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ABSTRACT
Online educational technologies facilitate pedagogical exper-
imentation, but typical experimental designs assign a fixed
proportion of students to each condition, even if early results
suggest some are ineffective. Experimental designs using
multi-armed bandit (MAB) algorithms vary the probability
of condition assignment for a new student based on prior
results, placing more students in more effective conditions.
While stochastic MAB algorithms have been used for edu-
cational experiments, they collect data that decreases power
and increases false positive rates [22]. Instead, we propose
using adversarial MAB algorithms, which are less exploita-
tive and thus may exhibit more robustness. Through simula-
tions involving data from 20+ educational experiments [29],
we show data collected using adversarial MAB algorithms
does not have the statistical downsides of that from stochas-
tic MAB algorithms. Further, we explore how differences in
condition variability (e.g., performance gaps between stu-
dents being narrowed by an intervention) impact MAB ver-
sus uniform experimental design. Data from stochastic MAB
algorithms systematically reduce power when the better arm
is less variable, while increasing it when the better arm is
more variable; data from the adversarial MAB algorithms
results in the same statistical power as uniform assignment.
Overall, these results demonstrate that adversarial MAB al-
gorithms are a viable “off-the-shelf” solution for researchers
who want to preserve the statistical power of standard exper-
imental designs while also benefiting student participants.
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1. INTRODUCTION
Digital educational technologies offer unique opportunities
to conduct pedagogical experiments and learn how to im-
prove student outcomes. For example, experimenters can
compare worked examples versus tutoring [19] or vary an
avatar’s dialect [9]. When an intervention’s impact is mea-

sured soon after the intervention (e.g., via response times as
in [32] or later problem correctness as in [18]), real-time data
could be used to direct more students to more effective con-
ditions. Multi-armed bandit (MAB) algorithms have been
proposed as a way to conduct such adaptive experiments [15]
and used for optimizing A/B comparisons (e.g. [16,25,26]).

While MAB assignment tends to improve outcomes for par-
ticipants, it poses problems for drawing conclusions from the
data. Prior research has shown systematic measurement er-
rors, increases in false positive rate (FPR), and decreases in
power when stochastic MAB algorithms are used for A/B
comparisons (e.g., [22]). Potential benefits to student par-
ticipants could thus be outweighed by harm to the research:
lower power decreases the probability that effective inter-
ventions will be detected and deployed outside the trial, and
higher FPR may lead to deploying unhelpful interventions
at significant cost. While developing new algorithms and
analysis approaches for these challenges is an active area of
research (e.g., [5, 8]), these approaches are not yet an “off-
the-shelf” solution for MAB-based experimental design.

In this paper, we consider the impact of using MAB algo-
rithms that make performance guarantees in the adversar-
ial case. These algorithms make weaker assumptions about
their environment [4], decreasing the degree to which they
can assign more students to a perceived better condition.
Yet, we hypothesize that these relaxed assumptions may also
decrease the negative consequences for drawing conclusions
from the data, resulting in collected data that is more ro-
bust to the realities of educational experiments. Adversar-
ial MAB algorithms could thus be used by researchers who
want some of the benefits of condition-assignment via MAB
algorithms but where their primary focus remains on draw-
ing generalizable conclusions. These algorithms could also
be more effective than uniform random assignment in some
cases, as they can be sensitive to condition variability, and
allocating more participants to an extremely variable condi-
tion can result in a better measurement of its effectiveness.

Using simulations, we first explore how 22 previously con-
ducted experiments [29] might have been impacted if con-
ditions had been assigned with a stochastic bandit algo-
rithm (Thompson sampling [30]) or with one of three ad-
versarial MAB algorithms in the Exp family [4], rather than
with uniform random assignment.1 These experiments were
all conducted in ASSISTments homework assignments [11],

1All code: http://tiny.cc/MABExpDesign (OSF link).
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leading to a thorough investigation of how these algorithms
might perform in real-world settings. We go beyond prior
work that has often focused on binary outcomes for students
(e.g. [35]) to examine real-valued outcomes that may follow
idiosyncratic distribution patterns. We show that the Exp
family of adversarial bandit algorithms largely avoids the
measurement and hypothesis testing inaccuracies incurred
by stochastic bandits, while still providing a small but reli-
able improvement in average student outcomes.

We then turn to exploring MAB algorithms in the context
of experiments where conditions differ in variance, which
occurs when interventions narrow (or widen) gaps among
students. We find that the potential power advantage for
adversarial MAB algorithms is not realized in practice, al-
though there are some scenarios in which the more exploita-
tive stochastic MAB algorithm does increase power.

Overall, we make the following contributions: (a) introduc-
ing the idea of adversarial and stochastic-adversarial MAB
algorithms as an off-the-shelf solution for allocating students
to conditions; (b) demonstrating that these MAB algorithms
have minimal detrimental impacts on the performance of
statistical hypothesis testing in a range of real-world edu-
cational experiments; and (c) illustrating that differences in
variance across two conditions are not sufficient for condition
assignment with adversarial MAB algorithms to increase
power over uniform assignment. These results suggest that
adversarial and stochastic-adversarial MAB algorithms offer
a good solution for researchers who want to improve student
participant’s experiences without negatively impacting their
own ability to learn from the experiment and improve expe-
riences for the many students who are not participants.

2. RELATED WORK
Assigning participants to experimental conditions using MAB
algorithms has been proposed as an alternative to uniform
assignment (e.g., [12, 31, 34]). In clinical trials, a variety of
methods that adapt based on previous results have been pre-
sented (e.g., [3,5,7], often to more quickly use data to benefit
patients (e.g., [36]). More closely related to our work, appli-
cations of MAB algorithms to educational settings can help
to more quickly identify pedagogically effective conditions
(e.g., [15, 16, 33]) and lower barriers to teachers conducting
experiments in their classrooms [35]. While MAB algorithms
have also been used in education to assign students to ed-
ucational interventions with the sole goal of producing the
best outcomes for that particular student (e.g., [6, 13]), we
focus here specifically on cases where there is a desire to ex-
trapolate beyond individual students and draw generalizable
conclusions, as in traditional scientific experiments.

While MAB algorithms are a natural choice for assigning
participants to conditions to limit how many students are
assigned to less effective conditions, these algorithms have
consequences for researchers’ ability to use the collected
data to draw conclusions about the relative effectiveness of
conditions. Traditional stochastic MAB algorithms mini-
mize regret, but this can lead to systematically biased esti-
mates of arm means (e.g., [5,20,37]). They also impact tra-
ditional statistical hypothesis testing: false positive rates,
where there is no actual effect in the population but the
test points to there being an effect, can be increased, and

power, which measures how often a test will detect a differ-
ence when there is one, can be decreased (see e.g., [22], for
specific documentation of these phenomena with Thompson
sampling [1, 30], which we compare to in this paper). A
variety of approaches have been taken to addressing these
issues, including both statistical approaches to create unbi-
ased estimators from the collected data (e.g., [5]) and algo-
rithmic approaches that incorporate measurement into the
algorithms’ objective (e.g., by including estimation accu-
racy in the objective [8] or incorporating lower bounds on
power [38]). Using such approaches off-the-shelf can be chal-
lenging: the power-constrained bandits algorithm [38] makes
multiple decisions about one participant, rather than learn-
ing across participants, and researchers may wish to use their
standard statistical estimators and tests rather than switch-
ing to a different paradigm. In this paper, we take a slightly
different approach by exploring an alternative class of MAB
algorithms and examining their performance in real-world
scenarios.

3. BANDIT-DRIVEN EXPERIMENTS
MAB problems are a kind of reinforcement learning problem
focused on maximizing immediate rewards. A classic exam-
ple is allocating limited pulls to a set of slot machines. In
these problems, agents must balance collecting new informa-
tion about little explored arms and exploiting information
from received rewards. Here, we model selecting better ed-
ucational interventions as a MAB problem: Each interven-
tion is an arm (action) the system can choose, and initially,
rewards are unknown. After a student experiences an in-
tervention, the system receives a stochastic reward (e.g., a
measure of the student’s understanding/efficiency) that in-
fluences the arm choice for the next student.

Stochastic bandit algorithms. These algorithms assume there
is some stationary reward distribution underlying each arm.
Here, we focus on Thompson sampling (TS; [2, 30]), which
maintains an estimate of the reward distribution of each
arm. From the reward that it gets from each choice, it up-
dates this distribution. At each time step, the algorithm
samples from the posterior reward distribution of each arm
and chooses the arm that has the highest sampled value.

Adversarial bandit algorithms. Adversarial bandits make no
statistical assumptions about the reward distribution of each
arm, making them appropriate for reward distributions that
are non-stationary or of unknown form. Because of the lack
of assumptions, they are designed to explore more strongly
and adapt more quickly to perceived changes in reward dis-
tributions. If the rewards in fact follow stationary distribu-
tions, this can lead to lower expected reward than stochastic
bandit algorithms, but when reward distributions deviate
from these assumptions, adversarial bandit algorithms have
stronger performance guarantees than stochastic bandit al-
gorithms. From the perspective of using MAB algorithms
for experimental design, the extra exploration in adversarial
algorithms could collect better data for drawing conclusions
about differences between arms, albeit while lowering bene-
fits for participants in the experiment.

In this work, we focus on the popular Exp3 family of adver-
sarial bandit algorithms [4]. Exp3 balances exploration and
exploitation via an exploration hyperparameter that influ-



ences both the probability of picking an arm uniformly at
random and the strength of response to high rewards from
low-probability arms. This hyperparameter allows an ex-
perimenter to adjust the amount of exploration, potentially
increasing reward at the cost of collecting more biased data.
Because this choice is difficult to optimize ahead of time, we
also examine the performance of Exp3.1, which eliminates
the hyperparameter and provides worst case performance
guarantees regardless of the true reward distributions [4].

One algorithm that has performance guarantees in both
stochastic and adversarial environments is Exp3++ [28].
While this algorithm achieves lower expected rewards than
TS, it often improves upon the obtained reward of Exp3
while still employing enough exploration to perform well in
adversarial environments. It also can be used off-the-shelf,
with fixed values for the hyperparameters that probabilisti-
cally guarantee asymptotic performance [27].

We want to explore how well adversarial and stochastic MAB
algorithms meet the needs of researchers for data collection
in educational experiments and how they impact student ex-
periences compared to traditional uniform assignment. We
hypothesize that the adversarial bandit algorithms (Exp3
with a fixed value of 0.05 for the hyperparameter, Exp3.1,
Exp3++) will have comparable performance for collecting
research data to uniform random allocation, with benefits
to students that are greater than uniform random allocation
but less than those from a representative stochastic bandit
algorithm (TS). Further, Exp3++ is likely to improve on
the purely adversarial algorithms’ performances in assign-
ing more students to better arms.

4. EVALUATING ADVERSARIAL BANDITS:
ASSISTMENTS EXPERIMENTS

The probabilistic asymptotic performance guarantees of MAB
algorithms, both in stochastic and adversarial environments,
suggest that student participants would benefit if these al-
gorithms were used for experimental design. However, these
guarantees do not speak to how biased the collected data will
be, nor whether standard statistical hypothesis testing will
be able to draw accurate conclusions from that data. Fur-
ther, real educational experiments may have non-normally
distributed outcome measures, impacting the collected data
and performance of each algorithm. To explore how well the
Exp3 variants meet the needs of researchers to draw accurate
conclusions and the desire to place more students in a better
condition, we conduct simulations that leverage previously
collected datasets from educational experiments, conducted
on the ASSISTMents platform [11]. We use these datasets
as a case study for how to apply MAB algorithms to sce-
narios with varying, real-valued reward distributions, where
some students reach mastery quickly and others never do so,
and by repeatedly simulating the potential impact of each
of the four bandit algorithms (TS, Exp3, Exp3.1, Exp3++),
we can measure statistical power, false positive rate (FPR),
and accuracy of arm measurement across algorithms.

4.1 Methods
4.1.1 Modeling real-world datasets
We focus on datasets from 22 randomized controlled exper-
iments run inside the SkillBuilder interface of the ASSIST-

ments online learning platform [29], which focuses primarily
on 4th-12th grade math. These datasets included a total
of 14,947 students in grades 5-12 (25% of students lacked
a reported grade). Students had 200 different teachers and
were drawn from 19 states (states deidentified in the data),
and included a “guessed” gender based on name for 68% of
students (of these, 53% were female; see [10] for informa-
tion on gender methodology). No information on student
race/ethnicity or SES was available, and experiments were
IRB approved; see [29] for more dataset details.

In each experiment, students were placed into one of two
conditions when completing homework. Each student must
answer several consecutive problems correctly to complete
the homework (typically three), and the number of problems
P the student attempted before completion was recorded.
Both completing homework and doing so in fewer problems
are desirable, and we translate these measures into a reward
signal for the MAB algorithms. To eliminate scaling issues,
rewards are scaled to a fixed range as follows. Based on
examination of the range of problems to completion across
experiments, we cap the maximum number of problems at
30. If P ≥ 30 or the student did not complete the homework,
then we set P to 30. Because lower values of P are better,
reward is then r = 30− P . This reward is guaranteed to be
in [0, 30] and is then linearly interpolated into [0, 1] for the
MAB algorithms. We refer to the better condition as arm 1
and the worse condition as arm 2 on all datasets.

To conduct repeated trials with data from previously con-
ducted experiments, our framework resamples an outcome
associated with the chosen condition in the dataset when
that condition is assigned to an incoming student. Within
each trial, we fix the number of students n to the number in
the original experiment (n ∈ [129, 1797]).

4.1.2 Simulation setup
To assess the ability of traditional hypothesis tests to draw
accurate conclusions from the collected data, we measure
(1) power – the proportion of the time an effect is detected
when one exists – using scenarios where two conditions are
different and (2) false positive rate (FPR) – the proportion
of the time an effect is falsely detected when one does not
exist – using scenarios where two conditions are the same
in terms of expected reward. For (1), we focus on the seven
ASSISTments datasets with the largest effect sizes measured
in terms of Cohen’s d (0.16 ∼ 0.51), as larger effect sizes are
more likely to reflect educationally relevant differences and
may lead to larger differences across algorithms; we refer
to these as ASSISTments-GES (greater effect size). We ex-
amine how the allocation methods impact average reward,
which measures student outcomes, and statistical power and
measured arm means, which are of large importance to re-
searchers. For (2), we create modified datasets in which
each condition’s reward list contains all rewards from both
arms. This creates two conditions with the same expected
outcome while keeping their realistic reward distributions.
We refer to these 22 modified datasets as ASSISTments-RC
(reward combined). Because no allocation method could in-
crease benefits to students given that the conditions do not
differ, we focus here on examining FPR and measured arm
means. For both (1) and (2), we follow Section 4.1.1 and
run 1000 trials for each dataset-algorithm combination.
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Figure 1: In terms of benefiting students as measured by
mean average reward (a), all Exp allocations under-performed
TS but out-performed uniform (except on dataset 293151).
This was possible even when Exp3.1 and Exp3++ allocation
achieved comparable power to uniform allocation, as indi-
cated by overlapping error bars on all seven datasets (b).
Error bars show ±1.96× SE.

4.1.3 Data collection and analysis
For each trial, we record all condition assignments and un-
scaled rewards. We then compute: the average reward per
student, the average reward µ̂ for each condition (true ex-
pected reward denoted by µ∗), and the conclusion of a two-
sided hypothesis test of whether the two conditions differ
at a population level. Because capping P as discussed in
Section 4.1.1 can lead to strong bimodality in reward dis-
tributions, which dissatisfies the assumptions of a standard
t-test, we use the non-parametric Brunner-Munzel test for
testing for a difference between conditions in the collected
data. This test assumes neither normality nor equivariance
of the distributions from which the samples are drawn. We
consider the test to detect an effect if and only if p < .05.

To determine if a statistic differed reliably based on condi-
tion allocation method, we use generalized linear regression,
with factors for algorithm (with uniform as reference group)
and ASSISTments dataset. We report two decimal places
except for small or similar values.

4.2 Results
4.2.1 Datasets with effects: ASSISTments-GES
Mean average reward: All MAB allocations were associated
with significantly higher benefits to students, as measured
by mean average reward, than uniform allocation (coefficient
for TS: 0.80; Exp3: 0.19; Exp3.1: 0.10; Exp3++: 0.15; all
p < .001). TS collected data with highest mean average re-
ward (16.34), followed by Exp3 (15.74; 24% of the reward
gain of TS over uniform), Exp3++ (15.69; 19% of TS over
uniform), Exp3.1 (15.64; 12% of TS over uniform), and Uni-
form (15.54). For a breakdown by dataset, see Figure 1a.

Power: TS and Exp3 allocations had significantly lower power
than uniform (coefficient for TS: −1.42; Exp3: −0.18; both
p < .001), while allocation with the other two algorithms
did not (Exp3.1: −0.05, p = .22; Exp3++: −0.07, p = .11).
On average, TS collected data with lowest power (0.40), fol-
lowed by Exp3 (0.59), Exp3++ (0.61), Exp3.1 (0.61) and
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Figure 2: TS allocation led to a clear, systematic underesti-
mation of arm 2 [worse arm] on all seven datasets (a), while
Exp allocations resulted in arm mean estimates similar to
those of Uniform (a). Error bars are not shown for clarity
and are delegated to hypothesis testing. Also, the worst-case
µ̂’s are much worse for TS allocation than for Exp (b).

Uniform (0.62). Figure 1b shows a breakdown by dataset.

Measured arm means: Our work replicates prior work show-
ing that TS underestimates the worse arm in binary tri-
als [22] and further finds a small underestimation of the
better arm (arm 1 [better arm] coefficient: −0.05; arm 2
[worse arm] coefficient: −0.76; all p < .001). The Exp
algorithms resulted in more accurate measurement of arm
means: while Exp3 and Exp3++ also underestimate both
arms, the extent to which they underestimate the worse arm
is much less than TS (for Exp3: arm 1 coefficient: −0.02,
p < .05; arm 2 coefficient: −0.04, p < .05; for Exp3++:
arm 1 coefficient: −0.02, p < .01; arm 2 coefficient: −0.04,
p < .05). Arm mean estimates using data from Exp3.1 did
not differ significantly from those derived from uniform al-
location (arm 1 coefficient: 0.004, p = .71; arm 2 coefficient:
−0.007, p = .69). See Figure 2a for a qualitative comparison
by dataset and Figure 2b for a worst-case analysis showing
results for the trial with the most inaccurate µ̂.

4.2.2 Datasets without effects: ASSISTments-RC
FPR: TS allocation was associated with significantly higher
FPR than uniform allocation (coefficient for TS: 0.56, p <
.001), while allocation with the other three algorithms was
not (coefficient for Exp3: 0.0065, p = .88; for Exp3.1: −0.0019,
p = .97; for Exp3++: −0.0047, p = .91). On average, TS
collected data with the highest FPR (0.0867) and is followed
by Exp3 (0.0517), Uniform (0.0514), Exp3.1 (0.0513) and
Exp3++ (0.0512). As shown in Figure 3a, TS inflates FPR
for almost all datasets, while the other algorithms have FPR
< .06 for the vast majority of datasets.

Measured arm means: Since the two arms are identical and
within a trial, their average values are not independent, we
arbitrarily examine one of the two arms for each trial. Al-
location using TS, Exp3, and Exp3++ was associated with
significantly lower estimates of arm means compared to uni-
form allocation (coefficient for TS: −0.42; Exp3: −0.0320;
Exp3++: −0.0274; all p < .001); note that the bias for TS
is much larger than for Exp3 and Exp3++. Similar results



< . 06
.06 . 08

.08 . 10
> . 10

Range of FPR

0

1

Pr
op

or
ti

on
 o

f
D

at
as

et
s

(a)

Uniform
TS
Exp3
Exp3.1
Exp3++

0 16arm1

0

16

ar
m

2

(b) 's by TS
on 226210-RC

0 16arm1

(c) 's by all Exp algo.
on 226210-RC

0

1

Figure 3: (a) TS allocation results in more datasets with in-
flated FPR than uniform and adversarial allocations. Re-
maining figures show the distribution of (µ̂arm1, µ̂arm2) pairs
of TS (b) and of all Exp algorithms (c) on dataset 226210-RC,
with hue showing Narm1/Ntotal. Clearly, TS has trials where
one arm is very badly estimated while Exp algorithms don’t.
Hue offers an explanation: for TS (b), µ̂arm1 is roughly unbi-
ased when arm 1 is pulled more often (a proxy of appearing to
be better) and negatively biased when it is pulled less often (a
proxy of appearing to be worse early-on); Exp algorithms (c)
allocate more evenly, indicating that it explored both arms
beyond initial under/over-estimation.

hold if we arbitrarily analyze the other arm instead. Exp3.1
did not have a significant negative bias with one choice of
arm for analysis (coefficient: −0.0092, p = .23), but did for
the other (coefficient: −0.0173, p < .05), suggesting a weak
negative bias in estimated mean. This replicates results for
TS from prior work [22] and shows the same underestimation
can occur for adversarial bandits, albeit with much smaller
magnitude of underestimation: in all cases, the MAB algo-
rithm underestimates the mean of the arm that appears, due
to random sampling, to be worse, and then samples the arm
that appears to be better more often, leading the estimate
of the other arm to be below its true mean. See Figure 3b
and c for a comparison between TS and Exp algorithms.

Overall, these results show that experimental design using
the Exp family of algorithms can collect data that meets
researchers’ needs better than a purely stochastic bandit al-
gorithm, with higher power, lower FPRs, and more accurate
condition measurement. These algorithms do not benefit
students as much as the purely stochastic TS, but all Exp
algorithms do improve on uniform allocation. Exp3++ pro-
vides a balance between Exp3.1 and Exp3, achieving 19% of
the reward gain of TS, requiring no hyper-parameters, and
demonstrating only a slight underestimation of arm means.

5. POWER AND UNEQUAL VARIANCE
The ASSISTments simulations demonstrate that across a
range of educational experiments, the Exp algorithms per-
formed better when measured in terms of researchers’ con-
cerns, like power and arm mean estimates, while TS attained
greater benefits for students. More generally, both TS and
Exp aim to optimize reward, but they do so with different
assumptions about the environment, meaning that the spe-
cific characteristics of an experiment will influence how well
each performs on both student- and researcher-centric mea-
sures. However, because the ASSISTments experiments do

not vary systematically from one another, they are not an
ideal platform for exploring the impact of specific experi-
mental characteristics on the MAB algorithms’ performance
compared to one another and compared to uniform alloca-
tion. We thus turn to simulations with constructed datasets
to explore the impact of one experimental characteristic: the
relative variability of the two conditions.

Ideally, pedagogical interventions increase equity and nar-
row achievement gaps between students, indicated by lower
variability among students who experience the intervention,
but in the non-ideal case they also could widen these gaps.
Interestingly, differences in condition variability affect what
allocation of students is best for power: uneven allocation
that places more students in the more variable condition
will result in higher power than uniform allocation, at the
potential cost of reward. In the simulations that follow, we
examine how allocation using TS and Exp algorithms juggles
power with reward differently, as well as whether Exp algo-
rithms’ adversarial assumptions and sensitivity to condition
variability make them improve upon uniform allocation for
measures like power that are researchers’ primary concern.

5.1 Methods
5.1.1 Two-arm scenarios
To systemically investigate the impact of having conditions
that differ in variability, we construct artificial scenarios
with two arms that have normally distributed rewards. We
fix the expected reward of arm 1 as 1 and that of arm 2 as
0, and vary whether the better or worse arm has a higher
variance and the magnitude of the differences in variance;
specifically we consider the following 19 scenarios:

{(1, 1)} ∪ ({1} × {2 : 10})︸ ︷︷ ︸
Worse arm has higher SD

∪ ({2 : 10} × {1})︸ ︷︷ ︸
Better arm has higher SD

where each tuple gives the standard deviation (SD) of arm
1 followed by arm 2.

As in Section 4, rewards are interpolated into [0, 1] for the
MAB algorithms. Rewards are first clipped to [−30, 31],
where −30 is the mean of the worse arm (0) minus three
times the maximum possible SD (10) and 31 is the mean of
the better one (1) plus three times the maximum possible
SD. We run 10000 trials for each scenario-algorithm combi-
nation, and each trial includes 250 simulated students.

5.1.2 Data collection and analysis
Data collection is described in Section 4.1.3. For analysis,
we use Welch’s test (t-test that does not assume equal vari-
ances) instead of the Brunnzer-Munzel test, as raw rewards
are normally distributed and the clipping range is wide.

To determine if a statistic for data collected using the MAB
algorithms differed reliably from that for data collected us-
ing uniform allocation, we use generalized linear regression,
with factors for algorithm (with uniform as reference group),
standard deviation of the arm with variable variance, and
the interaction between the two.

5.2 Results
As shown in Figure 4, the impact of allocation method on
power differed systematically based on whether the better
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Figure 4: TS has higher power than uniform when the better
arm is more variable (a), but lower power when the worse arm
is more variable (b); Exp algorithms and uniform perform
similarly. In all cases, MABs outperform uniform, with TS
attaining the highest reward (c-d). Error bands: ±1.96 SE.

or worse arm had higher variance. TS allocation was associ-
ated with significantly higher power than uniform allocation
when the better arm was more variable (coefficient: 0.20;
p < .001; Figure 4a), but significantly lower power when the
worse arm was more variable (coefficient: −1.94, p < .001;
Figure 4b). In contrast, the three Exp algorithms performed
qualitatively similarly to uniform allocation in both scenar-
ios, with a small but reliable decrease in power for Exp3 and
Exp3.1 when the worse arm was more variable (coefficient
for Exp3: −0.13, p < .001; Exp3.1: −0.09, p < .01). No
other power differences were detected. While the potential
of TS to increase power in some situations seems promising,
researchers will not know in advance whether to expect TS
to increase or decrease power, and the decreases in power
from TS when the worse arm has higher variance are larger
than the increases in the opposite case. Further, designing
an intervention where the better arm is more variable is gen-
erally undesirable: it corresponds to a scenario in which an
intervention that helps students on average also widens gaps
among individual students.

As expected and shown in Figure 4c-d, TS had larger reward
compared than the Exp algorithms, but all MAB algorithms
resulted in reliably higher reward – i.e., benefits to students
– than uniform allocation (better arm more variable: coeffi-
cient for TS: 0.47; Exp3: 0.07; Exp3.1: 0.03; Exp3++: 0.07;
worse arm more variable: TS: 0.45; Exp3: 0.08; Exp3.1:
0.04; Exp3++: 0.07; all p < .001).

6. DISCUSSION
Pedagogical experiments are a useful tool for improving ed-
ucation, but allocating students to conditions uniformly at
random can pose challenges, with larger subject pools lead-

ing to more students experiencing an inferior educational
condition but smaller subject pools potentially decreasing
the ability of researchers to differentiate conditions with
certainty. Our results suggest that adversarial bandit algo-
rithms offer a way to increase the proportion of students
assigned to a better condition with limited compromises
to the conclusions that can be drawn from the experimen-
tal results. Hyper-parameter free adversarial bandit algo-
rithms like Exp3++ thus offer a researcher-friendly option
for experimental design that performs well even with non-
standard outcome distributions, as we saw in the ASSIST-
ments simulations. While TS improved power when the bet-
ter condition had higher variance, it also decreased power
when the worse arm had higher variance. Researchers are
unlikely to know which of these scenarios applies before col-
lecting results, and this unpredictability of the impact of TS,
coupled with the higher FPR and lower power on average in
the real educational datasets, may make stochastic bandits
less attractive to researchers.

One limitation of this work is its use of simulations rather
than new experiments. Importantly, simulations are needed
to measure power and FPR, but field testing with adversarial
algorithms is also needed to assess their real-time feasibil-
ity as well as the existence and impact of temporal trends in
outcomes. All studied algorithms run in real-time on a single
CPU, but students may complete homework contemporane-
ously, with some assigned a condition prior to another stu-
dent finishing and thus without incorporating the outcome
of that student. This could be handled by batch updat-
ing [17,21], but there has been limited exploration of the im-
pact of batching on analyzing the collected data. Temporal
trends may occur in experiments if, say, higher prior knowl-
edge students complete homework first, or multiple schools
participate in an experiment at different times. Adversar-
ial bandit algorithms should outperform stochastic ones in
these situations, but empirical study is necessary.

A second limitation is our assumption that one arm is better
for all students, without regard for personalization. While
personalization is an exciting area for future work, incor-
porating personalization in bandit algorithms for education
poses its own ethical conundrums, including potentially lesser
outcomes for less well-represented groups (see [14]).

Future work should also examine other scenarios where ban-
dit algorithms might increase power. Here, we focused only
on conditions with differing variance, but other interesting
scenarios include experiments with more conditions, with
predicted outcome distributions that exhibit particular non-
standard characteristics (e.g., bimodality), or with different
analysis goals than detecting if two conditions differ in mean.
One or more types of bandit algorithms (e.g., stochastic,
adversarial, or best-arm identification [23]) may be best for
each scenario; based on their weak environmental assump-
tions, we believe adversarial bandits may be reasonable in
all of these scenarios. Work in optimal experiment design
(OED; see, e.g., [24]) shows the potential of non-uniform
allocation to increase the information gained from an ex-
periment. Bandit algorithms often require less setup and a
priori knowledge than OED, and thus identifying informa-
tion gain benefits of these algorithms in particular settings
could benefit both researchers and student participants.
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