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ABSTRACT 
Self-regulated learning (SRL) is a critical component of mathemat-
ics problem solving. Students skilled in SRL are more likely to 
effectively set goals, search for information, and direct their atten-
tion and cognitive process so that they align their efforts with their 
objectives. An influential framework for SRL, the SMART model, 
proposes that five cognitive operations (i.e., searching, monitoring, 
assembling, rehearsing, and translating) play a key role in SRL. 
However, these categories encompass a wide range of behaviors, 
making measurement challenging – often involving observing in-
dividual students and recording their think-aloud activities or 
asking students to complete labor-intensive tagging activities as 
they work. In the current study, we develop machine-learned indi-
cators of SMART operations, in order to achieve better scalability 
than other measurement approaches. We analyzed student’s textual 
responses and interaction data collected from a mathematical learn-
ing platform where students are asked to thoroughly explain their 
solutions and are scaffolded in communicating their problem-solv-
ing process to their peers and teachers. We built detectors of four 
indicators of SMART operations (namely, assembling and translat-
ing operations). Our detectors are found to be reliable and 
generalizable, with AUC ROCs ranging from .76-.89. When ap-
plied to the full test set, the detectors are robust against algorithmic 
bias, performing well across different student populations.  
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1. INTRODUCTION 
Work over the last two decades has developed automated detectors 
of a range of behaviors and constructs in students’ interaction with 
computer-based learning environments [12]. These detectors utilize 
log data collected from these learning environments to infer the 
presence or absence of a complex behavior or a construct in student 
learning. For example, detectors have been built to identify student 
affect (e.g., [7, 21, 31]), engagement (e.g.,[6, 37]), and problem-
solving strategies [43]. Such detectors can be split into two broad 
categories: detectors for post-hoc analysis and detectors for real-
time adaptation. Post-hoc analysis allows researchers to detect 

constructs retrospectively and subsequently understand their prev-
alence (e.g., [32]) and conduct further analysis (e.g., [17, 41]). 
Detectors designed to be run in real-time facilitate adaptive experi-
ences and real-time feedback [48], as well as reports to teachers[1].  

In particular, considerable work has been devoted to detecting and 
understanding behaviors and strategies involved in self-regulated 
learning (SRL). By examining student behavior patterns, auto-
mated detectors have been developed for a range of SRL related 
constructs, including help avoidance [3], gaming the system [7], 
setting goals [5, 14], and planning and tracking progress [14]. How-
ever, the specific constructs being modeled often have not been 
clearly linked to any of the growing number of theoretical models 
of SRL (although [29] is an exception to this) and have mostly been 
operationalized in terms of high-level strategies that combine sev-
eral of behaviors treated as separate in SRL theories, rather than the 
finer-grained behaviors used in those theories [cf. 46, 48]. Captur-
ing fine-grained indicators of key aspects of SRL in terms of these 
theoretical models may yield a better understanding of the process 
of SRL and help EDM research make more direct theoretical con-
tributions. 

Self-regulation is a critical component of learning, and has been 
positively associated with learning outcomes [20, 34, 57]. In math-
ematics problem-solving, students who are skilled in SRL are able 
to effectively set goals, search for information, and direct their at-
tention and cognitive resources to align their efforts with their 
objectives [56]. As a result, SRL facilitates the successful problem-
solving process [20, 34, 57] and enables students to acquire a deep 
and conceptual understanding of the embedded knowledge [31]. 
Given its benefits, theory-based interventions have been developed 
to promote SRL [21]. However, current SRL assessments, such as 
self-reports and think-aloud activities, are not sufficient to provide 
measurement at scale; at the same time, existing scalable SRL as-
sessments based on automated detection in log data are typically 
not connected back to theory, making it difficult to use them in the-
ory-driven interventions. SRL assessments based on automated 
detectors have therefore been used in more ad-hoc, system-specific 
interventions, often with unintended consequences or unexpected 
patterns of findings [2, 35] 

In the current study, we develop automated detectors that identify 
fine-grained evidence of SRL constructs drawn from theory. This 
study does so in the context of CueThink, a digital learning appli-
cation that focuses on enhancing middle school student 
mathematics problem-solving skills. Through the lens of the 
SMART model of SRL (described in greater detail below) [53], we 
identify and operationalize five SRL indicators: numerical repre-
sentation, contextual representation, strategy orientation, outcome 
orientation, and data transformation. We then build automated 
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detectors for each indicator, evaluate their performance, and check 
them for algorithmic bias.  

2. BACKGROUND 
2.1 SRL and the SMART Model 
Grounded in information processing theory, Winne and Hadwin 
[55] characterize the process of SRL as four interdependent and re-
cursive stages, in which learners: 1) define the task, 2) set goals and 
form plans, 3) enact the plans, and 4) reflect and adapt strategies 
when goals are not met. 

The SMART model of SRL [53] was later proposed to further elu-
cidate the processes involved in these four tasks. Specifically, the 
model separates the “cognitive and behavioral actions applied to 
perform the task” into five categories: searching, monitoring, as-
sembling, rehearsing, and translating. Each operation describes a 
way that learners cognitively engage and interact with information. 
For example, when working on a task, learners direct their attention 
to particular information (searching) and compare the information 
with a standard (monitoring), evaluating the relevance or the im-
portance of the information. When relevant information is 
identified, students relate pieces of information to one another (as-
sembling), in order to create a comprehensive understanding of the 
problem. When information does not fit into the current problem 
representation, learners manipulate the ways information is pre-
sented in order to find a solution (translating). Throughout the 
process, working memory is used to actively maintain and reinstate 
information (rehearsing).  

These cognitive operations are an integral aspect of self-regulation: 
they help determine student success at completing each of the four 
SRL tasks, which, in turn, influences the progression of the prob-
lem-solving process [52]. However, despite the SMART categories' 
importance for SRL, they are often difficult to observe or measure, 
as most learning activities (whether online or offline) do not fully 
reify the cognitive process involved in their learning tasks. Further, 
these operations may occur non-linearly, and multiple operations 
can be employed when completing the same task– making the 
measurement of these constructs challenging. 

2.2 Challenges in SRL Measurements 
SRL has typically been measured using three common approaches: 
self-reports, think-aloud activities, and log data collected in com-
puter-based learning environments [51]. With traditional self-
report studies, students are asked about their SRL process either 
outside of a task (i.e., before or after completing a task) or while 
working on a task. In decontextualized self-report (outside of a 
task), students report on the SRL strategies they plan to use or recall 
on the strategies they used, using a pre- or post-task survey. Even 
though this approach is widely used, the nature of surveying cogni-
tive processes outside of the task may lead to inaccuracies in the 
representation of cognition [51]. For example, when recalling a 
cognitive process retrospectively, students may aggregate the out-
of-context, self-reported experience across numerous tasks, failing 
to demonstrate the relationship between the task and the corre-
sponding SRL strategies. For this reason, several studies have 
adopted in-context self-report (e.g., [42, 47, 54]), in which students 
are asked to tag their SRL strategies as they occur.  

Other research has leveraged think-aloud activities that ask students 
to verbalize their cognitive processes when solving a problem [28]. 
As with in-context self-reports, think-alouds give researchers an 
opportunity to identify processes that are contextualized in the 
problem-solving activity and are approximately concurrent with 

their occurrences. However, this process can suffer from an obser-
vation effect. Students being prompted to discuss their thinking 
process in real-time may alter that process and not provide an ac-
curate representation of the processes they would engage in 
naturally [16, 44]. This, in turn, calls into question the validity of 
findings obtained using this type of measurement and whether they 
are generalizable to new students and contexts.   

2.3 Use Log Data to Measure SRL in Com-
puter-Based Learning Environments 

Both self-report and think-aloud approaches are labor-intensive and 
time-consuming, which make them difficult to scale. As such, a 
third approach, analyzing log data collected from computer-based 
learning environments, has emerged as a promising way to measure 
SRL. 

Aleven and colleagues [3] designed an exhaustive set of production 
rules to represent help-seeking behaviors within a geometry learn-
ing system, and then compared  these rules to student problem-
solving steps to determine whether those steps were warranted by 
the current situation. Similarly, Biswas et al. [14] used sequences 
of student behaviors to model a range of SRL behaviors, such as 
monitoring through explanation, self-assessment, tracking pro-
gress, and setting learning goals. Additionally, Segedy et al. [45] 
utilized log data and coherence analysis to assess students’ ability 
to seek out, interpret, and apply information in an open-ended 
learning environment, examining if a student’s subsequent action 
is coherent based on the information presented. 

Researchers have also used textual responses within dialogue-
based learning systems to measure SRL. Graesser and colleagues 
[27] used latent semantic analysis to study student conversations 
with animated pedagogical agents to assess and support SRL. Stu-
dents who frequently use questions in a conversation can be 
interpreted as showing initiative, and engagement in monitoring 
can be inferred when students demonstrate in their responses that 
they feel they know the answer [26]. 

However, often the log data collected does not straightforwardly 
reflect a SRL construct [4]. Researchers must decide what data to 
use, what constructs to measure, and how to operationalize the con-
structs with the existing data [30]. SRL, as a process, covers a range 
of behaviors and strategies, so the constructs can vary depending 
on how SRL is conceptualized and also based on the design of the 
activity the learner is participating in. To ensure the validity of the 
operationalization, it is recommended that the operationalization 
should be conceptualized in terms of a SRL model and contextual-
ized in the learning environment where the data is generated [51]. 

2.4 Algorithmic Bias 
In order to use detectors at scale, we must ensure that they will be 
valid for the entire populations they are scaled to rather than only 
subgroups of students. Recent evidence suggests that many pub-
lished detectors are prone to algorithmic bias, functioning better for 
some populations of learners than others [11]. However, there has 
been limited attention to algorithmic bias within the field of educa-
tional data mining, where analyses of algorithmic bias are rare and 
even overall population demographics are only reported in 15% of 
publications [38]. Verifying detector fairness is particularly perti-
nent to our study given the diverse student population who use 
CueThink, making it important to evaluate detector effectiveness 
across demographic groups before deploying and using the detec-
tors at scale.  



2.5 Current Study  
In the current study, we address the challenges noted above by 
building automated detectors of SRL constructs from a theory-
driven lens. Using a dataset of 79 students as they interacted with 
the online math learning platform CueThink, we first examine the 
learning environment understanding how students interact with the 
platform and the context of where the log data is generated. Based 
on the context and the log data available, we identify relevant the-
oretical constructs grounded in the SMART model. In particular, 
five SRL indicators relating to cognitive operations in the SMART 
model (in this case, all either assembling or translating) are identi-
fied for investigation. 

We use text replay to code student interactions for each defined in-
dicator. These labels are then used as ground truth for machine 
learning. We distill a variety of features from the log data to repre-
sent multiple aspects of a student’s interaction, including the 
number of responses and the content in the responses. The ground 
truth and the features are then input into a machine learning pro-
cess, training a model to emulate human coders’ judgement, 
making predictions on the presence or absence of a SRL indicator.    

We demonstrate that trained detectors provide accurate detection, 
suitable for real-time use. Finally, we also evaluate, through slicing 
analysis, the performance of our models across different demo-
graphic groups.  

3. METHODS 
3.1 Learning Environment 
CueThink is a digital learning application that focuses on enhanc-
ing middle school student math problem-solving skills, by 
encouraging students to engage in self-regulated learning and to de-
velop math language to communicate problem-solving processes. 
CueThink asks students both to solve a math problem and to create 
a shareable screen-cast video that provides the student’s answer and 
also demonstrates their problem-solving process. As Figure 1 
shows, CueThink structures a problem into a Thinklet, a process 
that includes four phases—Understand, Plan, Solve, and Review—
that closely align with Winne & Hadwin’s model of SRL [55].  

 
Figure 1. Screenshots of CueThink’s 4 Phase Approach 

Each phase of the Thinklet (outlined in Table 1 and described in 
more detail below), asks students to focus on a different part of the 
problem-solving process. While working on a Thinklet, students 
can move freely across the four phases, including going back to a 
previous phase or skipping phases.  

Starting with the Understand phase, students read a problem and 
provide text-based responses to three questions: (1) “What do you 
notice?” (2) “What do you wonder?” and (3) “What is your esti-
mated answer to the problem?”  This phase encourages students to 
actively look for information in the problem and create a represen-
tation of the problem space. Thus, students demonstrate their 
understanding of what they know and what they need to know at 
this phase. 

In the Plan phase, students build on what they have established in 
the Understand phase by planning how they will solve the problem. 
Students are first prompted to select what strategies they will use to 
solve the problem. They may choose from a predefined strategy list 
(i.e., draw a picture, model with an equation, work backwards, etc.) 
or define their own strategies. Once the student has selected which 
strategies they will use, the student is prompted to write a plan on 
how they will use the strategies to solve the problem.  

In the Solve phase, students explain and present their answer. Spe-
cifically, they create a screen cast video using an interface that 
provides them with a whiteboard and mathematical tools (i.e., num-
ber lines, ruler, etc.).  

In the Review phase, students provide the final answer to the math 
problem, but also reflect on whether the answer makes sense and 
whether their communication is clear, using checklists to scaffold 
their reflection. 

Once students have completed the problem, they share their screen-
cast explanation for Peer Review. In this phase, teachers and peers 
annotate both the textual responses and video, often asking the stu-
dent for their underlying reasoning or why the student picked 
specific methods. These annotations are then sent back to the 
video’s author for possible revision. 

Table 1. Summary of Responses by Thinklet Phase 

Phase Tasks Description & Data Types 
Understand What I notice is (textual response) 

What I wonder is (textual response) 
Estimate your answer (textual response) 

Plan Choose your strategies (select all that apply, 
textual response) 
Planning journal (textual response) 

Solve* Video creation tools (Whiteboard, math tools, 
and recording tools) 

Review Check your math (select all that apply) 
Check your recoding (select all that apply) 
Review your estimate (textual response) 
Final answer (textual response) 

* Student activity in the Solve phase is not used in this paper’s anal-
yses 

3.2 Student Demographics 
In this study, 79 students in grade 6 and 7 at a suburban school in 
the southwestern U.S. used CueThink during the 2020-21 school 
year. The school contains a diverse student population with around 
40% Hispanic or Latino, 40% White, 15% African American, and 
5% Asian students. Students’ self-reported demographic infor-
mation on gender and race/ethnicity was collected. For gender, 
students could choose to identify as male, female, non-binary, or 
leave the question blank. For race/ethnicity, options included Afri-
can America, Hispanic/Latinx, White, Asian, Native American, 
two or more races, other, or prefer not to say. Students reporting 



“other” for their race/ethnicity were provided the option to give de-
tail.  

3.3 Log Data 
CueThink was used in six classrooms over multiple weeks, with 
teachers assigning problems for students to complete in the appli-
cation. We collected log files that reflect how students use the 
application and their problem-solving process. On average, stu-
dents spent 5.2 hours in CueThink and 1.8 hours working on each 
Thinklet. Specifically, for each problem, encapsulated in a Thinklet, 
data generated during the problem-solving process that includes the 
questions students answered and their textual responses at each 
phase were collected. In this study, we analyzed textual and click-
stream data, but did not analyze data from the videos. In total, we 
collected 349 Thinklets from 79 students working on 24 different 
problems. Of those 349 Thinklets, not all were first attempts. Stu-
dents have the opportunity to revise their work, which creates 
another Thinklet. In those cases, it is possible that students do not 
go through the entire problem-solving process. Of the total number 
of Thinklets, 146 were duplicate attempts.  

4. BUILDING DETECTORS 
Building automated detectors of self-regulated behaviors was a 
multi-step process (detailed in the following subsections). First, we 
distilled human-readable text replays from log data. Using these 
text replays, we identified and operationalized qualitative catego-
ries that corresponded with SRL constructs, grounding the 
operationalization in Winne’s SMART model. We then labeled the 
self-regulated behaviors, generating ground truth data. Feature en-
gineering and feature distillation were conducted and used to train 
the predictive models. Lastly, we evaluated model performance and 
checked for algorithmic bias. 

4.1 Text Replays of Interaction Logs 
To facilitate inspection and exploration of the data, we used text 
replays. This method presents segments of interaction data (re-
ferred to as clips) in a human-readable presentation. This process 
facilitates both initial exploration of the data (such as in section 4.2) 
along with the final coding process (section 4.3). Clips are then 
viewed by human coders who label them accordingly [8]. Previous 
studies have used text replay coding to label student affect, disen-
gagement, and learning strategies, such as gaming the system [10], 
confrustion [32], player goals [22], and SRL strategies such as 
whether a student is using a table to plan their analyses [43].This 
approach demonstrates a similar level of reliability as classroom 
observations and is 2-6 times faster compared to other methods of 
generating labels, such as classroom observations, screen replay, 
and retrospective think/emote-aloud protocols [8]. 

The length and the grain-size of text replay clips can vary depend-
ing on both the available data and the granularity of the predictions 
the researcher intends to make. Because this study seeks to detect 
cognitive SRL operations in the problem-solving process, which 
requires a comprehensive examination across questions and phases, 
the log files were delineated into clips on the level of entire 
Thinklets. Each clip contains a student's actions and text-based re-
sponses that were submitted as that student worked through the four 
phases to produce a single Thinklet. (Note that because video data 
was not available in these replays, our coders did not see infor-
mation from the Solve phase.) The clips were distilled from log files 
and presented using a Python window, shown in Figure 2. As video 
data could not be trivially converted into a common text format 
(due to wide variability in the videos), video data was not included 
in the text replays at this time. Creating videos is the primary action 

in the Solve phase, thus the text replays did not contain any data 
from the Solve phase. Coding videos explicitly poses challenges to 
scalability of the work and is beyond the scope of this paper, but 
may be considered in future work.  

4.2 Construct Operationalization 
To identify constructs to detect, we first examined the clips con-
taining student responses in Thinklets and coded student responses 
for indicators of SRL—qualitative categories that correspond with 
SRL constructs (we discuss the details of exactly how the data was 
coded in section 4.3). The definitions of the indicators we coded 
were developed through dialogue between the research team and 
system developers. This process followed the recursive, iterative 
process used in [49] that includes seven stages: conceptualization 
of codes, generation of codes, refinement of the first coding system, 
generation of the first codebook, continued revision and feedback, 
coding implementation, and continued revision of the codes [49]. 
The conceptualization of codes included a review of related litera-
ture, including several theoretical frameworks and perspectives 
[13, 15, 24], primarily focusing on the SMART model [53]. Using 
grounded theory [18], we identified common behaviors that were 
(1) indicative of SRL as characterized by Winne’s SMART model 
[53] and (2) salient in the log files. A draft lexicon and multiple 
criteria were generated for a coding system to help identify these 
constructs. 

Given the learning environment's design and the available data, our 
efforts focused on defining behaviors related to two categories of 
cognitive operations (the assembling and translating operations 
from the SMART model) as they are frequently employed in the 
initial stages of SRL as learners define tasks and set goals. Follow-
ing the process used in [49], two coders (the first and second 
authors) coded a set of clips together, identified five SRL indicators 
(i.e., numerical representation, contextual representation, strategy 
orientation, outcome orientation, and data transformation), outlined 
the criteria for each indicator, and created a rubric. 

The draft coding manual was discussed with all members of the 
research team and developers and designers at CueThink to build a 
common understanding of the criteria and constructs being exam-
ined as well as the features of the system to gain feedback for 
further refinement. This process was repeated until the entire team 
had reached a shared understanding of the criteria and constructs 
being examined by the codebook. The SRL indicators identified, 
the criteria, and alignment with the SMART model are included in 
Table 2. 

Numerical and contextual representation consider a learner’s pro-
cess of creating a problem representation, which often occurs in the 
initial stage in the problem-solving process (i.e., define the task), 
outlined in the four-phase model of SRL [55]. In problem represen-
tation, learners create a problem space by identifying information 
they know and information they need to know. The two SRL indi-
cators encode how learners represent and process information in 
math problems, denoting if numerical components and/or contex-
tual details are noted. We consider both of these processes to reflect 
assembling in the SMART model as students are creating their rep-
resentation of the data from the information provided. There may 
also be overlap with translating in some cases, especially if the 
question provides a different representation to the one the students 
use. However, as this is not always the case, we primarily consider 
both indicators to reflect assembling actions and tag translating ac-
tions in a different code (see below).  



Strategy and outcome orientation also reflect student assembling 
behaviors. Both indicators consider how students set their goals and 
form plans for the problem-solving process. These two indicators 
demonstrate a difference in focuses (process vs. output).  

Lastly, data transformation reflects behaviors that are associated 
with the translating operation, in which the learner manipulates the 
ways information is represented to them in the problem to find a 
solution. 

Table 2. SRL Indicators Coded through Text Replays 

SMART 
Category 

SRL Indicator Working Definition 

Assembling  Numerical  
Representation 
(NR) 

The learner’s representation of 
the problems includes numerical 
components and demonstrates a 
level of understanding of how the 
numerical values are used in the 
math problem.   

Assembling  Contextual  
Representation 
(CR) 

The learner’s representation of 
the problem includes contextual 
details relating to the set-
ting/characters/situations within 
the given math problem.  

Assembling  Strategy 
Orientation (SO) 

Learners explicitly state a plan 
for how they will find the answer 
for the given math problem, de-
composing information into a 
step-by-step process. 

Assembling  Outcome 
Orientation (OO) 

The learner provides only a nu-
merical estimate of the final 
answer for the given math prob-
lem, suggesting that learners are 
focused on the output instead of 
the process itself. 

Translating Data  
Transformation 
(DT) 

The learner manipulates the ways 
information is represented to 
them in the problem to find a so-
lution. This suggests active 
problem solving. 

 

4.3 Coding the Data 
After constructs were operationalized and defined, we proceeded to 
code the remainder of the data. Two coders, (the same as in the 
previous section), completed the text replay coding in three phases: 
preliminary coding (discussed above), separate coding (two coders 
per clip; for establishing inter-rater reliability), and individual cod-
ing (one coder per clip; for completeness). 

The two coders each used the codebook/rubric to code the same set 
of clips separately. They then compared the labels and computed 
the inter-rater reliability (IRR) kappa. For constructs with low 
kappa, the two coders discussed their differences in labeling and 
conducted another round of coding. This step of separate coding 
and comparing is repeated until an acceptable reliability is estab-
lished. After two rounds of coding, as shown in Table 3, the two 
coders reached an acceptable IRR above 0.60 for all five SRL indi-
cators (M=0.75).  

Table 3. Inter-Rater Reliability in Separate Coding 

SRL Indicator IRR Kappa 
Numerical Representation (NR) 0.83 
Contextual Representation (CR) 0.63 
Strategy Orientation (SO) 0.74 
Outcome Orientation (OO) 0.78 
Data Transformation (DT) 0.74 

 

Once the reliability was established, the coders moved on to the 
individual coding where they split the rest of the clips and coded 
them individually.  

Each construct was considered over the entire thinklet. Thus, in to-
tal, the two coders coded 349 clips. However, in order to 
consistently examine the entire problem-solving process, 167 clips 
that were marked incomplete because students stopped before com-
pleting the entire problem were excluded. Of the remaining 182 
clips, coding resulted in the following distribution of labels: 64% 
numerical representation, 77% contextual representation, 8% strat-
egy orientation, 72% outcome orientation, and 73% data 
transformation. These were produced by 72 students, who, on av-
erage, each contributed 3 clips (max=4, min=1, median=3).    

 
Figure 2. Screenshot of Text Replay Coding Window 

4.4 Feature Distillation 
Two sets of features were distilled to build the detectors. Both sets 
of features consist solely of features that can be extracted and used 
in real-time. The first set of features were designed to provide an 
overview of a Thinklet by examining the number of responses in a 
Thinklet. These features (N = 10) were distilled at the Thinklet level. 
For example, we distilled the number of questions students an-
swered in a Thinklet and the number of responses in each phase. To 
understand the strategies that students select in the Plan phase, we 
also created a feature that counts the number of strategies a student 
selects among the top two strategies used by peers for the same 
problem.  

The second set of features were designed to examine the content 
and the linguistic features of students’ text-based responses. These 
features (N = 90) were first extracted at the response level and then 
aggregated to the phase level. These aggregations were calculated 
for the Understand, Plan, and Review phases. (No textual data was 
extracted from the Solve phase as there was no textual input in this 
phase.)  

Specifically, we distilled whether each response: 1) contains a nu-
merical value, 2) consists of only numerical values, 3) has 
mathematical operation signs, 4) contains a question (if it contains 
a question mark or uses keywords such as “wonder”, “why”, etc.), 
5) uses language that indicates the formation of a plan (e.g., the use 
of keywords like “plan”, “I will”, “going to”, etc.) , and 6) is the 
exact repetition of a previous answer. These criteria generate a set 



of binary variables for each response. We averaged these binary 
variables across the responses within a phase, creating 18 features 
for each Thinklet.  

Additionally, in each response, we counted the number of 7) char-
acters, 8) words, 9) numerical values, 10) verbs, 11) nouns, and 12) 
pronouns. Features 10-12 were counted using Udpipe, a natural lan-
guage processing toolkit [50]. We also 13) counted the number of 
keywords used from a predefined list that provides the context of 
each problem; and 14) computed how similar each response is to 
the problem item using the Smith-Waterman algorithm [46]. For 
these continuous variables, we computed the mean, standard devi-
ation, and max of the values for each phase, creating 72 features.  

Features distilled from the two sets were combined. In total, 100 
features were extracted from each Thinklet process and were then 
used to construct the automated detectors. Note that we did not ex-
tract any features from the video that students make in the current 
work. Similarly, we did not use any of the audio from the video (or 
transcription thereof) for any features.  

4.5 Machine Learning Algorithms  
We used the scikit-learn library [40] to implement commonly-used 
models, including Logistic Regression, Lasso, Decision Tree, Ran-
dom Forest as well as Extreme Gradient Boosting (XGBoost) as 
implemented in the XGBoost library [19]. XGBoost outperformed 
other algorithms in all cases; we therefore only discuss the 
XGBoost results below.  

XGBoost uses an ensemble technique that trains an initial, weak 
decision tree and calculates its prediction errors. It then iteratively 
trains subsequent decision trees to predict the error of the previous 
decision tree, with the final prediction representing the sum of the 
predictions of all the trees in the set. We tested the detectors with 
10-fold student-level cross-validation. For this approach, the da-
taset was split into 10 student-level folds, meaning that in cases 
where students had multiple Thinklets, all of their data would be 
contained within the same fold and at no time could data from a 
student be included in both the training and testing set. Nine folds 
were used to train the model, and the trained model was used to 
make predictions for the 10th fold. Each fold acted as the test set 
once. Student-level cross-validation was conducted to verify gen-
eralizability to new students. 

Models were evaluated using the area under the Receiver Operating 
Characteristic curve (AUC ROC), which indicates the probability 
that the model can correctly distinguish between an example of 
each class. An AUC ROC of 0.5 represents chance classification, 
while an AUC ROC of 1 represents perfect classification. Results 
were calculated for each fold and averaged to yield one AUC ROC 
score per detector. 

5. RESULTS 
5.1 Model Performance 
Due to the rarity of strategy orientation (only 14 clips were labeled 
with this construct), a detector could not be built for this construct. 
Automated detectors were built for the other four constructs. As 
shown in Table 4, the average AUC ROC derived from 10-fold stu-
dent-level cross-validation is 0.894 for numerical representation 
(NR), 0.813 for contextual representation (CR), 0.761 for outcome 
orientation (OO), and 0.815 for data transformation (DT). These 
findings suggest that the detectors were generally successful at cap-
turing these four SRL constructs. We also calculated the standard 
deviations (SD) of the AUC ROCs across the 10 folds for each de-
tector to investigate the variability across folds. 

Table 4. Detector Performance Measured by AUC ROC 

SRL Indicator AUC ROC (SD) 
Numerical Representation  0.894 (.078) 
Contextual Representation  0.813 (.132) 
Outcome Orientation 0.761 (.076) 
Data Transformation  0.815 (.163) 

5.2 Feature Importance 
To better understand the detectors as well as to inform our under-
standing of how these features relate to the constructs, the SHapley 
Additive exPlanations (SHAP) [33] value, which reflects feature 
importance, was calculated for each feature within each test set.  

These values were then averaged across the 10 testing sets and 
ranked based on their absolute values. Of the 100 features used, 
Table 5 reports the top five features with the highest absolute SHAP 
values for each detector. To understand the directionality, we ex-
amined the average SHAP values of the features listed. A positive 
average SHAP value was found for all the features listed (except 
for one, as indicated in the Contextual Representation section of 
Table 5). The positive values indicate that the features are positive 
predictors of the SRL indicators, suggesting that the higher the val-
ues in each feature, the more likely the model is to infer the 
presence of a SRL indicator.  

Table 5. The Top Five Features from each Detector  

Feature 
Phase Feature 

Numerical Representation 
Understand Mean N of responses that give numerical values 
Understand Max value of the similarity feature which indi-

cates how parallel a student’s response is to the 
original problem  

Understand SD of the similarity feature 
Understand Total N of responses 
Plan Avg value of the similarity feature 
Contextual Representation 
Understand Is there a response to the "what do you notice" 

question? 
Understand Avg N of keywords used 
Understand SD of the N of characters used  

(Contextual Representation less likely) 
Thinklet Total N of responses 
Plan Max value of the N of characters used 
Outcome Orientation 
Review Avg N of keywords used 
Review Avg N of words used  
Understand SD of the N of numerical values used 
Understand Is there a response to the "what is your esti-

mated answer" question? 
Review Avg N of nouns used 
Data Transformation 
Plan N of strategies selected that were among the 

most common strategies used by peers 
Understand SD of the similarity feature 
Plan SD of the N of characters used 
Understand SD of the N of nouns used 
Plan Max value of N of words used 
 

We note that of the 20 features listed in Table 5, 11 are from the 
Understand phase, 5 are from the Plan Phase and 3 are from the 
Review phase. In other words, behaviors in the early phases 



contributed more heavily to the predictions. This finding aligns 
with how the Thinklets were initially coded. Specifically, the coders 
primarily examined student responses in the Understand phase for 
numerical and contextual representation as this phase contains in-
formation demonstrating how student assemble information and 
create a problem representation; the coders examined the Thinklet 
more broadly when coding for other SRL indicators, as they en-
compass behaviors that span across phases.  

5.3 Algorithmic Bias 
Algorithmic bias occurs when model performance is substantially 
better or worse across mutually exclusive groups separated by gen-
erally non-malleable factors [11]. To validate our detectors, we 
tested the model performance in different student populations, 
based on gender and race/ethnicity using slicing analysis [25]. Spe-
cifically, utilizing the predictions made in the testing sets, AUC was 
computed for each subgroup of students in the data for which we 
received data on group membership. However, due to sample size, 
comparisons were not possible for gender non-binary students 
(N=2), Asian students (N=2), or Native American students (N=0).  

As Table 6 shows, the difference in model performance measured 
by AUC between male and female students is small, ranging from 
0.01-0.11 for the four detectors. The detectors for numerical repre-
sentation and contextual representation performed somewhat better 
for female students (AUCNR = .93, AUCCR = .75) than for male 
students (AUCNR = .82, AUCCR = .74), while detectors for outcome 
orientation and data transformation preformed somewhat better for 
male students (AUCOO = .78, AUCDT = .88) than for female stu-
dents (AUCOO = .74, AUCDT = .87). 

Table 6 also shows the analysis of algorithmic bias in terms of 
race/ethnicity, comparing the AUC between student racial/ethnic 
subgroups that had more than 5 students in our sample: African 
American, Hispanic/Latinx, and White. Small to moderate differ-
ences were observed across the three groups, though the differences 
were not consistent (i.e., no racial/ethnic group consistently had the 
best-performing detectors). However, performance remained ac-
ceptable for all four detectors across all groups. When detecting 
numerical representation and contextual representations, the detec-
tors performed somewhat better for White students (AUCNR = 0.96, 
AUCCR = 0.80), than for African American (AUCNR = 0.92, AUCCR 
= 0.75) and Hispanic/Latinx (AUCNR = 0.88, AUCCR = 0.72) stu-
dents. However, the outcome orientation detector had somewhat 
higher performance for Hispanic/Latinx students (AUCOO = 0.81), 
than for White (AUCOO = 0.80) and African American (AUCOO = 
0.71) students. The data transformation detector performed better 
for African American students (AUCDT = 0.92) than for His-
panic/Latinx (AUCDT = 0.91) and White (AUCDT = 0.83) students.  

Performance was substantially lower for two constructs/group 
combinations: detecting contextual representation for students who 
identify race as other (AUCCR = 0.65) and detecting outcome ori-
entation for students who identify as belonging to two or more races 
(AUCOO = 0.46). These more substantial differences may be due to 
the small sample size of these constructs within these subgroups; in 
future work, larger samples will be collected in order to validate 
performance in these groups. 

Given the data collected, we noticed a considerable number of stu-
dents who declined to report gender (N = 9) and race (N = 19). Both 
groups performed close to the average model performance, across 
groups and contexts. 

6. CONCLUSION AND DISCUSSION  
6.1 Main Findings 
Given the importance of self-regulation in learning, specifically in 
the problem-solving process, an increasing number of studies have 
looked into ways to promote self-regulated learning. This first re-
quires the ability to accurately measure SRL, so that interventions 
can be introduced to encourage and guide students to self-regulate 
effectively. However, the most common ways of measuring SRL in 
a fine-grained fashion – either through self-report and think-aloud 
protocols –are difficult to automate and scale, and they can also 
interrupt or interfere with the learning task. Log data collected from 
computer-based learning environments offers an unobtrusive and 
potentially scalable solution to help understand when and how stu-
dents self-regulate within the problem-solving process, in order to 
inform decisions on intervention (e.g., [3]). However, previous au-
tomated detection of SRL constructs using log data has mostly not 
been explicitly connected to SRL theory. In the current work, we 
explored the possibility of detecting SRL constructs at a fine-
grained level, focusing on detecting cognitive operations (i.e., as-
sembling and translating), outlined in the SMART model [53]. 
Specifically, we detected the presence of four self-regulation indi-
cators related to two categories of operations: numerical 
representation, contextual representation, outcome orientation, and 
data transformation. Evaluated using 10-fold student-level cross-
validation, our detectors were found to be accurate and valid across 
demographic groups, with AUC ROC ranging from .76-.89. 

To understand the detectors, feature importance was examined us-
ing SHAP values. The top five features with the highest absolute 
SHAP values were identified for each detector. With the features 
identified, we find that except for outcome orientation, the detec-
tors primarily rely on features extracted from the Understand and 
Plan phases of the learning activity, the two phases where students 
assemble information and make plans. In particular, the numerical 
representation detector mainly relies on features that examine the 

Table 6. Detector Performance by Gender and Racial/Ethnic Groups 

      Gender Race/Ethnicity 
All Stu-
dents (k-

fold) 

All Stu-
dents 

(Pooled) 
Male Fe-

male 
Left 

Blank 
African 

American 
Hispanic/ 

Latinx White 
Prefer 
Not to 

Say 
Other 

Two or 
more 
races 

N. students 72 72 33 28 9 6 18 8 19 14 5 
N. clips 182 182 81 73 24 20 38 19 50 37 12 

NR 0.89 0.89 0.82 0.93 0.97 0.92 0.88 0.96 0.86 0.85 0.86 
CR 0.81 0.80 0.74 0.75 0.94 0.75 0.72 0.80 0.90 0.65 0.78 
OO 0.78 0.75 0.78 0.74 0.72 0.71 0.81 0.80 0.74 0.78 0.46 
DT 0.82 0.86 0.88 0.87 0.78 0.92 0.91 0.83 0.84 0.82 0.86 

 



numerical values used in the Understand phase as well as features 
that compare the similarity between student responses and the prob-
lem item. The numerical value feature makes sense, as the detector 
is operationalized to identify if numerical components are pro-
cessed and represented when students assemble information. 

However, the maximum similarity feature, a feature that takes both 
numerical values and text into account, also contributes to the NR 
indicator. This finding suggests that the NR detector not only ex-
amines if numbers are used in responses, but also how they are used 
in relation to the problem. As such, this finding validates the oper-
ationalization of this indicator, showing that the learner 
demonstrates a level of understanding of how numerical values are 
used in math problems, creating a representation of the problem 
space utilizing numbers.   

The contextual representation detector looks at the keywords used 
in student responses in the Understand phase and the length of the 
responses in the Plan phase, which indicates the relationship that 
the longer the responses are when a student is forming a plan, the 
more likely it is for the student to contextually representing the 
problem. When predicting the presence of outcome orientation, the 
model utilizes features extracted in the Understand and the Review 
phases, understanding students’ use of keywords, nouns, and nu-
merical values in these two phases. At last, the data transformation 
detector checks the number of top strategies students select as well 
as the length and the variation in the length of the responses in the 
Understand and Plan phase.   

Additionally, we examined model performance on different demo-
graphic subgroups of students, both in terms of gender and 
racial/ethnic groups, to verify their fairness and lack of algorithmic 
biases. Relatively small differences were observed in each compar-
ison, and no student group (either gender or racial/ethnic group) 
consistently had the best-performing detectors.  

6.2 Applications 
The detectors built in the current study provide two advantages over 
previous SRL detectors. First, previous SRL detectors generally 
identify higher-level strategies and are not typically linked to the-
ory; in contrast, we specifically based our detectors on a SRL model 
in order to identify theoretically-grounded SRL constructs at a 
finer-grain size. Having developed these fine-grained models of be-
havior associated with the assembling and translating operations of 
SMART, we can conduct analyses to further our understanding of 
the role that cognitive operations play in the broader process of 
SRL. For example, we can investigate questions about how often 
students use these cognitive operations in each of the four tasks out-
lined in the Winne and Hadwin’s four-stage model, and how the 
engagement and the frequency of the engagement in these cognitive 
operations contributes to the success of completing the tasks. Re-
sults from future analyses will help expand the current theoretical 
understanding on SRL, adding specificity to the still high-level pro-
cesses represented in contemporary SRL theory.  

Second, given that most previous detectors are not connected back 
to SRL theory, it has been difficult to use them with theory-driven 
interventions. The detectors proposed in the current study are de-
veloped based on a theoretical model of SRL [46, 48] and are 
operationalized to capture key aspects of the cognitive operations 
in the model. These detectors can therefore be used to facilitate the 
development of adaptive learning environments that respond to stu-
dent SRL, in a fashion connected to theory. For instance, a student 
demonstrating an outcome orientation could be encouraged to re-
flect further on their strategy.  

Similarly, these detectors could also provide theory-grounded in-
formation to teachers (e.g., through a dashboard), providing insight 
on how students are approaching problems. This data can inform 
teachers as they create and refine their problems, as well as inform-
ing how they support their students. As with any application of this 
nature, careful attention will be needed in design to ensure that data 
is presented in the most useful form for teachers and appropriately 
represents the uncertainty in the model (i.e., false positives or false 
negatives).  

6.3 Limitations and Future Work 
This work has five principal limitations that should be addressed in 
future work. First, when validating the fairness of the models, the 
sample size is small (less than five students) for several student 
groups. Reliable comparison of the model performance for these 
groups of students is therefore not possible. In future work, larger 
and more representative samples should be collected in order to 
validate model performance for a broader range of student groups.  

Second, although our detectors are based on a theoretical model of 
SRL, the operationalization of our constructs is contextualized in 
the current learning environment, so our detectors may be platform-
specific. Future work should study the transferability of the current 
detectors by examining their applicability and predictive perfor-
mance, and explore how they can be adapted for use in other 
learning environments. To the extent that some of our detectors 
(such as the data transformation detector) apply across learning en-
vironments, we can investigate their performance within those 
contexts to evaluate their transferability (see, for instance, [39]). 

Third, since the detectors are currently trained on complete 
Thinklets, they will have some limitations in the ways they can be 
used when being implemented in a learning platform. Specifically, 
the detectors will only be able to make predictions after a student 
has solved a problem, providing an indicator at that point on the 
student’s use or lack of use of assembling and translating in the 
problem-solving process. As such, these detectors will not provide 
immediate detection of these strategies when students are working 
through a problem. However, they can still be used to inform teach-
ers and direct their feedback after a problem has concluded, in 
between problems or for the next problem. To enable other uses, it 
may be relevant to examine ways of also making early predictions 
based on incomplete Thinklets in order to provide detection during 
the problem-solving process, enabling real-time interventions. 

Future work should also consider additional methods for ground 
truth labelling. In this work we used a post-hoc tagging approach 
(through text replays), to identify indicators of SRL-related strate-
gies. This approach has the potential to miss crucial “in-the-
moment” events that are not evident from the log data alone. Future 
studies could examine how post-hoc tagging used in the current 
study align with in-the-moment tagging, reported by either student 
themselves or external observers/interviewers (e.g. [7]) to examine 
additional aspects of SRL. 

Finally, future work should consider expanding the scope of this 
work. In the current study, five constructs were identified and four 
modeled. SRL as a process covers a much broader range of behav-
iors and strategies that elicit the use of various cognitive operations. 
Future studies should model and detect a broader range of cognitive 
operations throughout the four stages of self-regulated learning in 
the context of problem-solving. 



6.4 Conclusions 
To better understand and facilitate the use of self-regulation in 
problem-solving, the current study tested the possibility of scaling 
up SRL measurement by leveraging machine learning to automati-
cally detect individual SRL indicators through the lens of the 
SMART model. We built automated detectors that identify four 
commonly used strategies in math problem solving, indicating as-
sembling and translating operations. Our detectors were found to 
be reliable and generalizable. Additionally, the detectors were also 
tested on different student populations to verify their fairness and 
lack of algorithmic bias, addressing a previously overlooked issue 
in the field of educational data mining. Given these properties, we 
anticipate implementing the detectors in the learning environment 
to collect more fine-grained data and to leverage the detection to 
inform interventions, creating more positive experiences in mathe-
matical problem-solving. 
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