serve as the 
web application that enables record consumers (learners, managers, and observers/reviewers) to 
discover enterprise learner record data. 

ELRR Portal Installation (NGINX) 

1 
2 

3 

4 

5 

6 

7 

8 

#!/bin/bash 

  

sudo apt-get update 

sudo apt-get install docker 

sudo apt-get install docker-io 

sudo groupadd docker 

sudo usermod -aG docker $USER 

sudo apt-get install nginx 

 ELRR Portal Installation (Spring Boot) 

1 
2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

package com.example.springboot; 

  

import org.springframework.web.bind.annotation.RestController; 

import org.springframework.web.bind.annotation.RequestMapping; 

  

@RestController 

public class HelloController { 

  

    @RequestMapping("/") 

    public String index() { 

        return "Greetings from Spring Boot!"; 

    } 

  

} 

 



ELRR Systems Integration Plan 

30 
 

 Run the following command to run Spring Boot: 

./mvnw spring-boot:run 

 ELRR Portal Configuration 

After installation of the Nginx and Spring Boot framework is complete, application classes can 
be configured and added as needed. Unit testing can also be created with the implementation of 
the Spring Boot framework. 

  



ELRR Systems Integration Plan 

31 
 

Appendix D: Key Terms 

Table 10 below summarizes the acronyms referenced in this document. 

Table 10 – Acronyms 

Acronym Term 

ADL Advanced Distributed Learning 

AKS Azure Kubernetes Service 

API Application Programming Interface 

ATIS Army Training Information System 

AWS Amazon Web Services 

CaSS Competency and Skills System 

CI/CD Continuous Integration/Continuous Deployment 

DATASIM Data and Training Analytics Simulated Input Modeler 

DDoS Distributed Denial of Service 

DoD Department of Defense 

EC2 Elastic Compute Cloud 

ECC Enterprise Course Catalog 

EDLM Enterprise Digital Learning Modernization 

EKS Elastic Kubernetes Service 

ELRR Enterprise Learner Record Repository 

IAC Infrastructure as Code 

IAM Identity Access Management 

IL Impact Level 

JSON JavaScript Object Notation 

LRP Learning Record Provider 

LRS Learner Record Store 

MNL My Navy Learning 

MOM Master Object Model 

MVP Minimum Viable Product 



ELRR Systems Integration Plan 

32 
 

Acronym Term 

OAS OpenAPI Specification 

SIP Systems Integration Plan 

TCP Transmission Control Protocol 

TLA Total Learner Architecture 

VM Virtual Machine 

YAML YAMLAin't Markup Language 

 


	1.0 Introduction
	1.1 Deliverable Purpose
	1.2 Deliverable Scope

	2.0 ELRR Prototype Integration Plan and Strategy
	2.1 ELRR Overview
	2.2 ELRR Prototype Deployment Strategy
	2.3 System Integration Roles and Responsibilities
	2.4 Assumptions

	3.0 ELRR Integration Approach with ADL TLA
	3.1 Authoritative Learner Record Store (LRS)
	3.2 Competency and Skills System (CaSS)
	3.3 Enterprise Course Catalog (ECC)
	3.4 DATASIM

	4.0 Appendix
	Appendix A – References
	Appendix B - Hardware / Software
	Appendix C - Deployment Scripts
	Appendix C-1 Security, Networking, and Identity and Access Management
	Appendix C-2 Terraform
	Appendix C-3 ELRR Storage / Databases
	ELRR Local Staging Area Database
	ELRR Local Staging Area Installation
	ELRR Local Staging Area Configuration
	ELRR Local Staging Area Create Tables

	ELRR Profile Database
	ELRR Profile Installation
	ELRR Profile Configuration
	ELRR Profile Create Tables

	DATASIM (Testing / Validation)
	DATASIM Installation


	Appendix C-4 ELRR Application
	xAPI Gateway
	API Gateway Installation
	API Gateway Configuration - API Specification
	API Gateway Configuration - Security and Authentication

	ELRR Kafka / Messaging Bus
	ELRR Kafka / Messaging Bus Installation
	ELRR Kafka / Messaging Bus Topics


	Appendix C-5 ELRR Presentation
	ELRR Portal
	ELRR Portal Installation (NGINX)
	ELRR Portal Installation (Spring Boot)
	Run the following command to run Spring Boot:
	ELRR Portal Configuration



	Appendix D: Key Terms




