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ABSTRACT 
Automatic speech recognition (ASR) has considerable potential to 
model aspects of classroom discourse with the goals of automated 
assessment, feedback, and instructional support. However, 
modeling student talk is besieged by numerous challenges 
including a lack of data for child speech, low signal to noise ratio, 
speech disfluencies, and multiparty chatter. This raises the question 
as to whether contemporary ASR systems, which are benchmarked 
on adult speech in idealized conditions, can be used to transcribe 
child speech in classroom settings. To address this question, we 
collected a dataset of 32 audio recordings of 30 middle-school 
students engaged in small group work (dyads, triads and tetrads) in 
authentic classroom settings. The audio was sampled, segmented, 
and transcribed by humans as well as three ASR engines (Google, 
Rev.ai, IBM Watson). Whereas all three ASRs had high word error 
rates, these mainly consisted of deletion errors. Further, Google 
successfully transcribed a greater proportion of utterances than the 
other two, but with more word substitutions; insertions were low 
across the board. ASR accuracy was robust to different speakers 
and recording idiosyncrasies evidenced by <5% of variance in error 
rates attributable to the student and recording session. We found 
that ASR errors had a larger negative effect on downstream natural 
language processing tasks at the word, phrase, and semantic levels 
rather than at the discourse level. Our findings indicate that ASR 
can be used to extract meaningful information from noisy 
classroom speech and might be more suitable for applications that 
require higher precision but are tolerant of lower recall. 
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1. INTRODUCTION 
Students learn by telling and doing. Indeed, decades of educational 
research has converged on one (among several) perspectives of 
learning as a social and collaborative activity [8, 89, 97]. Effective 
collaborative learning (CL) activities give students the opportunity 
to work together towards a common goal, share their ideas and 

build upon the ideas of others, negotiate strategies, monitor 
execution of plans, and reflect on outcomes [17, 28, 33, 39, 72, 75]. 
Thus, the benefits of CL are manifested not only in the acquisition 
of domain knowledge [86], but also in the development of essential 
21st century skills such as collaborative problem solving and critical 
thinking [27, 29]. 

Despite a strong consensus on the value and merits of CL, its 
widespread implementation in contemporary classrooms is limited. 
A key factor limiting its adoption is that it is extremely challenging 
for teachers to effectively orchestrate rich CL activities in their 
classes. To support successful CL, teachers must monitor group 
progress on time-sensitive activities, provide guidance and help 
when students get stuck and risk disengagement, and ensure that 
students engage in productive knowledge-building conversations, 
all while ensuring that classroom norms for respectful discourse are 
maintained [71, 88]. To complicate things further, teachers must 
perform these demanding activities simultaneously across multiple 
(often 5-10) groups – a daunting assignment. Can intelligent 
systems, which unlike teachers, are able to be omnipresent across 
multiple student groups, enhance teachers’ ability to scaffold rich 
CL experiences for all their students? 

One exciting possibility is to design systems capable of natural 
language understanding (NLU) to support CL in student groups. 
Indeed, the linguistic content of discourse during CL is considered 
the “gold mine of information” on how students acquire knowledge 
and skills [32, 73]. However, despite an extensive body of research 
demonstrating the utility of other modalities (e.g., body movement, 
gesture, eye-gaze, paralinguistics, see review [62] for automatically 
analyzing collaboration, an automated approach for capturing, 
transcribing, and analyzing student speech during face-to-face CL 
in the classroom has yet to be developed. Most language-based 
approaches to date thereby rely on typed transcripts from chats (or 
human-transcribed speech) to analyze and support collaborative 
discourse [21, 30, 52, 76]. 

At the heart of this challenge lies an extremely difficult technical 
hurdle: using automatic speech recognition (ASR) to obtain 
accurate (or even serviceable) transcriptions of student discourse in 
noisy, real-world classrooms. This endeavor is complicated by 
multiple compounding challenges. Namely, with upwards of 20-30 
students in a typical US classroom [57] with multiple student 
groups simultaneously engaged in CL activities, speech signals are 
obfuscated by background chatter and ambient noise. In addition, 
ASR systems already have difficulty recognizing children’s speech 
(even in ideal, noise-free environments), as they tend to speak less 
clearly than adults [46]. In fact, even the basic acoustic 
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characteristics of children’s voices and language use [25, 46], differ 
from adults (on whose voices most ASR systems are trained), 
resulting in a degradation in performance when these systems are 
applied to children’s speech [70]. Multiparty speech recognition is 
another challenge for ASR [12, 65], where utterances - from an 
unknown number of unique speakers - may overlap, whereas ASR 
systems are generally trained on audio where speakers have already 
been separated.  

Despite these challenges, pursuing technologies capable of 
automatically capturing and analyzing student speech during face-
to-face CL in authentic school environments is an important avenue 
of research. These technologies have the potential to significantly 
improve orchestration and support of CL [73], whether by 
providing teachers with feedback on progress of student groups 
(e.g., via a teacher dashboard [87]), or enabling real-time 
interventions to guide groups of learners towards equitable and 
productive collaboration.  

In this paper we take a first step towards understanding the 
feasibility and challenges of automatically analyzing student 
speech in classrooms. Specifically, we investigate: (1) patterns of 
errors in widely used commercial ASR systems for transcribing 
student discourse in authentic collaborative learning settings; and 
(2) the influence of ASR errors on downstream natural language 
understanding tasks at the word, phrase, semantic, and discourse 
levels. In doing so, we take an important step towards deploying 
speech-based collaborative learning technologies in classrooms.  

1.1 Background and Related works 
There is a large body of research on analyzing student- and teacher- 
classroom discourse [10, 54], so to keep scope manageable we 
focus on the automatic analysis of student speech and classroom 
speech. 

1.1.1 Challenges with child speech recognition 
Speech recognition in children is a well-documented challenge, 
with recognition accuracy substantially lower for children's speech 
than adult's [25, 61, 74]. Yet, both commercially-available and 
research ASR systems are generally trained with clean audio data 
from adult speakers, with one speaker per utterance, and often 
reading from a script, which perform substantially worse on 
realistic, spontaneous speech [83]. These systems do not easily 
generalize to child speech where vocal characteristics such as 
higher fundamental and formant frequency and greater variability 
in pitch, and linguistic factors such as disfluency rate, differ 
between children and adults, as well as changing as children mature 
[25, 46]. In an analysis of Google, Bing and Nuance ASR systems, 
[70] found that age significantly impacted performance for all 
ASRs except Google. Further, accented speech of non-native 
speakers impacts ASR performance, as articulation and 
pronunciation differ from the training data [19]. The classroom 
setting provides an additional challenge. Howard et al. [34] 
reported that the typical classroom signal-to-noise ratios range from 
−7 dB to +5 dB, further impeding ASR [95]. Finally, microphone 
placement impacts recognition - the further the speaker from the 
microphone, the greater the impact of reverberation and other 
signal degradation on ASR [23, 56]. 

1.1.2 Child speech recognition in controlled 
learning environments 
Numerous educational applications which use ASR on children’s 
speech have been developed, albeit outside of the hustle and bustle 
of the classroom. One strand of research uses ASR as part of 
automatic reading tutors for young children learning to read aloud 

from text. Here, the reference (ground-truth) transcript is available 
in the form of reading materials, and by comparing this to the ASR 
output, pronunciation errors can be identified and fed back to the 
student or their teacher [3, 51, 60, 66]. Generally, these systems are 
used in a quiet environment such as a library [66], and in all cases 
are designed with the expectation that only a single speaker is 
reading at a time. Another application of ASR is in conversational 
tutors, where both speech recognition and language generation are 
combined in a real-time system. One example is My Science Tutor 
(MyST [92]) which supports one-on-one and small-group science 
learning [13]. The MyST ASR system was trained using a dataset 
of elementary school students, and achieves a word error rate 
(WER) of 0.30 (about 70% accuracy) on a reduced vocabulary of 
~6000 words. However tutoring sessions did not take place in the 
main classroom, and users wore a headset, both of which avoided 
some of the key challenges of classroom ASR. Online learning 
environments also simplify the collection of clean, speaker-
separated speech recordings, and several examples exist of 
automated analysis of student-teacher dialog starting from ASR 
transcripts [47, 94]. 

1.1.3 Automated analysis of teacher speech in the 
classroom 
Recent advances in ASR make the prospect of sufficiently accurate 
transcription of speech in the classroom a possibility. Most of the 
ASR literature focuses on adult speech, and this is mirrored in the 
availability of commercially available, cloud-based ASR APIs, (for 
examples, see [20] but see [15] for a child-tailored ASR service). 
As a result, most automated approaches have focused on analyzing 
teacher speech with varying degrees of automation including ASR-
only [9, 37, 38, 42, 81, 96], human transcripts [82], or a 
combination of both [7]. There are also differences in the depth of 
the construct being modeled. For example, Zylich and Whitehill 
[96] recently aimed to automatically detect 21 key phrases (e.g., 
“good job”) in teacher talk from audio, but stopped short of 
measuring pertinent discourse constructs. In contrast, Kelly et al. 
[42] and Jensen et al. [37, 38] developed fully automated 
approaches to model five features of discourse: questions (vs. 
statements), authentic (open-ended), instructional utterances, 
elaborated evaluations, cognitive level, goal specificity, and 
presence of disciplinary terms. 

One advantage of focusing on teachers is that it is easier to affix 
high-quality microphones on a single teacher than an entire 
classroom of students. For example, the Kelly and Jensen studies 
used a unidirectional, noise-canceling microphone with cardioid 
pickup pattern which is most sensitive to sounds from the front of 
the mic, thereby canceling background noise [37, 38, 42]. Despite 
a high-quality mic, classroom ASR is still challenging due to 
background noise, multidisciplinary chatter, dialectical variations, 
and so on. To this point, [5] and [18] compared several ASR 
engines for accuracy in transcribing teacher speech recorded in 
authentic classrooms.  These two studies tested 7 ASRs yielding 
word error rates ranging from .31 to 1.00.  

It is important that these studies are replicated due to the rapid 
advancement in ASR technologies each year. For example, using 
the same microphone and ASR engine on similar classroom data, 
Jensen et al. [37] obtained a major reduction in error (from 44% 
WER to 28%) in 2020 compared to Blanchard’s (2015) study [5]. 

1.1.4 Automated analysis of student speech in 
classrooms 
Examples of automated analysis of classroom audio focused on 
student speech are rare, as justified by the many acoustic and 



 

 

linguistic challenges inherent in the full pipeline from recording 
speech, to transcription in the context of overlapping, non-adult 
speakers in a noisy environment, to extracting meaning from 
language patterns of students still undergoing linguistic 
development. Nevertheless, several recent works have utilized non-
specialized commercial ASR services for child speech with 
promising results - demonstrating that ASR transcriptions can be 
used to derive useful downstream measures despite very high WER 
[64, 84]. 

To our knowledge, the only example where ASR is used to 
transcribe conversations among students as input to an NLP model 
is in the context of a collaborative problem solving (CPS) study 
conducted in both the classroom and lab [64]. Here, students aged 
12-15 participated in two CPS activities in math and physics. 
Participants wore headsets with microphones and completed the 
task (in dyads) over Zoom from a shared computer lab at the school, 
or for a subset of participants, in a laboratory. Captured speech was 
manually segmented into utterances, then transcribed using the 
IBM Watson speech-to-text service [36]. Performance degradation 
attributable to the classroom environment was evident, with a word 
error rate (WER) of 0.78 in the classroom, meaning only 22% of 
human-transcribed words were correctly transcribed, as compared 
to a WER of 0.54 for dyads recorded in the laboratory. 

ASR has also been used to capture classroom conversation in 
preschool children. Lileikyte et al. [48] used LENA’s wearable 
audio recorders, which are designed for capturing speech in young 
children, to train an ASR with custom acoustic and language 
models using data augmentation, obtaining a WER of 0.64 on 
spontaneous conversation in 2–5-year-old children. Using the same 
wearable devices in preschoolers, Tao et al. [84] ran audio through 
Google Cloud ASR [26] and used the transcripts to derive network 
representations of groups in social interactions based on word count 
vector similarity between utterances, though ASR accuracy is not 
reported. Further, the use of LENA is cost-prohibitive, with pricing 
in the thousands of dollars, which is infeasible at scale. 

Beyond these examples, speech analysis in the classroom is limited 
to extraction of non-linguistic (i.e., acoustic/prosodic) features, 
which nevertheless show promise for classification of discourse 
categories [6, 40, 91], speaker identification [84] and diarization to 
identify speaker turns [49, 53].  

1.1.5 Is perfect ASR needed? 
As reviewed above, ASR in the classroom is beset by many 
challenges, especially for analyzing student speech. However, the 
goal of many applications is not to obtain perfect transcripts of 
speech, but to use the transcripts for downstream NLU tasks 
relevant to education (e.g., assessment, feedback, intervention). 
Indeed previous research has indicated that useful information can 
be obtained from imperfect transcripts. Pugh et al. [64] found that 
using ASR instead of human transcripts led to only a 14% decrease 
in classifier performance (still significantly above chance) despite 
a WER of 0.78. Outside the classroom, Stewart et al. [78] reported 
a mere 4.2% decrease in accuracy for classifying collaborative 
skills using ASR versus human transcripts. Indeed, the question of 
robustness of models of team performance to simulated ASR errors 
was addressed by [22], with even a WER of 57% only decreasing 
classifier performance by 20% relative to perfect transcription. The 
authors suggest that the constrained, contextualized nature of 
conversation makes discourse-level NLP models robust to 
modifications of individual words. 

Of course, there is likely an upper limit to errors beyond which the 
signal to noise ratio is too low to be useful, a likely possibility for 

analyzing multiparty collaborative child speech in the classroom. 
This raises the questions of whether it is feasible to obtain 
meaningful information on student collaborative discourse despite 
noisy ASR and to what extent do ASR errors impact the meaning 
conveyed in an utterance and how does this impact downstream 
NLU tasks. 

1.2 Current Study, Contribution, & 
Novelty 
In this study, we take an important first step towards the automated 
analysis of student collaborative discourse in noisy, authentic 
classrooms. We compare a variety of commercially available ASR 
systems on both speech to text transcription, and we investigate the 
influence of ASR errors on downstream NLU tasks using a novel 
dataset of audio recordings from real-world middle-school 
classrooms where multiple student groups are engaged in CL.  

Specifically, we quantify ASR performance in terms of traditional 
evaluation metrics (e.g., Word Error Rate [WER]), and investigate 
the types of speech recognition errors encountered (e.g., 
substitutions, deletions). Further, we seek an understanding of the 
sources of variability in ASR errors at the level of the utterance, 
student, and session by systematically sampling students across 
multiple recording contexts (i.e., across different lessons, student 
groups, and days). This information can provide insights into 
potential disparities of ASR systems, which may have unequal 
impacts on individual student outcomes when used as inputs to 
downstream applications. To this point, we also compare ASR 
errors and their influence on downstream NLU applications (e.g., 
semantic similarity of transcripts [43], recognition of task-relevant 
content words, assessing collaboration skills) to probe the 
feasibility of using automated transcripts for NLU-based CL 
analytics in the classroom. 

To our knowledge, this is the first attempt to systematically analyze 
automated transcriptions of face-to-face student collaborative 
discourse in a real K-12 school environment. Although other 
studies use ASR as input to language-based models of classroom 
discourse, the majority of these focus on teacher speech [5, 9, 14, 
37, 38] or collaborative problem solving in adult undergraduates 
[63, 78, 79]. We also use inexpensive, commercially available 
microphones placed on the tabletop, each capturing speech from 2-
4 students, which allows us to expose the challenges of capturing 
real-world classroom audio where multiple speakers are intermixed 
in a single-channel recording with additional impacts of 
reverberation and background noise. This contrasts with prior 
studies analyzing classroom audio, which mostly employ 
individual microphones to isolate speech [5, 37, 47, 48, 64]. Also, 
we use data collected in the context of a live, face-to-face discourse 
rather than an online learning environment [47, 94]. The choice to 
use table-top mics rather than individual noise-canceling lapel 
microphones or headsets is motivated both by practicality and cost 
considerations, and by the concern that individually miking 
students would feel intrusive and even impede collaboration.  

Finally, with respect to scope, we focus on widely available 
commercial ASR services in lieu of customized ASR systems with 
acoustic and language models trained on our target demographic 
and data. This may disadvantage speech recognition performance, 
however using publicly available ASR providers is desirable for 
practical reasons including the simplicity of integration due to a 
well-documented API, and the likely continuation of updates to the 
model in the future. We also don’t seek to improve or engineer 
better performance out of these systems in the current work because 
the goal is to establish baseline performance of out-the-box ASR 



 

 

systems on the difficult task of analyzing child collaborative talk in 
noisy classrooms. 

2. METHODS 
2.1 Data Collection 
The data was collected as part of a larger project involving a 
Research-Practice Partnership [41] focused on using co-design and 
professional learning to support the use of programmable sensor 
technology and computational thinking for authentic inquiry in 
middle school science and STEM classrooms [4]. We analyzed 
audio and video data from one participating U.S. public middle 
school teacher in this work.  

2.1.1 Learning Context: Sensor Immersion 
Participating teachers implemented a multi-day curriculum unit 
called Sensor Immersion that focuses on students working 
collaboratively to understand how to program and wire sensors to 
collect data about their local environments, empowering students 
to be data producers [31] and answer questions that they find 
personally meaningful and relevant. The Sensor Immersion 
curriculum uses an interactive data display called the Data Sensor 
Hub (DaSH [11]; Figure 1) as an anchoring phenomenon [24]. 
Students explore the system, create scientific models and learn to 
replicate its functionality in the context of their own investigations. 
Along the way, students develop a program that can control a 
variety of physical sensors including a sound sensor, moisture 
sensor, and an environmental sensor. 

Sensor Immersion is broken down into five lessons, each of which 
can span multiple days. Lesson 1 focuses on question generation 
and modeling. Throughout the following lessons, students work to 
answer their questions about how the DaSH works. To do so they 
learn to program and wire the sensors, working in pairs doing a 
pair-programming task using MakeCode block programming 
(Figure 2). Students gradually build on their understanding of 
programming and sensors by working together to program and wire 
one sensor and eventually building and programming a sensor 

system to answer questions about a personally meaningful 
phenomenon. Opportunities for small-group collaboration around 
these sensors and their programming are designed into each lesson.  

Figure 1. Close-up of the DaSH system which links sensors to 
the computing interface. Various sensors can be wired to the 
system to measure local environmental conditions such as soil 
moisture levels (pictured), CO2, humidity, temperature and 
ambient room noise. 
2.1.2 Participants 
The data sample included 30 students from 4 cohorts taught by a 
single teacher in a suburban school district in the US. All 
procedures were approved by designated Institutional Reseearch 
Boards and data were only collected from students who provided 
both personal assent and their parent’s signed consent forms. Most 
of the students were in the 6th-8th grades except for one class of 
5th graders.  Across the school district, the ethnicity of students 
enrolled (as of the 2021-2022 school year) was as follows:  62% 
White, 30% Hispanic, 3% Asian, 3% two or more races, 1% Black, 
0.3% American Indian or Alaska Native, and 0.1% 
Hawaiian/Pacific Islander [77]. About half (49%) were female.

 
Figure 2. Screenshot of the MakeCode programming interface 

 



 

 

2.1.3 Microphone 
Our choice of microphone was influenced by several factors 
including audio quality, cost, power source, form-factor, and ease 
of use. We evaluated a range of candidates (e.g., MXL, Sony ICD 
PX370, ZOOM H1n, AudioTechnica-ATR, AudioTechnica-Omni, 
AudioTechnica-Cardioid, ProCon, Saramonic), we chose the Yeti 
Blue. This microphone has a user-configurable effective pickup 
pattern: omnidirectional, polar, XY stereo or cardioid, costing 
around $100USD. It is USB-powered, enabling use with an iPad 
without the need for an external mixer or phantom power. 

2.1.4 Procedure 
During each class, researchers placed microphones (Yeti Blue) at 
tables around the classroom. Groups of 2-4 consenting students 
were seated at each table. Depending on the lesson the students 
either worked as a team or as multiple dyads (during pair 
programming). The microphone was placed on the table roughly 
equidistant from all students, using the omnidirectional setting 
when recording 3 or more students, or the stereo setting when two 
students were sitting at either side of the microphoneThe 
microphone was connected to an iPAD via USB that hosted the 
recording software recording at 48kHz sampling rate. . We also 
collected iPAD video from a subset of students. Microphones were 
set up by a researcher who recorded field notes on different events 
(e.g., start of lesson, start of small group work, technical failures). 

2.2 Data Treatment 
2.2.1 Sample Selection.  
We opted to select recordings with both audio and video to aid in 
ground-truth speaker diarization efforts (i.e., who is speaking). Of 
a total of 118 recordings, 79 met this criterion, of which we selected 
49 recordings which contained small-group work, where at least 
one student in each group appeared in a minimum of 4 recordings.  

From each video, five 5-minute candidate samples were selected 
from within the small-group work segment of the lesson, 
constrained to the middle of the segment such that the random 
sample included the midpoint of the small-group interval as 
beginning and end of the task tended to include less on-topic 
speech. A researcher then listened to each of the five random 
samples in turn. If the sample met the 20-word criterion, then it was 
selected for the sample. If it did not meet the criteria (n = 17), the 
next segment was listened to and so forth. If none of the 5 segments 
met the criteria, then the recording was excluded entirely.  Through 
this process, we ended with 32 samples totaling 160 minutes of 
speech from 30 students. A majority (70%) of the students were in 
at least two recordings (Table 1).  

Table 1. Sample summary 

 M (SD) Range 
No. students per recording 2.6 (0.7) 2-4 
No. recordings per student 2.7 (1.6) 1-5 
No. utterances per recording 61.6 (29.6) 21-139 
No. utterances per student 65.7 (47.2) 10-188 
Wordcount per utterance 4.55 (4.03) 1-47 
 
2.2.2 Transcription and annotation 
Samples were transcribed in ELAN annotation software by trained 
transcribers, who recorded millisecond-resolution timestamps 
(based on the audio waveform) for utterance start and end times 
along with speaker identity. Where speaker identity was clear, but 
speech was too indistinct to transcribe, some or all of the utterance 
content was coded as "[inaudible]". This resulted in 2207 student 

utterances, of which 1970 contained at least 1 audible word (See 
Table 1).  

Utterance-level audio segments were automatically transcribed by 
three cloud-based ASR services: Google Speech-to-text [26], 
Rev.ai [68], and IBM Watson [36]. We selected Google because it 
has been shown to work as well for children as adults [70] and in a 
recent review was shown to outperform similar services [20]. 
Watson has been used in multiple publications for ASR 
transcription of teacher talk [5, 37, 38] and as input to CPS 
linguistic models [63, 64]. Rev.ai was used as they claim equal or 
greater performance than Google [69]. We deemed these three 
ASRs sufficient for the present purposes of investigating patterns 
in and downstream influences of ASR errors and not to evaluate all 
available commercial ASR engines. 

For Google, audio was first segmented using the human-segmented 
utterance-boundaries and individually submitted to the ASR. We 
used the video-optimized model as this was determined to 
outperform the default model in preliminary testing. For Rev.ai and 
Watson, all utterances from a given recording were concatenated 
before transcribing, as this theoretically allows the models to use 
prior language context to boost performance. The ASR result 
contains word-level timestamps which were used to split the full 
transcript back into the original utterances. We also tested using 
per-utterance transcripts for Watson and the Google streaming 
speech recognition API using the single_utterance=True option 
optimized for short utterances. Due to poorer performance than the 
main Watson and Google models, these were not analyzed further. 

2.3 Measures 
Before computing measures on the transcripts, all texts (human and 
ASR transcribed) were normalized to facilitate comparison. Non-
word indicators used by the transcribers and ASR systems such as 
"[inaudible]", "[redacted]" and "%HESITATION" were stripped 
out. Numbers were spelled out if transcribed as digits. Leading and 
trailing punctuation was stripped from each word, and hyphens 
replaced by space. Finally, all words were transposed to lowercase. 

2.3.1 Word Error Rate.  
Using standard procedures [83], for each utterance, we used the 
Levenshtein algorithm at the word-level, which finds the minimum 
number of word substitution (S), insertion (I) and deletion (D) 
operations to align the reference (human transcript) to the 
hypothesis (ASR transcript).  We used word error rate (WER) as a 
measure of transcription accuracy, which is given by: 𝑊𝐸𝑅	 =
	(𝑆	 + 	𝐷	 + 	𝐼)/	𝑁reference  (number of words in the reference text). 
Proportion of insertion, substitution, and deletion errors were 
computed by dividing utterance-level error counts with the number 
of words in the human transcript. We also computed the number of 
words in the ASR transcripts along with a binary variable indicating 
whether the ASR returned any transcript at all. 

2.3.2 Downstream NLP Measures 
We focused on NLP tasks at the word, semantic, and discourse 
levels. In each case, we are interested in the error (distance) 
between the ASR (hypothesized) and human (reference) values. 

2.3.2.1 BLEU Scores 
The BLEU metric was developed to assess the performance of 
machine translation systems by comparing a gold standard 
translation to an output translation [59]. BLEU scores quantify 
sentence similarity based on modified n-gram precision, where 
scores vary from 0 (no match) to 1 (perfect match). This captures 
higher-order structure than WER: it is invariant to n-gram order, 



 

 

and encapsulates longer subsequences than WER which is defined 
only at the individual word level. We computed the BLEU score 
for unigrams, bigrams, trigrams, and quad-grams and computed an 
unweighted average of the four, which was reversed (i.e., 1-BLEU) 
to get the BLEU distance (or error) 

2.3.2.2 Topic Word Analysis.  
At the word level, we quantified students’ uses of topic words that 
might be indicative of their cognitive engagement with the sensor 
immersion unit. The curriculum materials consist of storyboards, 
lesson plans, tutorials, etc., from which we generated a frequency 
dictionary of the named entities using the Named Entity 
Recognition algorithm from the Stanford CoreNLP toolkit [55].  
Functional words were removed, resulting in 2,438 candidate 
words. Next, we used an existing Latent Dirichlet Allocation 
(LDA) topic model (created for an auxiliary purpose), which learns 
distinct topics from the document and returns the top 20 words that 
have the highest correlation with each of 20 topics. We computed 
the intersection of the 400 topic words and the 218 candidate named 
entities that occurred more than 20 times. This threshold ensured 
candidate words appeared at multiple points in the curriculum 
documents while keeping the list to a manageable size. This 
produced a set of 66 initial topic words. These topic words were 
then reviewed by curriculum experts who selected a subset of 33 
topic words aligned to the following categories: science (e.g. 
environmental), coding (e.g. function), and wiring (e.g. sensors). 
For each utterance, we computed the number of topic words 
recognized by each ASR and the human transcript. To measure 
ASR fidelity specific to topic words, we compute Topic Distance 
as the absolute difference in utterance-level topic word counts 
between the human and ASR derived transcripts, with a lower 
bound of 0 and an undefined upper bound. 

2.3.2.3 Semantic Distance 
Beyond words themselves, we also evaluated the ASR transcripts 
using the semantic distance metric, which measures the similarity 
of a reference and a hypothesis transcript in a sentence-level 

embedding space (using a pre-trained language model to obtain the 
embeddings), and has been shown to be a better predictor of 
performance on downstream NLP tasks than traditional metrics 
such as WER [43]. Following the procedure outlined in [43], we 
first extracted utterance-level embeddings using the sentence-
transformers Python library [67] and the ‘all-distilroberta-v1’ 
model [50]. Then, we computed the cosine distances between the 
embeddings of each ASR (hypothesized) transcript and the 
reference human transcript. The cosine distance is defined as 1- 
cosine similarity (which ranges from -1 to 1), so it can take on 
values from 0 (identical) to 2 (dissimilar). To obtain a baseline 
value, we randomly shuffled the human transcripts within each 5-
minute recording, then computed the semantic distance to each 
ASR transcript as described above. The average semantic distance 
over all ASRs was used as a baseline. 

2.3.2.4 CPS Skill Classification 
At the discourse level, we evaluated the utility of our ASR 
transcripts for a concrete NLP application: classifying collaborative 
problem solving (CPS) skills from student transcripts, which is one 
of the target applications noted in Section X. Specifically, we 
applied an existing classifier [63], which was trained to identify the 
following three CPS skills based on a validated CPS framework 
[80]: constructing shared knowledge;  negotiation/coordination; 
maintaining team function, to our dataset. The classifier was a pre-
trained BERT [16] model fine-tuned on a data set of 31,533 expert-
coded student utterances (transcribed using the Watson ASR).  
Although the classifier was trained on a different dataset, it has 
been shown to be generalizable across domains [63], so we deemed 
it suitable for the present purposes. As such, we submitted both the 
human and ASR transcripts to the classifier, which outputs the 
predicted probabilities for the three CPS facets on each utterance. 
For each ASR, we computed the three-dimensional Euclidean 
distance between the ASR- and human- (reference) predicted 
probabilities as a measure of dissimilarity (CPS Distance). We also 
obtained a baseline shuffled value similar to the baseline Semantic 
Distance.

 

Table 2. Sample sentences and their corresponding ASR transcriptions. CPS codes: Const. = constructing shared knowledge; Neg. = 
negotiation/coordination; Maintain. = maintaining team function 

Speaker Human Transcript Google Watson Rev CPS 
Code 

A just start with the show 
number 

start remove the show 
number 

system started with the 
show numbers 

start with the show 
number 

Const.  

B oh - okay okay None  
A okay so you get rid of the 

show number 
okc get rid of the 
sheriff 

okay okay so you get rid of the 
sharon remember 

Maintain.  

A just drag it stretch dr don't - Maintain.  
C don't don't do that don't don't do that don't don't don't do that don't do that Maintain.  
A get rid of it - - get rid of it Maintain.  
C just okay just okay it Neg. 
B and now put this in this 

thing 
i am for this and this 
thing 

okay but this in this 
thing yeah 

put this and this thing Const.  

A yes - yeah - Neg. 
C no now you eat a taco you know how you 

eat a taco 
yeah are you talking you need to talk Maintain. 

B no do i put it in there - - - Const. 
C yeah - - - Neg.  

A yes - - - Neg.  



 

 

2.4 Data Treatment 
All measures (proportions of insertion, substitution and deletion 
errors; BLEU distance, Topic distance, semantic distance, CPS 
distance) were averaged per speaker per recording, resulting in 82 
observations per ASR. This was done to obtain more reliable 
estimates due to the principle of aggregation. Because the distance 
metrics are only meaningful for utterances where the ASR returns 
a nonempty transcript, the averages for BLEU, Topic, Semantic and 
CPS distances were computed over nonempty transcripts only. To 
analyze the effects of ASR service and word errors on downstream 
measures, we used mixed effects linear regression models with 
speaker and recording identifier as random intercepts to account for 
the nested and repeated structure of the data with multiple speakers 
nested within recordings. Further, we used the robustlmm package 
in R [45], which provides estimates that are robust to outliers and 
other contaminants in the data. We used estimated marginal means 
(emmeans package in R) for pairwise comparisons using false-
discovery rate adjustments for multiple comparisons and 
Satterthwaite’s degrees of freedom method. We used two-tailed 
tests with a p < .05 cutoff for significance. 

3. RESULTS 
3.1 ASR Errors 
3.1.1 Patterns in Error Types  
Table 3 provides descriptives on ASR performance measures 
averaged by student by recording. Immediately apparent is that the 
vast majority of ASR errors were deletion errors (67%) compared 
to substitution (17%) and insertion errors (6%; the sum of errors 
does not add up to 100% because of words correctly recognized). 
Indeed, when error rate was regressed on error type (three level 
categorical variable) and number of words in the human transcript 
(as a covariate), we found the following significant (ps < .001) 
pattern in the errors: Deletion > Substitution > Insertion (Table 3). 

3.1.2 Comparing ASR Engines 
We regressed each error type on ASR (a three-level categorical 
effect with Google as the reference group) and reference (human) 
transcript word count as a covariate. For deletion errors, we found 
Watson and Rev to be statistically equivalent and higher than 
Google suggesting the following significant (ps < .0001, FDR 
correction for 3 tests) pattern in the data: [Watson = Rev; p = .61] 
> Google. This pattern was largely flipped for substitution errors: 
Google > Watson > Rev; p < .004. For insertion errors, Google 
resulted in more insertion errors than Watson, but Rev was 
intermediate and not significantly different from either. Deletion 
errors (p < .001) were less likely as reference word count increased, 
but substitution (p = .582) and insertion (p = .137) errors were not. 

Since insertion errors were rare, the tradeoff involved deletion and 
substitution errors (Figure 3) with Google providing fewest 
deletions but the most substitutions, the opposite for Rev, and 
Watson was intermediate. All things equal, the choice of ASR thus 
depends on obtaining as many transcriptions of speech as possible. 
Google provided a non-empty transcript for on average 61% of the 
cases, far exceeding the others (47% for Watson, 41% for Rev), and 
even among the utterances with nonempty ASR transcriptions, 
Google had a lower rate of deletions (0.29) than Rev (0.33) and 
Watson (0.44). 

 

 

Table 3. Summary statistics of ASR results. M (SD) over 
utterances 

 Google Rev Watson 
N utterances 1970 1970 1970 
N averaged 82 82 82 
ASR metrics 
ASR wordcount 2.37 (1.36) 1.71 (1.46) 1.31 (0.95) 
Nonempty ASR  0.61 (0.22) 0.41 (0.22) 0.47 (0.22) 
Perfect ASR  0.05 (0.06) 0.04 (0.05) 0.02 (0.06) 
Insertion rate 0.06 (0.09) 0.08 (0.16) 0.04 (0.08) 
Substitution rate 0.21 (0.11) 0.12 (0.08) 0.19 (0.13) 
Deletion rate 0.56 (0.18) 0.72 (0.17) 0.72 (0.17) 
WER 0.84 (0.15) 0.91 (0.19) 0.95 (0.11) 
Downstream NLP metrics 
Topic Distance 0.05 (0.10) 0.05 (0.09) 0.05 (0.07) 
BLEU Distance 0.83 (0.11) 0.82 (0.15) 0.94 (0.06) 
Semantic Distance 0.56 (0.14) 0.52 (0.15) 0.68 (0.09) 
CPS Distance 0.29 (0.14) 0.29 (0.15) 0.33 (0.16) 
 

 
Figure 3. Density plots of deletion and substitution errors by 
ASR 

3.1.3 Sources of Variance 
We carried out a multilevel decomposition of variance [35] on each 
type of ASR error, at three levels: utterance, speaker and recording. 
Utterances are nested within speakers, and speakers within 
recordings. We computed the proportion of variance attributable to 
speaker and recording by decomposing the data into a linear sum 
of cluster-level averages and within-cluster deviations. The 
variance between-cluster and within-cluster sums to the total 
variance, under the assumption that errors at utterance, speaker, and 
recording are independent. We found that the majority of variance 
(between 91 and 98%) was at the utterance level for all error types 
and ASRs, with just 1-3% attributable to individual students and 1-
5% to the specific recording (Table 4). This suggests that each ASR 
system had stable performance across recording contexts and 
individual differences in vocal parameters. 

  



 

 

Table 4. Multilevel variance decomposition. Proportion of 
variance attributable to each hierarchical level. 

ASR Error type Utterance Student Recording 
Google Insertion rate 0.981 0.009 0.010 
Google Substitution rate 0.980 0.010 0.010 
Google Deletion rate 0.943 0.032 0.025 
Rev Insertion rate 0.980 0.004 0.016 
Rev Substitution rate 0.971 0.009 0.020 
Rev Deletion rate 0.914 0.032 0.053 
Watson Insertion rate 0.976 0.009 0.015 
Watson Substitution rate 0.972 0.011 0.017 
Watson Deletion rate 0.950 0.025 0.025 
 

3.2 Downstream NLP measures 
The Spearman correlations between distance metrics for the four 
downstream tasks are shown in Table 5. The most highly correlated 
metrics were semantic distance and BLEU distance (r = .83), 
whereas the CPS distance was only moderately correlated (rs 
between .3 and .4) with these measures. Topic distance was not 
correlated with any other metric, which may be a result of topic 
words being so rare in the utterance (about 5% of words). 

Table 5. Correlations between transcript distance metrics. *** 
p<0.001 

  BLEU 
Distance 

Topic 
Distance 

Semantic 
Distance 

Topic Distance -0.118   
Semantic Distance 0.830*** -0.040  
CPS Distance 0.321*** 0.076 0.402*** 
 

Figure 4 shows the distributions of CPS and semantic distances. 
The peak of the distribution was lower than the baseline (derived 
by computing the average distances between ASR and human-
transcribed utterances after shuffling; see Methods) for all three 
ASRs and for both CPS and Semantic distances. In fact, 97.5% of 
semantic distances were less than the shuffled baseline, and 79% 
for CPS, indicating that a degree of higher-order meaning was 
generally extracted from the ASR transcripts.  

 
Figure 4. Density plots of CPS Distance and Semantic Distance 
by ASR. Dashed line shows the random baseline for shuffled 
utterances. 

3.2.1 Comparing ASRs on Downstream NLP 
We regressed each distance metric on ASR (a three-level 
categorical effect with Google as the reference group) and reference 
(human) transcript word count, with random intercept of student 
and recording. As indicated in Figure 5, the ASR services did not 
vary for Topic word distance (p = .929), but did for the other 
measures. Specifically, the pattern of significance (ps < .001) for 
BLEU and semantic distances was: Watson > Google > Rev. For 
CPS distance it was Watson > Rev, p = 0.03; Watson = Google, p 
= 0.16; Rev = Google, p = 0.46.  

Figure 5. Estimated marginal means and 95% confidence 
intervals for NLP distance metrics for each of the ASR services 

3.2.2 ASR errors on downstream NLP tasks 
To test whether specific ASR errors impact downstream NLP 
metrics, we also fit a linear mixed-effects model to predict each 
distance metric from the rates of three ASR errors (Table 6). 
Whereas insertion errors did not significantly predict any of the 
outcomes, both substitution and deletion errors were negatively (ps 
< .001) associated with BLEU, semantic, and CPS distance 
measures, more so for the former. Specifically, a one standard 
deviation increase in each error type was associated with an 
approximately equivalent increase for BLEU and semantic 
distances, but only about a half a standard deviation increase for the 
CPS tasks. Error type was not associated with topic word distance, 
presumably due to a restriction of range with this measure.



 

 

 

Table 6. Mixed-effects model predicting distance metrics from ASR errors, showing standardized Beta values 

  BLEU Distance Topic Distance Semantic Distance CPS Distance 

Predictors std. Beta p std. Beta p std. Beta p std. Beta p 
(Intercept) 0.07 <0.001 -0.27 0.020 0.05 <0.001 -0.05 0.189 
Substitution rate 0.91 <0.001 -0.05 0.231 1.04 <0.001 0.46 <0.001 
Deletion rate 1.08 <0.001 -0.05 0.256 1.12 <0.001 0.49 <0.001 
Insertion rate -0.03 0.345 0.01 0.676 0.03 0.446 -0.01 0.870 

4. DISCUSSION 
We investigated the feasibility of using commercially available 
ASRs to transcribe student discourse from a collaborative learning 
activity in a middle school classroom with an eye for downstream 
NLP tasks aimed to support student learning. In the remainder of 
this section, we discuss our main findings, applications, limitations, 
and areas for future work. 

4.1 Main Findings 
Overall, WER was very high (.84-.95) compared to performance on 
benchmark datasets, and even compared to WER from prior CL 
studies using classroom audio, such as in Pugh et al. 2021 who 
reported a WER of .78 using Watson, but with individual 
microphones in a more restricted in-class data collection setting 
compared to the current in-the-wild classroom context. At first 
blush, these high WERs suggest that it might be futile to expect 
meaningful ASR in noisy classroom environments without 
explicitly instrumenting the classroom for this purpose [1] or 
resorting to miking individual students with customized high-
fidelity microphones [90]. However, an in-depth analysis of the 
pattern of errors suggests that there is hope: specifically, the ASRs 
had a large proportion of deletion errors and fewer substitution and 
almost no insertion error meaning that they tended towards high 
precision but low recall and are thereby feasible for applications 
that match this profile (as elaborated below). 

Comparing the three ASR engines we examined, Google and Rev 
were biased towards more substitutions and deletions respectively, 
but also relevant is the proportion of utterances which did not get 
transcribed at all. Here, Google provided a clear advantage with 
nonempty results returned for 60% of utterances compared to less 
than 50% for the other two. Reassuringly, the variance in ASR 
errors was overwhelmingly from utterance-level differences, with 
very little attributable to recording or student. In addition, of 1970 
utterances, only 477 (24%) returned no transcript from any ASR, 
raising the possibility of combining outputs from multiple ASRs. 

We computed several distance metrics to capture ASR quality as 
reflected in downstream NLP measures, in each case computing the 
deviations between ASR-produced and human-transcript versions 
of each measure. With respect to the four measures, topic word 
usage was rare and there was very little variability in this measure 
so unsurprisingly there were no differences for it. Turning to the 
other measures, Watson was consistently outperformed by Google 
and Rev, which were equivalent on CPS distance. However, BLEU 
and semantic distance, which were strongly correlated, were best 
captured by Rev, despite Google having lower word-level error 
rates. Thus, Rev had a slight edge over Google for the downstream 
NLP tasks, but not sufficient to compensate for its higher deletion 
rate. Finally, as the NLP analyses got more abstract, ASR errors 
had less of an impact. The effect of substitutions and deletions on 
CPS distance (a discourse-based construct) was about half that of 
semantic and BLEU distances, (i.e. word- and semantic-level 

measures). Whereas this pattern is intuitively plausible it awaits 
replication with additional downstream NLP measures.  

4.2 Applications 
The ability to automatically capture and transcribe student speech 
during CL activities in the classroom opens the door for numerous 
applications. Fair and accurate ASR transcripts are the first step for 
automated interventions that aim to support CL in classrooms. One 
promising strand of research involves designing teacher-facing 
applications, such as teacher dashboards, which convey 
information about student collaborative talk to the teacher. The 
design space for such technologies is broad and relatively 
unexplored. While there is potential for abuses such as increased 
monitoring and evaluation of student talk, responsible innovations 
can also leverage student transcripts to celebrate students’ 
contributions, build communities within classrooms and foster 
authentic collaboration motivated by student interest, not desire for 
positive reinforcement. For example, information gathered from 
CL discourse could be presented to a teacher offline (i.e., after 
class), illustrating any number of relevant details about the CL 
activity (e.g., what students talked about when on-task versus off-
task, balance of speaking time, quality of collaboration). To 
demonstrate, we created an example dashboard visualization of the 
model-estimated occurrence of three CPS facets in student 
utterances (Figure 4) using both human- and Google- generated 
transcripts. As evident in the figure, model estimations are notably 
impacted by ASR error (i.e., in this group, the model 
underestimates the use of constructing shared knowledge by 
students A and C). Although model estimations will be imperfect, 
they can still provide valuable insights, and the impact of errors can 
be diminished by aggregating over longer time scales. These after-
action reviews could greatly benefit teachers, giving them insight 
into how they might better support CL in their classroom. This 
includes designing new activities to better engage students, 
understanding which student groups may need additional support 
in future classes and what CPS skills students need help developing. 

Similarly, these insights could be conveyed to the teacher online 
(i.e., during class) via a real-time teacher dashboard. Real-time 
feedback on CL groups could also enhance a teacher’s ability for 
more effective classroom orchestration by providing them with 
novel insights into how groups are working together and what kinds 
of feedback and encouragement will help increase productive 
collaboration for students. Ultimately, the specifics of these 
teacher-facing applications, such as what information to present, 
when to present it (e.g., real-time, offline), how to display it (e.g., 
graphic representations, transcripts of speech) and at what level of 
granularity (e.g., individual students, CL groups, whole class) will 
require co-design, testing, and refinement with teachers. 

In addition to teacher-facing applications, ASR systems could be 
used to create student-facing CL supports in the classroom. These 
technologies could take many forms, from real-time or after-action 



 

 

feedback that helps students develop CPS skills to a conversational 
agent which serves as a socio-collaborative ‘partner’, working 
together with student groups to enhance learning, equitable 
participation, and collaboration. Current approaches to support 
student collaboration (for example by prompting for the use of 
high-quality discourse called academically productive talk) have 
been shown to be successful in the context of text chat [85]. Further, 
after-action reviews to support CPS by providing feedback based 
on ASR/NLP models has demonstrated potential in the lab [64], but 
has yet to be tested in classrooms. Whether this is applied to 
student- or teacher-facing tools, fair and accurate ASR in 
classrooms has the potential to spotlight students’ verbally-
expressed ideas and contributions. This offloads the demand that is 
normally placed on written work and provides more multimodal 
dimensions for classroom feedback and support.  

Whereas perfect ASR should not be a prerequisite for several 
applications (as argued in the Introduction), the patterns in ASR 
errors should be carefully considered in that the ASRs have high 
precision (relatively low substitution and insertion errors) but low 
recall (high levels of deletion errors). This suggests that these data 
are best suited for applications for which transcription of a 
sampling of utterances is sufficient, for example, assessments of 
constructs with high-base rates (e.g., CPS skills) rather than those 
focused on rare events. This high precision could be helpful in 
avoiding unwarranted interventions triggered by CL supports, as 
there should be a low rate of false alarms of discourse features 
detected based on the ASR results. Nevertheless, our findings 
suggest that a real-time conversational partner will likely be off the 
table until ASR deletion errors can be reduced. Nevertheless, 
robustness of NLP models to ASR errors can be improved by data 
augmentation approaches where models are trained on ASR 
hypotheses as well as human transcripts [58].  

 
Figure 5. Predicted probabilities of CPS skills over a sample 5-
minute recording (using the student group shown in Table 2) 
based on human (left) and Google ASR (right) transcripts 

4.3 Limitations and Future Work 
There were several limitations to this study. First, although we 
investigated an automated approach to transcribe student 
utterances, we did not incorporate automatic utterance 
segmentation in our pipeline. Rather, utterances were manually 
identified and segmented by a human observer before being 
processed by the ASR systems, which is consistent with prior work 
on comparing ASRs [5, 18]. This was done because the present 
focus was on speech-to-text transcription and not utterance-
segmentation, so we opted for a gold-standard baseline for the latter 
to compare the various ASRs for the former. Further, utterance-
segmentation is technically not needed as a separate step in an 
automated pipeline in that the entire five-minute audio segment 
could be submitted to the ASR engines for combined utterance 

segmentation and speech transcription, albeit less accurately than 
human segmentation. Indeed, longer context than single utterances 
are beneficial in modeling CL [64]. 

Another limitation is that we only tested out-of-the-box cloud-
based ASR systems. One problem with this approach is that 
reliance on cloud-based services may be unrealistic in the near-
term. In the US, nearly 28 million students did not have sufficient 
internet bandwidth for multimedia learning [97]. Similarly, we did 
not attempt to improve the performance of these out-of-the-box 
systems (e.g., by fine-tuning a custom ASR model on our data or 
providing a task-specific vocabulary) because the present goal was 
to compare these systems “as-is” since many researchers might not 
have the technical expertise needed to train customized models or 
fine-tune existing models. However, recent advances in deep-
learning-based ASR mean pretrained models are widely available 
and a relatively small amount of data is needed for fine tuning [2, 
74], which may provide better performance in this domain than 
standard cloud-based systems. To this point, we are currently 
developing a customized, locally hosted ASR system to improve 
upon the present results and address the limitations above.  

One additional limitation is the lack of diversity in our sample. 
Whereas student-level demographic data was unavailable, district-
level information suggests that 92% of the students were either 
White (62%) or Hispanic (30%). Racial disparities in ASR 
performance [44], as well as challenges with non-native English 
speakers [93] are well documented and may have 
disproportionately adverse effects on underrepresented groups 
when ASR is used for downstream applications. Thus, the lack of 
variability at the student level might be partly because our sample 
was non-representative. To create more fair ASR transcripts, non-
native English speakers and students from non-dominant cultures 
should be oversampled to create representation, and thus accuracy, 
equal to students from dominant cultures. We also chose to include 
data from a single (although multi-lesson and multi-day) 
curriculum unit as implemented by one teacher with a small number 
of students. In sum, these factors reduce the generalizability of our 
findings to groups historically underrepresented in STEM. Our 
future work will aim to address these limitations by collecting 
classroom speech from racially and socioeconomically diverse 
populations, and examining ASR performance across different 
groups to identify sources of bias or nonequivalence. 

4.4 Conclusion 
Automated speech recognition in conjunction with natural 
language processing has the potential to unlock collaborative 
learning supports in the classroom. We recorded authentic small-
group interactions in middle school STEM classrooms using 
inexpensive, commercially-available equipment, and analyzed the 
transcripts provided by several cloud providers. We show how 
different types of transcription errors influence downstream 
linguistic models, and find that the impact of ASR errors is smaller 
for the predictive accuracy of a CL model than for upstream 
measures capturing more literal aspects of speech content. Our 
results demonstrate the challenges of automating speech 
recognition in the classroom, but suggest the potential of using 
imperfect ASR to gain insights into collaborative discourse. 
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