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new educational technologies that utilize students’ interac-
tion data and visualizations provide a means to expand our 
understanding of learning processes. in this study, we ap-
ply two advanced and novel data visualization techniques, 
called the Indivisualizer and a Sankey diagram, to explore 
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how middle school students (N = 343) solved problems in a 
game-based dynamic algebraic notation tool. Specifically, 
this study 1) illustrates the application of a set of data visual-
ization techniques using clickstream data collected from the 
tool and explores the detailed step by step information about 
students’ algebraic problem-solving processes that these visu-
alizations provide, and 2) examines the associations between 
the productivity of initial solution strategies, prior knowl-
edge, and efficiency of problem-solving. the results indicate 
a large variation in the types of strategies that students use 
to solve the problems, with some approaches being more ef-
ficient than others. moreover, the productivity of initial solu-
tion strategies and prior knowledge significantly predict the 
efficiency scores in the game, indicating that noticing the 
structure of the equations plays a significant role in problem-
solving. the findings suggest that these visualizations can be 
used both in research and practice to reveal and unpack our 
understanding of variability in mathematical problem-solving 
strategies and cognition.
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INTroDucTIoN

teachers’ knowledge of their students’ learning progress and problem-
solving processes is one of the important factors contributing to classroom 
practices, and ultimately, what students learn in mathematics (Asquith et al., 
2007). However, teachers often have difficulties monitoring students’ learn-
ing progress and identifying their learning patterns or misconceptions (As-
quith et al., 2007; Sadler et al., 2013). in response to these issues, advances 
in educational technologies and data analytics have brought opportunities 
to explore and analyze students’ learning progress and processes at a more 
fine-grained level (Bienkowski et al., 2012). in particular, data visualiza-
tions (also called visual data analytics), which is a method of discovering 
and understanding users’ patterns in large datasets through visual represen-
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tation, have enabled teachers and researchers to identify complex data on 
student learning in an easier and faster way (caprotti, 2017; ganley & Hart, 
2017; vieira et al., 2018).

However, despite extensive interest in data visualizations in educational 
research, little work has employed advanced data visualization techniques 
on students’ mathematical learning processes (Papamitsiou & Economides, 
2014; vieira et al., 2018). moreover, few studies have made strong connec-
tions between findings of data visualizations with other types of data, such 
as students’ performance, and further, learning theories. Part of this gap is a 
result of a lack of educational technologies that record moment-by-moment 
mathematical derivations or afford opportunities to explore students’ math-
ematical ideas. 

over the past several years, weitnauer, Landy, and ottmar (2016) have  
designed and developed a new dynamic algebraic notation tool, graspable 
math (gm, https://graspablemath.com), which helps students develop their 
conceptual and procedural learning in algebra (chan et al., 2022; Hulse et 
al., 2019; ottmar et al., 2015). the tool allows students to dynamically ma-
nipulate and transform numbers, symbols, and mathematical expressions us-
ing various touch or mouse-based gesture-actions. using the data collected 
in gm, students’ problem-solving processes can be represented as a series 
of time-based steps that form the mathematical derivation as they transform 
mathematical expressions and equations. thus, in the present study, we 
present visualizations of students’ algebraic problem-solving processes and 
solution strategies in gm using two advanced and novel data visualization 
techniques, called a Sankey diagram and Indivisualizer, and investigate how 
we can use these visualizations to provide meaningful and comprehensive 
information to researchers and teachers. Specifically, the aims of this study 
are to 1) examine variation in individual students’ algebraic problem-solv-
ing processes using data visualization, 2) demonstrate the entire students’ 
overall algebraic problem-solving processes through data visualization, and 
3) visualize students’ productivity of initial solution strategies and examine 
whether the productivity of initial solution strategies influences the efficien-
cy of algebraic problem-solving. 
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LITerATure reVIew

Students’ algebraic problem-solving and efficiency of strategies

understanding and evaluating multiple solution strategies (here, a so-
lution strategy refers to a way to solve the problem), then selecting an ef-
ficient one are core competencies in algebra (Lynch & Star, 2014; Star & 
rittle-Johnson, 2008). For instance, to solve the equation 4(x−1) = 36, a 
student could start solving the problem using a conventional approach by 
distribution (i.e., 4x−4 = 36) or a non-conventional method by dividing both 
sides by 4 (i.e., x−1 = 9). Both strategies may lead to a correct answer but 
selecting the most efficient strategy that involves fewer steps and compu-
tations (e.g., dividing both sides by 4) would lead to solving the problem 
more quickly and accurately. moreover, a number of studies have reported 
that a broad knowledge about solution strategies was positively associated 
with students’ gains in conceptual knowledge, procedural knowledge, flexi-
bility, as well as further learning in mathematics (Heinze et al., 2009; rittle-
Johnson & Star, 2007).

despite its importance, students often struggle with the adaptive use of 
efficient solution strategies in algebra (Star et al., 2015). many students tend 
to implement one strategy, for example, left-to-right problem-solving proce-
dures, rather than applying the most efficient solution strategy after evaluat-
ing multiple possible strategies based on their conceptual knowledge (rob-
inson & dubé, 2013; Siegler & Araya, 2005).

Several studies have examined the student or teacher-related factors 
that influence students’ low proficiency in algebraic problem-solving. First, 
they have found that the strategies that students use in their solution pro-
cesses are influenced by their understanding of two core algebraic concepts, 
equivalence and variables (Bush & Karp, 2013; Knuth et al., 2005). Howev-
er, many middle school students have misconceptions about these concepts; 
particularly, students tend to hold an operational view of the equal sign (i.e., 
the equals sign indicates computing) rather than as a symbol indicating an 
equivalence, which leads to difficulty in recognizing the underlying struc-
ture or important features of equations (Stephens et al., 2013). Another criti-
cal factor that contributes to students’ efficiency of problem-solving is their 
prior knowledge of algebraic methods (Khng & Lee, 2009; rittle-Johnson 
et al., 2009).  For instance, one experimental study (rittle-Johnson et al., 
2009) found that students who had high prior knowledge were more likely 
to learn algebra equation solving by comparing different solution strategies 
than students with low prior knowledge.
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moreover, while it is important for teachers to grasp students’ under-
standing of algebraic concepts or problem-solving processes, they often 
have difficulty identifying students’ strategies, misconceptions, or obstacles 
to solving problems (Asquith et al., 2007). in terms of research perspective, 
many of the methodological approaches that have been used, such as ana-
lyzing those processes or strategies on paper by hand-coding or think-aloud 
method (i.e., conducting one-on-one interviews to ask students to explain 
their thinking), have notable limitations when scaling, including the time 
and cost of coding students’ work. 

Part of these challenges are due to a lack of efficient technology tools 
or methods to record, code, and visualize student problem-solving processes 
or strategies. new innovative educational technology tools that automati-
cally log student behaviors and problem-solving processes could provide 
a means to more efficiently monitor and research students’ mathematical 
strategies at scale, leading to a more robust understanding of students’ math-
ematical understanding and flexibility. Providing information on the process 
of students’ use of strategies for a given mathematical task through these 
technology tools would help teachers and researchers perceive students’ 
general mathematical thinking processes as well as their individual differ-
ences, in turn, enable them to support students’ learning accordingly (Lynch 
& Star, 2014). 

expanding data visualizations for education research using Sankey diagrams 

data visualizations are commonly used in education research to help 
teachers or researchers monitor students’ learning or performance (caprotti, 
2017; ganley & Hart, 2017; vieira et al., 2018). However, many of these 
visualizations tend to focus only on displaying the correctness of students’ 
answers, usage patterns, or collaborative behaviors, rather than students’ 
learning paths or problem-solving processes (Park & Jo, 2015; vieira et al., 
2018).

moreover, while understanding students’ problem-solving processes 
is critical to support their learning (Pape & Smith, 2002), limited work has 
used data visualizations to demonstrate how problem-solving strategies vary 
across several students. For instance, one study (Liu et al., 2017) investi-
gated students’ problem-solving processes (e.g., debugging activities) using 
the data collected in a web-based game for computational thinking. they 
classified students’ moves (productive vs. unproductive) in the game and 
mapped them to conceptual and problem-solving skills. However, the study 
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did not use any means to visualize the variation in students’ problem-solv-
ing behaviors. Another study (ruipérez-valiente et al., 2015) used several 
data visualizations (e.g., heatmap, line graph) to explore individual students’ 
skill progress in physics, chemistry, and mathematics courses in the Khan 
Academy platform, but it did not provide a holistic visualization of students’ 
overall skill progresses. 

visualizing individual students’ problem-solving strategies could pro-
vide a means for informing our understanding of students’ mathematical 
knowledge and provide insight into where and how students make deci-
sions. Beyond individual variability, it is also critical to gain a larger under-
standing of how a large group of students solved problems. For example, at 
a practical level, when researching the mathematical strategies that students 
use when solving equations, it would be beneficial to know what the most 
common initial approaches to solving a problem are. However, for large 
amounts of students, without data visualizations that aggregate and present 
this information at once, this task becomes extremely laborious. 

to simultaneously visualize several students’ overall problem-solving 
processes as well as the variability across the students, Sankey diagrams 
can be used. A Sankey diagram is a type of flow diagram which depicts a 
flow and its quantities (or frequencies) from one set of values to another us-
ing the width of lines (riehmann et al., 2005). this type of diagram enables 
us to visually identify different paths involved, as it depicts all the exist-
ing paths in a large process (tiwari, 2017). moreover, they can clearly dis-
play the proportions and variety of paths within an event, allowing users to 
quickly identify both dominant and minority pathways (Lee & tan, 2017). 

A number of studies have utilized Sankey diagrams in education re-
search, in particular, to visualize college students’ academic pathways, such 
as change of major, completion, or dropout (Askinadze et al., 2019; Basa-
varaj et al., 2018; Heileman et al., 2015; Horvath et al., 2018; morse, 2014; 
oran et al., 2019). For example, one study (Lee & tan, 2017) used Sankey 
diagrams to visualize graduate students’ idea development and flow with-
in the discourse on an online discussion tool. Another study (wang et al., 
2017) created Sankey diagrams to model the paths undergraduate students 
took when solving a Python assignment. However, some studies also noted 
the limitations and challenges of implementing Sankey diagrams (Aski-
nadze et al., 2019; wang et al., 2017). due to cognitive load, it could be 
challenging to visualize a process with a large number of paths and nodes 
clearly and intuitively. Another important limitation is that users need to in-
terpret the diagrams to find useful patterns; thus, the interpretation and the 
effective use of visualizations might greatly vary between users. 
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despite some challenges, data visualizations, in particular, Sankey dia-
grams, allow researchers and educators to examine paths and variability in 
data, quickly identify areas of interest, and drill down into specific areas. 
However, limited work has implemented advanced data visualization tech-
niques to explore students’ problem-solving processes or solution strategies 
in mathematics learning contexts (vieira et al., 2018). thus, in the study de-
scribed here, we present two new ways to visualize both individual students’ 
and entire students’ algebraic problem-solving processes and use of differ-
ent solution strategies (individual visualizations and Sankey diagrams) using 
log data from a dynamic instructional technology, gm, and examine if our 
findings support the results of previous studies.  

MeThoDS

Sample

our sample (N = 343) was drawn from a randomized controlled study 
conducted in 2019 that examined the efficacy of a gamified version of gm 
(chan et al., 2022). the initial sample consisted of 355 students from six 
middle schools located in the Southern u.S. who were assigned to the gm 
condition; however, we excluded 12 students who did not attempt the se-
lected two problems for the study. of the 343 students included for further 
analyses (54% male, 43% female, 3% not reported), most students (96%) 
were in sixth grade, and the remaining students (4%) were in seventh grade 
(who were generally 11 to 13 years old). in terms of instruction-level, 85% 
of the students were in advanced math classes, 8% were in on-level classes, 
and 7% were in support classes. 

From here to There!: A Gamified Version of GM

From Here to there! (FH2t, https://graspablemath.com/projects/fh2t) 
is a gamified version of the gm tool that was developed based on several 
learning theories (perceptual learning, embodied cognition, gamification) to 
improve students’ conceptual understanding, procedural learning, and flex-
ibility in algebra (chan et al., 2022; Hulse et al., 2019; ottmar et al., 2015). 
in this game, math symbols are reified as movable physical objects so that 
students can dynamically manipulate and transform numbers or mathemati-
cal expressions on the screen using various gestures.

the goal of the game is to transform an expression into the mathemati-
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cally equivalent target goal using algebraically permissible actions. more 
specifically, each problem in the game consists of two mathematically 
equivalent mathematical expressions, a start state (e.g., 9×4) and a goal state 
(e.g., 3×6×2) (See Figure 1). Students must transform the starting expres-
sion into the target goal state using gesture-actions, such as moving, tap-
ping, splitting, or decomposing numbers or expressions. the students re-
ceive three clovers if they solve the problem in the most efficient way (i.e., 
with the minimum required number of steps to reach the goal state), and the 
number of clovers is deducted if they exceed the fewest steps possible. 

Figure 1. A sample problem (problem A) and students’ actions in the 
gamified version of gm, From Here to there!.

FH2t includes 14 worlds (a total of 252 problems) that cover a variety 
of mathematical concepts, such as addition, multiplication, and the order of 
operations, with gradually increasing difficulty. Among the 252 problems, 
this study focuses on two problems in world 2-multiplication, problem A 
(start state: 9×4, goal state: 3×6×2) and problem B (start state: 6×10, goal 
state: 2×15×2). these two problems were selected for two reasons. First, 
these two problems were intentionally designed to compare the effect of 
problem structure (i.e., factoring square numbers vs. factoring non-square 
numbers) on students’ solution strategies. Second, there was greater vari-
ability in students’ problem-solving processes (e.g., number of steps) on 
these two problems compared to other problems in that concept. 
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research procedure  

the students took a pretest prior to playing the game to measure their 
prior knowledge of algebra. After completing the pretest, they played the 
game individually using their own devices for four 30-minutes sessions 
(over four weeks) during their regular math classes. the students played the 
game at their own pace so that they completed a different number of prob-
lems in the game when the study ended. 

As students solved problems in FH2t, the gm system automatically re-
corded detailed log files of all students’ clickstream data with timestamps, 
such as the number of attempts, the number of steps, and all mathematical 
expressions and touch- or mouse-based recordings of students’ actions for 
each problem. we pre-processed the data retrieved from the gm database 
and created individual and aggregated visualizations to identify the variation 
in students’ solution strategies. then, we hand-coded the productivity of 
each problem-solving approach using the information that the visualizations 
provided. the data pre-processing and visualization processes are described 
in more detail in the following section. Finally, we examined whether or not 
the productivity of first steps and prior knowledge predicted the efficiency 
of problem-solving. 

Measures 

Prior knowledge 

Students’ prior knowledge was measured with 11 items adopted from 
two previously validated measures (rittle-Johnson et al., 2011; Star et al., 
2014). it consisted of four sub-constructs: conceptual knowledge (4 items), 
procedural knowledge (3 items), flexibility (2 items), and mathematical 
equivalence (2 items). Each item was scored as correct (1) or incorrect (0). 
An example item (procedural knowledge) is “Solve the equation for n, 12n 
+ 3 = 14n + 15 – 8n”. the Kuder–richardson 20 coefficient for 11 items 
was .68, indicating an acceptable level of reliability. 

Productivity of initial solution strategy

using the indivisualizers and Sankey diagrams (described below), we 
coded each initial pathway for productivity using the information the vi-
sualization provided. Here, productivity refers to whether or not a student 
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made an appropriate mathematical transformation; in other words, an action 
that brings the student closer to the target goal of the problem in the game. 
Among the transformations, we used students’ first mathematical transfor-
mation (i.e., first step) to measure the productivity of their initial solution 
strategies, as we hypothesized that it would impact their subsequent trans-
formations as well as the overall efficiency of problem-solving (i.e., solving 
a problem with fewer steps and computations) in the game. table 1 lists ex-
amples of productive and non-productive first steps for problem A and prob-
lem B. 

Table 1
 Examples of productivity of students’ initial solution strategies

Problem Problem type Productive first 
steps (1)

Non-productive first 
steps (0)

Problem A
Start state: 9×4
Goal state: 
3×6×2

Factoring square 
numbers

•	 3×3×4
•	 9×2×2

•	 36
•	 4×9
•	 (3+6)×4

Problem B
Start state: 
6×10
Goal state: 
2×15×2

Factoring non-
square numbers

•	 2×3×10
•	 3×2×10
•	 6×2×5
•	 6×5×2

•	 60
•	 (5+1)×10
•	 6×(5+5)

 
For instance, for problem A, we coded the transforming “9×4” into 

“3×3×4” as a productive first step because the student decomposed 9 to 
make 3, which is the number in the goal state of the problem (3×6×2). con-
trary to this, transforming the start state into 36 was coded as a non-pro-
ductive first step because this action did not bring the student closer to the 
target goal of the problem. we hand-coded productivity as productive (1) or 
non-productive (0). the intraclass correlation coefficient of the coding for 
these two problems was .92, indicating excellent reliability. these produc-
tivity codes were then applied to the larger data set.

efficiency of problem-solving

the efficiency of problem-solving is an indicator of performance in the 
game and refers to how efficiently a student solves a problem. we computed 
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the efficiency scores by dividing the fewest steps possible to reach the goal 
state for each problem by the number of steps made by the students for that 
problem. thus, higher scores indicate more efficient problem-solving that 
involves fewer steps and computations. 

Figure 2. Examples of individual student’s problem-solving process. 

For example (See Figure 2), if a student reaches the goal state using 
three steps (Student A in Figure 2), the efficiency score for this student is 
equal to 1 (i.e., 3÷3). on the other hand, for a student who solved the prob-
lem using four steps (Student B in Figure 2), the efficiency score is equal to 
0.75 (i.e., 3÷4). Finally, table 2 summarizes the variables, operational defi-
nitions of the variables used in the study, and how we measure them.
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Table 2
 Summary of the variables and measures included in the study 

Variables Operational definitions Measures 

Predictors Productivity Whether or not student 
made an appropriate 
mathematical transfor-
mation towards the goal 
state on their first steps

Productive step = 1, 
Non-productive step = 0

Prior
knowledge

Students’ knowledge 
of algebra before the 
intervention 

The sum of the correct-
ness on 11 items (cor-
rect = 1, incorrect = 0),
Ranges between 0 and 
11

Outcome 
variable 

Efficiency 
scores- in-game 
performance

How efficiently a student 
solves a problem (i.e., 
using a procedure that 
involves fewer steps and 
fewer computations) 

The fewest steps 
possible to solve the 
problem / the number of 
steps made

Ranges between 0 
and 1 

Data visualizations and analyses 

in order to examine variation in individual students’ problem-solving 
processes in the game, we created individual visualizations for each student 
(called “Indivisualizers”) (manzo, 2020). indivisualizers are semi-automat-
ically created using HtmL and implemented into a web-based dashboard 
(http://fh2tresearch.com). the indivisualizer displays a student’s expression 
transformation process between the start state and the goal state in FH2t. 
the metrics included in the indivisualizer consist of the time to each action 
(in seconds), each state in the derivation, where errors and resets occurred, 
and the mathematical and gesture-actions used to initiate each step. 

    more specifically, each column shows the student’s steps until they 
reset the problem or reach the goal state, and the colors of the boxes repre-
sent different events. if the student successfully reached the goal state, the 
last column represents the final try that resulted in success with the goal 
state in a pale green box. the light blue box represents the student’s actions 
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leading to the transformation, and the numbers above the light blue box in-
dicate the time (in seconds) taken between transformations. the red box in-
dicates that the student hit the reset button to retry the problem. Lastly, the 
yellow box represents the errors made by the student, which include: shak-
ing error (i.e., performing a mathematically invalid operation), snapping er-
ror (i.e., dragging a number does not lead to a valid transformation), and 
keypad error (i.e., entering an expression on the keypad that is not equiva-
lent to the expression). the mathematical and gesture-actions used to initi-
ate each step can be inferred by comparing consecutive problem states. 

while indivisualizers provide a means to visualize individual students’ 
detailed step-by-step information about their problem-solving processes, it 
does not provide a holistic view of entire students’ overall problem-solving 
processes. thus, we created Sankey diagrams in order to visualize students’ 
overall algebraic problem-solving processes in the game. the data pre-pro-
cessing to create Sankey diagrams was performed in the following steps: 1) 
select related features (e.g., student id, trial id, expr_ascii (i.e., the whole 
math expression on the screen in AScii code)) from the raw data retrieved 
from the gm database, 2) remove students who did not attempt the selected 
two problems for this study, 3) select data on first attempts if a student at-
tempted the problem more than once. to generate the Sankey diagrams, we 
used “plotly.js,” which is one of the Javascript data visualization libraries. 
we considered various tools to create Sankey diagrams (e.g., SAS visual 
Analytics, tableau) and selected Javascript because of its greater flexibil-
ity in comparison with other tools. Sankey diagrams consist of two main 
components: nodes and links. in our study, each node represents the steps 
(i.e., transformations of equations) made by the students in the game, and 
the thickness of a link (i.e., paths in the diagram) indicates the number of 
students who made that mathematical transformation. 

Lastly, to explore how the productivity of the initial solution strategies 
influences the efficiency of problem-solving, we created colored Sankey di-
agrams using the productivity codes (blue=productive, red=not productive). 
we also performed simple and multiple regression analyses to examine the 
association between prior knowledge, productivity, and efficiency using 
iBm SPSS Statistics 25.  
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reSuLTS

Visualizations of Individual Students’ Problem-Solving Processes 

First, we created indivisualizers on the web-based dashboard to trace an 
individual student’s problem-solving process. Figure 3 shows two examples 
of indivisualizers depicting individual students’ problem-solving processes 
for problem A (square-numbers problem). As noted earlier, each column 
shows the student’s steps until they reset the problem or reach the goal state, 
and the colors of the boxes represent different events. As shown in Figure 3, 
student A made a productive first step (i.e., 3*3*4) that brought the student 
closer to the target goal state (i.e., 3*6*2). this student successfully solved 
the problem using the minimum required steps to complete the problem (3 
steps with an efficiency score of 1 [i.e., 3÷3]) without making any errors. in 
contrast, student B took a non-productive first step by factoring 4 in the start 
state in the wrong way (i.e., 9*(2+2) instead of 9*4*4) and made several er-
rors (keypad error, shaking error, snapping error). the student then reset the 
problem to the initial state and made a productive first step (9*2*2) in the 
second trial. the student solved the problem using seven steps in total, with 
an efficiency score of 0.43 (i.e., 3÷7). As such, indivisualizers allow users to 
easily compare the changes in individual students’ solution strategies across 
multiple consecutive tries as well as variability across different students. 
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Figure 3. Example of indivisualizer depicting two students’ problem-solving 
processes for the square numbers problem.

Visualizations of Students’ overall Problem-Solving Processes 

Second, we explored the entire students’ overall problem-solving pro-
cesses using Sankey diagrams. Figure 4 presents the students’ problem-solv-
ing processes for the square numbers problem (problem A, turning “9×4” 
into “3×6×2”). As mentioned earlier, each node in the diagram represents 
a different mathematical expression made by students, and the thickness of 
each path represents the number of students who made that expression.

Figure 4 shows the full Sankey diagram for the problem. A large num-
ber of paths indicates that there was a large variation in students’ problem-
solving processes. Specifically, as indicated by the thickest line on the left, 
the most prominent problem-solving process made by the students was 9×4 
(factoring 9) → 3×3×4 (factoring 4) → 3×3×2×2 (multiplying 3 and 2) → 
3×6×2. thus, many students first attended to the left sides of the start ex-
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pression and the goal state by breaking 9 down into 3 and 3, then moved 
to the right side of the starting expression. relatively few students first at-
tended the right sides of the problem equation first (e.g., 9×4 (factoring 4)→ 
9×2×2 (factoring 9)→ 3×3×2×2 (multiplying 3 and 2)→ 3×6×2 ). 

Figure 4. A Sankey diagram showing entire students’ problem-solving pro-
cesses for the square numbers problem (for full image: http://tiny.cc/mp-
dzsz).
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the second most prominent first step made by the students was creating 
36. these students simply combined two numbers in the goal state (9 and 
4) rather than attending to the structure of the equation or the numbers in 
the goal state. while some of these students successfully solved the problem 
with the fewest steps possible to reach the goal state (e.g., 9×4 (multiplying 
9 and 4)→ 36 (factoring 36)→3×12 (factoring 12) →3×6×2), most of them 
took more than three steps and did not solve the problem in the most effi-
cient way. 

next, we created another Sankey diagram to examine the students’ 
problem-solving processes for the non-square numbers problem (problem 
B, turning “6×10” into “2×15×2”) (See Figure 5). As shown in Figure 5, 
there was a much larger variation in students’ problem-solving processes in 
problem B compared to problem A. there was no single dominant problem-
solving pathway, and relatively fewer students solved the problem in the 
most efficient way, indicating that the factoring non-square numbers prob-
lem was more challenging for the students than the square problem. Spe-
cifically, the most prominent pathway was 6×10 (factoring 6) → 2×3×10 
(factoring 10) → 2×3×5×2 (multiplying 3 and 5) → 2×15×10.  Similar to 
problem A, many students first attended to the left sides of the goal state 
expression and the target goal expression, then moved to the right side of 
the expression. the most prominent first step was making “60” by multiply-
ing two numbers (6 and 10) in the start state, but there was greater varia-
tion in their second steps. Some students who made 60 on their first step 
reached the goal state with the fewest steps possible by successfully break-
ing 60 down into “2 and 30” or “30 and 2”. However, many of them did not 
solve the problem in the most efficient way, indicating that factoring 60 into 
smaller numbers was an obstacle point to the students. 
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Figure 5. A Sankey diagram showing entire students’ problem-solving pro-
cesses for the non-square numbers problem (for full image: http://tiny.cc/
kvdzsz).



Show the Flow: Visualizing Students’ Problem-Solving Processes 115

ProDucTIVITy oF STuDeNTS’ INITIAL SoLuTIoN STrATeGIeS AND 
eFFIcIeNcy oF ProbLeM-SoLVING

Before exploring the productivity of initial solution strategies using 
Sankey diagrams, we computed frequencies for the productivity of students’ 
first steps (See Figure 6). As shown in Figure 6, 64% (n = 220) of the 343 
students made productive first steps for the factoring square numbers prob-
lem (problem A). relatively fewer students (n = 204, 59%) made produc-
tive first steps for problem B, indicating that factoring non-square numbers 
seemed to be more challenging for the students. 

Figure 6. Frequencies of productivity of first steps by the problem.

we then computed descriptive statistics and correlation coefficients of 
the variables included in the study (See table 3). 
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Table 3
descriptive statistics and correlations

1 2 3 4 5

1.  Prior knowledge - - - - -

2. Productivity of first steps: 
Problem A

-.009 - - - -

3. Productivity of first steps: 
Problem B

-.033 .373*** .- - -

4. Efficiency: Problem A .182** .202*** -.043 -

5. Efficiency: Problem B .161** -.089 .131* .227*** -

M 6.360 .641 .595 .808 .791

SD 2.433 .480 .492 .247 .240
*p < .05, **p < .01, ***p < .001

we conducted a Pearson correlation analysis for the pair of continu-
ous variables (e.g., prior knowledge - efficiency) and a point-biserial cor-
relation analysis for the pairs of dichotomous and continuous variables (e.g., 
productivity - efficiency). As presented in table 3, the productivity of the 
first steps for “problem A” had a significant positive association with its ef-
ficiency (r

pb
(341) = .202, p < .001). the productivity of the first steps for 

“problem B” was also positively associated with its efficiency (r
pb

(341) = 
.131, p = .015). the students’ prior knowledge did not show statistically sig-
nificant relationships with the productivity of both problems. However, stu-
dents’ prior knowledge was positively associated with efficiency scores of 
both problems.

next, we created a colored-Sankey diagram to visualize the productiv-
ity of students’ initial solution strategies for problem A and their subsequent 
solutions (See Figure 7). note that colors in the diagram represent the pro-
ductivity of students’ first steps (blue: productive first steps, red: non-pro-
ductive first steps). 
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Figure 7. Section of the Sankey diagram showing productivity of initial so-
lution strategies for the square numbers problem (for full image: http://tiny.
cc/pd51tz).

As shown in Figure 7, more than half of the students made productive 
first steps for this problem (e.g., 3×3×4, 9×2×2). most students who made 
productive first steps solved the problem with the fewest possible steps (3 
steps) to reach the goal state (e.g., 9×4 → 3×3×4 → 3×3×2×2 → 3×6×2). 
However, the students who made non-productive first steps (e.g., 36, 
(3+6)×4) tended to exceed the fewest possible steps to complete the prob-
lem (3 steps) and did not solve it in the most efficient way. thus, as we 
hypothesized, noticing the underlying structure of the problem equation and 
how to transform it played a critical role in students’ subsequent transforma-
tions as well as their overall efficiency in algebraic problem-solving.

we created another colored-Sankey diagram to visualize the productiv-
ity of students’ initial solution strategies for problem B (See Figure 8) and 
the subsequent solution pathways. 
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Figure 8. Section of the Sankey diagram showing students’ problem-solving 
processes for the non-square numbers problem (for full image: http://tiny.cc/
wd51tz).

As presented in Figure 8, more than half of the students made produc-
tive first steps (e.g., 2×3×10, 6×5×2). Specifically, most students who made 
the numbers included in the goal state (e.g., 2) or the factors (e.g., 3, 5) 
of the numbers in the goal state on their first steps solved the problem in 
the most efficient way. However, many students who did not attend to the 
structure or the feature of the problem and simply combined two numbers 
in the start state (i.e., 6, 10) failed to solve the problem in the most efficient 
way. thus, similar to problem A, students’ first mathematical transformation 
played a significant role in students’ subsequent problem-solving processes 
as well as the overall efficiency of students’ problem-solving. 

Lastly, we examined whether or not the productivity of first steps and 
prior knowledge predicted the efficiency of problem-solving (table 4). note 
that one student who did not have data on prior knowledge was excluded 
from further analyses. 

Table 4
 results of the regression analyses predicting the efficiency of problem-

solving 

Variable B SE β t p R2 R2 Change

Square-numbers problem (problem A)

 Model 1.1 .041 -

(Constant) .742 .022 33.946*** <.001

Productivity of first 
steps 

.104 .027 .202 3.803*** <.001

 Model 1.2 .074 .034

(Constant) .623 .040 15.531*** <.001

Productivity of first 
steps 

.105 .027 .204 4.194*** <.001

Prior-knowledge .019 .005 .183 3.511** .001

Non-square numbers problem (problem B)

Model 2.1 .017 -

(Constant) .753 .020 37.205*** <.001
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Productivity of first 
steps 

.064 .026 .131 2.430* .016

Model 2.2 .044 .027

(Constant) .648 .039 <.001

Productivity of first 
steps 

.066 .026 .136 2.561* .011

Prior-knowledge .016 .005 .165 3.107** .002
*p < .05, **p < .01, ***p < .001

First, a simple linear regression analysis was conducted to predict the 
students’ efficiency scores for problem A (model 1.1 in table 4). the model 
explained 4.1% of the variance in the efficiency scores (F(1, 340) = 14.460, 
p < .001), and the productivity of the first steps significantly predicted the 
outcome variable (B = .104, p < .001). the students’ predicted efficiency 
score was equal to 0.742 + 0.104*(productivity).

next, we added the students’ prior knowledge to model 1.1 and per-
formed a multiple linear regression analysis (See model 1.2 in table 4). the 
addition of prior knowledge contributed 3.4% additional variance and the 
model explained 7.4% of the variance in the efficiency scores (F(2, 339) = 
13.634, p < .001). Further, we examined the individual predictors, and the 
results indicated that both the productivity of first steps (B = .105 p < .001) 
and prior knowledge (B = .019, p = .001) significantly predicted the effi-
ciency scores. the students’ predicted efficiency score was equal to 0.623 + 
0.105*(productivity) + 0.019*(prior knowledge). 

we then repeated the analyses for problem B, the non-square numbers 
problem. results of the simple linear regression analysis (model 2.1 in ta-
ble 4) indicated that there was a statistically significant effect between the 
productivity and the efficiency score for problem B (F(1, 340) = 5.904, p 
= .016), with an R2 of 0.017. the productivity of the first steps significant-
ly predicted the efficiency scores (B = .064, p = .007), and the predicted 
efficiency score for problem B was equal to 0.753 + 0.064*(productivity). 
next, the students’ prior knowledge was added to model 2.1, and a multiple 
linear regression analysis was conducted. the addition of prior knowledge 
contributed 2.7% additional variance and the model explained 4.4% of the 
variance in the efficiency scores (F(2, 339) = 7.855, p < .001). in terms of 
the individual predictors, both the productivity of first steps (B = .066, p = 
.011) and prior knowledge (B = .016, p = .002) significantly predicted the 
efficiency scores. the students’ predicted efficiency score for problem B 
was equal to 0.648 + 0.066*(productivity) + 0.016*(prior knowledge). 
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DIScuSSIoN

while understanding students’ problem-solving processes is critical 
to support their algebra learning, limited work has explored detailed step-
by-step information about their mathematical problem-solving processes 
through data visualizations (Pape & Smith, 2002; vieira et al., 2018). this 
study presented visualizations of students’ algebraic problem-solving pro-
cesses and solution strategies using two novel data visualization techniques, 
indivisualizers and Sankey diagrams, and investigated how we could use 
these visualizations to provide meaningful and comprehensive information 
to researchers and teachers. 

First, we visualized variation in individual students’ problem-solving 
processes using indivisualizers. the individual visualizations showed that 
these could provide information to researchers and teachers on specific 
students’ problem-solving processes, including where and when particular 
students make errors and reset problems. these visualizations also provide 
information about response time and students’ mathematical strategies. us-
ing indivisualizers, teachers and researchers can easily compare the changes 
in an individual student’s mathematical transformation across multiple con-
secutive attempts to reach the goal state. 

Second, we visualized the entire students’ overall algebraic problem-
solving using Sankey diagrams. the results showed that Sankey diagrams 
could provide a lot of information to help teachers and researchers under-
stand overall students’ algebraic problem-solving processes. Specifically, 
they presented the variability of problem-solving processes, the most com-
mon pathways used, the productivity of those pathways, the obstacle points 
of problem-solving (e.g., factoring a non-square number into small num-
bers), and the efficiency of different solution strategies. in particular, the 
diagrams revealed that many students tended to attend to the left side of the 
equation first and then move to the right side of the equation, which was 
consistent with findings of other studies that showed students tended to use 
left-to-right problem-solving procedures when solving algebraic problems 
(robinson & dubé, 2013; Siegler & Araya, 2005). 

therefore, our findings support the idea of previous research that San-
key diagrams can be used as a useful method to quickly identify different 
paths involved in a process, the proportion of each path, and the variability 
across the students (Lee & tan, 2017; tiwari, 2017). Further, as noted by 
Lynch and Star (2014), visualizing students’ problem-solving processes for 
a given mathematical task would help teachers and researchers perceive stu-
dents’ individual differences and their mathematical thinking processes. 

Lastly, we visualized the productivity of initial solution strategies and 
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examined the association between the productivity of initial solution strate-
gies and the efficiency of problem-solving. in particular, we built colored 
Sankey diagrams to distinguish between productive first steps versus non-
productive first steps. one of the limitations of Sankey diagrams is that it 
is challenging to visualize a process with a large number of different paths 
and nodes clearly and intuitively (Askinadze et al., 2019; wang et al., 2017). 
colored-Sankey diagrams can intuitively visualize productive or non-pro-
ductive pathways to solve algebraic problems in the game, which would 
help teachers or researchers easily interpret the diagrams and use the infor-
mation provided more effectively. 

Lastly, we examined whether or not the productivity of students’ first 
steps and their prior knowledge influenced the overall efficiency of prob-
lem-solving. the results indicated that productivity and prior knowl-
edge significantly predicted the efficiency of problem-solving for both the 
square-numbers problem and the non-square numbers problem. 

taken together, noticing the underlying structure of the problem equa-
tion and how to transform it on their first step played a critical role in stu-
dents’ subsequent transformations as well as their overall efficiency of alge-
braic problem-solving, which was aligned with previous literature (Stephens 
et al., 2013). the findings are also consistent with those of other studies, 
which found that students’ prior knowledge was positively associated with 
the efficiency of problem-solving (Khng & Lee, 2009; rittle-Johnson et al., 
2009). thus, our findings suggest that algebra instruction may need to fo-
cus more on correcting students’ misconceptions about equivalence (i.e., the 
equals sign indicates computing) and teaching students to notice the under-
lying mathematical structure of expressions. 

Implications for Teaching and Practice

this work has clear implications for practice as students’ strategies in 
educational technologies are often invisible to teachers. in combination with 
gm, the algebraic notation system, teachers could use these visualizations 
(Sankey diagrams, individualizers) in several ways to inform their instruc-
tion. First, the visualizations provide evidence of students’ work while prob-
lem-solving, something that teachers often ask students to include on paper 
but is often absent from most online mathematics learning tools. teachers 
could use information from visualizations in the classroom in several ways: 
1) using the locations of common errors from the individual visualizations 
to foster discussions about common misconceptions and mistakes made by 
students, 2) showing Sankey diagrams to students to demonstrate the use of 
multiple valid pathways and have discussions about why they would choose 
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one path or another, 3) having discussions about what makes a particular 
approach more productive than another, then presenting similar problems 
to have students practice those conceptual and flexibility skills. the indi-
visualizer can be used synergistically with the Sankey diagrams, as Sankey 
diagrams display information across all students for their first attempts, 
whereas the indivisualizer displays information regarding all tries for only 
one student at a time.

  researchers can also use these visualization techniques to support 
hand-labeling and coding and to inform new methods and territories. Final-
ly, it is important to note that this data was quickly and easily collected from 
6th and 7th graders in authentic classrooms as students solved problems in 
gm so that the visualizations represent students’ real work and problem-
solving processes. Presenting this information in real-time could transform 
the ways that teachers approach instruction about flexibility and efficient al-
gebraic problem-solving. 

Limitations and Future Directions

A number of important limitations need to be considered. First, al-
though we found that Sankey diagrams could provide a lot of information to 
help teachers and researchers understand students’ algebraic problem-solv-
ing processes, the interpretation and the effective use of visualizations might 
vary between users depending on their visual literacy skills (Askinadze et 
al. 2019; wang et al., 2017). there is a large amount of information present-
ed to users at once, and concerns about cognitive load are definitely pres-
ent (Feldon, 2007). thus, understanding teachers’ perceptions, decisions, or 
ability to use and interpret these visualizations to inform instruction is an 
important next step. 

   Second, the current study examined the relationship between the pro-
ductivity of initial solution strategies and the overall efficiency of problem-
solving using only two multiplication problems in the game. Future research 
needs to replicate analyses using a larger sample of problems or more com-
plex and ill-structured problems. moreover, the prediction models with two 
predictors (prior knowledge, the productivity of first steps) explained a rela-
tively small amount of variance in the efficiency of problem-solving. thus, 
it is suggested that the effect of other student behaviors (e.g., time taken 
to solve a problem, pause time before problem-solving, number of errors) 
needs to be investigated in future studies.  

this work also has usefulness for future work in learning analytics and 
math education and cognition, particularly by providing a means to facili-



Show the Flow: Visualizing Students’ Problem-Solving Processes 123

tate coding of student mathematical strategies and behaviors. For example, 
it is possible to use educational data mining techniques or machine learn-
ing algorithms to create a detection system that could automatically identify 
the productivity of students’ solution strategies. in this way, it could help re-
duce the time required for hand-coding the vast amount of data and training 
human coders, thus accelerating the progress of research (mu et al., 2012). 
the automated detection system also could predict the efficiency of prob-
lem-solving and further generate these visualizations in real-time. our team 
is currently investigating the feasibility of using these techniques to predict 
students’ in-game performance in real-time. 

coNcLuSIoN

this work presents two advanced and novel ways (indivisualizer and 
Sankey diagram) to visualize students’ problem-solving processes and use 
of strategies as they solve mathematical problems in a dynamic algebraic 
notation tool. these visualizations provide a proof of concept of how we 
can integrate more qualitative and strategy data into data analytics and be-
gin to unpack the complex learning processes that students use when solv-
ing algebraic problems. our findings suggest that these visualizations can be 
used both in research and practice to reveal and unpack our understanding 
of variability in mathematical problem-solving strategies and cognition.
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