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Using Simulation to
Analyze Interrupted
Time Series Designs

Luke W. Miratrix1

Abstract
We are sometimes forced to use the Interrupted Time Series (ITS) design as
an identification strategy for potential policy change, such as when we only
have a single treated unit and cannot obtain comparable controls. For ex-
ample, with recent county- and state-wide criminal justice reform efforts,
where judicial bodies have changed bail setting practices for everyone in their
jurisdiction in order to reduce rates of pre-trial detention while maintaining
court order and public safety, we have no natural and available comparison
group other than the past. In these contexts, it is imperative to model pre-
policy trends with a light touch, allowing for structures such as autoregressive
departures from any pre-existing trend, in order to accurately and realistically
assess the uncertainty of our projections. We aim to provide a methodo-
logical approach rooted in commonly understood and used modeling tools to
achieve this. We quantify uncertainty with simulation, generating a distri-
bution of plausible counterfactual trajectories to compare to the observed;
this approach naturally allows for incorporating seasonality and other time-
varying covariates, and provides confidence intervals along with point esti-
mates for the potential impacts of policy change. We find simulation provides
a natural framework to capture and show uncertainty in the ITS designs. It also
allows for easy extensions such as nonparametric smoothing in order to
handle multiple post-policy time points.
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Introduction

Currently, in the U.S., hundreds of thousands of people are incarcerated in
local jails on any given day as they await resolution of their criminal case.
These people have not been convicted, but are nonetheless incarcerated
because, generally, they cannot afford to post monetary bail to secure their
release (Zeng, 2018). Several jurisdictions have sought to improve these
judicial systems building procedures to increase the rate of release for “low-
risk” defendants. One general category of such reforms use risk assessment
tools in early court proceedings, providing judges with information about the
risk of a defendant, as measured by various characteristics such as previous
criminal history, in order to improve judicial decision-making regarding what
types of supervision or restrictions should be placed on defendants awaiting
their case resolution.

This is the context for this work. We use data from two such reform efforts,
one inMecklenberg County, NC (Redcross et al., 2019), and one in the state of
New Jersey (Golub et al., 2019). There are several primary outcomes of
interest, of which we examine two: the proportion of arrestees assigned
monetary bail, and the total number of warrant arrests made. We have three
obstacles for rigorous evaluation. First, we have only a single treated unit (the
county or state) in each case. Second, in both cases data on similar counties or
states were not available due to reasons both pragmatic (the difficulty in
collecting and marshalling such data in the first place was insurmountable
given budget limitations) and structural (even basic elements of the data, such
as the definitions of severity of cases, the criminal justice codes, or the
management of cases in the judicial system, are not directly comparable across
region). Third, we do not necessarily expect any impact of the policy right at
the time of the policy change, as it may take time for the policy to become fully
implemented, and for the consequences of the policy to be felt. More broadly,
we are concerned that the impact of the policy itself may evolve over time, as
the policy becomes institutionalized.

Given these three very serious limitations—a single treated unit, no
available comparison units, and no sudden onset of treatment impact—how
should an evaluator proceed? Causal impacts should be estimated via prin-
cipled comparison of units experiencing some nominal treatment to those that
did not. In this case, for example, the evaluator would ideally compare how a
county undergoing a reform effort evolved over time to how some set of
comparison counties deemed similar evolved. This could be done with a
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comparative interrupted time series, or difference-in-difference, or, perhaps, a
synthetic control approach. But we have no comparison counties available.
One might instead use something akin to a Regression Discontinuity Design,
where time points just before the policy are compared to those just after; this
unfortunately is also off the table due to potentially no sudden onset of
treatment effects, and for wanting to estimate policy impacts at a sequence of
time points into the future, to understand its evolution. Our three limitations
render the usual tools for impact evaluation unavailable, forcing us to project
what might have happened, based on historic data of the target region, as a
means of generating a counterfactual. A common tool for this job is the
Interrupted Time Series (ITS) (Ferron & Rendina-Gobioff, 2005).

This situation is far from ideal. An ITS approach is exposed to an extreme
number of threats to validity: it is heavily model dependent (necessary for
extrapolation), it assumes there are no time dependent shocks (events) that
concur with treatment onset that themselves could impact the outcome, it is
noisy due to the single unit of analysis, and the policy of interest is likely to be
confounded with concurrent policy change efforts. We recommend instead, if
at all possible, obtaining comparison units, multiple treated units, or some sort
of plausible (quasi)random assignment. But failing this, ITS can be useful for
contexts where the size of the impact would be large relative the uncertainty
and size of likely biases present.

For an ITS design, we assume the researcher has observed regular mea-
sures of some outcome of interest both for several time points before such a
change as well as after. The research question is whether there is any evidence
that the policy has changed the course of the unit of interest. The researcher,
implicitly or explicitly, builds a model based on history that forecasts what we
would expect to happen post-policy. This is then compared to what actually
happened. If the differences are large, and unlikely to be due to statistical
fluctuations, we can tentatively claim that something—the policy or events
concurrent to the policy—changed the course of our analyzed unit.

Perhaps the most used analytic approach for ITS is to fit a simple linear
regression to the data, regressing the outcome of interest onto time and a series
of dummy variables for each time point post-policy. The estimates of these
dummy variables then provide impact estimates for each post-policy point.
Unfortunately, even if the underlying linear trend were fundamentally sound,
and all the assumptions discussed above were met, the deviations from trend
are likely correlated and this correlation needs to be taken into account. Not
doing so correctly will undermine any estimates of uncertainty by giving
overly precise (too small) standard errors.

We propose to account for local dependencies by fitting an autoregressive
model with linear trend to the pre-policy data, and then using that model to
simulate, using a pseudo-Bayesian approach discussed in Gelman and Hill
(2006) a distribution of plausible post-policy trajectories that we would expect
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if pre-policy trends continued unabated. By comparing this distribution to the
observed post-policy trend, we can estimate impacts and test for the sig-
nificance of impacts, given the set of rather stringent assumptions necessary
for an ITS analysis. We can also calculate confidence intervals to assess ranges
of impact. This simulation procedure takes into account the uncertainty of the
linear model estimate, uncertainty in the measurement of the outcomes, and
any autoregressive dependencies in the residuals.

Simulation also allows for several natural extensions. First, we can easily
incorporate covariates to capture nonlinearities (in particular, seasonal trends).
Second, we can average, or smooth, multiple months of potentially hetero-
geneous impacts typically found in such evaluations to better capture post-
policy impacts in interpretable ways. This allows testing whether a group of
post-policy time points differs statistically significantly from what would have
occurred in the absence of an intervention. Simulation also makes statistical
inference more explicit: we directly see that a “statistically significant” effect
is one that would not likely occur as a natural extension of the pre-policy trend;
we believe this puts the assumptions (in particular that of extrapolation) more
firmly in the forefront of the analysis.

The idea for simulation for assessing uncertainty in these contexts is not
new; see, for example, Zhang et al. (2009) who use a parametric bootstrapping
approach. Our method is also a parametric simulation approach, but we
explicitly include autoregressive dependencies and explicitly simulate post-
policy trajectories. We also discuss the estimands of interest more explicitly.
Relative to us, Brodersen et al. (2015) propose a more complex, fully
Bayesian time-series approach, implemented with the causalImpact package,
that relies on modeling a latent state space.

Instead of simulation, one could directly fit a linear regression model, in
particular a generalized linear model with an autoregressive residual structure.
We believe, however, that several of the above benefits of simulation would
then be either less accessible or not possible. In particular, simulation allows
us to easily summarize and visualize heterogeneous impacts post-policy, and
in general is an approach that can enrich classic inference (King, Tomz, and
Wittenberg, 2000). Simulation also allows for our smoothing approach, which
can increase the power to detect an effect. Simulation also allows for direct
hypothesis testing without placing any model on the form of the treatment
impact itself (otherwise one would have to generate a theoretical prediction
interval to compare to the observed data). All of this being said, without
smoothing we would expect agreement between these approaches.

ITS is also, of course, based on the idea of a time series. Classic time series
methodology, for example, ARIMA models, could account for linear trend by
differencing the observations and then modeling the resulting differences as,
ideally, a stationary time series. Selecting and fitting ARIMA models,
however, typically require much denser time-series data (more time points)
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than is typically available in our context. Furthermore, as ARIMA approaches
are quite distinct from the classic linear modeling approaches more familiar
with policy evaluators, we believe they are less accessible as a tool for
evaluation research. They also do not allow for, as far as we know, the smooth
approach we present. Given these concerns, we build on the linear modeling
approaches found in the public policy ITS literature. For more on the ARIMA
direction, however, see Stoffer and Shumway (2006).

More broadly, ITS is a worse (in terms of strength of evidence) version of
Comparative Interrupted Time Series (CITS) analyses, where we compare the
target treatment series to those of comparison units that are not treated. For an
overview of CITS, consider Somers et al. (2013) or Hallberg et al. (2018).
Also see Jacob et al. (2016), who evaluate the CITS by comparing its findings
to those utilizing the more widely-accepted Regression Discontinuity Design.
For a detailed case study with CITS in the context of experimental trials, see
Bloom et al. (2005); this example has ties to ITS as they fit regressions to the
sequence of paired differences.

In terms of modeling, we also advocate for using only the pre-policy data in
the modeling process, and then using the resultant model to extrapolate what
would have happened, absent policy, to the post-policy era. The difference,
then, between the observed and the imputed is the estimated change. Other
modeling approaches jointly model both pre- and post-policy, which imposes
a model (explicit or implicit) of the treatment effect or deviation itself. We
argue from the potential outcomes view that this is not desirable, in that the
post-policy observations potentially contaminated with unknown and likely
time-varying treatment should not themselves influence assessment of a pre-
policy trend. Of course, given a substantive model, one might instead choose
to directly use these post-policy data. For example, in some ITS analyses that
capture multiple points of treatment, one may elect to do a full model of the
entire series across multiple interruptions. Our focus is on a single
interruption.

In this paper we first lay out the ITS problem and its classic treatment, using
the potential outcomes framework to make quantities such as the target impact
parameters and necessary assumptions explicit. We then describe the simu-
lation procedure that allows for a simple autoregressive structure, illustrating
with an example taken from the Mecklenberg County evaluation. We then
provide our two primary extensions mentioned above—seasonality and
smoothing—in the following two sectionsWe offer some general cautions and
concluding remarks at the end. Our Online Only Supplemental Material gives
further justification of the modeling choices we suggest, provides some
mathematical derivations, and gives a brief overview of the accompanying
publicly available R package, sim ITS, posted on the CRAN archive, that
implements the methods discussed along with all routines needed to conduct a
full and transparent ITS analysis. This sim ITS package overview walks
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We borrow from the potential outcomes viewpoint (for an overview, see
Imbens and Rubin (2015) or Rosenbaum (2009)) to make the above more
precise. We have a single unit, and we can either treat it (invoke policy change)
at time t0, or not treat it at all. Let Ytð0Þ, t ¼ tmin,…,tmax, be the sequence of
outcomes we would observe if we did not ever treat our unit.1 Let the cor-
responding Ytð1Þ be the outcomes we would observe if we did treat the unit at
t0. We could allow Ytð1Þ ≠ Ytð0Þ for t ≤ t0 if we allowed anticipatory effects of
treatment, that is, if the unit knows it will be treated it may change before the
time of treatment. In this work, we make the further assumption, however, that
there is no anticipation of treatment, that is, that Ytð1Þ ¼ Ytð0Þ for all t ≤ t0. In
some cases, to achieve this assumption, one can move the point of treatment
onset earlier, for example, to when a policy was initially being planned rather
than its official adoption date. One could, in principle, model anticipation of
treatment, but that would require having multiple units or a strong theoretical
model for the impact. See, for example, Clark et al. (2008).

The impact of policy at a specified time t is then Δt ≡ Ytð1Þ � Ytð0Þ. Our
observed data consist of a single treated unit, so the Ytð1Þ are observed for all
t > t0. If we had the ability to estimate Ytð0Þwe could immediately estimate Δt.
This converts our estimation problem to a missing data problem (Rubin,
2005): what are reasonable values for the Ytð0Þ for t > t0? Within this
framework, uncertainty around the difference is entirely dependent on un-
certainty in our estimation of Ytð0Þ.

ITS analysis estimates the Ytð0Þ by fitting a trend (i.e., model) to the pre-
policy data and extrapolating to post-policy timepoints. We next discuss how
this estimation is typically conducted and identify some problems with it. We
then offer an augmented modeling approach with corresponding inference
procedures.

Our data itself consists of a collection of observed arrests for each ob-
served month. Our region-level potential outcomes, depicted on Figure 1a
and b, are aggregates, aggregating individual data within each month, al-
though we could work to fit the multilevel structure instead. An individual-
level analysis would bring in further complexity from, for example, indi-
viduals being in multiple months (e.g., from multiple arrests), and unknown
correlation structure of individuals within a given month; aggregation avoids
this. Furthermore, migration of individuals into and out of the policy region
could further exacerbate the difficulties with individual trend approaches.
The aggregation avoids these problems by focusing on the “health” of the
policy unit rather than the impact on individuals. Results are then regarding
changes at the larger unit level, which can impact interpretation. That being
said, without strong individual-level predictors, aggregation will surprisingly
not have a high cost in power; the variation in the month-to-month averages
is a reflection of individual variation (as well as shared month shocks) and so
while we have fewer month-level data points, we also have less residual noise
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for those points. See Angrist and Pischke (2008), Chapter 3, for a more
detailed discussion of this principle. For further discussion on aggregation
see Bloom et al., (2005). For some dangers with aggregation if the number of
units being aggregated changes significantly, see Ferman and Pinto (2019).

Classic ITS Analysis

In a classic ITS analysis one would fit the simple linear regression model of

Yt ¼ β0 þ β1t þ
Xtmax

k¼t0þ1
Δk1ft¼kg þ ϵt (1)

with ϵt ∼Nð0,σ2Þ and the 1ft¼kg 0/1 indicators of whether t ¼ k for each post-
policy time point k. This model will perfectly fit all post-policy months,
meaning the estimates of β0 and β1 will only depend on pre-policy months.
The bΔk are then the specific impact estimates for each month k, capturing the
departure of Yt from the projected bβ0 þ bβ1t. Under a homoskedasticity as-
sumption, we can obtain standard errors and conduct inference for the es-
timated Δk , because we assume the variation post-policy is the same as pre-
policy. These standard errors will be driven by, and be no smaller than, bσ, the
estimated residual standard deviation (see Part A of the Online Only
Supplemental Material for derivation).

Nearly equivalent to the above, one can simply fit the model to the pre-
policy data only, dropping the post-policy dummy variables

Ytð0Þ ¼ β0 þ β1t þ ϵt (2)

We then, for any point t > t0 in the post-policy era, predict via extrapolation

bY tð0Þ ¼ bβ0 þ bβ1t
which results in an impact estimate at month t of

bΔt ¼ Yobs
t � bY tð0Þ

These point estimates will be identical to the bΔt from Model 1. However,
Model 2 makes the connection to the potential outcomes framework most
clear: our model predicts, via extrapolation, Ytð0Þ for all t > t0. We fit our
model to pre-policy data, data unaffected by the policy (by assumption), and
then use our fitted model to impute (predict) the missing Ytð0Þ for t > t0.

By contrast, instead of not using post-policy data in the fitting process,
some will instead put a structure on the post-policy impact, such as with

Yt ¼ β0 þ β1t þ δ01ft > t0g þ δ11ft > t0gðt � t0 � 1Þ þ ϵt (3)
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with 1ft > t0g being a 0/1 indicator of t being after t0, the end of the pre-policy
era. Now the parameters δ0 and δ1 form a model of effects for the impact (in
this case the impact begins at size δ0 and grows by δ1 each month, and Δt ¼
δ0 þ δ1ðt � t0 � 1Þ for t > t0. This goes against the idea of imputing the
missing Ytð0Þ, however, as such a model allows the post-policy data, and
policy impact, to inform the estimated residual variance.

Regression models produce valid inference under their modeling as-
sumptions, in particular the strong assumption of the counterfactual linear
trend continuing into the post-policy period. As a model check, the linear trend
can be assessed in the pre-policy period; if there are strong deviations pre-
policy, then extrapolation should be done with skepticism. The causal in-
terpretation, however, relies on any found deviation being only explainable by
the policy change; it is a substantive question whether there were other factors
or changes that happened concurrently or after the policy reform, producing
changes in outcomes that should not be ascribed to the policy.

One concern with simple regression is that there may be effects that operate
in windows of time causing adjacent months to have similar outcomes beyond
the underlying model. For example, the pattern of month-to-month averages
in Mecklenberg (Figure 1a) could contain local correlations of months around
what is a generally linear trend (we discuss the case of cyclic seasonal trends
such as shown in Figure 1b).

If we do not model temporal dependence, we are assuming that, other than
the underlying linear trend, there is no dependence between months beyond
the explicit model. For example, if month t were surprisingly high, this would
not imply any other month, such as month t þ 1, would have any particular
value. To produce more principled inference, we therefore extend Model 2 to
allow for neighboring residuals to be correlated. This better captures how the
time series can “wander” from the linear trend.

A simple approach is to model local dependence using an “AR1” model
that uses the residual in the prior time period as a predictor of the residual of
the next. For example, we can specify the residual of Model 2 to be

ϵt ¼ ρϵt�1 þ ωt withωt ∼N
�
0,σ2

�
(4)

The parameter ρ governs how much autocorrelation we have. If ρ ¼ 0 the
residuals are in fact independent. Higher values of ρ means deviations from
trend tend to be similar, month-to-month. A ρ > 1 would mean a successive
observation would be some percent larger than the last, in expectation, and
thus the series would exponentially move away from the trend line; we
therefore require ρ < 1.

An easy way of fitting such a model is to fit the lagged outcome model of
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Yt ¼ ~β0 þ ~β1t þ ~β2Yt�1 þ ~ϵt with ~ϵt ∼N
�
0,~σ2

�
(5)

to the pre-policy time points t ¼ tmin þ 1,…,t0. The initial month has to be
dropped as it has no lagged month. Up to how the parameters are interpreted,
this model is equivalent to the lagged residual model. In particular, as the
derivations in Part A of the Online Only Supplemental Materials show, we
have ρ ¼ ~β2, β1 ¼ ~β1=ð1� ~β2Þ and β0 ¼ ~β0=ð1� ρÞ � ~β1ρ=ð1� ρÞ2. The
residuals in the lagged outcome model are, under our residual autoregressive
model, again independent, corresponding to the ωt from Model 4. See Online
Supplement A for additional discussion.

This model is a form of a finite distributed lag model; one could imagine
including multiple lagged outcomes in the model if there were data avail-
ability. Other autoregressive models could also be used here, such as a moving
average (MA) approach. We do not use the MA approach as we focus on
modeling autoregression with lagged outcomes, and MA relies on depen-
dencies of the latent residuals. One could instead use generalized least squares
to specify the residual dependencies (see, e.g., Fox & Weisberg, 2018, for a
practical overview in R). One could also use an ARIMA package fit to the
prior data and forecast the counterfactual trajectory (see, e.g., Tashman, 2000,
for an overview of forecasting); because this does not give a set of simulated
trajectories, it would prevent the smoothing approach we later propose. Also,
because we do not have ample time points, tuning such ARIMA models with
measures of out-of-sample forecasting assessment, which is the purpose of the
extrapolation approach, would be difficult.

In our approach, we fit a model to the pre-policy data only; the post-policy
data (which could have arbitrary form in terms of trend and variation, de-
pending on the impact of the policy) is set aside. Once this model is fit, we use
it to extrapolate a reasonable counterfactual prediction of Y ð0Þ for any
timepoint T > t0 of interest. In the next section, we discuss how to do this with
simulation.

Extrapolating Pre-policy Trends via Simulation

Impacts are estimated by extrapolating the pre-policy model to a post-policy
timepoint, T > t0, of interest. It not obvious how to use the model to form
counterfactual predictions when using autoregressive structure. In particular,
for T > t0 þ 1, if the treatment has impacted point T � 1, we cannot use the
observed YT�1 as our lagged covariate for our prediction because YT�1 is not
an observed YT�1 0ð Þ, but rather a YT�1 1ð Þ; any treatment impact in our lagged
outcome will contaminate our imputation of YT 0ð Þ. Second, assessing un-
certainty for a point T dependent on prior points is, mathematically, not
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entirely transparent. We therefore assess uncertainty and form predictions via
simulation.2 In the next subsection, we first consider the case where we are
willing to assume the lagged model is correct and we knew with certainty the
parameters ~β0,~β1,~β2, and ~σ2 of our lagged model. This case is not quite valid
since we do not know these parameter values and so our uncertainty is not
fully captured; we include it for clarity of exposition.We then, in the following
subsection, extend to our actual proposed method that incorporates the ad-
ditional uncertainty of these parameters.

Extrapolating With Known Parameters

We initially assume the model of equation (5) with parameters
θ ¼ ð~β0,~β1,~β2,~σ2Þ of the pre-policy model are known. We also have observed
Yt0, the last point in the pre-policy era.

Using this, we can simulate Yt0þ1 by drawing a new ϵ∗t0þ1 ∼Nð0,~σ2Þ and
calculating

Y*t0þ1 ¼ ~β0 þ ~β1ðt0 þ 1Þ þ ~β2Yt0 þ ϵ*t0þ1

This simulated outcome is a plausible post-policy (untreated) outcome,
given our model. We can then simulate an outcome for t0 þ 2 using Y ∗

t0þ1,
drawing a new ϵ∗t0þ2 and adding up the components just as for t0 þ 1. Our
second simulated outcome depends on our first. If our first is elevated due to a
positive residual, our second will also be elevated. We then simulated our
third, using the second, and continue in this manner until we reach T , and are
left with a prediction for YT. By this point we have generated an entire se-
quence of plausible outcomes, given our model. Furthermore, this simulation
process has fully captured the autoregressive structure. We could also extend
to have non-normal errors, which might be relevant if in a context with
extreme and rare events that we wanted to take into account. See, for example,
Mohtadi and Weber (2021).

Our final prediction YT is a noisy prediction: it could be high or low
depending on the residual draws. This noise is the key to capturing uncer-
tainty. Both to get a more precise prediction and also to model the prediction
uncertainty, we repeat the simulation process many times, for each iteration
beginning at t0 and Yt0 and simulating a new time series. We then calculate the
average of these series to get our final prediction

bYTð0Þ ¼ 1

R

XR

r¼1
Y*ðrÞT

where R is the total number of simulated series and r indexes these simulated
series.
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For inference, the middle 95% of our simulated Y ∗ðrÞ
T forms a 95% pre-

diction interval of what we would expect to see, YT ð0Þ, had the pre-policy
trend continued. If what we actually see, Yobs

T ¼ YT ð1Þ, lies outside of this
interval, we have evidence that something happened to change our model.
This would be evidence of an impact of either the policy change or some other
event within the system.

We can subtract the prediction interval from the observed YT to obtain a
prediction interval for the deviation from the predicted trend (this is the
quantity that could potentially be viewed as an impact). This prediction in-
terval correctly captures the month-to-month variability of the observed trend;
see Online Only Supplemental Material, Part A.

The major caveat to this process is we do not know the true parameters θ;
we instead have an estimate bθ. If we simply plug in bθ our inference will be
overly optimistic as we have not taken uncertainty in the estimation of the
parameters themselves into account; we do that next.

Incorporating Uncertainty in the Parameters

To capture parameter uncertainty we use a method rooted in Bayesian thinking
and taken from Gelman and Hill (2006). It also has ties to the parametric
bootstrap (see, e.g., Davison, 1997). The idea is this: instead of using bθ, draw a
random vector of parameters θ∗ for our model given our observed pre-policy
data. This randomly drawn vector of parameters is itself a plausibly true value,
just as we were drawing plausibly true values for the Yt, above. We then
simulate a sequence of Y ∗

t using the simulation process described above but
with θ∗ (and still starting at Yt0) to get a plausibly true prediction conditional on
the parameters. This two-step process captures the uncertainty in model
estimation as well as uncertainty in extrapolation due to the autoregressive
structure and residual error. The distribution of the Y ∗

T over repeated iterations
gives an overall predictive distribution that is integrated over both these
components.

To get our distribution of plausible θ∗, we use the (estimated) standard
errors from the original model fitting process. In particular, we draw a random
β∗ ¼ ðβ∗0,β∗1,β∗2Þ vector from a multivariate normal centered at bβ ¼ ðbβ0,bβ1,bβ2Þ
with a variance-covariance matrix based on the estimated variance-covariance
matrix from the linear model fitting procedure (the σ2∗ term is handled
similarly). This is implemented using the sim() function in the R package arm.
The arm package was written specifically for this form of uncertainty
quantification, and is the companion package to Gelman and Hill (2006).

This approach is essentially Bayesian: the parameter draw step is similar to
drawing a plausible value from a posterior distribution on the true θ (the
implied prior here is implicitly a flat prior on the coefficients, roughly meaning
that we are not differently preferring one value of θ over another). Under this
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view, the simulations constitute a posterior predictive distribution for YT and
the bYT is the posterior mean predicted outcome given all the pre-policy data
and the model (see Gelman, Meng, and Stern (1996) for a discussion of
posterior predictive distributions). Further, under this view, the final prediction
interval can be interpreted as a posterior predictive interval for YT ð0Þ. Im-
puting missing potential outcomes in this way follows the approaches dis-
cussed in, for example, Rubin (2005). Regardless, the core feature of this
approach is that we end up with a range of plausible values for YT ð0Þ that
incorporate the natural variation in the data as well as uncertainty about the
parameters of our model.

The validity of the range of plausible values depends on the model being
correctly specified. We believe this approach to uncertainty quantification
renders model dependency more transparent (salient) than a classic maximum
likelihood analysis or regression approaches. For example, we here see more
explicitly the importance of the correct specification of the initial linear trend
and the homoskedasticity assumption. We are not making more or different
assumptions than the classic approaches with autoregressive specifications,
but rather are making the identical assumptions more explicit. We do avoid
some of the asymptotic approximations used in maximum likelihood
inference.

Case Study: Mecklenberg County and the Proportion of Cases
Assigned Bail

Mecklenberg instituted a series of reforms including changing their pre-trial
risk assessment tool to a tool called the Public Safety Assessment (the PSA).
These reforms were designed to reduce the negative impacts on arrestees
while maintaining public safety; the goal is to identify and release those
defendants unlikely to fail to appear at future court hearings or break laws
while awaiting trial, while imposing monitoring on the remainder. One
outcome of interest in evaluating the effectiveness of this program is the rate of
bail setting (what proportion of cases resulted in the assignment of bail or
outright detention) as compared to outright release. See Redcross et al. (2019)
for further discussion.

To investigate this, we fit equation (5) to the Mecklenberg data displayed
on Figure 1a. Our estimated coefficients are bβ0 ¼ 45, bβ1 ¼ �0:12, andbβ2 ¼ 0:26. The lagged outcome term ðbβ2Þ is not significantly different from 0.
We see that the pre-policy trend does appear roughly linear. The lack of
significance of our autoregression term suggests that there is little autocor-
relation after the linear trend is accounted for, but keeping it in our simulation
incorporates the additional uncertainty that even a small amount could bring.
Dropping the lagged term from our model would be imposing the assumption
of independence, which, given substantive knowledge of seasonality effects
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on criminal and policing behavior, is not tenable. The failure to find a sig-
nificant correlation could be a power issue.

Using our model we can generate trajectories starting at t0 ¼ 0,Y0 ¼ 60:1.
Ten such extrapolations are on Figure 2a. We generate 10,000 such
extrapolations based on 10,000 draws of possible parameters θ, and sum-
marize by, for each time point, taking the middle 95% range of values. We plot
these as an envelope on Figure 2b.

Overall we see evidence of a reduction of the use of bail beginning a few
months after the policy onset. Pre-policy trends do not indicate a decline as far
as what actually occurred. The observed outcomes for the first four months
after the policy change are, however, still potentially following the pre-policy
trend; the departure is only really significant at month five and six. At this
point, actual bail mostly levels off at the reduced rate of around 50%.
Nonlinear patterns of impact such as these raise important issues of how to
ascribe the change: was this drop at month five due to the policy shift, or due to
some subsequent intervention that may or may not have been part of the
policy? In this case, there is some qualitative evidence that Mecklenberg
continued to reinforce their policy change with additional trainings of court
agents, which could have caused this delayed impact.

The nominal impact is the difference of the projected trend and the actual,
which means the change in the overall level of an outcome does not nec-
essarily mean there is a measured impact. In this case, for example, we see the
overall linear pre-policy trend projecting a steadily decline of bail assignment.
This means that at around two years post policy we cannot rule out an absence

Figure 2. Results of Mecklenburg analysis.
Comment: At left ten sample simulated series along with observed data. Y-axis truncated to 40
to 70%. At right the overall envelope of plausible series given pre-policy data. For many post-
policy months the proportion of cases assigned bail is not in the range of likely bail rates,
suggesting that there was a more rapid decline of bail-setting after the policy change than
expected given the slow decline of the pre-policy trend. Dashed line shows contrast fitting
approach of equation (3) fit using generalized least squares with AR(1) residuals; it does not well
account for the nonlinear post-policy series.
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of impact: those bail levels may have been reached regardless, considering the
pre-policy declining trend, but at a later time than with the policy change.

By contrast, a classic regression or generalized least squares approach
might be to fit a regression equation on the full data, specifically modeling the
post-policy trend rather than focusing on imputation of the counterfactual. In
particular, we could fit equation (3) under an assumption of i.i.d. errors (classic
OLS). This gives an initial significant impact at policy onset of δ0 ¼ �5:02,
and a marginally significant growth in impact of δ1 ¼ �0:20; these spurious
significance findings are driven by the overly small standard errors that come
from falsely assuming residual independence. This approach is simply wrong.
We can instead fit equation (3) using generalized least squares and specifying
an AR(1) residual structure. In this case, we estimate an impact curve of
Δt ¼ δ0 þ δ1ðt � t0 � 1Þ ¼ �2:09 � 0:19ðt � t0 � 1Þ, with neither coef-
ficient being significantly different from zero. This GLS fit model is presented
as the dashed line Figure 2b; it enforces a linear treatment impact and does not
allow for treatment patterns such as later onset of treatment. By fitting to pre-
policy data only, by contrast, we can remain entirely agnostic as to the pattern
of effects. In particular, we argue the linear model misses some nuance; in
particular, we do not see the period of months 6 through 18 as having a
significant reduction in bail setting due to the linearity of the model. One could
use generalized least squares just on the pre-policy data and forecast to in-
dividual time points, but that would preclude smoothing, which we discuss
below, unless we used the model to simulate trajectories.

Regardless of modeling approach, the further out an extrapolation the
greater our dependance on the model being correctly specified, both statis-
tically and as a representation of a dynamic and complex system. The sta-
tistical model can extrapolate assuming the general model fit to pre-policy, but
the assumption that these trends would continue indefinitely becomes sub-
stantively less plausible the further away from the transition we go. The
greater uncertainty in later months is only due to estimation error, and is
dependent on the assumption that the pre-policy process would have con-
tinued unabated in the absence of the policy change. In particular, we cannot
know if alternate measures would have been taken had the policy not been
imposed or if the system would have naturally reached some change point
given the dynamics.

Overall, there are three sources of uncertainty to attend to in an ITS an-
alyses, with only the first two quantifiable: (1) parameter estimation error for
the model, (2) the natural variation due to month-to-month changes and
associated auto-regression, and (3) model specification.
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Seasonality Effects

In New Jersey, when a person is arrested the arresting officer can (1) serve a
summons, where the officer gives the arrestee a court date for a future ap-
pearance and then sends them home, or (2) serve a warrant, which could result
in detention until the resolution of the case. One consequence of a policy
rooted in risk assessment might be to change policing behavior towards only
giving warrants for the more serious offenses. An outcome of interest that
assesses this is the total number of warrant arrests made.

Counts can be more difficult to model than proportions. Figure 1b shows a
strong periodic trend across the years, with reduced number of arrests when it
is winter, and more in summer. In fact, average temperature in a month (a good
proxy for season) is found to predict total arrests quite strongly; see scatterplot
in Online Supplement, Part C. These seasonal cycles are likely due to factors
such as increased time spent indoors during the colder winter months, which
could both reduce the true level of crime and the chance of arrest. Both these
factors would reduce arrest count.

Fitting a simple autocorrelation model would miss the cyclic nature of our
trend, which means we have clear model misspecification and which, in this
case, results in substantial loss of power (as we show below). We instead
extend our linear model to model the periodic trend. The autoregressive
element would then allow local departures from the overall seasonality model,
just as we had local departures from the linear model above.

There are several ways one might capture a periodic seasonality structure
with linear regression. A simple approach is to include dummy variables for
the four seasons. The following model, for example, has the first quarter as a
baseline, has three offsets for the other three quarters, and also allows an
overall linear trend

Yt ¼ β0 þ β1t þ γ2Q2t þ γ3Q3t þ γ4Q4t þ ϵt

with Q2t,Q3t,andQ4t 0=1 indicators for being in the 2nd, 3rd, and 4th quarters
of the year. A second approach is to use a covariate that is predictive of
outcome and is itself periodic, such as, in our case, monthly average tem-
perature in the region

Yt ¼ β0 þ β1t þ β2Tempt þ ϵt

where Tempt is a measure of average temperature for month t. The periodic
nature of our data is then driven by the periodic nature of our time-varying
covariate. These general approaches can easily be combined

Yt ¼ β0 þ β1t þ β2Tempt þ β3Q2t þ β4Q3t þ β5Q4t þ ϵt (6)
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One potential concern with seasonal dummy variables is the resulting curve
will be a step function rather than a smooth curve, with steps at pre-specified
points that are not data driven. We could alternatively fit a sinusoidal trend by
building two covariates that correspond to the sine and cosine of the month
(rescaled to have a yearly period). Linear combinations of these two covariates
allow for sinusoidal curves that can be smoothly shifted left or right. For
example

Yt ¼ β0 þ β1t þ ρ1sinð2πt=12Þ þ ρ2cosð2πt=12Þ þ ϵt

Different coefficient values for ρ1 and ρ2 control where the peaks and
valleys of this trend are.

The four fitting approaches are shown in Online Supplement, Part C. Of the
four models, the model with both quarter and temperature has the best pre-
policy fit, with an estimated residual standard deviation of 192 compared to
250 and above for the other models.

Seasonality With Autoregressive Residuals

Once a seasonality model is selected, we again are faced with how to fit the
autoregressive residual structure in a simple way that also lends itself to
simulation. We cannot simply include the lagged outcome, as this lagged
outcome includes the lagged periodic structure. We therefore include the
lagged values of the covariates used to model seasonality along with the
outcome; this subtracts out the lagged structural component of the trend,
resulting in a corrected model that puts the autoregression solely on the
residuals. See the Online Supplemental Material, Part B for a derivation of this
result, along with some alternative estimation strategies.

For example, for Model 6 we would have Xt ¼ 1,t,Q2t,Q3t,Q4t,Temptð Þ.
We would then fit

Yt ¼ X 0
t β � X 0

t�1βlþ ρYt�1 þ ωt

with β our primary trend and βlour lagged “anti-trend” (generally β ≈ βl, with
an exact equality if we fully believe our lagged model). There is a small
technical caveat: the lagged covariates can frequently be collinear with the
contemporaneous covariates, producing an overall design matrix that is not
full rank. For example, if we include a linear time component by including the
covariate Xt,2 ¼ t as one of the columns of our design matrix, the design
matrix with our lagged covariate of Xt,k ¼ t � 1 will clearly be fully collinear
with Xt,2.

3 This can also happen with periodic covariates such as
Xt,k ¼ sinðatÞ. This colinearity is easily resolved: simply drop collinear
columns (in particular the intercept and time variables), allowing the
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remaining parameters to estimate the combined influence of both the primary
observation and the structural component of the lagged outcome.

Case Study: New Jersey and the Number of Warrant Arrests

We next analyze the data on warrant arrests shown on Figure 1b with our
seasonality model. We fit Model 6 with the autoregressive residual model of
ϵt ¼ ρϵt�1 þ ωt. We set t0 ¼ �8 due to evidence that there was some
preparatory restructuring and changes made in advance of the policy’s
official start date to ensure a smooth launch; by setting t0 ¼ �8 we increase
the plausibility of our no anticipation assumption. We, following the above,
extend our model to include the lagged outcome and lagged covariates,
giving

Yt ¼ β0 þ β1t þ β2Tempt þ β3Q2,t þ β4Q3,t þ β5Q4,t

þ β6Tempt�1 þ β7Q2,t�1 þ β8Q3,t�1 þ β9Q4,t�1 þ ρYt�1 þ ωt

We then generate the predictive envelope on Figure 3a by following the
process described above.

By comparison, if we had not included a seasonality model and instead
simply fit our simple linear trend model, we get Figure 3b. The model without
seasonality has more autocorrelation (estimated as 0.77 vs 0.69) because
points near each other are correlated due to the periodic trend around the base
linear model. The seasonality model captures and removes these depen-
dencies. This autocorrelation allows for large deviations from trend in the
simulated extrapolated series, and thus we see a large confidence envelope. In
general, without the seasonality model we are not able to take advantage of the
seasonal structure of the data, but the autoregressive element does capture that
there is local dependence, resulting in a conservative inference.

Figure 3. Prediction envelopes for number of warrant arrests in New Jersey.
Comment: Time period (x-axis) truncated to show more detail of model fitting in post-policy
era. (a) shows seasonality model, (b) shows model with no seasonality. See raw data on Figure 1b.
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One might ask whether Mecklenberg should also be fit with a seasonality
component. Generally, to reliably estimate a seasonality structure, we would
need several cycles of the seasons; Mecklenberg is “too short” to ascertain that
structure. In this case, we rely on the estimated autocorrelation to capture the
overall uncertainty. Determining when to fit the more complex model versus
not is an important area for future work, but we found that with eight years of
data, and a clear seasonal trend, the seasonality model was easily estimable.
For Mecklenberg, however, seasonality models were quite unstable.

Inference and Smoothing

Reading the envelope graphs from the above analyses can be somewhat
confusing as there are multiple post-policy months with some of them having
observed outcomes lying outside of the predictive envelope and others not. In
this section, we discuss inference more formally and also discuss how to
increase power by averaging the outcomes of post-policy months together. For
this averaging we can either average a fixed range of months, or use methods
akin to a sliding window by nonparametrically smoothing the observed trends
to account for month-to-month variation. This sliding window approach is
appealing in that we can display an entire curve of impacts post-policy, which
allows for a more nuanced interpretation of how a policy may have evolved
over time.

Inference

Consider the null hypothesis of there being no change in the pre-policy trend
(and that we have correct model specification). In this case, our simulated
series are all plausible forecasting series, given the pre-policy data. For any
given point T > t0, we can therefore examine the distribution of simulated
values at T to see how much variability we would see under the null hy-
pothesis. These are Monte Carlo tests (Kroese et al., 2011), similar in spirit to
permutation tests (e.g., Pesarin & Salmaso, 2010).

Monte Carlo tests compare a test statistic (a function of the observed data)
to a reference distribution of what that statistic would tend to look like if the
null hypothesis were true. In the simplest case for testing for a deviation from
expected at time T, we use our observed outcome Yobs

T as the observed value of
a test statistic: we compare this observed value to the set of simulated values
(this is our reference distribution) that capture what our model says is possible.
If the observed value is outside the central range of these simulated values, we
reject the null that the pre-policy trend continued unabated (again assuming
the pre-policy model is correct). We could do this for each T > t0.

While reasonable and sound, there are two concerns: first, we have a
multiple testing issue. If the series is long enough, we are bound to find some
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points outside their respective predictive ranges simply due to random
fluctuation. Second, we have a power issue. We are comparing our test
statistic, a potentially highly variable single point Yobs

T , to a distribution of
simulated values Y ∗

T that all themselves could be quite variable. If the policy
caused a modest reduction in Yobs

t for all t > t0, it is possible that no individual
T > t0 would look significantly reduced when examined in isolation.

As a contrast to testing a specific point in time, we might instead test for a
systematic and sustained shift in the outcomes over a range of times post-
policy. In order to test a larger sequence of time points, we need to combine
our observed data into some sort of average and compare that average to the
distribution of averages we would have likely seen under the null.

The simplest approach to do this is to simply average all the outcomes in a
pre-specified range of months post-policy. We then compare this simple
average to the distribution of simple averages calculated from the distribution
of plausible trajectories. The key point is once we have our distribution of
plausible trajectories, we can test our null hypothesis by comparing a sum-
mary statistic of our outcome to the distribution of that same summary statistic
calculated on our trajectories. To be specific, take our observed series Y ¼
ðY1,…,YT Þ and calculate our summary tobs ¼ tðY Þ, where tð�Þ a function that
takes our data and summarizes it in some way (e.g., by calculating the average
of Yt0þ1,…,YT ). Next, for each simulated series Y ∗ðrÞ, calculate
t∗ðrÞ ¼ tðY ∗ðrÞÞ, and then calculate the α=2 and 1� α=2 quantiles tðα=2Þ and
tð1�α=2Þ of these t∗ðrÞ. Our prediction interval of what value of the summary
statistic we would expect to see is then CI ¼ ðtðα=2Þ,tð1�α=2ÞÞ. If tobs ÏCI , we
reject our null hypothesis. We calculate nominal p-values using the percentile
q of our observed tobs, with p ¼ minðq,1� qÞ (for a two-sided test).

Testing in this way is akin to posterior predictive checks of model fit
(Rubin, 1984; Guttman, 1967): we want to know if the model fit to pre-policy
data fits our post-policy observed data. If it does not, we reject the model, that
is, we conclude that something changed our trajectory. Importantly, this
testing requires no assumptions on the form of the treatment impact; the
reference distribution is entirely driven by pre-policy data and the null
hypothesis.

Our p-values are called posterior predictive p-values, and do not neces-
sarily have strictly valid frequentist properties, but they are argued to generally
be conservative (Meng, 1994). Also see Robins, Vaart, and Ventura (2000). A
rejection via this approach is evidence that the assumed model is incompatible
with the observed data: this could be due to a shift in trend, or be due to model
misspecification with regard to the pre-policy data itself. The simulation
approach makes model dependencies for the Ytð0Þ explicit (while making no
assumptions on the Ytð1Þ, which we view as an advantage over many other
approaches). These assumptions need to be specifically acknowledged and
grappled with in any ITS analysis, regardless of estimation approach.
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Smoothing

In investigating a place-based initiative we generally want to understand the
evolution of the impact over time. For example, with Mecklenberg, it appears
as if the policy induced a large reduction in the rate of bail setting a few
months into the post-policy period, with that level of bail setting generally
sustained over time. If we only use the simple averaging method from above,
and did not look at the overall graph of impacts, we would lose this nuance.
But the raw graph is noisy, making trends somewhat difficult to discern. We
therefore might want to smooth the trend in the graph to, as much as possible,
remove month-to-month variation. Smoothing is when one locally summa-
rizes a trend to remove some variation, ideally without imposing a global
structural so local structure is preserved (Cleveland, 1993). Smoothing is
generally nonparametric, and can be done with splines, averaging within a
sliding window, or using loess (Locally Weighted Smoothing) (Cleveland
(1981), but see Cleveland (1993)). Smoothing can make communication with
various stakeholders easier, as it removes random variation that may draw
one’s attention if not removed; see, for example, discussions in Starling et al.
(2019).

We can easily use smoothing coupled with our inferential approach above.
In particular, we smooth each simulated time series using a specific (pre-
specified) method. We then compare the distribution of these smoothed time
series to the actual time series smoothed in exactly the same way. Under our
null hypothesis, the smoothed observed trajectory should be exchangeable
with any of the smoothed simulated trajectories. Our smoothed estimate at a
given timepoint T is now our test statistic, and the distribution of smoothed
estimates of our simulated series our prediction distribution of what values we
might have expected. This should have greater power: we are now examining
the overall trend in the neighborhood of T , potentially increasing precision as
idiosyncratic monthly variation gets averaged out.

One caveat is that if we smooth across t0 we can cause the smoothed line of
our observed series to artificially deviate pre-policy since the post-policy
points will be included in the local average near the policy change. Similarly,
the pre-policy timepoints near t0 can drag the smoothed post-policy timepoints
near t0 towards their values, potentially masking impacts. To avoid this, one
can smooth the post-policy series only, not including any pre-policy points; if
this is done, then it needs to be done for both the simulated series as well as the
observed series. The key is to implement the same process on all series,
simulated and observed, to maintain the validity of the comparison.

Mecklenberg County, continued. We continue our Mecklenberg example by
showing how to improve power using both averaging and loess smoothing.
We initially average the outcomes for the initial 18 months after t0. In our data,
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we observe an average bail rate of 52%. The middle 95% prediction interval of
the averages of our simulated series ranges from 55% to 64%. We therefore
conclude that something changed the pre-policy trajectory so we are seeing
lower average rates of bail-setting than we would have expected. If we take the
difference to get estimated impacts we obtain a 95% confidence interval
(technically a credible interval) for the true average impact of ð�3%,� 12%Þ.
To get a point estimate for the average impact, we average the simulated
averages, predicting an average bail setting of 59% and an estimated reduction
of 7 percentage points.

If we look at a tighter range of months (which we would ideally have pre-
specified) of 6–18 months, we observe an average of 49%, a corresponding
prediction interval of 54%–64%, and a slightly larger estimated impact of
between 5 pp and 15 pp. Choice of summary measure can matter as they will
differently weight what are often quite heterogeneous impacts across time.

We also use loess smoothing to smooth the post-treatment trajectory. We
first smooth our observed series with a loess smoother fit to the post-policy
data only to avoid any influence of pre-policy points on our resulting line. We
then fit the same smoother to each of our simulated series, ignoring the pre-
policy points there as well. Results are on Figure 4a and b. Figure 4a shows 10
smoothed trajectories in the post-policy period. Figure 4b shows the envelope
based on these trajectories, along with the smoothed observed line and, in the
background, the original envelope without smoothing. The smoothed ob-
served curve is arguably easier to read than the raw data. We also see precision
gains from the smoothing process, which stabilizes the estimation. Also note
the wider envelope at far left; this is due to loess smoothers being more
variable at endpoints.

Figure 4. Results of Mecklenberg analysis (with smoothing).
Comment: 4a shows how smoothed trajectories have less variability than the raw series did. 4b
compares smoothed envelope with envelope without smoothing. We see less variability. The red
line denotes the smoothed observed trend to be compared to the envelope and counterfactual
predicted trend.
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Smoothing does require specifying a tuning parameter of how much to
smooth. For loess, for example, we essentially specify what fraction of the
data should be used to calculate the smoothed outcome at each time point. If
we smooth a lot, then local variation in the structure will be removed, but the
lines will be more stable. If we smooth little, then we do not really average
local points, and thus our variance will remain high. This is a bias-variance
tradeoff in the estimation and visualization.

Smoothing with Seasonality

When the model has a seasonality component causing oscillation, a simple
loess smoother might dampen the oscillations, creating a smoothed series that
is more flat than the data. This not only looks odd, but can be deceptive. But, as
discussed above, we can smooth in any fashion we choose, as long as we
smooth our observed data in the same way as the simulated. This allows for the
following multi-step smoothing approach that smooths the residual variation
around the structural component of a seasonality model. For each time series
(observed or simulated), smooth as follows:

1. Fit a working seasonality model to the data. This is not the original
seasonality model, but a new model. There is no need for lagged
outcomes or uncertainty estimation in this model. As with loess
smothing, we can choose to fit to post-policy data only, pre-policy data
only, or all data.

2. Predict all the outcomes given our fit seasonality model.
3. Calculate the residuals by subtracting the predicted outcomes from the

actual outcomes.
4. Fit a loess smoother (or some other smoother) to the residuals (again

choosing whether to focus on post-policy only or on all data).
5. Add the smoothed residuals back to the predictions to get a final

smoothed curve.

This process strips the estimated approximation of the structural com-
ponent from the series and sets it aside to prevent it from being smoothed or
averaged out. Step (5) puts it back so our final series maintains the overall
structure. In particular, any estimated seasonality component will not get
smoothed out. The key idea is that our smoothing model does not need to be
correctly specified; it is purely to set aside any seasonal structure so it does not
get over-smoothed.
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New Jersey, Continued

To demonstrate smoothing with a seasonality model we extend our analysis of
warrant arrests. We compare two methods of smoothing. In the first, we
extrapolate with the base model with quarter and temperature, but no lag, and
in the second we extrapolate with a newly fitted sinusoidal model without
temperature. The same quarter, temperature, and lag base model is used for
extrapolation in both cases. Our second smoothing model intentionally
smooths away month-to-month variability due to fluctuating temperature in
both our simulated and observed series, even though we use the temperature to
fit and extrapolate our data to obtain our predictive series before smoothing.
The results are on Figure 5a and b. The left has preserved the month-to-month
variation predicted by the temperature changes, giving a more jagged se-
quence. The right, by contrast, is smoother, showing underlying structure
more clearly.

If we do not fit the same base model to the same range of data for both the
observed and simulated series, smoothing in the observed series could cause
different distortions than in the simulated series. This could create systematic
differences between observed and simulated even if the null of no interruption
were true. Further, if there were a large initial treatment impact, a model fit to
the full observed series could be misspecified. This in turn could give an odd
smoothed series for the observed data. Regardless, as long as the model fitting
process is held to be the same, then comparing the observed series to the
reference distribution of simulated series is valid for testing. We recommend
selecting a smoother that is not overly dependent on the pre-policy patterns,
but instead naturally fits to the observed post-policy data. In particular, we
suggest fitting the seasonality model to the post-policy data only.

Figure 5. Prediction envelopes for number of warrant arrests using smoothing.
Comment: Time period and y-axes truncated to show more detail.
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Conclusion

We have demonstrated a simple modeling (linear regression with lagged
outcomes and covariates) and simulation framework for capturing uncertainty
for Interrupted Time Series designs. These designs often appear when at-
tempting to assess the impact of a policy change on a single region of interest
when there are no good comparison regions available.

Our modeling framework allows for the incorporation of seasonality
models and of smoothing in a straightforward manner. It also naturally allows
for incorporation of autoregressive structure to better account for overall
uncertainty. Simulation makes the dependency on assumptions much more
explicit, and also renders more clear the consequent fragility of the overall
inference. Finally, we argue that this approach naturally lends itself to
generating clear visualization of impacts and transparent reporting of results.
One could instead use direct model fitting, although this would prohibit the
smoothing approach and itself require post-processing of the model output to
estimate a series of impacts for each post-policy month. Alternative modeling
approaches, such as fitting ARIMAmodels to the pre-treatment data and using
forecasting methods to identify the counterfactual, might be used in richer data
contexts that allow for modeling more complex autocorrelation structures. We
promote simulation as being direct, interpretable, and a natural continuation of
the CITS, ITS, and regression approaches that are most familiar to policy
analysts.

In this work, we have examined ITS designs with a moderate number of
pre-policy timepoints; with fewer timepoints estimating the autoregressive
component of the model will generally be much more difficult. In maximum
likelihood approaches, it is known that autoregressive models can be biased
and have poor coverage when there are only five or so observations (see, e.g.,
St Clair, Hallberg, and Cook (2016)).We leave whether simulation, simulation
which specifically incorporates the uncertainty in the estimated lagged co-
efficients, would help in these short ITS designs to future work.

This approach could also be extended to power calculations. Minimal
detectable effect size (MDES) and power depend on several factors: the
number of cases per month, the month-to-month variability beyond natural
variation due to the cases, the number of months of pre-policy data, and the
desired window of predicting impacts after the policy implementation. Each of
these can heavily influence the ability to detect effects. One way forward is to
again turn to simulation. In particular, given specific parameterized values for
the factors listed above, one could repeatedly simulate a dataset, and then
analyze that dataset using the above simulation approach as an inner step. For
each initially simulated dataset we would then record the width of the
simulated extrapolations. The average width of these prediction intervals at
each time point could then be tied to MDES.
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Finally, the modeling itself could also potentially be extended and enriched
to better capture some data contexts. For example, if the number of individual
cases changed substantially over the course of a series, we might want to let
our residual error be a function of sample size to capture differing levels of
precision (see, e.g., Ferman and Pinto (2019). One approach would be to
regress residual size onto number of cases, giving an intercept and slope which
would represent core month-to-month variability and within-month vari-
ability, and use this decomposed variation in the autoregressive model.

With ITS, there are some concerns with interpretation, in particular in the
case of a dynamic system. For example, if the impacts in early post-policy
months are creating a feedback loop (e.g., changing patterns in detention
causing changes in the patterns of new charges) then the mix of individual
cases constituting the overall region may be changing as a result of the policy
change. This further underscores that interpreting impacts has to occur at the
region level, which naturally takes these changes into account. In particular, a
reduction of bail rates could potentially be due to the policy changing the cases
themselves, rather than be due to changes in how cases are being handled.
Ideally we thus should focus on measures that are of interest when viewed at
the aggregate level.

And finally, fundamentally, we note that all that this type of analysis can
show us, using this method or any other, is that the trend has changed in a
surprising way. Why it did so, the statistics cannot answer. The researcher in
the end must turn toward substance matter knowledge and argument to defend
the proposition that a found change was caused by the policy shift.
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Notes

1. The subscript here does not denote the unit, as is typically seen, but rather the time
of observation for our single unit.

2. One could instead use maximum likelihood and asymptotic approximations given
the defined residual structure; we argue the parametric simulation approach we use
provides a flexible and easily extendible alternative.

3. This colinearity is why the simple lagged linear trend model does not have an extra
term beyond the lagged outcome itself.
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