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Abstract

In this paper, we provide an introduction to the factored regression framework. This modeling

framework applies the rules of probability to break up or “factor” a complex joint distribution

into a product of conditional regression models. Using this framework, we can easily specify the

complex multivariate models that missing data modeling requires. The article provides a brief

conceptual overview of factored regression and describes the functional notation used to

conceptualize the models. Furthermore, we present a conceptual overview of how the models are

estimated and imputations are obtained. Finally, we discuss how users can use the free software

package, Blimp, to estimate the models in the context of a mediation example.
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An Introduction to Factored Regression Models with Blimp

Introduction

In the missing data literature, there has been a consistent focus on breaking up complex

multivariate distributions into more manageable conditional distributions. By applying rules of

probability, we can take a joint density or distribution of two variables and break it up or

“factored” it into the product of the conditional density multiplied by the marginal density.

Ibrahim and colleagues (Ibrahim, 1990; Ibrahim, Chen, & Lipsitz, 2002; Lipsitz & Ibrahim, 1996)

first introduced this approach, and the literature has referred to this specification as fully

Bayesian estimation, sequential specification, or factored regression (Enders, Du, & Keller,

2020; Erler, Rizopoulos, Jaddoe, Franco, & Lesaffre, 2019; Erler et al., 2016; Lüdtke, Robitzsch,

& West, 2020a, 2020b; Zhang & Wang, 2017). The factored regression approach simplifies

many issues that arise when accounting for missing data, where we generally model the joint

distribution of all missing variables and our outcomes to obtain unbiased estimates under

assumptions of how the unobserved values came to be (e.g., missing at random; Rubin, 1976).

This paper introduces how to specify factored regression models and apply them to

estimate models with missing predictors and outcomes. We illustrate how we can leverage

factored regression to obtain parameter estimates or produce multiple imputations, which are

then used for subsequent analyses. Throughout the paper, we discuss using the Bayesian and

imputation software package Blimp (Version 3.0; Keller & Enders, 2021) to estimate the models.

Blimp is a free standalone software package that extends factored regression to a flexible latent

variable modeling framework and can handle a wide array of missing response types, nonlinear

relationships, and multilevel data structures common in psychological and social sciences. While

we will focus on specifying the models with Blimp, several alternative R packages exist to

specify similar statistical models (see mdmb, smcfcs, JointAI packages; Bartlett, Keogh, &

Bonneville, 2021; Erler, Rizopoulos, & Lesaffre, 2021; Robitzsch & Luedtke, 2021).

The structure of this paper is as follows. First, we provide a brief conceptual overview of

factored regression and describe the functional notation we use throughout the article. Second,
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we illustrate the factored regression approach concretely by applying it to a three-variable

moderated regression. Third, we briefly discuss the estimation of factor regression using Markov

chain Monte Carlo techniques and obtain “imputations” for the missing observations (i.e., via

data augmentation; Gelfand & Smith, 1990). Fourth, we discuss the extension of factored

regression to a path modeling framework using a single-mediator interaction model (Judd &

Kenny, 1981). Fifth, we illustrate how the factored regression framework can be applied to

include measurement models, where we illustrate how to specify a single-mediator interaction

model with a latent by continuous interaction. Sixth, we illustrate how to estimate factor

regression models using the freely available Blimp software package (Version 3.0; Keller &

Enders, 2021) via a substantive data example.

Factored Regression Modeling Framework

Conceptually, we can think of factored regression as chaining several regression models

to characterize an entire joint distribution of variables. Some of these regression models will

consist of relationships we are substantively interested in, while others will act as a tool to

maintain the association between two variables that may not be of substantive interest.

Throughout this paper, we will specify models in terms of a so-called “functional” notation. To

illustrate, suppose we have the joint distribution of two variables, X and Y . A functional

notation would represent the joint distribution as

f ( X, Y ) ,

where the f ( . . . ) represents a general probability distribution for both X and Y . As mentioned

above, we can break apart this distribution into two parts:

f ( X, Y ) = f
(
Y | X

)
f ( X ) .

The first part, f
(
Y | X

), is the conditional distribution of Y given X. Said differently, this is a

regression model where we are predicting Y from X. Notably, the form of this regression is

unspecified; that is, the relationship could be linear, quadratic, logistic, or some more complex

relationship. Thus, to specify a factored regression model, we first break up or “factor” a
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complicated joint distribution of variables into a product of less complicated, often conditional

distributions via the functional notation. Second, we specify the form of each function,

modeling the relationship between the criterion (variables left of the bar) and the regressors

(variables right of the bar). By breaking up the joint distribution into manageable chunks, we

are afforded more flexibility to model complex relationships such as interactions, nonlinearities,

mixed response types, and clustered data. In contrast, a traditional linear structural equation

modeling (SEM) framework generally require multivariate normality on all endogenous and

missing variables, precluding nonlinear relationships between missing predictors.

We will specify factor regressions in two steps. First, we will take the joint distribution of

all variables and factor it into the product of several conditional distributions. Second, we

specify the actual form or model for each function. Generally speaking, these models will specify

the relationship between the criteria (variables left of the bar) and the regressors (variables right

of the bar). In essence, we will break up the joint distribution into manageable chunks, and this

affords us more flexibility to model complex relationships. In other words, it is easier to specify

relationships conditionally given some variables as opposed to jointly. In contrast, a traditional

structural equation modeling (SEM) framework generally requires us to consider multivariate

normality for all endogenous and missing variables, and this requirement precludes nonlinear

relationships between missing variables.

Illustrating Factored Regression with Moderation

As discussed, factored regression easily accommodates models with incomplete

independent variables that are nonlinearly related to a dependent variable. To illustrate, consider

a two predictor moderated regression with Y regressed on X, M , and their product.

yi = β0 + β1xi + β2mi + β3ximi + ei (1)

For our discussion, we will assume ei is normally distributed with a constant variance, σ2
e and a

mean of zero. Furthermore, we will assume that both predictors are incomplete and that missing

at random is satisfied. To specify the factored regression model, we use functional notation to
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factor the joint distribution of Y , X, and M as a product of two distributions:

f ( X, Y, M ) = f
(
Y | X, M

)
× f ( X, M ) . (2)

As discussed in the previous section, f ( . . . ) represents a general probability distribution

without a specified form, and heuristically we can think of this as specifying a regression model

of any form. For our example, f
(
Y | X, M

) is equivalent to the linear regression in Equation

(1), or more specifically, the likelihood of this model for all observations. Importantly, this

regression model directly accounts for the model’s assumptions—that is, Y is normally

distributed conditional on X, M , and their product—by analytically including the product of X

and M . In contrast, a traditional linear SEM software requires modeling this interaction using a

proxy variable (i.e., precomputing the product as a new variable) and including it as an

exogenous predictor, as if it is just another variable. In general, if X or M are incomplete, this

approach will induce bias in the parameter estimates because the SEM framework incorrectly

models the relationships as multivariate normally distributed when it is not (Enders, Baraldi, &

Cham, 2014; Liu, Gelman, Hill, Su, & Kropko, 2014; Seaman, Bartlett, & White, 2012).

Turning to the second density in Equation (2), f ( X, M ), we will refer to this as the

partially factored specification because the joint distribution between the predictors X and M is

left unfactored. By default, we opt to model this unfactored density as a multivariate normal

distribution for continuous predictors. xi

mi

 ∼ N2

µ =

µ1

µ2

 , Σ =

 σ2
1 σ12

σ12 σ2
2


 (3)

Note, we use N2 (µ, Σ) to denote a bivariate normal distribution with some mean vector and

covariance matrix. Notably, by assuming a multivariate normal distribution, the above

specification excludes the possibility of nonlinear associations among the predictors (X and M).

In general, we will refer to these models as “predictor models” because they maintain the

association between our incomplete predictors. We generally consider these models as ancillary

because the model serves the sole purpose of modeling the missing values for the predictors.
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An alternative to the partially factored model is the fully factored model (also referred to

as sequential specification; Lüdtke et al., 2020a, 2020b), where we break apart the remaining

joint distribution of the predictors even further into a product of two conditional distributions.

f ( X, M ) = f
(
X | M

)
f ( M ) (4)

Substituting the above result into Equation (2) gives us the functional notation for the fully

factored model.

f ( Y, X, M ) = f
(
Y | X, M

)
f

(
X | M

)
f ( M ) (5)

Returning to the original moderated regression in Equation (1), if we assume a linear

association between X and M , we can specify the factored model as three linear regression

models with normally distributed residuals.

yi = β0 + β1xi + β2mi + β3ximi + ei

xi = γ01 + γ11mi + ri1

mi = γ02 + ri2

(6)

In Equation (6), we use ‘γ’ with with double subscripts to represent nuisance parameters in the

predictor models (e.g., X = 1 and M = 2). Note, the partial and fully factored specification

models above are equivalent but parameterized differently (i.e., one with means and a

covariance matrix and the other with regression coefficients and residual variances). Both

models will produce the same statistical inferences on the analysis model Y regressed on X,

and M when X and M are multivariate normally distributed.

The fully factored specification offers a more flexible modeling approach by allowing us

to specify models via their conditional distributions (e.g., conditionally normal; Lüdtke et al.,

2020a, 2020b). Because we are only required to specify a conditional model, the fully factored

model also easily accommodates variables on different metrics and nonlinear (i.e., interactions,

polynomials, random coefficients) effects among the predictors. To illustrate, suppose M is

quadratically related to X. Such a relationship cannot follow a multivariate normal distribution

(Liu et al., 2014), and the partially factored specification would not be able to accommodate
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such a model. By using the same factored functional model from Equation (5), we can specify

the form of the conditional regression models to handle the curvilinear relationship appropriately.

yi = β0 + β1xi + β2mi + β3ximi + ei

xi = γ01 + γ11mi + γ21m
2
i + ri1

mi = γ02 + ri2

(7)

Equation (7) extends the regression equations in Equation (6) with the inclusion of the

quadratic term (i.e., m2
i ) predicting X.

Imputation of Missing Observations

Factored regression can be specified in the Frequentist paradigm (Ibrahim, 1990; Lipsitz

& Ibrahim, 1996; Lüdtke et al., 2020a) and estimated via maximum likelihood, or the Bayesian

paradigm (Ibrahim et al., 2002; Lüdtke et al., 2020b) and estimated via a Markov chain Monte

Carlo (MCMC) sampler. This section provides a conceptual overview of the latter, focusing on

how the software package Blimp (version 3.0; Keller & Enders, 2021) constructs its MCMC

sampler. Blimp uses this simulative technique to sample parameters and imputations from their

posterior distributions. While MCMC methods offer several ways to sample values, factored

regression lends itself perfectly to a Gibbs sampling approach (Geman & Geman, 1984), which

breaks the complex multivariate distribution of parameters into conditional parts. Thus, each

regression model in the factorization has its parameters first sampled at a given iteration, and

then the criterion of that regression has its missing observation imputed. Blimp draws

imputations based on the product of the likelihoods (or sum of of the log likelihoods) for each

conditional model the variable appears in, regardless of whether it is a criterion or a regressor

(i.e., it shows on either side of the conditioning in the functional notation).

To illustrate, let us return to the moderated regression example. Blimp breaks down the

sampling similar to how we factored the model in either equations (2) or (5). Starting with

missing observations on Y , at iteration t, the algorithm samples the Y model’s parameters

(θ(t)) from the conditional distribution given the data and any of the previous iteration’s

imputations. Next, Blimp samples the imputations for a missing observation on yi by sampling
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from the conditional distribution of f
(
Y | X, Z

).
y

(t)
i ∼ f

(
yi | xi, mi, θ

)
= N

(
β0 + β1xi + β2mi + β3ximi, σ2

e

) (8)

To simplify the notation, we have dropped the superscripted t on the parameters above (i.e., β0,

β1, β2, β3, and σ2
e), but these parameters are the values sampled just prior to imputation.

Importantly, imputations on Y are only drawn from its conditional distribution because Y does

not appear in any other model.

After sampling a Y imputation for every missing observation, we begin sampling the

predictors’ parameters—ϕx and ϕm. For the partially factored specification, we will denote the

parameters of the joint distribution as ϕ = {ϕx, ϕm}, which is equal to the mean vector (µ) and

covariance matrix (Σ) in Equation (3). After sampling the predictors’ parameters from their

appropriate posterior distribution, we proceed to sample imputations for X and M from their

joint density conditional on Y , the analysis model parameters (θ), and the predictor model

parameters (ϕ). This joint density is equivalent (up to proportionality) to the predictor model’s

density weighted by the analysis model’s likelihood.

f
(

x
(t)
i , m

(t)
i | yi, θ, ϕ

)
∝ f

(
yi | xi, mi, θ

)
× f

(
xi, mi | ϕ

)
∝ N

(
β0 + β1xi + β2mi + β3ximi, σ2

e

)
× N2 (µ, Σ )

(9)

Again, we have dropped the superscripted t on the parameters for simplicity. The first line is the

functional notation and provides a symbolic representation of the densities that we use to

sample the missing values. We specify this up to proportionality—denoted by ‘∝.’ The second

line illustrates the form of the two densities that we multiply together. The first density is the

same as the analysis model evaluated at its likelihood. The second density is the predictor

model we specified in Equation (3) and is also evaluated at its likelihood. Importantly, the first

density includes the X by M interaction and serves as a weight for the predictor model; thus,

when we draw imputations for our predictors, they will be drawn according to the nonlinear

relationship to Y .
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Note, Blimp samples from Equation (9) using a different but equivalent specification.

Blimp parameterizes the multivariate normal distribution of the predictors as a set of equivalent

conditional models (i.e., X predicting M and M predicting X; Arnold, Castillo, & Sarabia,

1999, 2001; Liu et al., 2014), and samples from each missing predictor via a single conditional

equation. To illustrate, we can sample from the joint distribution via the following two

conditional models:

f
(

x
(t)
i | mi, yi, θ, ϕ

)
∝ f

(
yi | xi, mi, θ

)
× f

(
xi | mi, ϕx

)
∝ N

(
β0 + β1xi + β2mi + β3ximi, σ2

e

)
×

|N
(
µ1 + γ1[mi − µ2], σ2

r1

) (10)

and

f
(

m
(t)
i | xi, yi, θ, ϕ

)
∝ f

(
yi | xi, mi, θ

)
× f

(
mi | xi, ϕm

)
∝ N

(
β0 + β1xi + β2mi + β3ximi, σ2

e

)
×

N
(
µ2 + γ2[xi − µ1], σ2

r2

)
.

(11)

The above specification simplifies the estimation steps when Equation (3) contains latent

response scores (i.e., from categorical regressors) that require the variances in Σ to be

constrained due to identification (Albert & Chib, 1993). Although the above distributions do

have a known form (Kim, Sugar, & Belin, 2015), Blimp generally uses a Metropolis step within

the Gibbs sampler (Gelman et al., 2013; Lynch, 2007) to sample values by specifying the

densities up to proportionality. While using the Metropolis step has less efficient sampling

properties (i.e., autocorrelation between repeated samples), it affords the flexibility to specify

relationships that do not have a known form (e.g., quadratic relationship).

Turning to the fully factored model, recall that this model breaks down the joint

distribution of the predictors using the same factorization technique. Therefore, to construct the

MCMC sampler, Blimp first samples from the posterior distribution of the X model’s

parameters (ϕx) in Equation (6) and then proceed to impute the missing observations of X.

The algorithm samples these imputations from the conditional distribution of X given Y , M , θ,
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and ϕx (denoted by ellipses below).

f
(

x
(t)
i | . . .

)
∝ f

(
yi | xi, mi, θ

)
× f

(
xi | mi, ϕx

)
∝ N

(
β0 + β1xi + β2mi + β3ximi, σ2

e

)
× N

(
γ01 + γ11mi, σ2

r1

) (12)

As with the partial factored model, the first density is the analysis model and acts as a weight,

ensuring that the imputations missing observations of X are in line with the X by M

interaction. The second density maps onto the regression of X on M—i.e., the second line of

Equation (6). This density serves to maintain the association between X and M via the γ11

regression coefficient.

After drawing X’s parameters and imputations, we move on to M . Blimp samples from

the conditional distribution of the M model’s parameters (ϕm) in Equation (6) and then

proceed to impute the missing observations of M . These imputations are sampled from the

conditional distribution of M given Y , X, θ, ϕx, and ϕm (denoted by ellipses below).

f
(

m
(t)
i | . . .

)
∝ f

(
yi | xi, mi, θ

)
× f

(
xi | mi, ϕx

)
f

(
mi | ϕm

)
∝ N

(
β0 + β1xi + β2mi + β3ximi, σ2

e

)
×

N
(
γ01 + γ11mi, σ2

r1

)
× N

(
γ02, σ2

r2

) (13)

As with the previous steps, the analysis model’s density ensures that the imputations for M are

in line with the X by M interaction. Similarly, the second density maintains the relationship

between X and M via the γ11 regression coefficient. Both of these densities then act as a

weight of the marginal model for M .

Regardless of using the partial or fully factored specification, we proceed to the next

iteration, which repeats the same steps. First we sample the analysis model parameters followed

by imputations for Y ’s missing observations. Second, we sample the parameters for the

predictor model followed by the imputations for their missing observations. This process

continues until we save the requested number of iterations or imputed data sets. At which

point, Blimp will produce the summarized posterior draws from all the models and save out

imputed data sets if requested. Thus, we can either use the posterior summarizes to make
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Bayesian inferences or use frequentist methods to analyze the multiple imputed data sets and

pool the results (Rubin, 1987).

Mediation Models as Factored Regressions

The factored regression framework easily accommodates a wide arrange of path models

with incomplete data and nonlinearities. Returning to our moderated regression, suppose we are

interested in estimating a meditational process, where M is now a mediator between X and Y .

To illustrate, let our analysis consist of a single-mediator interaction model (Judd & Kenny,

1981).

yi = β0 + β1xi + β2mi + β3ximi + eiY

mi = α0 + α1xi + eiM

(14)

Thus, the mediated effect, X → M → Y , is given by the product α1β2 and differs as a function

of X (i.e., β3 coefficient). Figure 1 presents the path diagram for this model. As a convention,

we use a path (→) pointing to the another path as a representation of a moderated effect. For

example, the coefficient β3 is represented by the path from X to the M → Y path.

The path diagram has one exogenous variable, X, for which we have not specified a

model. As discussed previously, if either X or M are incomplete, a traditional linear SEM

software package would require us to improperly estimate the model by assuming a multivariate

normal distribution for the product of X and M . The factor regression framework avoids this by

explicitly factoring the joint distribution of X, Y , and M as follows.

f ( X, Y, M ) = f
(
Y | X, M

)
× f

(
M | X

)
× f ( X ) (15)

The factorization above differs from Equation (5) by factoring M before X. While the previous

moderation model does not preclude us from factoring the model this way, this mediation model

requires us to factor the distributions in this order because the f
(
M | X

) relationship is of

substantive interest. In other words, the factor regression framework directly maps onto how we

conceptualize the path model and analysis models. Similar to the moderated regression, when
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we specify the form of the functional notation, the nonlinear relationship between X and M

(i.e., X × M interaction) will be directly modeled in the conditional distribution f
(
Y | X, M

).
The form of the marginal density of X, f ( X ), is often specified to be normally

distributed with a mean and variance (as is the default in Blimp). However, the general

functional notation does not require us to use a normally distributed model. For example, often

the X variable in a mediation model is a binary grouping variable. We can easily model a binary

variable via a probit regression (Agresti, 2012; Albert & Chib, 1993; Johnson & Albert, 2006)

model. The probit regression model represents the discrete responses via an underlying normally

distributed latent variable with thresholds dividing the latent propensity into observed responses.

To illustrate, imagine that X is a binary predictor. We will denote the latent response variable

as X⋆. The link between X and X⋆ is as follows.

x⋆
i ∼ N ( 0, 1 )

xi =


1 if x⋆

i > τ

0 otherwise

(16)

As far as estimation is concerned, the latent response itself is a missing variable, and data

augmentation is used to impute the unobserved response per the factorization in Equation (15).

Finally, while we illustrate using a probit model to model the binary response, the factored

regression specification does allow the use of a logistic model for f(X). As of Blimp 3.0 (Keller

& Enders, 2021), a binary logistic model can be estimated using the Pólya-Gamma specification

(Asparouhov & Muthén, 2021; Polson, Scott, & Windle, 2013).

Mediated Latent Variable Model as Factored Regressions

In addition to specifying path models, the factored regression framework can incorporate

latent variables and other measurement models. To better explicate this idea, let us modify the

mediation model in Equation (14) to allow the mediator to be a latent endogenous variable, η.

yi = β0 + β1xi + β2ηi + β3xiηi + eiY

ηi = α0 + α1xi + eiη

(17)
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Besides the structural model above, we must also specify a measurement model for the latent

factored η. To illustrate, let us assume that η is identified with three items, M1 to M3. In line

with traditional factor analysis, we regress the latent factor onto the items.

mi1 = ν1 + λ1ηi + ri1

mi2 = ν2 + λ2ηi + ri2

mi3 = ν3 + λ3ηi + ri3

(18)

In Equation (18), we use a subscripted ν and λ to represent the mean structure and loading for

a particular item, respectively. Similarly, the double subscripted r is a normally distributed

residual or uniqueness for the particular observation and item combination. Figure 2 is the path

diagram for both the structural and measurement model, and we exclude the mean structure for

simplicity. As a reminder, we use a path pointing to another path as a representation of a

moderated effect (i.e., the interaction between the latent η and manifest X in Equation 17).

The interaction between a latent variable and a manifest variable is an essential feature of our

example. As discussed, a traditional linear SEM software assumes multivariate normality among

all variables; however, the interaction in our example does not follow this strict multivariate

normality and requires specialized methods to estimate (Klein & Moosbrugger, 2000).

To specify the model via factored regression, we explicitly express the joint distribution

of our three indicators (M1 to M3), exogenous predictor (X), and endogenous outcomes (η and

Y ). We then proceed to fully factor this complex joint distribution into a product of conditional

distributions.

f ( Y, M1, M2, M3, η, X ) = f
(
Y | M1, M2, M3, η, X

)
× f

(
M1 | M2, M3, η, X

)
×

f
(
M2 | M3, η, X

)
× f

(
M3 | η, X

)
×

f
(
η | X

)
× f ( X )

(19)

With the joint distribution fully factored in Equation (19), we then further reduced each

conditional model based on the structure we have imposed. More specifically, we can simplify

the three conditional distributions associated with the items based upon the imposed factor
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structure. In other words, our measurement model states that the items are conditionally

independent of all other variables given the latent factor. Similarly, the conditional distribution

of Y can be simplified as well. With these simplifications, the functional notation for our

factored distribution is as follows.

f ( Y, M1, M2, M3, η, X ) = f
(
Y | η, X

)
× f

(
M1 | η

)
× f

(
M2 | η

)
×

f
(
M3 | η

)
× f

(
η | X

)
× f ( X )

(20)

Notably, each conditional density on the right-hand side of Equation (20) corresponds to a path

in the diagram (Figure 2), and the final density, f ( X ) corresponds to an intercept only

regression equation for X. Like in traditional linear SEM, constraints are needed to estimate the

model, and Blimp, by default, will fix the first factor loading to one (λ1 = 1) and the intercept

for the factor model to zero (α0 = 0).

We can estimate the latent mediation model using a similar process to what we

previously described. One key difference is that we must obtain imputations for all observations

on the latent variable itself. Conceptually, we treat the latent variable no different than a

missing manifest variable; the only difference is that every observation is unobserved. Therefore,

to obtain imputations on the latent factor, we must sample from the conditional distribution of

η given all variables and parameters (denoted by ellipses below) for every observation.

f
(

η
(t)
i | . . .

)
∝ f

(
yi | ηi, xi, θy

)
× f

(
ηi | xi, θη

)
× f

(
mi1 | ηi, ϕ1

)
×

f
(
mi2 | ηi, ϕ2

)
× f

(
m3 | ηi, ϕ3

)
∝ N

(
β0 + β1xi + β2ηi + β3xiηi, σ2

eY

)
× N

(
α0 + α1xi, σ2

eη

)
×

N
(
ν1 + λ1ηi, σ2

r1

)
× N

(
ν2 + λ2ηi, σ2

r2

)
× N

(
ν3 + λ3ηi, σ2

r3

)
(21)

After sampling imputations on η from Equation (21), we condition on those (i.e., treating them

as known) at a given iteration and estimate the parameters of the measurement and structural

models if they were just linear regressions. Furthermore, the above expression illustrates the fact

that we are modeling the interaction relationship between X and η by directly accounting for

Equation (17) via the density f
(

yi | ηi, xi, θy

)
.
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Although not immediately apparent, the factored regression specification of the model

affords quite a range of flexibility for the relationship of the latent variable and Y . For example,

nothing particularly precludes η from maintaining only linear or interactive effects. Blimp can

easily accommodate other nonlinear relationships (e.g., quadratic, cubic, log-linear) that might

be of substantive utility. Finally, while we have imposed normal distributions on the items, the

generality of the functional notation allows us to model these regressions as categorical variables

easily. For example, the three-item equations in (18) could follow a probit or a logistic model,

and in the subsequent section, we illustrate estimating a mediation model with ordinal factor

items.

Fitting Factored Regressions with Blimp

In this section, we discuss fitting factored regressions to a substantive data example in

Blimp (version 3.0 Keller & Enders, 2021). Below, we review how to factor the models and

specify these factorizations with Blimp’s syntax. We include snippets of appropriate syntax and

output from running the models to help familiarize readers with estimating and interpreting the

results. In addition, we include the complete commented inputs, output, and data set in the

supplemental material. Overall, we will look at three analysis examples: (1) a single mediator

model, (2) a mediator model with a moderator model, and (3) a latent mediator with a

moderator model.

The three analysis examples use a data set that includes psychological correlates of pain

severity for a sample of N = 275 individuals suffering from chronic pain. The main variables for

the examples are a biological sex dummy code (0 = female, 1 = male), a binary severe pain

indicator (0 = no, minor, or moderate pain, 1 = severe pain), a multi-item depression

composite, and a multi-item scale measuring psychosocial disability (a construct capturing

pain’s impact on emotional behaviors such as psychological autonomy, communication, and

emotional stability), and we provide the variable definitions and missing data rates for these

variables in Table 1. The depression scale is the sum of seven 4-point rating scales, and the

disability composite is the sum of six 6-point questionnaire items. The first two examples use
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the continuous sum scores, and the third example uses the item responses as indicators of a

latent factor. The examples also include continuous measures of anxiety, stress, and perceived

control over pain as auxiliary variables.

Before fitting the models, we will discuss the syntax for reading data into Blimp. The

first ten lines of the Blimp script are below, which includes specifying four commands (denoted

as capitalized names followed by a colon).

# Read in and set up data
DATA: pain.dat; # Read Data in
VARIABLES: # List Variable Names

id txgrp male age edugroup workhrs
exercise pain severity anxiety stress
control depress interfere disability
dep1:dep7 interf1:interf6 disab1:disab6;

ORDINAL: severity male; # Specify ordinal data
MISSING: 999; # Missing data code

First, note that Blimp uses a ‘#’ for single-line comments. Second, a semicolon (;) terminates a

statement. The DATA command specifies the file path to the data set are reading in. This data

set can be tab, space, or comma-delimited. In the above example, we have the pain.dat file in

the same folder as the input script, so we do not need to specify the full file path. Next, the

VARIABLES command specifies the names and order of the variables in the data set. Blimp also

allows these names to appear in the first row of the data set, but then the VARIABLES

command must not be used. As a shortcut, Blimp allows specifying multiple variables using a

colon. For example, dep1:dep7 is replaced by ‘dep1 dep2 dep3 dep4 dep5 dep6 dep7.’ The

ORDINAL command above specifies that the variable severity and male are both ordinal and

that we want to model them via a probit specification.1 The MISSING command specifies the

1 Blimp will automatically use the data to determine the number of categories and fit the appropriate ordered

probit model.
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numerical value that represents a missing value in the data set.

Fitting a Single Mediator Model

First, we will estimate is a single mediator model that investigates if depression

(depress) mediates the effect between pain severity (severity) and the psychosocial disability

construct (disability) while controlling for biological sex (male). We provide the path

diagram for the model of interest in Figure 3 with the mean structure excluded. To construct

the factor regression, we first factor the joint distribution for disability and depress

conditional on severity and male.

f
(
disability | depress, severity, male

)
×

f
(
depress | severity, male

)
×

f
(
severity | male

)
As already discussed, the factorization maps directly onto the path diagram. For example,

Figure 3 has three paths pointing towards depress. These three paths match the same three

variables that appear right of the pipe (i.e., | ). Similarly, we have two paths pointing to

depress and the same two variables that appear right of the pipe above. These conditional

distributions correspond to the two regression equations we expect from a mediation analysis,

and we specify the models via the following Blimp syntax.

# Specify the single mediator model
MODEL:

# Single−Mediator model controlling for biological sex
disability ~ depress@bpath severity male;
depress ~ severity@apath male;

FIXED: male; # Specify no distribution for male
PARAMETERS: # Post compute the mediated effect

indirect = apath ∗ bpath;
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The MODEL command signifies that we would like to specify our factored models. We list the

first factorization, disability conditional on depress, severity, and male, on the first line.

A tilde (∼) replaces the pipe in the factorization to specify the appropriate regression model.

The @ syntax denotes that we want the regression slope between disability and depress to

be labeled as the bpath. The second line after the MODEL command specifies the second

factorization, depress conditional on severity, and male and has the apath label. Both of

these labeled paths are indicated in Figure 3. Note, we did not specify any regressions for male

or severity. By default, Blimp will specify a partially factored model for all predictors (i.e.,

who are never left of a tilde). Since male is complete, there is no need to include any

distributional assumptions about it, and we can indicate this using the FIXED command. Thus,

Blimp will by default will estimate the regression of severity on male for us. Alternatively, we

could explicitly specify this model by including ‘severity ∼ male’ in the MODEL command.

Finally, the PARAMETERS command allows us to specify quantities of interest. As we will

see below, one of the advantages of using simulation methods to estimate the models is that we

can easily take the sampled values and create quantities of interest. These quantities will have

all the same summarizes as any other parameter (e.g., point estimate, uncertainty, and interval

estimates). In this example, we are calculating the mediated effect, saved as the parameter

called indirect, by multiplying the apath times the bpath.

In addition to the model syntax, we must specify various settings for the Markov chain

Monte Carlo (MCMC) sampler that estimates the model. Below are the four main commands

that need to be specified.

# Specify the MCMC sampler parameters
SEED: 398721; # Set a prng seed
BURN: 1000; # Set number of burn iterations
ITERATIONS: 10000; # Set number of post−burn iterations
CHAINS: 4; # Specify number independent of chains
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First, the SEED command is an arbitrary positive integer used to replicate the results of the

pseudo-random number generator. While many programs will have a default value if not

specified, Blimp purposely requires one to be specified to ensure replicability. Second, the BURN

command specifies the number of warm-up iterations the MCMC sampler runs. These iterations

will be discarded and not summarized for the parameter summaries. We use the burn-in

iterations to ensure convergence, that is, properly sampling from the posterior distributions for

the parameters and imputations. We will discuss this more when we look at the output below.

Thirdly, the ITERATIONS command requests the total number of post-burn iterations we want

to be drawn and summarized as part of the MCMC estimation procedure. Fourthly, the CHAINS

command specifies how many independent MCMC processes we want to run. In our example,

we are requesting four to be run simultaneously with random starting values. Each chain will be

run on a separate processor, allowing us better to utilize the computational power of a modern

computer.

Adding Auxiliary Variables to the Model

To supplement the analysis model of interest (Figure 3), we include additional auxiliary

variables that will improve estimation with missing data. By adding these additional variables, we

hope to better satisfy the missing data assumption about the incomplete observations (Collins,

Schafer, & Kam, 2001). Therefore, we also include three continuous measures as auxiliary

variables: anxiety (anxiety), stress (stress), and perceived control over pain (control).

To include anxiety, stress, and control into the model as auxiliary variables, we

must not substantively change the meaning of the analysis model. We accomplish this by

modeling the joint distribution of the auxiliary variables conditional on the predictors and

outcomes. Just as we factored the analysis model, we take the joint distribution of the auxiliary

variables conditional on the four variables from the analysis (two predictors and two outcomes)
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and factorize it into the following three conditional distributions.

f
(
anxiety | stress, control, disability, depress, severity, male

)
×

f
(
stress | control, disability, depress, severity, male

)
×

f
(
control | disability, depress, severity, male

)
Notably, we include the above factorization is in addition to the factorization that we have

already specified for the analysis model. To specify this in Blimp, we replace the previous MODEL

command with the following one that includes the factored auxiliary variables.

# Specify the single mediator model
MODEL:

# Single−Mediator model controlling for biological sex
disability ~ depress@bpath severity male;
depress ~ severity@apath male;

# Model for the Auxiliary Variables
anxiety ~ stress control disability depress severity male;
stress ~ control disability depress severity male;
control ~ disability depress severity male;

The first two regressions in the syntax are the analysis model that we previously specified. The

last three regressions are the three auxiliary models that we will use to better satisfy the missing

data assumptions.

By including the auxiliary variables as outcomes regressed on the other variables in our

model (i.e., disability, depress, and severity), we explicitly include the conditional

distributions into the factorization without changing the meaning of our original analysis

model’s densities. In other words, when we draw imputations on the missing variables, these

factored regression densities will be a part of the sampling step. To illustrate, the distribution of
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depress conditional on all other variables is proportional to the product of five densities.

f
(
disability | depress, severity, male

)
× f

(
depress | severity, male

)
×

f
(
anxiety | stress, control, disability, depress, severity, male

)
×

f
(
stress | control, disability, depress, severity, male

)
×

f
(
control | disability, depress, severity, male

)
Because specifying the auxiliary variable factorization can become tedious as we add more

variables, Blimp offers syntax to quickly specify the command in one line.

# Specify auxiliary variable model with one line
anxiety stress control ~ disability depress severity male;

The above syntax will produce the same exact auxiliary variable models above. In general, we

can quickly specify these models by including every auxiliary variable to the left of the tilde and

other variables to the right of the tilde.

Output from Single Mediator Model

For the first example, we will give a more broad overview of Blimp’s output, and in the

later examples, we will only highlight the essential features that each example introduces.2 Once

finished, Blimp’s output opens up with a header giving the software versioning and other

information. This header is followed by algorithmic options discussing various aspects of the

model, like specified default priors and starting values, and we recommend the interested

readers consult the documentation (Keller & Enders, 2021) for a discussion of those. The next

output section is a table that provides the potential scale reduction factor (PSR or R̂; Gelman

& Rubin, 1992; Gelman et al., 2013) for the burn-in iterations. The PSR factor represents a

ratio of two estimates of the simulation’s posterior variability. As the MCMC algorithm

2 The full output is provided in the supplemental material.
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converges to a stationary distribution (i.e., the distribution we are trying to sample from), the

two estimates are expected to be equal, resulting in a R̂ = 1.0.

BURN-IN POTENTIAL SCALE REDUCTION (PSR) OUTPUT:

NOTE: Split chain PSR is being used. This splits each chain's
iterations to create twice as many chains.

Comparing iterations across 4 chains Highest PSR Parameter #
26 to 50 1.214 50
51 to 100 1.133 63
76 to 150 1.078 29

101 to 200 1.039 63
126 to 250 1.030 39
151 to 300 1.027 39
176 to 350 1.017 62
201 to 400 1.030 62
226 to 450 1.025 62
251 to 500 1.021 62
276 to 550 1.029 62
301 to 600 1.022 62
326 to 650 1.018 62
351 to 700 1.015 62
376 to 750 1.015 62
401 to 800 1.013 62
426 to 850 1.011 40
451 to 900 1.011 43
476 to 950 1.012 62
501 to 1000 1.008 52

Blimp calculates the PSR at twenty equally spaced intervals, where we discard the first half of

the iterations and use the latter half. Blimp only prints out the highest PSR and the associated

parameter number that produced this PSR. A parameter number is given to all estimated, fixed,

or generated parameters in the output and, using the command OPTIONS: labels will also

print out a table displaying the numbers. As a general rule of thumb, we expect the MCMC

sampler to converge once all PSR statistics are below approximately 1.05 to 1.10 (Gelman et

al., 2013), and the table indicates that the algorithm quickly achieved this within the 1000

burn-in iterations requested.

The next section of the output is more diagnostic information about how well Blimp’s

Metropolis sampler performed. As discussed earlier, Blimp uses a Metropolis step within the

Gibbs sampler when drawing imputations from the factored distributions. These Metropolis

steps require tuning parameters to be controlled so that the imputations are accepted
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approximately 50% of the time.

METROPOLIS-HASTINGS ACCEPTANCE RATES:

Chain 1:

Variable Type Probability Target Value
depress imputation 0.484 0.500
disability imputation 0.503 0.500
severity imputation 0.478 0.500

NOTE: Suppressing printing of 3 chains.
Use keyword 'tuneinfo' in options to override.

Blimp monitors this throughout the process and always prints out one chain’s results by default.

If the algorithm fails to tune correctly, an error will be displayed, alerting that more iterations

are needed. The above output illustrates that the probability of the sampler accepting

imputations for the three missing variables requiring a Metropolis step was approximately 50%.

Following both output sections of diagnostic information, Blimp prints out the sample

size and missing data rates of all variables within the model.

DATA INFORMATION:

Sample Size: 275
Missing Data Rates:

anxiety = 05.45
control = 00.00
depress = 13.45

disability = 09.09
stress = 00.00

severity = 07.27

In general, this information allows us to double-check that Blimp read the data set correctly,

and the output above matches the description of the data in Table 1.

The next output section provides information about the statistical models that we

specified. First, Blimp gives the number of parameters across all models. Blimp breaks this into

three sections: estimated parameters in the specified models (referred to as an ‘Outcome Model’
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in Blimp), generated quantities we specified in the PARAMETERS command, and parameters that

are used in the unspecified default models (referred to as a ‘Predictor Model’ in Blimp).

MODEL INFORMATION:

NUMBER OF PARAMETERS
Outcome Models: 30
Generated Parameters: 1
Predictor Models: 2

PREDICTORS
Fixed variables: male
Incomplete ordinal: severity

The above output indicates that in total, we have thirty estimated parameters in all specified

models and two estimated parameters in the unspecified model for severity. The PREDICTORS

section indicates that we have fixed male (i.e., made no distributional assumptions about the

complete predictor) and estimated an ordinal probit model for the binary severity variable.

The subsequent output then lists all five models that we specified in the syntax and the one

generated parameter, indirect.

MODELS
[1] anxiety ~ Intercept stress control disability depress severity male
[2] control ~ Intercept disability depress severity male
[3] depress ~ Intercept severity@apath male
[4] disability ~ Intercept depress@bpath severity male
[5] stress ~ Intercept control disability depress severity male

GENERATED PARAMETERS
[1] indirect = apath∗bpath

By default, Blimp estimates an intercept for all manifest variables, indicated by the special

variable name Intercept. This section serves as an overview of the regression equations and

reflects the printing order of the models. We can see the three auxiliary models (i.e., regressions

for anxiety, control, and stress) and two analysis models with the labeled paths. Finally,

there is also a section showing how the generated parameter were computed—i.e., the

indirect parameter was computed by multiplying the apath and bpath parameters.
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Following the model information, the next section provides the posterior summaries for

all specified models.

OUTCOME MODEL ESTIMATES:

Summaries based on 10000 iterations using 4 chains.

To reiterate, Blimp defines an ‘Outcome Model’ as any specified relationship in the syntax,

including the auxiliary variable models we specified. After the header, Blimp prints the model’s

output in the order listed in the Model Information section. For our discussion, we focus on the

disability model’s output.

Outcome Variable: disability

Parameters Median StdDev 2.5% 97.5% PSR N_Eff
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Variances:
Residual Var. 17.351 1.607 14.617 20.916 1.001 5265.760

Coefficients:
Intercept 17.621 0.719 16.208 19.054 1.002 4675.575
depress 0.273 0.045 0.184 0.360 1.001 4744.170
severity 1.755 0.623 0.529 2.964 1.002 4849.155
male −0.769 0.562 −1.880 0.300 1.001 5861.087

Standardized Coefficients:
depress 0.367 0.055 0.253 0.469 1.002 4362.642
severity 0.176 0.061 0.053 0.292 1.002 4869.250
male −0.081 0.058 −0.195 0.032 1.001 5856.914

Proportion Variance Explained
by Coefficients 0.201 0.043 0.119 0.288 1.001 5209.539
by Residual Variation 0.799 0.043 0.712 0.881 1.001 5209.539

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

By default, Blimp provides the posterior median, standard deviation, 95% intervals, PSR, and

effective sample size (N_EFF). For those unfamiliar with results from a Bayesian analysis,

heuristically, we can think of the posterior median and standard deviation as analogous to the

point estimate and standard error. Similarly, the 95% posterior interval is comparable to a

confidence interval. The PSR is the same PSR we discussed earlier but now computed on all



FACTORED REGRESSION MODELS WITH BLIMP 27

post-burn-in summaries. The effective sample size is a crude approximation of the “effective

number of independent simulation draws” (Gelman et al., 2013, p. 286) for each parameter.

Typically speaking, these will be lower than the actual number of samples because of

autocorrelation in the MCMC simulation procedure, and it is recommend that more iterations

are needed if the effective sample size is less than ten per chain (e.g., less than 40 in our

example; Gelman et al., 2013, p. 287). The model’s output is sectioned into four main

categories. The first two sections are the variance parameters and regression coefficients from

the model. The next section is the standardized solutions for the regression coefficients. The

final section provides the variance explained by the regression coefficients (i.e., R2) and the

residual variance. For example, our regression coefficients explained about 20% of the variance,

and we are 95% confident the value lies between 0.12 and 0.29.

In addition to a summary table for each model’s output, Blimp provides a similar table

for the generated indirect quantity.

GENERATED PARAMETERS:

Summaries based on 10000 iterations using 4 chains.

Parameters Median StdDev 2.5% 97.5% PSR N_Eff
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

indirect 0.931 0.292 0.433 1.562 1.001 5493.474

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Just like the proportion of variance explained metrics, this quantity is computed based upon the

parameters themselves. Therefore, we obtain posterior summaries, including a 95% posterior

interval. The output above illustrates that our indirect effect for the regression of pain severity

on disability (i.e., severity → depress → disability) ranges from 0.43 to 1.56 with 95%

confidence. The final section of the output is the ancillary model for severity regressed on

male. This output also prints out the same posterior summaries but is not of substantive

interest. Rather, the model serves to produce imputations for the incomplete predictor,
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severity.

Single Mediator Model with a Moderator

To continue with our single mediator example, suppose we are interested in investigating

if biological sex (male) moderates the A and B paths of the mediation model. The path

diagram in Figure 4 adds these two additional paths (labeled amod and bmod in the diagram)

with the arrows pointing to the labeled A and B paths. Estimating this model in Blimp is a

straightforward extension from the previous example. Notably, the factorization that we

discussed in the previous example remains unchanged. What does change is the form of the two

substantive models; that is, the models now include the products between male and severity

or depress. Below we provide the syntax to extend the mediation model to include the

moderated A and B paths.

# Specify the mediation with moderated paths
MODEL:

# Single−Mediator model with male moderating a and b paths
disability ~ depress@bpath severity male depress∗male@bmod;
depress ~ severity@apath male severity∗male@amod;

# Specify auxiliary variable model with one line
anxiety stress control ~ disability depress severity male;

FIXED: male; # Specify no distribution for male
PARAMETERS: # Post compute the mediated effect

indirect.female = (apath + (amod ∗ 0)) ∗ (bpath + (bmod ∗ 0));
indirect.male = (apath + (amod ∗ 1)) ∗ (bpath + (bmod ∗ 1));
indirect.diff = indirect.female − indirect.male;

The above code builds on the previous script. First, we have included the male by depress

interaction into the regression and labeled the parameter bmod. Similarly, we have included the

male by severity interaction and labeled the parameter amod. Importantly, with these two

products added to our regression models, the missing observations in both depress and
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severity will now be imputed by taking into account the hypothesized nonlinear relationship.

Said differently, the likelihoods in the factorizations will directly include the interaction when

drawing imputations for missing observations. We have opted to label each moderated path to

compute the indirect effects for both males and females. Just like the previous example, we use

the PARAMETERS command to post compute the quantities after the sampler estimates the

model. The first two lines of the PARAMETERS command computes the indirect effect for

females and males, respectively. The third line illustrates that in Blimp, we can use these

computed values to calculate the difference in indirect effects between the two groups.

In addition to manually computing the mediated effect for both males and females,

Blimp can also produce the conditional regression equations (sometimes referred to as simple

effects) for both interactions via the following syntax.

# Specify Simple command to obtain
# conditional regressions
SIMPLE:

severity | male;
depress | male;

CENTER: severity depress; # Center variables

The SIMPLE command (shown above) can be added on to the script to compute the conditional

effect of severity or depress given male equals zero (i.e., females) and one (i.e., males). The

variable to the left of the vertical bar is the focal variable, and to the right is the moderator. In

our example, because we have specified male as ordinal, Blimp will produce the conditional

intercept and slope for each value of the variable. Finally, in line with a typical interaction

analysis, we have centered both severity and depress using the CENTER command. Note, by

using the CENTER command, Blimp uses the Bayesian estimated mean to center for both

variables. This approach allows us to fully capture the mean estimates’ uncertainty and is

especially important when the variables are incomplete.
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Single Mediator Model with a Moderator Output

Upon running the script, much of the output will be similar to the previously discussed

output. This section highlights some of the main differences, and we provide the entire output

in the supplemental material. From the model information, the output now displays that we

have centered both severity and depress when being used as a predictor.

CENTERED PREDICTORS
Grand Mean Centered: severity depress

MODELS
[1] anxiety ~ Intercept stress control disability depress severity male
[2] control ~ Intercept disability depress severity male
[3] depress ~ Intercept severity@apath male severity∗male@amod
[4] disability ~ Intercept depress@bpath severity male depress∗male@bmod
[5] stress ~ Intercept control disability depress severity male

GENERATED PARAMETERS
[1] indirect.female = (apath+(amod∗0))∗(bpath+(bmod∗0))
[2] indirect.male = (apath+(amod∗1))∗(bpath+(bmod∗1))
[3] indirect.diff = indirect.female−indirect.male

Note, the centering only occurs when one of the variables is a regressor in a model, and Blimp

uses the model parameter for the variable’s mean. In addition to centering, we have the new

parameter labels from our analysis models and the generated parameters for the mediated effect

for males, females, and the difference between the two groups.

Turning to the output for the disability model again, we present a truncated output

table with the standardized coefficients section removed (i.e., where the vertical ellipsis are).
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Outcome Variable: disability

Grand Mean Centered: depress severity

Parameters Median StdDev 2.5% 97.5% PSR N_Eff
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Variances:
Residual Var. 16.915 1.565 14.195 20.341 1.001 4952.592

Coefficients:
Intercept 22.263 0.383 21.517 23.019 1.001 2793.467
depress 0.379 0.062 0.260 0.500 1.000 4399.025
severity 1.896 0.620 0.665 3.092 1.001 5262.716
male −0.809 0.564 −1.933 0.292 1.000 4874.983
depress∗male −0.227 0.088 −0.402 −0.054 1.001 4432.447

...

Proportion Variance Explained
by Coefficients 0.227 0.045 0.142 0.315 1.000 5156.343
by Residual Variation 0.773 0.045 0.685 0.858 1.000 5156.343

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

As discussed, we can see that both depress and severity are centered at their overall means

for this model; thus, substantively speaking, the interpretation of the intercept is an adjusted

mean for the female’s group. In addition, we now have the depress by male interaction, which

resulted in an approximately incremental 2% gain in variance explained when compared to the

previous model.

Following the disability model, Blimp prints an additional table that provides the

conditional effects that we requested with the SIMPLE command.
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Conditional Effects Median StdDev 2.5% 97.5% PSR N_Eff
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

severity | male @ 0
Intercept 22.263 0.383 21.517 23.019 1.001 2793.467
Slope 1.896 0.620 0.665 3.092 1.001 5262.716

severity | male @ 1
Intercept 21.464 0.430 20.611 22.295 1.000 6024.706
Slope 1.896 0.620 0.665 3.092 1.001 5262.716

depress | male @ 0
Intercept 22.263 0.383 21.517 23.019 1.001 2793.467
Slope 0.379 0.062 0.260 0.500 1.000 4399.025

depress | male @ 1
Intercept 21.464 0.430 20.611 22.295 1.000 6024.706
Slope 0.152 0.065 0.023 0.280 1.001 4900.422

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

NOTE: Intercepts are computed by setting all predictors
not involved in the conditional effect to zero.

The table consists of two sets of conditional regression equations. The conditional equations for

disability predicted by severity only differ in the intercept because there is no male by

severity interaction in this regression. The second set of equations, disability predicted by

depress, are the intercepts and slopes holding all other predictors constant at zero (i.e., their

means). As with all the generated quantities, the conditional slopes also include 95% posterior

intervals that give us a sense of the uncertainty around the parameter. Comparing the female

and male slopes, we can see that the interval does not include the other posterior median,

which would suggest the slope differences are meaningful and most likely not due to sampling

variability.

Finally, the requested generated parameters provide us the indirect effects for females,

males, and the difference between the two effects.
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GENERATED PARAMETERS:

Summaries based on 10000 iterations using 2 chains.

Parameters Median StdDev 2.5% 97.5% PSR N_Eff
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

indirect.female 0.910 0.495 0.025 1.981 1.001 5534.145
indirect.male 0.651 0.361 0.089 1.484 1.000 4735.708
indirect.diff 0.241 0.608 −0.943 1.454 1.001 4783.941

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

These effects include all the same summaries as before, providing point estimates for each

indirect effect and 95% posterior intervals. For example, the output above illustrates that the

indirect effect for both males and female are most likely not zero; however, the difference

between the two groups is still quite uncertain with the wide posterior interval ranging from

−0.93 to 1.42.

Adding Latent Variables to the Mediation Model

As discussed, factored regression can incorporate measurement models as well. To

illustrate the syntax in Blimp, let us look at specifying latent variables for the two multi-item

scales: depress and disability. Figure 5 is the path diagram for this model, where the latent

factor for depression is normally distributed with seven items as indicators (dep1 to dep7;

represented by a set of ellipses in the path diagram), and the latent factor for disability is

normally distributed with six items as indicators (disab1 to disab6). As with our previous path

diagrams, we have excluded the mean structure from the diagram. In addition, we have fixed

the first item for both factors to one for identification.

The structural model’s factorization is similar to that of the single mediator model. The

main difference is we are now replacing depress and disability with their latent variables,

ηdep and ηdisab. In addition to the structural model, we now must also factor out the

measurement model. Multiplying that factorization to the structural model gives us the full
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functional notation.

f
(

ηdisab | ηdep, severity, male
)

× f
(

ηdep | severity, male
)

×

f
(
disab1 | ηdisab

)
× f

(
disab2 | ηdisab

)
. . . × f

(
disab6 | ηdisab

)
×

f
(

dep1 | ηdep
)

× f
(

dep2 | ηdep
)

. . . × f
(

dep7 | ηdep
)

The first line of the factorization above is the structural model, where we are evaluating the

mediated effect: severity → ηdep → ηdisab. The second and third lines are the measurement

models for the disability and depression factors. Although we have used ellipses instead of

writing out the full factored measurement model, all the item models follow the same form.

These densities are obtained using the logic we discussed for equations (19) and (20).

Alternatively, we can directly look at the path diagram and deduce that the items are

conditionally independent given the latent variables. Finally, because each item is an ordinal

variable, we include them in Blimp’s ORDINAL command; therefore, in line with traditional

ordinal factor analysis, their regression models will follow an ordered probit specification.

Using the factorization that we discussed above, we can specify our model via the

following Blimp model syntax.
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# Declare latent variables
LATENT: eta_dep eta_disab;

# Single−Mediator model with male moderating a and b paths
MODEL:

# Structural Models
eta_disab ~ eta_dep@bpath severity male eta_dep∗male@bmod;
eta_dep ~ severity@apath male severity∗male@amod;

# Measurement Models
dep1 ~ eta_dep@1; dep2 ~ eta_dep; dep3 ~ eta_dep;
dep4 ~ eta_dep; dep5 ~ eta_dep; dep6 ~ eta_dep;
dep7 ~ eta_dep;

disab1 ~ eta_disab@1; disab2 ~ eta_disab; disab3 ~ eta_disab;
disab4 ~ eta_disab; disab5 ~ eta_disab; disab6 ~ eta_disab;

The LATENT command specifies two new latent variables to add to our data set, eta_dep and

eta_disab. By declaring these variables, Blimp will allow us to use them in the MODEL

command. As discussed previously, these variables have every observation missing, and each

iteration, Blimp will produce imputations via data augmentation according to the model we

specified. Mapping onto how we generally conceptualize SEM, we have broken the model syntax

down into the structural and measurement parts. The structural part maps onto the same form

we specified earlier for the single mediator model. The only difference is replacing the manifest

scale scores with their respective latent variables, eta_dep and eta_disab. By default, Blimp

excludes the intercept for any latent variable; thus, fixing it to zero for identification. Turning to

the measurement model, we specify the regression equations for the two latent variables. In line

with standard SEM conventions, we fix the first loading to one (i.e., disab1 and dep1) by

using the @ symbol followed by a one. While this syntax matches both the factorization and how

Blimp conceptualizes the model, the syntax also allows specifying measurement models

concisely using a right-pointing arrow (->).
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# Compact syntax to specify measurement models.
eta_dep −> dep1:dep7;
eta_disab −> disab1:disab6;

The above syntax has two essential features. First, as already mentioned, we use a colon (:)

between the names to list all variables names between dep1 to dep7 and disab1 to disab6.

Second, when using right pointing arrow (->) to predict variables using a factor, by default,

Blimp will fix the first variable’s loading to one. Also, note that using this syntax still requires

the latent variable to be specified via the LATENT command.

Although not shown in Figure 5, we have also included anxiety, stress, and control

as auxiliary variables. In line with the previous example, we predict every auxiliary variable as a

function of all the other manifest variables in our model. As discussed, this will allow for the

imputations on the missing analysis variables to account for the relationship to the auxiliary

variables.

MODEL:
# Specify auxiliary variable model with one line
anxiety stress control ~ disab1:disab6 dep1:dep7 severity male;

FIXED: male; # Specify no distribution for male
PARAMETERS: # Post compute the mediated effect

indirect.female = (apath + (amod ∗ 0)) ∗ (bpath + (bmod ∗ 0));
indirect.male = (apath + (amod ∗ 1)) ∗ (bpath + (bmod ∗ 1));
indirect.diff = indirect.female − indirect.male;

SIMPLE: # Specify conditional regressions
severity | male;
eta_dep | male;

CENTER: severity; # Center variables

In addition to specifying the models for the auxiliary variables, we specify that male is fixed

with no distribution and post compute the mediated effect for both groups and the difference
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between the two effects. Finally, we center severity and request for the conditional regression

effects for our two focal predictors given the moderator, male.

Latent Single Mediator Model with a Moderator Output

As with the previous example, we highlight some of the main differences in the output

and supply the entire output in the supplemental material. The first difference is the number of

iterations required for convergence. By including the two latent variables and their ordinal items,

the model parameters have gone from a little over thirty to over one hundred free parameters.

Therefore, we requested a burn-in of thirty thousand and sampled fifty thousand iterations

across four independent chains.3

Comparing iterations across 4 chains Highest PSR Parameter #
751 to 1500 1.673 205

1501 to 3000 1.495 168
2251 to 4500 1.214 206
3001 to 6000 1.164 101

...

12001 to 24000 1.042 212
12751 to 25500 1.053 174
13501 to 27000 1.029 174
14251 to 28500 1.028 139
15001 to 30000 1.024 174

As we can see from the PSR output, our previous burn-in period of one thousand is insufficient

to reduce the PSR to acceptable ranges. Increasing the burn-in to thirty thousand adequately

reduces the maximum PSR value down well below the 1.05 value suggested by the literature.

Therefore, we have reason to believe that the sampler has converged.

Turning to the model printout, we went from five to eighteen conditional models, adding

the seven depression and six disability items.

3 On a 2019 MacBook Pro with a 2.8 GHz Quad-Core processor, this took a little over one minute to run.
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MODELS
[1] eta_dep ~ severity@apath male severity∗male@amod
[2] eta_disab ~ eta_dep@bpath severity male eta_dep∗male@bmod
[3] anxiety ~ Intercept stress control disab1 disab2 disab3 disab4 disab5

disab6 dep1 dep2 dep3 dep4 dep5 dep6 dep7 severity
male

[4] control ~ Intercept disab1 disab2 disab3 disab4 disab5 disab6 dep1
dep2 dep3 dep4 dep5 dep6 dep7 severity male

[5] dep1 ~ Intercept eta_dep@1
[6] dep2 ~ Intercept eta_dep

...

[12] disab1 ~ Intercept eta_disab@1
[13] disab2 ~ Intercept eta_disab

...

[18] stress ~ Intercept control disab1 disab2 disab3 disab4 disab5 disab6
dep1 dep2 dep3 dep4 dep5 dep6 dep7 severity
male

Blimp will list all latent variables first, followed by the manifest variables in alphabetical order.

Notably, we see that Blimp conceptualizes an item’s model as the regression of the item onto

the latent factor. For example, below is the output for the dep2 regression model.

Outcome Variable: dep2

Parameters Median StdDev 2.5% 97.5% PSR N_Eff
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Variances:
Residual Var. 1.000 0.000 1.000 1.000 nan nan

Coefficients:
Intercept 1.391 0.149 1.114 1.700 1.006 366.092
eta_dep 0.747 0.096 0.576 0.954 1.014 308.288

Thresholds:
Tau 1 0.000 0.000 0.000 0.000 nan nan
Tau 2 1.426 0.135 1.178 1.710 1.001 1220.169
Tau 3 2.455 0.168 2.139 2.810 1.003 1079.256

Standardized Coefficients:
eta_dep 0.749 0.031 0.681 0.803 1.001 1559.866

Proportion Variance Explained
by Coefficients 0.560 0.046 0.464 0.645 1.001 1543.997
by Residual Variation 0.440 0.046 0.355 0.536 1.001 1543.997

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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First, the output has an additional section for the estimated threshold parameters in the ordered

probit model. These thresholds break up a normally distributed latent propensity into the

observed categories. The loading, 0.747, is the regression slope for the imputed values of

eta_dep, and the standardized coefficient is analogous to the standardized solution in any

confirmatory factor analysis. In addition, because there is only one predictor, the proportion of

variance explained by the coefficients is equivalent to the estimate of dep2’s reliability under a

factor analytic approach. As with other values, Blimp provides the posterior interval for this

measure, characterizing the precision in the reliability coefficient.

Moving to the latent disability factor, we provide the output with the standardized

coefficients output truncated.

Latent Variable: eta_disab

Grand Mean Centered: severity

Parameters Median StdDev 2.5% 97.5% PSR N_Eff
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Variances:
Residual Var. 0.346 0.110 0.180 0.608 1.010 184.999

Coefficients:
eta_dep 0.282 0.064 0.175 0.425 1.014 232.085
severity 0.310 0.115 0.102 0.554 1.001 1336.548
male −0.104 0.099 −0.307 0.085 1.002 1241.329
eta_dep∗male −0.177 0.071 −0.331 −0.052 1.006 858.387

...

Proportion Variance Explained
by Coefficients 0.315 0.058 0.202 0.430 1.001 3887.145
by Residual Variation 0.685 0.058 0.570 0.798 1.001 3887.145

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

This output illustrates how conceptually nothing has changed compared to using a manifest

scale score. The output is no different from any other regression model in Blimp, with estimates

of the residual variance, regression coefficients, standardized coefficients (not shown), and the

proportion of variance explained. Similarly, the output includes the latent eta_dep by manifest

male interaction, and the imputations on eta_dep are drawn in accordance to the nonlinearity.
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When comparing the above results to the previous example, the scaling of the regression slopes

has changed because of the latent variable. Despite this, we can see that we are explaining about

10% more variance with the latent variable (0.31 versus 0.21 with manifest scale score), and

this is one of the advantages of incorporating a model to account for the measurement error.

Although we have not presented it, Blimp also produces the conditional regression

coefficients and the generated parameters for the latent mediation model. Intrinsically, Blimp

does not treat a latent variable differently from a manifest variable. The imputations for either

variable are drawn following the factorization discussed throughout the paper and can be saved

into multiply imputed data sets.

Conclusions

The factored regression framework provides a flexible way to think about complex

multivariate modeling problems that arise with missing data. By conceptualizing the problem in

terms of the generic functional notation, we can easily focus on specifying the form of each

conditional model. In turn, this opens up a wide range of diverse models that are estimable with

incomplete data. For example, nothing precludes the factored regression approach from

extending to multilevel models. The functional notation itself remains the same. The difference

is that the model that represents each function is that of a multilevel model. The free software

package we presented, Blimp, can accommodate such multilevel regression models, including

the specification of latent variables at all levels. Furthermore, Blimp can accommodate more

than just the interaction examples we presented. Blimp will handle any mathematical

specification with a wide range of standard math functions at a user’s disposal.

In summary, this article serves as an introduction to the factor regression framework,

and we illustrate how to specify the models in Blimp. While we have focused specifically on

mediation models, a wide array of examples and syntax are supplied in the Blimp user guide

(Keller & Enders, 2021).
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Table 1

Chronic Pain Data Variable Definitions for Variables of Interest

Name Definition Missing % Range

male Biological Sex Dummy Code 0.0 0 or 1

severity Severe pain dummy code 7.3 0 or 1

depress Depression composite score 13.5 7 to 28

disability Psychosocial disability composite 9.1 10 to 34

dep1 Couldn’t experience any positive feelings at all 4.7 1 to 4

dep2 Difficult to work up the initiative to do things 2.2 1 to 4

dep3 I felt that I had nothing to look forward to 1.8 1 to 4

dep4 I felt down-hearted and blue 1.5 1 to 4

dep5 Unable to become enthusiastic about anything 2.2 1 to 4

dep6 I felt I wasn’t worth much as a person 4.0 1 to 4

dep7 I felt that life was meaningless 2.9 1 to 4

disab1 I isolate myself as much as I can from the family 3.3 1 to 6

disab2 I am doing fewer social activities 4.7 1 to 6

disab3 I sometimes behave as if I were confused 3.6 1 to 6

disab4 I laugh or cry suddenly 3.6 1 to 6

disab5 I act irritable and impatient with myself 4.7 1 to 6

disab6 I do not speak clearly when I am under stress 3.6 1 to 6
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Figure 1

Path diagram for the single mediator interaction model.
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Figure 2

Path diagram for the single mediator interaction model with latent mediator.
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Figure 3

Path diagram for the single mediator model example.
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Figure 4

Path diagram for the single mediator with moderation example.
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Figure 5

Path diagram for the latent mediation model with moderation example.
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