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Abstract 

The production of an effective mathematics curriculum begins with a scientific development, 

evaluation, and revision framework. The purpose of this study was to conduct an initial 

investigation of a recently developed Tier 2 mathematics curriculum designed to improve the 

outcomes of 1st grade students at-risk for mathematics difficulties. The curriculum, which is 

anchored to a scientific design framework and a well-specified theory of change, centers on the 

careful integration of foundational concepts of whole number and validated-design principles of 

explicit and systematic instruction. Four instructional groups, with each consisting of five 1st 

grade students with mathematics difficulties and one interventionist, participated in the study. 

Data related to the feasibility, usability, and promise of the curriculum to improve student 

mathematics achievement were collected using multiple methods. Results provide preliminary 

evidence in terms of these curriculum development and evaluation areas. Implications for 

instruction and design research are discussed.  

 

 

 

 

 

 

 

 

 

 



DESIGN SCIENCE APPROACH 3 

The Science Behind Curriculum Development and Evaluation: Taking a Design Science 

Approach in the Production of a Tier 2 Mathematics Curriculum 

Developing mathematical proficiency is absolutely critical for success in school and in 

postsecondary experiences (National Mathematics Advisory Panel [NMAP], 2008; National 

Research Council [NRC], 2001). For students who acquire early success in mathematics, the 

stage is set for learning more complex mathematical content. Conversely, for students who 

struggle early with mathematics, the probability that they will become mathematically proficient 

remains low given that the trajectories of mathematics achievement become established early and 

typically remain difficult to change (Bodovski & Farkas, 2007; Locuniak & Jordan, 2008; 

Morgan, Farkas, & Wu, 2009). Unfortunately, the long-term consequences of early mathematics 

difficulties (MD) are severe. Research now suggests that students who struggle to develop 

mathematical proficiency in the early grades are far more likely than other students to experience 

persistent difficulties in later mathematics (Bodovski & Farkas, 2007; Morgan et al., 2009). 

 One contributing factor in supporting all students, including those at risk for MD, in 

reaching their mathematical potential is the elementary mathematics curriculum. According to 

Wu (2009), “The main goal of the elementary mathematics curriculum is to provide children 

with a good foundation for mathematics” (p. 6). Toward that end, the elementary mathematics 

curriculum sets the curricular expectations of children’s mathematics learning. It influences 

when and how well children progress through content. Importantly, a coherent curriculum 

reflects the hierarchy of mathematics by forming a coherent connection between foundational 

concepts and skills both within and across grade levels (Schmidt, Houang, & Cogan, 2002).  

A Scientific Approach to the Development of Mathematics Curricula 

Critical to the role that core (Tier 1) and intervention (Tier 2) curricula have in supporting 
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struggling students’ in developing mathematics proficiency is the process in which they are 

developed. A recommendation by experts is for developers to take a scientific approach to 

curriculum development (Chard et al., 2008; Clements, 2007; Superfine, Kelso, & Beal, 2009). 

Despite this call, there is scant evidence in the field of curriculum development and evaluation of 

a scientific imprint. For example, in the area of early mathematics, the What Works 

Clearinghouse (WWC, 2013) has reviewed a total of 78 elementary school programs. Of these 78 

programs, only seven (i.e., < 10% of elementary mathematics programs reviewed) had research 

studies that meet WWC evidence standards required for evaluating program effectiveness or 

ineffectiveness. Of the seven reviewable programs, only four demonstrated “potentially positive” 

effects on student mathematics outcomes.  

Curriculum development research, like other design-based research (Diamond & Powell, 

2011), centers on a systematic and empirically-based development process. Thus, the operational 

definition of a scientific design process applied in this study focuses on the accumulation of 

empirical evidence related to a curriculum’s feasibility, usability, and promise to improve student 

mathematics achievement. A feasible and usable curriculum functions as a practical instructional 

tool for teachers in authentic educational settings. A curriculum that demonstrates promise has an 

initial evidentiary base suggesting that it preliminarily improves student achievement. In this 

study, we use these types of data (i.e., feasibility, usability, and promise) as a formative influence 

on the development and evaluation of a Tier 2 mathematics curriculum designed to target whole 

number concepts and skills. 

We argue that a scientific design process is essential for addressing the complex 

challenges faced in the development of a Tier 2 mathematics curriculum. One inherent challenge 

in developing a coherent Tier 2 mathematics curriculum is being mindful of the instructional 
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needs of students struggling with mathematics. In this case, developers must devote additional 

attention to the architectural features of the curriculum (Kame’enui & Simmons, 1999). This 

means embedding validated-design principles of instruction, such as explicit modeling of 

mathematical concepts and procedures (Coyne, Kame’enui & Carnine, 2011), to support teachers 

in delivering critical mathematics content. Another challenge is allowing for extensive flexibility 

during the development process. Immediate and ongoing refinements to lesson components are 

critical for the curriculum development process and a recommendation is for these adjustments 

to take place before, during, and after field tests (Anderson & Shattuck, 2012). Other challenges 

include ensuring that there is acceptability of the curriculum’s goals, procedures and outcomes. 

As observed by Lindo and Elleman (2010), “An intervention’s sustainability depends not only on 

how effective it is for students but also on how well it fits into the classroom context and how it 

is perceived by those involved” (p. 490). 

Several frameworks of curriculum development have been proposed to guide developers 

in designing curriculum (Anderson & Shattuck, 2012; McKenney & Reeves, 2013). Clements’ 

(2007) Curriculum Research Framework (CRF) suggests that curriculum development is a 

“design science.” Clements observed: “As a science, knowledge created during curriculum 

development should be both generated and placed within a scientific research corpus, peer 

reviewed, and published” (p. 37). Against this backdrop, the CRF focuses on cycles of 

development, formative evaluation, and curriculum revision, and comprises three categories of 

development activities: a priori foundations, learning models, and evaluation. Embedded within 

the three categories, Clements proposes 10 phases of the curriculum development and evaluation 

process. In Phases 1-3 (a priori foundations), developers complete a comprehensive review of the 

supporting literature relevant to the instructional practices and mathematical content for 
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improving the mathematics achievement of students. A goal of the literature review is to guide 

developers in specifying the instructional design attributes that underlie the curriculum and its 

theory of change (Simmons et al., 2007). For example, given the preponderance of empirical 

evidence for the use of explicit instruction when teaching students with MD (Gersten et al., 

2009; NMAP, 2008), developers of a Tier 2 curriculum would likely include highly specified 

instructional procedures and teaching examples.  

Phase 4 (learning models) of the CRF (Clements, 2007) has developers design prototype 

activities that actively engage students in learning critical concepts and skills of mathematics. 

Once the prototypes are designed, developers begin the formative evaluation cycle, which 

includes Phases 5-10 (evaluation) of the CRF. Here, developers test the prototype activities in 

classrooms and collect evidence on features such as task difficulty, the selection and sequencing 

of instructional examples, and the number of opportunities for practice and review. The CRF 

recommends that developers use this evidence to refine and revise the prototypes. Eventually, the 

curriculum is compiled into a complete package and field tested to produce critical, quantitative 

pilot data, such as evidence related to a curriculum’s feasibility, usability, and promise to 

improve student outcomes. As with the current study, such initial data sources should position 

the curriculum for more rigorous evaluation in future research studies. In this context, the 

purpose of this study is to conduct a preliminary investigation of Fusion, a Tier 2 mathematics 

curriculum designed to support at-risk 1st graders in developing a fundamental understanding of 

whole number concepts and skills. A critical component of the Fusion intervention is a well-

specified theory of change.  

Theory of Change and Its Role in Curriculum Development 

In recent years, primary funding sources for the development of rigorous curricula have 
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been the U.S. National Science Foundation (NSF) and Development and Innovation Projects 

offered through the Institute of Education Sciences (IES, 2013), U.S. Department of Education 

(USDE). According to recent guidelines proposed by these two funding agencies (USDE, 2013), 

Design and Development projects should include: (a) the full development of an intervention or 

product, (b) demonstration of the intervention’s feasibility and usability for end-users, and (c) 

pilot data for the promise of the intervention to improve intended student outcomes. Another 

outcome recommended in these co-agency guidelines is to generate a “well-specified theory of 

action” (USDE, 2013; p. 48). A theory of action or change represents the underlying core 

elements of a mathematics curriculum that, when facilitated well, are hypothesized to produce 

important outcomes for students. That is, a theory of change is a theory-driven and empirically-

based model of how an intervention is assumed to lead to improved student outcomes on 

proximal and distal measures of mathematics achievement. While Design and Development 

projects are not an appropriate venue for rigorously testing a theory of change, they are optimal 

for generating preliminary evidence that supports an intervention’s theoretical foundation. 

Tenets of a Strong Theory of Change 

A strong theory of change demonstrates several key tenets and collectively they form the 

architectural structure of an intervention. One tenet is its link to strong theory and the empirical 

knowledge base of effective instruction. For example, if researchers were developing a 1st grade 

Tier 2 curriculum, they would draw from several relevant literatures. These literatures would 

include findings from recent meta-analyses targeting interventions for students with or at-risk for 

MD and theoretical frameworks on how children learn mathematics. 

Theory-driven models are also characterized by proximal and distal student outcomes 

that the intervention purports to impact. For instance, researchers might hypothesize that an 
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intended outcome of an early mathematics intervention is to improve students’ immediate and 

long-term mathematics achievement. Further, they might theorize that students’ proximal 

outcomes will have a positive and direct causal relation with general measures of student 

achievement. To measure the intervention’s proximal impact, they would need to identify or 

design a measure that is closely aligned to the learning objectives of the intervention curriculum. 

Additionally, the researchers would need to select a set of standardized, distal measures of 

student mathematics achievement to assess gains in student mathematics outcomes.  

Other key tenets of strong theories of change are variables hypothesized to mediate and 

moderate the impact of an intervention. According to Rothman (2013), “Mediators and 

moderators are the building blocks of theory and, in turn, intervention design, specifying the 

connections between these two classes of constructs is at the heart of developing, testing, and 

refining theory” (p. 190). Mediating variables refer to the active ingredients that comprise and 

guide an intervention (Rothman, 2013). For example, researchers might hypothesize that the 

instructional interactions facilitated by a Tier 2 curriculum will mediate student outcomes on a 

measure of early number sense. Moderating variables refer to student and teacher factors that 

may change the relationship between an intervention and student outcomes. For example, the 

impact of an intervention mathematics curriculum may vary by students’ risk status. 

The Theory of Change Behind the Fusion Intervention 

We believe that the theory of change supporting the Fusion intervention is characterized 

by these same key tenets. As shown in Figure 1, the Fusion theory of change contains: (a) the 

curriculum, (b) Mediator Variables, and (c) Proximal and Distal Student Outcomes. The 

curriculum is comprised of two key components: (a) critical whole number content and (b) 

validated-design principles of explicit and systematic instruction. These components, when 



DESIGN SCIENCE APPROACH 9 

integrated well, facilitate high-quality instructional interactions between teachers and students 

around critical content of whole numbers. Such instructional interactions are hypothesized to 

mediate the impact of Fusion on proximal and distal student outcomes. Proximal outcomes of the 

intervention include students’ conceptual understanding and procedural fluency, whereas the 

distal outcome is students’ overall mathematics achievement. 

< Add Figure 1 > 

There are several reasons why Fusion is hypothesized to produce promising outcomes for 

1st grade students struggling with mathematics. One reason is that it was developed through a 

scientific design process similar to the one proposed by Clements (2007). Our curriculum team 

collected a variety of qualitative and quantitative data, such as professional feedback from 

teachers, to shape and refine Fusion. Another reason why Fusion may improve student 

mathematics achievement is that it focuses intensely on the critical aspects of whole number, and 

thus is responsive to the calls of experts for greater instructional focus on number (NRC, 2001). 

Finally, Fusion may be beneficial for at-risk learners because it is based on sound theoretical 

models of learning (i.e., Donovan & Bransford, 2005) and the growing knowledge base of 

effective mathematics instruction (e.g., Gersten et al., 2009; NMAP, 2008).  

At its core, the curriculum uses an explicit instructional approach, which is considered to 

be one of the most effective methods for teaching mathematics to at-risk learners (Baker, 

Gersten, & Lee, 2002; Gersten et al., 2009; NMAP, 2008). Explicit instruction is a method for 

teaching “essential skills in the most effective and efficient manner possible” (Carnine, Silbert, 

Kame’enui, & Tarver, 2004, p. 5). Instruction in Fusion becomes explicit by orchestrating 

important instructional interactions between teachers and students around key mathematics 

content. For example, Fusion’s explicit instructional approach allows teachers to (a) provide 



DESIGN SCIENCE APPROACH 10 

clear explanations and vivid demonstrations when introducing new mathematical concepts and 

skills, and (b) facilitate frequent opportunities for students to practice with such content.  

In summary, the quality of a mathematics curriculum greatly depends on the processes in 

which guide its development and evaluation. A recommendation by the research community is 

for developers to take a scientifically-based approach. Conceptually, this approach is anticipated 

to generate preliminary evidence in support of the curriculum and its theory of change. 

Purpose of the Study 

The primary purpose of this study was to build preliminary support for Fusion and its 

theory of change by generating empirical evidence related to two specific areas of curriculum 

development: (a) the feasibility and usability of Fusion by intended end users in authentic 

education settings, and (b) Fusion’s promise to improve the mathematics outcomes of students at 

risk for MD. Our study targeted these two areas because they (a) align with the recommendations 

of experts in the field of curriculum development (Clements, 2007) and (b) address research and 

development guidelines co-proposed by IES and NSF (USDE, 2013).  

In the aggregate, this body of evidence was anticipated to advance the field of curriculum 

development forward in two ways. First, our curriculum development team used a “design 

science” (Clements, 2007) approach to systematically develop, and formatively refine and 

evaluate Fusion. As noted, findings from the WWC (2013) suggest that the development and 

evaluation of mathematics curricula, particularly in the area of elementary mathematics, is not 

occurring in a scientific manner. The dearth of these findings reveal an urgent need to supply the 

field with soundly engineered, evidence-based mathematics curricula for students struggling 

with early mathematics. We believe this study is an initial step in addressing that call. 

The second way this study aims to add to the knowledge base is through its selected unit 
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of analysis; i.e., the instructional group. Small group instruction is an integral component in 

multi-tiered approaches to instruction, particularly in Response to Intervention (RtI) models that 

employ standard protocol approaches (Fien et al., 2011; Fuchs, Fuchs, & Stecker, 2010). By 

selecting this unit of analysis, therefore, we have direct links to the practical considerations that 

arise in making instructional decisions in group-based interventions, such as Fusion. A 

recommendation in these RtI models is to take into consideration group level data when 

determining the instructional effectiveness of these types of interventions (Fien et al., 2011). 

Two research questions guided the current study: (1) Does the Fusion curriculum 

demonstrate evidence of feasibility and usability for interventionists and students in authentic 

education settings? (2) Is there a functional relation between Fusion and improvements in 

mathematics outcomes for students at-risk for MD? 

Method 

Data for this study were collected within the second year of an IES-funded Development 

and Innovation Project. Such development projects are typically funded for three years, with the 

first two years devoted toward major development activities and the final year used for pilot 

testing the intervention’s promise for improving student outcomes. This study, which took place 

during the 2010-2011 academic year, was anticipated to generate initial data that would guide 

future design research on Fusion and its theory of change. Specifically, the study targeted 

Fusion’s feasibility, usability, and promise to improve student mathematical performances. To 

address our two research questions, data were derived from multiple methods, including surveys, 

direct observations, student performance assessments, and a single case research design (SCD).  

Setting and Participants 

The study took place in three elementary schools from two suburban school districts 
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located in the Pacific Northwest. District-1 enrolls approximately 10,850 students: 17.4% receive 

special education services, 5.9% are English learners, 59.8% are eligible for free or reduced 

lunch, and 25.5% are minorities. District-2 enrolls approximately 5,800 students: 19.6% receive 

special education services, 3.1% are English learners, 57% are eligible for free or reduced lunch, 

and 24.1% are minorities. All three schools received Title 1 funding and provide, on average, 

three classrooms at the 1st grade level.  

Four instructional groups, referred hereafter as Groups A, B, C, and D, participated in the 

study, and each group represented one 1st grade classroom. Groups A and B were located in the 

same school and instruction for these two groups took place in same educational setting, a 

special education classroom. Group D was located in a different school from Groups A and B, 

but was from the same school district, District-1. Instruction for Group D took place in a special 

education classroom. Group C took place in a special education classroom located in an 

elementary school from District-2. Participating interventionists included two instructional 

assistants (Groups A and B) and two special education teachers (Groups C and D). The four 

interventionists had an average of 2.5 years of experience in working with students with or at-

risk for learning disabilities. One interventionist was male and three were White. 

Twenty students from four 1st grade classrooms participated in the study. These 20 

students comprised the four Fusion groups, with five students per group. Of the 20 participating 

students, 10 were females, 18 were White, and 2 were Native American. Students were between 

the ages of 6 and 7 years of age. Three of the participating students received special education 

instruction and fourteen qualified for free or reduced price lunch programs. Across the 20 

participants, school attendance during the 2010-2011 academic year was relatively high at 92%. 

In all, 16 students, representing 4 groups, successfully completed the 20-week Fusion 



DESIGN SCIENCE APPROACH 13 

intervention. Data from these 16 students were included for analysis. One student from Group A 

moved two weeks into the intervention. The Group C interventionist withdrew two students from 

the study during baseline due to scheduling conflicts with other school activities. A third student 

from Group C moved out of the study, approximately 11 weeks into the intervention. Data from 

these four students were excluded from the analysis of all outcome measures.  

The selection of students involved a multistep process that began with universal 

screening. All students in participating 1st grade classrooms were administered two curriculum-

based measures (CBM) of early mathematics: missing number (MN) and quantity discrimination 

(QD) measures. Each screening measure, described in greater detail below, focus on a discrete 

skill associated with early number proficiency for 1st grade students. From each classroom, five 

students with the lowest performances on the two CBMs were determined eligible for the 

intervention. Compared to the full sample of 1st grade students assessed in the screening process 

(N = ~100), the 20 Fusion students performed in the low average to well-below average range on 

both screening measures.  

Names and scores of the selected students were then given to their respective general 

education teachers for verification. Teachers were responsible for providing input on the 

appropriateness of the student selections. They considered, for example, each student’s response 

to core mathematics instruction and whether the student might benefit from a Tier 2 mathematics 

intervention. Students verified by classroom teachers were then considered eligible for the 

current study. No discrepancies between the screening data and teachers were found. 

Feasibility and Usability 

To assess feasibility and usability of the Fusion intervention, interventionists completed a 

five-item survey at the second curriculum workshop, which marked the halfway point of the 
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intervention. The purpose of this survey was to determine interventionists’ perceptions about 

implementing Fusion and the academic growth their students had made through the first half of 

the curriculum. At the conclusion of the intervention, interventionists completed a second 

survey, rating six aspects of implementation: (a) the level of difficulty implementing Fusion, (b) 

the amount of teacher scripting provided, (c) the amount of activities completed, (d) the usability 

of Fusion’s materials, and (e) the degree to which Fusion students benefited both mathematically 

and behaviorally. Items included in both surveys had varying rating scales. 

Student Outcome Measures 

Proximal outcome measure. To assess proximal outcomes in mathematics, a researcher-

developed instrument, ProFusion, was administered at pretest and posttest time periods. 

ProFusion is a group-administered assessment that targets three areas of number and numeration: 

(a) place value concepts, (b) basic number combinations, and (c) problems involving multi-digit 

addition and subtraction. In an untimed setting, ProFusion has students decompose two-digit 

numbers (3 items), and write numbers from dictation (4 items), numbers missing from a 

sequence (3 items), and numbers matching base-ten models (3 items). Students also complete 

one-minute, timed addition (32 items possible) and subtraction (24 items possible) number 

combinations, and multi-digit addition and subtraction problems (each with 4 items possible). 

Inter-correlations between the three ProFusion areas ranged from .40 to .82, with an average 

inter-correlation of .65. Clarke et al. (in press) report ProFusion to have adequate predictive 

validity with CBMs of early mathematics (r = .56) and the SAT-10 (r = .68). In this study, a 

paired samples t test was conducted to estimate growth on ProFusion across the 20-week 

intervention (i.e., pretest to posttest gains). Because two students moved just prior to the posttest 

administration of ProFusion, only 14 of the 16 students completed both the pretest and posttest 
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assessments. Data from these 14 students are included in the t-test analysis.  

Distal outcome measures. Two CBMs of early mathematics were used as outcome 

measures and included for visual analysis in the SCD: Missing Number (MN) and Quantity 

Discrimination (QD; Clarke & Shinn, 2004). Both MN and QD are 1-minute, fluency-based 

measures and considered as distal outcome measures to the Fusion intervention1. MN and QD 

assess, respectively, two important aspects of early numeracy development: strategic counting 

and magnitude comparison. In the current study, we adapt the QD and MN measures to be 

administered in small-group instructional settings. Three alternate forms of the QD and MN 

measures were developed and changes made to the measures were based exclusively on student 

response formats. Originally, the measures required students to verbally respond to each item. 

The measures employed in the current study, however, had students record their responses 

through written format. The modified QD measure, this study’s primary outcome measure, 

requires students to circle the number in a pair (numbers 0 to 10) with the higher value. The 

modified MN measure requires students to write in the missing number among a string of three 

numbers (0-10), with the first, middle, or last number of the string missing (e.g., 5       7).  

Test-retest reliability for the MN and QD measures was, respectively, .85 (p < .001) and 

.87 (p  = .003) between the last two intervention-phase assessments. As a measure of concurrent 

 
1 Skills assessed by the MN and QD measures were indirectly and infrequently taught in 

Fusion. Therefore, we argue that these outcomes measures are not “overaligned” with the Fusion 
intervention. For example, Fusion addresses the skill of identifying a missing number in a string 
of numbers through an activity called the Missing Number Game. The game requires students to 
put a series of number cards in the correct numerical sequence (e.g., 11-15). Once the cards are 
placed in the correct order, the interventionist has the students close their eyes and then she 
removes one card from the sequence. Students then open their eyes and raise their hands when 
they recognize the missing number. This game appeared in just 12 lessons during the first half of 
the curriculum. For the skill of making magnitude comparisons, students select a number card 
between 0-9 and then identify a number that is more or less than the number selected. These 
magnitude comparison activities appeared in the first five lessons of Fusion only.  
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validity at the beginning of the baseline phase, ProFusion was moderately correlated with MN (r 

= .57, p = .022) and QD (r = .58, p = .019). Concurrent validity coefficients at the end of the 

intervention phase suggest ProFusion was moderately correlated with MN (r = .42, p = .174) 

and highly correlated with QD (r = .80, p = .059). We also computed predictive validity 

coefficients and found that ProFusion scores at posttest were correlated with pretest MN (r = .45, 

p = .102) and pretest QD scores (r = .67, p = .007).  

Data Collection Procedures 

Data collection of MN and QD during baseline varied between two to three times per 

week for participating groups. Across the four groups, the number of baseline probe 

administrations for QD and MN ranged from five to eight. During the intervention phase, Fusion 

interventionists administered the QD and MN measures once per week, immediately following 

the conclusion of the week’s second lesson. Across the four groups, the number of probes for QD 

and MN ranged from 10 to 26. Two project members, blind to the study’s hypotheses, separately 

scored all outcome measures (i.e., MN, QD, and ProFusion). The two staff members then 

separately entered the raw scores into an Excel spreadsheet for data analysis. In instances where 

scores were discrepant between the two scorers, an independent third scorer rescored the 

measure and provided the arbitration score. Scores for MN, QD, and ProFusion represented the 

total number of problems answered correctly. Group averages for MN and QD were calculated 

for each administration and depicted for visual analysis in the single-case design. 

Experimental Design and Procedures 

Among the different methods employed in this study was a multiple-probe-across-groups 

design (Gast, 2009) used to explore initial evidence of Fusion’s impact on the mathematics 

achievement of students at-risk for MD. Multiple probe designs can help reduce testing effects, a 
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major threat to a study’s internal validity, by providing intermittent pre-intervention data 

collection (Gast, 2009). However, the benefits of a multiple probe design can be offset by the 

potential for carryover effects, sometimes referred to as contamination or treatment diffusion 

(Shadish, Cooke & Campbell, 2002). This threat was controlled for in the current study by 

having participating students remain in their general education classrooms until their group 

started Fusion. The unit of analysis for this study was instructional groups. 

Baseline. During the baseline and intervention phases, all participating students 

continued to receive “business-as-usual” district-approved core mathematics instruction in their 

general education classroom. Core programs used in the participating 1st grade classrooms 

included Saxon Math, Everyday Mathematics, and Math Expressions. Interventionists 

administered baseline assessments (i.e., QD and MN) to groups of students outside of the general 

education classroom and at a time that was essentially scheduled for the Fusion intervention. 

Generally, for multiple probe designs, intervention introduction occurs with the presence of a 

stable baseline. Here, baseline stability is defined as three consecutive data points (i.e., group 

averages) on the primary outcome measure, QD, that lack significant variability or substantive 

trend towards the hypothesized direction of change for the Fusion intervention (i.e., increases in 

group averages). Introduction of Fusion, which was contingent on stability of the QD measure, 

was staggered across instructional groups, with Group A starting the intervention first. It is 

important to note that a scheduling conflict in Group C’s school caused the introduction of 

Fusion to Groups B and C to be separated by only one week. However, because Groups B and C 

occurred in different schools threats to internal validity (i.e., diffusion) were not tenable. 

Fusion Intervention. The Fusion curriculum is a Grade 1 (Tier 2) mathematics 

intervention designed to build students’ early knowledge of whole number concepts and skills 
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identified in the Common Core State Standards for 1st grade mathematics (CCSS, 2010). 

Specifically, the curriculum targets content standards from two mathematical domains in the 

CCSS: (a) Operations and Algebraic Thinking, and (b) Number and Operations in Base Ten. 

Fusion contains 60 scripted lessons, each 30 minutes in duration. Each lesson contains four to 

five brief mathematics activities with detailed scripting to systematically introduce mathematics 

content, bolster fidelity of implementation, and increase the consistency and quality of 

instructional interactions between teachers and students. Lessons in the first half of Fusion 

prioritize basic number combinations and place value concepts, whereas lessons in the second 

half focus on multi-digit computation without regrouping and word problem solving. Figure 2 

shows the CCSS (2010) topics addressed by instructional week in Fusion.  

< Figure 2 here > 

A central feature of Fusion is the careful integration of foundational concepts and skills 

of whole number, and validated-design principles of explicit and systematic instruction (Coyne 

et al., 2011; Doabler & Fien, 2013; Doabler, Fien, Nelson-Walker, & Baker, 2012). Each lesson 

contains opportunities for teachers to (a) model what they want students to learn, (b) deliver 

scaffolded instructional examples, and (c) provide specific academic feedback to students during 

the learning activities. For example, if a student responds incorrectly, lesson scripting provides 

the teacher with procedures on how to explicitly address the error. Lessons also contain frequent 

opportunities for student practice and judicious review. These opportunities occur through 

multiple formats but particularly important are practice opportunities that involve verbal 

interactions between teachers and students. Mathematics verbalizations allow students to 

communicate their mathematical understanding and thinking, and explain and justify their 

methods for solving problems (Gersten et al., 2009). In Fusion, students are provided frequent 
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opportunities to verbalize their mathematical understanding through unison, choral responses. 

For example, a teacher might have a group of five students state in unison the commutative 

property. To build students’ conceptual understanding of number, the curriculum incorporates a 

variety of visual representations of mathematics, including number lines, strip diagrams, and 

place value blocks. 

Members of our curriculum team developed Fusion through a series of iterative cycles of 

development, implementation field-testing, analysis, and revision. These iterations provided 

opportunities for the curriculum team to examine implementation data and make ongoing 

improvements to the curriculum. Revisions occurred during the first two years of the project and 

included edits such as shortening the length of lessons and determining the optimal configuration 

of Fusion’s instructional design principles (e.g., sequencing of teaching examples). To help 

further shape Fusion, the curriculum team collected various forms of professional feedback 

throughout the development process, including interventionists’ perceptions of the curriculum’s 

goals, procedures, and outcomes. These data sources proved instrumental for making 

adjustments to the Fusion curriculum prior to the start of the current study.  

Fusion Procedures. In this study, interventionists were responsible for delivering one 

lesson per day, three times per week for a total intervention duration of approximately 20 weeks. 

Lessons lasted approximately 30 minutes and were delivered in small-group instructional 

formats, with approximately 5 students per group. Instruction for all four groups occurred in 

classrooms outside of their general education settings and at times that did not interfere with 

students’ core mathematics and reading time. As described above, instruction was led by explicit 

scripting within each lesson and focused on activities specific to whole number concepts and 

skills identified in the CCSS (2010). Because mathematical content is systematically reviewed 
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and extended across the 60 Fusion lessons, interventionists did not apply a specific criterion of 

learning (e.g., ≥ 90%) for advancing in the curriculum. However, interventionists were trained to 

reteach an activity the following instructional day if they recognized that students struggled to 

master particular content and if that content was not present in the next lesson. Across all four 

groups, the total number of instructional sessions ranged from 60 to 65 days.  

Professional Development. Prior to the current study, interventionists received four 

hours of professional development in early mathematics instruction. This initial curriculum 

workshop focused on four key elements: (a) the research-based principles of mathematics 

instruction, (b) the instructional design and delivery features of Fusion, (c) an overview of 

lessons 1-30, and (d) small-group management techniques, such as rewarding positive student 

behaviors. In the first workshop, participating teachers were provided opportunities to deliver 

sample lessons and receive feedback on their teaching from the project staff. Midway through 

the study, all interventionists participated in a four-hour follow-up workshop. A central focus of 

the final workshop was previewing lessons 31-60 of the curriculum. To enhance implementation 

fidelity, all four interventionists received on-site coaching from members of the curriculum team. 

Coaching visits included direct observation and post-observation feedback that focused on 

implementation fidelity and the quality of instructional interactions. 

Fidelity of Implementation. Implementation fidelity of Fusion was assessed using two 

observation measures: (a) Fusion observation instrument and the (b) Ratings of Classroom 

Management and Instructional Support (RCMIS; Doabler & Nelson-Walker, 2009). Each 

intervention group was observed at least five times, and all fidelity observations were scheduled 

in advance and conducted by trained staff. After interventionists taught each activity (range 4-5 

per lesson), observers used the Fusion observation instrument to rate implementation fidelity for 
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each activity, using a 0-2 scale (0 = not taught, 1 = partial implementation, and 2 = full 

implementation). A fidelity score for each observation was calculated by averaging ratings 

across the activities. Overall fidelity scores were averaged across the five observation occasions. 

The RCMIS is a holistic rating system comprised of 11 items that measures the quality of 

instructional interactions that take place between teachers and students around critical 

mathematics content (Cronbach’s α = .92). Each item is rated on a 4-point scale from low (1) to 

high (4). For each observation, a score was calculated by summing the ratings across the 11 

items. For each group, an overall quality score was calculated as the mean across all 

observations. Interobserver reliability was conducted on 20% of all observation occasions and 

reported at 83% and 85% for the Fusion observation instrument and RCMIS, respectively. 

Reported fidelity of implementation for all groups was 80% (M = 1.59, SD = .40). 

Analysis for each instructional group showed implementation fidelity was moderate to high for 

Group A (84%), Group B (95%), and Group D (93%). Fidelity of implementation for Group C 

was rated markedly lower (50%). Analysis of instructional quality data documented by the 

RCMIS showed between-group variability: Group A (M = 34.33, SD = 2.94), Group B (M = 

36.00, SD = 5.14), Group C (M = 27.33, SD = 5.31), and Group D (M = 43.16, SD = 1.60). 

Groups A, B, and D appeared to facilitate high-quality interactions. As with implementation 

fidelity, instruction quality ratings for Group C were notably lower than the other three groups. 

Results 

We first summarize results of the feasibility and usability surveys. We then provide 

results related to Fusion’s promise to improve student mathematics achievement. These results 

are summarized by distal and proximal outcome measures. 

Feasibility and Usability 
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Overall, interventionists rated the Fusion intervention both as feasible and usable in 

authentic educational settings. On the first survey, for example, which was administered at the 

second curriculum workshop, interventionists’ ratings indicated satisfaction with the progress 

their students had made through the first 30 lessons of Fusion. Also, all four interventionists 

agreed that students’ progress in mathematics was greatly attributed to Fusion. Additionally, 

interventionists noted that students’ attitudes toward core mathematics improved based on 

Fusion. Finally, two of the interventionists rated Fusion more favorably for improving 

mathematics outcomes than other mathematics interventions used in their school. 

On the end-of-intervention survey, two of the interventionists reported that the 

intervention was somewhat easy to implement, whereas the remaining two rated the difficulty of 

implementation as “average” or similar to that of other mathematics programs. When asked to 

rate the amount of the teacher scripting provided, responses ranged from “not enough” to 

“sometimes too much.” All four interventionists noted that they completed the curriculum as 

intended, reporting that the scripting was followed most, if not all, of the time. For usability of 

Fusion, on average, interventionists found the materials highly user-friendly. For example, 

interventionists reported the place value template and base-10 blocks as very user-friendly in 

small-group settings. Finally, on a 7-point scale, with 1 (greatly hindered) to 7 (greatly 

benefited), interventionists reported that, on average, students benefited from Fusion, both in 

mathematics (M = 5.75, SD = .50) and in terms of behavior (M = 5.00, SD = .00). 

Distal Outcome Measures 

Figure 3 shows group mean scores on the QD and MN measures, with group averages for 

the measures depicted as white and black circles, respectively. Introduction of Fusion (i.e., phase 

change from baseline to intervention) was contingent on baseline stability of the QD measure.  
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< Add Figure 3 > 

Baseline. As shown in Figure 3 between five and eight data points per outcome were 

collected during baseline for each instructional group. Also, to attend to the WWC Standards for 

multiple probe designs (Kratochwill et al., 2010), for both outcome measures, each instructional 

group had at least one data point in the first three sessions and at least three consecutive data 

points just prior to the introduction of Fusion. For QD, significant between-group variability can 

be found in Figure 3, with mean scores ranging from 8.20 to 27.93. Visual analysis within the 

baseline phase of Group A indicates no evidence of variation or upward trend for QD mean 

scores, with group averages ranging from 8.2 to 11.2. Mean QD baseline scores for Groups B 

and C show a slight upward trend following the initial data points. For Group B, the final three 

baseline data points clearly demonstrate a downward trend. Scores for Group C stabilized after 

the third data point and continued to demonstrate within phase stability across the final three 

administrations leading up to the introduction of Fusion. QD baseline averages for Group D 

showed an increase between the third and fourth administrations (23.8 to 27.4). However, the 

QD averages for Group D appeared to stabilize for the remaining four probes (28.6 to 30.0) and 

any indication of trend in those data was negligible. 

With respect to the MN measure, mean baseline scores for Group A were quite stable, 

with group averages ranging from 2.6 to 4.2. Mean MN baseline averages for Group B indicate a 

slight increase between the second and third probes, however averages appeared to stabilize 

across the final four data points. Group C baseline averages also showed an increase from the 

second to the third probes. This change is level is likely attributed to the loss of one student from 

Group C at the time of the third probe. Group B averages ranged from 7.6 to 13.8, whereas for 

Group C averages ranged from 5.0 to 9.5. For Group D, mean MN baseline scores demonstrate 
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stability in the middle of the phase with a slight change in level in the final probes. Averages for 

Group D during these final probes ranged from 13.75 to 16.40. 

Between-group differences on QD and MN at baseline were tested using ANOVA and 

Scheffe’s test of all pairwise comparisons (p < .05). Results indicate that Group A was 

significantly lower than Group C on QD, and Groups B and D on the QD and MN measures. 

Fusion Outcomes for Instructional Groups. In the intervention phase for QD, changes 

in level and trend were demonstrated for Groups A and D, respectively (see Figure 3). The 

influence of Fusion on Group B mean QD scores is noted after the fourth intervention phase data 

point, with mean scores showing a marked change in level of performance during the remaining 

20 intervention probe administrations. Group C demonstrated significant variability in QD mean 

scores during the first half of the curriculum. Despite this variability, a positive, moderate change 

in level for Group C is noted in final eight weeks of the intervention. 

On the MN measure, the mean number of problems answered correctly by Groups A, B, 

and D increased from baseline to intervention, with notable changes in level and trend for all 

three groups, particularly during the final weeks of the intervention. Similar to the QD means 

scores, significant variability in MN mean scores can be found for Group C during the first few 

weeks of the curriculum along with a downward trend in the middle of the intervention (see 

Figure 3). However, a somewhat robust change in level for MN means scores can be seen during 

the last seven probe administrations for Group C. 

As an index of effect size, this study calculated Tau-U, using the Tau-U calculator 

developed by Vannest, Parker, and Gonen (2011). Tau-U is a metric that describes the non-

overlap between measurements belonging to the baseline and intervention phases, and is an 

extension of Tau-nonoverlap in that it controls for baseline trends (Parker, Vannest, Davis & 
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Sauber, 2011). For this study, Tau-U was computed for the between-phase contrasts for each 

group and combined the contrasts into a single weighted average to describe the overall 

functional relation. Results indicated that, for each group, the majority of data pairs between the 

two phases showed improvement over time, even after controlling for baseline trend (p < .01 for 

all contrasts). The weighted average Tau-U indicated that 80% of all data pairs between the two 

phases showed improvement over time (Tau-U = .80, p < .001), suggesting a functional relation 

between Fusion and mathematics performance.  

Fusion Outcomes for Individual Students. Average baseline and intervention scores, 

and gains between phases on QD and MN for all students are reported in Table 1. Mathematics 

gains on each measure were calculated by subtracting the baseline mean from the intervention 

mean. Individually, results indicate that most students made robust learning gains on the QD and 

MN measures. One student in Group B, Mark, demonstrated no growth across the 20 weeks on 

the MN measure. Notable increases of variability in student performance on both measures 

reveal significant group heterogeneity.  

< Table 1 here > 

Proximal Outcome Measure  

A paired samples t test revealed a statistically significant difference between the mean 

score of student ProFusion pretest (M = 24.71, SD = 16.16) and posttest (M = 50.93, SD = 

19.35) performances, t(13) = 6.50, p < .001). A pretest-posttest effect size was calculated by 

dividing the mean gain by the gain standard deviation (M = 26.21, SD = 15.09). The impact of 

Fusion on the proximal measure produced a pre-posttest effect size gain of 1.73. 

Discussion 

The purpose of this study was to investigate initial data (i.e., feasibility and usability, and 
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impact on student outcomes) related to the development of Fusion, a Tier 2 mathematics 

curriculum designed to improve the mathematics outcomes of students with or at-risk for MD. 

All data were collected in the second year of an IES-funded Development and Innovation project 

using multiple methods, including surveys, direct observations, and a multiple-probe-across-

groups design. While preliminary, several important findings emerged from this study.  

Survey data reported positive interventionist feedback in terms of the feasibility and 

usability of Fusion. Because instructional time is a precious resource in schools, particularly in 

the context of interventions considered supplemental to core instruction, it is therefore critical to 

provide interventionists with a curriculum that can be implemented in the expected timeframe. 

Our development team used interventionist feedback obtained during the first professional 

development session to better shape Fusion for a 30-minute implementation window. For 

example, interventionists indicated that some of the lesson activities contained too many 

instructional examples to teach in 30 minutes. This feedback was used to reduce the number of 

instructional examples prescribed in the curriculum. 

Although not a primary research aim, another important finding of the study was related 

to implementation fidelity. Observations of intervention implementation indicate that most of the 

interventionists were able to implement Fusion with acceptable levels of implementation fidelity 

and facilitate high-quality instructional interactions around whole number concepts. In Fusion’s 

theory of change, instructional interactions are hypothesized to mediate students’ proximal 

outcomes. While this study did not conduct mediational analyses, the observational data did 

provide initial support for our theoretical principles and the potential capacity for Fusion to 

initiate meaningful teacher-student interactions around critical mathematics content. We base 

this conclusion on the observation data documented by the RCMIS, which suggest that Fusion 
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deeply engaged students in whole number concepts and skills.    

Perhaps the most important finding was related to student mathematics outcomes. We 

hypothesized that Fusion, when implemented with high levels of fidelity, would improve student 

mathematics achievement. We based this final hypothesis on a well-specified theory of change 

for Fusion. Our findings, while preliminary, suggest that all students made promising gains on a 

measure proximal to the Fusion intervention. On the two distal outcome measures (i.e., QD and 

MN), visual analysis revealed that experimental control was documented for Groups A, B, and 

D. Experimental control, however, was not demonstrated with Group C on these measures.  

Limitations 

While the findings from the study provide initial evidence for Fusion and its theory of 

change, the data should be interpreted with caution in light of several research limitations. The 

fact that visual analysis did not reveal immediate effects for all four groups should be noted. A 

lack of immediacy of the effect, however, may be a function of group-based averages, which can 

be sensitive to outlying scores and missing data. Student attrition can also influence group-based 

averages as evidenced in Group C, where three of the five students moved before the end of the 

20-week intervention. Despite this, more research is needed on the utility aggregate student data 

affords small-group mathematics interventions and, moreover, how such data can be used in 

tandem with the outcomes of individual students to inform instructional decision-making.  

It is also important to highlight the difficulty for interventions that target academic 

outcomes to demonstrate immediate effects or a magnitude of change that applies to visual 

analysis in SCD. Unlike behavioral outcomes, such as the reduction of self-injurious behavior, 

acquisition of academic knowledge is incremental, systematically building upon prior 

understandings in a step by-step fashion. In mathematics, as Griffin (2005) indicates, 
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understanding is gradually constructed across time, with instruction allowing children to “deepen 

and consolidate each new understanding before moving on to the next” (p. 281). For example, to 

acquire proficiency in strategic counting, a targeted outcome in this study, a child will first have 

to have prior understanding of making one-to-one correspondences, cardinality, and counting all. 

Such skills were incrementally taught across Fusion rather than in one set of lessons. 

Another limiting factor was the study’s sample size, which substantially constrains the 

generalizability of our findings. We also recognize heterogeneity of instructional groups as a 

potential limitation. Notable increases of variability in student performance across time were 

documented. We took this as an indication that our sample had different subgroups of student 

risk types. The impact of Fusion on student mathematics achievement may depend on student 

risk status. Additionally, because each instructional group had its own interventionist, the study 

design did not control for interventionist effects (i.e., the same interventionist for all groups).  

Also, the CBM measures may lack sensitivity to student growth on whole number 

concepts and skills. Unlike phonemic awareness and the alphabetic principle in early literacy, 

mathematics intervention studies have yet to casually link the skills associated with QD and MN 

to students’ mathematics achievement. Moreover, while the modified CBMs demonstrated 

adequate technical characteristics, we are not fully certain how the adaptations may have 

impacted the screening utility of the QD and MN measures. It is important to note that a primary 

aim of using these modified CBMs was to minimize the disruption of classroom operations and 

maximize students’ opportunity to access core instruction. By our calculations, we estimate these 

group-based CBMs saved approximately 2-3 hours of assessment time per child across the 

project. These savings may have implications for the resources that future research studies must 

provide to investigate interventions on RtI and mathematics. For example, if research projects 
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can concurrently assess multiple students on group-administered CBMs and the data garnered is 

both reliable and valid, then researchers can save precious resources and remain in good standing 

with schools because of the minimal loss of students’ opportunity to learn core content. Finally, 

it is likely that the QD and MN measures were too distal to the content of Fusion to adequately 

capture its impact on student mathematics achievement. Future studies, therefore, are needed to 

identify other measures of whole number proficiency for demonstrating the promise of Fusion.  

Implications for Instruction and Design Research 

Our results indicate that impact of the Fusion intervention for Group C was not as 

evident. From a curriculum development perspective, this finding can be thought of as bringing 

to light limiting factors within our design research. Curriculum research, like other empirical 

sciences, moves forward when hypotheses and theories are tested and then subjected to self-

correction and professional scrutiny (Feuer, Towne, & Shavelson, 2002; Popper, 1959). Thus, 

researchers must be prepared to examine, and in some case modify, existing theories based on 

scientific results.  

Take for example, the current study where the Group C interventionist demonstrated low 

levels of implementation fidelity and instruction quality. One possible reason for these findings 

is that the Group C interventionist was uncomfortable with the lesson scripting provided in 

Fusion. Interestingly, findings from studies involving scripted curricula typically point to high 

levels of implementation fidelity (Simmons et al., 2007). In our research, we have found, albeit 

anecdotally, that teachers and instructional assistants are relieved to receive and implement a 

scripted program because it removes the onus of having to design instruction for students 

struggling in reading and mathematics. Regardless, the Group C interventionist may have found 

the Fusion scripting restrictive or misaligned with his approach to instruction. Future research 
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should examine how varying levels of scripting associates with teachers’ pedagogical formats 

and knowledge for teaching early mathematics.  

Another implication generated from the fidelity of implementation results of Group C 

pertains to the type of observation protocols used in the study. Our observation system focused 

strictly on the quality of instructional interactions and implementation fidelity of Fusion. 

However, to further unpack the active ingredients of Fusion and better understand the 

professional development needs of teachers, researchers may want to consider other observation 

instruments, such as those that capture the quantity of instructional interactions (Doabler et al., in 

press; Smolkowksi & Gunn, 2012). For example, data collected from a frequency-based 

instrument might suggest that a group’s inadequate response to instruction, such as the case of 

Group C, is a result of too few practice opportunities for groups of students. Researchers could 

use such observation data to provide professional development to teachers on facilitating and 

managing student practice opportunities, such as choral responses.  

Conclusion 

In summary, Clements (2007) proposed that researchers engineer mathematics curricula 

through a design science approach. Linking science and curriculum development has researchers 

collect a variety of empirical data to make iterative refinements to the curriculum, project 

instrumentation, and the professional development materials for teachers. Another expectation of 

curriculum research is to make known research findings to the scientific community. This study 

was a first attempt to examine and disclose how a recently developed Tier 2 mathematics 

curriculum functioned in authentic education settings. Preliminary data suggest both the potential 

of the Fusion intervention for students and teachers along with the need for future refinement and 

further evaluation of the curriculum through increasingly rigorous research methods. 
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