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ABSTRACT
How can we test whether state-of-the-art generative models,
such as Blender and GPT-3, are good AI teachers, capable
of replying to a student in an educational dialogue? Design-
ing an AI teacher test is challenging: although evaluation
methods are much-needed, there is no off-the-shelf solution
to measuring pedagogical ability. This paper reports on a
first attempt at an AI teacher test. We built a solution
around the insight that you can run conversational agents
in parallel to human teachers in real-world dialogues, sim-
ulate how different agents would respond to a student, and
compare these counterpart responses in terms of three abil-
ities: speak like a teacher, understand a student, help a stu-
dent. Our method builds on the reliability of comparative
judgments in education and uses a probabilistic model and
Bayesian sampling to infer estimates of pedagogical ability.
We find that, even though conversational agents (Blender in
particular) perform well on conversational uptake, they are
quantifiably worse than real teachers on several pedagogical
dimensions, especially with regard to helpfulness (Blender:
∆ ability = −0.75; GPT-3: ∆ability = −0.93).
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1. INTRODUCTION
Conversational agents (or chatbots) offer promising oppor-
tunities for education. They can fulfill various roles (such as
intelligent tutors and service-oriented assistants) and pursue
different objectives (e.g., improving student skills, boosting
student motivation, and increasing instructional efficiency)
[20]. Among all of these different vocations of an educational
chatbot, the most prevalent one is the AI teacher helping
a student with skill improvement and providing more op-
portunities to practice. Some recent meta-analyses have
even reported a significant effect of chatbots on skill im-

provement, for example in language learning [1]. What is
more, current advances in AI and natural language process-
ing have led to the development of conversational agents that
are founded on more powerful generative language models.
Blender [17], for instance, is a state-of-the-art open-domain
chatbot trained to blend skills such as being empathetic and
knowledgeable [18], which are undeniably important char-
acteristics of a good AI teacher. Furthermore, the current
state-of-the-art in natural language generation is GPT-3 [4],
a 175B-parameter model that is able to multitask different
language generation skills (such as conversation). The as-
tonishing power of GPT-3 is that it can perform these skills
with few-shot in-context learning, merely from seeing a short
prompt describing the task at hand (e.g., The following is a
conversation with an AI assistant.). Emergent models such
as GPT-3 have been described as foundation models since
they serve as the “common basis from which many task-
specific models are built via adaptation” [2, p.7].

Despite these promising opportunities, the use of powerful
generative models as a foundation for downstream tasks also
presents several crucial challenges. In the educational do-
main in particular, it is important to ascertain whether that
foundation is solid or flimsy. Bommasani et al. [2, pp.67-72]
stressed that, if we want to put these models into practice as
AI teachers, it is imperative to determine whether they can
(a) speak to students like a teacher, (b) understand students,
and (c) help students improve their understanding. Conse-
quently, there is a critical need to establish good evaluation
methods of AI teachers. This is a hard problem because
there is no off-the-shelf and universal solution to measuring
teaching ability and effectiveness.

Therefore, we took on the challenge of designing an AI
teacher test and conducted a pilot study. We ran Blender
and GPT-3 in parallel to human teachers in language and
mathematics educational dialogues, observed how they re-
sponded to a student, and compared these counterpart re-
sponses in terms of pedagogical ability. The major contri-
butions of this work are as follows:

1. We pose the AI Teacher Test Challenge.

2. We implement a human-in-the-loop pairwise compari-
son test as a first attempt at an AI Teacher Test.

3. Our results show quantitatively how far conversational
agents, particularly Blender and GPT-3, are behind
human teachers in terms of pedagogical ability, despite
them performing well on conversational uptake.
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Our solution has several strengths: (1) it leverages the
proven reliability of comparative judgments in education
[10, 12], (2) it incorporates a Bayesian sampling method that
allows us to attribute an ability score to a teacher response,
whilst ensuring normality and providing a belief in our es-
timates, and (3) it produces scores and ranks that could be
used to develop autonomous methods. We open-source our
work, code, and data.1

2. THE AI TEACHER TEST CHALLENGE
Consider the following scenario, which is illustrated in Fig-
ure 1. Two agents, a student and a teacher, are interacting
in an educational setting. The student is working to improve
a specific skill (e.g., the use of phrasal verbs) in a given do-
main (e.g., English language). The teacher could be either
a human agent or an artificial agent who is helping the stu-
dent with improving this skill. The student and teacher
each take turns, resulting in a sequence of student-teacher
dialogic pairs. This student-teacher dialogue is open-ended:
for a given student utterance, there exists a variety of ways
in which we could imagine a teacher agent to respond. For
example, Figure 1 shows three possible replies to a student
utterance: the actual teacher’s response and two comple-
tions that were automatically generated from a state-of-the-
art language model. It is clear to see that, in the space of
possible replies, not all responses will be equally preferable.
Some responses may be more characteristic of a teacher,
some may be taking up more from the student’s utterance,
and some may be more helpful. In this scenario, we are in-
terested in the following challenge: given a space of possible
responses (either human or artificially generated), evaluate a
reply in terms of pedagogical ability and estimate this score
relative to other replies.

2.1 Desiderata
We think that a good AI teacher test should at least account
for the following aspects. Firstly, the test should be able to
evaluate a teacher agent’s response in context. At minimum,
the test should consider the preceding student utterance.
Additionally, the test could also take into consideration the
entire preceding dialogue and surrounding educational set-
ting. Secondly, the test should be able to score the agent’s
response with respect to several pedagogical abilities. Fol-
lowing Bommasani et al. [2, pp.67-72], we believe that the
test should consider the following three abilities: whether
the agent can speak like a teacher, understand the student,
and help the student. Finally, the test should also be able to
consider other possibilities (which may be better or worse)
and rank the teacher’s response in comparison to these. In
this way, the test could also be used to suggest one or more
ways in which a response could be enhanced in terms of the
three abilities listed above.

Unfortunately, standard methods of evaluating automati-
cally generated language and conversational agents do not
meet our desiderata. Perplexity, for example, measures how
well a generative model is able to sample a given response
from its probability distribution. However, it does not con-
sider the preceding utterance (desideratum #1). Other met-
rics such as BLEU and F1 score measure the n-gram overlap
between a generated response and a correct response. By

1https://github.com/anaistack/ai-teacher-test
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Figure 1: Illustration of the AI Teacher Test Challenge: Esti-
mates of Pedagogical Ability and Rankings of Human and AI
Teachers Replying to a Student in an Educational Dialogue

contrast, our test is open-ended (see above) and does not
presuppose the existence of a correct response. Recently,
Pillutla et al. [15] introduced MAUVE, an evaluation met-
ric for open-ended language generation. Because this metric
uses the Kullback–Leibler divergence, it cannot be used to
compare two specific language utterances (desideratum #3).
Most importantly, none of these methods meet our second
desideratum, which is to score an agent’s response with re-
spect to several pedagogical abilities.

2.2 Related Work
We can gain insight into measuring pedagogical ability from
prior work into assessing human teachers. Educational re-
search is abundant in methods for evaluating teacher effec-
tiveness, ranging from teacher self-reports and interviews
to classroom observations, student evaluation surveys, and
tests of student achievement [9, 14]. However, not all of
these methods seem easily applicable to assessing AI teach-
ers. It is obvious that evaluating AI teacher effectiveness
from self-reports and interviews would be a difficult thing
to do. We could, however, resort to systematic observations
of AI teachers, human evaluation surveys, and measures of
student outcome.

Other studies have focused on the possibility of measuring
ability in teacher language. Demszky et al. [6], for instance,
examined several ways of determining how well a teacher
replies to a student in student-teacher interactions. Their
data comprised 2,246 student-teacher dialogic pairs taken
from the National Center for Teacher Effectiveness Main
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Study (NCTE)2, a three-year long observation of mathe-
matics instruction. First, they collected human evaluations
of conversational uptake, a measure of how well the teacher’s
reply expanded on the student’s utterance (e.g., by acknowl-
edging, reformulating, elaborating), as illustrated below.

Student: Seven plus seven is fourteen.
Teacher: Okay, so you doubled. You did your doubles

first. Okay. Fourteen plus eight?
(Uptake = high)

Besides human evaluations of uptake, Demszky et al. [6] also
developed an automated method that could predict uptake
as a next-utterance classification task. They fine-tuned a
BERT language model [7] and found a significant correlation
(ρ = .54) with human evaluations.

This automated measure of conversational uptake can serve
as a solid baseline for our study. First, the next-utterance
classification predicts uptake based on the preceding student
utterance and, therefore, meets our first desideratum. Sec-
ond, conversational uptake also somehow measures whether
a speaker understands the interlocutor. If a teacher’s re-
sponse strongly expands on the student’s utterance (i.e.,
high uptake), it can be deduced that the teacher was able
to understand the student. As such, it measures one of the
three pedagogical abilities targeted in our second desidera-
tum. Finally, because we can run the predictive model on
different responses to the same student utterance and com-
pare these responses in terms of uptake, the measure meets
our third and final desideratum.

3. OUR AI TEACHER TEST
As a possible solution to the AI teacher challenge described
in Section 2, we adopted the following method. First, we
ran Blender and GPT-3 on real-world educational dialogues
and simulated responses to student utterances. We then
paid human raters to compare pairs of responses on several
different pedagogical dimensions. Finally, we ran a proba-
bilistic model to compute aggregate scores. In addition, we
also ran the model developed by Demszky et al. [6] on our
data in order to compare our scores to predictions of uptake.

3.1 Student-Teacher Dialogues

Table 1: Datasets of Student-Teacher Interactions
Domain Dataset Dialogues Dialogic Pairs
Language TSCC [5] 102 4439
Mathematics Uptake [6] 0 2246

The two datasets used in this study are listed in Table 1. The
Educational Uptake Dataset compiled by Demszky et al.
[6] includes 2,246 dialogic pairs sampled from the NCTE
transcripts (see Section 2.2). The complete dialogue tran-
scripts, however, have not yet been made available. The
Teacher-Student Chatroom Corpus (TSCC) compiled by
Caines et al. [5] includes 102 anonymized student-teacher di-
alogues in second language education. Each chatroom is a
lesson where a teacher converses with a student in order to
work on a language exercise and assess the student’s English

2https://doi.org/10.3886/ICPSR36095.v3

language proficiency. The corpus includes 13,215 turns and
130 turns on average per dialogue. Each utterance is anno-
tated with several metadata, including conversational orga-
nization (e.g., opening, closing, eliciting, scaffolding, and re-
vision) and teaching focus (e.g., vocabulary). Figure 1 shows
an example excerpt of a teacher’s eliciting, scaffolding, and
revision. It should be noted, however, that the TSCC di-
alogues include many consecutive utterances by either the
student or the teacher. Therefore, the data were slightly
adapted for this study: all successive utterances by the same
speaker were concatenated into one turn such that each con-
versation was composed of alternating dialogic pairs. As a
result, the data included 4,439 student-teacher pairs.

3.2 Simulating Agent Responses
For each dialogic pair in the student-teacher dialogues, we
automatically generated AI teacher responses. We used the
ParlAI framework [13] to load the student-teacher dialogues,
to generate responses to each student utterance, and to com-
pute several standard evaluation metrics. In this study, we
focused on two models. We ran several Blender models
(90M, 400M, 3B, 9B parameters) on the language (TSCC)
and mathematics (Uptake) educational dialogues. We im-
plemented a new agent that made requests to the OpenAI
API in order to obtain generated responses for each stu-
dent utterance. Each request included a mandatory prompt
with instructions for GPT-3 (The following is a conversation
with a teacher. The teacher is polite, helpful, professional,
on topic, and factually correct.), the preceding dialogue his-
tory (restricted to meet the maximum number of tokens per
request), and the student’s utterance. We obtained comple-
tions from the smallest (Ada) and largest (Davinci) models.

3.3 Measuring Pedagogical Ability
After collecting AI teacher responses in educational dia-
logues, we collected evaluations of pedagogical ability via an
online survey. First, participants were given a short intro-
duction and a consent form. Then, participants were given
the same example to familiarize themselves with the task
at hand. In the following comparative judgment task (Fig-
ure 2), 15 items were randomly and evenly selected from a
pool of relevant items. Each item had three components:
a dialogue context (limited to 100 tokens), one comparison
of two teacher replies, and three questions targeting a ped-
agogical ability (speak like a teacher, understand the stu-
dent, and help the student). For each participant, one pair-
wise comparison was randomly selected from three possible
combinations (Teacher vs. Blender, Teacher vs. GPT-3, or
Blender vs. GPT-3) and the order of the comparative pair
was randomly shuffled.

Item Selection. A crucial challenge in the evaluation pro-
cess was to pinpoint those teacher utterances that were im-
portant to evaluate. In the student-teacher dialogues de-
scribed in Section 3.1, not all teacher utterances were nec-
essarily relevant. In fact, many conversational turns were
not pertaining to any educational goal, such as opening se-
quences, closing sequences, and other chit-chat. From the
6,685 eligible dialogic pairs, only those utterances were se-
lected where the teacher was actually eliciting and scaffold-
ing the student’s understanding. Additionally, short utter-
ances that comprised of single words or sentence fragments
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Figure 2: Screenshot of the Comparative Judgment Task

(e.g., Perfect!, Yay! ) were also excluded.3 Furthermore,
the results of a pilot study with eight evaluators highlighted
that the dialogic pairs taken from the Uptake dataset were
difficult to evaluate because there was no informative con-
text. Consequently, we focused only on the TSCC dataset
for the comparative judgment task, carefully screened the
corpus for relevant items and informative dialogue contexts,
and ended up with a sample of 52 items.

Participants. We recruited a sample of 120 participants
from Prolific Academic, a crowdsourcing platform developed
at Oxford University. Participants were prescreened to en-
sure a balanced gender representation (50% female, 50%
male). Study participants were aged 19 to 66 (M = 33,
SD = 11.3; female: M = 32.4, SD = 10.9; male: M = 33.5,
SD = 11.7) and resided in the United Kingdom (n = 86)
or the United States (n = 34). On average, participants
had an excellent Prolific score of 99.2% (SD = 1.4; female:
M = 99.1, SD = 1.6; male: M = 99.3, SD = 1.3) and
took 18 minutes to complete the survey (SD = 11.2; fe-
male: M = 18.9, SD = 11.1; male: M = 17.3, SD = 11.4).
Because the tasks required a fair amount of cognitive in-
volvement (reading the dialogue, reading different replies,
comparing different options), we estimated that the survey
would take about 30 minutes. We then used the default pay-
ment rate of £7.50/h. Participants were paid according to
estimated study completion time (£3.75 for 30 minutes).

Agreement. There was a high observed agreement be-
tween evaluators on the example given before the compara-
tive judgment task (Figure 2). Most agreed that option A
(the true teacher response) was more likely said by a teacher
(95%), understanding the student more (83%), and helping
the student more (86%).

3It should be noted that this exclusion criterion did not ap-
ply to the generated responses. As shown in Figure 1, some
generated responses comprised of single words or sentence
fragments (e.g., yes! ). Although this could be seen as giv-
ing an advantage to the teacher responses, it was only meant
to focus our test on more expressive teacher language. In
a future study, we might try to capture the full range of
teacher language, from single words to complex utterances.

Outlier Detection. To detect potential outliers among the
evaluators, we identified those who consistently chose op-
tion A or B in the paired comparisons. This first-position
(or “home-field” advantage) effect was detected by estimat-
ing an intercept parameter α0 in the model described be-
low. However, instead of estimating different α parameters
for each teacher response (combining the scores of all eval-
uators), we reversed the method and computed different α
parameters for each evaluator (combining the scores for all
items evaluated by the evaluator). Evaluators were excluded
when the credible interval around the intercept was above or
below zero, which indicated that they were biased towards
selecting either option A (CI above zero) or option B (CI be-
low zero). Based on this outlier detection method, the data
from seven evaluators were removed. The remaining data
included 4,782 comparisons from 113 evaluators and 10.9
evaluations on average for each pair (Teacher vs. Blender,
Teacher vs. GPT-3, or Blender vs. GPT-3).

Bayesian Bradley-Terry Model. A Bradley-Terry model
[3] is a probabilistic model that predicts the outcome of one
or more pairwise comparisons. Consider n items (i.e, a stu-
dent utterance and preceding dialogue), a set of t possible
responses (i.e., Teacher, Blender, GPT-3) to each item, and
a set of m abilities (i.e., speak like a teacher, understand
the student, help the student). For each item l ∈ [n] and
for each ability k ∈ [m], we inferred a latent parameter αikl

for each possible teacher response i ∈ [t]. The outcome
yijkl was an independent Bernoulli variable with a param-
eter pijkl ∈ [0, 1] measuring the chance that, for an item
l and an ability k, teacher response i would be preferred
over teacher response j, for all i, j ∈ [t] and i ̸= j. This
probability was defined as

pijkl := σ (αikl − αjkl) ⇒ log
pijkl

1− pijkl
= αikl − αjkl (1)

where σ is the logistic function σ(x) = 1
1+e−x and αi, αj

are the latent parameters that measure the strengths of i
and j respectively. In case of ties (the I cannot tell option),
the outcome was picked uniformly at random. We used an
extended version of the basic Bradley-Terry model including
an intercept parameter α0 ∈ R, which measures a “home-
field” advantage.

pijkl := σ(α0kl + αikl − αjkl) (2)

If α0 > 0, there was a greater chance that the evaluator
would pick the first element in the comparison. If α0 = 0,
there was no order effect. To infer the latent parameters
α⃗kl = (α0kl, ..., αtkl), we adopted a Bayesian approach by
drawing samples from the posterior p(α|y) ∝ p(y|α)p(α)
with a non-conjugate prior distribution, α ∼ N (0, 1). We
used Stan [19, 16] to compute posterior means and 95% HDI
(Highest Density Interval) credible intervals from 4,000 sim-
ulations using Hamiltonian Monte Carlo (HMC) sampling
[8] and the NUTS (No-U-Turn Sampler) algorithm [11]. For
each simulation, the estimated ability parameters were used
to rank each response on each item and for each ability.

4. RESULTS
4.1 Baseline: Conversational Uptake
We start our analyses with a comparison of conversational
uptake in human and AI teacher responses, for the two
student-teacher dialogue datasets presented in Section 3.1.



Figure 3: Predicted Uptake of Human and AI Teacher Re-
sponses in Language and Math Educational Dialogues

Figure 4: Associations Between Generative Performance
(Model Perplexity, F1 Unigram Overlap) and True Teacher
Uptake (Z-Score) in Mathematics Educational Dialogues

Figure 3 shows the predicted uptake for the smallest and
largest Blender and GPT-3 models, compared to the ac-
tual teacher’s responses. The results show that the largest
Blender model (with 9B parameters) outperformed all others
for both the language (TSCC) and mathematics (Uptake)
educational dialogues. This suggests that Blender tended to
generate better next utterances to student utterances.

Figure 4 zooms in on the AI teacher responses in the math-
ematics educational dialogues. Several correlation analy-
ses were run to examine the association between generative
performance (perplexity and F1 score) and the human an-
notations of teacher uptake collected by Demszky et al. [6].
Perplexity (lower is better) indicates how well the model
can generate a linguistic utterance from its probability dis-
tribution, whereas F1 score (higher is better) indicates the
unigram overlap between the generated response and the
teacher’s response. There was a negative, statistically sig-
nificant, and large correlation between model perplexity and
true teacher uptake, as measured by Pearson’s product-
moment correlation coefficient, r = −0.31, 95% CI [-0.34,
-0.26], t(1996) = −14.32, p < .001. Similarly, there was
a positive, statistically significant, and small correlation be-
tween F1 unigram overlap and true teacher uptake, r = 0.16,
95% CI [0.12, 0.20], t(1996) = 7.35, p < .001. In other
words, Blender tended to generate better responses in cases
where the actual teacher was also judged to have given a
better response (more uptake). Moreover, this association

Figure 5: Bayesian Estimates and Rankings of Pedagogical
Ability in Replying to a Student in an Educational Dialogue,
Compared to Predictions of Conversational Uptake

between generative performance and teacher uptake was ob-
served for all Blender and GPT-3 models (see Figure 4).
These findings suggest that some student utterances may be
simply easier to reply to, for both human and AI teachers.

4.2 Our Test: Pedagogical Ability
We now focus all following analyses on the selection of
teacher responses that were compared in terms of peda-
gogical ability. Figure 5 shows a boxplot of the expected
values of α (and associated rankings) for each possible re-
sponse to a student utterance on the three pedagogical di-
mensions. The figure also compares these scores to predic-
tions of conversational uptake. In terms of conversational
uptake, the results showed no significant differences between
human and AI teachers, as indicated by the overlapping
notches in the boxplot. In terms of pedagogical ability, how-
ever, a one-way ANOVA revealed a statistically significant
difference between human teachers and AI teachers on the
three dimensions cited above, F (2, 144) = 13.1, p < .001,
F (2, 144) = 11.8, p < .001, F (2, 144) = 22.3, p < .001, re-
spectively.4 Tukey’s HSD post hoc test for multiple compar-
isons showed that, compared to the actual teacher, the mean

4A Shapiro-Wilk test showed that the assumption of nor-
mality was not violated for any of the three pedagogical



Table 2: Pearson Correlations Between Uptake and Ability

r t df p
likely said by a teacher .35 3.47 85 <.001
understanding the student .38 3.82 85 <.001
helping the student .33 3.27 85 .002

Table 3: Percentage of Replies with a Positive Ability or
where the 95% CI Excludes Zero (Either Above or Below)

Agent Ability α > 0 0 ̸∈ CI
Teacher speak like a teacher 69% 8%
Teacher understand the student 71% 6%
Teacher help the student 78% 14%
Blender 9B speak like a teacher 41% 6%
Blender 9B understand the student 45% 10%
Blender 9B help the student 35% 8%
GPT-3 Dav. speak like a teacher 35% 6%
GPT-3 Dav. understand the student 35% 2%
GPT-3 Dav. help the student 33% 12%

ability of Blender was significantly lower for speaking like a
teacher (∆alpha = −0.60, [95CI −0.93, −0.26], p < .001),
understanding the student (∆alpha = −0.55, [95CI −0.90,
−0.20], p < .001), and helping the student (∆alpha =
−0.75, [95CI −1.10, −0.40], p < .001). Similarly, compared
to the actual teacher, the mean ability of GPT-3 was signif-
icantly lower for speaking like a teacher (∆alpha = −0.67,
[95CI −1.00, −0.33], p < .001), understanding the student
(∆alpha = −0.67, [95CI −1.02, −0.32], p < .001), and
helping the student (∆alpha = −0.93, [95CI −1.28, −0.58],
p < .001). As for Blender and GPT-3, there was no statisti-
cally significant difference between the two when it came to
speaking like a teacher (∆alpha = 0.071, p = .41). Overall,
Blender seemed better at understanding (∆alpha = +0.12)
and helping (∆alpha = +0.18) the student but these differ-
ences were not significant (p = .47, p = .53, respectively).

Table 2 shows that our estimates of pedagogical ability were
significantly correlated with conversational uptake. Inter-
estingly, the highest correlation was observed for the ability
of understanding the student. This result was not surpris-
ing: as previously noted in Section 2.2, uptake also somehow
measures whether a speaker understands the interlocutor.

Finally, we examined the pedagogical ability of human and
AI teachers on a per-item basis. Table 3 shows the per-
centage of teacher replies for which the expected value of
α was positive. For 69-78% of dialogue contexts, the ac-
tual teacher’s response was positively evaluated and, there-
fore, highly ranked. For helpfulness in particular, 78% of
human teacher responses were positively evaluated. There
was also a higher percentage (14%) of certainty in the esti-
mates of helpfulness. Nevertheless, there were many cases
(22-31% of dialogue contexts) where the actual teacher’s re-
sponse was negatively evaluated as well as cases (33-45%)
where artificially generated responses were positively eval-
uated. The following example illustrates a case where the
response generated by Blender was largely preferred over the

dimensions, W = 0.99, p = 0.76, W = 0.99, p = 0.19,
W = 0.99, p = 0.15, respectively.

actual teacher’s response.

Teacher: People are looking forward to it = there is
a lot of . . . ?

Student: excitement
#1 Blender: Excitement is a good one! People are very

excited about it. Do you have any more?
- likely said by a teacher = 1.52
- understanding the student = 1.32
- helping the student = 1.52

#2 Teacher: ok good! Coronavirus has caused a lot of
. . . among the population.
- likely said by a teacher = -0.90
- understanding the student = -0.57
- helping the student = -0.61

#3 GPT-3: excitement about the next World Cup. . .
- likely said by a teacher = -0.61
- understanding the student = -0.60
- helping the student = -0.90

5. CONCLUDING DISCUSSION
How well are state-of-the-art conversational agents, such as
Blender and GPT-3, capable of replying to a student in an
educational dialogue? When it comes to uptaking from and
expanding on a student’s utterance, Blender comes out on
top, outperforming the actual teacher and GPT-3. Based
on the results of our AI teacher test, we come to similar
conclusions. Although our test does not corroborate that
Blender can actually outperform a human teacher, there is
nevertheless a closer gap with human performance when it
comes to understanding the student. Blender scores notice-
ably better on this specific pedagogical dimension, with a
higher percentage of positively evaluated responses. These
findings may be attributed to Blender’s particular training
objective, namely blended skill talk. By learning to be more
empathetic, Blender might be incidentally learning to take
up more from and be more understanding of its interlocutor.
By contrast, the results of our AI teacher test show that
GPT-3 performs quantifiably worse than Blender and sig-
nificantly worse than real teachers on all measured abilities,
despite its proven capacity for few-shot in-context learning.
What is more, both Blender and GPT-3 are well behind
human performance when it comes to helping the student.

A secondary finding of our AI teacher test is that not all hu-
man teacher responses are necessarily positively evaluated.
Even though the AI teacher responses generally fall short
regarding pedagogical ability, we could still leverage gener-
ated responses as a means of sampling and recommending
potentially better responses.

The solution proposed in this paper is surely not a perfect
test, but it is a first step towards building much-needed eval-
uation methods.
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