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Abstract 

A growing body of research suggests that the effects of core mathematics instruction on student 

mathematics outcomes may not be uniform across different skill levels in mathematics. This 

study investigated the extent to which observed components of explicit mathematics instruction 

explained why students’ initial mathematics achievement was previously found to moderate the 

treatment impact of an empirically validated, core kindergarten mathematics program. 

Instructional components examined were: (a) teacher demonstrations and explanations of 

mathematical concepts, (b) group and individual student practice opportunities, and (c) teacher-

delivered academic feedback. Findings suggest that the rate in which teachers facilitated 

individual student practice opportunities during core mathematics instruction explained the 

program’s differential effectiveness. Implications in terms of differentiating practice 

opportunities for at-risk learners and utilizing classroom observation data to test potential 

mediating variables of academic interventions are discussed.  

 
Keywords: mathematics difficulties, explicit mathematics instruction, student practice 

opportunities, direct observations, mediating variables, efficacy research 
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Do Components of Explicit Instruction Explain the Differential Effectiveness of a Core 

Mathematics Program for Kindergarten Students with Mathematics Difficulties? 

Core (Tier 1) mathematics instruction plays a critical role in students’ development of 

mathematics proficiency (Agodini & Harris, 2010). At each grade level, core mathematics 

instruction represents the mathematics instruction that focuses on the range of mathematical 

standards students are expected to learn and know. This definition recognizes that core 

instruction takes place in general education settings and is commonly delivered by teachers using 

commercially available core programs. A primary task of core mathematics instruction is to 

target the critical mathematics concepts and skills considered essential for understanding more 

advanced mathematical topics. For example, in kindergarten, core mathematics instruction 

focuses on helping students build a deep and lasting understanding of foundational aspects of 

early number sense (Gersten et al., 2009; Sood & Jitendra, 2013). 

Importance of Core Mathematics Instruction in Kindergarten 

At all grade levels, core mathematics instruction is essential for children’s mathematical 

learning. This is particularly true in kindergarten, when core mathematics instruction sets the 

trajectory for future growth in mathematics and thus supports all students, including students at 

risk for mathematics difficulties (MD), in acquiring mathematical proficiency (Jordan, Kaplan, 

Ramineni, & Locuniak, 2009). For many students, the core mathematics instruction provided in 

kindergarten represents their initial exposure to formal mathematics instruction. Therefore, it is 

responsible for not only allowing typical achieving students to learn and progress successfully, 

but also accelerating the learning of students who enter kindergarten at risk for early MD.  

Recent research has begun to document the importance of core mathematics instruction 

for students at risk for MD. For example, in a recent quasi experimental study, Sood and Jitendra 
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(2013) explored the treatment effects of a core kindergarten number sense program in five 

kindergarten classrooms. The program, which embraced an explicit instructional approach, 

targeted building students’ understanding of whole number relationships. A total of 101 

kindergarten students participated in the study, of which 43 were identified as at risk for MD. 

Sood and Jitendra reported statistically significant treatment effects on a set of number sense 

measures, with effect sizes (Hedges’ g) ranging from .55 to 1.14. Findings also suggested that at 

risk students benefited from the number sense program commensurate to their non-risk peers.  

Differentiated Effects of Core Mathematics Instruction By Achievement Level 

While core mathematics instruction during the kindergarten year is of significant 

importance, mounting evidence indicates that its effects may not be uniform across different 

initial skill levels in mathematics (Duncan et al., 2007; Morgan, Farkas, & Wu, 2009). For 

instance, Duncan et al. (2007) investigated mathematics achievement data from several 

nationally representative samples of kindergarten children, including the Early Childhood 

Longitudinal Study–Kindergarten Cohort (ECLS-K) and National Institute of Child Health and 

Human Development Study of Early Child Care and Youth Development (NICHD SECCYD) 

datasets. The analyses included a collective sample of approximately 22,000 kindergarten 

students. Findings from the ECLS-K and NICHD SECCYD datasets suggested that students with 

higher mathematics achievement outcomes at the start of kindergarten showed stronger response 

to core mathematics instruction at third and fifth grades, respectively.  

In a more recent analysis of the ECLS-K dataset, Morgan et al. (2009) found that students 

entering kindergarten with lower mathematical skills at the start of the school year (defined by 

the authors as those students who scored below the 10th percentile on a nationally normed 

mathematics test) demonstrated a lower achieving response to core mathematics instruction 
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through fifth grade. In kindergarten, this differential response to core instruction may be due, at 

least in part, to a lack of structured and explicit opportunities for students to build early number 

sense.   

It is encouraging, however, that a recent line of efficacy research has begun to 

demonstrate that it is possible for systematically designed and explicitly delivered core 

mathematics instruction to increase achievement among students who were initially low 

performing at the start of kindergarten without adversely affecting the achievement of initially 

higher performing students. For example, Clarke and colleagues (2015a) conducted a 

randomized controlled trial (RCT) to test the efficacy of the Early Learning in Mathematics 

(ELM) program. ELM is a yearlong core (Tier 1) kindergarten mathematics program that 

incorporates an explicit and systematic instructional design framework (Coyne, Kame’enui, & 

Carnine, 2011). Approximately 2,600 kindergarten students participated in the study, of whom 

50% were considered at risk for MD at the start of school year. Blocking on school, 129 

kindergarten classrooms in Oregon and Texas were randomly assigned to either treatment or 

control conditions. Classrooms in the treatment condition implemented ELM, while control 

classrooms continued to use standard district practices (i.e., “business-as-usual”).  

Using a nested time by condition analysis to account for the nesting of students within 

classroom, Clarke et al. (2015a) found that the effects of the ELM program were moderated by 

students’ initial mathematics achievement. Specifically, findings suggested that the ELM 

program had significantly stronger impact for kindergarten students who tested below the 25th 

percentile on the Test of Mathematics Ability – Third Edition (TEMA-3; Ginsburg & Baroody, 

2003) at the start of the school year compared to students who began the year with higher 

TEMA-3 pretest scores. Author and colleagues also reported that treatment students who tested 
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above the 25th percentile on the TEMA-3 at the start of the year performed commensurately 

relative to their non-risk control peers. That is, the ELM program kept these typically achieving 

students “on track” for developing mathematics proficiency, whereas students below the 25th 

percentile grew more than expected, based on normative data.  

 Taken together, these studies (Clarke et al., 2015a; Duncan et al., 2007; Morgan et al., 

2009) indicate that the impact of core mathematics instruction in kindergarten may differ by 

students’ initial skill levels in mathematics. In light of these findings, there is an urgent need to 

investigate particular instructional components that serve as mediating variables and may help 

explain the moderating effects of core mathematics programs. Of particular relevance for the 

current study are the core components or active ingredients of explicit mathematics programs.  

Instructional Components of Explicit Mathematics Instruction as Potential Mediators 

A growing body of research suggests that both typically achieving students and students 

with MD significantly benefit from instruction that is systematically designed and explicitly 

delivered (Agodini & Harris, 2010; Gersten et al., 2009). Explicit mathematics instruction is 

known for facilitating scaffolded instructional interactions between teachers and students around 

critical mathematics content (Hughes, Morris, Therrien, & Benson, 2017). At the forefront of this 

instructional approach are three core components: (a) teacher demonstrations and explanations of 

mathematical concepts and skills, (b) group and individual student practice opportunities, and (c) 

teacher-delivered academic feedback. We focus on these particular components for two reasons. 

First, a relatively large body of research suggests that these components are associated with 

increased student mathematics achievement (Dobler et al., 2015; Clements, Agodini, & Harris, 

2013; Gersten et al., 2009). Second, and perhaps most importantly, the rate at which students 

receive overt teacher demonstrations, group and individual practice opportunities, and academic 
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feedback during core mathematics instruction (and thus, the cumulative effect over the course of 

the school year) may serve as potential mediating variables. As such, these instructional 

components may help unpack and explain why core mathematics programs like ELM are able to 

both accelerate the learning of students with MD and support typically achieving students in 

developing mathematics proficiency. In the following section, we briefly define these three 

instructional components and review the empirical literature base behind them.  

The first component of explicit mathematics instruction targeted in this study is teacher 

demonstrations. In explicit mathematics instruction, teachers play an active and prominent role 

in building students’ conceptual and procedural knowledge. Leading these efforts are vivid 

demonstrations and clear explanations of mathematical concepts, skills, procedures, and 

vocabulary. Research suggests that overt teacher demonstrations are an effective way to present 

critical academic content (Alfieri, Brooks, Aldrich, & Tenebaum, 2011). A second component 

examined is academic feedback. Academic feedback represents teachers actively monitoring 

students’ interpretations of mathematical tasks. When academic feedback is immediate and 

specific, research suggests that it is an effective method for extending learning opportunities, 

addressing students’ errors, and helping them circumnavigate known misconceptions (Hattie & 

Timperley, 2007). 

 The third component of explicit mathematics instruction focused on in the current study 

is practice opportunities for individuals and groups of students. Essential to supporting students’ 

development of mathematical proficiency are practice opportunities that target critical 

mathematics concepts and skills. For example, research suggests the beneficial impact of having 

students use visual representations of mathematical ideas, such as counting cubes and place value 

blocks. Such representations help students build an important connection between the conceptual 
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and abstract forms of mathematics (Gersten et al., 2009). Another important form of practice is 

student mathematics verbalizations. Accumulating research indicates the importance of frequent 

mathematics verbalizations (Clements et al., 2013; Gersten et al., 2009; Dobler et al., 2015). 

Well facilitated, mathematics verbalizations allow students the opportunity to convey their 

mathematical thinking and understanding.  

During core instruction, teachers can direct practice opportunities to the classroom at 

large as well as to individual students. When properly orchestrated, group student practice 

opportunities provide multiple students the opportunity to practice in unison. For example, a 

teacher might have a class of 25 students use base ten blocks to represent teen numbers. 

Individual student practice opportunities, particularly mathematics verbalizations, permit 

teachers to monitor and verify an individual student’s mathematical understanding. This type of 

student practice also serves as an optimal mechanism for teachers to differentiate instruction 

based on a student’s needs (Gersten et al., 2009). 

 In sum, the core components of explicit mathematics instruction (i.e., teacher 

demonstrations, group and individual practice opportunities, and academic feedback) represent 

potential mediating variables and thus may help researchers better understand for whom, when, 

and why educational interventions improve desired student outcomes. Specifically, investigating 

such instructional components may help the field ascertain as to why students differentially 

respond to educational interventions. Here, we define moderating variables as student-level 

factors that influence the relationship between an intervention and student outcomes. The 

moderating variable of particular relevance for the current study is kindergarten students’ initial 

skill level in mathematics, which Clarke et al. (2015a)  found to moderate the treatment effects of 

the ELM program. Mediating variables, for the purpose of the current study, are defined as the 
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components of explicit mathematics instruction (i.e., active ingredients) incorporated into the 

ELM program. 

Purpose of the Study 

The purpose of the current study was to conduct a mediated moderation analysis 

(Preacher, Zhang, & Zyphur, 2016), using a repeated measure, latent variable approach to 

investigate whether and to what extent observed components of explicit mathematics instruction 

(i.e., teacher demonstrations, group and individual student practice opportunities, and academic 

feedback), both individually and in combination, might help explain why the ELM core 

mathematics program has been previously found to accelerate the learning of students with MD 

and support typically achieving students in developing mathematics proficiency (Clarke et al., 

2015a). By examining the potential mediating role of these instructional components, this study 

was anticipated to advance the field in two ways. First, if the instructional components are found 

to mediate the effects of ELM, our findings may have implications for the design of mathematics 

programs and professional development activities for teachers. Second, we know of no other 

large-scale efficacy trials that have conducted a mediated moderation analysis for understanding 

why an evidence-based core mathematics program operates differentially across students with 

varying mathematics achievement levels at the start of the school year. As such, we believe this 

study could provide the field with an example for applying this methodology in mathematics 

intervention research. Two research questions were posed: 

1. To what extent do rates of instructional components (i.e., teacher demonstrations, group 

and individual student practice opportunities, and academic feedback) individually 

mediate the observed differential effect of ELM reported by Clarke et al. (2015a) ?  

2. To what extent does an analytic model that combines these rates mediate the observed 
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differential effect of ELM reported by Clarke et al. (2015a) ? 

Method  

The current study analyzed direct observation and student mathematics outcomes data 

collected during the ELM efficacy trial (Clarke et al., 2015a). The ELM efficacy trial took place 

in kindergarten classrooms from Oregon and Texas, respectively, during the 2008-2009 and 

2009-2010 school years. Each year involved a different cohort of kindergarten students. We used 

multilevel structural equation modeling (MSEM) to test for mediated moderation effects with the 

ELM data (Preacher et al., 2016), including a model with random classroom level posttest 

(spring) on pretest (fall) slopes as the outcome and the effects of latent instructional component 

rates as proximal mediators of the effects of the ELM program. This expanded mediated 

moderation model was expected to provide important information about potential mediation 

effects of differential intervention effects via components of explicit instruction. Moreover, the 

modeling approach (i.e., MSEM with latent variables) was anticipated to provide a more accurate 

and nuanced picture of the impact of ELM on student mathematics achievement (i.e., eliminate 

conflation of between and within effects and reduce bias due to the modest stability of the rate of 

instructional components; Preacher et al., 2016). 

Schools and Kindergarten Classrooms 

A total of 129 kindergarten classrooms from 46 schools (32 public, 11 private, and 3 

charter) in Oregon and Dallas, Texas participated in the study. All private and charter schools 

were located in Texas. Of the 129 classrooms (64 in Oregon, 65 in Texas), 68 were randomly 

assigned (within school) to the treatment condition (i.e., ELM program) and 61 were randomly 

assigned (within school) to the control condition (i.e., standard district mathematics instruction). 

In Oregon, 17 classrooms provided half-day kindergarten. All other classrooms provided full-day 
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kindergarten. One full-day kindergarten classroom in Oregon met only four days per week. 

Average class sizes were 21.3 (SD = 3.7) and 20.2 (SD = 3.7) for the ELM and control 

conditions, respectively. 

Teachers. The 129 classrooms were taught by 130 teachers (69% White, 20% Hispanic, 

and 11% another ethnic group), of whom all but one held a teacher certification. One full day 

classroom was taught by two half-time teachers. Ninety-eight percent of the teachers were 

female with seven or more years of teaching experience. About half (51%) had completed 

college-level coursework in algebra, and 39% held a graduate degree. All teachers participated 

for the duration of the study and thus the outcomes of the study were not affected by attrition. 

Students. Overall, 2,708 students participated in the study (1,475 in ELM classrooms; 

and 1,233 in control classrooms). Over half of the 2,708 students started their kindergarten year 

below the 25th percentile on the TEMA-3. Student demographic data were only available for 

those students who attended participating public schools. In the 32 public schools, an average of 

76% of the student population qualified for free or reduced-price lunch programs. Students in 

Oregon were American Indian (1%), Asian and Pacific Islander (5%), Black (2%), Hispanic 

(36%), and White (56%). In Texas, students were American Indian (<1%), Asian and Pacific 

Islander (<1%), Black (29%), Hispanic (69%), and White (1%). 

Early Learning in Mathematics (ELM)  

ELM is a whole-class, core kindergarten mathematics program designed to promote 

students’ development of mathematical proficiency in counting and cardinality, operations and 

algebraic thinking, number and operations in base ten, measurement and data, geometry, and 

mathematics vocabulary. ELM is delivered via explicit instruction over the course of 120 daily 

lessons, each approximately 45 minutes in duration. To support implementation, ELM teachers 
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received four 6-hour professional development workshops across the school year in which they 

practiced delivering ELM content and received feedback on facilitating teacher demonstrations, 

student practice opportunities, and academic feedback. A detailed description of ELM can be 

found in Clarke and colleagues (2015a).  

Control classrooms  

Teachers in the control condition implemented standard district practices, utilizing both 

teacher-developed and commercially available mathematics activities and curricula, and a variety 

of instructional strategies and formats. The most widely used programs were Everyday 

Mathematics, Houghton Mifflin, Scott Foresman, and Bridges in Mathematics. Similar to ELM 

classrooms, core mathematics instruction in the control classrooms primarily focused on whole 

number concepts followed by concepts of geometry and measurement. 

Measures 

Test of Early Mathematics Ability – 3rd Edition (Ginsburg & Baroody, 2003). The 

TEMA-3 is a norm-referenced measure of students’ early number sense. Internal consistency 

reliabilities of the measure exceed .92 and alternate-form and test-retest reliabilities exceed .80. 

Concurrent validity coefficients with four widely used tests of mathematics ranged from .55 to 

.91. In the current study, the intraclass correlation coefficient (ICC) for standard scale scores on 

the pretest TEMA-3 was .26, and the average reliability across all 129 classrooms was .85. We 

used the TEMA-3 as our primary measure of student mathematics achievement, and the observed 

classroom average of the pretest TEMA-3 to represent classroom level effects of the pretest 

TEMA-3 on outcomes in all the multilevel SEMs. 

Early Numeracy – Curriculum-Based Measures (EN-CBM). EN-CBM (Clarke & 

Shinn, 2004) is a set of four fluency-based measures of early number sense. Measures include 
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oral counting, number identification, quantity discrimination, and strategic counting with strings 

of numbers. EN-CBM has evidence of predictive validity with the TEMA-3 (p < .05, r = .81; 

Dobler et al., 2015). In the current study, we used the total score on the EN-CBM in the fall of 

kindergarten as a predictor of TEMA-3 missing data. 

Classroom Observation of Student-Teacher Interactions - Mathematics (COSTI-M).  

The COSTI-M is a frequency-based observation measure that documents real-time occurrences 

of four components of explicit mathematics instruction: (a) teacher demonstrations, (b) group 

student practice opportunities, (c) individual student practice opportunities, and (d) teacher-

provided academic feedback. Teacher demonstrations represent a teacher’s overt explanations, 

verbalizations of thought processes, and physical demonstrations of mathematical content. Group 

student practice opportunities represent mathematics verbalizations from two or more students. 

Individual practice opportunities refer to one student verbalizing or physically demonstrating her 

mathematical understanding. Academic feedback refers to a teacher’s verbal reply or physical 

demonstration to affirm or clarify a correct or incorrect student response (for further details on 

the COSTI-M, see Dobler et al., 2015). The COSTI-M has evidence of predictive validity with 

the TEMA-3 (p = .004, Pseudo-R2 = .08) and the EN-CBM (p = .017, Pseudo-R2 = .05; see 

Dobler et al., 2015). In the analyses reported here, stability ICCs were .40, .44, .26, and .44 for 

individual practice opportunities, group practice opportunities, teacher demonstrations, and 

academic feedback, respectively. Average stability of these rates was modest (.62, .66, .45, and 

.65, respectively), which contributed to our decision to use a latent variable approach. 

A total of 317 observations were completed, with an average observation length of 

approximately 46 minutes (SD = 19 minutes). Of the 64 Oregon teachers, 60 were observed 3 

times, 3 were observed 2 times, and 1 was observed once. In Texas, we obtained 2 observations 
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for all 65 participating teachers. All observations were scheduled in advance with participating 

teachers and were not coordinated to coincide with specific mathematical content. Interobserver 

agreement ICCs, ranged from .61 to .99, indicating that observers were able to code occurrences 

of the instructional components reliably per guidelines proposed by Landis and Koch (1977). 

Statistical Analysis 

Missing data. Missing pretest TEMA-3 data at the student level were systematically 

related to other variables, complicating model estimation. In Oregon, limited English proficiency 

(LEP) status and students’ fall mathematics achievement (as assessed by EN-CBM) both 

significantly and strongly predicted missing pretest TEMA-3. In Texas, public schools had 

significant and substantially higher rates of missing pretest TEMA-3 than did charter or private 

schools. Consequently, we included in the model two exogenous student-level predictors of 

missing data: (a) LEP status (as a dummy coded indicator), and (b) fall total score on the EN-

CBM; and two teacher-level, dummy coded indicators of state-school status (Texas public and 

Texas charter or private, with OR as the reference group). We refer to these variables as missing 

data covariates. 

Modeling assumptions. Prior to developing our statistical models, we examined 

univariate distributions of the instructional component rate (per minute) and student outcome 

variables, checking for outliers and non-normal distributions. We also inspected bivariate scatter 

plots at both the teacher and student levels to check for substantial departures from linearity and 

outliers. Because the number of teachers in our sample was modest (N = 129) and all rate 

variables were positively skewed, we log transformed the rates (adding a small positive constant 

between .25 and .50 to eliminate scores of zero) to better approximate the normality assumptions 

underlying the latent variable models. For brevity, we will refer to the log transformed rates as 
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simply the rates except in instances where doing so would lead to confusion.  

Instructional component latent variable models. In the teacher-level latent variable 

models, we specified, for each instructional component, the observed rates from the three 

repeated observations as indicators of a single latent rate per minute variable. All factor loadings 

were constrained to be equal to one, all indicator intercepts were set to zero, and the factor mean 

was freely estimated, making the measurement model a random intercept model in which the 

latent factor captures differences among teachers in the rate of explicit instructional components 

that were stable across the school year. We tested the fit of this single latent variable model for 

each instructional component separately, and modified it accordingly if the fit was poor. We also 

tested the fit of the model with four latent variables, one for each instructional component, to 

estimate correlations among the latent rates. In that model, we allowed for correlations between 

residual influences across rates at specific time points. 

Random intercept and slope models. To model the differential effectiveness of ELM on 

student mathematics achievement, we specified a two-level random teacher level posttest on 

pretest TEMA-3 regression model. Figure 1 shows a schematic illustration of the regression lines 

for the ELM and control groups, exaggerated to emphasize four key differences: (a) the 

regression for the ELM group has a flatter slope than the regression for the control group, (b) 

differences between the regressions are greatest at the low end of the pretest TEMA-3 

distribution (i.e., the least skilled students in ELM gained the most, relative to those in the 

control condition), (c) those differences diminish as the pretest TEMA-3 increases, and (d) both 

regressions pass through the same point at the high end of the pretest TEMA-3 distribution (i.e., 

the most skilled students in ELM are not penalized relative to those in the control condition).  

Figure 2 shows a set of hypothetical teacher level regressions consistent with the pattern 
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shown in Figure 1. On average, the slopes in the ELM classrooms are flatter than the slopes in 

the control classrooms, even though there is variation within each group. This represents the 

differential effectiveness of ELM, and we hypothesized that the difference in the average slope 

between the groups could be explained by average differences in the observed components of 

explicit mathematics instruction, as modeled by our latent instructional component rate variables. 

In other words, we tested the extent to which the implementation of ELM and its corresponding 

professional development changed teacher classroom behavior, which in turn mediated the 

flattening effect of the ELM intervention on the posttest on pretest TEMA-3 regression. 

< Figures 1 & 2 here > 

In modeling terms, our two-level model is a random intercept and slope model, but we 

expected the variance of the random intercept to be essentially zero when the pretest TEMA-3 

score was centered at a very high score within the observed range of values but away from the 

extremes (i.e., 127, the 98th percentile), reflecting the fact that the intervention did not penalize 

initially high skilled students. Thus, we will henceforth refer to this model as the random slope 

model. We estimated this model first, employing the standard assumptions that the random 

intercepts and slopes were multinormally distributed, as a preliminary analysis to replicate the 

results reported in Clarke and colleagues (2015a); verify that the estimated variance for the 

random slopes was significant and substantial, even after controlling for intervention status and 

other covariates; and check that the standard background assumptions concerning multinormality 

were reasonable. 

To answer our first research question regarding the individual effect of each instructional 

component on the random slope, we estimated four separate two-level random slope models, 

each of which included only one of the four latent instructional component rate variables. To 
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answer our second research question, we estimated a two-level random slope model that included 

three of the four latent instructional component rate variables as competing predictors of the 

latent slope. In this combined model, we excluded academic feedback because it was very highly 

correlated with group and individual student practice opportunities, due to the fact that observers 

were instructed to code only instances of academic feedback that followed a group or individual 

student practice opportunity. The full set of multilevel equations is shown in the Appendix. 

All SEMs were completed with Mplus (Muthén & Muthén, 2015), using FIML 

estimation. Where possible, we used robust maximum likelihood (MLR) estimation, which 

corrects the overall model fit statistic and individual parameter standard errors for departures 

from multivariate normality. For models that include the pretest TEMA-3 variable in the 

missingness portion of the two-level model, we obtained maximum likelihood estimates using 

Monte Carlo numerical integration (MCNI; Asparouhov and Muthén, 2012). All p-values are 

two tailed. Model fit was evaluated using the comparative fit index (CFI), the root mean square 

error of approximation (RMSEA), and the chi-square p value. 

Results 

Descriptive Statistics 

Our overall student sample was 2,708 students nested within 129 teachers. For these 

analyses, we excluded 56 students who were missing LEP status and 2 students who were 

missing all outcome data, bringing the analytic sample down to 2,650 students (98% of the 

overall sample). For preliminary analyses, we excluded students who were missing fall TEMA-3 

data, resulting in a preliminary analytic sample of 2,212 students (82% of the overall sample). 

Table 1 provides descriptive statistics for the missing data covariates, student outcomes, and 

each instructional component by condition, and Table 2 shows the observed classroom-level 

correlation matrix comparing average TEMA-3 performance and instructional component rates. 
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< Tables 1 & 2 here > 

Instructional Component Latent Variable Models 

Results of the latent rate models for each instructional component are presented in detail 

in Doabler and colleagues (in press). Unique to the current analyses, we estimated a teacher level 

(N = 129) latent rate model that included all four rates to obtain correlations among the latent 

variables. This model did not include any of the missing data covariates or intervention group 

status. The model fit well (chi-square = 45.83, df = 46, p = .4796, RMSEA = 0, CFI = 1, TLI = 

1.001). Correlations among the latent variables and among time specific residual influences are 

shown in Table 3. Note the high correlations between academic feedback and group and 

individual student practice opportunities, which were .84 and .66 respectively. These correlations 

informed our decision to exclude academic feedback from the combined random slope model. 

< Table 3 here > 

Preliminary Random Intercept and Slope Models 

Our preliminary random intercept and slope models included intervention group status 

(ELM vs. control), classroom level pretest TEMA-3, and missing data covariates, but excluded 

students who were missing the pretest TEMA-3 (N = 2,212). First, we fit a baseline model that 

included a correlated random intercept and slope, and compared it to a more restricted model 

with an uncorrelated random intercept and slope. The intercept-slope correlation was 

nonsignificant as judged by either the critical ratio in the model that included the correlation as a 

free parameter (z = 0.088, p = .930) or the nested chi-square test with the model that did not 

include the correlation (chi square = .0449, df = 1, p = .8322). Next, we compared the fit of the 

model with the uncorrelated random intercept and slope to our hypothesized model with just a 

random slope. The fit of our hypothesized model was almost identical (chi square = 0.036, df = 
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1, p = .8495). In contrast, eliminating the random slope but retaining the random intercept 

resulted in a significant degradation of fit (chi square = 42.55, df = 1, p < .0001). Consequently, 

we dropped the random intercept parameter from subsequent analyses. 

Regardless of model, and consistent with results in Clarke and colleagues (2015a), 

intervention group status had a significant flattening effect on the random slope. In other words, 

classroom regressions in ELM tended to be flatter than in the control group, signaling differential 

effectiveness (i.e., initially low scoring students benefitted the most from ELM). Further, all 

classroom regressions passed through the same point at a very high pretest TEMA-3 score (i.e., 

127), indicating that ELM did not penalize initially high scoring students. 

Next, we attempted to replicate the same sequence of models with the full sample, using 

MCNI estimation. As described in Asparouhov and Muthén (2012), we encountered estimation 

problems when the model included a random intercept that precluded nested model testing. In 

some cases, models converged but the differences in log likelihoods were not positive, and in 

other cases, models did not converge at all. However, our hypothesized model with only a 

random slope consistently and quickly converged. Parameter estimates and standard errors were 

similar to the model that excluded students with missing pretest TEMA-3 scores, leading to the 

same conclusions regarding p levels and significance for all parameters. That is, excluding 

students who were missing the pretest TEMA-3 score did not appear to introduce noticeable bias 

in parameter estimates compared to models that included them, providing additional support for 

the use of our more parsimonious hypothesized model in subsequent analyses. 

Research Question 1: Models Testing Individual Instructional Components 

As with our preliminary analyses, to answer our first research question, we ran three sets 

of models for each latent instructional component: two models excluding students with missing 
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pretest TEMA-3 using MLR estimation, and a third with these students included, using MCNI 

estimation. Each model included only one latent rate variable as a potential mediator of the ELM 

effect, along with the classroom level of pretest TEMA-3 and missing data covariates. Results 

were consistent in all three versions of our hypothesized model: individual student practice 

opportunities was the only latent rate to significantly flatten the slope (est. = -0.122, SE = 0.047, 

p < .01). Results for group practice opportunities (est. = 0.053, SE = 0.074, p > .05), teacher 

demonstrations (est. = 0.114, SE = 0.108, p > .05), and academic feedback (est. = -0.075, SE = 

0.07, p > .05) were not significant. Consistent with the preliminary analyses, all MCNI models 

that included both a random intercept and slope did not converge. 

Research Question 2: Models Testing Combinations of Instructional Components 

To answer our second research question, we again ran three sets of models, two 

excluding students with missing pretest TEMA-3 using MLR estimation, and a third including 

these students using MCNI estimation. A nested chi-square comparison for the models estimated 

on the sample after excluding students with missing pretest TEMA-3 scores revealed that our 

simpler hypothesized model with just a random slope fit no worse than the more general model 

with both a random slope and intercept (nested chi square = 0.0123, df = 1, p = .9116), 

supporting the use of the more parsimonious hypothesized model. As before, the MCNI version 

of the more general model that included both a random intercept and slope generated a saddle 

point solution with a log likelihood that was smaller than our more restrictive hypothesized 

model, which precluded a nested chi-square test. 

Table 4 shows the teacher level model parameter estimates, standard errors, and p values 

for both versions of our hypothesized model. The results of our hypothesized model regarding 

the combined impact of teacher demonstrations, group practice opportunities, and individual 
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student practice opportunities were consistent both with prior analyses and across both 

approaches to estimation: (a) individual student practice opportunities was the only significant 

predictor of the random slope; (b) the effect of ELM on the random slope was approximately half 

of what it was in the model that did not include teacher level predictors and no longer significant; 

and (c) the indirect effect of ELM on the random slope through individual student practice 

opportunities was significant. Neither of the latent rates for teacher demonstrations or group 

student practice opportunities had significant direct or indirect effects on the random slope. 

Standard errors and p-values were smaller in models with the larger sample using MCNI 

estimation.  

< Table 4 here > 

In both models, the effect of teacher demonstrations had almost the same magnitude as 

individual student practice opportunities, but opposite in sign (i.e., positive rather than negative). 

Log transformation turns division into subtraction (i.e., the log of a quotient is equal to the log of 

the numerator minus the log of the denominator: log(a/b) = log(a) – log(b)). In our model, we 

have the random slope = b1 log(teacher demonstrations + .25) – b2 log(individual student 

practice opportunities + .25) + additional terms, where b1 is almost the same value as b2. This 

suggests that the log of the ratio of teacher demonstrations to individual student practice 

opportunities might be an even more powerful and parsimonious predictor of the random slope 

than both terms competing against each other with different effect sizes.  

We tried estimating our hypothesized model with b1 and b2 constrained to be equal in 

magnitude but opposite in sign. The fit of this more parsimonious model was not significantly 

worse, and was in fact almost identical to our hypothesized model (nested chi square = 0.0394, df 

= 1, p = .8426). The estimate of the constrained effect was very similar in magnitude to the 
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unconstrained effects in our hypothesized model, but the standard error of the constrained effect 

shrank appreciably compared to the standard errors of both of the unconstrained teacher effects, 

which in turn lowered the p value to .0007. That is, it appears that constraining the effects of 

teacher demonstrations and individual student practice opportunities to be equal but opposite in 

sign may provide a more precise estimate of their combined effects on student mathematics 

outcomes. Although this represents a post hoc modification of the hypothesized model, meaning 

that the p value cannot be accepted at face value, we find the results encouraging enough to 

present them as an interesting possibility that should be further tested. 

Discussion 

Results Summary 

The purpose of this study was to extend the work of Clarke et al. (2015a)  by examining 

whether rates of observed components of explicit mathematics instruction (i.e., teacher 

demonstrations, group and individual student practice opportunities, and teacher-provided 

academic feedback) would explain, both individually and in combination, the previously 

observed differential effectiveness of the ELM program. Thus, the current study represents the 

first opportunity to examine mediators (i.e., active ingredients) that underlie ELM, a high-

quality, evidence-based core mathematics program (Clarke et al., 2015a; Clarke et al., 2011). 

Below, we summarize the results by instructional component. 

Individual student practice opportunities. Across a range of model parameterizations 

and estimation methods, we consistently found that the latent rate of individual student practice 

opportunities helped shed light as to why students’ initial mathematics achievement was 

previously found to moderate the treatment impact of the ELM program (Clarke et al., 2015a). 

When included as a teacher level predictor, individual student practice opportunities were found 
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to mediate the previously identified flattening effect of the ELM program on the posttest on 

pretest TEMA-3 regression, suggesting that students who were at risk for MD at the start of the 

school year benefited most when taught in ELM classrooms that offered high rates of 

individualized practice. In these particular ELM classrooms, teachers facilitated approximately 

one individual student practice opportunity per minute, representing about 45 individualized 

responses across each lesson. We contend that these ELM classrooms provided highly interactive 

learning experiences for struggling learners. 

Interestingly, our findings also suggest that individual student practice opportunities were 

similarly important to at-risk students in some of the control classrooms. In a few cases, at-risk 

students in control classrooms that provided high rates of individual student practice 

opportunities benefitted more than their at-risk peers in ELM classrooms that had low rates of 

individualized practice. One interpretation from this finding is that teachers in these particular 

control classrooms were using an explicit instructional approach to systematically structure and 

directly facilitate high rates of individualized practice opportunities.  

However, in contrast to the core instruction delivered in most of the control classrooms, it 

is important to note that, in the context of ELM, individual student practice does not represent at-

risk learners simply practicing sans instructional support. Rather, because ELM centers on a 

systematic and explicit instructional design framework (Coyne et al., 2011), it supports teachers 

in differentiating instruction for at-risk learners through systematic feedback loops (Raudenbush, 

2008). These loops represent critical opportunities for students to receive reinforcement of their 

mathematical thinking and understanding. For example, after an at-risk learner in an ELM 

classroom independently completes a mathematical task, the teacher will provide specific, 

academic feedback based on the student’s performance. Such feedback is intended to reinforce 
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the practice opportunity. If the student’s initial performance is incorrect, an ELM teacher will 

facilitate a follow-up practice opportunity that provides more instructional support. This 

scaffolding is intended to promote the student’s development and eventual success. 

In sum, an important finding of this study is that individual practice opportunities mediate 

the effects of a validated, core mathematics program. These results are consistent with the 

growing body of research on effective mathematics instruction, which suggests that 

individualized practice is an important predictor of mathematics achievement for at-risk learners 

(Gersten et al., 2009). In kindergarten, practice opportunities are at a premium because many 

students, particularly those from disadvantaged backgrounds, receive few opportunities to build 

early number sense prior to school entry (Barnes et al., 2016). Therefore, one interpretation from 

our results is that the implementation of explicit, core mathematics programs, such as ELM, are 

necessary to support the development of early mathematical proficiency among these at-risk 

kindergarten students. Research indicates that when such programs are systematically designed 

and explicitly delivered, they have the capacity to engage students with MD in structured 

practice opportunities around foundational concepts and skills of mathematics (Agodini & 

Harris, 2009; Wang, Firmender, Power, & Byrnes, 2016). 

Teacher demonstrations and group practice opportunities. With respect to the other 

types instructional components, rates of teacher demonstrations did not surface as a significant 

predictor of the random slope. This nonsignificant finding is consistent with earlier correlational 

research in mathematics instruction. For example, results from Clements et al. (2013) suggest 

that the observed number of representations demonstrated by first grade teachers during 

mathematics instruction is not significantly related to student mathematics achievement. 

Interestingly, the current research and the study conducted by Clements and colleagues entailed 
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frequency count observation systems. Therefore, it may be that a more effective way to measure 

this component of explicit instruction is not only to document its occurrences but also its 

duration and complexity. Future research is needed to examine this multiprong approach. 

In a similar vein, our findings indicate that group practice opportunities did not mediate 

the effects of the ELM program. This nonsignificant finding is also consistent with prior research 

on mathematics instruction (Clements et al., 2013). While group practice opportunities are an 

integral component of explicit mathematics instruction (Gersten et al., 2009) and were facilitated 

at a high rate of delivery in ELM classrooms, it is possible that the capacity of this instructional 

component to account for the differential effects of a core mathematics program was mitigated 

based on a possible threshold effect. Once these types of student practice opportunities reach a 

particular threshold or rate of delivery (e.g., one per min), there may be diminishing returns. In 

other words, the effects of group practice on student mathematics achievement may minimize 

above a particular rate per minute. Additional research is needed to investigate potential 

threshold effects.   

Combination of instructional components. A tentative finding also emerged from our 

second research question, which investigated whether combinations of the latent rates of 

instructional components mediated the differential effectiveness of ELM. Results suggested that 

the ratio of teacher demonstrations to individual student practice opportunities may be an 

important medium to support the mathematics achievement of struggling students. These 

findings have implications for future research on the impact of student practice. For example, 

researchers might explore for the existence optimal ratios of individual practice opportunities to 

other types of instructional components, such as teacher demonstrations. If optimal ratios do 

exist, it may be that their effectiveness varies based on students’ initial mathematics skill levels. 
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Implications for Practice and Research 

While preliminary, our findings share implications with previous observation research for 

translating direct observation results into professional development activities designed for 

teachers who work with students with more intensive instructional needs (e.g., Connor et al., 

2009). The individual student practice opportunities coded by the COSTI-M, such as students’ 

mathematics verbalizations and use of concrete representations of mathematical ideas, represent 

the types of practice opportunities teachers typically provide students during instruction. 

Attempts, therefore, to support teachers in effectively engaging at-risk learners in these types of 

practice opportunities could be a reasonable and valuable professional development objective. 

One such objective could be learning how to engage students with MD in cognitively 

challenging practice opportunities, such as mathematics verbalizations. For example, many 

students struggle to verbally justify mathematical answers. As such, professional development 

could support teachers in differentiating these individualized practice opportunities through 

mathematics verbalization stems or sentence starters (e.g., “Say it with me, we solved this 

problem by...”). 

We also believe this study has implications for researchers who utilize direct observation 

data to systematically test the theoretically specified components of academic interventions. 

Even when observers are well trained to a high degree of interobserver agreement, the temporal 

stability of instructional components from one occasion to the next can be low (Dobler et al., 

2015; Ho & Kane, 2013; Smolkowski & Gunn, 2012). A pattern of low temporal or situational 

stability is a persistent characteristic of behavioral observation systems (Heyman, Lorber, Eddy, 

& West, 2014). In the context of characterizing time stable (across the academic year) 

differences in instructional rates across teachers, low temporal stability can lead to serious 
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attenuation of estimated effect sizes.  

One solution is to conduct enough observations that an average rate based on an additive 

composite across observations has adequate stability. The literature on frequency-based 

observation measures suggests at least 6 to 12 observation occasions are required to reach 

reliability of .80 for intraclass correlations in the range of .40 to .25 (ICCs; Smolkowski & Gunn, 

2012; Dobler et al., 2015). However, this option is not likely to be very feasible in many 

situations, especially given the potential assessment burden on teachers and the expense of 

conducting direct observations during large-scale efficacy trials. As the current study shows, a 

more cost-effective approach is to conduct enough observations to define a latent instructional 

component rate variable. This involves more analytic complexity, but may be a more realistic 

option for reducing or eliminating attenuation due to low stability. 

Limitations 

This study had several limitations that should be considered when interpreting our 

findings. First, only two observations were conducted in the Texas classrooms. While the 

number observations in Texas were limited to accommodate other research priorities of the ELM 

efficacy trial, more observation data may have provided the instructional components greater 

explanatory power. Second, although we investigated a robust set of observation data, the current 

study did not include data on instructional quality. While these types of data are highly important 

(Pianta & Hamre, 2009), they were not investigated in this study for two reasons. Most 

importantly, our research hypotheses concentrated specifically on the frequency of explicit 

teacher demonstrations, teacher-provided academic feedback, and group and individual student 

practice opportunities. This decision was based on the strong body of evidence that supports the 

regular use of explicit mathematics instruction when teaching students with MD (Gersten et al., 



MEDIATING EFFECTS OF EXPLICIT INSTRUCTON 
 

28 28 

2009). Our second reason was based on the fact that the ELM efficacy trial elected to administer 

different observation measures of instructional quality in the Oregon and Texas classrooms. One 

measure captured global aspects of instructional quality such as classroom management and the 

learning environment, whereas the other measure had a much narrower focus, documenting the 

quality of instructional features such as the pace of instruction, transitions between activities, and 

student engagement. The differing priorities of the two quality measures thus precluded us from 

incorporating these data in the current analyses.  

A third limitation was missing pretest data. Across conditions, approximately 16% of 

students with posttest data were missing data on the TEMA-3 pretest. To help minimize the 

potential for bias, we incorporated several missing data covariates (e.g., LEP status). However, 

these variables were also missing for some students. Thus, although we made substantial efforts 

to minimize the impact of missing data on our analyses, a more complete student dataset may 

have helped better explain the differential effectiveness of the ELM program.  

Conclusion 

Investigating the interplay between moderating and mediating variables can provide 

researchers with critical information about the “black boxes” of educational interventions 

(Rothman, 2013). Specifically, it can help the field ascertain as to why an educational program 

does or does not lead to desired student outcomes among particular subgroups of students. In 

efficacy trials where treatment effects fail to emerge, researchers can use their understanding of 

such mediators to refine or revise mathematics programs. When mathematics programs like 

ELM facilitate targeted outcomes, evidence on mediating variables, such as overt teacher 

demonstrations, student practice opportunities, and academic feedback, can lead to ways to make 

core mathematics instruction more effective for the full range of learners. 
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