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Abstract

This study investigated the power of two-level hierarchical linear modeling (HLM) to
explain variability in intervention effectiveness between participants in context of
single-case experimental design (SCED) research. HLM is a flexible technique that
allows the inclusion of participant characteristics (e.g., age, gender, and disability
types) as moderators, and as such supplements visual analysis findings. First, this study
empirically investigated the power to estimate intervention and moderator effects using
Monte Carlo simulation techniques. The results indicate that larger values for the true
effects and the number of participants resulted in a higher power. The more moderators
added to the model, the more participants needed to detect the effects with sufficient
power (i.e., power >.80). When a model includes three moderators, at least 20
participants are required to capture the intervention effect and moderator effects with
sufficient power. For that same condition, but only including one moderator, seven
participants are sufficient. Specific recommendations for designing a SCED study with
sufficient power to estimate intervention and moderator effects were provided. Second,
this study introduced a newly developed user-friendly point and click Shiny tool,
PowerSCED. This tool assists applied SCED researchers in designing a SCED study
that has sufficient power to detect intervention and moderator effects. To end, the use of
HLM with the inclusion of moderators was demonstrated using two previously pub-
lished SCED studies in the journal School Psychology Quarterly.
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In a single-case experimental design (SCED) study, individual cases (e.g.,
participants) are repeatedly measured during a baseline condition, followed by
an intervention condition (Kazdin, 2011; Kratochwill et al., 2014). By compar-
ing outcomes obtained during the baseline condition and the intervention
condition, researchers can evaluate whether there is a basic effect of the
intervention on the outcome variable (Kratochwill et al., 2010; What Works
Clearinghouse, 2020). A basic effect is documented if the outcome pattern
observed during the intervention condition is not a continuation of the pattern
observed during the baseline condition. The pattern is traditionally investigated
by visually analyzing the level, trend, and variability (Kratochwill et al., 2010).
If evidence in support of a basic effect is demonstrated at least three times at
three different time points, then the researcher has preliminary evidence to
conclude that the change in the outcome measure(s) is caused by the interven-
tion, not by outside experimental factors (Moeyaert et al., 2013a; What Works
Clearinghouse, 2020). Several SCED types can be used to document this basic
effect at least three times at three different moments in time. These designs can
be classified as either within series SCEDs or between series SCEDs (Barlow
et al.,, 2008; Horner & Odom, 2014). The within-series designs involve repli-
cation of the basic effect within one participant, whereas the between series
designs involve replication of the basic effect across participants. The ABAB
reversal designs (Ferron, 2005), alternating treatment designs (Wolery et al.,
2018), and chancing criterion designs (Gast & Ledford, 2018) are examples of
within series designs, and the multiple-baseline designs and the multiple-probe
design (Gast et al., 2018) are between-series designs (Shadish & Sullivan,
2011; Jamshidi et al., 2020; Moeyaert et al., 2020).

Jamshidi et al. (2020) conducted a systematic review of SCED studies,
focusing on SCED design characteristics. Their review indicated that 56% of
the 177 included SCED studies used a multiple-baseline design (MBD). The
MBD across participants embeds replication across participants, and thus is
more externally valid (Ferron & Scott, 2005). Figure 1 displays an example of
an MBD across six participants. As depicted in Figure 1, King et al. (2017)
implemented the On-Task in a Box treatment for increasing on-task behavior
of highly off-task students at the 4t 5t and 6% observation occasion for
Participants 1 and 4, 2 and 5, 3 and 6, respectively. Hence, studies using
MBDs can make more generalized conclusions about intervention
effectiveness (i.e., demonstration of effectiveness across six participants, at
three different points in time). In addition, the MBD introduces the
intervention staggered across participants, and thus it is internally valid
(Ferron & Scott, 2005). The staggered start of the intervention in MBDs
prevents outside experimental factors as intervention confounders (i.e., the
threat of history; Shadish et al., 2002). Using Figure 1 as an example, only
Participants 1 and 4 are anticipated to experience a change in outcome pattern
after the 4 measurement observation (when Participants 1 and 4 receive the
intervention), whereas the outcome patterns of the other participants (still in
the baseline condition) are expected to remain at baseline levels. The current
study focused on the MBD because of its popularity and its high internal and
external validity.
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Fig. 1 Multiple-Baseline Design Across Participants. Note: The figure was recreated using Microsoft® Excel.
The raw data was extracted from King et al. (2017) using the data retrieval program WebPlotDigitizer

Quantification of Single-Case Research Using Two-Level Hierarchical
Linear Modeling

In addition to visually documenting evidence in support of intervention effectiveness
(Barton et al., 2018; Kratochwill et al., 2014), multiple statistics have been developed to
quantify the effect of the intervention in SCEDs. For instance, nonoverlapping statis-
tics, such as NAP (Parker et al., 2009) and Tau indices (Parker et al., 2011; Tarlow,
2017), use the percentage of nonoverlapping outcome scores between the baseline
condition and the intervention condition to quantify intervention effectiveness. Para-
metric statistics, such as regression-based effect sizes, quantify the magnitude of
changes in outcome patterns (e.g., changes in outcome levels and/or outcome trends)
between baseline and intervention conditions together with its statistical significance
(Ferron et al., 2017; Moeyaert et al., 2014a; Van den Noortgate & Onghena, 2003a,
2003b). This study focused on this latter category as regression-based statistics allow
for quantifying the magnitude of the intervention effect, and for evaluating whether the
intervention effect is clinically and statistically significant. The outcome measure Y; can
be regressed on a dummy coded variable, D; indicating the condition an observation
belongs to (i.e., D; equals 0 when Y; belongs to the baseline condition, intervention
condition otherwise). The within-participant errors (e;) are assumed to be homoge-

neous, independent and normally distributed around an average of 0 and variance o?.
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Therefore, o2 indicates the within-participant error variance. This regression model is
displayed in Eq. 1.

Yi= B+ BDi+e withe;~N(0,02) (1)

Using Eq. 1, the intervention effect (i.e., Bl, change in outcome level between the
baseline and the intervention conditions) can be estimated for each participant sepa-
rately. To estimate the intervention effect across multiple participants (and even across
multiple studies), the mean, weighted mean, median and/or range can be reported
(Jamshidi et al., 2020). As an alternative, hierarchical linear modeling (HLM) can be
used, and is recommended, because this approach considers the nested MBD structure
(repeated measures are nested within participants). Given that the repeated measures of
one participant are more alike compared to repeated measures of other participants, the
HLM approach is preferred as it considers this dependency. Using HLM, the overall
intervention effectiveness across participants is quantified, in addition to individual
differences in intervention effectiveness (Van den Noortgate & Onghena, 2003a,
2003b). The two-level hierarchical linear model is a straightforward extension of the
simple linear regression, and is displayed in Eq. 2. The first level represents the
measurement level (within-participants). The dependent variable Yj; is the outcome of
participant () at measurement occasion (i). The independent variable Dj; is a dummy
variable, indicating the condition. Therefore, 3;; indicates the expected baseline level
for participant j and (;; indicates the expected intervention effect (i.e., change between
baseline level and intervention level) for participant ;.'

Level 1 (within participants) : Y;; = 3y, + 3,05 +e;  with e;~N (0,07)

. Boj = 0o + uq;
Level 2 rt ts) : / /
evel 2 (across participants) {61/' — 0, +
A o2
with [uof}~MVN [0], oo ,and e;~N (0, 07)
u; 0]"| ouw, 7,

(2)

The level 1 parameters (at the right side of the equation sign) are allowed to vary at the
second level as it is reasonable to expect that baseline levels (3 ’s) and intervention
effects (3;;"s) vary between participants. Therefore, these parameters are a function of
an overall average effect across participants (reflected by the #’s) and individual
differences (reflected by the u’s). 6, refers to the overall baseline level across the J
participants. The deviation of participant j from the overall baseline level 6, is indicated
by ug,;. These deviations are assumed to be multivariate normally distributed around 0
with a variance of o, . As such, o, represents the between-participant variance of the
baseline level. Likewise, #; refers to the overall intervention effect across the J
participants; u; refers to the deviation of participant j from the overall intervention

" MVN stands for multivariate normally distributed. MVN indicates that there is covariance between the
baseline and intervention effect.
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effect. These deviations are assumed to be multivariate normally distributed with
average of 0 and variance aﬁl. Thus, ai] represents the between-participant variance
of the intervention effect. The covariance between the baseline level and the interven-
tion effect is indicated by o, u;. A negative value for this covariance parameter would
indicate that participants with higher baseline levels, in general, have a smaller inter-
vention effect. The within-participant errors, e, are assumed to be independent and
normally distributed around 0 with a variance of ag. Therefore, crg indicates the within-
participant error variance. By substituting the Level 2 equations into the Level 1
equation, the combined two-level hierarchical linear model can be written as:

Vi =00 +uo; + (91 + ul_/)Dij + e;jwith |:Z?ﬂ ~MVN(0,%,), e;~N (O7 ag) (3)

The basic two-level HLM approach introduced in Eq. 3 is promising and its appropri-
ateness in summarizing SCED data has been empirically validated through large-scale
Monte Carlo simulation studies (e.g., Ferron et al., 2009; Ferron et al., 2010; Ferron
et al., 2014). The HLM approach produces unbiased estimations of the intervention
effects. Ferron et al. (2009) suggests using a Kenward-Roger method of degrees of
freedom to ensure the greatest accuracy of the estimation.

A major advantage of using HLM is its flexibility. For example, the basic two-level
hierarchical linear model (displayed in Eq. 3) can easily be extended (Van den
Noortgate & Onghena, 2003a). If a substantial amount of between-participant variabil-
ity is found in intervention effectiveness (i.e., large ‘751 ), moderators can be included at
the second level of the hierarchical linear model in an attempt to explain this variability.
The two-level combined model, including a set of M moderators at level two, is
displayed in Equation 4.

Yij = B0+ uo; + (81 + 1) Dy + Xy (Brem + Ut 4m)j) M Dj + o,
Uoj
with[ u; ]~MVN(O7EM),6,-]»~N(O,J§)
U(1+m);

(4)

In Eq. 4, M refers to the total number of moderators added to the second level (m =1 to
M). The coefficients of the first moderator (m = 1) up to the last moderator (m = M) are
0, , 6, ..., 014, The coefficient 6, ., indicates the overall impact of moderator m on
the variability in intervention effectiveness between participants. The coefficient u(; 4
refers to the difference between the overall effect of moderator m across participants
and the participant-specific effect of moderator m on the variability in intervention
effectiveness. This study focused on explaining variability in intervention effectiveness
between participants. The variability in baseline levels is assumed to be small. As such,
a parameter reflecting the impact of the moderator on baseline levels is not included in
Equation 4. The model presented in Eq. 4 has the potential to provide an answer to a
variety of practical research questions such as: (1) Is there evidence in support of
intervention effectiveness across participants? (2) For whom is the intervention most or
least effective (participant-specific intervention effects)? and (3) Can variability in
intervention effectiveness be explained by a set of moderators?
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Goals of Current Study

Previous methodological studies have been conducted to empirically validate the basic two-
level HLM approach and several extensions to summarize single-case data (Ferron et al.,
2009; Ferron et al., 2010; Ferron et al., 2014; Hembry et al., 2015). One extension that has
not been investigated is the inclusion of moderators to explain variability in intervention
effects between participants within a given SCED study. The current study was designed to
fill this gap and has a methodological part and an applied part.

Methodological Part

Methodological work is needed to empirically investigate under which realistic SCED
conditions (e.g., number of measurement occasions, participants, magnitude of the effects
and variance) true intervention and moderator effects can be detected with sufficient power.
To meet this goal, a large-scale Monte Carlo simulation study was conducted.

Applied Part

Although the conditions included in the simulation study are common and representa-
tive for the field, it is likely that researchers will have design conditions and parameter
values deviating from the ones included in the simulation study. For this purpose, a
user-friendly point-and-click Shiny tool, called PowerSCED (Xu et al., 2021), was
developed. The tool is freely accessible, and the power is estimated based on user-
defined conditions and parameter values. The first goal of the applied part was to
introduce this tool. Second, a demonstration of using HLM with the inclusion of
moderators was provided using data from two previously published SCED studies in
the journal School Psychology Quarterly.

Methodological Part

A Monte Carlo simulation study was conducted to evaluate the power of the two-level
HLM approach to estimate intervention and moderator effects in conditions represen-
tative for the field of SCED research.

Data Generation

Previous research indicates that SCED studies commonly include 0—3 moderators in an
effort to explain variability in intervention effectiveness between participants
(Moeyaert et al., 2021a). Moeyaert et al. (2021b) conducted a systematic review
summarizing moderator characteristics in SCED research. Based on the 60 SCED
meta-analyses that met their inclusion, it was found that, gender, disability type, and
age are the three most frequently investigated moderators. All the identified meta-
analyses were in the field of social sciences with a focus on the population of
participants with special needs. The most commonly used measurement scale of the
moderators gender and disability is nominal (with two categories), whereas the most
commonly used measurement scale of age is continuous. Thus, four models were used
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to generate MBD data. Model 0 was the basic model introduced in Eq. 2 and included
no moderators. Model 1 included one binary nominal moderator (i.e., gender). Model 2
included two binary nominal moderators (i.e., gender and disability), and Model 3
contained two binary moderators (i.e., gender, disability) and one continuous moderator
(i.e., age). Two binary nominal moderators were included in Model 2 and Model 3
instead of two continuous moderators. The conditions to reach a power of .80 for the
model with two binary variables were more challenging compared to the model with
one or two continuous variables. As such, less measurements and participants and
smaller sizes of the effects would be required. Therefore, if sufficient power is reached
for the suggested models, then it can be concluded that sufficient power is reached for
the other models (with more continuous variables). If the applied researcher is inter-
ested in designing a study with a different combination of moderator scales than
included in this simulation study, then the Shiny tool PowerSCED can be used.
The models are presented in Eqs. 5-8.

Model 0 : Yy = bo +ug; + (91 + “U)Dij + ey,

: 5
with |: ZOJ :| NN(07 Zu)a €ij~N<07 Ug) ( )
1j
Model 1 : Vi = O + uo; + (01 + ulj)D,j + (02 + uzj) Gender Dj; + ey,
I 2 (6)
with| y,; |~MVN(0,%,), e;~N(0,02)
uz‘,-

Model 2 : y; =6y +ug; + (01 + ulj)D,-j- + (62 + uz‘/-) Gender Dj; + (93 + M3j) Disability Dj; + ejj,
Uuo;
with | 11 ~MVN(0,%,), e;~N (0,07)

3j
uz %

(7)

Model 3 : y; = 0y + ug; + (91 + u.,»)D;j + (92 + uz,») Gender D + (93 + M},’) Disability D + (04 + u4/) AgeDj; + ey,

Upj

with ~MVN(0,%,), e5~N (0, 02)

(8)

The Level-2 residuals (u’s) in Eqs. 5-8 were assumed to be multivariate normally
distributed. The Level-1 residuals (e;’s) in Egs. 5-8 were assumed to be independent
and normally distributed. This means that it was assumed that outcome scores closer in
time were not more related to each other compared to outcomes further away in time.
This assumption can be violated in repeated measured design such as SCEDs, and
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dependency between errors (i.e., autocorrelation) can be modeled (Ferron et al., 2009;
McKnight et al., 2000; Petit-Bois et al., 2016). However, autocorrelation was not
included in current study because of the following reasons: First, Shadish and
Sullivan (2011) conducted a systematic review of SCEDs, and summarized SCED
data characteristics. One of their findings indicated that the size of autocorrelation in
SCED studies varies tremendously, with an average of about zero. For that reason,
assuming an autocorrelation of 0 is a reasonable assumption to start with. Second,
methodological research focusing on modeling moderators in SCEDs is limited.
Therefore, this modeling complexity needs to be studied in isolation to avoid con-
founding with other modeling complexities. Finally, there are many covariance struc-
tures possible, of which the first-order autoregressive type is most common (Ferron
et al.,, 2009; McKnight et al., 2000; Petit-Bois et al., 2016). Given that there are
multiple functional forms possible and plausible values for the autocorrelation param-
eter, more research is needed to first focus on this complexity in isolation. Therefore,
the issue of autocorrelation deserves its own study. This last point is further motivated
by Petit-Bois et al. (2016) explicitly stating: “research will be needed to fully under-
stand the effects of various types of model misspecification on the fixed-effect infer-
ences made from single-case data” (p. 810).

The following factors were varied to simulate the SCED data: (1) the true values of the
intervention effect 0; and moderator effects 0 . ,,,; (2) the number of Level-1 and Level-2
units (i.e., the number of measurement occasions, /, and the number of participants, J,
respectively); (3) the number of moderators at the second level; and (4) the covariance
between moderators and the covariance between moderator and intervention.

To obtain realistic values of moderator effects, variability in moderator effects,
covariances between moderators, and covariances between moderator and intervention,
primary SCED studies from two published SCED meta-analyses were reanalyzed. The
two SCED meta-analyses selected for this purpose were Moeyaert et al. (2021b) and
Heyvaert et al. (2012).> Standardized SCED data from 45 SCED studies and 349
participants from Moeyaert et al. (2021b), and 216 SCED studies and 469 participants
from Heyvaert et al. (2012) were reanalyzed to identify realistic parameter values for
moderator effects, variability in moderator effects, and covariances between moderators
and covariances between moderator and intervention. Covariances between moderators
and between moderator and intervention were set to either all zero or nonzero (i.e.,
realistic values; see Table 1). Values for the other design conditions (intervention effect,
the number of measurement occasions and number of participants) were based on
previous methodological work in the field of HLM of SCEDs (Ferron et al., 2014;
Moeyaert et al., 2013a, 2013b, see Table 1). The amount of between-participant
variance of the baseline, the intervention effect and the moderator effects, and the
within-participant variance were kept fixed (see Table 1). This resulted in 16 conditions
for Model 0, 64 conditions for Model 1, 128 conditions for Model 2, and 256
conditions for Model 3. An overview of the values per varying design factors is given
in Table 1. An equal number of participants were assigned to the categories of the two
dichotomous moderator variables (i.e., gender and disability type). This was to avoid

2 SCED data were standardized prior to re-analysis (Van den Noortgate & Onghena, 2008). This took into
account that primary SCED studies might use different outcome scales. For instance, one SCED study might
measure the outcome on a scale from 0 to 10 whereas another SCED study might use a scale from 0 to 100.
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that all participants within one study fell within one category and as such modeling a
moderator would not make sense. The same was true for the continuous variable age
(i.e., not all participants within one study had the same age). Values for the moderator
variable age were generated with values ranging from 5 to 15 (based on reanalyzing
349 participants included in the meta-analysis by Moeyaert et al., 2021b), and the
variable was mean-centered in order to provide a meaningful interpretation of the
intercept. One thousand replications were generated for each condition, leading to a
total of 464,000 datasets to analyze. The annotated SAS code used to generate the
SCED data can be obtained by contacting the first author of this study.

The data was generated for MBD across participants; thus, the start point of the
intervention was staggered and was dependent on the number of participants and
measurements (e.g., the intervention started at 7, 10, 13 and 16, respectively for studies
with four participants and 20 measurement occasions).

Data Analysis
The same four two-level hierarchical linear models used to generate the SCED data (see
Egs. 5-8) were used to estimate the intervention and moderator effects. For this

purpose, the PROC MIXED procedure within SAS (SAS Institute Inc., 2013) was
used. The restricted maximum likelihood (REML) via the Kenward-Rogers method for

Table 1 Overview of Design Factors and Parameter Values

Design Factor Notation Value
Number of measurement occasions 1 20 or 40
Number of participants J 4,7,12, or 20
Intervention effect 0, 3or4d
Moderator effects Gender, 0, lor3
Disability, 05 0.75 or 1.50
Age, 0, 0.25 or 0.50
Covariance Gender and disability, GzGD 0 or 0.20
Gender and age, O'ZGA 0 or 0.02
Disability and age, 0%, 0 or 0.02
Intervention and gender, 0%; 0 or 0.05
Intervention and disability, o2, 00r 0.01
Intervention and age, 07, 00r0.01
Between-participant variance Baseline level, 0‘50 1
Intervention effect, (751 1
Gender moderator effect, 0‘52 1
Disability moderator effect, 0'53 0.5
Age moderator effect, o‘g4 0.2
Within-participant variance o? 1

Note. 0%, = Covariance between gender and disability; 0%, = Covariance between gender and age; 0%, =
Covariance between disability and age; 0%; = Covariance between intervention and gender; 0%, = Covariance
between intervention and disability; 62 = Covariance between intervention and age
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degrees of freedom was chosen, because this is the recommended estimation procedure
in contexts of a small number of participants and measurement occasions within
participants (Ferron et al., 2009). The aim of the simulation study was to investigate
the power to estimate intervention and moderator effects under commonly encountered
SCED study conditions. The power is the probability of detecting a statistically
significant intervention or moderation effects for nonzero true effects. Thus, power
was calculated for the design conditions having nonzero effects. In particular, when the
null hypothesis (there was no true intervention or moderation effects) was false, and a
statistically significant effect was found (p < .05), then the nonzero effect had been
successfully detected. If the null hypothesis was not rejected (assuming the null
hypothesis is false), then a Type II error was made. The percentage of replications

per condition in which the nonzero significant intervention or moderation effects were

#successfully rejected replications
1,000

intervention or moderator effects. The performance of the HLM approach with mod-
erators was further investigated by examining the following statistical properties of the
intervention effect and moderator effects: relative bias, mean squared error, relative
standard error bias, coverage proportion of the 95% confidence interval, and Type I
error rate. These results can be obtained by contacting the first author of this study.
Generalized linear modeling (GLM) was used to identify design factors that have a
statistically significant and large impact on the power. As such, power was modeled as
dependent variable and the varying design factors as independent variables (both main
and two-way interaction effects were modeled). This helped investigating the influence
of design factors on power, and identify conditions in which the two-level HLM
approach had sufficient power (power larger than or equal to .80) to estimate interven-
tion and moderator effects. A large impact was indicated by a partial eta-squared (7712,)

successfully detected (i.c., ) was the power to detect the

value larger than or equal to .14 (Cohen, 1969).

Results

This section presented the power to estimate intervention and moderator effects per model.
As mentioned before, Models 0-3 included no moderator, one binary moderator, two
binary moderators, and two binary and one continuous moderator, respectively.

When there were four study participants, Models 2 and 3 (including more than one
categorical moderator) failed to estimate the second positioned categorical moderator.
However, the continuous moderator (i.e., age in this study) could still be successfully
estimated regardless of its position in the model. For instance, when Model 2 included
four participants, and gender took the first position and disability the second position,
Model 2 only provided an estimate of the effect of gender. Likewise, when Model 3
included only four participants, and the three moderators were modeled in the follow-
ing sequence: age, gender, and disability type, Model 3 failed to estimate disability
type. If the moderators were in the sequence gender, disability type, and age, Model 3
still failed to estimate disability type, but not age. The possible reason was that the
categorical moderators only had two levels (0 or 1), and as such the true moderator
effects were smaller compared to the true moderator effect of the continuous moderator
(i.e., age having a range of 5-15). Therefore, the conditions with four participants in
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Models 2 and 3 were not included. As a consequence, a total 16 design conditions for
Model 0, 64 design conditions for Model 1, 96 design conditions for Model 2, and 192
design conditions for Model 3 were analyzed and discussed. The results were not
presented per level of the covariance factor because it had no main effect (and did not
interact with other factors) on the power estimates. The interested reader can obtain
these results by contacting the first author.

Model 0: No Moderators

The GLM results indicate that all design factors had a large effect on the power to estimate
the intervention effect (.617 < 77}27 < .999). The power to detect the intervention effect per
design condition is presented in Table 2. All conditions had a power larger than .80. For four
participants, the power increased from .94 to 1.00, when the intervention effect ¢, increased
from 3 to 4. The larger the magnitude of the intervention effect, the larger the power. When
the number of participants was 7, 12, or 20, no differences in power was obtained between 6,
=3 and 6, = 4 as the power reached 1.00 in all conditions.

Model 1: One Categorical Moderator

The GLM results indicate that the number of participants (for intervention effect, 17,2, =
.998; for gender moderator effect, 772 = .997), the number of measurement occasions
(for intervention effect, 77;2, = .481; for gender moderator effect, 7712, = .309), and the
magnitude of intervention effect (nf, =.976) and gender moderator effect (nﬁ =.998)
had large effects on the power to detect the intervention effect and gender moderator
effect. More participants, more measurement occasions, and a larger magnitude of the
intervention effect or gender moderator effect led towards a larger power.

The power to detect the nonzero intervention and moderation effect across the 32
design conditions (controlling for the factor covariance) is presented in Table 3. The
results indicate that, across all conditions, the power to detect the intervention effect
was larger compared to the power to detect the moderator effect. Studies with seven
participants or more had a power larger than .80 to detect the intervention effect across

Table 2 Power Estimates to Detect Intervention Effect—No Moderators

! J 0,=3 0,=4

20 4 .94 1.00
7 1.00 1.00
12 1.00 1.00
20 1.00 1.00

40 4 .94 1.00
7 1.00 1.00
12 1.00 1.00
20 1.00 1.00

Note. 0, = Intervention effect; / = Number of measurement occasions; J = Number of participants
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all conditions. For the moderator effect, only studies with a relatively large true
moderation effect (i.e., #, = 3) and 12 or more participants had sufficient power to
detect the moderator effect.

Model 2: Two Categorical Moderators

Similar to Model 1, the number of participants (.996 < nf) < 1.00), the number of
measurement occasions (.436 < 772 < .638), and the magnitude of intervention effect (7712)
=.976), and moderator effects (nﬁ =.999 for gender and 7712J =.998 for disability) largely
affected the power to detect corresponding intervention and moderator effects. More
participants, more measurement occasions, and larger sizes of the intervention effect
and moderator effects resulted in larger power.

The power to detect the nonzero intervention effect, and the two moderator effects
per design condition is presented in Table 2. Similar to Model 1, the power to detect the
intervention effect was larger compared to the power to estimate the moderator effects.
According to Table 4, studies with 12 or more participants had a sufficient power to
detect the intervention effect (regardless of the true value of the intervention effect is 3
or 4). However, to detect the first moderator effect (i.e., gender), studies needed at least
12 participants and a relatively large true moderator effect (i.e., 6, = 3) to reach a power
of .80. To detect the second moderator (i.c., disability) with sufficient power, studies
required a large true moderator effect (i.e., #; = 1.50) and at least 20 participants.

Model 3: Two Categorical and One Continuous Moderator

The GLM results indicate that the number of participants (.99 < 7)12, < 1.00), the number
of measurement occasions (.25 < 775 < .46), and the magnitude of intervention effect
and moderator effects (.95 < nﬁ < 1.00) largely affected the power to estimate

Table 3 Power Estimates to Estimate Intervention and Moderator Effect—One Moderator

Power D Power_ Gender
1 01 02 J=4 J=1 J=12 J=20 J=4 J=17 J=12 J=20
20 3 1 .55 .87 1.00 1.00 11 13 .29 46
3 .54 .85 1.00 1.00 33 73 97 1.00
4 1 74 98 1.00 1.00 11 15 .26 46
3 73 98 1.00 1.00 32 .76 98 1.00
40 3 1 .56 .88 1.00 1.00 .10 15 .28 49
3 .56 90 1.00 1.00 35 77 98 1.00
4 1 78 99 1.00 1.00 12 15 .28 49
3 .79 99 1.00 1.00 35 77 99 1.00

Note 1. Power D = Power to estimate intervention; Power Gender = Power to estimate moderator (gender)
Note 2. 0, = Intervention effect; 0, = Moderation effect (gender); / = Number of measurement occasions; J =
Number of participants

Note 3. Values larger than or equal to .80 are indicated in bold
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corresponding intervention effect and moderator effects. Consistent with Model 0,
Model 1, and Model 2, all four models revealed a similar pattern in that studies with
a larger number of participants, measurement occasions, and a larger value of the
magnitude of intervention effect and moderator effects, had a larger power to detect
corresponding intervention and moderator effects.

The power to detect the true intervention and moderator effects across 96 design
conditions (controlling for the factor covariance) is presented in Table 3. As displayed
in Table 5, studies with 12 or more participants had a power of .80 or larger to detect
the intervention effect across different magnitudes of the intervention effect and the
numbers of measurement occasions. For the first categorical moderator (i.e., gender),
studies with 12 or more participants and a true moderator effect of 3 reached a power of
.80 regardless the number of measurement occasions. Likewise, the continuous mod-
erator (i.e., age) would be detected with sufficient power for studies with at least 12
participants and an effect of 0.50. Whereas, for the second categorical moderator (i.e.,
disability), studies with 20 participants, 40 measurement occasions, and an effect of
1.50 were needed to obtain sufficient power to capture the second moderator effect.
Overall, for a study to have sufficient power to estimate the intervention effect and all
three moderators effects, 20 participants, 40 measurement occasions, and relatively
large sizes of all moderator effects (i.e., 6, =3, 65 =1.50, 6, =0.50) were needed.

Table 4 Power to Estimate the Intervention and Moderator Effects—Two Moderators

Power D Power_Gender Power_Disability

1 6, 6, 63 J=7 J=12 J=20 J=7 J=12 J=20 J=7 J=12 J=20

20 3 1 075 .44 99 1.00 13 24 45 .09 17 29
1.50 45 99 1.00 A1 26 47 21 .55 .80

3075 44 98 1.00 .52 98 1.00 .10 .16 .30

1.50 .43 98 1.00 52 97 1.00 21 .54 .80

4 1 075 .66 1.00 1.00 13 24 47 .09 18 .30

1.50 .68 1.00 1.00 12 25 .45 .20 .53 .80

3075 .64 1.00 1.00 53 98 1.00 .09 18 .30

1.50 .65 1.00 1.00 53 97 1.00 22 .53 82

40 3 1 075 49 99 1.00 13 26 51 .09 .19 31
1.50 .50 99 1.00 A1 27 .50 24 .57 .84

3075 47 99 1.00 .56 99 1.00 .10 .19 31

1.50 .47 1.00 1.00 .56 98 1.00 23 .57 .84

4 1 075 .71 1.00 1.00 12 .29 .51 .09 .19 32

1.50 .70 1.00 1.00 12 28 .49 23 .59 82

3075 .70 1.00 1.00 .59 98 1.00 .10 19 31

1.50 .70 1.00 1.00 .55 99 1.00 22 .60 .84

Note 1. Power D = Power to estimate intervention; Power Gender = Power to estimate moderator 1 (gender);
Power_Disability = Power to estimate moderator 2 (disability)

Note 2. 0; = Intervention effect; 6, = Moderator 1 effect (gender); 65 = Moderator 2 effect (disability); I =
Number of measurement occasions; J = Number of participants

Note 3. Values larger than or equal to .80 are indicated in bold
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Table 5 Power to Estimate Intervention and Moderator Effects—Three Moderators

Power D Power_Gender Power Disability ~ Power Age
I 01 6203 04 J=J=J=J=J J=J=J J J=J = J =
7 12 20 7 12 20 7 12 20 7 2
203 1 075 025 28 .93 1.00 .09 .23 46 09 .18 26 .16 42 70
0.50 30 .93 1.00 .09 .23 46 08 16 25 42 .88 .99
1.50 025 30 .92 1.00 .09 .24 44 14 50 79 .16 46 .68
0.50 31 .93 1.00 .11 .22 43 18 48 76 43 .89 .99
3 075 025 29 95 1.00 37 95 100 .08 .16 25 .16 41 .71
050 33 93 1.00 37 95 100 .08 .17 24 43 90 1.00
150 025 33 .92 100 36 .95 1.00 .14 48 77 .17 38 .69
050 29 94 1.00 38 .94 100 .16 48 .79 41 89 .99
4 1 075 025 45 99 1.00 .10 .26 45 .09 14 27 17 42 .67
050 46 .99 1.00 .11 .24 44 09 17 27 42 90 1.00
1.50 025 46 .99 1.00 .10 .25 46 17 47 77 15 41 1
0.50 47 98 1.00 .10 .23 45 16 49 78 42 .88 .99
3 075 025 48 99 1.00 39 93 100 .08 .14 29 .17 39 .70
050 46 99 1.00 38 95 100 .09 .15 25 38 .88 1.00
150 025 45 99 100 41 95 1.00 .15 48 .79 .15 39 .69
050 46 99 1.00 38 .94 100 .15 46 78 41 89 .99
40 3 1 075 025 30 .96 1.00 .10 .25 47 09 20 28 .17 45 4
050 32 .95 1.00 .08 .24 47 08 .18 27 46 90 1.00
1.50 025 32 .94 1.00 .10 .25 48 16 53 83 .18 47 73
0.50 32 .94 1.00 .10 .25 47 19 51 80 45 91 .99
3 075 025 31 96 1.00 40 .96 100 .08 .16 30 .16 45 .75
050 33 96 1.00 40 .96 100 .08 .16 26 44 92 1.00
150 025 31 94 100 38 96 1.00 .15 52 81 .16 43 .75
050 31 95 1.00 38 .96 100 .17 53 .80 44 90 1.00
4 1 075 025 50 .99 1.00 .10 .27 49 09 .18 27 17 46 T3
050 48 .99 1.00 .11 .25 48 08 .18 28 44 91 1.00
1.50 025 45 99 1.00 .10 .24 48 17 50 82 .16 46 4
050 46 .99 1.00 .10 .26 45 16 53 81 45 90 .99
3 075 025 51 100 1.00 43 95 100 .09 .15 30 .19 44 72
050 48 99 1.00 43 .97 100 .09 .15 28 45 91 1.00
1.50 025 48 1.00 1.00 41 .96 100 .15 52 .82 .17 43 .74
050 48 99 1.00 40 .97 100 .16 50 .82 44 91 1.00

Note 1. Power_D = Power to estimate intervention; Power Gender = Power to estimate Moderator 1 (gender);
Power_Disability = Power to estimate Moderator 2 (disability); Power Age = Power to estimate Moderator 3

(age)

Note 2. 0, = Intervention effect; 6, = Moderator 1 effect (gender); 65 = Moderator 2 effect (disability); 6, =

Moderator 3 effect (age); / = Number of measurement occasions; J = Number of participants

Note 3. Values larger than or nearly equal to .80 are indicated in bold
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Applied Part
PowerSCED Shiny Tool

PowerSCED is a Shiny application developed to estimate the power to detecting a
nonzero intervention effect and nonzero moderator effects in MBD across participant’s
studies. The PowerSCED tool was developed for the two-level HLM approach, with
the option to quantify the intervention effect as a change in level and/or a change in
slope. This tool can assist applied researchers in designing a MBD study with sufficient
power to detect true intervention and moderator effects using two level HLM. The steps
to use PowerSCED for the two-level HLM with the inclusion of moderators are
presented in Fig. 2. First, the user defines the specific model (i.e., change in level
and/or change in trends). Next, the user defines the design condition (i.e., number of
participants, number of measurement occasions per condition, and the number of
moderators). Finally, the user includes anticipated values for the intervention effect,
moderator effect(s), and the between and within (co)variances. Once the model is
defined, the design condition is defined, and the parameter values are set, the
PowerSCED application provides power estimates for the intervention effect and the
moderator effect(s) (using the Monte Carlo simulation technique based on 1,000
replications). Researchers are recommended to use PowerSCED before conducting
their study to ensure sufficient power. Researchers can also use the PowerSCED tool
post hoc to explore whether the nonsignificant effect(s) is(are) due to insufficient
power. An empirical demonstration of the two-level HLM approach with the inclusion
of moderator(s) is presented in the next section. A post-hoc power analysis was
conducted as the two empirical studies have been completed.

Demonstration of the Use of Two-Level HLM with the Inclusion of Moderators

Two empirical SCED studies published in School Psychology Quarterly were selected
for the empirical demonstration of the two-level HLM approach, with the inclusion of
moderators, to summarize SCED effects. The first study by King et al. (2017) included
six participants (five males and one female; five Caucasian and one Hispanic) to
examine the effectiveness of the On-Task in a Box program for increasing on-task
behavior of highly off-task students. Note that both moderators were highly imbalanced
and not representing a condition embedded in the simulation study. The influence of
imbalanced moderators on the power is beyond the scope of this article, and a direction
for future research. The second study by Shernoff and Kratochwill (2007) included 13
participants (eight males and five females; nine European American and four others,
such as African American and Asian). Shernoff and Kratochwill examined the effec-
tiveness of self-administered videotape modeling for reducing preschoolers’ disruptive
behavior problems. These two SCED studies both used the MBD across participants to
investigate the effectiveness of the intervention of interested.

The data of the two selected SCED studies were standardized before running the
analyses (Van den Noortgate & Onghena, 2008). This ensured that the size of the
intervention and moderator effects were comparable (i.e., at the same scale) to the ones
included in the simulation study. Two-level HLM was then used to estimate the
standardized intervention and moderators’ effects. The results are summarized and
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presented in Table 6. The annotated SAS code for running the two-level HLM with the
inclusion of two moderators (i.e., gender and race) together with the two data sets can
be obtained by contacting the first author of this article. This allows the interested
reader to replicate the HLM analysis. The obtained parameter estimates were further
used as hypothesized parameter values for the post-hoc power analysis using the
PowerSCED tool.

As shown in Table 6, the intervention effect (defined as a change in level) was not
statistically significant in King et al. (2017) (standardized effect size = 3.52, SE =1.97,
p = .17), whereas the intervention effect was statistically significant in Shernoft and
Kratochwill (2007) (standardized effect size = -1.46, SE = 0.27, p < .001). This
indicates that the On-Task in a Box program used in King et al. (2017) did not
significantly increase students’ on-task behavior. Whereas for the study by Schernoff
and Kratochwill, the self-administered videotape modeling significantly reduced stu-
dents’ disruptive behavior problems. The effects of the moderators gender and race
were not statistically significant in both studies. In particular, in King et al. (2017), the
effect of gender was -2.21 (SE = 4.35, p = .65). Gender was a dummy coded variable
with 0 indicating male participants and 1 indicating female participants. Controlling for
race, the intervention increased on-task behavior for female participants with 1.31 (i.e.,
3.52-2.21), whereas the on-task behavior was increased with 3.52 standardized units for
male participants. Although the difference in intervention effectiveness between male
and female was not statistically significant, a standardized difference of 2.21 can be
considered as being practical significance. This means that for participants having the
same race, the On-Task in a Box program might be more effective to increase
participant’s on-task behavior compared to the female participant’s. Note that the p-
value for two tailed testing the gender effect was .65, and this was an artifact of the
large standard error. The effect of race in King et al. (2017) is -2.76 (SE =435, p =

Table 6 Parameter and Standard Error Estimates Resulting from Two-Level HLM Using King et al. (2017)
and Shernoff and Kratochwill (2007) Data

Parameter Parameter SE p

estimate

King et al. (2017) Average baseline level 0 2.09 0.29 <.0001
Average intervention effect 0, 3.52 1.97  .168
Average gender moderator effect 0, -2.21 435  .645
Average race moderator effect 05 -2.76 435 571
Between-participants variance o‘él 14.94

of intervention effect

Within-participants variance o’ 2.01

Shernoff and Kratochwill (2007) Average baseline level 6o 2.97 0.16 < .0001
Average intervention effect 01 -1.46 0.27 <.0001
Average gender moderator effect 6, -0.24 0.35 501
Average race moderator effect 65 0.55 0.37  .169
Between-participants variance o3, 0.16

of intervention effect

Within-participants variance 02 1.21
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.57), indicating that after controlling for gender, the intervention increased on-task
behavior for one Hispanic participant with 0.76 standardized unit (i.e., 3.52-2.76),
whereas for Caucasian participants the on-task behavior was increased with 3.52
standardized units A standardized difference in intervention effectiveness of 2.76
between one Hispanic participant and other Caucasian participants was obtained,
though this difference was not statistically significant. This means that for participants
having the same gender, the intervention might be more effective to increase Caucasian
participant’s on-task behavior compared to Hispanic participant’s.

The effect of gender and the effect of race in Shernoff and Kratochwill (2007) were -
0.24 (SE = 0.35, p = .50) and 0.55 (SE = 0.37, p = .17), respectively. Controlling for
race, the intervention reduced female participants’ disruptive behavior problems with
1.70, whereas male participants’ disruptive behavior problems were reduced with 1.46
standardized units. A standardized difference in intervention effectiveness of 0.24
between female and male participants was obtained which was small and not statisti-
cally significant. That being said, when participants have the same race, the self-
administered videotape modeling intervention might have a stronger effect on reducing
male participant’s disruptive behavior problems compared to female participant’s.
Controlling for gender, the intervention reduced disruptive behavior problems for
non-European American participants (such as African American and Asian partici-
pants) with 2.01, whereas European American participants’ disruptive behavior prob-
lems were reduced with 1.46. A standardized difference in intervention effectiveness of
0.55 between European American participants and other ethnical participants was small
and not statistically significant. This reflects that the intervention might have a stronger
effect on reducing non-European American participants’ disruptive behavior problems
than European American participants’, when the participants had the same gender. The
estimated parameter values of the between-participants variance for intervention effect
and the within-participants variance are also presented in Table 6. For a more in depth
discussion of the interpretation of HLM parameter estimated in the context of SCEDs
we refer the interested reader to Declercq et al. (2020).

The post-hoc power analysis (using PowerSCED) was conducted to evaluate wheth-
er the two studies were designed in a way that they were able to capture the true
moderator effects. The following design conditions were specified: /= 15 and J = 6 for
King et al. (2017) and / = 12 and J = 13 for Shernoff and Kratochwill (2007). The
parameters values (i.e., baseline level, intervention effect, gender and race moderator
effects, between-participants variance of the intervention, and within-participants var-
iance) were set using the values presented in Table 6. The between-participants
variance of the baseline and moderator effects were set to zero as this was negligible.

The PowerSCED tool was used to estimate the power in detecting intervention and
moderator effects. The aforementioned steps were executed to set the model, design
conditions and hypothesized parameter values. The estimated power estimates are
presented in Table 7.

As shown in Table 7, King et al. (2017) had a power of .34 to detect the intervention
effect with a standardized magnitude of 3.52 and power of .19 and .22 to detect gender
and race moderator effects, respectively. Therefore it is possible that the nonsignificant
values for intervention effect and moderator effects were due to lack of power. The
magnitude of the hypothesized gender and race moderator effects were around -2.21
and -2.76. All hypothesized effects were moderate to large relative to the values used in
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this Monte Carlo simulation study. The reason for the low power is likely the small
number of participants (J = 6) and large between-participants variance of the interven-
tion (03, = 14.94). The post-hoc power analysis was replicated for a larger number of
participants (i.e., /= 20) and a smaller between-participant variance of the intervention
(i.e., 03, = 2), keeping all other factors constant. For this condition, the power to
estimate the intervention effect increased to 1.00 and the power to estimate gender and
race moderator effects also reached a power larger than .80 (.88, and .97, respectively).

Table 7 also shows that Shernoff and Kratochwill (2007) had a power of .98 to
detect an intervention effect with a standardized magnitude of -1.46. It means that for a
true intervention effect with standardized size of -1.46, 98% of the studies like
Schernoff and Kratochwill would be able to successfully detect the intervention effect.
However, the power in the study by Shernoff and Kratochwill to detect gender and race
moderator effects were low (i.e., .14 and .39, respectively). The reason for the low
power is the extremely small moderator effects (for gender: -0.24; for race: 0.55). If the
true value of the moderator effect of gender and race would be increased to 1.5, a power
of .98 would be obtained to capture the moderator effects while keeping other factors
the same.

Taken together, the two empirical studies have shown that the power to detect
intervention and moderator effects were highly depended on the number of participants,
the between-participant variance of intervention, and/or the magnitude of the corre-
sponding moderator effects. Small number of participants (e.g., J = 6), large between-
participant variance of intervention (e.g., 03, = 14.94), and small moderator effects
(e.g., -0.24 and 0.55) may result in insufficient power to capture the true intervention
and moderator effects. When the true moderator effects are relatively large, the research
design factors such as the number of participants can largely affect the power.

Discussion
Two-level HLM has been empirically validated and recommended to summarize
single-case data across participants (Ferron et al., 2009; Ferron et al., 2014). The use

and advantages of using HLM to quantify intervention effects, with the potential of
including moderators to explain heterogeneity have been documented in several

Table 7 Power to Estimate Intervention and Moderator Effects for Two Selected SCED Studies

Parameter King et al. (2017) Shernoff and Kratochwill (2007)

Power
Average baseline level 00 1.00 1.00
Average intervention effect 01 34 98
Average gender moderator effect 02 .19 .14
Average race moderator effect 03 22 39

Note 1. Power is calculated based on 1,000 replications
Note 2. 91 out of 1000 replications fail to converge for King et al. (2017)
Note 3. Power larger than .80 is indicated in bold
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research papers (e.g., Back et al., 2014; Moeyaert et al., 2014a; Moeyaert et al., 2014b;
Shadish et al., 2013; Van den Noortgate & Onghena, 2007) and leading textbooks in
the field (Kratochwill & Levin, 2014; Ledford & Gast, 2018). However, methodolog-
ical work in this area is missing. In addition, several applied SCED studies using two-
level HLM acknowledge the importance of including moderator effects to explain
between participants variability. However, these applied studies lack the expertise to
build a two-level model with the inclusion of moderators, and state that methodological
research is needed to investigate the appropriateness of the two level HLM to include
moderators (Asaro-Saddler et al., 2017; Brosnan et al., 2018; Klingbeil et al., 2017).
The current study fills this gap by investigating the power of the two-level HLM
approach, including moderators, to estimate intervention and moderator effects, and
providing an empirical demonstration using real data. This study contributes to the
literature by investigating under which conditions it might be possibly to use HLM to
quantify and test for moderator effects. In addition, a newly developed point and click
Shiny tool, PowerSCED, was presented. This user-friendly tool was developed to
assists applied researchers in designing a powerful SCED study.

The results of the simulation study indicate that in general the number of participants
and measurement occasions, and the size of the effect all had an impact on the power to
estimate the corresponding effect. Studies with larger values for the true effects, larger
number of measurement occasions and participants had higher power estimates. Con-
sistent with past research, unit changes made at the second level of the hierarchical
linear model (i.e., number of participants) had a larger effect on subsequent power
estimates compared to units at the lower level (number of measurement occasions). The
results comparing four models indicate that more moderators required more partici-
pants, more measurement occasions, and larger magnitudes of effects to ensure suffi-
cient power. Studies with one moderator (nominal with two categories) needed at least
12 participants to have sufficient power to capture the intervention effect (regardless of
the size of the effect), whereas the same studies not only needed at least 12 participants
but also required a large moderator effect (e.g., for this simulation study, moderator
effect = 3) to detect the moderator effect with sufficient power. Two binary nominal
moderators required at least 20 participants to ensure sufficient power to detect the
intervention effect. Whereas to detect these two binary nominal moderator effects with
sufficient power, two conditions should be satisfied: at least 20 participants and large
moderator effects (e.g., for this simulation study, moderator effect 1 = 3, moderator
effect 2 = 1.5). When there were three moderators (two nominal and one continuous),
researchers needed at least 20 participants and 40 measurements occasions to reach
sufficient power to identify the intervention effect and large moderator effects. The
systematic review study of Shadish and Sullivan (2011) indicated that the number of
participants within a single-case study ranged from 1 to 13, and the number of
observations within a participants ranged from 2 to 160. A recent meta-analysis of
SCED studies (Moeyaert et al., 2019) stated that the number of participants within a
SCED studies ranged from 1 to 48 with an average of 8, and that the number of
measurements within a participants ranged from 6 to 68 with an average of 25. As such,
the number of units (measurements and participants) needed to have sufficient power to
detect true intervention and moderator effects for the models investigated in this study
are not unexceptional for the field. As with any simulation study, the obtained results
are limited to the conditions included in the simulation study. The current studies solely
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focused on MBDs because of its popularity and its high internal and external validity.
Future studies can focus on other design types such as alternating treatment designs and
reversal designs. The number of participants per level of the categorical moderators was
balanced in current study. An avenue for future research is to evaluate the influence of
imbalanced moderators on statistical properties. Although the conditions are represen-
tative for the field, applied researchers might include a different number of measure-
ment occasions, participants, number of moderators, and scale of moderators. In
addition, different values for the true effects, and the variability might be anticipated.
To address this, the simulation code was translated into a point-and-click Shiny tool,
PowerSCED, which is freely accessible. The user can define all desired conditions and
hypothesized parameter values, to evaluate whether their SCED study has sufficient
power to identify true intervention and moderator effects. Researchers are encouraged
to use the PowerSCED tool to carefully design their SCED study. This will ensure that
the experiment is designed in a way that true intervention and moderator effects can be
estimated with sufficient power.
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