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Abstract

Structural equation modeling (SEM) is a widely used technique for studies involving

latent constructs. While covariance-based SEM (CB-SEM) permits estimating the regres-

sion relationship among latent constructs, the parameters governing this relationship do not

apply to that among the scored values of the constructs, which are needed for prediction,

classification and/or diagnosis of individuals/participants. In contrast, the partial-least-

squares approach to SEM (PLS-SEM) first obtains weighted composites for each case and

then estimates the structural relationship among the composites. Consequently, PLS-SEM

is a preferred method in predicting and/or classifying individuals. Nevertheless, properties

of PLS-SEM still depend on how the composites are formulated. Herman Wold proposed

to use mode A to compute the scores for constructs with reflective indicators. However,

Yuan and Deng recently showed that composites under mode B enjoy better psychometric

properties. The authors thus proposed a structured transformation from mode A to mode

B, denoted as mode BA. This chapter further studies properties of the three modes of PLS-

SEM. Analytical and numerical results show that 1) Mode A does not possess any solid

statistical or psychometric properties, 2) Mode B possesses good theoretical properties but

is over sensitive to sampling errors, and 3) Mode BA possesses good theoretical properties

as well as numerical stability. The performances of the three modes are also illustrated with

two real data examples.



1. Introduction

Structural equation modeling (SEM) and path analysis with weighted composites are

among the most widely used methods in social and behavioral sciences. The two distin-

guished classes of methods are integrated in the so-called partial-least-squares approach to

structural equation modeling (PLS-SEM). Based on the measurement and structural model,

PLS-SEM first obtains weighted composites1 to act as proxies to the latent variables, and

then to estimate the structural model by regression analysis with the weighted composites.

To differentiate the conventional SEM methodology from PLS-SEM, the former is often called

covariance-based SEM (CB-SEM). The most well-known feature of CB-SEM is its capability

of separating measurement errors from latent constructs. This feature facilitates consistent

parameter estimates as well as test statistics and fit indexes for evaluating the goodness-of-fit

of the overall model structure. In contrast, PLS-SEM or regression analysis with weighted

composites directly estimates the relationship among the scored-values of the composites

and has the strength of maximizing the predictive roles of the exogenous variables on the

endogenous variables according to the principle of LS regression (Boardman, Hui & Wold,

1981; Cho et al., 2022a; Hair et al., 2017; Wold, 1980). Still, the properties of PLS-SEM

closely depend on how the weights of the composites are computed. Wold (1980, 1982) pro-

posed two algorithms to compute the weights, termed as modes A and B, respectively. Yuan

and Deng (2021) introduced a new mode, termed as mode BA, and section 4 of this chapter

provides a detailed description of this mode. The purpose of this chapter is to systematically

study the properties of the three weighting schemes, including statistical properties of scale

invariance and scale-inverse equivariance when the scales of the observed variables change,

as well as the psychometric properties of measurement reliability of the resulting composites.

These properties will be obtained analytically and illustrated via numerical and real data

examples. To fully understand the performances of the three modes in operation, we will

also discuss the sensitivity of the weights with imperfect data.

It is well-known that the scales of latent variables have to be fixed in order for the SEM

model to be identified (see e.g., Loehlin & Beaujean, 2017). This is typically done by fixing

either the variance of the latent variable at 1.0 or one of the loadings of its indicators at 1.0.

The two choices are arbitrary and so is the value of 1.0. Although the overall model structure

of the observed variables remains the same regardless of how the scale of each latent variable

is fixed, the values of the parameters in the measurement and structural models depend on

1Throughout the chapter, a weighted composite or composite-score is a weighted sum of the observed
values of items that are designed to measure a latent construct.
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these choices. This implies that particular population values of the model parameters under

CB-SEM are artificial. In parallel, the scales of the composites under PLS-SEM also need to

be determined. This is typically done by fixing the variance of each composite at 1.0. While

such a choice has become the norm in the field, one can also choose a different set of values

for the scales of the composites without affecting any substantive aspect of the model. In

particular, we can always choose the scales of the latent variables or those of the composites

so that the two methods have identical values of path coefficients (see e.g., Devlieger, Mayer

& Rosseel, 2016; Skrondal & Laake, 2001; Yuan & Deng, 2021). Consequently, we will

not compare parameter estimates of PLS-SEM against those of CB-SEM in this chapter.

Instead, we will focus on the properties of the weights and the resulting composites under

the three modes of the PLS-SEM methodology. The properties of the resulting parameter

estimates under each mode will also be examined when the scales of the observed variables

change. Because the formulations of composites and the efficiency of parameter estimates

under PLS-SEM are totally determined by the weights of the items, our study of weights not

only clarifies the pros and cons of the different modes of the methodology but also facilitates

better understanding of other approaches of path analysis with weighted composites.

Although CB-SEM has the advantage in yielding consistent estimates of path coefficients,

the parameters are for characterizing the relationship among latent variables that represent

the population distribution, and all individuals/participants are equivalent under such a re-

lationship. In practice when scored values of composites are used for prediction or diagnosis,

individuals are no longer equivalent. An individual with greater scores is expected to per-

form better on the criterion variable, and such a relationship is directly characterized by

the regression model with the composite-scores. In particular, the regression model with LS

estimates still yields the best (i.e., smallest mean-squared error) linear unbiased predictor

for a future value even when predictors contain measurement errors (see Fuller, 1987, p.

75). However, not all weighted composites are equivalent in prediction. The values of R2 as

well as the relative errors of the estimated regression coefficients depend on the measurement

reliabilities of the composites (Yuan & Fang, 2022), which further depend on the formulation

of the weights.

By focusing on models with reflective indicators, we will discuss the following aspects of

the weights of composites in this chapter: The measurement reliability of the resulting com-

posites; the reactions of the weights, the composites and the resulting regression coefficients

to scale change of the observed variables; sensitivity of the weights to model misspecifica-
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tion, negative weights and negative estimates of error variances (Heywood cases). Numerical

and real-data examples will be used in the analysis. Because PLS-SEM is relatively new

to researchers in social and behavioral sciences, we will give a brief introduction to the

methodology by pointing out some of its distinctive features.

The reason for us to mainly consider models with reflective indicators is because weights

of composites for formative indicators are not determined by the indicators themselves but

by their relationships with indicators of other latent variables or composites (Treiblmaier,

Bentler & Mair 2011). Also, with formative indicators, the concept of measurement reliability

may not apply since the indicators may not contain measurement errors nor do they need

to share anything in common. In addition, our discussion of model misspecification is via

the traditional factor model, not the composite models as described in Dijkstra (2017), Cho

and Choi (2020), and Hwang et al. (2020). Furthermore, the analytical results on weights

obtained by Dijkstra (1983) only hold for models with reflective indicators, and they will

be further studied in this chapter. But our results on scale invariance and scale-inverse

equivariance also apply to formative indicators and composite models, as will be further

discussed in the concluding section.

A useful preface for following the development of this chapter is that PLS-SEM mode

B does not have to stick to models with formative indicators, although such a match was

recommended by Wold (1980, 1982). Actually, the analytical results by both Dijkstra (1983)

and Schneeweiss (1993) include applying mode B to models with reflective indicators. This

chapter presents additional theoretical advantages of mode B for models with reflective

indicators, and they are shared by mode BA at the level of population.

2. Two distinctive features of PLS-SEM and the environmental variable

While PLS-SEM is essentially path analysis with weighted composites (Hair et al., 2017;

Henseler, 2021), the method is self-contained with its own algorithms for computing the

composites and conducting parameter estimation of the structural model. Consider the path

diagram in Figure 1, where there are four latent variables ξ1, ξ2, η1, η2 and twelve reflective

indicators, and the indicators of each latent variable are referred to as a block. There are

no correlated errors nor cross loadings in Figure 1. That is, each indicator only loads on the

single latent variable of its block. Such a property is commonly termed as unidimensional-

ity in measurement, which is a distinctive feature of PLS-SEM. Although unidimensionality

is not necessary under CB-SEM, the property is very desirable because it facilitates theory

testing and development as well as assessment and evaluation (e.g., reliability, validity, inter-
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pretability) (see e.g., Anderson & Gerbing, 1984). However, the model will be misspecified

when either cross loadings or error covariances exist in the population. Even if CB-SEM

permits the inclusion of cross loadings and/or correlated errors, model misspecification2 can-

not be avoided in practice (MacCallum, 2003), which will cause biased parameter estimates

under both CB-SEM and PLS-SEM. We will discuss the effects of misspecified models on

the different weighting schemes of the PLS-SEM methodology in a later section, based on

recent results by Yuan, Wen and Tang (2022). Effects of misspecified models on parameter

estimates under CB-SEM can be found in Yuan, Marshall and Bentler (2003).

Figure 1. A model with four latent variables and twelve indicators.
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Another distinctive feature of PLS-SEM is the way in counting direct connections, which

is needed in the algorithms for computing the weights. In Figure 1, ξ1 is directly connected

with η1; ξ2 is directly connected with η1; η1 is directly connected with ξ1, ξ2, and η2; and

η2 is directly connected with η1. However, the two-way arrow between ξ1 and ξ2 is not

considered as a direct connection under PLS-SEM. Such a way of counting connections

generates weighted composites by which the corresponding indicators partially maximize

their predictive relationships (Boardman et al., 1981). The maximum relationship is operated

by LS regression via the so-called environmental variable, which plays the role of being the

representative of the directly connected constructs (Schneeweiss, 1993). In Figure 1, the

2Regardless of reflective or formative indicators, a model is misspecified whenever the model-implied
covariance matrix does not equal the population covariance matrix of all the involved indicators. Modeling
truly formative indicators as reflective or vice versa is expected to cause a discrepancy between the model-
implied covariance matrix and its population counterpart.
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environmental variable of ξ1 is ξ̄1 = cξ1η1
η1, where cξ1η1

can be the sign of the correlation

between ξ1 and η1 or the correlation itself. Similarly, the environmental variable of η1 is

η̄1 = cη1ξ1
ξ1 + cη1ξ2

ξ2 + cη1η2
η2, where each c can be either the sign of the correlation (termed

as the centroid scheme) or the value of the correlation itself (termed as the factorial scheme).

Thus, the environmental variable of a focal latent variable is a linear combination of the

latent variables that are directly connected to the focal latent variable. In operation, when

the latent variables are approximated by scored values of composites, environment variables

will become the corresponding linear combinations of the composites. As to be described in

the following section, weights of indicators are obtained by LS regression, which maximizes

the linear relationship of each indicator with the corresponding environmental variable.

As noted earlier, composites do not have natural scales. They need to be assigned and

are of an arbitrary nature. In PLS-SEM, this is done by scaling the weights for each block

of indicators so that the resulting composite has a variance of 1.0. Also, for variables with a

single connection, the value of the coefficient (c) in the environmental variable is cancelled

due to standardization.

3. PLS-SEM modes A and B

PLS-SEM methodology consists of two stages. Weights of composites are computed in

the first stage via an iterative process, and regression analysis with the weighted composites

is conducted in the second stage. Consider the model in Figure 1, let the initial composite

for each latent variable be the simple average of its block of indicators, and followed by a

standardization so that the sample variance of each composite is 1.0. The corresponding

environmental variables are obtained when the constructs are replaced by their composites,

where the coefficients c are also computed according to the correlations of the corresponding

composites. Under mode A, weights of x1 to x3 are updated by the LS regression coefficient

of each of the indicators on the environmental variable ξ̄1 (simple regression), and weights

of x1 to x3 under mode B are updated by the LS regression coefficients of the environmental

variable ξ̄1 on x1, x2 and x3 (multiple regression). Weights of indicators in the other blocks

are updated in parallel by the LS regression coefficients via the corresponding environmental

variables. The updated weights of each block are proportionally rescaled so that the cor-

responding composite has a sample variance of 1.0. The environmental variables are then

updated via the updated composites, which completes a cycle of iteration in estimating the

weights. The iteration process continues with the updated environmental variables until the

weights for all the blocks of indicators are stabilized, and the corresponding composites are
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consequently obtained. These weighted composites represent the constructs in conducting

path analysis at stage 2. Although stage 2 can be done via fitting the sample covariance

matrix of the composites by the structural model using different methods for covariance

structure analysis (e.g., ML, LS, GLS), PLS-SEM uses separate LS regression to estimate

the path coefficients for each endogenous construct (Wold, 1980, 1982), which is easy to

carry out.

Conventionally, mode A has been recommended for models with reflective indicators and

mode B for models with formative indicators (Wold, 1980, 1982). While such recommenda-

tions are followed in software3 and textbooks (Hair et al., 2017), they are based on intuition

rather than justified by statistical or psychometric theory. In particular, Yuan and Deng

(2021) showed that, when applying mode B to reflective indicators, the method is asymptot-

ically equivalent to regression analysis using Bartlett-factor scores (BFS). They also showed

that regression-factor scores4 are equivalent to Bartlett-factor scores in conducting regres-

sion analysis. Note that BFSs attain the maximum reliability among all weighted composites

(see e.g., Bentler, 1968; Yuan & Bentler, 2002). The results in Yuan and Deng (2021) imply

that composites under PLS-SEM mode B attain the maximum reliability asymptotically.

Because more reliable composites correspond to more efficient estimates of regression coeffi-

cients and greater R2 values (Cochran, 1970; Yuan & Fang, 2022), mode B is theoretically

more preferred than mode A for estimating models with reflective indicators.

We use numerical examples to show the theoretical advantage of mode B. For a block

of indicators, let the variance of the latent factor be 1.0, λ be the vector of factor loadings,

and Ψ be the diagonal matrix of error variances. Then the covariance matrix of the block

of indicators is given by Σ = λλ
′ + Ψ. The equivalence between BFS regression and PLS-

SEM model B was based on the results in Dijkstra (1983) and Schneeweiss (1993), who

showed that the weight vector under mode A is proportional to λ and that under mode B

is proportional to Σ−1
λ. Let’s use wa and wb to denote the weights under the two modes.

The results in Dijkstra (1983), Schneeweiss (1993) and Yuan and Deng (2021) imply that

wa = caλ and wb = cbΨ
−1

λ, where ca and cb are scalars so that the corresponding composites

have a variance of 1.0. Table 1 contains four examples and each has three items. The

population factor loadings λj and error variances ψjj for the first three examples are exact,

3A reviewer noted that software SmartPLS automatically assumes that indicators are reflective when
mode A is chosen, and are formative when mode B is chosen.

4Note that regression-factor scores can be separately computed for each block of indicators or collectively
computed for all the blocks of indicators. It is the separately computed regression-factor scores that are
equivalent/proportional to the BFSs, which remain the same whether collectively or separately computed.

6



Table 1. Reliabilities of three composites with examples: ω is the reliability of equally
weighted composite, ρA and ρB are the reliabilities of composites under PLS-SEM modes A

and B, respectively.
population θ reliability

variable λj ψjj ρj ω ρA ρB

Example 1 x1 0.400 0.840 0.160 0.597 0.666 0.697
x2 0.500 0.750 0.250
x3 0.800 0.360 0.640

Example 2 x1 0.350 0.8775 0.123 0.562 0.695 0.746
x2 0.400 0.8400 0.160
x3 0.850 0.2775 0.723

Example 3 x1 0.400 0.500 0.242 0.579 0.570 0.581
x2 0.500 0.700 0.263
x3 0.800 0.900 0.416

Example 4 x1 0.492 0.758 0.242 0.567 0.578 0.581
x2 0.513 0.737 0.263
x3 0.645 0.584 0.416

Note. Items in Example 4 are obtained by the standardization of those in Example 3. The
population values of the parameters for Examples 1 to 3 are exact while those for Example
4 are rounded.

while those for the fourth example are rounded. The reliabilities are computed according to

the population factor loadings and error variances, where ρj is the reliability of the jth item,

ω is the reliability of the equally-weighted composite (EWC), ρA and ρB are respectively the

reliabilities of composites under PLS-SEM modes A and B. With the variance of the latent

variable in each example being 1.0, we have ρj = λ2
j/(λ

2
j +ψjj). The formulas for computing

ρA and ρB were given by Yuan and Deng (2021), and that for computing ω was given by

McDonald (1999), and was often called Dillon-Goldstein’s ρ in the PLS-SEM literature (see

Vinzi et al., 2010).

In Example 1, the variance of each item is 1.0. The EWC has a reliability of .597 but

the reliability of x3 is .640. All the items in Example 2 also have variances at 1.0, and the

reliability of x3 is .723. Both the EWC and the weighted composite under PLS-SEM mode A

are less reliable than the single item x3. In Example 3, the items are not standardized. The

weighted composite under mode A is less reliable than the EWC. The items in Example 4 are

obtained by standardizing those in Example 3. The results of Examples 3 and 4 show that

ω and ρA are scale dependent, while ρB is scale invariant. We will present analytical results

regarding the properties of different modes under scale-transformation in a later section.

Based on Monte Carlo results Henseler et al. (2014, p. 190) stated “PLS Mode A outper-
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forms the best indicator across all model constellations, providing support for the capability

of PLS to reduce measurement error.” Results in Table 1 suggest that the comparison of

reliabilities among composites under mode A, EWCs, and individual indicators depends on

conditions. When a block of indicators contains an item with rather larger reliability than

the rest of the items, then it is hard for the composite under mode A or the EWC to be

more reliable, as is the case in Example 2. When factor loadings and error variances are

close to proportional, the reliability of the EWC is close to maximum while composites under

PLS-SEM mode A can be less reliable. This is the case in Example 3. In general, if items

with larger loadings have even larger error variances, then composites under mode A will

be less reliable than equally weighted composites (see Yuan, Wen & Tang, 2020). But the

composite under mode B reaches the maximum reliability regardless of the reliabilities of

the individual items, although sampling errors may have a negative effect on the estimated

weights of the mode. We will further discuss the sensitivity of mode B to sampling and

model specification errors in the following sections.

Note that for simplicity we only considered models with a single construct in this section.

The conclusions with the four examples also hold for models with more latent constructs.

4. PLS-SEM mode BA

While PLS-SEM mode B yields composites with maximum reliability at the level of pop-

ulation, Dijkstra and Henseler (2015a) noted that mode A is numerically more stable. An

example with a real dataset in Yuan and Deng (2021) showed that weights of some individ-

ual items under PLS-SEM mode B are negative. For the same dataset, all the individual

weights under PLS-SEM mode A and all the factor loadings under CB-SEM are positive.

Because negative weights are not logically acceptable for positively worded items, PLS-SEM

mode B has problems in operation. In order to have weighted composites that enjoy the

statistical/psychometric properties of mode B while the method also performs as stable as

mode A numerically, Yuan and Deng (2021) proposed a procedure to transform the weights

under mode A to weights that are asymptotically equivalent to those under mode B, or a

transformed mode BA.

Let ŵa = (ŵa1, ŵa2, . . . , ŵap)
′ be the estimated weights under mode A and S be the

sample covariance matrix of a given block that has p indicators. The transformed mode is

obtained via fitting the sample covariance matrix S by the one factor model

Σ(θ) = φŵaŵ
′

a + Ψ, (1)

where φ plays the role of factor variance, ŵa plays the role of factor loadings, Ψ = diag(ψ11, ψ22,
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. . . , ψpp) is a diagonal matrix of the unexplained variances, and θ = (φ, ψ11, ψ22, . . . , ψpp)
′

contains (p + 1) free parameters. The model in equation (1) can be estimated by normal-

distribution-based maximum likelihood (NML) or least-squares (LS). Appendix E of Yuan

and Deng (2021) contains the development of the LS solutions, which are given by

φ̂ = (ŵ′

aSŵa −

p∑

j=1

ŵajsjj)/[(
p∑

j=1

ŵaj)
2
−

p∑

j=1

ŵ4

aj] and ψ̂jj = sjj − φ̂ŵ2

aj. (2)

With the estimates in (2), the estimated weights ŵba
= (ŵba1, ŵba2, . . . , ŵbap)

′ under PLS-

SEM mode BA are give by

ŵbaj = cba
ψ̂−1

jj ŵaj, j = 1, 2, . . . , p,

where cba
is a scalar so that the weighted composite under model BA has a sample variance

of 1.0.

Because ŵa converges in probability to wa = caλ and S converges to Σ = λλ
′ + Ψ,

the LS estimates ψ̂jj in equation (2) converge to ψjj . Consequently, ŵba
converges to wb =

cbΨ
−1

λ. Thus, the weights under PLS-SEM mode BA are asymptotically equivalent to those

under PLS-SEM mode B and those of the corresponding Bartlett-factor score. The resulting

composites under mode BA also enjoy the same theoretical properties as composites under

mode B or the Bartlett-factor scores.

As for estimating any other factor models in factor analysis, the estimates ψ̂jj in equation

(2) can be negative (Heywood case). In such a case, we can replace the negative estimate

by ψ̃jj = .05 (or another small number) and adjust the value of ŵaj via

w̃2

aj = (sjj − ψ̃jj)/φ̂,

yielding

w̃baj = cba
ψ̃−1

jj w̃aj.

The adjusted w̃aj is to keep φ̂w̃2

aj + ψ̃jj = sjj. One can also only adjust the value of ψ̂jj < 0

to a small positive number without adjusting the value of ŵa.

With correctly specified models, Heywood cases are mostly due to a small sample size

together with small population values of ψjj. Model misspecification and/or data contami-

nation are also responsible for Heywood cases in practice. Thus, negative estimates of error

variances can offer additional information about the model, the data, and/or the population,

and they should be regarded as an opportunity rather than a bad luck.
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The literature of PLS-SEM repeatedly claims that the methodology has solved the issue

of negative estimates of error variances (e.g., Chin, 1998; Henseler, 2021, p. 162). This is

because the estimand of error variance under PLS-SEM is different from that under CB-

SEM, and the former includes both measurement and prediction errors. In contrast, the

ψjjs in equation (1) only represent the variances of measurement errors, assuming no unique

factors nor systematic errors in the model. Regardless of whether there exist measurement

errors, LS regression never yields a negative estimate of prediction-error variance.

5. Scale invariance and scale-inverse equivariance

We have shown in section 3 that composites under mode A may not be as reliable as a

single indicator. In this section we will examine two additional statistical properties of the

three modes, scale invariance and scale-inverse equivariance. These are fundamental because

they describe how parameters react when the scales of the observed variables change. In

particular, we will show that PLS-SEM mode A is scale dependent, and the use of standard-

ized variables is to hide the issue of scale dependency of the method rather than having the

issue solved. In contrast, weights under PLS-SEM mode B and mode BA are scale-inverse

equivariant and the resulting composites and regression coefficients are scale invariant. For

simplicity, we will present the analytical results by a one-factor model and numerical illus-

tration by a two-factor model. The results also hold for more complex models, as will be

shown in section 7 via real data examples.

5.1 Analytical results

Let x be a vector of mean-centered random variables representing a block of indicators.

Suppose x follows a one-factor model with x = λξ + ε and

Cov(x) = Σ = λλ
′ + Ψ,

where Var(ξ) = 1 for model identification and Ψ = Cov(ε) is a diagonal matrix. Dijkstra

(1983) and Schneeweiss (1993) showed that weights under PLS-SEM mode A are proportional

to λ. That is,

wax = caxλ, with cax = (λ′Σλ)−1/2. (3)

The corresponding composite is given by

ξ̂ax = w′

axx = caxλ
′x. (4)

Let D = diag(d1, d2, . . . , dp) be a diagonal matrix with dj > 0. When the variables

in x are scaled according to y = Dx, then the covariance matrix of y and weights under
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PLS-SEM mode A respectively become

Cov(y) = DΣD = Dλλ
′D + DΨD and way = cayDλ, (5)

where cay = (λ′D2ΣD2
λ)−1/2. The composite corresponding to y is given by

ξ̂ay = w′

ayy = cayλ
′Dy = cayλ

′D2x. (6)

Thus, both the weights wa and the composite ξ̂a depend on the scales of the indicators.

Equation (5) indicates that wa is scale equivariant. That is, each weight is transformed the

same way as the corresponding indicator. However, equation (6) indicates that the values of

the djs are squared in the resulting ξ̂ay, which is very undesirable.

The procedure of standardization corresponds to D = diag(1/σ1, 1/σ2, . . . , 1/σp), where

σj is the standard deviation of the jth indicator of the block. The results in equations (3)

to (6) show that working with standardized variables does not make mode A a scale-free

method.

Dijkstra (1983) and Schneeweiss (1993) also showed that, when applying PLS-SEM mode

B to a correctly specified model with reflective indicators, the resulting wb is proportional

to Σ−1
λ. Via an analytical expression for Σ−1, Yuan and Deng (2021) showed that wb can

be equivalently expressed as

wbx = cbxΨ
−1

λ, with cbx = (λ′Ψ−1ΣΨ−1
λ)−1/2.

The corresponding composite is given by ξ̂bx = w′

bxx = cbxλ
′Ψ−1x. Since the error variances

of y are given by the diagonal of DΨD, applying the above formula to the scale-transformed

variables we have

wby = cby(DΨD)−1Dλ = cbyD
−1Ψ−1

λ and ξ̂by = w′

byy = cby(D
−1Ψ−1

λ)′y = cbyλ
′Ψ−1x,

where cby is a scalar such that Var(ξ̂by) = 1. Clearly, cby = cbx and ξ̂by = ξ̂bx. Thus, the

weights in wb are scale-inverse equivariant and the composite ξ̂b is scale invariant. These

properties imply that PLS-SEM mode B will yield the same regression coefficients whether

standardized variables or raw measurements are used in the analysis.

At the population level, the weight vector corresponding to the mode BA is given by

wba
= cba

Ψ−1
λ,

where cba
is a constant such that w′

ba
Σwba

= 1, which implies cba
= cb. When the variables

in x are rescaled according to y = Dx, the resulting Σy = Cov(y) and the weight vector
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for y under mode A are given by equation (5). Then the population counterpart of the

Ψ in equation (1) becomes Ψy = DΨD. Thus, the weight vector under the mode BA

for the transformed variables is given by wba
= cba

Ψ−1

y (Dλ) = cba
D−1Ψ−1

λ, which is the

same as wb. Therefore, weights under the mode BA are scale-inverse equivariant, and the

corresponding composite ξ̂ba
as well as the regression coefficients are scale invariant.

5.2 Numerical results

We use an example to illustrate the different properties of the three modes numerically.

Figure 2 represents a model with 2 latent constructs and 7 indicators. Let the population

values of the parameters be given by λx = (0.80, 1.00, 1.20)′ , λy = (1.00, 1.20, 0.80, 1.50)′ ,

γ = .70, φ = Var(ξ) = 1.00, and σ2
ζ = Var(ζ) = .40. The matrices of the error variances are

Ψx = diag(.55, .60, .40) and Ψy = diag(.58, .65, .60, .40). The resulting population covariance

matrix Σ of the 7 indicators is given in Table A1 of appendix A.

Figure 2. A model with two latent variables and seven indicators.
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Applying the PLS-SEM modes A, BA, and B to this population covariance matrix yields

three population weight vectors, respectively. They are reported in the left panel of Table 2(a)

and are denoted as wσ. When each of the 7 variables is standardized, we have a corresponding

correlation matrix P. Applying the three modes of PLS-SEM to this correlation matrix yields

three different weight vectors, and they are in the middle panel of Table 2(a). The three

vectors in the right panel are obtained by applying Dσwσ to each of the vector on the left

panel, where Dσ is the diagonal matrix consisting of the population standard deviations of

the 7 indicators. For both modes B and BA, there exists Dσwσ = wρ or wσ = D−1

σ wρ,

verifying the scale-inverse equivariance properties of the two modes. However, the weight

vectors under mode A clearly do not enjoy such a property. In addition, modes B and BA

yield identical weight vectors in each case, which verifies that mode BA is asymptotically

equivalent to mode B, and both yield composites with maximal reliability.

Table 2(b) contains the parameters of the regression models ηw = γwξw+ew corresponding
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Table 2. (a) Population values of the weights of PLS-SEM modes A, BA and B under the
analyses of the covariances σij (wσ), the correlations ρij (wρ), and by transformation

(Dσwσ).
Modeling Σ (wσ) Modeling P (wρ) Dσwσ

weight A BA B A BA B A BA B
wx1 0.241 0.210 0.210 0.348 0.230 0.230 0.263 0.230 0.230
wx2 0.301 0.241 0.241 0.375 0.305 0.305 0.381 0.305 0.305
wx3 0.362 0.434 0.434 0.420 0.589 0.589 0.490 0.589 0.589
wy1 0.189 0.163 0.163 0.283 0.198 0.198 0.229 0.198 0.198
wy2 0.226 0.175 0.175 0.296 0.243 0.243 0.315 0.243 0.243
wy3 0.151 0.126 0.126 0.254 0.137 0.137 0.163 0.137 0.137
wy4 0.283 0.356 0.356 0.332 0.551 0.551 0.439 0.551 0.551

(b) Population values for the regression models corresponding to the three modes of
PLS-SEM under the analyses of the covariances σij (θσ), and the correlations ρij (θρ).

θσ θρ

parameter A BA B A BA B
γw 0.653 0.656 0.656 0.646 0.656 0.656
σ2

w 0.573 0.569 0.569 0.583 0.569 0.569
R

2
w 0.427 0.431 0.431 0.417 0.431 0.431

Note: P is the population correlation matrix; Dσ is a diagonal matrix whose diagonal
elements are the square root of the diagonal elements of Σ; and R

2

w is the population
counterpart of R2.

to the three modes under the population covariances and correlations, where ηw and ξw are

the weighted composites and γw is the corresponding regression coefficient. The results in

Table 2(b) show that the regression coefficient γw, the error variance σ2
w = Var(ew), and the

coefficient of determination R
2
w (population R-square) are scale invariant under both modes

B and BA. But the parameters under mode A do not possess such a property.

5.3 Sample results

For the population covariance matrix Σ (Table A1) that generated the results in Table

2, a sample of size N=100 is drawn from the normal population N(0,Σ). The SAS IML

program that generated the sample as well as the 100 × 15 data matrix are available at

www3.nd.edu\~kyuan\PLS-SEM_property. The code of the SAS program is also provided

in appendix B for reference, and the sample covariance matrix of this sample is given in

Table A2 of appendix A. Table 3 contains the results of applying modes A, BA and B to this

sample. Parallel to Table 2, the estimated weights corresponding to modeling the sample

covariances (S) and sample correlations (R) are denoted by ŵs and ŵr , respectively; and the

transformed weights are obtained by Dsŵs, where Ds is a diagonal matrix whose diagonal

elements are given by the square roots of those of S. The estimates of the model parameters
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for η̂w = γw ξ̂w + ew are also reported in Table 3.

Table 3. (a) Estimated weights of PLS-SEM modes A, BA and B under the analyses of the

sample covariances sij (ŵs), the sample correlations rij (ŵr), and by transformation

(Dsŵs).
Modeling S (ŵs) Modeling R (ŵr) Dsŵs

weight A BA B A BA B A BA B
ŵx1 0.245 0.192 0.211 0.345 0.226 0.262 0.304 0.239 0.262
ŵx2 0.256 0.217 0.194 0.357 0.280 0.246 0.325 0.275 0.246
ŵx3 0.315 0.390 0.393 0.385 0.570 0.568 0.456 0.563 0.568
ŵy1 0.126 0.034 0.200 0.199 0.030 0.239 0.151 0.040 0.239
ŵy2 0.239 0.123 -0.223 0.336 0.122 -0.297 0.318 0.163 -0.297
ŵy3 0.180 0.059 -0.126 0.271 0.056 -0.158 0.224 0.074 -0.158
ŵy4 0.320 0.528 -0.526 0.395 0.856 -0.801 0.487 0.805 -0.801

(b) Estimates for the regression models corresponding to the three modes of PLS-SEM

under the analyses of the sample covariances sij (θs) and the sample correlations rij (θr).

θ̂s θ̂r

parameter est A BA B A BA B
γ̂w 0.649 0.667 -0.686 0.634 0.666 -0.686
σ̂2

w 0.584 0.560 0.534 0.604 0.562 0.534
R2

w 0.422 0.446 0.471 0.402 0.443 0.471

Note: Ds is a diagonal matrix whose diagonal elements are the square root of the diagonal

elements of S.

As expected, estimates under PLS-SEM mode A do not possess the property of scale-

inverse invariance nor scale invariance when the scales of the indicators change. The es-

timated weights under mode B are scale-inverse equivariant and the estimated regression

parameters are scale invariant. But three of the four weights for the y-indicators by mode B

are negative. Note that we let the first element of each weight vector be positive in iteratively

computing the weights. If we had let ŵy1 under mode B be negative, then ŵy2, ŵy3 and ŵy4

would be positive as would γ̂w.

The results in Table 3 imply that weights under mode BA do not possess the property of

scale-inverse equivariance nor the parameter estimates possess that of scale invariance with

finite samples. This is because the sampling errors in the estimated weight ŵa and those in

S affect the estimates of the error variances in equation (2). In particular, weights under

mode BA are obtained by transforming those under mode A. When the model in equation

(1) does not fit the sample covariance matrix S perfectly, the effect of sampling errors is

carried to weights under mode BA. However, compared to the different weights under mode

A, the elements of ŵr and Dsŵs under mode BA are much closer to each other. This is
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because weights under mode BA are asymptotically scale-inverse equivariant and estimates

of regression parameters are asymptotically scale invariant.

The values of the R2 in Table 2 and Table 3 show that, while modes B and BA are

asymptotically equivalent, the former yields a greater R2 value at the sample level. In

contrast, mode A has the smallest R2 in both the population and the sample.

Because our focus is PLS-SEM, we did not formally discuss the invariance or equivariance

properties of regression analysis with equally-weighted composites (EWC) in this section.

Although EWC regression is widely used in practice and was recommended against PLS-

SEM by some authors (e.g., Rönkkö et al., 2022), the results of EWC regression are neither

scale invariant nor scale equivariant nor scale-inverse equivariant. The reliabilities of EWCs

are also scale dependent. Parallel to PLS-SEM mode A, the use of standardized items or

standardized composites under EWC regression is to avoid addressing the issues of scale

dependency of the method. We will use an example to illustrate such facts in a later section.

6. Sensitivity of weights to misspecified models

Results in the previous section and those in Yuan and Deng (2021) indicate that mode

B can yield negative weights although the mode has theoretical advantages. This section

discusses the sensitivity of different modes to model misspecification for the purpose of

better understanding the empirical behaviors of the different modes. Detailed analysis on

the sensitivity of weights to model misspecification was given in Yuan, Wen and Tang (2022),

and we only briefly summarize the results here.

A latent-variable model typically includes measurement model and structural model.

Yuan, Wen and Tang (2022) only considered misspecification in the measurement model,

mostly because the measurement model under PLS-SEM is rather restricted. In contrast,

the structural model under PLS-SEM can be specified as saturated. Thus, we also only

consider misspecified measurement models, which may mistakenly exclude three types of

parameters: (1) within-block error covariances, (2) between-block error covariances, and (3)

cross loadings. Our discussion will be for the three types of misspecification. For simplicity,

we will only discuss the case with two latent variables. But the conclusions equally hold for

models with more latent constructs, as to be illustrated via an empirical example in the next

section. Interested readers are referred to Yuan, Wen and Tang (2022) for a comprehensive

study.

Consider the model in Figure 2, which has seven measurement errors and seven factor

loadings. Each error might be correlated with the errors of its own block or of the other
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block. Each indicator might also load on the latent variable of the other block. When the

PLS-SEM mode is clear from the context, we will use wx and wy to represent the vectors of

weights corresponding to the blocks x and y, respectively. Since the scales of the weighted

composites are arbitrary, we will focus on the relative change of the weights using their

counterparts under the correctly specified model as the reference. In particular, we will

regard the weights as not-affected if they are proportional to their counterparts under the

correctly specified model (i.e., no cross loadings nor correlated errors in the population).

Because the order of the indicators within each block is arbitrary, the conclusions obtained

for a particular indicator also apply to other indicators of the same nature within the same

block.

6.1 PLS-SEM Mode A

Within-block error covariance

When x1 and x2 in Figure 2 have correlated errors, neither the weight vector wx nor the

weight vector wy under the mode A of PLS-SEM is affected. Each vector is still proportional

to that of the correctly specified model, i.e., the vector of factor loadings of the respective

block. Parallel results hold when y2 and y3 in Figure 2 have correlated errors. That is,

within-block correlated errors do not affect the weights under PLS-SEM mode A.

Between-block error covariance

When x3 and y4 in Figure 2 have correlated errors, only the individual weights of x3 and

y4 are affected. The other elements of wx and wy under mode A are still proportional to

their respective factor loadings. If there is a 3rd latent variable with a block of reflective

indicators, the weight vector for this block will not be affected by the error correlations

between the other two blocks.

Cross loading

In Figure 2 when x1 has a nonzero loading on η, only the weight for x1 in wx is affected.

The weights for the other indicators in the block x are still proportional to their respective

factor loadings. The weight vector wy is not affected. In parallel, the existence of a cross

loading of y4 on ξ in Figure 2 only affects the weight of y4 in wy. The other elements of wy

as well as the whole vector wx are still proportional to their respective factor loadings.

6.2 PLS-SEM Mode B

Within-block error covariance

When y3 and y4 in Figure 2 have correlated errors, the weights for y3 and y4 in wy are

affected. The other weights within the block are still proportional to their respective factor
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loadings. The weight vector wx is not affected. Parallel results hold when errors in the block

x are correlated. That is, within-block error covariances only affect the individual weights

of the involved items. They do not affect the weights for the other items within the same

block nor any of the weights of a different block.

Between-block error covariance

When x3 and y4 in Figure 2 have correlated errors, only the individual weights of x3

and y4 are affected. The other elements of wx and wy under mode B are still proportional

to their counterparts under the correctly specified model (i.e., the vector of factor loading

multiplied by the precision matrix of the block). If there is a 3rd latent variable with a

block of reflective indicators, the weight vector for this block will not be affected by the error

covariances between the other two blocks.

Cross loading

When x1 has a nonzero loading on η in Figure 2, only the weight for x1 in wx is affected.

The weights for the other indicators in the block x are still proportional to their counterparts

under the correctly specified model. The weight vector wy is still proportional to the vector

of factor loadings multiplied by the precision matrix of the block y. In parallel, the existence

of a cross loading of y4 on ξ in Figure 2 only affects the weight of y4 in wy, and the other

elements of wy are still proportional to their counterparts under a correctly specified model,

and so is the whole vector wx.

6.3 PLS-SEM Mode BA

Within-block error covariance

When x1 and x2 in Figure 2 have correlated errors, the one-factor model in equation (1) is

misspecified. To account for the need of fitting the covariances of the indicators, the factor

variance (the parameter φ) in equation (1) has to take a different value from that of the

correctly specified model, and so do the error variances. Consequently, any error covariances

within the block x will affect all the elements of wx under the mode BA. However, error

covariances within the block x do not affect the weight vector wy. Parallel results hold when

y has within-block error covariances. That is, within-block error covariances only affect the

weight vector of the corresponding block. They do not affect the weights of a different block.

Between-block error covariance

When x3 and y4 in Figure 2 have correlated errors, all the elements of wx and wy are

affected under the mode BA. This is because a change in a single element of the weight

vector under mode A will affect the communalities of all the indicators in x via the change
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of the factor variance (the parameter φ) when equation (1) is estimated. They together

cause all the elements of wx and wy under mode BA to change. However, if there is a 3rd

latent variable with a block of reflective indicators, the weight vector for this block will not

be affected by the error covariances between the other two blocks.

Cross loading

When x1 has a nonzero loading on η in Figure 2, the change in weight of x1 under mode

A will affect the values of the communalities of all the indicators in x via the change of

the factor variance (the parameter φ in equation 1). They further cause changes in all the

elements of wx under the mode BA. However, the vector wy under mode BA is not affected

by the existence of a cross loading of x1 on η.

We only discussed whether the weights will change or remain intact when an extra as-

sociation in the population exists. The size of the change also varies between the different

modes. In particular, mode B tends to have the largest change and is very sensitive to the

existence of cross loadings, although more elements of the weights under mode BA are af-

fected (Yuan, Wen & Tang, 2022). Because model misspecification and sampling errors are

empirically confounded, the results in this section explain why some weights under mode B

in Table 3 are negative although the two-factor model is correct.

7. Two real data examples

This section contains two examples, and the purpose is to illustrate the properties of the

PLS-SEM methodology presented in the previous sections, including the size of measurement

reliability, scale invariance and equivariance of weights and reliability coefficients, and the

sensitivity of weights. The data and model for the first example are from a PLS-SEM

textbook; and the dataset for the second example is from a classical textbook of multivariate

statistics that has been used to illustrate various developments in SEM.

Example 5.

The path diagram in Figure 1.3 of Henseler (2021, p. 6) presented a model with 21

reflective indicators and 4 latent constructs. One of the 21 indicators is gender, playing

the role of a covariate (ξ1). The other 20 indicators include eight organizational prestige

indicators for a latent construct ξ2 (organizational prestige), six organizational identification

indicators for a latent construct η1 (organizational identification), four affective commitment

indicators for a latent construct η2 (joy), and two affective commitment indicators for a

latent construct η3 (love). The wording of the indicators can be found in Table 6.1 of

Henseler (2021, p. 135). According to the table, this organization-culture dataset has 22
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variables from 305 participants, and they were part of a larger survey among South Korean

employees conducted and reported by Bergami and Bagozzi (2000). One of the indicators

(orgcmt6) in Table 6.1 of Henseler (2021) is not used in his Figure 1.3. Among the 305

participants, there are 157 male employees and 148 female employees. For easy reference, a

path diagram for the model is given in Figure 3 of this chapter, which has 7 path coefficients:

γ21, γ31, γ12, γ22, γ32, β21, and β31. Note that the labels for joy and love in Figure 1.3 of

Henseler (2021) are switched from his Table 6.1, and the labels in our Figure 3 adopted those

in his Table 6.1. Our purpose with this real-data example is to use the textbook model to

illustrate the discussed properties of the three modes of the PLS-SEM methodology.

Figure 3. A model with a covariate (gender), four latent variables and twenty indicators
(the same model as in Figure 1.3 on page 6 of Henseler 2021).
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Because both LS regression and the NML method for CB-SEM are strongly influenced by

data contamination and/or outlying observations, we first check the distribution properties of

this organization-culture dataset. Since gender is unlikely contaminated, it is excluded from

the examination. The standardized Mardia’s (1970) multivariate kurtosis of the remaining

20 variables is Ms = 40.481, which is highly significant when compared against the standard

normal distribution. We thus use a robust method to control the heavy tails of the data,

and choose a Huber-type M-estimator for the purpose (Huber, 1981). This can be carried

out via a robust transformation procedure (Yuan, Chan & Bentler, 2000). Note that the
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mechanism of robustness with Huber-type M-estimator is to give smaller weights to outlying

cases in estimating the means and covariances. The purpose is to get more efficient parameter

estimates or numerically more stable results in the analysis (Yuan & Gomer, 2021). Let’s

denote the robust method via Huber-type weights as H(ϕ) when cases whose Mahalanobis

distances (d2

M ) are greater than the 1 − ϕ quantile of χ2

20
are downweighted. We started

with H(.05), however, the standardized multivariate kurtosis of the transformed sample is

still highly significant (Ms = 9.112). Following the recommendation in Yuan and Gomer

(2021), we continued to increase the value of ϕ by checking the corresponding standardized

multivariate kurtosis until ϕ = .25, and the corresponding value of the Ms is −0.099. Our

analysis and comparison below are to fit the model in Figure 3 to the transformed sample

by H(.25), where gender is not subject to the transformation.

Clearly, the model in Figure 3 can be estimated under both PLS-SEM and CB-SEM.

Although our main interest in this chapter is to study psychometric and statistical properties

of PLS-SEM, these properties are characterized via the model implied covariance matrix.

Thus, we will first estimate the model under CB-SEM via the NML method to obtain this

covariance matrix. Considering that PLS-SEM researchers may not have much interest in

results under CB-SEM, these are put in Appendix C of this chapter. Instead, we will include

the results of path analysis with EWCs, since the method lacks the fundamental properties

of a principled method but was favored against PLS-SEM.

For each of the four latent variables (ξ2, η1, η2, η3), fixing their first factor loading at 1.0

for model identification, the CB-SEM model has 48 free parameters. Fitting the model in

Figure 3 to the robustly transformed sample by NML results in Tml = 613.756, corresponding

to a p-value that is essentially 0 when referred to χ2
183. Fit indices (RMSEA=.088, CFI=.871)

also indicate that the model in Figure 3 fits the data marginally5 according to the established

norms (Hu & Bentler, 1999). This is not unusual when working with real data. The goodness-

of-fit can be improved by modifying the model in Figure 3 (e.g., correlated errors and/or

cross loadings). But our purpose is to use the textbook example with the original model to

illustrate the fundamental properties of the PLS methodology, as stated earlier.

The estimates of the factor loadings (λ), factor variances (φ), path coefficients (γ, β),

measurement error variances (ψ) and prediction error variances (σ2
ζ ) of the CB-SEM model

are reported in Table C1, where the standard errors (SE) and z-statistics are computed

according to the ML (i.e., NML) method in EQS (Bentler, 2006). All the parameter estimates

5When the CB-SEM model is fitted to the original (not robustly transformed) data by NML, the results
are Tml = 669.183, RMSEA=.093, and CFI=.848. The estimate of γ32 corresponds to a z-statistic at −1.840.
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are statistically significant at the level of .05.

Insert Table 4 about here

We next apply PLS-SEM modes A, BA and B to estimate the model in Figure 3. When

working with the unstandardized variables (modeling the sample covariance matrix S) of the

robustly transformed sample the 21 estimated weights by each method are given in the left

panel of Table 4, and those with the standardized variables (modeling the sample correlation

matrix R) are in the middle panel. The right panel of Table 4 contains the results of Dsŵs,

where Ds is a diagonal matrix whose diagonal elements are the square root of the diagonal

elements of S, and ŵs is the vector of weights on the left panel of the table. Clearly, the

estimated weights by mode B under modeling R are identical to those under Dsŵs, verifying

the property of scale-inverse equivariance of the mode. In contrast, the estimated weights

by mode A do not enjoy such a property. The weights under mode BA in Table 4 are not

strictly scale-inverse equivariant either, due to sampling errors and model misspecification.

But the values of ŵba
under Dsŵs are rather close to those under modeling R.

Note that the first value of the estimated weights for each block of indicators in Table 4

is set as positive. However, five of the eight values of ŵb for the indicators of ξ2 are negative.

This shows the sensitivity of mode B to model misspecification/sampling errors, although

the weights are scale-inverse equivariant. In contrast, weights under modes A and BA are all

positive, conforming with the expectation in formulating composites.

Insert Table 5 about here

Table 5 contains the estimated path coefficients of the structural model in Figure 3,

where EWC regression is also included for comparison purpose. Clearly, the results by mode

B remains the same whether working with the unstandardized variables (modeling S) or the

standardized variables (modeling R). The results by mode BA under modeling R are almost

identical to those under modeling S, whereas those by PLS-SEM mode A clearly depend on

the scales of the observed indicators. The results of EWC regression in Table 5 are even more

affected by the scales of the observed indicators than those of PLS-SEM mode A, indicating

that the former is not a principled method. Note that the signs of the estimated values for

coefficients γ12, γ22, and γ32 by mode B are opposite to those by the other methods, due to

five of the weights being negative for the eight indicators of ξ2. This can be addressed by

reversing the signs of the eight estimated weights.
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Insert Table 6 about here

Estimated reliabilities of the four composites (ξ̂2, η̂1, η̂2, η̂3) by six different methods are

presented in Table 6, where each method is applied to both the unstandardized (modeling S)

and standardized items (modeling R). The six methods are respectively (1) EWC; (2) PLSA

with weights estimated by PLS-SEM mode A; (3) PLSAm
with weights being proportional

to the factor loadings λ̂ under CB-SEM presented in Table C1, where the m in the subscript

is for model-implied weights (Dijkstra, 1983); (4) PLSB with weights estimated by PLS-

SEM modes B; (5) PLSBA
with weights estimated according to section 4 of the chapter;

and (6) PLSBm
with model-implied weights that are proportional to Ψ̂−1

λ̂ (Dijkstra, 1983;

Yuan & Deng, 2021), where λ̂ and Ψ̂ are respectively the NML estimates of factor loadings

and error variances under CB-SEM. The reliability of each composite is computed via the

model-implied covariance matrix according to the NML estimates reported in Table C1. The

estimated reliabilities of the individual items are also included in Table 6, which are from

the default output of EQS (Bentler, 2006).

The results in Table 6 show that the reliabilities of composites by PLSB and PLSBm

are scale invariant while those by PLSBA
are close to scale invariant. The reliabilities of

composites by PLSA and PLSAm
are rather close but neither set is scale invariant. The

reliabilities of the EWCs are clearly not scale invariant. Regarding the size of the reliability

estimates, those of ξ̂2 by both PLSA and PLSB are smaller than that of the EWC under

modeling S, and that by PLSB is also smaller than that of the EWC under modeling R.

For all the other composites, the EWCs have the smallest reliability estimates. Note that,

for correctly specified models, mode B supposes to yield composites with the maximum

reliabilities. The reason for PLSB to perform poorly with ξ̂2 is because multiple weights are

negative, due to the sensitivity of the weights to model misspecification and/or sampling

errors, as presented in section 6 of the chapter. For this example, all the reliability estimates

for all the composites are greater than those of the individual items.

The comparison between EWC and PLS-SEM mode A in Table 6 is consistent with what

was concluded by Henseler et al. (2014).

Example 6.

Mardia, Kent and Bibby (1979, Table 1.2.1) contain test scores on 5 subjects fromN = 88

students. The five subjects are: Mechanics (y1), Vectors (y2), Algebra (x1), Analysis (x2),

and Statistics (x3). The first two scores were obtained with closed-book exams and the last

three were with open-book exams. Tanaka, Watadani, and Moon (1991) fitted the dataset
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by a two-factor model, one factor representing the trait for taking closed-book exams, and

the other representing the trait for taking open-book exams. This dataset has been used

to illustrate new developments in CB-SEM and PLS-SEM (e.g., Poon & Poon, 2002; Yuan

et al., 2020). We will use the dataset to compare the reliabilities of differently formulated

composites. The standardized Mardia’s multivariate kurtosis for this test-score dataset is

Ms = .057, and our analysis will be conducted on the observed sample without robust

transformation.

Insert Table 7 about here

Let ξ represent the trait underlying the three open-book test scores, and η represent the

trait underlying the two closed-book test scores. The regression model η = γξ + ζ is then

estimated by NML under CB-SEM, EWC regression, BFS regression, PLS-SEM modes A,

BA and B, respectively. The estimated regression coefficient under each method as well as

the weights under the PLS methods follow the same patterns as observed with the previous

organization-culture example, and we do not display them to save space. Table 7 contains

the reliabilities of the 5 individual test scores estimated under CB-SEM as well as those

of the weighted composites for ξ and η by 6 methods. Note that the reliability of Algebra

(x1) is .857. When working with the unstandardized variables (modeling S), three of the six

estimated reliabilities for ξ are smaller than that of the single item (x1). Also, the reliabilities

of ξ̂ by PLSA and PLSAm
are smaller than that of the EWC. When the methods are applied

to the standardized variables (modeling R), the reliability of the EWC ξ̂ is still smaller than

that of the single item x1, while those by the other methods are greater than that of x1.

The results in Table 7 also show that the estimated reliabilities under PLSBm
and PLSB

remain the same whether working with the standardized variables or the unstandardized

variables. However, the estimated reliabilities of ξ̂ and η̂ by the other methods are not scale

invariant. The causes for the reliability estimates by PLSBA
not being scale invariant are

sampling errors and/or possible model misspecification, and the reliabilities of EWCs and the

composites under PLSA and PLSAm
are not scale invariant even under idealized conditions

(correct model & without sampling error).

8. Conclusion and Discussion

In this chapter we examined several properties of PLS-SEM methodology analytically

and illustrated them both numerically and via real-data examples. Although mode A with

standardized variables was routinely used for models with reflective indicators, the method
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does not possess solid statistical or psychometric properties. Mode B possesses good psycho-

metric and statistical properties at the level of population but it is rather sensitive to model

misspecification and sampling errors. In contrast, mode BA possesses the advantages of both

modes A and B. The resulting composites by mode BA are asymptotically most reliable, and

the other results of this mode are either asymptotically scale-inverse equivariant or scale

invariant and are also numerically more stable than those by mode B. We thus recommend

its routine use in practice.

The sensitivity of mode B is driven by the need to maximize the relationship between

predictors and the corresponding environmental variable. In particular, the weights under

mode B are obtained by pulling the strength of all the indicators in each block to predict

the environmental variable, which is a linear combination of the indicators of the directly

connected constructs. When the model does not fit the data perfectly, mode B will pick

up the additional associations not represented by the model in order to account for the

relationship among the indicators. The additional associations among indicators can render

the regression coefficients (the weights) negative in predicting the environment variable if

the associations are not in the same direction expressed by the parameters over the existing

paths. While the weights under mode A also partially maximize the associations among the

indicators via the environmental variable (see e.g., Boardman et al., 1981), each indicator

under mode A is solely responsible for its own weight due to being computed by simple

regression, and the weight would not change its sign unless the extra association of the focal

indicator with the other blocks dominates the relationship.

As with any maximization process, neither mode A nor mode B distinguishes between

systematic correlations and spurious correlations due to chance errors. In order to properly

utilize the maximization mechanism of PLS-SEM, additional studies are needed to separate

systematic correlations from chance errors. Compared to modes A and B, mode BA is

relatively new and few studies examined its behavior with small samples or under model

misspecification. Since both the systematic effect due to model misspecification and the

chance effect due to sampling errors associated with ŵa will be inherited by ŵba
, we might

expect that mode BA will also be affected by the two types of errors, and additional studies

are needed to better understand the strength of mode BA.

There are also developments for PLS-SEM to yield estimates that are consistent with

those under CB-SEM (e.g., Dijkstra & Henseler, 2015a,b; Yuan et al., 2020). As we noted

in the introduction of this chapter, the values of the path coefficients under CB-SEM de-
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pend on the scales of the latent variables, and those under PLS-SEM depend on the scales

of the weighted composites. Consistent estimates between the two classes of methods can

be achieved by proper scaling of the latent variables or the weighted composites. Alterna-

tive methods that deviate from the standard PLS-SEM procedures can make the resulting

regression equations lose the desired properties in yielding predicted values with smallest

mean-squared errors (MSE), although the path coefficients are consistent with those under

CB-SEM. Also, consistent path coefficients by an alternative method may not be proper if the

regression equation is used for prediction or diagnosis of individuals/participants. Neverthe-

less, one may also develop corrections to the estimates under PLS-SEM mode BA so that they

are consistent with those defined under CB-SEM. If estimates consistent with those under

CB-SEM are of primary concern, then one should start with CB-SEM rather than correct-

ing the estimates following the PLS-SEM methodology. In addition to consistent estimates,

CB-SEM also facilitates evaluations of several other features, e.g., the goodness-of-fit of the

overall model structure, item reliability, unidimensionality, etc.

As noted in the introduction of this chapter, Wold (1980, 1982) recommended mode

B for models with formative indicators, and there is also advice on when and how to use

composites with formative indicators (e.g., Jarvis, MacKenzie & Podsakoff, 2003; Petter,

Straub & Rai, 2007). Rationales for not studying formative indicators have been given

in the introduction section of this chapter. Because formative indicators do not need to

share a single underlying common trait, other reasons that we did not study formative

indicators include: (1) The property and substantive meaning of the composites may change

as the number of indicators increases, due to different compositions. (2) The meaning of a

composite will also change when the structural model changes, due to the fact that weights

will change when the composition of the environmental variable or the connections among

the latent variables change (Treiblmaier et al., 2011). Such a dynamic nature is an integrated

part of formative indicators and the corresponding composite model, which directly serves

the need to maximize the relationship among different blocks of indicators. However, the

data themselves do not know whether they are error-free or the variables share any common

construct. The weights by mode B are still scale-inverse equivariant and the composites

are scale invariant regardless of the nature of the indicators. Also, mode B may result in

negative weights for truly formative indicators. Interested readers are referred to Henseler

et al. (2014), Sarstedt et al. (2016); Dijkstra (2017), Hwang et al. (2020), and Cho, Sarstedt

and Hwang (2022b) for detailed studies with composite models.
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We have showed statistical and psychometric properties of PLS-SEM analytically and

numerically as well as by real data examples. While PLS-SEM mode B enjoys many theoret-

ical and/or asymptotic advantages, results also showed that the method is rather sensitive

to sampling errors. Further analytical or Monte Carlo studies are needed to see the speed

for mode B to converge to its asymptotic results or when the method yields similar empirical

results as BFS regression.
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Appendix A. Population and sample covariance matrices

The tables in this appendix contain the population and sample covariance matrices that
are used to compute the results in Tables 2 and 3, respectively. The values for the population
covariance matrix (Table A1) are exact, and those for the sample covariance matrix are
rounded. Note that the sample covariance matrix is unbiased.

Table A1. The population covariance matrix Σ

x1 x2 x3 y1 y2 y3 y4

x1 1.1900 0.8000 0.9600 0.5600 0.6720 0.4480 0.8400
x2 0.8000 1.6000 1.2000 0.7000 0.8400 0.5600 1.0500
x3 0.9600 1.2000 1.8400 0.8400 1.0080 0.6720 1.2600
y1 0.5600 0.7000 0.8400 1.4700 1.0680 0.7120 1.3350
y2 0.6720 0.8400 1.0080 1.0680 1.9316 0.8544 1.6020
y3 0.4480 0.5600 0.6720 0.7120 0.8544 1.1696 1.0680
y4 0.8400 1.0500 1.2600 1.3350 1.6020 1.0680 2.4025

Table A2. The (unbiased) sample covariance matrix S

x1 x2 x3 y1 y2 y3 y4

x1 1.5429 1.1706 1.4051 0.4285 0.7840 0.5716 1.1351
x2 1.1706 1.6088 1.4303 0.4590 0.8221 0.7012 1.1209
x3 1.4051 1.4303 2.0897 0.5471 1.0944 0.7674 1.3803
y1 0.4285 0.4590 0.5471 1.4250 0.8699 0.6080 1.1202
y2 0.7840 0.8221 1.0944 0.8699 1.7641 0.8380 1.4730
y3 0.5716 0.7012 0.7674 0.6080 0.8380 1.5575 1.0482
y4 1.1351 1.1209 1.3803 1.1202 1.4730 1.0482 2.3187



Appendix B. The SAS IML code that generates the sample covariance matrix in Table A2

proc iml;

n=100; *sample size;

p_x=3;

p_y=4;

p=p_x+p_y; *number of variables;

*-------------------------;

*population values;

lamb_x0 ={0.8 , 1.0, 1.2}; *loadings;

lamb_y0 ={1.0 , 1.2, 0.8, 1.5};

lamb0=( lamb_x0 ||j(3 ,1 ,0))//(j(4 ,1 ,0)||lamb_y0 );

phi_11 =1.0; *factor variance;

gamma =.7; *regression coefficient;

sig2_zeta=.40; *prediction error variance;

phi_12=gamma;

phi_21=phi_12;

phi_22=gamma*gamma+sig2_zeta;

phi0=

(phi_11 ||phi_12 )//

(phi_21 ||phi_22 );

psi0={.55 ,.6 ,.4 ,.58 ,.65 ,.6 ,.4}; *measurement error variances;

psi_mat0=diag(psi0);

Sig_0=lamb0*Phi0*(lamb0 ‘)+psi_mat0;* population covariance matrix;

call eigen(sval0,svec0,Sig_0); *eigenvalue decomposition;

sig_012 =svec0*diag(sqrt(sval0))*svec0 ‘; *Sig_0 ^{1/2};

*-------------------------;

seed =1111111111;

z=normal(j(n,p,seed));

*a 100 by 7 matrix of independent random numbers following N(0 ,1);

x=z*sig_012; *the observed sample;

*each row of x follows a 7-variate normal distribution N(0,Sig0);

print x;

scov_x=x‘*(i(n)-j(n,n,1)/n)*x/(n-1); *the sample covariance matrix;

print scov_x;



Appendix C. Normal-distribution-based maximum likelihood (NML) estimates for the

model in Figure 3

The table in this appendix contains the NML estimates by fitting the model in Figure
3 to the robustly transformed sample via H(.25). The dataset was originally presented by
Bergami and Bagozzi (2000). The data and model used in this chapter are from the book

by Henseler (2021). The likelihood ratio statistic and goodness-of-fit indices (RMSEA and
CFI) were reported in the chapter and are also included in the table.

Table C1. Parameter estimates (est), their SEs (se) and z-statistics for the CB-SEM model
represented by Figure 3 (p = 21, N = 305, Tml = 613.756, df = 183, p-value=0;

RMSEA=.088, and CFI=.871). The results are obtained using NML with a robustly
transformed sample via H(.25).

θ est se z θ est se z
λx1,1 1.000 ψx1 0
λx2,2 1.000 ψx2 0.217 0.019 11.341
λx3,2 1.121 0.086 13.105 ψx3 0.197 0.018 10.960
λx4,2 1.119 0.093 12.082 ψx4 0.281 0.025 11.373
λx5,2 1.036 0.075 13.862 ψx5 0.125 0.012 10.475
λx6,2 1.132 0.083 13.689 ψx6 0.160 0.015 10.605
λx7,2 1.266 0.090 14.102 ψx7 0.168 0.016 10.268
λx8,2 1.210 0.096 12.597 ψx8 0.275 0.025 11.189
λx9,2 1.107 0.078 14.186 ψx9 0.123 0.012 10.187
λy1,1 1.000 ψy1 0.285 0.026 10.940
λy2,1 0.922 0.089 10.379 ψy2 0.313 0.028 11.257
λy3,1 0.739 0.087 8.480 ψy3 0.383 0.033 11.771
λy4,1 1.347 0.103 13.112 ψy4 0.203 0.023 8.756
λy5,1 1.340 0.105 12.707 ψy5 0.254 0.027 9.494
λy6,1 0.964 0.089 10.820 ψy6 0.292 0.026 11.071
λy7,2 1.000 ψy7 0.378 0.036 10.513
λy8,2 0.980 0.098 10.029 ψy8 0.282 0.028 9.975
λy9,2 1.118 0.103 10.814 ψy9 0.225 0.027 8.450
λy10,2 0.828 0.094 8.844 ψy10 0.347 0.032 10.981
λy11,3 1.000 ψy11 0.325 0.036 8.960
λy12,3 1.183 0.151 7.811 ψy12 0.290 0.042 6.908
φ11 0.251 0.020 12.329
φ22 0.231 0.033 7.068
γ21 -0.182 0.052 -3.498 β21 0.713 0.086 8.309
γ31 0.135 0.057 2.365 β31 -0.564 0.084 -6.735
γ12 0.372 0.072 5.206 σ2

ζ1
0.233 0.036 6.567

γ22 0.222 0.063 3.551 σ2
ζ2

0.103 0.021 4.855
γ32 -0.197 0.068 -2.881 σ2

ζ3
0.101 0.026 3.933



Table 4. Estimated weights of composites by three methods for the model in Figure 3

(p = 21, N = 305). The results are obtained with a robustly transformed sample via H(.25).
Modeling S (ŵs) Modeling R (ŵr) Dsŵs

Indicator ŵa ŵba
ŵb ŵa ŵba

ŵb ŵa ŵba
ŵb

x1,1 2.001 2.001 2.001 1.000 1.000 1.000 1.000 1.000 1.000
x2,2 0.166 0.101 0.140 0.122 0.069 0.094 0.111 0.068 0.094
x3,2 0.196 0.131 0.273 0.137 0.091 0.190 0.136 0.091 0.190
x4,2 0.251 0.222 -0.589 0.161 0.163 -0.443 0.189 0.167 -0.443
x5,2 0.199 0.251 -0.182 0.159 0.155 -0.111 0.121 0.153 -0.111
x6,2 0.221 0.230 -0.480 0.160 0.160 -0.324 0.149 0.155 -0.324
x7,2 0.262 0.350 -0.467 0.174 0.258 -0.342 0.192 0.256 -0.342
x8,2 0.251 0.181 0.003 0.155 0.137 0.003 0.196 0.141 0.003
x9,2 0.217 0.294 -0.350 0.165 0.184 -0.222 0.138 0.187 -0.222
y1,1 0.257 0.231 0.179 0.211 0.171 0.132 0.190 0.171 0.132
y2,1 0.257 0.241 0.289 0.215 0.181 0.212 0.188 0.177 0.212
y3,1 0.209 0.154 0.196 0.176 0.113 0.142 0.152 0.112 0.142
y4,1 0.350 0.448 0.445 0.257 0.368 0.368 0.289 0.370 0.368
y5,1 0.345 0.342 0.369 0.245 0.289 0.315 0.294 0.292 0.315
y6,1 0.236 0.194 0.132 0.196 0.142 0.097 0.173 0.142 0.097
y7,2 0.428 0.330 0.299 0.305 0.265 0.242 0.347 0.268 0.242
y8,2 0.417 0.428 0.415 0.326 0.314 0.309 0.310 0.318 0.309
y9,2 0.474 0.597 0.659 0.363 0.453 0.501 0.360 0.453 0.501
y10,2 0.363 0.314 0.282 0.292 0.238 0.208 0.267 0.230 0.208
y11,3 0.678 0.574 0.601 0.522 0.412 0.441 0.498 0.422 0.441
y12,3 0.871 0.956 0.935 0.649 0.743 0.720 0.670 0.735 0.720

Note: S = (sij) and R = (rij) are respectively the sample covariance and correlation matrices
of the robustly transformed sample, and the ds is the square root of the corresponding

diagonal element of S.



Table 5. Estimated path coefficients and the corresponding R-squares for the model in

Figure 3 (p = 21, N = 305). The results are obtained with a robustly transformed sample
via H(.25).

Modeling S Modeling R

parameter EWCreg PLSA PLSBA
PLSB EWCreg PLSA PLSBA

PLSB

γ21 -0.169 -0.145 -0.151 -0.148 -0.110 -0.143 -0.151 -0.148
γ31 0.127 0.114 0.117 0.112 0.084 0.111 0.117 0.112
γ12 0.365 0.327 0.325 -0.337 0.327 0.326 0.325 -0.337
γ22 0.258 0.208 0.200 -0.191 0.236 0.210 0.200 -0.191
γ32 -0.206 -0.178 -0.185 0.191 -0.190 -0.179 -0.185 0.191
β21 0.572 0.540 0.554 0.556 0.576 0.538 0.554 0.556
β31 -0.442 -0.430 -0.431 -0.430 -0.447 -0.423 -0.430 -0.430
R2

η1
0.107 0.107 0.106 0.114 0.106 0.107 0.106 0.114

R2
η2

0.417 0.425 0.437 0.437 0.415 0.424 0.437 0.437
R2

η3
0.264 0.277 0.282 0.287 0.259 0.270 0.281 0.287

Note: S = (sij) and R = (rij) are respectively the sample covariance and correlation matrices

of the robustly transformed sample.



Table 6. Reliabilities of individual items (ρj) as well as of composites (ξ2, η2, η2, η3) by six

methods for the model in Figure 3 (p = 21, N = 305). The results are obtained with a
robustly transformed sample via H(.25).

Item ρj Item ρj Item ρj Item ρj

x2,2 0.515 y1,1 0.482 y7,2 0.430 y11,3 0.402
x3,2 0.595 y2,1 0.419 y8,2 0.492 y12,3 0.512
x4,2 0.507 y3,1 0.274 y9,2 0.613
x5,2 0.665 y4,1 0.704 y10,2 0.360
x6,2 0.649 y5,1 0.653
x7,2 0.688 y6,1 0.458
x8,2 0.551
x9,2 0.696

Modeling S Modeling R

Method ξ̂2 η̂1 η̂2 η̂3 ξ̂2 η̂1 η̂2 η̂3

EWC 0.923 0.859 0.781 0.628 0.925 0.854 0.781 0.627
PLSAm

0.923 0.873 0.787 0.632 0.927 0.867 0.789 0.630
PLSA 0.921 0.872 0.787 0.633 0.927 0.865 0.788 0.632
PLSBm

0.929 0.877 0.795 0.633 0.929 0.877 0.795 0.633
PLSB 0.803 0.870 0.794 0.631 0.803 0.870 0.794 0.631
PLSBA

0.924 0.876 0.795 0.630 0.925 0.876 0.794 0.629

Note: S = (sij) and R = (rij) are respectively the sample covariance and correlation matrices

of the robustly transformed sample.



Table 7. Reliabilities of individual items (ρj) as well as of composites (ξ, η) by six methods

for test-score data (p = 5, N = 88).
Individual item Modeling S Modeling R

Item ρj Method ξ̂ η̂ ξ̂ η̂
x1 0.857 EWC 0.823 0.699 0.852 0.715
x2 0.599 PLSAm

0.808 0.687 0.865 0.719
x3 0.526 PLSA 0.814 0.687 0.870 0.720
y1 0.491 PLSBm

0.896 0.724 0.896 0.724
y2 0.624 PLSB 0.884 0.724 0.884 0.724

PLSBA
0.858 0.724 0.876 0.724

Note: S = (sij) and R = (rij) are respectively the sample covariance and correlation matrices
of the observed sample.




