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Grounded and embodied cognition (GEC) serves as a framework to investigate mathematical reasoning
for proof (reasoning that is logical, operative, and general), insight (gist), and intuition (snap judgment).
Geometry is the branch of mathematics concerned with generalizable properties of shape and space.
Mathematics experts (N � 46) and nonexperts (N � 44) were asked to judge the truth and to justify their
judgments for four geometry conjectures. Videotaped interviews were transcribed and coded for occur-
rences of gestures and speech during the proof production process. Analyses provide empirical support
for claims that geometry proof production is an embodied activity, even when controlling for math
expertise, language use, and spatial ability. Dynamic depictive gestures portray generalizable properties
of shape and space through enactment of transformational operations (e.g., dilation, skewing). Occur-
rence of dynamic depictive gestures and nondynamic depictive gestures are associated with proof
performance, insight, and intuition, as hypothesized, over and above contributions of spoken language.
Geometry knowledge for proof may be embodied and accessed and revealed through actions and the
transformational speech utterances describing these actions. These findings have implications for
instruction, assessment of embodied knowledge, and the design of educational technology to facilitate
mathematical reasoning by promoting and tracking dynamic gesture production and transformational
speech.

Educational Impact and Implications Statement
How do mathematical intuitions arise, and how can they help with advanced forms of reasoning such
as geometry proofs? One idea is that intuitions arise from body movements that allow people to
directly experience mathematical ideas and relationships. We analyzed videotaped interviews of 46
mathematics experts and 44 nonexperts and found they are each more likely to show correct
mathematical intuitions and generate mathematically valid proofs when they produced gestures while
speaking. The research findings contribute to theories of embodied cognition by showing that people
can tap into nonverbal ways of mathematical thinking. This work is important for education in STEM
(science, technology, engineering, and mathematics) because it demonstrates that embodied cogni-
tion applies beyond basic mathematics such as counting and computation to conceptual forms of
reasoning involved in geometry proofs.
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Making meaning of mathematical ideas and notational systems
is of central importance to education (e.g., Schoenfeld, 1992). It is
in this context that scholars increasingly have turned to principles
of grounded and embodied cognition (GEC; Barsalou, 2008; Glen-
berg & Robertson, 2000; Nathan, 2008). Lakoff and Núñez (2000)
proposed a theoretical account of how embodied cognition can
explain many of the most significant mathematical developments
in history. In their account, grounding is achieved through con-
ceptual metaphors that link mathematics to physicality and move-
ment, which plays a central role explaining that mathematical ideas
ultimately come to have meaning by being grounded in sensory-
motor processes.

In addition to language-based processes, such as metaphor,
scholars have observed ways that people engaged in mathematical
activity spontaneously use their bodies as a direct means to explore
and express their reasoning (Alibali & Nathan, 2012; Chu & Kita,
2011, 2016; Edwards, 2003; Marghetis, Edwards, & Núñez, 2014;
McNeill, 1992). For example, Yoon and colleagues (2011) docu-
mented how gestures during a conceptual calculus activity sup-
ported the generation of new insights regarding the relationships of
a function to its derivative and its antiderivative. Others have
shown the central role of gestures for advancing learning of a
range of mathematical ideas, including equations (Goldin-
Meadow, Nusbaum, Kelly, & Wagner, 2001), symmetry (e.g.,
Valenzeno, Alibali, & Klatzky, 2003), ordinal numbers (Sinclair &
de Freitas, 2014), multiplicative reasoning (Abrahamson &
Trninic, 2015), graphs (Bieda & Nathan, 2009), beginning algebra
(Alibali & Nathan, 2012; Nemirovsky & Ferrara, 2009), geometry
(Smith, 2018), and complex numbers (Soto-Johnson & Troup,
2014), among others.

An emerging literature on GEC (Barsalou, 2008; Shapiro, 2010)
suggests that reasoning is connected to body-based processes,
including gesture (Alibali & Nathan, 2012; Edwards, Ferrara, &
Moore-Russo, 2014; Goldin-Meadow, 2005) and physical and
simulated action (Beilock & Goldin-Meadow, 2010; Hostetter &
Alibali, 2019). Still, there is a need for studies that directly
investigate the role of body-based processes in complex reasoning
activities, and for theoretical advancements that provide testable
hypotheses for when and how body-based processes affect reason-
ing. Investigations of mathematical reasoning, in particular, are of
interest, in part because of the theoretical appeal of embodied
accounts of highly generalized, symbolic, and abstract forms of
thinking (e.g., Abrahamson & Lindgren, 2014; Lakoff & Núñez,
2000).

To date, empirical studies of embodied mathematical cognition
tend to focus on the mathematics of numbers and operations, such
as arithmetic, probability, and algebra (Abrahamson, 2009; Ali-
bali, Church, Kita, & Hostetter, 2014; Goldin-Meadow, Cook, &
Mitchell, 2009; Howison, Trninic, Reinholz, & Abrahamson,
2011; Marghetis, Núñez, & Bergen, 2014; Ottmar & Landy, 2017),
or shape identification (Smith, King, & Hoyte, 2014), with rela-
tively little attention paid to more advanced areas topics such as
proof practices (Nathan, 2014; though see Marghetis, Edwards, &
Núñez, 2014). Yet proof is fundamental to the discourse practices
of mathematicians, serving as the primary method by which math-
ematicians test claims, construct knowledge, and disseminate their
research (Lakatos, 2015). This is why justification and proof are
key topics in mathematics education (National Council of Teach-

ers of Mathematics, 2000; Stylianides, 2007; Yackel & Hanna,
2003).

Furthermore, much of the work on embodied mathematics em-
phasizes early mathematical development among young children
(e.g., Butterworth, 1999). As children mature into more abstract
and generalized thinkers, there is a need to understand whether and
how embodiment plays a significant role in their reasoning and
learning. Consequently, there is value in extending research on
embodiment to the topic of geometry proofs, a precollege strand of
mathematics education (Pelavin & Kane, 1990) that focuses di-
rectly on articulating logically supported generalized truths about
space and shape.

The central objective of this paper is to investigate people’s
geometric reasoning and informal proof practices within a GEC
framework. We specifically examine the roles that participants’
gestures and concurrent speech play in predicting the quality of
their geometric reasoning. The main objective is to identify theo-
retically motivated associations between body-based processes and
geometric thinking for improving our empirical understanding of
the embodied nature mathematical reasoning. This investigation is
important for understanding the scope and predictive power of
theories of GEC. Theoretically motivated advancements in our
knowledge of the nature of embodied mathematical reasoning are
important for developing effective, evidence-based approaches to
education that can inform the design of students’ learning envi-
ronments and teacher professional learning experiences.

Theoretical Framework

Grounded and Embodied Cognition

Although there is a diversity of theories of GEC, they generally
share certain tenets. One is cognition and computation are not the
exclusive result of operations performed with amodal symbols;
rather, reasoning and computation are necessarily carried out by
recruiting perceptual and motor processes (Gibson, 1976, 1979);
and offline cognition—processes, such as planning, that are per-
formed when one cannot directly access task-relevant inputs and
outputs—is achieved via simulation of perceptuo-motor experi-
ences, situated actions, and bodily states, which play a causal or
constitutive role in intellectual processes (Barsalou, 2008; Shapiro,
2019; Wilson, 2002).

A second tenet is based on evidence that suggests some aspects
of mathematical cognition are grounded and embodied (de Freitas
& Sinclair, 2014; Nathan, 2014). Numbers, for example, are un-
derstood within a spatial frame that applies cross-culturally (Fi-
scher, 2012). Algebraic symbol manipulation, despite its apparent
abstract nature, is sensitive to spatial grouping (Landy & Gold-
stone, 2007). Gestures—spontaneous arm and hand movements
that speakers produce when communicating—depict learners’
mental simulations and conceptual metaphors of mathematical
objects and operations (Alibali & Nathan, 2012). Typically, ges-
ture taxonomies identify four main categories (McNeill, 1992): (a)
deictic or indexical gestures, such as pointing, index an object and
can provide information about its location; (b) iconic gestures
convey semantic content through visual similarity using hand
shape or motion; (c) metaphoric gestures convey semantic content
via metaphorical mapping; and (d) beat gestures, simple, rhythmic
motions that do not clearly express semantic content but generally
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align with speech prosody. Gesture studies scholars—especially
those studying mathematical cognition—often combine iconic and
metaphoric gestures into a broader category of representational
gestures, to emphasize that these each depict meaning (Alibali,
Heath, & Myers, 2001; Kita, 2000). Representational gestures
produced during proof construction suggest that experts’ mathe-
matical reasoning is inherently embodied, not merely an aid to
communicate mathematical ideas (Marghetis, Edwards, & Núñez,
2014). Scholars suggest “that gesture and other bodily movement
is essential . . . in the intellectual construction of mathematics;”
and along with words, symbols, diagrams, and objects, “the math-
ematician’s body may be a constitutive part of his or her situated
proving” (Marghetis & Núñez, 2013, p. 229).

Gesture as Action and Simulated Action

Research shows that gesture production reliably predicts some
forms of mathematical thinking, and that engaging students in
gesture production can enhance learning. For example, primary
grade children learning about mathematical equivalence produce
gestures that indicate they have learned to the attend to spatial
properties that distinguish the two sides of the equation delineated
by the equal sign, even before they can verbally articulate that
distinction (Alibali & Goldin-Meadow, 1993). In addition to their
communicative function, gestures perform simulated actions.
There is substantial empirical support for the Gesture as Simulated
Action (GSA) framework (Hostetter & Alibali, 2008, 2019). As
evidence, speakers gesture more often when their speech is based
on imagery, and the form of a gesture parallels the form of the
underlying mental simulation, especially when describing imagery
to mentally transform or manipulate objects (Hostetter, Alibali, &
Bartholomew, 2011). Experts gesture less frequently than novices
in some studies (Chu & Kita, 2011), presumably because experts
have had more practice performing and verbalizing the tasks (e.g.,
Provost, Johnson, Karayanidis, Brown, & Heathcote, 2013). As
simulated actions, gestures can act on entities, as though physi-
cally rotating an imagined triangle. Furthermore, because these

actions on imagined objects are not bound to physical constraints,
simulated actions can transform an entity, such as growing and
shrinking the triangle. In this vein, scholars have identified a
specific class of representational gestures, called dynamic depic-
tive gestures, that portray transformations on imagined objects
(Garcia & Infante, 2012; Newcombe & Shipley, 2012), enabling
simulated actions to support students’ imagination and enact math-
ematical generalizations.

Dynamic Gestures Explore Generalized Properties

Dynamic gestures specifically enact spatiotemporal transforma-
tions of imagined entities that allow people to physically experi-
ence the operations, generalization, and chain of logical inference
that support production of valid analytical proof schemes (Harel &
Sowder, 2005; Pier et al., 2019). Nondynamic (or static) gestures
primarily identify properties of objects (e.g., shape, location),
whereas dynamic gestures perform operative actions that allow
agents to explore the range of an object’s properties (e.g., how it
rotates or skews; Chu & Kita, 2011; Garcia & Infante, 2012;
Hegarty, Mayer, Kriz, & Keehner, 2005; Newcombe & Shipley,
2012). Figure 1 visually compares these properties of dynamic and
nondynamic depictive gestures during student interviews while
reasoning about the truth of the midsegment conjecture, The seg-
ment that joins the midpoints of two sides of any triangle is
parallel to the third side. Nondynamic and dynamic gestures
activate different cognitive processes. In Figure 1a, the participant
uses a dynamic gesture to continually adjusts the angle of one side
(right arm) as it meets a second side (left hand) as she realizes in
midsentence that her initial evaluation that the conjecture was false
was inaccurate, and that, in fact, the midsegment will always
remain parallel to the third side (here, the base), In Figure 1b,
another participant uses a nondynamic gesture to form two sides of
the triangle that meet at a vertex and makes no further adjustments
to the shape.

People with lower spatial reasoning skills produced a higher
proportion of static gestures and thus conveyed less dynamic

Figure 1. Participants reasoning about the midsegment conjecture, The segment that joins the midpoints of two
sides of any triangle is parallel to the third side. (a) Left panel shows how a dynamic depictive gesture enacts
generalizable relationships of a mathematical object (triangle). The participant continually adjusts the angle of
one side (right arm) as it meets a second side (left hand) as she realizes in midsentence that her initial evaluation
that the conjecture was false was inaccurate, and that, in fact, the midsegment will always remain parallel to the
third side (here, the base). (b) Right panel shows a nondynamic gesture makes a static property joining two sides
of the imagined triangle meeting at a vertex with no further changes to the shape. The photographs are published
with the consent of the experimental participants. See the online article for the color version of this figure.
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information about object manipulation than those with higher
spatial reasoning skills (Göksun, Goldin-Meadow, Newcombe, &
Shipley, 2013). In another study, participants who produced dy-
namic gestures were more likely to generate correct insights and
showed higher rates of valid proofs for mathematical conjectures
(Pier et al., 2019). These findings suggest dynamic gestures may
be associated with cognitive processes that are especially helpful
for mathematical generalizations and proofs.

Action-cognition transduction proposes that the advantages for
mathematical reasoning incurred by dynamic gesture production
come about because the actions performed on either real or imag-
ined entities engage the sensorimotor system to recreate those
cognitive states that simulate the important properties, relation-
ships, and behaviors of the object (Nathan & Walkington, 2017).
The motor programs generated to process and control those move-
ments necessarily anticipate the outcomes of those potential ac-
tions, producing predictive expectations that naturally support
inferences about those future states. This feedforward architecture
offers an account of an action-based inferential mechanism that
considers all such plausible future states of an object (Nathan,
2017; Nathan & Martinez, 2015; Wolpert, Doya, & Kawato, 2003)
and forms the basis for embodied reasoning about generalized
spatial properties (Nathan & Walkington, 2017). A body-based
account of inference making is much-needed since people other-
wise struggle to formulate the generalizations that foster mathe-
matically valid proofs.

Geometric Reasoning Using Dynamic Gesture
Production and Transformational Speech

Geometric proof is a valuable area for improving education and
extending research on mathematical cognition. Geometric proofs
typically address universal statements about space and shape,
which are an important area for the study of generalized and
abstract thought Lehrer & Chazan (1998/2012). Proof in this
domain does not readily lend itself to “canned” procedures or
mathematical algorithms, such as long division, that might enable
people to generate a valid answer with little understanding of the
math involved (Koedinger, 1998). Thus, the study of proof is
especially intriguing for GEC because of its central role of con-
ceptual understanding of generalizations and abstractions.

Despite proofs’ centrality to mathematical practice and educa-
tional objectives, students struggle to construct viable and con-
vincing mathematical arguments and provide valid generalizations
of mathematical ideas (Dreyfus, 1999; Martin, McCrone, Bower,
& Dindyal, 2005). Students often overgeneralize what they can
conclude from specific examples (e.g., Healy & Hoyles, 2000;
Knuth, Choppin, & Bieda, 2009). Even when presented with valid
deductive proofs, students may find them unconvincing (Chazan,
1993), and they fail to appreciate the utility of deductive reasoning
for communicating generalized arguments based on logical infer-
ence (Harel & Sowder, 1998). High school textbooks, largely
operating from a frame of philosophical rationalism, typically
emphasize the role of proofs for establishing certainty (e.g., de
Villiers, 1998/2012) rather than as a means for developing math-
ematical intuition and sense of inquiry and wonder (Gravemeijer,
1998/2012; Lehrer et al., 1998/2012; Lockhart, 2009) that draws
on students’ spatial skills (Goldenberg, Cuoco, & Mark, 1998/
2012). Proof used in this way has served to disconnect students’

proof practices from the construction of mathematical knowledge
(Herbst, 2002).

Expanded notions of proof. Scholars looking beyond proof
as a product have explored proving as a form of disciplinary
discourse (e.g., Balacheff, 1991; Knuth, 2002). Harel and Sowder
(1998), arguing for a broader view than traditional high school
textbooks, define proving as “the process employed by an individ-
ual to remove or create doubts about the truth of an observation”
(p. 241). Harel and Sowder (2005) propose a taxonomy of proof
schemes that strives to capture this broader conception. Transfor-
mational proofs, in particular, make use of mental or physical
operations to demonstrate the validity of conjectures (Clements &
Battista, 1992). Transformational proofs, part of the deductive
analytic proof scheme (Harel & Sowder, 2005), have three defin-
ing characteristics: They are general, showing the argument is true
for all members of an object class; they use operational thought,
where the prover progresses systematically through a goal struc-
ture, anticipating the outcomes of proposed transformations; and
they exhibit a chain of logical inference, with conclusions follow-
ing from valid premises.

Embodied perspectives on geometry reasoning. Several in-
vestigations have examined geometric reasoning from an embod-
ied lens to explore fruitful avenues for improving our understand-
ing of mathematical cognition. Studies of mathematicians’
gestures suggest that experts’ proof practices are “fundamentally
. . . embodied” (Marghetis, Edwards, & Núñez, 2014, p. 228).
Primary and secondary grade students’ understanding of angles
improves when manipulating their body position and movement
(Petrick & Martin, 2012; Shoval, 2011; Smith et al., 2014). Use of
global-positioning system devices and mapping software enabled
students to figure out where to stand and walk to make the
geometric constructions for a marching band, that enriched subse-
quent geometric reasoning with pencil-and-paper formats (Ma &
Hall, 2018).

Pier and colleagues (2019) found that students’ transformational
speech and dynamic gesture independently contributed to students’
proof performance. Like physical and simulated transformations,
transformational speech was defined as verbal descriptions of
goal-directed manipulations of mathematical objects through con-
ditional statements (“if . . . then . . .”) and inferences.

Theoretically Motivated Hypotheses

There is a need to investigate the psychological mechanisms that
underlie embodied proof performance. The literature points toward
some productive avenues but lacks some of the rigor and clarity
that can reliably test hypotheses about the stated promise of
embodied mathematical thinking. Findings of many of these stud-
ies are summarized in the model of Figure 2. As reviewed, studies
implicate embodied processes exhibited by representational ges-
tures—and specifically dynamic gestures—as observable manifes-
tations of simulated actions that mediate valid mathematical proof
production (e.g., Nathan & Walkington, 2017; Pier et al., 2019;
Walkington et al., 2014; Williams-Pierce et al., 2017). As shown
in Figure 2, spatiotemporal processes (top pathway) on their own
can yield mathematical intuitions about the truth status of a con-
jecture, but do not support the production of a valid verbal justi-
fication of that judgment without verbal processes. Studies also
point to the important role of language processes—especially
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action-based transformational speech—for supporting logical and
causal inference (Knuth et al., 2009; Pier et al., 2019). Language
processes can generate proofs (bottom pathway), but may be
generated without an intuitive understanding of why or how they
are true. To produce a mathematically valid proof-with-intuition,
both spatiotemporal and language processes must be engaged and,
further, must activate key mediators in language (transformational
speech) and action (representational gestures) to assure that the
proof that is generated meets the three criteria for a valid mathe-
matical proof that is logical, operational, and generalizable. The
research also suggests that these influences are moderated by one’s
mathematical expertise (Goldin-Meadow, 2010), suggesting that
even though experts’ proofs may be mediated by body-based
processes, experts may be less dependent on gesture production to
access implicit knowledge and convey that knowledge as they
formulate mathematically valid proofs. The present study investi-
gates these issues by examining the role of transformational speech
and representational gestures across a common set of multiple
mathematical conjectures.

We frame this investigation in terms of a central research
question: Is geometric reasoning associated with participants’
simulated actions? As one looks across the research literature,
proof performance is often reported in a variety of ways without a
standard outcome measure. Consequently, there is value in stipu-
lating precise measures with which proof performance is assessed.
The present study uses three outcome measures, listed in increas-
ingly more complex levels of reasoning: Intuition, insight, and
mathematically valid proof. We are especially interested in the
production of representational gestures and transformational
speech as instantiation of simulated actions. We hypothesize that
gestures and transformational speech acts each make unique con-
tributions to models of participants’ mathematical reasoning.

Our measure of intuition makes the fewest assumptions, and
simply requires that, upon their initial encounter with a conjecture,

participants accurately state whether the statement is true or false.
Intuitions, we posit, are nonverbal “snap judgments” about the
veracity of a mathematical conjecture, and thus primarily mediated
by embodied processes. Because correct intuitions do not depend
on a person’s ability to articulate a generalizable property of
shapes, we expect that representational gestures will be the stron-
gest predictors, rather than the more restrictive category of dy-
namic depictive gestures. We also expect that linguistic factors are
not likely to be reliable predictors of intuition performance. We
summarize this in the following hypothesis:

H1: Intuitions about the veracity of a geometry conjecture are
reliably associated with one’s representational gestures

Insight provides a measure of participants’ grasp of the “essen-
tial meaning,” or gist, about the mathematical ideas that come into
play while forming a proof, “irrespective of exact words, numbers,
or pictures.” (cf. Reyna, 2012, p. 333). We expect insight perfor-
mance to be associated with one’s speech and one’s generation of
representational gestures. The second hypothesis states:

H2: Insights about the veracity of a geometry conjecture are
reliably associated with one’s representational gestures and
one’s transformational speech.

To be considered a mathematically valid proof, as noted, one’s
argument must include three characteristics (Harel & Sowder,
1998, 2005; Pier et al., 2019): generality, operational thought, and
logical inference. We expect to see valid proof performance asso-
ciated with dynamic depictive gesture production as an instantia-
tion of the simulated actions needed to support operational think-
ing and generalization. We also expect valid proofs to be
associated with the production of transformational speech acts as
explanatory records of a logical chain of inference.

Motor system 
activation

Intuition
(nonverbal)

System 1

Language
system 
activation

Representational
Gestures Valid Proof-with-

Intuition
System 1+2

Speech processing
Proof Words

(without insight)
System 2

Simulated Action
Spatio-temporal
processing

Transformational
Speech

AND

Figure 2. Logic model. Spatiotemporal processes (top pathway) combine with language processes (bottom
pathway) to generate a proof with intuition, which is hypothesized to be mediated by simulated action, as
exhibited by the speaker’s dynamic gestures and transformational speech. Moderators (not shown) include math
expertise, prior content knowledge, spatial skills, verbal skills. See the online article for the color version of this
figure.
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H3: Valid proof performance will be reliably associated with
one’s dynamic gestures and transformational speech.

A second research question poses, Does the strength of the
hypothesized relationships between geometric reasoning and sim-
ulated action depend on participants’ mathematics expertise?
Those with greater expertise in math will have greater knowledge
of planar geometry and more familiarity with proof practices
(Inglis & Alcock, 2012; Koedinger & Anderson, 1990). Yet there
are conflicting accounts about the nature of embodied behaviors
for experts. On one hand, researchers have noted that the mathe-
matical reasoning and proof practices exhibited by experts are
inherently embodied (Marghetis & Núñez, 2013), suggesting that
gesture production should be high for experts, perhaps even higher
than for nonexperts (Marghetis, Edwards, & Núñez, 2014). Others
(Chu & Kita, 2011) have found that experts in some tasks (e.g.,
spatial visualization) gesture less frequently than novices, possibly
because of the greater refinement of their skilled performance
(e.g., Provost et al., 2013). Thus, we have two competing hypoth-
eses regarding the observable simulated actions for experts in
mathematics.

H4: a. Valid proof performance by experts will be more
strongly associated with gesture production than nonexperts.

H4: b. Valid proof performance by experts will be less
strongly associated with gesture production than nonexperts.

The following research method is used to explore these hypoth-
eses.

Method

Participants

Ninety adult students were recruited from a large university in
the Midwestern United States. Participants included 85 undergrad-
uate students and five graduate students. Graduate students were
included in the recruitment of expert participants when recruitment

efforts limited to undergraduate students became unlikely to yield
at least 42 expert participants as indicated by the power analysis.
All participants were English-speaking students, but for some
English was not their first language. As compensation, each par-
ticipant received a $25 gift card to an online retailer. Some
participants also received partial course credit (extra credit) if their
course instructors offered this credit option. Experts (n � 46) were
math majors with advanced course work beyond linear algebra that
included studies of formal proofs. All graduate students were
included in the expert group. In this group, there were 31 males
and 15 females with 52.2% of students identifying as native
English speakers. Nonexperts were undergraduate non-STEM ed-
ucation majors (n � 44). This group included six males and 38
females with 97.7% of students identifying as native English
speakers. Further descriptive statistics for both expert and nonex-
pert groups can be found in Table 1.

Power Analysis

Our a priori power analysis used � � 0.80, � � .05, and an
effect size of f � 0.41 for the effect of expert/novice on proof
performance (based on data from Nathan & Walkington, 2017).
The analysis used G�Power’s (Faul, Erdfelder, Buchner, & Lang,
2009) ANOVA Repeated Measures, with correlations among a
participant solving repeated geometry proofs estimated at 0.6
based on previous data (Nathan et al., 2014; Nathan & Walkington,
2017). G�Power returned a minimum sample of 26 per group.
However, we additionally took into account having power to detect
small/medium partial mediation effects (d � 0.26–0.39; Fritz &
MacKinnon, 2007), which led to a desired sample size of 42 per
group (84 total) when accounting for the design effect.

Materials

Conjectures. The four conjectures used in this study were
selected from a variety of secondary mathematics textbooks and
chosen so that each explored general properties of two-
dimensional (planar) objects. Three conjectures involved proper-

Table 1
Descriptive Statistics for Experts and Nonexperts

Statistic

Expert Nonexperts

Male
(n � 31)

Female
(n � 15)

Total
(n � 46)

Male
(n � 6)

Female
(n � 38)

Total
(n � 44)

Average age (SD) 22.1 (3.21) 21.6 (2.14) 21.9 (2.90) 20.3 (0.76) 20.68 (2.37) 20.6 (2.22)
Percent native English speakers 48.4% 60.0% 52.2% 100% 97.4% 97.7%
Percent ethnicity – White 45.2% 40.00% 43.48% 83.33% 89.47% 88.64%
Percent ethnicity – Asian 45.2% 53.33% 47.83% 0.00% 7.89% 6.82%
Percent ethnicity – Other 9.6% 6.67% 8.70% 16.67% 2.63% 5.13%
Average geometry test score (SD) 0.94 (0.08) 0.89 (0.08) 0.92 (0.08) 0.82 (0.09) 0.79 (0.08) 0.79 (0.08)
Average spatial score (SD) 0.82 (0.16) 0.76 (0.22) 0.80 (0.19) 0.53 (0.20) 0.46 (0.22) 0.47 (0.22)
Average verbal fluency score (SD) 18.1 (5.35) 21.5 (13.05) 19.2 (8.76) 16.2 (4.73) 18.0 (5.65) 17.8 (5.56)
Likelihood of correct proof 41.13% 36.67% 39.67% 4.17% 11.18% 10.23%
Likelihood of correct insight 85.48% 81.67% 84.24% 25.00% 49.34% 46.02%
Likelihood of correct intuition 79.03% 83.33% 80.43% 54.17% 61.18% 60.23%
Likelihood of representational gesture (per trial) 79.03% 90.00% 82.61% 37.50% 68.42% 64.20%
Likelihood of nondynamic gesture (per trial) 32.26% 40.00% 34.78% 29.17% 45.39% 43.18%
Likelihood of dynamic gesture (per trial) 46.77% 50.00% 47.83% 8.33% 23.03% 21.02%

Note. SD � standard deviation.

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

6 NATHAN ET AL.



ties of triangles, and one conjecture concerned properties of par-
allelograms. Additionally, three conjectures were true statements,
and one conjecture about triangles was a false statement. Table 2
shows the text for each conjecture, its truth, relevant mathematical
insights regarding the conjecture, and example proofs.

One of the conjectures also identified a technical term in the
conjecture printed in blue font with an underline that linked to a
glossary explaining the term’s meaning. Participants were in-
formed about the glossary term prior to the interviews. Participants
were invited but not required to click the link on the conjecture
slide. Judgments were made by researchers on the team with math
instruction experience as well as experience with the target pop-
ulation of participants as to which terms would be appropriate to
include or not. These decisions were made within the broader goal
of presenting our expert and novice participants with conjectures
that would be appropriately difficult to require active reasoning
and participation, and appropriately scaffolded to give all partici-
pants a chance to attempt a response without first giving up.

Dependent, independent, and control variables. The depen-
dent variables (DVs) in this study are intuition, insight, and proof
performance. The independent variables (IVs) in this study are
expertise, gesture production, and transformational speech produc-
tion. The remaining measures are control variables: spatial ability,
verbal phonemic fluency, general geometry knowledge, and sev-
eral demographic measures (self-report of math course experience,
such as the last math class completed, current math class enroll-
ment, math course history with final grades, age, sex, native
language, and race/ethnicity). Measures for these are explained
below.

Spatial ability. Spatial ability was assessed using the Paper
Folding Task (Ekstrom, French, Harman, & Derman, 1976). This
spatial measure is included because it has been to shown in prior
studies to have been predictive of gesture production (Hostetter &
Alibali, 2008) as well as predictive of performance on measures of
geometry intuition, insight, and proof (Walkington, Woods, Na-

than, Chelule, & Wang, 2019). The Paper Folding Task is a
20-item (2 � 10 items per section) multiple-choice assessment.
Participants were given 3 min to complete each section of 10
questions. Scores were computed by giving one point for each
correct answer and subtracting 0.25 for each incorrect answer. For
the Paper Folding Task, only the first section was used for calcu-
lating spatial ability scores. The historical reliability for the Paper
Folding Task ranges from 0.75 to 0.89 (Kane et al., 2004; Ko-
zhevnikov & Hegarty, 2001; Miyake, Friedman, Rettinger, Shah,
& Hegarty, 2001), and for our sample, the reliability for the first
section was 0.79.

Verbal phonemic fluency. Verbal phonemic fluency was as-
sessed using a standard task where participants to name as many
words as they could think of in 60 s that begin with the letter “s”
(desRosiers & Kavanagh, 1987). This verbal phonemic fluency
measure is included because it has been to shown to have been
predictive of gesture production in prior work (Hostetter & Alibali,
2008). Responses were given aloud and recorded through the
video/audio recording software. This task was scored by counting
the number of unique words uttered within the 60 s time limit.
Counts of unique words excluded proper nouns and words whose
variations differed only in plurality or verb tense. For example, if
a person uttered “save,” then the words “saving,” “savings,” and
“saved” would not further be counted. The retest reliability for this
measure has been assessed 0.88 (desRosiers & Kavanagh, 1987).

General geometry knowledge. Knowledge about geometry
properties was assessed with 12 items clustered into three
multiple-choice questions, developed in a prior study (Nathan &
Walkington, 2017; r � .56 with performance on conjectures sim-
ilar to those considered here). Items asked about the properties of
triangles, parallelograms, and circles. Participants needed to iden-
tify correct answers in the multiple-choice questions given, and
participants could select more than one response. Each question
had four answer choices, and each answer choice was scored as
correct or incorrect for one point each. Scores were summed across

Table 2
Truth Value, Insights, and Proof for Each of the Four Mathematical Conjectures

Conjecture label Conjecture text Truth Insight Proof

ParallelogramArea The area of a parallelogram is the
same as the area of a rectangle
with the same length and
height

True 1. States a parallelogram is a rectangle
tilted over or pushed over.

1. Shows cutting off a triangle from the
parallelogram, or rearranging the area
makes them congruent.

2. States area of a parallelogram and a
rectangle have the same formula.

2. State all rectangles are
parallelograms and therefore the
formula for area is the same.

MidsegmentTriangle The segment that joins the
midpoints of two sides of any
triangle is parallel to the third
side

True 1. True because the two triangles are
similar

1. Shows base sliding up and says
Similar Triangles or scaled so angles
are the same

2. True because it is scaled 2. Explicitly says SAS and that
corresponding angles are congruent

AAA Given that you know the measure
of all three angles of a triangle,
there is only one unique
triangle that can be formed
with these three angle
measurements

False States similar triangles or infinite/many
triangles

1. Gives specific counterexample

2. Visually shows scaling or discusses
scaling and similar triangles

Circumscribed A circle can be circumscribed
about any triangle

True 1. Any three points on a plane make a
triangle.

1. Demonstrate with vertices as points
along the circumcircle.

2. The circumcircle always passes through
all three vertices of a triangle

2. Show with the perpendicular
bisectors of each side of the triangle.
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all three clusters for a final score out of 12. The geometry knowl-
edge test was ultimately not used in the models because of issues
with internal consistency (� � .54). Results for proof, insight, and
intuition were the same with or without this test included.

Demographic information. This survey included a self-
report of math course experience, such as the last math class
completed, current math class enrollment, and math course history
with final grades. Additional demographic information was col-
lected about age, sex, native language, and race/ethnicity. After
data collection was complete, we collapsed the race/ethnicity re-
sponses into three categories for the analyses: White, Asian, and
Other. This decision was made because of the high number of
participants who self-identified as White (65.56%) and Asian
(27.78%). The “Other” category represents the remaining options
(6.66%). Because of differences in the expert and nonexpert
groups, several of these variables were included in the final pre-
diction models as control variables.

Equipment

The experiment was run in a room operating a projecting com-
puter, an interactive white board, and two web cams that linked to
a second computer. The interactive functionality allowed the re-
searcher to advance PowerPoint slides, which contained the con-
jecture text or navigate through additional material (i.e., the glos-
sary) by tapping on the white board rather than returning to the
computer each time. The webcams were mounted about 6 feet high
on the wall adjacent and to the left of the interactive white board.
When running the experiment, the researcher would stand right
below the left camera, out of the frame of the shot. This made it so
the participant was more likely to be directing their response
toward the camera. Figure 1 depicts the room set up.

Coding

Videos of the experimental sessions were organized and tran-
scribed verbatim using the Transana software system (Woods &
Fassnacht, 2012), which links transcript locations to video loca-
tions through time codes and supports qualitative coding and SQL
Boolean search functions. Time stamps were added to split the full
transcripts into the four conjectures for coding; this resulted in 360
video clips to be coded (90 participants � 4 conjectures). Two
members of the research team coded each transcript using the
coding scheme described below and illustrated in Figure 3.

Coding scheme. The transcripts were coded for six catego-
ries: conjecture comprehension, intuition, insight, gesture, correct
true/false judgment, and mathematical validity of the proof (see
Figure 3).

Comprehension. Participants were coded as not comprehend-
ing the conjecture if they stated they did not understand or provided
explicit evidence that they were describing objects or operations not
related to the conjecture. If a transcript was coded as “did not under-
stand,” the researcher did not continue coding the transcript for that
conjecture. This criterion led us to exclude 17 of 360 transcripts (four
expert, and 13 nonexpert) from further coding.

Intuition. Intuition was measured by the accuracy of their
immediate true/false evaluation of each conjecture (Zander,
Öllinger, & Volz, 2016; Zhang, Lei, & Li, 2016). If the participant
correctly answered true/false or had an immediate shift to the

correct true/false judgment, it was coded as 1. All other responses
were coded as 0.

Insight. Insight was coded for the presence of key mathemat-
ical ideas for each conjecture, as specified by our team of math-
ematicians and math educators (see Table 2). If the participant
demonstrated initial correct mathematical insight for the conjec-
ture, it was coded as 1. All other responses, including instances
where participants switched from incorrect insights to correct
insights, were coded as 0.

Gesture. In this study, gestures produced during the inter-
views were coded as representational or not, if they represented or
depicted some feature or operation of a mathematical object or
idea. Representational gesture codes effectively combine the tra-
ditional category of iconic gestures, which depict visual similarity,
with the category of metaphorical gestures, which use iconic
depictions for abstract referents, such as metaphorically expressing
numbers of greater value as “large.” Representational gestures
were further subdivided with one of two mutually exclusive codes,
either nondynamic depictive (representational) gestures or dy-
namic depictive (representational) gestures. Our category of non-
dynamic depictive gestures (Figure 1b) is exclusive of any dy-
namic depictive gestures. As an example, tracing the outline of a
mathematical object, such as a triangle, would be coded as repre-
sentational (depicting parts of the triangle) but as nondynamic,
because no transformation was performed on the triangle, such as
dilation or skewing. Dynamic depictive gestures, the second cat-
egory, are representational gestures that depict motion-based trans-
formations of a mathematical entity to test out the generalizability
of a conjecture (Figure 1a). The occurrence of at least one dynamic
depictive gesture was coded as 1 in addition to the code for
representational gesture. Participant transcripts that did not include
any gesture or made gestures that were not depictive, were given
a 0.

Correct true/false judgment. This code was used to describe
whether the participant correctly identified the conjecture as al-
ways true or always false by the end of their reasoning.

Mathematical validity of the proof. For the purpose of this
study, proof validity was coded for a verbalized proof (including
speech and gesture) that correctly identifies the conjecture as
always true or always false and, in addition, contains evidence of
all three criteria stipulated by Harel and Sowder (2005): a logical
chain of reasoning, such that conclusions are drawn from valid
premises; generalizable arguments, showing the argument is true
for a class of mathematical objects; and evidence of operational
thinking, so that the transcript exhibited evidence of progression
through a goal structure, anticipating the outcomes of operations.

Interrater reliability. To establish interrater reliability, a re-
searcher who was not involved in the original coding process or
the development of the coding scheme coded a random selection of
10% of the participants’ videos. Overall interrater reliability for
these codes is � � .911. Individual interrater reliability measures
for comprehension, intuition, insight, proof process, gesture, and
correctness are shown in Table 3.

To assess the validity of the interrater reliability given the small
sample size, we calculated Shaffer’s rho for each code (Eagan et al.,
2017; https://app.calcrho.org/). For this analysis, we used a kappa
threshold of 0.65. Results for each interrater reliability measure can be
found in Table 3. Overall, all Shaffer’s rho statistics were less than
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0.05, which indicates that our sample size was sufficient to estimate
the interrater reliability at a threshold of at least 0.65.

Coh-Metrix coding. To further code the content of each par-
ticipant’s verbal reasoning, we used metrics from Coh-Metrix, a
validated text data-mining tool that produces measures of several
linguistic indices, including situation model cohesion, connectives,
lexical diversity, and syntactic complexity (McNamara, Graesser,
McCarthy, & Cai, 2014; www.cohmetrix.com). Three variables

were of particular interest: verbs, first-person pronouns, and a
measure of intentional cohesion. Verb use is reported as the
incidence score of verbs per 1,000 words. Similarly, first-person
pronoun use is reported as the incidence score of first-person
pronouns per 1,000 words. The intentional participle to intentional
verb use is a ratio score, a relative measure that compares the
incidence of intentional participles per 1000 words to the incidence
of intentional verbs per 1,000 words, that describes the situation

Figure 3. Coding system flowchart. See the online article for the color version of this figure.
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model and internal cohesion created by the participants during the
conjecture proof. An earlier, backward stepwise regression analy-
sis of transcripts identified these three variables from among a set
of 21 as significant contributors to students’ verbal proofs
(Schenck et al., 2020). To prepare each transcript for the Coh-
Metrix automated analysis, we removed nonverbal cues, inaudible
speech, transcript notation (parentheses, timestamps, participant
numbers, etc.), and researcher speech.

Procedure

A researcher escorted the participant to the experiment room
and turned on the video recording software. Participants began
their session by completing the Paper Folding Task. Instructions
were read out loud by the researcher as participants followed along
in the written instructions. Participants sat at a table and provided
answers to the items on the worksheet until all items were com-
pleted or the 3 min were up. Participants were then instructed to
stand on the opposite side of the table facing the video camera and
the experimenter. Participants were introduced to the verbal pho-
nemic fluency task. Responses were given aloud and videotaped.

While participants remained standing where they were, the
researcher introduced the conjecture task. Specifically, participants
were instructed to read the math conjecture presented on the
interactive white board, then report whether the conjecture was
true or false, and finally provide an explanation why the conjecture
is true or false (or why they believed the conjecture to be true or
false). All participants completed a set of 12 conjectures total. The
first four conjectures were designed to be common among all
participants (see Table 2), whereas the remaining eight conjectures
were tailored to suit participants’ expertise levels and thus not held
constant between participants. Thus, only the common four con-
jectures are used for this analysis. The order of these four conjec-
tures was counterbalanced across participants by using a Latin
square to create four conjecture orders. Using Power Point soft-
ware, conjectures were projected in a black sans-serif font with a
white background on a large interactive screen. Participants stood
about 3 feet away from the center of the screen. Researchers
administrating the task tapped the screen to advance the slide to the
next conjecture after a full response was recorded.

Researchers were given a script for their interactions with par-
ticipants. They were instructed to prompt participants to give a full
response, and then afterward to invite participants to reiterate their
explanation. The goal of this final prompt was to give participants
an additional chance to summarize their thoughts into a fully

formed answer. However, because of experimenter error, not all
participants were uniformly given this chance to reiterate their
explanation. Thus, for our Coh-Metrix analyses we only analyzed
the initial response from each participant. To test whether there
were systematic differences between those prompted only once
and those prompted to reiterate their answers, we conducted post
hoc Welch two-sample t tests to see whether the mean values of
the three Coh-Metrix variables significantly differed between par-
ticipants’ initial (i.e., single) or final (either single or double)
reports.

Although prompting participants to reiterate did often result in
lengthier final transcripts, there was not a statistically significant
difference in the mean scores between the initial (single) or final
(either single or double) reports in participants’ intentional situa-
tional model cohesion (initial reports, M � 4.32, SD � 1.01; final
reports, M � 8.97, SD � 0.99), t(37) � �1.44, p � .159; verb use
(initial reports, M � 1.03, SD � 1.01; final reports, M � 1.41,
SD � 1.00), t(235) � �1.899, p � .059; or first-person pronoun
use (initial reports, M � 1.46, SD � 1.09; final reports, M � 2.00,
SD � 0.968), t(190) � �0.653, p � .514. Because there were no
reliable differences in the Coh-Metrix parameters, we included all
360 observations in subsequent analyses. (NB). We conducted t
tests on the outcomes variables [intuition, insight, and transforma-
tional proof] and the gesture variables [nondynamic and dynamic
gestures]. None of these comparisons showed significant differ-
ences.

After giving videotaped responses to the four conjectures, par-
ticipants completed surveys of their General Geometry Knowledge
and demographic information. Finally, participants received their
compensation and were given a copy of their consent form along
with a summary of the experiment’s goals. The summary also
explicitly stated not to share the details about the experiment with
any friends who are potentially enrolled to participate in the future.

Results

Descriptive statistics illuminated demographic and performance
differences between the expert and nonexpert groups in our study
(see Table 1). For example, there were significant differences in
ethnicity, with fewer Whites in the expert group than in the
nonexpert group, �2(2) � 84.765 (p 	 .001), and with experts
including a smaller percentage of native English speakers, �2(1) �
95.739 (p 	 .001). Experts were more likely to produce the correct
transformational proof, �2(1) � 39.752 (p 	 .001), insight,
�2(1) � 56.503 (p 	 .001), and intuition, �2(1) � 16.722 (p 	
.001), than nonexperts. There were also significant differences
between expert and nonexpert groups in spatial ability,
t(322) � �15.76, p 	 .001, and prior geometry knowledge,
t(322) � �15.50, p 	 .001, with experts scoring higher than
nonexperts on these two measures. There was not a significant
different between expert and nonexpert groups in verbal fluency,
t(322) � �1.63, p � .104.

Correlations among all of the key factors are presented in Table
4. We used logistic regression for binary outcomes (0/1) on accu-
racy of proof, insight, intuition, nondynamic gesture, and dynamic
gesture. We used a Firth logistic regression for accuracy of trans-
formation proof as this outcome had low prevalence in our data.
This type of model uses a penalized likelihood method rather than
the maximum likelihood method used in standard logistic regres-

Table 3
Interrater Reliability for Participant Transcript Coding

Code Cohen’s � Shaffer’s 


Omnibus 0.911 0.01
Comprehension 1.000 0.00
Correct 1.000 0.00
Intuition 1.000 0.00
Insight 1.000 0.00
Proof process 0.778 0.04
Dynamic gesture 0.958 0.00
Nondynamic gesture 0.948 0.01

Note. Shaffer’s 
 calculated with a � threshold of 0.65.
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sion (Firth, 1993; Heinze & Schemper, 2002). The models for
transformational proof were fit using the logistf command in the R
software package logistf (Heinze, Polner, Dunkler, & Southworth,
2018). Linear mixed models for intuition, insight, nondynamic
gesture, and dynamic gesture were fit using the glmer command in
the R software package lme4 (Bates, Maechler, Bolker, & Walker,
2015). We included participant ID and conjecture as random
effects in these models. We determined best fit model selection
using the anova() function to make comparisons between models
to test for significant reductions in deviance using a chi-square
distribution. Predictors were kept in the model only if they signif-
icantly improved the fit of the model by reducing the deviance.
Dropped predictors included age, native English speaker status,
and all interaction terms. Finally, we interpreted odd ratios as
“small” (odds ratio [OR] � 1.68 or 0.60 if reversed), “medium”
(OR � 3.47 or 0.29 if reversed), and “large” (OR � 6.71 or 	0.15
if reversed). These interpretations correspond to Cohen’s d � 0.2,
0.5, and 0.8 as “small,” “medium,” and “large” (Chen, Cohen, &
Chen, 2010). Odds ratios, rather than effect sizes, are reported here
as our dependent variables are dichotomous.

Intuition

The results of Model 1 (see Table 5) showed that expertise (p �
.003) and ethnicity-Asian (p � .049) were both significantly
associated with correct intuition. Expertise was associated with an
increase in the relative odds of producing correct intuition of 3.05,
whereas ethnicity-Asian was associated with an increase in the
relative odds of 2.76.

When factors coding for nondynamic and dynamic representa-
tional gestures were added to form Model 2, nondynamic repre-
sentational gesture was significant (p � .004), as was ethnicity-
Asian (OR � 3.05, p � .042) and expertise (OR � 2.28, p � .030).
The occurrence of at least one nondynamic representational ges-
ture was associated with an increase in the relative odds of pro-
ducing correct intuition of 2.30. These results provide support for
the hypothesis that nondynamic representational gestures reliably
predict intuitions about the veracity of a geometry conjecture (H1).

Insight

The results for the initial fixed effects model for insight (Model
1, Table 6) showed that expertise was significantly associated with
the production of correct mathematical insights (p 	 .001). Ex-
pertise was associated with an increase in the relative odds of
producing correct mathematical insight of 9.15.

After nondynamic and dynamic gestures were included in
Model 2, nondynamic gesture was significantly associated with
correct insight, with nondynamic gesture associated with an in-
crease in the relative odds by 2.21 (p � .019). Expertise remained
significant in the models, with expertise associated with an in-
crease in the relative odds of correct mathematical insights of 6.47
(p 	 .001).

Model 3 (see Table 6) added the three transformational speech
variables (situation model-intentional cohesion, verbs, and first-
person pronouns) to Model 2. Results showed that although ex-
pertise continued to be significantly associated with correct insight
(OR � 5.69, p � .001), nondynamic gesture (p � .059) was
replaced by dynamic gesture (OR � 2.11, p � .042). Additionally,T
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results showed a positive association between a more cohesive
situation model and correct mathematical insight (OR � 1.50, p �
.040). Combined, these results support the hypothesis that correct
mathematical insights about the truth of a geometry conjecture are
reliably associated with representational gestures and transforma-
tional speech (H2). However, the results also provide evidence that
dynamic gestures—a more specialized form of representational
gesture—are also associated with correct insights.

Proof Performance

The initial fixed effect model for transformational proof (Model
1, Table 7) showed that expertise (p � .001) and spatial ability
score (p 	 .001) were significantly associated with correct trans-
formational proof. Expertise was associated with an increase in the
relative odds of producing correct transformational proofs of 3.60,
whereas spatial scores were associated with an increase in the
relative odds of 1.32.

When gestures were added to form Model 2 (see Table 7),
dynamic gestures became significantly associated with transfor-
mational proof (p 	 .001), whereas both expertise and spatial
ability lost significance (p � .372 and p � .112, respectively). The
production of at least one dynamic gesture was associated with an

increase in the relative odds of producing correct transformational
proofs of 12.94, exceeding the threshold for a large odds ratio.

When the three transformational speech variables (situation
model-intentional cohesion, verbs, and first-person pronouns)
were added to form Model 3 (see Table 7), greater situation model
cohesion (OR � 1.54, p � .007) and the reduction of first-person
pronouns (OR � 0.51, p � .002) were significantly associated with
transformational proof. More frequent situation model cohesion
was associated with an increase in the relative odds of producing
a mathematically valid transformational proof. More frequent use
of first-person singular pronouns was associated with a decrease in
the relative odds of generating a valid transformational proof. This
result can otherwise be interpreted as showing that less frequent
mentions of first-person singular pronouns—fewer instances of
talking about oneself, and more occasions to talk about other
entities, such as the mathematical objects under scrutiny—was
associated with valid transformational proofs. The occurrence of
dynamic gesture continued to have the largest, most significant
association with proof performance. Even when controlling for
speech content, expertise, and spatial reasoning, the production of
at least one dynamic gesture during their verbal proof was asso-
ciated with an increase in the relative odds of producing a correct

Table 5
Results of the Logistic Regression Predicting Intuition

Variable � SE OR p value

Model 0: Null model
Random component – Participant ID variance 0.33 0.58 .042���

Random component – Conjecture variance 0.00 0.00 .054
(Intercept) 0.94 0.14 2.56 .000���

Model deviance (df) 434.2 (357)

Model 1: Main effects
Random component – Participant ID variance 0.00 0.05 .051��

Random component – Conjecture variance 0.00 0.00 .055
(Intercept) 0.12 0.62 1.12 .850
Experta 1.12 0.37 3.05 .003��

Verbal �0.02 0.02 0.98 .120
Spatial 0.01 0.06 1.01 .847
Ethnicity1 (White)b 0.78 0.47 2.17 .100
Ethnicity2 (Asian)b 1.01 0.54 2.76 .049�

Sexc �0.27 0.32 0.76 .396
Model deviance (df) 409.6 (351)

Model 2: Main effects with gesture
Random component – Participant ID variance 0.00 0.00 .051
Random component – Conjecture variance 0.00 0.00 .055
(Intercept) �0.31 0.64 0.73 .626
Experta 0.82 0.38 2.28 .030�

Verbal �0.02 0.02 0.98 .204
Spatial �0.03 0.06 0.97 .679
Ethnicity1 (White)b 0.68 0.49 1.97 .164
Ethnicity2 (Asian)b 1.12 0.55 3.05 .042�

Sexc �0.03 0.33 0.97 .926
Dynamic gesturesd 0.27 0.32 1.31 .385
Nondynamic gesturese 0.83 0.30 2.30 .004��

Model deviance (df) 397.2 (349)

Note. SE � standard error; OR � odds ratio. The raw regression coefficient (�) can be transformed into odds
ratios by exponentiating the coefficient.
a Nonexpert participant is the reference group. b “Other” ethnicity is the reference group. c Female is the
reference group. d No dynamic gesture is the reference group. e No nondynamic gesture is the reference
group.
� p 	 .05. �� p 	 .01. ��� p 	 .001.
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transformation proof of 210.61 (p 	 .000), showing a large odd
ratio. These results give clear evidence that valid proof perfor-
mance is strongly associated with dynamic gestures and transfor-
mational speech (H3).

Expertise

To examine the difference in gesture production between ex-
perts and nonexperts, we conducted three chi-square tests of inde-
pendence with Yates’ continuity correction. First, we analyzed

whether expert status and the production of representational ges-
tures were independent of one another. A significant relationship
was found, �2(1) � 14.75 (p 	 .001), with experts more likely to
produce representational gestures (36%) than nonexperts (17%).
Second, we investigated whether expert status and the production
of nondynamic representational gesture were independent. Though
the proportion of nondynamic gesture was higher in nonexperts
(65%) than in experts (57%), this difference was not significant,
�2(1) � 2.34 (p � .127). Third, we examined the relationship

Table 6
Results of the Logistic Regression Predicting Insight

Variable � SE OR p value

Model 0: Null model
Random component – Participant ID variance 1.83 1.35 .037�

Random component – Conjecture variance 0.11 0.33 .042�

(Intercept) 0.89 0.26 2.44 .001���

Model deviance (df) 435.9 (357)
Model 1: Main effects

Random component – Participant ID variance 0.53 0.73 .033�

Random component – Conjecture variance 0.11 0.33 .045�

(Intercept) �0.94 0.83 0.39 .258
Experta 2.21 0.49 9.15 .000���

Verbal �0.03 0.02 0.97 .170
Spatial 0.10 0.08 1.10 .199
Ethnicity1 (White)b 0.96 0.66 2.61 .146
Ethnicity2 (Asian)b 0.71 0.72 2.04 .318
Sexc �0.46 0.41 0.63 .265

Model deviance (df) 388.8 (351)

Model 2: Main effects with gesture
Random component – Participant ID variance 0.44 0.67 .039�

Random component – Conjecture variance 0.11 0.33 .044�

(Intercept) �1.37 0.84 0.25 .104
Experta 1.87 0.49 6.47 .000���

Verbal �0.02 0.02 0.98 .248
Spatial 0.04 0.08 1.05 .530
Ethnicity1 (White)b 0.82 0.66 2.27 .211
Ethnicity2 (Asian)b 0.82 0.71 2.26 .251
Sexc �0.16 0.41 0.85 .696
Dynamic gesturesd 0.63 0.36 1.87 .083
Nondynamic gesturese 0.79 0.34 2.21 .019�

Model deviance (df) 375.0 (349)

Model 3: Main effects with gesture and speech
Random component – Participant ID variance 0.48 0.69 .041�

Random component – Conjecture variance 0.05 0.23 .038�

(Intercept) �1.11 0.86 0.33 .196
Experta 1.74 0.50 5.69 .001���

Verbal �0.03 0.02 0.97 .205
Spatial 0.04 0.08 1.04 .615
Ethnicity1 (White)b 0.82 0.68 2.26 .231
Ethnicity2 (Asian)b 0.85 0.75 2.34 .256
Sexc �0.15 0.42 0.86 .726
Dynamic gesturesd 0.75 0.37 2.11 .042�

Nondynamic gesturese 0.67 0.36 1.96 .059
Situation model-cohesion 0.41 0.20 1.50 .040�

Verbs �0.11 0.15 0.90 .482
First-person pronouns �0.26 0.15 0.77 .075

Model deviance (df) 364.0 (346)

Note. SE � standard error; OR � odds ratio. The raw regression coefficients (�) can be transformed into odds
ratios by exponentiating the coefficient.
a Nonexpert participant is the reference group. b “Other” ethnicity is the reference group. c Female is the
reference group. d No dynamic gesture is the reference group. e No nondynamic gesture is the reference
group.
� p 	 .05. ��� p 	 .001.
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between expertise and dynamic representational gesture produc-
tion. This relationship was significant, �2(1) � 27.34 (p 	 .001),
with experts more likely to produce dynamic gestures (79%) than
nonexperts (52%).

In summary, experts perform significantly more representational
gestures and, more specifically, experts produce more dynamic
representational gestures than nonexperts. As the relative odds of
transformational proof increases in relation to the production of at
least one dynamic gesture (see previous section), these combined
results support the hypothesis that experts’ gestures, specifically
dynamic representational gestures, may be more strongly associ-
ated with valid proof performance than nonexperts’ gestures
(H4a).

Gesture

The best fitting model for nondynamic gesture indicated that
expertise (p � .004), sex (p 	 .001), and an increase in verbs (p 	
.001) and second-person pronouns (p � .035) were significantly

associated with nondynamic gesture (see Table 8). Expertise was
associated with an increase in the relative odds of producing at
least one nondynamic gesture of 1.19. Males were associated with
a decrease in the relative odds of nondynamic gesture of 0.81.
Additionally, an increase of verbs and second-person pronouns
were associated with an increase in the relative odds of nondy-
namic gesture of 1.10 and 1.05, respectively.

The same model was also found to be the best fitting model for
dynamic gesture (see Table 9). Results showed that dynamic
gesture was significantly associated with expertise (p � .031), an
increase in spatial ability scores (p � .002), an increase in com-
parative connectives use (p � .031), and an increase in second-
person pronouns (p 	 .001) during proof production. Expertise
was associated with an increase of the relative odds of producing
a dynamic gesture of 1.15. Increased spatial ability scores were
associated with an increase in the relative odds of producing at
least one dynamic gesture of 1.04. Similarly, an increase in com-
parative connectives and second-person pronouns was associated

Table 7
Results of the Logistic Regression Predicting Transformational Proof

Variable � SE OR p value

Model 1: Main effects .000���

(Intercept) �3.43 0.77 0.03
Experta 1.28 0.41 3.60 .001���

Verbal �0.02 0.02 0.98 .321
Spatial 0.28 0.08 1.32 .000���

Ethnicity1 (White)b 0.25 0.55 1.28 .643
Ethnicity2 (Asian)b �0.33 0.58 0.72 .569
Sexc �0.21 0.32 0.81 .497

Model deviance (df) 431.8 (353)

Model 2: Main effects with gesture
(Intercept) �6.74 1.70 0.00 .000���

Experta 0.47 0.52 1.60 .372
Verbal 0.01 0.02 1.01 .813
Spatial 0.16 0.10 1.17 .112
Ethnicity1 (White)b �0.12 0.73 0.89 .866
Ethnicity2 (Asian)b 0.18 0.77 1.20 .819
Sexc 0.41 0.41 1.51 .317
Dynamic gesturesd 2.56 0.36 12.94 .000���

Nondynamic gesturese 2.92 1.41 18.54 .162
Model deviance (df) 415.9 (351)

Model 3: Main effects with gesture and speech
(Intercept) �6.57 1.68 .001 .000���

Experta 0.22 0.54 1.24 .691
Verbal 0.01 0.02 1.01 .819
Spatial 0.15 0.10 1.16 .142
Ethnicity1 (White)b 0.03 0.74 1.03 .964
Ethnicity2 (Asian)b 0.40 0.79 1.49 .613
Sexc 0.25 0.43 1.28 .555
Dynamic gesturesd 5.35 1.36 210.61 .000���

Nondynamic gesturese 2.51 1.37 12.30 .012
Situation model-cohesion 0.43 0.17 1.54 .007��

Verbs 0.34 0.20 1.40 .089
First-person pronouns �0.67 0.23 0.51 .002��

Model deviance (df) 384.0 (348)

Note. SE � standard error; OR � odds ratio. The raw regression coefficients (�) can be transformed into odds
ratios by exponentiating the coefficient.
a Nonexpert participant is the reference group. b “Other” ethnicity is the reference group. c Female is the
reference group. d No dynamic gesture is the reference group. e No nondynamic gesture is the reference
group.
�� p 	 .01. ��� p 	 .001.
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with an increase of the relative odds of dynamic gesture by 1.05
and 1.10, respectively.

Discussion

The analysis of one’s gestures during mathematical reasoning
tasks offer insights into the relationship between body-based pro-
cesses and cognitive processes that can advance our understanding
of mathematical cognition and math education. It was with these
goals in mind that we investigated the role of gesture production
during geometric reasoning.

Summary of Findings

Our investigation was guided by a primary research question: Is
geometric reasoning associated with participants’ simulated ac-
tions? Secondarily, we wanted to know: Does the strength of the
relationship between geometric reasoning and simulated action
depend on participants’ mathematical expertise? We address these
two questions in turn with respect to our findings.

Simulated actions offer an alternative to computational accounts
of intellectual behavior. Performance on mental rotation tasks
(Shepard & Cooper, 1982; Shepard & Metzler, 1971) illustrates
this phenomenon by showing first that response times are strongly
correlated with the angular displacement, as though during mental
rotation participants are continuously turning the objects just as
one would do it manually; and second, that performing physical
rotation interfered with mental rotation performance, and even
slowed mental rotation when a manual rotation tasks was directed
to be performed more slowly (Wexler, Kosslyn, & Berthoz, 1998).

As Hostetter and Alibali (2008, p. 497; also see Hostetter &
Alibali, 2019) describe,

Thinking about a particular concept, for example, involves a percep-
tual and motor simulation of the properties associated with that
concept, even when no exemplar of the concept is present in the
current perceptual environment (Barsalou, 1999).

Our investigation of the interrelationship of geometric reasoning
and simulated action centered on evidence of gesture and speech

Table 8
Results of the Logistic Regression Predicting Nondynamic Gesture

Variable � SE OR p value

Random component – Participant ID variance 0.84 0.92 .023�

Random component – Conjecture variance 0.01 0.03 .048�

(Intercept) 0.59 0.06 1.81 .000
Experta 0.18 0.06 1.20 .004��

Spatial 0.02 0.01 1.02 .077
Sexb �0.21 0.05 0.81 .000���

Comparative connectives 0.01 0.02 1.01 .702
Verbs 0.09 0.02 1.10 .000���

Second-person pronouns 0.05 0.02 1.05 .035�

First-person pronouns �0.04 0.02 0.96 .123
Model deviance (df) 354.4 (350)

Note. SE � standard error; OR � odds ratio. The raw regression coefficients (�) can be transformed into odds
ratios by exponentiating the coefficient.
a Nonexpert participant is the reference group. b Female is the reference group.
� p 	 .05. �� p 	 .01. ��� p 	 .001.

Table 9
Results of the Logistic Regression Predicting Dynamic Gesture

Variable � SE OR p value

Random component – Participant ID variance 1.03 1.02 .048�

Random component – Conjecture variance 0.45 0.67 .026�

(Intercept) 0.08 0.06 1.09 .188
Experta 0.14 0.07 1.15 .031�

Spatial 0.04 0.01 1.04 .002��

Sexb �0.10 0.06 0.91 .086
Comparative connectives 0.05 0.02 1.05 .031�

Verbs 0.03 0.02 1.03 .182
Second-person pronouns 0.09 0.02 1.10 .000���

First-person pronouns �0.01 0.02 0.98 .554
Model deviance (df) 380.1 (350)

Note. SE � standard error; OR � odds ratio. The raw regression coefficients (�) can be transformed into odds
ratios by exponentiating the coefficient.
a Nonexpert participant is the reference group. b Female is the reference group.
� p 	 .05. �� p 	 .01. ��� p 	 .001.
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production during geometric reasoning. In support of Hypothesis
H1, intuition accuracy was reliably associated with representa-
tional production. As observed (Tables 6, 7 and 8), participants
who performed representational gestures and produced transfor-
mational speech were more likely to report the correct intuition
(H1), verbalize the correct insight (H2), and produce a mathemat-
ically valid proof (H3) than participants who did not perform any
representational gestures. As predicted, static representational ges-
tures—gestures such as making and tracing shapes that could be
used to identify nondynamic properties of the objects in ques-
tion—were associated with higher intuition and insight perfor-
mance. The relationship of representational gestures with perfor-
mance showed effect sizes in the medium to large range. Proof
performance was most strongly associated with the production of
dynamic gestures—those that simulated operations that could be
used to explore generalized properties of objects—with very large
odds ratios (OR � 12.94, without speech; OR � 210.61, with
speech in the model). These odds ratios were even greater than
those for spatial ability and expertise. Indeed, the inclusion of
dynamic representational gestures led to variables for both exper-
tise and spatial ability dropping out of the model for proof.

As expected, we also found that transformational speech was
reliably associated with insight (H2) and proof performance (H3).
Recall that transformational speech categories were used to tag
utterances that captured participants’ point of view and that iden-
tified the cohesion of one’s situation models regarding the actions
performed on mathematical objects, although verb use did not
significantly contribute to the models of geometric reasoning.
Notably, gesture production was reliably associated with insight
and proof, even when controlling for speech content, indicating
that gestures and speech each make independent contributions to
modeling performance. That gestures may carry important infor-
mation about how students think and what they know above and
beyond what students say has important implications for assess-
ment, which we explore further below. Taken together, these
findings suggest that geometric reasoning is associated with par-
ticipants’ simulated actions, as exhibited by representational ges-
ture and transformational speech.

We sought to also understand how expertise modulated these
observed effects. As expected, experts outperformed nonexperts
in each of the three performance measures, intuition, insight
and proof. Furthermore, experts were more likely to produce
representational gestures than nonexperts, and, in particular,
experts were more likely to produce dynamic representational
gestures. Thus, in our competing hypotheses, we found that
geometry performance for experts was more strongly associated
with gesture production than for nonexperts, in support of
Hypothesis H4a, and in conflict with H4b. These findings,
coupled with those showing that dynamic gesture production
may, to some extent, take the place of expertise, suggests that
interventions that elicit mathematically relevant dynamic rep-
resentational gestures might benefit nonexperts. We revisit this
point later in this section.

Limitations of the Current Study

This study has several limitations that are important to take
into account when interpreting the reported findings. First of
all, this was a correlational study. Consequently, we must be

cautious in drawing any causal inferences about these statistical
associations. These relationships provide valuable empirically
based hypotheses for exploring the causal link between gesture
production and mathematical reasoning. One of the paradigms
for this is to inhibit or otherwise engage gesture production and
examine the effect. This research has shown mixed results, with
several studies showing significantly degraded performance on
reasoning (e.g., Cook, Yip, & Goldin-Meadow, 2012; Goldin-
Meadow et al., 2001), but others showing no reliable impact
(Walkington, Chelule, Woods, & Nathan, 2019).

A second limitation is how we conceptualized expertise. To
have similar levels of maturity, we drew from a population of
undergraduates enrolled in education courses, and a small num-
ber of graduate student (n � 5) to fill out the expert group.
Although this represents a highly selective group of young
adults who have gained admission to a competitive public
university, it is certainly possible to study the views of people
far more experienced in proof practices (e.g., Marghetis, Ed-
wards, & Núñez, 2014). Similarly, it is very likely that there are
similar age people for whom academic tasks such as geometric
reasoning is even less familiar. A broader sampling might well
reveal even greater group differences that would likely gener-
alize better to the population at large.

Implications and Conclusions

The evidence presented suggests that some facets of mathe-
matical thinking are embodied, and that people use body-based
processes such as gestures and transformational speech as an
important aspect of their task performance. Still, the correla-
tional nature of this study cannot endorse a causal claim about
the role that gestures play in mathematical thinking. The pat-
terns of gesture production may be a manifestation of other
processes that are themselves revealed through these move-
ments and not causally related to or constituents of the reason-
ing processes themselves. This suggests that intervention stud-
ies that both prompt and restrict gesture production are
important.

Gesture scholars, particularly McNeill (1992), Kendon
(2004), and Goldin-Meadow (2005), describe systems of ges-
ture identification. This study contributes to gesture studies
research by expanding the contexts in which people invoke
dynamic and nondynamic gestures, and extending the applica-
bility of these forms to geometry, beyond their earlier instan-
tiations in calculus (Garcia & Infante, 2012), and mental rota-
tion (Göksun et al., 2013). For example, when students work
collaboratively while engaged in geometry proof tasks, dynamic
gestures again appear to play a significant role in successful
reasoning, even when these embodied representations and op-
erations are distributed across the hands and arms of multiple
students (Walkington, Chelule, et al., 2019). A recent review
(Williams-Pierce et al., 2017) noted that an embodied perspec-
tive on proof practices in mathematics might extend our under-
standing of mathematical cognition in two important ways.
First, the actions made by students can influence students’
mathematical reasoning through action-cognition transduction,
which, by inducing cognitive states through actions, can im-
prove students’ understanding of the mathematical ideas. Find-
ings from other studies have provided evidence that suggest
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gestures influence one’s geometric reasoning. In one study,
making specified body shapes led to improved understanding of
angular measure for elementary grade students (Smith et al.,
2014). In a 2-week classroom intervention, high school students
engaged in body movements showed greater learning gains than
those engaged in mathematically comparable non– body-based
activities in tests of understanding similarity (Smith, 2018). In
an intervention involving a movement based video game, math-
ematically relevant actions fostered greater geometric reasoning
for high school students than matched, but mathematically
irrelevant actions, but only for those students who were already
predisposed to producing the gestures (Walkington, Nathan, &
Wang, 2020). The current study further contributes to this
emerging body of work by showing that spontaneously pro-
duced gestures are implicated as well.

Second, it is valuable to attend to students’ body movements
such as their gestures when students engage in proof production
because these movements contribute to a richer assessment of
student thinking than is provided by speech alone. This is
especially true of students’ use of dynamic gestures, which
indicate ways students employ transformational proof schemes
as they reason about the generalizability of mathematical con-
jectures. Gestures appear to carry important information about
how students think and what they know, above and beyond what
students say. One compelling finding in this regard is how
young children’s gestures can signal their “leading edge” of
cognitive development. Those children whose gestures and
speech were discordant while addressing the cognitive disequi-
librium of a Piagetian water conservation task were found to be
more receptive to training in the conservation concept (Church
& Goldin-Meadow, 1986). Others (e.g., Pier et al., 2019) have
shown statistically that gestures make unique contributions to
models of mathematical performance. In this current study we
also observed ways that gestures independently contributed to
the models of geometry performance, even when controlling for
expertise, spatial reasoning, and speech content. This suggests
that neglecting gestures when assessing student performance
may underpredict students’ conceptual understanding. An im-
plication from this is that attending to information conveyed
through learners’ gestures offers important information to ed-
ucators for making valid formative assessments. Introducing
this idea, and the perceptual training that may need to support
this, could provide a rich new channel in which teachers can
assess student understanding and provide adaptive instruction.
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