
Using Neural Network-Based Knowledge Tracing for a 
Learning System with Unreliable Skill Tags 

   Shamya Karumbaiah             Jiayi Zhang       Ryan S. Baker 
  Carnegie Mellon University     University of Pennsylvania            University of Pennsylvania 
     shamya@cmu.edu            jzhang7718@gmail.com     ryanshaunbaker@gmail.com 
 

      Richard Scruggs   Whitney Cade   Margaret Clements                   
        Karolinska Institute   American Institutes for Research         American Institutes for Research 
richardtscruggs@gmail.com           wcade@air.org       pclements@air.org 
 

Shuqiong Lin 
American Institutes for Research 
           slin@air.org

  
ABSTRACT 
Considerable amount of research in educational data mining has fo-
cused on developing efficient algorithms for Knowledge Tracing 
(KT). However, in practice, many real-world learning systems used 
at scale struggle to implement KT capabilities, especially if they 
weren’t originally designed for it. One key challenge is to accu-
rately label existing items with skills, which often turns out to be a 
herculean task. In this paper, we investigate whether an increas-
ingly popular approach to knowledge tracing, the use of neural 
network models, can be a partial solution to this problem. We con-
ducted a case study within a commercial math blended learning 
system. Using the data collected from middle school students’ use 
of the system over two years, we compare the performance of a 
neural network-based KT model (DKVMN) in three scenarios: 1) 
with the original (possibly unreliable) system-provided skill tags, 
2) with coarser-grained domain tags based on state standards, and 
3) without inputting any mappings between content and skills. Our 
results suggest that including the system-provided skills in the 
training of the model leads to the worst performance. The best per-
formance is observed when the skills are entirely disregarded. This 
supports the possibility of bypassing the laborious step of item-skill 
tagging in real-world learning systems which were not originally 
designed to work with KT models, especially if the goal is only to 
predict the performance of a student on future items. We discuss 
the implications of our findings for practice and future research. 
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Knowledge Tracing, Skill Tagging, Deep Learning, DKVMN, 
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1. INTRODUCTION 
Knowledge tracing has become an essential part of modern adap-
tive learning systems and even many non-adaptive learning 

systems. The ability to infer a students’ latent knowledge of a skill 
-- or at least predict their performance on future items within the 
skill -- has several applications. One of the key applications of 
knowledge tracing is mastery learning [7]. A system using 
knowledge tracing for mastery learning divides content into skills 
(sometimes also called concepts or knowledge components), and 
once a student starts a skill they cannot advance beyond it without 
demonstrating that they have mastered the skill. Knowledge tracing 
is also often used for creating reports for teachers [31] or open 
learner models for students [4]. A third use of knowledge tracing is 
as a component in automated detectors that recognize a range of 
student behaviors or states, including help-seeking strategies [1], 
and disengaged behaviors such as gaming the system [18].  

While the first learning systems to use knowledge tracing were de-
signed with that function in mind [2], many real-world learning 
systems used at scale today were not designed with knowledge trac-
ing or adaptive learning originally in mind. Increasingly, these 
systems are being retrofit to use some form of these types of func-
tionality [16]. One of the key ways that these systems often differ 
from learning systems originally designed for use with knowledge 
tracing is in how content is mapped to skills (often referred to as 
skill-item mappings or as KC mappings -- KC stands for knowledge 
component – [13]). Systems designed from the start to use KT first 
select what skills are to be included, and then develop items tailored 
to those skills [2]. Afterwards, there may even be a process of using 
data to refine the KC mapping, attempting to improve the correla-
tion of items to each other while maintaining human 
comprehensibility of the overall mapping [12, 14, 15]. By contrast, 
when content is retrofit for use with knowledge tracing, items are 
created first, and then the items are labeled with skills.  

Labeling an existing item with a skill is much harder than creating 
a new item for a skill. Often, items have been developed by multiple 
authors over time, or have come from different original sources 
such as different textbooks. Mapping this disparate content -- some-
times tens of thousands of items -- to a set of skills can be a 
herculean task. In many cases, items have been tagged in terms of 
governmental curricular standards, but these standards are typically 
much coarser-grained than the types of skills used within 
knowledge tracing models [6]. Therefore, there is a challenge to 
using many of the classic approaches to knowledge tracing, used at 
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scale in past real-world systems, with content not initially designed 
with this use in mind.  

In this paper, we investigate whether an increasingly popular ap-
proach to knowledge tracing, the use of neural network models [12, 
17, 33], can be a partial solution to this problem. Unlike earlier ap-
proaches to knowledge tracing (i.e. [8, 19]), neural network models 
do not require a KC model in order to predict student performance 
on future items. As such, it may be possible to bypass the step of 
developing a KC model entirely, at least for goals such as choosing 
what problem to give the student next. In investigating this, we se-
lect the DKVMN (Dynamic Key-Value Memory Network – [33]) 
algorithm, a generally successful early approach to neural network-
based knowledge tracing, as it has the ability to both use an existing 
KC model and to fit a new KC model, giving us the ability to com-
pare between using a KC model known to have considerable 
limitations and using no KC model at all.  

Towards this goal, we conduct a case study within a commercial 
math blended learning system. Using the data collected from mid-
dle school students’ use of the system over two years, we compare 
the performance of KT models in three scenarios: 1) with the orig-
inal (possibly unreliable) system-provided skill tags, 2) with 
coarser-grained domain tags based on state standards, and 3) with-
out inputting any mappings between content and skills. Our results 
suggest that including the system-provided skills in the training of 
the model leads to the worst performance. The best performance is 
observed when the skills are entirely disregarded. This supports the 
possibility of bypassing KC modelling in real-world learning sys-
tems which were not originally designed to work with KT models, 
especially if the goal is only to predict the performance of a student 
on future items.  

2. MOTIVATION 
2.1 Knowledge Tracing 
There have been a range of algorithms used for knowledge tracing 
over the last three decades. The first widely-used knowledge trac-
ing algorithms relied on a KC model, as mentioned in the 
introduction. Perhaps the first widely-used algorithm for 
knowledge tracing was Bayesian Knowledge Tracing [8], based on 
a simple Markov Model (and also mathematically equivalent to a 
simple Bayesian Network – [27]). More recently, models based on 
logistic regression have become popular in the literature [5, 20] alt-
hough they remain rare within real-world use (but see [16]). 
Algorithms related to item response theory (IRT) such as Elo [21] 
and temporal IRT [30] have also become more widely seen in the 
literature recently, and are used at scale in several learning systems 
[3, 22, 30]. While Elo and temporal IRT can be used without a KC 
model, typically a separate Elo model is used for each of several 
skills.  

A contrasting set of approaches uses neural networks to avoid the 
need for a KC model. The first member of this family of algorithms, 
deep knowledge tracing [24], discovered complex item-to-item 
mappings as part of predicting future performance on items. Later 
approaches such as DKVMN introduced the ability to use or fit 
skill-item mappings (KC models) as well [33]. The last five years 
have seen a proliferation of knowledge models based on neural net-
works [11, 17, 29, 33], gaining increasing ability to predict future 
performance. However, due to concerns about unpredictable be-
havior [9, 32], and the challenge of using this type of models for 
mastery learning and reporting on student skill (as discussed above, 
the main applications of knowledge tracing in contemporary learn-
ing systems), neural networks have been much more popular in the 
published literature on knowledge tracing than in actual real-world 

use. One of the key limitations to neural network models in this 
regard has been that they predict correctness on specific problems 
but do not map that back to inferring proficiency on human-inter-
pretable skills. Recent extensions have taken this step, suggesting 
the potential for broader real-world use and uptake of neural net-
work knowledge tracing models. In particular, an extension in [28] 
can be applied to any neural network knowledge tracing model for 
which there is a KC model available (even at the coarse level of 
state standards).  

2.2 Case Study: A Commercial Learning Sys-
tem with Imperfect Skill Tags 

This study uses data from a commercial math blended learning plat-
form used in schools across the United States by students from 
kindergarten through Algebra II. This platform allows teachers to 
assign problem sets to students by standards and topics, and assign-
ments can be personalized based on the teacher’s assessment of a 
student’s progress. The system measures a student’s mastery of un-
derlying mathematical concepts through Bayesian Knowledge 
Tracing (BKT), and may suggest more foundational or advanced 
assignments based on a student’s performance. In this way, the sys-
tem contains several elements frequently seen in intelligent tutoring 
systems. Assignments may be worked on at home or at school, and 
guidance provided by the creators of the platform suggest that stu-
dents should work in the platform for approximately 30 minutes per 
week. 

The learning platform has two classes of problems, authored in dif-
ferent ways. In the “classic” problems, students answer multiple-
choice, multi-step word problems, with a series of scaffolded, 
smaller word problems triggered when the student answers the ini-
tial problem incorrectly. The second “new” class of problems tends 
to be more interactive: for example, students plot points and lines 
on a graph, rotate shapes, and sort statements or numbers using 
drag-and-drop functionality. These problems tend to be open-re-
sponse and typically lack the kind of scaffolding seen in the classic 
problems.  

The difference in the content within this system can be attributed to 
the development of the content in two phases. In a first phase of 
development, a team of math content specialists created multiple-
choice items with scaffolding for incorrect answers (based on the 
model in [26]). In this model, students that answer an item correctly 
will move onto the next problem, but if a problem is answered in-
correctly initially, the problem will be broken into a series of 
additional, smaller questions that scaffold an effective set of prob-
lem-solving steps. The math content specialists tagged each item 
with a set of skills based on mathematics standards. After the ac-
quisition of the system by a different company, and the subsequent 
departure of the original development team, a different approach 
was adopted to build out additional content for the same courses. In 
this new approach, existing content created by an outside company 
was added to the system. This additional content had more item 
types, as discussed above. However, this new content did not use 
the same scaffolding model as the original content. Items had been 
tagged by the outside company according to the same overall math-
ematics standards, but there were considerable inconsistencies and 
incompatibilities between the two tagging approaches. The result 
was an overall set of skill tags that were of uncertain usability. 

While the case of a system being acquired by a different company 
and adopting a new process for content is perhaps somewhat unu-
sual, the overall problem of content and skill tags being developed 
by different teams over time is not unusual. Many contemporary 
online learning systems integrate data from different textbooks, 



shift the membership of content authoring teams over the span of 
many years, and tag content according to multiple state standards 
and internal content schemas. While many of the systems which are 
most heavily published on at this conference (and related confer-
ences) do not have these issues, it is likely that the majority of 
learning systems used at large scale suffer from these issues to at 
least some degree.  

3. METHODS 
3.1 Data Collection 
The analyses presented here are based on data collected as part of 
a larger, exploratory study on the implementation of the blended 
learning platform discussed in section 2.2. Though the focus of the 
study was on 6th-8th grade students, we also collected data from 
sections of Algebra I and Geometry students when a teacher taught 
across several grade levels and wanted to use the platform across 
their classes. These data were collected in the 2018-19 and 2019-
20 school years from students located in 19 schools across Texas. 
These schools tended to be located in less populated areas, with 
11% of schools in the sample in cities (according to Federal classi-
fication), 5% of schools in the sample in suburbs, 26% in towns, 
and 58% in rural areas. 41% of the students in our sample schools 
identified as white, 9% as African-American/Black, 46% as His-
panic, and 1% as Asian. 60% of students in sample schools 
qualified for free/reduced price lunches. 

Data collected occurred across two years, with 38 teachers and 
2069 students participating in the first year, and 14 teachers and 
743 students participating in the second year. Teachers were in-
structed to have students engage with the blended learning software 
for approximately 30 minutes each week, though use of the system 
diminished over the course of the school year (cf. [23]). The pri-
mary goal of the larger study was to examine the naturalistic 
relationships between learning, engagement, and classroom imple-
mentation, so researchers interfered very little in how teachers and 
students decided to use the platform. Teachers used the software 
differently: some teachers sat their students in front of the system, 
offering little help, while others used the system while teaching to 
the class, talking about the problems presented. Some teachers dis-
liked the scaffolding problems and checked students’ answers to 
top-level problems to avoid their students receiving scaffolding 
problems. In some classes, students asked each other for help, while 
in others they were expected to work alone.  

3.2 Descriptive Statistics 
This analysis involves data from 2564 students. Table 1 presents 
the number of problems, skills, and first attempts for classic and 
new content. The overall correctness of students’ first attempts on 
problems is 32% across all the problems. However, when the con-
tent is categorized based on the new and classic content (see 
description in Section 2.2), we see that the percentage correctness 
is higher for classic content (59%) with the new content having a 
much lower correctness (15%). There are several possible explana-
tions for this finding. Students may be more likely to get 
scaffolding problems correct than initial problems, as scaffolding 
problems are designed to have lower difficulty.  In addition, the 
more interactive problems often require the student to take several 
actions or input multiple steps in order to arrive at the correct final 
answer, which creates more opportunities for mistakes. Due to the 
clear differences in these two types of learning content, we will 
look at these separately in our final experiment.  

 

Table 1. Total number of problems, skills, first attempts, and 
percentage correctness for all content, classic content, and new 
content in the data used in this analysis 

Content 
Type 

#prob-
lems 

#skills #first at-
tempts 

%correct 

All content 7252 2,237 110,214 32% 

Classic con-
tent only 

1764 532 42,353 59% 

New con-
tent only 

5488 1,705 67,861 15% 

 

3.3 DKVMN 
In this analysis, we use Dynamic Key-Value Memory Networks 
(DKVMN; [33]) for knowledge tracing. DKVMN is a KT model 
developed based on neural networks and has demonstrated im-
proved performance compared to traditional KT models, such as 
Bayesian Knowledge Tracing or Performance Factors Analysis [25, 
28, 33]. In DKVMN, the model employs two matrices to predict 
student performance on items and estimate mastery on a set of au-
tomatically-derived skills. By learning from the relationships 
between the two matrices (i.e, a static matrix that stores skill rela-
tionships and a dynamic matrix that stores and updates mastery 
level), the algorithm generates underlying skills associated with 
items and identifies connections between them, creating a skill 
map. DKVMN utilizes the map to make predictions on student per-
formance and estimates mastery learning, as opposed to the human-
generated skill-item mapping that the traditional KT models rely 
on. Given DKVMN's capability of automatically generating under-
lying skills and exploiting the relationships between them, we are 
interested in investigating how the algorithm can be applied to han-
dle data with unreliable skill tagging.  

4. ANALYSIS 
The goal of our analysis in this paper is to investigate the use of a 
neural network-based KT model (DKVMN) that doesn’t require 
skill tags, for a system where the skill tags may be unreliable or 
inconsistent. Accordingly, we compare the performance of KT 
models with and without mappings between content and skills. 
Since we don’t have out-of-system performance data on students to 
validate knowledge estimates, we infer performance within the sys-
tem rather than outside the system (note that DKVMN can also be 
used to predict out-of-system performance – [28]). Thus, we vali-
date the model based on its ability to predict a student’s correctness 
on the next problem. We use [33]’s implementation of the DKVMN 
model with a set of hyperparameters that have been reported to pro-
duce optimal outcome for a previously collected dataset (the 
ASSISTments2009 data set in [33]), including a state dimension of 
50 and a memory size of 20. We use this previously established set 
of hyperparameters instead of tuning them, to avoid overfitting. In 
addition, since the goal of the paper is to study whether the skill 
tags are useful and whether DKVMN can compensate for a lack of 
good skill tags in a data set of this nature, tuning the hyperparame-
ters to find the best performing KT model is not related to the goals 
of the analysis. We evaluate our model using AUC ROC. We per-
form a student-level 10-fold cross validation, and the reported 
results are the average across the CV folds.  

Using this approach, we conduct the following three kinds of anal-
ysis: 

1) Experiment #1 (Default-Skills): In this experiment, we 
chose to include the initial skill mapping provided by the 



learning system during the training of the DKVMN 
model. The system provides a total of 2237 skills.  

2) Experiment #2 (Domains): In this experiment, instead of 
using the default skills, we group the skill tags provided 
by the learning system into coarser-grained domains de-
fined by the Common Core Standards [6].  We derive 
domain information from the nomenclature used within 
the standards (e.g., exponential functions, quadratic 
equations, and two-dimensional shapes). This reduced 
the 2237 skills to 24 domains.  

3) Experiment #3 (No-Skill): In this experiment, we disre-
gard the skill tags entirely and instead treat all problems 
as a single skill. As discussed above, DKVMN will then 
find a latent mapping of skills to the problems on its own. 

We repeat these three experiments for three data setups: 1) with all 
content, 2) classic content only, and 3) new content only. In the last 
two settings, we separate the training and testing data to only in-
clude new content or classic content since we have some evidence 
that data for these two types of content is qualitatively different (see 
discussion in Section 2.2).  

5. RESULTS 
Table 2 presents the results of our experiments. Here we summarize 
our observations: 

1) Experiment #1 (Default-Skills): We observe that includ-
ing the system-provided skills in the training of the 
DKVMN model leads to the worst performance in all 
three cases (all content, classic content, new content). For 
all content and classic content models, the model perfor-
mance as measured by cross-validated AUC ROC is 
between 0.5 and 0.6 (0.564 and 0.532), relatively modest 
improvements on chance and much lower than is typi-
cally seen for DKVMN (e.g. [25, 33]). 

2) Experiment #2 (Domains): When the system-provided 
skills are grouped into coarser-grained domain mappings, 
we observe a big improvement in DKVMN’s perfor-
mance. For example, there is a 0.206 increase in AUC 
when the model trained on all content uses the domain 
tags instead of skill tags (0.770 vs. 0.564). Similarly, 
there is a big increase in AUC of 0.233 for the model 
trained on new content (0.900 vs. 667). However, there 
is a relatively smaller increase in AUC of 0.084 for the 
model trained on classic content (0.616 vs. 0.532). 

3) Experiment #3 (No-Skill): Finally, disregarding the skills 
entirely leads to the best performance in all three cases: 
0.821 for all content, a still relatively unimpressive 0.634 
for classic content, and 0.920 for new content.   

4) If we compare the results of the DKVMN models sepa-
rately for the new and classic content, we observe that the 
model trained only on new content perform much better 
than models trained only on classic content (e.g, 0.667 
vs. 0.532 with default skills and 0.920 vs. 0.634 with no 
skills) 

Table 2. Average AUC of DKVMN models across 10-fold cross-
validation for the four experiments conducted using default 
skills (#1), domains (#2), no skills (#3), and for new and classic 
content separately. 

Content Type Default-Skills 
(exp #1) 

Domains 
(exp #2) 

No-Skill 
(exp #3) 

All content 0.564 0.770 0.821 

Classic con-
tent only 

0.532 0.616 0.634 

New content 
only 

0.667 0.900 0.920 

 

Overall, we also see that the DKVMN model trained without the 
skill information on all content (0.821) or new content (0.920) has 
a comparable or better performance than the best-performing mod-
els reported on some benchmark datasets (0.827 for Synthetic-5, 
0.816 for ASSISTments2009, 0.727 for ASSISTments2015, 0.828 
for Statics2011; [33]). With the exception of ASSISTments2015 
dataset, the best performing models for the other three datasets have 
achieved AUCs between 0.80 and 0.83. Our best-performing model 
for all content combined (0.821) is comparable to the performance 
of the best models on these benchmark datasets. The best model 
trained only on new content has higher performance (0.920) than 
the best models on benchmark datasets. However, the best model 
for the classic content has much lower performance (0.634) than 
previous uses of DKVMN.  

6. DISCUSSION 
Knowledge tracing models are often used in learning systems to 
estimate students’ knowledge of a skill. In some cases, this is oper-
ationally defined as simply predicting whether or not a student will 
get the next problem (or a specific problem) right. Accordingly, 
considerable amount of research has focused on developing effi-
cient algorithms for knowledge tracing. However, in practice, many 
real-world learning systems used at scale are difficult to implement 
knowledge tracing for, especially if the system or content was not 
originally designed for use with a skill model. The key challenge is 
to accurately label existing items with skills, which often turns out 
to be a herculean task (Section 1). Little research has explored ways 
to address this practical constraint limiting the use of knowledge 
tracing models at scale. In this paper, we investigate whether an 
increasingly popular approach to knowledge tracing, the use of neu-
ral network models, can be a partial solution to this problem. 

Our analysis investigates the use of a neural network-based KT 
model (DKVMN) that doesn’t require skill tags (and can even au-
tomatically assign its own skill tags) to bypass the step of 
retrofitting content with skills. We conduct a case study of a com-
mercial math blended learning system which has a potentially 
unreliable and/or inconsistent skill tagging, due to the content and 
skill tags being developed by different teams over time (Section 
2.2). We collected data from 6th-8th grade students’ system usage 
over two years within 19 schools across Texas. We compare the 
performance of DKVMN in three scenarios: 1) with the potentially 
unreliable default system-provided skill tags, 2) with coarser-
grained domain tags based on state standards, and 3) without input-
ting any mappings between content and skills. We also investigate 
differences in predictive performance for two disparate content 
types in the system: classic content (multiple choice, with scaf-
folds) and new content (more interactive, open-response, with no 
scaffolds).  

Our results suggest that including the system-provided default 
skills in the training of the DKVMN model leads to the worst per-
formance at predicting future student performance within the 
learning system. The AUC ROC for this case is much lower than 
what is typically seen for DKVMN. Big improvements in perfor-
mance are observed when the system-provided skills are grouped 



into coarser-grained domain mappings. However, the best perfor-
mance is obtained when the skills are entirely disregarded. To our 
surprise, there is a noticeable difference in the improvement be-
tween the classic and new content, with relatively smaller increase 
in AUC for the model trained on classic content.  

6.1 Implications 
The objective of our investigations was to explore the possibility of 
bypassing the herculean task of item-skill tagging (KC model) for 
real-world learning systems which were not originally designed to 
work with KT models. Our results provide some support to this 
possibility, especially if the goal is only to predict the performance 
of a student on future items. For example, if a KT model is being 
developed for a system for optimal next problem selection, using a 
neural network-based model like DKVMN and ignoring the skill 
tags may be more effective than using unreliable system-provided 
skills.  

However, our results were not consistent across all content, sug-
gesting that this approach may not be sufficient for all legacy 
content. Despite using DKVMN, the best model for classic content 
still achieves an AUC that is much lower than is typically seen for 
neural network-based KT models. Therefore, careful consideration 
is needed before making the decision on deploying such a model to 
make real-time decisions on what content the student will see next. 
In comparison, the DKVMN model trained on new content without 
any skill information is at par with the best models on benchmark 
KT datasets. It is difficult at this point to explain why DKVMN was 
so much more successful for new content than for classic content. 
There is no obvious reason why either of the two clear attributes of 
the older content – scaffolding problems and the use of multiple-
choice – would lead to poorer prediction by DKVMN, given the 
past successful use of DKVMN and related algorithms on content 
with these attributes. 

Though these findings suggest that DKVMN may be useful for leg-
acy systems with unreliable or inconsistent skill tags, it is important 
to keep a few things in mind before assuming that these findings 
will apply to other contexts. First, this is a case study of one com-
mercial learning system. These results need to be replicated in other 
content types, system design, subject matters, student de-
mographics, etc. We have made the code public at (redacted for 
review) to aid replication. Second, a better performing model may 
still not necessarily serve all student subgroups equitably. Before 
actually applying an algorithm, it is necessary to investigate it for 
potential biases that could lead to discriminatory behaviors. In this 
case, a biased KT model could deliver content below a student’s 
actual skill level more often for students from certain subgroups, 
leading to missed learning opportunities. Since neural network 
models are prone to overfitting due to their complex decision 
boundaries, it is particularly important to investigate whether a 
model like DKVMN generalizes less well for students who are un-
represented in the training data. For instance, it may be that a neural 
network model captures complex interrelationships between skills 
that only occur in students with specific past curricular experiences. 

6.2 Limitations and Future Work 
There are a few limitations to the analysis conducted in this paper. 
First, since the learning system itself made pedagogical decisions 
based on a knowledge tracing model using unreliable skill tags, the 
problems it gave students were probably not always appropriately 
chosen. As such, the data may not represent students participating 
in mastery learning (although this is also true of the data sets used 
to initially train KT for mastery learning in other commercial sys-
tems). Second, we chose to explore DKVMN because it has 

generally been reported to be successful, and generates its own skill 
mapping. A more comprehensive comparison between other neural 
network-based models could be helpful in understanding whether 
other algorithms can perform better for the old content. Lastly, be-
fore disregarding non-neural network-based KT models for the case 
discussed in this paper, it may be worth comparing these results 
with newer extensions proposed for classic KT models. For exam-
ple, future work could explore BKT variants that include skill 
refitting (cf. [12]). 

Future work also may be able to shed more light on the contexts 
where this approach does and does not work. For instance, why is 
there a noticeable difference in the improvement between the clas-
sic and new content with relatively smaller increase in AUC for the 
model trained on classic content? Exploring answers to this ques-
tion may help identify cases where this approach may be more 
efficient than others and identify ways to improve it. 

Finally, like most neural network models, DKVMN lacks easy in-
terpretation. This could make it harder for instructors to trust its 
recommendations and hard to troubleshoot. A potential solution is 
to interpret the output of the DKVMN model. Considering that 
DKVMN creates its own internal tag-concept mapping, this study’s 
results suggest that it may be worth studying those mappings in 
greater detail. Since the no-skill model outperformed the default-
skill model to such a degree in this dataset, it is likely that 
DKVMN’s distilled concepts represent accurate relationships be-
tween the problems in the data. Zhang and colleagues [33] mention 
the possibility of using DKVMN for concept discovery, but most 
subsequent work on the algorithm has instead focused on its pre-
dictive accuracy (but see [10], who discuss interpretability). 
Additional research on DKVMN’s process of concept discovery 
could not only improve its interpretability but potentially also allow 
for better automated skill tagging and more accurate student skill 
level estimation. 
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