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Preface

For this 15th iteration of the International Conference on Educational Data Mining (EDM 2022),
the conference returned to England, this time to Durham, with an online hybrid format for virtual
participation as well. EDM is organized under the auspices of the International Educational Data
Mining Society. The conference, held July 24th through 27th, 2022, follows fourteen previous
editions (fully online in 2021 and 2020, Montréal 2019, Buffalo 2018, Wuhan 2017, Raleigh 2016,
Madrid 2015, London 2014, Memphis 2013, Chania 2012, Eindhoven 2011, Pittsburgh 2010, Cor-
doba, 2009 and Montréal 2008).

The theme of this year’s conference is Inclusion, Diversity, Equity, and Accessibility (IDEA) in
EDM Research and Practice. This theme emphasizes the importance of considering and broad-
ening who is included – or not included – in EDM, and why. Furthermore, the theme speaks to
the importance of IDEA considerations in all stages of the research process, from participant re-
cruitment and selection, data collection, methods, analysis, results, to the application of research
results in the future. The conference features three invited talks: Jennifer Hill, Professor of Applied
Statistics at New York University, USA; René Kizilcec, Assistant Professor of Information Science
at Cornell University, USA; and Judy Robertson, Professor of Digital Learning at the University
of Edinburgh, Scotland. As in the past few years of EDM, this year’s conference also includes an
invited keynote talk by the 2021 winner of the EDM Test of Time Award. The talk is delivered by
Tiffany Barnes, Distinguished Professor of Computer Science at North Carolina State University,
USA.

This year’s EDM conference continued the double-blind review process that started in 2019. The
program committee was once again extended, this time using an interest survey process, to better
reflect the community presenting works and to keep the review load for each member manageable.
EDM received 90 submissions to the full papers track (10 pages), of which 26 were accepted
(28.9%), while a further 12 were accepted as short papers (6 pages) and 14 as posters (4 pages).
There were 56 submissions to the short paper track, of which 17 were accepted (30.4%) and a
further 20 were accepted as posters. The poster and demo track itself accepted 10 contributions
out of 20 submissions.

The EDM 2022 conference also held a Journal of Educational Data Mining (JEDM) Track that
provides researchers a venue to deliver more substantial mature work than is possible in a confer-
ence proceeding and to present their work to a live audience. The papers submitted to this track
followed the JEDM peer review process. Five papers were submitted and two papers are featured
in the conference’s program.

The main conference invited contributions to an Industry Track in addition to the main track. The
EDM 2022 Industry Track received six submissions of which four were accepted. The EDM
conference also continues its tradition of providing opportunities for young researchers to present
their work and receive feedback from their peers and senior researchers. The doctoral consortium
this year features nine such presentations.

In addition to the main program, there are six workshops and tutorials: Causal Inference in Edu-
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cational Data Mining (Third Annual Half-Day Workshop), 6th Educational Data Mining in Com-
puter Science Education (CSEDM) Workshop, FATED 2022: Fairness, Accountability, and Trans-
parency in Educational Data, The Third Workshop of The Learner Data Institute: Big Data, Re-
search Challenges, & Science Convergence in Educational Data Science, Rethinking Accessibil-
ity: Applications in Educational Data Mining, and Tutorial: Using the Open Science Framework
to promote Open Science in Education Research.

We thank the sponsors of EDM 2022 for their generous support: DuoLingo, ETS, Durham Univer-
sity Department of Computer Science, and Durham University School of Education. We are also
thankful to the senior program committee and regular program committee members and reviewers,
without whose expert input this conference would not be possible. Finally, we thank the entire
organizing team and all authors who submitted their work to EDM 2022. And we thank EasyChair
for their infrastructural support.

Antonija Mitrovic University of Canterbury Program Chair
Nigel Bosch University of Illinois Urbana–Champaign Program Chair
Alexandra I. Cristea Durham University General Chair
Chris Brown Durham University General Chair

July 23nd, 2022
Durham, England, UK
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Best Paper Selection

The program committee chairs discussed and nominated four full papers and four short papers for
best paper and best student paper awards, based on reviews, review scores, and meta-reviews. The
papers and reviews (both anonymous) were then sent to a best paper award committee who ranked
the papers. The highest-ranked paper was awarded the best paper award, while the next-highest
ranked paper with a student first author was awarded the best student paper award.

Best paper committee

• Luc Paquette
• Kalina Yacef
• Kenneth Koedinger
• Anna Rafferty

Best paper nominees

(Full) Jiayi Zhang, Juliana Ma. Alexandra L. Andres, Stephen Hutt, Ryan S. Baker, Jaclyn
Ocumpaugh, Caitlin Mills, Jamiella Brooks, Sheela Sethuraman and Tyron Young. Detecting
SMART Model Cognitive Operations in Mathematical Problem-Solving Process

(Full) Vinthuy Phan, Laura Wright and Bridgette Decent. Addressing Competing Objectives in
Allocating Funds to Scholarships and Need-based Financial Aid

(Full) Yuyang Nie, Helene Deacon, Alona Fyshe and Carrie Demmans Epp. Predicting Reading
Comprehension Scores of Elementary School Students

(Full) Guojing Zhou, Robert Moulder, Chen Sun and Sidney K. D’Mello. Investigating Temporal
Dynamics Underlying Successful Collaborative Problem Solving Behaviors with Multilevel Vector
Autoregression

(Short) Lea Cohausz. Towards Real Interpretability of Student Success Prediction Combining
Methods of XAI and Social Science

(Short) Juan Sanguino, Ruben Manrique, Olga Mariño, Mario Linares and Nicolas Cardozo. Log
mining for course recommendation in limited information scenarios

(Short) Zhikai Gao, Bradley Erickson, Yiqiao Xu, Collin Lynch, Sarah Heckman and Tiffany
Barnes. Admitting you have a problem is the first step: Modeling when and why students seek
help in programming assignments

(Short) Anaïs Tack and Chris Piech. The AI Teacher Test: Measuring the Pedagogical Ability of
Blender and GPT-3 in Educational Dialogues
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Keynotes

Deep Down, Everyone Wants to be Causal
Jennifer Hill, Professor of Applied Statistics at New York University, USA

Most researchers in the social, behavioral, and health sciences are taught to be extremely cautious
in making causal claims. However, causal inference is a necessary goal in research for address-
ing many of the most pressing questions around policy and practice. In the past decade, causal
methodologists have increasingly been using and touting the benefits of more complicated machine
learning algorithms to estimate causal effects. These methods can take some of the guesswork out
of analyses, decrease the opportunity for “p-hacking,” and may be better suited for more fine-tuned
tasks such as identifying varying treatment effects and generalizing results from one population to
another. However, should these more advanced methods change our fundamental views about how
difficult it is to infer causality? In this talk, I will discuss some potential advantages and disadvan-
tages of using machine learning for causal inference and emphasize ways that we can all be more
transparent in our inferences and honest about their limitations.

Beyond Algorithmic Fairness in Education: Equitable and Inclusive Decision-Support Sys-
tems
René Kizilcec, Assistant Professor of Information Science at Cornell University, USA

Advancing equity and inclusion in schools and universities has long been a priority in education
research. While data-driven predictive models could help improve social injustices in education,
many studies from other domains suggest instead that these models tend to exacerbate existing
inequities without added precautions. A growing body of research from the educational data min-
ing and neighboring communities is beginning to map out where biases are likely to occur, what
contributes to them, and how to mitigate them. These efforts to advance algorithmic fairness are
an important research direction, but it is critical to also consider how AI systems are used in ed-
ucational contexts to support decisions and judgements. In this talk, I will survey research on
algorithmic fairness and explore the role of human factors in AI systems and their implications for
advancing equity and inclusion in education.

No data about me without me: Including Learners and Teachers in Educational Data Mining
Judy Robertson, Professor of Digital Learning at the University of Edinburgh, Scotland

The conference theme this year emphasizes the broadening of participation and inclusion in edu-
cational data mining; in this talk, I will discuss methodologies for including learners and teachers
throughout the research process. This involves not only preventing harm to young learners which
might result from insufficient care when processing their data but also embracing their participa-
tion in the design and evaluation of educational data mining technologies. I will argue that even
young learners can and should be included in the analysis and interpretation of data which affects
them. I will give examples of a project in which children have the role of data activists, using
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classroom sensor data to explore their readiness to learn.

Test of Time Award:
Compassionate, Data-Driven Tutors for Problem Solving and Persistence
Tiffany Barnes, Distinguished Professor of Computer Science at North Carolina State University,
USA

Determining how, when, and whether to provide personalized support is a well-known challenge
called the assistance dilemma. A core problem in solving the assistance dilemma is the need to
discover when students are unproductive so that the tutor can intervene. This is particularly chal-
lenging for open-ended domains, even those that are well-structured with defined principles and
goals. In this talk, I will present a set of data-driven methods to classify, predict, and prevent
unproductive problem-solving steps in the well-structured open-ended domains of logic and pro-
gramming. Our approaches leverage and extend my work on the Hint Factory, a set of methods
that to build data-driven intelligent tutor supports using prior student solution attempts. In logic,
we devised a HelpNeed classification model that uses prior student data to determine when stu-
dents are likely to be unproductive and need help learning optimal problem-solving strategies. In a
controlled study, we found that students receiving proactive assistance on logic when we predicted
HelpNeed were less likely to avoid hints during training, and produced significantly shorter, more
optimal posttest solutions in less time. In a similar vein, we have devised a new data-driven method
that uses student trace logs to identify struggling moments during a programming assignment and
determine the appropriate time for an intervention. We validated our algorithm’s classification of
struggling and progressing moments with experts rating whether they believe an intervention is
needed for a sample of 20% of the dataset. The result shows that our automatic struggle detec-
tion method can accurately detect struggling students with less than 2 minutes of work with 77%
accuracy. We further evaluated a sample of 86 struggling moments, finding 6 reasons that human
tutors gave for intervention from missing key components to needing confirmation and next steps.
This research provides insight into the when and why for programming interventions. Finally, we
explore the potential of what supports data-driven tutors can provide, from progress tracking to
worked examples and encouraging messages, and their importance for compassionately promoting
persistence in problem solving.
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JEDM Presentations

Empirical Evaluation of Deep Learning Models for Knowledge Tracing:
Of Hyperparameters and Metrics on Performance and Replicability

Sami Sarsa Aalto University, Finland
Juho Leinonene Aalto University, Finland
Arto Hellas Aalto University, Finland

New knowledge tracing models are continuously being proposed, even at a pace where state-of-the-
art models cannot be compared with each other at the time of publication. This leads to a situation
where ranking models is hard, and the underlying reasons of models’ performance – be it archi-
tectural choices, hyperparameter tuning, performance metrics, or data – is often underexplored.
In this work, we review and evaluate a body of deep learning knowledge tracing (DLKT) models
with openly available and widely-used data sets, and with a novel data set of students learning to
program. The evaluated knowledge tracing models include Vanilla-DKT, two Long Short-Term
Memory Deep Knowledge Tracing (LSTM-DKT) variants, two Dynamic Key-Value Memory Net-
work (DKVMN) variants, and Self-Attentive Knowledge Tracing (SAKT). As baselines, we eval-
uate simple non-learning models, logistic regression and Bayesian Knowledge Tracing (BKT). To
evaluate how different aspects of DLKT models influence model performance, we test input and
output layer variations found in the compared models that are independent of the main architec-
tures. We study maximum attempt count options, including filtering out long attempt sequences,
that have been implicitly and explicitly used in prior studies. We contrast the observed perfor-
mance variations against variations from non-model properties such as randomness and hardware.
Performance of models is assessed using multiple metrics, whereby we also contrast the impact of
the choice of metric on model performance. The key contributions of this work are the following:
Evidence that DLKT models generally outperform more traditional models, but not necessarily by
much and not always; Evidence that even simple baselines with little to no predictive value may
outperform DLKT models, especially in terms of accuracy – highlighting importance of selecting
proper baselines for comparison; Disambiguation of properties that lead to better performance in
DLKT models including metric choice, input and output layer variations, common hyperparame-
ters, random seeding and hardware; Discussion of issues in replicability when evaluating DLKT
models, including discrepancies in prior reported results and methodology. Model implementa-
tions, evaluation code, and data are published as a part of this work.

3



Latent Skill Mining and Labeling from Courseware Content

Noboru Matsuda North Carolina State University, USA
Jesse Wood North Carolina State University, USA
Raj Shrivastava North Carolina State University, USA
Machi Shimmei North Carolina State University, USA
Norman Bier Carnegie Mellon University, USA

A model that maps the requisite skills, or knowledge components, to the contents of an online
course is necessary to implement many adaptive learning technologies. However, developing a skill
model and tagging courseware contents with individual skills can be expensive and error prone. We
propose a technology to automatically identify latent skills from instructional text on existing on-
line courseware called SMART (Skill Model mining with Automated detection of Resemblance
among Texts). SMART is capable of mining, labeling, and mapping skills without using an ex-
isting skill model or student learning (aka response) data. The goal of our proposed approach
is to mine latent skills from assessment items included in existing courseware, provide discov-
ered skills with human-friendly labels, and map didactic paragraph texts with skills. This way,
mapping between assessment items and paragraph texts is formed. In doing so, automated skill
models produced by SMART will reduce the workload of courseware developers while enabling
adaptive online content at the launch of the course. In our evaluation study, we applied SMART
to two existing authentic online courses. We then compared machine-generated skill models and
human-crafted skill models in terms of the accuracy of predicting students’ learning. We also eval-
uated the similarity between machine-generated and human-crafted skill models. The results show
that student models based on SMART-generated skill models were equally predictive of students’
learning as those based on human-crafted skill models – as validated on two OLI courses. Also,
SMART can generate skill models that are highly similar to human-crafted models as evidenced
by the normalized mutual information (NMI) values.
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Insta-Reviewer: A Data-Driven Approach for Generating
Instant Feedback on Students’ Project Reports
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ABSTRACT
Providing timely feedback is crucial in promoting academic
achievement and student success. However, for multifarious
reasons (e.g., limited teaching resources), feedback often ar-
rives too late for learners to act on the feedback and improve
learning. Thus, automated feedback systems have emerged
to tackle educational tasks in various domains, including
novice programming, short-essay writing, and open-ended
questions. However, to the best of our knowledge, no previ-
ous study has investigated automated feedback generation
on students’ project reports. In this paper, we present a
novel data-driven system, named Insta-Reviewer, for auto-
matically generating instant feedback on students’ project
reports, using state-of-the-art natural language processing
(NLP) models. We also propose a framework for manually
evaluating system-generated feedback. Experimental results
show that feedback generated by Insta-Reviewer on real stu-
dents’ project reports can achieve near-human performance.
Our work demonstrates the feasibility of automatic feedback
generation for students’ project reports while highlighting
several prominent challenges for future research.

Keywords
Feedback generation, automated review generation, instant
feedback, learning at scale, mining educational data

1. INTRODUCTION
Feedback plays a vital role in the student learning process,
as it can help students reinforce or correct their understand-
ing of knowledge and content by giving them clear guidance
on how to improve their learning [1, 19, 22, 39]. Further-
more, instant feedback is usually more effective than delayed
feedback, presumably because timely feedback is more likely
to motivate students to stay on task and encourage them to
achieve learning goals [21, 51, 14]. However, owing to vari-
ous constraints (e.g., staff availability), feedback often comes
too late for students to enact the advice and benefit their
learning [48, 38, 32, 22]. Students reported in a prior study

that delayed feedback is perceived as irrelevant because it
has been so long that they have forgotten about the con-
tent, which discourages them from following the feedback
[38]. Thus, tardy feedback can unintentionally position stu-
dents as passive recipients of feedback information and limit
their engagement with feedback and learning [8, 38].

One way of bringing about the much-needed immediacy is
by way of automatic generation of instant feedback on stu-
dents’ work. Thanks to recent technological advancements,
a variety of automatic feedback systems have emerged to
tackle educational tasks in various domains, including novice
programming [31, 56], short-essay writing [49, 5], and open-
ended short answers [28, 3]. For instance, Malik and Wu pro-
posed generative models for providing feedback on short an-
swers and different types of programming assignments [28].
Marwan et al. designed a hybrid method to deliver instant
feedback for block-based programming [31]. In addition to
this, many other impressive studies focus on educational
tasks that demand instant feedback to facilitate students’
learning and show promising results across modalities and
domains (e.g., [27, 36, 47, 2, 29]). It can be argued that au-
tomatic feedback systems will be integral parts of the future
AI-powered educational ecosystem [41].

However, to the best of our knowledge, no attempt has been
made to evaluate the feasibility of automatic feedback gen-
eration on students’ project reports. It is well-known that
course projects are an essential part of many university cur-
ricula, especially STEM courses [4, 17]. These projects can
help students reinforce their theoretical knowledge and de-
velop a host of skills that are increasingly important in the
professional world [30, 17]. However, delivering immediate
feedback on project reports is often infeasible for instructors.
We summarize the reasons why such an automated feedback
system for students’ project reports is significant as follows:

1. Despite the fact that course projects have many pos-
itive educational impacts on students, the burden of
providing timely feedback may prevent instructors from
offering sufficient course projects. In this case, an au-
tomated feedback system can encourage instructors to
provide more project work in classes.

2. Many instructors can merely provide summative feed-
back for a final project at the end of a semester, which
does not give students an opportunity to implement
the advice. However, if an automated feedback system
is available to provide formative feedback, students will

Q. Jia, M. Young, Y. Xiao, J. Cui, C. Liu, P. Rashid, and
E. Gehringer. Insta-reviewer: A data-driven approach for generat-
ing instant feedback on students’ project reports. In A. Mitrovic and
N. Bosch, editors, Proceedings of the 15th International Conference
on Educational Data Mining, pages 5–16, Durham, United Kingdom,
July 2022. International Educational Data Mining Society.

© 2022 Copyright is held by the author(s). This work is distributed
under the Creative Commons Attribution NonCommercial NoDeriva-
tives 4.0 International (CC BY-NC-ND 4.0) license.
https://doi.org/10.5281/zenodo.6853099
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have guidance on how to revise their work and reinforce
their learning without adding workload to instructors.

3. An automated feedback system can help promote ed-
ucational equity and diversity by giving students the
benefit of quality feedback on projects in an institution
that has high teaching loads and limited or nonexistent
teaching assistant support, or even in a MOOC.

In this paper, we present a data-driven system, named Insta-
Reviewer, for generating instant textual feedback on stu-
dents’ project reports. Insta-Reviewer utilizes a select-then-
generate paradigm consisting of two main steps: 1) the
paradigm first uses an unsupervised method, called cross-
entropy extraction, to summarize original reports to lengths
acceptable for input into our text generation model used in
the second step, and then 2) employs a supervised text-to-
text generation model called BART to generate plausible
and readable textual feedback for the corresponding report.
In order to explore the quality of generated feedback, we
employ a comprehensive set of evaluation metrics, includ-
ing a content-overlap metric ROUGE, a model-based metric
BERTScore, and a new human-centered evaluation metric.

To investigate the potential promise of our system, we design
experiments to answer the following research questions:
RQ1: How effective is the proposed approach for generating
feedback on students’ project reports?
RQ2: What are the problems of system-generated reviews?
What are they not good at?
RQ3: How does the system perform compared with other
potential methods?
RQ4: How does the automated feedback system perform in
different small-data settings?
RQ5: Does the Insta-Reviewer automated feedback system
raise any ethical concerns?

Our results show that feedback generated by Insta-Reviewer
on real students’ project reports can achieve near-human
performance, while it may include some non-factual or am-
biguous statements in generated feedback. Our work demon-
strates the feasibility of automated instant-feedback genera-
tion on students’ project reports. Experimental results also
highlight several major challenges for future research.

Our main contributions are: 1) we present an effective data-
driven approach for generating feedback on students’ project
reports; 2) we collect a new dataset of students’ reports and
expert reviews to facilitate future research endeavors; 3) we
propose a new framework for manually evaluating generated
feedback; 4) we evaluate the effectiveness of our approach in
different small-data settings to help others who intend to
apply the approach to their datasets; 5) we highlight several
prominent challenges for future research.

The remainder of the paper is organized as follows: Section
2 presents related work. Section 3 describes the dataset used
for this study. Section 4 elaborates our methodology for au-
tomatically generating feedback for students’ project reports
and explains the new human-evaluation metric. Section 5
presents and discusses our experimental results. Section 6
concludes the paper, mentions the limitations of our work
and provides some discussion about future research.

2. LITERATURE REVIEW
In the following, we first review prior studies on automated
feedback systems. Then we survey potential metrics for eval-
uating system-generated feedback. Finally, we review previ-
ous work related to ethical concerns in feedback generation.

2.1 Automated Feedback Systems
In the field of education, feedback is defined as information
provided by an agent (e.g., teacher, peer) about a learner’s
performance or understanding, and it is one of the most sig-
nificant influences on student learning and achievement [19].
Previous research has been devoted to designing a variety of
automated feedback systems that provide feedback on vari-
ous forms of student work, such as short-answer questions,
essays, and programming problems. Although these efforts
were not intended to provide feedback on student project re-
ports, we reviewed these studies to gain some insight. The
feedback-generation models (i.e., the feedback engines) used
in previous studies on automated feedback systems for stu-
dent work can be broadly categorized into two groups:

Expert-driven methods: Expert-driven methods (also called
rule-based methods) use a set of expert-designed rules to
provide feedback. For instance, Narciss et al. [34] presented
an intelligent tutoring system for students learning math-
ematics. The system uses a set of pre-defined rules pro-
vided by domain experts to deliver feedback for students’
answers to numerical or multiple-choice questions. Nagata
et al. [33] introduced an approach for leveraging the expert-
driven method to diagnose preposition errors and produce
feedback for learners’ English writing. While expert-driven
methods are typically accurate and not data-hungry, they
are not suitable for dealing with complex open-ended prob-
lems (e.g., generating feedback for students’ project reports)
because creating and maintaining a vast set of expert-design
rules for such open-ended problems is nearly impossible. Ad-
ditionally, these methods usually produce feedback that is
limited to fixed expressions without dynamic explanations.

Data-driven methods: Recent technological advances in ar-
tificial intelligence have enabled the development of var-
ious data-driven automated feedback systems to produce
feedback for more complex open-ended tasks. Data-driven
methods generate feedback by learning the mappings (i.e.,
patterns) from student work to expert feedback by means
of machine-learning or deep-learning algorithms [10]. For
example, Lu and Cutumisu [27] implemented several deep-
learning models, including CNN, CNN+LSTM, and CNN+Bi-
LSTM, for generating textual feedback on students’ essays.
However, traditional deep-learning models usually fail to
capture long-span dependencies in long documents and rely
on large amounts of training data. More recent work has be-
gun to use large-scale pre-trained language models, such as
BERT [11], BART [23], and GPT-2 [40], for generating feed-
back on open-ended student work. These language models
use the attention mechanism [45] to learn long-span depen-
dencies and are pre-trained on large generic corpora in an
unsupervised manner to reduce the need for labeled data.
For instance, Olney [35] attempted to generate elaborated
feedback for student responses using the ELI5 model and
achieved promising results. In this paper, we also use such a
pre-trained language model to exploit its ability to capture
long-span dependencies in student reports.
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2.2 Evaluation of Feedback Generation
Effective metrics for evaluating generated feedback are es-
sential since we use them to compare different approaches
and quantify the progress made on this research problem.
However, unlike other tasks (e.g., text classification), ac-
curately evaluating system-generated feedback (and many
other natural language generation problems) is in itself a
huge challenge, mainly because generating feedback is a highly
open-ended task. For instance, an automated feedback sys-
tem can generate multiple plausible reviews for the same
student report, but all these reviews can be vastly different.

All existing evaluation methods for natural language gener-
ation tasks can be grouped into three categories: 1) content-
overlap metrics, 2) model-based metrics, and 3) human-
centered evaluation metrics. Content-overlap metrics and
model-based metrics automatically evaluate a text-generation
system by measuring the similarity between generated texts
and reference texts provided by domain experts. Human-
centered evaluation asks people to assess the quality of system-
generated texts against set task-specific criteria [9].

It is worth noting that the ultimate goal of our Insta-Reviewer
automated feedback system is to generate feedback that is
valuable to students instead of generating the exact same
feedback as provided by instructors. For this reason, human-
authored evaluation should be viewed as the gold standard
when evaluating generated feedback. However, human eval-
uations are inconsistent and subjective, which can lead to er-
roneous conclusions or prevent researchers from comparing
results across systems [9]. Thus, we also employ a content-
overlap metric and a model-based metric to validate our
human-evaluation results. In the following paragraphs, we
survey potential metrics that can be applied to our task.

Content-overlap metrics: Content-overlap metrics refer to a
set of metrics that evaluate the quality of generation by com-
paring generated texts with reference texts (e.g., ground-
truth feedback provided by instructors) based on the content
overlap, such as n-gram match. Despite the fact that this set
of metrics has many limitations (e.g., they do not take syn-
onyms into account), text-generation research usually uses
metrics from this set for benchmark analysis with models
since they are objective and fast to calculate. Two of the
most commonly used content-overlap metrics for evaluating
generated text are BLEU [37] and ROUGE [25].

BLEU (the Bilingual Evaluation Understudy) is a precision-
based content-overlap metric proposed by Papineni et al.
[37] in 2002. The precision-based metric means that we
compare the two texts by counting the number of words or
n-grams in the generated text that occur in the human ref-
erence and dividing the count by the length of the reference
text. Compared to ROUGE, BLEU focuses on precision and
is suitable for tasks that favor high precision. However, re-
call is also essential for our task since we expect more words
from the expert feedback to appear in the system-generated
feedback. On the other hand, both recall and precision can
be taken into account for the ROUGE metric [7].

ROUGE (Recall-Oriented Understudy for Gisting Evalua-
tion) is the other most commonly used content-overlap met-
ric introduced by Lin [25] in 2004. The original ROUGE

score is basically a recall-based version of BLEU. That is,
for ROUGE, we check how many words or n-grams in the
reference text appear in the generated text. Nevertheless,
entirely removing precision can have substantial adverse ef-
fects (e.g., a system may generate extremely long text strings
to capture all words in the reference text). In recent years,
ROUGE has commonly referred to ROUGE-F1 that com-
bines both precision and recall ROUGE scores in the har-
monic mean. We report ROUGE-F1 scores in results since
both recall and precision are vital for our system.

Model-based metrics: Model-based metrics use learned rep-
resentations of words and sentences to compute semantic
similarity between generated and reference texts. Model-
based metrics are generally more correlated with human
judgment than content-overlap metrics, but their behavior
is not interpretable [9]. Given the excellent performance of
BERT [11] across many tasks, recent work on model-based
metrics commonly uses pre-trained contextual embeddings
from BERT or similar pre-trained language models for eval-
uating the semantic equivalence between the texts [55, 53,
43]. One of the most widely used metrics is BERTScore [55].

BERTScore is a model-based metric proposed by Zhang et
al. in 2020 and has been shown to correlate well with hu-
man judgments for many text-generation tasks. BERTScore
leverages the pre-trained embedding from BERT and matches
words in generated and reference sentences by cosine simi-
larity. Moreover, BERTScore considers both precision and
recall and combines them to compute an F1 measure, which
is appropriate for evaluating generated feedback in our task.
Thus, we employ BERTScore to measure semantic similarity
between expert feedback and generated feedback.

Human-centered evaluation: Human-centered evaluation asks
human evaluators to judge the quality of generated text
along some specific dimensions (e.g., readability). Caligiuri
and Thomas [6] found that a positive tone and suggestions
for improvement are key features of good reviews. Jia et
al. [20] mentioned that providing suggestions, mentioning
problems, and using a positive tone, are main characteris-
tics of effective feedback. Celikeyilmaz et al. [9] pointed
out that fluency and factuality are essential for evaluating
system-generated text. In this paper, we manually evaluate
generated feedback in five dimensions: Readability, Sugges-
tions, Problems, Positive Tone, and Factuality. The details
of these evaluation dimensions are described in Section 4.5.3.

2.3 Ethical Concerns in Feedback Generation
To date, ethical issues in feedback generation have received
scant attention in the research literature. Celikyilmaz et
al. [9] pointed out that a potential ethical issue that may
appear in text-generation tasks is the problem of generating
improper or offensive language. Li et al. [24] also mentioned
that using pre-trained language models for text-generation
tasks may raise ethical issues, such as generating private con-
tent, because corpora used for pre-training are pulled from
the web without carefully filtering. However, there is still a
lack of systematic methods for evaluating how effectively a
system can avoid generating inappropriate text. For these
reasons and others, this work considers the ethical implica-
tions of an automated feedback system on student project
reports by manually inspecting all generated feedback.
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Table 1: Sample Human Reference Reviews

Very good writeup, as far as it goes. Good discussion of test cases and reasons for refactoring. It would have helped to see
some code snippets. Good section on Future Refactoring Opportunities.

A very good description of changes, and appropriate code snippets are shown. Manual testing is shown with annotated
screenshots, which are very useful. In a Rspec test, sending emails to an actual person’s address is not a good practice.

The wiki page covers all necessary items, but the “test plan” part can be more elaborated. And the last screenshot is
useless. It will be better to show the DB records, instead of table structure.

Table 2: Statistics on the Dataset. We measure the percentage of reports that contain more than 1024 tokens since it is the
maximum input length limit of the BART model, and we utilize BART to craft the generation function in our system.

# of data samples = 484 Average
Percentile

Maximum Over 1024 tokens
5th 25th 50th 75th 95th

Reports
# of words 1193 405 734 1060 1499 2374 6512
# of subword tokens 1643 583 1040 1489 2025 3272 8422 76 %

Summarized Reports
# of words 704 395 649 742 803 865 908
# of subword tokens 951 580 1004 1021 1023 1024 1024 0 %

Reference Reviews
# of words 55 13 33 48 72 114 258
# of subword tokens 71 19 43 61 90 147 335 -

3. DATA
In this section, we introduce a new dataset collected for this
study. Firstly, we describe the data source in Section 3.1.
Then, we explain in Section 3.2 how participants’ privacy
rights were respected during the data collection process. Fi-
nally, we present statistics on the dataset in Section 3.3.

3.1 Data Source
The data used in this study are collected from a graduate-
level object-oriented development course at a public univer-
sity in the United States. For a course assignment, two
to four students form a group and work together on some
course project, bid on topics from a list of potential projects
provided by course instructors. The dataset includes group
projects where students refactor code from an open-source
project Expertiza, add new features to it, or write auto-
mated tests for a software module that needs them.

As a part of project deliverables, each team is required to
submit a group report to document the work that has been
completed, methodologies that they have utilized, and other
project-related material (e.g., how they test their code).
Such group reports are also called wiki pages since they are
added to the wiki document maintained by the open-source
project Expertiza. The instructor reviews each of these wiki
pages (i.e., each group report) and provides textual feedback
on each of them. To better understand our data, URLs to
three anonymous and de-identified reports are provided in
footnotes123. Three randomly sampled4 instructor reviews
from our dataset are displayed in Table 1.

1Sample report 1: https://anonymous.4open.science/r/
EDM22-BF52/Student%20Report%201.pdf
2Sample report 2: https://anonymous.4open.science/r/
EDM22-BF52/Student%20Report%202.pdf
3Sample report 3: https://anonymous.4open.science/r/
EDM22-BF52/Student%20Report%203.pdf
4According to our IRB protocol, in order to protect partic-
ipants’ privacy rights, we do not display instructor reviews
for the sample group reports.

3.2 Privacy protection
In this work, we take our responsibility to protect the pri-
vacy of students’ data very seriously. The use of the dataset
has been approved by the IRB at our institution. Sensitive
student data was de-identified and handled in a way that
is FERPA compliant. More specifically, our data protection
and de-identification procedure consist of four main steps:
1) we took our data from an anonymized database, which
uses random identifiers for students and groups; 2) we uti-
lized regular-expression techniques to automatically remove
all names from reports; 3) we manually inspected and re-
moved remaining sensitive data, such as links to documents
that might identify individual authors; 4) we stored data
securely on a cloud drive managed by the university.

3.3 Statistics on the Dataset
We collected de-identified students’ project reports and asso-
ciated textual feedback provided by instructors from twelve
semesters between Spring 2015 and Spring 2021. This gave
us a set of 484 group projects. Table 2 summarizes statistics
from the dataset. Note that since the pre-trained language
model BART (detailed in Section 4) has a maximum input
length limit of 1024 tokens5, we employ an unsupervised
method to summarize original reports to lengths acceptable
for input into the pre-trained BART. Statistics on these sum-
marized reports are provided in the third row of the table.

We measured the average number of words and tokens for re-
ports, summarized reports, and expert reviews in our dataset.
The average number of words for each original report is 1193,
which corresponds to 1643 subword tokens. We found that
75.8% of the reports comprise more than 1024 tokens. The
average number of words in each summarized report is 704
(equivalent to 951 subword tokens). For expert reviews, the
average number of words and the average number of tokens
per instructor review are 55 and 71, respectively.

5A token is an instance of a sequence of characters that are
grouped together as a useful semantic unit for processing.
It is similar to, but not identical with, morpheme.
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Figure 1: Operation of our Insta-Reviewer System. The system uses a select-then-generate paradigm [44, 18, 52]. The first
step is to extract salient sentences (within the length limit) from students’ project reports. The second step is to utilize a
supervised NLP model to generate feedback for students’ reports. Details of the system are described throughout Section 4.

4. METHODOLOGY
In this section, we detail our data-driven approach for auto-
matically generating feedback on students’ project reports.
We first formally define our task in Section 4.1. Then, we
present the overall design of our feedback-generation sys-
tem in Section 4.2. After that, Section 4.3-4.4 elaborates all
components of the system. A set of metrics for evaluating
generated textual feedback is given in Section 4.5. Finally,
in Section 4.6, some ablation experiments are proposed to
understand the contribution of each component.

4.1 Problem Formulation
We formulate the task of automatic feedback generation for
students’ project reports as a text-to-text generation prob-
lem, where the source text is a long project report and the
target text is a review. Our dataset can be represented as

D = (Xi, Y i)
N=484

i=1 , where Xi = ⟨xi1, ..., xij , ..., xin⟩ denotes a
sequence of input tokens representing an instance of report,
and Y i = ⟨yi1, ..., yik, ..., yim⟩ denotes a sequence of output to-
kens representing the corresponding textual feedback. Each
token xij or yik is drawn from a token vocabulary V.

Then, the problem can be formally described as:

Y = FM(X,C) (1)

where the model, or generation function, FM takes a se-
quence of tokens X (i.e., a project report) as the input, and
produces a sequence of tokens Y (i.e., generated feedback
for the project report) as the output, while satisfying a set
of constraints C, which is a collection of desired properties
(e.g., fluency, coherence, and length) for the output text.

The objective of the task is to effectively model the genera-
tion function FM in a data-driven manner using the dataset,
so that it can generate plausible and readable feedback for
unseen reports. In this work, the generation function FM is
crafted based on a pre-trained language model (PLM) called
BART (detailed in Section 4.4), which has been demon-
strated to be the state-of-the-art method to model the gener-
ation function for various text-to-text generation tasks [23].

4.2 System Design
Despite the fact that the pre-trained language model BART
is an effective method to model the generation function FM,
it has an input length limit of 1024 tokens6 [23]. Never-
theless, group reports are usually longer than that. In our
dataset, 75.8% of the reports contain more than 1024 to-
kens, and the longest report is approximately eight times
longer than that limit. One simple fix is to truncate the
report by discarding all tokens beyond the length limit, but
this can cause loss of critical information from the inputs
(this hypothesis is verified in Section 4.6.1). Thus, we adopt
a select-then-generate method [18, 44, 52] to generate feed-
back on student project reports, as illustrated in Figure 1.

Overall, the select-then-generate paradigm decomposes the
problem into two sequential subproblems to resolve the issue
of overlength input documents: 1) an unsupervised sentence-
level extractive summarization task, and 2) a supervised
PLM-based text-to-text generation task. More formally, the
problem description becomes,

Y = FM(SE(X),C) (2)

where the input to the generation function FM becomes
SE(X), which represents a summarized report. The new
function SE represents an extractive summarizer, which can
effectively extract salient sentences from an original report
X and produce a summarized version of the report as the
input to the feedback-generation function FM.

Thus, our automated feedback-generation system comprises
two stages. In the first stage, we use an unsupervised method,
called cross-entropy extraction, to summarize original re-
ports to lengths acceptable for input into the PLM BART
(i.e., the implementation of the generation function FM).
In the second stage, we train the PLM BART on the sum-
marized reports SE(X) and reference reviews Y . In the fol-
lowing sections (Section 4.3-4.4), we detail each stage of our
feedback-generation system Insta-Reviewer.

6The length is limited to 1024 since the BART authors [23]
chose this number and pre-trained the model with this limit.
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4.3 Step 1: Cross-Entropy Extraction
The goal of the first step is to summarize original over-
length reports to lengths acceptable for input into the pre-
trained language model (PLM) BART that will be used
in the second step, while retaining as diverse a subset of
content as possible. We adopt an unsupervised extractive-
summarization method, called cross-entropy extraction [15].

The cross-entropy method is an unsupervised technique that
treats sentence-level extractive summarization as a combi-
natorial optimization problem [42]. More formally, we can
let SD denote the set of all sentences in the report we are
trying to summarize. From this set we want to extract a
subset of sentences S ⊂ SD that maximizes some quality
target function Q(S). This quality target function can be
comprised of whatever features and measures deemed ap-
plicable to the task at hand. In our case, we used only a
single feature in our quality function, namely the diversity
of vocabulary in the summary. The reasoning behind this
is that sentences with a more diverse vocabulary will also
cover a more diverse set of information from the text. To
measure this diversity explicitly, we calculate the unigram
LM entropy of the summary S, as shown below,

Q(S) = −
∑

w∈S
pS(w) log pS(w) (3)

pS(w) =
Count(w)

Len(S)
(4)

Note that in the above equations w represents a single word
in the summary S. Additionally, the function Count(w)
measures the frequency of the word w in summary S and
Len(S) is the total number of words in the summary. Ad-
ditionally, to encourage the method to prefer summaries as
close to the length constraint as possible, we added an ad-
ditional term to this quality function that is proportional to
the number of tokens in S, denoted Tokens(S), the intu-
ition behind this being that the BART model will perform
better in most cases when it has more text to work with.
The final quality function with this added length term is
shown below, where β, our proportionality constant, is a
hyper-parameter of the model.

Q(S) = β ·Tokens(S)−
∑

w∈S
pS(w) log pS(w) (5)

In order to enforce the length constraint on our summaries,
we simply assign Q(S) = −∞ whenever S has a length of
greater than 1024 BART tokens. The actual output of the
cross-entropy method is a vector p = ⟨p1, p2, . . . , pn⟩ indi-
cating the probability of selection in the summary for each
of the n sentences in the original document. Initially, these
probabilities start out the same for each sentence, but they
quickly convert to either 0, for sentences that result in low
Q values, or to 1, for sentences that result in high Q values.
Below are the steps of the algorithm we used for carrying
out this cross-entropy extraction procedure.

1. Preprocessing Text: For each student project report,
we split it into its n sentences, enumerating each ac-
cording to their order in the report. We then tokenize
each sentence into word tokens, being sure to remove
all stop words, punctuation, etc., when doing so.

2. Initialize p: Initially we want each sentence to be equally
likely to be chosen, so set p0 = ⟨1/2, 1/2, . . . , 1/2⟩. If
n > 60 then we reduce this probability to ensure a
sufficient sample of summaries that meet our length
constraint. Then we set t = 0.

3. Sample Summaries: We sample N Bernoulli vectors,
X1, X2, . . ., XN according to the probability vector
pt−1. The sentences selected from each of these vectors
define our N sample summaries S1, S2, . . ., SN . Set t
= t+1.

4. Quality Scores: For each of the summaries Si, we cal-
culate its quality performance score according to the
above equations. We determine the cutoff value of the
elite sample, γt, which is the Q value of the (1 − ρ)
sample quantile.

γt = Q(S)⌈(1−ρ)N⌉ (6)

5. Update p: We use the sample values to update our
probabilities, storing them as p̂t, according to the up-
date rule below:

p̂t,j =

∑N
j=1 δ[Q(Sj)≥γt]δ[Xi,j=1]∑N

j=1 δ[Q(Sj)≥γt]
(7)

where δ[c] is the Kronecker-delta function which eval-
uates to 1 if the condition c is satisfied, otherwise 0.

6. Smooth p: To balance exploration and exploitation of
the summary samples, we smooth pt like so:

pt = αp̂t + (1− α)pt−1 (8)

7. Termination: If the value of γt has not changed in 3
iterations then the process terminates, returning the
current pt. Otherwise, it returns to step 3 and repeats.

In our implementation of the above algorithm, we found
the following parameter settings to be optimal: N = 1000,
ρ = .05, α = .7. To get our final truncated summary text,
we simply sample one more Bernoulli vector, X, using the
final sentence extraction probabilities p. After doing so, we
check that the resulting summary defined by the sentences
in X meets our length constraint. If it does not, then we
would sample a new Bernoulli vector X until we found a
summary that did (though this was never necessary).

4.4 Step 2: PLM-based Generation Model
We now describe the second step of the approach. The ob-
jective of the second step is to effectively craft the feedback-
generation function FM in Equation 2. We first introduce
the BART model used for crafting FM, then we describe the
beam-search method for improving the performance.

4.4.1 Modeling the Generation Function with BART
In this work, we employ a state-of-the-art PLM BART [23],
which stands for bidirectional and auto-regressive transform-
ers, to model the generation function FM. The BART model
is suitable for text-to-text generation tasks since it utilizes
an encoder-decoder architecture (as illustrated in Figure 2),
which can effectively model complex mappings (i.e., the un-
derlying patterns) from one sequence of text (e.g., summa-
rized reports) to another (e.g., feedback).
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Figure 2: Illustration of an encoder-decoder architecture.
The encoder can convert an input sequence of text (e.g., a
summarized report) into a rich numerical representation, and
then the decoder generates the output sequence (e.g., feed-
back) by iteratively predicting the most probable next word.

The BART framework consists of two steps: pre-training
and fine-tuning. Instead of training the model from scratch
on our dataset, the BART model is first pre-trained on a
large generic corpus over different pre-training tasks, and
then all parameters of the model are fine-tuned on our data.
The model can acquire a sophisticated “understanding” of
human grammar through the pre-training process, thus sig-
nificantly reducing the need for annotated data when train-
ing the feedback-generation model while improving conver-
gence rate and generalization [13]. In this work, we use the
pre-trained checkpoint“facebook/bart-large-cnn7”to initial-
ize all parameters of the model and then fine-tune the model
on a training set drawn from our dataset D.

4.4.2 Diverse beam search for decoding
After fine-tuning the BART model on our data, we use the
diverse beam search (DBS) [46] algorithm to decode the out-
put sequences in inference time to generate better feedback.
In the original BART model setting, feedback is generated
by iteratively selecting the word with the highest probabil-
ity at each position in the sequence, which is referred to as
greedy decoding. Greedily choosing the word with the high-
est probability at each step might be optimal at the current
spot in the sequence, but as we move through the rest of the
full sentence, it might turn out to be a non-optimal choice
(output can be ungrammatical, unnatural, and nonsensical)
since the greedy decoding algorithm lacks backtracking.

On the other hand, the DBS algorithm keeps track of the
top-n most probable next words, where n is the number of
beams. The next set of beams is chosen by considering all
possible next-word extensions of the existing set and select-
ing the n most likely extensions. Additionally, in order to
improve the diversity in the outputs, all beams are divided
into groups, and diversity between the groups is enforced by
the DBS algorithm. In our experiments, we set beam size
to 4 and the number of groups to 2 since this combination
yields the best results. DBS is applied to all models in this
work, including the BigBirdPegasus model (Section 4.6.2).

4.5 Evaluation Metrics
7https://huggingface.co/facebook/bart-large-cnn

We evaluate generated feedback with a comprehensive set
of metrics, including a content-overlap metric ROUGE, a
model-based metric BERTScore, and a new human-evaluation
metric. As previously mentioned, the ultimate goal of Insta-
Reviewer is to generate feedback that is helpful to students
instead of generating the same feedback as provided by in-
structors. To this end, human-centered evaluation is con-
sidered the gold standard. ROUGE and BERTScore are
employed to validate our human-evaluation results since hu-
man evaluations may be inconsistent and subjective, which
can lead to erroneous conclusions [9]. The intuition is that
while instructor feedback may only focus on certain aspects
and be imperfect, it is valuable to know how similar the gen-
erated feedback is to the feedback provided by instructors.
The implementations of the metrics are described below.

4.5.1 Content-overlap Metric: ROUGE
We use the standard ROUGE metric to measure content
overlap between generated feedback and expert feedback.
Specifically, we report the F1 scores for ROUGE-1, ROUGE-
2, and ROUGE-Lsum, respectively measuring the word-overlap,
bigram-overlap, and longest common sequence between the
texts. We obtain our ROUGE scores using the Google rouge
package8 [25, 16]. Porter stemming is enabled to remove
plurals and word suffixes (e.g., “ing”, “ion”, “ment”).

4.5.2 Model-based Metric: BERTScore
The BERTScore metric is leveraged to assess the seman-
tic equivalence between generated feedback and expert feed-
back. We report the F1 measure of BERTScore that com-
bines both precision and recall, which is proper for eval-
uating generated feedback in our task. We calculate the
BERTScore utilizing the official BERTScore script9 [55].

4.5.3 Human Evaluation
After reviewing relevant papers (e.g., [6, 20, 50, 57]) and
discussions among the authors of this paper, we selected
the following five dimensions to evaluate the feedback man-
ually: Readability, Suggestions, Problems, Positive Tone,
and Factuality. Our scores for these five manual-evaluation
dimensions are calculated as follows:

(i) Readability (READ): In this work, readability is de-
fined as the quality of feedback in grammar, word
choice, and coherence. We judge it using a five-point
rating scale: 0. Incomprehensible 1. Not fluent and in-
coherent 2. Somewhat fluent but incoherent 3. Fluent
but somewhat incoherent 4. Fluent and coherent.

(ii) Suggestions (SUGG): Providing suggestions is a key
feature of quality feedback that is valuable to students.
We give a score of 1 if the feedback contains at least one
valid suggestion statement that can guide the reviewee
in how to correct a problem or make improvements.
Otherwise, we give a score of 0.

(iii) Problems (PROB): Pointing out something that is
going wrong in students’ work is also important for
helping learners. We give a score of 1 if the feedback
describes at least one issue that needs to be addressed
in the student report. Otherwise, we give a score of 0.

8https://github.com/google-research/google-
research/tree/master/rouge
9https://github.com/Tiiiger/bert score
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(iv) Positive Tone (TONE): Feedback phrased in a posi-
tive tone can better stimulate students’ reflective com-
petence. We give feedback a score of 1 if it has an
overall positive semantic orientation, 0.5 if it is neu-
tral, and 0 if it is negative.

(v) Factuality (FACT): The statements in generated feed-
back should be factually correct. Otherwise, they may
inadvertently mislead the reviewee and negatively im-
pact learning. Factuality is calculated as:

FACT =
Count(factually correct statements)

Count(total statements)

where the numerator is the total number of factually
correct statements, and the denominator is the total
number of statements in the feedback. If the denomi-
nator is 0, we directly give a score of 0.

This set of evaluation criteria is certainly not perfect, but
it balances the accuracy and cost of the evaluation. For ex-
ample, we could score the “Problems” dimension in a more
sophisticated and accurate way, but it would be very time-
consuming and expensive. We leave more accurate and effi-
cient human-evaluation criteria for future work.

4.6 Ablation experiments
In order to understand the contribution of each step in our
method, we designed two ablation experiments:

4.6.1 Ablation Exp. 1 - Naïve BART:
In the first ablation experiment, we intend to understand the
contribution of the cross-entropy (CE) summarization. As
we mentioned in Section 4.2, a straightforward way to solve
the BART’s length-limit problem is to truncate all tokens
beyond the length limit, which we hypothesize may lead to
a loss of critical information from the inputs. Therefore,
we measure the performance of a BART model that sim-
ply truncates all tokens exceeding the length limit of 1024
as input, and we call this setup - “Näıve BART.” If ade-
quate information is contained in the truncated reports to
generate feedback on students’ reports, then “CE + BART”
should perform similarly to “Näıve BART.” Otherwise, it
would demonstrate that using CE to summarize the original
students’ project reports is better than simply truncating all
tokens that exceed the length limit. In other words, it will
suggest that the CE method can effectively summarize stu-
dents’ reports while retaining critical information that helps
the model generate feedback, and the CE step is necessary.

4.6.2 Ablation Exp. 2 - BigBirdPegasus:
In the second ablation experiment, we investigate whether
the “CE + BART” method can be replaced using the re-
cently proposed sparse-attention-based PLM BigbirdPegsus
[54], which extends the input length limit to 4096 tokens.
Briefly, BigBirdPegasus increases the input length limit at
the cost of using a sparse attention mechanism, which may
reduce the ability of the model to fit complex mappings be-
tween texts. Similar to BART, BigBirdPegasus also consists
of the pre-training and fine-tuning steps. In this experiment,
we use the pre-trained checkpoint “google/bigbird-pegasus-
large-arxiv10” to initialize all parameters of BigbirdPegsus
and then fine-tune the model on our data.

10https://huggingface.co/google/bigbird-pegasus-large-arxiv

5. EXPERIMENTS AND RESULTS
5.1 Experimental Setup
5.1.1 Training Details

For all experiments, we train our models with a batch size
of 1/2, a learning rate of 2e-5/3e-5/5e-5, epochs of 2/3, and
the AdamW optimizer [26] with a weight decay of 0.01 and a
linear rate scheduler of 10% warm-up steps. For our dataset
D, we use an 80-10-10 split for training, validation, and test
data. After finding the optimal hyper-parameters, we merge
the training and validation sets into the new training data.

5.1.2 Hardware Setup
The BART models are trained on an NVIDIA RTX6000
GPU (24GB). The BigBirdPegasus model (mentioned in
Section 4.6.2) is trained on an NVIDIA A6000 GPU (48GB).
We also employ the automatic mixed-precision training (use
of both 16-bit and 32-bit floating-point types) to speed up
the training processes.

5.2 Experimental Results
To investigate the potential promise of our system, we design
experiments to answer the following research questions:

RQ1: How effective is the proposed approach for generating
feedback on students’ project reports?
The goal of our first experiment is to find out if our auto-
mated feedback system Insta-Reviewer is effective in gen-
erating some readable and helpful feedback for students’
project reports. The evaluation results of Insta-Reviewer are
shown in Table 3. Some generated feedback for actual stu-
dent reports is shown in Table 5, and their evaluation scores
are shown in Table 4. According to Table 3, the ROUGE1,
ROUGE2, ROUGELsum, and BERTScore for our “CE +
BART” method are 28.54, 6.39, 18.21, and 59.18, respec-
tively. These results imply that the generated and expert
feedback are basically consistent in semantics, and there is
some overlap in words (more precisely, n-grams).

We also evaluated the feedback provided by instructors, and
the first row shows the human-evaluation scores for it. Com-
pared to the expert feedback, we surprisingly find that in
terms of “Problems” and “Positive Tone,” our method can
outperform human experts by 6% and 2%. However, it
is worth noting that the generated feedback tends to men-
tion more generic problems (e.g., missing a test plan) rather
than project-specific issues (e.g., “xxx files should be de-
scribed”). Additionally, the expert feedback can outperform
the generated feedback, with gaps of 6%, 16%, 15.2% for
“Readability,” “Suggestions,” and “Factuality,” respectively.
In summary, although our system is not as good as experts
at providing suggestions and may produce some non-factual
statements, it is good at generating fluent and positive feed-
back that mentions problems that need to be addressed.

RQ2: What are the problems of system-generated reviews?
What are they not good at?
In the second experiment, we aim to explore the potential is-
sues in system-generated feedback in more detail. Although
the vast majority of the feedback is fluent, positive, and fac-
tually correct, we find two potential problems after manually
inspecting all system-generated feedback in the test set.
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Table 3: ROUGE F1 (with porter stemming), BERTScore, and Human Evaluation scores (%) on the test set (n=50). All
our ROUGE scores have a 95% confidence interval (CI) of at most ±2.98 as reported by the official ROUGE script (bootstrap
resampling). Our BERTScore has a 95% CI of at most ±1.54. The BERTScore script does not support BigBirdPegasus currently.

Method ROUGE
BS

Human Evaluation

R1 R2 RLsum READ SUGG PROB TONE FACT Average

1. Expert Feedback - - - - 100.0 82.0 90.0 93.0 100.0 93.00

Insta-Reviewer 2. CE + BART 28.54 6.39 18.21 59.18 94.0 66.0 96.0 95.0 84.8 87.16
Ablation Exp 1 3. Näıve BART 25.88 4.98 17.23 58.03 82.0 58.0 94.0 93.0 76.8 80.76
Ablation Exp 2 4. BigBirdPegasus 15.92 4.04 13.45 - 56.0 2.0 12.0 58.0 23.4 30.28

Table 4: ROUGE F1 (with porter stemming), BERTScore, and Human Evaluation scores (%) for the sample generated feedback
shown in the Table 5. †“I would suggest that the reader read the ...” is not a valid suggestion for the reviewee.

ROUGE
BERTScore

Human Evaluation

R1 R2 RLsum READ SUGG PROB TONE FACT Average

Generated Feedback 1 27.52 1.87 20.18 59.17 100.0 100.0 100.0 100.0 100.0 100.0
Generated Feedback 2 45.09 18.00 21.57 66.79 100.0 0.00† 100.0 100.0 83.33 76.67
Generated Feedback 3 22.22 0.00 13.89 52.92 80.00 0.00 100.0 100.0 80.00 72.00

Table 5: Sample expert and generated feedback. Scores for
the generated feedback are shown in Table 4. The generated
feedback may contain non-factual or ambiguous statements.

Expert Feedback 1: “The page is pretty well organized in
what changes they made. Their pictures were not taken
as a screenshot, instead were just taken with their phone
camera. They didn’t provide a manual test plan, which
is problematic as we have no good way of verifying their
changes without significant work involved.”

Generated Feedback 1:“The writeup is quite readable, and
the changes are described in good detail. However, the
code changes are not described in prose, and there is no
explanation of how they are implemented. The test plan is
not described, and it would be much more useful to have
a description of the tests that are to be added.”

Expert Feedback 2: “Your examples say that code was
added, but don’t describe the code or what it is used for.
The reader needs to figure that out by reading the code.
For someone following on, it would be much more useful
to have a description of how the code works. ”

Generated Feedback 2: “The writeup is very readable, but
it does not explain the changes made to the code. It is
not clear how the code was changed. The test plan is not
described. There is no description of the tests. I would
suggest that the reader read the code to figure out what
they test.”

Expert Feedback 3: “Well written, but does not mention
design patterns or principles. ‘Gemfiles’ should be down-
graded. Schema changes should be shown as migrations
and not direct changes in schema file.”

Generated Feedback 3: “The wiki page is very short, but
the changes are described well. It is not clear why the
changes were made. The code changes are not described
in prose. They (← code snippets) are just shown. I would
have liked to see more explanation of the changes”

Firstly, the automated feedback system may occasionally
(≈15.2% of all statements) generate some non-factual or
ambiguous statements in the feedback. For instance, the
“generated feedback 2” shown in Table 5 contains a non-
factual statement (italicized): “. . . there is no description of
the tests. I would suggest that the reader read the code to
figure out what they test.” However, this statement should
probably be “. . . a description of the tests needs to be added.
Otherwise, readers need to read the code to figure out what
you test.”

Secondly, some pieces of text frequently appear in differ-
ent generated feedback. For instance, we find that 66% of
the system-generated feedback contains the sentence “the
writeup is very/quite readable.” We speculate that this hap-
pens because 14% of the expert feedback that used for train-
ing contains the exact same sentence, which introduces some
sort of “imbalance” problem. This repetition problem is not
necessarily a drawback of the system, but it suggests that
high-frequency text pieces can influence the generation.

RQ3: How does the system perform compared with other po-
tential methods?
We now turn our attention to the experimental results of the
two ablation experiments detailed in Section 4.6. The eval-
uation results are presented in Table 3. The second row, the
third row, and the fourth row show the performance scores
for our Insta-Reviewer system, näıve BART (the method
utilized for the ablation experiment 1), and BigBirdPeagsus
(the model used for the ablation experiment 2), respectively.

The goal of the first ablation experiment is to verify our
hypothesis that using the cross-entropy extraction (CE) to
summarize the original students’ project reports is better
than simply truncating all tokens beyond the length limit of
BART. By looking at the ROUGE scores and BERTScore,
we can find that the “CE + BART” method consistently
outperforms the “näıve BART” method, with gaps of 2.66,
1.41, 0.98, and 1.15 for R1, R2, RLsum, and BERTScore
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Table 6: ROUGE F1 (with porter stemming) and BERTScore
on the test set (n=50) in small-data settings (≤ 100 samples).
For each score, we report a 95% confidence interval (CI).

data
points

ROUGE
BERTScore

R1 R2 RLsum

434 28.54±2.98 6.39±1.56 18.21±1.83 59.18±1.54

50 24.29±2.47 4.99±0.94 17.42±1.70 56.12±1.42
100 25.75±2.65 5.56±1.15 17.86±1.61 57.36±1.43

respectively. Additionally, based on the human evaluation
scores, “CE + BART” significantly (≥ 8%) outperforms the
“Näıve BART” method on “Readability,”“Suggestions,” and
“Factuality.” The “CE + BART” method can also achieve
higher (≥ 2%) scores on dimensions “problems” and “pos-
itive tone.” The results demonstrate that the CE method
can effectively summarize students’ reports while retaining
critical information that helps the model generate feedback.

The second ablation experiment aims to know whether the
sparse-attention-based PLM BigBirdPeagsus can effectively
fit the complex mappings from student reports to textual
feedback and replace our“CE + BART”approach. As shown
in Table 3, the results clearly indicate that “CE + BART”
substantially outperform the BigBirdPeagsus model on all
metrics. The results suggest that although the BigBirdPeag-
sus model extends the input length limit to 4096 by using
the sparse-attention mechanism, it may not be suitable for
complicated tasks such as generating feedback.

RQ4: How does the automated feedback system perform in
different small-data settings?
In order to help other researchers who intend to apply our
approach on their datasets, we evaluated the effectiveness
of the approach in different small-data settings. Table 6
shows the ROUGE scores and BERTScore when training
with only 50 and 100 data samples, respectively. The scores
(R1=25.75, R2=5.56, RLsum=17.86, BS=57.36) for our model
when training with 100 samples are similar to the scores
(R1=25.88, R2=4.98, RLsum=17.23, BS=58.03) for the“Näıve
BART”when training with 434 samples. The results demon-
strate that the performance of our approach is acceptable in
small-data settings. Thus, our method can potentially be
applied to other tasks that have limited data.

RQ5: Does the Insta-Reviewer automatic feedback system
raise any ethical concerns?
The objective of the last experiment is to investigate whether
the automated feedback system raises any ethical concerns.
In this work, we consider two main potential ethical issues
related to the system. The first major concern is whether
the system will generate improper or offensive language. The
second potential issue is whether the generated feedback will
contain some private content. Although we have filtered
out all inappropriate information from our dataset, these
ethical concerns may still arise since the BART model is
pre-trained on a large-scale corpus crawled from the Inter-
net without fine-grained filtering. Therefore, we manually
vetted all generated feedback, and failed to find any of the
aforementioned ethical transgressions.

6. CONCLUSION
Timely feedback is critical to learning because it is more
likely to motivate students to stay on task and achieve their
learning goals. This suggests that future AI-powered educa-
tional applications will include automated feedback systems
to generate real-time feedback. In this paper, we have pre-
sented a data-driven system, named Insta-Reviewer, for gen-
erating instant textual feedback on students’ project reports.
The system leverages a select-then-generate paradigm con-
sisting of two main steps: 1) cross-entropy extraction and 2)
BART-based supervised text-to-text generation. The results
demonstrate that the generated feedback could achieve near-
human performance and even outperform human experts in
the “Problems” and “Positive Tone” dimensions. However,
the system may occasionally generate some non-factual or
ambiguous statements in the feedback. The generated feed-
back seems to be free of any ethical complications. Our work
demonstrates the feasibility of automatic feedback genera-
tion for students’ project reports while laying the ground-
work for future research on this topic.

Limitations: There are three main limitations to this study.
Firstly, we simply used textual information extracted from
the student reports and ignored all images. As a result,
our model could not produce feedback like “Their pictures
were not taken as a screenshot, instead were just taken with
their phone camera.” If we could design a multi-modality
model that incorporates all text, images, and artifacts such
as code into the input, we would be able to provide more
comprehensive feedback to students. Secondly, we used a
set of metrics, including ROUGE, BERTScore, and human-
evaluation scores to evaluate the generated feedback. How-
ever, ROUGE and BERTScore cannot accurately reflect the
quality of the generated feedback. Human evaluation can
more accurately assess the quality, but it is inconsistent, sub-
jective, and time-consuming. Thus, we believe it is worth-
while to explore more effective automatic metrics to evaluate
the generation. Thirdly, we manually inspected all gener-
ated feedback, and found that it did not raise any ethical
concerns. Nevertheless, this result does not guarantee that
the model will never produce improper or offensive language.
Systematic methods should be investigated to evaluate how
the system can avoid generating inappropriate language.
However, this problem is particularly challenging because
the output of neural networks is not always predictable.

Future Work: An important direction for future work is to
investigate how to avoid generating non-factual statements
in feedback. This problem of factual correctness has two
potential solutions. The first promising way is to automati-
cally evaluate the correctness of each sentence in generated
feedback and remove all non-factual statements before de-
livering the feedback to students. Dusek & Kasner [12] have
proposed an entailment-based model to evaluate the cor-
rectness of the generated text. However, this approach does
not capture which part of the generated text is non-factual.
Future work can explore further along this direction. The
other possible method to address the problem of non-factual
statements is to design new architectures that can more ef-
fectively capture the complex mappings from student reports
to feedback. The latter approach is significantly more chal-
lenging but may get to the root of the problem.
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ABSTRACT
Item response theory (IRT) is a popular method to infer
student abilities and item difficulties from observed test re-
sponses. However, IRT struggles with two challenges: How
to map items to skills if multiple skills are present? And how
to infer the ability of new students that have not been part
of the training data? Inspired by recent advances in vari-
ational autoencoders for IRT, we propose a novel method
to tackle both challenges: The Sparse Factor Autoencoder
(SparFAE). SparFAE maps from test responses to abilities
via a linear operator and from abilities to test responses via
an IRT model. All parameters of the model offer an in-
terpretation and can be learned in an efficient manner. In
experiments on synthetic and real data, we show that Spar-
FAE is similar in accuracy to other autoencoder approaches
while being faster to learn and more accurate in recovering
item-skill associations.

Keywords
item response theory, logistic models, variational autoen-
coder, sparse factor analysis

1. INTRODUCTION
A foundational problem in educational data mining is to
automatically infer students’ ability from their observed re-
sponses in a test. Item response theory (IRT) addresses
this problem by fitting a logistic model that describes how
student ability and item difficulty interact to generate an
observed response [5]. However, IRT faces at least two chal-
lenges. First, whenever a test involves multiple skills, we
need to model the relation between skills and items, which
standard IRT does not do [10]. Second, an IRT model con-
tains student-specific parameters which are fitted to a spe-
cific population. For any new student, we need to fit at least
one new parameter.

The former challenge can be addressed via automatic meth-
ods for item-skill association learning, such as the Q-matrix
method of Barnes et al. [2], the alternating least squares
method [12], or sparse factor analysis [7]. The second chal-
lenge requires a student-independent parametrization of the
model, which is offered by variants like performance factor
analysis [11] or variational autoencoders [3]. In the present
paper, we propose to address both challenges at once by
combining sparse factor analysis with autoencoders, yield-
ing a new method which we call sparse factor autoencoder
(SparFAE).

In more detail, our contributions are: We introduce Spar-
FAE, a sparse factor autoencoding method for IRT. We pro-
vide an interpretation for all parameters in the SparFAE
model, as well as an efficient learning scheme. Further, we
empirically compare SparFAE to sparse factor analysis [7]
as well as variational autoencoders [16] on synthetic and
real data and show that SparFAE is similar in accuracy to
other encoders but is much faster to learn and more accu-
rate in recovering item-skill associations. Finally, we use
SparFAE to analyze an expert-designed math test and ver-
ify the identified Q-matrix against the expert-designed Q-
matrix. The source code for all experiments can be found
at https://github.com/bpaassen/sparfae.

2. BACKGROUND AND RELATED WORK
IRT models the responses of m students on a test with n
items. In particular, let yi,j be a random variable, which
is 1 if student i answered item j correctly and 0, other-
wise. We assume that yi,j is Bernoulli-distributed, where
the success probability is given as pi,j = σ(θi − bj), where
σ(x) = 1/(1 + exp[−x]) is the logistic link function, θi is an
ability parameter for student i, and bj is a difficulty param-
eter for item j [5]. The parameters θi and bj need to be
fitted to observed training data, for example, via likelihood
maximization or Bayesian parameter estimation [1]. In par-
ticular, the negative log likelihood of the data (also known
as crossentropy loss) is expressed by the formula

` =
m∑

i=1

n∑

j=1
−yi,j · log[pi,j ]− (1− yi,j) · log[1− pi,j ]. (1)

This loss is convex in the parameters θi and bj , meaning
that an optimal model can be found efficiently via nonlinear
optimization algorithms.

B. Paaßen, M. Dywel, M. Fleckenstein, and N. Pinkwart. Sparse
factor autoencoders for item response theory. In A. Mitrovic and
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on Educational Data Mining, pages 17–26, Durham, United King-
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Over the decades, numerous extensions of this basic scheme
have been proposed, such as a discrimination parameter for
each item (two-parameter model), a minimum probability of
correct answers for each item (three-parameter model), par-
tial credit, and hierarchical models [1, 4, 5]. In this paper, we
care particularly about the extension to multiple underlying
skills, sometimes called multidimensional IRT [10]. In such
a model, we represent a student’s ability by a K-dimensional
vector ~θi, where θi,k models the ability of student i for skill
k. A consequence of including multiple skills is that we need
to model the relationship between skills and items. In this
paper, we assume a linear relationship that is captured by
an n×K matrix Q, where qj,k models how important skill k
is to answer item j correctly. Overall, our model is described
by the two equations:

pi,j = σ(zi,j) and ~zi = Q · ~θi −~b, (2)

where ~zi is the vector of response logits for student i, and ~b
is the vector of all item difficulties.

Our setup begs the question: how to learn the matrix Q?
Such coupling matrices between items and skills have been
popularized by Tatsuoka [13], who imposed qj,k = 1 if skill
k is required for item j and qj,k = 0, otherwise. Tradition-
ally, such Q-matrices have been hand-designed by domain
experts [9], but recently, automatic methods to learn Q have
emerged, such as the method of Barnes [2] or the alternating
recursive method [12]. Crucially, finding an optimal binary
Q-matrix is challenging due to the discrete search space. To
simplify the search, Lan et al. [7] have relaxed the problem
by assuming continuous, non-negative entries of Q and ap-
plying methods from sparse coding, resulting in a method
called Sparse Factor Analysis (SPARFA).

SPARFA applies an alternating optimization scheme. First,
we initialize student abilities ~θi randomly, for example with
Gaussian noise. Second, for each item j, we adapt the jth
row of Q and the difficulty bj by solving the following opti-
mization problem:

min
~qj ,bj

`+ λ1 · ‖~qj‖1 + λ2 · (‖~qj‖2
2 + b2

j )

s.t. qj,k ≥ 0 ∀ k ∈ {1, . . . ,K}, (3)

where ` is the crossentropy loss (1), ‖~qj‖1 =
∑K
k=1 |qj,k| is

the 1-norm of ~qj , ‖~qj‖2
2 =

∑K
k=1 q

2
j,k is the squared Euclidean

norm of ~qj , and λ1 as well as λ2 are hyperparameters of
the method. The squared Euclidean norm is intended to
regularize the model parameters with a Gaussian prior, as
usual in IRT [1] (chapter 7). The 1-norm is motivated by
sparse coding and encourages sparsity in Q, meaning that
the optimization process tends to find solutions where many
of the entries in Q are zero [17]. In other words, the model is
encouraged to connect any item j only to a few skills instead
of all skills. This is reminiscent of traditional Q-matrices,
where qj,k is only nonzero if skill k is required to answer item
j correctly [13]. Finally, SPARFA enforces that no entry qj,k
can become negative, because a negative qj,k would imply
that a higher ability in skill k reduces my chance to answer
item j correctly, which does not make sense [7]. Note that
problem (3) is convex, such that it can be solved efficiently
with nonlinear optimizers.

The third step of SPARFA is to optimize the ability param-
eters ~θi for each student i. This is done by minimizing the
crossentropy (1) plus a regularization term λ2 ·

∑K
k=1 θ

2
i,k.

We now iterate steps two and three of the SPARFA algo-
rithm until the parameters converge.

Just as in standard IRT, a challenge of SPARFA is that we
can not immediately apply a learned model to new students.
For every new student i, we need to fit new parameters ~θi.
Many extensions of IRT have circumvented this problem by
removing ability parameters altogether and only using item
parameters. For example, performance factor analysis re-
places the ability parameter by a weighted count of correct
and wrong responses on past items for the same skill [11].
More recently, Converse et al. [3] proposed a variational au-
toencoder model to simplify the application of IRT models
to new students.

A variational autoencoder (VAE) views the student abili-
ties ~θi as a compressed representation of the student’s re-
sponse vector ~yi. More precisely, a VAE tries to learn an
encoder function which compresses ~yi to abilities ~θi, and
a decoder function which de-compresses ~θi back into esti-
mated responses ŷi, such that ~yi and ŷi are close and such
that ~θi is standard normal distributed [6]. As decoder, we
use a multi-dimensional IRT model (2), whereas the encoder
could be a multi-layer artificial neural network [3]. In con-
trast to traditional IRT models, a VAE model is typically
non-convex and multi-layered, and thus needs to be opti-
mized with deep learning methods [3, 6]. Wu et al. [16] have
further extended the VAE version of IRT by analyzing the
theory more closely and including the difficulty parameters
~b as an additional input to the encoder. Fig. 1 illustrates the
approach for a single-layer encoder. The encoder is given as
~θi = A ·~yi+B ·~b+~γ for some bias ~γ (Fig. 1, left, in orange),
whereas the decoder is a multi-dimensional IRT model like
in (2) (Fig. 1, right, in blue). Note that we obtain all models
in this section as special cases of this diagram. If we set the
connections B to zero, we obtain the IRT-VAE of [3]. If
we, further, remove the connections A and treat ~θi as pa-
rameters, we obtain SPARFA. Finally, if we set K = 1 and
qj,1 = 1 for all j, we obtain a classic IRT model.

Interestingly, the state-of-the-art VAE approaches do not
apply a sparsity penalty to facilitate interpretability of Q.
Further, deep learning can be quite slow. To address these
limitations, we propose an autoencoder model based on the
SPARFA loss, which we describe in the next section.

3. METHOD
Our proposed model is a single-layer autoencoder as illus-
trated in Fig. 1. More formally, our model can be concisely
expressed in the following equations:

~θi = A · ~yi,
~zi = Q · ~θi −~b, and
pi,j = 1/

(
1 + exp(−zi,j)

)
, (4)

where the first equation expresses the encoder and the sec-
ond and third equation the decoder.

Our interpretation of the parameters is as follows. A maps
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Figure 1: A sketch of a one-layer autoencoder for student responses, following Algorithm 1 of [16]. The Encoder is shown in
orange (left), the decoder in blue (right). Encoder bias parameters are not shown for simplicity.

from responses to student ability, with αk,j modeling the
amount of ability in skill k that is expressed by answering
item j correctly. Conversely, Q maps from abilities to re-
sponses, with qj,k modeling how much skill k helps to answer
item j correctly. bj models the difficulty of item j, as before.
Note that our model requires no student-specific parameters,
such that it can be directly applied to new students.

Note that we do not include “backward” connections B or
encoder bias parameters ~γ in our model because they do not
contribute to the model’s expressive power in the single-layer
case. Consider a “full” model with ~θi = A · ~yi +B ·~b+ ~γ. If
we plug this expression into our equation for zi, we obtain

~zi = Q ·
(
A ·~yi+B ·~b+~γ

)
−~b = Q ·A ·~yi+Q ·B ·~b+Q ·~γ−~b.

We now absorb B and ~γ into ~b by re-defining ~b as Q ·B ·
~b+Q ·~γ−~b, yielding Equations (4). Accordingly, our model
requires only 2K + 1 parameters per item.

We can train the parameters of our model by solving the
following minimization problem, inspired by SPARFA.

min
A,Q,~b

m∑

i=1

n∑

j=1
−yi,j · log[pi,j ]− (1− yi,j) · log[1− pi,j ] (5)

+λ1 · (‖A‖1,1 + ‖Q‖1,1) + λ2

2 · (‖A‖
2
F + ‖Q‖2

F + ‖~b‖2)

s.t. αk,j ≥ 0, qj,k ≥ 0 ∀ k ∈ {1, . . . ,K}, j ∈ {1, . . . , n}

where ‖A‖1,1 =
∑n
j=1

∑K
k=1 |αk,j | denotes the entry-wise

1-norm, and where ‖A‖2
F =

∑n
j=1

∑K
k=1 α

2
k,j denotes the

squared Frobenius norm. Since the resulting model is an
autoencoder-variant of Sparse Factor Analysis, we call it
Sparse Factor Autoencoder (SparFAE). We denote the ob-
jective function as `SparFAE. As in SPARFA, the Frobenius
norm applies a Gaussian prior on the parameters, whereas
the 1-norm encourages sparsity. We also apply the same
non-negativity constraints as in SPARFA to ensure a mean-
ingful interpretation of A and Q. Additionally, the non-
negativity constraints are likely to further enhance sparsity,
as indicated by non-negative matrix factorization [8].

In contrast to SPARFA, we can not decompose this prob-
lem into independent problems for each item because there
are item-to-item-dependencies: Manipulating αk,j also in-
fluences the abilities θi,k, which in turn influence the prob-
ability pi,j′ for any item j′ with qj′,k 6= 0. Accordingly, we

need to perform a joint optimization of all parameters. How-
ever, we do not need to resort to deep learning. Instead, we
propose a standard L-BFGS solver, as implemented in the
minimize method of scipy [14]. This is facilitated by the
surprisingly simple expression for the gradients:

∇A`SparFAE = QT ·∆T · Y + λ1 · 1 + λ2 ·A,
∇Q`SparFAE = ∆T · Y ·AT + λ1 · 1T + λ2 ·Q, and
∇~b`SparFAE = −~1T ·∆ + λ2 ·~b, (6)

where Y is the m×n matrix of all responses, where ∆ is the
m × n matrix with entries δi,j = pi,j − yi,j , where 1 is the
K×n matrix of only ones, and where ~1 is an m-dimensional
vector of ones. Regarding computational complexity, notice
that the matrix products in (6) require min{2 ·K ·m ·n, n2 ·
(m+K)} operations, such that each optimization step is in
O(m · n) for constant K. We can simplify our optimization
further by inspecting the relationship between A and Q.

3.1 Single Matrix Variant
Note that the matrices A and Q have related interpreta-
tions. Intuitively, if skill k helps more with item j (high
qj,k), we would also expect that answering item j correctly
is an indicator for skill k (high αk,j). Accordingly, it stands
to reason that A = QT .

We can also motivate this setting mathematically. In partic-
ular, A = QT is optimal if Q is orthogonal, meaning QT ·Q
equals the identity matrix I. In that case, Q ·QT · ~yi is the
orthogonal projection of ~yi onto the hyperplane spanned by
Q. In other words, Q ·QT · ~yi is the most similar point to
~yi we can achieve with the decoder Q.

However, is it plausible that Q is orthogonal? Indeed, QT ·
Q becomes a diagonal matrix (orthogonal up to scaling)
if every item tests exactly one skill. Let Jk be the set of
items which test skill k. Then, we obtain: (QT · Q)k,l =∑n
j=1 qj,k · qj,l =

∑n
j∈Jk

q2
j,k along the diagonal and zero off

the diagonal. In other words, the sparser Q becomes, the
closer A = QT is to optimal.
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When we plug A = QT into problem (5), we obtain:

min
Q,~b

m∑

i=1

n∑

j=1
−yi,j · log[pi,j ]− (1− yi,j) · log[1− pi,j ]

+ λ1 · ‖Q‖1,1 + λ2

2 · (‖Q‖
2
F + ‖~b‖2)

s.t. qj,k ≥ 0 ∀ k ∈ {1, . . . ,K}, j ∈ {1, . . . , n}, (7)

where ~zi = Q ·QT · ~yi −~b. The gradient becomes:

∇Q`SparFAE =
(
Y T ·∆ + ∆T · Y + λ2 · I

)
·Q + λ1 · 1T .

This concludes our description of the proposed method.

4. EXPERIMENTS
In our experiments, we evaluate our proposed approach,
Sparse Factor Autoencoder (SparFAE), on both synthetic
and real-world data. We compare Sparse Factor Analysis
(SPARFA) [7], Variational item response theory with a novel
lower bound (VIBO) [16], the two-matrix version of Spar-
FAE (SparFAE2), as well as the single-matrix version (Spar-
FAE1). As optimizers, we used L-BFGS for SPARFA and
both SparFAE versions, and an Adam optimizer with learn-
ing rate 0.005, 100 epochs, and minibatch size 16 for VIBO
(these settings are as similar as possible to the original work
of [16]). The experimental source code with all details is
available at https://github.com/bpaassen/sparfae.

4.1 Synthetic Experiments
First, we consider synthetic data, which we sample from a
multivariate IRT model with K = 5 skills, standard nor-
mally distributed abilities θi,k, and standard normally dis-
tributed difficulties bj . We introduce two different sampling
conditions for Q: A) We sample a unique skill k for each
item j and set qj,k = 1, whereas all other entries of Q remain
zero. B) We first sample a number of skills Kj ∈ {1, . . . , 5}
for each item j with probability p(Kj) = 6−Kj

15 . Then, we
draw Kj skills k without replacement and uniform probabil-
ity for item j and set qj,k to a uniform random number in
the range [0.5, 1].

As evaluation measures, we use the area under the receiver-
operator-curve in predicting correct responses (AUC), the
correlation between the learned difficulties bj and the actual
difficulties (rb), the correlation between the learned abili-
ties θi,k and the actual abilities (rθ), fraction of agreeing
nonzero entries between the learned Q matrix and the true
Q-matrix (rQ), the time needed for training, and the time
needed for prediction on new students. Since the order-
ing of skills is undefined, we allow arbitrary permutations
of the skills in the learned Q-matrix before computing rQ.
In practice, we re-order the columns of Q according to the
linear_sum_assignment function of scipy with the ground-
truth Q matrix [14]. We evaluate all measures on a separate
sample of m′ = 100 new students. We repeat all experiments
10 times for each of the hyperparameter settings in Table 1.

First, we inspect the effect of hyperparameters for m = 100
students and n = 20 items. Fig. 2 shows, from left to right,
how AUC, rb, rθ, and rQ change for higher regularization in
conditions A (top) and B (bottom). For AUC, we observe

Table 1: Hyperparameter settings considered in the experi-
ments.

setting λVAE λ1 λ2

1 10−5 10−3 10−3

2 10−4 0.05 10−3

3 10−3 1 10−3

4 0.01 0.05 0.05
5 0.1 1 0.05
6 1 1 1

a slight degradation of all methods for higher regulariza-
tion, with a notable decline for VIBO at the last setting. rb
generally rises for higher regularization, with the exception
of SparFAE1, which stays relatively stable around 0.5. rθ
appears stable across regularization and improves only for
SPARFA. rQ improves for all methods with higher regular-
ization in condition A (top), and remains roughly stable in
condition B (bottom). For the remaining synthetic experi-
ments, we report the results using hyperparameter setting 6
for SparFAE2 and SparFAE1, and hyperparameter setting
5 for SPARFA and VIBO. These settings maximize rb, rθ,
and rQ while retaining high AUC.

Fig. 3 displays the performance measures for varying num-
bers of students. We observe that AUC, rθ, and rQ tend
to slightly increase for more students across methods and
conditions, with only slight deviances for small numbers of
students. The most striking impact is on rb, which increases
for SparFAE1 and VIBO, but decreases for SPARFA and
SparFAE2.

Fig. 4 displays the performance measures for varying num-
bers of items. Across methods, AUC decreases, whereas rb
and rθ increase and rQ remains roughly stable for higher
number of items. The decrease in AUC is likely explained
by the fact that the models need to compress the informa-
tion of more items into the same number of skills, which
is bound to decrease performance. Conversely, it becomes
easier to tease apart the difficulty of each single item for a
higher number of items per skill (hence the improvement in
rb). Further, the more items we have in a test, the more
accurate we can estimate the underlying ability, which is
reflected in better rθ values.

Finally, Fig. 5 summarizes the effect of hyperparameter set-
ting, number of students, and number of items on training
time in logarithmic plots. We observe that stronger regular-
ization reduces the training time for both SparFAE variants,
whereas it stays roughly constant for VIBO and SPARFA.
This is likely because training time for SPARFA and VIBO
is driven by the repeated optimization steps over students,
whereas the training time for SparFAE is dominated by a
single optimization process. Hence, SparFAE profits more
from the simpler loss surface offered by higher regulariza-
tion. As one would expect, all methods scale roughly lin-
early with the number of students, SPARFA with roughly
18 ms per student, VIBO with roughly 6 ms per student,
and both SparFAE variants with roughly 1.5 ms per stu-
dent (refer to the gray dashed reference lines). For the num-
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Figure 2: The effect of hyperparameter settings from Table 1 on various performance measures (from left to right) on the
synthetic data, either with one skill per item (A, top), or multiple skills per item (B, bottom).

condition A

condition B

0
0.2
0.4
0.6
0.8

1
AUC rb rθ rQ

SPARFA
VIBO
SparFAE2
SparFAE1

100 500 1,0000
0.2
0.4
0.6
0.8

1

100 500 1,000 100 500 1,000 100 500 1,000
number of students

Figure 3: The effect of increasing the number of students on various performance measures (from left to right) on the synthetic
data, either with one skill per item (A, top), or multiple skills per item (B, bottom).
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Figure 4: The effect of increasing the number of items on various performance measures (from left to right) on the synthetic
data, either with one skill per item (A, top), or multiple skills per item (B, bottom).
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Figure 5: The effect of hyperparameter setting (left), number of students (center), and number of items (right) on training time
for condition A. Gray dashed lines are linear references, the gray dotted line is a quadratic reference.
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ber of items, the runtime for SPARFA and VIBO remains
roughly constant, whereas it increases almost quadratically
for both SparFAE variants. This is because the optimization
for SPARFA and VIBO is dominated by iterations over stu-
dents. By contrast, for SparFAE, every single gradient com-
putation already depends linearly on n, and more items may
also increase the number of required gradient computations
until convergence, thus yielding the super-linear behavior.

4.2 NeurIPS 2020 education data
Next, we consider the NeurIPS 2020 education challenge
data by Wang et al. [15]. The data set consists of multiple
choice questions to assess mathematics knowledge. Items
are grouped into different quizzes. We restricted the data
set to the 948 items from task 3 of the challenge and quizzes
with at least 50 students1, which left 65 quizzes. On av-
erage, these quizzes contained 14.02 items and had 1675.06
students responding. To estimate the number of skills K,
the first author analyzed all 948 items and assigned them to
skills. This yielded 14 distinct skills, the most common ones
being fractions (190 items), basic algebra (140 items), and
algebra with variables (127 items). On average, quizzes in-
volved 3.21 skills. For each quiz, we set K to the first-author
estimate, but we upper-bounded K to be at most half the
number of items in the quiz.

Based on the pre-defined Q-matrix by the first author, we
included two more baselines: A VIBO model, where we fixed
the decoder matrix to the pre-defined Q-matrix, and a Spar-
FAE1 model, where we fixed the Q-matrix and only trained
the difficulty parameter for each item using logistic regres-
sion. We denote these methods as VIBOf and SparFAEf ,
respectively.

To perform hyperparameter optimization, we randomly set
aside 10 quizzes and evaluated the AUC of all methods for
all hyperparameter settings in Table 1 in a 10-fold cross-
validation over students, that is, in each fold we used 90%
of students as training data and 10% as test data. The
hyperparameter settings which maximized AUC were 2 for
SPARFA and SparFAE2, 3 for VIBO, and 4 for SparFAE1.

Next, we performed a 10-fold crossvalidation over students
for the remaining 55 quizzes. Note that we can not evaluate
rb, rθ, or rQ, because we have no access to a ground truth
for b, θ, and Q. However, we can evaluate the sparsity of
Q, that is, the fraction of zero entries. Sparsity is a rough
proxy for the plausibility of a learned Q-matrix because high
sparsity indicates that Q assigns items to distinct skills.

Table 2 reports the average performance measures across
quizzes. Regarding AUC, Wilcoxon signed-rank tests re-
vealed that SPARFA had the highest AUC, followed by
SparFAE2, VIBO, SparFAE1, SparFAEf , and finally VIBOf

(p < 10−3 for all tests after Bonferroni correction). That be-
ing said, the AUC of all methods except SPARFA is very
close (at most 2% difference between means). In terms
of sparsity, SparFAE1 clearly outperforms SPARFA, VIBO,
and SparFAE2 (p < 10−3). Note that VIBO does not achieve
any sparsity, as it does not encourage sparsity during train-

1We also excluded one outlier quiz with more than 100 items
and a lot of missing data.

ing. The sparsity of the pre-defined Q-matrix was very high
(94%) as it assigned each item to only one skill.

With respect to training time, SparFAE1 is considerably
faster than SPARFA (ca. 15x), VIBO (ca. 4x), and Spar-
FAE2 (ca. 8x). In terms of prediction time, SparFAE1,
SparFAE2, and VIBO perform similarly as their prediction
scheme is almost the same (although SparFAE1 is still sig-
nificantly faster, p < 10−3). Only SPARFA is much slower
(ca. 300x) because it needs to fit new ability parameters to
new students for each prediction.

Finally, we analyzed the relation of AUC to the numbers of
students, items, and skills, as well as the amount of missing
data in quizzes. Fig. 6 displays scatter plots, where each dot
represents one quiz and lines show linear fits. Interestingly,
the behavior is very similar for all methods. The linear
correlation is r ≈ 0.3 with number of students (r = 0.4
for VIBO; p < 0.05), r ≈ −0.4 with number of items (p <
0.01), r ≈ 0.6 with number of skills (p < 10−3), and around
zero with the amount of missing data (insignificant). This
is in line with our results on synthetic data. The strong
correlation with the number of skills is explained by the fact
the methods have more parameters to fit the data when we
increase K.

4.3 Math assessment data
In a final experiment, we evaluated the ability of SparFAE1
to identify a fitting Q-matrix in comparison to an expert-
designed Q-matrix on real data. To that end, we used data
from m = 30 students (ages 16-19) on a math assessment
test for vocational education in chemistry2. The test con-
sisted of n = 21 questions, covering K = 5 topics, namely
basic algebra, fractions, equation solving for a single vari-
able, text tasks with two variables, and (linear) functions.
Fig. 7 (top) shows the assignment of items (x-axis) to these
five topics (y-axis) as provided by the test designers.

We applied a slightly adapted variant of SparFAE1 with the
regularization

∑K
k=1

(∑n
j=1 qj,k − 1

)2
, that is, we punished

deviations of the column sums from 1, thereby encouraging
orthogonality in Q. As regularization strength, we set 1.
We performed 30 repeats of SparFAE1 and then selected
the Q-matrix which maximized accuracy in a leave-one-out
crossvalidation over students (the resulting best accuracy
was 89%).

The learned Q-matrix is shown in Fig. 7 (bottom). We ob-
serve that the matrix assigns every item to only one skill, in
line with the expert prediction. We further observe that—in
line with the experts—the learned Q tends to group items
for the basic topics (basic algebra and fractions) together
and tends to avoid grouping items for basic topics with items
for advanced topics. However, there are also notable dif-
ferences to the expert Q-matrix. In particular, SparFAE1
merges basic algebra and fractions into one skill (except
for item 8, which is in skill 4), and includes items 13 and
14. Overall, skill 1 accumulates relatively easy tasks with-
out text- and function components. All other skills con-
tains items which required text comprehension and/or un-
2https://projekte.provadis.de/showroom/provadis/
Mathematik_Orientierungstest/online
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Table 2: Performance measures on the NeurIPS 2020 education data.
method AUC sparsity training time [s] prediction time [ms]
VIBOf 0.88± 0.05 0.94± 0.00 8.01± 5.59 1.31± 2.76

SparFAEf 0.88± 0.04 0.94± 0.00 0.05± 0.03 0.15± 0.13
SPARFA 0.93 ± 0.05 0.16± 0.06 31.0± 20.9 633± 444

VIBO 0.89± 0.05 0.00± 0.00 7.83± 5.12 0.31± 0.18
SparFAE2 0.90± 0.05 0.33± 0.10 15.7± 15.9 0.20± 0.13
SparFAE1 0.89± 0.04 0.46 ± 0.13 1.94 ± 1.78 0.19 ± 0.12
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Figure 6: Scatter plots of AUC versus quiz metadata (from left to right: number of students, number of items, number of skills,
and fraction of missing data). Lines indicate linear regression fits.

1
2
3
4
5

k

0
0.5
1
1.5

5 10 15 20
1
2
3
4
5

j

k

0
0.5
1
1.5
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5 10 15 20

5

10

15

20

j

j′

0

0.2

0.4

0.6

0.8

1

Figure 8: The item-to-item correlations for the math assess-
ment data.

derstanding of functions, but the correspondence to expert-
defined skills is less obvious.

To gain deeper insight into the learned Q-matrix, we in-
spected the item-to-item correlations cj,j′ =

∑m
i=1 xi,j ·xi,j′/√(∑m

i=1 xi,j
)
·
(∑m

i=1 xi,j′
)

, which are shown in Fig. 8.
We observe that items 1-7, 9, and 13-14 exhibit relatively
high pairwise correlation, explaining why SparFAE1 grouped
them together in skill 1.

Skill 2 groups items 16 and 18, which are both text problems
covering variable solution problems, but it also includes item
21, which is a question on functions. Inspecting the correla-
tion matrix, we observe that item 21 generally exhibits low
correlation, except for items 16 and 18, which explains the
grouping.

Skill 3 groups items without obvious mathematical connec-
tion. Item 10 is a fraction problem, item 12 is a variable
algebra problem, and item 20 is a function problem. Fur-
ther, these items exhibit only moderate pairwise correlation.
However, the only items with higher correlations are already
contained in skill 1 and are, thus, unavailable for skill 3, thus
indirectly explaining the grouping.

Skill 4 contains a variable algebra item (8), an equation
solving problem (17), and a function problem (19). Gen-
eral variable algebra capacity (8) plausibly enhances equa-
tion solving (17) but the function question (19) seems less
connected. The correlation matrix reveals that item 19 has
generally low correlations, except for items 3, 7, 14, and 17,
explaining its grouping with item 17.

Skill 5 contains two equation problems, one symbolic (11)
and one text-based (15). Further, item 15 has very low
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correlations with any other item, except for items 9 and 11,
and 20, which explains the grouping with item 11.

Overall, we observe that the learned Q-matrix tended to
group more basic items together and more advanced items
together, in line with expert opinion. Sometimes, the learned
Q matrix groups items which do not have an obvious con-
nection, content-wise. In such cases, we could explain the
grouping by inspecting the item-to-item correlation matrix.

5. DISCUSSION AND CONCLUSION
We proposed a novel method for factor analysis which ex-
tends Sparse Factor Analysis (SPARFA) [7] to an autoen-
coder approach. Hence, we call our proposed method Sparse
Factor Autoencoder (SparFAE). More specifically, our ap-
proach encodes student responses to abilities via a linear
map A and decodes it again to predicted responses via a
multi-dimensional item response theory model with a linear
skill-to-item map Q. Like SPARFA, our approach encour-
ages sparsity in the Q-matrix via non-negativity constraints
and L1 regularization. In contrast to SPARFA, we do not
need to fit new ability parameters for new students. In-
stead, we can simply apply A, which automatically yields
the desired ability parameters. We investigated two ver-
sions of SparFAE: One with separate matrices A and Q for
encoding and decoding (SparFAE2), and one where we set
A = QT , that is, we use the Q-matrix for both encoding
and decoding (SparFAE1).

In experiments on synthetic as well as real data, we showed
that SparFAE1 is considerably faster than SPARFA, vari-
ational autoencoding [16], and SparFAE2. SparFAE1 also
achieves higher sparsity, and higher correlation with ground
truth Q-matrices and student abilities. This comes at the
price of slightly lower AUC and less accuracy in recover-
ing ground truth difficulties. We also observed that AUC
differences between autoencoder variants were quite small,
whereas SPARFA achieved noticeably higher AUC, indicat-
ing that student-specific ability parameters allow for a better
fit of the data than autoencoding. We also compared the
learned Q-matrix via SparFAE1 with an expert Q matrix
on a math assessment test, revealing some overlap but also
meaningful differences which could be explained by item-to-
item correlations.

Overall, our results indicate that SparFAE1 is a promising
method for fast factor analysis, especially when each item in
a test only refers to a single skill. As such, we believe that it
can be an interesting tool for test designers who wish to ana-
lyze the factor structure of their test on a sample of students.
While the learned Q-matrix should still be interpreted with
care, it can uncover latent item relationships (as we saw on
the math assessment data). Our results also motivate the
use of Q-matrices for both decoding and encoding, which
can serve as a starting point for future research.

Limitations of SparFAE1 lie in the slightly lower AUC com-
pared to other autoencoders, the ability to recover ground
truth difficulty parameters, and the superlinear scaling with
respect to the number of items. Future work could address
each of these shortcomings. Further, our experimental evalu-
ation is limited to multiple choice m math assessment ques-
tions. Future work should include further data sets from

other educational domains to ensure that SparFAE1 gener-
alizes. Finally, just as any autoencoders, SparFAE1 makes
the assumption that abilities do not change during a test.
Future work may consider more dynamic settings, e.g. by
incorporating concepts from performance factor analysis or
knowledge tracing models.
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ABSTRACT
As online learning platforms become more ubiquitous through-
out various curricula, there is a growing need to evaluate
the effectiveness of these platforms and the different meth-
ods used to structure online education and tutoring. To-
wards this endeavor, some platforms have performed ran-
domized controlled experiments to compare different user
experiences, curriculum structures, and tutoring strategies
in order to ensure the effectiveness of their platform and
personalize the education of the students using it. These
experiments are typically analyzed on an individual basis
in order to reveal insights on a specific aspect of students’
online educational experience. In this work, the data from
50,752 instances of 30,408 students participating in 50 differ-
ent experiments conducted at scale within the online learn-
ing platform ASSISTments were aggregated and analyzed
for consistent trends across experiments. By combining com-
mon experimental conditions and normalizing the dependent
measures between experiments, this work has identified mul-
tiple statistically significant insights on the impact of var-
ious skill mastery requirements, strategies for personaliza-
tion, and methods for tutoring in an online setting. This
work can help direct further experimentation and inform the
design and improvement of new and existing online learning
platforms. The anonymized data compiled for this work are
hosted by the Open Science Foundation and can be found
at https://osf.io/59shv/.

Keywords
Randomized Controlled Experiments, Online Learning Plat-
forms, Skill Mastery, Instructional Interventions, Online Tu-
toring

1. INTRODUCTION
The use of online learning platforms has increased rapidly
in the past decade [37]. As online learning platforms grow
to become a permanent fixture of educational systems, they
have the potential to democratize education by providing
high quality free or low-cost resources to compliment tradi-
tional classroom practices [1]. While in some cases online
tutoring has been shown to be at least as effective as tra-
ditional in-person educational practices [33, 11, 16], there
is still a need to validate the effectiveness of the various
methods by which educational content is delivered to stu-
dents. Placing an emphasis on objectively measuring the ef-
fectiveness of these emerging methods through randomized
controlled experimentation is essential for ensuring that the
quality of educational resources continues to increase.

This study works towards that endeavor by aggregating the
results from 50,752 instances of 30,408 students participat-
ing in 50 different randomized controlled experiments con-
ducted by various groups of researchers since February, 2019
within the online learning platform ASSISTments. In these
experiments, K-12 students were randomized between dif-
ferent conditions as they completed online mathematics as-
signments. These conditions changed factors such as stu-
dents’ assignment completion requirements, the format of
the tutoring students’ received when struggling with the as-
signed problems, and the types of interactions students could
have within their assignment. While these types of stud-
ies have been conducted in ASSISTments before [34, 40],
this work goes beyond reporting the results of each individ-
ual study, and instead aggregates the results of these stud-
ies together, ultimately investigating 19 different research
questions across 50 randomized controlled experiments. To
achieve this, the following steps were taken.

1. Identify the independent measures of every condition
in each experiment.

2. Normalize the dependent measures of all the experi-
ments so they can be compared to one another.

3. Combine the data from different experiments when the
research questions of the experiments match.
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4. Determine the effects of the various experimental in-
structional interventions using these combined datasets.

The results of this aggregate analysis revealed actionable
trends that can contribute to a broader understanding of
the effectiveness of different educational interventions, help
direct further experimentation, and inform the design and
improvement of new and existing online learning platforms.

2. BACKGROUND
2.1 Educational Experiments
Experiments revolving around educational practices have
been conducted since the late 19th century [49]. These
early experiments, conducted by William James, Edward
Thorndike, and Alfred Binet along with others, focused on
determining individual differences between students, why
they occur, and what methods teachers can employ to im-
prove educational outcomes for them [49]. By the early 20th
century, with the increased accessibility of formal education,
educational experiments were more focused on improving
teaching methods [49] and connecting cognitive psychology
to classroom practices [24]. These studies investigated the
differences in learning between students of varying socioeco-
nomic levels [7], the effect of increasing student autonomy in
the classroom [29], and the value of assessment in learning
[21].

In the years following these studies, theories on educational
development, classroom practice and structure, and how to
approach individual differences between students were devel-
oped. In particular, research around effective feedback has
proven to increase performance [23], interest in learning [9],
as well as increasing students’ abilities to self-regulate their
learning [35]. These studies varied in the types of feedback
students’ receive [9], level of specificity and frequency [48],
level of praise present in the feedback [8], and what types
of students benefit the most from certain types of feedback
[14]. Data for these studies were collected from classroom
observations of verbal feedback, collections of written feed-
back, and results on written assessments.

2.2 Experimentation within Online Learning
Platforms

Computer-assisted instruction in education has been studied
since the 1960s [47], results of these early studies show that
providing specific, targeted feedback to student responses
improves retention of information [19, 43]. In more recent
years, educational data mining research has grown signifi-
cantly, with large scale implementation of online A/B test-
ing in web applications allowing thousands of users to be
randomized into conditions simultaneously [3, 5]. With the
rapid adoption of computers in the classroom in the past
two decades, educational researchers now have access to
an abundance of data on students. Online learning plat-
forms track students’ performance, demographics, interac-
tions within the platform, statistics on content usage, feed-
back, and more [38]. Additionally, during the 2020-2021
school year many schools that had not previously used on-
line learning platforms migrated to online learning platforms
as a result of the COVID-19 pandemic [28]. This increase

in the size and scope of available data has made it possi-
ble to gain insights into educational practices that were not
previously possible with traditional methods.

Recent studies have focused on predicting student outcomes,
improving domain specific content, examining the effects of
different kinds of pedagogical support, and advancing knowl-
edge about how people learn [5]. Similar to early studies on
computer-assisted learning, learning analytics research aims
to determine what types of feedback and presentations work
well for what types of students, in other words, discovering
the potential for personalization in online learning platforms
[31, 5]. Prior studies on personalization show the benefit of
explanatory feedback over corrective feedback for novice stu-
dents [31], differences in effect of feedback between male and
female students [32], and the effects of immediate and de-
layed feedback for students with different prior knowledge
levels [45, 10]. Additionally, by taking advantage of recent
advances in data collection, research has been able to focus
on determining methods for personalizing based on students
characteristics, such as district locale and student interac-
tion data [2] and what types of crowdsourced content is ef-
fective for students [39]. This work provides another data-
intensive analysis on the effectiveness of different aspects
of online learning platforms, but unlike the aforementioned
analyses, this work compiled data from dozens of studies
performed within an online learning platform instead of fo-
cusing on a single study. This revealed trends across exper-
iments that provided deeper insight into the effectiveness of
various instructional interventions and online tutor designs.

2.3 ASSISTments and E-TRIALS
The data in this work comes from ASSISTments, an on-
line learning platform that focuses on providing teachers
with mathematics content and resources to effectively man-
age their students. Within ASSISTments, teachers have the
option to assign problem sets and skill builders to their stu-
dents. Problem sets are a series of mathematics problems
that must all be completed, in order, to finish the assign-
ment. These problem sets come from various open educa-
tional resources for mathematics such as Engage New York,
Illustrative Mathematics, and The Utah Middle School Math
Project. Skill builders are assignments that focus on a spe-
cific mathematics skill. When students complete skill builders
they are given a series of problems on the same mathematics
skill until they get a specific number of problems correct in
a row. Usually students must answer three problems cor-
rect in a row to finish the assignment, but this number is
configurable by the teacher.

Regardless of whether the student is assigned a problem set
or skill builder, they complete their assignment in the AS-
SISTments tutor [20]. In the tutor, students receive imme-
diate feedback when they submit a response to a problem,
which informs them if they are correct [27]. In addition to
this immediate feedback, students are able to request tu-
toring, which is available to them at any point during their
completion of a problem regardless of whether or not they
have already attempted the problem. Tutoring comes in the
form of hints, which are a series of messages the student can
request, one at a time, that explain how to solve parts of
the problem; explanations, which are full worked solutions
to the problem; examples, which are full worked solutions
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of a similar problem; common wrong answer feedback mes-
sages, which explain how to correct a specific error made
by the student; and scaffolding, which breaks the problem
down into a series of simpler problems that guide the stu-
dent through how to solve the original problem [27]. These
different types of tutoring strategies can come in the form of
videos, images, or text. An example of a student receiving
a text-based explanation within the ASSISTments tutor is
shown in Figure 1. Once students have finished their as-
signment, teachers are provided with reports that aggregate
information such as how each student progressed through
the assignment and what the class’ most common mistakes
were.

Figure 1: A student’s view of the ASSISTments tutor after
requesting tutoring and receiving a text-based explanation.

The variety of assignments and tutoring strategies that can
be delivered to students through ASSISTments provides op-
portunities to explore various research questions in learn-
ing science, educational psychology, and human-computer
interaction. A research test-bed, E-TRIALS (an EdTech
Research Infrastructure to Advance Learning Science), was
built to deploy randomized controlled experiments in class-
work and homework settings at scale within ASSISTments
[25]. Since 2005, researchers have been able to create and
modify problem sets, skill builders, and tutoring strategies.
The modified content contains the original content within
it, but adds experimental conditions. For example, a re-
searcher could modify a skill builder for calculating the area
of a triangle to randomly provide students with text-based
or video-based hints. Teachers assign the modified content
as if it were the original, and when teachers assign these
modified assignments, students will be randomized (on an
individual basis, not at the class level) to one of multiple
conditions. This allows researchers to evaluate the impact
of different pedagogical decisions on students’ learning [41].
The experiments run in ASSISTments cover a wide scope
of research questions that range from whether offering stu-
dents a choice in the difficulty of their instruction improves
learning, to whether providing students with worked exam-
ples of similar problems is more effective than direct advice
on the problem they are struggling with, to whether chang-
ing the number of problems students are required to com-
plete affects their learning [44]. The following analysis of E-
TRIALS experiments provides insight into the current state
of experimentation within online learning platforms and can
help inform the design of future experiments.

3. EXPERIMENT DATASET
The dataset used in this work comes from 50,752 instances
of 30,408 unique students who participated in 50 E-TRIALS
experiments since February, 2019. In addition to record-
ing the purpose of the experiment, the experimental con-

dition each student was placed in, and the resulting de-
pendent measure, the dataset also includes information on
students’ performance within ASSISTments prior to par-
ticipating in the experiment, the prior performance of the
students’ classes, the experience of their teachers, and an
indicator of their socioeconomic status. Socioeconomic sta-
tus is indicated by a student’s school district’s Opportunity
Zone status, which is a particular tax classification in the
United States of America that indicates whether a region
has opportunities for economic growth. The regions in op-
portunity zones are typically low-income regions with fewer
educational resources [15]. The Opportunity Zone status for
each student was determined using the domain name of their
teacher’s school-provided email address. No demographic in-
formation was requested from students using ASSISTments
to preserve their anonymity and prevent any bias associated
with answering questions on how they identify themselves.
The full set of features collected for each participant is shown
in Table 1. In addition to containing features for each ex-
periment participant, the dataset contains information on
the independent and dependent measures used in the var-
ious experiments, which had to be aggregated in order to
determine the common trends among the 50 experiments.
The details of these independent and dependant measures
and how they were aggregated are discussed in Sections 4.1
and 4.2.

4. METHODOLOGY
Due to the diversity in research questions, independent and
dependent measures, and structure of the experiments, the
first step to evaluate their overall trends was to identify sim-
ilar conditions within multiple experiments. This process in-
volved documenting each condition of each experiment and
identifying when different experiments had an identical pair
of conditions or the same research question. The second step
was to normalize the various dependent measures such that
they all represented similar metrics and used the same scale.

4.1 Pooling Experiment Data
To pool experimental data together, similar experiments had
to be identified. To do this, every condition from every
experiment was documented such that data from multiple
experiments that each had an identical pair of conditions
or research question could be aggregated. For example, if
the following three experiments were run in ASSISTments,
then Experiment 1 would have six documented conditions
(one condition for each of the hint types for both choice
and no choice), Experiment 2 would have two conditions
(one for text-based hints and one for video-based hints), and
Experiment 3 would have four conditions (one condition for
each text color for both choice and no choice).

• Experiment 1: Randomize between A: giving students
a choice of no hints, text-based hints, or video-based
hints, or B: randomly selecting which type of hint to
give them.

• Experiment 2: Randomize between A: text-based hints,
or B: video-based hints.

• Experiment 3: Randomize between A: giving students
a choice of black or red text color, or B: randomly
selecting the text color.
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Table 1: The Features Calculated for each Instance of a Student Participating in an Experiment

Feature Name Description
Experiment Condition An indication of which condition students are in.

Student Prior Started Skill Builder Count Number of skill builders previously started by students.
Student Prior Skill Builder Percent Completed Percent of skill builders completed by students.

Student Prior Started Problem Set Count Number of problem sets previously started by students.
Student Prior Problem Set Percent Completed Percent of problem sets completed by students.

Student Prior Completed Problem Count Total number of problems completed by students.
Student Prior Median First Response Time Students’ median time to submit an answer to a problem.

Student Prior Median Time On Task Students’ median time to complete a problem.
Student Prior Average Attempt Count Student’s average attempts required to complete a problem.

Student Prior Average Correctness The fraction of problems students answered correctly.
Class Age In Days The number of days classes existed in ASSISTments.

Class Student Count The number of students in the class.
Class Prior Started Skill Builder Count Number of skill builders previously started by classes.

Class Prior Skill Builder Percent Completed Percent of skill builders started by classes that were completed.
Class Prior Started Problem Set Count Number of problem sets previously started by classes.

Class Prior Problem Set Percent Completed Percent of problem sets started by classes that were completed.
Class Prior Completed Problem Count Total number of problems completed by classes.

Class Prior Median First Response Time Class’ median time to to submit an answer to a problem.
Class Prior Median Time On Task Class’ median time to complete a problem.

Class Prior Average Attempt Count Class’ average attempts required to complete a problem.
Class Prior Average Correctness The fraction of problems classes answered correctly.

Teacher Account Age In Days The number of days teachers have had an ASSISTments account.
Experiment Id The experiment students participated in.

Opportunity Zone The school district’s Opportunity Zone status [15].

In addition to documenting the conditions for the three ex-
periments, Experiments 1 and 3 would be recorded as having
the higher-level research question “Choice vs. No Choice”
and Experiment 2 would be recorded as having no higher-
level research question. To combine the results of these three
experiments, students randomized to the text-based hint op-
tion of Condition B of Experiment 1 would be combined
with students randomized to Condition A of Experiment 2
and students randomized to the video-based hint option of
Condition B of Experiment 1 would be combined with stu-
dents randomized to Condition B of Experiment 2. These
groups would be used to evaluate the overall effect of giving
video-based hints compared to text-based hints. Addition-
ally, students randomized to Condition A of Experiments 1
and 3 would be grouped, and students randomized to Con-
dition B of Experiments 1 and 3 would be grouped. These
two groups would be used to evaluate the overall effect of
offering students a choice.

When performing this aggregation on the real experiments,
many experiments were too unique to have similar experi-
mental conditions as other experiments. Additionally, some
experiments were created incorrectly in ASSISTments or
had broken links to videos, leading students to never be ran-
domized to a condition. Even though 103 experiments have
been deployed in ASSISTments since 2019, only 50 had at
least one condition similar to a condition in another experi-
ment and were complete enough to be included in the anal-
yses. After parsing through the data and removing poorly
structured and broken experiments, the most common re-
search questions were selected for further analysis. Table 2
shows the selected research questions and statistics on the
data aggregated to evaluate the research questions. Stu-
dents were typically divided evenly between the different

conditions, but for the research question “Emotion vs. No
Emotion”, there were six conditions that included positive
emotional content and two conditions that did not include
emotional content, which is why about three fourths of stu-
dents are placed in the treatment condition.

The six research questions containing the phrase “Correct
for Mastery” all investigated differences in the requirements
to complete a skill builder assignment. In a skill builder, stu-
dents must correctly answer a specific number of problems
in a row to complete the assignment. The different values
in these research questions represent the different number
of problems students had to get correct in a row before fin-
ishing the assignment or completing a posttest. The six re-
search questions that compare something to “Answer Only”
investigated how six different tutoring strategies improved
student learning compared to just giving struggling students
the answer. Table 3 describes each tutoring strategy investi-
gated by these research questions. The other seven research
questions are not related to other research questions, but
examined different aspects of the structure of assignments
and tutoring in online learning platforms.

• Video vs. Text investigated the difference between pro-
viding two different types of tutoring which were al-
most identical, except in one condition the tutoring
content was text-based, and in the other condition the
same tutoring was provided in a video format.

• Common Wrong Answer Feedback vs. No Feedback in-
vestigated the effect of providing students with spe-
cific feedback messages when they submitted a com-
mon wrong answer to any of the the problems in their
assignment.
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Table 2: Research Questions Selected for Analysis

Research Question Experiment # Student # % in Treatment
2 Correct for Mastery vs. 3 Correct for Mastery 4 1192 0.487
2 Correct for Mastery vs. 4 Correct for Mastery 4 1165 0.475
2 Correct for Mastery vs. 5 Correct for Mastery 3 846 0.483
3 Correct for Mastery vs. 4 Correct for Mastery 5 2030 0.492
3 Correct for Mastery vs. 5 Correct for Mastery 4 1683 0.494
4 Correct for Mastery vs. 5 Correct for Mastery 4 1681 0.495

Example vs. Answer Only 3 765 0.467
Explanation vs. Answer Only 1 85 0.471

Hint vs. Answer Only 5 1192 0.513
Scaffolding vs. Answer Only 7 2010 0.546

Video Example vs. Answer Only 1 366 0.484
Video Scaffolding vs. Answer Only 3 1033 0.509

Video vs. Text 5 2492 0.497
Common Wrong Answer Feedback vs. No Feedback 2 7046 0.497

Adaptive vs. Non-Adaptive 9 7754 0.498
Fill-In vs. Multiple Choice 2 4057 0.493

Choice vs. No Choice 9 12789 0.499
Emotion vs. No Emotion 2 1211 0.766

Motivational vs. Non-Motivational 14 12243 0.581

• Adaptive vs. Non-Adaptive investigated the impact of
changing the difficulty of problems based on how well
students performed at the beginning of their assign-
ment. Students that got problems correct at the be-
ginning were given more challenging problems than the
students that got the beginning problems incorrect.

• Fill-In vs. Multiple Choice investigated the impact of
requiring students to write the correct answer in them-
selves compared to selecting from multiple preset op-
tions when answering questions.

• Choice vs. No Choice investigated the impact of allow-
ing students to choose which version of various config-
urations for their assignments they would complete.

• Emotion vs. No Emotion investigated the impact of in-
cluding positive emotional phrases and images in the
body of the problems in the assignment. For exam-
ple, an emotional problem would say “Susan excitedly
purchased three apples.” instead of “Susan purchased
three apples.”.

• Motivational vs. Non-Motivational investigated the im-
pact of interjecting motivational messages and videos
into the assignment.

4.2 Normalizing Student Learning
In addition to identifying similar conditions and research
questions, the different experiments dependent measures had
to be normalized such that the results from one experi-
ment could be compared to another experiment. Normally,
it would be very difficult to combine dependent measures
from different experiments, but conveniently, all of the ex-
periment in ASSISTments are attempting to increase stu-
dent learning, and therefore the various dependent mea-
sures are just different ways of measuring student learning
and can thus be normalized and combined. In the various
E-TRIALS experiments, there are five different dependent
measures used, described in Table 4.

While all of these measures represent student learning, they
do not all increase as student learning increases, nor do they
all have the same range, nor do they all take into account
when a student fails to complete the experimental assign-
ment, which presumably means they learned the least. To
rectify these concerns, Table 5 shows the function f(x) ap-
plied to each of the dependent measures. After f(x) is ap-
plied to the dependent measures, the values are z-scored
within each experiment using the pooled standard devia-
tion grouped by experimental condition. This ensured that
all of the different measures of learning increased as student
learning increased, had the same scale, and accounted for in-
complete assignments. These transformations converted all
the dependent measures into a measurement of how many
standard deviations above or below average each student
performed compared to other students that participated in
the same experiment. f(x) for problems to mastery is partic-
ularly complicated because unlike the other dependent mea-
sures, problems to mastery goes down the more a student
learns, and problems to mastery is bounded in the range
[3,∞). Therefore, to ensure that f(x) for problems to mas-
tery increases the more a student learns, problems to mas-
tery was transformed by inverting it, then multiplying it
by 3. However, this transformation alters problems to mas-
tery non-linearly, so to correct some of the non-linearity, the
square root is taken, which makes f(x) appear linear in the
range [3, 10] where most of the results lie.

4.3 Evaluating Differences in Student Learn-
ing

To measure the effects of the various experimental treat-
ment conditions, Cohen’s d [12] was used to calculate the
effect size between the control and treatment conditions for
each research question. To test for a difference between
treatment and control, we ran ordinary least squares mod-
els and examined the associated p-values and 95% confi-
dence intervals of the mean differences between conditions,
and used Cohen’s d to capture the magnitude of any effect.
This model was used to predict normalized student learning
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Table 3: Descriptions of Different Tutoring Strategies

Tutoring Strategy Description
Example An explained solution to similar problem.

Explanation An explained solution to the current problem.
Hint Step-by-step advice on how to solve the current problem.

Scaffolding A series of problems that break the current problem into smaller steps with explanations.
Video Example An example recorded in a video instead of text.

Video Scaffolding A scaffolding with explanations recorded in videos instead of text.

Table 4: Descriptions and Frequencies of the Dependent Measures used to Evaluate Student Learning

Dependent Measure Frequency of Use Description
Problems to Mastery 44% # of problems the student completed to get n correct in a row.

Posttest Score 44% % correct on posttest.
Learning Gains 7% % correct on posttest - % correct on pretest.

Assignment Correctness 3% # of problems correct / # of problems in condition.
Assignment Completion 1% Binary indicator for if the student completed the assignment.

Table 5: Functions used to Scale the Dependent Measures
Before z-Scoring

Dependent Measure f(x)

Problems to Mastery 0 if incomplete else
√

3
x

Posttest Score 0 if incomplete else x
Learning Gains 0 if incomplete else x+ 1

Assignment Correctness x
Assignment Completion x

based on the experiment condition the student was placed
in, the experiment the student participated in, and features
of the student, their class, their teacher, and their school
district. Including fixed effects for which experiment the
student participated in allowed the model to associate dif-
ferences in normalized student learning between experiments
with those coefficients, and not the experiment condition co-
efficient, helping to reduce noise from covariates. The inputs
related to students, classes, teachers, and school districts
also helped to remove noise from the experiment condition
coefficient. For example, students with high prior knowledge
performed better on the experimental assignments than stu-
dents with low knowledge, and by including students’ prior
knowledge in the model, the variability in students’ success
based on their prior knowledge will be associated with the
prior knowledge coefficient, and have a lesser effect on the
treatment coefficient. Table 1 contains a full list of the fea-
tures used to model the effects of the various experimental
conditions. The “Experiment Condition” feature was used
to determine the 95% confidence interval and p-value of the
impact of the various experimental instructional interven-
tions. When some features were not available, such as when
students that had not previously used ASSISTments par-
ticipated in the experiments, the missing values were filled
using the average value across the data used to fit the model.
This limited the extent to which the missing values biased
the model’s coefficients.

5. RESULTS
5.1 Different Completion Requirements

Investigating the impact of different mastery requirements
for skill builders found that requiring fewer problems led to
higher student learning than requiring more problems, but
that this effect is mostly due to students not completing
the assignment when they were required to answer more
problems correct in a row to proceed. Figure 2 shows the
effect size and, in parentheses, the p-value of the effect of
requiring students get different numbers of problems correct
in a row. For example, the cell at row two, column three
contains the effect size and p-value of requiring students get
two problems correct in a row instead of three problems
correct in a row. Figure 2 only shows significant positive
effects when requiring students to complete two problems in
a row correctly instead of three, four, or five.

Figure 2: The effect of changing problem completion require-
ments on normalized student learning. Each cell contains the
effect size, determined using Cohen’s d, and in parentheses,
the p-value.

To investigate further, the effect of changing problem com-
pletion requirements on assignment completion and the ef-
fect of changing problem completion requirements on stu-
dent learning for only students that completed the assign-
ment were calculated. Figure 3 shows the results of these
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analyses. Based on these results, there is no statistically
significant effects on student learning for students that com-
pleted their assignment, regardless of how many problems
they had to complete correctly in a row before finishing the
assignment. The vast majority of the effects seen in Figure
2 come from more students failing to complete their assign-
ment when having to complete more problems correct in
a row. Essentially, when students have to complete more
problems they are less likely to complete their assignment,
but if students complete their assignment their learning will
be unaffected by how many problems they had to complete.

Figure 3: The effect of changing problem completion require-
ments on assignment completion (top) and normalized stu-
dent learning for only students that completed the assignment
(bottom). Each cell contains the effect size, determined using
Cohen’s d, and in parentheses, the p-value.

One would expect that if any of these mastery requirements
were a meaningful metric for determining if students had
learned the material, then there would be a statistically
significant difference in students’ learning between students
that had to complete above or below a certain number of
problems correct in a row. However, this was not the case.
These results imply that a more sophisticated method could
be necessary to evaluate whether students have mastered

the mathematics concepts present in their assignments. It
may therefore be advisable to integrate Knowledge Tracing
[13] or Performance Factors Analysis [36], which are both
effective methods for evaluating students’ mastery of indi-
vidual skills, into ASSISTments and other online learning
platforms.

5.2 Different Tutoring Strategies
Investigating the effects of different types of tutoring on stu-
dent learning found that most tutoring is effective, and that
giving students tutoring instead of showing them the answer
is more effective for low knowledge students than high knowl-
edge students. Figure 4 shows the confidence interval, effect
size, number of students, and p-value for the effect of giving
students each type of tutoring instead of just providing the
answer. The only tutoring strategy that had no significant
impact on student learning was explanations, which had a
wide confidence interval and relatively few participants.

Prior studies done in ASSISTments reported that lower knowl-
edge students benefited more from scaffolding while higher
knowledge students benefited more from short explanations
[42]. Therefore, in addition to evaluating the effect of each
of the above tutoring strategies on all students that partic-
ipated in the experiments, the data from the experiments
were divided into below and above average prior knowledge
groups based on whether students’ prior average correctness
was above or below the average of all students’ prior average
correctness. Figure 5 shows the difference in the effective-
ness of four of the six tutoring strategies for each of these
groups of students. Only four of the six tutoring strategies
from Figure 4 are included in these plots because the other
two tutoring strategies were used in experiments that did
not have any participants that had used ASSISTments pre-
viously, and therefore no prior average correctness was avail-
able for those students. The below average prior knowledge
students consistently had statistically significant positive ef-
fects from being provided with tutoring and greater effect
sizes for three out of the four tutoring strategies. These
results agree with previous studies on the effectiveness of
different tutoring strategies on different groups of students
[42]. Additionally, Figure 5 shows that examples had the
largest difference in their effectiveness between below and
above average prior knowledge students and were the only
tutoring strategy that had a statistically significant positive
effect for below average prior knowledge students, but not
for above average prior knowledge students.

Disparities in education, particularly in math, are often due
to unequal access to opportunities to learn from highly qual-
ified educators, otherwise known as the “opportunity gap”
[17]. Although online learning platforms cannot replace a
highly qualified educator, these results indicate that some
online tutoring strategies can support in closing this oppor-
tunity gap for the most vulnerable students instead of just
helping the more knowledgeable students succeed.

5.3 Other Instructional Interventions
Sections 5.1 and 5.2 covered two groups of related research
questions, but there were many other research questions that
did not fall into a group. Figure 6 shows the confidence in-
tervals, number of participants, p-values, and effect sizes of
these research questions. Of the various experiments, the ef-
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Figure 4: The effects of various tutoring strategies compared to providing only the answer. Effect size was determined using
Cohen’s d, the confidence interval and p-value come from the experiment condition model coefficient.

Figure 5: The effects of various tutoring strategies for below average and above average students. Effect size was determined
using Cohen’s d, the confidence interval and p-value come from the experiment condition model coefficient.

fect of giving video-based tutoring compared to text-based
tutoring had the largest effect size, with students learning
more from video-based tutoring than text-based tutoring.
This could have been due to videos being more engaging
and not requiring students to also be proficient readers.
Additionally, giving students mathematics problems with
open responses, where they are not given optional answers
to choose from, resulted in more learning than when they
were given problems with multiple choices. This could have
been due to the added difficulty of attempting to answer a
problem without knowing what the potential solutions are.
Another significant finding was that adapting students’ as-
signments based on their prior knowledge by altering the
material given to them had a statistically significant posi-
tive effect, lending support to the idea that learning plat-
forms should personalize students’ learning based on their
prior knowledge, which has been found to be true in vari-
ous studies and meta-analyses [42, 26]. Lastly, it was found
that motivational messages have a negative impact on stu-

dents’ learning. This could be a result of students finding
the messages distracting. However, students’ perceptions
of the messages were not recorded as part of these exper-
iments, and follow-up experiments should be performed to
investigate further.

5.3.1 Video vs. Text
Although providing students with video-based tutoring in-
stead of text-based tutoring resulted in an overall positive
effect for all types of tutoring, it is possible this was due to
a particularly large impact of receiving video instead of text
for one type of tutoring strategy. Figure 7 shows the effect of
providing video-based tutoring instead of text-based tutor-
ing for the three types of tutoring strategies that were used
in experiments where a video-based and text-based version
of the same content was provided to students. Video-based
scaffolding had the only significant positive effect on learn-
ing compared to a text-based control. Hints and examples
had no statistically significant difference in their effective-
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Figure 6: The effects of various experimental instructional interventions. Effect size was determined using Cohen’s d, the
confidence interval and p-value come from the experiment condition model coefficient.

ness when video-based or text-based. From these results,
one can infer that students benefit differently from differ-
ent types of tutoring being video-based. Scaffolding offers
a series of simpler problems to help students understand
the problem they are struggling with. It could be that stu-
dents are more likely to engage with videos that give them
necessary context. The scaffolding videos ask students ques-
tions that they must solve to move on, without watching the
videos, they cannot know what the question is. Students
may not be as willing to watch videos that provide relevant,
but not entirely necessary information on a problem they
must solve.

Figure 7: The effects of providing video instead of text for
various tutoring strategies. Effect size was determined using
Cohen’s d, the confidence interval and p-value come from the
experiment condition model coefficient.

6. LIMITATIONS
The results in this work help to reinforce a foundation of
knowledge on educational experimentation and can be used
to influence the next generation of experimentation, but
there are two notable limitations to the extent to which these
results can be applied in the future. Firstly, the scope of the
experiments analyzed in this work is limited to experiments
conducted within ASSISTments. It could be that the user

interface of ASSISTments effects how beneficial certain in-
structional interventions are. For example, the way ASSIST-
ments takes away partial credit for some tutoring strategies
but full credit for others could impact the generalizability
of these findings into a context where there is no scoring of
student responses. All of the experiments also take place
within skill builder assignments, in which students are given
a series of similar problems on the same mathematics topic.
The instructional interventions in the experiments analyzed
in this work could have different effects on students complet-
ing assignments on topics outside of mathematics, or even a
variety of mathematics topics within the same assignment.
There could also be an issue generalizing these findings to
contexts outside of online learning platforms. The differ-
ences between different tutoring strategies could be inconse-
quential if there is a teacher in the room to answer questions,
and while the results of these experiments implied that mo-
tivational messages had a negative impact on learning, this
was likely due to the distracting and impersonal nature of
the motivational messages. Previous studies have shown the
need for trust between teachers and their students and how
this can lead to more motivated and academically successful
students [4], but the trusting relationship needed for that
impact is unlikely to exist between a student and a website.

Secondly, this work investigates many different research ques-
tions using data from a combination of experiments with
similar, but not identical designs, which has increased the
potential of discovering false positives in the analysis. This
should influence the confidence that one has in the results
of this work. While the results with effect sizes greater than
0.1 and p-values in range of of 10−3 can likely be trusted,
there are many weaker findings that some might consider
significant while others may be more critical. By providing
the sample sizes, effect sizes, confidence intervals, and p-
values for every comparison carried out, for all the research
questions investigated in this work, others can make an in-
formed decision on the extent to which they should believe
each of these findings, and which findings merit follow-up
investigations and repeat experiments.

35



7. CONCLUSION
In this work, data from 50,752 instances of one of 30,408 stu-
dents participating in one of 50 different experiments on a
variety of instructional interventions conducted within AS-
SISTments were combined to investigate their impact on
learning. Using this data, 19 different research questions
regarding the effectiveness of these various instructional in-
terventions were investigated, and this investigation revealed
multiple actionable findings that can be used to design more
effective online learning experiences.

The first insight discovered was that changing the number
of problems students must get correct in a row to be consid-
ered as having mastered a skill had no impact on the learning
gains of the students that were able to complete the assign-
ment, but the more problems required, the more likely stu-
dents were to stop doing the assignment before mastering
the material, which overall decreased their learning gains.
Based on this result, when creating mastery-based content,
it might be better to use something like Knowledge Trac-
ing [13] to evaluate mastery instead of forcing students to
complete a fixed number of problems.

It was also discovered that across multiple experiments, the
tutoring provided to students by ASSISTments had almost
entirely a positive effect on students’ learning compared to
just giving students the answer when they were struggling.
This falls in line with the larger findings from cognitive psy-
chology that show students learn more when they produc-
tively struggle with solving problems, rather than being pro-
vided solutions [6]. Additionally, below average prior knowl-
edge students benefited more from this tutoring overall than
above average prior knowledge students, which can help to
close opportunity gaps, and for all students, when scaffolding
problems were video-based, they had a larger positive im-
pact than when they were text-based. These results could
help inform developing platforms on how to allocate limited
resources when creating tutoring. For example, creating new
tutoring could be prioritized for remedial courses, and the
extra effort of making video-based tutoring could be saved
for scaffolding.

Another insight from these analyses was that students showed
greater learning patterns when they completed open-response
questions rather than multiple choice questions. This cor-
roborates some research that finds that memory and learning
benefit most from free recall of information (e.g. answer-
ing an open-ended question) compared to cued-recall (e.g.
multiple-choice items) during learning [22, 30]. Based on
this, online learning platforms could move away from mul-
tiple choice questions when possible.

This study also found that adjusting students’ assignments
based on their prior knowledge level had a positive effect
on their learning. This supports the idea that personalized
learning can help students. Within ASSISTments, a previ-
ous study found that high-knowledge students learned more
from explanations, while low-knowledge students learned more
from scaffolding [42]. This is one example of how personal-
ization based on prior knowledge within online learning plat-
forms has been found to be effective in the past. Addition-
ally, a meta-analysis of studies that measured the learning
gains of students after grouping them by ability level found

that the instructional material was more than twice as effec-
tive when it was tailored to the students’ ability levels than
when it was held constant for all students [26]. The results
of this study agree with prior work, and imply that person-
alizing students’ education based on their prior knowledge
increases their learning.

Another interesting result from these experiments was that
motivational messages had a negative impact on learning.
Past research has found positive effects of motivational in-
terventions for some students, so why might these studies
show a negative effect? One speculation is that the moti-
vational videos may have unintentionally produced an effect
similar to what is referred to as “seductive details” or highly
engaging but unrelated information that is unnecessary for
learning [46]. Including seductive details can lead to worse
performance both in the classroom and in online learning
environments [18], and is theorized to disrupt learning by
redirecting attention away from the material and toward su-
perfluous information, stopping students from appropriately
allocating cognitive resources to the educational material.
Providing motivational videos in the middle of the learn-
ing period may have produced a negative effect on learning
because it disrupted cognitive processes necessary for learn-
ing, but more research is needed to fully investigate this and
other possible mechanisms at play.

In addition to these results’ capacity for improving online
learning platforms, these results can help inform the next
round of experimentation within online learning platforms.
Future experiments could continue to investigate the incon-
clusive findings in this analysis, and expand upon the con-
clusive findings. For example, more types of problems be-
sides multiple choice and open response problems could be
compared to each other, and the effectiveness of different tu-
toring strategies could be investigated for differences based
on subject matter or grade level. Through these analyses,
learning platforms can continue to improve their design and
increase their positive impact for all students that use them.
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ABSTRACT
This paper studies the use of Reinforcement Learning (RL)
policies for optimizing the sequencing of online learning ma-
terials to students. Our approach provides an end to end
pipeline for automatically deriving and evaluating robust
representations of students’ interactions and policies for con-
tent sequencing in online educational settings. We conduct
the training and evaluation offline based on a publicly avail-
able dataset of diverse student online activities used by tens
of thousands of students. We study the influence of the
state representations on the performance of the obtained
policy and its robustness towards perturbations on the envi-
ronment dynamics induced by stronger and weaker learners.
We show that ‘bigger may not be better’, in that increas-
ing the complexity of the state space does not necessarily
lead to better performance, as measured by expected future
reward. We describe two methods for offline evaluation of
the policy based on importance sampling and Monte Carlo
policy evaluation. This work is a first step towards optimiz-
ing representations when designing policies for sequencing
educational content that can be used in the real world.

1. INTRODUCTION
E-learning platforms have seen a surge in popularity over
the last decade [10], spurred on by the increased Internet
penetration into developing communities [4]. The target de-
mographic has expanded beyond casual users/students as
more organizations adopt e-learning to train their workforce
and actively engage them in life-long learning [34].

As online educational settings become ubiquitous, there is a
growing need for a personalized sequencing of content/support
that can adapt to the individual differences of the student
as well as their evolving pedagogical requirement throughout
the course progression [28]. Research in cognitive science has
long demonstrated the strong correlation between adapted
material sequencing and learning outcomes [26]. Static e-
learning platforms lack the capacity to respond to a stu-
dent’s ‘cognitive state’ and therefore perform poorly relative

to a human tutor [34].

Reinforcement learning (RL) offer a potential approach for
adapting a learning sequence to students [9]. A learning
sequence can be optimized based on a numerical reward (for
example test marks) by a pedagogical agent that prescribes
actions (adaptive feedback or sequencing of content) based
on different states (approximated users’ cognitive states).

There are two main challenges to using RL ‘out of the box’
in educational settings. First, how to choose the best repre-
sentation to model student behavior? On the one hand, in-
creasing the granularity dimension of the state-space allows
to capture intricate dynamics in the model such as students’
cognitive states and skills. On the other hand, models with
complex state spaces are inherently more difficult to learn
and the resulting policy may lack support in the data for
parts of the state space. Second, how to evaluate the re-
sulting sequencing policy? Ideally, sequencing policies will
be deployed online and evaluated with real learners. This
is costly or not technically feasible to carry out in many
cases and an imperfect policy may adversely affect students’
learning.

This paper addresses both of these challenges in the context
of a new publicly available dataset containing the online in-
teractions of thousands of students [7]. Our approach pro-
vides an end to end pipeline for automatically deriving and
evaluating robust representations of students’ interactions
and policies for content sequencing in online educational set-
tings.

To address the first challenge, we present a new greedy pro-
cedure to augment the representation space, by incremen-
tally adding new features and choosing the best performing
representations on held out data. Each policy is evaluated
using expected cumulative reward. We provide several key
insights about the use of RL in Educational contexts. First,
that ‘bigger is not always better’, in that more complex state
spaces may not always lead to better policy performance.
Second, that including a ‘forgetting’ element in the state
space, which is known to affect students’ learning, signifi-
cantly improved performance. Third, that strongly penaliz-
ing rewards from unseen state-action pairs in the data, can
increase the support of the resulting policy without reducing
performance.

To address the second challenge, we use two existing offline
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policy evaluation methods to reliably estimate the perfor-
mance of the resulting policy using only the collected data.
The first method uses importance sampling to correct for
the difference in distributions between the learned policy
and the policy that was used to gather the data. The sec-
ond method simulates the learned policy using Monte Carlo
methods. We also introduce a new approach that evaluates
the policy with respect to perturbations induced by stronger
and weaker learners. We find that perturbing the system dy-
namics have an adverse affect on performance of the learned
policy, specifically in respect to weaker learners; and that in-
creasing the granularity of the state-space makes the policy
more robust to perturbations.

This work is a first step towards optimizing representations
when designing policies for sequencing educational content
that can be used in the real world. Our long term goal is to
develop an adaptive RL based pedagogical agent that is able
to optimize the sequence of learning materials (questions and
lectures) to maximize student performance as measured by
the expected ability to answer questions correctly at varying
levels of difficulties. This agent will have the capacity to
respond in real-time to a student’s current state as they
progress through the learning material.

2. RELATED WORK
This paper relates to prior work in student modeling as well
as automatically sequencing educational content to students
[9]. A common approach in prior work is to integrate learn-
ing/cognitive theory into the construction of the student
model. This imparts domain knowledge into the workflow
and was shown to yield positive results by Doroudi et al. [9].
An example of such approach is the work by Bassen et al. [2].
Their objective was to optimize the sequencing of learn-
ing material from different knowledge components (KCs),
to ‘maximize learning’. Their reward function is based on
the difference between a post-test score (taken by users after
completing the course) and a pre-test score (taken before the
course). This metric is denoted as the Normalized Learning
Gain (NLG). Training the agent with human participants
is far too resource intensive. Instead their training is per-
formed on a ‘simulated learner’ based on Bayesian Knowl-
edge Tracing (BKT), a cognitive model that aims to estimate
a learner’s mastery of different skills. The learner’s response
to a particular question can be simulated based on the mas-
tery of the related skill. The parameters of the BKT were set
based on domain knowledge. Segal et al. [28] also utilised a
similar cognitive based model, Item Response Theory (IRT)
[14] to simulate student responses to questions of different
level of difficulty. This is especially relevant since their ob-
jective was to sequentially deliver questions of differing levels
of difficulty (rather than KCs) to maximize learning gains.

Other approaches forgo the framework of established learn-
ing models and instead manually design their simulators fur-
ther integrating domain expertise. Dorcca et al. [8] employed
a probabilistic model to simulate the learning process. In-
stead of sequencing activities by KCs or difficulties, they
sequenced activities based on their associated learning style
i.e. visual, verbal etc. Therefore, their simulator was manu-
ally designed based on research surrounding these principles.
Iglesias et al. [15] utilised an expert derived artificial Markov
Decision Process to act as the student model. This entails

manually describing the state space, transition probabilities
and rewards. Similar to previous student models, this MDP
can be used to simulate student responses to train the RL
agent.

The works described so far do not utilise historical data (i.e.,
past interactions in the system and their results) to derive
their student model. While integrating expert knowledge
can be beneficial, a completely data-free proposition could
impart strong biases. In our implementation, we take an
alternative approach in using a purely data-driven model.
There are existing literature which also do the same. For
example, the authors of [30, 32, 5, 27] employed data-driven
MDPs as their student model. Different than the hand-
crafted MDP in Iglesias et al. [15], the transition proba-
bilities and reward functions in these MDPs were obtained
from the aggregated statistics observed in the dataset. Data-
driven student models in literature were not only limited to
data-driven MDPs. For instance, Beck et al. [3] utilised a lin-
ear regression model denoted as Population Student Model
(PSM). PSM was trained on student trace data from a learn-
ing software and could simulate time taken and probability
of a correct response.

Data-driven simulators require a quality training corpus that
is sufficiently large and varied [30, 16]. In contrast to EdNet
(a massive dataset collected over several years which we use
in this work), the authors of previous papers were limited
to much smaller scale datasets that were collected from a
single cohort and could not evaluate their policy at scale.
Our work is the first to provide an end to end pipeline from
a large scale data source to a robust RL sequencing policy.

3. BACKGROUND
In this section we provide some necessary background in
Reinforcement Learning & MDPs and briefly describe our
dataset.

3.1 RL and MDPs
A Reinforcement Learning (RL) framework is governed by
a Markov Decision Process [31, 17, 6] that is defined by the
tuple of (S,A,P,R), where S = s1, .., sn is the state space,
A = a1, .., am represents all available actions, P : S × A ×
S → [0, 1] designates the transition probabilities between
states conditioned on an action and R : S × A × S → R
denotes the reward function that is conditioned on the state,
action and observed next state.

The goal of the agent is to maximize the cumulative reward it
accumulates from each state. This cumulative reward is usu-
ally discounted by a factor γ raised to the power of t, to rep-
resent a lower perceived value for rewards received further
in the future. The policy is a mapping of optimal actions
to each state in S. The discounted cumulative reward is de-
noted as the ‘return’, and the return from a particular state
is associated with a policy π and the transition dynamics P.
The reward function ties the agent’s optimization goal with
the modeller’s actual objective. Therefore its design must
ensure those two criteria are aligned. The expected reward
of a state (or the state value) under a deterministic policy
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π can be defined as

V (s) = Eπ,P [

inf∑

t=0

γtr(st, π(t)) | so = s] (1)

where π(t) is the action prescribed by the policy π at state
t, r(st, at) is the reward obtained in state st given action a,
s0 is the initial state and γ is a discount factor.

Model-based RL requires a model that holds information re-
garding the environment dynamics i.e. the transition prob-
abilities P and reward function R. It is a common approach
in domains where environment interactions are cost pro-
hibitive [16][18]. The model mimics the behaviour of an en-
vironment and allows inferences about how the environment
will respond to actions [31]. The real-world performance of
the extracted policies are heavily influenced by the quality
of the constructed model [16].

3.2 Data Description
EdNet [7] is a massive dataset of student logs from a MOOC
learning platform in South Korea, Santa, collected by Riiid!
AI Research1. Santa covers a preparation course for the
TOEIC (Test of English for International Communication)
English proficiency exam. There are a total of 131,441,538
interactions collected from 784,309 students on the e-learning
platform. These consist of user records of questions at-
tempted, lectures watched and explanations reviewed, along
with other meta information. EdNet logs are presented at 4
levels of hierarchy with higher levels providing higher fidelity
logs, such as logs of lectures watched and the explanations
reviewed. These are recorded in real time to provide an ac-
curate chronological record of the students’ interaction with
the platform. EdNet records detailed actions such as play-
ing/pausing lectures and payment related information.

4. METHODOLOGY
Our approach, called GIFA (Greedy Iterative Feature Aug-
mentation) maps a representation space of students’ activi-
ties to an optimal sequencing policy using RL. At each step,
a representation-space for the education domain is defined
using a set of features. An MDP model is defined over the
representation space, and model-based RL is used to extract
the optimal policy given the representation space. The pol-
icy is subsequently evaluated using the Expected Cumula-
tive Reward metric. This process is iterated, greedily adding
new features to the representation and computing the opti-
mal policy given the representation (See top of Figure 1).
The resulting representation and policy are verified using
two offline policy evaluation processes (importance sampling
and Monte Carlo) and the robustness of the policies is an-
alyzed against perturbations corresponding to varying stu-
dent types (See bottom of Figure 1). We proceed to describ-
ing our methodology in more detail.

4.1 State Space Representation
Several studies have shown the significant impact of the rep-
resentation choice on RL performance, with some arguing it
is just as influential as optimization algorithm itself [32, 29].
We design the representation candidates for our model to
include features that are derived from the dataset. EdNet

1https://www.riiid.co/

Figure 1: Pipeline of the GIFA approach

provides a total 13,169 questions and 1,021 lectures tagged
with 293 types of skills [7]. Each question and lecture is seg-
regated into one unique “part”, with 7 parts in total. Each
part was grouped based on some meaningful domain crite-
ria, such as a math topic [2]. EdNet offers a finer grouping
of question/lectures according to the ‘skills’ (293 in total)
they entail. Both ‘part’ and ‘skills’ grouping represent good
candidates for the action space since they group the nu-
merous questions/lectures in a domain meaningful manner.
However the question bank is unevenly distributed with re-
spect to the ‘skills’ grouping, which can lead to difficulties in
getting equal support (or supporting observations) for each
action type from the dataset. Therefore, ‘part’ was chosen
on the basis that its 7 unique action space is both compu-
tationally feasible and better supported in the data.

A key aspect of modeling student learning is to represent
the question difficulty in the state-space [28]. This enables
to adapt the level of difficulty of a question to the stu-
dent’s inferred skill level. Unfortunately EdNet does not di-
rectly classify questions/lectures into difficulty levels, mean-
ing that they would need to be inferred from the student
logs. A natural way to infer difficulty is to measure the per-
centage of correct answers submitted for a question and com-
pare it with other questions in the question bank. A distri-
bution over question difficulties can be created and quantiles
can be derived to evenly split the questions into discrete lev-
els of difficulty. Utilizing this process we created a difficulty
level for each question, with the difficulty levels quantized
into 4 levels ranging from 1 (easiest) to 4 (hardest).

To investigate the impact of the representation on perfor-
mance, we create a feature pool, from which different rep-
resentations are formed using the greedy iterative augmen-
tation algorithm. The initial feature pool contains features
that are widely seen in similar Reinforcement Learning driven
Intelligent Tutoring implementations [2, 15, 32, 5]. The
state features are longitudinal/temporal in nature so as to
represent the users’ behaviour and performance over time.
This sets a reasonable minimum requirement for the data
gathering process, should this implementation be repeated
with other datasets. The initial feature pool, their descrip-
tions, and the associated granularity of their representations
(bins), are shown in Table 1. Quantization of features to bins
was performed so that a finite model can be formed.
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Feature Pool Bins Description

”av time” 4
The cumulative average of the
elapsed time measured at each ac-
tivity.

”correct so far” 4
The ratio of correct responses to the
number of activities attempted.

”prev correct” 3
A flag to indicate whether the user
answered correctly in the previous
question + fixed value for lecture.

”expl received” 4
Cumulative count of explanations
reviewed by the user.

”steps-since-last” 8
A count of the number of steps since
the current part was last encoun-
tered.

”lects consumed” 4
A cumulative count of the lectures
consumed by a user.

”slow answer” 2

A flag to indicate whether the user’s
elapsed time for the preceding ques-
tion was above the average elapsed
time for that question.

”steps in part” 4
The cumulative count of how many
steps a user has spent in the current
part.

”avg fam” 4
The average part familiarity across
all the 7 parts.

”topic fam” 4
Captures part familiarity of the pre-
viously chosen action (by amount of
activities per topic).

Table 1: Initial Feature pool for state space

Relative to prior work that limited the feature size to be
binary [2, 23, 32] our feature space is considerably larger.
With each user covering on average 440 activities during
their learning period within this dataset[7], a binary split
would lose a lot of information on the evolution of a fea-
ture value throughout the course. Our features in contrast
have up to 8 bins. This ultimately imposes a necessity for
a quality training corpus that can provide sufficient support
for each of the many unique combinations within the feature
space. This is where the scale of the EdNet dataset provides
a distinct advantage relative to previous implementations.

4.2 Deriving the student model
In this section we describe the derivation of an MDP-based
student model using a selected set of features. We model the
transition probabilities as multinomial distributions derived
from state transition counts observed in the dataset as shown
in Equation 2. This means that a particular outcome si, of
enacting action ak in state sj has a probability given by the
number of times that outcome was observed in the dataset,
normalized by the sum of all possible outcomes observed
under the same conditions.

p̂(si | sj , ak) =
c(si, sj , ak)∑n
i=1 c(si, sj , ak)

(2)

Where c(si, sj , ak) is the count of observed transitions where
enacting action ak in state sj leads to next state si. This
provides the transition probabilities component of the MDP

student model for each (s, a, s′) or the three argument dy-
namic [31].

In many standard MDP definitions [32, 30, 5], the reward
function is also defined in terms of the three argument dy-
namic i.e. R : S×A×S → R. This assumes a deterministic
environment reward with respect to a given (s, a, s′). The
reward for a student’s response depends on the question dif-
ficulty such that correct responses on harder levels indicate
stronger performance and attain higher rewards. Inversely,
incorrect responses on easier levels attain a larger punish-
ment (negative reward). A symmetrical reward function was
designed with rewards for questions ranging from 1 to 4 if
answered correctly or -1 to -4 if answered incorrectly. We
doubled the penalty of incorrect answers to achieve a nor-
mal distribution usually exhibited in student grades [13].
Thus rewards take values r ∈ {−8,−6,−4,−2, 0, 1, 2, 3, 4}.
While the level of difficulty is captured by the action in
the (s, a, s′) tuple, the correctness is only captured in the
states when ‘prev correct’ (refer table 1) is included in the
representation. Lectures do not have a correct/incorrect re-
sponses and so a default reward of ‘0’ is assigned for lecture
viewing actions.

The specific dynamic values are of course dependent on the
actual state representations. As we continuously augment
the representations (see next section), the support for each
unique state will inevitably fall due to further division of
the observations. Another factor in providing a balanced
distribution of support within the transitions, is the variety
of actions chosen in each state. This ultimately depends on
the action space described earlier and the behaviour policy
used to obtain the dataset. A higher fidelity action space
will lead to an increase in the size transition space i.e. the
unique combinations of (s, a, s′). Although unknown in most
cases, it is important that the behaviour policy is sufficiently
varied in terms of its action choices to ensure a balanced
distribution of support. Because of this, a random behaviour
policy fits the objective well [30]. Since users in EdNet are
allowed to select the ‘part’ and the type of activity they work
on [7], we make an assumption that this random criteria is
partially fulfilled. The caveat here is that not all users have
access to all parts i.e. free users are limited to parts 2 and
5 only.

4.3 Representation Selection
Key to designing a successful model of student behavior de-
pends on deriving information on the student’s cognitive
state, which is a latent variable in the model. With more
features in the representation, one should expect a better ap-
proximation of the students cognitive state and consequently
a better equipped pedagogical agent to provide effective se-
quencing.

We utilise the GIFA approach in obtaining an optimal rep-
resentation. This involves a search of the feature space and
generation of several candidate feature subsets. Each of
these subsets is evaluated based on its corresponding policy
derived from a standard policy-iteration RL solution. The
psuedocode for this process is shown in Algorithm 1. Note
the limit on the number of features N which can be based
on a computational limit or a threshold of minimum support
for every unique combination in the feature space.
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Algorithm 1 Greedy Iterative Feature Augmentation algo-
rithm

Input: Feature pool Ω, Dataset D, Max. number of fea-
tures N (optional)
Set: Optimal feature representation S∗.
while size(S∗) ≤ N do

for ωi ∈ Ω do
Set: Si = S∗ + ωi
MDP = Construct MDP (Si,D)
π∗ = Policy Iteration(MDP )
ECRi = Calculate ECR(π∗)

end for
Set S∗ = Si with highest ECRi.
Remove feature from pool Ω = Ω− ωi

end while

Round Rep. ECR ECR Diff. (%)
Rep.
Size

Base MDP B 238.44 - 64
1 MDP 1 283.63 18.95 256
2 MDP 2 387.42 36.6 2048
3 MDP 3 392.05 1.19 4096
4 MDP 4 396.00 1.01 16384
5 MDP 5 396.00 0 65536

Table 2: ECR results showing best performing representation
at each iteration

While our search procedure involves exhaustively looping
through every remaining feature in the feature pool Ω to
form the subsets, one can alternatively employ a different
search algorithm such Monte Carlo Tree Search [12] or cor-
relation based feature selection [29] to create more informed
subsets that are likely to be better candidates. These tech-
niques would be useful in limiting the number of iterations
needed in larger feature pools and are left for future work.

As part of the greedy feature augmentation algorithm above,
an evaluation metric for π∗, the computed policy, is required
for each representation at every iteration. A common prac-
tice used to evaluate a given policy in RL is to use the Ex-
pected Cumulative Reward (ECR) metric which is the aver-
age of the expected cumulative reward under the policy π∗,
across all initial states in the dataset (Vπ∗(s0)).

Note that in each state representation, the initial state of
every user in the EdNet is the same. This is because we
lack any prior information of the user before they begin to
solve questions. When such information is available, the
initial state can capture information from the students pre-
test scores and so would vary across the students in the
dataset.

5. RESULTS
A summary of the results from the greedy iterative augmen-
tations is provided in Table 2. The feature description for
the corresponding MDP representations are given in table 3.
The base MDP is denoted as MDP B. The ‘ECR Diff.’ col-
umn shows the percent improvement in ECR relative to the
smaller representation preceding it. The ‘Rep. Size’ column
illustrates the size of the state feature space. This is depen-

Representation Features
MDP B topic fam, correct so far, av time
MDP 1 topic fam, correct so far, av time,

expl received
MDP 2 topic fam, correct so far, av time,

expl received, ssl
MDP 3 topic fam, correct so far, av time,

expl received, ssl, prev correct
MDP 4 topic fam, correct so far, av time,

expl received,ssl, prev correct, av fam
MDP 5 topic fam, correct so far, av time,

expl received, ssl, prev correct, av fam,
time in part

Table 3: Representation outputted by algorithm for each
round (added features highlighted)

dent on each constituent feature’s bin size, i.e. the number
of discrete bins allocated. Note that results presented here
are only showing the best performing representation at each
round of the feature augmentation.

5.1 ECR Analysis
The largest spike in ECR followed at the second round of
augmentations with the addition of the ‘steps-since-last’ (ssl)
feature with an increase of 36.6% over the preceding repre-
sentation. This features measures the number of steps or ac-
tivities (questions/lectures) consumed since the current part
was last encountered. This feature is inferring the ‘forget-
ting’ element during the learning process and was inspired
by the ‘spacing effect’ described in [11].

Early research in instructional sequencing in language learn-
ing used models of forgetting to great success [1]. Our find-
ings concur with this, in that by including ‘ssl’ into the
feature space, we dramatically increased the policy perfor-
mance. One could argue that this ECR increase was more
influenced by the larger bin allocation to ‘ssl’ (8 relative to 4
for most other features) rather than the actual utility of the
domain information it is measuring. However, if that were
the case, then we would expect ‘ssl’ to be the first feature
added to the base representation. This was not the case since
the best performing feature in the first round of augmenta-
tions was ‘expl received’, a 4-size bin feature. Nonetheless,
further exploration is needed to further learn the influence
of bin sizes on the results.

At the final round of iteration, the performance of repre-
sentation MDP 5 only equals the performance of preceding
representation MDP 4. Though we did not have a speci-
fied limit imposed on the number of features, N , the per-
formance plateau exhibited at this final round indicated a
suitable termination point for the augmentation algorithm.
And since MDP 4 produced equal performance to MDP 5
with a smaller representation size, it was chosen to be the
optimum representation within this feature pool.

5.2 Correcting for OOD actions
This section describes our technique for handling the un-
certainty induced by unseen or out of distribution (OOD)
actions in the RL policy. Some of the extracted policies
in the GIFA algorithm included state-actions pairs with 0
support from the training data. Such behaviour is deemed
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unsafe for a computed policy [18, 20] as the resulting reward
from such combinations of unsupported state-action pairs is
unexpected. Specifically, this situation should not occur un-
der policies derived from tabular methods as explained in
section 3. Nonetheless we discovered that some of the larger
representations yielded policies with unseen actions. The
policy derived from MDP 4 prescribed unseen actions in 10
states. While this was a small fraction of the total state
space (around 65,000), unseen actions are an important is-
sue to address because, in the tabular case, any state-action
value estimates must be derived only from related experi-
ences [31].

By default, our algorithm prescribes state-action pairs a
value of zero if it was never observed. We discovered that
the problematic states themselves had very little support in
the dataset and were only observed transitioning to them-
selves, before the episode ends. In the few times the state
was visited, a negative or zero reward was produced. Since
these states would only transition to themselves, the values
of these valid actions were either negative or zero. Hence,
from the algorithms perspective, an invalid (unseen) action
with a default value of zero, was preferable (or equal) to the
observed actions.

To combat this issue, we modified the MDP representations
to strongly penalise the rewards from unseen state-action
pairs, in the form of a -9999 reward. This discouraged the
policy from choosing such actions even if the only valid ac-
tions yielded zero or negative returns (The worse case is
bounded from below at

∑
k→∞ γk × (−8) and is clearly

higher than
∑
k→∞ γk × (−9999)). With these changes in

place, we observe no unseen actions in any of the policies.
The performance rank of representations remained constant
with the ECR changes almost negligible. This is because
the states involved were observed very infrequently and oc-
cupied a small probability mass in the transition probabili-
ties. We note that the fix did not have a statistcally signif-
icant effect on our results. In the analysis that follows we
will utilise the penalised representations. We also note that
research by Liu et al. [20] implemented a ‘pessimistic pol-
icy iteration’ approach that similarly penalises insufficiently
supported state-action tuples (filtered by a threshold).

6. OFFLINE POLICY EVALUATION
Ideally, the outputted policy from the GIFA approach would
be evaluated in real time with students who directly inter-
act in the EdNet environment. However, mistakes in the
policy can have adverse affects on students’ engagements
and learning [21]. The offline policy evaluation (OPE) field
has been developed specifically to address this issue, by pro-
viding reliable estimates of policy performance using only
past collected data [21]. We undertake two different OPE
approaches to evaluate the computed optimal policies from
the previous sections. Furthermore, we add a 3rd offline
evaluation approach which evaluates the robustness of the
computed policies to different model perturbations repre-
senting several student types.

6.1 Rollouts: Monte Carlo Policy Evaluation
The first OPE approach relies on the family of ‘Direct Meth-
ods’ for policy evaluation. These methods focus on regres-
sion based techniques to directly estimate the value function

of a policy under a given target policy [33]. Most of these
methods do not need an estimation of the behaviour policy
which was used to collect the dataset. In this method we
implement a model-based direct method, Monte Carlo (MC)
Policy Evaluation. This involves performing ‘rollouts’ from
the initial states using the target policy until episode termi-
nation. The observed returns from each state in the rollout
are averaged across many rollouts to yield the value function
of the state. To ‘rollout’ our policy we would need to interact
with the environment. However, as the name ‘model-based’
suggests, a model (in our case, the data-derived MDPs) act-
ing as simulator allows us to perform these rollouts offline.

A key requirement for MC policy evaluation is an episodic
environment, one where the episode terminates at a finite
step at a ‘terminating state’ [31]. Although the user episodes
in EdNet are finite, our data-derived MDPs are continuing
i.e. without a terminating state. While a default terminat-
ing state could have easily been created for this purpose,
it is unclear as to which ‘action’ would transition the final
observed state to this terminating state and what ‘reward’
it would receive in the process. The choice of reward, could
inadvertently impact the decisions made by the policy at
the earlier states. Hence our MDPs were designed to be
continuing to avoid this ambiguity.

This poses a problem with MC policy evaluation since the
returns are only calculated when the episode ends. A po-
tential workaround was to manually terminate the episode
at a fixed length of rollout and calculate the returns from
there. We chose a rollout length of 1000 steps and show that
because of the discounting, any reward, r ∈ R, received past
this step, will have a negligible influence on the return of the
initial state i.e. maxr(γ

1000∥r ∈ R∥) ≈ 3.5 × 10−4. Hence
this rollout length provides a good approximation of the long
term return, since any future actions will have minimal in-
fluence on the value of the initial state, i.e. the only state
value of concern in our analysis. However, this assumption
will only work with the ‘first-visit’ variant of MC policy eval-
uation (equation 3), where only the returns of a state when
it was first encountered in the episode are considered and
averaged across the rollouts [31]. This is opposed to the
‘every-visit’ variant which considers all the returns from a
state every time it is visited in the episode. A fixed rollout
length will not be suitable in the latter variant, since the
initial state could be encountered more than once during
the rollout. For example, if s0 was encountered again at the
500th time step, then its return estimate for the second visit
is based only on the remaining 500 future steps. Implement-
ing the first-visit variant ensures that all V (s0) estimates are
derived from observations spanning 1000 time steps ahead.

VMC
πe

(s0) =
1

Nrollouts

Nrollouts∑

1

1000∑

t=1

γtrti (3)

We now evaluate the policies under the MC Policy Evalua-
tion method. A curve is plotted for the returns (cumulative
rewards) from the initial state as the rollout progresses until
the 1000th step for a total of 100 rollouts. The 95% con-
fidence intervals are plotted around the mean value of the
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Figure 2: Monte Carlo Evaluation: Returns from s0 across
steps under the policies from the associated representations

rollouts. This analysis is shown in figure 2. As with the
ECR, we can see that the improvements start to diminish
significantly after the second round of augmentations. The
performance of the estimated stochastic behaviour policy un-
der this simulation (the policy that is directly induced from
the data) is illustrated as a baseline. From this compari-
son, we see much better student performance under the RL
policies than the baseline, signalling that the adaptive be-
haviour of the policy under RL framework is superior than
the strategies used in the behaviour policy. We can also
conclude that the larger representations exhibit better per-
formance, potentially owing to a better approximation of the
cognitive state as hypothesized.

6.2 Importance Sampling Policy Evaluation
The second OPE approach used relies on Importance Sam-
pling. Importance sampling (IS) is a range of methods that
in general estimate the expected values under one distribu-
tions given samples from another [31]. A wide range of RL
literature have adopted this method as a way of evaluating a
target policy (the policies derived from the RL algorithms)
given samples derived from the behaviour policy (the pol-
icy used to gather the data) [16]. In this work we use the
Weighted IS (WIS) metric presented in equation 4.

WIS =

∑N
i=1[(

∏Ti
t=0

πe(a
i
t|sit)

πb(a
i
t|sit

)(
∑Ti
t=1 γ

trit)]

∑N
i=1

∏Ti
t=0

πe(a
i
t|sit)

πb(a
i
t|sit

(4)

In this equation, N represents the number of users in the
dataset and Ti is the trajectory length observed for user i.

A key feature in the formula is the importance sampling

ratio
∏Ti
t=0

πe(a
i
t|sit)

πb(a
i
t|sit

, which considers the differences in ac-

Rep. WIS
MDP B -4.146
MDP 1 -0.940
MDP 2 -4.382
MDP 3 4.319
MDP 4 4.910

Table 4: Importance sampling results - different representa-
tions

tion probabilities between the target policy πe and the be-
haviour policy πb. The product of the individual ratios
across ti = 0 → T quantifies whether a given sequence is
more (or less) likely under πe than πb and therefore weights
the returns accordingly. Averaging this across the entire
dataset has the effect of adjusting the expected return sam-
pled from the distribution generated by πb to estimate the
expected return sampled from πe.

A well documented problem with IS estimators is the high
variance induced by the importance sampling ratio due to:
1) a large difference between the two policies or 2) a long
horizon length for the trajectories [33]. WIS reduces this
variance by utilizing a weighted average instead of the sim-
ple average in standard Importance Sampling metric [31].
This method relies on the available knowledge of the be-
haviour policy. Since we do not have explicit information on
this, πb must be estimated from the dataset, D as shown in
equation 5.

π̂b(a|s) =

∑
s,a∈D 1[s = s, a = a]∑

s∈D 1[s = s]
(5)

The results of the WIS metric for the different representa-
tions are shown in table 4. We see that the 3 smaller repre-
sentations yield negative values, indicting expected average
failure in solving questions when utilizing these represen-
tations. For larger MDP representations, we can observe
better performance, with MDP 4 demonstrating the best
estimated performance.

6.3 Evaluating Model Robustness for Differ-
ent Student Types

The optimal policy computed in the previous section re-
lies on the average rewards and transition probabilities esti-
mated from available data. In practice, these parameters are
noisy and may change in different situations and during the
execution of a policy [19]. As such, the performance of the
computed policy may deteriorate significantly with changes
in the environment dynamics [22]. In our case, with the
MDP representing students acting in an educational system,
this uncertainty represents the challenge of how to model
parameters change for different student types and how do
these changes influence the outcome of the computed poli-
cies. To model this uncertainty, we use a simplified robust
MDP framework [25] where the uncertainly in model param-
eters is tied to specific student types. Specifically, we test
the robustness of the computed policies under perturbations
of the environment dynamics which are tied to two different
student types. These perturbations are domain informed
and are designed to correspond to ‘stronger’ and ‘weaker’
students types.
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Algorithm 2 Domain informed perturbations

1: Input: Set of features to perturb Ω̄, MDP transition
probabilities PMDP , set of domain filters for each feature
ψ, positive perturbation constant c = 0.05

2: for ps,a,s′ ∈ PMDP do
3: ∆s,a,s′ =

∑
ω∈Ω̄ ∆ω

Where ∆ω =

{
c, if ωs, ωs′ satisfies ψω

0, else

4: end for
5: Adjust ∆s,a,s′ relative to others within the s, a pair:

∆s,a,s′ = ∆s,a,s′ − 1
|ψ|
∑
s′ ∆s,a,s ∀∆s,a,s′

6: Set perturbed transition probabilities P̄MDP = PMDP

7: for ps,a,s′ ∈ P̄MDP do
8: ps,a,s′ = max(ps,a,s′ + ∆s,a,s, 0)
9: end for

10: ps,a,s′ =
ps,a,s′∑
s′ ps,a,s′

∀ps,a,s′
11: Return: P̄MDP

Feature to Perturb Strong Weak
Topic fam ωs′ > ωs ωs′ = ωs

Correct so far ωs′ ≥ ωs ωs′ < ωs
Avg time ωs′ ≤ ωs ωs′ > ωs

Table 5: Domain perturbation filters,ψ for each feature in Ω̄
for the ‘Strong’ and ‘Weak’ perturbed MDPs, P̄ respectively

We now describe the perturbation process and analysis. We
define a set of domain informed filters ψ for each perturbed
feature. In our implementation we perturb three base fea-
tures that were common in all representations i.e. ‘Topic fam’,
‘Correct so far’ and ‘Avg time’. The domain rules for the
two separate perturbations ‘Strong’ and ‘Weak’ are defined
in table 5. Specifically, in these perturbations we boost the
topic familiarity and correctness and reduce the cumulative
elapsed time for the ‘Strong’ student type and we reduce
correctness and increase the cumulative elapsed time for the
‘Weak’ student type. For example, for the feature ‘Cor-
rect so far’ and the ‘Strong’ user case, we set the filter to
capture transitions where the next state s′ registers a greater
or equal value relative to the current state s. When this filter
is inputted in algorithm 2, the transitions that satisfy this
filter will be boosted by the constant c. This ultimately has
the effect of increasing the probability mass of this transi-
tion, perturbing the original MDP to make such transitions
more likely.

Algorithm 2 introduces the perturbation process. In lines 2
to 4 we compute the transition probability deltas that are
required for every transition which satisfies one or more per-
turbation filter. This is done for all state transitions in the
MDP. In line 5 we create transition deltas for all transitions,
accounting for the deltas introduced by the perturbed tran-
sitions. In lines 6 to 9 we apply the transition deltas to the
transition probabilities, and finally in line 10 we normalize
the transition probabilities following the changes made.

The results of two separate perturbations are measured by
performing a policy evaluation algorithm with the original
policy but under the perturbed MDPs (Strong & Weak) as
the simulators.

Figure 3 shows the results of this analysis for the different
representations. Notice that in all the representations, the
original non-perturbed MDP always yielded the best perfor-
mance (non-visible for MDP 4 as the student type lines over-
lap). This is expected, since the original policy was derived
to perform optimally on the original MDP. However, as the
representation size increases, the effects of the perturbations
becomes less pronounced, almost becoming negligible past
MDP 1. To determine if the larger representation would
be affected with more features perturbed, we conducted an-
other round of perturbations, this time only on MDP 4 and
with all of its features (barring ‘ssl’) perturbed. The results
show that the performance of the policy was not affected by
the extended perturbations. This means that the MDP 4 is
more robust towards deviations from the expected dynamics
derived from the data. Hence, we have increased confidence
that such policies would be robust in the real-world setting,
maintaining their performance for students that exhibit dif-
ferent learning characteristics than those averaged over the
observations in the EdNet dataset.

Taking the three offline evaluation results in combination we
conclude that MDP 4 demonstrated the best performance
across representations and perturbations.

7. DOMAIN RELATED INSIGHTS
By analyzing the state values and the policies derived from
the RL algorithms, we can discover interesting insights in the
way the policy behaves with respect to different learners. We
demonstrate this approach on the simpler MDP B which is
based on the 3 features: topic familiarity, correct so far and
average time. In figure 4, we plot the derived state values
against the av time and correct so far features in MDP B.
Based on our reward design, the state values indicates the
future user performance. The expected future performance
of the policy is much higher when the student has a high
correct so far answer ratio. However, the relationship be-
tween the average time and state values is more complex. At
higher values of ‘correct so far’, a higher ‘av time’ entails a
larger state value, but when ‘correct so far’ is low, the op-
posite is true and in such a case lower values of ‘av time’
entails a larger state value. This means that for students
with lower success so far, faster average time is indicative
of higher future success. We hypothesize that this is due to
the policy’s inability to significantly assist students which
are consistently unsuccessful in solving questions and which
are also taking relatively long time to dwell on each and ev-
ery question. We note that even if the policies themselves
are not used, findings like this can inform us of useful fea-
tures and their relationships in predicting future user perfor-
mance following informed interventions. Such findings can
also inform us on the limits of automated approaches, and
on the need for additional tailored support for struggling
students, e.g. by supplying personalized human assistance
where automated approaches are expected to demonstrate
low effectiveness.

Analyzing the action choices in the policies, we discover that
the RL algorithms tend to put preference on level 4 actions
(harder questions). Indeed these do yield the highest re-
ward and the lowest punishment in our reward design. One
possible extension is to investigate how a change in the re-
ward function design would impact the policy preferences.

46



Figure 3: MC Policy Evaluation of the original policy under the perturbed MDPs
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Figure 4: State values vs features

Again, even if the computed policies are not deployed in the
field, such analysis can be useful as a technique in letting the
data guide pedagogical strategies, for example by connecting
pedagogically justified rewards to sequencing policies that
maximize such a reward given the available data.

8. CONCLUSIONS AND FUTURE WORK
In this paper we approached the challenge of designing an
adaptive RL based policy for optimizing the sequencing of
learning materials to maximize learning. Human tutors usu-
ally outperform their computer counterparts, in that they
are able to adapt to certain cues exhibited by the student
during learning [34]. Training an RL policy with actual users
is far too resource intensive. Therefore, we simultaneously
tackle the problem of training and evaluating an RL algo-
rithm offline based only on pre-collected data. A purely
data-driven student model was created for this purpose. We
hypothesized that a complex model is required to capture
the intricacies of human learning. To investigate this theory,
a large dataset, EdNet, was necessary to provide sufficient

support for the models.

Our student model was constructed in the form of a data-
derived MDP, with the transition and reward dynamics es-
timated from the observations in the data. The raw logs
were transformed into domain inspired features. By using
the MDPs we then trained our agents with the model-based
Policy Iteration algorithm. To determine whether a more
complex model yields better tutoring, we employed a greedy
iterative augmentation procedure. The ECR metric guided
how we chose our features and demonstrated the positive
relationship between representation complexity and policy
performance. In our analyses we discovered issues with Out
of Distribution actions in the policies and presented a so-
lution in the form of penalising rewards. We further eval-
uated our policies using the Monte Carlo and Importance
Sampling Policy Evaluation algorithms and tested the poli-
cies robustness against domain informed perturbations of
the dynamics. We show that the larger representation are
less impacted by the perturbations and therefore can pro-
vide a more equal learning experience for stronger or weaker
students.

Several limitations are acknowledged which consequently open
up further investigations. The influence of the bin-size on
feature preference in the representations was discussed briefly
but lacked conclusive evidence to rule out entirely. This
work is necessary to ensure that the features are selected
based only on the utility of the domain information they cap-
ture. From our model-based policy analyses we also discov-
ered out-of-distribution actions in the policy space. Though
we managed to remedy the problems for completely unseen
actions through strong penalisation, the next course of ac-
tion is to also penalise low supported actions/states vari-
ably according to their uncertainty as was explored by [20,
35]. We would also like to compare our approach to other
feature selection and augmentation algorithms, such as ge-
netic based metaheuristics [24]. Finally, the inferred policies
should be evaluated in the real world in a controlled study.
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ABSTRACT
Knowledge tracing (KT) models are a popular approach for
predicting students’ future performance at practice prob-
lems using their prior attempts. Though many innovations
have been made in KT, most models including the state-of-
the-art Deep KT (DKT) mainly leverage each student’s re-
sponse either as correct or incorrect, ignoring its content. In
this work, we propose Code-based Deep Knowledge Tracing
(Code-DKT), a model that uses an attention mechanism to
automatically extract and select domain-specific code fea-
tures to extend DKT. We compared the effectiveness of
Code-DKT against Bayesian and Deep Knowledge Tracing
(BKT and DKT) on a dataset from a class of 50 students at-
tempting to solve 5 introductory programming assignments.
Our results show that Code-DKT consistently outperforms
DKT by 3.07 − 4.00% AUC across the 5 assignments, a
comparable improvement to other state-of-the-art domain-
general KT models over DKT. Finally, we analyze problem-
specific performance through a set of case studies for one
assignment to demonstrate when and how code features im-
prove Code-DKT’s predictions.

Keywords
Knowledge Tracing, Deep Knowledge Tracing, CS Educa-
tion, Code Analysis, Deep Learning

1. INTRODUCTION
Modeling student knowledge to predict performance on fu-
ture problems, called Knowledge Tracing (KT), is a funda-
mental feature of intelligent tutoring systems [50]. KT mod-
els enable tutoring systems to support mastery learning [14],
select appropriate next problems [1], provide help [46], and
provide analytics to instructors [34], all of which can improve
learning. KT models have increased in complexity from the
early 4-parameter Bayesian Knowledge Tracing (BKT) to
modern models that train deep neural networks with tens of
thousands of parameters using the latest deep learning inno-
vations (e.g. attention [54] and transformers [51]). This has

led to improvement in KT model performance, especially for
larger datasets, e.g. from ASSISTments [41, 17].

The simplest version of the KT problem uses only the se-
quence of: 1) which problems the student has attempted,
and 2) whether or not each attempt was correct. While this
makes KT models widely applicable across domains, this
also omits a potential wealth of information about how the
student attempted each problem. Increasingly, ITS being
built to support complex problem solving tasks, like pro-
gramming in Snap [35] and in games [22], logic proofs [30],
science inquiry [25] and language learning [47]. In these
domains, correctness may not provide enough information
about student knowledge, varying significantly in the rea-
sons both for incorrectness and correctness. In program-
ming, for example, one incorrect attempt may have a minor
syntax error while another includes a clear misconception.
Similarly, two different correct answers could reveal dramat-
ically different levels of concept mastery depending on their
conciseness and the concepts used. Most KT models would
treat all correct and all incorrect attempts identically. A
domain-specific KT model, e.g. those for science by Rowe
et al. [40], might greatly improve KT performance. Little
work has investigated whether domain-general KT models
can predict student success in programming, or how domain-
specific features might improve performance.

In this paper, we explore when and how features extracted
from students’ submitted code can improve a KT model for
programming. To do so, we introduce a novel code-based
deep knowledge tracing (Code-DKT) model, which uses the
code2vec model [4] to learn a meaningful representation of
student code, and combines this with Deep Knowledge Trac-
ing (DKT) [34] to track student progress. Specifically, stu-
dent code submissions are represented with abstract syntax
trees, and split into multiple code paths [4] (explained in Sec-
tion 3). We assign the importance of different code paths
by learning weights guided by the scores students received
for the current and past submissions. We compared the per-
formance of Code-DKT with baseline BKT and DKT mod-
els on a dataset of 50 introductory programming problems
from 410 students, across 5 assignments. Our experiments
show that the Code-DKT model is able to consistently im-
prove DKT’s performance by 3.08-4.00 percentage points in
AUC. This improvement is comparable to that of other mod-
ern KT models over DKT (2-4%) [31, 44], suggesting that
domain-specific features may be just as important as model
structure. Finally, we investigate one assignment through 3
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case studies to explore the mechanisms by which code fea-
tures may improve the model, and when they are most use-
ful. We also show that Code-DKT outperforms more naive
code-feature models. Overall, this paper makes three con-
tributions: 1) the Code-DKT model, which extends DKT
for programming tasks; 2) evidence that Code-DKT outper-
forms both domain-general models and naive code-feature
models; and 3) evidence of when and how Code-DKT’s code
features improve model performance.

2. RELATED WORK
In this section, we present related work on knowledge trac-
ing, student modeling in computer science education, and
deep learning models for code/programs.

2.1 Knowledge Tracing
Knowledge tracing (KT) models student knowledge as they
solve problems to predict future performance. In KT, prob-
lems are labeled with needed skills (i.e. knowledge compo-
nents, KC) [49], the skill or q-matrix can be learned from
data [9], or the problem ID can be used instead. In Bayesian
Knowledge Tracing (BKT), the most popular KT method
[14], a simple Bayesian model is built to model student
knowledge using parameters for guess (getting a problem
right when a skill is not known), slip (getting it wrong when
known), and transition from unlearned to learned after prac-
ticing. These parameters are learned from prior students’
problem sequences, and then used to predict future perfor-
mance. Researchers have improved BKT performance, for
example, by calculating the bound or prior distribution of
parameters [8], adding a priori estimates of student learning
[32], or integrating speed factors [56].

A number of innovations have improved domain general KT,
without using additional features from student’s work (only
the correctness of each problem attempt). With the devel-
opment of machine learning technologies and increasingly
available large datasets, models based on deep learning have
been proven more effective, especially with enough avail-
able data [17]. Piech et al. introduced deep knowledge
tracing (DKT), using recurrent neural networks (RNN) to
predict a student’s knowledge of each skill (or problem) af-
ter each problem attempt, and to learn the relationships
among skills automatically [34]. As our work is based on
this model, we will discuss the details of the model in Sec-
tion 3. Some recent advances in deep learning for knowl-
edge tracing focus on model structure, including SAKT and
SAINT. Self-attentive knowledge tracing (SAKT) [31] added
a self-attention mechanism [54] to DKT, while Separated
Self-Attentive Neural Knowledge Tracing (SAINT) [12] later
integrated a transformer (a type of deep neural network
which has been successfully applied in text and image pro-
cessing areas) into a knowledge tracing model [51]. Both of
these models have outperformed DKT, especially on large
datasets such as EdNet [13], e.g. by 2% AUC.

While these innovations have improved KT performance, of-
ten using complex networks and larger datasets, the datasets
used generally only indicate whether a student’s attempt was
correct, but not the content of a student’s answer or their
process for achieving it, and the models therefore do not use
this information. However, researchers have incorporated
other types of information into deep models, such as course

prerequisites or the relationships among problems. For in-
stance, Chen et al. attached prerequisite information in the
DKT modeling process for a more accurate prediction[10].
The prerequisite concepts were modeled as graph matrices
(as done by Wang et al. [53]), serving as an additional input
to knowledge tracing models, similar to skill or q-matrices
that can also be learned from student data [9]. On the other
hand, Ghosh et al. introduced attentive knowledge tracing
(AKT) [18]. They introduced a decay parameter to explic-
itly reduce the impact of distant problems, and at the same
time used a Rasch model [37] to incorporate problem con-
texts, then embedding the differences among the problems.
Student information can also be used for knowledge tracing
models. Educational priors such as a learning or forgetting
curves can be integrated into deep knowledge tracing mod-
els [11]. The closest such models come to incorporating stu-
dents’ solution processes is including information about how
fast students solved a problem. Yudelson et al. [56] added
speed factors into BKT, and similar temporal information
can also improve the performance of deep models (e.g. [44]).

None of the above work have used the student response in-
formation, besides submission correctness, in their models.
This could be partially because of the simplicity of the prob-
lems. Most of them are true or false, multiple choice prob-
lems, or short answer problems. The availability of the ex-
ercise data is also limited, as some datasets only contains a
sequence of binary correctness scores from students. Recent
work (e.g. EKT, EERNN [45, 26]) used a joint embedding
of exercise text and response correctness, combining the ex-
ercise text embedding together with student scores to repre-
sent student individualized submissions. This achieved bet-
ter performance than the other models without using this
information. However, these models only use problem in-
formation, but no information about the students’ answer
beyond binary correctness information. This suggests an
opportunity to create improved, domain-specific KT mod-
els in areas such as programming, math, science or writing,
where students’ answers include complex written responses
or structured problem-solving steps. Recent work has in-
corporated such problem-specific data in deep learning ap-
proaches used to adapt pedagogical policies for tutoring in
logic [27], probability [58], or predict performance in pro-
gramming [29] but generally have not been used to built
KT models in these domains. In the domain of programming
education, for example, students’ code submissions contain
rich information on the state of their current knowledge. As
proposed in this paper, more structural information could
be extracted from student code submission to infer students’
learning status of certain concepts. We use these code fea-
tures to make better knowledge tracing models.

2.2 Student Modeling in CS Education
Researchers in CS education have explored ways to model
student source code for intelligent tutoring. In 2011, Jin
et al. proposed that a linkage representation that reflected
code structure could be used for programming hint genera-
tion [23]. In 2014, Yudelson et al. extracted code features
from a MOOC on introductory Java programming to explore
code recommendation methods [55]. Their work focused on
using a combination of problem correctness and extracted
code features to predict student success, and use this pre-
diction to recommend an appropriate next problem to a stu-
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dent. While they did not evaluate their model on a KT task
per se, their approach of extracting atomic code features is
somewhat similar to our TFIDF baseline (Section 4.3). An-
other work from Rivers et al. used code features for student
learning curve analysis and attempted to directly extract
meaningful knowledge components (and whether they were
successfully applied) from student code [39]. In their work,
student code submissions are represented as abstract syntax
trees (ASTs), with the node types of ASTs (e.g. for, if)
representing knowledge components (KCs). The error rate
curves (referred to as “learning curves”) were plotted over
time, visualizing the mastery of different KCs. They showed
that while code-based KCs produced well-fitting curves, oth-
ers did not. While this suggests the possible validity of AST-
based KC extraction, the work did not directly evaluate the
utility of these KCs for knowledge tracing. Like our current
work, Wang et al. showed that incorporating structural code
features can improve DKT for a single problem from a large
“hour of code” (HoC) dataset [52]. However, this HoC ex-
ercise has a very simple solution, so their results may not
generalize. Additionally, their features were learned in an
unsupervised way from ASTs, while our approach learns an
embedding from the data.

Code features have also been used in tasks other than KT
as well, such as common bug identification in student code.
Traditionally, experts manually examined student code to
identify common bugs in different student levels and pro-
gramming languages, such as Java [48] or block based pro-
grams [20]. However, manual examination is expensive for
large-scale and quantitative studies. More advanced work
takes advantage of the growing size of datasets, and used
data-driven methods to find bugs in student code submis-
sions. For example, Choi et al. used simple machine learn-
ing methods to detect malicious code in code by using sim-
ple feature extraction methods such as counting neighboring
tokens in code text (n-gram). With the recent advance of
computational power and even bigger datasets, more deep
learning methods have emerged. These methods focused on
developing deep neural network methods to extract struc-
tural information for automatic student bug detection. For
example, Gupta et al. used a matrix to represent the ASTs
of student code to localize student code submissions [19] in
a large dataset (270K samples). For smaller sized dataset,
Shi et al. evaluated the bug detection performance with the
help of semi-supervised learning [42], and have also shown
that unsupervised learning is possible with the help of ex-
perts [43]. All these methods reported better performance
than traditional data-driven models on their tasks, showing
the feasibility of similar usage on KT tasks.

While we focus on using student code submissions to ex-
tract features for student programming KT tasks, other less
complicated approaches exist. Original programming tu-
tors such as ACT [15] and Lisp tutor [6] decompose com-
putational problems into small steps and let students make
choices. This facilitates the KT tasks, as in these datasets,
student submissions are simple multiple choices. However,
with the development of newer Intelligent Tutoring Systems
(ITSs), more systems provide intelligent support to students’
written code. This provides better practice for students, but
also makes knowledge tracing in computer science a more
challenging task. Our paper aims at extracting code fea-

tures for KT tasks in these new datasets.

2.3 Deep Code Learning
Besides code feature extraction in the CS education domain,
programming code has also been analyzed with data-driven
models in software engineering research. For example, Al-
lamanis et al. used neighboring tokens in source code (n-
grams) to represent programming code, borrowing methods
from natural language processing studies to predict method
names in big code datasets [3]. Later work further explored
extracting features from code structure, such as Raychev et
al. who used decision trees to model programming code,
making probabilistic predictions on the types of nodes in
AST [38]. However, these simple structural approaches are
often outperformed by newly developed deep learning mod-
els, especially when applied to big datasets.

Deep neural networks have been applied in the software en-
gineering domain, and achieved better performance than
traditional data-driven methods. For example, Allamanis
et al. used convolutional neural networks (CNNs) to clas-
sify code functions [2]; Mou et al. reworked the CNNs
to an AST version, using the parent-children direction in-
formation in tree representations. Both methods greatly
improved method classification tasks on classical machine
learning models. Another recent model, code2vec, outper-
formed these models. Alon et al. designed this model, which
leverages nodes and traversal paths in the ASTs to repre-
sent programs [5]. In their work, the leaf nodes of the ASTs
are selected to represent the semantic information about the
code. In addition, as there is a path through the AST from
every leaf node to any other leaf node, this path is extracted
to represent the code’s structural information. The traver-
sal paths together with the corresponding leaf nodes serve as
the basic units of a representation of code [4]. The code2vec
model calculates the weight of each code path using an at-
tention mechanism [54] to automatically classify function
names. Code-DKT’s code extraction component is based on
the code2vec model, but adds score to the attention mecha-
nism to assign weights to code paths [4] for predictions.

We chose code2vec to represent student code in DKT due
to its recent successes for modeling code, and its attention
mechanism. The attention mechanism learns weights for
different features, allowing the model to directly use score
information to select the most predictive code paths. Future
work could investigate other code representations such as
ASTNN, which has also been applied to make predictions
from student code [28], or more recent advances such as
CodeBERT [16].

3. METHOD
Problem Definition: Knowledge tracing (KT) tasks model
a prediction problem: Given the history of a student’s at-
tempts at various KCs/problems, the model predicts if the
student will succeed on their next attempt 1. Specifically,
we define each student attempt xt at time t as (qt, at, ct),
where qt is the problem ID, at is the correctness, and ct is the
program code submitted for this attempt. Historically, KT
algorithms have only utilized qt and at, and in this work we
extend the input sequence to include ct. At each timestep T ,

1We use problemIDs for KCs in this work
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Figure 1: Recurrent neural network structure.

the model is given the T -length student attempt sequence
ST = {(q1, a1, c1), (q2, a2, c2), ..., (qT , aT , cT )}, and it pre-
dicts whether the student’s next attempt (T + 1) on a given
problem (qT+1) will be correct (aT+1). Note that students
may attempt problems multiple times, and the model will
make a prediction at each attempt.

Our proposed Deep Code Knowledge Tracing (Code-DKT)
model integrates deep knowledge tracing (DKT) [34]) with
the code2vec classification algorithm [5]. In this section we
introduce the DKT model and how we enhance it with code
feature extraction and selection.

3.1 Deep Knowledge Tracing
Deep knowledge tracing uses a recurrent neural network
(RNN) structure to learn the probability that a student will
make a correct attempt on a subsequent problem. In the
original implementation of DKT, the authors also imple-
mented a version of DKT using a long short term memory
(LSTM) model [21], which is widely perceived as an ad-
vancement over RNNs. For simplicity, we explain DKT us-
ing an RNN model; we performed DKT using both RNNs
and LSTMs. In the experiments, the LSTM version yielded
higher performance2 (see performance comparison in Sec-
tion 5.1.4). We chose DKT as our baseline model, to com-
pare with and to extend, as it is a commonly used baseline
in other more recent KT papers [31, 44]. Further, its LSTM
structure makes it straightforward to extend with code fea-
tures and to directly evaluate those features’ contributions.
Some recent models have outperformed DKT, but only by
about 2-4% AUC [31, 44], suggesting that DKT is still rep-
resentative of modern deep KT models.

Model Input: For each student, DKT (RNN) takes as input a
sequence S = {x1,x2, ...xT } of T attempt vectors xt. With
M problems, each attempt consisting of problem-correctness
pair {qt, at} at time t, is one-hot encoded into a binary vector
xt of size 2M , where xqt+M(1−at) is set to 1, and the other
bits are set to 0. For example, with M = 3, for student
success on problem 1, qt = 1, at = 1, so x1+3(1−1) = 1, so
x = {1, 0, 0, 0, 0, 0}, and failure on problem 1 qt = 1, at = 0,
so x1+3(1−0) = 1, so x4 is set to one, and x is {0, 0, 0, 1, 0, 0}.

Model Structure: The RNN version of DKT maps each
input sequence ST into an output sequence of predictions
Y = {y1,y2, ...,yT } with a set of hidden states h1,h2, ...hT .
More specifically, as illustrated in Figure 1, this process is

2See the appendix of [34] for the LSTM DKT equations.

defined as:

ht = tanh(Wxhxt + Whhht−1),

yt = σ(Whyht).

In the equations, element-wise operators tanh(·) and σ(·)
are activation functions of the network, introducing non-
linearity to the network. The parameters learned in the
network are Wxh which transforms input xt into the hid-
den space, Whh which fuses the hidden state ht−1 from the
prior input with the current hidden state ht, and Why which
translates the hidden state ht into an output. In both equa-
tions, the bias terms are omitted for simplicity, and the h0

is the initial hidden state, the zero-vector.

Model Output: The output sequence Y contains prediction
vectors yt, sized M . Every element of the vector represents
the probability of the student making a correct submission
on corresponding problems in their next attempt. Note that
while the model makes predictions for each problem at each
timestep t, only the value for the next attempted problem
qt+1 is used during training and evaluation.

3.2 Deep Code Knowledge Tracing
We extend DKT into Deep Code Knowledge Tracing (Code-
DKT), by using the code2vec [5] representation of student
code attempts, ct, along with problem and correctness in-
formation.

Code Representation: Abstract syntax trees (ASTs) are used
to represent the hierarchical structure of code, for example
with a node for a function (method) with children represent-
ing the function’s parameter (input) and body (body). AST
leaf nodes often correspond to literal values or identifiers.
Code-DKT extends the code2vec model for code classifica-
tion, which encodes an AST using a set of leaf-to-leaf paths
throughout the AST. For example, in Figure 2, a path from
the leaf node input to the leaf node "value" (highlighted
red in the example) consists of the nodes: [input, method,
body, String, "value"]. Given an AST, code2vec extracts
a set of leaf-to-leaf paths, as explained below.

Model Input: Since a deep learning model cannot operate di-
rectly on code paths, the Code-DKT must next convert this
code-path representation of the AST into a binary vector.
A student’s code submission ct at time t is represented as
{p0, p1, ..., pR} where there are in total R randomly selected
code paths in ct. Every pr has three components, namely
the starting node of the code path sr, the textual represen-
tation of the full path or, and the ending node qr, which
are each one-hot encoded as binary vectors. For instance,
for the example in Figure 2, sr is input, or is a text string:
input|method|body|String|value, and qr is value.

Model Structure: Rather than using a static vector repre-
sentation of students’ code, Code-DKT learns an optimal
embedding of student code. The detailed Code-DKT model
structure is shown in Figure 3. This initial structure is
drawn from code2vec. The nodes for each of R code paths
in ct (ct has in total R paths), including starting and end-
ing nodes (sr,qr) and paths or for a single path r, are re-
spectively embedded by the node embedding matrix Wenode
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and the path embedding matrix Wepath. Both matrices are
randomly initialized with a Gaussian distribution, but they
are later updated during model training. The Code-DKT
model structure then diverges somewhat from code2vec, to
account for the specific needs of the KT problem. Specif-
ically, the three embedded vectors representing ct are con-
catenated with the problem-correctness vector xt from DKT
(introduced in Section 3.1). This serves as a numerical rep-
resentation of (qt, at, ct). For a single code path pr, this
process is accomplished with embeddings for the start node
(es,r), path (eo,r), and end node (eq,r):

es,r = Wenodesr; eo,r = Wepathor; eq,r = Wenodeqr,

er = [es,r; eo,r; eq,r;xt].

Score-Attended Path Selection: Code-DKT now has an nu-
merical representation of a single attempt: a set of R em-
bedded vectors, er, one for each code path in ct. Note
that the embedding, er not only includes the code infor-
mation, but also the current correctness score information
xt at the submission t. However, not all parts of a stu-
dent’s code are relevant, and thus not all code paths er are
important for predicting a student’s future success. There-
fore, the model uses an attention mechanism to identify how
much weight to give to each of these paths. The embedding
vectors E = {e0, e1, ..., eR} are multiplied by the attention
matrix Wa to get R scalars a0, a1, ..., aR, representing the
importance (commonly known as the “attention”) of each of
the code paths. The importance ar uses a SoftMax mecha-
nism for normalization, having 1 as the sum. This process
is formulated as:

α = SoftMax(EWa)

SoftMax(a) =
eai∑R
i=1 e

ai

where each elements αr in α = {α1, α2, ..., αR} are the cal-
culated weights for the code path pr. Finally, Code-DKT
weights each code path ei by its attention αi, and sums
them together, giving a weighted average: a single vector
representing the important parts of the code. The weighted
average vector is then multiplied by a matrix W0 to get
the code vector z, representing features extracted from code

submissions, as in equation:

z = W0(

R∑

i=1

αiei).

In a sequence of T student attempts, Code-DKT produces
T code vectors {z1, z2, ..., zT }. The code vectors are con-
catenated with the correctness vectors {x1,x2, ...,xT } as the
input to the final LSTM (as in DKT), giving the predictions
{y1,y2, ...yT }. Even though xt was already used to produce
zt, this final concatenation ensures the Code-DKT model
has direct access to the student correctness score informa-
tion.

4. EXPERIMENTS
We designed an experiment to evaluate 3 research questions
about student modeling in the domain of programming:

RQ1 How effective are domain general KT approaches (DKT,
BKT) on our programming dataset?

RQ2 How can features derived from students’ code be used
to improve KT models?

RQ3 When are these code features most useful, and how
can they lead to improved predictions?

4.1 Dataset & Experiments Setup
Our study uses a dataset of an introductory Java program-
ming class at a large, university in the US, collected in Spring
2019, stored in the ProgSnap2 format [36]. The dataset
includes work from 410 students on 50 problems divided
over 5 assignments. These were completed throughout the
semester as homework, with each assignment focusing on a
specific topic (e.g. conditionals, loops). For these problems,
typical solutions ranged 10 to 20 lines of code. Students
tended to make multiple submissions before succeeding fi-
nally, and 23.68% of the attempts were correct. Student
code was automatically graded using test cases, and We
treated a submission as correct (1) only when all test cases
passed, and incorrect (0) otherwise.

For each assignment, students were then split into training
and testing sets with a ratio of 4 : 1. One quarter of the
training data were used for hyperparameter tuning and vali-
dation (see below). Then, we trained the model on the whole
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Table 1: Performance Comparison on all assignments.

Model A1 A2 A3 A4 A5
DKT 71.24% 73.09% 76.84% 69.16% 75.14%

Code-DKT 74.31% 76.56% 80.40% 72.75% 79.14%

Table 2: Overall and the first attempt performance of all
models on assignment A1.

Models
AUC (STD)

Overall First Attempts

Code-DKT 74.31% (0.90%) 75.74% (0.69%)
DKT-TFIDF 69.94% (0.88%) 72.77% (0.79%)
DKT-Expert 69.52% (0.68%) 69.53% (0.72%)

DKT 71.24% (2.54%) 72.26% (3.69%)
BKT 63.78% (4.68%) 50.22% (2.86%)

training dataset, and tested on the holdout test dataset, re-
peating this process 10 times to account for model variation
(e.g. due to random initialization). All deep learning mod-
els were implemented using the PyTorch[33] library, and our
BKT implementation was pyBKT [7].

4.2 Hyperparameter Tuning & Optimization
For hyperparameter tuning, we split the training data into
training and validation sets, and created a model with each
possible set of hyperparameters (described below), and cal-
culated AUC performance on the validation dataset. We
repeated this process 100 times and chose the hyperparam-
eter setting with the best average validation performance to
use in testing/evaluation. Specifically, we selected the em-
bedding size of code feature extraction as 300, from a range
of (50, 100, 150, 300, and 350); learning rate was selected
as 0.0005 from a range of (0.00005, 0.0005, 0.005, 0.01); the
training epochs were set at 40 to save training time while
keeping the best prediction results, selected from a range of
(20, 40, 100). All other parameters were defaulted as the
original settings of code2vec and DKT. We fixed the longest
length of student attempts at 50 to filter extra long sub-
mission traces from students. In cases where more than 50
attempts were submitted, we used the last 50 submissions,
assuming the latest submissions were more useful.

As the models were deep neural networks, we used binary
cross entropy as a loss function to track the difference be-
tween the ground truth and predicted probabilities. The
models used back propagation to update weight matrices
(parameters), using the Adam optimizer [24], which is also
a default for code2vec and DKT.3

4.3 Baselines
We compare the performance of Code-DKT to DKT, BKT,
and two modified DKT methods: DKT-TFIDF adding data-
driven features, and DKT-Expert adding expert features.
Specifically, DKT-TFIDF uses TFIDF, a data-driven feature
that counts the term frequency (TF) of tokens (variables,
functions, and operations, etc.) in code text, and forms a
frequency vector for every term. This frequency is multiplied
by the inverse document frequency (IDF) to show how often
terms show up in unique documents. As students use various

3Repository: https://github.com/YangAzure/Code-DKT

variable names, we limited the top 50 best features (selected
from a range of (30, 50, 100, 300) in hyperparameter tuning)
in TFIDF to remove redundant features. For the DKT-
Expert model, two authors examined the problems in the
dataset, and determined 9 rule-based code features. These
features include code component existence checks such as the
usage of else if statements, the usage of && operations, etc.
These statements and operations represent students’ usage
of certain concepts such as writing alternative conditions, or
using “and” logic to solve a problem.

To improve the TFIDF and Expert models to serve as more
robust baseline models, we added one additional set of fea-
tures (only to baseline models) to encode information about
the skills practiced in each problem, as has been done in prior
work [57]. Two authors examined the problem descriptions
and solutions and agreed on 9 skills we expected students
to learn. For example, one skill was solving problems with
negative conditions in the instructions (using words such
as “unless”, “otherwise”), requiring students to negate these
conditions in their code. We represented each problem as a
binary vector of practiced skills, and we used this skill vector
to represent problems, instead of the one-hot encoded prob-
lem ID (see Section 3.1 for model input encoding). Testing
on the validation dataset showed slightly improved perfor-
mance using these skill vectors.

Metric: Our primary performance metric is AUC, a stan-
dard evaluation metric for KT models [34, 44, 31], as it uses
the predicted probability of success, rather than a binary cor-
rectness prediction, and is more appropriate than accuracy
for imbalanced datasets like ours (23% positive).

5. RESULTS
5.1 Performance Comparison
5.1.1 Code-DKT vs DKT

Table 1 shows a comparison of DKT and Code-DKT across
all 5 assignments (the average of the 10 test runs). Note that
for each assignment, a new model is trained and tested sepa-
rately, without using data from prior assignments. This was
because assignments were spaced out with weeks between
then, including additional learning content, so students’ per-
formance on prior assignments is less relevant. To address
RQ1, we consider the overall performance of the baseline
DKT model on our dataset, which has an AUC of 69-75%
across assignments. This low score means it may be difficult
to use model predictions to inform instruction or an auto-
mated intervention, as we discuss in Section 6. To address
RQ2, we see that Code-DKT consistently outperforms DKT
by 3-4% AUC on each assignment. This shows that our ap-
proach, which augments correctness features with additional
information from student code, can improve DKT predic-
tions. For perspective, this improvement is comparable to
SAINT+’s improvement over DKT on EdNet (+2.76%) [13],
or SAKT’s improvement on various datasets (+3.8%) .

5.1.2 Code-DKT vs Naive Code Features and BKT
We now investigate a single assignment, A1, to illustrate
Code-DKT’s performance, and create a DKT-Expert base-
line using assignment-specific, expert-authored code features.
We selected assignment A1, as it came first (and was there-
fore not influenced by prior assignments) and its skills are
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the least complex. Table 2 shows the performance of Code-
DKT, DKT, as well as 3 new baselines: BKT, and 2 simple
code-feature extensions of DKT: DKT-TFIDF and DKT-
Expert (described in Section 4.3). Model performance is
given for predicting all attempts (Overall) and for predict-
ing only first attempts at each problem. The results show
that neither the simple expert features nor the TFIDF data-
driven features improve the overall performance of DKT.
These simple features derived from student code instead neg-
atively affect overall performance. This suggests that a more
effective model structure is necessary for making use of code
features, such as our Code-DKT model. We also see that
BKT has an AUC score of only 63%, suggesting that deep
models are more effective for our dataset.

5.1.3 When is Code-DKT Effective?
We used assignment A1 to investigate when Code-DKT was
more effective than DKT, helping to answer RQ3.

Overall vs First Attempts: We investigated Code-DKT’s per-
formance at predicting a student’s first attempt at each
problem (Table 2, column 3). First attempts are important
in a KT task because they represent points at which an ITS
might make key interventions (e.g. offering a worked exam-
ple if a student might fail at problem solving). Therefore,
many KT evaluations differentiate a student’s first attempt
on a task (where a model must make predictions using only
performance on other problems) from subsequent attempts.
This distinction also helps us understand when the Code-
DKT model is most effective. One might ask, is Code-DKT
using student code submissions to learn a better representa-
tion of student knowledge (which would help it predict first
attempts), or is it simply estimating how close a student is
to solving the current problem (which would only help to
predict subsequent attempts). Our results shows that Code-
DKT actually performs best when predicting first attempts,
and it also shows a similar improvement over DKT for first
attempts (+3.48%), compared to all attempts (+2.93%) .
This suggests that the content of a student’s code is help-
ful for not only predicting how quickly they will solve the
current problem, but also future problems.

Problem-specific Performance: Table 3 shows the decom-
posed AUC performance of Code-DKT and DKT on each
problem. We observe that Code-DKT outperforms DKT
overall on 6 of the 9 problems. The difference ranges from
+15.54% AUC (problem 13) to -4.43% (problem 236), sug-
gesting that the benefit of Code-DKT’s code features de-
pends somewhat on the programming problem. It also shows
that code features can reduce model performance, but the
potential for Code-DKT’s improvement seems to be greater
than the potential for harm.

To understand when Code-DKT’s code features were useful,
we investigated differences between the problems where it
outperformed DKT and those where it did not. We found
that many of the problems where there was improvement
shared similar learning concepts and solution structure. For
example, problems 3, 232 and 234 all used the “independent
choice” programming pattern, which is often solved with
nested if-statements. Similarly, problems 1, 3, 5 and 13 all
included a pattern where one condition changes a value used
in another condition. These common patterns seem to have

Table 3: Decomposed performance of Code-DKT and DKT
AUC performance on different problems in assignment A1.

Problems
Code-DKT DKT

Overall First Overall First
234 64.60% 71.38% 63.75% 73.48%
13 78.45% 86.55% 63.59% 68.81%
232 74.93% 78.99% 72.49% 73.09%
233 64.79% 74.57% 67.18% 76.33%
5 75.38% 81.34% 74.28% 81.79%

235 70.65% 71.96% 75.03% 70.80%
236 74.25% 74.30% 78.68% 77.06%
1 68.62% 70.32% 66.67% 73.20%
3 71.00% 71.00% 64.02% 64.02%

helped the model make better predictions on problems that
used them. However, 2 of the 3 of the problems where Code-
DKT performed poorly involved a unique learning concept
that did not appear in any other problems. For example,
problem 236 requires students to check if any 2 of the 3 given
variables are equal (which has no analog among other prob-
lems) and 233 requires the Math.abs function (which many
students failed to use correctly). Together, these results sug-
gest a hypothesis that Code-DKT’s code features are most
useful at predicting problems that share code structures with
other problems, and less useful at predicting problems that
emphasize novel code structures. This suggests Code-DKT
may be successfully modeling students’ knowledge of com-
mon code patterns.

5.1.4 Ablation Study
Our Code-DKT model design choices include: where to in-
corporate correctness information, how to update the em-
bedding, and what underlying network to use (LSTM or
RNN). Table 4 shows the results of an ablation study on as-
signment A1 to determine which of these choices improved
the performance of our final DKT model (first row). The
final Code-DKT model concatenates the correctness of a
students’ attempt with code features in two places (see Sec-
tion 3.2): before the attention mechanism (the vector er),
and in the final trace fed into the LSTM (zi concatenated
with xi). The model in row 2 only includes correctness in-
formation in the first case, and row 3 includes it only in
the second case. Both models lose performance, but not by
much (0.5%), suggesting that correctness information helps
both in attending to relevant code paths, and final predic-
tions, but this information is somewhat redundant. We also
investigated using an RNN (row 4) instead of an LSTM, but
this was, as predicted, moderately less effective. Finally, re-
call that Code-DKT uses code2vec to embed students’ code
as a vector, and updates this embedding throughout model
training. Row 5 shows a version where we pretrained this
embedding on the training dataset, using code2vec to predict
the correctness of students’ code, and then fixed the embed-
ding when training the LSTM. This model does much worse,
suggesting that the relevant features for predicting the cor-
rectness of code are different from those for predicting future
performance.

5.2 Case Studies
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Figure 4: Code-DKT generated correctness predictions
heatmap for a student.
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Figure 5: DKT generated correctness predictions heatmap
for a student.

Table 4: Code-DKT ablation study on A1.

Model Overall AUC
1 Code-DKT (Final Model) 74.31%
2 Correctness: Attention Only 73.81%
3 Correctness: Trace Only 73.84%
4 Model: RNN 73.63%
5 Embedding: Static 68.74%

To further answer RQ3, we examined how code features may
have improved Code-DKT through 3 case studies. We use
prediction heatmaps from Code-DKT and DKT for one stu-
dent, shown in Figures 4 and 5 for Code-DKT and DKT,
respectively. The rectangular cells show which problem the
student actually attempted (y-axis) at each time-step (x-
axis), and the numbers in the cells represent the ground
truth values of whether student’s attempt was successful (1)
or unsuccessful (0). Black frames indicate correct (i.e. accu-
rate) model predictions, while grey ones indicate incorrect
predictions. The color of the heatmap in each cell specifies
the predicted probability of students making a correct sub-
mission on a given problem (y-axis) at the given time-step
(x-axis), and darker means a higher probability of success.
For example, in Figure 4, the student makes 4 unsuccessful
attempts at problem 13, followed by a successful attempt,
then succeeds at problems 232 and 233 in one attempt each.

The heatmaps for the student (Figures 4 and 5) show that
Code-DKT is able to make better predictions on the traces
than DKT, making 11 out of 16 successful predictions, while
DKT is able to make 8 of them correct. Another observation
is that Code-DKT heatmaps have much stronger predictions
with values close to 1 or 0 compared with DKT, showing that
with code features, the model is more confident.

Case A: Successful Prediction: In Case A, Code-DKT uses
code features to make better predictions than DKT on the
predictions of the student’s final submission on Problem 235.
As shown in Figures 4 and 5, while both Code-DKT and
DKT can successfully predict the incorrect submission on
the student’s second submission of Problem 235 and fail to
predict the correct submission on the third, Code-DKT gives
a higher prediction than DKT. In Figure 6, the student’s
code submissions show the reason. The student’s second
submission is almost correct, demonstrating a correct (if in-
efficient) nested if-else structure, but they have omitted the
nested condition in their else branch. Code-DKT is able to

ct

ct+1

Figure 6: Code at times t and t + 1 for Case A, where the
code c1, ...ct is used to predict correctness at t+ 1.

infer the quality of the student’s code, since its prediction
of success probability increased from 44.2% to 49.1% after
the student’s second (incorrect) attempt, while DKT’s pre-
diction decreased from 47.7% to 46.7%. Code-DKT’s higher
prediction may be because the if-else structure the student
was missing was very similar to one they had already writ-
ten, as shown in Figure 6. These code structures are eas-
ily captured by the path-based AST representation used by
code2vec. Without code features, it is difficult for DKT to
predict whether the student is going to succeed on t+1, since
it only knows the student has failed twice, not how close they
are to succeeding. Even with code features, there is still a
great deal of uncertainty. No matter how close a student is
to a correct answer, there is no guarantee they will achieve it
on their next attempt. This may help to explain why Code-
DKT does not more dramatically outperform DKT overall.

Case B: Unsuccessful Prediction: Case B shows that even
when a student’s code is nearly correct for a given problem,
it doesn’t guarantee that they will be successful on their next
attempt. Sometimes Code-DKT is overconfident in these
situations, and incorrectly predicts success, as in Case B.
Figure 7 shows the last three attempts the student made
on Problem 13: two incorrect followed by a final correct
attempt. The only differences between the final attempt
and the earlier two is shown in the red frames. The student’s
4th attempt achieved the correct logic for Problem 13, the
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4th

3rd

5th

Figure 7: Case B 4th, 5th and 6th code attempts.

Problem
233

Problem
232

Problem
5

Figure 8: Case C, using code from problems 232 and 233 to
predict the same student’s performance on problem 5

5th attempt adds an empty return statement, and the 6th
and final attempt adds the appropriate return value. After
seeing the almost-correct code at their 4th attempt, Code-
DKT predicted that the student would succeed on the next
attempt since the modifications they needed were minimal
(just write “return value;”), but it took one extra attempt
to get it right. An expert might make a similar conclusion,
that the student was close enough to realize their mistake
and submit a correct answer, and would have similarly been
wrong. This highlights the uncertainty present in any KT
task and the challenges of applying KT to student code.

Case C: Successful Prediction (First Attempt): Case C il-
lustrates that Code-DKT can also use code from previous
problems to improve its predictions of first attempts of new
problems (as shown quantitatively in Table 2). For example,
when the student successfully completes problems 232 and
233 in a single attempt, Code-DKT’s prediction of the stu-
dent’s success on problem 5 increases from 42.0% to 50.0% to
72.5% respectively, leading it successfully predict success on
the student’s first attempt at problem 5. However, DKT’s
confidence only modestly increased from 41.8% to 47.3% to
47.0%, leading it to incorrectly predict failure. Both models
know that these problems are related, and share some learn-
ing concepts (based on how other students’ successes on the
problems are related), but Code-DKT’s analysis of the stu-
dent code allowed it to infer more about the knowledge that

was demonstrated in past problems.

We use these three consecutive code submissions to explain
why this may be the case in Figure 8. For example, in Prob-
lem 232, the student directly uses Boolean variable in the
if-condition (if (vacation)) rather than a superfluous com-
parison (if (vacation == true)) that many students use,
demonstrating a higher level of understanding. This same
direct usage of Boolean variables is seen in the if condition
and return statement of Problem 5. The code submission
on Problem 233 further suggests the student is able to com-
bine logical operators with Boolean variables to return a
Boolean expression. This occurs again in the return state-
ment of the students’ attempt at Problem 5, shown in the
lower rectangular. While we cannot know for certain which
code features Code-DKT used to make its success prediction
for Problem 5, these repeated code structures are one possi-
bility, given code2vec’s ability to recognize repeated patterns
in ASTs.

6. DISCUSSION
RQ1: How well do domain-general models perform? We used
domain-general KT models (DKT) as the baseline models
for our programming dataset. These models performed rel-
atively poorly, averaging 73.09% AUC across assignments.
While this is considerably better than chance, the perfor-
mance may not be high enough to use in some student mod-
eling contexts. For example, for assignment A1, the recall of
DKT was 31.4% and the precision was 46.5%, so the model
fails to identify two thirds of unsuccessful attempts, and over
half of the time when the model predicts a failed attempt,
the student actually succeeded. This suggests that KT is a
difficult challenge on this dataset. By contrast, DKT has
historically been effective on other datasets, which are both
larger and in other domains, such as EdNet [13], Assistments
[41] and KhanAcademy [34]. One possibility is that the more
complex nature of programming problems, with myriad pos-
sible correct and incorrect solutions, makes KT prediction
more challenging on this dataset, compared to those in other
domains. If this is the case, several aspects of programming
may contribute to the challenge of modeling student suc-
cess. Programming problems often require many attempts
to get correct (6.1 on average in our dataset), leading to
class imbalance. In our dataset, the problem descriptions
were complex, and their solutions involved complex condi-
tional logic, and students had to write perfect Java syntax
for the program to compile. These factors mean there are
many ways for students to make small “slips”, making the
relationship between skill and success less direct.

Another possibility is that our dataset (410 students) was
simply too small for complex deep models to find success,
compared to the 1000s or even 100,000s of learners in other
datasets where DKT has been evaluated. However, model
complexity alone does not explain the difference, since the
simpler BKT model did even worse than DKT, and our
Code-DKT model, which had far more parameters, per-
formed better. Additionally, DKT has historically performed
well on some other small datasets (e.g. the “ASSIST-Chall”
and “STATICS” datasets from [31] with 300-700 students).
Regardless, many tutoring systems only have hundreds of
students, and effective KT models must still be able to per-
form well on these small datasets. Thus, to the extent that
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our datasets is representative of the domain, our results sug-
gest the need for improved KT models for programming.

RQ2: How can code features improve KT models? Our re-
sults show that a simple extension of DKT with code fea-
tures does not improve its performance. This result is some-
what surprising, given that relatively simple features (e.g.
the presence of a return statement) should be at least some-
what related to how close a student is to a correct answer. It
is possible such features may improve a model with different
structure, but in our dataset, they were not helpful to DKT.
This suggests the need for thoughtful approaches to incorpo-
rating domain-specific features into deep models. Our Code-
DKT model was able to make reasonable improvements to
DKT (+3.07% overall on A1). This is comparable to the
improvement of SAINT over DKT on the EdNet dataset
(they achieved +2.76% in AUC), or SAKT over DKT on
various datasets (+3.8%) [31]. This suggests that domain-
specific features can be just as important as model structure
for effective KT. Code-DKT’s improvement is also robust.
It has a +3% to +4% improvement overall on all five assign-
ments. Importantly, however this is still a relatively poor
performance overall, suggesting the need for more work on
leveraging domain-specific features for improved KT.

RQ3: When and how do code features work? We also ex-
plored when and how the code features improved model
performance. We found that code features are most useful
on problems that share similar learning concepts with other
problems in the dataset, and less useful on problems with
unique and difficult concepts (e.g. Math.abs()). This makes
sense – if we make an analogy to the original BKT where
each problem was labeled with KCs, if you had a unique KC,
the model would have no way of predicting on that prob-
lem. In our case, the KCs are inferred by the model, but
the same limitation exists. However, most problems in our
dataset did share primary learning concepts (e.g. loops, con-
ditionals) and benefit from code features, and this repeated
practice is a common feature of many CS1 courses. We also
found that code features are useful for predicting both first
attempts and subsequent attempts. Our case studies reveal
potential mechanisms for both of these effects. For repeated
attempts, the model seems to use the relative correctness of a
student’s code to determine how close they are to a solution
and therefore how likely they are to get it right on the next
attempt. For first attempts, the model seems to identify
code structures in prior attempts that indicate knowledge
or competence with certain programming concepts, which it
uses to make predictions on new problems. More work is
needed to verify these hypotheses, and to understand how
the model represents this knowledge.

Limitations: Our model and experiment have several limita-
tions. 1) All models evaluated, including Code-DKT, have a
relatively low performance, partially due to the difficulty of
the problem and low data size (410 students), as discussed
in Section 6. Still, they perform considerably better than
chance, and such models could still be useful, e.g. in pri-
oritizing help to struggling students. 2) Our dataset was
from a single semester of a course. While our semester-long
dataset of 50 problems is considerably more robust than
some of the prior work on KT in programming (e.g. using
1-2 problems [52]), it is unclear how our results will gener-

alize to other semesters, classes or programming languages.
3) We used only DKT as a baseline model to extend and to
compare against, and it is possible code features may have
different effects on other models. However, as explained in
Section 3.1, DKT has a comparable performance to more
modern deep models, and made sense as a starting point to
explore the effect of code features.

7. CONCLUSION
The contributions of the paper are 1) the Code-DKT model,
which extends DKT with embedded code feature extraction;
2) results showing that CodeDKT consistently improves over
DKT in a programming dataset; and 3) comparisons and
case studies highlighting when and why Code-DKT code fea-
tures help. This paper compared our new Code-DKT model
to domain-general BKT and DKT baselines, and two DKT
models extended with simple code features, demonstrating
improved performance for Code-DKT over these baselines.
However, the best baseline model performance was about
73%, and Code-DKT was 74.3%, demonstrating consider-
able room for improvement on modeling for knowledge trac-
ing in programming. The case studies in this paper illustrate
specific situations where knowledge tracing can be particu-
larly difficult in programming, and where there is potential
for improving code KT, e.g. when common code structures
are used across problems.
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ABSTRACT
Working collaboratively in groups can positively impact per-
formance and student engagement. Intelligent social agents
can provide a source of personalized support for students,
and their benefits likely extend to collaborative settings, but
it is difficult to determine how these agents should interact
with students. Reinforcement learning (RL) offers an op-
portunity for adapting the interactions between the social
agent and the students to better support collaboration and
learning. However, using RL in education with social agents
typically involves training using real students. In this work,
we train an RL agent in a high-quality simulated environ-
ment to learn how to improve students’ collaboration. Data
was collected during a pilot study with dyads of students
who worked together to tutor an intelligent teachable robot.
We explore the process of building an environment from the
data, training a policy, and the impact of the policy on dif-
ferent students, compared to various baselines.

Keywords
Reinforcement learning, teachable robots, balance of partic-
ipation, lexical entrainment

1. INTRODUCTION
Pedagogical agents have demonstrated the potential to pos-
itively impact student learning and motivation in an educa-
tional setting [38, 39]. They are commonly characterized as
either physical robots or virtual agents and provide an extra
opportunity for students to have a social, interactive, and
personalized learning experience. Pedagogical agents can be
scaled by deploying multiple instances for students to use.
While robots are not as easily deployed as virtual agents,
recent research suggests that robots can be more effective
than virtual agents in engaging students [32]. There is in-
creasing interest in understanding how robots might play a
role in formal and informal learning environments [31, 40].

One potential advantage of a robotic agent over a virtual
agent is its ability to physically interact with the students.
Some work has explored the use of robots capable of facial
expressions and found its behavior increased the learning
efficiency of students [51]. It had been observed that the
physical embodiment of a robotic agent resulted in a higher
level of social influence [46]. Other work has explored using
gestures from a humanoid robot to help provide feedback to
students about multiplication table problems [30].

Robots can take on multiple roles in interactions with a
learner, including a tutor, a peer learner, or a tutee [4].
When robots take on the role of tutee, they are often called
teachable robots. There are examples of success with teach-
able robots and a single student [23, 59, 37]. However, there
has been less exploration of the use of teachable robots in a
collaborative learning setting [12], with a student dyad [58].
This is a limitation of prior work since student collaboration
is a powerful tool for improving learning [8, 14, 41]. Collab-
oration among peers in a computer-supported group setting
can be supported by specially designed tasks that encour-
age interaction. [13]. Computer-supported group settings
can encourage collaboration by targeting specific areas and
difficulties of group interaction [57].

There are many ways that pedagogical agents adapt and
personalize to students. One standard method is a statisti-
cal approach, such as multi-armed-bandit [11, 53], but these
approaches have some trade-offs [47]. These systems require
task-specific expert-authored rules; this may not be a sus-
tainable approach for multi-disciplinary use. In contrast, a
data-driven and automated approach is an exciting new way
of understanding how to implement personalization.

Reinforcement learning (RL) is a data-driven approach for
learning a policy for interacting with the students [44]. While
multi-armed bandit approaches identify one action as the
best and only select that action, RL policies use context
about their environment to choose the best action for a spe-
cific moment1. Traditionally, reinforcement learning uses a

1We note that contextual multi-armed bandits exist. How-
ever, they make the assumption that the actions picked have
no effect on the environment (in this case, the students). We
aim to model how the students’ behaviors change over time
in response to the actions selected, and thus a contextual
multi-armed bandit does not fit this problem.
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virtual environment, which is used to train an initial policy,
that is then transferred to the real world.

The RL-controlled robotic tutor described in Park et al.
[44] does not involve the use of a virtual environment to
train, instead training directly on the students. The ex-
periences collected are always using the latest iteration of
the policy, which is continually changing. While real-world
RL ensures that the students interact with the most up-
to-date policy, it actively uses students to test potentially
sub-optimal actions during training, which might lead to
confusion and unnatural interactions. With this approach,
the policy learns through extensively interacting with stu-
dents, requiring many months of training and needs to build
a profile about each student. Real-world RL is also well-
known as being particularly challenging [16].

Learning an RL policy in a virtual environment has two
main benefits over real-world reinforcement learning. A pol-
icy can be trained in just a few hours by simulating millions
of different versions of the environment and their outcomes.
Furthermore, by training solely in a simulation, there is no
need to train a policy through extensive experimentation on
students. However, building such a simulation of the real
world is challenging. One solution is offline reinforcement
learning, in which an algorithm learns from a set of previ-
ously collected data, which obviates the need for a simulated
virtual environment. Unfortunately, offline reinforcement
learning requires an extensive collection of saved experience
data [17], which is infeasible to collect from students.

We, therefore, assume a hybrid approach, using the set of
previously collected data to model and build a data-driven
simulation, effectively allowing for online reinforcement learn-
ing in an offline reinforcement learning setting. We explore
the process of building a high-quality data-driven virtual
environment, the difficulties in modeling the students, and
ensuring environmental continuity.

We aim to see how a pedagogical robot can assist students
in a group setting. The humanoid robot interacts with two
students concurrently, as a social learning companion. We
attempt to use Reinforcement Learning to aid in the de-
cisions made by the teachable robot, to improve student
learning outcomes and motivation by supporting students
in a personalized manner.

The robot, named Emma, interacts with students via natu-
ral language. As the students work out the multi-step prob-
lems, they explain their solutions to Emma. Emma responds
to the students’ solutions, clarifying the purpose of the most
recent step or occasionally asking thought-provoking follow-
up questions. These actions are combined with gestures to
make interacting with the robot feel more natural.

Student interactions with Emma were collected using an
expert-authored natural language dialogue script. We built
a simulation describing the interactions between the stu-
dents and modeled the different types of interactions those
students had with Emma. The simulation uses collected
data to represent various types of student groups.

Extensive testing of the policies trained and tested in the

simulation demonstrates that RL methods outperform the
dialogue script baseline in terms of collaboration metrics.
Furthermore, in our simulation, we find that the RL methods
improve collaboration among all student groups, unlike our
baseline method, which fails to improve collaboration for
some groups. Our contributions include:

• A hybrid approach to perform offline RL in a robot-
student setting using online RL trained in a virtual
environment.

• A novel method for building a virtual environment
from previously collected data, to simulate student col-
laboration.

• An early exploration of applying RL for a teachable
robotic agent in a collaborative setting with students.

2. BACKGROUND
Reinforcement Learning (RL) has provided recent break-
throughs in solving complex machine learning tasks, high-
lighted by applications in self-driving vehicles [29], super-
human performance in competitive board and video games
[54, 55], and advanced autonomous robotic control [1, 42].
RL allows an agent or policy to sequentially select actions
to achieve some (potentially non-differentiable) goal.

Reinforcement Learning differs from the more traditional
supervised learning, where a classifier is exposed to a set of
labeled examples, with the goal of correctly classifying an
unseen example. There is often no label or ground truth for
what actions are right or wrong for an RL agent to select
in the settings where reinforcement learning is used. Ad-
ditionally, each action may have cascading effects on the
environment’s future, and similar actions may have varying
effects that depend on the current state of the environment.

The policy in RL is a function, typically modeled with a
neural network, that selects actions to navigate some envi-
ronment given information about the current state of the
environment and a reward that grades the actions. In the
described reinforcement learning scenarios above, such as
self-driving, competitive gaming, and autonomous robots,
an agent is typically trained from scratch in a simulated en-
vironment. This policy, trained in the simulation, is then
transferred to the real world.

For example, consider the case of autonomous robots. A
realistic virtual environment, like those created with video
game engines, is used, with an accurate model of the robot
and the various motors involved in its control [7]. The policy
can then control the motors of the simulated robot to try
and attain some reward or goal. Transferring a policy from
a simulated space to the real world is easier when the simu-
lation is similar to the real world, emphasizing the quality of
the simulated environment to decrease the domain gap [64].

Constructing an environment requires a deep understand-
ing of how actions cause the environment to respond. In
some settings, such as competitive chess playing, this is triv-
ial: strict rules define how the pieces move and there is no
stochasticity that affects the outcome of each action. In the
case of self-driving, the actions and how the environment
responds have a measure of stochasticity. While turning the

63



wheel to the left typically turns the vehicle to the left, fea-
tures of the environment, e.g. a patch of ice on the road,
can affect the car’s trajectory in a unintended manner.

In our setting, the effects of a policy’s actions on the sim-
ulated environment are not easily defined. For example,
similar actions performed by the policy may vary in their
outcome due to differences between students. Even when
asking two different students the exact same question, their
responses will most likely differ. The environment, there-
fore, must use the collected data to model many potential
outcomes for actions taken.

2.1 Education and Reinforcement Learning
Reinforcement learning in education has been a topic of ex-
ploration since the early 1960s [24], specifically for the se-
quencing of instructional activities. Various approaches have
been built on this concept over the years [3, 33, 11]. A sur-
vey performed by Doroudi et al. found that 21 of 36 studies
of RL-sequenced instructional policies determined that the
RL policy outperformed baseline policies [15].

Singla et al. present a recent survey of the use of RL in
education [56], which identifies five main research directions
of RL in education. Singla found RL was used for: person-
alizing curriculums [15, 48], personalizing hints/scaffolding/
quizzing [2, 62, 45], A/B testing educational methods [34,
63, 49], modeling human students [22, 60, 26], and content
generation [28, 27, 20]. Our work combines personalizing
constructive feedback and modeling human students. In our
setting, where we attempt to maximize collaboration be-
tween students, we model the students’ interactions regard-
ing the feedback and hints provided.

2.2 Emma: The Teachable Robot
Our study context involves Emma, a humanoid NAO robot
who interacts with a pair of students tasked to solve multi-
ple ratio word problems, using natural language and basic
gesture. NAO robots are commonly used and have been ef-
fective in social robot student learning settings [25]. The stu-
dents work together to solve the problem and teach the so-
lution to Emma. This collaboration has two benefits. First,
we can obtain more data regarding student thinking, as they
must vocalize more between themselves, compared to when
working alone. Second, there are known benefits for student
collaboration for improving student learning [8, 14].

During a study session, each question is shown to the pair of
students, who need to solve the problem and then describe
to Emma how to calculate the solution. The problems re-
quire multiple steps to solve, and the students need to convey
each step to Emma. If one of the steps is wrong, Emma is
designed to either ask a question to guide the students in
the right direction or make a statement regarding the stu-
dents’ response. An example interaction between students
and Emma is shown below:

1. Emma: So I know that I need 66 hours worth of batter-
ies and I know how much time I need for one battery.

2. Student B: So we can tell her 66 hours divided by 3
and three quarter hours.

3. Student A: Yeah, that’s right

4. Student B: So you’re going to divide 66 hours by 3 and
three quarter hours.

5. Emma: Since we need to figure out what times 3 and
three quarters is 66. So then 66 divided by 3 and three
quarters is 17.6 Is that it?

6. Student B: Yes, that is correct.
7. Emma: I need 18 batteries because I need more than

17. I will put the answer as 18.

Students use an in-house web interface to see the math prob-
lem that the robot was solving, which provides controls to
advance to the next step, a button to “push to speak” with
the robot, and to see what the robot most recently said (as a
backup to hearing it over the video chat service). The video
feeds from each session (group) were recorded, along with
the audio from each participant. The audio feeds for each
participant were transcribed using IBM Watson’s Speech-
to-Text system, with word timings maintained.

Our work follows two theoretical frameworks for identifying
productive collaboration. First, the interactive-constructive-
active-passive (ICAP) framework of cognitive engagement
[10] hypothesizes that students collaborate best when ac-
tively interacting, taking turns to contribute constructively
to the task at hand. In our environment, this would in-
volve the students both working to teach Emma, partici-
pating relatively equally and engaging in dialogue with each
other rather than pursuing independent parallel work. Sec-
ond, we draw on the Interactive Alignment Model (IAM),
which postulates that in order for two collaborators to align
their understanding, they must align their communication
[19]. One indication of this alignment is lexical entrainment,
which is indeed related to student success in group learning
settings [18]. Lexical entrainment measures the similarity
between the language used by speakers in a group over time
[6], and might be a sign of students converging to a shared
mental model [18], which can lead to successful group per-
formance [61]. We are interested in exploring both balance
of participation and lexical entrainment as rewards in an RL
environment.

2.3 Data Corpus
Due to the COVID-19 pandemic, sessions were held using
an online video-chat service to connect the students with
Emma. For our pilot studies, we collected data from twenty-
eight undergraduate students who interacted with the robot
in groups of two (i.e., 14 dyadic sessions; 11% Male, 89%
Female; 32% Asian, 14% Black, 46% White, 7% no response;
Mean age = 19.4 years, SD = 1.19)2. Each session lasted
approximately 30 minutes.

In addition, students were individually tested and surveyed
before and after collaboratively interacting with the robot.
These assessments were used to determine pre-existing (i.e.,
pre-collaboration) factors that may impact mid-collaboration
interactions and participation and post collaboration learn-
ing outcomes. The pre-collaboration measures included: mo-
tivation (i.e., interest, utility, efficacy, attainment, and cost),
goal orientations (i.e., mastery approach, performance ap-
proach, performance-avoidance), attitudes towards robots

2This data is part of a more extensive study that includes
another condition in which individuals taught Emma. For
the purposes of the current work, we focus on the dyads.
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and collaboration (i.e., work quality, peer support, inter-
dependence), affinity for technology, and prior knowledge
(i.e., pretest on ratios). The post-collaboration measures in-
cluded ratings of rapport with their partner and Emma (i.e.,
general, positivity, or attentiveness), perceptions of Emma
(i.e., anthropomorphism, likeability, animacy, and intelli-
gence) [36, 35], and posttest scores (i.e., counterbalanced
with pretest). Given the need to consider the group as the
unit of analysis, we used the dyads’ average measures for our
analyses, with higher averages representing a larger presence
of each construct. In total, 27 metrics were collected from
the surveys and assessments. This study was approved by
the Institutional Review Board.

3. METHODOLOGY
We construct our simulated environment using real-world
data collected from interactions with real students. The
environment models the conversational interactions between
all participants and uses probabilistic methods to capture
the various sources of stochasticity. This allows us to model
potential outcomes that could occur when Emma interacts
with the students, even when such an interaction was not
captured in the pilot study. We then train a set of three RL
algorithms using the environment and compare the results
of each algorithm with a series of baselines.

3.1 Data and Setup
Building an end-to-end RL environment is highly task-specific
but can be generally simplified into two steps. We first
extract the data gathered during the student interaction
sessions. Next, we use the extracted data to model stu-
dent interaction and observations in the environment in con-
junction with various probabilistic sequence modeling tech-
niques. This process involves identifying reward metrics and
modeling how the environment responds to stimuli.

3.1.1 Student Participation Metrics
Our data-driven simulation uses various metrics captured
during the data collection studies. Specifically, we capture
the change in student participation metrics after Emma per-
forms an action. We observe how these metrics change
throughout the study as the students interact with each
other and the robot. We use metrics that approximate
the balance of interactive participation (following the ICAP
framework) and lexical entrainment between the students.
For our environment, we use Measure of Participation and
Word Co-Occurrence metrics, respectively.

The text transcripts were tokenized at the sentence level
using NLTK [5]. The Measure of Participation and Word
Co-Occurrence were calculated as shown below, and asso-
ciated with each sentence. This methodology allows us to
estimate the balance of participation and lexical entrainment
at intermediate points of the session.

Measure of Participation (MoP) MoP indicates the balance
of group participation as proposed by Paletz and Schunn
[43]. MoP computes the average level of involvement in the
group, scaled between 0 (equal) and 1 (dominated) partici-
pation. MoP is defined in Equation 1, where n̄ is the average
number of people during the session, N is the max number
of people present (always 2 in our setting), M is the total

number of utterances said in the session, nk is the number
of people present on utterance K (always 2), i is the index
representing a student, and mi is the number of utterances
where person i is present.

Ps = n̄2 ∗
∑N
i=1 |

∑M
K=1 f(nk, i,K)|

2(n̄− 1)
∑N
i=1mi

(1)

f(nk, i,K) =
{nk − 1

nk
=

1

2
if i is speaking during utt. K

=
{−1

nk
= −1

2
if i is silent during utt. K

For example, given two utterances and one participant speaks
during each, MOP=4*(|1/2-1/2|+|-1/2+1/2|)/[2*(2+2)] =0.
If only the first participant speaks during each utterance,
MOP=4*(|1/2+1/2|+|-1/2-1/2|)/[2*(2+2)]=4*2/8=1.

This metric is invariant to changes in group size and sup-
ports groups of different sizes. In our RL environment, since
the agent’s goal is to maximize the reward, we use 1−Ps for
the feedback. This, in turn, rewards the agent for achieving
equal participation.

Word Co-Occurrence (WCO) WCO provides a simple esti-
mate of lexical entrainment. WCO is defined as the number
of lemmas common between both participants. Lemmatiza-
tion was performed using WordNet in NLTK. To get WCO
in the same range as MoP, the value is normalized between
0 and 1 by dividing by the number of unique words said in
the session. The size of the shared set of words increases
only if both participants are contributing and talking about
similar material.

3.2 Overview of the RL Environment
A reinforcement learning environment requires four essential
components. The first is the set of potential actions A that
the agent can take at each step. The second is the set of
states that the environment can take S. The last is the set
of rewards R that the agent will be attempting to maximize.

The first step to building an environment is defining each
of the required components of the environment and at what
level of abstraction these components will be represented.
We define how the environment responds when the robot
interacts with it, the information provided by the environ-
ment to the robot, and the options the robot can take at
each step.

3.2.1 States
The environment state is used to describe to the RL policy
what is happening at a specific point in time. In this case,
we model the environment state as a representation of the
sentence said directly to Emma by one of the students - this
is what Emma observes and uses to select her next action.
For example, a student may tell Emma, “If you use 3/4 of
your battery in 1 hour, you multiply that by 3 to figure out
how much you use in 3 hours”.
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Figure 1: A high-level overview of the different parts of the environment. Emma’s actions each use a Markov chain, trained
using collected data, to transition between states. The current state of the environment conditions the state transition. States
are represented as sentence embeddings.

3.2.2 Actions
In the case of determining the action space of the environ-
ment, we look at what Emma was capable of during the data
collection sessions. As a proof of concept for our reinforce-
ment learning approach, we simplify the action space to in-
clude the two general responses – questions and statements.
For example, one response from Emma is this question-based
reply: “So if I have forty-five hot dogs and I now know how
much it costs for one, can I figure out how much it costs for
forty-five hot dogs by multiplying?”. For the statement-based
reply for the same problem, she says, “With the unit rate, I
know it costs two dollars and fifteen cents for each hot dog. I
don’t remember what I am supposed to do with that, though.”
As we can see, while the responses convey similar informa-
tion about the problem, they could potentially invoke very
different responses in the student participants.

3.2.3 State Transitions
In addition to defining the states and actions of the envi-
ronment, we need to define how the actions cause the states
to transition from one to another. Our state transitions de-
scribe how the students react to Emma’s responses. Between
Emma’s actions, there are a series of interactions between
the students, where they decide what to say to Emma or
work on the problem solution. We model the progression of
these inter-student interactions probabilistically to describe
how the students’ conversations lead to different interactions
with Emma.

3.2.4 Reward
The purpose of the reward is to coerce the policy towards
performing the actions needed to achieve the required out-
come. There are broadly two ways to reward the agent: at
constant intervals throughout a session or once at the end,
but the latter sparse option is more complex than frequent
rewards [21]. Our student participation metrics (Sec. 3.1.1),
derived from learning theory hypotheses, can be calculated
at intermediate points during the session. To keep the envi-
ronment simple, we give an intermediate reward after each
of the robot’s actions. The value of the reward is the sum of
the student participation metrics associated with the current
state (MoP + WCO), as observed during data collection.

3.3 Simulation
Now that we have presented a high-level view of the envi-
ronment that was designed, we will delve into the technical

Figure 2: An example of the interactions between the stu-
dents and Emma. The black blocks signify a sentence said by
a student to another student, the orange blocks a sentence
said to Emma, and blue blocks a response to the students.

details about how it is implemented. In the sections below,
we highlight three difficulties in implementing a data-driven
environment from previously collected data. First, the con-
versations between the students can vary significantly but
need to be accurately modeled. Second, with data collection
limits, we must handle missing information when simulating
the outcome of actions. Third, the simulation must provide
a reward to provide feedback for the selected actions.

3.3.1 Simulation Design
An overview of the environment is shown in Figure 1. Emma
is capable of two responses, to either reply with a question or
a statement. Each action has a unique Markov chain, which
generates a sequence of simulated interactions between stu-
dents. The generation of the simulated interactions is de-
pendent on the current state of the environment and is used
to generate the subsequent state. This subsequent state is
associated with a reward for Emma.

In Figure 2, we depict an example of the structure of the
collected data, with time represented on the x-axis. Here,
the black blocks signify a sentence said by a student to an-
other student, the orange blocks represent a sentence said to
Emma, and the blue blocks indicate Emma’s response to the
students. The students say four sentences among themselves
before one student says a sentence that is an input to Emma.
The 6th block is the reply Emma chooses for the students.
The students talk between themselves for three sentences
before interacting with Emma again. Emma responds, the
students continue talking, and the cycle repeats.

We can see that the interactions between the students have
a structured turn-taking nature, which follows a repeated
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pattern: 1. students converse between themselves, 2. stu-
dents provide an input to Emma, 3. Emma replies to the
student’s input. Using this general structure of interaction,
we can define the necessary portions of the environment.
The state of the environment, as observed by the RL policy,
is the sentence that is said directly to Emma. The actions in
the environment are the replies from Emma to the students.
The rewards of the environment are the changes in the lev-
els of the Measure of Participation and Word Co-Occurrence
scores that occur as the students discuss. The rewards are
provided at the end of each sentence. The state transitions
occur due to Emma’s responses (actions) to the students -
this invokes conversation between the students, resulting in
a specific response from the student (state).

3.3.2 State Space (S)
The first step in building the environment is setting a level of
abstraction to represent the states, S. This step is important
for modeling the environment input to the RL agent and
is necessary in describing how the environment transitions
from one state to the next. The interactions between the
students and Emma can be modeled using the input sentence
tokens, which are the orange blocks in Figure 2.

The tokens are encoded using Google’s pre-trained Univer-
sal Sentence Encoder [9]. The Universal Sentence Encoder
provides embedding vectors of each token, for the tokens
said between the students and the tokens said as input to
Emma. Embedding vectors are high-dimensional represen-
tations in a semantic space. The embeddings of semantically
similar tokens will have a higher cosine similarity score than
semantically different tokens.

Let p ∈ P be a sentence in the set of sentence tokens said
as input to Emma, collected during data collection, and
encode(x) converts a token to a 512-dimensional embedding
with the Universal Sentence Encoder. A state in the envi-
ronment is defined as s ∈ S, where s = encode(p), ∀p ∈ P .

3.3.3 Action Space (A)
In Figure 2, Emma’s “actions” are her natural language
replies shown as the blue blocks. For simplicity, Emma has
the same set of actions that can be taken at each step. The
replies to the students are roughly split into two categories:
question-based replies and statement-based replies. An ac-
tion at,p ∈ A at timestep t has an indicator, p, to describe
the type of action taken. p can be one of (q, s), i.e. Emma
can reply with a question at,q or a statement at,s.

3.3.4 State Transitions
One vital mechanism for an environment is the state-action
transition. The state-action transition defines for some state
st and action at at time step t, the next state st+1 emitted
by the environment, at time step t + 1. Referring again
to Figure 2 (black-colored sentence tokens), we see that an
action is followed by dialogue between students, which takes
place when transitioning between states.

We model this state-action transition using the Markov chain,
a probabilistic sequence model. We choose to use the Markov
chain for this simulation due to its simplicity and ability to
model time-series data. A Markov chain is a simple model

where the probability of the nth event et,n at time t, is con-
ditioned and only dependent on the previous event et,n−1.
Here, each event is a sentence uttered by a student, and
the chain represents the transitions of the conversation had
between the students before they converse with Emma.

To build the Markov chain, we must simplify the events from
the continuous space (sentence embeddings) to a countable
space. With semantically similar sentences existing close
together in the embedding space, unsupervised clustering
methods allow for an intelligent way to represent the sen-
tence tokens in a countable space. The embeddings for the
transitional sentences are assigned to clusters in an unsuper-
vised manner via KMeans clustering. Each sentence is as-
signed and represented by a cluster c via this method. The
set of clusters C, c ∈ C is the countable space for the Markov
chain. We denote here a function ct,n = k(et,n) which for
event embedding et,n, returns the cluster identifier of each
embedding, ct,n. For simplicity, we extend k(x) to support
operations on a sequence of events, which it converts to a
sequence of cluster identifiers in the same order.

The state-action transition sequences collected from the pi-
lot study are used to build the chains. For each state-
action transition sequence, we store the action at, the start-
ing state st, the transitional sequence of sentence embed-
dings Et = et,1, et,2..., et,n and ensuing state st+1. The
transitional sentences, and ensuing state are combined as
a sequence of embeddings Êt = et,1, ..., et,n, st+1. This se-
quence of embeddings is then transformed to be represented
in terms of each sentence’s cluster identifier, Ht = k(Êt).
We also define another function, j(c), which randomly sam-
ples and returns a sentence (its embedding) from cluster c.
These sequences of cluster identifiers are used to build a
Markov chain. A separate Markov chain is built for each
action to separate the state transitions of the two types of
actions. These action-specific Markov chains are mq and
ms, respectively.

State transitions are modeled using a conditional genera-
tion of the Markov chains. Sequences generated by Markov
chains are typically initialized randomly by selecting a ran-
dom event as the starting point. Conditional generation
involves selecting a specific event as a starting point, which
affects the subsequent generation of events in a cascading
manner. This conditioning ensures the actions selected by
Emma in the virtual environment affect the following simu-
lated interactions between the students. To describe con-
ditional generation, we provide the example mq(et,1), to
represent the conditional generation of the next state us-
ing the question Markov chain. The output of mq(et,1), is
a sequence of cluster identifiers Ht, that starts with cluster
identifier k(et,1).

Mappings, rs,a = [(st, at) → et,1], are extracted from the
recorded state-action transitions, to be used for the data-
driven conditional generation. For an observed state st with
action at, the Markov chain conditionally generates with
starting point k(et,1), and ends with some cluster identifier
ct,n. For example, we generate the following sequence of
events, Et = et,1, et,2..., et,n, and use the last event to obtain
our sampled cluster identifier, ct,n = k(et,n). This cluster is
used to sample next state, st+1 = j(ct,n). We denote the set
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Figure 3: A scenario where an action’s outcome is not con-
tained in the collected data. To approximate the effect of the
action, we substitute in a similar state-action transition from
the collected data in a probabilistic manner.

of recorded state-action transition mappings R.

State-Action Map Substitution The data-driven mappings,
rs,a ∈ R, are a straightforward way to conditionally gener-
ate the next state, for some observed set of state and action,
(st, at). However, consider the example in Figure 3. Dur-
ing data collection, we observed and recorded the mapping
(st, at,q) → et,1, shown in the top row. However, we may,
during the simulation, want to test what happens for the
state-action set (st, at,s), for which no recorded mapping
exists. With no existing mapping, we need to find a substi-
tute - a recorded mapping with a state that is similar to st,
that instead contains action at,s.

We propose to find a substitute mapping by filtering the set
of all recorded state-action transition mappings R. Within
R, we filter and keep recorded mappings that contain the
desired action, at,s in this example. For each mapping in the
filtered set, we calculate the cosine similarity score simt,m =
cos(st, sm) between the current state st of the environment,
and the state sm stored in the mapping. This similarity
score is used to assign a probability for being selected as
the substitute mapping to each mapping in the filtered set.
The probabilities are proportional to the similarity score so
that the most similar states have the highest probability of
being selected. The filtered set is then sampled using the
probabilities to find a new mapping, with a similar state
sm, the selected action at,s, and a new substitute event for
conditional generation e′t,1.

3.3.5 Reward (R)
The formulation of the environment reward is simple since
each entry in the Markov chain has an associated change in
WCO and MoP that was observed during data collection.
Therefore, during a state transition, we aggregate the WCO
and MoP across the sequence generated by the Markov chain
while generating the next step. The sum of the rewards over
the chain is the reward provided for the action.

As a reminder, each entry in the chain is a specific cluster
identifier in which various sentences reside. We use the clus-
ter’s mean reward (using all the sentences in the cluster).
As an example, if Emma selects a question as her action,
we sample the Markov chain, mq(et,1), to generate the next
state st+1. This generates the chain: Et = et,1, ..., et,n where
st+1 = j(k(et,n)). Each entry, et,m, in the chain has an as-
sociated reward (WCO + MoP). Let rt,m be the average
reward for cluster ct,m, where ct,m = k(et,m). To get an
action’s full reward, we compute the sum of the associated
rewards along the sampled chain Rt =

∑n
m=1 rt,m.

Time Constraints To ensure that the environment does not
provide rewards that bias policies towards selecting actions
that have longer Markov chains, we add a time limit to how
long an environment can run. The sentences said during
data collection are timestamped, which describes how much
time was required to say each sentence. Throughout the
simulation, a timer is kept, and if a sentence is sampled by
the Markov chain, the timer increments by the amount of
time required to say the sentence, using the word timings
extracted from the automated Speech-to-Text system. The
time limit is a 30-minute cutoff, which mirrors the cap to
session length that was in place during data collection. Any
reward obtained after the cutoff is excluded.

3.3.6 Additional Implementation Details
Random Student Initialization The environment is designed
to create a policy that is capable of handling different types
of learners, different styles of student participation, and dif-
ferent levels of student interaction with Emma. To emulate
this, during the environment initialization, Emma is blindly
assigned to a random student group (one of the 14 from the
pilot study); the policy is not provided information about
which group was selected. Emma interacts with a version of
the environment that uses state, state transition, and reward
parameters collected from only the selected student group
during that session. For subsequent sessions in the simula-
tion, the student group is blindly and randomly re-assigned,
ensuring that the learned policy can generalize to multiple
types of students. These parameters differ per group, mean-
ing the environments respond quite differently, depending
on the current student group being represented.

Environment Tuning The first step, before training the Rein-
forcement Learning policy, is to make sure that the environ-
ment works as intended given the assumptions we used to
model the states, actions, rewards, and state transitions. To
do so, we built a deterministic policy for each group, which
selects actions exactly as were selected by Emma in the pilot
study - we call this deterministic policy the mirror policy.
To be specific, in the simulation, she only picks actions that
have an observed state-action transition, so no action sub-
stitution is used. While there is some stochasticity in the
environment that comes from sampling the Markov chains,
the environment should respond, on average, similarly to the
outcomes that were observed during the pilot study.

To calculate the environment similarity, we directly com-
pare the mirror policy’s action distribution and the action
distribution of the studies during data collection. This com-
parison is made by comparing the ratio of mirror policy’s
action distribution and the study action distribution, using
mean squared error (MSE). We call this metric the action
distribution difference. A low action distribution difference
indicates that the environment reacts as expected.

Policy Tuning We tested three standard methods for rein-
forcement learning, Deep Q-Network (DQN), Proximal Pol-
icy Optimization (PPO), and Advantage-Actor Critic (A2C).
DQN is a Q-learning method where a neural network learns
the value of actions for a particular state. PPO is a policy-
gradient method, which estimates the policy gradients di-
rectly with respect to the reward. A2C is an actor-critic
method, where the critic learns the value of a state, and
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Figure 4: The environment’s action distribution differ-
ence varied with the k-value for the sentence KMeans clus-
tering. After about k = 400, we see little change.

an actor to learn how to select actions. These policies are
implemented using the Stable Baselines package [50].

4. RESULTS
Comparing RL Policy to Observed Decisions Once we identify
the best RL policy, we compare the actions and rewards it
achieves to those of the deterministic policy used during data
collection, as a sanity check for our environment.

Comparing RL Policy to Random Baseline To see the perfor-
mance of the learned policy against an unbiased policy, we
compare the former against a random policy, which selects
actions with equal probability. Consistently outperforming a
random policy demonstrates that the learned policy learned
to navigate the environment and correctly select actions.

Group Equality The amplitude of a policy’s reward in the
environment is not the only goal for a successful policy. On
top of maximizing the reward, we look to ensure group equal-
ity, i.e. positive reward across all groups - to verify that the
learned policy helps different types of students.

Correlations of RL Policy Gains with Student Survey and
Test Metrics The survey and assessment measures were not
used in the environment design or parameters but could im-
pact, or be impacted by, our RL metrics. Thus, we used the
Pearson correlation coefficient to determine which dyadic
factors (i.e., from the average survey and assessments met-
rics) were most highly associated with our RL Policy’s im-
provement in rewards. Doing so provides insight into how
pre-existing factors connect to rewards during interactions
with the robot and how these interactions connect to post-
collaboration perceptions and assessments.

4.1 Evaluating the Environment
The mirror policy is used to tune the environment, and en-
sure that the environment works as expected. The number
of clusters used for the sentence representation affects the
level of stochasticity in the environment. This stochasticity
is present in the language generated via the Markov Chains.
An insufficient amount of clusters can result in a loss of the
structure in the environment. With less clusters, the lan-
guage generation becomes more random, and fails to capture
the information from the pilot study. An excessive amount
of clusters can cause the environment to respond only as was

Figure 5: The action distributions of the various policies. In
the simulated environment, the mirror policy acts similarly
to the actions observed in the pilot study. The RL policies all
tend to prefer statements.

observed during the pilot study, generating nearly-identical
language to what was observed.

To determine the correct number of clusters, the mirror pol-
icy’s action distribution was evaluated while varying the
number of clusters compared to the real distribution, as
shown in Figure 4. Under 100 clusters, we see a large differ-
ence in how the environment responds to the mirror policy’s
actions compared to the observed distribution. However, as
we increase k, we see a decrease in the difference, with little
improvement when k ≥ 400. For that reason, we set k = 400
for all further experiments to ensure that there is some vari-
ability in the environment without deviating from what was
observed in data collection.

In Figure 5, we display the action distribution of the mirror
policy in the simulated environment compared to the ob-
served real-world data. We can see the mirror policy acts
quite similarly to what was observed in the real world – dif-
ferences in actions come from the various sources of stochas-
ticity in the environment.

4.2 Evaluating the Policy
Questions are used more often than statements in both the
pilot study and the mirror policy, but all RL policies flip
the action distribution around - preferring statements over
questions, indicating that there may be deficiencies in the
deterministic policy used for the pilot study.

Tuning and validating the policy were done via two types
of cross-validation. We tested the environment using tradi-
tional 5-fold cross-validation, where the 14 groups are sep-
arated into five subsets or folds, and each fold is used as
a testing set. This methodology models the scenario where
Emma is trained then evaluated with multiple unseen groups
of students. This setting aims to demonstrate that learned
policies provide benefit to more than one group.

To further validate policies learned in the environment, we
also test leave-one-out cross-validation, where each student
group is used as a testing set. In this scenario, we model the
event where Emma is trained in a simulated environment,
then evaluated with a single unseen group of students. This
setting is to demonstrate that learned policies provide ben-
efit to all groups.
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Figure 6: The difference in the performance of the RL policies
and the mirror policy, per fold in K-fold cross-validation.

We compared various learning rates in both scenarios and
three RL policy optimization algorithms, PPO, DQN, and
A2C. In total, 7087 different policies were trained and tested.
Cross-validation takes 75W of power and runs for approx-
imately 35 minutes. Training was performed on 2 Nvidia
GTX 1080ti ($699 MSRP each). Data collection was per-
formed with one NAO Robot ($12990 MSRP).

4.2.1 RL Method Performance Differences
We refer to the difference in reward between an RL method
and the mirror policy baseline as the Magnitude of Reward.
In 5-fold cross-validation (Figure 6), the mirror policy out-
performed the median A2C and DQN policies, as demon-
strated by the slightly negative magnitude of reward. A2C’s
magnitude of reward distribution is roughly normal, while
DQN’s is negatively skewed. The median PPO policy out-
performed the mirror policy, with a positive magnitude of
reward. Furthermore, the PPO magnitude of reward distri-
bution is positively skewed. PPO has an average magnitude
of reward of 0.20, while A2C and DQN both have an average
magnitude of reward of −0.11 and −0.10, respectively.

In leave-one-out cross-validation (Figure 7), we see that the
median magnitude of rewards for all RL policies is slightly
negative. However, while A2C is negatively skewed, DQN is
positively skewed - the average DQN magnitude of reward
is slightly positive. The mean rewards of A2C, DQN, and
PPO are −0.03, 0.06, and 0.02, respectively. In both settings
a higher learning rate resulted in an increase in the policy’s
reward on average.

A2C under-performed the mirror policy in both cross-validation
settings, indicating that it does not work well in this envi-
ronment. While DQN outperformed PPO in leave-one-out
cross-validation, it under-performed the mirror policy in 5-
fold cross-validation, indicating a lack of stability between
settings. PPO outperformed the mirror policy in both set-
tings, demonstrating positive and stable performance.

4.2.2 Gains for Individual Groups
The magnitude of reward of the policy is not the only goal of
using an RL policy. We also aim to help improve groups that
performed poorly during the diagnostic testing so that there
is equal performance and improvement among all groups.
Gains among low-performing groups mean that the policy
may potentially aid students who learn in non-standard ways.

Figure 7: The difference in the performance of the RL policies
and the mirror policy in leave-one-out cross-validation.

Figure 8: Average reward of the PPO RL policy in K-fold
cross-validation, compared to the mirror policy and the ran-
dom policy. The learned policies have a more consistent and
positive average final reward.

Figure 8 shows that the learned PPO RL policies achieve a
consistent and positive average final reward in cross-validation
among all folds. Here, the mirror policy achieves very incon-
sistent results among folds and a negative reward for Fold 3.
The random-action baseline outperforms the mirror policy
here but achieves approximately 0 reward for Fold 3.

We see similar trends in leave-one-out cross-validation (Fig-
ure 9) but slightly more variation. Here, the PPO RL poli-
cies again achieve a positive reward, while the mirror policy
and random-action baseline do not. The mirror policy and
random baseline both achieved a negative reward for Fold 7,
and the random baseline achieved a slightly negative reward
for Fold 2. We note that Fold 2 generally did not respond sig-
nificantly to any method, but the PPO RL policies achieved
the highest average reward.

4.3 Correlations with Diagnostic Metrics
To determine the connections of our simulated environment
to different dyadic factors, we calculated correlations be-
tween the Magnitude of Reward and metrics obtained by
the questionnaire and assessments administered to students.
These correlations may reveal which students are most pos-
itively affected by the boost in MoP and WCO that the
learned policies can achieve in the simulated environment.
We select the three diagnostic metrics with the highest Pear-
son correlation coefficients (in amplitude).

First, the large positive Pearson correlation (+0.672, P =
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Figure 9: Average reward of the PPO RL policy in the leave-
one-out cross-validation setting compared the random policy
and mirror policy. The learned policies have a consistently
positive average final reward.

.008) between the dyads’ average self-reported values for
quality of work in groups and the Magnitude of Reward
suggests that students who more highly value the quality of
work in collaborative settings may have benefited more from
the actions of the learned policies. We would expect to see
this correlation, given the overlapping nature of the group-
work quality construct and key components of Magnitude of
Reward (i.e., balance of participation and entrainment).

Furthermore, the high negative correlation between the dyads’
average pretest scores (−0.634, P = .015) and the Magni-
tude of Reward of the policy may suggest that the groups
with lower prior knowledge before the activity would likely
have benefited more (i.e., better entrainment and balance
of participation) from a policy that was trained in the rein-
forcement learning environment. Similarly, the high correla-
tion between Magnitude of Reward and the dyadic-average
understanding of ratios at posttest (−0.781, P = .001) im-
plies that the groups who performed worse, on average,
than their counterparts could have been benefited by the
improved balance of participation and word co-occurrence
from the reinforcement learning policies.

5. DISCUSSION AND CONCLUSION
Our tests show that our environment exhibits a similar be-
havior under the mirror policy as was observed during the
pilot study, in terms of action distribution (Figure 5). No-
tably, the policies learned in the environment differ signifi-
cantly from the pilot study and the mirror policy, heavily fa-
voring statements over questions, opposite to the rule-based
approach used for the mirror policy. One explanation is that
a question occasionally resulted in a direct response from the
student who originally spoke to Emma. We observed that
statements more often resulted in the students reconvening
and then discussing how to reply to Emma.

This assignment of actions may have its merits, based on
its improvements in both the amplitude and consistency of
environment reward. In both forms of cross-validation, the
policies trained with PPO outperform the mirror policy. We
note that other RL methods had inconsistent performance
across different types of cross-validation. In the Proximal
Policy Optimization algorithm paper [52], the author finds
a improvement in performance and sample efficiency using

PPO over DQN and A2C. In our setting, we are limited
in our number of data-driven samples, and therefore PPO’s
strong performance may be from this data efficiency.

When looking at the results of the individual folds for both
forms of cross-validation, we see that the PPO RL policies
consistently achieve a net positive reward. In 5-fold cross-
validation, RL’s rewards are consistent across folds, while
the mirror policy and random baselines were inconsistent
and even resulted in a significant decrease in one fold’s av-
erage reward. This trend extends to leave-one-out cross-
validation, where the PPO RL policies again achieved a pos-
itive reward on all folds. From our testing, we believe that
the PPO RL policies may benefit all students and demon-
strate performance equity among groups.

These findings are further highlighted by the connections
between the learned policies’ Magnitude of Reward and the
metrics obtained by the questionnaire and students’ diag-
nostic tests. The Pearson correlations may reveal which stu-
dents are most positively affected by the additional MoP and
WCO that the learned policies can achieve in the simulated
environment. The actions of the learned policies may help
the most for students who care highly about their quality of
work in a group setting and may provide the most benefit
for underperforming students. Further empirical investiga-
tion into these links might reveal new understanding of how
interventions under the ICAP and IAM frameworks interact
with individual differences to improve collaboration.

However, the policies trained in this environment have not
yet been validated in a real-world setting with students.
Additionally, the pilot study was performed using a hand-
crafted and deterministic script for interacting with the stu-
dents. The data collected by the script’s actions may have
biases, which could affect the accuracy of the environment.
Furthermore, the pilot study data collection was performed
with undergraduate school students, held virtually. We aim
to test this system in-person and with middle-school stu-
dents. We expect some of our findings in this study may
not carry over to this new setting. In addition, our investi-
gation only looked at one modality. In the future, we aim to
extend this work, adding additional actions such as verbal
references towards particular students and adding physical
gestures and gaze to the robot.

The framework presented here provides a hybrid approach
for using RL in a robot-student setting, by building a envi-
ronment from collected student interaction data. This envi-
ronment can be adapted to any number of actions and stu-
dents without requiring extensive training in the real world.
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ABSTRACT 
Self-regulated learning (SRL) is a critical component of mathemat-
ics problem solving. Students skilled in SRL are more likely to 
effectively set goals, search for information, and direct their atten-
tion and cognitive process so that they align their efforts with their 
objectives. An influential framework for SRL, the SMART model, 
proposes that five cognitive operations (i.e., searching, monitoring, 
assembling, rehearsing, and translating) play a key role in SRL. 
However, these categories encompass a wide range of behaviors, 
making measurement challenging – often involving observing in-
dividual students and recording their think-aloud activities or 
asking students to complete labor-intensive tagging activities as 
they work. In the current study, we develop machine-learned indi-
cators of SMART operations, in order to achieve better scalability 
than other measurement approaches. We analyzed student’s textual 
responses and interaction data collected from a mathematical learn-
ing platform where students are asked to thoroughly explain their 
solutions and are scaffolded in communicating their problem-solv-
ing process to their peers and teachers. We built detectors of four 
indicators of SMART operations (namely, assembling and translat-
ing operations). Our detectors are found to be reliable and 
generalizable, with AUC ROCs ranging from .76-.89. When ap-
plied to the full test set, the detectors are robust against algorithmic 
bias, performing well across different student populations.  

Keywords 
self-regulated learning, SMART model, automated detectors 

1. INTRODUCTION 
Work over the last two decades has developed automated detectors 
of a range of behaviors and constructs in students’ interaction with 
computer-based learning environments [12]. These detectors utilize 
log data collected from these learning environments to infer the 
presence or absence of a complex behavior or a construct in student 
learning. For example, detectors have been built to identify student 
affect (e.g., [7, 21, 31]), engagement (e.g.,[6, 37]), and problem-
solving strategies [43]. Such detectors can be split into two broad 
categories: detectors for post-hoc analysis and detectors for real-
time adaptation. Post-hoc analysis allows researchers to detect 

constructs retrospectively and subsequently understand their prev-
alence (e.g., [32]) and conduct further analysis (e.g., [17, 41]). 
Detectors designed to be run in real-time facilitate adaptive experi-
ences and real-time feedback [48], as well as reports to teachers[1].  

In particular, considerable work has been devoted to detecting and 
understanding behaviors and strategies involved in self-regulated 
learning (SRL). By examining student behavior patterns, auto-
mated detectors have been developed for a range of SRL related 
constructs, including help avoidance [3], gaming the system [7], 
setting goals [5, 14], and planning and tracking progress [14]. How-
ever, the specific constructs being modeled often have not been 
clearly linked to any of the growing number of theoretical models 
of SRL (although [29] is an exception to this) and have mostly been 
operationalized in terms of high-level strategies that combine sev-
eral of behaviors treated as separate in SRL theories, rather than the 
finer-grained behaviors used in those theories [cf. 46, 48]. Captur-
ing fine-grained indicators of key aspects of SRL in terms of these 
theoretical models may yield a better understanding of the process 
of SRL and help EDM research make more direct theoretical con-
tributions. 

Self-regulation is a critical component of learning, and has been 
positively associated with learning outcomes [20, 34, 57]. In math-
ematics problem-solving, students who are skilled in SRL are able 
to effectively set goals, search for information, and direct their at-
tention and cognitive resources to align their efforts with their 
objectives [56]. As a result, SRL facilitates the successful problem-
solving process [20, 34, 57] and enables students to acquire a deep 
and conceptual understanding of the embedded knowledge [31]. 
Given its benefits, theory-based interventions have been developed 
to promote SRL [21]. However, current SRL assessments, such as 
self-reports and think-aloud activities, are not sufficient to provide 
measurement at scale; at the same time, existing scalable SRL as-
sessments based on automated detection in log data are typically 
not connected back to theory, making it difficult to use them in the-
ory-driven interventions. SRL assessments based on automated 
detectors have therefore been used in more ad-hoc, system-specific 
interventions, often with unintended consequences or unexpected 
patterns of findings [2, 35] 

In the current study, we develop automated detectors that identify 
fine-grained evidence of SRL constructs drawn from theory. This 
study does so in the context of CueThink, a digital learning appli-
cation that focuses on enhancing middle school student 
mathematics problem-solving skills. Through the lens of the 
SMART model of SRL (described in greater detail below) [53], we 
identify and operationalize five SRL indicators: numerical repre-
sentation, contextual representation, strategy orientation, outcome 
orientation, and data transformation. We then build automated 
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detectors for each indicator, evaluate their performance, and check 
them for algorithmic bias.  

2. BACKGROUND 
2.1 SRL and the SMART Model 
Grounded in information processing theory, Winne and Hadwin 
[55] characterize the process of SRL as four interdependent and re-
cursive stages, in which learners: 1) define the task, 2) set goals and 
form plans, 3) enact the plans, and 4) reflect and adapt strategies 
when goals are not met. 

The SMART model of SRL [53] was later proposed to further elu-
cidate the processes involved in these four tasks. Specifically, the 
model separates the “cognitive and behavioral actions applied to 
perform the task” into five categories: searching, monitoring, as-
sembling, rehearsing, and translating. Each operation describes a 
way that learners cognitively engage and interact with information. 
For example, when working on a task, learners direct their attention 
to particular information (searching) and compare the information 
with a standard (monitoring), evaluating the relevance or the im-
portance of the information. When relevant information is 
identified, students relate pieces of information to one another (as-
sembling), in order to create a comprehensive understanding of the 
problem. When information does not fit into the current problem 
representation, learners manipulate the ways information is pre-
sented in order to find a solution (translating). Throughout the 
process, working memory is used to actively maintain and reinstate 
information (rehearsing).  

These cognitive operations are an integral aspect of self-regulation: 
they help determine student success at completing each of the four 
SRL tasks, which, in turn, influences the progression of the prob-
lem-solving process [52]. However, despite the SMART categories' 
importance for SRL, they are often difficult to observe or measure, 
as most learning activities (whether online or offline) do not fully 
reify the cognitive process involved in their learning tasks. Further, 
these operations may occur non-linearly, and multiple operations 
can be employed when completing the same task– making the 
measurement of these constructs challenging. 

2.2 Challenges in SRL Measurements 
SRL has typically been measured using three common approaches: 
self-reports, think-aloud activities, and log data collected in com-
puter-based learning environments [51]. With traditional self-
report studies, students are asked about their SRL process either 
outside of a task (i.e., before or after completing a task) or while 
working on a task. In decontextualized self-report (outside of a 
task), students report on the SRL strategies they plan to use or recall 
on the strategies they used, using a pre- or post-task survey. Even 
though this approach is widely used, the nature of surveying cogni-
tive processes outside of the task may lead to inaccuracies in the 
representation of cognition [51]. For example, when recalling a 
cognitive process retrospectively, students may aggregate the out-
of-context, self-reported experience across numerous tasks, failing 
to demonstrate the relationship between the task and the corre-
sponding SRL strategies. For this reason, several studies have 
adopted in-context self-report (e.g., [42, 47, 54]), in which students 
are asked to tag their SRL strategies as they occur.  

Other research has leveraged think-aloud activities that ask students 
to verbalize their cognitive processes when solving a problem [28]. 
As with in-context self-reports, think-alouds give researchers an 
opportunity to identify processes that are contextualized in the 
problem-solving activity and are approximately concurrent with 

their occurrences. However, this process can suffer from an obser-
vation effect. Students being prompted to discuss their thinking 
process in real-time may alter that process and not provide an ac-
curate representation of the processes they would engage in 
naturally [16, 44]. This, in turn, calls into question the validity of 
findings obtained using this type of measurement and whether they 
are generalizable to new students and contexts.   

2.3 Use Log Data to Measure SRL in Com-
puter-Based Learning Environments 

Both self-report and think-aloud approaches are labor-intensive and 
time-consuming, which make them difficult to scale. As such, a 
third approach, analyzing log data collected from computer-based 
learning environments, has emerged as a promising way to measure 
SRL. 

Aleven and colleagues [3] designed an exhaustive set of production 
rules to represent help-seeking behaviors within a geometry learn-
ing system, and then compared  these rules to student problem-
solving steps to determine whether those steps were warranted by 
the current situation. Similarly, Biswas et al. [14] used sequences 
of student behaviors to model a range of SRL behaviors, such as 
monitoring through explanation, self-assessment, tracking pro-
gress, and setting learning goals. Additionally, Segedy et al. [45] 
utilized log data and coherence analysis to assess students’ ability 
to seek out, interpret, and apply information in an open-ended 
learning environment, examining if a student’s subsequent action 
is coherent based on the information presented. 

Researchers have also used textual responses within dialogue-
based learning systems to measure SRL. Graesser and colleagues 
[27] used latent semantic analysis to study student conversations 
with animated pedagogical agents to assess and support SRL. Stu-
dents who frequently use questions in a conversation can be 
interpreted as showing initiative, and engagement in monitoring 
can be inferred when students demonstrate in their responses that 
they feel they know the answer [26]. 

However, often the log data collected does not straightforwardly 
reflect a SRL construct [4]. Researchers must decide what data to 
use, what constructs to measure, and how to operationalize the con-
structs with the existing data [30]. SRL, as a process, covers a range 
of behaviors and strategies, so the constructs can vary depending 
on how SRL is conceptualized and also based on the design of the 
activity the learner is participating in. To ensure the validity of the 
operationalization, it is recommended that the operationalization 
should be conceptualized in terms of a SRL model and contextual-
ized in the learning environment where the data is generated [51]. 

2.4 Algorithmic Bias 
In order to use detectors at scale, we must ensure that they will be 
valid for the entire populations they are scaled to rather than only 
subgroups of students. Recent evidence suggests that many pub-
lished detectors are prone to algorithmic bias, functioning better for 
some populations of learners than others [11]. However, there has 
been limited attention to algorithmic bias within the field of educa-
tional data mining, where analyses of algorithmic bias are rare and 
even overall population demographics are only reported in 15% of 
publications [38]. Verifying detector fairness is particularly perti-
nent to our study given the diverse student population who use 
CueThink, making it important to evaluate detector effectiveness 
across demographic groups before deploying and using the detec-
tors at scale.  
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2.5 Current Study  
In the current study, we address the challenges noted above by 
building automated detectors of SRL constructs from a theory-
driven lens. Using a dataset of 79 students as they interacted with 
the online math learning platform CueThink, we first examine the 
learning environment understanding how students interact with the 
platform and the context of where the log data is generated. Based 
on the context and the log data available, we identify relevant the-
oretical constructs grounded in the SMART model. In particular, 
five SRL indicators relating to cognitive operations in the SMART 
model (in this case, all either assembling or translating) are identi-
fied for investigation. 

We use text replay to code student interactions for each defined in-
dicator. These labels are then used as ground truth for machine 
learning. We distill a variety of features from the log data to repre-
sent multiple aspects of a student’s interaction, including the 
number of responses and the content in the responses. The ground 
truth and the features are then input into a machine learning pro-
cess, training a model to emulate human coders’ judgement, 
making predictions on the presence or absence of a SRL indicator.    

We demonstrate that trained detectors provide accurate detection, 
suitable for real-time use. Finally, we also evaluate, through slicing 
analysis, the performance of our models across different demo-
graphic groups.  

3. METHODS 
3.1 Learning Environment 
CueThink is a digital learning application that focuses on enhanc-
ing middle school student math problem-solving skills, by 
encouraging students to engage in self-regulated learning and to de-
velop math language to communicate problem-solving processes. 
CueThink asks students both to solve a math problem and to create 
a shareable screen-cast video that provides the student’s answer and 
also demonstrates their problem-solving process. As Figure 1 
shows, CueThink structures a problem into a Thinklet, a process 
that includes four phases—Understand, Plan, Solve, and Review—
that closely align with Winne & Hadwin’s model of SRL [55].  

 
Figure 1. Screenshots of CueThink’s 4 Phase Approach 

Each phase of the Thinklet (outlined in Table 1 and described in 
more detail below), asks students to focus on a different part of the 
problem-solving process. While working on a Thinklet, students 
can move freely across the four phases, including going back to a 
previous phase or skipping phases.  

Starting with the Understand phase, students read a problem and 
provide text-based responses to three questions: (1) “What do you 
notice?” (2) “What do you wonder?” and (3) “What is your esti-
mated answer to the problem?”  This phase encourages students to 
actively look for information in the problem and create a represen-
tation of the problem space. Thus, students demonstrate their 
understanding of what they know and what they need to know at 
this phase. 

In the Plan phase, students build on what they have established in 
the Understand phase by planning how they will solve the problem. 
Students are first prompted to select what strategies they will use to 
solve the problem. They may choose from a predefined strategy list 
(i.e., draw a picture, model with an equation, work backwards, etc.) 
or define their own strategies. Once the student has selected which 
strategies they will use, the student is prompted to write a plan on 
how they will use the strategies to solve the problem.  

In the Solve phase, students explain and present their answer. Spe-
cifically, they create a screen cast video using an interface that 
provides them with a whiteboard and mathematical tools (i.e., num-
ber lines, ruler, etc.).  

In the Review phase, students provide the final answer to the math 
problem, but also reflect on whether the answer makes sense and 
whether their communication is clear, using checklists to scaffold 
their reflection. 

Once students have completed the problem, they share their screen-
cast explanation for Peer Review. In this phase, teachers and peers 
annotate both the textual responses and video, often asking the stu-
dent for their underlying reasoning or why the student picked 
specific methods. These annotations are then sent back to the 
video’s author for possible revision. 

Table 1. Summary of Responses by Thinklet Phase 

Phase Tasks Description & Data Types 
Understand What I notice is (textual response) 

What I wonder is (textual response) 
Estimate your answer (textual response) 

Plan Choose your strategies (select all that apply, 
textual response) 
Planning journal (textual response) 

Solve* Video creation tools (Whiteboard, math tools, 
and recording tools) 

Review Check your math (select all that apply) 
Check your recoding (select all that apply) 
Review your estimate (textual response) 
Final answer (textual response) 

* Student activity in the Solve phase is not used in this paper’s anal-
yses 

3.2 Student Demographics 
In this study, 79 students in grade 6 and 7 at a suburban school in 
the southwestern U.S. used CueThink during the 2020-21 school 
year. The school contains a diverse student population with around 
40% Hispanic or Latino, 40% White, 15% African American, and 
5% Asian students. Students’ self-reported demographic infor-
mation on gender and race/ethnicity was collected. For gender, 
students could choose to identify as male, female, non-binary, or 
leave the question blank. For race/ethnicity, options included Afri-
can America, Hispanic/Latinx, White, Asian, Native American, 
two or more races, other, or prefer not to say. Students reporting 
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“other” for their race/ethnicity were provided the option to give de-
tail.  

3.3 Log Data 
CueThink was used in six classrooms over multiple weeks, with 
teachers assigning problems for students to complete in the appli-
cation. We collected log files that reflect how students use the 
application and their problem-solving process. On average, stu-
dents spent 5.2 hours in CueThink and 1.8 hours working on each 
Thinklet. Specifically, for each problem, encapsulated in a Thinklet, 
data generated during the problem-solving process that includes the 
questions students answered and their textual responses at each 
phase were collected. In this study, we analyzed textual and click-
stream data, but did not analyze data from the videos. In total, we 
collected 349 Thinklets from 79 students working on 24 different 
problems. Of those 349 Thinklets, not all were first attempts. Stu-
dents have the opportunity to revise their work, which creates 
another Thinklet. In those cases, it is possible that students do not 
go through the entire problem-solving process. Of the total number 
of Thinklets, 146 were duplicate attempts.  

4. BUILDING DETECTORS 
Building automated detectors of self-regulated behaviors was a 
multi-step process (detailed in the following subsections). First, we 
distilled human-readable text replays from log data. Using these 
text replays, we identified and operationalized qualitative catego-
ries that corresponded with SRL constructs, grounding the 
operationalization in Winne’s SMART model. We then labeled the 
self-regulated behaviors, generating ground truth data. Feature en-
gineering and feature distillation were conducted and used to train 
the predictive models. Lastly, we evaluated model performance and 
checked for algorithmic bias. 

4.1 Text Replays of Interaction Logs 
To facilitate inspection and exploration of the data, we used text 
replays. This method presents segments of interaction data (re-
ferred to as clips) in a human-readable presentation. This process 
facilitates both initial exploration of the data (such as in section 4.2) 
along with the final coding process (section 4.3). Clips are then 
viewed by human coders who label them accordingly [8]. Previous 
studies have used text replay coding to label student affect, disen-
gagement, and learning strategies, such as gaming the system [10], 
confrustion [32], player goals [22], and SRL strategies such as 
whether a student is using a table to plan their analyses [43].This 
approach demonstrates a similar level of reliability as classroom 
observations and is 2-6 times faster compared to other methods of 
generating labels, such as classroom observations, screen replay, 
and retrospective think/emote-aloud protocols [8]. 

The length and the grain-size of text replay clips can vary depend-
ing on both the available data and the granularity of the predictions 
the researcher intends to make. Because this study seeks to detect 
cognitive SRL operations in the problem-solving process, which 
requires a comprehensive examination across questions and phases, 
the log files were delineated into clips on the level of entire 
Thinklets. Each clip contains a student's actions and text-based re-
sponses that were submitted as that student worked through the four 
phases to produce a single Thinklet. (Note that because video data 
was not available in these replays, our coders did not see infor-
mation from the Solve phase.) The clips were distilled from log files 
and presented using a Python window, shown in Figure 2. As video 
data could not be trivially converted into a common text format 
(due to wide variability in the videos), video data was not included 
in the text replays at this time. Creating videos is the primary action 

in the Solve phase, thus the text replays did not contain any data 
from the Solve phase. Coding videos explicitly poses challenges to 
scalability of the work and is beyond the scope of this paper, but 
may be considered in future work.  

4.2 Construct Operationalization 
To identify constructs to detect, we first examined the clips con-
taining student responses in Thinklets and coded student responses 
for indicators of SRL—qualitative categories that correspond with 
SRL constructs (we discuss the details of exactly how the data was 
coded in section 4.3). The definitions of the indicators we coded 
were developed through dialogue between the research team and 
system developers. This process followed the recursive, iterative 
process used in [49] that includes seven stages: conceptualization 
of codes, generation of codes, refinement of the first coding system, 
generation of the first codebook, continued revision and feedback, 
coding implementation, and continued revision of the codes [49]. 
The conceptualization of codes included a review of related litera-
ture, including several theoretical frameworks and perspectives 
[13, 15, 24], primarily focusing on the SMART model [53]. Using 
grounded theory [18], we identified common behaviors that were 
(1) indicative of SRL as characterized by Winne’s SMART model 
[53] and (2) salient in the log files. A draft lexicon and multiple 
criteria were generated for a coding system to help identify these 
constructs. 

Given the learning environment's design and the available data, our 
efforts focused on defining behaviors related to two categories of 
cognitive operations (the assembling and translating operations 
from the SMART model) as they are frequently employed in the 
initial stages of SRL as learners define tasks and set goals. Follow-
ing the process used in [49], two coders (the first and second 
authors) coded a set of clips together, identified five SRL indicators 
(i.e., numerical representation, contextual representation, strategy 
orientation, outcome orientation, and data transformation), outlined 
the criteria for each indicator, and created a rubric. 

The draft coding manual was discussed with all members of the 
research team and developers and designers at CueThink to build a 
common understanding of the criteria and constructs being exam-
ined as well as the features of the system to gain feedback for 
further refinement. This process was repeated until the entire team 
had reached a shared understanding of the criteria and constructs 
being examined by the codebook. The SRL indicators identified, 
the criteria, and alignment with the SMART model are included in 
Table 2. 

Numerical and contextual representation consider a learner’s pro-
cess of creating a problem representation, which often occurs in the 
initial stage in the problem-solving process (i.e., define the task), 
outlined in the four-phase model of SRL [55]. In problem represen-
tation, learners create a problem space by identifying information 
they know and information they need to know. The two SRL indi-
cators encode how learners represent and process information in 
math problems, denoting if numerical components and/or contex-
tual details are noted. We consider both of these processes to reflect 
assembling in the SMART model as students are creating their rep-
resentation of the data from the information provided. There may 
also be overlap with translating in some cases, especially if the 
question provides a different representation to the one the students 
use. However, as this is not always the case, we primarily consider 
both indicators to reflect assembling actions and tag translating ac-
tions in a different code (see below).  
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Strategy and outcome orientation also reflect student assembling 
behaviors. Both indicators consider how students set their goals and 
form plans for the problem-solving process. These two indicators 
demonstrate a difference in focuses (process vs. output).  

Lastly, data transformation reflects behaviors that are associated 
with the translating operation, in which the learner manipulates the 
ways information is represented to them in the problem to find a 
solution. 

Table 2. SRL Indicators Coded through Text Replays 

SMART 
Category 

SRL Indicator Working Definition 

Assembling  Numerical  
Representation 
(NR) 

The learner’s representation of 
the problems includes numerical 
components and demonstrates a 
level of understanding of how the 
numerical values are used in the 
math problem.   

Assembling  Contextual  
Representation 
(CR) 

The learner’s representation of 
the problem includes contextual 
details relating to the set-
ting/characters/situations within 
the given math problem.  

Assembling  Strategy 
Orientation (SO) 

Learners explicitly state a plan 
for how they will find the answer 
for the given math problem, de-
composing information into a 
step-by-step process. 

Assembling  Outcome 
Orientation (OO) 

The learner provides only a nu-
merical estimate of the final 
answer for the given math prob-
lem, suggesting that learners are 
focused on the output instead of 
the process itself. 

Translating Data  
Transformation 
(DT) 

The learner manipulates the ways 
information is represented to 
them in the problem to find a so-
lution. This suggests active 
problem solving. 

 

4.3 Coding the Data 
After constructs were operationalized and defined, we proceeded to 
code the remainder of the data. Two coders, (the same as in the 
previous section), completed the text replay coding in three phases: 
preliminary coding (discussed above), separate coding (two coders 
per clip; for establishing inter-rater reliability), and individual cod-
ing (one coder per clip; for completeness). 

The two coders each used the codebook/rubric to code the same set 
of clips separately. They then compared the labels and computed 
the inter-rater reliability (IRR) kappa. For constructs with low 
kappa, the two coders discussed their differences in labeling and 
conducted another round of coding. This step of separate coding 
and comparing is repeated until an acceptable reliability is estab-
lished. After two rounds of coding, as shown in Table 3, the two 
coders reached an acceptable IRR above 0.60 for all five SRL indi-
cators (M=0.75).  

Table 3. Inter-Rater Reliability in Separate Coding 

SRL Indicator IRR Kappa 
Numerical Representation (NR) 0.83 
Contextual Representation (CR) 0.63 
Strategy Orientation (SO) 0.74 
Outcome Orientation (OO) 0.78 
Data Transformation (DT) 0.74 

 

Once the reliability was established, the coders moved on to the 
individual coding where they split the rest of the clips and coded 
them individually.  

Each construct was considered over the entire thinklet. Thus, in to-
tal, the two coders coded 349 clips. However, in order to 
consistently examine the entire problem-solving process, 167 clips 
that were marked incomplete because students stopped before com-
pleting the entire problem were excluded. Of the remaining 182 
clips, coding resulted in the following distribution of labels: 64% 
numerical representation, 77% contextual representation, 8% strat-
egy orientation, 72% outcome orientation, and 73% data 
transformation. These were produced by 72 students, who, on av-
erage, each contributed 3 clips (max=4, min=1, median=3).    

 
Figure 2. Screenshot of Text Replay Coding Window 

4.4 Feature Distillation 
Two sets of features were distilled to build the detectors. Both sets 
of features consist solely of features that can be extracted and used 
in real-time. The first set of features were designed to provide an 
overview of a Thinklet by examining the number of responses in a 
Thinklet. These features (N = 10) were distilled at the Thinklet level. 
For example, we distilled the number of questions students an-
swered in a Thinklet and the number of responses in each phase. To 
understand the strategies that students select in the Plan phase, we 
also created a feature that counts the number of strategies a student 
selects among the top two strategies used by peers for the same 
problem.  

The second set of features were designed to examine the content 
and the linguistic features of students’ text-based responses. These 
features (N = 90) were first extracted at the response level and then 
aggregated to the phase level. These aggregations were calculated 
for the Understand, Plan, and Review phases. (No textual data was 
extracted from the Solve phase as there was no textual input in this 
phase.)  

Specifically, we distilled whether each response: 1) contains a nu-
merical value, 2) consists of only numerical values, 3) has 
mathematical operation signs, 4) contains a question (if it contains 
a question mark or uses keywords such as “wonder”, “why”, etc.), 
5) uses language that indicates the formation of a plan (e.g., the use 
of keywords like “plan”, “I will”, “going to”, etc.) , and 6) is the 
exact repetition of a previous answer. These criteria generate a set 
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of binary variables for each response. We averaged these binary 
variables across the responses within a phase, creating 18 features 
for each Thinklet.  

Additionally, in each response, we counted the number of 7) char-
acters, 8) words, 9) numerical values, 10) verbs, 11) nouns, and 12) 
pronouns. Features 10-12 were counted using Udpipe, a natural lan-
guage processing toolkit [50]. We also 13) counted the number of 
keywords used from a predefined list that provides the context of 
each problem; and 14) computed how similar each response is to 
the problem item using the Smith-Waterman algorithm [46]. For 
these continuous variables, we computed the mean, standard devi-
ation, and max of the values for each phase, creating 72 features.  

Features distilled from the two sets were combined. In total, 100 
features were extracted from each Thinklet process and were then 
used to construct the automated detectors. Note that we did not ex-
tract any features from the video that students make in the current 
work. Similarly, we did not use any of the audio from the video (or 
transcription thereof) for any features.  

4.5 Machine Learning Algorithms  
We used the scikit-learn library [40] to implement commonly-used 
models, including Logistic Regression, Lasso, Decision Tree, Ran-
dom Forest as well as Extreme Gradient Boosting (XGBoost) as 
implemented in the XGBoost library [19]. XGBoost outperformed 
other algorithms in all cases; we therefore only discuss the 
XGBoost results below.  

XGBoost uses an ensemble technique that trains an initial, weak 
decision tree and calculates its prediction errors. It then iteratively 
trains subsequent decision trees to predict the error of the previous 
decision tree, with the final prediction representing the sum of the 
predictions of all the trees in the set. We tested the detectors with 
10-fold student-level cross-validation. For this approach, the da-
taset was split into 10 student-level folds, meaning that in cases 
where students had multiple Thinklets, all of their data would be 
contained within the same fold and at no time could data from a 
student be included in both the training and testing set. Nine folds 
were used to train the model, and the trained model was used to 
make predictions for the 10th fold. Each fold acted as the test set 
once. Student-level cross-validation was conducted to verify gen-
eralizability to new students. 

Models were evaluated using the area under the Receiver Operating 
Characteristic curve (AUC ROC), which indicates the probability 
that the model can correctly distinguish between an example of 
each class. An AUC ROC of 0.5 represents chance classification, 
while an AUC ROC of 1 represents perfect classification. Results 
were calculated for each fold and averaged to yield one AUC ROC 
score per detector. 

5. RESULTS 
5.1 Model Performance 
Due to the rarity of strategy orientation (only 14 clips were labeled 
with this construct), a detector could not be built for this construct. 
Automated detectors were built for the other four constructs. As 
shown in Table 4, the average AUC ROC derived from 10-fold stu-
dent-level cross-validation is 0.894 for numerical representation 
(NR), 0.813 for contextual representation (CR), 0.761 for outcome 
orientation (OO), and 0.815 for data transformation (DT). These 
findings suggest that the detectors were generally successful at cap-
turing these four SRL constructs. We also calculated the standard 
deviations (SD) of the AUC ROCs across the 10 folds for each de-
tector to investigate the variability across folds. 

Table 4. Detector Performance Measured by AUC ROC 

SRL Indicator AUC ROC (SD) 
Numerical Representation  0.894 (.078) 
Contextual Representation  0.813 (.132) 
Outcome Orientation 0.761 (.076) 
Data Transformation  0.815 (.163) 

5.2 Feature Importance 
To better understand the detectors as well as to inform our under-
standing of how these features relate to the constructs, the SHapley 
Additive exPlanations (SHAP) [33] value, which reflects feature 
importance, was calculated for each feature within each test set.  

These values were then averaged across the 10 testing sets and 
ranked based on their absolute values. Of the 100 features used, 
Table 5 reports the top five features with the highest absolute SHAP 
values for each detector. To understand the directionality, we ex-
amined the average SHAP values of the features listed. A positive 
average SHAP value was found for all the features listed (except 
for one, as indicated in the Contextual Representation section of 
Table 5). The positive values indicate that the features are positive 
predictors of the SRL indicators, suggesting that the higher the val-
ues in each feature, the more likely the model is to infer the 
presence of a SRL indicator.  

Table 5. The Top Five Features from each Detector  

Feature 
Phase Feature 

Numerical Representation 
Understand Mean N of responses that give numerical values 
Understand Max value of the similarity feature which indi-

cates how parallel a student’s response is to the 
original problem  

Understand SD of the similarity feature 
Understand Total N of responses 
Plan Avg value of the similarity feature 
Contextual Representation 
Understand Is there a response to the "what do you notice" 

question? 
Understand Avg N of keywords used 
Understand SD of the N of characters used  

(Contextual Representation less likely) 
Thinklet Total N of responses 
Plan Max value of the N of characters used 
Outcome Orientation 
Review Avg N of keywords used 
Review Avg N of words used  
Understand SD of the N of numerical values used 
Understand Is there a response to the "what is your esti-

mated answer" question? 
Review Avg N of nouns used 
Data Transformation 
Plan N of strategies selected that were among the 

most common strategies used by peers 
Understand SD of the similarity feature 
Plan SD of the N of characters used 
Understand SD of the N of nouns used 
Plan Max value of N of words used 
 

We note that of the 20 features listed in Table 5, 11 are from the 
Understand phase, 5 are from the Plan Phase and 3 are from the 
Review phase. In other words, behaviors in the early phases 
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contributed more heavily to the predictions. This finding aligns 
with how the Thinklets were initially coded. Specifically, the coders 
primarily examined student responses in the Understand phase for 
numerical and contextual representation as this phase contains in-
formation demonstrating how student assemble information and 
create a problem representation; the coders examined the Thinklet 
more broadly when coding for other SRL indicators, as they en-
compass behaviors that span across phases.  

5.3 Algorithmic Bias 
Algorithmic bias occurs when model performance is substantially 
better or worse across mutually exclusive groups separated by gen-
erally non-malleable factors [11]. To validate our detectors, we 
tested the model performance in different student populations, 
based on gender and race/ethnicity using slicing analysis [25]. Spe-
cifically, utilizing the predictions made in the testing sets, AUC was 
computed for each subgroup of students in the data for which we 
received data on group membership. However, due to sample size, 
comparisons were not possible for gender non-binary students 
(N=2), Asian students (N=2), or Native American students (N=0).  

As Table 6 shows, the difference in model performance measured 
by AUC between male and female students is small, ranging from 
0.01-0.11 for the four detectors. The detectors for numerical repre-
sentation and contextual representation performed somewhat better 
for female students (AUCNR = .93, AUCCR = .75) than for male 
students (AUCNR = .82, AUCCR = .74), while detectors for outcome 
orientation and data transformation preformed somewhat better for 
male students (AUCOO = .78, AUCDT = .88) than for female stu-
dents (AUCOO = .74, AUCDT = .87). 

Table 6 also shows the analysis of algorithmic bias in terms of 
race/ethnicity, comparing the AUC between student racial/ethnic 
subgroups that had more than 5 students in our sample: African 
American, Hispanic/Latinx, and White. Small to moderate differ-
ences were observed across the three groups, though the differences 
were not consistent (i.e., no racial/ethnic group consistently had the 
best-performing detectors). However, performance remained ac-
ceptable for all four detectors across all groups. When detecting 
numerical representation and contextual representations, the detec-
tors performed somewhat better for White students (AUCNR = 0.96, 
AUCCR = 0.80), than for African American (AUCNR = 0.92, AUCCR 
= 0.75) and Hispanic/Latinx (AUCNR = 0.88, AUCCR = 0.72) stu-
dents. However, the outcome orientation detector had somewhat 
higher performance for Hispanic/Latinx students (AUCOO = 0.81), 
than for White (AUCOO = 0.80) and African American (AUCOO = 
0.71) students. The data transformation detector performed better 
for African American students (AUCDT = 0.92) than for His-
panic/Latinx (AUCDT = 0.91) and White (AUCDT = 0.83) students.  

Performance was substantially lower for two constructs/group 
combinations: detecting contextual representation for students who 
identify race as other (AUCCR = 0.65) and detecting outcome ori-
entation for students who identify as belonging to two or more races 
(AUCOO = 0.46). These more substantial differences may be due to 
the small sample size of these constructs within these subgroups; in 
future work, larger samples will be collected in order to validate 
performance in these groups. 

Given the data collected, we noticed a considerable number of stu-
dents who declined to report gender (N = 9) and race (N = 19). Both 
groups performed close to the average model performance, across 
groups and contexts. 

6. CONCLUSION AND DISCUSSION  
6.1 Main Findings 
Given the importance of self-regulation in learning, specifically in 
the problem-solving process, an increasing number of studies have 
looked into ways to promote self-regulated learning. This first re-
quires the ability to accurately measure SRL, so that interventions 
can be introduced to encourage and guide students to self-regulate 
effectively. However, the most common ways of measuring SRL in 
a fine-grained fashion – either through self-report and think-aloud 
protocols –are difficult to automate and scale, and they can also 
interrupt or interfere with the learning task. Log data collected from 
computer-based learning environments offers an unobtrusive and 
potentially scalable solution to help understand when and how stu-
dents self-regulate within the problem-solving process, in order to 
inform decisions on intervention (e.g., [3]). However, previous au-
tomated detection of SRL constructs using log data has mostly not 
been explicitly connected to SRL theory. In the current work, we 
explored the possibility of detecting SRL constructs at a fine-
grained level, focusing on detecting cognitive operations (i.e., as-
sembling and translating), outlined in the SMART model [53]. 
Specifically, we detected the presence of four self-regulation indi-
cators related to two categories of operations: numerical 
representation, contextual representation, outcome orientation, and 
data transformation. Evaluated using 10-fold student-level cross-
validation, our detectors were found to be accurate and valid across 
demographic groups, with AUC ROC ranging from .76-.89. 

To understand the detectors, feature importance was examined us-
ing SHAP values. The top five features with the highest absolute 
SHAP values were identified for each detector. With the features 
identified, we find that except for outcome orientation, the detec-
tors primarily rely on features extracted from the Understand and 
Plan phases of the learning activity, the two phases where students 
assemble information and make plans. In particular, the numerical 
representation detector mainly relies on features that examine the 

Table 6. Detector Performance by Gender and Racial/Ethnic Groups 

      Gender Race/Ethnicity 
All Stu-
dents (k-

fold) 

All Stu-
dents 

(Pooled) 
Male Fe-

male 
Left 

Blank 
African 

American 
Hispanic/ 

Latinx White 
Prefer 
Not to 

Say 
Other 

Two or 
more 
races 

N. students 72 72 33 28 9 6 18 8 19 14 5 
N. clips 182 182 81 73 24 20 38 19 50 37 12 

NR 0.89 0.89 0.82 0.93 0.97 0.92 0.88 0.96 0.86 0.85 0.86 
CR 0.81 0.80 0.74 0.75 0.94 0.75 0.72 0.80 0.90 0.65 0.78 
OO 0.78 0.75 0.78 0.74 0.72 0.71 0.81 0.80 0.74 0.78 0.46 
DT 0.82 0.86 0.88 0.87 0.78 0.92 0.91 0.83 0.84 0.82 0.86 
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numerical values used in the Understand phase as well as features 
that compare the similarity between student responses and the prob-
lem item. The numerical value feature makes sense, as the detector 
is operationalized to identify if numerical components are pro-
cessed and represented when students assemble information. 

However, the maximum similarity feature, a feature that takes both 
numerical values and text into account, also contributes to the NR 
indicator. This finding suggests that the NR detector not only ex-
amines if numbers are used in responses, but also how they are used 
in relation to the problem. As such, this finding validates the oper-
ationalization of this indicator, showing that the learner 
demonstrates a level of understanding of how numerical values are 
used in math problems, creating a representation of the problem 
space utilizing numbers.   

The contextual representation detector looks at the keywords used 
in student responses in the Understand phase and the length of the 
responses in the Plan phase, which indicates the relationship that 
the longer the responses are when a student is forming a plan, the 
more likely it is for the student to contextually representing the 
problem. When predicting the presence of outcome orientation, the 
model utilizes features extracted in the Understand and the Review 
phases, understanding students’ use of keywords, nouns, and nu-
merical values in these two phases. At last, the data transformation 
detector checks the number of top strategies students select as well 
as the length and the variation in the length of the responses in the 
Understand and Plan phase.   

Additionally, we examined model performance on different demo-
graphic subgroups of students, both in terms of gender and 
racial/ethnic groups, to verify their fairness and lack of algorithmic 
biases. Relatively small differences were observed in each compar-
ison, and no student group (either gender or racial/ethnic group) 
consistently had the best-performing detectors.  

6.2 Applications 
The detectors built in the current study provide two advantages over 
previous SRL detectors. First, previous SRL detectors generally 
identify higher-level strategies and are not typically linked to the-
ory; in contrast, we specifically based our detectors on a SRL model 
in order to identify theoretically-grounded SRL constructs at a 
finer-grain size. Having developed these fine-grained models of be-
havior associated with the assembling and translating operations of 
SMART, we can conduct analyses to further our understanding of 
the role that cognitive operations play in the broader process of 
SRL. For example, we can investigate questions about how often 
students use these cognitive operations in each of the four tasks out-
lined in the Winne and Hadwin’s four-stage model, and how the 
engagement and the frequency of the engagement in these cognitive 
operations contributes to the success of completing the tasks. Re-
sults from future analyses will help expand the current theoretical 
understanding on SRL, adding specificity to the still high-level pro-
cesses represented in contemporary SRL theory.  

Second, given that most previous detectors are not connected back 
to SRL theory, it has been difficult to use them with theory-driven 
interventions. The detectors proposed in the current study are de-
veloped based on a theoretical model of SRL [46, 48] and are 
operationalized to capture key aspects of the cognitive operations 
in the model. These detectors can therefore be used to facilitate the 
development of adaptive learning environments that respond to stu-
dent SRL, in a fashion connected to theory. For instance, a student 
demonstrating an outcome orientation could be encouraged to re-
flect further on their strategy.  

Similarly, these detectors could also provide theory-grounded in-
formation to teachers (e.g., through a dashboard), providing insight 
on how students are approaching problems. This data can inform 
teachers as they create and refine their problems, as well as inform-
ing how they support their students. As with any application of this 
nature, careful attention will be needed in design to ensure that data 
is presented in the most useful form for teachers and appropriately 
represents the uncertainty in the model (i.e., false positives or false 
negatives).  

6.3 Limitations and Future Work 
This work has five principal limitations that should be addressed in 
future work. First, when validating the fairness of the models, the 
sample size is small (less than five students) for several student 
groups. Reliable comparison of the model performance for these 
groups of students is therefore not possible. In future work, larger 
and more representative samples should be collected in order to 
validate model performance for a broader range of student groups.  

Second, although our detectors are based on a theoretical model of 
SRL, the operationalization of our constructs is contextualized in 
the current learning environment, so our detectors may be platform-
specific. Future work should study the transferability of the current 
detectors by examining their applicability and predictive perfor-
mance, and explore how they can be adapted for use in other 
learning environments. To the extent that some of our detectors 
(such as the data transformation detector) apply across learning en-
vironments, we can investigate their performance within those 
contexts to evaluate their transferability (see, for instance, [39]). 

Third, since the detectors are currently trained on complete 
Thinklets, they will have some limitations in the ways they can be 
used when being implemented in a learning platform. Specifically, 
the detectors will only be able to make predictions after a student 
has solved a problem, providing an indicator at that point on the 
student’s use or lack of use of assembling and translating in the 
problem-solving process. As such, these detectors will not provide 
immediate detection of these strategies when students are working 
through a problem. However, they can still be used to inform teach-
ers and direct their feedback after a problem has concluded, in 
between problems or for the next problem. To enable other uses, it 
may be relevant to examine ways of also making early predictions 
based on incomplete Thinklets in order to provide detection during 
the problem-solving process, enabling real-time interventions. 

Future work should also consider additional methods for ground 
truth labelling. In this work we used a post-hoc tagging approach 
(through text replays), to identify indicators of SRL-related strate-
gies. This approach has the potential to miss crucial “in-the-
moment” events that are not evident from the log data alone. Future 
studies could examine how post-hoc tagging used in the current 
study align with in-the-moment tagging, reported by either student 
themselves or external observers/interviewers (e.g. [7]) to examine 
additional aspects of SRL. 

Finally, future work should consider expanding the scope of this 
work. In the current study, five constructs were identified and four 
modeled. SRL as a process covers a much broader range of behav-
iors and strategies that elicit the use of various cognitive operations. 
Future studies should model and detect a broader range of cognitive 
operations throughout the four stages of self-regulated learning in 
the context of problem-solving. 
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6.4 Conclusions 
To better understand and facilitate the use of self-regulation in 
problem-solving, the current study tested the possibility of scaling 
up SRL measurement by leveraging machine learning to automati-
cally detect individual SRL indicators through the lens of the 
SMART model. We built automated detectors that identify four 
commonly used strategies in math problem solving, indicating as-
sembling and translating operations. Our detectors were found to 
be reliable and generalizable. Additionally, the detectors were also 
tested on different student populations to verify their fairness and 
lack of algorithmic bias, addressing a previously overlooked issue 
in the field of educational data mining. Given these properties, we 
anticipate implementing the detectors in the learning environment 
to collect more fine-grained data and to leverage the detection to 
inform interventions, creating more positive experiences in mathe-
matical problem-solving. 
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ABSTRACT
In an Intelligent Tutoring System (ITS), problem (or ques-
tion) difficulty is one of the most critical parameters, di-
rectly impacting problem design, test paper organization,
result analysis, and even the fairness guarantee. However,
it is very difficult to evaluate the problem difficulty by orga-
nized pre-tests or by expertise, because these solutions are
labor-intensive, time-consuming, leakage-prone, or subjec-
tive in some way. Thus, it is of importance to automatically
evaluate problem difficulty via information technology. To
this end, we propose a novel difficulty prediction framework,
named SQL-DP, for Structured Query Language (SQL) pro-
gramming problems, mastering which plays a vital role in
learning the database technology. In SQL-DP, semantic fea-
tures of problem stems and structure features of problem an-
swers in the form of SQL codes are both computed at first,
using the NLP and the neural network techniques. Then,
these features are used as the input to train a difficulty pre-
diction model with the statistic error rates in tests as the
training labels, where the whole modeling does not intro-
duce any experts, some as knowledge labeling. Finally, with
the trained model, we can automatically predict the diffi-
culty of each SQL programming problem. Moreover, SQL
programming problem answering log data of hundreds of
undergraduates from Guangxi University of China are col-
lected, and the experiments conducted on the collected log
data demonstrate the propped SQL-DP framework outper-
forms the state-of-the-art solutions apparently. In particu-
lar, SQL-DP decreases the RMSE of difficulty prediction by
at most 7.23%, compared with the best-related framework.

Keywords
Problem difficulty prediction, SQL programming problem,
Code structure, Neural network, Intelligent tutoring system

1. INTRODUCTION
∗Corresponding author.
†Corresponding author.

Stem: Query the name of students who have taken the 
course with the course id 'C1'.

Answer: SELECT Sname FROM Student WHERE Sno IN 
(SELECT Sno  FROM SC WHERE Cno = 'C1');

Difficulty: 0.4

Figure 1: An example of SQL programming problem.

With the progress of information technology, Intelligent Tu-
toring System (ITS) services are broadly applied, where
problem (or question) difficulty has become one of the most
critical parameters. The problem difficulty refers to the per-
centage of students who wrongly answer the problem [14].
Given the information of problem difficulty, an ITS can rec-
ommend exercises of suitable difficulty to students with var-
ied knowledge proficiency [31], can automatically organize
a test paper by choosing questions with different difficulty
levels [12], and can better achieve a fairness guarantee for
various other types of education tasks [29]. However, the
difficulty of a problem is not directly observable before the
test is conducted. To predict the problem difficulty in ad-
vance, traditional methods often resort to expertise (e.g.,
experienced teachers) who are asked to manually label the
question difficulty according to their experience, or artificial
tests organization [15]. Unfortunately, these human-based
solutions are limited in that they are labor-intensive, time-
consuming, leakage-prone, or subjective in some way [16].
Therefore, there is an urgent need to design problem diffi-
culty prediction methods without manual intervention.

Recently, several non-human-based solutions that rely on
machine learning techniques have been proposed [16, 23, 29,
18, 21, 8, 11]. For example, in [16], Huang et al. present
TACNN, a test-aware attention-based convolutional neural
network to automatically solve the difficulty prediction task
for reading comprehension problems in standard English
tests. In specific, TACNN utilizes the information of read-
ing passage, question, option, and answer together to predict
the difficulty. As another example, Qiu et al. in [23] pro-
pose a document enhanced attention-based neural Network
(DAN) to predict the difficulty of multiple-choice problems
in medical exams. Besides considering stem, option, and
answer, DAN fetches relevant medical documents to enrich
the information of each question. Moreover, in [29], Tong
et al. design a group of salable data-driven models, i.e.,
C-MIDP and R-MIDP, based on CNN and RNN neural net-
work architectures to predict the difficulty of mathematical
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Figure 2: Examples of SQL programming problems and different code structures of their answers.

questions, which are leveraged by the historical test logs and
the corresponding item materials (e.g., stem, option). How-
ever, no work is still proposed to estimate the difficulty of
Structured Query Language (SQL) programming problems.
Structured Query Language (SQL) is the de-facto database
query language widely used in industry and taught in al-
most all computer-related majors in universities [19, 28], we
thus focus on solving the difficulty prediction for SQL pro-
gramming problems in this paper. Figure 1 shows a SQL
programming problem containing a stem, an answer, and a
difficulty label.

Being different from the existing non-human based solutions
which only emphasizes the analysis of stem and option of
problems, the difficulty of a SQL programming problem is
not only influenced by the stem, options, or answer of the
problem, but also depends to a great extent upon the struc-
ture of the SQL code answer to the problem. Taking the
two SQL programming problems defined over the ‘Student-
Course Database’ in Figure 2 as an example. Note that
the ‘Student-Course Database’ has three tables, namely Stu-
dent, Course, and SC, which records student-course selection
relationships. Though the two examples of SQL program-
ming problems in the figure have very similar stems, their
standard answers in the form of SQL codes exhibit signifi-
cantly different code structures depicted by Abstract Syntax
Trees (ASTs) [17], which makes their difficulty values appar-
ently different from each other.

To this end, we propose SQL-DP, a novel difficulty predic-
tion framework for SQL programming problems and name it
as SQL-DP. SQL-DP consists of two major modules. First,
the feature extraction module is responsible for computing
representations of SQL programming problems by not only
considering the semantic information in their stems, but also
taking the structure information of their answers in the form
of SQL code into account. Using the computed representa-
tions of SQL programming problems as the input, then the
difficulty prediction module in SQL-DP trains a difficulty
prediction model with the statistic error rates in tests as
the training labels. The trained difficulty prediction model
can be applied to estimate the difficulty of a SQL program-

ming problem in an automatic manner. Note that the whole
modeling in SQL-DP does not introduce any human inter-
vention or knowledge labeling, ensuring the usability of the
solution in a wide range of application scenarios. The Main
contributions of this paper include:

• We propose SQL-DP, a novel difficulty prediction frame-
work for SQL programming problems, which not only
considers the semantics of problem stems, but also
leverages the information of code structures of problem
answers to quantify the difficulty of the problem. As
far as we know, this is the first systematic solution to
predict the difficulty of SQL programming problems.

• We collect the stems, answers, and answering results of
hundreds of SQL programming problems by organizing
undergraduates to complete tests of SQL programming
problems using our self-developed SQL online judge
(OJ) system.

• We conduct a group of experiments using the collected
physical-world dataset, and the experimental results
show the superiority of the proposed SQL-DP frame-
work in predicting the difficulty values of SQL pro-
gramming problems.

The rest of our paper is organized as follows. Section 2
discusses the related works; Section 3 states the preliminar-
ies of this work; Section 4 describes details of the proposed
SQL-DP framework for the prediction of SQL programming
problems; then Section 5 evaluates the effectiveness of the
proposed SQL-DP framework using physical-world dataset;
finally Section 6 concludes the paper and points out future
research directions.

2. RELATED WORKS
Problem (or question) difficulty prediction is an important
problem having been widely studied in educational domain.

Traditionally, the difficulty of a question is predicted and
labeled by expertise (e.g., experienced teachers) according
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to their experience[1], which is labor-intensive and subjec-
tive, and not applicable when there are too many questions.
An alternative solution is to organize an artificial test (also
called as pretest) [1, 15], where a small group of students
are required to take part in the artificial test and their er-
ror rates are then used to estimate the question difficulty.
To improve the estimation precision, a group of educational
measurement theories are applied, including Classical Test
Theory (CTT) [6], Item Response Theory (IRT) [9], and
Cognitive Diagnosis Theory [30]. Many well-known tests,
such as Test of English as Foreign Language (TOEFL) and
Scholastic Assessment Test (SAT) predict question difficulty
following such solution. Unfortunately, the artificial tests
based difficulty prediction solution is limited in that it is
not only labour-intensive, time-consuming, but also has the
risk of question leakage [16].

To overcome the shortcomings of traditional methods, with
the development of machine learning technologies, many
non-human based solutions of problem difficulty prediction
emerge, which can be divided into two categories, i.e., sim-
ple regression analysis based and artificial neural network
based.

Simple regression analysis based methods establish a simple
regression model (e.g., linear regression, multiple regression,
and SVM) to construct a mapping function between ques-
tion difficulty and its influence factors, and the difficulty
of new questions can be predicted based on the regression
model. As an early example, Chon and Shin [3] built a
difficulty prediction model for multiple-choice reading test
items by using the multiple regression technique and maxi-
mum likelihood estimation. Several features of items, such
as response time of testees and paragraph length, are set
as the influence factors of item difficulty. A difficulty esti-
mation model based on correlation and regression analysis
for English vocabulary questions was then discussed in [27].
As another example, in [25], Makoto Sano proposed to ex-
tract a series of language features from multiple-choice ques-
tions of reading comprehension, and analyze the extracted
features using multiple regression models to obtain the fea-
tures most related to the question difficulty. Moreover, in [8],
Masri et al, proposed to analyze influence factors (e.g., topic
and depth of knowledge) of difficulty questions in the sixth
grade science test of British primary schools, and establishes
a stepwise regression model to predict the difficulty of ques-
tions. A difficulty prediction model was also presented to-
wards suggestive blank filling questions for English Tenses
[21], which employs the ridge regression model to analyze
many factors (e.g., questions text and blank filling words)
affecting the question difficulty. These regression analysis
based methods, however, have limitations, since they require
some domain knowledge and artificially define the factors af-
fecting the question difficulty.

In view of the limitations of simple regression analysis, many
researchers proposed to learn the complex relations between
influencing factors and question difficulty via artificial neu-
ral networks, and as a result achieved the goal of automatic
question difficulty prediction. For example, in [16], Huang
et al. proposed a model, named TACNN, to predict the dif-
ficulty of reading comprehension questions in English test
via Convolutional Neural Network (CNN), by using the in-

formation of reading passage, question, options, and answer
of each question. Similarly, Tong et al. in [29] proposed a
prediction method for the difficulty of mathematical ques-
tions based on both of CNN and Recurrent Neural Network
(RNN), by analyzing stem, options, and answers of every
question. Besides, in [11], Hsu et al. introduced a novel
method for automated estimation of multiple-choice items
which consist of the following item elements: a question and
alternative options. The proposed method utilizes neural
network to learn embeddings of question materials in se-
mantic space. Then, it computes the semantic similarities
among the stem, answer, and distractors, which are then
together fed to a SVM for training the question difficulty
prediction model. Then, in [18], Lin et al. proposed a ques-
tion difficulty prediction model for Chinese reading compre-
hension problems based on long-term and short-term mem-
ory artificial neural network, while in [23] proposed a diffi-
culty prediction method, named as DAN, for multiple-choice
questions in medical examination based on neural network
model. In specific, besides considering stem, options, and
answer, DAN fetches relevant medical documents to enrich
the information of each question.

Although recent years have witnessed many works that pre-
dict problem difficulty automatically without manual inter-
vention. However, none of these works focus on solving the
difficulty prediction of SQL programming problems whose
answers in the form of SQL codes are significantly different
from their answers. Considering the structure information
of SQL codes has great impact on the difficulty of SQL pro-
gramming problems, all existing works hence can not well
handle the difficulty prediction problem for SQL program-
ming items which is discussed in this paper.

3. PRELIMINARY
In this section, we first introduce the method of capturing
code structure information. Then we formally define the
problem of difficulty prediction for SQL programming prob-
lems.

3.1 Code Structure Extraction
In [13], Hindle et al. demonstrate that programming lan-
guages, similar to natural languages, also contain abundant
statistical properties. However, there are also obvious differ-
ences that the code of programming language contains rich
and clear structural information between programming lan-
guage and natural language[20]. By extracting the structure
information in the code, we can better analyze the source
program. Therefore, some works have studied how to cap-
ture the code structure information[2, 20, 22].

In [20], Mou et al. parse code into AST and design a
novel Tree-Based Convolutional Neural Network (named as
TBCNN) to capture code structural information. In TBCNN
model, an AST node is first represented as a distributed,
real-valued vector so that the (anonymous) features of the
symbols are captured. The vector representations are learned
by a coding criterion in [22]. Then Mou et al. design a set
of subtree feature detectors, called the tree-based convolu-
tion kernel, sliding over the entire AST to extract structural
information of a program. Thereafter they apply dynamic
pooling [26] to obtain information over different parts of the
tree. Finally, a hidden layer and an output layer are added.
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Figure 3: SQL-DP: A difficulty prediction framework for SQL programming problems.

Because the TBCNN model can capture code semantics ef-
ficiently, it has become one of the most classical models of
code structure feature extraction.

As a programming language, SQL can generate AST through
SQL syntax parsers, and then we can use the TBCNN model
to extract the structure information of AST, that is, the
structure information of SQL code. In short, to obtain more
problem information to predict the problem difficulty, ex-
cept the stem of SQL programming problems, we use the
TBCNN model to capture the code structure information
from the answers to SQL programming problems.

3.2 Problem Definition
This paper focuses on the difficulty prediction of SQL pro-
gramming problems. The example of SQL programming
problem is shown in Figure 2. The goal of this paper is
to train problem difficulty prediction model by using prob-
lem stems, answers and real difficulty of SQL programming
problems, and then predict the difficulty of new SQL pro-
gramming problems.

Formally, given the SQL programming problem set P =
{p1, p2, · · ·, pm} and the corresponding real problem diffi-
culty set D = {d1, d2, · · ·, dm}, the goal is to use the above
data P and D to train a model M, and the trained model
M can estimate the difficulty of new SQL programming
problems without test logs. Where P includes the prob-
lem stem text set T = {t1, t2, · · ·, tm} and the problem an-
swer set A = {a1, a2, · · ·, am}. In addition, pi = {ti, ai, di}
,i ∈ {1, 2, · · ·,m}, pi represents the SQL programming prob-
lem i, ti represents the problem stem text of pi, ai represents
the answer to SQL programming problem i, di represents the
real difficulty of pi, and m represents the total number of
SQL programming problems.

In addition, We obtain the real difficulty of each SQL pro-
gramming problem from the test logs, followed the previous
works[23, 16, 29]. Specifically, we calculate the proportion of
incorrect answers by dividing the number of students who
have answered the problem incorrectly by the number of
students who have responded to the problem[23]. The cal-
culation equation of the difficulty of the problem pi is as
follows:

di =
si
Si

(1)

where di is real difficulty of pi, si represents the number of
students who have answered pi incorrectly, and Si represents

the total number of students who have responded to the
problem pi.

4. SQL-DP FRAMEWORK
This section will describe the difficulty prediction framework
of SQL programming problems in detail. As shown in Fig-
ure 3, the difficulty prediction framework of SQL program-
ming problems can be divided into two modules: 1) Fea-
ture extraction module, which mainly extracts features from
the stem and answer of SQL programming problems. The
extracted features include stem text semantic features and
code structure features; 2) The difficulty prediction module,
which uses machine learning to predict the difficulty value
of SQL programming problems. Briefly, given the SQL pro-
gramming problem include stem, answer, and difficulty, we
use the feature extraction model to obtain the text semantic
features and code structure features from the stems and an-
swers. Then we take the above features and real difficulty as
the input of the difficulty prediction module, where the real
difficulty is the trained label. Finally, we can use the trained
model, the stem and answer of new SQL programming prob-
lems to predict the difficulty of new problems, that is, the
new SQL programming question without test logs.

4.1 Feature Extraction Module
The feature extraction module consists of SQL text semantic
feature extraction module and SQL code structure feature
extraction module. The former module uses word embed-
ding techniques to obtain the text semantic features from
the stem of SQL programming problems, and the last mod-
ule extracts SQL code structure features from the answer
to problems. The two modules mentioned above will be de-
scribed in detail below.

4.1.1 SQL Text Semantic Feature Extraction Module
In the task of question difficulty prediction, word embed-
ding technique is often used to obtain the text features of
the question, including word2vec, Term Frequency–Inverse
Document Frequency (TF-IDF), etc[16, 18, 29]. To extract
textual semantic features in SQL programming problems ef-
fectively, we adopt various word embedding techniques used
in [16] and [29] to extract textual information, including
Bag-of-Words (BoW), TF-IDF, and word2vec. Finally, we
select the optimal word embedding technique for follow-up
experiments.

BoW does not consider the order of words in the sentence.
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Figure 5: Tree-based convolution.

Still, it only counts the number of occurrences of words, so
the value of each position of the text vector calculated by
the model is the number of occurrences of the corresponding
word. Because the model only records the first occurrence
of each word and the number of occurrences of each word,
the text features calculated by the model do not contain
important information such as the grammar and semantics
of the text.

TF-IDF is a word embedding technique used to calculate the
importance of each word. The importance of the evaluation
word is based on the term frequency and the inverse docu-
ment frequency of the word appearing in the text. The term
frequency counts the number of times each word appears in
the text. And the inverse document frequency is used To
measure the commonness of each word. The more common
words have smaller IDF values.

word2vec is a technique that can efficiently learn the vec-
tor representation of text, which can accurately capture the
syntactic and semantic word relationships in the text. When
using word2vec to extract semantic information in the stem
of SQL programming problems, we firstly take all the stem
texts of SQL programming problems to train the word2vec
model and obtain the word embedding vector of each word
or character. Then, we segment the stem, remove the stop
word, and replace the remaining words or characters with
the corresponding word embedding vector in order to ob-
tain the representation vector of the stem. Next, the input
of the difficulty prediction module is a fixed length feature,
but the length of words in the different stems is not the same.
According to the method of [29], we set the text semantic
feature of the stem to a fixed length J . If the length of stem
vector is less than J , it is filled with zero. Otherwise, the

word behind J is deleted. Finally, we get the text seman-
tic feature vector of SQL programming problem, which can
retain certain semantic features.

4.1.2 SQL Code Structure Feature Extraction Mod-
ule

Inspired by [20] and [32], in order to capture the tree struc-
ture information of the code as much as possible and en-
rich the input of the difficulty prediction of SQL program-
ming problems, we apply TBCNN model to capture SQL
code structural information. The TBCNN model structure
is shown in Figure 4.

TBCNN model includes embedding layer, tree-based con-
volution layer, dynamic pooling layer, and output layer.
TBCNN first converts the abstract syntax tree of SQL code
into a vector representation suitable for later calculation.
Then, local features are extracted by tree-based convolution,
and a new set of feature vectors with the same structure as
the input tree are obtained. However, the tree structure of
different SQL codes will be different. Therefore, in order to
input it into the final full connection layer, the tree struc-
ture obtained from the convolution layer is simplified into a
fixed vector shape through the dynamic pooling layer. Fi-
nally, classification or regression is carried out through the
full connection layer. This paper applies TBCNN model to
the regression problem, and the training label of the model
is the real difficulty of the problem.

Specifically, the input of TBCNN model is the serialized
abstract syntax tree (AST). Therefore, the model first uses
the pre-training method in [22] to obtain the representation
vector of nodes in ASTs. The more specific representation
method of node vector can be found in [22].

Then, in the tree-based convolution layer, a set of fixed-
depth feature detectors that can slide on the whole AST
is designed to extract the structure information of the pro-
gram. The subtree feature detectors can be viewed as con-
volution with a set of finite support kernels, so the subtree
feature detector is called tree-based convolution. The out-
put of the feature detector is calculated by Equation 2.

y = tanh(

n∑

i=1

Wconv,i · xi + bconv) (2)

where y ∈ RNc , x1, x2, · · ·, xn is the vector representation
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of nodes in the sliding window, and Wconv,i ∈ RNc×Nf is
the parameter, bconv ∈ RNc is the bias, Nc is the number of
feature detectors.

In addition, continuous binary tree (as shown in Figure 5) is
proposed to handle the different number of child nodes. The
convolution layer uses three weight matrices as parameters,
including W t

conv, W l
conv, and W r

conv, in which superscript
t, l, and r refer to “top”, “left”, and “right” respectively.
The weight matrix of node xi in the sliding window is a
linear combination of W t

conv, W l
conv, and W r

conv (as shown
in Equation 3). ηti , η

l
i, and ηri are the coefficients. In this

paper, we use the method in [32] to calculate the coefficient
ηti , η

l
i, and ηri , as shown below:

Wconv,i = ηtiW
t
conv + ηliW

l
conv + ηriW

r
conv (3)

ηti =
dmax − di
dmax

(4)

ηli =

{
i−1
n−1

(1− ηti) non-leaf

0.5(1− ηti) leaf
(5)

ηri = (1− ηti)(1− ηli) (6)

where dmax represents the depth of the sliding window and
di represents the depth of node i in the sliding window.

After convolution, structural features in an AST are ex-
tracted, but the features are still a tree structured set of
vectors, which can not be directly fed into the fully con-
nected layer. Therefore, dynamic pooling [26] is applied to
reduce the tree into a fixed shape vector.

Finally, a full connection layer and an output layer are added
to predict the difficulty of SQL programming problems. The
difficulty prediction task of SQL programming problems in
this paper belongs to regression problem, inspired by [29],
we construct the loss function of the TBCNN model as the
Equation 7.

L =
1

n

n∑

i=1

(p̃i − di)2 (7)

where p̃i and di represent the predicted difficulty value and
the real difficulty value of the problem pi respectively.

4.2 Difficulty Prediction Module
The difficulty of SQL programming problems can be pre-
dicted using various regression models. Therefore, the diffi-
culty prediction module of SQL programming problems uses
a variety of regression models to predict the difficulty of
SQL programming problems to obtain the optimal regres-
sion model. Regression models used include linear regres-
sion (LR) [4], support vector machine (SVM) [7], gradient
boosting decision tree (GBDT) [10], random forest (RF) [5]
and back propagation (BP) [24] neural networks. The lin-
ear regression model is one of the basic regression models
commonly used in linear regression problems, but it cannot
solve nonlinear distribution problems. The SVM model is
common in both linear and nonlinear problems. The RF
model is a kind of integrated algorithm with the advantages
of difficult overfitting, strong anti-noise ability, and strong
interpretability. The GBDT model is an iterative decision

Table 1: The statistics of the dataset.

Statistics Value

# of answer logs 10952

# of students 283

# of SQL programming problems 318

Average answer logs per question 34.4

Average answer logs per student 38.7

Course ID: DB2021-1

Homeworks

Ranking

Scores

HOMEWORK-1 NESTED QUERY

Q1. Please query students studying in the same department as 'Liu Chen'.

Q2. Please query the student ID and name of the students who have taken the course �

        named 'Information system'.

        Full socore: 10       Difficulty:  

        Full socore: 10       Difficulty:  

        Full socore: 10       Difficulty:  

Q3. Please query the course ID of each student who exceeds his or her average score  of�

        elective courses.

Q4. Please query the name and age of any student in the non computer science �

        department who is younger than any student in the computer science department.

Answered

Answer

Submit

SELECT Sno, Cno �

FROM SC x �

WHERE Grade >= �

       (SELECT AVG(Grade)  �

        FROM SC y 

Return CourseList

Figure 6: A graph for self-developed SQL online judge system.

tree algorithm that can be used for regression tasks. The BP
neural network refers to the multilayer feedforward neural
network trained by the BP algorithm. It has strong rep-
resentation ability and nonlinear mapping ability, but its
strong learning representation ability makes it easy to over-
fit.

The following describes the specific process of the difficulty
prediction module:

• Firstly, the text semantic features and code structure
features of the extracted SQL programming problems
are concatenated together and used as the input of
the above regression model. The regression models
are trained using the actual difficulty of the SQL pro-
gramming problems as the training labels.

• Secondly, the model with the best results among the
regression models mentioned above is selected as the
regression model of the difficulty prediction module of
SQL programming problems.

• Thirdly, input the text features and code structure
features of the SQL programming problems that need
to predict difficulty into the trained regression model.
The difficulty of the SQL programming problems can
be obtained.

5. EXPERIMENTS
In this section, we first introduce the source of the dataset.
Then we raise the evaluation metrics and experimental com-
parison methods used in the experiment. Next, we present
the experimental settings in detail. Finally, we summarize
and analyze the experimental results.
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Figure 7: Results of text semantic features obtained by different word embedding technologies on different algorithms.

5.1 Dataset Description
The dataset in this paper comes from our self-developed SQL
OJ system (as shown in Figure 6). The data collection lasted
for two years, involving 306 students from Guangxi Univer-
sity of China. In addition, if only a small count of students
have tried to solve a problem, the obtained difficulty of this
problem will have severe randomness[23]. Therefore we use
the processing method in [23] to process our data. Specif-
ically, we eliminate the problems having no more than ten
test logs, and the detail of dataset after processing is shown
in Table 1.

5.2 Evaluation Metrics
Followed the previous works[23, 29, 16], we use the evalua-
tion metrics commonly used in question difficulty prediction:
Root Mean Square Error (RMSE) and Mean Absolute Error
(MAE). The above two evaluation metrics are widely used
in question difficulty prediction to measure the distance be-
tween the predicted difficulty value and the actual difficulty
value. The smaller the evaluation metric value is, the better
performance the results have. The two evaluation metrics
are shown in Equation 8 and Equation 9 respectively:

RMSE =

√√√√ 1

M

M∑

i=1

(p̃i − di)2 (8)

MAE =
1

M

M∑

i=1

|p̃i − di| (9)

where M represents the number of SQL programming prob-
lems, and p̃i and di represent the predicted difficulty and
real difficulty of programming problem i respectively.

5.3 Comparison methods
The difficulty prediction of questions mentioned in the pre-
vious related work is not for SQL programming problems.
Therefore, we modify C-MIDP model, R-MIDP model, and
H-MIDP model of the mathematical questions proposed in
[29] to adapt to the SQL programming problems. The above
three models first use the word2vec to vectorize the texts
of mathematical questions and use the scoring rate of the
students in the mathematical questions as the actual diffi-
culty value of the mathematical questions. Then take the

real difficulty value of the mathematical questions as the
training labels. Finally, input the text representation vector
of the mathematical problem into different neural networks
for learning. The main processes of the C-MIDP, R-MIDP
and H-MIDP models (The structure diagram of C-MIDP,
R-MIDP, and H-MIDP is presented in the appendix Table
10) are given below .

• First, use the word2vec model to train all the texts of
the mathematical questions, and then the text repre-
sentation vector of the math questions can be obtained.

• Secondly, the text representation vector of the math-
ematical question is used as the models’ input. The
actual difficulty of the question is the scoring rate of
each question, and it is used as the training label of the
model. During the training process, different models
extract different mathematical question information.

• Thirdly, considering that the data in the dataset comes
from many different schools. And the student groups
in other schools have differences in the knowledge level
status, which will cause the scoring rate of the question
(i.e., the actual difficulty value) to be affected by the
difference in the level of the student group. To elim-
inate this effect, a context-related training method is
proposed. That is, a new loss function is constructed
for training the model.

• Finally, for new math questions for which there is no
student answer data or insufficient student answer data,
the text vector of the new question can be input into
the trained model to predict the difficulty of the ques-
tion.

The C-MIDP, R-MIDP, and H-MIDP models have the same
process, and the differences between the three models are:
The C-MIDP model uses a multi-layer Convolutional Neural
Network to mine different levels of text semantic informa-
tion from the text of mathematical questions. The R-MIDP
model uses the recurrent neural network (RNN) suitable
for mining long-range logical relations to mine the sequen-
tial logical information of mathematical problems from the
text. The H-MIDP model combines the advantages of the
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Table 2: TBCNN’s hyperparameters.

Hyperparameter Value

Initial learning rate 0.001

Learning rate decay 0.001

Node embedding dimension 100

Convolutional layers’ dimension 50

C-MIDP and the R-MIDP and can simultaneously extract
crucial semantic information and sequential logic informa-
tion of mathematical problem text.

5.4 Experimental Setup
Word Embedding: In [16] and [29], Huang et al. and Tong
et al. use BoW, TF-IDF, and word2vec technologies to
obtain the text semantic features of questions. Following
their works, we use the aforementioned methods to process
the text semantic features. The Bow and TF-IDF meth-
ods are relatively simple, so we only introduce the setting
of the word2vec in detail. Specifically, the corpus used for
word2vec training is all the stem texts in the dataset. The
maximum number of words after word segmentation in the
problem stem is 17, so we set the number of words in each
problem to 17, and the word vector dimension of each word
is 50. Therefore, the stem text vector of each problem has
a dimension of 850.

TBCNN Setting: The input of TBCNN model is the AST
of programming code. So we first use SQL parser pglast
1 to parse the SQL codes, and then we obtain the AST of
the codes. After that, we serialize the ASTs and take the
serialized ASTs as the input of the TBCNN model. Besides,
TBCNN’s hyperparameters are shown in Table 2.

Other Setting: All models in the experiment use ten-fold
cross-validation to verify the performance of the model. In
experiment, the programming language we used is python,
and the experiment is configured with 2-core CPU, 8GB
memory, 1TB hard disk, and 64-bit Ubuntu operating sys-
tem.

5.5 Experimental Results
In this section, we run an ablation study to highlight the
individual contribution of each module in SQL-DP and com-
pare the SQL-DP proposed in this paper with the C-MIDP,
R-MIDP, and H-MIDP model proposed in [29].

5.5.1 Text Semantic Feature Extraction
A variety of word embedding techniques can be used in the
SQL-DP framework proposed in this paper, so we need to
experiment with different word embedding techniques to ob-
tain the optimal problem text semantic features for subse-
quent experiments.

Figure 7 shows the results of text semantic features obtained
using different word embedding techniques on various ma-
chine learning algorithms. But the RMSE of the LR algo-
rithm exceeds 0.5, and the result on the MAE is also poor,
so we do not show the results of LR algorithm in Figure 7 in

1https://pglast.readthedocs.io/en/v3/index.html

Table 3: Experimental results of regression model selection

Models RMSE MAE

SVM 0.2176 0.1744

GBDT 0.2128 0.1721

RF 0.1977 0.1570

BPNN 0.2022 0.1702

order to a more intuitive display. And the poor experimen-
tal results of LR also prove that LR is not competent for
difficulty prediction problem. Therefore, we will no longer
use the LR algorithm to predict the difficulty of SQL pro-
gramming problems in the subsequent experiments.

In addition, as shown in Figure 7, the text semantic fea-
tures extracted by BoW perform the worst in predicting the
difficulty of SQL programming problems, while the over-
all performance of word2vec is the best. This shows that
the word2vec is more suitable for extracting text semantic
features of problem stems than BoW and TF-IDF for SQL
programming problems. Therefore, we will use word2vec
to obtain the text semantic features of SQL programming
problems in the subsequent experiments.

5.5.2 Regression Model Selection Experiment
SQL-DP can use a variety of regression models to predict the
difficulty of SQL programming problems. Therefore, we ex-
periment with multiple regression models to select the best
model for subsequent experiments. In the regression model
selection experiment, text semantic features and code struc-
ture features are used as the input of the regression model
at the same time. Table 3 shows the results of using the two
features mentioned above as the input of multiple regression
models simultaneously. As can be seen from Table 3, when
both text semantic features and code structure features are
used as the input of the regression model, the results of SQL-
DP using the SVM model are the worst, while the effects of
the RF model are the best. Therefore, in the subsequent
comparative experiment, the SQL-DP framework will use
the RF model to predict the difficulty of SQL programming
problems.

5.5.3 Comparative Experiment
In this section, we compare SQL-DP with C-MIDP, R-MIDP,
and H-MIDP to prove the effectiveness of the difficulty pre-
diction framework of SQL programming problems proposed
in this paper. Given the above text semantic feature extrac-
tion experiment and ablation experiment results, we choose
the SQL-DP framework using word2vec, TBCNN, and RF
algorithm to compare with the C-MIDP, R-MIDP, and H-
MIDP.

Table 4 shows the experimental results of SQL-DP, C-MIDP,
R-MIDP, and H-MIDP. We can see from Table 4 that results
of SQL-DP with respect to the two evaluation metrics, i.e.,
RMSE and MAE, are consistently better than those of C-
MIDP, R-MIDP, and H-MIDP models, which verifies the su-
periority of the proposed SQL-DP in predicting the difficulty
of SQL programming problems. Moreover, we are delighted
to see from the table that SQL-DP increases the RMSE by
7.23%, compared with the best comparison model H-MIDP,
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Figure 8: Comparison between the difficulty predicted by four models and the ground truth on ten SQL programming problems.

which is a great progress made under the context of diffi-
culty prediction for SQL programming problems. Because
the C-MIDP, R-MIDP, and H-MIDP models only extract
information from the text of SQL programming problems
and do not extract the code structure information of the an-
swers. Unlike those three comparison models, in SQL-DP,
in addition to the text semantic feature extraction module,
we can obtain rich semantic information from the stem of
SQL programming problems. The code structure extraction
module can also obtain rich code structure information from
the answers to SQL programming problems. It is the consid-
eration of code structure information in SQL-DP that fur-
ther enhances the difficulty prediction ability of it towards
SQL programming problems, compared with state-of-the-art
models.

In addition, we can observe from Table 4 that the H-MIDP
model performs best among all state-of-the-art models, while
the R-MIDP model performs worst among the three models
C-MIDP, R-MIDP, and H-MIDP. The reason may be that
the RNN in the R-MIDP model is better at capturing the
logical relationship in long sentences. But in the SQL pro-
gramming problem dataset collected in this paper, the de-
scriptions of the stem of the SQL programming problems are
generally short, so the performance of the R-MIDP model
on the SQL programming problems is the worst.

To more intuitively see the advantages of our proposed SQL-
DP in predicting the difficulty of SQL programming prob-
lems, we randomly select 10 problems in the test set. And we
test them with the trained C-MIDP model, R-MIDP model,
H-MIDP model, and our proposed SQL-DP. After that, we
use a broken line diagram (as shown in Figure 8) to show
the distance between the predicted problem difficulty of the
above models and the real problem difficulty. As shown in

Table 4: Comparative experimental results.

Models RMSE MAE

C-MIDP 0.2167 0.1603

R-MIDP 0.2228 0.1785

H-MIDP 0.2131 0.1578

SQL-DP 0.1977 0.1570

Table 5: Ablation experimental results of SQL-DP.

Feature RMSE MAE

Text semantic feature 0.2106 0.1711

Code structure feature 0.2124 0.1721

Text semantic + Code structure 0.1977 0.1570

Figure 8, we can see that the prediction difficulty of SQL-
DP for the selected SQL programming problems is closer to
the real problem difficulty than the C-MIDP, R-MIDP, and
H-MIDP models.

5.5.4 Ablation Experimental
To get deep insights into the contributions of various mod-
ules in the SQL-DP framework proposed in this paper, we
also conduct some ablation prediction outcomes.

As shown in Table 5, we can observe a performance decrease
by removing the SQL text semantic feature extraction mod-
ule or the SQL code structure feature extraction module.
Besides, we can also see that the overall performance of the
SQL text semantic feature extraction module is similar to
that of the SQL code structure feature extraction module.
This observation shows that both SQL code structure fea-
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Figure 9: Scenario of a student using self-developed SQL OJ
system.

tures and SQL text semantic features play an essential role
in the difficulty prediction of SQL programming problems.

5.5.5 Application
Given the effectiveness of the SQL-DP framework proposed
in this paper, we use the trained SQL-DP to predict the
difficulty of new SQL programming problems. That is, the
problem without student test logs. And apply it to our self-
developed SQL OJ system, as shown in Figure 6. Specifi-
cally, we map the problem difficulty value from 0 to 1 to 5
stars. Among them, the problem difficulty value from 0 to
0.1 is half a star, value from 0.1 to 0.2 is one star, and so
on. Figure 9 shows a student practicing SQL programming
problems using our self-developed SQL OJ system. The stu-
dent can choose to do simple SQL programming problems
first according to the problem difficulty labels or challenge
herself to choose more difficult SQL programming problems
in our system.

6. CONCLUSIONS
Conclusions. In this paper, we propose SQL-DP, a novel
framework that automatically predicts difficulty of SQL pro-
gramming problems. SQL-DP makes full use of the infor-
mation in problem stems and problem answers in the form
of SQL codes, based on which the difficulty values of SQL
programming problems can be effectively estimated using
machine learning techniques. Besides, we organized many
tests of SQL programming problems in real teaching prac-
tice, which last for two years and involve seven different
undergraduate classes in Guangxi University of China, and
collected a SQL dataset containing materials and student
answering logs of hundreds of SQL programming problems.
Experimental results over our collected physical-world SQL
dataset show that the proposed SQL-DP gains apparently
better prediction performance towards SQL programming
problems, compared with state-of-the-art solutions.

Generalization. Though SQL-DP is discussed for the diffi-
culty prediction of SQL programming problems, it can be
easily generalized to address the difficulty prediction of pro-
gramming problems using other languages (such as C and
Java), since the consideration of structure information of
problem answers is also very important for these program-
ming problems.

Future Works. Two important directions for future works
can be considered. First, we will consider more features
of SQL programming problems, such as equivalent answers,
SQL concepts (e.g., nested queries, multiple tables), etc.
Second, to support the difficulty prediction task of program-
ming problems corresponding to more types of programming
languages, we will modify and adapt the proposed SQL-DP
framework, including the design or use of neural network
layers.

Related Resources. To better promote related study of SQL
programming problems, the source code of the proposed
SQL-DP framework and partial of our collected SQL dataset
used in the experiment are all released and can be assessed
though the link below: https://github.com/SQL-DP/SQL-DP
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ABSTRACT
Neural networks are ubiquitous in applied machine learning
for education. Their pervasive success in predictive perfor-
mance comes alongside a severe weakness, the lack of ex-
plainability of their decisions, especially relevant in human-
centric fields. We implement five state-of-the-art method-
ologies for explaining black-box machine learning models
(LIME, PermutationSHAP, KernelSHAP, DiCE, CEM) and
examine the strengths of each approach on the downstream
task of student performance prediction for five massive open
online courses. Our experiments demonstrate that the fam-
ilies of explainers do not agree with each other on feature
importance for the same Bidirectional LSTM models with
the same representative set of students. We use Principal
Component Analysis, Jensen-Shannon distance, and Spear-
man’s rank-order correlation to quantitatively cross-examine
explanations across methods and courses. Furthermore, we
validate explainer performance across curriculum-based pre-
requisite relationships. Our results come to the concern-
ing conclusion that the choice of explainer is an important
decision and is in fact paramount to the interpretation of
the predictive results, even more so than the course the
model is trained on. Source code and models are released at
http://github.com/epfl-ml4ed/evaluating-explainers.

Keywords
Explainable AI, LIME, SHAP, DiCE, CEM, Counterfactu-
als, MOOCs, LSTMs, Student Performance Prediction

1. INTRODUCTION
The steep rise in popularity of neural networks has been
closely mirrored by the adoption of deep learning for educa-
tion. For the majority of educational data modeling tasks
such as student success prediction (e.g., [1]), estimating early
dropout (e.g., [2]), and knowledge tracing (e.g., [3, 4]), the
recent literature relies on neural networks to reduce human
involvement in the pipeline and boost overall prediction ac-

curacy. Unfortunately, these advances come at a significant
cost: traditional machine learning techniques (e.g., linear re-
gression, SVMs, decision trees) are simple, but interpretable,
where deep learning techniques trade transparency for the
ability to capture complex data representations [5].

There is a compelling need for interpretability in models
dealing with human data, especially in education. [6] em-
phasizes that explainability and accountability should be in-
corporated in machine learning system design to meet social,
ethical and legislative requirements. Other work [7] strongly
argues for the necessity of interpretable models in educa-
tion, specifically in settings where students can see the ef-
fect of a decision but not the reasoning behind it (e.g., Open
Learner Models). Predictions of student performance are of-
ten used to determine underachieving students for targeted
downstream interventions. Identifying important features
motivating failure or dropout predictions is crucial in de-
signing effective, personalized interventions.

However, there exists only a handful of papers focusing on
explainability in the field of machine learning for education.
For example, [8] examined the inner workings of deep learn-
ing models for knowledge tracing through layer-relevance
propagation. Other researchers [9] experimented with tra-
ditional machine learning models for student success pre-
diction and implemented local explanations with LIME for
transparency in the best performing model. Additionally,
[10] used SHAP feature importances to interpret student
dropout prediction models. [11] suggested interventions for
wheel-spinning students based on Shapley values. Finally,
[12] explored LIME on ensemble machine learning methods
for student performance prediction, [13] integrated LIME
explanations in student advising dashboards, and [14] used
LIME for interpreting models identifying at-risk students.

While field of neural network explainability is also nascent in
the broader machine learning community, the last five years
have shown a sharp increase in research and industry inter-
est in this topic. Local, instance-based explainability meth-
ods like LIME [15] and SHAP [16] have become immensely
popular. These methods have been successfully applied on
models predicting ICU mortality [17], non-invasive ventila-
tion for ALS patients [18], and credit risk [19]. Recent work
in counterfactual explanations [20, 21, 22] searches for a min-
imal subset of features that leads to the prediction alongside
a minimal feature subset that needs to be changed for the

V. Swamy, B. Radmehr, N. Krco, M. Marras, and T. Käser. Eval-
uating the explainers: Black-box explainable machine learning for
student success prediction in MOOCs. In A. Mitrovic and N. Bosch,
editors, Proceedings of the 15th International Conference on Edu-
cational Data Mining, pages 98–109, Durham, United Kingdom, July
2022. International Educational Data Mining Society.
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prediction to change. Counterfactuals have been used in
tasks like image classification [23], loan repayment [24], and
grouping websites into topics for safe-advertising [25].

Although the explainability corpora is growing, there is a
clear gap in explainability literature for education, with an
even more pressing need for work (quantitatively) comparing
different explainability methods. To the best of our knowl-
edge, current research on explainability in education is ex-
clusively applied: the majority of previous research imple-
ments only one specific explainability method to interpret
the predictions of their proposed approach.

To address this research gap, we examine and compare five
popular instance-based explainability methods on student
success prediction models for five different massive open
online courses (MOOCs). We formulate comparable fea-
ture importance scores for each explainer, scaled between
[0, 1] on a uniformly sampled, stratified representative set
of students. To quantitatively compare the feature impor-
tance distributions, we propose the use of different mea-
sures: rank-based metrics (Spearman’s rank-order correla-
tion), distance metrics (Jensen Shannon Distance), and di-
mensionality analysis (Principal Component Analysis). We
validate the explanations through an analysis of feature im-
portance on a MOOC with known prerequisite relationships
in the underlying curriculum. With our experiments, we
address three research questions: 1) How similar are the
explanations of different explainability methods for a spe-
cific course (RQ1)? 2) How do explanations (quantitatively)
compare across courses (RQ2)? 3) Do explanations align
with prerequisite relations in a course curriculum (RQ3)?

Our results demonstrate that the feature importance distri-
butions extracted by different explainability methods for the
same model and course differ significantly from each other.
When comparing the feature importances across courses, we
see that LIME is far apart from all other methods due to se-
lecting a sparse feature set. Furthermore, our findings show
that the choice of explainability method influences the fea-
ture importance distribution much more than the course the
model is predicting on. Our examination on prerequisite re-
lationships between features further indicates that the three
families of methods are only partially able to uncover pre-
requisite dependencies between course weeks. Source code
and models are released on Github1.

2. METHODOLOGY
The goal of this paper is to compare explanations from deep
learning models tasked with identifying student success pre-
diction in MOOCs. In this section, we formalize the stu-
dent success prediction task addressed in this paper includ-
ing the data collection and preprocessing, feature extraction,
and model preparation. We then introduce the considered
explainability methods and describe the process to extract
explanations for student success predictions from a trained
model, showcased as feature importance weights.

2.1 Formal Preliminaries
We consider a set of students S enrolled in a course c part
of an online educational offering C. Course c has a prede-

1
http://github.com/epfl-ml4ed/evaluating-explainers

fined weekly schedule consisting of N = |O| learning objects
from a catalog O. Students enrolled in a course interact
with the learning objects included in the course schedule,
generating a time-wise clickstream (e.g., a sequence of video
plays and pauses, quiz submissions). We denote a click-
stream in a course c for a student s ∈ S as a time series
Is = {i1, . . . , iKs} with Ks being the total number of inter-
actions of student s in course c. Each interaction i ∈ Is is
represented by a tuple (t, a, o), including a timestamp t, an
action a (videos: load, play, pause, stop, seek, speed; quiz:
submit), and a learning object o ∈ O (video, quiz). Given
the weekly course schedule, we assume that tw identifies the
time t where the course week w ∈ {0, . . . ,W} ends, and
that the clickstream of student s generated until the end of
the w week can be denoted as Itws . We also assume that
the course schedule includes one or more assignments per
week and that the grade record of student s across course
assignments is denoted as Gs = [g1, . . . , gW ], where gw ∈ Gs
is the grade student s received on the assignment in week
w. In the case of multiple graded assignments for a certain
week, we considered the average score of graded assignments
for that week and scored non-attempted assignments with
0. We denote as ys ∈ {0, 1} the success label for student s.

2.2 Data Preprocessing
A significant portion of MOOC students enroll just to watch
a few videos or find that the curriculum material is not what
they expected and drop out of the course in the first weeks
[26, 27]. It follows that it is easy to predict the success la-
bels ys for this selection of students by simply looking at
their initial few weekly assignment grades in Gs. There-
fore, optimizing complex deep learning models for predict-
ing student success on early-dropout students is inefficient.
Using these complex deep models also leads to less inter-
pretable predictions in comparison with traditional models.
For this subset of early-dropout students, traditional mod-
els can both achieve a comparable accuracy and still remain
interpretable. To identify early-dropout students, we fit a
Logistic Regression model on the assignment grades of the
first two course weeks. The input data is the vector GWs ,
where W is the number of course weeks (W = 2 in our ex-
periments) whereas the ground truth is the student success
label ys. Once the model is fitted, we filter out the students
that had a predicted probability of course failure p̂s > 0.99.
We determine the optimal threshold via a grid search over
{0.96, 0.97, . . . , 0.999}, maximizing the model balanced ac-
curacy. Henceforth, we consider S to be the student popu-
lation obtained after the early-dropout student filtering.

2.3 Feature Extraction
As an input for our student success prediction models, we
consider a set of behavioral features extracted for each stu-
dent s ∈ S based on their interactions Is. We include four
feature sets proved to have high predictive power for success
prediction in MOOCs [28]. Given the size and variety of the
course data considered in our study, we included all features
of the four features sets, instead of considering only the spe-
cific features identified as important by at least one course
[28]. Formally, given interactions Is generated by students

S until a course week w, we create a matrix H ⊂ R|S|×w×f

(i.e, each feature in the feature set is computed per student
per week), where f ∈ N is the dimensionality of the feature
set. We focus on the following behavioral aspects:
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Figure 1: Our experimental pipeline, from data processing to post-hoc explainability methods.

• Regularity features (H1, shape: |S| × w × 3) monitor the
extent to which a student follows regular study habits [29].
• Engagement features (H2, shape: |S| × w × 13) monitor

the extent to which a student is engaged in the course [30].
• Control features (H3, shape: |S| × w × 22) measure the

fine-grained video consumption per student [31].
• Participation features (H4, shape: |S| × w × 4) monitor

attendance on videos/quizzes based on the schedule [28].

We extract the above features for each student s and con-
catenate features across sets to obtain the final combined be-
havioral features hs per student. The overall matrix of fea-
tures is defined as H ∈ R|S|×w×42, with H = [H1·H2·H3·H4]
(· denotes a concatenation). Due to the different scales, we
perform a min-max normalization per feature in H (i.e., we
scale the feature between 0 and 1 considering all students
and weeks for that feature). We elaborate on the most im-
portant features later on in the paper as highlighted by the
analyses in subsequent experiments (e.g., Table 1).

2.4 Model Building
Given a course c, we are interested in creating a success
prediction model that can accurately predict the success la-
bel ys for student s, given the extracted behavioral features
hs. To this end, we rely on a neural architecture based on
Bidirectional LSTMs, which can provide a good trade-off be-
tween effectiveness and efficiency2. The model input is rep-
resented by H, i.e., the extracted behavior features, having
a shape of |S| ×W × 42. NaN values were replaced with the
minimum score the student can receive for each respective
feature. These features are then fed into a neural architec-
ture composed by two simple yet effective BiLSTM layers
of size 32 and 64 (loopback of 3) and a Dense layer (with
Sigmoid activation) having a hidden size of 1. The model
outputs the probability the student will pass the course.

2.5 Explanation
Input behavioral features contribute with varying levels of
importance to the prediction provided by a success predic-
tion model. We unfortunately cannot examine the impor-
tance of these features directly, since deep neural networks
act as black boxes. Explainability methods can therefore be
adopted to approximate the contributions of each feature in
H towards the prediction associated with a specific student
s. To explore this aspect, we consider five instance-based ex-
plainability methods that are popular in the literature and
cover different method families [32, 5]. We then compute
the feature importance vector for each student s, based on

2Experimental details can be found in Appendices A and B.

each explainability method. Formally, given an explainabil-
ity method, we denote es ∈ Rw∗42 as the feature importance
weights returned by the explainability method for student s.
The feature importance weight es[i] is a score, comparable
across explainability methods, that represents the impor-
tance of feature hs[i] to the model’s individual prediction
for student s. The considered explainability methods are
described below.

LIME [15] trains a local linear model to explain each indi-
vidual student instance hs. To this end, it first generates
perturbed instances h1

s, h
2
s . . . h

n
s by shifting the feature val-

ues of hs a small amount. These new instances are then
passed to the original model to get their associated predic-
tions. Finally, a local interpretable model (e.g., a Support
Vector Machine) is trained on the perturbed instances (in-
put) and the corresponding predictions obtained from the
original model (labels), weighting perturbed instances by
proximity to the original instance. Mathematically, the lo-
cal model can be expressed with the following equation:

LIME(hs) = argming′∈G′L(g, g′, πhs) + Ω(g′) (1)

where hs is the instance being explained, G′ is the family of
all possible explanations, L the loss that measures how close
the predictions of the explainer g′ are to the predictions of
the original model g, πhs is the feature proximity measure,
and Ω(g′) represents the complexity of the local model. As
LIME returns feature weights π1 . . . π|hs| representing the
feature influence on the final decision, we consider these ab-
solute values to be the importance scores es, and scale them
to the interval [0, 1], where 1 indicates high importance.

KernelSHAP [16] draws inspiration from game-theory based
Shapley values (computing feature contributions to the re-
sulting prediction) and LIME (creating locally interpretable
models). This SHAP variant uses a specially-weighted local
linear regression to estimate SHAP values for any model.
Let x = hs be the student instance being explained. A
point x′ in the neighborhood of x is generated by first sam-
pling a coalition vector z ∈ R|hs|. The coalition vector uses
a binary mask to determine which features from x will be
kept the same in the new instance x′, and which will be
replaced by a random value from the data distribution of
that feature in H. Feature importance weights for each new
instance x′ are calculated using a predefined kernel, after
which the local model can be trained. A SHAP explanation
is mathematically defined as:

g′(z′) = π0 +

|hs|∑

hs=1

πhsz
′
hs (2)
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Set Feature Description

Regularity

DelayLecture The average delay in viewing video lectures after they are released to students.

RegPeakTimeDayHour Regularity peak based on entropy of the histogram of user’s activity over time.

RegPeriodicityM1 The extent to which the hourly pattern of user’s activities repeats over days.

Engagement

AvgTimeSessions The average of users’ time between subsequent sessions.

NumberOfSessions The number of unique online sessions the student has participated in.

RatioClicksWeekendDay The ratio between the number of clicks in the weekend and the weekdays

StdTimeSessions The standard deviation of users’ time between subsequent sessions.

TotalClicksProblem The number of clicks that a student has made on problems this week.

TotalClicksWeekend The number of clicks that a student has made on the weekends.

TotalTimeProblem The total (cumulative) time that a student has spent on problem events.

TotalTimeVideo The total (cumulative) time that a student has spent on video events.

StdTimeBetweenSessions The standard deviation of the time between sessions of each user.

Control

AvgReplayedWeeklyProp The ratio of videos replayed over the number of videos available.

AvgWatchedWeeklyProp The ratio of videos watched over the number of videos available.

FrequencyEventLoad The frequency between every Video.Load action and the following action.

Participation

CompetencyAnticipation The extent to which the student approaches a quiz provided in subsequent weeks.

ContentAlignment The number of videos for that week that have been watched by the student.

ContentAnticipation The number of videos covered by the student from those that are in subsequent weeks.

StudentSpeed The average time passed between two consecutive attempts for the same quiz.

Table 1: Features used in model explainability analysis. For brevity, we only list the 19 features that have been identified as
important by at least one explainability method in our analysis in Section 3.

where g′ is the local explainer, πhs ∈ R is the SHAP value
(feature attribution) of feature hs, and z′ ∈ {0, 1}|hs| is
the coalition binary value. To achieve Shapley compliant
weighting, Lundberg et al. [16] propose the SHAP kernel:

πhs(z′) =
(|hs| − 1)(

|hs|
|z′|

)
|z′| (|hs| − |z′|)

(3)

where |hs| is the maximum coalition size and |z′| is the num-
ber of features present in coalition instance z′ [5].

SHAP methods directly provide values πhs representing the
feature contribution to the prediction ys of instance s. To
obtain the importance scores es, we apply the same transfor-
mation as LIME, by taking the absolute values of the SHAP
feature attributions and scaling them to the interval [0, 1].

PermutationSHAP (PermSHAP) [16] is very similar to the
KernelSHAP formulation, but does not require the tuning
of a regularization parameter or a kernel function. We made
the decision to include both KernelSHAP and PermSHAP
as a form of validation of our comparative evaluation anal-
ysis; the distance between two very similar SHAP methods
is expected to be smaller than the distance between these
SHAP methods and other families of explainability methods.
PermSHAP approximates the Shapley values of features by
iterating completely through an entire permutation of the
features in both forward and reverse directions (antithetic
sampling). To extract the feature importance vector es, we
again consider the absolute values of the SHAP feature at-
tributions and scale to the interval [0, 1].

Contrastive Explanation Method (CEM) [22] identifies which
features need to be present (pertinent positives) or which
features must be absent (pertinent negatives) in order to

maintain the model prediction ys for a student s with be-
havioral features hs [22]. For our setting, we consider per-
tinent negatives as they are intuitively more similar, and
therefore comparable, to other counterfactual-based explain-
ability methods. For each generated pertinent negative, we
calculate the importance score for each feature by multi-
plying the absolute change from the value in the original
instance to the value in the pertinent negative, modeled as
the standard deviation (SD) of that feature X̃(hs) across
all instances used for the experiment X(hs), as shown in
the following formula:

CEM(hs) = [X(hs)− X̃(hs)]× SD(hs) (4)

The importance score therefore takes into consideration both
the necessary perturbation of the feature as well as the sig-
nificance of the change relative to the feature range. We nor-
malize the scores in the range [0, 1], such that the resulting
feature importance weights es can be directly comparable.

Diverse Counterfactual Explanations (DiCE) [20] generates
example instances to explain the model prediction as well.
However, while CEM describes conditions necessary to keep
the prediction unchanged, DiCE describes the smallest pos-
sible change to the initial instance that results in a different
prediction. In other words, DiCE generates nearest neighbor
counterfactual examples by optimizing the loss:

DiCE(hs) = arg min
c1,...,ck

1

k

k∑

i=1

yloss (g (ci) , y)

+
λ1

k

k∑

i=1

dist (ci, hs)

− λ2 diversity (c1, . . . , ck)

(5)

where ci is a counterfactual example, k is the total number
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of examples to be generated, g is the black box ML model,
yloss is a metric that minimizes the distance between the
prediction g′ makes for ci and the desired outcome y, hs
is the original input with |hs| input features, and diversity
is the Determinantal Point Process (DPP) diversity metric.
λ1 and λ2 are hyperparameters that balance the three parts
of the loss function. The stopping condition is convergence
or 5000 time steps per counterfactual. Microsoft’s DiCE
library [20] has a built-in function to compute local feature
importance scores from the counterfactual instances, scaled
in [0, 1]. We use them as feature importance weights es.

3. EXPERIMENTAL ANALYSIS
We evaluated the explainability methods on five MOOCs.
We first explored how feature importance varies across dif-
ferent explainers for one specific course c (RQ1). We then in-
vestigated the similarity of the explainability methods across
the five courses using distance metrics (RQ2). Finally, we
assessed the validity of the explainers using simulated data
from a course c with a known underlying prerequisite skill
structure (RQ3). In the following sections, we describe the
dataset and optimization protocol used for the experiments
before explaining each experiment in detail.

3.1 Dataset
Our experiments are based on log data collected from five
MOOCs of École Polytechnique Fédérale de Lausanne be-
tween 2013 to 2015. We chose the five courses to cover a
diverse range of topic, level, and language. Table 2 describes
the five courses in detail. We include two subsequent itera-
tions of the same computer science course (DSP) with differ-
ent student populations (French Bachelor students vs. En-
glish MSc students). Besides computer science, we also cover
courses in the areas of mathematics (Geomatique), social sci-
ences (Villes Africaines) and engineering (Micro). In total,
the raw data set contained log data from 75,992 students.
After removing the early-dropout students (see Sec. 2.2),
19,805 students remain in the data set. The smallest course
contains 452 students, while the largest course contains 5,643
students. Students’ log data consists of fine-grained video
(e.g., play, pause, forward, seek) and quiz events (e.g., sub-
mit). Interaction data is fully anonymized with regards to
student information, respecting participants’ privacy rights.

3.2 Experimental Protocol
For each course c ∈ C, we trained a BiLSTM model Mc

on features Hc extracted from c. For the optimization, we
used batches of size 32, an Adam optimizer with an ini-
tial learning rate of 0.001, and a binary crossentropy loss.
After an initial grid search3, we selected the same architec-
ture for all models: two BiLSTM layers consisting of 64, 32
units and one Dense layer consisting of 1 unit with a Sig-
moid activation. As this work is not focused on improving
model performance, we did not tune hyperparameters fur-
ther. Formally, we split the data of each course c into a
training data set Strain,c (80% of the students) and a test
data set Stest,c (20% of the students). For each course, we
performed a stratified train-test split over students’ pass/fail
label. We then trained each model Mc on the training data
set Strain,c and then predicted student success on the respec-
tive test data set Stest,c. We chose the balanced accuracy

3Grid search is discussed further in Appendix A.

(BAC) as our primary evaluation metric because of the high
class imbalance of most of the selected courses.

For the first two experiments (RQ1 and RQ2) we used the
student log data collected for the full duration of the course
for training and prediction of our models. In the third exper-
iment, we optimized models for different sequence lengths,
i.e. using only the log data up to a specific week w of the
course (i.e. from week 1 to week w) to predict performance
in the assignment of course week w. Additional replication
details for model training can be found in Appendix B.

For all experiments, we applied the explainability methods
to the predictions of the optimized models Mc. All five
methods are instance-based; they compute the feature im-
portance based on the model predictions for a specific in-
stance. Training explainers on the scale of thousands of
students across five courses is not feasible due to the compu-
tation time required to generate the explanation for one in-
stance (e.g., the counterfactual explainability methods take
a computation time of 30 minutes per instance s). There-
fore, we determined a representative sampling strategy to
pick 100 students from each course c, resulting in explana-
tions for 500 students in total4. For the first two experiments
(RQ1 and RQ2), we used a uniform sampling strategy to
select the representative students sri,c for a course c and en-
sured balance between classes (pass/fail). We first extracted
all failing students and ordered them according to the pre-
dicted probability of the model p̂(lSi = 0). We then uni-
formly sampled 50 failing students from this ordered inter-
val. We repeated this exact same procedure to sample the 50
passing students. This sampling procedure ensures that we
include instances where the model is confident and wrong,
instances for which the model is unsure, and instances where
the model is confident and correct. For the last experiment
(RQ3), we used performance in the assignment of a given
week w as the binary outcome variable. We then followed
exactly the same uniform sampling procedure as for RQ1 and
RQ2, ensuring class balance on assignment performance.

3.3 RQ1: Explanations for one course
In a first experiment, we compared the explanations of the
instance-based methods for one specific course (DSP 1 ).
The BiLSTM model MDSP1 trained on this course achieved
a BAC of 93.9%. We then ran the explainability methods on
MDSP1 and extracted normalized feature importance scores
for 100 representative students of each course.

Figure 2 illustrates the features identified as most impor-
tant by each explainability method. The heatmaps were
computed by averaging importance scores for each feature
and week across 100 representative students for DSP 1 (see
Sec. 3.2). To ensure interpretability of Figure 2, we only in-
cluded the top five features for each method, resulting in 13
distinct features. The description of all the features can be
found in Table 1. We used a log scale within the heatmaps,
with darker colors indicating higher feature importance.

We observe that the top features cover all the different be-
havioral aspects included in the feature set: Regularity, En-
gagement, Control, and Participation. However, some as-
pects seem to contain more important features. For exam-

4Sampling strategy is discussed further in Appendix C.
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Title Identifier Topic1 Level Language
No.

Weeks
No.

Students2
Passing
Rate (%)

No.
Quizzes

Digital Signal Processing 1 DSP 1 CS Bsc French 10 5629 26.8 17
Digital Signal Processing 2 DSP 2 CS MSc English 10 4012 23.1 19

Éléments de Géomatique Geomatique Math MSc French 15 452 45.1 27
Villes Africaines Villes Africaines SS BSc English 13 5643 9.9 17
Comprendre les Microcontrôleurs Micro Eng BSc French 13 4069 5.1 18

1Topic abbrev. Eng : Engineering; Math: Mathematics; CS : Computer Science; SS : Social Science
2No. Students is calculated after filtering out the early-dropout students, as detailed in Sec. 2.2.

Table 2: Detailed information on the five MOOCs included in our experiments.

Figure 2: Heatmap of normalized feature importance scores (log scale) across explainability methods for DSP 1.

ple, 43% of the Participation features (3 out of 7 features)
are in the top five features of at least one method, while this
is the case for only 23% (5 out of 22 features) of the Control
features. For Regularity and Engagement, 33% and 31% of
the features get selected into the top feature set.

We also immediately recognize that the heatmap of LIME
looks very different from the heatmaps of all the other meth-
ods. LIME assigned high importance scores to a small sub-
set of features and weeks, while all the other explainability
methods tend to identify more features and weeks as impor-
tant, resulting in generally lower importance scores. We also
observe that LIME does not consider student behavior in the
first weeks of the course important; all importance is placed
onto the second half of the course. Moreover, LIME seems
to put more emphasis on Control than on the other three
aspects: the features related to Control (AvgReplayedWeek-
lyProp, AvgWatchedWeeklyProp, FrequencyEventLoad) are
important from week 5 through week 10, while the fea-
tures related to Participation (CompetencyAnticipation) and
Engagement (RatioClicksWeekendDay) are important only
during the last 2 to 3 weeks of the course.

Interestingly, while CEM and DiCE are both counterfac-
tual methods, their heatmaps look quite different: the fea-
ture importance scores of DiCE tend to be more similar
to KernelSHAP and PermSHAP than CEM. We note that
CEM shows a higher diversity in feature importance scores
than the other three methods (KernelSHAP, PermSHAP,
and DiCE), for which the importance values seem to be quite
equally distributed across the top features. Furthermore,
in contrast to all the other explainability methods, CEM
seems to also identify features in the first weeks of the course
as important (e.g., AvgWatchedWeeklyProp, ContentAlign-

ment, and FrequencyEventLoad in week 1). In contrast to
all the other methods, CEM identifies features related to be-
ing engaged in quizzes as relevant (TotalClicksProblem and
TotalClicksWeekend). Finally, as expected, the heatmaps of
KernelSHAP and PermSHAP look very similar, with only
small differences in importance scores.

In summary, while there is some agreement on the top fea-
tures across explainability methods (the union of the top five
features of each method only contains 13 distinct features),
we observe differences across methods when it comes to exact
importance scores.

3.4 RQ2: Comparing methods across courses
Our second analysis had the goal to quantitatively com-
pare the explanations of the different methods across all five
courses. Explainability method evaluation is an emerging
field; most existing research focused on assessing the qual-
ity of explanations [33, 34] with only few works suggest-
ing a quantitative ‘goodness’ score for each explainability
method (e.g., [35, 36]). In contrast, we examined the dis-
tance between the feature importance scores per explain-
ability method in comparison to each other, instead of in-
dividually. We first visualized the similarity of importances
across courses using a Principal Component Analysis and
then computed Spearman’s Rank-Order Correlation as well
as Jensen-Shannon Distance to assess similarity regarding
the feature importance ranking as well as their exact values.

Principal Component Analysis (PCA) We performed a PCA
on the importance scores for each feature and week (length:
wc×h) separately for each explainability method and course
c. Figure 3 shows the results for all explainability methods
and courses. Each marker in Figure 3 represents a specific
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course, while each color denotes an explainability method.

We observe that the two SHAP methods (KernelSHAP and
PermSHAP) cluster together very strongly. This result is ex-
pected, as the methodologies of KernelSHAP and PermSHAP
are very similar. DiCE feature importances are quite close
to the SHAP methods, showing that the three methods have
similar notions of feature importance. LIME is quite differ-
ent from all other methods, with high values on both PCA
components. Based on differences in methodology, we would
have expected that the difference between the counterfactual
methods (DiCE and CEM) and the SHAP methods would
be larger than the difference between LIME and the SHAP
methods. The most notable takeaway from Figure 3 is that
there are clearly identifiable clusters based on explainability
method and not on course. It therefore seems that the re-
sulting feature importance scores are mainly influenced by
the explainability rather than by the model or data (i.e. the
characteristics of the course and students’ data).

Spearman’s Rank-Order Correlation. Often referred to as
Spearman’s ρ [37], this metric identifies the rank correlation
(statistical dependence between the rankings) between two
variables and is defined as the Pearson correlation coefficient
between the rankings of two variables. We chose this metric
for evaluating explainability methods to highlight the im-
portance of feature ranking order in explanations. To com-
pute Spearman’s Rank-Order Correlation rm1,m2,c between
two explainability methods m1 and m2 on a course c, we
first converted the vectors em1,s and em2,s of feature impor-
tance scores (length wc×h) for each student s into rankings
R(em1,s) and R(em1,s). We then computed rsm1,m2,c sepa-
rately for each relevant student s and then averaged over all
relevant students to obtain rm1,m2,c.

Figure 4 illustrates the pairwise similarities between explain-
ability methods using Spearman’s Rank-Order Correlation.
Higher values imply stronger correlation between methods.
We see similarities between KernelSHAP and PermSHAP

Figure 3: PCA of feature importance scores for five explain-
ability methods across five courses.

prevalent once again as a center square for each course, af-
firming our intuition that two similar methodologies would
result in similar rank-order scores. It can be observed that
LIME consistently shows rank-order correlation scores with
all other explainability methods. Additionally, for DSP 1
and to some degree also Villes Africaines, DiCE is much
closer to KernelSHAP and PermSHAP then to CEM. For
DSP 2 and Geomatique, DiCE and CEM are both equally
correlated to the SHAP methods, but less correlated among
themselves. Finally, the model trained on Micro has strong
correlations across all explainability methods except LIME.

Jensen-Shannon Distance. We used the Jensen-Shannon dis-
tance [38] to compute pairwise distances between exact fea-
ture importance score distributions obtained with different
explainability methods. The Jensen–Shannon distance is
the square root of the Jensen-Shannon divergence, originally
based on the Kullback–Leibler divergence with smoothed
values. It is also known as the Information Radius (IRad)
[39]. To compute the Jensen-Shannon distance jsdm1,m2,c

between two explainability methods m1 and m2 on a course
c, we first calculated the distance jsdsm1,m2,c between the
feature importance scores (length wc × h) em1,s and em2,s

separately for each representative student s and then aver-
aged across all representative students to obtain jsdm1,m2,c.

Figure 5 shows the pairwise distance between explainabil-
ity methods for all courses using Jensen-Shannon Distance.
Larger numbers represent higher dissimilarity. The Jensen-
Shannon Distance heatmaps confirm the observations made
using Spearman’s Rank-Order Correlation (see Figure 4).
Again, LIME consistently has a high distance to all other
explainability methods across all courses. As expected, Ker-
nelSHAP and PermSHAP have low pairwise distances for
all courses. However, when comparing feature importance
scores directly instead of using rankings, we observe even less
differences between courses. DiCE is closer across all courses
to the SHAP methods than CEM. While LIME exhibits the
highest distances to all other explainability methods, the
explanations of CEM are also far away from all methods.

In summary, the two SHAP methods and DiCE seem to de-
liver the most similar explanations, while the feature impor-
tance scores obtained with CEM and LIME are different from
the other explainability methods. More importantly, all our
analyses (PCA, Spearman’s Rank-Order Correlation, Jensen
Shannon Distance) demonstrate that the choice of explain-
ability method has a much larger influence on the obtained
feature importance score than the underlying model and data.

3.5 RQ3: Validation of explanations
The previous experiments delved into mapping the similar-
ities and differences between explainability methods. While
our analyses demonstrated that there are clear disparities
across method choice, they do not give an indication re-
garding the ‘goodness’ of the obtained explanations. Recent
work discusses traits of ideal explanations [40] and targets
metrics to measure explanation quality [36, 41]. However,
these metrics tend to be over-specialized to one explain-
ability method over others due to the similarities in their
methodologies. The community does not yet have a set of
standard metrics for evaluating explainability methods. In
our last experiment, we hence use information inherent to
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Figure 4: Comparison of feature importance scores across courses using Spearman’s Rank-Order Correlation.

Figure 5: Comparison of feature importance scores across courses using Jensen-Shannon Distance.

Figure 6: Prerequisite skill structure for DSP 1.

our model’s setting to perform an initial validation of the
explanations provided by the different methods.

Specifically, we evaluated the explainability methods on a
course with a known underlying skill map and used the
prerequisite relationships between weeks of the course as a
ground truth for the explanations. Based on the results
obtained for the first two research questions (Sections 3.3
and 3.4), we selected one representative method from each
methodological group for the analysis, while keeping the ob-
served explanation diversity: PermSHAP (the most widely
used SHAP method), CEM (chosen as a representative of
counterfactuals for its further disparity from the SHAP meth-
ods), and LIME. In terms of courses, we used DSP 1 as a
basis for the analysis as the instructor of this course provided
us with the skill map derived from the curriculum.

Figure 6 illustrates the underlying skills, their relationships,
as well as their mapping to the weeks of the course. The
arrows denote the prerequisite relationships, while the num-
bers denote the unique skills in the order they are introduced
in the course. The skills colored in pink (6, 8, and 13) re-
fer to applied skills learned in the course. The middle track
refers to core skills learned in the course (colored in blue)
and the purple skills at the top (5, 9, and 11) are theory-

based extensions of core material. The skill prerequisite map
allows us to analyze the dependencies between the different
weeks of the course. For example, in order to understand
Modulation taught in week 5, students need to already have
learned the skills taught in weeks 3 and 4 (DFT, DTFT,
and DFS). Intuitively, a model predicting performances in
assignments in week 5 would have highly correlated features
based on week 4. We assume that these dependencies would
logically be uncovered by the explainability method.

We, therefore, adjusted our predictive task: using the opti-
mization protocol and experimental design described in Sec-
tion 3.2, we aimed at predicting the performance (binary
label: below average or above average) of a student s in the
assignment of week w based on features extracted from stu-
dent interactions for weeks 1 to w. Given the prerequisite
structure for the course, we ran experiments for w ∈ {5, 9}.
For each predictive model MDSP1,w, we then picked the 100
representative students using uniform sampling and taking
into account class balance (see Section 3.2 for a detailed de-
scription of the sampling procedure) and applied the selected
explainability methods to these representative instances.

Figure 7 shows the features for LIME, PermSHAP, and CEM
for the prediction model of week 5. In the heatmap, darker
values indicate a higher score. The scores for the heatmap
have been computed based on a ranking of features and
weeks: for each student sri , we first ranked the features in
order of feature importance as determined by the respective
explainability method. We then scored each of the top 10
features according to its rank: 10 points for the top feature,
9 points for the second most important feature, and so on.
Finally, we averaged the scores for each feature across the
100 representative students sr1 through sr100 and normalized
them. This rank-based scoring allows us to compare ex-
plainability methods without having the relative feature im-
portance scores bias the analysis. We only selected features
with a score of at least 0.33 in any course week, showing
only the top two-thirds of features per method.
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Figure 7: Importance scores for LIME, PermSHAP, and CEM
for week 5.

For LIME, we observe that four features have been identi-
fied as important for predicting assignment performance in
week 5. Two of these features directly relate to student be-
havior on the week 5 assignment: TotalTimeProblem (the
total time the student spent solving the assignment) and
StudentSpeed (the time between consecutive trials of assign-
ments). The high scores of these features for week 5 are
thus expected. LIME also assigns high scores to these two
assignments based features for week 4. This result is en-
couraging as week 4 teaches the prerequisite skills of week
5 and therefore, LIME seems to (at least partially) uncover
the prerequisite structure of the course.

In PermSHAP results, we see again that the scores are more
uniformly distributed across features and weeks. However,
we observe again that the assignment-based features (To-
talTimeProblem and StudentSpeed) have comparably high
scores for week 4 and therefore PermSHAP also seems to
(partially) uncover the prerequisite relationships. Curiously,
watching videos and solving quizzes scheduled for subse-
quent weeks (CompetencyAnticipation and ContentAntic-
ipation) is also considered important, hinting that being
proactive when learning increases learning success.

CEM seems to be able to partially uncover the prerequisite
relationship between weeks as well. For week 4, one fea-
ture related to assignment behavior (StudentSpeed) exhibits
a high score. Additionally, watching content of the subse-
quent week (in this case, week 4’s ContentAnticipation for
week 5 material) is important for assignment performance.
Otherwise, CEM mainly explains performance in the assign-
ment of week 5 with student behavior in week 5: besides the
assignment-related features, the students’ actions in the in-
ference week are considered important.

Figure 8 shows the importance scores for LIME, PermSHAP,
and CEM for the prediction model of week 9. Again, darker
colors in the heatmaps indicate higher scores. The scores in
the heatmaps were computed using the same ranking-based
procedure as for Figure 7. In week 9, Figure 6 indicates
that weeks 5 and 6 cover the prerequisite skills. From Fig-
ure 8, we observe that LIME does not seem to be able to
capture this prerequisite relationship. The top scores for
LIME appear in week 9 itself for an assignment-based feature
(StudentSpeed) as well as for video control behavior (AvgRe-
playedWeeklyProp, which computes the relative number of
video replays). Furthermore, StudentSpeed seems to be gen-
erally important also in the weeks just before the predicted
week (weeks 7 and 8). For PermSHAP, we again obtain

a more equal distribution, with only the two assignment-
related features (TotalTimeProblem and StudentSpeed) in
weeks 8 and 9 showing relatively higher scores. Further-
more, PermSHAP also assigns relatively higher importance
to these features for week 6, which is a prerequisite for week
9. For CEM, we again observe that mainly student behav-
ior in the actual week, i.e. week 9, seems to explain as-
signment performance. Only one feature (TotalTimeVideo)
shows medium importance for weeks 5 and 6.

In summary, all the evaluated methods were able to (par-
tially) detect the prerequisite relationship between week 4
and week 5. For week 9, detecting the prerequisite struc-
ture proved to be difficult; results differed between methods.
However, we should take into account that none of the fea-
tures of the feature set directly measure student performance
and therefore, the generated explanations rely on behavioral
features only. It appears that recent and actual behavior is a
much stronger indicator for performance than past behavior.

4. DISCUSSION AND CONCLUSION
Explainability methods allow us to interpret a deep model
in a way that is understandable not only to machine learn-
ing experts, but also end-users of educational environments,
including instructors tailoring course designs and students
the model is predicting on [6, 7]. In this paper, we aimed
to understand explainers’ behaviour and the ways in which
they differ for the task of student success prediction.

Our results demonstrate that all explainability methods can
derive interpretable motivations behind student success pre-
dictions, confirming the similar yet coherent observations
made by [8] for the knowledge tracing field. However, while
there was some agreement regarding the top features across
the five explainability methods, key differences across meth-
ods emerged when we considered the exact importance scores
(RQ1). We observed substantial similarities between Ker-
nelSHAP, PermSHAP, CEM and DiCE with regards to the
top ranked feature-weeks. Conversely, LIME only ranked
very few features as important, and these less important
feature similarities made the other explainability methods
appear closer to each other. Overall, looking beyond top
ranked features, we noted considerable differences in feature
importances across explainability methods. Interestingly,
LIME-detected features are more in line with the features
marked as important by Random Forests in [28], still in a
MOOC context. This observation further demonstrates the
generalizability of the features’ predictive power even among
very different experimental settings.

In a subsequent experiment, we compared the different ex-
plainability methods across five MOOCs. Our findings in-
dicate that the choice of explainability method has a much
larger influence on the obtained feature importance score
than the underlying model and data (RQ2). With distance
(Jensen-Shannon distance) and ranking-based metrics (Spear-
man’s Rank-Order Correlation), we uncovered that LIME is
farthest from the other explainability methods. The sparsity
of LIME-detected important features was also observed by
[13], where the conciseness of LIME explanations supported
integration in visual dashboards for student advising. We
also detected a close relationship between KernelSHAP and
PermSHAP, which strongly validates our evaluation strat-
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Figure 8: Importance scores for LIME, PermSHAP, and CEM for week 9.

egy. Using PCA, we identified clear clusters of explanations
by explainability method and not by the course the model
was trained upon, suggesting that an explainability method
might be prone to mark specific features as important re-
gardless of the model (and the course).

Our analyses also confirmed that all the evaluated meth-
ods were able to (partially) detect the prerequisite relation-
ship between weeks, while relying on behavioral features
only (RQ3). Our experimental design was inspired by [11]’s
work on predicting effectiveness of interventions for wheel-
spinning students by simulating prerequisite relationships.
While we have no way to examine the true underlying fea-
ture importances of our week n assignment performance pre-
diction model, we intuit that a student’s prerequisite week
performance should be important to predicting their per-
formance in week n. We observed that the three families
of methods (LIME, SHAP, and counterfactual) were able to
partially capture the prerequisite relationship in week 5, but
struggled to capture the prerequisite relationships in week
9. While there were few similarities in the top ranked fea-
tures, each method found different groups of feature-weeks
as most important for the same models. Our results in-
dicate that recent and current behavior is more important
than past behavior, implying that proximity of behavioural
features correlates strongly with their perceived importance.
A limitation is that the prerequisite relationships we deem
important might not actually be used as the true features of
the model since our feature set included only features that
examined student behavior and not direct performance.

Our results indicate that there are noteworthy differences in
generated explanations for student performance prediction
models. However, our analyses also show that these expla-
nations often recognize prerequisite-based relationships be-
tween features. That being said, our study still has several
limitations that warrant future research, including our focus
on a singular downstream task (student success prediction),
specific modality of dataset (MOOCs), choice of model ar-
chitecture (BiLSTM ), and lack of assessment of the obtained
explanations’ impact in the real world. First, extending
our experiments beyond success prediction to a multi-task
analysis (e.g., dropout prediction) across multiple modali-
ties (e.g., flipped classrooms, intelligent tutoring systems)
would allow us to build stronger intuitions about explain-

ability method differences. Second, extending our black-box
BiLSTM model architecture to multiple traditional and deep
machine learning architectures could examine whether cer-
tain explainability methods have stronger explanation affin-
ity to different predictors. Choosing transparent shallow ar-
chitectures instead of black-boxes could also allow us to val-
idate our results against ground truth feature importances.
Third, further research should be conducted to check which
explanations (and explainability methods) lead to interven-
tions that better improve learning outcomes. It follows that
an assessment of the obtained explanations should be car-
ried out involving educators. Finally, the disagreement of
our selected explainability methods motivate an extension
in an ensemble expert-weighting scheme, which might have
merit in closely estimating the true feature importances.

Explainability in educational deep learning models can lead
to better-informed personalized interventions [2, 42], cur-
riculum personalization, and informed course design. If we
were considering global interventions (as it might be too re-
source intensive to perform interventions on each student
individually), we could take the mean feature importance
vector over all students and try interventions in the order
of the scores of this mean vector. If we were only able to
intervene on k features due to resource constraints, Spear-
man’s rank-order metric could also be modified to include
the size of the intersection between the features with the
top k scores. However, it is important to note that when the
model explanations are biased by explainability method and
do not accurately reflect the inner workings of the model, the
impact of incorrect predictions are further exacerbated by
teachers and students’ misplaced confidence in the model’s
justification. We implore data scientists to not take the choice
of explainability method lightly as it does have a significant
impact on model interpretation, and instead urge the com-
munity to (1) carefully select an appropriate explainability
method based on a downstream task and (2) keep potential
biases of the explainer in mind when analyzing interpretabil-
ity results. Overall, our work contributes to ongoing research
in explainable analytics and to the generalization of theories
and patterns in success prediction.
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[10] Máté Baranyi, Marcell Nagy, and Roland Molontay.
Interpretable deep learning for university dropout
prediction. In 21st Annual Conference on Information
Technology Education, pages 13–19, 2020.

[11] Tong Mu, Andrea Jetten, and Emma Brunskill.
Towards suggesting actionable interventions for
wheel-spinning students. International Educational
Data Mining Society, 2020.

[12] Alexandra Vultureanu-Albişi and Costin Bădică.
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APPENDIX
A. MODEL ARCHITECTURE
We experimented with traditional machine learning models
(e.g., Support Vector Machines, Logistic Regression, Ran-
dom Forest) and deep-learning models (e.g., Fully-Connected
Networks, RNNs, LSTMs, CNNs, and BiLSTMs), and found
that BiLSTM models perform best against the other base-
lines for our use case. To determine the optimal model archi-
tecture, we evaluate validation set performance on the course
DSP 1 as it is used in all three RQs. BiLSTMs have a 26.8%
average increase in balanced accuracy over traditional ma-
chine learning methods. For the BiLSTM architecture grid
search, we examined the following layer settings {32, 64,
128, 256, 32-32, 64-32, 128-32, 128-64, 128-128, 256-128, 64-
64-32, 128-64-32, 64-64-64-32-32} before determining 64-32
performed best in balanced accuracy for DSP 1. We used
the Tensorflow library to train our models [43].

B. MODEL TRAINING
Model training took approximately 35 minutes per model on
an Intel Xeon E5-2680 CPU with 12 cores, 24 threads, and
256 GB RAM. Each model was trained for 15 epochs, and
the best performing model checkpoint was saved. The five
models’ performance metrics are showcased in Table 3.

C. SAMPLING STRATEGY
We experimented with several strategies to extract a appro-
priate representative sample including the greedy algorithm
SP-LIME [15], random sampling, two sets of extreme stu-
dents (those which the model predicts very well on and very
badly on), and uniform sampling. We determined that our
uniform sampling approach was the most fair with respect
to the variable class imbalance between courses.

Identifier Accuracy Balanced Accuracy F-1 Score

DSP 1 99.3 97.4 99.6
DSP 2 99.1 93.5 99.5
Geomatique 97.7 96.2 98.7
Villes Africaines 98.4 95.5 99.1
Micro 89.5 90.9 90

Table 3: Performance of the BiLSTMs trained on the five
MOOCs included in Section 3.
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A strategy for allocating merit-based awards and need-based
aid is critical to a university. Such a strategy, however, must
address multiple, sometimes competing objectives. We in-
troduce an approach that couples a gradient boosting clas-
sifier for predicting outcomes from an allocation strategy
with a local search optimization algorithm, which optimizes
strategies based on their expected outcomes. Unlike most
existing approaches that focus strictly on allocating merit-
based awards, ours optimizes simultaneously the allocation
of both merit-based awards and need-based aid. Further, the
multi-objective optimization lets users experiment with dif-
ferent combinations of institution-centric and student-centric
objectives to deliver outcomes that suit desired goals. With
this approach, we identify multiple allocation strategies that
would yield higher enrollment, revenue, or students’ afford-
ability and access to higher education than the University’s
existing strategy. In particular, one strategy suggests that
with moderate changes to the current funding structure the
University can increase students’ access to higher education
by more than 100%, while still maintaining a similar level
of enrollment and revenue.

Keywords
institutional data analytics, financial aid optimization, schol-
arship distribution, enrollment management

1. INTRODUCTION
Public universities in the United States (US) create recruit-
ment policies amidst decreased state funding and increased
costs of attendance. Decreased funding was predicted as a
result of state deficits [17]. This is now evident in data show-
ing falling state appropriations as a percent of total revenue
for public 4-year institutions from academic year 2008-09
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(23.8%) to academic year 2018-19 (16.5%) [12]. Decreased
state funding necessitates a greater reliance on tuition and
fee revenue from enrolled students.

From academic year 2011-12 through 2016-17 tuition and
fees increased by 9% at public 4-year institutions, making
college too costly for an increasing proportion of students
(especially those from low- and lower-middle-income fami-
lies) [3, 9, 26]. Students are being priced out of college or
choosing to take out loans and/or work while pursuing a
course of study [25]. This rising cost has resulted in a na-
tional college debt crisis in which 57% of debtors with federal
student loan debt owe up to $20,000 [3].

The combination of decreased funding and increased costs
of attendance have implications for enrollment management
activities. An increased reliance on tuition and fee revenue
means that setting policies surrounding student recruitment
efforts and accurately forecasting their outcomes is increas-
ingly important to universities’ income and budget projec-
tions [2, 38]. However, these recruitment efforts are hindered
by the increased prices charged to students. Higher prices
reduce enrollment rates particularly for low-income students
in public institutions [22]. The use of financial aid as an
enrollment management tool to counteract these increased
prices is well-established [15]. Further, the positive impact
of both federal and state need-based financial aid programs
on students from low-income families has also been explored
[3, 8, 9]. With increasing costs of attendance leading to
crises of affordability and access, universities should explore
the role of need-based aid in their enrollment management
strategies.

The call to optimize enrollment management activities with
the consideration of access and affordability is one that ap-
pears difficult to achieve. However, the student and finan-
cial data needed for such predictions and optimizations are
stored in universities’ existing data systems [31]. Despite
having access to this data, universities are not quick to lever-
age it themselves perhaps due to untrained personnel or poor
data infrastructure [31, 32]. Instead, the data and these
analyses are outsourced to external consulting firms who or-
ganize and process the data to be used in proprietary models
[16]. With this type of industry environment there is limited
published work to demonstrate how machine learning pre-
diction and optimization can be used in tandem to inform
university recruitment policies.
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tives in allocating funds to scholarships and need-based financial aid.
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Existing work on financial aid optimization has been limited
in two regards: (1) the optimization only takes enrollment
as the sole objective and (2) the resulting strategy is for
merit-based aid only [4, 28]. The limiting of the optimiza-
tion to enrollment is short-sighted in that universities are
targeting multiple objectives that may not move with en-
rollment. Additionally, when only considering merit-based
awards, student-centric outcomes like access and affordabil-
ity are neglected despite their increasing importance in the
dialogue surrounding higher education. Our work seeks to
address these shortcomings.

Our approach consists of an interactive feedback loop be-
tween two core components: a gradient-boosting classifier
and auto-start local search optimizer. First, given a current
strategy for award and aid allocation (together with many
other features), the classifier is used to predict enrollment,
revenue, the affordability and accessibility of higher educa-
tion, and other outcomes. These predicted outcomes are
then used by an optimizer to revise the current strategy and
suggest a possibly better one. The interaction between the
classifier and optimizer forms a feedback loop that is the
basis of the optimization. This loop aims to identify opti-
mal strategies for allocating awards and aid with expected
outcomes specified by the University. The novelty of this
work includes (1) the allocation both merit-based awards
and need-based aid in the optimization process; (2) the in-
clusion of the affordability and accessibility of higher edu-
cation in the optimization of allocation strategies; and (3)
an auto-start local search optimization that allows users to
target institution-centric and student-centric objectives in a
flexible way to produce desirable outcomes.

2. RELATED WORK
The following describes research on enrollment prediction,
scholarship allocation, and financial aid optimization. There
is significant work on predicting enrollment, but far less with
regard to optimization and allocation of scholarships. Most
authors looked at only one of these issues and most work
has been primarily concerned with merit-based aid alone.

Predicting Enrollment. Universities’ increased reliance on
tuition and fee revenue has increased pressure on their lim-
ited resources to accurately predict and increase enrollment
(i.e. yield). Recruitment counselors need to allocate their
limited time to contact students ”on-the-fence” about their
enrollment decisions [10]. This business need led to the lit-
erature on enrollment prediction at the individual applicant
level using data mining and machine learning techniques.

There is a host of research that relies on logistic regression
techniques to create these individual enrollment probabili-
ties. A 2002 paper by DesJardins used a logistic regression to
reveal the enrollment probabilities of applicants before any
financial aid offers had been made. The resulting model,
which relied heavily on demographic features, had a correct
classification rate of approximately 67% [10]. In 2006, Goen-
ner and Pauls used a logistic regression to predict the en-
rollment of students who had inquired about the university.
The resulting model was 89% accurate at out-of-sample pre-
dictions [14]. Similarly, a 2014 paper by Sugrue generated a
logistic regression to predict enrollment yield [34].

In another vein of literature, other prediction techniques are
explored. Two related works explore the effectiveness of neu-
ral network models in predicting individual enrollment prob-
abilities for applicants. A 1998 paper by Walczak revealed
that a backpropogation neural network model could result in
a 56% decrease in recruitment counselor caseloads due to its
accuracy [39]. In a follow-up study, Walczak and Sincich ex-
plicitly compare the performance of neural network models
to that of logistic regression and find that neural networks
produce better results [40]. Chang similarly explores the effi-
cacy of various prediction techniques, specifying models for
logistic regression, neural networks, and classification and
regression tree (CR&T). The work showed that both neural
networks and CR&T outperformed logistic regression when
judged based on prediction accuracy [6].

Scholarship Disbursement/Allocation. Not all scholarship
policies employed by universities are rule-based. In these
cases, the business process of selecting the applicants to re-
ceive an award may be ineffective and inefficient. Literature
has shown that data mining techniques can be effective in
creating rule-based scholarship allocation policies to help re-
duce business process inefficiencies. In 2019, Rohman et al.
illustrated how an ID3 decision tree algorithm could gener-
ate rules to select the scholarship applicants most likely to
be awarded a scholarship. This general rule allowed for the
efficient identification of applicants so that offers could be
made [27]. Alhassan and Lawal similarly used a tree-based
data mining classification technique to determine a generic
rule for scholarship disbursal. They found the technique to
be effective and efficient [1].

Optimization of financial aid policies. Mathematical pro-
gramming models are effective tools for generating and eval-
uating financial aid strategies. Spaulding and Olswang use
discriminant analysis to test the efficacy of various aid strate-
gies [33]. Linear programming was used by Sugrue et al in
2006 as an aid decision tool where the goal was to maximize
net revenue with budget, average Scholastic Assessment Test
(SAT) scores, recruitment pools, and enrollment targets as
constraints [37]. In later work, Sugrue again employed a
linear programming approach to optimize the quality of the
incoming class with estimates of yield rates being derived
from previous years’ yield rates [35].

More recent research has incorporated enrollment prediction
models with optimization techniques to recommend financial
aid strategies. In 2015 Sarafraz et al used a neural network
model to predict enrollment and then employed a genetic al-
gorithm to find a scholarship strategy that maximized total
enrollment [28]. In 2019 Sugrue used data from the Univer-
sity of Miami to develop a merit-based aid allocation model
that predicted enrollment via logistic regression and max-
imized the quality of the incoming class via a linear pro-
gramming model [36]. In 2020 Aulck et al tested a group of
machine learning tools to predict the enrollment decisions of
admitted, domestic nonresident first-time students and then
used those results in a genetic algorithm to recommend an
optimal disbursement strategy for a domestic non-resident
merit scholarship that would maximize enrollment [4].

None of these previous works have considered merit-based
award and need-based aid strategies simultaneously as our
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paper proposes to do. Further, this joint consideration de-
mands the consideration of a what an appropriate optimiza-
tion objective should be given that the recruitment goals of
merit-based awards and need-based aid differ in some re-
gards. Though the joint consideration of merit and need
strategies in one optimization problem does complicate the
process, a multi-objective approach needs to be researched
since these aid strategies compete for the same limited bud-
get resources.

Local-search optimization. Local search is a heuristic method
for solving computationally hard problems. A local search
algorithm starts with an initial candidate solution and it-
eratively moves to a neighbor solution in hopes of finding
better and better candidate solutions. The algorithm stops
when it cannot find a neighbor solution that is better than
the current candidate solution. For local search to work, a
neighbor relation must be defined so that from an arbitrary
candidate solution, a neighbor solution can be generated.

Stochastic hill climbing [20] is a fast local search method
because it greedily moves from one candidate solution to a
better one. It is similar to a popular method, stochastic
gradient descent [19], but it is faster because it does not
need to estimate the gradient of the objective function. The
main disadvantage of stochastic hill climbing is that it is
often stuck in locally optimal solutions.

Two popular methods that can find globally optimal solu-
tions are simulated annealing [21] and genetic algorithms
[41]. In a number of applications, genetic algorithms pro-
duced slightly better solutions than simulated annealing [30].
Nevertheless, simulated annealing and its variant, simulated
quenching [18], seem to suit our technical approach better
than genetic algorithm because it is not obvious to us how
we can meaningfully apply the genetic algorithm’s crossover
operator to allocation strategies.

3. METHODS
3.1 Overview of the problem and challenges
Merit-based awards and need-based aid. At the University,
a certain amount of financial award or aid is offered to each
applicant based on his or her profile on merit (academic per-
formance) and need. Merit-based award eligibility is calcu-
lated based on a combination of standardized test scores (i.e.
American College Testing (ACT) and Scholastic Assessment
Test (SAT)) and high school GPA. Need-based aid eligibil-
ity is determined by expected family contribution from the
Free Application for Federal Student Aid (FAFSA) and then
adjusted in an ad hoc manner based on items such as cost of
attendance and how much federal aid and other merit-based
awards are promised to students. A student may receive
both merit awards and financial aid. The allocation strategy
of merit awards and aid strives to be fair in that two students
with the same residency and academic performance profile
will receive the same merit offer and two students with the
same residency and need profile will receive the same aid
offer. These offers are made in a guaranteed fashion in that
each admitted applicant will be offered a merit-based award
and/or need-based aid so long as requirements are met.

Allocation strategy of awards and aid. In the context of this
work, an allocation strategy consists of a merit-based allo-

Figure 1: Overview of the technical approach

cation strategy and a need-based allocation strategy. Each
allocation strategy consists of (1) a list of buckets into which
students are placed, and (2) how much financial award or aid
students in each bucket will receive.

An allocation strategy has an important impact on the bud-
get of the University because it affects enrollment in com-
plex ways. Enrollment affects revenue. Revenue affects the
number and amounts of awards and aid the University can
give to its students. And awards and aid directly affect the
applicants’ decision to enroll at the University. Increasing
awards and aid can increase enrollment, but may reduce rev-
enue, which in turn limits the University’s ability to increase
awards and aid.

Our mission. Our team was tasked with revising the Univer-
sity’s current way of offering merit-based awards and need-
based aid. Although the current system is fair, as it should
be, the Financial Aid Office has thought that due to multiple
reasons the current strategy might not be optimal. We were
asked to generate a revised strategy that uniformly impacts
the domestic student body in a way that improves multiple,
possibly conflicting objectives such as increasing enrollment,
increasing revenue, increasing student performance profiles,
and making higher education more accessible and affordable.

Technical approach. An overview of our approach is depicted
in Figure 1. The approach utilizes a feedback loop that con-
tinually revises a feature set from which a classifier learns
to predict various outcomes. In contrast to the traditional
setting where features stay fixed, the features in our model
are continually revised in this feedback loop. This is possible
due to the fact that the University can change award and
aid offer amounts, which is part of the feature set used to
predict enrollment, revenue and other outcomes. The feed-
back loop is an iterative interaction between the classifier,
which predicts expected outcomes, and an optimizer, which
evaluates the outcomes and suggests a revised strategy with
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possibly better outcomes. In each iteration of this interac-
tion, depicted in Figure 1, the current allocation strategy
dictates offer amounts for awards and aid. This changes the
features, which leads the classifier to relearn and re-predict
multiple outcomes (e.g. enrollment, revenue, student afford-
ability and accessibility, etc.). This allows the auto-start
local-search optimizer to revise and possibly improve the
current strategy; and so on and so forth.

3.2 Data Collection and Cleaning
Data for this research is all first-time freshmen (FTF) do-
mestic admitted applicants to the University in the Fall
2020. The data on students is compiled from the Univer-
sity’s admission application, the FAFSA, and the student
information system. Only the students who filed a FAFSA
(making them eligible for need-based aid) are included re-
sulting 7,564 observations which is approximately 67% of
the total number of domestic FTF students for that term.
Data from the admission application includes admission test
scores, high school GPA, location/residency, and intended
major. Data from the FAFSA includes expected family con-
tribution and family income. Data from the student in-
formation system includes whether or not the student had
previously enrolled at the institution as a dual enrollment
student, aid offer amounts for various categories of aid, and
an enrollment indicator. Of the 7,564 students 2,340 chose
to enroll (approximately 31%). No demographic variables
are used in the study so as to avoid bias in recommending
aid strategies to the University.

Financial data points are expected full time tuition, merit-
based award offers, need-based aid offers, actual and esti-
mated Pell grant offers, and all other aid offers before loans.
Estimated Pell grant offers are included as the University
will make offers prior to actual Pell amounts being known.
These are estimated based on cost of attendance and ex-
pected family contribution using the Pell schedules released
each year with the assumption that students will enroll full
time. Each of the aid offer features enters the predictive
model independently and in a total financial aid variable.
These offer amounts are not manipulated when generating
the predictive model, but are updated during the optimiza-
tion process.

3.3 Feature Engineering
Prior to building prediction models and optimizations, fea-
ture engineering is done using Pandas [23]. Categorical
variables are either converted to binary indicators or con-
verted to binary dummies. Continuous distance variables
that measure distance from the University and its key mar-
ket competitors are converted to binary daily and weekly
commute variables. We compute an historic 5-year aver-
age yield by high school to serve as a proxy of familiarity
and/or social network at the University. We convert the
major declared on the application into five major group bi-
nary indicators: STEM, Fine Arts, Health, Business, and
Humanities. The feature engineering results in 95 features
from our data sources on which to build our predictions.

Two important features that affect applicants’ decisions to
enroll are the promised amounts of merit-based awards and
need-based aid. These features are determined by a specific
strategy for allocating awards and aid. As indicated in Fig-

ure 1, these two features are updated during an optimization
process that traverses through the solution space to find an
optimal one. As the features are updated, the classification
model relearns to update its estimate of enrollment proba-
bilities.

3.4 Modeling enrollment
The data is stored in a matrix D where each row represents
an applicant’s profile. The first column of D is the binary
enrollment variable, y, where yi being equal to 1 means ap-
plicant i enrolled at the University and yi being equal to
0 means the applicant did not enroll at the University. All
other columns of D are features that a classifier uses to learn
y. The goal in modeling enrollment is to assess the viabil-
ity of using popular classification methods to predict enroll-
ment, and to identify and adopt the best method to assist
in the optimization of strategies for allocating merit-based
awards and need-based aid.

Classifiers. We investigate the performance of several popu-
lar classifiers that can predict enrollment probabilities. These
include classification methods based on diverse approaches
such as support vector, logistic regression, and k-nearest
neighbors. We also consider the ensemble methods of ran-
dom forest, AdaBoost [29], gradient boosting [13], and a
more regularized version of gradient boosting known as ex-
treme gradient boosting [7]. Many of these methods do not
strictly predict probabilities of a target variable. Rather,
they can provide quantities that can loosely be interpreted
as probabilities. For example, in case of ensemble methods,
which output quantities based on binary decisions of the
base learners, we interpret these quantities as probabilities.
We used available implementations of these methods in the
scikit-learn [24] and xgboost [7] libraries.

Data scaling. Classification methods such as support vec-
tor, logistic regression, and k-nearest neighbors operate on
distances between data points. Since distances between dif-
ferent features are not of the same scales, the features need
to be standardized first. We employ a popular method of
data standardization. For each data point, we subtract from
it the mean of the training samples, and then divide that by
the standard deviation of the training samples.

Performance metrics. We employ multiple metrics to mea-
sure the performance of the classifiers from multiple perspec-
tives. Since the data is imbalanced, a single metric, e.g. ac-
curacy, does not meaningfully reflect different aspects of the
performance of a classifier. We consider 3 compound met-
rics: F-score, balanced accuracy, and AUC (area under the
ROC curve), which show different aspects of performance.
F-score is a useful metric when we are interested in the abil-
ity to predict class-1 samples (applicants who ultimately en-
roll at the university). It combines two individual measures
and is defined as 2·precision·sensitivity

(precision+sensitivity)
, where precision is the

probability that a positive prediction is correctly predicted,
and sensitivity is the true positive rate or the probability
that class-1 samples are correctly predicted. Balanced ac-
curacy is used when we are equally interested in the ability
to predict both class-1 and class-0 samples. It gives equal
weights to true positive rates (sensitivity) and true negative
rates (specificity). AUC is useful when we are interested in
the trade-offs between sensitivity and specificity at various
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thresholds as it sums up the area under the curve defined by
sensitivity (true positive rate) and 1-specificity (false posi-
tive rate).

Comparison to baseline. To gauge the performance of each
classification method, we compare its performance to that
of two baseline methods. The first baseline is a popular
method, ZeroR [11], which always predicts the most frequent
label in the training set. The second baseline, Stratified,
makes predictions based on the distribution of the labels in
the training set.

Cross-validation. To determine the performance of each clas-
sifier under a metric, we train the classifier using 90% of the
data and test it using the other 10% of the data. We ex-
periment with two popular cross-validation methods of par-
titioning the data randomly into training and testing sets:
(1) repeated random subsampling (up to 50 random splits)
and (2) k-fold with k=5 and 10. Although the data parti-
tions are randomly generated, in each iteration, we compare
the classifiers using the same random partition.

3.5 Optimization of allocation strategies
Algorithm 1 AutoStart-Optimizer( s0, C,D, δ, ST )

1: s← s0; best strategy ← s0
2: Run Stochastic Hill Climb to find ∆max

3: T ← ∆max
ln 0.5

4: while progress is still being made do
5: T ← T · δ
6: for i from 1 to ST do
7: s value← C.compute value(s)
8: t← RandomNeighbor(s)
9: D.update strategy(t)

10: C.fit(XD, yD)
11: ∆ = C.compute value(t) - s value

12: if ∆ > 0 or with probability e
∆
T then

13: s← t
14: if s is better than best strategy then
15: best strategy ← s
16: end if
17: else
18: D.roll back strategy(s)
19: C.fit(XD, yD)
20: end if
21: end for
22: end while
23: return best strategy

Local search optimization. Simulated annealing [21] is in-
spired from a physical annealing process, in which an ini-
tially hot temperature lets the local search explore the solu-
tion space more freely, allowing the adoption of neighbor so-
lutions that are not as good as the candidate solution. As the
search goes on, the temperature cools down and the search
is more aggressive in finding better solutions. When the
temperature is low enough the search essentially becomes a
stochastic hill climb. Starting at a high initial temperature,
the annealing is known to be able to escape locally optimal
solutions and reach a globally optimal solution eventually.

We adopt a modified version of simulated quenching [18],
which is a variant of simulated annealing. It is faster than

simulated annealing because it cools temperatures faster. It
is shown that in practice simulated quenching was as good
as simulated annealing [18].

While Figure 1 provides a high-level description of each iter-
ation of the optimization, Algorithm 1 provides a more de-
tailed description of how the optimization utilizes simulated
quenching to find optimal strategies for allocating merit-
based awards and need-based aid. The algorithm takes as
input an initial allocation strategy (s0), which is an estimate
from the university’s current strategy; a classifier C, which
learns from historical or updated features to predict enroll-
ment probabilities; an interface D to dataset, which can
updates features based on a new strategy or rollbacks previ-
ous features based on a previous strategy; δ and ST , which
dictate how fast the temperature schedule is decreased and
how long the temperature is kept constant, in each quench-
ing step.

The simulated quenching process aims to improve upon the
initial strategy, s0, by moving from one neighboring strat-
egy to the next. A better neighboring strategy replaces the
current one. Additionally, a worse neighboring strategy can
also replace the current one with a certain probability (lines
12-13, Algorithm 1), which is determined by the current
temperature T and how much worse the neighbor is. At
a higher temperature T , a worse neighboring strategy can
replace the current one in hopes of getting to an eventual
better optimum.

Auto-start simulated quenching To explore the search space
liberally at the start of the search, the initial temperature
needs to be sufficiently high. This initial temperature is,
however, problem dependent. As such, users generally have
to experiment with different values to find an appropriate
one. We employ a stochastic hill climber to derive an initial
temperature to start the simulated quenching process with-
out requiring users to initiate the search by specifying an
initial temperature (lines 2-3 in Algorithm 1). We set the
initial temperature T to ∆max

ln(0.5)
, where ∆max is the difference

between the worst strategy and the best strategy (local op-
timum) that the stochastic hill climber finds. At this initial
temperature, the largest backward move is accepted with
probability 0.5. As T decreases, this probability decreases
and a backward move is less likely allowed. When T is small
enough, the search effectively turns into a stochastic hill
climber.

Solution representation. The local search algorithm navi-
gates through the search space of allocation strategies to
find an optimal solution (strategy). An allocation strategy
consists of a merit-based award allocation strategy and a
need-based aid allocation strategy. Each consists of (1) a list
of buckets into which students are placed and (2) how much
money students in each bucket will receive. Buckets and
amounts must be increasing. This means a higher achieve-
ment results in higher merit-based amounts, and higher need
results in higher need-based amounts. As an example, con-
sider this allocation strategy:

• Achievement buckets: [0, 0.25, 0.50, 0.75, 1]

• Merit amounts: [$0, $2000, $6000, $10000]
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• Need buckets: [$0, $500, $5000, $10000, $20000, $40000]

• Need amounts: [$0, $1000, $1500, $2500, $3000]

If an applicant’s achievement index (or need index) falls be-
tween bucket[j] and bucket[j+1], then the applicant receives
amounts[j]. For example, if applicant i has a merit index of
0.4 and a need index of $15000, then the applicant will re-
ceive a merit-based amount of Mi = $2000 and a need-based
amount of Ni = $2500. Collectively, the offered amounts of
merit-based awards and need-based aid are captured in the
features M and N of D.

Generating neighboring strategies. Local search requires the
ability to generate a neighboring strategy from a current
candidate strategy. The two main steps of how the function
RandomNeighbor (line 8, Algorithm 1) generates a neigh-
boring strategy for a given strategy s are as follows:

1: First, select with probability 0.5 either the merit amounts
list or the need amounts list of s. Call this list A =
[a1, · · · , ak].

2: Second, with probability 0.5, either add a small amount
to a random amount ar (1 ≤ r ≤ k) in A, or remove a
small amount from a random amount ar in A.

RandomNeighbor keeps repeating these steps of adding or
removing small amounts from A until it finds a neighboring
strategy that satisfies the following constraints: (1) A re-
mains in an increasing order ; (2) the resulting amount, ar,
must be sufficiently different from its adjacent entries (ar−1

and ar+1); and (3) the minimum amount in A cannot be too
small (in case of a remove) or the maximum amount in A
cannot be too big (in case of an add).

Updating allocation strategies and relearning. To determine
if a neighboring strategy t is better or worse than the current
one two steps must be taken. First, we have to use this
strategy t to update the merit-based awards (feature M of
the dataset D) and need-based aid (feature N of the dataset
D) for all applicants (rows of D). Second, we have to refit
the classifier C to this updated dataset. These two steps are
shown in lines 9-10 of Algorithm 1.

If t ends up replacing s, the search moves on to the next
iteration. If t does not replace s, we have to roll back to
strategy s and refit the classifier C to the previous dataset
with strategy s (lines 18-19, Algorithm 1).

Expected outcomes as a result of an allocation strategy. An
allocation of funds to awards and aid affects enrollment,
which affects multiple outcomes that the University is inter-
ested in. We utilized a classification method, e.g. gradient
boosting, to predict enrollment probabilities of applicants.
This enables us to compute the expected outcomes that we
are interested in. Let y = (y1, · · · , yn) be the binary target
variable enrollment, and let p = (p1, · · · , pn), where pi is the
probability that applicant i enrolls at the University.

The expected outcomes we are interested in include:

• Expected enrollment =
∑
i pi. Denote the expected

enrollment as E.

• Expected net revenue =
∑
i pi · Ri, where Ri is net

revenue obtained from applicant i. Ri = ti−(mi+ni),
where ti is the tuition that the applicant pays, and mi

and ni are the merit-based and need-based amounts
offered to this applicant.

• Expected unmet need = 1
E
·∑i pi · (COAi −EFCi −

Pelli −Mi −Ni), where COA, EFC, and Pell are cost
of attendance, expected family contribution, federal
Pell grant; and M and N are the University’s merit-
based award and need-based aid. A positive unmet
need amount is what the applicant is expected to bor-
row to pay for attending the University. This definition
is widely used as a measure affordability.

• Expected accessibility =
∑
i pi · Ii, where Ii = 1 iff ap-

plicant i is offered some financial aid (i.e. Mi+Ni > 0)
and has unmet need that exceeds a certain threshold.
Note that Mi and Ni are the amounts of merit-based
award and need-based aid that applicant i is promised.
This threshold is set by the University and is believed
to represent a level of need that is not surmountable
through existing State and Federal programs.

• Expected return on investment =
∑

i pi·Ri∑
i pi·(Mi+Ni)

. It

is the expected revenue divided by the expected total
promised amounts of awards and aid.

• Expected achievement = 1
E
·∑i pi · Ai, where Ai is

the achievement index of applicant i and is calculated
from a combination of the applicant’s standardized test
scores (e.g. SAT or ACT) and high school GPA. Ap-
plicant i is offered a merit-based award in an amount
of Mi based on Ai.

Multi-objective optimization. Algorithm 1 aims to find a
strategy s∗ that maximizes the weighted sum of expected
enrollment (enr), net revenue (rev), unmet need (un), acces-
sibility (acc), return of investment (roi), and achievement
(ach) as follows:

f(s,D,C) = α1 · E[enr] + α2 · E[rev]− α3 · E[un]

+ α4 · E[acc] + α5 · E[roi] + α6 · E[ach] (1)

where αi’s are the weights of the expected outcomes. Im-
plicitly, the allocation strategy s is applied to the data D,
from which the classifier C learns to predict enrollment the
probability p, which is used to compute the expected values
on the right hand side of the equation.

Although we do not expect the algorithm to find a strategy
that is optimal in each individual objective, an overall opti-
mal value of the function should benefit both the University
and the applicants. While higher expected values of enroll-
ment, revenue, and achievement benefit the University, less
unmet need and high accessibility benefit applicants. On
the one hand, it seems that reducing unmet need for ap-
plicants may reduce revenue. On the other hand, making
attendance more affordable may actually increase both the
expected enrollment, which in turn may increase the ex-
pected revenue. In other words, increasing merit-based and
need-based amounts may reduce the revenue from each en-
rolled applicant, but may increase the number of enrolled
applicants and, ultimately, the overall revenue.
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Table 1: Performance of predicting enrollment

balanced accuracy F-score AUC

Gradient Boosting 0.91 0.88 0.96

XGB 0.91 0.88 0.96

AdaBoost 0.88 0.84 0.95

Random Forest 0.77 0.69 0.92

Linear SVC 0.72 0.61 0.83

KNN 0.61 0.44 0.69

Stratified baseline 0.50 0.30 0.50

ZeroR baseline 0.50 - 0.50

Users can experiment with α’s to give different weights to
different objectives to obtain realistically acceptable trade-
offs and improvements among the individual objectives.

Constraints. In constructing this research, certain constraints
were determined by the University’s administration. These
constraints reflect the administration’s perspective on the
competitive environment and internal business processes that
will support any proposed strategy. These constraints de-
pend on the award structure under consideration. For merit-
based awards, there could be no more than 6 awards with
award amounts restricted to a specific range. The need-
based aid strategy specification was limited to 4 awards
with their own maximum and minimum constraints on aid
amounts. It is worth noting that the maximum value for a
merit-based award was four times higher than the maximum
need-based aid amount. Need-based aid eligibility also had
a minimum need index cutoff (COAi−EFCi−Mi−Pelli).
For both allocation strategies there needed to be a minimum
difference of $100 between award buckets.

4. RESULTS
Predicting enrollment. We found gradient boosting [29] was
the highest performing classifier and had very high perfor-
mance in predicting enrollment. This result was obtained
by comparing optimized versions of 6 different popular clas-
sification approaches, which could make probabilistic pre-
dictions. Figure 2 shows the ROC curve of the classifiers in
one random partition the data into 90% training and 10%
testing sets. The figure shows an excellent trade-off between
true positive rate and false positive rate for the two top per-
formers (gradient boosting and extreme gradient boosting).

Table 1 shows the performance of the classifiers averaged
across 10 folds of cross validation. In validating the classi-
fiers, we experimented with k-fold cross validation and re-
peated subsampling at various parameters. We ultimately
decided that a 10-fold cross validation was a slightly better
choice for our study than the others. All classifiers per-
formed significantly better than the two baselines. Note
that given the imbalance of the data, ZeroR did not predict
any positive label, resulting in undefined precision and F-
score. Gradient Boosting [29] and Extreme Gradient Boost-
ing [7] had the same highest performance across all 3 metrics
(balanced accuracy, F-score, and AUC). Gradient Boosting,
AdaBoost, and Random Forest were optimized after consid-

Figure 2: ROC curve of enrollment prediction

ering various values of maximum depth and minimum leaf
size of the decision-tree base learners.

Given an allocation strategy for awards and aid, we em-
ployed a gradient boosting classifier to predict expected out-
comes if we were to apply the strategy. To assess this strat-
egy, we compare the expected outcomes to the actual out-
comes that were obtained from the original data based on
the University’s existing strategy for allocating awards and
aid.

Defining strategies for allocating funds. A strategy for simu-
lated quenching consists of 3 parameters: (1) the number of
steps in decreasing an initial temperature, (2) the number
of times to keep the current temperature constant, and (3)
the weights (αi’s) of the expected outcomes in Equation 1.
For example, we denote SQ-enr-100,3 as the strategy that
optimizes enrollment where temperatures are decreased 100
steps, and each temperature is kept constant for 3 steps.
As another example, we denote SQ-enr-un-2,0.6,100,3 as the
strategy that optimizes enrollment and unmet need with
weights 2 and 0.6, respectively, where temperatures are de-
creased 100 steps, and each temperature is kept constant for
3 steps.

Table 2 shows the expected outcomes (averaged across 10
random runs) relative to the baseline (actual outcomes) of
a few distinguishing strategies. These expected outcomes
are from (1) a strategy for optimizing enrollment; (2) two
strategies for optimizing enrollment and unmet need; and
(3) seven strategies for optimizing enrollment, unmet need,
and revenue.

For clarity, expected outcomes are grouped into two cate-
gories: institution-centric outcomes and student-centric out-
comes. In general, it is difficult to find a strategy that can
improve all of the outcomes simultaneously.
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Table 2: Expected outcomes of different strategies versus actual outcomes

Institution-Centric Student-Centric Budget Change

Strategy
Enrollment

(%)
Revenue

(%)
ROI
(%)

Achievement
(%)

Accessibility
(%)

Unmet need
($)

Total Funding
(%)

SQ-enr-100,3 32.0 29.0 -1.0 -2.0 189.0 3320.0 48.0

SQ-enr-un-2,0.6,100,3 17.0 -26.0 -3.0 -1.0 132.0 -403.0 191.0

SQ-enr-un-2,0.6,100,5 22.0 -25.0 -3.0 -2.0 142.0 -51.0 216.0

SQ-enr-un-rev-1,0.5,2,100,1 5.8 14.6 2.7 -0.4 119.8 1247.0 -28.1

SQ-enr-un-rev-1,0.5,2,100,5 8.1 16.6 2.9 -0.4 125.7 1429.7 -24.5

SQ-enr-un-rev-1,0.6,2,100,1 11.8 6.5 -0.8 -0.7 132.4 948.7 34.9

SQ-enr-un-rev-1,0.6,2,100,2 8.3 6.9 -0.2 -0.5 124.0 825.0 15.5

SQ-enr-un-rev-1,0.6,2,100,3 5.7 1.7 -0.6 -0.4 115.8 345.7 23.2

SQ-enr-un-rev-1,0.6,2,100,4 3.5 -0.2 -0.5 -0.3 109.8 135.2 19.5

SQ-enr-un-rev-1,0.6,2,100,5 2.0 -4.8 -0.4 -0.2 104.3 -288.6 29.9

Table 3: A comparison between the actual outcomes and expected outcomes resulting from a conservative solution for distributing
awards and aid

Institution-Centric Outcomes Student-Centric Outcomes Budget Changes

Enrollment Revenue ROI Merit Accessibility Unmet need Total Funding Awards Aid

1.3% 0.1% -0.2% -0.1% 104.7% -$2.7 6.5% -2.2% 93.4%

Low impact on expected ROI and achievement in optimiza-
tion strategies. In our evaluation of different strategies, it
seems that the impact on expected ROI and merit profiles
is relatively small. Percent changes to ROI are reported in
column 5 of Table 2. ROI deviates 3% from the baseline
in either direction at most, with the majority of deviations
being a decrease of 1% or less. Similarly, expected achieve-
ment decreases from the baseline by 2% at most, which is
equivalent to less than a one point drop in average ACT
scores. As such these particular outcomes are not discussed
at length in results discussed subsequently.

Optimizing for enrollment alone is good for the University but
bad for students. Previous literature focused on optimizing
for enrollment alone [4, 28]. In Table 2 this strategy is rep-
resented by SQ-enr-100,3. Enrollment and net revenue in-
crease 32% and 29% over actual figures, respectively. These
results appear attractive if considered in isolation. How-
ever, this return comes at the expense of a 48% increase in
the total financial aid budget as well as a $3320 increase
in the average amount of unmet need carried by matric-
ulates, indicating attending the University has been made
less affordable on average. This increase in expected aver-
age unmet need is particularly interesting when compared
with the 189% increase in accessibility. Together afford-
ability and accessibility are student-centric outcomes often
paired in institutional mission statements. However, there
appears to be a trade-off between the two. The extension of
more strategic awards and aid to those students with fewer
means, may increase their likelihood of attending but it will
also raise the average amount of unmet need as the awards
and aid are not enough to offset the total cost.

Optimizing for both enrollment and unmet need is good for
students but bad for the University. Since optimizing for
enrollment alone increases unmet need, we next examine
the impact of optimizing for both simultaneously. SQ-enr-
un-2,0.6,100,3 and SQ-enr-un-2,0.6,100,5 in Table 2 are two
such strategies for this dual optimization specification. In
both strategies the University sees improvements in terms of
enrollment (17 - 22% increase), accessibility (increase 132-
142%), and unmet need (decrease $51 - $403). However,
these improvements are costly the University. To achieve
this, total financial aid funding is anticipated to rise 191-
216%, causing a reduction in net tuition revenue of 25%.
This trade-off between affordability and net revenue neces-
sitates a more nuanced optimization specification.

Optimizing for enrollment, unmet need and revenue results
in reasonable trade-offs. If the University wishes to strike a
balance between institution- and student-centric outcomes,
enrollment, unmet need, and revenue must be simultane-
ously optimized. Seven different strategies for such a spec-
ification are seen in the last two sections of Table 2. From
the University’s perspective, each of these strategies results
in modest increases in enrollment (2% - 11.8%) and has a
negligible to modest impact on expected net revenue (-4.8%
- 16.6%). Further, each requires significantly less investment
in total funding as compared to optimizing for enrollment
or enrollment/affordability and, in some cases, could result
in cost savings. From the student perspective there is still a
marked gain in accessibility of over 100% in all of the strate-
gies. Unmet need, as a measure of affordability, on average
still experiences an increase over the actual amount under
all but one strategy, but the amount of the increase in unmet
need is always below $3000, which is a great improvement
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Table 4: Effects of allocation strategies on the distribution of
merit-based awards and need-based aid

Strategy
Awards
(%)

Aid
(%)

Total
Funding
(%)

SQ-enr-un-2,0.6,100,5 160.0 779.0 216.0

SQ-enr-un-2,0.6,100,3 147.0 624.0 191.0

SQ-enr-100,3 54.0 1079.0 48.0

SQ-enr-un-rev-1,0.6,2,100,5 19.6 133.2 29.9

SQ-enr-un-rev-1,0.5,2,100,5 -5.6 441.8 34.9

SQ-enr-un-rev-1,0.6,2,100,3 -0.1 256.4 23.2

SQ-enr-un-rev-1,0.6,2,100,4 -1.2 226.9 19.5

SQ-enr-un-rev-1,0.6,2,100,2 -15.8 328.8 15.5

SQ-enr-un-rev-1,0.6,2,100,1 -57.4 304.9 -24.5

SQ-enr-un-rev-1,0.5,2,100,1 -56.2 253.8 -28.1

over optimizing for enrollment alone.

Few moderate strategic changes can increase accessibility sig-
nificantly. After we identify a viable strategy, we can narrow
it down to a specific solution that maybe adoptable by the
University. Adopting a bold strategy that is recommended
by an algorithm can be risky. A few reasons that threaten
the validity of such a strategy include (1) flawed assumptions
made by the model, (2) insufficient amounts of data, and (3)
external forces that influence enrollment decisions that are
not captured by the data, particularly in a pandemic year.
These and other reasons make it hard for administrators to
adopt bold strategies even if they might predict large in-
creases in expected outcomes. At times, risk-averse admin-
istrators may prefer solutions that make moderate changes,
but can move the needle in some significant way.

In addressing this, we identified a viable solution, which
came from a random run of the SQ-enr-un-rev-1,0.6,2,100,4
strategy, which optimized for enrollment, affordability and
revenue. Table 3 shows the expected outcomes as a result
of adopting this solution.

If this solution is adopted, we expect that accessibility can
increase more than 100% from baseline, while keeping en-
rollment, revenue, and most other relevant outcomes nearly
identical as the status quo. For this big expected increase in
accessibility to happen, the solution calls for an increase of
6.5% in financial aid funding, and a redistribution of merit-
based awards (decreasing 2.2%) to need-based aid (increas-
ing 93.4%).

How allocation strategies affect the redistribution of institu-
tion funds. As we assess strategies, we find that different lev-
els of aggressiveness in financial aid spending are demanded.
Table 4 illustrates this point by taking each strategy from
Table 2 and presenting the percent change in expected spend
on merit-based awards, need-based aid, and the total finan-
cial aid. As we move down through the table, the level of
the impact on total financial aid generally decreases.

Table 5: Performance and runtime from optimizing enroll-
ment of stochastic hill climbing (SHC) and simulated quench-
ing (SQ)

Strategy
Runtime
(sec)

Enrollment
(%)

SHC-enr-100 8.6 31.4

SQ-enr-100,1 16.9 31.9

SQ-enr-100,2 24.4 32.1

SQ-enr-100,3 34.1 32.2

SQ-enr-100,4 43.8 32.0

SQ-enr-100,5 50.0 32.3

We find that optimizing for both enrollment and unmet need
(SQ-enr-un-2,0.6,100,5 and SQ-enr-un-2,0.6,100,3) is a very
aggressive approach as the optimization seeks to enroll as
many students as possible with the smallest amount of un-
met need. This leads to increases in both the expected merit
and need spend with an overall budget increase of approxi-
mately 200%. A less aggressive strategy is the optimization
of enrollment alone (SQ-enr-100,3). This strategy seeks en-
rollment by focusing on expanding need-based aid by 1079%
and merit-based awards by only 54%. Since the amount of
need-based aid was lower to start with this only results in a
48% increase in the total budget.

It is only when revenue is added to the optimization’s ob-
jective with enrollment and unmet need that we reach more
moderate budget increases and, eventually, cost savings. These
strategies recommend a reduction in merit-based awards and
a redistribution of funds to need-based aid.

Comparing simulated quenching and stochastic hill climb-
ing. To contrast the runtime and performance of the two
methods, we set both to have 100 iterations. For simulated
quenching, temperature is decreased in each iteration, and in
each iteration, the temperature is kept constant for another
m steps. Thus, in addition to an overhead for estimating
the initial temperature, the runtime of simulated quenching
should be approximately m times slower than hill climbing.
This can be observed in Table 5 for m = 1, 2, 3, 4, 5. Simi-
larly, in terms of runtime, simulated quenching is slower than
hill climbing by a constant that is directly proportional to
m, when both methods were used to optimize for enrollment
and affordability (Table 6) and, respectively, for enrollment,
affordability, and revenue (Table 7). These tables show the
average performance and runtime of the two methods over
10 random runs.

When optimized for enrollment (Table 5), simulated quench-
ing has a higher increase (from 31.9% to 32.3%) than stochas-
tic hill climbing (31.4%). Further, this increase grows with
higher values of m (from 1 to 11). When optimized for
enrollment and affordability (Table 6), performance also in-
creases with higher values of m (from 1 to 11). However, the
increase in performance seems to be on affordability than on
enrollment. When optimized for enrollment, affordability,
and revenue (Table 7), affordability increases, while enroll-
ment and revenue decrease with higher values of m.
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Table 6: Performance and runtime from optimizing enrollment and affordability of stochastic hill climbing (SHC) and simulated
quenching (SQ)

Strategy
Runtime
(sec)

Enrollment
(%)

Unmet Need
($)

SHC-enr-aff-100 10.2 16.9 -1031.9

SQ-enr-aff-2,0.5,100,1 19.6 26.3 -1193.0

SQ-enr-aff-2,0.5,100,3 39.5 16.7 403.2

SQ-enr-aff-2,0.5,100,5 53.1 21.9 51.4

SQ-enr-aff-2,0.5,100,7 66.4 21.1 205.6

SQ-enr-aff-2,0.5,100,9 84.6 16.1 602.2

SQ-enr-aff-2,0.5,100,11 98.5 18.0 489.6

Table 7: Performance and runtime from optimizing enrollment, affordability and revenue of stochastic hill climbing (SHC) and
simulated quenching (SQ)

Strategy
Runtime
(sec)

Enrollment
(%)

Revenue
(%)

Unmet Need
($)

SHC-enr-aff-rev-100 36.5 11.0 6.4 -1091.8

SQ-enr-aff-rev-1,0.6,2,100,1 19.3 11.8 6.5 -948.7

SQ-enr-aff-rev-1,0.6,2,100,2 121.5 8.3 6.9 -825.0

SQ-enr-aff-rev-1,0.6,2,100,3 160.5 5.7 1.7 -345.7

SQ-enr-aff-rev-1,0.6,2,100,4 197.6 3.5 -0.2 -135.2

SQ-enr-aff-rev-1,0.6,2,100,5 227.5 1.8 -4.5 283.2

In our application, keeping the same temperature longer for
simulated quenching (i.e. with large values of m) increases
objective scores, but does not seem to produce solutions with
more meaningful impacts on expected outcomes.

5. DISCUSSIONS AND CONCLUSIONS
We addressed multiple outcomes for each selected strategy.
Two of those outcomes, achievement and ROI, did not see
meaningful changes for the strategies selected. In the case
of achievement, we could not improve it significantly over
the actual outcomes. Perhaps this was due to the fact that
as strategies drive the need-based aid budget upward we
are successfully recruiting students from lower-income back-
grounds who have traditionally scored lower in standardized
tests [5]. Or there could be a limit to our ability to recruit
high achieving students due to the University-constrained
maximum merit-based award amount. For ROI, we could
identify strategies that yielded small amounts of increase.
However, those strategies were not as compelling as those
we chose to include.

In our application, globally optimal solutions may be im-
practical. For example, a strategy that yields a 200% in-
crease in enrollment might be mathematically optimal, but
may not be accommodated easily. One could impose con-
straints. In our experimentation with the local search ap-
proach, however, having constraints on multiple objectives
did not lead to great solutions. It can be very hard for
a local search to navigate the search space from an initial
random solution to get to an optimal solution that satisfies

multiple constraints. Our approach, instead, is to optimize
a relatively constraint-free multi-objective function and be
optimistic that locally optimal solutions are also practical.
Experimenting with different combinations of objectives and
ways to control the optimization, we could find strategies
that accommodate different levels of risk tolerance.

Thus, this approach provides a path for administrators to
weigh risks versus rewards in terms of increasing merit-based
awards and need-based aid to support students while main-
taining an acceptable level of revenue and enrollment. Ta-
ble 2 shows the trade-offs in how spending on financial aid
funding can affect expected enrollment and revenue. In par-
ticular, we were able to identify and recommend a viable
solution that requires moderate changes in the budget and
yet increases accessibility by more than 100% in Table 3.

Our approach can be adapted to solve other problems that
share the same types of interactions between a classifier and
an optimizer. In such problems, the classifier expects a set
of features that keep evolving based on an external strategy,
and the optimizer evaluates expected outcomes predicted by
the classifier to recommend a better strategy. For optimiza-
tion, we employ local search, which is flexible and easily
adaptable to different types of problems. For classification,
although we employ gradient boosting, any method that is
readily available from popular tool kits such as scikit-learn
[24] can be used as long as it can make dependable predic-
tions for the problem of interest.
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ABSTRACT
Automatic short answer grading is an important research di-
rection in the exploration of how to use artificial intelligence
(AI)-based tools to improve education. Current state-of-the-
art approaches use neural language models to create vector-
ized representations of students responses, followed by clas-
sifiers to predict the score. However, these approaches have
several key limitations, including i) they use pre-trained lan-
guage models that are not well-adapted to educational sub-
ject domains and/or student-generated text and ii) they al-
most always train one model per question, ignoring the link-
age across question and result in a significant model storage
problem due to the size of advanced language models. In this
paper, we study the problem of automatic short answer grad-
ing for students’ responses to math questions and propose
a novel framework for this task. First, we use MathBERT,
a variant of the popular language model BERT adapted to
mathematical content, as our base model and fine-tune it
on the downstream task of student response grading. Sec-
ond, we use an in-context learning approach that provides
scoring examples as input to the language model to provide
additional context information and promote generalization
to previously unseen questions. We evaluate our framework
on a real-world dataset of student responses to open-ended
math questions and show that our framework (often signif-
icantly) outperform existing approaches, especially for new
questions that are not seen during training.

Keywords
Automated scoring, Short-answer scoring, Math grading

1. INTRODUCTION
Automated scoring (AS) refers to the problem of auto-
matically scoring student (textual) responses to open-ended
questions with multiple correct answers, often utilizing var-
ious machine learning algorithms. AS approaches can po-
tentially scale up human grading effort: by training on a

small number of example scores provided by human ex-
perts, they can automatically score a large number of re-
sponses. With the advancement in online learning platforms
in recent years, there has been a growing body of research
around the development of AS methods. AS has been stud-
ied in many different contexts, including automated essay
scoring (AES) [1, 30] and automatic short answer grading
(ASAG) [39, 51], which has been studied in various different
subject domains [5, 12, 14, 37, 17, 3, 29, 49]. The majority of
AS approaches follow two steps: First, obtaining a represen-
tation of student responses, often using methods in natural
language processing, and second, applying a classifier on
top of this representation to predict the score [4, 27]. Over
the years, AS approaches have gradually shifted from classic
text representations such as bag-of-words or human-crafted
features [8, 16, 19, 30, 32, 41] that are human-interpretable
to more abstract representations based on pre-trained neural
language models [24, 26, 38, 40, 45].

In this paper, we focus on ASAG in one particular sub-
ject domain: Mathematics. Math questions, or questions
that involve mathematical reasoning, are ubiquitous in many
science, technology, engineering, and mathematics (STEM)
subject domains. Recently, several works [5, 14] have stud-
ied ASAG for the responses students provide to math-based
open-ended questions that (are often concise) include their
reasoning or thinking process about a particular concept. As
noted in prior work, a key technical challenge in this domain
is that student responses to math-based open-ended ques-
tions often are a combination of text (natural language) and
mathematical language (symbols, expressions, and equa-
tions). However, most existing pre-trained language models
such as BERT [13] and GPT [7] are not specifically designed
for mathematical language. Therefore, existing approaches
for math ASAG that do not address the mathematical lan-
guage present in student responses [5, 14] may not be able
to accurately represent student reasoning processes in their
responses. On the other hand, existing methods that focus
entirely on mathematical language [22, 42, 50] cannot pro-
cess natural language contained in open-ended responses.

Another significant limitation of existing AS approaches is
that, in most cases, we need to train a separate AS model
for each question. In contexts such as AES where ques-
tions (essay prompts) may not have high similarities, this
approach can often be effective. However, in other con-
texts where reading comprehension or reasoning is involved,
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multiple questions may be linked to each other through the
background information provided. In the context of math
questions, many questions share similar skills or are different
parts of a multi-step question. Therefore, training a separate
AS model for each question would result in models that can
only identify typical patterns in student responses to each
individual question but cannot really understand how to dif-
ferentiate good responses from bad ones. It is likely that
these models would not be able to generalize well to previ-
ously unseen questions, as noted in [12]. More importantly,
training a separate AS model for each question may create
a significant problem for model storage and management.
This problem is especially significant for state-of-the-art AS
approaches that fine-tune pre-trained language models that
have millions of parameters.

1.1 Contributions
In this paper, we develop an ASAG framework for students’
open-ended responses to math questions. Building on a
grand prize winning solution [15] to the National Assess-
ment of Educational Progress (NAEP) Automated Scoring
Challenge1, our framework is based on fine-tuning a pre-
trained BERT language model on actual student responses,
with several main innovations:

• First, we use MathBERT [35], a version of the pop-
ular BERT language model adapted to mathematical
content, as our base model. This model is capable of
understanding math symbols and expressions to some
extend and help us obtain a better representation of
open-ended student responses.

• Second, we leverage in-context learning ideas in NLP
research [11, 28] and develop an ASAG approach us-
ing on multi-task and meta-learning tools (that are
popular machine learning tools to promote model gen-
eralizability). Specifically, we fine-tune MathBERT
with a carefully designed input format that uses exam-
ple responses and scores as additional input (together
with question and response texts) to provide additional
context of each question. This input format helps us
train a shared AS model across all questions and out-
performances the current state-of-arts approach [5].

• Third, we show that meta in-context learning leads to
highly generalizabile AS models. Our intuition on why
our approach is highly effective is that, by explicitly
using example responses and scores as input, we reduce
the AS task to a similar response finding task, which
is easier for the model to learn.

We evaluate our ASAG framework on a real-world dataset
which contains students’ solution processes to open-ended
math questions and grades provided by teachers. Through
a series of quantitative experiments, we show that our
framework (sometimes significantly) outperforms existing
approaches in terms of score prediction performance. More
importantly, we show that our framework significantly out-
performs existing approaches [5, 12] (by up to 50% on some
metrics under some settings) when applied to questions that
are previously unseen during training, using only a few

1https://github.com/NAEP-AS-Challenge/info

scored examples for these new questions. Perhaps surpris-
ingly, we found that MathBERT does not provide additional
benefit on top of the original BERT model while the in-
context fine-tuning setup is key to the excellent generaliza-
tion performance. We also summarize observations from
qualitative evaluations of scoring errors, discuss the limi-
tations of our framework, and outline several avenues for
future work. Our implementation is publicly available.2

2. RELATED WORK
In recent years, there have been many developments in
ASAG methods across various domains. Most of the prior
works have focused on non-mathematical domains [6, 10]
where student responses are purely textual. However,
more AS works have started to focus on more specific do-
mains that contain non-textual symbols, e.g., Math, Physics,
Chemistry, Biology and Computer Science [19, 30, 41]. In
these domains, a combination of natural language process-
ing methods for the representation of responses and machine
learning methods for score classification has shown promis-
ing results [5, 14, 23, 36, 38].

Here, we discuss two recent AS works in the mathemat-
ical domain, [5] and [12], that are the most relevant to
our research. The authors of [5] proposed a scoring ap-
proach for short-answer math questions using sentence-
BERT (SBERT)-based representation of student responses.
Compared to this approach, our approach differs in many
aspects and we highlight the following: First, we use Math-
BERT, a model pre-trained on mathematical content to rep-
resent student responses, while the approach in [5] ignores
mathematical language in student responses. Second, we
use an in-context meta-training approach to train one AS
model for all questions while the approach in [5] trains one
AS model for each question, which likely limits its general-
izability to previously unseen questions.

The authors of [12] proposed a similar scoring approach
for short-answer critical reasoning questions that combines
various pre-trained representations, including SBERT, with
classifiers for AS. Instead of using only student responses
as input to the classifiers, they also use a series of ques-
tion context information such as question text, rubric text,
and question cluster identifier. As a result, they showed
that their AS approach can generalize to previously unseen
questions. Compared to this approach, our approach mostly
differs in two aspects: First, we fine-tune MathBERT on ac-
tual student responses while the approach in [12] leaves the
pre-trained representations fixed, which likely limits the ac-
curacy of their student response representations. Second, we
use scoring examples as input to MathBERT in addition to
question text to further provide the AS model context of the
question, which further enhances the generalizability of our
model to previously unseen questions in a few-shot learning
setting.

3. METHODOLOGY
In this section, we detail both the ASAG setup for math
questions and our in-context meta-learning framework.

3.1 Problem Statement
2https://github.com/kikumaru818/meta_math_scoring
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We treat math ASAG as a classification problem where our
goal is to train a scoring model that is capable of generalizing
to new, previously unseen questions using a few examples.
This setting is well studied in machine learning, commonly
referred to as few-shot learning [7, 11, 28], where the goal
is to train robust models that excel at multiple tasks. For-
mally, we have a set of questions T = {Q1, Q2, Q3, . . . , Qn},
where each question Qi ∈ T can be seen as a classification
task. Each question Qi comes with numerous graded, train-
ing examples: {e1i , e2i , . . .}. Each example consists of multi-
ple fields of information: eij = ⟨qtext, qid, x, y⟩, where qtext
is the textual statement of the question, qid is an unique
question id, x is the text of student’s response and y is the
grade from the teacher. We study on two problem settings
in this work: i) generalization to new responses and ii) gen-
eralization to new questions.

3.1.1 Generalization to new responses
This problem setting follows from that used in prior work [5]:
we train a scoring method on scored responses for all ques-
tions and test it on held-out responses. We treat this prob-
lem setting as supervised learning classification and learn a
scoring model f : x 7→ ŷ that predicts an estimated score
ŷ for a student response x with true score y by minimizing
a loss function L(y, ŷ). For each question Qi, we split the
corresponding scored responses into two subsets, QTraini and
Qtesti , such that QTraini ∪Qtesti = Qi and QTraini ∩Qtesti = ∅.
Instead of treating each question separately and train a
model for each, we train one unified model on the union

of training datasets for all questions, i.e.,
⋃|T |
i=1Q

train
i . We

detail the scoring model and our in-context learning setup
in Section 3.3.

Let θ represent the model parameters, the optimization ob-
jective Li for question i is simply the cross entropy, i.e., the
negative log-likelihood loss

Li(θ) =
∑

j:(xij ,y
i
j)∈Qtrain

i

[− log pθ(y
i
j |xij , . . .)].

We minimize the total objective that spans all questions

L(θ) =

|T |∑

i=1

Li(θ)

to learn the model parameters θ.

3.1.2 Generalization to new questions
This problem setting can be formulated as a few-shot (or
zero-shot) classification problem: we train a scoring model
on scored responses for some questions and test its general-
ization capability to student responses to held-out questions.
We first split the set of questions T into Ttrain and Ttest such
that Ttrain ∪ Ttest = T and Ttrain ∩ Ttest = ∅. We train the
scoring model on all scored responses for the training ques-

tions
⋃|Ttrain|
i=1 Qi. Let γ represent the model parameters for

this problem setting, the optimization objectives for each
question and across all training questions change to

Li(γ) =
∑

j:(xij ,y
i
j)∈Qi

[− log pγ(yij |xij , . . .)]

and

L(γ) =

|Ttrain|∑

i=1

Li(γ),

respectively.

At test time, we applied the trained model to new questions
Qi ∈ Ttest to see how it can adapt using few (or zero) scored
examples for these new questions. We study two cases: i)
we do not update the original model with gradient updates,
i.e., γ remains unchanged, which we call the Meta setting,
and ii) we update γ by backpropagating gradients calculated
on a few scored responses for new questions, which we call
the Meta-finetune setting.

3.2 BERT-based classification
We now detail our scoring method based on fine-tuning a
pre-trained language model. BERT [13] is a pre-trained lan-
guage model that produces contextualized representations
of text and is also capable of encoding text. We use Math-
BERT [35], a variant of BERT pre-trained on a large math-
ematical corpus containing mathematical learning content
ranging from pre-kindergarten (pre-k), high school, to col-
lege graduate levels. We use MathBERT as our base lan-
guage model and fine-tune it on our data for downstream
ASAG classification.

Figure 1 visualizes our method. The input to BERT is a
sequence of tokens, starting with the [CLS] token, a spe-
cial symbol added in front of every input during training
process for BERT based model. Since [CLS] doesn’t have
meaning itself and BERT-based models learn contextual-
ized representations of text, we can use the [CLS] embed-
ding as a representation that encodes the entire input. We
then feed the [CLS] embedding to a classification layer fol-
lowed by softmax [18], obtaining the predictive score class
probabilities. A key difference between our work and prior
works [5, 12] that use BERT is that we also fine-tune the
BERT model, i.e., update its parameters and adapt it to
ASAG. Prior works only use BERT-based models to extract
the representation of student responses; these methods are
not likely going to be effective since they cannot adapt to
student-generated content. During training, we backprop-
agate the gradient on the prediction objective to both i)
the classification layer, which is learned from scratch, and
ii) BERT, which is updated from its pre-trained parameter
values.

3.3 In-context Meta-learning
Our key technical insight is that we need to use a well-crafted
input format to provide context to the model and help it
adapt to the scoring task for each question. Therefore, in-
stead of only inputting the target student response we want
to grade, we also include several other features as the input.
These features are important to ground the model in the
context of each question. For each possible feature, we also
add additional textual instructions as input to the model
about the semantic meaning of the feature.

Table 1 shows all possible features we include as model input
and the corresponding template. Student response denotes
the target responses to be scored. Thus, the correspond-
ing textual instruction is “score this answer.” Since student
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Figure 1: Overview of our in-context meta-learning-based ASAG method for math questions.

Table 1: Templates for different components we use as input into our scoring method.

Input Feature Template Sample Text

Student Response score this answer: xij score this answer: expand the equation we get 2x+ 2 = 1 then x = −0.5

Question question text: qitextj question text: Solve the equation 2(x+ 1) = 1

Question ID question id: qiidj question id: 21314

Scale scale: possible grade for question i scale: poor, fair, good, excellent

Example example: xi¬j, score: y
i
¬j example: move 2 to the right x = 1/2, score: fair

responses are essential to the grading task, we place it di-
rectly after the [CLS] token. After the student response, we
add either the question text or the question ID as input to
the BERT model. Question text can help the model under-
stand the question context and generalize across questions
by leveraging their semantic relations. Question IDs enable
the model to identify which question the target response
belongs to, which can be helpful when the question text is
not semantically meaningful; see Section 4.3 for an example.
We can also add textual descriptions of the grading scales
to the input. Since we use language models that are bet-
ter at understanding text than numbers, we use “bad, poor,
fair, good, excellent” to represent scores of 0, 1, 2, 3, and 4,
respectively.

Another key innovation is that, following recent approaches
[11, 28] for meta-training based in-context learning, we also
input examples of scored responses, i.e., responses and corre-
sponding scores, (xi¬j , y

i
¬j) from training dataset that belong

to same question of the target response xij . These examples
provide further context to the model that the model can use
to relate the target response to. Intuitively, when these ex-
amples are presented in the input, the AS model only needs
to find example responses that are similar to the current
response and use their scores to help score the current re-
sponse. This task is easier for the AS model to learn than
the real AS task when examples are not in the input.

4. EXPERIMENTS

This section details the experiments we conducted to vali-
date our in-context meta-training approach for ASAG. Sec-
tion 4.1 discusses details on the real-world dataset student
response dataset we use and how our pre-processing steps.
Section 4.2 details evaluation metrics and baselines. We
design three groups of experiments to test our approach’s
performance. In section 4.3, we examine how the approach
performs on generalizing new student responses while hav-
ing an assumption that the questions have already been seen
during the training process. In section 4.4, we examine the
performance of our approach generalizing to scoring student
response to new questions; in section 4.3.3, we run exper-
iments to test which part of the in-context has the most
significant impact on the performance of our approach.

4.1 Dataset
In this study, we use data collected from an online learn-
ing platform that has been used in prior work [5, 14]. The
dataset contains student responses to open-ended questions
paired with scores provided by human graders. The dataset
used in [5, 14] consists of 141,612 total student responses
from 25,069 students to 2,042 questions, scored by 891 dif-
ferent graders. The numeric score given to each response is
in a 5-point scale from 0-4 with 4 as full credit and 0 as no
credit. We refer to this dataset as Dorig.

Dorig contains some noisy data points that increase the dif-
ficulty of learning. First, some student responses are the
same, but the teacher grades are different. Second, all cor-
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responding student responses get full credit for some ques-
tions. For example, even the student’s response is “I do
not know”, the response’s grade is still full credit. Third,
some students’ responses are answered by image, making
the text content empty. Fourth, similar issues on ques-
tion body; some questions do not have semantic meaning
(such as questions that refer to a question in a book that we
cannot access) or are represented as tables or images. For
this work, we mainly focus on questions with correspond-
ing students’ responses and scoring the responses no matter
which student is and who is grading. Thus we hope to re-
duce the effect of these noisy data points and further clean
up the dataset. We found that some student responses are
the same but the teacher grades are different; therefore, we
re-label 2,130 inconsistent responses with the highest grade
that the corresponding response text can get. We remove
8,835 student responses that contain only images or bro-
ken characters (non-English words, non-math terms). Since
our in-context meta-learning approach needs to learn coher-
ent information between questions using question text, we
need high qualify question text. We remove responses (9,930
number of responses) with a question body (231 number of
questions) that does not have semantic meaning. We also
remove questions (478) that contain less than 25 number of
students’ responses. We called the new dataset Dclean, it
contains 131,046 responses in total and 1,333 questions. Ta-
ble 2 shows some examples data points of this dataset. For
each data point, it contains the student response, problem
text, problem id and teacher grade.

4.2 Metrics
For the evaluation of math ASAG methods, we utilize three
evaluation metrics for categorical, integer-valued scores, fol-
lowing prior work [5, 14]. The first metric is area under
the receiver operating characteristic curve (AUC), which is
designed for binary classification problems. Instead, we cal-
culate the AUC in a way similar to [21] by averaging the
AUC numbers over each possible score category, treating
them as separate binary classification problems. The sec-
ond metric is the root mean squared error (RMSE) which
simply treats the score categories as numerical values. The
third and most important metric is the multi-class Cohen’s
Kappa that is often used for ordered categories, which fits
the setting of our ASAG data.

4.3 Scoring new responses
4.3.1 Experimental Setting

For this experiment, we focus on comparing the perfor-
mance of our approach to baselines on generalizing to new
responses. We randomly divide all example responses in
Dorig (we use this dataset for a fair comparison to [5, 14])
into 10 equally-sized folds for cross validation. For each run,
we use 8 folds for training, 1 fold for validation to select a
training epoch with the best performance on this fold and
1 fold for the final testing of all methods. Under this set-
ting, we ensure every question is contained in the training
set so for every response in the test set, our models have seen
scored response examples from the exact same question in
the training set.

For our approach we use MathBERT [35] as the pre-trained

model with 110M parameters as the base scoring model 3.
We use the Adam optimizer, a batch size of 16, a learning
rate of 1e-5 for 5 epochs on an NVIDIA RTX 8000 GPU.
We do not perform any hyper-parameter tuning and simply
use the default setting. For each training response, we ran-
domly sample one in-context example per score class and fill
up with the rest of training examples up to 25 in total from
the training dataset for the corresponding question. Due to
the restriction on input length for language models (512 for
MathBERT), we truncate an example to a maximum of 70
tokens if necessary to ensure that the question, the target
response to score, and all examples all fit in. For testing,
we repeat the process of randomly sampling examples eight
times for each target student response to be scored and av-
erage the predicted score class probabilities.

We use an evaluation setting that follows from the one
used in [14], for a fair comparison to compare it with
SBERT-Canberra (SBERT-C) [5], the current state-of-the-
art method. The evaluation utilizes a 2-parameter Rasch
model [44]; We include three groups of terms as covariates
in the Rasch model: i) the student ability and question dif-
ficulty parameters, ii) the score category predictive proba-
bilities according to the trained scoring method, and iii) the
number of words in the response. After training the scoring
model, we use the predicted scoring probabilities to learn
regression coefficients and the ability/difficulty parameters.
Intuitively, this evaluation setup studies how textual infor-
mation in open-ended responses help in addition to student
ability and question difficulty during scoring; its purpose is
not to evaluate how accurately response scoring models are
themselves.

For this evaluation, we use Problem ID as input for each
training response to help the model adapt to the task. We
do not use question text as input since Dorig contains many
(709 out of 2,042) question texts that have no semantic
meaning (e.g., “For Page 100 question b, answer the ques-
tion”). This noisy question text cannot help the model rec-
ognize different questions and may confuse the model.

4.3.2 Results and Analysis
Table 3 shows the average value for all metrics across the
10 folds for our method (Meta In-context), the SBERT-C
baseline, and other baselines studied in [5]. We see that
our method is able to achieve a 0.02 (or 4.2%) improvement
over the best performing baseline, SBERT-C, on the most
important metric, Kappa, while also outperforming on the
other two metrics with smaller margins. This improvement
validates the effectiveness of our overall method and further
pushes the boundary on math ASAG. This improvement is
more significant on the cleaned dataset Dclean, which we use
for further evaluation next. We further note that there is a
discrepancy between metric values (high AUC, low Kappa)
on this experiment compared to other experiments due to
the Rasch model-based setup.

4.3.3 Ablation Study
We conduct an ablation study to verify the effectiveness of
each component of our scoring method: using question text
as input vs. using only question ID as input, adding textual

3https://huggingface.co/tbs17/MathBERT
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Table 2: Example questions, student responses, and scores in the dataset.

qid : question unique id qtext : question text x : student response y : teacher grade
112348 Write a function rule and a recursive

rule for a line that contains the points
(-4, 11), (5, -7), and (7, -11)

Don’t know what a recursive rule is 0

32147 Ryan had $800 of his summer
job earnings remaining when school
started. He plans to use this
amount as spending money through-
out the 10 months of his school year.
please indicate the 3 most important
words/phrases in the question

The 3 most important words or
phrases in the question are $800, 10,
and months.

4

32149 Ryan will divide the $800 into
10 equal amounts of $80. If he
completely spends $80 during each
month of his school year, how much
of his earnings will remain at the end
of the third month of his school year?
Explain how you got your answer.

he will have $560 left. 800-240=560 4

Table 3: Evaluation results using the same dataset and under
the same evaluation setting as [14, 5] show that our scoring
method outperforms existing methods.

Model AUC RMSE Kappa

Rasch* + Meta In-context (ours) 0.861 0.541 0.496
Rasch* + SBERT-Canberra 0.856 0.577 0.476
Baseline Rasch 0.827 0.709 0.370
Rasch + Number of Words 0.825 0.696 0.382
Rasch* + Random Forest 0.850 0.615 0.430
Rasch* + XGBoost 0.832 0.679 0.390
Rasch* + LSTM 0.841 0.637 0.415

instructions to provide information on the scoring scale, us-
ing scored examples to provide additional context, and using
MathBERT as the base language model to fine-tune vs. us-
ing BERT. For this evaluation, we use the cleaned dataset
Dclean and a different experimental setting to directly eval-
uate the scoring accuracy of ASAG methods without using
the Rasch model. The rest of the experimental settings,
from cross-validation to model training, remain the same.
Table 4 shows the results for all variants of our approach
on all three metrics. We see that removing question text,
textual instructions on scoring scale, and scored examples
as input all result in significant degradation in scoring accu-
racy on some (or all) metrics. Specifically, removing scored
examples results in the most significant drop in scoring ac-
curacy, by around 0.02 in Kappa; this result validates the
effectiveness that providing in-context examples can signif-
icantly benefit language models by helping them adapt to
the current task (question). This result clearly validates our
intuition that in-context examples reduce the difficulty of
the AS task by changing the nature of the task from scoring
to finding similar responses, which is easier. Removing ques-
tion text also results in a (less significant) accuracy drop off:
this result directly contradicts our observations in the pre-
vious experiment using the original dataset in [5, 14] where
we found that inputting the question text results in worse
performance than inputting only the question ID. The likely
reason for this result is that the cleaned dataset Dclean con-
tains much more questions that are semantically meaningful,
which are helpful to include in the scoring method to provide
important information on the scoring task.

A surprising but important result of this experiment is that
using MathBERT results in a small drop off in performance
(0.015 on Kappa, 0.007 on RMSE, and a 0.002 improve-
ment on AUC) compared to using BERT. This observation
is counter-intuitive since MathBERT is specifically designed
to handle math expressions and trained on mathematical
content, while BERT is not. To further examine why Math-
BERT underwhelms on the scoring task, we further investi-
gate its performance on subsets of responses divided accord-
ing to how much math information is contained in them.
Specifically, we divided responses in the test set into two
groups according to the amount of mathematical expressions
involved: Dmath that contains responses where more than
half of the tokens in the response are mathematical tokens
and Dtext that contains the rest of the responses. Table 5
shows scoring accuracy for our approach using MathBERT
and BERT as the base language model on these different
response subsets. We see that on responses that are pri-
marily textual, BERT outperforms MathBERT, which sug-
gests that MathBERT loses some ability to encode textual
information. On responses that are primarily mathemati-
cal, MathBERT performs similarly to BERT on RMSE and
Kappa while outperforming BERT on AUC. This result sug-
gests that MathBERT may have some benefit in handling
mathematical tokens but the advantage may be minimal.
Therefore, an important avenue for future work is to de-
velop language models that are capable of representing and
understanding mathematical content.

4.4 Scoring new questions
4.4.1 Experimental Setting

For this experiment, we focus on testing the performance of
our approach on generalizing to new questions (tasks) with-
out seeing scored examples and how quickly our approach
can adapt to them using few examples. Therefore, we ran-
domly divide all questions in Dclean into 5 equally-sized folds
in terms of the number of questions instead of the number
of responses. As a result, the number of responses in each
fold may vary (26, 229 ± 689) since the number of student
responses to each question is different. For each run, we use
4 folds for training and 1 fold for testing.

On the test set, we make n ∈ {0, 1, 3, 5, 7, 10, 25, 50, 80}
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Table 4: Ablation results for different design components of our method on Dclean. Most components contribute significantly.

Method Component Metric

Question Text Question ID Scale Example MathBERT AUC RMSE Kappa

✓ ✓ ✓ ✓ 0.733 ±0.006 1.077 ±0.002 0.589 ±0.004

✓ ✓ ✓ ✓ 0.724 ±0.007 1.083 ±0.003 0.585 ±0.006

✓ ✓ ✓ 0.710 ±0.006 1.278 ±0.002 0.568 ±0.004

✓ ✓ ✓ 0.720 ±0.008 1.088 ±0.001 0.583 ±0.009

✓ ✓ ✓ 0.719 ±0.008 1.091 ±0.003 0.582 ±0.005

✓ ✓ ✓ 0.731 ±0.007 1.051 ±0.004 0.604 ±0.010

Figure 2: Results on generalizing to previously unseen questions using a few scored examples on all three metrics. Our approach,
Meta-finetune, consistently outperforms SBERT-C and SBERT-P. Even without adjusting the model and using the scored
examples as input (Meta), we outperform SBERT-C when the number of examples is small.

Table 5: Scoring accuracy on responses that contain more
mathematical tokens vs. more text tokens.

Data approach AUC RMSE Kappa

D math
MathBERT 0.755 ±0.008 0.587 ±0.003 0.690±0.008

BERT 0.741 ±0.010 0.610 ±0.009 0.691 ±0.020

D text
MathBERT 0.713 ±0.006 1.022 ±0.004 0.523 ±0.006

BERT 0.716 ±0.006 1.001 ±0.003 0.542 ±0.008

scored responses per question available to methods trained
on the training dataset and evaluate their ability to score
other responses. We emphasize that there is no overlap be-
tween training responses and test responses for these previ-
ously unseen questions. We use two settings for our method.
For the first setting, Meta, we do not further adjust the
trained scoring model; instead, we only feed these responses
and their scores, i.e., in-context examples, to the trained
scoring model. For cases where n < 25, we only feed in n
examples even though the method was trained with 25 ex-
amples. For cases where n > 25, we follow randomly sample
25 examples from the n total examples as input, following
the same setting above. This experimental setting can be
seen as “zero-shot” learning where we directly test how a
scoring method trained on other questions works on new
questions without observing any scored responses.

For the second setting, Meta-finetune, we further fine-tune
our trained method on the n new scored responses per ques-
tion. During this process, for each response as the scoring
target, we use the other n − 1 responses as in-context ex-
amples. This experimental setting can be seen as “few-shot”
learning where we test how quickly a scoring method trained
on other questions can adapt to new questions.

Since SBERT-C is the current state-of-the-art math ASAG
method on this dataset, we use it as our baseline. According
to [5], it calculates similarities between the target response
and other responses to the same question. Then it picks the
score of the response with the highest similarity to the target
response as its prediction, which means that it is not capable
of zero-shot generalization to new questions. Therefore, we
use n scored examples on these new questions to train the
scoring method and evaluate on the other responses. We
emphasize again that in both the zero-shot and few-shot
settings, the scored examples are excluded from performance
valuations.

We also use an additional baseline [12], which we refer to
as SBERT-P. This method uses SBERT to encode responses
and questions and feed the resulting representations to a
classifier for predictions. This method also trains a single
unified model across and is thus capable of zero-shot gener-
alization to previously unseen questions. We use n scored
examples on these new questions for SBERT-P to train on
to evaluate it in the few-shot learning setting.

4.4.2 Result and Analysis
Table 6 shows the experimental results averaged over all
folds. We see that Meta-finetune outperforms the other
three approaches on all values of n for all metrics, achiev-
ing satisfactory results of AUC = 0.689, RMSE = 1.329 and
Kappa = 0.456 in the one-shot learning setting (n = 1), sig-
nificantly outperforming Meta, SBERT-P and SBERT-C (by
up to 50% on Kappa). The performance of Meta-finetune
stabilizes as n increases and still outperforms SBERT-C
(0.03 on AUC, 0.154 on RMSE and 0.055 on Kappa) and
SBERT-P (0.11 on AUC, 0.161 on RMSE and 0.113 on
Kappa) at n = 80. These results clearly demonstrate that,
compared to SBERT-C and SBERT-P, our method is highly
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Table 6: Scoring accuracy for different methods on gener-
alization to new questions not seen during training, using a
small number of scored examples.

num-of
new-data
points /
question

Method AUC RMSE KAPPA

0
Meta 0.533± 0.017 1.650± 0.020 0.100± 0.052

SBERT-P 0.558± 0.006 1.931± 0.001 0.170± 0.013
SBERT-C − − −

1

Meta 0.588± 0.012 1.641± 0.013 0.257± 0.041
Meta-finetune 0.689± 0.033 1.329± 0.009 0.456± 0.048

SBERT-P 0.615± 0.022 1.721± 0.011 0.310± 0.043
SBERT-C 0.500± 0.001 1.664± 0.009 0.000± 0.001

3

Meta 0.606± 0.012 1.620± 0.013 0.308± 0.041
Meta-finetune 0.676± 0.010 1.269± 0.010 0.441± 0.017

SBERT-P 0.601± 0.040 1.691± 0.010 0.284± 0.071
SBERT-C 0.501± 0.001 1.677± 0.009 0.000± 0.001

5

Meta 0.589± 0.013 1.581± 0.013 0.289± 0.043
Meta-finetune 0.688± 0.009 1.272± 0.013 0.452± 0.021

SBERT-P 0.610± 0.028 1.650± 0.010 0.284± 0.050
SBERT-C 0.569± 0.061 1.543± 0.080 0.211± 0.016

7

Meta 0.611± 0.011 1.548± 0.011 0.341± 0.040
Meta-finetune 0.701± 0.010 1.220± 0.008 0.489± 0.022

SBERT-P 0.630± 0.037 1.662± 0.012 0.340± 0.064
SBERT-C 0.569± 0.006 1.485± 0.011 0.282± 0.019

10

Meta 0.614± 0.010 1.543± 0.013 0.342± 0.043
Meta-finetune 0.716± 0.008 1.235± 0.009 0.496± 0.021

SBERT-P 0.638± 0.031 1.453± 0.018 0.359± 0.080
SBERT-C 0.627± 0.008 1.416± 0.009 0.353± 0.019

80

Meta 0.626± 0.024 1.550± 0.016 0.373± 0.074
Meta-finetune 0.765± 0.010 0.940± 0.015 0.636± 0.042

SBERT-P 0.704± 0.033 1.101± 0.011 0.523± 0.020
SBERT-C 0.735± 0.017 1.094± 0.008 0.581± 0.042

effective at“warm-starting”scoring models on new questions
since it is able to get a sense of how responses should be
scored from scored responses to other questions. Again, we
note that in-context examples changes the nature of the task
from AS to finding similar responses; as a result, models can
learn this task quicker and adapt to new questions using only
a few examples.

SBERT-C, on the other hand, can barely work in few-shot
learning settings, i.e., n ∈ {1, 3}. This observation is not
surprising since SBERT-C does learn a scoring model from
scratch and cannot work when the number of training data
points is less than the number of possible score categories.
The performance of SBERT-C starts to gradually increase
when n > 5 but is still significantly worse than Meta-
finetune.

Meta, the method for zero-shot learning, although fails
to generalize well (only 0.533 in AUC and 0.1 in Kappa
at n = 0) without seeing any training data, still signifi-
cantly outperforms SBERT-C with n ∈ {1, 3} and performs
similarly to SBERT-P. This advantage only disappears at
n = 10. To further illustrate this difference, we plot the
three metrics vs. n for all methods in Figure 2. We see
that Meta’s AUC and Kappa values are higher than that
for SBERT-C until n reaches around 8, which indicates that
even without re-training the model, it is more suitable for
few-shot learning than SBERT-C on new questions.

4.5 Qualitative Error Analysis
In this section, we qualitatively analyze the prediction errors
made by our ASAG method. We use the model trained on
Dclean, with problem text + scale + examples as input into

MathBERT for our analysis.

4.5.1 Feature analysis
To analyze the difference between correct predictions and in-
correct predictions, we extract several features that capture
properties of the questions and responses to better under-
stand the strengths and weaknesses of the trained ASAG
method. As shown in Table 7, “Response math tokens” rep-
resents the percentage of math tokens in a response; “Re-
sponse contains img/table” represents whether a response
has images or tables; “Response length” represents the num-
ber of tokens a response; “score” represents the actual score
given by the graders; “Number of graders” represents the
number of graders that graded each response to the ques-
tion; “question length” represents the number of tokens the
corresponding question has and “question math tokens” rep-
resents the percentage of math tokens in the question.

Table 7: Features analysis between correct predictions and
incorrect predictions. * means the difference is significant
(p value < 0.005).

Features (avg.) Correct Prediction Incorrect Prediction

Response math tokens (%)* 30.6 25.1
Response contain
img/table (%)* 1.29 2.88
Response length* 17.4 29.5
Score* 3.25 2.13
Number of graders 2.53 2.48
Question length* 37.1 39.1
Question math tokens (%) 8.12 7.31

We observe a significant difference (p value < 0.005) be-
tween values of the correct predictions and values of the
incorrect predictions. We make the following observations:

• The scoring method is more accurate at scoring re-
sponses with higher percentage of math tokens and it
becomes less accurate when there are higher percent-
age of plain texts.

• The scoring method is more accurate when the re-
sponse contains images or tables that words can not
represent.

• The scoring method is more accurate at scoring shorter
responses.

• The scoring method is more accurate at scoring re-
sponses with shorter question description.

• The scoring method is more accurate when the aver-
age score of the response is higher. This observation
indicates that the model is better at scoring responses
with higher quality.

• There is no obvious distinction in grading accuracy
for responses with different numbers of graders or to
questions with different math tokens percentages.

4.5.2 Question topic and type error analysis
Table 8 lists the summarization of scoring accuracy on dif-
ferent question topics and types. We extract the topics and
types from question text using BERTopic [20]. BERTopic
is a topic modeling technique that leverages transformers
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and term and document frequencies [33] to create easily in-
terpretable topics. Overall, we see that the trained scoring
method has better Kappa scores on questions that are pri-
mary text-based or involve equations. The result is not sur-
prising since we adapted MathBERT, which likely sees many
text-based questions during its pre-training stage. Ques-
tions that require students draw graphs in their response also
have high Kappa scores; however this result is mainly due
to the fact that most of these responses are given full credit,
making them easy for scoring methods to make predictions.
On the other hand, the trained scoring method has worse
Kappa scores on estimation-type and (only a few) multiple-
choices questions. This observation can be explained by lan-
guage models not being trained to capture number sense and
thus struggle at numerical reasoning [?]. For multiple-choice
questions, the response, i.e., the multiple-choice option, is se-
mantically meaningless, which does not provide meaningful
context to the scoring method.

Table 8: Scoring accuracy on different question topics and
types. Results are shown in increasing order of the Kappa
score. * means the score is better than the average across all
responses.

Topic Type AUC RMSE Kappa

Misc. Multiple-choice 0.631 1.472 0.400
Math Table calculation 0.659 1.345 0.445

Algebra Estimation 0.702 1.310 0.536
Calculus Estimation 0.716 1.241 0.546
Algebra Table creation 0.731 0.823* 0.606*
Algebra Equation writing 0.732 1.023 0.612*
Algebra Graph drawing 0.734* 0.725* 0.629*
Math Word question 0.735* 0.663* 0.647*

Calculus Graph drawing 0.736* 0.610* 0.758*

4.5.3 Error type analysis
For this analysis, we choose a question with scoring accuracy
below the average on our dataset to analyze the types of
errors made by our trained scoring method. Table 9 shows
selected responses with erroneous score predictions and the
types of these errors. The question asks students to write
an equation with a popular correct response 15/3 = 5. We
make the following observations on typical error types (apart
from some obvious human grader errors, which we omit):

• The first error type indicates that our trained scor-
ing method can still struggle on mathematical reason-
ing and handling numerical tokens. The incorrect re-
sponses “15*5=3” and “5/3=15” have the same numer-
ical tokens but with different ordering and an incor-
rect operator token compared to the correct response,
which completely changes their meaning. The trained
scoring method tends to overestimate their scores.
This observation suggests that we need base language
models with stronger numerical reasoning abilities.

• The second error type indicates that our trained scor-
ing method can struggle with spelling errors in stu-
dent responses. When the word “equals” is spelled in-
correctly in a student response, it does not affect the
human grader’s ability to understand the student’s in-

tention. However, the trained scoring method puts a
penalty on this spelling error.

• The third error type indicates that our trained scoring
method may not recognize paraphrased responses. As
shown in the examples, student may add text such as
“I think that it is” which does not alter the meaning
of the response; however, it adds noise and misled the
prediction.

• The fourth error type indicates that our trained scoring
method cannot handle responses in unparsable format
such as an attachment.

5. CONCLUSIONS AND FUTURE WORK
In this paper, we have proposed a language model fine-
tuning-based method for automatic short answer grading for
open-ended, short-answer math questions. Our method has
two main components: a base MathBERT model pre-trained
with educational content on math subjects, and a meta-
learning-based, in-context fine-tuning method that promotes
generalization to new questions with a carefully designed
input format. Experimental results on a large real-world
student response dataset revealed surprisingly contradicting
findings: Using MathBERT instead of regular BERT, which
is not trained on mathematical content, results in a decrease
in scoring accuracy, while the in-context fine-tuning method
results in significantly improved scoring accuracy compared
to existing methods, especially on previously unseen ques-
tions.

There are plenty of avenues for future work. First, the ob-
servation that MathBERT [35] cannot outperform BERT as
the base language model suggests that there is a need to de-
velop more effective models for mathematical language. One
promising direction is perhaps taken by another simultane-
ously proposed version of MathBERT [31] that leverages the
inherent tree structure of mathematical expressions. More-
over, the noisiness of human grading that we observed in our
experiments suggests that there is a need to develop ASAG
methods that take inter-rater agreement into account [43].

Second, there is a need to further improve the completeness
of the context information we provide to the base language
model. Several possible sources of additional contextual in-
formation include the grade level of the question, the com-
mon core standard codes, and mathematical skill/concept
tags, which can all provide information on the level of the
question. Additionally, we may even directly incorporate
relevant mathematical content into the model’s input, e.g.,
by retrieving content chunks in textbooks or online resources
using information retrieval methods [9]. However, a poten-
tial challenge that needs to be resolved is how to concisely
pack all relevant contextual information into the model with-
out exceeding the input length limit of language models
(usually 512 tokens).

Third, in order to make ASAG methods more applicable
in realworld educational scenarios, there is a need to thor-
oughly study the fairness aspects of these methods and en-
sure all students are treated fairly. There is a need to in-
vestigate how ASAG methods performs on different student
populations; recent work has raised the concern that it is not
clear that whether one should explicitly incorporate student
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Table 9: Examples of scoring errors made by our trained method.

Question: Chelsea collects butterfly stickers. The picture shows how she placed them.
Write a division sentence to show how she equally grouped her stickers. ÷ =
Most frequency correct response : 15/3=5

Error type Response Grade Predict
Poor reasoning

on math operator
and numerical token

15* 5=3 2 4
5/3=15 0 2
15 3=12 1 2

Spelling error 3 times 5 eques 15 4 2
Confused by

paraphrased responses
I think that it is 5x3=15 4 1

she place them like in 3 groups
and she even did the answer

but she did not new the each group
2 0

Meaningless response see attachment 3 0

demographic information during model training [46]. Future
work should explore how to incorporate fairness regulariza-
tion into the training objective to promote methods that are
fair across students [2, 34, 47, 48, 25].
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ABSTRACT
Collaborative learning is a complex process during which
two or more learners exchange opinions, construct shared
knowledge, and solve problems together. While engaging in
this interactive process, learners’ satisfaction toward their
partners plays a crucial role in defining the success of the
collaboration. If intelligent systems could predict peer sat-
isfaction early during collaboration, they could intervene
with adaptive support. However, while extensive studies
have associated peer satisfaction with factors such as so-
cial presence, communication, and trustworthiness, there is
no research on automatically predicting learners’ satisfac-
tion toward their partners. To fill this gap, this paper in-
vestigates the automatic prediction of peer satisfaction by
analyzing 44 middle school learners’ interactions during col-
laborative coding tasks. We extracted three types of fea-
tures from dialogues: 1) linguistic features indicating se-
mantics; 2) acoustic-prosodic features including energy and
pitch; and 3) visual features including eye gaze, head pose,
facial behaviors, and body pose. We then trained several re-
gression models to predict the peer satisfaction scores that
learners received from their partners. The results revealed
that head position and body location were significant indi-
cators of peer satisfaction: lower head and body distances
between partners were associated with more positive peer
satisfaction. This work is the first to investigate the mul-
timodal prediction of peer satisfaction during collaborative
problem solving, and represents a step toward the develop-
ment of real-time intelligent systems that support collabo-
rative learning.

Keywords
Collaborative Learning, Peer Satisfaction, Pair Program-
ming, Multimodal Learning Analytics

1. INTRODUCTION
Collaborative learning benefits learners in numerous ways,
such as enhancing critical thinking [31], developing social
skills [29], and improving learning gains [32]. During collab-
orative learning, partners may bring different ideas to solve
a problem, defend and evaluate their perspectives, and have
a dynamic interaction with each other to produce a shared
solution [18]. This relationship between partners can be a
decisive factor for the success of the collaboration and pos-
itive team experience [9], and the partners’ satisfaction to-
ward each other can have a significant impact on their task
performance [51] and learning outcomes [20]. Previous lit-
erature suggests that students’ interactions may not be pro-
ductive and they may face challenges with their partner [25,
6], which could discourage them from working with partners
in the future [44]. In a classroom setting, teachers may not
have the resources to detect whether the partners in a team
have positive attitudes toward each other and enjoy work-
ing together. Therefore, it becomes even more important to
develop intelligent and adaptive technologies to predict peer
satisfaction during collaborative activities.

Despite the increase in the development of techniques and
models to analyze students’ interactions during collabora-
tive learning [49, 45], there is no research on automatically
predicting peer satisfaction during collaboration. Current
studies that analyzed learners’ satisfaction during collabo-
ration have revealed important factors such as social pres-
ence (sense of being with each other [46, 27]), frequency and
quality of team communication [28], and mutual trust be-
tween group members [52]). However, most of these post-hoc
studies relied on manual approaches (e.g., analyzing post-
study attitude survey [22] or open-ended questions [28]). On
the other hand, multimodal learning analytics research has
created new opportunities to automatically analyze learn-
ers’ interactions from multiple modalities (e.g., speech, fa-
cial expressions, body gestures), and provide insights into
the learning process from different dimensions [2]. For ex-
ample, recent studies successfully classified critical facets of
collaborative problem solving process with multimodal fea-
tures (linguistic, acoustic-prosodic, facial expressions, and
task context) derived from groups of learners’ collaborative
dialogues [48]. However, multimodal learning analytics has
not yet been used to automatically predict peer satisfaction
from learners’ interactions.
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Aligned with this motivation, our goal in this paper is to in-
vestigate the automatic prediction of peer satisfaction dur-
ing collaborative learning. We specifically address the fol-
lowing two research questions (RQs):

• RQ 1: What are the most predictive unimodal features of
peer satisfaction during collaboration?

• RQ 2: Does multimodal feature fusion improve peer sat-
isfaction prediction compared to the best-performing uni-
modal model?

To answer these research questions, we analyzed audio and
video data collected from 44 middle school learners who
worked in pairs on a series of collaborative coding activi-
ties. After participating in coding activities, each learner
reported their overall satisfaction with their partners. To
answer RQ 1, we examined the performance of the follow-
ing features extracted from learners’ collaborative dialogues,
including: 1) linguistic features indicating semantics from
Word2Vec [35] and pre-trained BERT [15]; 2) acoustic fea-
tures such as energy and pitch extracted with openSMILE
[17]; 3) eye gaze, head pose, and facial AUs extracted with
OpenFace [1]; and 4) body pose extracted with OpenPose
[3]. We followed a state-of-the-art methodology [50] that
preserves the sequential nature of the features across the
collaborative session.

The experimental results revealed two significant predictors.
The first significant predictor was head position (x-axis),
generated from OpenFace, which was the horizontal distance
of a learner’s head from the camera (located in the middle
of two learners to collect video recordings). The second sig-
nificant predictor was body key points (x-axis), generated
from OpenPose, which was the the horizontal pixel location
of a learner’s eight upper body key points (e.g., nose, neck,
and shoulders). These results indicated that learners who
had lower head and body distances from their partners were
more likely to receive higher peer satisfaction scores. To an-
swer RQ 2, we evaluated the model performance of several
early-fused multimodal features, and the results showed that
the multimodal features investigated in this study did not
significantly improve the prediction accuracy of peer satis-
faction compared to the best-performing unimodal feature.

This study provides two main contributions: 1) we present
the results from extensive experiments evaluating both a
variety of predictive features and a selection of sequential
models; 2) and we identify two interpretable and meaningful
learner behaviors that can be predictive of peer satisfaction.
To the best of our knowledge, this is the first study to in-
vestigate the automatic prediction of peer satisfaction with
multimodal features extracted from learners’ interactions.

The rest of the paper is organized as follows: Section 2
presents the related work; Section 3 describes the dataset
used for this study; Section 4 details the features we inves-
tigated;. Section 5 elaborates on the peer satisfaction pre-
diction models; Section 6 presents the experimental settings
and results; Section 7 discusses the implications of exper-
imental results; and finally, section 8 concludes the paper
and discusses future work.

2. RELATED WORK
Interpersonal interactions and soft skills play an important
role in students’ learning experiences and teams’ success
during collaboration [11]. Previous research has emphasized
that partners may have trouble while collaborating on a task
together for a variety of reasons, and many social factors
can have an impact on peer satisfaction. For example, So et
al. [46] recruited 48 graduate students who collaborated on
a healthcare project. They found that learners’ perceived
social presence and emotional bonding were important fac-
tors for peer satisfaction. Zeitun et al. [51] examined the
relationship between team satisfaction and course project
performance among 65 groups of students. They found that
team satisfaction (toward partners and their collaborative
work) were positively related to group performance only for
American students, and there was no significant difference in
the satisfaction and performance regarding gender. Katuka
et al. [26] analyzed the relationship between dialogue act
and peer satisfaction from 18 pairs of middle school stu-
dents. They identified six sequences of dialogue acts (e.g.,
questions, clarifications) that were positively related to sat-
isfaction. Despite the insights of peer satisfaction provided
by the aforementioned studies, most of these studies relied
on manual approaches (e.g., post-study attitude survey or
open-ended questions), which does not enable the automatic
prediction of peer satisfaction.

In recent years, there has been an increasing interest in us-
ing multimodal learning analytics (MMLA) techniques that
combine multiple data streams (e.g., speech and spoken words
[41], text message and facial expressions [14]) to analyze
student collaborative interactions. For example, Spikol et
al. [47] used MMLA to estimate the success of collabora-
tion with face tracking, hand tracking, and audio record-
ing. They found that distances between learners’ hands and
faces were two strong indicators of group performance, and
lower distances indicated that it was more likely that suc-
cessful collaboration occurred among students. Echeverria
et al. [16] applied MMLA in a healthcare setting in which
nurses collaborated in groups, with their audio, movement,
and physiological data collected and analyzed. The authors
demonstrated that integrating more sources of data multi-
modal data provided more contextual details of group activi-
ties during collaboration process. In another study, Liu et al.
[30] used MMLA to understand learners’ knowledge model
refinement process during collaboration. They were able to
better predict learners’ knowledge models when they com-
bined multiple data streams (i.e., audio, screen video, web-
cam video, and log files), which convey important contextual
information about student learning. However, to the best of
our knowledge, there is no research on automatic prediction
of peer satisfaction using multimodal features during collab-
orative learning. Our study extends this body of MMLA
research on learners’ interactions. We investigate different
modalities (linguistic, acoustic-prosodic, and visual) for au-
tomatically predicting peer satisfaction.
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Figure 1: Left : A sample script created with Snap!. Right : Two middle school learners collaborating on a pair programming
task. In the captured moment, the learner in the left side of the frame is the driver and the learner on the right is the
navigator ; their collaborative interaction is video-recorded with a front-facing camera and audio-recorded with each learner
wearing a lavalier microphone.

3. DATASET

3.1 Participants and Collaborative Activities
Our dataset was collected from 44 learners in 7th grade
classrooms in a middle school in the southeastern United
States during two semesters (Spring and Fall 2019). Out
of 44 learners, 29 (65.9%) identified themselves as females
and 15 (34.1%) as males. The distribution of race/ethnicity
of these learners included 41.3% self-reporting as White,
26.1% Asian/Pacific Islander, 19.5% Multiracial, 8.7% His-
panic/Latino, 4.3% Black/African American, and 1.9% Other.
The mean age was 12.1 with ages ranging from 11 to 13.

The learners collaborated on a series of coding activities in
which they practiced fundamental CS concepts such as vari-
ables, conditionals, and loops using Snap! block-based pro-
gramming environment [7]. The learners followed the pair
programming paradigm, in which each pair shared one com-
puter and switched roles between the driver and the nav-
igator during the science-simulation coding activity (Fig-
ure 1). The driver is responsible for writing the code and
implementing the solution, while the navigator provides sup-
port by catching mistakes and providing feedback on the
in-progress solution [4].

3.2 Data Collection and Text Transcription
The collaborative coding session of each pair was recorded
at 30 fps in 720p through a front-facing detached camera,
and each child wore a lavalier microphone without active
noise cancelling. The audio was recorded by digital sound
recorders with a sample rate of 48KHz. After the audio/video
data collection process was finished, an online manual tran-
scription service [42] generated the textual transcript for
each pair. The transcripts included three pieces of infor-
mation for each spoken utterance: (1) Starting Time, in the
form of hour :min:sec; (2) Speaker, in the form of S1 (the
learner sitting on the left of the video) or S2 (the learner
sitting on the right); and (3) Transcribed Text. Each collab-
orative coding session took around 30 minutes. In total, the
corpus included 12 hours and 18 minutes of audio and video
recordings, with 10,265 transcribed utterances.

3.3 Peer Satisfaction Post Survey
After participating in the collaborative coding sessions, each
learner completed a peer satisfaction post survey. To the
best of our knowledge, there is no existing validated survey
for peer satisfaction in the pair programming context, so
we developed a 6-item survey based on previous surveys on
peer satisfaction. Sample questions in the peer satisfaction
survey included: “My partner answered my questions well”,
“My partner listened to my suggestions”, and “My partner
often cut my speech”. Each of the six items in the survey was
measured on a 5-point Likert scale, ranging from 1 (strongly
disagree) to 5 (strongly agree).

Figure 2 (Left) shows the distribution of the peer satisfac-
tion post survey responses from 44 learners. The distribu-
tion of the satisfaction scores shows that most of the learners
agreed or strongly agreed that they were satisfied with the
overall interaction with their partner. To determine whether
to treat the six post-survey items as a single item or mul-
tiple items, we conducted a principal component analysis
(PCA). The results of PCA suggested proceeding with only
one derived outcome variable, which we refer to as Satis-
faction score (the average score of six items). This derived
outcome explains 52% of the variation across all six survey
items, with an eigenvalue of 3.15. Figure 2 (Right) shows the
distribution of the averaged Satisfaction score. The mean
value of the Satisfaction score is 4.3 (SD=0.6) out of 5, with
a maximum value of 5.0, and a minimum value of 2.2.

4. FEATURES
In this section, we introduce the feature extraction process
from the audio (section 4.1), video (section 4.2), and lan-
guage (section 4.3) modalities. Then we describe the feature
padding process (section 4.4) that prepared the extracted
features for model training. Table 1 shows the features this
study investigated, and their corresponding dimensional de-
tails after the feature padding process.
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Q6: Overall, my partner was a good partner.

Q5: My partner asking questions helped
 me think about things differently.

Q4: My partner was comfortable asking
me questions.

Q3: My partner often cut my speech. (Reversed)

Q2: My partner listened to my suggestions.

Q1: My partner answered my questions well.
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Figure 2: Left : distribution of peer satisfaction post-survey items from from 44 learners. Right : distribution of the continuous
averaged Satisfaction score (mean = 4.3, SD = 0.6).

Table 1: Utterance-Level Features

Modality Feature Name Vector Dimension*

Audio

Loudness 638, 704, 990
Pitch 580, 640, 900

Shimmer 116, 128, 180
Jitter 116, 128, 180

MFCCs 928, 1024, 1440

Language

Word Count 1
Speech Rate 1
Word2Vec 4,200

Pre-trained BERT 768

Video

Eye Gaze Directions 784
Head Directions 294

Head Position (x-axis) 98
Head Position (y-axis) 98
Head Position (z-axis) 98

Facial AUs 3,430
Body Key Points (x-axis) 784
Body Key Points (y-axis) 784

* For every audio-based feature, the three vector dimensions
resulted from different speech lengths (29s, 32s, and 45s)
after applying three different silence removal thresholds (-
6, -16, and -30 dBFS) respectively. For language-derived
features, the maximum number of spoken words was 42.
For video-derived features, the maximum time length of
video segments was 49s.

4.1 Audio-based Features
Simple acoustic-prosodic features (e.g., sound level, syn-
chrony in the rise and fall of the pitch) derived from au-
dio have proven to be effective in predicting learners’ en-
gagement level [49] and estimating group performance on
solving open-ended tasks. [47]. In our study, we extracted
audio-derived features on the corresponding audio segment
for each utterance. Because we only obtained the Starting
Time of each utterance from the online transcription ser-
vice, and not the Ending Time, the raw audio segments in
our corpus also contain silence (background noise when a

learner stops talking) that elapsed before the next utterance
started. To mitigate the potential negative influence of this
silence in our audio segments, we used pydub.detect silence,
a function in the pydub [38] library to detect the time of
end-of-utterance in a given audio segment. The function re-
quired a pre-defined parameter: silence removal threshold
(any audio lengths quieter than this will be considered as si-
lence). For each raw audio segment, we used three different
silence thresholds to produce three different audio segments:
-6 dBFS (half of the audio’s maximum level), -16 dBFS (de-
fault setting of the function), and -30 dBFS (low enough to
avoid losing actual speech lengths).

After removing the potential silence contained in raw audio
segments, we used openSMILE v2.2, an open-source acous-
tic feature extraction toolkit, for automatic extraction of
the following five types of audio-based features within a 20-
ms frame and a 10-ms window shift. The five categories of
audio-based features are as follows:

1. Loudness measures the energy level of the signal. For
each audio frame, 11 loudness-related features were ex-
tracted.

2. Pitchmeasures the frequency scale of a signal. For each
audio frame, 10 pitch-related features were extracted.

3. Shimmer measures how quickly the loudness of the sig-
nal is changing. For each audio frame, 2 shimmer-
related features were extracted.

4. Jitter measures how quickly the frequency of the sig-
nal is changing. For each audio frame, 2 jitter-related
features were extracted.

5. MFCCs (Mel-Frequency Cepstral Coefficients) measures
the shape of the signal’s short-term spectrum. For
each audio frame, 16 MFCCs-related features were ex-
tracted.

Figure 2: Left : distribution of peer satisfaction post-survey items from from 44 learners. Right : distribution of the continuous
averaged Satisfaction score (mean = 4.3, SD = 0.6).
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each audio frame, 11 loudness-related features were ex-
tracted.

2. Pitch measures the frequency scale of a signal. For each
audio frame, 10 pitch-related features were extracted.

3. Shimmer measures how quickly the loudness of the sig-
nal is changing. For each audio frame, 2 shimmer-
related features were extracted.

4. Jitter measures how quickly the frequency of the sig-
nal is changing. For each audio frame, 2 jitter-related
features were extracted.

5. MFCCs (Mel-Frequency Cepstral Coefficients) measures
the shape of the signal’s short-term spectrum. For
each audio frame, 16 MFCCs-related features were ex-
tracted.

136



Figure 3: An example of the video-derived feature extraction process for both learners in a specific video frame. Left : eye gaze
direction (green vectors), head pose (blue 3D bounding boxes), and facial AUs (recognized later) extracted with OpenFace.
Right : upper body key points (e.g., nose, neck, and shoulders) extracted with OpenPose.

4.2 Language-based Features
Linguistic features extracted from spoken utterances have
been used to model collaborative problem solving skills and
predict collaborative task performance [37]. In our study,
multiple commonly used statistical and semantic linguistic
features were extracted for each spoken utterance. The four
categories of language-derived features are as follows:

1. Word Count For each utterance, word count was cal-
culated as the number of words.

2. Speech Rate For each utterance, speech rate was cal-
culated as the number of words divided by the number
of elapsed seconds in the utterance, to produce words
per second.

3. Word2Vec is a semantic method which learns word
associations from the text, and groups similar words
together in a vector space based on their semantics.
We train our Word2Vec model with gensim, an open-
source natural language processing library. The de-
fault settings of parameters were used, in which the
dimension of each word embedding was set to 100, with
a sliding window size of 5.

4. Pre-trained BERT is a language model trained on a
large amount of data (e.g., texts from Wikipedia and
books) in a self-supervised way. Similar to Word2Vec,
BERT represents semantics of words in a vector space.
In this study, we used the BERT-base-uncased model,
which is a publicly available BERT model trained only
on English texts with the hidden size of 768. With this
pre-trained BERT, we generated one 768-dimensional
vector for each utterance.

4.3 Video-based Features
A variety of features generated from video modality have
been investigated in prior literature modeling collaborative
problem solving. For example, eye gaze has proven effective
in evaluating learners’ attentiveness [43, 24] and learning
performance [5, 40]; head pose has also been used for assess-
ing learners’ collaborative problem solving competence [13];
facial action units (AUs) have been used to measure both
individual learners’ tutoring outcomes [21] and interaction
level during collaborative learning [33]. Body pose has been

used for analyzing learners’ engagement level [39] and mod-
eling collaborative problem solving competence [13]. In our
study, video-derived features were extracted from the corre-
sponding raw video segment of each utterance. We used the
OpenFace v2.0 facial behavior analysis toolkit and Open-
Pose v1.7 body key points detection toolkit to extract the
following four categories of video-based features (See Fig-
ure 3):

1. Eye Gaze Direction refers to the direction in which an
eye looks. For each detected face per video frame, 8 eye
gaze direction-related features were extracted. They
included 3 eye gaze direction vectors (x direction, y
direction, and z direction) for each eye, and 2 eye gaze
directions in radians averaged for both eyes.

2. Head Pose refers to head position and direction. For
each detected face per video frame, 6 head-related fea-
tures were extracted with OpenFace, including three
head position vectors (x direction, y direction, and z
direction) representing the location of the head with
respect to the camera in millimeters, and three head
direction vectors in radius with respect to the camera.
Since the front-facing camera was located in the mid-
dle of two learners during the data collection process,
positive values of the x direction vector and the z di-
rection vector indicate that the learner is sitting on
the right side of the video and away from the camera,
and vice versa. The head position features used in our
study were the absolute values of the x, y, and z direc-
tion vectors, representing the spatial location of each
learner’s head from the camera.

3. Facial AUs refer to the movements of an individual’s fa-
cial muscles. For each detected face per video frame, 35
facial AU-related features were extracted with Open-
Face, including 17 facial AU intensity features (rang-
ing from 0 to 5), and 18 facial AU presence features
(0-absence or 1-presence).

4. Body Pose refers to the location of each joint (e.g.,
neck, shoulders) of the human body, which are known
as key points that can describe a person’s pose. For
each learner appearing in each video frame, the 2D
locations (x direction and y direction) of 8 body key
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points, measured in pixels, were extracted with Open-
Pose. These included the locations of each learner’s
eyes, nose, neck, and shoulders. OpenPose supports
real-time detection of 25 full body key points (hand,
facial, and foot key points); however, since our video
recordings only captured learners’ upper bodies, Open-
Pose was not able to detect the locations of some body
points such as hand and foot. Therefore, only 8 body
key points related to learners’ upper bodies were ex-
tracted and used in this study. Because the resolution
of our cameras was 720p, the maximum pixel value of
body key points generated from OpenPose was 1280
pixels in the x direction, and 720 pixels in the y direc-
tion.

4.4 Feature Padding
Spoken utterances naturally vary in time length, and feature
padding is an important step for ensuring the uniform size of
model inputs before training machine learning models. We
averaged the audio-based and video-based features across a
small non-overlapping time window because they were ex-
tracted on the frame level. Following the feature aggregation
methods used in prior works [47, 49], in which the average
time windows of 500 ms and 1000 ms were chosen respec-
tively, we selected the time window of 500 ms. We did not
choose a longer window because audio-based features (e.g.,
pitch) could vary over a longer duration, which would lead
to losing fine-grained details. Finally, post padding (adding
zeros to the end of vectors) was applied on each averaged
feature vector with the maximum time length (29s, 32s,
and 45s) for different silence removal thresholds. For the
Word2Vec-based feature, word embeddings were concate-

nated to form one feature vector for each utterance. Then,
post padding was applied to the Word2Vec-based feature
vector and the BERT-based feature vector with the maxi-
mum number (42) of spoken words.

5. PREDICTION MODELS
Figure 4 depicts the architecture of our peer satisfaction pre-
diction model. For a collaborative coding session of a given
pair (Learner A and Learner B), the model input is a session-
level feature sequence X = [x0, x1, ..., xN−1] for Learner B,
in which N is the number of spoken utterances from the
learner. For each element in X, we used the early fusion
method to generate utterance-level multimodal feature xt =
[at, vt, lt] by concatenating unimodal audio-derived feature
at, video-derived feature vt, and language-derived feature lt.
Before concatenating unimodal feature vectors into a single
multimodal feature vector, we applied z-score normalization
to all the features by subtracting their mean value and di-
viding by their standard deviation.

Our prediction model contains two stages: feature learning
and regression. In the feature learning stage, we followed
the current state-of-the-art methodology [50] that preserves
the sequential nature of dialogue to learn the input feature
sequence X. The sequential model is a two-layer LSTM net-
work with 128 units. We obtained a final 128-dimensional
hidden state hT from the sequential model. During the re-
gression stage of the model, we used hT as input, and fully
connected layers to output a continuous estimated satisfac-
tion score ŷ, in order to approximate the actual Satisfaction
score y rated by Learner A.

Learner A

Sequence X for B: [x0, x1, ..., xN-1]

h0 hN-2 hN-1

h0 hN-2 hN-1

Sequential
model 

[                        ] Last Hidden State
(128-dimensional)

Fully Connected

Estimated  
Satisfaction Score

(continuous)

linear or

sigmoid

Actual  
Satisfaction Score 

Rated from A

Learner B

Interactions  
between A and B 

RNN or

LSTM or

GRU

Calculate loss

Feature 
Learning 

Regression 

Model Input

Figure 4: Architecture of the prediction model. For unimodal modeling, xt (0 ⩽ t ⩽ N − 1) is a unimodal feature vector
(audio at, video vt, or langauge lt). For multimodal modeling, xt is a subset of an early-fused vector [at, vt, lt] (normalized).
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Table 2: Regression results of unimodal models. Two highlighted features: Head Position (x-axis) and Body Key Points
(x-axis), significantly reduced the MAE compared to the baseline feature (p-value < .05).

Modality Unimodal Feature MAE p-value (ŷbase and ŷ) R2 (y and ŷ)
Baseline 0.1953 — 0.07
Loudness 0.1981, 0.1790, 0.1796 0.31, 0.19, 0.12 0.02, 0.05, 0.07

Pitch 0.2073, 0.1902, 0.1881 0.25, 0.14, 0.15 0.01, 0.15, 0.03
Shimmer 0.1895, 0.1794, 0.1713 0.12, 0.19, 0.42 0.04, 0.12, 0.20

Jitter 0.1983, 0.1896, 0.1853 0.14, 0.31, 0.31 0.01, 0.08, 0.06
Audio

MFCCs 0.2341, 0.2405, 0.2318 0.19, 0.19, 0.24 0.01, 0.03, 0.03
Word Count 0.1794 0.43 0.07
Speech Rate 0.1790 0.19 0.29
Word2Vec 0.1751 0.09 0.06

Language

Pre-trained BERT 0.1789 0.06 0.08
Eye Gaze Directions 0.1689 0.10 0.21

Head Directions 0.1583 0.09 0.23
Head Position (x-axis) 0.1402 0.03 0.68
Head Position (y-axis) 0.1902 0.21 0.15
Head Position (z-axis) 0.1640 0.09 0.25

Facial AUs 0.1927 0.19 0.11
Body Key Points (x-axis) 0.1376 0.03 0.64

Video

Body Key Points (y-axis) 0.1761 0.39 0.10

MAE : aggregated testing absolute error for all data samples. y: actual satisfaction scores. ŷ: predicted
satisfaction scores with each unimodal feature. ŷbase: predicted satisfaction scores with the baseline
feature. R2: another widely used metric to evaluate a regression task’s level of goodness-of-fit.

Table 3: Regression results of multimodal models. None of the multimodal features significantly outperformed the baseline
feature.

Multimodal Feature MAE p-value (ŷbase and ŷ) R2 (y and ŷ)
Baseline: Body Key Points (x-axis) 0.1376 — 0.64

Head Position (x-axis, z-axis) 0.1484 0.39 0.65
Head Position (x-axis), Head Directions 0.1355 0.17 0.68
Head Position (x-axis), Body Key Points 0.1367 0.10 0.68

Head Position (x-axis), Pre-trained BERT 0.1409 0.13 0.65

Recent research [50] has shown that the type of sequen-
tial model can play an important role for feature learn-
ing. Therefore, we also evaluated the performance of recur-
rent neural network (RNN) and gated recurrent unit (GRU)
models to understand the influence of different sequential
model architectures during feature learning. In addition, we
evaluated the performance of two different output units, sig-
moid and linear functions, to compare between linear and
non-linear regression.

6. EXPERIMENTS AND RESULTS
6.1 Experimental Setups
We implemented the Python code1 for our prediction models
in Keras with a Tensorflow backend. We conducted five-fold
cross-validation to train and validate the models. All la-
bels (y) were normalized (ranging from 0 to 1) before the
model training process because the sigmoid activation func-
tion was used to produce the predicted satisfaction scores ŷ.
We used Adam optimizer with the learning rate of 1×e−3 to
train the prediction model, which was trained for up to 100
epochs. The mean absolute error (MAE) was calculated for
the loss function. After five rounds of cross-validation, we
aggregated the MAE of each fold during the model testing
process.

1https://github.com/yingbo-ma/
Predicting-Peer-Satisfaction-EDM2022

6.2 Investigating Unimodal Features
To identify predictive unimodal features, we compared the
prediction accuracy of each unimodal feature with a ran-
domly generated baseline feature. Followed a common method
of generating uniform random baselines [12, 19], we used the
Python function random.uniform(0, 1), which can be inter-
preted as white noise without any meaningful content. We
then trained the model with the white noise to generate
the random baseline results (error MAEbase and predicted
scores ŷbase). This low baseline allows us to measure the ex-
tent to which each feature predicts the outcome better than
random chance. Next, we trained the model with each of the
unimodal features from Table 1, and generated correspond-
ing MAE and ŷ. A paired-samples t-test [34] between ŷbase
and ŷ checked whether adding that unimodal feature sig-
nificantly reduced error compared to the random baseline.
Table 2 shows the regression results of peer satisfaction pre-
diction models trained on unimodal features.

For audio-derived features, the three values in each col-
umn (from left to right) resulted from different silence re-
moval thresholds (-6, -16, and -30 dBFS). Although time-
domain features (e.g., Loudness, Shimmer) performed better
than frequency-domain features (Pitch, Jitter), as indicated
by lower MAEs, the associated p-values showed that none
of the acoustic and prosodic features significantly outper-
formed the baseline. For video-derived features, we identi-
fied two predictive unimodal features: learners’ head posi-
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tions in the x direction (p-value = 0.03), and the locations
of their body key points in the x direction (p-value = 0.03).
Models trained on language-based features yielded similar
MAEs compared to the baseline model; therefore, none of
the language-based features evaluated in this study were pre-
dictive for this task.

The feature space in our study is large compared to the rel-
atively small corpus size. Therefore, identifying predictive
unimodal features helped with filtering out noisy features
that are not useful in predicting satisfaction scores. Next,
we examined the performance of multimodal models by com-
bining the unimodal features that were useful.

6.3 Examining Multimodal Features
For testing the performance of combining multiple features,
we selected the two significant (p<0.05) unimodal features
(Head Position x-axis and Body Key Points x-axis). In addi-
tion, we also selected Head Direction and Pre-trained BERT,
as their p-values are lower than 0.1 (a threshold that has
been used to identify a weak trend or association [23]). We
used the best-performing unimodal model trained on Body
Key Points (x-axis) as the baseline (predicted satisfaction
scores ŷbase), and investigated the p-values of the paired-
samples t-test between the predicted scores ŷ and the base-
line results ŷbase. Table 3 shows the regression results of
peer satisfaction trained on unimodal features.

The results shown in column 2 of table 3 indicated that com-
bining Head Position (x-axis) and Head Directions yielded
the lowest MAE. However, none of these multimodal fea-
tures significantly improved the regression performance com-
pared to the unimodal model.

6.4 Comparing Different Model Architectures
To understand the influence of different sequential models
during feature learning, and compare the performance be-
tween linear and non-linear regression models, we selected
the best-performing unimodal model and examined how pre-
diction accuracy varied under different model architectures.

Table 4 shows the experimental results with different model
architectures. For the selection of different sequential mod-
els, three models provided comparable performances, with
LSTM yielding a slightly lower MAE. As for the selection
of different activation functions, the model predicting sat-
isfaction score with a sigmoid activation functionperformed
better than with a linear function. In addition, although
we observed faster convergence speed with linear, sigmoid
provided more stable training and testing performance (see
Figure 5). As for the selection of the number of layers, the
one-layer LSTM performed similarly compared to two- or
three-layer LSTM.

7. DISCUSSION
This study investigates the prediction of peer satisfaction
using multimodal features from learners’ interactions during
collaborative learning activities. This section discusses the
results with respect to our two research questions, as well
as implications from comparing the performance of different
model architectures.

Table 4: MAEs under different architecture settings.

Sequential Model LSTM RNN GRU
MAE 0.1376 0.1401 0.1382

Output Unit sigmoid linear
MAE 0.1376 0.1741

# of Layers 1 2 3
MAE 0.1359 0.1376 0.1384
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Figure 5: Testing MAEs under different activation functions
(blue-linear, red-sigmoid). linear provided faster converge
speed during training, while sigmoid provided lower MAE
and more numerical stability during testing.

7.1 RQ 1: What are the most predictive uni-
modal features of peer satisfaction during
collaboration?

7.1.1 Audio-based Features
In this study, we investigated several commonly used acoustic-
prosodic features and the results showed that none of these
features were significant predictors of peer satisfaction. Pre-
vious literature has associated learners’ peer satisfaction with
their emotional bonding [46]. Acoustic-prosodic features
have been widely used for detecting speaker emotion de-
tection (positive, neutral, and negative) [10] and predicting
learners’ task performance [47]. However, the results from
this study indicate that the acoustic-prosodic features we
tested may not have the explanatory power to predict peer
satisfaction.

One potential reason for audio features not performing well
in models is if there are periods of silence included in what
the model thinks are periods of speech only. We exam-
ined several different silence removal thresholds (-6, -16, -30
dBFS) and the results indicated that this strategy did not
help with peer satisfaction prediction. A higher silence re-
moval threshold (e.g., -6 dBFS) could help reduce the neg-
ative influence from background noise; however, it is also
more likely to remove learners’ speech. While selecting be-
tween and qualitatively examining different thresholds, we
determined -30 dBFS was optimal for our corpus to balance
between eliminating periods of silence without excessively
cutting off speech. However, acoustic features under that
threshold were not predictive of peer satisfaction.
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7.1.2 Language-based Features
We examined several statistical (word count and speech rate)
and semantic (Word2Vec and BERT) features from the lan-
guage modality. Statistical features such as word count per
utterance and speech rate have shown to be associated with
learners’ active participation and turn-taking during collab-
oration [49]. The results from our study showed that there
was a trend toward significance when more semantic infor-
mation was added to the features (p-values for word count,
Word2Vec, and BERT: 0.46, 0.16, 0.06); however, none of
these models yielded statistically significant results for pre-
dicting peer satisfaction (Table 2). Previous literature also
found several sequences of dialogue acts representing speak-
ers’ intentions (e.g., questions followed by clarifications) that
were positively related to peer satisfaction [26], but our re-
sults did not show a direct correlation between semantics
and peer satisfaction. One potential reason may be that the
semantic representation methods used in our study did not
have the same explanatory power as dialogue acts to directly
indicate learners’ intentions.

7.1.3 Video-based Features
Among the several video-based features extracted in this
study, head position and body location on the horizontal axis
were the only two predictive unimodal features. To better
understand how the patterns of these two predictive features
varied among learners with different satisfaction scores, we
selected three groups of five learners and examined their
sessions in more detail. The groups are as follows:

• High satisfaction group: five learners who received the
highest scores (5.0 / 5.0).

• Average satisfaction group: five learners who received the
exact score of 4.3 / 5.0 (mean peer satisfaction score of
our corpus).

• Low satisfaction group: five learners who received the low-
est five scores (all below 3.7 / 5.0).

Figure 6 shows the patterns of horizontal (x-axis) head dis-
tance from the camera, in meters, for the three groups of
learners. For each group, we calculated their averaged Head
Distance (x-axis) over whole sessions. Since the camera was
positioned horizontally in the middle between two learners, if
learners had lower head distance from the camera, this likely
reflects that the learners were sitting closer to one another.
From Figure 6 we could see that learners who received high
satisfaction scores (green) had lower head distances over the
collaborative coding sessions, compared to learners who re-
ceived average (red) and low (blue) satisfaction scores.

Figure 6 also depicts the difference of the head distance vari-
ance over time across the three groups of learners. Learners
who received high satisfaction scores (green) had lower head
distance variance and fewer numbers of sharp distance in-
creases over time, compared to learners who received average
(red) and low (blue) satisfaction scores. A sharp head dis-
tance increase could happen when the learner became dis-
engaged in the collaborative coding tasks (e.g., talking to
learners in other groups). In comparison, for learners in the
high satisfaction group (green), only a small range of head
distance variance over time was observed.

In addition to head distance (x-axis), another predictive uni-
modal feature identified in our study was body key points,

0 200 400 600 800 1000 1200 1400 1600
time / s

0

0.2

0.4

0.6

0.8

1

1.2

H
ea

d 
D

is
ta

nc
e 

(x
-a

xi
s)

 / 
m

Low Satisfaction
Mean Satisfaction
High Satisfaction

Figure 6: Head Distance (x-axis) in Meters from OpenFace

such as the location of nose, neck, and shoulders. Figure 7
shows the patterns of neck location (x-axis) in pixels to-
ward the camera for three groups of learners; locations for
other body key points followed relatively similar patterns.
The maximum neck distance from the camera that could
be detected was 640 pixels (half of 1280 pixels) because
the resolution of our cameras was 720p. Figure 7 shows
that learners who received high satisfaction scores (green)
sit closer toward the camera (they had closer distances to
their partners) over the collaborative coding sessions, com-
pared to learners who received average (red) and low (blue)
satisfaction scores. Additionally, learners who received high
satisfaction scores (green) had lower neck location variance
over time, compared to learners who received average (red)
and low (blue) satisfaction scores.
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The findings from Figure 6 and Figure 7 were aligned with
previous literature that found learners’ perceived social pres-
ence and proximity significantly impacted their satisfaction,
as well as group performance during collaborative learning
[8, 36]. For example, a study conducted by So et al. [46]
revealed that learners’ perceptions of physical proximity and
psychological aspects of distance were both important fac-
tors in their reported satisfaction with their partner. In
another similar study conducted by Spikol et al. [47], the
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authors found that the distances between learners’ faces and
between learners’ hands were two strong indicators of task
performance when groups of college students were engaged
in open-ended collaborative tasks.

7.2 RQ 2: Does multimodal feature fusion im-
prove peer satisfaction prediction compared
to the best-performing unimodal model?

In this study, experiment results in Table 3 from several mul-
timodal models indicated that although using multimodal
features (Head Position (x-axis) combined with Body Key
Points) yielded lower MAE than the best-performing uni-
modal feature, there was no significant performance advan-
tage of using multimodal over unimodal features. The po-
tential reason may be that both head position and body
key points represented learners’ spatial locations; therefore,
combining these two unimodal features did not add extra
useful information to predict peer satisfaction. Therefore,
each of these two unimodal features alone could be used to
predict peer satisfaction. However, the head pose feature ex-
traction process with OpenFace was faster than OpenPose.
OpenPose was computationally demanding, and required
GPU acceleration to perform the body key points detec-
tion. Therefore, OpenFace may be a more practical feature
extraction choice over OpenPose when deploying real-time
learning support systems.

7.3 Implications from comparing different
model architectures

The experimental results comparing performance of differ-
ent model architectures showed that the three different se-
quential models (RNN, LSTM, and GRU) had similar peer
satisfaction prediction accuracy; in addition, non-linear re-
gression models yielded lower MAE than linear regression
models. These results have a few practical implications for
researchers in the educational data mining community seek-
ing to conduct similar studies with the methodology pre-
sented in this study.

Although sequential models were able to represent the se-
quential nature of utterance-level features, the comparison
between different sequential models (RNN, LSTM, and GRU)
did not reflect significant performance differences. Given
that GRU usually has a faster training speed than LSTM
and RNN due to its simpler cell structure, GRU could be
a better choice over RNN or LSTM for similar tasks. In
addition, the comparison between different activation func-
tions (linear and sigmoid) showed that the sigmoid regres-
sion model yielded lower MAE and provided more numerical
stability during testing than the linear model. The reason
may be that the satisfaction scores predicted in this study
only ranged from 1 to 5, so the constrained output value
range of the sigmoid function could better avoid large er-
ror values during training. On the contrary, there was no
mechanism to prevent the linear activation function from
predicting out-of-range satisfaction scores.

7.4 Limitations
The current work has several important limitations. First,
we only studied peer satisfaction in the context of co-located
pair programming, and analyzed recordings collected from

a relatively small corpus with 44 middle school learners;
therefore, the predictive features found in this paper may
not generalize well to group collaboration involving three
or more team members, or to learners in other populations
or learning environments, such as adults or online learning.
Second, the LSTM-based feature learning process was black-
box, which makes it relatively difficult to interpret what pre-
dictive information was learned from each unimodal feature.
Finally, the effectiveness of video-derived features identified
in this study relies heavily on the correct setup of the video
recording process. Our dataset was collected from a natural
and active classroom setting, and thus, OpenFace sometimes
failed to detect both learners’ faces when they were not di-
rectly facing the camera, or in the case of occlusion. Even
though we used wide-angle camera lenses for video recording
student interactions, there were some cases in which some
students were sometimes out of the recording range.

8. CONCLUSION AND FUTURE WORK
Learners’ satisfaction toward their partners plays a crucial
role in group performance and learning outcomes. If intel-
ligent systems could automatically predict peer satisfaction
during collaboration, they could provide timely scaffolding
for better learning experiences. In this paper, we investi-
gated automatic prediction of peer satisfaction by analyzing
44 middle school learners’ collaborative dialogues. We com-
pared a set of state-of-the-art multimodal learning analyt-
ics techniques with linguistic, acoustic-prosodic, and visual
features extracted from students’ interactions. The experi-
mental results revealed two significant predictors: head po-
sition and body location. Learners who had shorter head
and body distances from their partners were more likely to
receive higher peer satisfaction scores.

This study highlights several directions for future work. First,
future work should examine the generalizability of the find-
ings in this study using larger datasets, including data from
online learning environments and multi-party interactions
among groups of three or more learners. Second, although
OpenFace and OpenPose support accurate detection of head
pose and body pose, it remains challenging to integrate them
into intelligent learning support systems for real-time anal-
ysis. Future work should investigate other methods and
tools to detect learners’ pose features accurately and time-
efficiently. Third, the satisfaction survey was administered
post-hoc in this study. Future work could investigate poten-
tial variations in students’ attitudes that may occur during
the ongoing collaborative process. Finally, it is important to
investigate how intelligent systems can most effectively de-
liver feedback to learners during collaborative learning pro-
cess. As we move toward predicting peer satisfaction in real
time, we will be able to build and investigate systems that
can significantly improve learners’ collaborative learning ex-
perience in classrooms.
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[19] B. Gambäck and U. K. Sikdar. Using convolutional
neural networks to classify hate-speech. In Proceedings
of the 1st Workshop on Abusive Language Online,
pages 85–90, 2017.

[20] T. T. Goud, V. Smrithirekha, and G. Sangeetha.
Factors influencing group member satisfaction in the
software industry. In Proceedings of the International
Conference on Data Engineering and Communication
Technology, pages 223–230. Springer, 2017.

[21] J. F. Grafsgaard, J. B. Wiggins, K. E. Boyer, E. N.
Wiebe, and J. C. Lester. Automatically recognizing
facial indicators of frustration: a learning-centric
analysis. In 2013 Humaine Association Conference on
Affective Computing and Intelligent Interaction, pages
159–165. IEEE, 2013.

[22] L. Hasler-Waters and W. Napier. Building and
supporting student team collaboration in the virtual
classroom. Quarterly Review of Distance Education,
3(3):345–52, 2002.

[23] N. Houssami, P. Macaskill, M. L. Marinovich, J. M.
Dixon, L. Irwig, M. E. Brennan, and L. J. Solin.
Meta-analysis of the impact of surgical margins on
local recurrence in women with early-stage invasive
breast cancer treated with breast-conserving therapy.
European Journal of Cancer, 46(18):3219–3232, 2010.

[24] K. Huang, T. Bryant, and B. Schneider. Identifying
collaborative learning states using unsupervised
machine learning on eye-tracking, physiological and
motion sensor data. Proceedings of The 12th
International Conference on Educational Data Mining,
pages 318–323, 2019.

[25] E. Kapp. Improving student teamwork in a
collaborative project-based course. College Teaching,
57(3):139–143, 2009.

[26] G. A. Katuka, R. T. Bex, M. Celepkolu, K. E. Boyer,
E. Wiebe, B. Mott, and J. Lester. My partner was a
good partner: Investigating the relationship between
dialogue acts and satisfaction among middle school
computer science learners. In Proceedings of the 14th

143



International Conference on Computer-Supported
Collaborative Learning, pages 51–58. International
Society of the Learning Sciences, 2021.

[27] J. Kim, Y. Kwon, and D. Cho. Investigating factors
that influence social presence and learning outcomes
in distance higher education. Computers & Education,
57(2):1512–1520, 2011.

[28] H.-Y. Ku, H. W. Tseng, and C. Akarasriworn.
Collaboration factors, teamwork satisfaction, and
student attitudes toward online collaborative learning.
Computers in Human Behavior, 29(3):922–929, 2013.

[29] Q. P. Law, H. C. So, and J. W. Chung. Effect of
collaborative learning on enhancement of students’
self-efficacy, social skills and knowledge towards
mobile apps development. American Journal of
Educational Research, 5(1):25–29, 2017.

[30] R. Liu, J. Davenport, and J. Stamper. Beyond log
files: Using multi-modal data streams towards
data-driven kc model improvement. Proceedings of the
9th International Conference on Educational Data
Mining, pages 436–441, 2016.

[31] C. N. Loes and E. T. Pascarella. Collaborative
learning and critical thinking: Testing the link. The
Journal of Higher Education, 88(5):726–753, 2017.

[32] M. Madaio, R. Lasko, A. Ogan, and J. Cassell. Using
temporal association rule mining to predict dyadic
rapport in peer tutoring. Proceedings of the 10th
International Conference on Educational Data Mining,
pages 318–323, 2017.

[33] J. Malmberg, S. Järvelä, J. Holappa, E. Haataja,
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ABSTRACT 
What can eye movements reveal about reading, a complex skill 
ubiquitous in everyday life? Research suggests that gaze can reflect 
short-term comprehension for facts, but it is unknown whether it 
can measure long-term, deep comprehension. We tracked gaze 
while 147 participants read long, connected, informative texts and 
completed assessments of rote (factual) and inference comprehen-
sion (connecting ideas) while reading a text, after reading a text, 
after reading five texts, and after a seven-day delay. Gaze-based 
student-independent computational models predicted both immedi-
ate and long-term rote and inference comprehension with moderate 
accuracies. Surprisingly, the models were most accurate for com-
prehension assessed after reading all texts and predicted 
comprehension even after a week-long delay. This shows that eye 
movements can provide a lens into the cognitive processes under-
lying reading comprehension, including inference formation, and 
the consolidation of information into long-term memory, which has 
implications for intelligent student interfaces that can automatically 
detect and repair comprehension in real-time.  

Keywords 
Reading comprehension, Eye movements, Machine Learning, 
Long-term comprehension, Comprehension depth. 

1. INTRODUCTION 
Reading comprehension is the extraction of meaning from text. 
This activity takes place many times a day, whether reading the 
news, absorbing technical information at school or work, or reading 
a novel for pleasure. Difficulty in reading comprehension can slow 
the progression of such activities, and comprehension failures can 
lead to misunderstandings and inaccuracies. The rise of computer-
ized reading via e-books, the Internet, and other media opens up the 
exciting possibility of intelligent interfaces that can track reading 
comprehension as it unfolds based on measurable signals (behav-
iors) from the reader [13, 51].  

Eye-gaze is perhaps one attractive signal to explore because it pro-
vides a lens into cognitive processes [30, 48] and it can be passively 
and noninvasively recorded. In particular, there is a long history of 
using eye gaze in student-models of cognitive, affective, and social 

processes during learning [8, 15, 61]. In the context of reading com-
prehension researchers have developed automatic models for 
skimming [3] and mind wandering (zone outs) [19] detection. 
These models have also been used for real-time intervention. For 
example, Mills et al. [41] designed an attention-aware reading in-
tervention that prompted participants to re-read sections of text 
based on a real-time gaze-based model of mind wandering [19] and 
found this to improve reading comprehension. In addition, real-
time modifications can be made to text content, such as adapting 
the text to be easier when comprehension difficulty is detected [53], 
or enabling gaze-contingent actions such as presenting a glossary 
for technical terms [3].  

Whereas these examples focus on adapting the reading interface 
based on ongoing comprehension processes, such as mind wander-
ing or comprehension difficulty, another possibility is to base 
adaptations on comprehension outcomes. For example, if gaze can 
be used to prospectively predict whether a student will comprehend 
a page or an entire text, adaptive interventions can be designed to 
address such deficits at their onset. Such a system would entail de-
veloping a model to monitor comprehension outcomes from gaze 
as a first step, a possibility we explore here. Specifically, we exam-
ine whether machine-learned models of gaze can be used to predict 
different types of comprehension outcomes (factual vs. those re-
quiring inferencing) assessed at different time intervals (during a 
text, after a text, after multiple texts, and greater than a week). In 
addition to potential applications, the present research advances the 
empirical knowledge base of eye movements in reading compre-
hension, and to our best knowledge, is the first such study. 

2. BACKGROUND AND RELATED 
WORK 

2.1 Reading Comprehension 
Most theories of reading posit that it involves hierarchically inter-
acting levels of processing - from the sub-lexical and lexical levels 
[25] and the access of word-level meaning [45] to the formation of 
a literal then a more abstract meaning-based encoding of the text at 
the sentence-level (Figure 1 links a-c; [59]). Higher-order (or 
deeper) processing incorporates elaborative inferences from prior 
knowledge (Figure 1 n) [32] and integration across multiple sec-
tions within the text and even between texts (bridging inferences), 
forming a situation (or mental) model (Figure 1 d-g) [24, 39]. These 
above shallow and deep comprehension processes unfold in parallel 
[33] and interact with one another to provide a cohesive narrative 
of text. Both are critical in that shallow, perceptual encoding of in-
formation is important to construct the mental representations to 
support inferences from the text, and inferences are important to 
bridge ideas in the text into a cohesive narrative (Figure 1d; [34]). 
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It is therefore critical to develop models of comprehension that ac-
count for multiple levels of comprehension, which we address by 
focusing on varying depths of comprehension, such as rote 
(knowledge of factual content from text) and inference (deep) com-
prehension (for examples, see Table 2). 

Comprehension also unfolds over timescales of milliseconds, sec-
onds, minutes, hours, and beyond. For instance, reprocessing of 
remembered information can occur in milliseconds without re-fix-
ating the part of the text that was not correctly encoded initially [6, 
40], whereas comprehension of earlier sentences affects encoding 
of later content and vice versa (e.g., via bridging inferences [34]), 
a process that may unfold over seconds or even minutes. Further, 
memory traces acquired during reading one text may interfere with 
another [63] prior to being consolidated into long-term memory 
during sleep [43]. Thus, it is unclear if eye movements captured 
during the initial encoding of text (Figure 1 b,h) will be useful to 
predict comprehension at later stages after these intervening pro-
cesses have unfolded (Figure 1 i-m). We address this by 
investigating the link between gaze and comprehension assessed at 
multiple time points. 

 
Figure 1. An overview of the process of reading comprehension. 

2.2 Eye Movements During Reading 
Theories of gaze control during reading shed light on the mecha-
nisms linking cognitive processes and measurable gaze features 
[18, 50], particularly for lower-level lexical processes. For exam-
ple, eye movements are determined to some extent by text 
properties, where fixations are shorter on more frequent [47] and 
shorter [49] words. But eye movements are also influenced by 
higher-level comprehension [5], for example the same word may 
be fixated for longer if it is contextually surprising versus expected 

[38] or regressive eye movements can reconcile disparities in com-
prehension [9], such as in the case of ambiguous sentences [23] (but 
this can also occur covertly without a regression [7]).  

Gaze has also been linked to several processes that support com-
prehension. In particular, attentional lapses (mind wandering) 
which are negatively associated with comprehension  [14, 54] have 
been linked with fewer and longer fixations (see brief review by 
Faber et al. [20]). Similarly, skim reading manifests as fewer fixa-
tions [37] and fewer regressive saccades [42], but in contrast to 
mind wandering, these fixations are shorter than for normal reading 
[56].   

Researchers have leveraged these findings to develop gaze-based 
models of reading comprehension as noted in Table 1. Whereas 
there have been attempts to model comprehension from other sig-
nals, such as facial expressions [58], we focus on gaze here. In 
general, most studies compute gaze statistics aggregated over time 
to give “global” measures at the level of an entire page, passage, or 
reader for use as features in shallow machine learning classifiers 
(e.g., Random Forest). For example, D’Mello et al. [16] used linear 
regression models to predict responses to multiple-choice questions 
targeting rote (factual) information of the text interspersed during 
reading trained on a small number of global gaze features grounded 
in the experimental literature. Similarly, Copeland and colleagues 
trained shallow neural networks to predict comprehension scores 
from gaze [10–12].  

Deep neural networks are capable of modeling gaze behavior [35, 
62], so it is plausible that an end-to-end system could be designed 
to predict comprehension. To this point, Ahn et al. [1] used convo-
lutional neural networks (CNN) and long short-term memory 
(LSTM) models to model several reading comprehension metrics 
(passage- and participant-level comprehension, perceived diffi-
culty, English language skill) from raw fixation-level data 
(location, duration, and pupil diameter) but their model perfor-
mance was scarcely above chance and the results did not generalize 
to new readers.  

To this point, a vast majority of studies do not provide evidence of 
generalizability to new people where data from the same partici-
pants are in either the training or test set (but not both). Further, as 
evident in Table 1, almost all studies focus on rote or inference 
comprehension or a combination of the two, which makes it diffi-
cult to compare the performance of gaze-based models for either 
type; comprehension is almost always assessed during reading or 
immediately after, but never after a longer delay when interference 
and memory consolidation processes unfold.  

Table 1: Review of gaze-based computational models of reading comprehension 

Study Comprehension Type Assessment Time Participant-level 
Generalization 

Small, predeter-
mined feature set 

Copeland & Gedeon, 
2013 

Rote During reading No Yes 

Copeland et al., 2014 Rote Immediately after reading No Yes 
Martínez-Gómez & Ai-
zawa, 2014 

Rote 
 

Immediately after each text/section Yes  Yes 
 

Wallot et al., 2015 Rote Immediately after reading No Yes 
Copeland et al., 2016 Rote Immediately after each text/section  No Yes 
Ahn et al., 2020 Rote and inference Immediately after each passage No NA 
D’Mello et al., 2020 Rote  During reading Yes Yes 

Southwell et al., 2020 Rote (2 studies) and 
inference (1 study) 

Roughly 30 minutes after reading Yes Yes 
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2.3 Current Study: Contribution & Novelty 
As reviewed above, there is reason to suggest that gaze can provide 
an important signal to automatically measure comprehension dur-
ing reading. However, despite some initial attempts towards this 
goal (Table 1), substantial items remain including: (1) differentiat-
ing the predictive value of gaze on different depths of 
comprehension; and (2) different time onsets from the initial read-
ing of the text (where gaze data is acquired) and when 
comprehension is assessed; (3) developing models that generalize 
to new students, and (4) testing whether deep sequence learning 
models can improve comprehension prediction above standard 
classifiers.  

We addressed these issues by testing whether gaze could be used to 
predict rote and inference comprehension (#1 above) assessed at 
four time points (during reading, after each text, after all texts, and 
at least seven days following reading; #2), using a large dataset of 
eye movements recorded as 147 participants read five long exposi-
tory texts. Random forest models were used to evaluate whether a 
broad set of page-level gaze features (109 features total) could be 
used to detect reading comprehension on each page across depth 
and time by comparing them to two baseline models. We also tested 
a long-short-term memory (LSTM) deep neural network to exam-
ine whether temporal sequences of fixations could improve 
predictive accuracy (#4). Critically, participant-level cross-valida-
tion was used to increase the validity of the model on new 
participants (#3).  

It should be noted that the present goal is more scientific in nature 
– to investigate the relationship between eye tracking and reading 
comprehension outcomes – rather than application oriented. As 
such, although we used a machine-learning predictive modeling ap-
proach [17], the goal was to use the models to investigate the 
question of the  link between gaze and comprehension depth and 
durability (persistence across time) rather than to engineer the most 
predictive model. For this reason, we largely restricted the feature 
space to high-level eye gaze features and some contextual variables 
but did not include information on textual content and difficulty of 
the assessment items.  

3. METHOD 
3.1 Data Collection 
Data was collected as part of a larger study investigating neuro-
physiology during reading comprehension. Only aspects germane 
to the present study are presented here. The data analyzed here have 
not been previously published. 

Participants (N=147, age 23±6 years, 67% female, 1% other) were 
students from a large public University in the Western US. Partici-
pants were paid $20 per hour plus $10 for a follow-up survey via 
Amazon gift cards. All procedures were approved by the institu-
tion’s internal review board and all participants provided informed 
consent.  

Binocular gaze was tracked using a high-resolution desktop-
mounted eye tracker (SR Research EyeLink 1000+) with a sam-
pling rate of 1000Hz. Stimuli were displayed on a 23.8”, 
1920x1080 pixel display, and participants viewed the screen at a 
distance of ~90cm. A chin rest was used to minimize movement 
during the study. 

Participants read five expository texts of around 1000 words each, 
where a single text was split into 10 pages. Each text was on the 
topic of behavioral research methods: Bias, Hypothesis, Casual 

Claims, Validity, and Variables. The texts had a mean Flesch-Kin-
caid grade level (a measure of textual difficulty) of 13.2 indicating 
an advanced reading level [22] suitable for college students. Read-
ing was self-paced in that participants pressed a key to advance to 
the next page but could not advance back to a previous page. On 
average, participants spent 5.5 minutes (1.8 SD) reading each text, 
for a total average reading time of 27.6 minutes (9.2 SD). 

Reading comprehension was assessed via: 1) Rote items - four-al-
ternative forced-choice item targeting factual knowledge explicitly 
presented in the text); 2) Inference items - a statement which is ei-
ther a valid or false inference from the text, which the participant 
identified as ‘true’ or ‘false’ (see Table 2 for examples). Rote and 
inference questions were developed by researchers led by an in-
structor of a behavioral research methods undergraduate course. 
They were then piloted and refined using Mechanical Turk in order 
to calibrate the difficulty to the appropriate level. Items with less 
than 20% accuracy or greater than 80% accuracy were reexamined 
and either discarded or adapted based on patterns of responses. The 
final assessments and texts included in the study were tested on 10 
unique participants per text.  

Table 2: Examples of a rote question and inference items 

 

Both assessment items occurred at four time points: (A1) “during 
text” occurred immediately after reading the corresponding page, 
(A2) “after each” occurred after each individual text was com-
pleted; (A3) “after all” occurred once all five texts were read; and 
(A4) "delay” occurred a minimum of seven days after the reading 
session (Figure 2; median completion time 8.0 days, mean comple-
tion time 11.3 days after reading). The assessment items were 
linked to content covered on a particular page such that gaze on that 
page could be associated with a corresponding assessment item 
(Figure 2). At each time point, each participant received assess-
ments corresponding to a randomized subset of two pages for each 
text from a pool of questions common to the A1, A2 and A3 assess-
ments (Figure 2) but without overlap (e.g., if a page was selected 
for A1, then it could not be used for A2 and A3). A4 assessments 
were selected from a different pool of questions than A1-A3.  

Text Question 
“Occam’s razor, also 
called the principle of par-
simony, teaches that 
hypotheses introduced to 
explain relationships 
should be as parsimonious 
as possible. We ‘cut away’ 
what is superfluous.” 

(Rote Question) What is Occam’s Razor? 
A) The process by which we search for 
the simplest explanation for an observa-
tion (correct);  
B) The process by which we search for 
connections between facts;  
C) A tool used by those who search for 
truth;  
D) A book by the philosopher William of 
Occam  

Sentence S3: Internal va-
lidity refers to whether the 
relationship between the 
variables is free of con-
founds 
.…… 
Sentence S5: Content va-
lidity refers to the extent to 
which a measure repre-
sents all facets of a given 
construct. 

(Inference Question) True or False:  In-
ternal validity is not a prerequisite for 
content validity. 
 
False (correct response because for a test 
to separately measure all facets of a con-
struct (S5) it must be able to identify 
relationships free of confounds (S3)).  
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Figure 2.  Four different timings of assessment questions. Black 
boxes indicate assessments, grey boxes indicate example pages 
within text, and colors indicate the five individual texts (and 
subsequently the corresponding text of the assessment ques-
tions.  

3.2 Data Processing and Feature Extraction 
Gaze data was processed with EyeLink’s event detection algorithm, 
using a velocity threshold of 30°/s and an acceleration threshold of 
9500°/s2. The right eye was used in the analyses if available, other-
wise the left eye was used. No manual alignment of eye movements 
was done to address eye tracking errors as this would not be possi-
ble in a real-time application. Further, a pilot study comparing 
features (see Table 3) extracted from aligned vs. unaligned tested 
on the A1 (‘during text’) assessments yielded highly similar results.  

Fixations and saccades greater than the 99th percentile across par-
ticipants were removed to account for mis-parsed fixations and 
saccades (i.e., saccade amplitudes greater than 20°, durations above 
600 ms, peak velocity below 5°/s or above 800°/s, distances over 
1000 pixels, and fixation durations below 40 ms and above 3000 
ms). The first and last fixations on a page were removed as these 
likely corresponded to orienting rather than reading behaviors.  

Table 3. Gaze Feature Definitions 

The word “proportion” indicates these features were normalized by the total number of fixations on the given page. Prop. = Propor-
tion 

Feature Description 
Fixation Duration Duration of a fixation in milliseconds 

Fixation Count Number of fixations on a page 
Saccade Amplitude Degrees of visual angle the eye travels during a saccade 
Saccade Velocity Saccade amplitude divided by saccade duration 
Saccade Distance Euclidian distance between saccade start and end points 
Saccade Duration Duration in milliseconds of a saccade 
Saccade Relative Angle  Acute angle between the line segments of two saccades 
Horizontal Saccade Angle Angle between a saccade and the horizontal axis 
Pupil Diameter (Z) Diameter of the pupil, z-scored within-participant 
Fixation Dispersion Root mean square of distance from each fixation to the mean fixation position on a page 

Horizontal Saccade Prop. Proportion of saccades no greater than 30 degrees above or below the horizontal axis to the right 
or left 

Forward Horizontal Saccade Prop. Proportion of saccades no greater than 30 degrees above or below the horizontal axis only to the 
right 

Blink Count Number of blinks on a given page 
Blink Duration Duration in milliseconds of a blink 

Dwell Time   Sum of the durations across all fixations that fell in a given interest area (i.e., the box bounding 
each word). Reflects the amount of time spent fixating on the words   

IA Fixation Prop.   Total proportion of fixations that landed in a given interest area (e.g., 2 for word #12 “follow-
ing” in Figure 3, 2/13 for the proportion) 

Regression-In Prop. Proportion of times an interest area was entered at the beginning of a regression. (e.g.,1 for #3 
“start” in Figure 3, and 1/13 for the proportion) 

Regression-Out Full Prop. Proportion of times an interest area was regressed from (e.g., 2 for “experiment” #13 in Figure 
3, and 2/3 for the proportion) 

First Pass Regression-Out Prop. Proportion of times an interest area was regressed from on the first pass (before having read any 
text past that interest area). (e.g., 1 for “experiment” #13 in Figure 3, and 1/13 for the propor-
tion) 

Regression Path Duration   Total time from when an interest area is fixated until it is exited to the right (also called go-past 
duration). This includes all the time spent regressing until that interest area is passed. (e.g., the 
sum of the first fixation on “experiment” #13 in addition to the sum of the 3 subsequent regres-
sive fixations, and the last fixation on that same word in Figure 3).       

Selective Regression Path Duration   Total gaze duration (duration of fixations and refixations) on an interest area before leaving the 
interest area to the right (e.g., 2 for the word “following” and the word “experiment” #13 in Fig-
ure 3).   
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3.2.1 Gaze Features 
Global (content-independent) gaze features (Table 3) were calcu-
lated as statistical functions over low-level features at the page-
level (including min, max, mean, median, sum, skew, kurtosis, and 
standard deviation) and have been previously used to predict com-
prehension and mind wandering [4, 19, 55]. A second set of 
features captured the fixations corresponding to interest areas, 
which were rectangular boxes around individual words and punc-
tuation computed with EyeLink Dataviewer (see example in Figure 
3). The gaze models consisted of these 109 features plus three con-
text features (see below). One goal of these features is to find 
participant-general patterns in gaze and comprehension, so to ac-
count for the variation in individual differences in fixation rates [26, 
60], we normalized interest area features by the total number of fix-
ations on a given page.  

 
Figure 3. Hypothetical fixations (n = 13) and saccades on the 
text. The numbers indicate the interest area index for the 
word/punctuation they are above, the circles indicate fixations 
and the lines indicate saccades. The circles with darker outlines 
are the first and last fixation, for reference. The unfilled circles 
denote regressive fixations.   

Table 4 includes summary statistics for a few key gaze features 
used in the present study, which are consistent with typical values 
observed during reading [46, 48]. The mean fixation duration was 
210.30 ms, well in range of the 200-250 ms average during reading, 
and the mean saccade duration of 42.04 ms is close to the average 
saccade duration of 50 ms during reading [46]. Further, the average 
saccade amplitude in the study was 3.46 degrees, whereas the aver-
age during reading is reported to be 2 degrees [48]. This study does 
differ slightly in regressive fixations, as it is estimated that 10-15% 
of saccades are regressive during reading [46], where this study had 
34%.  There was also a slightly higher horizontal saccade propor-
tional (95%) than previous studies (e.g., 85% in D’Mello et al. 
[16]).    

Table 4. Gaze summary statistics computed over participants. 
IA = interest area. 

Feature  M (SD)  
Mean Saccade Amplitude  3.46 (0.45)  
Total Scan Path Length  422.68 (105.61)  
Fixation Dispersion  0.41 (0.03)  
Mean Fixation Duration  210.84 (25.20)  
Mean Saccade Duration  42.04 (8.94)  
Horizontal Saccade Proportion  0.95 (0.03)  
Mean Pupil Size (z)  0.11 (0.30)  
Regression Fixation Proportion  0.34 (0.09)  
IA Percent Visited  0.56 (0.08)  
Proportion of Fixations in IAs  0.91 (0.06)  
Mean IA Regression Path Duration  984.57 (450.88)  
Mean Blink Duration  189.91 (229.87)  
  

3.2.2 Baseline Models: Context Features, Shuffled 
Labels and Shuffled Fixation Events 

Context features capture situational factors independent of gaze and 
were used as a baseline measure to gauge the added value of gaze 
features. They included reading rate (reading time divided by the 
number of characters on a page), text order, and the eye tracker cal-
ibration error. For a second baseline, we fit gaze models where 
comprehension scores were shuffled within each participant, pre-
serving the distribution of the features, but breaking the temporal 
dependency between gaze and the comprehension. Additionally, 
the LSTM baseline models shuffled the units in the sequence of 
fixation events (see below), preserving the distribution of the fea-
tures, but breaking the temporal dependency between fixation 
events. 

3.3 Machine Learning Models 
We chose Random Forest classifiers since they incorporate nonlin-
earity and interactivity among features and have good 
generalization properties. The random forest classifier was imple-
mented in sklearn, with 100 estimators, minimum of 15 samples per 
leaf, and the maximum number of features set to the square root of 
the total number of features. The class weights of the models were 
balanced by setting the weights to be inversely proportional to the 
number of samples in each class. Note that no resampling was done 
on either the training or testing sets: setting the class weights to 
‘balanced’ simply penalizes wrong predictions made on the minor-
ity class. 

We also trained LSTM models (implemented in Keras) to examine 
to what extent the sequence of local fixation events can be used to 
predict reading comprehension. Each unit in the sequences repre-
sents a fixation event, which was described by five features: 1) 
fixation duration, 2) average horizontal (x) position, 3) average ver-
tical (y) position, 4) average pupil size, and 5) the elapsed time 
since the end of last fixation. We also explored using other features, 
such as the position of the previous and next fixation, and the dis-
tance between the current and previous fixation, but this did not 
improve model performance. The maximum sequence length was 
set to 160 units, which is longer than 85% of the sequences. For 
those shorter than 160 units, 0s were filled at the beginning and for 
the longer ones, the last 160 units were kept. The LSTM network 
included a LSTM layer followed by two fully connected layers and 
used the binary cross entropy loss function. We tuned the following 
hyper-parameters: the number of hidden nodes in the LSTM layer 
(e.g., 8,16, 32), the number of nodes in the fully connected layers 
(e.g., 8, 16, 32), batch size (e.g., 16, 32, 64), and dropout rate (e.g., 
0, 0.2, 0.4). The hyper-parameters for each model were selected 
through a random search in 4-fold cross validation with 50% of data 
for training, 25% for validation, and 25% for testing. 

3.4 Validation, Metrics, and Statistical Com-
parisons 

We used four-fold cross-validation at the participant level to ensure 
generalizability to new participants [16]. Here, the dataset was ran-
domly split into four folds, with the data from a given participant 
only being in a single fold. The process was repeated 10 times with 
a different random partitioning of the folds for each run. The same 
fold assignments were used to train the Random Forest gaze models 
and baseline models per run, but fold assignments were not pre-
served for the LSTM models as they were run in a different 
pipeline. For the random forest models, we only used participants 
who completed all assessments for a fair comparison across time 
(N=122). All participants (irrespective of whether they completed 
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all assessments) were used for the LSTMs to maximize the data 
needed for these data-intensive models (N=147). Because there was 
very little variability across runs, predictions were pooled for each 
participant from all runs prior to computing accuracy measures.  

Performance was evaluated using the area under the precision-re-
call curve (AUPRC), which ranges from 0 to 1 with the ratio of true 
classes to total data (i.e., base rates) indicating baseline classifica-
tion by guessing. The AUPRC was used because it is well-suited 
for class imbalance unlike the receiver operator curve (ROC) which 
may provide an overly optimistic view of model performance when 
classes are imbalanced [29]. AUPRCs were separately computed 
for each assessment type and time on a per-participant basis, result-
ing in eight values per participant per classification model. 

We used linear mixed models [21] via the lmer package in R [2] to 
compare the percent improvement of AUPRCs over baseline 
(100*((AUPRC – base rate) / base rate)). Mixed models are the rec-
ommended approach due to the repeated nature of the data (i.e., 

eight values per participant per model). Here, participant was in-
cluded as an intercept-only random effect. We probed significant 
effects with the emmeans (estimated marginal means) package us-
ing a false discovery rate (FDR) adjustment for multiple 
comparisons and a two-tailed p < .05 significant criterion. 

4. RESULTS  
4.1 Observed comprehension differences 

across depth and time 
We first considered how comprehension changed as a function of 
depth and time (Figure 4). To examine the extent to which each 
assessment measured the same construct, we first computed the 
proportion correct for each assessment for each participant. From 
here, we computed the Pearson correlation between the comprehen-
sion scores for each pairwise assessment (Table 5 upper diagonal). 
Overall, the average correlation was 0.23 and ranged from -0.13 to 
0.54, suggesting that there was some overlap but also unique infor-
mation in what each assessment measured.

 

Table 5. Pairwise Pearson correlations of comprehension scores and gaze model probabilities averaged over participants. The up-
per diagonal (white) contains the correlation between comprehension accuracies across depth and time. The lower diagonal (grey) 

contains the correlations between random forest gaze model probabilities across depth and time. 

 

Next, we examined how averaged participant-level comprehension 
measures varied as a function of depth and time using the following 
linear mixed-effects model: proportion correct ~ depth*time + 
(1|participant). There were significant main effects (ps < 0.01) and 
interactions (ps < 0.07). For the main effect of comprehension 
depth, the rote assessment scores were significantly higher than the 
inference assessments (B = 0.05, p = 0.01). We then probed the sig-
nificant interactions using emmeans. For rote comprehension, the 
mean score during reading was statistically equivalent to the score 
after reading each text (p = 0.10) which were both statistically 
greater (p < 0.05) than assessments after reading all the texts (p > 
0.05) and at delay (p > 0.05), suggesting the following pattern: 
[During = After Each] > [After All = Delay]. This suggested that as 
people read, rote comprehension was stable but dropped upon com-
pletion of reading. Inference comprehension was stable across the 
reading session but dropped at delay with the pattern of signifi-
cance: [During = After Each = After All] > Delay.   

 
Figure 4. Predicted comprehension score from the mixed model 
as a function of depth and time. Error bands represent 95% 
confidence intervals. 

 

Assessment  Rote:  
During  

Rote:  
After Each  

Rote:  
After All  

Rote:  
Delay  

Inference: 
During  

Inference: 
After Each  

Inference: 
After All  

Inference:  
Delay  

Rote: During  -  0.33 0.42 0.35 0.38 0.13 0.08 0.11 
Rote: After Each  0.19 - 0.54 0.37 0.26 0.23 0.17 0.11 

Rote: After All   0.51  0.04 - 0.47 0.44 0.22 0.18 0.18 
Rote: Delay  -0.01   0.18 -0.02  - 0.35 0.26 0.25 0.18 

Inference: During  0.62 0.05 0.51 -0.03 -  0.17 0.16 0.14 

Inference After Each   0.02  0.21  -0.10 0.10  -0.02  - 0.20 0.10 

Inference: After All  0.02 -0.01 0.16 0.02 0.00 0.00 -  -0.13 
Inference: Delay   0.16 0.07 0.30 -0.10 0.18 -0.28 -0.07 - 
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4.2 Gaze Models can predict short and long-
term reading comprehension 

Gaze vs. shuffled (Random Forest and LSTM). Our first com-
parison examined whether the random forest gaze models 
performed significantly better than the shuffled models across 
depth and time (Figure 5): percent improvement ~ model type 
(shuffled vs. gaze)*depth*time + (1|participant). Overall, there was 
a significant interaction between model type and time (p < 0.001). 
All other interactions and main effects were non-significant (all ps 
> 0.05). When probing the model type x time interaction, we found 
that the gaze models outperformed the shuffled models for all cases 
(Figure 5; ps < 0.001) except for the “after each” model (p = 0.37), 
though the trend was in the expected direction. When we repeated 
the analysis for the LSTM model, the interactions and main effects 
of interest were non-significant (all ps > 0.28), indicating that they 
performed at chance in all cases and was indistinguishable from the 
shuffled model. Given the chance performance of the LSTMs, we 
focus on the random forest model results. 

 
Figure 5. Gaze versus shuffled models. Comparison of the per-
cent improvement for the gaze and shuffled models across time. 
Error bands represent 95% confidence intervals. 

Gaze vs. context (Random Forest only). Our second analysis 
evaluated whether the random forest gaze models performed sig-
nificantly better than the context models across depth and time 
(Figure 6): percent improvement ~ model type (gaze vs. con-
text)*depth*time + (1|participant). Overall, there was a model by 
time interaction (p = 0.002), indicating that the gaze model outper-
formed the context model for all cases (ps < 0.05) except for the 
“after each” model (p = 0.14), though the trend was in the expected 
direction. Furthermore, there were no significant differences across 
time for the context model, as expected. However, for gaze, there 
were differences across time (Figure 6b). Specifically, the model 
performance for comprehension assessed after reading all texts was 
statistically equivalent to the delay model (p = 0.90) which was 
statistically higher than for assessments during reading (p = 0.02) 
which was in turn equivalent to assessments after each text (p = 
0.34), suggesting the following pattern: [After All = Delay] > [Dur-
ing = After Each]. There were no significant main effects nor 
interactions for comprehension depth, indicating similar patterns 
for rote and inference comprehension items. 

 
Figure 6. Comparison for percent improvement of gaze vs. con-
text (A) across time and (B) across depth and time. Error bands 
represent 95% confidence intervals.  

Table 6. Mean AUPRCs with 95% CIs computed over partici-
pants for the Random Forest models 

Assessment  Gaze  Context  Base 
Rate 

Rote: During  0.81 [0.80, 0.81] 0.77 [0.77, 0.78]  0.76 
Rote: After Each  0.76 [0.76, 0.76] 0.74 [0.74, 0.75]  0.72 
Rote: After All  0.75 [0.75, 0.76] 0.71 [0.71, 0.72]  0.68 
Rote: Delay  0.75 [0.75, 0.75] 0.68 [0.68, 0.69]  0.68 
Inference: During  0.80 [0.80, 0.81] 0.78 [0.78, 0.78]  0.75 
Inference: After Each  0.78 [0.78, 0.78] 0.76 [0.76, 0.76]  0.73 
Inference: After All  0.80 [0.80, 0.80] 0.74 [0.74, 0.75]  0.73 
Inference: Delay  0.71 [0.70, 0.71] 0.65 [0.65, 0.65] 0.63 

 

Model discrimination. To understand to what extent the random 
forest gaze model predictions were generally picking up on the 
same comprehension constructs, we computed the average model 
probabilities for each participant and assessment and correlated 
them (Table 5, grey diagonal). Overall, the average correlation was 
0.10 and ranged from -0.28 to 0.62, suggesting that the models were 
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discriminating among the different comprehension assessments, 
with the highest correlation being between Rote During and Infer-
ence During, suggesting the model might be picking up on similar 
gaze patterns for both ‘During’ assessments.  

4.3 Feature Analyses (Random Forest only) 
We examined impurity-based feature importances from the Ran-
dom Forest model to determine which aspects of gaze were most 
predictive of comprehension and whether the predicted features dif-
fered across comprehension types and delays. Here, we computed 
the correlation of the feature importances between each pairwise 
assessment for each run and then averaged across runs (Table 7). 
The grand average correlation excluding the diagonals was 0.15, 
indicating some overlap of feature importances across depth and 
time despite the broad range of features. Overall, the rote measures 
showed a mean rs = 0.23, with a range from -0.01 to 0.35 (light 
grey in Table 7), with rote comprehension during reading showing 
the lowest correlations with the other rote assessments (rs = -0.01, 
0.06, and 0.16 compared to rs = 0.27, 0.30, and 0.35 for the other 
rote assessments). Conversely, the inference comprehension 
measures showed a wide range of correlations with each other 
(from rs = -0.14 to 0.57). This is in part due to the delayed inference 
assessments showing negative correlations with all other inference 
assessments (rs = -0.14, -0.05, -0.10), while all other correlations 

were positive, with inferencing assessed during reading and after 
reading all texts showing the highest correlation (r = 0.57). Corre-
lations among rote and inference assessments showed a mean rs = 
0.15, with a range from -0.10 to 0.57 and the strongest correlations 
among the delayed rote assessments and inferencing assessed dur-
ing the session (rs from 0.26 to 0.57). Thus, the pattern of inter-
associations among feature importances is mixed.  

We then assessed which features were most important to compre-
hension across depth and time. To this end, we first computed the 
overall mean feature importances for each run across all assess-
ments and averaged across runs. We then grouped and averaged 
each set of statistical features together to assess relative importance 
of each feature type. For example, for the “fixation duration” fea-
ture set, the feature importances for the eight statistical features of 
fixation duration were averaged together. We found that the top 
four feature categories were: the selective regression path duration 
(average importance = 0.0103), regression fixation proportion (av-
erage importance = 0.0097), calibration error (average importance 
= 0.0094), and interest area dwell time (average importance = 
0.0094). Although these features were the most important, it ap-
peared that all features contributed to model performance as they 
were all greater than zero (Figure 7).

 

 
Figure 7. Rank-ordered mean feature importance across assessments.  

Table 7. Pairwise feature importance Pearson correlations averaged over runs 

 

Assessment  Rote:  
During  

Rote:  
After Each  

Rote:  
After All  

Rote:  
Delay  

Inference: 
During  

Inference: 
After Each  

Inference: 
After All  

Inference:  
Delay  

Rote: During  -  -0.01  0.16 0.06 -0.01 0.10 -0.10 0.02 
Rote: After Each    -  0.27 0.30 0.35 0.10 0.32 -0.05 
Rote: After All      -  0.35 0.06 0.35 0.05 -0.03 
Rote: Delay        -  0.57 0.26 0.46 -0.04 
Inference: During          -  0.15 0.57 -0.14 
Inference After Each            -  0.13 -0.05 
Inference: After All              -  -0.10 
Inference: Delay                -  
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Figure 8. Example gaze on pages with accurate (A) and inaccurate (B) comprehension on a question asked immediately after read-
ing the page. Saccades are shown with green lines and fixations with blue circles. 

5. DISCUSSION 
Our goal was to investigate the relationship between eye tracking 
and reading comprehension outcomes by identifying whether gaze-
based models of reading could predict different depths of compre-
hension at varying degrees of delay. We discuss our main findings 
followed by applications, and limitations. 

5.1  Main Findings 
Beginning with observed rote and inference comprehension, we 
found that accuracies were highest during reading and dropped 
when assessed at seven days post-study, which is what we would 
expect. Nevertheless, the gaze-based Random Forest models could 
still predict both comprehension types significantly better than 
baselines during all stages of reading except for the “after each” 
assessment, which followed the same trend. Furthermore, we found 
a pattern such that gaze became more predictive of comprehension 
as time progressed within the main reading session, with perfor-
mance peaking for assessments administered after reading all the 
texts. 

As noted in Figure 1, theories of reading comprehension posit that 
readers first attend to and encode the text at the surface-level to 
form a text-based representation followed by a situational (mental) 
model via bridging inferences and elaboration, which is then con-
solidated into long-term memory. While there are reasons to expect 
that gaze should predict rote, short-term retention of information 
that simply requires attention to and basic encoding of the text (as 
others have shown – see Table 1), our results indicate that it is also 
related to the processes underlying deep, long-term comprehension 
which are typically viewed as internal cognitive processes that oc-
cur in the absence of eye movements [40]. To our knowledge, this 
is the first study to show that gaze during reading is predictive of 
deep, long-term comprehension since previous work has mainly fo-
cused on rote comprehension [55].   

Second, while our models demonstrated participant-level generali-
zability (in contrast to prior work – see Table 1), the percent 
improvements of our models relative to baseline were admittedly 
modest. However, as indicated in the Introduction, the present goal 
was not to develop the most predictive model but to examine the 
predictive accuracy of a set of eye gaze features across comprehen-
sion depth and time. As such, we did not include many pertinent 
non-gaze features (e.g., text difficulty; item difficulty) that may be 
highly predictive when coupled with eye gaze. 

It should be noted that D’Mello et al. [16] found that a gaze model 
yielded very high accuracies (AUROCs close to 0.9) for modeling 
rote comprehension during reading. One key difference is the 
D’Mello et al. study only measured rote comprehension with the 
items triggered in response to an automated mind-wandering detec-
tor. This may have engendered a very different reading strategy 
(and corresponding eye movement patterns) entailing skimming the 
text to identify targets for subsequent questions (the authors 
acknowledge this in Mills et al. [14]) than the more general reading 
strategies required here given the variety of comprehension 
measures. Thus, the high-accuracy scores reported in D’Mello et al. 
[16] might not generalize more broadly. 

Third, there was overlap in feature importances across depth and 
time, with the top four predictive features being the selective re-
gression path duration, regression fixation proportion, calibration 
error, and dwell time per interest area. It is possible these features 
capture measures of processing later in the time course of reading, 
and rereading text for comprehension repair, both of which are key 
to higher-level comprehension [9]. Dwell time, for instance, re-
flects the processing time (early and late), and in combination with 
selective regression path duration could be indicating processing 
difficulty later in reading a page (e.g., low selective regression path 
duration but high dwell time suggests difficulties only later on in 
the comprehension of a page [36]).  Regression fixation proportion 
is also an important indication of comprehension repair [46, 52], 
and has been used in previous gaze models of comprehension [55]. 
Because it is difficult to interpret the direction of association of in-
dividual features in random forest models (due to interactivity), 
these patterns are speculative, and await further empirical data. 

Historically, regressions have been one of the more difficult aspects 
of eye behavior to capture [48]. While it has long been posited that 
regressions occur when a reader experiences a difficulty in compre-
hension which triggers the reader to look back in the text to repair 
their comprehension deficit [9], several studies have linked an in-
crease in regressions to better comprehension [28, 52], while others 
show the opposite effect [31]. Regression fixation proportion, the 
feature with the second highest average importance, indicates how 
often readers did not understand the text and acted to repair their 
comprehension [46], and might also be a way to distinguish better 
from poor readers, as better readers reread less and are more adept 
at redirecting their gaze efficiently [64]. Figure 8 shows an example 
of gaze behavior that leads to accurate and inaccurate comprehen-
sion. Note that in Figure 8A there are more regressions (seen as 
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long saccades cutting across multiple lines of text) and more read-
ing in the middle of the text- an area which might have been giving 
the student some difficulty. On the other hand, the gaze on the page 
with inaccurate comprehension demonstrates a more even pattern 
of eye movements: possibly less attention to the text and less com-
prehension repair.  

We also found that calibration error was predictive of comprehen-
sion. Indeed, prior work has found that greater pre-trial fixation 
dispersion is predictive of mind wandering [65]. Because mind 
wandering is negatively related to comprehension [14, 54], it might 
be the case that calibration error (and pre-trial fixation dispersion) 
is also negatively predictive of comprehension. 

5.2 Applications 
This research is a step towards gaze-based computational models 
of reading comprehension. Such models can be integrated into 
adaptive systems that trigger assessments and provide opportunities 
to correct comprehension deficiencies when lapses of comprehen-
sion are detected (similar to the gaze-based models that adaptively 
trigger interventions when mind wandering is detected [4, 13, 19, 
27]). Given the modest accuracies obtained in the present study, the 
most immediate applications are in interventions that can be ap-
plied in a ‘fail-soft’ manner. These do not disrupt the student and 
do not pose any harm if comprehension is miss-classified. Inter-
leaving questions during reading is one such example [57] , as is 
encouraging re-reading at the end of a text or adaptively selecting 
post-reading assessments based on model-assessed comprehension 
during reading.  

With further research, more fine-grained interventions that target 
different depths (rote vs. inference) and timescales (short- or long-
term comprehension) are also feasible. For instance, if a student is 
preparing for an upcoming examination, models and interventions 
supporting long-term comprehension might be preferred compared 
to cases where short-term retention suffices (reading a short arti-
cle). Other possible interventions include reducing textual 
difficulty or providing scaffolds when comprehension difficulties 
are detected [53] or even increasing difficulty when the reader is 
not being sufficiently challenged (e.g., the reverse cohesion effect 
[44] where good comprehenders benefit more from texts with lower 
cohesion).  

In addition to direct intervention, the models also have applications 
with respect to assessment. For example, if the rote and inference 
models consistently (i.e., across multiple participants) predict high 
and low comprehension scores on a given page, respectively, this 
might suggest that there is a cohesion gap with respect to the con-
tent on the page that is impeding inference generation.  

5.3 Limitations 
Like all studies, ours has limitations. First, we only examined gaze 
on a particular page, thereby overly constraining the models. There-
fore, there may have been other factors, such as gaze on the 
preceding page, that might have been relevant to reading compre-
hension but were not incorporated into the gaze models. 

Furthermore, it is possible that the lab settings changed behaviors 
relative to how participants would behave in more ecologically 
valid settings. Specifically, participants donned other sensors and 
face masks to adhere to COVID safety procedures, which may have 
resulted in discomfort and unnatural reading behaviors (but see Ta-
ble 4 which showed high horizontal saccade proportion and percent 
of fixations in interest areas indicating people were on task).  

Next, the classes in the data were imbalanced, and we chose to not 
balance the classes since this might not capture real-world variation 
in comprehension. However, class imbalance might have intro-
duced a confound when comparing model performance over time 
in that accuracies reflected the level of class imbalance rather than 
differences in comprehension depth and time. To address this pos-
sibility, we did test models on balanced classes and results did not 
change.  

Although the present study demonstrated cross-participant general-
ization, participants only read one set of texts and therefore it is 
unknown whether the models would generalize to new texts. That 
said, because we used features which capture relative changes in 
gaze (e.g., angles) as opposed to absolute, stimulus-dependent val-
ues (e.g., coordinates), we think they are likely to generalize to 
similar contexts. To this point, prior work using similar global 
page-level features demonstrated cross-task-generalization for 
mostly rote comprehension after reading [55], but this is an empir-
ical question for comprehension models at different depths and 
time delays.  

Finally, the LSTMs yielded chance-level performance. This was 
despite using features that reflected relative changes in gaze (e.g., 
relative angles) in contrast to prior LSTM work that used absolute 
fixation coordinates [1]. It might be the case that there are not gen-
eralizable patterns in local gaze dynamics that are predictive of 
comprehension. Alternatively, and more likely, there might not 
have been sufficient data to learn these patterns should they exist 
given the relatively small number of training examples compared 
to the number of parameters in the LSTM models.  

5.4 Concluding Remarks 
Reading comprehension is a complex cognitive process that is crit-
ical to daily tasks. It unfolds across different depths and over time, 
raising the question of what eye movements known to index initial 
encoding of information can reveal about the processes underlying 
deep, long-term comprehension (Figure 1). Our results show, for 
the first time, that eye movements have the potential to provide an 
index into deeper inference-level comprehension assessed as late as 
a week after reading, indicating they capture far more than tempo-
rary surface-level encoding of a text.  
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ABSTRACT 
A child’s ability to understand text (reading comprehension) can 
greatly impact both their ability to learn in the classroom and their 
future contributions to society. Reading comprehension draws on 
oral language; behavioural measures of knowledge at the word and 
sentence levels have been shown to be related to children’s reading 
comprehension. In this study, we examined the impact of word and 
sentence level text-features on children’s reading comprehension. 
We built a predictive model that uses natural language processing 
techniques to predict the question-level performance of students on 
reading comprehension tests. We showed that, compared to a 
model that used measures of student knowledge and subskills 
alone, a model that used features of sentence complexity, lexical 
surprisal, rare word use, and general context improved prediction 
accuracy by more than four percentage points. Our subsequent 
analyses revealed that these features compensate for the shortcom-
ings of each other and work together to produce maximal 
performance. This provides insight into how different characteris-
tics of the text and questions can be used to predict student 
performance, leading to new ideas about how text and reading com-
prehension interact. Our work also suggests that using a 
combination of text features could support the adaptation of reading 
materials to meet student needs. 

Keywords 
Reading comprehension, text-features, early education, natural lan-
guage processing, learner modelling 

1. INTRODUCTION 
Elementary students’ ability to understand text, or their reading 
comprehension (e.g., [30]), supports their successful participation 
in both education and society [7]. It is well-established that reading 
comprehension is determined, at least in part, by children’s skill in 
oral language [19], with strong impacts of oral language skills—at 
both the word and sentence levels (i.e., vocabulary and syntax) —
on reading comprehension skills (e.g., [11]). We built on these 
ideas and tested whether automatically extracted indicators of vo-
cabulary and syntax complexity would be indicative of reading 

comprehension scores. To address this question, we extract features 
from a widely used standardised measure of reading comprehen-
sion [34]. Thus, we introduce various text-based measures that can 
be automatically extracted. After extracting these features, we 
trained and evaluated models. We then tested their relative perfor-
mance and analyzed the added value of including all of these 
features in the context of a predictive neural network model. Our 
modelling approach could also be used to analyze new reading 
comprehension tests or tasks, enabling others to better understand 
how student knowledge and subskills interact with the characteris-
tics of the text to influence reading comprehension.  
The educational value of this work lies in informing the optimal 
selection of texts and questions to support the development of chil-
dren’s reading comprehension. Predictions on where mistakes 
would likely be made by individual students could be used to sup-
port downstream tasks, such as adapting systems so that both the 
comprehension questions asked and the assigned texts challenge 
students appropriately [57]. Further, interpreting the predictions 
made by such models and the model attributes may improve our 
understanding of what contributes to reading comprehension chal-
lenges, which could support the design of optimally effective 
interventions. 

2. RELATED WORK 
The single most widely cited theory of reading comprehension is 
the Simple View of Reading [19]. According to this theory, chil-
dren’s reading comprehension is determined by the product of their 
word reading and their oral language skills. Behavioural research 
since its development has made good progress in identifying the 
individual oral language skills that support reading comprehension. 
Two of the best-established lie in vocabulary, or knowledge of in-
dividual word meanings, and syntactic awareness, or the ability to 
reflect on or manipulate spoken sentences [5].  Each of vocabulary 
and syntactic awareness are strong predictors of children’s levels 
of reading comprehension [54]. For instance, Deacon and Kieffer 
[11] showed that children’s ability to manipulate sentences in 
Grade 3 predicted gains made in reading comprehension between 
Grades 3 and 4, a contribution similar in magnitude to that of word-
level reading. There is an even larger body of research demonstrat-
ing the impacts of children’s vocabulary knowledge on their ability 
to understand what they read [43]. Together, this body of work 
shows that individual differences in oral language skills—at both 
the word and sentence levels—are related to children’s ability to 
understand the texts that they read.  

But what about the features of the texts themselves? 
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It is well-established that the features of a text impact a person’s 
comprehension of that text. These features can be identified manu-
ally, or we can use techniques from natural language processing 
(NLP) to identify the qualities of a text and extract their associated 
features. The field of NLP has developed many approaches that can 
be used to identify syntax, semantics, and word use. There are also 
methods that can identify the broader relationships in people’s lan-
guage use once those methods have been trained with corpora.   

Of the techniques that do not require training with a corpus, are 
those that predominantly count elements of a text to derive 
measures that can then be used as features in a model. One widely-
used tool that employs this approach to capture the syntactic com-
plexity of sentences is Coh-Metrix. Coh-Metrix tracks the linguistic 
properties of a text using features such as the average length of 
words in a sentence or number of sentences in a paragraph [23]. 
The most recent version of Coh-Metrix also incorporates the scor-
ing of connections between sentences, such as noun overlap 
between adjacent sentences  and causal cohesion (sentences that are 
linked by causal connectives) [22].  

Given the importance of syntactic complexity to reading compre-
hension, it is not surprising that Coh-Metrix has been used to 
extract the linguistic properties of texts to predict student reading 
comprehension scores in the context of the iStart tutoring system 
[1]. iStart provided training in active reading strategies (i.e., self-
explanation) to support improved reading comprehension. In this 
case, features were extracted from student self-explanations and 
used to predict reading comprehension scores on the Gates Mac-
Ginitie test. These analyses provided insight into how the language 
produced by students can be used to predict their overall reading 
comprehension performance. Including the simple linguistic fea-
tures that were extracted using Coh-Metrix accounted for additional 
variance in student performance, which demonstrated that the in-
clusion of such features has the potential to support learner 
modelling tasks.  

Building on the idea of Coh-Metrix, AMOC aimed to automatically 
capture the semantic complexity and context of a text [8]. It uses 
similar approaches to those embedded within Coh-Metrix and adds 
semantic links using dictionary-like tools and Word2Vec. These 
links are then used to output a graph representation of the semantic 
model (context) associated with a segment of text.  

Language models are a potential alternative approach to automati-
cally capturing the syntactic and semantic or contextual features of 
a text. Existing language modelling approaches vary in complexity 
from relatively simple probabilistic representations of language 
(e.g., n-grams) to more complex neural network-based approaches 
(e.g., RNNs). All of these language modelling approaches require 
a corpus of data from which they can learn language-usage patterns. 

Assuming you have access to a corpus, n-grams can be used to cap-
ture both the syntactic and semantic constraints in a text by 
determining the probability with which words are expected to fol-
low one another. Mitchell et al [39] investigated using trigrams (i.e., 
n-grams of length 3) to analyze reading times and understand read-
ing comprehension. They used these n-grams to estimate the lexical 
surprisal associated with a text and found a correlation between the 
surprisal measure and reading time. Similarly, a study by Hofmann 
et al [29] used a trigram language model to predict reading speed 
from eye-tracking data while acknowledging that trigrams do not 
account for long-range semantic effects (unlike AMOC and some 
more advanced language modelling approaches). The finding that 
reading time may be related to comprehension is not directly 

measurable with n-grams; rather, they enable the extraction of 
measures, such as lexical surprisal, that can be used to predict read-
ing time. 
To better model long-range semantics and sentence meaning, re-
current neural networks (RNN) have been used to improve 
predictions of reading comprehension scores and reading times. 
Frank and Hoeks [18] used a specific type of RNN, called long 
short-term memory (LSTM),  to correlate reading times with com-
prehension. Through this investigation, they found RNNs can 
capture both the structure and semantics of a long text thus improv-
ing reading time predictions. Transformer-based neural network 
models [53], such as BERT [15], have shown superior performance 
over RNNs when conducting various NLP tasks, such as neural ma-
chine translation [31] and sentiment analysis [38]. This suggests the 
use of transformer-based models may support improved perfor-
mance when predicting reading comprehension scores. 
Outside of the use of language models, other approaches to repre-
senting student performance (learner or student models) have been 
attempted in systems that rely on language as a primary source of 
interaction with the student. One project aimed to predict student 
scores on a post-test using the logs of student interactions from in-
telligent tutoring systems (ITS) that teach physics and probability 
using word-based problems [35]. Mao et al. [35] collected data 
from two ITSs and used the training content to predict student post-
test results. They trained a Bayesian knowledge tracing (BKT) 
model to infer whether students had learned the intended units of 
knowledge (knowledge components). Their results showed BKT’s 
prediction is more accurate than that of the LSTM on its own. A 
model that jointly used BKT and LSTM to predict post-test scores 
outperformed both individual models, suggesting the potential for 
combining different approaches to capturing student capabilities in 
relation to the complexities of the learning and assessment materi-
als. This initial work has provided promising results by 
incorporating representations of the text as part of the prediction of 
student performance. However, the skill representations used by 
BKT models typically require the expert labelling of skills along 
with the careful development and sequencing of questions, and this 
sequencing is often specific to an  ITS. Consequently, it cannot be 
easily generalized or applied to other prediction tasks. 

Moreover, these types of approaches have yet to be applied to mod-
elling student reading comprehension within e-learning systems. 
Within the instructional domain of literacy, previous attempts at 
modelling student skills or knowledge have focused on understand-
ing student reading strategies [24], improving their vocabulary 
acquisition [14, 17], or improving reading proficiency (decoding 
and fluency) [2, 40], as steps towards supporting literacy. In these 
cases, the logs of student activities, their interactions with the sys-
tem, and the texts they produce are used to model student 
knowledge and skills. These types of models are then used to pro-
vide feedback to students [13], inform teachers of student activities 
and skills, or adapt learning content [12, 13]. Consistent with the 
above modelling goals, the training provided by the e-learning sys-
tems that aim to support student literacy has tended to focus on 
exposure-based approaches [3, 12], stealth assessment during game 
play [17], and the training or modelling of reading strategies [17, 
21]. In the research on the use of software to support reading profi-
ciency, tests of reading comprehension have been used to evaluate 
the effectiveness of the system [1, 16, 40] rather than being an in-
tegral part of the content that is adapted.  

We do not yet have a model that can predict student performance 
on comprehension questions by capturing students’ underlying oral 
language skills while accounting for text features. A model that 
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could do this would support the selection of both texts and ques-
tions within an adaptive learning environment like an ITS. The 
present study is a first attempt at developing such a model. It asks, 
‘What is the added value of including text features as input when 
predicting the correctness of question answering in reading tasks?’ 

3. METHODS 
To answer the above question, we applied supervised learning to 
archival data from a study of children’s reading development. We 
compared models that include different features we extracted from 
a reading comprehension test to a baseline that only included 
measures of student oral language skills and language knowledge.  

3.1 Participants 
This study was approved by the Social Sciences and Humanities 
Research Ethics Board of Dalhousie University. All children par-
ticipated with parental consent and child assent. We recruited 
Grade 3 students from a combination of urban and rural public 
schools in Nova Scotia.  

There were 139 students with a mean age of 8.80 years at the time 
of testing (SD = 0.29; range = 8.15–9.37 years). Of these students, 
74 were boys and 65 were girls. Based on parent-report, most chil-
dren were native speakers of English; 4 spoke a language other than 
English at home.   

Table 1 shows the children’s performance on standardized 
measures (see section 2.3.2 for details on these measures). Student 
scores suggest that participants were typically developing. 
Table 1. Descriptive Statistics for the Individual knowledge and 
sub-skill measure scores 

Measure Name Rel. Mean SD Min Max 
PPVT-M .84 31.95 4.93 19.00 46.00 
CTOPP .93 23.01 6.10 8.00 33.00 

Syntax Awareness  .74  9.57 3.27 2.00 16.00 
TOWRE  .93 56.97 14.40 4.00 87.00 

WISC .91 13.17 2.31 8.00 20.00 
WRMT-3 .97 60.97 12.72 3.00 83.00 

Note. Raw scores are reported for all measures. Reliability (Rel.) 
was retrieved from the instrument manual. SD - standard deviation.  

3.2 Procedures 
The measures reported on here were completed as a part of a larger 
battery, presented in two individual sessions and one group session 
(up to 12 children). We only report measures relevant to the present 
study.  

In session 1, participants completed the Sight Word Efficiency sub-
test of the Test of Word Reading Efficiency (TOWRE), amongst 
other measures.  
Session 2 was completed an average of two days after the first in-
dividual session (M = 1.93, SD = 1.39; range: 1 to 9 days). 
Participants completed the Word Identification subtest of the 
Woodcock Reading Mastery Tests (WRMT), a modified version of 
Peabody Picture Vocabulary Test (PPVT-M), Digit Span from the 
Wechsler Intelligence Scale for Children (WISC), and Elision from 
the Comprehensive Test of Phonological Processing (CTOPP).  

 
1 The test content is available at https://edinstruments.com/instru-

ments/gates-macginitie-reading-tests-4th-edition-gmrt-4 

The group session was completed an average of just over 2 days 
after the first individual session (M = 2.27, SD = 2.12; range: 1 to 9 
days). In the group session, children completed the Comprehension 
subtest of the Gates–MacGinitie Reading Tests.  

3.3 Measures 
3.3.1 Reading Comprehension Measure 
To measure reading comprehension, we administered the Level 3 
Comprehension subtest of the fourth edition of the Gates–MacGin-
itie Reading Tests 1  [34] according to manual instructions. The 
manual reports a reliability of .93 for this instrument. Students were 
given 35 minutes to read 11 short texts and answer the three to six 
multiple choice questions following each text.  
We aim to predict whether students correctly answered individual 
questions for each of the texts from this test. 

3.3.2 Individual Knowledge and Sub-skill Measures 
To incorporate differences in student oral language skills and 
knowledge, we administered tests to assess their vocabulary, pho-
nological awareness, working memory, word reading fluency, and 
word reading accuracy. The descriptive statistics for these 
measures are shown in Table 1, and the instruments are detailed 
below. 
Vocabulary knowledge. To measure receptive vocabulary 
knowledge, a shortened version (51 items) of the PPVT-3 [36] was 
used. For each item, students chose which of a set of four black-
and-white pictures referred to an orally presented word. This short-
ened version (PPVT-M) has been validated with Grade 1 to 3 
children [11]. 

Syntactic awareness. This was measured with an 18-item task in 
which children corrected sentences based on Deacon and Kieffer’s 
framework [11]. For instance, children are presented orally with the 
scrambled sentence, “From the library were stolen the books.” and 
they were asked to fix the sentence so that it sounds right (in this 
case, “the books were stolen from the library”). Children were 
given 3 practice items prior to completing the test.  

Phonological awareness.  We measured phonological awareness 
with the Elision subtest of the second edition of CTOPP [55]. Par-
ticipants were asked to repeat words without pronouncing certain 
syllables or phonemes (e.g., bold without /b/). Phonological aware-
ness was measured because of its association with word reading and 
reading comprehension [10]. 
Working memory. Given established correlations of working 
memory with both reading comprehension and word reading in 9-
year-olds (e.g., [5]), we measured it using the Digit Span subtest of 
the fourth edition of the WISC [56]. In this task, participants repeat 
a series of digits of increasing length in the order given or the re-
verse order. 
Word reading fluency. We measured word reading fluency using  
the Sight Word Efficiency subtest of the TOWRE [51]. Participants 
were given 45 seconds to read a list of words as fast as possible. 
Word reading accuracy. We measured  word reading accuracy 
with the Word Identification subtest of the WRMT-3 [58]. Students 
read words that became increasingly difficult. 
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3.3.3 Text-based Features 
We extracted both word- and sentence-level text-based features. 
The features included sentence complexity, rare word use, lexical 
surprisal, and sentence context. The descriptive statistics of all ex-
tracted features can be seen in Table 2. Since rare word use 
represents a proportion of the text, it produces a single input feature. 
Similarly, question complexity produces a single input feature be-
cause questions are one sentence long. In contrast, lexical surprisal 
and sentence complexity for the text, which contains multiple sen-
tences, are represented using three features: mean, standard 
deviation, and maximum. 

3.3.3.1 Sentence Complexity 
Complex sentences increase working memory load, which makes 
reading comprehension challenging [20].  We used the depth of the 
parse trees from the text as a proxy for sentence complexity. Each 
parse tree identifies the grammatical constituents of a sentence and 
communicates an aspect of a sentence’s complexity through its 
structure. 

Table 2 Descriptive Statistics for the Text-based Features 

Feature Name Mean SD Min Max 
Sentence Complexity     

 Mean 8.41 0.88 7.18 10.33 
 SD 2.32 0.74 1.34 3.96 
 Maximum 12.33 1.75 10.00 16.00 
Lexical Surprisal     
 Mean .44 .30 0 1 
 SD .49 .26 0 1 
 Maximum .56 .30 0 1 

Rare Word Use .46 .06 .35 .56 
Question Complexity 8.37 1.94 6 13 

Note. SD -  standard deviation. 
To obtain this sentence-level measure, we first tagged the sentences 
from each text in the reading comprehension test with their associ-
ated parts of speech (POS). From the tagged words, we  built parse 
trees using a probabilistic context-free grammar (PCFG). Both tag-
ging and parsing were performed by the CoreNLP tagging tool [52]. 
Figure 1 shows a parse tree for the “Snow turns blue when blue ice-
worms live in it.” This sentence is taken from one of the texts that 
was used to measure reading comprehension.  

 
Figure 1. The parse tree with the highest probability for the 
sentence “Snow turns blue when blue ice-worms live in it.” 

The PCFG assigns a probability to each potential parse of a sen-
tence. The highest probability parse is selected; its associated tree 
is used to derive our measure of sentence complexity. We take the 
depth of the tree for each sentence in the text and derive three 
measures per text: the maximum tree depth, the average depth, and 
the standard deviation of tree depths. As an example, the parse tree 
in Figure 1 has a depth of 10.  

3.3.3.2 Rare Word Use 
The number of rare words in a text influences reading comprehen-
sion; one rare word can lead to a complete miscomprehension of a 
sentence [23]. Given this fact, it is important to capture the amount 
of rare word use in a text when assessing reading comprehension. 
We model vocabulary rarity by quantifying the percentage of rare 
words in each text of the test. This language feature is expected to 
represent the difficulty of the text on a vocabulary level. 
To calculate the percentage of rare words, we first used the Chil-
dren’s Book Test corpus [27] to compute all word frequencies. We 
then chose a cut-off threshold (700) for determining word rarity. 
The top 700 frequent words occupy 1.5% of all distinct words and 
account for 60% of the corpus content. The most frequent 700 
words were extracted to form a common word list. We consider 
words rare if they are not contained in the common word list.  

 
Figure 2. Word frequency in the Children’s Book Test dataset. 
The x-axis is in log2 scale. The dashed line is the cut-off at 700; 
any words with indices that exceed the cut-off are excluded. 
To compute the percentage of rare words in a text, we count the 
number of rare word tokens (i.e.,  those that do not appear in the 
common word list) and divide that by the total number of word to-
kens in the text. This percentage is our measure of rare word use. 

𝑅𝑎𝑟𝑒	𝑊𝑜𝑟𝑑	𝑈𝑠𝑒 = 	
𝑟𝑎𝑟𝑒	𝑤𝑜𝑟𝑑	𝑐𝑜𝑢𝑛𝑡
𝑡𝑜𝑡𝑎𝑙	𝑤𝑜𝑟𝑑	𝑐𝑜𝑢𝑛𝑡 

3.3.3.3 Lexical Surprisal 
The surprisal of a word  in a sentence is related to the amount of 
cognitive work required for human comprehension of that word 
within the sentence [33], and it is predictive of reading times [46]. 
To model this word-level feature, we needed to determine the like-
lihood of one word appearing right after another word.  

Since our prediction task is targeted towards Grade 3 students with 
elementary-level vocabulary, we built bigrams (n-grams of length 
2) from the Children’s Book Test dataset [27]. We then derived the 
lexical surprisal value [25] for each sentence in the Gates-MacGin-
itie texts by computing the mean word-level surprisal. Min-max 
normalization [42] was used to ensure the values are on a similar 
scale to the other features. After extracting the surprisal of each 

ROOT

S

NP

NNP

Snow

VP

VBZ

turns

ADJP

JJ

blue

SBAR

WHADVP

WRB

when

S

NP

JJ

blue

NNS

iceworms

VP

VBP

live

PP

IN

in

NP

PRP

it

.

.

161



sentence in the text, we compute the mean, standard deviation, and 
maximum of all sentence surprisal values for the whole text. These 
normalized values are used for the lexical surprisal input feature. 

3.3.3.4 Sentence Context 
The sentence-context feature employs a prevalent method for rep-
resenting text - a universal sentence encoder – which incorporates 
context, meaning, sentence complexity, and word order infor-
mation [6]. The embedding represents the text in the form of a 
vector. To obtain these embeddings, we used the pre-trained 
MPNet encoder [49], which is a transformer-based language model. 
MPNet was used to encode both the text and questions into vectors 
with 768 dimensions. The generated universal sentence embedding 
was used to represent the general context of the texts. 

3.4 Prediction Task 
The goal of each model is to predict whether a particular student 
would answer a specific reading comprehension question correctly 
or incorrectly based on measures of their individual knowledge and 
sub-skills and the features of the texts (see Figure 3). 
The input to our task includes features derived from the textual con-
tent of the Comprehension subtest of the Gates–MacGinitie 
Reading Tests and students’ individual knowledge and sub-skill 
measures that provide information about their oral language skills. 
Since each of these instruments provides scores on different scales, 
we applied min-max scaling normalization [41]. This allows all 
measures to be placed on the same scale, thereby facilitating com-
parisons. This type of normalization also facilitates model accuracy 
in classification tasks [4].  
Of the questions students answered, 54 % are labelled correct and 
46 % incorrect. Due to the limited size of our data (6,576 entries), 
all entries were used during model training and testing. 

 
Figure 3. The features used in our prediction task, grouped by 
measure (child) and feature (text) source. 

3.5 Models 
3.5.1 Base Model 
The Base Model is a fully connected neural network classifier that 
takes all sub-skill measures as input to predict whether a student 
will answer each question correctly. Given that the input layer is 
relatively small with 6 features, our network has two hidden layers 
each with 12 nodes.  

3.5.2 Text-based Feature Models 
Our proposed models augment the Base Model with the language 
features of the text. They incorporate four features: sentence com-
plexity, vocabulary rarity, word surprisal, and context.   

3.5.3 Base + Sentence Complexity Model 
This model is a fully connected neural network that includes all 
sub-skill measures and sentence complexity text features as input. 
The network has two hidden layers, both of which have 18 nodes 
and use the ReLU activation function. Since we are predicting the 
probability of a binary event (correct/incorrect), a sigmoid layer 
follows the hidden layer. Loss is calculated using binary cross en-
tropy. Adam optimization [32] is also used. 

3.5.4 Base + Rare Word Use Model 
This model is a fully connected neural network that includes all 
sub-skill measures and rare word use as input features. The network 
has two hidden layers, both of which have 14 nodes and use the 
ReLU activation function. Following the hidden layer there is a sig-
moid layer. Loss was calculated using binary cross entropy and 
optimization was done using Adam. 

3.5.5 Base + Lexical Surprisal Model 
This model is a fully connected neural network that includes all 
sub-skill measures and lexical surprisal features as input. The net-
work has two hidden layers, both of which have 18 nodes and use 
the ReLU activation function. Following the hidden layer, there is 
a sigmoid layer and the loss was calculated using binary cross en-
tropy. Adam was used for optimization. 

3.5.6 Base + Context 
This model, shown in Figure 4, is a neural network that includes 
two parts, sub-skill measures (Base Model) and context as repre-
sented through sentence embeddings. 

The six sub-skill measures are first passed through a 6x12 dense 
layer. 

The sentence context part starts with two vectors: one represents 
the embeddings from the text and the other that of the question. 
Each vector is then passed through a 764x64 dense layer and trans-
formed into 64 nodes.  

We concatenate the sentence embedding and sub-skill measures 
into one fully connected layer followed by a hidden layer with 128 
nodes. A sigmoid layer follows the hidden layer. Once again, loss 
was calculated using the binary cross-entropy function, and Adam 
optimization was performed.  

 
Figure 4. Neural network structure for the Base + Context 
Model. The “+” indicates the concatenation operation from the 
previous three dense layers. 

3.5.7 Full Model 
The Full Model (Figure 5) consists of all sub-skill measures from 
the Base Model, sentence complexity, vocabulary rarity, word 
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surprisal, and sentence context. This should allow us to best cap-
ture the language features of the tests that might affect children’s 
reading comprehension performance.  

We manually tuned the number of nodes in each layer. Specifi-
cally, for the dense layer after concatenating sub-skill and  text-
based features, we tried {12, 24, 48, 96}; 24 nodes had the best 
performance. For the dense layers after vector embedding, we 
tested values among {32, 64, 128, 256} and picked 64. Both dense 
layers from the vector embeddings are kept at the same size, and 
no individual testing was done. For the last layer, where all three 
hidden layers were combined, we tested among {32, 64, 128, 256} 
for number of nodes and 128 nodes yielded the best result. 

 
Figure 5. Neural network structure for the Full Model, where 
all measures and features are used as input. The “+” indicates 
the concatenation operation from the previous three dense lay-
ers. 

3.5.8 Hyperparameter Tunning 
For all of our models, we tested three learning rates: .01, .001, 
and .0001. The learning rate of .001 returned the best result for all 
models. Table 3 shows tunning details for the number of nodes in 
the two dense layers that are part of our models. We kept the node 
number the same for both dense layers during tuning. 

Table 3. Hyperparameter tuning details 

Model Values Tested Value Chosen 
Base 6, 12, 24 12 

Base + Sent. Complex. 9, 18, 36 18 
Base + Context 64, 128, 256 128 

Base + Rare Word Use 7, 14, 28 14 
Base + Lexical Surprisal 9, 18, 36 18 

Note. Sent. – Sentence, Complex. – Complexity 

3.6 Model Evaluation & Analysis Procedures 
We used k-fold cross-validation with k = 10 to evaluate all models. 
Since predicting whether a student answers a question either cor-
rectly or incorrectly is equally important, all models were 
optimized for accuracy during hyperparameter tuning. The whole 
training process is done within approximately two hours on a com-
modity machine after hyperparameter tuning. 

We used McNemar’s test to determine whether there is a significant 
difference between the Base Model and all other models. 
McNemar’s test compares machine learning based classifiers in 
pairs by looking at the correct and incorrect classification each 
model makes. It can distinguish model differences even if the mod-
els yield similar accuracy results [37]. Bonferroni step-down 
correction was used to control for multiple comparisons; the ad-
justed p-values are reported. 

Since it is not enough to determine which model performs best, we 
used integrated gradients [50] to examine feature importance. Inte-
grated gradients quantitatively shows the effect each feature has on 
the final prediction. This measure evaluates the contribution of fea-
tures (feature importance) to the prediction results of machine 
learning models. It does so by gradually increasing the values of 
the input features from those of a baseline. We used the value zero 
as our baseline since it represents zero information in our study. 
This method computes the integral of gradients with respect to in-
puts along the path from outputs to inputs in a neural network. 
Integrated gradients can provide insight into which features con-
tributed to students correctly answering a question. A positive 
integrated gradients value shows an increase in the feature value 
that contributes to an increase in the output prediction value. A neg-
ative value indicates the opposite. The magnitude of the value 
shows how much the input feature influences the output. A value 
of zero means the measure or feature did not contribute to the pre-
diction. There is no specific range for integrated gradients because 
the slope describing the relationship between the input and output 
(gradient) is not bounded. 

4. RESULTS 
4.1.1 What is the added value of including text fea-
tures as input when predicting the correctness of 
question answering in reading tasks? 
Model performance was measured through precision, recall, and 
accuracy (see Table 4). Chance accuracy for this prediction task 
was 54%. The average training and validation accuracy difference 
for all models during cross validation is under 2%. 

Table 4. K-fold (k = 10) cross-validation results for each model 
as M (SD).  

Note. Sent. – Sentence, Complex. – Complexity 

The full Model yields the highest accuracy and precision. It also 
had relatively high recall, suggesting the Full Model performs well. 
The Base Model had high recall but the lowest precision and accu-
racy. Adding any one of sentence complexity, rare word use, or 
surprisal to the Base Model was associated with an increase in pre-
cision while maintaining similar recall, demonstrating the potential 
for text-based features to support model prediction. Adding sen-
tence embeddings to the Base Model resulted in the highest 
precision among all models except for the Full Model. However, it 
also had the lowest recall value. Thus, the model that included con-
text, as represented through embeddings, made the lowest number 
of errors in its predictions of answering a question correctly. How-
ever, it also had the most prediction errors for questions that 
students had answered incorrectly. 

The Full Model and Base + Context Model show significantly 
higher predictive accuracy than the Base Model (see Table 5). The 
performance of the remaining models did not show significant dif-
ferences from that of the Base Model. 

Model Precision Recall 
Accuracy 

(%) 
Base .665 (.012) .737 (.011) 65.8 (0.76) 

Base + Sent. Complex. .696 (.017) .751 (.015) 67.5 (1.17) 
Base + Context .713 (.014) .738 (.017) 68.7 (0.91) 

Base + Rare Word Use .704 (.009) .751 (.019) 68.1 (0.69) 
Base + Lexical Surprisal .691 (.014) .756 (.019) 67.6 (0.74) 

Full .715 (.016) .747 (.013) 69.8 (0.95) 
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Since the full model and Base + Context Model both outperformed 
the Base Model, we compared these top-performing models to see 
whether one outperformed the other. While the difference is  

relatively small, the Full Model achieves higher performance than 
the Base + Context Model suggesting that representing many as-
pects of the text is important. 

 

4.1.2 Full Model Features 
We used integrated gradients to examine how much each text-based 
feature affected whether the model would predict that a student an-
swered a question correctly. In Figure 6, the y-axis shows the value 
of integrated gradients for each feature, with large values indicating 
the feature has a strong influence on the model’s prediction. A pos-
itive value indicates the feature contributes to predicting a question 
is answered correctly. Negative values mean the feature supports 
the prediction of incorrect student answers. 

The integrated gradient results for the Full Model show that an in-
crease in maximum sentence complexity and mean question 
complexity helps the Full Model predict when students will be 
more likely to incorrectly answer a question (Figure 6). In contrast, 
predicting when students will correctly answer a question is sup-
ported by an increase in maximum (max) sentence complexity. 
Contributions from all other features are low. 

 
Figure 6. Integrated gradient result for each feature from the 
Full Model. M – mean and SD - standard deviation 

4.1.3 Sentence Complexity Features 
Here we investigate how much the mean, standard deviation, and 
maximum values of sentence depth contributed to the prediction in 
the Base + Sentence Complexity Model.  

As can be seen in Figure 7, the integrated gradient results do not 
show substantial contributions from any of the features when they 
are used on their own. To see if this finding is due to invariability 
among different instances, we plotted the feature value distribution 
across all texts (Figure 8). As shown by the values for texts two, 

six, and eight, which are relatively high, a lack of  variability fails 
to account for the limited contribution of this feature. 

4.1.4 Lexical Surprisal Features 
Here we investigate how much the mean, standard deviation, and 
maximum values of lexical surprisal contributed to the prediction 
when the Base + Lexical Surprisal Model was used. The integrated 
gradients results show both the mean and maximum of lexical sur-
prisal contributed little to the prediction (Figure 9). Mean has a 
small positive impact while maximum has a small negative impact. 
Given the relatively small gradient, we checked variability across 
texts: Figure 10 shows that the mean lexical surprisal is relatively 
stable (its values range from .02 to .04) whereas the maximum lex-
ical surprisal values vary considerably (~.02 - .12). 

 
Figure 7. Integrated gradient result for each feature from the 
Base + Sentence Complexity model. M – mean and SD - stand-
ard deviation 

 
Figure 8. Maximum and mean sentence complexity values for 
each text. The band represents the area within one standard 
deviation of the mean.  

Table 5. Model comparisons using McNemar’s Test 

Model 1 Model 2 McNemar Test Statistic p 
Full Model Base Model 7.771 .025 
Base + Context Base Model 8.040 .024 
Base + Sentence Complexity Base Model 0.547 1 
Base + Vocabulary Rarity Base Model 2.972 .340 
Base + Lexical Surprisal Base Model 0.105 .746 
Full Model Base + Context 4.971 .026 
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4.2 Error analysis 
We compare the models that use text features as input to the Base 
Model because the Base Model does not incorporate any text fea-
tures. Thus, it is not biased towards or against any of the readings 
or questions. By comparing model performance against that of the 
Base Model, we can see where a particular feature supports the task 
and where it performs poorly. 

Base + Rare Word Use Model performed especially poorly in 
Text 7 compared to the Base Model. Text 7 is an expository para-
graph containing scientific facts about snow colors. The rare word 
use feature of Text 7 has a high value of .550 where the average 
rare word use value across all texts (including Text 7) is .493. The 
most errors occur for question 30 in Text 7, which is an inference 
question where the answer is not explicitly stated in the text. 

Among the questions where the Base + Rare Word Use Model out-
performed the Base Model, Text 8 has the highest percentage of 
correct predictions. Questions 34 and 35 from Text 8 have a partic-
ularly high correct rate and rare word use rate. Both questions are 
non-inference questions. These differences in performance indicate 
that this model performs well in situations when the vocabulary is 
difficult and questions are direct. 

 
Figure 9. Integrated gradient result for each feature from the 
base + lexical surprisal model. M - mean and SD - standard de-
viation 

 
Figure 10. Mean and maximum lexical surprisal values for each 
text. The band represents the area within one standard devia-
tion from the mean 

Base + Sentence Complexity Model output differs in many places 
from that of the Base Model for Text 7. When comparing these two 
models on the Text 7 questions, we see that it is common for one 
of the models to correctly predict student performance when the 
other is incorrect. All three questions that belong to this text have 
high error rates in classification. The mean depth feature of this text 
is 10.3 whereas the average depth across all texts is 8.4. 

Base + Context Model predictions disagreed often with those of 
the Base Model for Text 11, questions 44, 45, and 48. Question 44 
and 45 are inference questions and question 48 uses a near synonym 
for a keyword from the text to assess comprehension. The Base + 
Context Model performed particularly well in Text 8, question 31 
and 34; the answers to these questions can be explicitly found in 
the text. This differential performance suggests that adding sen-
tence context information supports model performance when 
predicting student responses to non-inference questions. 

Full Model prediction errors come from questions 44 and 45 from 
Text 11 in most cases. These errors are similar to those made by the 
Base + Context Model, but the Full Model performs slightly better: 
the percentage of prediction errors decreased from 22.5% to 18.5% 
(question 44) and 19.3% to 16.9% (question 45). The Full Model 
performed particularly well on Text 4, question 14 and 16. Text 4 
is a relatively short narrative text containing sentences with simple 
structures, and the answer to both of the Text 4 questions is easy to 
find in the text. 

5. DISCUSSION 
To answer the research question, “What is the added value of in-
cluding text features as input when predicting the correctness of 
question answering in reading tasks?”, we trained and evaluated 
models using information about students’ oral language skills and 
features from the texts they were reading as input. The developed 
models were used to explore how these features supported the pre-
diction of student performance on reading-comprehension 
questions. The text-based features each provide a hidden represen-
tation of aspects of the text that were expected to affect reading 
comprehension. Individually, their inclusion does not appear to 
lead to strong model performance; however, their joint use supports 
prediction across a variety of text and question types.  

It appears that the strengths identified when adding some features 
compensate for the weaknesses associated with adding others. For 
example, sentence complexity performs poorly when the vocabu-
lary is challenging, which can be captured through the addition of 
the rare word use feature. Similarly, the context feature underper-
forms on inference questions, which seem to be better supported by 
the combined use of all features. Analyses of feature contributions 
to model performance (Section 5.1.2), and the error analysis (Sec-
tion 5.2) indicate that the features interact. The complicated nature 
of how features supported the prediction task suggests that text 
characteristics need to be treated in a nuanced manner if we are to 
understand children’s reading comprehension or develop learner 
models that can be used to adapt reading materials to children.  

5.1 Text-based Feature Contributions to Pre-
diction 
Each of the text features that we added appeared to improve model 
accuracy when they were used jointly (Full Model). The only text 
feature that supported improved model performance on its own was 
the sentence context feature that used sentence embeddings, and 
this model was outperformed by the Full Model that included sen-
tence context as one of its text-based features. Given the relatively 
high contribution of sentence complexity features to the Full Model 
and the low contribution of most other text-based features (as iden-
tified using integrated gradients - Section 5.1.2), the sentence 
context and other features likely augmented the information pro-
vided by the sentence complexity feature. 

The improved performance associated with adding sentence con-
text information may be the result of it implicitly capturing several 
aspects of the text. Universal sentence encoders, which were used 

165



to extract the sentence context feature, incorporate word order, sen-
tence meaning, and grammar into a single vector so they implicitly 
capture some aspects of sentence complexity and vocabulary. They 
also implicitly capture aspects of the content domain through their 
representation of the surrounding text. The support provided by 
adding the sentence context feature parallels Hirsch’s [28] findings 
on reading comprehension of elementary students. Hirsch found 
that a gap in reading comprehension appears (or is widened) when 
more advanced domains (e.g., math, science) are introduced. This 
effect of domain context was also found to be more influential when 
compared to differences in vocabulary size and decoding skills 
among students in elementary school. Our models accounted for 
the vocabulary knowledge (i.e., PPVT-M score) of children and 
added text-based features that represent the vocabulary knowledge 
needed to understand the texts (i.e., rare word use). This text-based 
feature only contributed to improved model performance when 
used in combination with sentence context. This lack of contribu-
tion by rare word use on its own suggests that Hirsh’s domain 
influence findings can be partly captured through the sentence con-
text feature.  

The sentence complexity of both the text and the question contrib-
uted substantially to predictions when sentence complexity was 
used alongside other features even though this feature did not im-
prove model performance when added to the Base Model by itself. 
This pattern suggests the sentence complexity of both the text and 
the question interacts with other features to produce meaningful 
predictions. That is, sentence structure by itself does not determine 
the difficulty students may experience when trying to understand a 
piece of text. This is consistent with our error analysis (Section 5.2) 
which identified high error rates for questions with low levels of 
rare word use and high levels of mean sentence complexity.  

The rare word use feature improved prediction task performance 
(section 5.1.1), which is consistent with the lexical quality hypoth-
esis [44]. Lexical quality is typically interpreted in relation to the 
role of high-quality word representations in reading comprehen-
sion; the flip side is that the presence of rare words will negatively 
impact reading comprehension because of their connection to the 
precision and flexibility of a mental representation of a word. Our 
rare word use feature provides a way to model the demands that a 
text will place on lexical quality, which will in turn be related to 
reading comprehension. That said, it seems that the most frequent 
prediction error emerged for inference questions accompanying a 
scientific information text with high levels of rare word use.  

One’s knowledge of vocabulary and exposure to language influ-
ence what one expects to see. Like with rare words, people can be 
surprised by the use of a relatively familiar word in an unexpected 
collocation or context [23]. The lexical surprisal feature was meant 
to capture this element of how we process language. In contrast to 
our expectations, the n-gram language model that we used to meas-
ure lexical surprisal did not appear to help predict performance on 
reading comprehension questions, either on its own or in combina-
tion with other text-based features. Its lack of contribution to 
predicting student correctness may be partly due to the limited di-
versity of content in the training corpus. For future work, the 
Corpus of Contemporary American English [9] is another publicly 
available dataset that could be used to model surprisal for children’s 
readings. Additionally, using other language modelling ap-
proaches, such as a PCFG [46] or recurrent neural network 
grammars [26], to obtain surprisal measures might yield more ac-
curate predictions since these language modelling approaches can 
output a more nuanced estimate of surprisal. It is also possible that 
rare word use and sentence context capture this aspect of language 

processing for the target text. This suggests a need for follow up 
work that can help to tease apart the contributions of these vocabu-
lary-related features. 

Like the Base + Context Model, the Full Model is also less accurate 
when predicting correctness for inference questions. This short-
coming is mitigated by the inclusion of other text-based features 
that supported the prediction task. The analysis of feature contribu-
tions to this model (see Section 5.1.2) shows that the features that 
supported the prediction of a correct student answer (the mean and 
standard deviation of sentence complexity in a text) were different 
from those used to inform the prediction of which questions would 
be answered incorrectly (the maximum sentence complexity in a 
text and the sentence complexity of the question). This finding par-
allels those of Perin and Lauterbach [45], who found that there was 
consistency in the features that predicted strong performance in stu-
dent writing and that different features predicted low student 
scores. The fact that none of the oral language skills captured 
through the individual knowledge and sub-skill measures supported 
the prediction of which questions a child would answer incorrectly 
suggests that Perin and Lauterbach’s argument for there being 
many ways to perform poorly and only a few to perform well might 
be extendable to reading comprehension. When combined with the 
ability of text-based features to predict lower performance, this 
finding suggests text-based measures are needed to fully capture 
information about the reading-comprehension challenges that chil-
dren face.  

5.2 Implications for Understanding Reading 
In addition to needing text-based features to predict when students 
will incorrectly answer a question, the error analyses showed that 
different text-based features were useful for predicting answer cor-
rectness for each type of reading comprehension task (inference, 
retrieval from text). This finding implies that we need to consider 
different features of a text when trying to understand children’s in-
ferencing abilities or their ability to identify the content that is 
relevant to a question. 

Beyond demonstrating the potential utility of these text-based fea-
tures for predicting student answers to reading comprehension 
questions, these models and the approaches used can provide in-
sight into the text-related challenges that affect students’ reading 
comprehension based on their knowledge levels. Among these are 
the vocabulary used and whether its use matches that expected by 
a child based on their exposure to the language. It was expected that 
surprisal would support this prediction task since it has been pre-
dictive of reading times in some studies [46]. However, surprisal 
contributed little to model prediction, suggesting a need to further 
study the role of surprisal in children’s processing.    

The different contributions of features to the prediction task (see 
Figure 6), suggest that the sentence context feature augments infor-
mation provided by the sentence complexity feature. Students 
tended to have poor comprehension when there was even just one 
very complex sentence, and higher mean sentence complexity 
showed less effect on the prediction result. This indicates that chil-
dren’s ability to answer a reading comprehension question is less 
affected when the sentences are more complex overall, compared 
to having a particularly complex sentence. The specific contribu-
tions of the mean, standard deviation, and maximum values of this 
characteristic of the text imply that all three measures should be 
used to better understand student reading abilities in relation to a 
text. Including the maximum sentence complexity helps to under-
stand when students answer a question incorrectly and the mean 
and standard deviation help to understand when a question is 
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answered correctly. Combined, these provide a more robust view 
of how learners comprehend text.  

5.3 Implications for Learner Modelling and 
Adaptation 
As reported in our results, adding the sentence context feature to 
the Base Model supported better predictions of correct responses to 
a comprehension question. The sentence context feature also pro-
duced a better performing model when combined with the other 
text-based features. The underperformance of the Base + Context 
Model relative to the Full Model may be due to embeddings not 
having explicit representations of sentence complexity and lexical 
surprisal. The Base + Context Model’s lack of explicit representa-
tion of these specific linguistic traits may be why our Full Model 
had the best performance. 

The performance of the Full Model suggests that we can augment 
the learner modelling and adaptation process in educational tech-
nologies by using features that are automatically extractable from 
texts. This implication is further supported by the performance of 
the Base + Context model. The sentence context feature relies on a 
heavily data-driven approach to support prediction for non-infer-
ence questions that share a similar context with the text. Since the 
addition did not support the ability to distinguish student perfor-
mance on inference questions, additional mechanisms will need to 
be found to support prediction for inference-based questions, which 
are usually harder for students to answer than non-inference ques-
tions [48]. In our case, the inclusion of multiple text-based features, 
specifically rare word use, helped mitigate the limitations of the 
context feature when inference-based questions were being pre-
dicted. So, this strategy can be used until a more powerful feature 
is found. 

As suggested by the insights gleaned from the sentence complexity 
measures, these features should be included to better identify which 
questions might be within a student’s abilities and which might not. 
This suggestion builds on Scott’s findings from a study investigat-
ing sentence comprehension [47]. In both Scott’s and our setting, 
measures of sentence complexity were more effective in prediction 
within the context of a specific domain. This may also suggest the 
benefit of including our sentence context features as they could re-
inforce domain information while also providing some information 
about sentence complexity and vocabulary use. 

It is worth noting that, as part of the nature of all universal encoder 
models, the generated embedding is less interpretable by people 
even though it provides an effective representation of the text for 
predicting comprehension performance. This means more effort is 
required to evaluate how much specific features of the text affect 
the prediction task. Given the enhanced performance that is associ-
ated with the use of these embeddings, this effort is warranted when 
developing models for supporting the adaptive selection of texts 
and questions in an educational technology.   

6. CONCLUSION 
Student performance on reading comprehension tasks is often pre-
dicted using assessments of oral language skills, such as vocabulary 
knowledge or syntactic awareness. We extend this work by captur-
ing features of text, which are rarely used in the prediction process 
despite an understanding that the characteristics of a text influence 
the ability to understand that text. In the present paper, we report 

 
2 https://github.com/EdTeKLA/ComprehensionScorePredictor 

on data from grade 3 students to develop and test our prediction 
model. We test automated methods for extracting and incorporating 
text-based features from the content of a reading test to help predict 
whether a student will answer a reading comprehension question 
correctly.  

The extracted text-based features were selected based on theories 
or evidence supporting their relationship with reading comprehen-
sion. Thus, they were designed to provide information about some 
of the aspects of a text that are expected to interact with children’s 
oral language skills. Specifically, the selected features represent 
sentence complexity, vocabulary frequency, lexical surprisal, and 
context. They were all extracted using natural language processing 
techniques that include n-grams, a probabilistic context-free gram-
mar, and a universal sentence encoder. 

We used these features as inputs to neural networks that can self-
update when given more student data or new texts are added. This 
mitigates the disadvantage where models with no texted-based fea-
tures have to be retrained fully every time a test is updated. Our 
model is also expected to better handle diversity across reading 
comprehension tests and student reading skill levels because it re-
lies on general features of a text rather than solely relying on 
historical records of student performance. Since our model has 
clear separation between different categories of features at the input 
layer, new features and new data can be easily added which offers 
a starting point to identify what additional training might help im-
prove student reading skills. To support the continued study of the 
role that text features play in reading comprehension, we have  
shared our approach to interpreting and analyzing the model (in 
section 5.4 and through GitHub2). This sharing will allow others to 
apply this approach to another test or population of learners.  

To summarize, we extracted and tested text-based features at the 
word and sentence level to examine their impact on the reading 
comprehension of children. Those features were used as input to a 
model that predicts student performance on reading comprehension 
tests at the question level. Analyses of the tested models show that 
one of the employed text-based features (e.g., sentence context) im-
proved model performance on its own while others did not (e.g., 
sentence complexity and lexical surprisal). The joint use of the text-
based features resulted in a more than 4 % gain. Subsequent error 
analysis suggests each of these text-based features represents an 
important characteristic of the text, with their combined use result-
ing in the best performing model. Exploration of how these text-
based features contributed to model performance provided insight 
into the complex relationships between text features and children’s 
reading comprehension performance. Thus, the models and their 
analysis can support the design of better learning systems, the se-
lection of appropriate reading materials, and increased 
understanding of the multi-faceted nature of student reading com-
prehension. 
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ABSTRACT 
Stealth assessment in game-based learning environments has 

demonstrated significant promise for predicting student competen-

cies and learning outcomes through unobtrusive data capture of 

student gameplay interactions. However, as machine learning tech-

niques for student competency modeling have increased in 

complexity, the need for substantial data to induce such models has 

likewise increased. This raises scalability concerns, as capturing 

game interaction data is often logistically challenging yet necessary 

for supervised learning of student competency models. The gener-

alizability of such models also poses significant challenges, and the 

performance of these models when applied to new domains or 

gameplay scenarios often suffers. To address these issues, we in-

troduce a zero-shot learning approach that utilizes conditional 

generative modeling to generalize stealth assessment models for 

new domains in which prior data and competency labels may not 

exist. We evaluate our approach using observed student interac-

tions with a game-based learning environment for introductory 

genetics. We use a conditional generative model to map latent em-

beddings of genetics concepts and student competencies to student 

gameplay patterns, enabling the generation of synthetic gameplay 

data associated with concepts and game levels that have not been 

previously introduced. Results indicate the zero-shot learning ap-

proach enhances the performance of the competency models on 

unseen game levels and concepts, pointing to more generalizable 

stealth assessment models and improved prediction of student com-

petencies.  

Keywords 
Stealth Assessment, Game-Based Learning, Zero-Shot Learning, 

Student Modeling 

1. INTRODUCTION 
Game-based learning has been shown to be effective at promoting 

student engagement and fostering enhanced learning experiences 

[7, 31]. These environments can complement traditional learning 

methods and help students acquire “21st century skills” such as dig-

ital literacy, creative thinking, and knowledge acquisition [4]. 

Further, game-based learning environments can enable educators to 

unobtrusively analyze student behavior through stealth assessment 

for the purpose of improving learning outcomes [9, 35]. Stealth as-

sessment, offers a systematic approach for constructing data-driven 

models of student performance derived from evidentiary arguments 

[6, 29]. Despite these promising benefits, data-driven student mod-

eling techniques are growing in complexity and often require large 

amounts of training data, which poses significant challenges.  

Collecting sufficient data for training student models is often time 

and resource intensive, raising scalability concerns for stealth as-

sessment frameworks [45]. Practitioners may also find that 

modeling student behavior in new domains, educational contexts, 

and populations is infeasible due to data sparsity issues. Further, 

circumstances may arise where there is no prior data to train stealth 

assessment models. Examples include where post-test surveys are 

impractical to administer, such as informal learning environments 

like museum exhibits, or if a learning concept or in-game problem-

solving task is being deployed for the first time. These problems 

pose significant practical challenges for stealth assessment models.  

Few-shot learning has been introduced as an effective method for 

classification tasks where labeled data may be scarce for certain 

classes or tasks [11, 23, 26, 45]. In particular, zero-shot learning 

(ZSL) refers to scenarios where no samples of a specific class are 

present at training. ZSL forms a mapping between the data and 

class labels present at training (“seen” data) and data absent from 

the training set (“unseen” data) using other attributes (semantic 

data) to bridge the gap between these two domains. ZSL can also 

address the aforementioned issues with stealth assessment by gen-

erating competent augmented data representative of the “unseen” 

classes, maintaining intra-class variance while promoting inter-

class discrimination based on semantic relationships within the data 

[11, 45]. This allows for effective data augmentation that can be 

used to train downstream classifiers to make accurate inferences on 

data samples from new or unseen classes. Because these techniques 
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are designed to work in the absence of training data for new or un-

seen classes, they can be used to bootstrap new models and help 

mitigate the “cold start” problem where models make poor infer-

ences due to this lack of class-specific training data [46].  

In this work, we propose a generative zero-shot learning approach 

to improve stealth assessment models for predicting student com-

petencies for certain gameplay levels and educational concepts 

missing prior student interaction data. We utilize conditional gen-

erative adversarial networks and embedding representations of 

introductory genetics concepts to learn latent mappings between 

student competencies and gameplay behaviors. By generating syn-

thetic gameplay data conditioned on genetics concept descriptors, 

the generalizability of the competency models can be enhanced, 

leading to improved predictive performance. Our approach is eval-

uated using Geniventure, a game-based learning environment for 

teaching introductory genetics concepts to middle and high school 

students. Stealth assessment models induced with augmented stu-

dent gameplay data are used to assess our generative ZSL approach. 

There are few zero-shot learning methods applied within educa-

tional domains [11, 22, 45]. However, to our knowledge there has 

not been prior work on addressing the unseen class problem in 

stealth assessment. We demonstrate that our approach is an effec-

tive method for addressing challenges with data sparsity and unseen 

class labels for student competency models in a game-based learn-

ing environment. Finally, we further show that our approach leads 

to improvement in the predictive performance of student compe-

tency models when compared against non-augmented baselines and 

alternative generative modeling techniques.  

2. RELATED WORK 
This work lies at the intersection of zero-shot learning and stealth 

assessment, particularly addressing approaches to student compe-

tency prediction for a range of genetics concepts, which is a subset 

of student modeling. We provide an overview of recent work per-

taining to student modeling in game-based learning, with a focus 

on stealth assessment. Additionally, we provide a review of recent 

zero-shot learning research pertaining to student modeling, in addi-

tion to zero-shot learning using generative modeling approaches. 

2.1 Student Modeling in 

Game-Based Learning  
Student modeling has been shown to be effective at predicting com-

plex learning processes such as engagement, flow, and the 

incubation effect [21, 32, 40]. More specifically, student modeling 

within game-based learning has been shown to positively impact 

deep learning and higher order thinking [19], promote self-regu-

lated learning during gameplay [20, 34, 42], and address cognitive, 

affective, and social factors for fostering enhanced learning out-

comes [3, 16]. Additionally, student modeling within game-based 

learning environments has been used to analyze and predict student 

competency levels in a variety of domains, including physics [41], 

literacy [40], and computational thinking. Student modeling in ed-

ucational games has also been used to enable personalized and 

adaptive learning environments [5]. Spaulding et al. investigate the 

efficacy of transfer of learned cognitive models between two game-

based learning environments [40]. The authors investigate the issue 

of negative transfer by utilizing Gaussian processes and an in-

stance-weighting approach that considers the similarity between 

source and target tasks. Additionally, they address the aforemen-

tioned “cold-start” problem with a multi-task learning approach. 

Other studies have explored data-driven approaches for inferring 

student competencies by modeling their in-game progression 

through activity log data [12]. Similar data-driven approaches have 

attempted to design student learning profilers that can inform prac-

titioners in their design of adaptive gamified learning environments 

tailored to students’ interests and needs. One example is SPOnto, a 

student profile ontology, that employs a multi-phase pipeline for 

student classification [29]. By predicting self-reported student type, 

intelligence type, and learning difficulties, the authors’ approach 

shows promise for personalized learning systems enabled by stu-

dent behavioral patterns. 

2.2 Stealth Assessment 
There has been increased emphasis on developing effective and ro-

bust stealth assessment frameworks in recent years. By varying 

multiple input features (e.g., ECD model, sample size, data normal-

ity significance levels), Georgiadis et al. find that Gaussian Naïve 

Bayes and C4.5 models were effective for use in stealth assessment 

and were capable of handling different data distributions with ex-

treme non-normality [14]. However, these models’ accuracy 

degrades as ECD models increase in complexity. Shute and Rahimi 

utilize stealth assessment to establish a link between creativity and 

the properties of well-established learning games that foster crea-

tive behavior and propose a creativity criterion [36]. Using Physics 

Playground and Bayesian networks, they show that their stealth as-

sessment framework offers a valid measure for inferring creativity 

and was significantly correlated with other performance-based 

measures of creativity. In contrast to traditional approaches, deep 

learning-based methods such as long-short term memory networks 

(LSTMs) have been utilized as a method to model long-term tem-

poral dependencies within student gameplay behaviors [18]. Min et 

al. employ LSTMs and n-gram based feed forward neural networks 

and compare their performance to competitive baselines [24]. By 

combining students’ pre-learning measures and interaction log data 

from a game-based learning environment, the LSTM-based ap-

proach outperformed both baseline methods and the highest 

performing FFNN using early prediction metrics. Akram et al. 

achieve similar results supporting the effectiveness of LSTMs as a 

student modeling technique [1]. 

2.3 Zero-Shot Learning 
Zero-shot learning, first introduced as “zero-data learning” [23], 

considers the task of recognizing new classes whose instances may 

not have been seen during training. Recent advances in ZSL have 

largely been applied in the image and video classification domains, 

but relatively little work has explored its effectiveness in learning 

analytics. Wu et al. introduce the “ZSL feedback challenge” utiliz-

ing a dataset of 8 assignments with 800 unique solutions to propose 

a method for attributing feedback to specific sections of student 

code and to trace knowledge over time [45]. The authors achieve 

optimal performance by combining a rubric sampling technique 

with a multimodal variational autoencoder. Their framework can 

effectively track student growth over time and can provide feed-

back on non-compiled programs. In an alternative approach, 

Efremov et al. apply neural program synthesis, a reinforcement 

learning approach, to generate feedback and step-by-step hints for 

students from a partial solution [11]. They incorporate abstract syn-

tax tree representations of student code with a tree-based bi-

directional LSTM architecture to encode students’ inputs. The 

learned policy network outperforms state-of-the-art methods such 

as a continuous hint factory (CHF) and can provide feedback on 

specific lines of code.  

Generative models are another method for approaching the ZSL 

problem. Mishra et al. introduce a conditional variational autoen-

coder conditioned on a class embedding vector to reduce domain 

shift across unseen classes [26]. The generative model is used to 
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produce synthetic training data that is utilized by a downstream 

classifier. Their generalized zero-shot learning approach is applied 

to five popular image recognition datasets and is able to achieve 

state-of-the-art performance using top-k and per class accuracy.  

We contribute to this line of research by introducing a zero-shot 

learning approach to improve the generalizability of stealth assess-

ment models. This work employs conditional generative 

adversarial networks for creating synthetic gameplay data from 

concepts for which there was no previous student interaction data 

available at training. We demonstrate that this method can improve 

predictive performance of student mastery within unseen game lev-

els and educational concepts, highlighting its potential as a method 

for generalizing student competency models. 

3. STUDENT GAMEPLAY DATA 
Our generative ZSL method is implemented using a dataset cap-

tured from students’ interactions with a game-based learning 

environment designed to teach genetics. By generating features 

from the students’ gameplay trace data, we are able to induce stu-

dent competency models without utilizing inherently intrusive or 

distracting methods such as external assessments or data capture 

through physical sensors. Student competencies for the different 

genetics concepts presented in Geniventure are quantified using a 

post-test knowledge assessment, with different questions corre-

sponding to different concepts within the game’s individual levels. 

These levels are divided into “seen” and “unseen” groups for eval-

uation of the ZSL data augmentation performance.  

3.1 Geniventure Learning Environment 
To evaluate the impact of our generative ZSL approach to student 

competency modeling, we use gameplay interaction log data cap-

tured from students engaging with Geniventure. Geniventure is 

targeted towards middle and high school students (ages 11-18 

years) and the overall design of the game is guided by fundamental 

genetics concepts aligning with the Next Generation Science Stand-

ards [30]. In Geniventure, students are faced with the challenge of 

correctly breeding and studying virtual drakes, a model species of 

dragon [13]. In order to successfully produce the desired drake for 

each in-game exercise, students are required to learn and explore 

genetics concepts such as heredity, dominant and recessive traits, 

and protein-to-trait relationships.  

The game is comprised of 60 progressively difficult puzzle-like 

challenges that are divided into six distinct levels (Figure 1). Each 

level is divided into different in-game “missions”, and each mission 

is comprised of the individual challenges. The types of challenges 

presented to the student varies widely across the different levels. 

Geniventure is designed to be played in a linear sequence, but stu-

dents are allowed to attempt any challenge at any time, and also 

have the freedom to quit any challenge prior to completion.  

For the first three levels of Geniventure, students are faced with the 

task of modifying the genotype of a presented drake to match a tar-

get phenotype (Figure 1, Level 1). These challenges require the 

student to understand several different genetics concepts and also 

correctly predict attributes of the target phenotype based on the cur-

rent genotype. To determine whether the student correctly 

completed the challenge or not, the student selects the “Check” or 

“Hatch” button in the game’s interface to submit their answer. At 

this point, the student receives binary feedback on whether the ex-

ercise was successfully completed or not. If the exercise was not 

successfully completed at this time, the student is presented with a 

hint to help reach completion. There are three hints available per 

exercise, with each hint becoming progressively more direct, a vis-

ual cue is also made available to the student at this time. The student 

is allowed to make additional changes and resubmit their proposed 

phenotype until the correct solution is reached, or until the student 

exits the exercise. The progressive hint mechanism exists for many 

exercises in Geniventure, although the structure and conceptual 

challenges in each exercise may vary widely. Level 2 further ad-

vances the challenge of matching a genotype to a specified 

phenotype by introducing dominant and recessive traits (Figure 1, 

Level 2), while Level 3 increases the complexity of the exercise by 

adding factors such as scale color, proteins, and cell modification 

(Figure 1, Level 3). Levels 4, 5, and 6 introduce increasingly com-

plex concepts such as breeding, inheritance, and meiosis. Level 4 

introduces more complexity to the breeding process through the use 

of gametes, epistasis, and more challenging inheritance patterns 

(Figure 1, Level 4). Level 5 presents students with the test cross 

concept, a genetic method for determine an organism’s genotype 

                  

                  

Figure 1. Example challenges in Geniventure for the six gameplay levels. 
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by crossing it with a fully recessive organism (Figure 1, Level 5). 

Level 6 builds on the prior concepts of the game while introducing 

additional concepts such as X-linked and polyallelic traits (Fig-

ure 1, Level 6). Certain levels introduce gameplay narratives or 

scaffolding that are not present in prior levels. For example, Level 

3 uses a “pod-release gate” interface which varies from Level 4’s 

“Gamete Builder”, Level 5’s “Test Cross” interface, and Level 6’s 

“Clutch Breeder”. As a result, this may result in different problem-

solving behavior distributions while labels for the new concepts are 

not available yet to train competency models and thus provides the 

motivation for investigating model generalization techniques such 

as domain adaptation or zero-shot learning.   

3.2 Data Collection 
Following Institutional Review Board (IRB) approval, the data cor-

pus was captured from 462 consenting students across seven high 

schools and a middle school located in the Eastern United States 

from suburban, rural, and urban locations. Teachers led several dif-

ferent classroom implementations of Geniventure where students 

engaged with the game during instruction periods across multiple 

days. Prior to the first learning session, students took a pre-test 

knowledge assessment consisting of 28 questions related to the ge-

netics concepts presented in the game. Following the conclusion of 

the last learning sessions, students took an identical post-test 

knowledge assessment addressing the same concepts to quantify 

students’ learning gain. The knowledge assessment was aligned 

with Geniventure’s competency model based on the ECD formula-

tion of the game, and the assessment was also validated through 

multiple rounds of expert review and cognitive interviews with stu-

dents. The knowledge assessment’s administration showed an 

internal consistency reliability of alpha=.873, and both the pre- and 

post-test were administered through the same online platform as the 

game. Logistical and technical issues were encountered during the 

data collections, which resulted in 38 students being removed from 

the data corpus due to missing knowledge assessment data and 108 

students being removed due to missing gameplay log data. As a 

result, the data corpus is comprised of gameplay log data from 316 

students. Student performance on the post-test (M=19.33, 

SD=6.131) was shown to be a statistically significant improvement 

over the pre-test (M=14.41, SD=5.826) according to a paired t-test 

(t(316) = 14.663, p<.01, Cohen’s d=.823). The distribution of com-

pleted challenges per student appears to be relatively normal 

(Figure 2), with most students completing between 50-150 chal-

lenges, with a range of 5 to 248 challenges (M=95.89, SD=33.63). 

3.3 Feature Engineering 
Features representative of students’ gameplay were engineered 

from the raw timestamped log files generated for each learning ses-

sion. These log files contained action-level information about 

students’ in-game activity, such as moves made within a challenge, 

number of attempts, and number of hints received. Because of the 

differences in gameplay mechanics across the different levels and 

challenges, we generated nine generic, challenge-level representa-

tions of student activity to generalize the feature engineering 

process. The generic representations were: (1) level number of 

challenge, (2) mission number of challenge, (3) challenge number, 

(4) total time spent on challenge, (5) number of in-game actions 

taken during challenge, (6) number of hints encountered during 

challenge, (7) number of correct in-game actions taken during chal-

lenge, (8) number of wrong in-game actions taken during 

challenge, and (9) student’s completion status of challenge (0: in-

complete, 1: complete with wrong answer, 2: complete with correct 

answer). From these representations, we also generate additional 

features to capture the temporal context of students’ activity across 

current and prior learning sessions. By accounting for all student 

challenges completed up until the current challenge, we calculated: 

(10) average time spent on individual challenges (seconds), (11) 

average in-game movements per challenge, (12) average correct in-

game movements per challenge, (13) average incorrect in-game 

movements per challenge, (14) average number of hints received 

per challenge, (15) successful challenge completion rate, (16) failed 

challenge completion rate, and (17) unsubmitted challenge rate. For 

each challenge, a feature vector was constructed using these 17 fea-

tures to serve as the input to the student competency models. It 

should be noted that these averages were computed separately 

across the “seen” and “unseen” gameplay data to protect against 

data leakage.  

4. EVIDENCE-CENTERED DESIGN 
Stealth assessment refers to non-intrusive methods for collecting 

evidence to induce student competency models [38]. This evidence 

captured from student interactions with various learning platforms 

is subsequently used to inform the evidence models, and subse-

quently competency models. The competency predictions 

generated from these models can be used to enable enhanced learn-

ing through adaptive mechanisms within the learning platforms. 

Stealth assessment can also be used to inform teachers and instruc-

tors in real time about students’ current learning trajectories to 

determine if dynamic interventions are necessary.  

Stealth assessment is grounded in Evidence-Centered Design 

(ECD), a principled approach to assessment design that describes 

high-level models of a conceptual assessment framework and de-

livery architecture for assessment delivery systems [27]. ECD 

affords assessment designers a method for reasoning about student 

knowledge or skills while adhering to psychometric principles [28]. 

Historically, ECD has been utilized to guide the creation of various 

knowledge assessments, and more recently has been used to inform 

the development of stealth assessment models deployed within 

game-based learning environments [14, 24, 37]. Our approach to 

stealth assessment with the Geniventure learning environment is in-

formed by the three following ECD models: 

Task Model: This model defines the exercises or activities that stu-

dents attempt to complete through interactions with the game-based 

learning environment. The task model within Geniventure is com-

prised of sixty distinct challenges that are split across the six in-

game levels. Each challenge presents students with various genetics 

concepts such as inheritance patterns, breeding, and genotype-phe-

notype relationships.  

Figure 2. Histogram of challenges attempted by  

students in Geniventure. 
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Evidence Model: This model is shaped by the actions performed 

by each student within the game-based learning environment. This 

interaction data is representative of student behavior that is corre-

lated with learning outcomes pertaining to specific concepts 

presented in the learning platform. In this work, the actions a stu-

dent performs in Geniventure challenges, in addition to the 

outcome of each challenge, are represented by the evidence model 

and used to engineer features to train machine learning models used 

for predicting student mastery (or no mastery) of particular genetics 

concepts. The evidence model guides the competency model as it 

adjusts its modeling of students’ competencies as various in-game 

challenges are attempted. 

Competency Model: This model pertains to the genetics concepts 

that are presented within Geniventure and attempts to model the 

machine-interpretable evidence from the evidence model in order 

to accurately predict students’ competencies for each concept. The 

primary objective of the competency modeling is to optimally map 

the evidence model to the competency model for each student. 

These concepts are derived from classroom learning objectives and 

state science standards through of expert review. Students’ compe-

tencies are captured and quantified from a post-test knowledge 

assessment administered to each student following interactions 

with Geniventure. The competency model and the post-test assess-

ment are aligned using the same concepts presented in Table 1.  

To generate the ground-truth competency scores for each student, 

individual responses to the items on the post-test assessment are 

summed across the different genetics concepts, with a single con-

cept mapping to between one and six questions on the assessment. 

Each question considered in this study is graded as either 1 (correct) 

or 0 (incorrect). Competency scores are calculated for each concept 

by dividing the total number of correct responses for that concept 

by the total number of questions related to that concept. As a result, 

each competency score was within the range of 0 to 1 and serves as 

the target variables for the stealth assessment models. 

5. ZERO-SHOT LEARNING 
Zero shot learning (ZSL) is an extreme variation of unsupervised 

domain adaptation, which focuses on two distinct data sets ex-

tracted from two different domains and data distributions: a source 

domain and a target domain. The primary objective of unsuper-

vised domain adaptation is to induce a generalizable model that is 

capable of accurately classifying samples from the two domains in 

instances where labels for samples in the target domain are not 

available during model training. However, ZSL expands on this 

concept by assuming that neither data samples nor labels for the 

target domain are available during the training process. For this 

work, we split the Geniventure dataset into seen (S) and unseen (U) 

domains by partitioning between in-game levels because different 

levels address concepts that correspond to different competencies 

according to the ECD model. The text descriptions of each ECD 

concept serve as the link between the seen and the unseen classes, 

commonly referred to in ZSL as “semantic embeddings” or “attrib-

ute vectors” and are known for both seen and unseen classes at 

training time. The seen domain serves as the “source” domain and 

the unseen domain serves as the “target” domain. Therefore, the 

ECD concepts (C) for this data corpus (X: data, Y: class labels) can 

be divided and formally defined as follows: 

 𝑆 = {(𝑥, 𝑦, 𝑐𝑦) | 𝑥 ∈ 𝑋𝑆, 𝑦 ∈ 𝑌𝑆, 𝑐 ∈ 𝐶𝑆}                        (1) 

 𝑈 = {(𝑥, 𝑦, 𝑐𝑦) | 𝑥 ∈ 𝑋𝑈 , 𝑦 ∈ 𝑌𝑈 , 𝑐 ∈ 𝐶𝑈}                       (2) 

By framing the ECD competency modeling as a ZSL task, we seek 

to predict student competencies on unseen levels and concepts in 

situations where no prior gameplay data is available for those con-

cepts, an example of the “cold-start problem”. For example, if we 

have concepts C1-C10 where C1-C7 have been previously pre-

sented to students in Geniventure and gameplay logs have been 

captured for these concepts (i.e., seen), we seek to use this available 

data to induce generalizable competency models that accurately 

predict student outcomes on concepts C8-C10, even though they 

   Table 1. In-game genetics concepts from ECD competency model. 

Concept  Concept Description Questions 

C1 Only one dominant allele is needed to produce the dominant trait. 3 

C2 Two recessive alleles are needed to produce a recessive trait. 2 

C3 Create or select parental gametes to create an individual offspring with a specific phenotype.  4 

C4 Set parental genotypes to produce a specific pattern of offspring. 6 

C5 Use patterns in the phenotypes of a group of offspring to predict the genotype of the parents. 5 

C6 For some traits primarily influenced by a single gene, both alleles will have some effect, with neither 

being completely dominant. 
2 

C7 Breed with a recessive animal to determine an unknown genotype (testcross). 2 

C8 Different versions of a gene correspond to different versions of a specific protein. 2 
C9 Proteins do work or have jobs to do in cells. 1 

C10 Proteins are nanomachines; different proteins do different jobs. 1 

C11 The function of a protein is determined by its shape. 1 

C12 Different versions of a specific protein have different structures and different functions. 1 

C13 Some traits have multiple alleles, which can form a ranked series in terms of dominance. 2 

C14 Genes on the X chromosome are referred to as X-linked. Males receive only one copy of the X chro-

mosome and pass on their X only to their daughters. 
1 

C15 Working from the phenotype, determine possible genotypes for an organism. 2 

C16 Use a genotype to predict the phenotype for an organism. 2 
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have not been presented to any students and there is no prior game-

play logs or competency scores for these concepts (i.e., unseen). 

This allows for more generalizable student competency modeling 

and also enables ECD-based stealth assessment in circumstances 

where there are no prior ground-truth competency labels, such as 

when post-tests may be unavailable or impractical to administer. 

Examples include informal learning environments such as muse-

ums, or if a concept or level within a game-based learning 

environment is being deployed for the first time.  

Because both the data and labels are not available at training time, 

a form of semantic data must be available for the ZSL framework 

to link between the seen and unseen domains. In this particular case, 

we use the text-based descriptions of each of the concepts to gen-

erate concept mastery embeddings used as conditional inputs to the 

generative ZSL models (Section 5.1). This allows the generative 

model to learn the non-linear relationships between the concept text 

embeddings, student competencies, and student gameplay patterns. 

As a result, the generative model generates synthetic gameplay data 

representative of each of the seen and unseen concepts which en-

hances the training and generalizability of the competency models.  

The embedding representations for the genetics concept descrip-

tions are generated using Sentence-BERT (S-BERT) [33]. S-BERT 

expands upon the original BERT model [10] by implementing the 

BERT model within a Siamese network architecture to facilitate the 

generation of fixed-length embedding vectors of sentences that are 

compared using distance metrics such as cosine similarity. This al-

lows the S-BERT model to generate sentence-level embedding 

representations instead of single-word embeddings, making this 

model suitable for sentence descriptions of the genetics concepts. 

Additionally, the use of a common pre-trained language model such 

as S-BERT improves the generalizability of our approach, com-

pared to manually crafted representations such as knowledge 

graphs. 

5.1 Generative Modeling 
To address the absence of training data and labels for the unseen 

concepts, we use semantic data (i.e., text descriptions of all con-

cepts) to condition and train deep generative models, which 

facilitate data augmentation for this task. By employing text em-

beddings of the seen concept descriptions to condition the 

generative models, we can train the models to map the latent repre-

sentation of each concept to particular patterns and features in the 

students’ gameplay data for the seen concepts. We can subse-

quently generate synthetic data to represent student gameplay for 

the unseen concepts using only the embeddings of the descriptions 

for each unseen concept. The augmented data is used to further train 

the competency models to increase the predictive performance dur-

ing inference for the unseen concepts’ associated gameplay data.  

Generative adversarial networks (GANs) have been frequently 

used as a data augmentation method due to their ability to generate 

high-fidelity data from noise vectors through zero-sum training of 

two deep learning components: a generator and a discriminator 

[15]. The purpose of the generator G is to generate synthetic data 

�̃� based on a random probability distribution pz, where z represents 

the latent space sampled by G so that �̃� = G(z), z ~ pz. The objective 

is that �̃� deceives the discriminator, whose purpose is to accurately 

distinguish between this “fake” data and real samples from the orig-

inal data. The discriminator’s training loss from this binary 

classification is backpropagated through the generator and the dis-

criminator, with the objective of both losses eventually reaching a 

Nash equilibrium. However, quantifying GAN convergence is an 

open-ended area of research and GAN models are often susceptible 

to vanishing or exploding gradients, mode collapse, and other in-

stabilities during the training process. One approach to mitigating 

this issue is a conditional GAN [25], which extends a traditional 

GAN architecture by providing associated data (“conditions”) to 

both the generator and discriminator’s input vectors. An example 

of such a condition is a class label or attribute that is associated with 

the desired augmented output of the generator. For this particular 

case, we use the S-BERT embedding vectors of the associated con-

cepts as the conditions to our GAN model to generate synthetic 

gameplay data associated with both the seen and unseen concepts.  

Traditional GAN architectures attempt to reach convergence by 

minimizing a divergence function such as the Jensen-Shannon (JS) 

divergence, which helps quantify the distances between two prob-

ability distributions pg(x) and pr(x), where pg is the model 

distribution of the generator and pr is the distribution of the real 

data. However, a common issue with these divergence metrics is 

that there exist sequences of distributions that do not converge un-

der the JS divergence or where the gradient of the divergency 

eventually disappears, effectively halting the training of the gener-

ator during backpropagation. To address this issue, an alternative 

GAN architecture (W-GAN) was proposed that utilizes the Was-

serstein distance, otherwise known as the “Earth Mover’s 

distance”, as a means to quantify the generator loss during training 

(Eq. 3) [2]. This metric is desirable as it is continuous and differen-

tial almost everywhere under the Lipschitz condition: 

 𝑊(𝑝𝑟 , 𝑝𝑔) =  inf
𝛾∈⊓(𝑝𝑟,𝑝𝑔)

𝔼(𝑥,𝑦)~𝑦[∥ 𝑥 − 𝑦 ∥]                   (3) 

where ⊓ (𝑝𝑟 , 𝑝𝑔)  represents all joint distributions with marginal 

distributions of 𝛾(x, y) are 𝑝𝑟(𝑥) and 𝑝𝑔(𝑦), respectively. Because 

this equation is highly intractable, we use the Kantorovich- 

Rubinstein duality to simplify the calculation to be: 

 𝑊(𝑝𝑟 , 𝑝𝑔) =  sup
|𝑓|𝐿≤1

𝔼𝑥~𝑝𝑟
[𝑓(𝑥)] − 𝔼𝑥~𝑝𝑔

[𝑓(𝑥)]         (4) 

As a result, we enforce a 1-Lipschitz constraint to the discriminator 

component. As a means to enforce this 1-Lipschitz constraint 

within the W-GAN, we introduce a concept known as “weight clip-

ping” to the discriminator. This involves constraining the weights 

in the discriminator to be between the range of [-c, c], with c being 

treated as an additional training hyperparameter. However, weight 

clipping is often volatile with respect to c and can cause W-GANs 

to converge much more slowly if c is too large but can also intro-

duce vanishing gradients if c is too small. An alternative to the 

weight clipping is a “gradient penalization” method which proposes 

a penalty term added to the loss function that is parameterized by a 

penalty coefficient λ [17]. The gradient penalty term is based on 

weighted random sampling between the real and the generated sam-

ples from the generator. As a result, the final objective of our 

gradient-penalized W-GAN model (WGAN-GP) becomes the min-

imization of the following loss function for the discriminator D: 

ℒ𝑑𝑖𝑠(𝑥, �̃�; 𝜃𝑑𝑖𝑠) =                                                                                         

                   𝐷𝜃𝑑𝑖𝑠
(�̃�) − 𝐷𝜃𝑑𝑖𝑠

(𝑥) + 𝜆(∥ ∇𝑥𝐷𝜃𝑑𝑖𝑠
(�̂�) ∥ −1)2             (5) 

where 𝜃𝑑𝑖𝑠 represents the parameters of the discriminator, 𝜆 is the 

gradient penalty coefficient, and �̂� is sampled from 𝜖𝑥 + (1 − 𝜖)�̃� 

with 0≤ 𝜖 ≤ 1, effectively representing any points sampled be-

tween the probability distributions, pg and pr. 

We employ the WGAN-GP approach as a means to train a genera-

tor to produce realistic synthetic data representing students’ 

gameplay for unseen Geniventure levels in order to induce student 

competency models for the associated genetics concepts that have 
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not been previously introduced. This model was selected due to is-

sues with vanishing gradients during empirical evaluations of 

traditional GANs and WGANs within our ZSL framework. Addi-

tionally, we use a conditional variation of the WGAN-GP model in 

order to effectively map the latent representations of the augmented 

data representations to the word embeddings of the text-based de-

scriptions of each genetics concept. This allows the synthetic data 

generation to be guided by the concepts associated with each data 

sample from the data corpus, while allowing for data to be gener-

ated based on the concepts associated with the unseen game levels.  

6. METHODOLOGY 
Our ZSL approach is evaluated across two different data splits. The 

first split involves removing any information from the ECD models 

associated with Level 6 (the last level) from the data corpus, which 

includes student gameplay (Evidence Model) from the challenges 

within the level (Task Model), as well as the student post-test scores 

(Competency Model) to items associated with genetics concepts as-

sociated with Level 6 (C13 and C14 serving as unseen concepts). 

The second split involves treating Level 5 and Level 6 as the “un-

seen” domain, which involves concepts C7, C13, and C14. The 

competency models are initially trained using the student gameplay 

features from the “seen” domain and a median split of the combined 

competency scores from the post-test items corresponding only to 

concepts associated with the “seen” Geniventure levels. To evalu-

ate the ZSL performance, each competency model is evaluated 

using the gameplay from the unseen levels to predict student com-

petencies from the post-survey items associated with the unseen 

concepts. This process is implemented to protect against data leak-

age, ensuring that the student competency models are induced using 

only data and labels from the seen levels as well as unseen, syn-

thetic labeled data during the training phase, and any actual data or 

labels from the unseen concepts and levels are only presented to 

each competency model during the inference phase (Figure 3, C).  

6.1 Student Competency Models 
Five different classifiers were investigated as student competency 

models: a majority classifier, support vector machine (SVM), ran-

dom forest (RF), Naïve Bayes (NB), logistic regression (LR), and 

feedforward neural network (FFNN).  Each of the models were im-

plemented as binary classifiers to predict “high” and “low” 

categories of student performance based on a median split of the 

sum of the post-test score for each question related to either the seen 

or unseen concepts. Each of the models was evaluated using stu-

dent-level cross-validation, to ensure against data leakage across 

validation folds. The median of the competency scores were deter-

mined based on the scores of the students within the training folds 

only as another means to protect against data leakage.  

6.2 Model Evaluation 
Hyperparameter tuning was performed using three-fold inner cross-

validation within each iteration of the ten-fold outer cross-valida-

tion. The hyperparameters that were optimized were the 

regularization parameter and kernel (support vector machine; 

SVM), regularization parameter (logistic regression, LR), number 

of estimators (random forest; RF), and number of layers and nodes 

(feedforward neural network; FFNN). Hyperparameter tuning was 

not performed on the Naïve Bayes classifier and the majority clas-

sifier. Because multiple data samples exist per student and there is 

only one competency label per student, we generate a single stu-

dent-level prediction by forward propagating all feature vectors for 

a given student through a trained competency model and averaging 

across all predictions for that student. 

Because the use of the gradient penalty in the WGAN-GP stabilizes 

the training process and mitigates the need for extensive hyperpa-

rameter tuning, we focus only on tuning the number of nodes in the 

two hidden layers of the generator and discriminator using layer 

sizes of 32 or 64. This hyperparameter tuning also occurred within 

the nested cross-validation process described previously. The 

WGAN-GP’s learning rate was 0.001, with a dropout rate of 0.5 

and hyperbolic tangential activation functions. The WGAN-GP 

(and FFNN competency model) was trained using 100 epochs 

while utilizing early stopping based on the model’s performance on 

the validation fold with a patience of 10 epochs. The noise vector 

size for the WGAN-GP was 32, and the number of generated syn-

thetic data samples was set to be 50% of the original training dataset 

size. Because the concept mastery embedding vectors obtained 

                      

             

          
       

            
       

          

          
       

        
          

            

        
          

         

            

        
          

          
       

            
       

          
       

         

            
       

         

                                   

  

  

  

Figure 3. Visualization of data augmentation in generative zero-shot learning framework. (A) training process for con-

ditional WGAN-GP augmentation model, (B) training process for student competency models with augmented data for 

unseen concepts, and (C) inference of trained competency model for real student gameplay on previously  

unseen concepts. 
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from S-BERT are high in dimensionality, we perform Principal 

Component Analysis on the embeddings to reduce the size to 32 

components. The data was standardized within each cross-valida-

tion fold by subtracting each feature’s mean and dividing by the 

standard deviation of each feature as determined by the training 

folds.  

To represent the students’ competencies within the semantic em-

beddings, a text description for each concept was preceded with 

either “mastery of” or “no mastery of” based on each student’s post-

test performance relative to the median for each concept and these 

substrings were concatenated together to form a single comprehen-

sive text string representing the student’s mastery of each of the 

seen concepts. For example, a concept mastery sentence for a single 

student might be “Mastery of only one dominant allele is needed to 

produce the dominant trait. Non-mastery of two recessive alleles 

are needed to produce a recessive trait. Mastery of …” and so on 

for the seen concepts. These text representations are then passed 

through the pre-trained S-BERT word embedding model and, fol-

lowing the PCA dimensionality reduction described previously, are 

used as the conditional features for the generative models. To gen-

erate synthetic data following the generative model training, a 

similar process is followed to generate the text representations us-

ing the descriptions of the unseen concepts. As no student 

competency data actually exists for these unseen concepts cur-

rently, the preceding phrase “mastery of” or “no mastery of” is 

determined using a Bernoulli probability distribution where proba-

bility p=0.5. This allows the generative model to produce synthetic 

gameplay data representative of many possible mastery/non-mas-

tery combinations of student competencies for the unseen concepts, 

thus enhancing the generalizability of the competency models for 

the unseen concepts.  

To evaluate the performance of the WGAN-GP as the preferred 

ZSL generative model, we also investigate two alternatives: a con-

ditional variational autoencoder (C-VAE) and a “target-only” 

baseline. The target-only baseline refers to a competency model 

that performs the inference on the data for the unseen Geniventure 

levels but does not undergo any form of ZSL-based data augmen-

tation, which is a reflection of the target-only baseline in prior 

adversarial domain adaptation work by Tzeng et al. [43]. C-VAEs 

are similar to conditional GANs with regards to the use of condi-

tional attributes [39]. A traditional VAE contains two components: 

an encoder and a decoder. The encoder learns latent representations 

of input data while the decoder seeks to reconstruct the original di-

mensionality of the data from the latent space representation. The 

VAE constrains the latent space representation to follow a pre-de-

termined probability distribution by minimizing a loss function that 

consists of a reconstruction term and a divergence term. The recon-

struction term quantifies the reconstruction error of the decoder 

component through a loss function such as root mean squared error 

and the divergence term quantifies the distance between the given 

probability distribution and the latent representation distribution. 

The Kullback-Leibler (KL) divergence is often used for this pur-

pose. The conditional features are concatenated to the input features 

for the encoder as well as the latent representation vector that is 

passed from the encoder to the decoder. Because the encoder re-

duces the latent representation to a parameterized probability 

distribution, this allows the decoder to generate augmented data 

from this distribution.  

7. RESULTS AND DISCUSSION 
The ZSL approach was evaluated across two splits as described in 

Section 5. The results for Split 1 is shown in Table 2, while the 

results for Split 2 is shown in Table 3. We select F1 Score and ac-

curacy as our primary metrics to account for the relatively balanced 

class distribution due to the median split, while Area-Under-Curve 

(AUC) and Cohen’s Kappa [8] are used as secondary metrics. The 

optimally performing generative ZSL model for each split in terms 

of F1 Score is shown in bold. All evaluations were performed on a 

NVIDIA GeForce GTA 1080 TI GPU. Each evaluation took up to 

100 minutes to compete the 10-fold cross-validation sequence.  

In terms of the primary evaluation metrics, the WGAN-GP model 

appeared to induce the highest performance from the competency 

models across both data splits, outperforming both the C-VAE and 

the target-only baseline. It was noted that the performance across 

all models decreased for the split containing two “unseen” game-

play levels (Table 3) compared to one (Table 2), which is expected 

due to the decrease in training data available as well as the in-

creased variance in the “unseen” dataset. However, the results 

overall point to the enhanced performance of the student compe-

tency models when additional synthetic data is generated from the 

WGAN-GP as a means to improve the training process. 

Additionally, it was noticeable that the margin between the 

WGAN-GP and the other ZSL configurations widened from Split 1 

to Split 2, which points to the relative scalability of our approach 

as the number of unseen concepts and in-game levels increase. It 

was also noted that the C-VAE was the lowest performing genera-

tive model and was also outperformed by the target-only baseline 

approach for both data splits. This is noteworthy as VAEs, includ-

ing conditional variations, are the generative approach for prior 

generalized ZSL work [26, 44, 45]. 

However, we note in these prior works, the VAE models were 

trained on a multimodal dataset, which provides a more data-rich 

perspective compared to the stealth assessment data in this work. 

Additionally, although the work in [26] used a conditional variation 

of the C-VAE, the generative model appeared to suffer from mode 

collapse, a common issue in the training of generative models. 

However, one benefit of the WGAN (and the gradient-penalization 

modification) is additional mitigation against mode collapse during 

training, a possible explanation of why the WGAN-GP achieves the 

highest performance in our evaluations. A primary difference in 

this architecture is that the loss of the decoder in the C-VAE is the 

summation of the KL divergence and the reconstruction loss, com-

pared to the WGAN component which strictly uses the Wasserstein 

divergence metric. This has potential for allowing the generative 

model to map between the semantic feature space and the aug-

mented data more effectively, particularly as the augmented data 

from the WGAN-GP is restored to the original dimensionality in-

stead of a latent space representation.  

To further investigate the performance of the generative ZSL ap-

proach, we generate the confusion matrices for each of the models 

across both data splits (Figures 4 and 5). The confusion matrices 

are based on the inferences of each of the models based on the held-

out test set within each outer cross-validation iteration, for a total 

of 316 student-level predictions. It should be noted that the results 

in Tables 2 and 3 were calculated across the outer cross-validation 

folds while the analyses conducted in Figures 4-7 were calculated 

across the entire dataset. Based on the results in the confusion ma-

trices, we observe that high-performing students are more 

accurately classified compared to low-performing students. Addi-

tionally, it appears that the student competency models produced 

noticeably more false negatives as the unseen concepts increased. 

This occurred across all three evaluated ZSL approaches. In the 

case of the target-only baseline and the WGAN-GP model, the stu-

dent competency models were able to retain a relatively similar  
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Table 2. Results of ZSL framework for Split 1. 

ZSL Model Classifier F1 Score Accuracy AUC Kappa 

Target-Only SVM 0.689 0.642 0.689 0.257 

CVAE RF 0.668 0.642 0.675 0.275 

WGAN-GP SVM 0.709 0.656 0.692 0.284 
 

Table 3. Results of ZSL framework for Split 2. 

ZSL Model Classifier F1 Score Accuracy AUC Kappa 

Target-Only SVM 0.671 0.623 0.703 0.249 

CVAE FFNN 0.612 0.578 0.700 0.152 

WGAN-GP SVM 0.696 0.652 0.696 0.281 

performance for correct identification of low-performing students 

across both data splits, but the C-VAE led to significantly decreased 

detection for low-performing students when evaluating from Split 

1 to Split 2. Additionally, it is noticeable that the WGAN-GP was 

able to maintain relatively consistent performance for prediction of 

both high-performing and low-performing students across both 

data splits, which demonstrates the generalizability of this particu-

lar generative model. 

To further evaluate the predictive value of the semantic embeddings 

of the student competencies with the various genetics concepts, we 

visualize the embeddings from each of the students using the prin-

cipal components generated from the S-BERT embeddings. Using 

the t-distributed Stochastic Neighbor Embedding (t-SNE) plots for 

the low-performing and high-performing students (Figure 6), we 

are able to detect whether there are salient or underlying predictive 

patterns in the text representations of each student’s mastery of in-

dividual genetics concepts. Despite the use of PCA for 

dimensionality reduction for the original S-BERT embeddings, the 

representations of the semantic embeddings contain high dimen-

sionality and thus poses a challenge for visualization. t-SNE 

attempts to address this issue by producing a representation of high-

dimensionality data within 2D coordinate space. This is performed 

by constructing joint probability distributions to model the similar-

ity between the original data points, and subsequently attempts to 

minimize the KL divergence between these probability distribu-

tions and other probability distributions within 2D coordinate 

space. This process is expanded to distinguish between low-per-

forming and high-performing students for the seen and unseen 

concepts (Figure 7). Figures 6 and 7 are generated using Split 2. 

Figure 6 indicates that the use of semantic embedding representa-

tion of the students’ masteries of various genetics concepts may 

provide predictive context to the generative ZSL models when used 

as a conditioning input during training. Noticeably, there appears 

to be distinct separation between the semantic embeddings for 

high-performing students and low-performing students when cal-

culated using all competencies, which points to the predictive value 

of using these embeddings for stealth assessment tasks. To provide 

analysis more similar to the ZSL framework, the semantic embed-

dings are generated for each group of low-performing and high-

performing students by separating the embeddings for seen and un-

seen concepts (Figure 7). In this particular case, there appears to be 

notable separation between clusters of low-performing students and 

high-performing students, with overlap between the high-perform-

ing students across both seen and unseen concepts. As a result, this 

indicates that the use of the semantic embeddings alongside condi-

tional generative modeling provides additional predictive value to 

guide the generation of augmented data for different students based 

on prior competencies. One aspect of note for Figure 7 is that the 

               

                       

Figure 4. Confusion matrices for baseline and generative ZSL models (Split 1). 

               

                       

Figure 5. Confusion matrices for baseline and generative ZSL models (Split 2). 
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plots of “High Unseen” and “Low Unseen” are based on the 

ground-truth competencies for the students on the unseen concepts, 

while in practice, this data is not available for training the stealth 

assessment models and the semantic representations are used by as-

signing “high” or “low” mastery of each concept at random and 

then generating a synthetic binary “label” based on whether at least 

50% of the unseen concepts were labeled “high” or not. This allows 

the generative model to be conditioned on 2n different combina-

tions of student concept mastery where n is the total number of 

unseen concepts, and this allows the model to be trained using a 

higher number of mastery combinations than what is often availa-

ble in datasets captured from game-based learning environments.  

There are limitations to this work that should be noted. Although 

the zero-shot learning framework was based on seen and unseen 

domains across differing gameplay levels, the two domains were 

grounded in the same game-based learning environment. To further 

investigate the generalizability of the ZSL framework, our ap-

proach should be evaluated using unseen data and classes from 

entirely different learning environments. Additionally, Split 1 and 

2 removed two and three concepts out of sixteen, resulting in 12-

18% of the total data being treated as unseen data. Evaluations with 

more unseen in-game levels would provide more insight into the 

performance of our approach as the unseen domain increases. The 

class label for the seen and unseen domains were both based on 

binary labels of student mastery, but our method should also be 

evaluated in scenarios where the labels differ more widely (e.g., an 

additional unseen class in multi-class prediction). The binary labels 

were utilized to convert our work to a classification task, but the 

level of granularity is much higher compared to regression, which 

can negatively impact the adaptability of learner-sensitive mecha-

nisms by grouping low-performing students and students 

performing near the median together. It was also noted that, as the 

unseen domain increased, the number of false negatives increased, 

which could lead to high-performing students receiving unneces-

sary interventions in user-adaptive settings.  

8. CONCLUSION 
Game-based learning holds significant potential for stealth assess-

ment of student performance and knowledge acquisition. The 

capability to predict student mastery of particular concepts within 

game-based learning environments can enable mechanisms such as 

adaptive hint generation, personalized gameplay narratives and 

scaffolding, and gameplay-sensitive interventions in real-time. 

However, stealth assessment models often necessitate large 

amounts of data and labels, which presents logistical and scalability 

challenges. This prohibits the deployment of pre-trained stealth as-

sessment models in domains where prior data and labels have not 

been collected, and questions remain regarding generalizability to 

different domains and educational content. 

We propose a generative zero-shot learning framework to address 

the above issues. By using conditional generative models, we har-

ness the predictive capabilities of textual representations of student 

mastery of different educational concepts. These representations 

are able to guide a Wasserstein Generative Adversarial Network in 

generating synthetic student gameplay data representative of in-

game levels and genetics concepts that have not been previously 

presented and for which no prior gameplay data or student compe-

tency data actually exists. By mapping text embeddings of genetics 

concepts to the student gameplay data through the generative 

model, the resulting augmented data improves the predictive capac-

ity of stealth assessment models for predicting student competency 

across different hidden gameplay levels. Our proposed model is 

shown to outperform an alternative conditional generative model 

and a baseline that excludes the zero-shot learning element. This 

indicates the potential for increasing the generalizability of student 

stealth assessment models through the generative data augmenta-

tion approach and for deploying pre-trained stealth assessment 

models in digital learning environments presenting new educa-

tional concepts, problem-solving tasks, and in-game levels. 

There are many promising avenues for future work. Notably, our 

work focuses on zero-shot learning within a single game-based 

learning environment, and the natural extension of this work is the 

evaluation of our framework across different learning environ-

ments instead of separate in-game levels. Additional 

experimentation with a higher ratio of “unseen”-to-“seen” concepts 

would provide more insight into how the ZSL framework’s perfor-

mance is maintained as the amount of “unseen” data increases in 

size and variance. More complex modeling for the stealth assess-

ment, language embeddings, and generative models may provide 

additional benefit for the predictive capacity of our framework. Fi-

nally, the effectiveness of our approach should be implemented 

alongside student-adaptive interventions to determine the impact 

on learning outcomes and processes within run-time environments.  
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Figure 6. t-SNE visualization of student competency S-BERT 

embeddings across all concepts.  

Figure 7. t-SNE visualization of student competency S-BERT 

embeddings across high/low and seen/unseen splits.  
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ABSTRACT
Interactive simulations allow students to discover the un-
derlying principles of a scientific phenomenon through their
own exploration. Unfortunately, students often struggle to
learn effectively in these environments. Classifying students’
interaction data in the simulations based on their expected
performance has the potential to enable adaptive guidance
and consequently improve students’ learning. Previous re-
search in this field has mainly focused on a-posteriori analy-
ses or investigations limited to one specific predictive model
and simulation. In this paper, we investigate the quality and
generalisability of models for an early prediction of concep-
tual understanding based on clickstream data of students
across interactive simulations. We first measure the stu-
dents’ conceptual understanding through their in-task per-
formance. Then, we suggest a novel type of features that,
starting from clickstream data, encodes both the state of the
simulation and the action performed by the student. We fi-
nally propose to feed these features into GRU-based models,
with and without attention, for prediction. Experiments on
two different simulations and with two different populations
show that our proposed models outperform shallow learning
baselines and better generalise to different learning environ-
ments and populations. The inclusion of attention into the
model increases interpretability in terms of effective inquiry.
The source code is available on Github1.

Keywords
Simulations, Time Series Classification, Early Prediction,
Conceptual Understanding, GRU, Self-Attention

1. INTRODUCTION
In the past years, interactive simulations have gained in-
creasing popularity in formal education [6] and have become
integral parts of many science curricula [28]. These environ-
ments provide visualisations of abstract concepts, which can
help students to better grasp them [34, 24]. On the other

1https://github.com/epfl-ml4ed/beerslaw-lab.git

hand, these simulations also allow students to explore new
learning content and build knowledge in an active and inde-
pendent way [33]. Since simulations are virtual learning en-
vironments, students can experiment freely without fearing
any serious consequences of making mistakes - this property
can often make them a preferred choice over real lab ses-
sions. It has also been proved that the use of interactive
simulations can support inquiry-based learning [25].

However, previous work has pointed out that many stu-
dents struggle to learn effectively with interactive simula-
tions [2, 21, 23, 10]. Indeed, navigating through interac-
tive simulations purposefully can be challenging, especially
when the number of controls and the level of complexity are
high [1]. Therefore, providing adaptive guidance and feed-
back has the potential to improve students’ learning out-
comes. However, interactive simulations are often highly
complex systems with a practically unlimited number of
possible learning paths. Hence, defining (un-)productive in-
quiry behaviour in such environments is still an open issue.

Prior work has focused on identifying the key factors of pro-
ductive inquiry behaviour in interactive systems from stu-
dent log data by leveraging sequence mining and clustering
techniques. For instance, [26] applied information theoretic
sequence mining to identify behavioural differences of stu-
dents using a virtual simulation for electronic circuits. In [4],
the authors trained binary classifiers and logistic regression
models on log data from virtual environments to categorise
students by their science inquiry skills. Similarly, [27] used
student log data as input for a linear regression model to
predict the conceptual understanding students acquired af-
ter using physics and chemistry simulations. Latent Class
Analyses models were able to identify different profiles in in-
quiry performance in two PISA science assessments involv-
ing interactive simulations [30]. The work in [20] employed
clustering techniques to analyse students’ inquiry strategies
in an interactive simulation on circuit construction. Log
data was manually tagged as ground truth to train a classi-
fier on successive inquiry behaviour in [17]. Other research
focused on the teacher and provided them with a dashboard
displaying the mined student sequences [29]. A rule-based
approach for classifying students’ problem solving strategies
in an interactive Chemistry simulation is described in [14].
In recent work, [32] assessed the effectiveness of data mining
techniques guided by knowledge gained from qualitative ob-
servations to predict student’s problem-solving skills in an
interactive simulation.

J. M. Cock, M. Marras, C. Giang, and T. Käser. Generalisable meth-
ods for early prediction in interactive simulations for education. In
A. Mitrovic and N. Bosch, editors, Proceedings of the 15th Inter-
national Conference on Educational Data Mining, pages 183–194,
Durham, United Kingdom, July 2022. International Educational
Data Mining Society.

© 2022 Copyright is held by the author(s). This work is distributed
under the Creative Commons Attribution NonCommercial NoDeriva-
tives 4.0 International (CC BY-NC-ND 4.0) license.
https://doi.org/10.5281/zenodo.6852968
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However, most of the existing approaches have performed a
posteriori analyses, requiring the complete log data entries
as input to the models. This represents a major limitation,
since it does not allow the system to provide feedback to
the students while they are still interacting with the simula-
tion. Their high complexity and lack of predefined learning
trajectories makes building a student model for these envi-
ronments a challenge. A popular approach to adaptive inter-
ventions in open ended learning environments is the use of
a clustering-classification framework [19]. Students are clus-
tered offline based on their interaction sequences and the
resulting clusters are interpreted. The classification step is
then done online: students are assigned to a cluster in real-
time, as explored in [13, 11] for an interactive simulation
for electrical circuit construction. Recently, [10] presented
a novel pipeline for the early prediction of conceptual un-
derstanding in an interactive Physics simulation. They were
able to robustly predict students’ conceptual understanding
in an interactive electronics simulation with only initial frac-
tions of the log data. However, the approach was evaluated
using only one data set from a single population (Physics
undergraduates). To make such approaches more impact-
ful, it becomes crucial to enable their generalisation across
simulations and environments.

In this paper, we propose a new generalisable approach for
predicting students’ conceptual understanding based on se-
quential log data from interactive simulations. We lever-
age students’ interaction data to extract meaningful features
that encode both the state of the simulation and the action
of the student. These features are then used as an input to
models based on Gated Recurrent Units (GRUs), to predict
students’ conceptual understanding. In addition to a stan-
dard GRU model, we also propose an extension, the Self-
Attention-based Gated Recurrent Unit model. We exten-
sively evaluate our approach on two data sets from different
contexts: the first data set stems from students of 10 differ-
ent vocational schools interacting with a chemistry simula-
tion. The second data set consists of physics undergraduate
students using a physics simulation. With our experiments,
we aim to address three research questions: 1) To what de-
gree is interaction data within interactive simulations pre-
dictive for their obtained conceptual understanding? 2) Can
our models predict students’ conceptual understanding early
on? 3) Is our approach transferable to another context in-
volving a different population and simulation?

Our results demonstrate that our proposed models outper-
form previous approaches in terms of (early) predictive per-
formance on both data sets. We further show that the inclu-
sion of self-attention enables us to draw conclusions about
productive inquiry behaviour in both simulations.

2. LEARNING ENVIRONMENTS
The PhET interactive simulations2 allow students to explore
natural phenomena using different parameter configurations
and ideally infer the underlying principles on their own. A
large body of research has focused on analysing students’
inquiry strategies using these simulations, usually coupled
with an explicit task to be solved using the simulation [35].
To evaluate the (early) prediction models presented in this

2https://phet.colorado.edu/

Figure 1: The two learning environments used in this study,
the Capacitor Lab (A) and the Beer’s Law Lab (B).

Question: If you use a wavelength of 520 nm for your measurements, how would you sort the 
solutions by measured absorbance (ascending)? 

Remark: Note that the given examples cannot be directly reproduced in the simulation. 

L = 4 cm
c = 500 mM

L = 3 cm
c = 750 mM

L = 5 cm
c = 400 mM

L = 2.5 cm
c = 600 mM

1 2 3 4

Figure 2: Ranking tasks for the two interactive simulations.

paper, we used a ranking task which we adapted to two
different simulation environments. For each ranking task,
the values of the variables presented in the task are outside
the range provided by the simulation. Hence, students need
to inquire the system to uncover the appropriate equations
and plug in the numbers as answers in the ranking task.

Capacitor Lab. The PhET Capacitor Lab simulation3 pro-
vides students with the possibility to manipulate different
parameters of an electric circuit (plate area, plate separa-
tion, applied voltage, open/close the circuit), to help them
understand how each parameter influences the capacitance
of a plate capacitor as well as the energy stored in that
capacitor (see Fig. 1A). Previous work [10] designed an
inquiry-based learning activity for this simulation using a
ranking task. Specifically, students were asked to rank four
different configurations according to the stored energy saved
in the plate capacitor (see Fig. 2a). The four configurations
were created by first loading the plate capacitor using two
parameter configurations in a closed circuit (A and B), fol-
lowed by opening the switch to disconnect the capacitor from
the circuit and changing the parameters to obtain the final
configurations to be ranked (1, 2, 3, and 4). The authors
also suggested a tree-based approach to label the 24 possible
solutions based on conceptual understanding. For this pa-
per, we will use the binary labels suggested by [10] to divide
students into a group with an advanced understanding of
stored energy (i.e., for both open and closed circuits) and
a second group with a conceptual understanding limited to
the closed circuit, denoted as limited understanding.

3https://phet.colorado.edu/en/simulations/capacitor-lab
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Figure 3: The tree used to map the rankings to different levels
of conceptual understanding. The numbers in parentheses
indicate the number of submissions for the ranking.

Beer’s Law Lab. The PhET Beer’s Law Lab simulation4

allows students to explore how light is absorbed in a solu-
tion and which factors influence the measured absorbance
(Fig. 1B). In this environment, the students can manipu-
late the following components: the wavelength λ of the light
beam, the width of the container (representing the light’s
path length L through the solution), the substance of the
solution (changing its colour), and its concentration c. By
experimenting with these components, in the ideal case, stu-
dents can infer Beer’s Law, which describes how each pa-
rameter influences the measured absorbance: A = ϵλ ∗L ∗ c.
Based on the inquiry-based learning task presented by [10],
we developed a ranking task that can be solved with Beer’s
Law Lab. Students were presented with four flasks that var-
ied in width as well as in the color and concentration of the
solution they contained (Fig. 2b). Given a light beam of
a specific wavelength, students were asked to rank the four
flasks by the measured absorbance. It is important to note
that the values chosen for the four flasks were not available
in the simulation in order to prevent students from obtain-
ing the correct ranking by simply replicating the flasks. To
label the submitted rankings, we used the tree-based ap-
proach introduced in previous work [10]. We classified each
of the 24 possible rankings according to the level of concep-
tual understanding (Fig. 3). Specifically, for each ranking, it
was determined whether the influence of i) the substance’s
concentration, ii) the container’s width and iii) the colour
difference between light beam and solution was understood
or not. Rankings were then grouped by the number of con-
cepts understood that they represented. Rankings repre-
senting 0 or 1 concepts understood were then labelled as
limited understanding, while rankings representing 2 or 3
concepts were labelled as advanced understanding.

3. METHOD
We are interested in creating generalisable models to (early)
predict the level of conceptual understanding students will
achieve after interacting with a simulation. Formally, our
goal is to predict, for each student, a binary label represent-
ing their level of conceptual understanding. To address this
binary classification task, we propose a pipeline consisting
of the four steps illustrated in Fig. 4. We first pre-process
the data into event logs and extract so-called state-action
sequences from these event logs. We then build different
types of deep neural network models to perform the classifi-
cation task. In what follows, we first formalise the addressed

4https://phet.colorado.edu/en/simulations/beers-law-lab

problem, before describing each step of the pipeline in detail.

3.1 Problem Formalisation
We consider U to be the set of students participating in
the learning activity. During this learning activity, students
use an interactive simulation in order to rank four different
configurations according to a specific criterion (see Section
2 for details on the ranking tasks). We denote the set of
possible answers to the ranking task as A and the answer of
a student u ∈ U to this ranking task au ∈ A. Based on their
answers, we assign a label Lu ∈ {0, 1} to each student u ∈ U .
This mapping m is a direct function of students’ answers
and can be formalised as m : au ∈ A 7−→ Lu ∈ {0, 1} for
u ∈ U . For both lab activities, label 1 denotes advanced

understanding and label 0 limited understanding.

To solve the ranking task, students interact with the simu-
lation and investigate the factors influencing the dependent
variable (absorbance in case of Beer’s Law Lab, stored en-
ergy in case of Capacitor Lab). Their full and non-processed
sequence of events in the simulation is denoted as:

Ru = {(e0, s0, d0), ..., (enu−1, snu−1, dnu−1)} (1)

where em is the mth event e , sm is the state of the sim-
ulation at time step m, and dm denotes the duration of
event em in state sm. We denote the partial sequence of
student u ∈ U from the first to the lth event as Rlu =
{(e0, s0, d0), ..., (el−1, sl−1, dl−1)} with the value l ∈ [1, nu).
To clarify the notion of duration and time steps, we intro-
duce ∥Ru∥duration = tu where tu denotes the total time in
seconds spent by student u on the simulation. We then de-
note ∥Ru∥timestep = nu where nu denotes the total number
of events performed by student u in sequence Ru.

Hence, training an (early) students’ conceptual understand-
ing predictor E with interactions Ru and conceptual label Lu
after a number of interactions nu becomes an optimisation
problem, aimed to find model parameters θ that maximise
the expectation on the following objective function (i.e., pre-
dict the correct label, given interactions) over a dataset G:

θ̃ = argmax
θ

E
(Ru,Lu)∈G

Lu = E(Rnu
u | θ) (2)

In what follows, we describe the steps carried out to solve
this problem from pre-processing until model building.

3.2 Data Pre-Processing
From the log data, we extract the sequence of events of a
student u as follows: anything between a mouse click and
a mouse release qualifies as an action. Each action can be
described by its duration and the component the action is
performed on, and is conducted in a specific simulation state.
Anything between a mouse release and a mouse click quali-
fies as a break. Similarly, breaks are conducted in a specific
state and have a specific duration. All actions and breaks
generated by a student u ∈ U are sorted chronologically to
form the raw interaction sequence of a user u ∈ U , Ru as
per Eq. 1, where events can be both actions or breaks.

Some breaks in student interactions can be indicative of re-
flective, observational or distracted periods. Other breaks
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then categorise the states and events to build state-action sequences. Finally we feed the features into variations of GRU models.
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cells of the GRU layer. The output shape of each layer is given: |U | denotes the number of users, ñ = maxu∈U ñu, cell the
number of GRU cells, and f the number of features in the input matrix.

can occur naturally throughout a student’s interaction when
the mouse moves from one element to the other [31]. The
latter might introduce undesired noise and hinder student
classification over their conceptual understanding, not un-
like stop words negatively influence sentiment analysis tasks
in the domain of natural language processing, as an ex-
ample [15]. To maximise the retention of informative pe-
riods of inactivity, we therefore discard for each student
u ∈ U their 60% of shortest breaks. We are left with
Ru = {(e0, s0, d0), ..., (eñu−1, sñu−1, dñu−1)} with ñu ≤ nu,
the final sequence of triplets of events em occurring in state
sm and of duration dm for student u ∈ U at time m ∈ [0, tu).
The new sequence contains ñu event triplets, i.e., timesteps.

3.3 Feature Extraction
The data logging of the PhET environments captures any
click targeting an ”interactive” component as well as the
state of the simulation in case one of these ”clicks” changes
the value of a variable/multiple variables in the system. This
fine-grained logging results in high dimensional simulation
states s and a high number of different events e. Before
creating feature vectors for each time step m, we therefore
categorise the obtained events and states into meaningful
components. We divide all possible simulation states into
two groups: a) helpful or b) unhelpful to solve the prob-
lem. We then ponder whether some of the helpful states can
be grouped such that the level of information received by
the student is the same independent of the state within the
group. We proceed in a similar way for the events. While
this categorisation procedure is generalisable over different
platforms, whether a simulation state or event is helpful de-
pends on the actual task.

State-Action Categorisation for Capacitor Lab. For the Ca-
pacitor Lab activity, we use the state and action categori-
sation defined in [10]. By applying the above pipeline, we
qualify each state sm ∈ (em, sm, dm) into one of the fol-
lowing groups: 1) closed circuit - stored energy displayed,
2) open circuit - stored energy displayed, 3) closed circuit

- stored energy not displayed, and 4) open circuit - stored
energy not displayed. Since stored energy is the dependent
variable in the ranking task, displaying the stored energy
is essential for solving the task. The relationship between
the parameters (plate area, plate separation, battery volt-
age) and stored energy differs for closed and open circuits.
Moreover, we map each event em ∈ (em, sm, dm) into one of
the following actions: 1) manipulating battery voltage, 2)
manipulating plate area, 3) manipulating plate separation,
4) break, 5) other (any other action).

State-Action Categorisation for Beer’s Law Lab. There are
four independent variables that influence the dependent vari-
able absorbance of the ranking task: the laser colour, the so-
lution colour, the concentration of the solution, and finally
the width of the container. Consequently, we categorise each
state sm ∈ (em, sm, dm) into one of those 4 groups: 1) green-
green (absorbance: displayed, laser colour: green, solution
colour: green), 2) green-red (absorbance: displayed, laser
colour: green, solution colour: red), 3) absorbance displayed
(absorbance: displayed, laser colour: not green and/or so-
lution colour: neither red nor green), 4) not observed (ab-
sorbance: not displayed). To solve the ranking task depicted
in Fig. 2, students need to understand how the width and
concentration interact with the absorbance when the solu-
tion colour is either red or green and when the laser colour
is green, i.e., states 1) and 2). The width and the concentra-
tion share a linear dependency with the absorbance and are
both colour agnostic. As long as the absorbance is observed,
those relations can be discovered no matter the colour of the
laser or the solution, i.e., state 3. Furthermore, we process
each event em ∈ (em, sm, dm) into one of those categories:
1) width (width slider is moved), 2) concentration (concen-
tration slider is moved), 3) pdf (students are reading the
instructions from the ranking task), 4) concentration lab
(students are interacting with the second simulation avail-
able directly from the Beer’s law lab), 5) breaks, 6) other.

State-Action Sequences. After the categorisation step, each
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Figure 6: SA-GRU’s architecture with the attention mechanism. The output shape of each layer is given: |U | denotes the number
of students, ñ = maxu∈U ñu, f is the number of dimension in the state-action features, and cells is the number of GRU cells.

em ∈ (em, sm, dm) will have been replaced by e′m, its cor-
responding event category, and each sm ∈ (em, sm, dm) will
have been replaced by s′m, its corresponding state mapping.
For each timestep m, we encode s′m as a one-hot-encoded

vector vs
′
m of cs cells (with cs denoting the number of differ-

ent state categories for the simulation), where all entries are
0 except the one corresponding to s′m, which is equal to 1.
We also transform e′m ∈ (e′m, s

′
m, dm) into a one-hot-encoded

vector ve
′
m of ce cells (with ce denoting the number of differ-

ent event categories for the simulation), where all entries
are 0 except the one corresponding to e′m, which is equal to
dm. Finally, for each time step m, we replace each triplet

(e′m, s
′
m, dm) by the concatenation of both vectors vs

′
m and

ve
′
m. For each student u ∈ U , the interaction sequence Ru

can now be formulated as {[vs′0 , ve
′

0 ], ..., [vs
′
tu−1, v

e′
tu−1]}. We

then normalise the sequences on the ve
′

0 dimension resulting
in the final action sequence FSAu for student u ∈ U .

3.4 Model Building
In this paper, we are interested in creating a conceptual un-
derstanding prediction model that can accurately predict the
conceptual understanding label Lu for student u, given the
extracted features FSAu . To this end, we rely on two types
of models, both based on a Gated Recurrent Unit (GRU)
network [8]. GRUs are a type of Recurrent Neural Networks
(RNNs), whose specificity is to allow the transmission of in-
formation over time. To process sequential data, RNNs are
composed of r recurrent cells arranged successively such that
the output of one becomes the input of the next one, as illus-
trated on Figure 5. Their relative simplicity enables GRUs
to handle smaller datasets (as those in our hands) than the
more complex long short-term memory cells (LSTM), which
contain an additional output gate [9, 18].

The first type of model is based on a GRU combined with
a Dense layer (GRU), as shown in Figure 5. Specifically, the
extracted features FSA are fed into a neural architecture
composed of a GRU, a dropout layer and a Dense layer (with
Softmax activation) having a hidden size of 1. The model
outputs the probability the student u will gain advanced
(label 1) or limited (label 0) understanding.

The second type of model is based on a Self-Attention-based
Gated-Recurrent-Unit (SA-GRU), as shown in Figure 6. In
2014, the concept of an Additive Attention layer, also called
Bahdanau attention was introduced to improve statistical

machine translation [3]. Rather than using it to understand
the context of words across languages, we use it to identify
the pivotal moments in students’ interactions with the sim-
ulation. We first take the raw extracted features FSA as the
query, key and value input matrices to our self-attention
mechanism implemented as in [16]. We then concatenate
the attention output with the input features along each time
step and feed this matrix to a GRU layer. Its latest output
will directly be given to the dropout layer before passing
through the final Dense layer which uses a Softmax activa-
tion (analogously to the GRU model). Though more complex
than GRU and consequently more subject to overfitting on
smaller datasets, SA-GRU’s attention weights can be used to
understand what dimension of our features are important for
the final prediction, and when that importance is empha-
sised over time. These aspects are fundamental to enable
interpretability on such complex yet effective models.

4. EXPERIMENTAL EVALUATION
We evaluated our (early) prediction models on two data
sets collected using the ranking task activities on the PhET
Beer’s Law Lab and Capacitor Lab simulations (see Section
2). We used the data set that we collected using the Beer’s
Law Lab activity as an evaluation data set to assess to what
degree student interaction data within the simulation is pre-
dictive for their obtained conceptual understanding (RQ1)
and whether our models are able to predict students’ con-
ceptual understanding at the end of the task early on (RQ2).
We then used the data that was collected by previous work
[10] using the Capacitor Lab activity as a validation data
set to assess the transferability of our proposed models to
a different population and simulation (RQ3). In the follow-
ing, we first describe the experimental setup used for our
analysis, before describing each experiment in detail.

4.1 Experimental Setup
We compared the predictive performance of our models on
the two data sets to baseline models used in prior work [10].

4.1.1 Data Sets
The evaluation and validation data sets were collected in
two different classroom experiments (see Table 1).

Evaluation Data Set. Using the Beer’s Law Lab activity (see
Section 2), we collected data from 448 laboratory technician
apprentices of 10 different vocational schools in a European
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Beer’s Law Lab Capacitor Lab

Number of students 254 193

Gender

Male: 53%

Female: 43% N/A

Other: 4%

Region
A: 70%

USA
B: 30%

Education Level Vocational School University

Field
Chemistry: 88% Physics majors: 17%

Other: 12% Science/Engineering: 83%

Mean time in simulation 507s 512s

Percentage label 1 44% 51%

Table 1: Statistics of the data sets used for the experiments.

country. The activity was performed directly in the class-
room. We recorded students’ interaction logs (clickstream
data) as well as their responses to the ranking tasks. For
our experiments, we removed participants who did not an-
swer the ranking task (23 students), with an extremely short
task duration (less than 2 minutes), or with a low number
of events (less than 10 events). The final data set used for
the experiment therefore consists of 254 students. Prior to
data collection, participants gave their informed consent to
sharing the data for research, and all data was recorded in
a completely anonymous way. Students could also partici-
pate in the learning activity without sharing their data for
research. This study was approved by the responsible insti-
tutional review board (HREC number: 064-2021).

Validation Data Set. We used the data set collected by [10]
on the Capacitor Lab Activity (see Section 2). It contains
the interaction logs (clickstream data) and the ranking task
responses of 193 undergraduate Physics students of a US
university. Students were all in their first year of studies and
completed the activity as part of a mandatory homework
assignment. Data was recorded in completely anonymous
way and students had to give their informed consent prior
to data collection. Moreover, students could participate in
the learning activity without sharing their data for research.
This study was approved by the responsible institutional
review board (HREC number: 050-2020).

4.1.2 Baseline Models
We assessed the performance of our sequential models to
more simple baseline models. Random forest (RF) mod-
els were successfully used in previous work [10] to (early)
predict students’ level of conceptual understanding gained
through interacting with an interactive simulation. [10] ex-
perimented with neural network models and RF models with
different type of features and did not find significant dif-
ferences regarding predictive performance of the different
model and feature combinations. We selected RF model
with Action Span features (RF) as a baseline for our exper-
iments, as this encoding is most similar to our action-state
sequences. The Action Span features can be easily built
from our state and action categories. For each time step m,
the encoding of the triplet (e′m, s

′
m, dm) is similar to a one-

hot encoded vector, where all entries are 0 except the one
representing e′m × s′m (state-action combination), which is
equal to dm. We therefore obtain a vector vm of dimensions

cs × ce. The raw interaction sequence Ru for student u ∈ U
then becomes Iu = {v0, ..., vñu}. We flatten Iu by summing
all vectors vm, resulting in a vector where each cell repre-
sents the amount of time in seconds the student spent doing
each type of state-action combination. We then normalise
the vector by the total duration of the interaction so that
the model does not consider the length of each interaction,
but rather the proportion of time spent on each condition.

4.1.3 Optimisation Protocol
Both GRU and SA-GRU are relatively sensitive to seeds which
have an influence on all weight initialisation. To temper the
effects of randomness on the models’ training, we used a
cross validation with seed mitigation to optimise the neural
network models. The usual nested cross-validation optimi-
sation protocol was conducted for the baseline RF model.
We evaluated performance of all models using the macro-
averaged area under the ROC curve (AUC).

Optimisation for RF. We optimised the RF model using a 10-
fold nested cross validation stratified over the labels Lu. We
use this step as an evaluation mean for the RF and as a basis
for parameter optimisation for the GRU-based models. We
ran the inner grid search on the following hyperparameters:
the number of decision trees [3, 7, 9, 11, 13, 15, 17], the split
criterion [gini, entropy], the maximum depth [5, 7, 9, 11, 13],
the minimum samples split [3, 5, 7, 9, 11].

Optimisation for GRU and SA-GRU. For the two sequen-
tial models, we performed initial protoyping using a 10-
fold nested cross validation (using the same folds as for
the RF model) and a small number of seeds. We trained
both the GRU and SA-GRU for 150 epochs, using a categor-
ical crossentropy loss and an Adam optimiser. We tuned
the following hyperparameters: dropout rate after the GRU
layer [0.02, 0.05] and the number of cells [32, 64] in the GRU
layers. The initial experiments demonstrated that: the se-
lected hyperparameter values in the inner grid search were
the same for a majority of the folds, the categorical cross
entropy loss on the inner validation data set tended to con-
verge after 20 − 30 iterations, and predictive performance
of the models seemed to vary depending on the seed. We
therefore decided to choose a fixed architecture for the GRU

and SA-GRU models and limit the number of epochs to 30
for all our experiments. For Beer’s Law Lab the selected
parameters were a dropout rate of 0.02 and 32 units for the
GRU layer. For the Capacitor Lab, we also use 32 units
in the GRU Layer and a dropout rate of 0.05. We evalu-
ated the models using 10-fold cross validation (based on the
same outer folds as the RF model). To mitigate the poten-
tial effects of randomness, we trained both models over n
different seeds and averaged predictive performance across
seeds. For our experiments on the full state-action sequences
(see Sections 4.2 and 4.4), we used n = 60 seeds. Since we
observed only minor differences in predictive performance
across seeds, we reduced the number of seeds to n = 10 for
our early prediction experiments (see Sections 4.3 and 4.4).

4.2 RQ1: Full Sequence Prediction
In a first experiment, we investigated whether our proposed
models were able to predict students’ level of conceptual
understanding based on their interaction data. We used
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Figure 7: AUC of the GRU, SA-GRU, and RF models on the
evaluation data set collected from Beer’s Law Lab. Predic-
tions were made based on the complete sequential interaction
data of the students.

the evaluation data set collected with the Beer’s Law Lab
simulation to answer RQ1.

Predictive Performance. Figure 7 illustrates the predictive
performance in terms of AUC for the GRU, the SA-GRU, and
the RF baseline. Both sequential models outperform the
RF baseline: using GRU and SA-GRU models we improve the
AUC by 10% (AUCGRU = 0.77, AUCSA−GRU = 0.76,
AUCRF = 0.70). We also observe that the RF model ex-
hibits a higher variability across folds than the two sequen-
tial models. For those, the minimum AUC is close to 0.70
(AUCmin,GRU = 0.69, AUCmin,SA−GRU = 0.68). In con-
trast, performance of the RF model drops below 0.6 based
on the fold (AUCmin,RF = 0.58). We also performed a
preliminary analysis on model bias according to protected
attributes. Specifically, we grouped the students based on
the available protected attributes and computed predictive
performance in terms of AUC separately for the different
groups. We found that the GRU model is slightly biased
towards male students (AUCm,GRU = 0.78, AUCf,GRU =
0.73), while the two other models do not show any gender
bias. All models show a bias in terms of region, with a higher
AUC for region A (AUCA,GRU = 0.78, AUCA,SA−GRU =
0.78,AUCA,RF = 0.76) than for region B (AUCB,GRU =
0.69, AUCB,SA−GRU = 0.66,AUCB,RF = 0.63).

Attention Interpretation. While adding self-attention to the
GRU does not increase predictive performance of the model
(there is no significant difference in the performance of the
GRU and SA-GRU model), the self-attention scores enable in-
terpretation of the such black-box models. The heatmap in
Fig. 8 shows the normalised attention scores for the SA-GRU

model over 150 time steps. For each student u ∈ U , we ex-
tracted the output (dimension: nu× f) of the self-attention
layer of the SA-GRU model (see Fig. 6) and normalised it to
make the attention scores comparable between models. We
then averaged across all students. The number of students
decreases rapidly with an increasing number of time steps
(Fig. 7 (top)). In fact, for 90% of the students, nu ≤ 150.

We observe that the model seems to pay most attention to
two of the states (green-red and no absorbance). The for-
mer state, green-red, indicates a green laser colour and a red
solution colour while the absorbance is measured. As ex-
pected, exploring with this parameter setting is important
for solving the ranking task. The latter state, no absorbance,

Figure 8: Normalized attention scores for the SA-GRU over
150 time steps (bottom). Number of students with nu ≥ t
for t = 1, ...,150 (top).

indicates that the absorbance (outcome variable of the task)
was not displayed, which makes solving the task impossible.
Also the two other states (green-green and absorbance) seem
to have phases of higher importance over time. For the no
absorbance state, we can see that the the model seems to
pay less attention to it with an increasing number of time
steps. Generally, the actual state of the simulation seems to
be considered as more important than a specific action of
the student. Regarding the action, the model seems to pay
attention to state pdf, which refers to students checking the
task description and hence the configurations to be ranked.
Also experimenting with concentration and width seems to
have some importance. Interestingly, the importance of tak-
ing a break varies over time steps. Finally, the model does
not pay attention to the concentration-lab action.

In summary, this first experiment demonstrated that our pro-
posed models yielded a 10% increase in AUC over the RF
approach suggested in previous work [10]. Furthermore, the
sequential models also exhibit a lower variance across folds.
Finally, by adding self-attention to a GRU model, we were
able to provide interpretations of what type of student explo-
ration behavior will lead to successfully solving the task.

4.3 RQ2: Early Prediction
In our second experiments, we were interested in predict-
ing students’ level of understanding during their interaction
with the simulation. We therefore did not use all students’
full interaction sequences, but used partial interactions up
to a time step l when the student went over that limit.
Therefore to build the features F l,SAu for student u ∈ U ,
we only used the interactions Ilu as a basis for building the
features (see also Section 3.3). We trained all our models
for l = 30, 40, 50, 60. We did not make predictions earlier as
we did not expect a model to be able to accurately predict
conceptual understanding after only a few student actions.
We further limited l ≤ 60 as the number of students de-
creases for higher time steps (see also Fig. 8 (top) which
indicates the amount of remaining students per time step).
At each time step l, we made predictions for students with
state-actions sequences at each length l (e.g. ñu ≥ l). For
students with shorter sequences (e.g., ñu < l), we used the
last available prediction. We used the evaluation data set
collected with Beer’s Law Lab to answer RQ2.
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Figure 9: Early predictive performance in terms of AUC for
RF, GRU, and SA-GRU for the evaluation data set collected using
Beer’s Law Lab for t = 30,40, ...,60.

Predictive Performance. Fig. 9 illustrates the AUC of the
different models for early prediction at t = 30, 40, 50, 60.
We again observe that the RF baseline model performs in-
ferior to the sequential models. It achieves an AUC of 0.59
after 30 time steps and manages to only slightly improve
over time with an AUC of 0.61 after 60 time steps. The
AUC of the RF is 0.70 for full sequence prediction (see Sec-
tion 4.2), we therefore observe a strong increase in predic-
tive performance when observing full sequences. It thus
seems that the RF classifiers is not able to extract strong
signal from early observations. The use of more elaborate
sequential models leads to an up to 15% increase in AUC
(AUC30,GRU = 0.67, AUC30,SA−GRU = 0.68, AUC60,GRU

= 0.72, AUC60,SA−GRU = 0.72). Similar to the full se-
quences case, RF exhibits a much higher variance across folds
than that our proposed models.

Attention Interpretation. Next, we investigated whether at-
tention scores differed between an early prediction and a full
sequence prediction model, i.e. whether the model paid at-
tention to different features when making early predictions.

Figure 10 shows the normalised attention scores for the SA-

GRU model trained to predict at time step t = 30 The scores
in the heatmap were calculated following the same proce-
dure as for the full sequences case (see Section 4.2). Similar
to our findings on full sequences, we observe that the states
generally seem to be assigned higher scores than the actions.
While we again observe that the no absorbance and green-
red states have relatively higher scores, we also observe that
these scores vary over time. The scores of the no absorbance
state clearly decrease over time. This finding might sug-
gest that many students realise during their first 10− 15 in-
teractions with the simulation that the absorbance display
should be turned on (by default, transmittance is displayed).
In contrast, the scores of the green-red state increase over
time, indicating that after being able to observe the outcome
variable (absorbance), it is important to select the optimal
colours for laser (green) and solution (red). For the actions,
we observe the same picture as for the full predictions. The
concentration-lab action gets little attention (it is probably
also a rare action), while manipulating width and concen-
tration gets similar attention over time. Checking the task
description is mainly important early on. The model does
not pay attention to break for the first 10 time steps. We
hypothesise that“thinking”breaks do not occur often during
initial interaction when students are still focused on under-
standing the task and have not yet started their exploration.

0 5 10 15 20 25 30
timesteps

green-green

green-red

absorbance

no absorbance

other

concentration

width

concentration-lab

pdf

break

st
at

es
-a

ct
io

ns

0.000

0.005

0.010

0.015

0.020

0.025

0.030

Figure 10: Normalised attention scores for SA-GRU trained
for predicting at t = 30 time steps for Beer’s Law Lab.

In summary, our second set of experiments showed that in
case of early prediction, the use of a GRU or SA-GRU model
leads to even larger performance increases than in case of
full sequences. Depending on the time step, we observe im-
provements in AUC of 15% compared to the RF baseline.
Furthermore, the RF again shows high variability with drops
in AUC down to 0.50. We are again able to provide mean-
ingful interpretations of the attention weights, which is a
promising basis for targeted intervention.

4.4 RQ3: Generalisation
In our last experiment, we were interested in assessing the
generalisability of the developed models. While both learn-
ing activities were based on a ranking task, the underlying
simulation as well as the population are different. We there-
fore evaluated our models on the transfer data set collected
from the Capacitor Lab simulation.

Prediction on Full Sequences. We first evaluated the gen-
eralisability of the different model by predicting on the full
interaction sequences of the validation data set. Figure 11
illustrates the predictive performance in terms of AUC for
the GRU, the SA-GRU, and the RF baseline. We observe that
all the models achieve a very high AUC for the Capacitor
Lab data set. The sequential models achieve an AUC of
0.96 (GRU) and 0.96 (SA-GRU) respectively, while the AUC of
the RF baseline is 0.95. Again the RF baseline model shows
higher variability, achieving a minimum AUC of 0.86. For
the GRU and SA-GRU models, we achieved a minimum AUC
of 0.9 and 0.89 respectively. For Capacitor Lab, we ran the
same bias analysis on protected attributes as for Beer’s Law
Lab, showing that models are not biased with respect to
field (the only known protected attribute for this data set).

While the SA-GRU model does not outperform the other two
models, we again extracted the attention weights of this
model and interpreted them. Figure 12 shows the normalised
attention scores of the SA-GRU models over a 100 time steps.
We chose to limit to 100 time steps as for 90% of the stu-
dents ñu ≤ 100. Again, the scores displayed in the heatmap
were calculated using the procedure described in Section 4.2.
Similar to our findings on Beer’s Law Lab, we observe that
the states (stored energy, closed circuit) receive higher at-
tention than the actions. For stored energy, attention scores
increase up to time step 30 and then decrease again after
time step 60. We assume that students needed some time to
explore the simulation and figure out that the stored energy
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Figure 11: AUC of the GRU, SA-GRU, and RF models on the
validation data set collected from CapacitorLab. Predictions
were made based on the full interaction data of the students.

Figure 12: Normalised attention scores for CapacitorLab for
the SA-GRU over 150 time steps (bottom). Number of students
with nu ≥ t for t = 1, ...,150 (top).

display needs to be turned on (it is by default turned off in
the simulation). For the closed circuit state, attention scores
decrease over time, but there are always phases of increased
activity. In order to be able to solve the ranking task, it is
important to experiment with the closed as well as the open
circuit, as detected by the model. The model also seems
to pay attention to actions related to voltage, plate area,
and plate separation, which are the other three components
in the simulation that influence the stored energy. More-
over, breaks are important for different phases within the
sequences. Hence, the model seems to detect when students
take a thinking break and considers that as important.

Early Prediction. Next, we also trained the different mod-
els for early prediction on Capacitor Lab. Figure 13 shows
the AUC of the evaluated models for prediction on t =
30, 40, 50, 60 time steps. We see that the AUC of the two
sequential model is close to 0.80 already after observing 30
student interactions (AUC30,GRU = 0.8, AUC30,SA−GRU =
0.81). Predictive performance of the RF model is slightly
lower (AUC30,RF = 0.76). After 60 time steps, all the
models achieve an AUC larger than 0.8 (AUC60,GRU = 0.9,
AUC60,SA−GRU = 0.9, AUC60,RF = 0.88). We observe that
all three models show a similar variability under this task.

In summary, our results demonstrate that the proposed mod-
els can be transferred to a different learning environment
and population. In case of full interaction data, the perfor-
mance of the models is inline with the RF baseline, in case of
early prediction, the sequential models outperform the base-

Figure 13: AUC of the GRU, SA-GRU, and RF models for early
prediction (t = 30,40, ...,60) on Capacitor Lab.

line. Furthermore, the addition of self-attention again en-
abled us to identify the key points in the exploration process.

5. DISCUSSION AND CONCLUSION
Interactive simulations used for inquiry-based learning ac-
tivities are increasingly gaining traction as part of science
education at all levels. It has thus become essential to un-
derstand how students navigate in such environments in or-
der to provide them with targeted and well-timed feedback.
To address this issue, we introduced a new data-driven ap-
proach to predict students’ conceptual understanding after
solving inquiry-based learning tasks with interactive simu-
lations. We leveraged log data directly recorded in these
environments to extract meaningful features that were then
used as input to models based on Gated Recurrent Units
(GRU) to predict their conceptual understanding. In addi-
tion to a standard implementation of a GRU model, we also
explored an extension, the Self-Attention-based Gated Re-
current Unit (SA-GRU) model, and compared their perfor-
mance against a random forest (RF) classifier presented in
prior work [10]. We evaluated our approach on two data sets
collected from different populations (vocational and under-
graduate students) who used two different environments (a
chemistry and a physics simulation). We aimed at answer-
ing to three research questions: 1) To what degree is student
interaction data within interactive simulations predictive for
their obtained conceptual understanding? 2) Can our mod-
els predict students’ conceptual understanding early on? 3)
Is our approach transferable to another context involving a
different population and simulation?

To answer the first research question, we trained the pro-
posed models using data collected from 254 first, second and
third year lab technician apprentices who solved a ranking
task using the PhET Beer’s Law Lab simulation. Using
the complete log sequences of the students, both the GRU

and SA-GRU models yielded AUC values of 0.77 and 0.76 re-
spectively, outperforming the RF baseline model presented
in previous work [10] by 10%. For both models, we also
observed lower variance across training folds, indicating a
higher robustness compared to the RF baseline. Previous re-
search has highlighted that along with predictive accuracy,
it is the interpretability of the models that can make a signif-
icant difference in improving student learning outcomes [12].
While adding the self-attention layer to the GRU models did
not further improve their predictive performance, our anal-
yses illustrated that they significantly enhanced the inter-
pretability of the model results. For instance, analysing the
attention scores of the SA-GRU model, we observed that the
state s in which an action a is conducted is more important
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than the nature of action a itself to predict conceptual un-
derstanding. Experimenting in a setting where the variable
of interest is observed, and where the environment settings
correspond to those present in the problem, is influential.

Our findings are in line with those of [32], who suggested
that knowledge-grounded features that integrate qualitative
observations are better predictors than purely actions-based
features. From the attention score analysis, we also observed
that taking breaks showed an interesting pattern with an al-
ternating importance for the model over time. This results
seems to indicate that taking breaks at specific moments
during the activity may be predictive of the acquired un-
derstanding. These results are very much in line with those
reported in previous work [26, 7], who illustrated that re-
currently taking breaks for reflection and planning can be a
powerful inquiry strategy in interactive simulations.

To address the second research question, we then trained
the models with only initial sequences of the students’ log
data in order to evaluate their capabilities to early predict
students’ conceptual understanding. Naturally, the perfor-
mance of all models dropped compared to the training on
the full sequences. However, both the GRU and SA-GRU out-
performed the RF baseline also in early prediction, with AUC
values that were up to 15% higher and with lower variance
across training folds. After only 30 time steps in the simu-
lation, AUC values for the GRU and SA-GRU models already
reached 0.67 and 0.68 respectively. Moreover, the analysis
of the attention scores of the SA-GRU model showed that al-
ready after 30 time steps, meaningful interpretations could
be made similar to those in the case of the models trained on
the full sequences. This is a crucial result, since it enables
the implementation of targeted interventions that could, for
instance, support struggling students early on while they are
still solving the tasks. Such interventions could potentially
be implemented as automatic feedback that is directly dis-
played in the simulation, similar to approaches that have
been adopted previously for other computer-based learning
environments [5]. Another possibility could be to display the
insights gained from the models to teachers using real-time
dashboards [29, 22], to support them in preparing interven-
tions for individual students and/or the entire class.

Finally, to answer our third research question we evaluated
our approach on a second data set from [10]. It comprised
log data from a different simulation (the PhET Capacitor
Lab) that was used by a different population (undergraduate
students attending a physics class). The goal of this anal-
ysis was to demonstrate that the functioning of our models
is not restricted to a single context, but could be trans-
ferred to other populations and environments. In the case
of training on the full sequences of log data, all three mod-
els performed very well with AUC values above 0.95. Since
in this case the RF baseline already showed a good perfor-
mance, the use of the GRU and SA-GRU models only increased
the AUC by 1%. Similar to the results from the Beer’s Law
Lab data set, we found higher importance for states (stored
energy toggled and circuit closed) in the attention scores of
the SA-GRU model. The high attention scores for the stored
energy state could be explained by the observations made
in previous work using the same simulation. [22] found that
despite the stored energy being the target outcome variable

of their task, not all students toggled the function to display
it. Similarly, the stored energy state could have served as a
useful feature to detect unproductive behaviour in our task.
Moreover, while the design of the ranking tasks for both
simulations was similar, the use of different circuit states
(closed or open) in the Capacitor Lab might be more dis-
criminatory for student performance than the color states in
Beer’s Law Lab. This could explain why for the Capacitor
Lab the RF baseline also performed very well. Finally, when
looking at early prediction, we observed again that GRU and
SA-GRU exhibited better performances compared to RF de-
spite the differences being smaller than for Beer’s Law Lab.
Variances across folds, however, were similar across models.

Our findings represent an important step towards a better
understanding and modelling student behaviour in ranking-
based inquiry learning activities within interactive simula-
tions. Though the presented task is very specific, its key
characteristics can be retained and transferred onto other
interactive environments. Furthermore, the capabilities of
the presented models to detect (un-)productive behaviour
early on pave the way for more targeted interventions car-
ried out by teachers or the system itself.

Nevertheless, this study also comes with certain limitations.
First, the chosen labels for the Beer’s Law Lab are only able
to separate struggling students from more advanced students,
giving us an indication of whether students can conduct in-
quiry rather than whether they have understood Beer’s Law.
Then, our preliminary bias analysis has indicated that some
models show a slight gender bias (in case of the Beer’s Law
Lab simulation) and all models exhibit a geographic bias
(also for the Beer’s Law lab simulation). Therefore, fur-
ther work on bias mitigation is needed. This includes un-
derstanding where the differences in predictions come from,
as well as identifying any other confounding factors. Fur-
thermore, while the presented methods were applied to two
different data sets involving different contexts to illustrate
its transferability, it can not be guaranteed that they are
unreservedly applicable to any other inquiry-based learning
situation involving interactive simulations. More research
including larger and more diverse samples as well as differ-
ent educational levels, simulations, and learning tasks are
needed to consolidate the generalisability of our methods.
This is particularly important in order to mitigate the risks
of algorithmic bias that could be introduced. Furthermore,
it needs to be acknowledged that measuring students’ con-
ceptual knowledge by means of a single outcome variable
(i.e., the final ranking submitted) might be too limiting.
While the number of possible rankings could be considered
sufficiently high to filter out the effect of random answers,
other measuring tools (such as quizzes or interviews) could
be included to complement the analyses. Finally, it should
be emphasised that before any interventions based on the
proposed methods are being introduced, it is imperative that
the main stakeholders (i.e., teachers and students) are in-
volved. Only in this way the potential educational impacts
of such approaches can be assessed, implying both positive
and negative consequences for the concerned groups.
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ABSTRACT
Predicting student performance in an academic institution
is important for detecting at-risk students and administer-
ing early-intervention strategies. We propose a new grade
prediction model that considers three factors: temporal dy-
namics of prior courses across previous semesters, short-term
performance consistency, and relative performance against
peers. The proposed architecture comprises modules that in-
corporate the attention mechanism, a new short-term gated
long short-term memory network, and a graph convolutional
network to address limitations of existing works that fail to
consider the above factors jointly. A weighted fusion layer is
used to fuse learned representations of the above three mod-
ules—course importance, performance consistency, and rel-
ative performance. The aggregated representations are then
used for grade prediction which, in turn, is used to classify
at-risk students. Experiment results using three datasets
obtained from over twenty thousand students across seven-
teen undergraduate courses show that the proposed model
achieves low prediction errors and high F1 scores compared
to existing models that predict grades and thereafter iden-
tifies at-risk students via a pre-defined threshold.

Keywords
Grade prediction, machine learning, attention mechanism,
long short-term memory network, graph convolutional net-
work

1. INTRODUCTION
Learning analytics involves the process of collecting, ana-
lyzing, and reporting of data generated by learners in an
education setting. It optimizes learning and the environ-
ment by gaining insights into the learning behavior and/or
learner achievements [39]. Among the several sub-disciplines
that learning analytics transcends across, prediction of aca-
demic performance has received increasing attention in re-
cent years and remains one of the most challenging tasks.
Grade prediction plays a central role in the development

of data-informed approaches for early-intervention strate-
gies and it is therefore important to achieve a low pre-
diction error—errors leading to high false alarms will re-
sult in reduced morale and inefficient allocation of resources
while missed detection often results in sustained poor per-
formance [29]. After grade prediction, at-risk students are
identified as those whose performance satisfy a pre-defined
set of conditions (e.g., those who score below the passing
mark in one or more courses).

1.1 Existing Works for Grade Prediction
Prediction of academic performance in the form of grade
point averages [15], examination grades [13], or academic
achievements [25] can be achieved via a variety of sources.
These sources include (but not limited to) online learning
activities [22, 28, 44], co-curricular activity records [8], de-
mographics [38], and course grades obtained from previous
semesters [13,23,32,34]. While online learning offers numer-
ous opportunities for the exploitation of data associated with
learning behaviors (in the form of clickstreams and/or online
assessment results) [46], many academic institutions still rely
on face-to-face instructions for some courses. Extraction of
learning behaviors for these courses via audio/visual captur-
ing devices may present challenges in terms of technological
capability and privacy concerns. In addition, co-curricular
activity records and demographic profiles may not be readily
available due to the general personal data protection poli-
cies [3]. Therefore, grade prediction using past examination
records as useful features [45] has been the main focus in
recent years since examination results are often made ac-
cessible to policy makers, administrators, instructors, and
student care support personnel involved in developing and
administering intervention strategies.

Machine learning techniques have been proposed to predict
grades of a given (pilot) course based on those achieved in
historical (prior) courses. These models exploit the temporal
dynamics of student performance across semesters from two
aspects—consistency in academic performance and course
importance [47]. These aspects have been modeled using
a sequential model and the attention mechanism [24], re-
spectively. Sequential models such as the long short-term
memory (LSTM) has been applied to model long-term de-
pendencies in online interaction [17] and to predict the grade
point average of a given semester from marks obtained across
various courses [33]. More recently, as opposed to predict-
ing the aggregated performance for a semester, the LSTM
was trained to predict the grade of each course [13]. In
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Figure 1: The proposed academic achievement-based grade prediction (A2GP) architecture.

this model, a vector representation of course grades achieved
in each of the previous semester was used as input for the
LSTM model.

Notwithstanding the above, a course-specific regression
model that predicts the grade of a pilot course as a sparse
linear combination of prior grades has been proposed [35].
Results presented highlight the detrimental effects of miss-
ing regressors for students who have yet attempted an “im-
portant” prior course. While modeling of the temporal dy-
namics of student performance along with the incorporation
of the attention mechanism for grade comparison between
students has been proposed [30], the intrinsic formulation of
LSTM limits its ability to model short-term consistency [21].
Despite the use of knowledge distillation [27], such models
do not consider peer performance among students.

In recent years, graph convolutional network (GCN) have
been employed to generate meaningful feature representa-
tions. In contrast to the use of grade vectors in tempo-
ral modeling approaches, these representations model the
transitions of grade distributions between courses across
semesters [12]. Here, the performance of each student is
considered for courses taken consecutively. More recently,
nodes representing either students or courses have been used
to construct student-course, student-student, and course-
course graphs [23]. These graphs consist of edge links com-
puted via grade distribution similarities; they do not model
both the long- and short-term sequential information of each
student.

While the above techniques achieve good prediction perfor-
mance, the models are optimized independently and do not
consider all the above-mentioned aspects jointly. A holistic
approach toward predicting academic performance is impor-
tant and motivated, in part, by Walberg’s theory of educa-
tional productivity. Apart from external variables such as
quality of instruction and climate, student-centric variables
that include prior achievement and student cognitive capac-
ity will influence the academic performance of an individ-

ual [43].

1.2 The Proposed Model Architecture
Inspired by student-centric factors highlighted in Sec-
tion 1.1, we propose an academic achievement-based grade
prediction (A2GP) architecture that jointly models the (i)
importance of prior courses, (ii) short-term consistency in
academic performance across previous semesters, and (iii)
benchmarking of student performance relative to their peers.
With reference to Figure 1, the first module of the proposed
architecture comprises an attention-based LSTM network
that encodes the influence of prior course grades on the pilot
course. This module is based on existing sequential mod-
els (such as LSTM) that have been employed to capture
the temporal dynamics of past academic performance [13].
These models are motivated by studies that have established
the association between course orderings and academic per-
formance [9,26]. Such an association is not surprising given
that the constructivist approach has often been adopted for
curriculum design, resulting in the influence of various prior
courses on a pilot course [37]. Such a constructivist strategy
has also shown to be effective in terms of academic achieve-
ment [2, 18] and improving content mastery that requires
higher cognitive levels [1]. Temporal modeling of perfor-
mance using LSTM is also in line with the Tinto’s Student
Integration Model which posits that persistence in higher ed-
ucation is a temporal process [5], i.e., the ability to achieve
learning outcomes of fundamental courses will influence that
of other advanced or related courses. This is further justi-
fied if the prior course serves as a pre-requisite for the pilot
course.

Compared to existing models that model long-term dynam-
ics of academic achievements, the second module consists
of a new short-term gated LSTM (STG-LSTM) that mod-
els short-term consistency in academic performance for each
student. This module is motivated by the need to consider
academic momentum that highlights the influence of work-
load (which varies across courses and semesters) on aca-
demic performance and the achievement of learning out-

196



comes [14]. Short-term consistency may also arise from aca-
demic performance being highly dependent on multiple (yet
often convoluted) factors such as socio-economic, psycho-
logical, and environmental conditions that a student may
face in the recent (past) semesters [36]. From developmen-
tal perspective, knowledge inquiry is known to evolve over
a series of micro-development resulting in short-term varia-
tions in performance [7]. This also aligns with findings that
demonstrate the positive effect of mastery and performance
goals on short-term and long-term consequences of student
achievement [10]. The identification of these patterns would
therefore lead to more effective grade prediction.

Beyond representing the performance of a student over time,
students are often deemed as at-risk if their performance
is consistently below par compared to their peers. In par-
ticular, for courses perceived as easy which most students
achieve a high grade, achieving a reasonable grade (e.g.,
Grade C) may still constitute as at-risk when most peers
achieved a Grade A. Conversely, a Grade C may not be
inferred as being at-risk when most peers achieved simi-
lar (or lower) grades for a course perceived by most as
challenging. Accounting for such benchmarking of grades
is important since such relative performance has shown to
achieve lower grade prediction bias than one based on ab-
solute grades [4, 41, 42]. In light of the above, the third
module involves a graph convolutional network that mod-
els grade differences between student pairs across all prior
courses taken by them. This module exploits information
derived from students who perform similarly/dissimilarly
across commonly taken courses and models such represen-
tation that describes the relative performance between stu-
dents.

For grade prediction, learned academic achievement repre-
sentations associated with temporal dynamics of past perfor-
mance, short-term performance consistency of an individual,
and relative performance against peers are synthesized via a
weighted fusion layer. We formulate a learnable parameter
in this layer that determines the relative emphasis of factors
influencing the pilot course grade. Learning the weightings
for these academic achievement representations is important
to model the underlying characteristics of a dataset that
contribute to the joint optimization of the model. Perfor-
mance of the proposed A2GP architecture is evaluated over
three student performance datasets obtained over seventeen
courses from over twenty thousand students in a university.
Results obtained highlighted that the A2GP model improves
the performance of LSTM and GCN by 19.0% and 63.3%,
respectively, in terms of F1 score for at-risk classification.

This paper is organized as follows: the problem statement
and background formulations are described in Section 2.
Technicalities of the proposed A2GP model are detailed in
Section 3. Details of the datasets, as well as, the compari-
son analysis with discussions are described in Section 4 while
Section 5 concludes the paper.

2. PRELIMINARIES
2.1 Problem Statement
The problem of grade prediction and at-risk detection from
prior grades can be described by defining, for each student
index i, the exam grade xi,l,s achieved for a prior course l

during semester s. Denoting L as the total number of prior
courses, a 1× L grade vector for semester s is given by

xi,s =
[
xi,1,s, . . . , xi,L,s

]
, (1)

where xi,l,s = ϕ is a null element corresponding to an unreg-
istered course l in that semester. The prior course grades of
a student across S number of semesters under consideration
can then be represented as an L× S matrix

Xi =
[
xTi,1, . . . ,x

T
i,S

]
. (2)

With the above, columns of Xi form a sequence of vectors
that encapsulates the ability of a student to achieve learning
outcomes (measured by grades). Given the database of (stu-
dent, course, grade) up to semester S, the aim is to predict
grades for each student on courses he/she will be enrolling
in the coming semester.

2.2 Modeling Long-term Dynamics of
Academic Performance using LSTM

To model the academic performance across semesters, Xi

serves as features for the prediction of course grades in the
forthcoming examinations [13]. The use of Xi, therefore,
allows the model to account for courses that a student has
re-attempted. An LSTM unit in semester s is described by

hi,s = LSTM(xi,s,hi,s−1), (3)

where the above compact form is defined by

fi,s = σ(Wf · xi,s + Vf · hi,s−1 + bf ), (4a)

ui,s = σ(Wu · xi,s + Vu · hi,s−1 + bu), (4b)

oi,s = σ(Wo · xi,s + Vo · hi,s−1 + bo), (4c)

c̃i,s = σ(Wc · xi,s + Vc · hi,s−1 + bc), (4d)

ci,s = fi,s ⊙ ci,s−1 + ui,s ⊙ c̃i,s, (4e)

hi,s = oi,s ⊙ tanh(ci,s). (4f)

The variables u, f , o and their associated subscripts denote
the update, forget, and output gates, respectively. These
control gates regulate information to be stored in the cell
state ci,s in (4e) allowing LSTM to achieve long-term mem-
ory [11]. The weight matrix for input xi,s and hidden state
hi,s−1 in different gate units are denoted, respectively, by
matrices W and V . The variables c̃i,s and b are defined,
respectively, as as the cell input activation vector and bias
while σ and tanh are the activation functions. The sym-
bol ⊙ denotes element-wise multiplication. The ability of a
student to achieve the course learning outcomes is therefore
encoded in hidden states hi,s, which are then updated when
grades for the new courses are made available. Predicted
grade ŷi is then achieved via a fully-connected (FC) layer

ŷi = w · hTi,S + b, (5)

where w and b are defined, respectively, as the weight vector
and bias scalar for the FC layer.

2.3 Modeling Relative Performance using
GCN

GCN has been applied to model the interactions between
nodes in a graph network. As opposed to [12], where the
GCN models transitions between courses across semesters,
we define A as the adjacency matrix such that its elements
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Figure 2: Modeling course importance.

Ai,j denotes the similarity of prior grades between two stu-
dents—a value of 1 is assigned between students i and j
having exactly the same prior grades. The model incor-
porates a feature matrix F with elements corresponding to
first attempt grades that a student obtained over the past
semesters for each prior course. Multiple layers of GCNs
are then applied to A and F with the (g + 1)th layer being
computed via [20]

Z(g+1) = σ
(
D− 1

2AD− 1
2Z(g)W(g)

)
. (6)

Here, D is the normalization matrix, Z(g) is the input to the
next layer, and W(g) is the weight matrix. With the input
of the first GCN layer being Z(0) = F, the output of the last
GCN layer is the student-specific graph embedding matrix

Z(G) =
[
zT1 , . . . , z

T
K

]T
, (7)

whereG is the number of GCN layers. Each node embedding
(row) vector zi for each node (student) then serves as an
input to the subsequent FC layer for grade prediction.

3. THE PROPOSED A2GP MODEL
3.1 Modeling Course Importance
Inspired by the attention mechanism in sequence-to-
sequence models [24], the first module comprises an LSTM
layer and the attention-LSTM layer to model course impor-
tance. To formulate the above and as shown in Figure 2,
columns of the grade matrix Xi in (2) serve as input se-
quences to the LSTM and the ability to achieve the course
learning outcomes is therefore encoded in hidden states hi,s
defined in (4f).

The last hidden state hi,S will be used to initialize the hid-
den state of the subsequent attention-LSTM layer. This
layer is necessary to account for the influence of the various
prior courses on the pilot course of interest. The attention
mechanism in this layer can be described by first defining

h̃i,s =

{
hi,S , if s = 1;

Wh ·
[
αi,s−1 ⊙ hi,s−1;h′

i,s−1

]T
, if s > 1

(8)

as the hidden activation vector, where hi,s−1 is the hidden
state of the LSTM layer and h′

i,s−1 is the hidden state of the
attention-LSTM layer. Here, Wh is the weight matrix that
is to be trained, and the prime notation denotes for the at-

tention layer. Therefore, the hidden activation vector h̃i,s is

tanh
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Figure 3: Modeling consistency in student short-term perfor-
mance.

first initialized as the last hidden state hi,S from the previ-
ous LSTM layer before being updated based on the learned
semester-aware attention. Defining Wα as the weight ma-
trix, the semester-aware attention in (8) for semester s is
given by

αi,s−1 = Softmax
(
Wα[hi,s−1;h′

i,s−1]
)
. (9)

The hidden state for the next unit h′
i,s (of this attention

layer) is then computed using student prior grade xi,s and

the hidden activation vector h̃i,s such that

h′
i,s = Attention-LSTM(xi,s, h̃i,s), (10)

where the Attention-LSTM(xi,s, h̃i,s) is defined in the same
form of LSTM(xi,s,hi,s) in (3) except for the additional
attention and hidden activation vector computed in (8)
and (9).

We note from (8) that h̃i,1 is generated from hi,S , which en-
codes the academic performance over past semesters. This
allows the attention-LSTM layer to incorporate both aggre-
gated and semester-based information simultaneously when
computing the semester-aware attention for each semester.
The last hidden state h′

i,S of the attention-LSTM layer is
then used along with short-term performance consistency
and the relative performance representation (described be-
low) for the grade prediction.

3.2 Modeling Consistency in Short-term
Performance

Modeling short-term variations in academic performance is
necessary since such variations may result from active (or
the lack of) intervention strategies administered by the aca-
demic institution or changes in social-economic status that
distracts students away from their academic pursuit [36]. In
the second module, we formulate a short-term gated LSTM
that employs, for each semester s, the average examination
score computed across three consecutive semesters s − 1, s
and s+ 1, i.e.,

ri,s =





[0, xi,s, xi,s+1] , if s = 1;

[xi,s−1, xi,s, xi,s+1] , if 1 < s < S;

[xi,s−1, xi,s, 0] , if s = S,

(11)

where xi,s is the average of non-empty elements in xi,s de-
fined in (1). Short-term performance averages are then em-
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ployed to update information in the memory cell via

gi,s = tanh(Wg · ri,s + Vg · ci,s−1 + bg), (12a)

c′′i,s = gi,s ⊙ f ′′i,s ⊙ c′′i,s−1 + u′′
i,s ⊙ c̃′′i,s, (12b)

h′′
i,s = o′′

i,s ⊙ tanh(c′′i,s), (12c)

where Wg and Vg are the weight matrices and bg is the bias
term for the short-term gate gi,s. The formulations of f ′′i,s,
u′′
i,s, o

′′
i,s, the input activation function c̃′′i,s, and the hidden

state h′′
i,s are identical to those defined in (4). As shown

in (12b), both gi,s and the forget gate f ′′i,s control informa-
tion updates from previous cell state c′′i,s−1. The last hidden
state h′′

i,S is used with other academic achievement represen-
tations in the fusion layer for grade prediction.

To gain insights into the above and with reference to Fig-
ure 3, the new short-term gate defined in (12a) utilizes ri,s
and c′′i,s−1 to determine how short-term consistency in per-
formance affects the cell state update. As opposed to (4a)
where the sigmoid function is used, we employ tanh activa-
tion in (12a). This is to avoid sharp damp gradients during
back propagation, gradient saturation, and gradient updates
propagating in different directions when the sigmoid func-
tion is used [16, 31]. In addition, −1 ≤ gi,s ≤ 1 allows the
module to model both the positive and negative relationship
between performance variation and the cell states.

We also note from (12b) that the previous cell state c′′i,s−1

is weighted by both the forget gate fi,s and the short-term
gate gi,s. As per conventional LSTM described by (4a),
f ′′i,s determines the amount of information to discard from
the cell. The short-term gate incorporating ri,s and c′′i,s−1

encapsulates information pertinent to both short-term per-
formance variation and long-term past performance before
being passed to the next cell state. Unlike LSTM, where
both the input activation c̃′′i,s and the previous cell state
c′′i,s−1 are weighted by a gate learned from the current input
and the previous hidden state in (4e), only c′′i,s−1 is weighted
by gi,s and f ′′i,s in (12b). This is because the input gate u′′

i,s

does not cater for the removal of information from the cell
state. Therefore, weighing the input gate u′′

i,s by gi,s in the
second term of (12b) is ineffective. Furthermore, applying
such weighting on the output gate o′′

i,s may result in relevant
information being lost in the next hidden state.

3.3 Modeling Relative Performance Against
Peers

The third module models the relative performance between
students by employing the graph convolutional layer. We
first define a K ×L prior score matrix across all students as

F =
[
x̃T1 , . . . , x̃

T
K

]T
, (13)

where K is the total number of students under consider-
ation and x̃i = [x̃i,1, . . . , x̃i,L] with elements x̃i,l being the
first-attempt grade of the ith student for course l. Unlike (2)
where grades across every semester are used in the first mod-
ule, only first attempts are used for the construction of peer-
performance graph since they better represent the ability of
the student in achieving the learning outcome compared to
his/her peers. In addition, the {i, j}th element in the pro-

posed K ×K adjacency matrix A is given by

Ai,j =





0, if ||Ni,j || = 0;

ρ−1
i,j =

(∑
l∈Ni,j |x̃i,l−x̃j,l|

||Ni,j ||

)−1

, if ||Ni,j || > 0;

1, if x̃i = x̃j .

(14)
Here, we define Ni,j as the set of common courses that stu-
dents i and j have taken and ∥Ni,j∥ as the number of such
courses. Therefore, ρi,j denotes the average grade differ-
ence that students i and j have achieved for these common
courses. The above formulation implies that elements of the
adjacency matrix 0 ≤ Ai,j ≤ 1 correspond to the degree of
similarity in academic performance between two students.

With A and F, the GCN encodes peer performance via
graph representation Z(g) computed using (6). We apply

two GCN layers and the ith row of Z(2) (denoted by zi)
constitutes the graph representation corresponding to the
relative performance vector for each node (i.e., for the ith
student).

3.4 Weighted Fusion Layer and Grade
Prediction

To determine the weighting for each academic achievement
representation highlighted in Sections 3.1-3.3, a weighted
fusion layer is employed. The fusion weight is learned by
employing statistics associated with prior and semester av-
erage grades. More specifically, we define, for each student
i, a 1× 4 vector

di =
[
µi, σi, µ

′
i, σ

′
i

]
, (15)

where µi and σi are the mean and standard deviation (STD)
of non-empty elements in (2). The variables µ′

i,j and σ′
i,j

denote the mean and STD of

xi =
[
x′i,1, . . . , x

′
i,S−1

]
, (16)

where x′i,s is the average of non-empty elements across two
semesters xi,s−1 and xi,s. We note from the above that
di incorporates statistical properties associated with both
long- and short-term consistency of a student. These fea-
tures play an important role in influencing the contribution
of each academic achievement representation h′

i,S , h′′
i,S , and

zi to the predicted grade. This dependence is expected given
the student prior grade and the short-term consistency have
been used as the input to each module to learn the repre-
sentations.

To determine the weights in the fusion layer, we first define
p = 1, 2, 3 as the index for the academic achievement repre-
sentations. Given di, these weights are learned via an FC
layer given by

βi,p = wp · dTi + bp, (17)

where wp and bp are the trainable weight vector and bias
for the pth academic achievement representations. The pre-
dicted grade ŷi for student i is then given by

ŷi = w ·
[
βi,1 × h′

i,S ;βi,2 × h′′
i,S ;βi,3 × zi

]T
+ b, (18)

where w and b are defined, respectively, as the weight vector
and bias scalar for the predictor. We employed the mean-
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Algorithm 1 The proposed A2GP architecture

Input: Input sequence Xi =
[
xTi,1, . . . ,x

T
i,S

]
,

Output: Prediction score ŷi,
Module 1: Modeling course importance:

1: for student i← 1 to K do
2: for s← 1 to S do
3: h′

i,s ← Attention-LSTM(xi,s, h̃i,s) using (10)
4: end for
5: end for

Module 2: Modeling consistency in student short-term
performance:

6: for student i← 1 to K do
7: for s← 1 to S do
8: ri,s ← (xi,s−1, xi,s, xi,s+1) using (11)
9: h′′

i,s ← Short-term gated LSTM(xi,s, ri,s)
using (12)

10: end for
11: end for

Module 3: Modeling relative performance against peers:
12: F = [x̃T1 , . . . , x̃

T
K ]T

13: for student i← 1 to K do
14: for student j ← 1 to K do
15: Ai,j ← (x̃i, x̃j) using (14)
16: end for
17: end for
18: Z ← A,F using (6)

Module 4: Weighted-fusion:
19: for student i← 1 to K do
20: di = [µi, σi, µ

′
i, σ

′
i]

21: βi,p = FC(di) using (17)
22: ŷi ← FC([βi,1× h′

i,s, βi,2× h′′
i,s, βi,3× zi,s]) using (18)

23: end for
24: return ŷi

square error loss function

L =
1

K

K∑

i=1

(yi − ŷi)2 (19)

to compute the prediction loss for a total of K students.
Similar to [13] [33], a student is classified as at-risk if his/her
predicted grade for the pilot course is lower than the pre-
defined threshold T , i.e., the classification label is computed
by

φ̂i =

{
At-risk, if ŷi < T ;

Non at-risk, if ŷi ≥ T.
(20)

In line with Figure 1 that shows the proposed A2GP ar-
chitecture, Algorithm 1 provides a formal description of the
proposed model.

4. RESULTS AND DISCUSSION
4.1 Datasets
Three datasets have been collected from various depart-
ments in a local university with institutional review board
(IRB) approval that includes the personal data protection
policies. Since other open-source datasets employed for
grade prediction do not include past snapshots of exami-
nation records, performance of the proposed A2GP model
and baseline architectures is evaluated on the datasets from
only this university. Seventeen courses across these datasets

Table 1: Number of students in the training and testing set

Department Course
index

Training set Testing set

S A (%) S A (%)

C1,1 1241 13.54 249 6.83

Department 1

C1,2 2459 1.75 384 1.04

C1,3 1314 9.97 261 3.83

C1,4 2448 5.35 357 3.92

C1,5 1524 7.68 312 3.85

C1,6 1000 4.70 190 4.74

Total 9986 6.38 1753 3.76

C2,1 1001 12.89 223 8.07

Department 2

C2,2 600 12.33 98 7.14

C2,3 1029 4.76 355 2.25

C2,4 1034 4.84 205 2.44

C2,5 987 6.69 167 3.59

C2,6 1842 7.76 409 3.67

Total 6493 7.87 1457 4.05

C3,1 1001 12.89 133 9.02

Department 3

C3,2 600 12.33 84 8.33

C3,3 1029 4.76 245 3.27

C3,4 1842 7.76 192 5.21

C3,5 165 29.70 32 31.25

Total 4637 9.58 686 6.85

S: number of students
A: percentage of at-risk students

and their corresponding detailed information are illustrated
in Table 1. The number of students denoted by “S” and
the percentage of at-risk students denoted by “A” in each
course for training and testing are also tabulated. These core
courses have been offered to all undergraduates across the
three engineering departments during their freshman and
sophomore years. These datasets include grades obtained
by students who are enrolled from academic year (AY) 2015
to 2019. In our context, the pre-defined threshold is T = 40
which refers to the passing mark of the university.

To reflect real-world deployment, we predict course grades
using examination grades obtained in previous semesters. In
particular, the model was trained using prior courses from
AY2015 to 2018 and to predict grades for courses registered
in AY2019. In this work, the prior grade matrix Xi is of
dimension 20 × 10 representing twenty prior courses and
ten semesters across our dataset. While the undergradu-
ate degree program requires eight semesters to complete,
ten semesters were included since some students require a
longer duration to graduate.
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4.2 Implementation and Performance
Metrics

The proposed A2GP model is trained using the Adam opti-
mizer [19]. Hyper-parameters for each model were initialized
using the Xavier initialization method [6] and the activation
function is a rectified linear unit (ReLU). Adopting a sys-
tematic approach [40], the learning rate is first initialized
with a small value, e.g., 1 × 10−7, before being increased
exponentially to a pre-defined upper-bound, e.g., 10. An
optimal learning rate for the model is then determined from
the range in which the model experiences the highest rate
of decrease in model loss. This corresponds to 0.8× 10−3 in
our experiments.

Performance of the grade prediction models was evaluated
via the mean absolute error defined by

MAE =
1

N

N∑

i=1

|yi − ŷi|, (21)

which describes the average absolute error between the pre-
dicted and target grades for each grade prediction model.
Classification performance of at-risk student detection was
evaluated using the F1 score

F1 =
2PR

P +R
, (22)

which is computed from the recall (R) and precision (P)
scores. The recall score quantifies the number of correct
at-risk predictions out of all actual at-risk students in the
dataset while precision quantifies the number of correct at-
risk predictions out of all detected at-risk students.

4.3 Performance Comparison in Terms of
MAE and F1

While many grade prediction algorithms exist, we focus on
models that rely only on prior grades obtained from previ-
ous semesters. This is important in our context since we
cannot assume that all courses are offered online (for the
extraction of clickstreams) or that we have access to audio-
visual information in a physical classroom setting. To this
end, we evaluate the proposed A2GP model on each pilot
course by comparing its performance with two widely used
classification algorithms (logistic regression (LR) and sup-
port vector machine (SVM)), and the LSTM [13]. We have
also implemented two variants of the LSTM-based model
(attn-LSTM [24] and STG-LSTM) and the GCN [20]. The
attn-LSTM was implemented using (8)-(10) while the STG-
LSTM is defined by (11)-(12). The GCN was modified
from [20] by highlighting the relative performance using (14).

The performance of the models for each department in terms
of MAE defined by (21) is tabulated in Table 2. With the
predicted grades, at-risk classification performance in terms
of the F1 score defined by (22) is tabulated in Table 3 for
all predictive models under consideration. Results highlight
that the proposed A2GP architecture achieves the lowest
average MAE and highest average F1 score than all base-
line models across all departments. Compared to the vari-
ants of LSTM, the LR and SVM models suffer from poor
performance for since these two models do not consider the
temporal information that is important for grade prediction.

Table 2: Performance comparison of different models using
MAE (a lower value indicates better performance)

Methods Dept. 1 Dept. 2 Dept. 3 Average

LR 0.121 0.137 0.123 0.127

SVM 0.124 0.138 0.121 0.128

LSTM [13] 0.113 0.129 0.111 0.118

attn-
LSTM [24]

0.109 0.128 0.120 0.119

STG-LSTM 0.102 0.124 0.116 0.114

GCN [20] 0.109 0.121 0.115 0.115

The proposed
A2GP model

0.104 0.119 0.109 0.111

Dept.: Department

It is also interesting to note that all models achieve lower
grade prediction and at-risk classification performance for
Departments 2 and 3 compared to Department 1. This is
because Department 1 has a mandatory set of courses for
all students while students from Departments 2 and 3 have
the freedom to select courses not offered by their respec-
tive schools. Due to this difference in the course selection
procedure, there are fewer commonly taken courses between
students in Departments 2 and 3. Since GCN determines the
relative performance of a student in comparison to his/her
peers, an insufficient number of overlapping courses makes it
more challenging to predict the grades for the pilot courses.
On the same note, since there exist various combinations
of courses taken by students from Departments 2 and 3,
the LSTM-based models (attn-LSTM and STG-LSTM) are
unable to identify similar sequences of temporal information
among students. Therefore, diversity in the prior courses re-
sults in the poor prediction of a common pilot course grade.

In terms of at-risk classification for Department 1, the attn-
LSTM model (with an F1 score of 0.324) achieves an ap-
proximate 17% improvement compared to LSTM. This im-
provement is attributed to attn-LSTM being able to detect
the prior courses with higher importance compared to LSTM
that equally weighs all courses to determine the grade for the
pilot courses. The STG-LSTM model, on the other hand, ac-
counts for the short-term fluctuation of student performance
during the update of hidden states. This is in contrast to
LSTM that updates the hidden state with equal importance
applied to previous hidden states irrespective of any varia-
tions in performance. This results in a 10% reduction in the
average MAE and 30% increase in an average F1 score for
STG-LSTM over that of LSTM.

With regard to the non-temporal approach, since the GCN
model constructs an input graph based on grade differences
between student pairs (for identifying relative performance),
variance of grades within a given dataset would determine
the extent of distinguishability among the students. Figure 4
shows the relationship between the F1 score obtained using
GCN and the standard deviation σCi of the prior grades for
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Table 3: At-risk prediction performance using F1 score (a higher value signifies better performance)

Department
index

Course
index

LR SVM LSTM [13]
attn-

LSTM [24]
STG-LSTM GCN [20]

The proposed
A2GP model

Department 1

C1,1 0.372 0.341 0.293 0.4 0.457 0.375 0.439
C1,2 0.222 0.222 0.24 0.308 0.4 0.286 0.444
C1,3 0.345 0.222 0.348 0.381 0.438 0.308 0.48
C1,4 0.174 0.154 0.34 0.218 0.381 0.211 0.368
C1,5 0.313 0.294 0.25 0.435 0.467 0.313 0.526
C1,6 0.143 0.222 0.143 0.2 0.154 0 0.286

Average 0.261 0.243 0.269 0.324 0.383 0.249 0.424

Department 2

C2,1 0.291 0.314 0.241 0.321 0.290 0.276 0.328
C2,2 0.235 0.264 0.3 0.174 0.25 0.111 0.348
C2,3 0.286 0.264 0.318 0.273 0.19 0.231 0.32
C2,4 0 0 0.231 0.095 0.286 0 0.08
C2,5 0 0.167 0.182 0.222 0.133 0 0.273
C2,6 0.313 0.3 0.341 0.114 0.217 0.211 0.28

Average 0.187 0.218 0.269 0.200 0.228 0.138 0.271

Department 3

C3,1 0.214 0.244 0.267 0.353 0.357 0.308 0.4
C3,2 0.3 0.221 0.353 0.308 0.174 0.25 0.222
C3,3 0.253 0.244 0.353 0.154 0.4 0.333 0.4
C3,4 0.1 0.164 0.235 0.118 0.077 0 0.167
C3,5 0.221 0.2 0.571 0.615 0.621 0.444 0.606

Average 0.218 0.215 0.356 0.310 0.326 0.267 0.359

Average 0.222 0.226 0.295 0.276 0.311 0.215 0.351
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Figure 4: Relationship between F1 score of modeling relative
performance against peer and average of σi.

all students. A smaller value of σCi denotes a high similarity
in performance among all students taking that course, im-
plying that it is challenging for GCN to differentiate at-risk
student performance from well-performing students (low F1
score). Therefore, we note that the ability of GCN for grade
prediction is dependent on the underlying statistical prop-
erties of a dataset, resulting in varying performance across
the courses for Department 1. We also note that GCN is not
able to detect any at-risk students for some of the courses
(reflected by the F1 score of zero in Table 1) since there were
only few students who were actually at-risk. With most of
the students achieving good grades in these courses, the per-
formance variation among students is minimal, resulting in
GCN not being able to identify relative performance differ-
ences.
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Figure 5: Relationship between F1 score of modeling short-
term performance and average of σ′

i.

Compared to the above models, the proposed A2GP model
achieves the lowest average MAE of 0.111 and highest aver-
age F1 score of 0.351 across the three departments. These
results highlight the importance of synthesizing the three
dimensions associated with course importance, performance
consistency, and benchmarking. Although the performance
of individual modules (attention module and short-term
gated module) are modestly higher in comparison to LSTM,
A2GP includes a weighted fusion that adaptively determines
the importance of each module depending on the relevance of
the academic achievement representations to each dataset.
Figure 6 illustrates the performance of our proposed A2GP
model in terms of F1 score with a weighted fusion layer (im-
plemented via (18)) or an equal fusion layer (where β1=
β2=β3 = 1). It is important to highlight that the weighted
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Figure 7: Ablation of the proposed architecture.

fusion layer achieves significantly higher F1 scores for several
courses with the remaining courses exhibiting similar perfor-
mance as that of the equally weighted configuration. In par-
ticular, A2GP with weighted fusion (implemented via (17))
achieves an improvement of 0.263 F1 score for course C1,2

over that of the equally fusion strategy.

As described in Section 3.4, the underlying statistics of stu-
dent prior exam grades di have been used to learn the fusion
weights βi,p. Figure 5 shows the variation of F1 with the
mean of STD σ′ defined by averaging σ′

i according to (15)
over all students. Results plotted in this figure was gener-
ated by evaluating STG-LSTM over all courses offered by
Department 1. A high value of σ′ implies many students in
this course exhibit short-term performance fluctuations in
the past semesters. It can be seen that the F1 score reduces
with increasing σ′. This implies that higher fluctuations
in short-term student performance will pose a challenge for
the model to detect at-risk students. To address limita-
tions faced by individual models, the weighted fusion layer
in the A2GP model de-emphasizes the aspects affected by
the dataset while emphasizing other academic achievement
representations which, in turn, aid the grade prediction pro-
cess.

4.4 Ablation Test
Figure 7 shows results associated with an ablation test per-
formed on the A2GP model. Here, at-risk prediction per-

formance is determined when each of the academic achieve-
ment representation is removed from the A2GP architec-
ture. Among all three representations, the average perfor-
mance across all courses reduces most significantly when
attn-LSTM, i.e., h′

i,s is removed. This is due to the im-
pact of identifying course importance on the entire cohort
since constructivist approach is often adopted during cur-
riculum development. The STG-LSTM model, on the other
hand, is student-specific—fluctuation in individual perfor-
mance depends on unique circumstances not generalizable
for the other students. Therefore, the A2GP model is less
sensitive to STG-LSTM compared to attn-LSTM. Remov-
ing GCN results in the least difference in prediction perfor-
mance since different courses exhibit varying degree of grade
spread, with some lacking sufficient information for GCN to
discern among student performance resulting in an inappro-
priate representation. Nonetheless, incorporating peer per-
formance will still be beneficial to A2GP model as seen in
Figure 7.

5. CONCLUSIONS AND FUTURE WORK
An academic achievement-based grade prediction architec-
ture is proposed for grade prediction and at-risk student de-
tection. To utilize three important aspects in student prior
performance—course importance, short-term performance
fluctuation, and relative performance against peers, three
modules have been formulated and fused. The first mod-
ule learns the prior grade representation along with course
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importance by employing the attention-based LSTM model.
The new STG-LSTM in the second module is motivated
by the need to model short-term fluctuation in academic
performance. The third module is motivated by the need
to model relative performance when detecting at-risk stu-
dent—students are often deemed as at-risk if their perfor-
mance is consistently below par compared to their peers. We
evaluated the prediction performance of the proposed A2GP
model by comparing its performance with baseline models.
Results obtained showed that the proposed architecture out-
performs existing at-risk detection algorithms across seven-
teen undergraduate courses from three departments. Im-
proving the F1 score in at-risk student detection facilitates
the administration of pre-emptive interventions by instruc-
tors, counsellors, or pastoral care managers.

There are possible avenues for future work. First, A2GP has
been optimized for use with prior examination grades and
has not been validated for online learning activities. Be-
havioral features associated with the consumption of online
assets may provide additional (and often complementary)
information that may aid grade prediction. Secondly, fur-
ther investigations can be performed on the fusion weights
defined by (17). These weights may offer insights into the
importance of different representations influenced by char-
acteristics that govern the cohort performance within each
course.
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ABSTRACT
In Automated Essay Scoring (AES) systems, many previous
works have studied group fairness using the demographic
features of essay writers. However, individual fairness also
plays an important role in fair evaluation and has not been
yet explored. Initialized by Dwork et al. [10], the fundamen-
tal concept of individual fairness is “similar people should
get similar treatment”. In the context of AES, individual
fairness means that “similar essays should be treated sim-
ilarly”. In this work, we propose a methodology to mea-
sure individual fairness in AES. The similarity of essays can
be computed using the distance of the text representation
of essays. We compare several text representations of es-
says, from the classical text features, such as BOW and TF-
IDF, to the more recent deep-learning-based features, such
as Sentence-BERT and LASER. We also show their per-
formance against paraphrased essays to understand if they
can maintain the ranking of similarities between the original
and the paraphrased essays. Finally, we demonstrate how
to evaluate the performance of automated scoring systems
models with regard to individual fairness by counting the
number of pairs of essays that satisfy the individual fairness
equation and by observing the correlation of score differ-
ence with the distance of essays. Our analysis suggests that
the Sentence-BERT, as the text representation of the essays,
and Gradient Boosting, as the score prediction model, pro-
vide better results based on the proposed individual fairness
evaluation methodology.

Keywords
Individual Fairness, Automated Essay Scoring System, Dis-
tance Metric, Rank Evaluation

1. INTRODUCTION
Automated Essay Scoring (AES) systems have been widely
used in a vast number of educational institutions [25, 26].
However, there is a growing concern about the fairness is-
sues in such a system so that no student should be treated
unfairly [4, 5, 7, 16]. In recent years, many research studies
have explored group fairness in AES with respect to demo-
graphic features, gender, race, socioeconomic status, and na-
tionality of the writers [16]. Bridgeman et al. [4] studied the
fairness of the essay scoring tool e-rater, and observed that
in some cases, human and e-rater scores were incomparable
across some subgroups. In particular, students’ essays from
China tend to get higher scores from e-rater than from hu-
mans. The authors also mentioned that the rankings of sub-
groups would be different if machine scores were substituted
for human scores. Additionally, Burstein and Chodorow [5]
evaluated essays using the Test of Written English (TWE)
and found that Arabic and Spanish speakers received rel-
atively higher scores from humans, while Chinese speak-
ers received higher scores from the machine. Although the
differences between various ethnic groups are generally not
large, they are still notable in some circumstances. Another
study on the fairness of essay scoring system from the An-
alytical Writing Assessment to six subpopulation groups of
GMAT® test takers was conducted in [12]. On the contrary,
this study found that none of the subpopulation groups has
an unfair advantage and is unfairly punished by the system.
In addition, most of the work on automated essay scoring
focuses on the effort of maximizing the agreement with the
human raters, although human scores, which are treated as
the gold standard for training a machine learning model, are
not free from bias [1]. For group fairness, the availability of
demographic features of the students is mandatory. How-
ever, privacy and legal concerns prevent the students’ per-
sonal information from being published, which is the main
limitation in such works.

Besides group fairness, maintaining individual fairness for
each graded essay is also important in AES systems. Ini-
tialized by Dwork et al. [10], the fundamental concept of
individual fairness is that “similar people should get similar
treatment”. In the context of AES, this concept is trans-
formed into “similar essays should get similar treatment”.
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ness evaluation for automated essay scoring system. In A. Mitrovic
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To study individual fairness extensively in AES, we propose
a methodology to assess the performance of automated scor-
ing systems with regard to individual fairness. In our work,
the similarity and dissimilarity of essays are computed using
the distance metrics on the textual feature representation of
essays. We investigate the performance of several vector
representations of the essays, from the classical text fea-
tures, such as Bag-of-Words (BOW) and Term Frequency -
Inverse Document Frequency (TF-IDF), to the more recent
deep-learning-based features, such as Sentence-BERT [21]
and Language Agnostic Sentence Representation (LASER)
[2]. However, these text representations of the essays are
numerical vectors, and it is not easy for humans to inter-
pret such results. Therefore, we highlight the importance of
defining interpretable essay features, such as answer length,
unique word count, spelling errors, and language errors, to
help humans judge whether pairs of essays are similar or not.

The similarity score computed using the distance metric on
the textual feature representation of the essays assigns a nu-
meric value to each pair of essays, and the number of pairs
can be very large. Consider if our dataset contains 1500 data
points, then there will be 1,124,250 unique pairs. It makes
the job of human evaluators in judging the similarity of each
pair practically impossible. Therefore, we present two ways
to compare how the distance metrics perform in measuring
the essay similarities in the presence of this large number of
pairs: firstly, by examining the extreme cases (most similar
and most dissimilar essays), and secondly, by using aggre-
gates of features differences. We further assess the quality
of the essay vector representations and the distance metric
by evaluating their performance against paraphrased essays.

Finally, we assess the performance of automated essay scor-
ing models with regard to individual fairness using the pro-
posed methodology. Firstly, we calculate the percentage of
the number of pairs that satisfy the individual fairness equa-
tion (described in subsection 5.3.2) and observe that differ-
ent text features have different distance distributions that
affect the fairness results. Secondly, we categorize the essays
based on the distance metric and visualize the score differ-
ence between different categories of essays. We observe that
the score difference of more similar pairs is lower than the
score difference of the less similar ones, as expected.

To the best of our knowledge, this is the first work that ad-
dresses individual fairness in automated essay scoring sys-
tems. The rest of the paper is organized as follows. In
Section 2, we discuss the problem statement. In Section 3,
we discuss the individual fairness assessment methodology
for AES. Sections 4 and 5 cover the experimental settings
and evaluation results, respectively. The paper is concluded
in the last section with future directions.

2. PROBLEM STATEMENT
In this work, we aim to evaluate individual fairness in Auto-
mated Essay Scoring (AES) systems. Individual fairness in
AES means that“similar essays should be treated similarly”,
which raises several fundamental questions as follows.

1. How to define similar essays?

(a) How to measure similarity between essays? If the

similarity is computed using distance metrics on
the text representation of essays, which text rep-
resentation is good enough and which distance
metric should be used?

(b) How to make the evaluation of the distance metric
interpretable for humans?

(c) Are there any limitations to the text representa-
tions of the essays?

2. How to define individual fairness in AES?

(a) How to define individual fairness in the presence
of a large number of pairs of essays?

(b) Can we define individual fairness using the inter-
pretable features of essays?

3. How to evaluate individual fairness using essays’ sim-
ilarity? Which machine learning model works best for
maintaining individual fairness in essays evaluation?

3. INDIVIDUAL FAIRNESS ASSESSMENT
METHODOLOGY FOR AES

To evaluate individual fairness in AES, we propose an end-
to-end methodology from (i) selecting the text representa-
tion of essays to define the similarity, (ii) evaluating the
performance of distance metrics, to (iii) evaluating the per-
formance of the regression models with regard to individual
fairness.

1. Text Representation Selection. To process the essays
using a machine learning model, we first need to rep-
resent the essays in a vector format. In the field of
Natural Language Processing (NLP), there have been
proposed many methods to transform a text into a
numeric vector, also known as the vector represen-
tation of the text. In this paper, we analyze sev-
eral vector representations of essays, from the classical
text feature, such as Bag-of-Words (BOW) and Term
Frequency-Inverse Document Frequency (TF-IDF), to
the more recent deep-learning-based extracted features,
such as Sentence-BERT and LASER.

2. Distance Metrics Selection. There are many ways to
calculate the distance of two vectors, and the most
common distance metrics for textual data are cosine
distance, Euclidean distance, Manhattan distance, and
Jaccard distance. In our study, we choose cosine dis-
tance since it performs well for textual data, as shown
in previous NLP studies [23, 6, 20].

3. Evaluate Essay Similarity. To evaluate the similarity of
essays using distance metrics, we propose the following
methods.

(a) Define Interpretable Essay Features. The text rep-
resentation of an essay, generated using text rep-
resentation API, provides a numeric vector that is
not interpretable for humans. However, it is im-
portant that humans can also compare whether
two essays are similar or not using interpretable
features. Therefore, we define the interpretable
essay features, which are discussed in detail in
subsection 5.1.1.
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(b) Extreme Cases. In the presence of a large num-
ber of pairs, it is an impossible task for humans
to examine each pair one by one. Therefore, we
suggest a method to get a quick understanding of
the performance of the distance metrics using the
extreme cases based on the distance of essays. In
this context, extreme cases are the most similar
and the most dissimilar pair of essays. We also
visualize the similarity (or dissimilarity) of a pair
based on the interpretable essay features.

(c) Aggregate of Features Differences. Analyzing only
the extreme cases is insufficient to make a con-
crete conclusion, as we can not judge the perfor-
mance of the distance metrics of millions of pairs
of essays only based on the nearest and farthest
pairs. Therefore, to examine all of the essay pairs,
we use aggregated feature differences computed
using the normalized feature values. In this pa-
per, we sampled 30,000 pairs of essays from three
different similarity groups; lowest distant pairs
(most similar), medium distant pairs (moderate
similarity), and farthest distant pairs (most dis-
similar). In each group, we average the score dif-
ference of 10,000 pairs of essays and compare this
average score difference of all three groups. We
visualize the average difference for different fea-
tures that also help in understanding the dataset;
more details are provided in Section 5.1.3.

4. Evaluate the Distance Metric against Paraphrased Es-
says. We further examine whether the text representa-
tion of the essays can recognize paraphrased essays and
maintain their similarity ranking, as the original essay
as well as its corresponding paraphrased essay should
be treated similarly by an individual-fair AES system.
To simulate this process, we compare the distance met-
ric of the original essays and the paraphrased essays,
and compare their similarity ranking. We measure the
ranking quality using the Normalized Discounted Cu-
mulative Gain (NDCG) score [13].

5. Evaluate Individual Fairness. The next step is to evalu-
ate the performance of the scoring models with regard
to the individual fairness measure. Individual fairness
requires that the distance between two individual es-
says’ outcomes is no greater than their distance ac-
cording to the distance metric.

(a) Based on the Individual Fairness Equation. We
count the number of pairs that satisfy the Lips-
chitz mapping function by Dwork et al. [10] and
represent what percentage of essays follows it.

(b) Score Difference vs. Distance of Essays. We study
the correlation of score difference versus the dis-
tance of essays based on their text representation,
as this is a quick method to check whether similar
essays are treated similarly or not. If the system
is fair, then the score difference between essays
must correlate with their distance in the vector
space. The average score difference in the group
of similar essays should also be lower than the
average score difference in the group of dissimilar
essays. The expected condition from the visual-
ization is a left-triangle-shaped (linear increment

in score difference as the distance of essays in-
creases) graph for each scoring model.

4. EXPERIMENTAL SETUP
In this section, we introduce the experimental setup used
in our work. We discuss the dataset, text representation of
essays using several text encoding techniques in NLP, and
regression models to predict the score of the essays that we
use for the evaluation.

4.1 Dataset
We use the Automated Student Assessment Prize (ASAP)
dataset1, hosted by the Kaggle platform, and use the dataset
of prompt 7. These essays were written by Grade-7 students.
The total number of essays in this prompt is 1569 and had
an average length of 187 words. The students were asked
to write a story about a time when they were patient or
about a time when someone they knew was patient or write
a story in their own way about patience. Their answers were
graded according to four rubrics: (i) ideas, (ii) organization,
(iii) style, and (iv) conventions. Each essay was scored by
two human raters on a 0 - 3 integer scale. Final scores were
resolved by adding the rubric scores assigned by the human
raters, resulting in a resolved rubric score between 0 and 6.

4.2 Text Representation of Essays
We use the following text representation methods for gener-
ating the vector feature representation of essays.

4.2.1 Bag-of-Words (BOW)
We first evaluate the performance of the BOW representa-
tion of essays in measuring the similarities between them
since BOW is one of the classical textual features that has
been widely used in NLP. BOW vector is constructed using
a set of n-grams from the text. The n-gram is a contigu-
ous sequence of n words from a given text or speech and
is extensively used in NLP tasks. Specifically, n-grams are
named unigram, bigram, and trigram when n is set to be 1,
2, and 3, respectively. In this paper, we generate our BOW
features using unigram and bigram. For example, from a
sentence ‘Patience is important’, the resulting n-grams are
‘patience’, ‘is’, ‘important’, ‘patience is’, and ‘is important’.

Before creating n-grams, we implemented some text prepro-
cessing techniques on the essays. We removed all non-letter
characters and lemmatized the words using WordNet Lem-
matizer from NLTK (Natural Language Toolkit) python li-
brary [3]. While building the vocabulary for n-grams, we
ignored the terms that appear in less than three documents
to remove the infrequently used terms. As a result, for each
essay, we obtain a feature vector with a length of 14,974.

4.2.2 Term Frequency-Inverse Document Frequency
(TF-IDF)

TF-IDF is a statistical measure that evaluates how relevant
a word is to a document in a collection of documents. TF-
IDF consists of two components, (i) Term Frequency (TF)
that measures how frequently a term occurs in a document,
and (ii) Inverse Document Frequency (IDF) that diminishes

1https://www.kaggle.com/c/asap-aes
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the weight of terms that occur very frequently in the docu-
ment set and increases the weight of terms that occur rarely.
Formally, TF-IDF is defined as follows.

tfidf(t,d) = tf(t,d) × idf(t) (1)

where tf(t,d) is the number of occurrence of term t in doc-
ument d, and according to the scikit-learn documentation,
the idf(t) is computed as,

idf(t) = log

(
1 + n

1 + df(t)

)
+ 1 (2)

where n is the total number of documents and df(t) is the
number of documents that contain term t.

The resulting TF-IDF vectors are then normalized by the
Euclidean norm. The effect of adding “1” to the IDF in the
equation above is that terms with zero IDF, i.e., terms that
occur in all documents, will not be completely ignored. Fur-
thermore, the constant “1” is added to the numerator and
denominator of the IDF as if an extra document was seen
containing every term in the dataset exactly once, which pre-
vents zero divisions. Before creating the TF-IDF vector, we
applied the same text preprocessing techniques on the essays
as the Bag-of-Words (BOW) vector. To create the TF-IDF
vector, we use the scikit-learn library of TfidfVectorizer [18].

4.2.3 Sentence-BERT
We enrich our experiments by including more recent deep-
learning-based features, besides the aforementioned classi-
cal text features. Sentence-BERT, which is introduced by
Reimers and Gurevych (2019), is a modification of the pre-
trained BERT [14] network using Siamese and Triplet net-
work [21]. It converts a sentence into a 768-dimension fea-
ture vector and produces semantically meaningful sentence
embedding. The embedding results can be used for simi-
larity calculation. The Sentence-BERT representation has
been proven to be able to separate the topics in the ASAP
dataset very well [9].

4.2.4 Language-Agnostic Sentence Representations
(LASER)

LASER was released by Facebook to support multilingual
sentence representations to carry out various NLP tasks.
They provide an encoder that was trained on more than
90 languages, written in 28 different scripts [2]. LASER in-
cludes all European languages, many Asian, Indian, Arabic,
and Persian languages, along with numerous minority lan-
guages and dialects. All these languages are encoded by the
same BiLSTM encoder with a shared BPE (Byte-Pair En-
coding) vocabulary. Compared to Sentence-BERT, which
produces a 768 length vector, LASER generates a 1024 di-
mensional sentence vector representation. The pre-trained
LASER model is available online2.

4.3 Regression Models & Evaluation Measures
We trained three regression models to predict essay scores:
(i) Random Forest, (ii) Gradient Boosting, and (iii) Ridge
Regression. We split the dataset into 80% training data and

2https://github.com/facebookresearch/LASER

Table 1: Essay Features

No. Interpretable Essay Features
1 Answer Length (Character counts)
2 Word count
3 Average word length
4 Count of “good” POS n-grams
5 Number of overlapping tokens with the prompt
6 Number of overlapping tokens (including syn-

onyms) with the prompt
7 Number of punctuation
8 Spelling errors
9 Unique words count
10 Prompt – answer similarity score (SBERT rep-

resentation)
11 Prompt – answer similarity score (BOW repre-

sentation)
12 Language errors

20% testing data, and train the models using 5-fold cross-
validation. We evaluate the performance of these models ac-
cording to the three measurement criteria defined in [24]: (i)
The agreement of scores between the human raters and the
computer, which has been a long-established measure of the
performance of automated scoring. The agreement is rep-
resented by the quadratic weighted kappa (QWK) [8]. (ii)
The degradation from human-human score agreement. This
measure helps to understand whether the human-automated
scoring agreement is lower or higher than the human-human
(rater 1 vs. rater 2) score agreement. (iii) The standardized
mean score difference between human and automated scores.

5. EXPERIMENTAL RESULTS
In this section, we analyze the individual fairness of essays to
answer the problem statements mentioned in Section 2. The
fairness analysis is performed by evaluating the performance
of different regression models on different text features.

5.1 Evaluating Essay Similarity
5.1.1 Interpretable Essay Features

In our experiment, to understand how the distance metrics
perform, we need high-level feature representations of the
essays, which make them easy for humans to interpret. We
examine the similarity or dissimilarity of a pair of essays
using twelve interpretable essay features as implemented by
[9], shown in Table 1.

Six out of twelve features of the essays are extracted us-
ing EASE (Enhanced AI Scoring Engine) library3, written
by one of the winners in the ASAP Kaggle competition.
This feature set has been proven to be robust [19]. EASE
produces 414-length features, but we exclude the features
based on BOW vectors since they are not interpretable es-
say features. The considered six features are answer length,
word counts, average word length, the number of “good”
Part of Speech (POS) n-grams, the number of overlapping
tokens between the prompt and the answer, and also the
number of overlapping tokens between the prompt and the
answer but including the synonyms. We generate the other
six interpretable essay features from the answers. Those

3https://github.com/openedx/ease
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are the number of punctuations, the number of spelling er-
rors, unique word count, similarity scores between answer
and prompt using S-BERT and BOW vector representations,
and the number of language errors.

The interpretable essay features help in providing a higher-
level description of each answer. For example, language flu-
ency and dexterity can be estimated by the average word
length and long words count, according to Mahana et al.
[17]. Moreover, Larkey also mentioned that the number of
long words could indicate the complexity of term usage [15].
Meanwhile, unique words count is useful to estimate the
richness of vocabulary in the answer, and it can exhibit stu-
dents’ knowledge to use different words.

We measure the relevancy of an answer against the prompt
using the degree of tokens overlap between the prompt and
the answer (including their synonyms), and the cosine sim-
ilarity value between the answer and the prompt using the
Sentence-BERT and the BOW representation. Besides, we
learn the grammar feature of the text, one of which is by
measuring the number of good n-grams in the essay. The
EASE library extracts the answer into its POS-tags and
compares them with a list of valid POS-tag combinations in
English. It defines the “good” POS n-grams as the ones that
separate high- from low-scoring essays, determined using the
Fisher test [11]. Additionally, we count the number of lan-
guage errors in each answer using Language Tool Python
library4. Finally, we also capture the mechanics of the text,
which include aspects such as the usage of punctuation and
the number of spelling errors found in the answer.

5.1.2 Extreme Cases
We use the dataset that consists of 1569 essays, which means
that we obtain 1,230,096 unique essay pairs. The easiest and
simplest way to get the first insight about the performance of
the distance metrics is by examining the comparison between
the most similar essay pair and the most dissimilar essay
pair. We provide the visualization of each text feature in
Figure 1, which highlights the similarity (or dissimilarity)
for each of the twelve interpretable essay features, using the
normalized feature values. Using this graph, we can observe
in which aspects the essays are either similar or dissimilar.

BOW. Firstly, we inspect the comparison of extreme cases
for BOW features. Figure 1 compares the difference of fea-
ture values between the most similar and the most dissimilar
pair from the BOW representation of the essays. It is evi-
dent that it cannot distinguish the nearest pair and farthest
pair of essays very well based on most of the features. BOW
mainly focuses on the Prompt Similarity BOW feature.

TF-IDF. Secondly, we investigate the comparison of extreme
cases for TF-IDF features. Here, both BOW and TF-IDF
have the same essay pairs for the nearest and the farthest
essays. This makes sense since the TF (Term Frequency) in
the TF-IDF vector is actually the BOW vector, followed by
the multiplication by the inverse document frequency (IDF),
and then normalized by the Euclidean norm. So, it is not
surprising if both of these vectors have similar pairs.

4https://github.com/jxmorris12/language_tool_
python

Sentence-BERT. Next, we investigate the comparison of ex-
treme cases for Sentence-BERT features. As opposed to the
BOW representation, based on our twelve interpretable fea-
tures, Sentence-BERT can provide a more clear distinction
between the nearest and farthest pair for most of the fea-
tures. It is noticeable that for the nearest pair, both values
are almost the same, contrary to the farthest pair, which
shows very different values.

LASER. Finally, we investigate the comparison of extreme
cases for the LASER features. Figure 1 compares the dif-
ference in feature values between the most similar and the
most dissimilar pair using LASER representation of the es-
says. It is evident that based on our twelve interpretable
features, LASER provides the best distinction between the
nearest and farthest pair for most of the features. The nor-
malized feature values for all twelve interpretable features
look close to each other for the nearest pair. In contrast,
the normalized feature values for the farthest pair appears
very dissimilar for all of the essay features, and visibly has
the largest differences compared to the other text represen-
tations.

5.1.3 Aggregate of Feature Difference
In this section, to get a wider overview of the performance
of the distance metrics, we conducted the evaluation using
more than just the extreme cases. For the experiment, we
sampled 30,000 pairs of essays from three different distance
distributions: 10,000 pairs from the nearest distance pairs,
10,000 pairs from the medium distance, and 10,000 pairs
from the farthest distance. For the medium distance, we
collected 5,000 pairs before the median value and the other
5,000 after the median value. In this research, the expected
condition is that the average of features’ differences for all
pairs in the nearest distance will be lower than the aver-
age of features’ differences of all pairs in the medium dis-
tance. Consequently, the average of features’ differences for
the medium distance should be lower than those in the far-
thest distance.

The results are shown in Figure 2. The x-axis is labeled
using numbers from 1 to 12 that refer to the twelve inter-
pretable essay features in Table 1, in the same order. Con-
sistent with the results of the extreme cases discussed be-
fore, LASER outperforms the other text representation of
essays. Although for feature number 12 (Language Errors),
it is not showing the expected result. This is also the case
for the Sentence-BERT vector, with only one feature having
an unexpected result (feature number 7: Number of punc-
tuation). All of the other features for Sentence-BERT work
well, even though mostly with smaller margins than those
by the LASER vector.

The performance of Bag-of-Words (BOW) and TF-IDF rep-
resentations is not as good as the deep-learning-based text
representations. Some of the results are counterintuitive
since the average of features’ differences in the nearer pairs
are larger than the farther ones. However, several of the
essay features worked well as the exceptions, i.e., feature
numbers 3, 8, 10, 11, and 12. The complete feature names
can be referred to in Table 1. It is visible that BOW and
TF-IDF have similar characteristics as also the case for the
extreme cases in the subsection 5.1.2.
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Figure 1: Nearest and Farthest Pair of Essays

5.2 Evaluation against Paraphrasing
We have evaluated the performance of the text represen-
tation with regards to their ability to measure similarities
between essays. Our method proposes a further performance
check concerning their ability to detect paraphrased essays.
Students may write their answers using different words but
still convey the same meaning. In this context, the scoring
system should be able to perform consistently. We consid-
ered that two essays with the same content and arguments
which were expressed using different words should be graded
similarly.

We conducted this consistency check by inspecting whether
the text features could maintain the similarity ranking be-
tween the original essays and their corresponding paraphrased
essays. The rule is, if essay A is more similar to essay B than
essay C, then the paraphrase of A also must be more similar
to the paraphrase of B than the paraphrase of C.

For this purpose, the paraphrased essays were generated
using the Spinbot API5. To understand how the API per-
formed, a snippet of an essay along with its paraphrased
version is shown below as an example:
Original essay. “One nice sunny day I was trapped in a doc-
tors office with no air conditioning. this doctor’s office had
@NUM1 chairs in the dirty waiting room. I was already
cramed in the room with about @NUM2 people for @NUM3
minutes. I was trying to be patient but the patience was
wearing off...”
Paraphrased essay. “One decent bright day I was caught in
a specialists office with no cooling. this specialist’s office
had @NUM1 seats in the grimy lounge area. I was at that
point cramed in the room with about @NUM2 individuals for
@NUM3 minutes. I was attempting to be patient however the
tolerance was wearing off...”

During the experiment, we first sampled 100 essays each

5https://api.spinbot.com
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Figure 2: Aggregate Features Differences for three Distance Groups

from the original version and the paraphrased version. For
each sample, we calculated the cosine similarity values be-
tween that sample with all of the other (1569) essays in
the dataset. Afterward, we created a similarity ranking in
descending order, from the highest similarity to the lowest.
We implemented the same procedure on the paraphrased es-
say. Therefore, we also obtained another descending-ordered
similarity ranking from the paraphrased version. From these
two rankings, we measured the ability to maintain the rank-
ing using Normalized Discounted Cumulative Gain (NDCG)
score [13]. Finally, we repeated the same procedure 100
times with the other sampled essays. In the end, we ob-
tained one hundred NDCG scores from 100 samples. Then
we calculated the average NDCG score. The whole method
is depicted in Figure 3.

NDCG value ranges from 0 to 1, where score 1 means a per-
fect ranking. In document retrievals, a score of 1 indicates
that the order of document hits in a search is perfectly or-
dered by relevance. We calculated the average NDCG scores
of 100 samples against the other essays (1569) in the dataset
for each of the four text representations of the essays. The
results were satisfying, as all of them had an NDCG score of
1. This means that all of the vector representations had no
problem in maintaining the ranking of similarities between
the original essays and the paraphrased essays.

5.3 Evaluating the Individual Fairness
5.3.1 Regression Model Results

Table 2 describes the performance for all of the regression
models using different text features. Based on the vector
representations of essays, it is evident that all three re-
gression models using LASER features provide the best re-
sults. While according to the regression algorithm, Gradi-
ent Boosting performs best for all text features, followed by
Ridge Regression, and lastly, Random Forest.

5.3.2 Equation-based Evaluation
Speicher et al. [22] consider individuals who belong to dif-
ferent sensitive groups yet share similar protected attributes
should have the same decision outcomes. For instance, es-
says having the same protected attributes must not be treated
discriminatively based on the students’ gender or race.

Individual fairness requires that the distance between two
individuals’ outcomes is less than their distance according
to the similarity metric. A mapping of M : V → ∆(A)
satisfies the (D, d)−Lipschitz property if for every x, y ∈ V ,
we have:

D(M(x),M(y)) ≤ d(x, y) (3)

where, V is a set of individual essays, M is a function that
assigns the essays into probability distribution over the out-
comes A, D is a distance function that measures the differ-
ence in the outcomes, and d represents the similarity metric
between two essays.

We applied cosine distance to create the distance metric.
For prompt 7 in ASAP dataset, we obtained an N × N
distance metric with N = 1569. To have the distance metric
and outcome metric in the same scale, we used Min-Max
normalization to rescale the feature values into the range of
[0, 1]. Min-Max scaler is defined as:

xscaled =
x− xmin

xmax − xmin
(4)

where x is the original value, xmin is the minimum value, and
xmax is the maximum value. The cosine similarity between
two vectors A and B is:

cos(θ) =
A ·B
|A||B| =

∑n
i=1 AiBi√∑n

i=1 A
2
i

√∑n
i=1 B

2
i

(5)

For each text feature, we count the number of pairs of essays
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Figure 3: Ranking Evaluation from the Original and Paraphrased Essays

Table 2: Performance of Regression Models using Different Text Features

Features Model QWK Score Human Agreement Degradation Z

BOW
Random Forest 0.637 0.721 0.084 0.023
Gradient Boosting 0.708 0.721 0.014 0.0063
Ridge Regression 0.658 0.721 0.064 0.012

TF-IDF
Random Forest 0.602 0.721 0.120 0.001
Gradient Boosting 0.703 0.721 0.018 0.004
Ridge Regression 0.685 0.721 0.037 0.002

SBERT
Random Forest 0.618 0.721 0.104 0.036
Gradient Boosting 0.722 0.721 -0.001 0.011
Ridge Regression 0.699 0.721 0.022 0.028

LASER
Random Forest 0.713 0.721 0.009 0.0068
Gradient Boosting 0.767 0.721 -0.046 0.0001
Ridge Regression 0.758 0.721 -0.036 0.0024

Figure 4: Score and Distance Distribution

that satisfy equation 3. The dataset contains 1,569 essays,
and therefore, there are 1,230,096 unique pairs of essays.
Table 3 shows the proportion of pairs of essays that satisfy
the individual fairness constraint for every vector represen-
tation of essays with its corresponding regression model. It
is important to note that we should read the table row by
row. For example, if we applied Bag-of-Words vector as
the text features, Random Forest has a higher proportion of
pairs that satisfy the individual fairness equation than Gra-

dient Boosting and Ridge Regression algorithms. If we use
LASER, we can see that Ridge Regression outperforms the
other algorithms with regard to the equation.

It is not possible to compare the performance between differ-
ent vector representations since they work on different dis-
tance distributions. We can see their distance distribution
in Figure 4. The orange curve is the distance distribution,
and the blue one is the outcome distribution. To have a
higher proportion of pairs that satisfy the equation, a major
part of the blue curve should be on the left side of the or-
ange curve, which will indicate that the outcome distance is
lower than the vector distance. It is obvious that for BOW
and TF-IDF vector, the majority part of the blue curve is on
the left of the orange curve, which indicates that they had
more pairs of essays that satisfy the equation. Meanwhile,
LASER vector distance seemed to be more distributed on
the left side, thus having more pairs with lower distances
than the outcomes. It helps to explain why the proportion
of pairs that satisfy the equation was much lower for LASER
as compared to the other text features.

5.3.3 Score Difference vs. Distance of Essays
In the presence of a large number of pairs of essays, it is
impossible for humans to examine each pair one by one. We
propose a method based on a simple idea by using a visual
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Figure 5: Average Score Differences for five Distance Groups

Table 3: The proportion of Pairs of Essays that Satisfy
Equation 3 (in percentage)

Features Random
Forest

Gradient
Boosting

Ridge
Regression

BOW 99.4% 99% 99.2%
Tf-Idf 99.9% 99.9% 99.9%
Sentence-BERT 92.2% 94.7% 97.9%
LASER 51.7% 53.9% 67.8%

inspection of the distribution of score differences across dif-
ferent distance groups. Evaluating individual fairness is by
looking at whether similar essays are treated similarly. It
means that the score difference between essays must corre-
late with their distance in the vector space. The average
score differences in the group of similar essays should natu-
rally be lower than the average score difference in the group
of dissimilar essays.

In our work, we presented the visualization of score differ-
ence vs. distance of essays in two scenarios, using data bin-
ning to (i) five groups (Figure 5) and (ii) one hundred groups
(Figure 6). Firstly, we sorted the distance of all pairs of the
essays in ascending order, from the most similar pair (the
pair with the lowest cosine distance) to the most dissimilar
pair (the pair having the highest cosine distance). For the
data binning of five, we divided these sorted essays into five
groups, with each group comprised of 20% of the whole data.
For each group, first, we calculated the score differences of
all pairs within that group. Afterward, we calculated the av-
erage value of those score differences. Lastly, we compared
these average score differences of all five groups. We con-
ducted this process for all of the regression models and text
features of the essays. The results are shown in Figure 5.
We can see that basically, all distance metrics with all three

models could produce the correct proportion of score dis-
tance and vector distance, except for the Ridge Regression
algorithm on Bag-of-Words (BOW) vector, which appears
flat, which means that the score difference was not corre-
lated with the vector distance. Therefore, this does not fol-
low the expected condition for individual fairness and is not
recommended.

The exact same procedure was then repeated, but instead of
dividing the whole sorted pairs into five groups, we divided
them into one hundred groups to get a smoother graph.
The results are shown in Figure 6. Now, we can observe
a smoother increase in score differences. In Figure 5, we ob-
serve that the graph for Ridge Regression using the BOW
vector appears flat. Sentence-BERT has the best shape of
the increment of score differences since it grows in a gradual
and consistent manner. For LASER, it shows a smooth in-
crement at the beginning but flattens a bit towards the end
and suddenly rises significantly. Moreover, if we look at the
graph carefully, there is even a drop in score differences af-
ter reaching the peak by the Gradient Boosting and Random
Forest algorithms. Although, this phenomenon is not seen
in the Ridge Regression algorithm. TF-IDF vector exhibits
a smooth increasing behavior similar to the Sentence-BERT
vector. The only slight difference is that there are sharp in-
creases at the right-most part (most dissimilar pairs). This
visualization method helps quickly understand the individ-
ual fairness performance of a combination of a regression
model and a text representation vector.

5.4 Discussion
We are looking for a combination of text features and re-
gression model that has a better overall performance with
respect to different aspects of our methodology. On the one
hand, for the text features, they should perform well in these
criteria: (i) the ability to discriminate between the most
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Figure 6: Average Score Differences for 100 Distance Groups (from left to right: the nearest pairs to the farthest pairs)

similar and most dissimilar pair of essays (extreme cases),
(ii) the aggregate of features differences, and (iii) the ability
to maintain the ranking of similarities between the original
and paraphrased essays. On the other hand, the regression
models should have good capabilities in these aspects: (i)
the proportion of pairs that satisfy the individual fairness
equation, and (ii) the correlation of score difference with
the distance of essays. Ultimately, both of them must have
a high agreement between the system scores and the human
scores, measured in Quadratic Weighted Kappa (QWK). Ac-
cording to the acceptance criteria for an essay scoring model
from Williamson et al. [24], the QWK must be at least 0.7.

Based on the proposed methodology, we analyze the out-
comes of experimental results. LASER has the highest agree-
ment (QWK) score compared to the other text features, as
shown in Table 2. However, it performs inadequately for
the proportion of pairs of essays that satisfy the individual
fairness equation. Meanwhile, BOW and TF-IDF have the
highest scores, as illustrated in Table 3. Nevertheless, they
did not show better performances than Sentence-BERT and
LASER in terms of discriminating the extreme cases and the
aggregate features differences.

Finally, we observe that an automated essay scoring model
trained using the Gradient Boosting algorithm on Sentence-
BERT vector representation of essays has a better overall
performance than the other combinations. It has exceeded
the acceptance rate of the QWK score (0.722), performed
well in discriminating the extreme cases and the aggregate
of features differences, has a high percentage of pairs that
satisfy the individual fairness equation (94.7%), and has the
smoothest linear increment of score differences across the lin-
early divided distance groups as reflected in Figure 6. How-
ever, it is noteworthy to mention that selecting the combi-
nation depends on the priority given to a specific evaluation
aspect when developing an essay scoring system.

6. CONCLUSION
In this work, we studied individual fairness in the Auto-
mated Essay Scoring (AES) system and proposed an indi-
vidual fairness evaluation methodology. In practice, it is a
challenging task to define the similarity of essays. We used
the numerical text representation of essays to compute the
similarities between answers. Next, we compared the perfor-
mance of different scoring models using different text repre-
sentations with regard to individual fairness. Our proposed
methodology suggests that we look for the combination of
the text representation of essays and score prediction mod-
els that achieves well-balanced results in several evaluation
aspects. Based on the experiment results, we observed that
the combination of Sentence-BERT and Gradient Boosting
had overall better results than the other combinations.

The proposed methodology provides flexibility to be used
with any text representations of essays and any score predic-
tion models. Moreover, it is further expandable for a more
robust evaluation process. One can assess the performance
of the distance metrics not only against the paraphrased
essays but also against noised textual data. For example,
whether an AES system can perform well on the negation of
essays is still a challenging problem in the NLP domain. It
will be interesting to observe whether the essay features and
distance metrics can be used to differentiate pairs of essays
that have similar syntactic features but different semantics.
Another interesting question for future study is how individ-
ual fairness relates to and contributes to group fairness. For
instance, two students with and without a disability might
provide very similar essays, but the scores need to reflect
the extra effort and time of the student with the disability.
In this context, it would be unfair to only take essays rather
than individuals into account to measure fairness in AES.
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ABSTRACT
In this paper, we propose a novel approach to combine do-
main modelling and student modelling techniques in a single,
automated pipeline which does not require expert knowl-
edge and can be used to predict future student performance.
Domain modelling techniques map questions to concepts
and student modelling techniques generate a mastery score
for a concept. We conducted an evaluation using six large
datasets from a Python programming course, evaluating the
performance of different domain and student modelling tech-
niques. The results showed that it is possible to develop a
successful and fully automated pipeline which learns from
raw data. The best results were achieved using alternating
least squares on hill-climbing Q-matrices as domain mod-
elling and exponential moving average as student modelling.
This method outperformed all baselines in terms of accuracy
and showed excellent run time.

Keywords
computer science education, domain modelling, student mod-
elling, Q-matrix, mastery score, task-sequencing

1. INTRODUCTION
The idea of mastery learning was first proposed by Bloom [3]
as an educational philosophy based on the belief that nearly
all students can master a studied subject when given enough
time and support. Nowadays, the term more commonly
refers to an educational approach where test questions as-
sess certain concepts and a mastery of prerequisite concepts
is required before moving to harder concepts [11]. A con-

cept or skill (we use this terms interchangeably) can be
thought of as a unit of knowledge that is assessed by a ques-
tion; for example, a mathematics question might assess the
concepts of ”addition” and ”subtraction”, or a programming
question might assess the concepts of ”print statements” and
”strings” [7]. A common application of this approach is for
task sequencing in intelligent tutoring systems, where reme-
dial questions for students are selected based on concepts
they are weak at [11]. These approaches can also be used
for providing automated feedback to students and hint gen-
eration [8]. But how do we know the full set of concepts in
a set of questions? How do we know which questions assess
which concepts? How do we measure the extent to which a
student has ”mastered”each concept? There are two distinct
but related fields of research that attempt to answer these
questions—domain modelling and student modelling [12].

Domain modelling is concerned with knowing the full set
of concepts in a set of questions, and knowing which ques-
tions assess which concepts. This mapping of questions to
concepts can be represented as a Q-matrix, a m questions×
k concepts matrix, where each entry is either 1 or 0, with 1
representing that the question in the row assesses the con-
cept in the column [13]. Several previous studies have pro-
posed methods for generating a Q-matrix based on student
performance data on question sets; e.g. Barnes [2] intro-
duced a hill-climbing algorithm, and Desmarais et al. [5] pro-
posed a method in which Alternating Least Squares (ALS)
method is used to refine an expert-designed Q-matrix.

Student modelling is concerned with measuring the extent to
which a student has mastered a concept, or how to generate
a mastery score. For instance, Corbett et al. [4] introduced
Bayesian Knowledge Tracing, which uses a Markov model
with two hidden states (a concept is either ’known’ or ’un-
known’ by a student), with further refinements to this tech-
nique proposed by Pardos et al. [9] and Yudelson et al. [14].

In this paper, we aim to combine domain and student mod-
elling in a single, automated pipeline. In other words, is it

G. Picones, B. Paaßen, I. Koprinska, and K. Yacef. Combining do-
main modelling and student modelling techniques in a single auto-
mated pipeline. In A. Mitrovic and N. Bosch, editors, Proceedings
of the 15th International Conference on Educational Data Mining,
pages 217–227, Durham, United Kingdom, July 2022. International
Educational Data Mining Society.
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Figure 1: Expert Q-matrix for Intermediate-2018. Questions
are rows and concepts/skills are columns.

possible to go from domain modelling to student modelling
in a single pipeline on a single dataset, and thus predict fu-
ture student performance? Solving this problem would be of
significant benefit for intelligent tutoring systems, for exam-
ple for task sequencing. Using only historic student perfor-
mance data on questions, it would be possible to automat-
ically generate a mapping between questions and concepts,
and generate a mastery score for each student for each con-
cept. This can then be used to sequence remedial tasks for
students, i.e., for recommending tasks which assess the con-
cepts at which the students were the weakest, with minimal
human input.

This study attempts to explore this question, and has three
main contributions. First, it provides an implementation
and analysis of a pipeline that includes different combina-
tions of three domain modelling and three student modelling
techniques, where the results are based on predicting future
student performance using the mastery score. Second, it
performs this analysis on large datasets from an online pro-
gramming course - 6 datasets across 2 years with 3 levels
of expertise (beginners, intermediate and advanced), with a
total of 144 questions and 28,466 students - demonstrating
consistent results across all datasets. Third, it introduces a
new Q-matrix generation technique - ALS on Hill-Climbing
Q-matrix. The results show that the proposed technique is
the most successful student modeling - it is best combina-
tions of domain and student modelling in 5/6 cases.

2. RELATED WORK
2.1 Domain Modelling (Q-matrix Generation

Algorithms)
A Q-matrix is a mapping between questions in a set, and the
skills or concepts that they assess [13]. An example is shown
in Fig. 1. Such matrices are used to determine the proba-
bilities that certain skills are learned by a student, and to
select and sequence tasks in mastery learning environments.
While Q-matrices are traditionally designed by experts, we
have to consider disagreement between experts, the amount
of time and effort needed to do this process manually, as well
as disagreement between expert opinion and what students

actually experience.

Barnes [2] introduced an algorithm that can derive a Q-
matrix from student response data. The algorithm initial-
izes a m× k matrix (m being the number of students, k the
number of skills) with random values for each cell in range
[0, 1]. Given the current Q-matrix, it computes, for each stu-
dent, the binary knowledge states which best describe the
student’s actual test responses. Then, hill-climbing is per-
formed to improve the Q matrix given the current knowledge
state estimate. This is repeated until convergence, and re-
peated for different numbers of concepts.

By contrast, Desmarais et al. [5] propose to let an expert
design the initial Q-matrix, and then optimising via the ALS
method. This is motivated by expressing the m× n matrix
of student responses R (n being the number of students) as
a product of two matrices Q and S; the Q matrix being an
m×k matrix as before, and the S matrix being a k×n matrix
that represents student mastery profiles. The ALS method
minimizes the squared error ‖R−Q · S‖2 with respect to Q
and S in an alternating fashion until convergence.

In this paper, we propose a new method which combines hill-
climbing and ALS, called ALS on Hill-climbing Q-Matrix. It
uses a hill-climbing algorithm to derive an initial Q-matrix,
and then ALS to refine it. We evaluate the performance
of three methods: Hill-climbing Q-matrix, ALS on Expert
Q-matrix and ALS on Hill-climbing Q-matrix.

2.2 Student Modelling (Mastery Score Algo-
rithms)

Once a Q-matrix is known, the students’ learning process
can be described by modelling which skill is mastered at
what time by which student.

Kelly et al. [6] conducted a study to determine the accuracy
of two methods, namely N -Consecutive Correct Responses
(N -CCR) and Knowledge Tracing (KT) [4] in detecting con-
cept mastery in students. The study defined mastery of a
concept as a binary attribute. N -CCR is a simple algo-
rithm that considers a skill mastered once a student gives
N consecutive correct responses on questions related to the
skill. By contrast, KT models student knowledge as a latent
variable in a Hidden Markov Model, with the parameters up-
dated based on whether or not the student gets each question
in a sequence of questions correct or wrong (more detail on
this below). The algorithm computes the probability that
a student has mastered a skill after each observation of a
correct or incorrect answer. The study concluded by stating
that 3-CCR was the better approach for next-problem cor-
rectness, and 5-CCR was the better approach for predicting
performance on a transfer task, with both methods being
more accurate than knowledge tracing.

However, N -CCR has drawbacks which are not discussed
in the paper. Consider two students who answered a se-
quence of 6 questions, and assume we consider 5-CCR, with
the vectors representing the correctness of the answers of
each student being [0, 0, 0, 0, 0, 0] and [1, 1, 1, 1, 0, 1]. 5-CCR
would determine that both students have the same level of
mastery, which can be argued is not true. One way to miti-
gate this is to introduce a method where more recent answers
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Table 1: Dataset statistics
Questions Students

Beginners-2018 29 7956
Intermediate-2018 25 4756
Advanced-2018 22 731
Beginners-2019 28 8662
Intermediate-2019 25 5423
Advanced-2019 15 938

carry more weight in determining the measure of mastery.
The exponential moving average (EMA) technique [10] es-
timates the mastery of a student after answering the tth
question via the expression

∑∞
τ=0 rt−τ · wτ , where rt−τ is

1 if the student answered question t − τ correctly and 0,
otherwise, and where wτ = (1 − λ) · λτ is a weight for past
states, with λ ∈ (0, 1) being a hyperparameter that controls
how fast this weight decays into the past.

Corbett et al. [4] introduced the concept of Bayesian Knowl-
edge Tracing (BKT). BKT assumes that a concept is a la-
tent binary variable (either mastered or not mastered by a
student) in a Hidden Markov Model, with observations also
being binary (a student can get a question correct or incor-
rect). There are 4 parameters in this model; the probability
p(L0) that a student has mastered the skill prior to attempt-
ing the first question, the probability p(T ) that a student
will master the concept after one opportunity to apply the
concept in a question, the probability p(G) that a student
will get a question correct given they have not mastered a
concept (’guess’), and the probability p(S) that a student
will get a question incorrect given that they have mastered
a concept (’slip’). One model is built for each concept k,
assuming that the concepts assessed in a given question are
known.

In this paper, we will evaluate all three approaches: N -CCR,
EMA and BKT.

3. DATA AND PREPROCESSING
The data used in this study was provided by Grok Academy
(groklearning.com) and comes from three online Python pro-
gramming courses for high school students. In total it comes
from 28,466 students and includes 144 questions. In this
learning platform, students complete coding tasks and re-
ceive automated feedback in the form of passed test cases
and feedback about the failed cases, e.g. comparison be-
tween the expected output and the student’s output.

Our study uses a total of 6 datasets from 2 years (2018
and 2019), with each year having one set of questions from
3 difficulty levels (beginners, intermediate and advanced).
Table 1 summarises the dataset statistics.

For each student, we collected a ’trace’ of all their submis-
sions on each question. A student may submit solutions
multiple times for a question, each time getting feedback in
terms of expected vs actual program output, and the num-
ber of test cases passed. However, domain and student mod-
elling approaches typically require a single binary value of
correctness for each student on each question. To obtain
such a value, we used 1 if the average number of passed test

Table 2: Runtimes for generating 10 Q-matrices (with 1 to
10 concepts) per dataset via hill-climbing

Dataset Hill-climbing Q-matrix Runtime
Beginners-2018 5 hours

Intermediate-2018 4 hours
Advanced-2018 30 minutes
Beginners-2019 7 hours

Intermediate-2019 5 hours
Advanced-2019 45 minutes

cases per submission exceeded the median, and 0, otherwise.
For example, if a student attempts a question 3 times and
passes 0/10, 5/10 then 10/10 test cases, then we take the
average over the 3 attempts, which is 5/10, and map this to
1 if 5/10 is larger than the median value over all students
for this question.

4. METHOD
There are two main steps, namely domain modelling and
student modelling. The first step infers the relation between
questions and concepts in a form of Q-matrix. The second
step builds a model to predict a student’s future performance
based on their past responses.

We consider three algorithms for domain modelling, namely
Hill-climbing Q-matrix [2], ALS on Expert Q-matrix [5],
and ALS initialized with Hill-climbing Q-matrix. The last
one is our proposed method and it combines hill-climbing
and ALS algorithms. Further, we consider three algorithms
for student modelling, namely N -CRR, EMA, and BKT.
The pipeline for each combination of domain modelling and
student modelling components is as follows.

First, infer a Q-matrix using the domain modelling com-
ponent. Second, for each student, extract one sequence of
correct and wrong responses to questions that are related to
that skill. Finally, use the student modelling component to
model the mastery of each student for each skill.

For prediction, we consider the mastery score after respond-
ing to the tth question and predict a successful response if
the mastery score exceeds a threshold. Our evaluation mea-
sure is the RMSE between the mastery scores and the actual
responses.

5. EXPERIMENTAL SETUP
Combining each domain modelling algorithm (Hill-climbing
Q-matrix, ALS on Expert Q-matrix, ALS on Hill-climbing
Q-matrix) with each student modelling algorithm (N -CCR,
EMA, BKT) yields nine combinations. We evaluate each
combination on each data set from Table 1. For brevity and
lack of space reasons, we discuss in detail the 2018 datasets
but provide only the best results for the 2019 datasets.

Using hill-climbing, we generate 10 Q matrices for each data-
set with k = 1 to k = 10 concepts. The runtime needed for
the Q matrix generation is shown in Table 2.

To evaluate the student modelling, we use five-fold cross
validation over students. For N -CCR and EMA, we also
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Table 3: Performance of the three baselines (RMSE) on the
2018 data sets

Baseline Method beginner intermediate advanced
random 0.7065 0.7054 0.7131
majority 0.6576 0.6447 0.5270
BKT-1 0.4899 0.4880 0.4280

Table 4: Performance of BKT, EMA and N -CCR when com-
bined with Hill-climbing Q-matrix - RMSE on Beginners-2018
dataset
n con BKT EMA (λ, RMSE) N -CCR (N , RMSE)

1 0.4453 0.1, 0.1487 1, 0.1482
2 0.4316 0.1, 0.1588 1, 0.1594
3 0.4352 0.1, 0.2476 1, 0.2484
4 0.4391 0.1, 0.2261 1, 0.2276
5 0.4368 0.1, 0.2274 1, 0.2286
6 0.4351 0.1, 0.2280 1, 0.2293
7 0.4340 0.1, 0.2193 1, 0.2208
8 0.4318 0.1, 0.2114 1, 0.2131
9 0.4305 0.1, 0.2463 1, 0.2491
10 0.4309 0.1, 0.2389 1, 0.2417

(sec) 54.1 49.7 48.5

evaluate the results for different hyperparameter values: N
from 1 to 10 and λ from 0.1 to 0.9.

Additionally, we compare the performance with three base-
lines, namely random guessing (random), predicting the ma-
jority label for each question (majority), and BKT with a
single concept per question (BKT-1).

All six techniques were implemented in Python. For hill-
climbing, ALS, N -CCR, and EMA we used our own imple-
mentation, and for BKT we used the pybkt toolbox [1].

6. EXPERIMENTAL RESULTS
6.1 Beginners-2018
The performance of the three baselines on the 2018 datasets
is shown in Table 3. We can see that the most accurate
baseline on all 3 datsets is BKT-1, followed by majority and
random.

Table 4 shows the RMSE for BKT, EMA, and N -CCR on
the Beginners-2018 dataset for Q-matrices that were gener-
ated via hill-climbing; the best results are shown in bold.
For EMA and N -CCR, we only report the results for the
best-performing values of λ and N (the results for other hy-
perparameter values are shown in Table 5). Each row repre-
sents the results obtained for a certain number of concepts.
Here, it is interesting to see that, for EMA and N -CCR,
the best Q-matrix is the one with only 1 concept, while, for
BKT, the best Q-matrix had 9 concepts. The RMSE stays
relatively stable for the different Q-matrices for BKT. For
BKT and N -CCR, the RMSE stays relatively stable only
for Q-matrices with 3 concepts and above. The last row
of the table shows the prediction runtime; we can see that
all methods were fast and had similar prediction runtime -
48-54 seconds.

Table 5: Hyperparameter values of EMA (λ) andN -CCR (N)
vs RMSE for n con = 1 when combined with Hill-climbing Q-
matrix on Beginners-2018 dataset

λ
(EMA) RMSE N

(N -CCR) RMSE
0.1 0.1487 1 0.1482
0.2 0.1624 2 0.1742
0.3 0.1857 3 0.2068
0.4 0.2148 4 0.2524
0.5 0.2470 5 0.3067
0.6 0.2809 6 0.3231
0.7 0.3159 7 0.3059
0.8 0.3523 8 0.3893
0.9 0.3927 9 0.4257

Table 6: Performance of BKT, EMA and N -CCR when com-
bined with ALS on Expert Q-matrix - RMSE on Beginners-
2018 dataset

n con BKT EMA (λ, RMSE) N -CCR (N , RMSE)
8 0.3908 0.3, 0.1874 1, 0.2176

(sec) 12.3 6.78 6.24

It is also interesting to note that, regardless of the number
of concepts, λ = 0.1 and N = 1 are the best-performing
hyperparamters for EMA and N -CCR, respectively (see Ta-
ble 4). In other words, it was always best to predict the
performance on the next question based on the question im-
mediately before it. Table 5 provides more details about the
impact of the hyperparameters λ = 0.1 and N = 1 on the
RMSE. We see a clear trend: as λ and N increase, RMSE
rises as well.

Next, we evaluate BKT, EMA, and N -CCR on the Q-matrix
derived by ALS when initialized with an expert Q-matrix.
The expert Q-matrix covers eight skills (refer to Fig. 1).
Table 6 shows the results, indicating that EMA with λ = 0.3
performs best. Table 7 shows the performance of EMA and
N -CCR for different hyperparameter choices. For N -CCR
we observe the same trend as before, for EMA we observe
that low λ-values generally perform better, with a minimum
at 0.3.

Finally, we evaluate BKT, EMA, and N -CCR on the Q-

Table 7: Hyperparameter values of EMA (λ) and N -CCR
(N) vs RMSE for n con = 8 when combined with ALS on
Expert Q-Matrix on Beginners-2018 dataset

λ
(EMA) RMSE N

(N -CCR) RMSE
0.3 0.1874 1 0.2176
0.4 0.1874 2 0.2468
0.2 0.1905 3 0.2725
0.5 0.1909 4 0.2908
0.1 0.1966 5 0.3086
0.6 0.1986 6 0.3254
0.7 0.2122 7 0.3373
0.8 0.2340 8 0.3497
0.9 0.2676 9 0.3553
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Table 8: Performance of BKT, EMA and N -CCR RMSE
when combined with ALS on Hill-climbing Q-matrix on
Beginners-2018 dataset

n con BKT EMA (λ, RMSE) N -CCR (N , RMSE)
1 0.4262 0.3, 0.1319 1, 0.1482
2 0.4054 0.5, 0.2164 1, 0.2507
3 0.4196 0.4, 0.1937 1, 0.2220
4 0.4260 0.3, 0.1760 1, 0.1901
5 0.4210 0.3, 0.1963 1, 0.2103
6 0.4232 0.2, 0.2094 1, 0.2196
7 0.4199 0.3, 0.2216 1, 0.2331
8 0.4231 0.3, 0.1714 1, 0.1861
9 0.4215 0.4, 0.1829 1, 0.2017
10 0.4214 0.4, 0.1945 1, 0.2129

(sec) 53.2 55.8 52.1

Table 9: Hyperparameter values of EMA (λ) and N -CCR
(N) vs RMSE for n con = 8 when combined with ALS on
Hill-climbing Q-matrix on Beginners-2018 dataset

λ
(EMA) RMSE N

(N -CCR) RMSE
0.3 0.1319 1 0.1482
0.4 0.1327 2 0.1542
0.2 0.1350 3 0.1580
0.5 0.1396 4 0.1627
0.1 0.1407 5 0.1641
0.6 0.1556 6 0.1898
0.7 0.1839 7 0.1953
0.8 0.2289 8 0.2106
0.9 0.2971 9 0.2348

matrix derived by ALS when initialized with a hill-climbing
Q-matrix. Table 8 shows the results. Again, EMA with
λ = 0.3 performs best. Indeed, the results for EMA with
λ = 0.3 are better than any other result we obtained across
all domain modelling approaches. Interestingly, different λ
values are optimal, depending on the number of concepts.

In Table 9, we see that the RMSE of N -CCR steadily wors-
ens as N increases. By contrast, the RMSE for EMA has
a minimum at λ = 0.3 and increases for smaller or larger
values.

6.2 Intermediate-2018
From Table 10, it is interesting to note that the best models
use Q-matrices with more concepts than seen in the pre-
vious dataset. For BKT, 3 concepts is optimal, for EMA
and N -CCR it is 10 concepts. We also observe that, for
EMA and N -CCR, the more concepts we consider, the bet-
ter performance gets (considering only the model with the
best parameters), which is something that we did not ob-
serve in the previous dataset. While N -CCR still selects 1
as the best N for all the Q-matrices, for EMA, most of the
Q-matrices give either 0.3 or 0.2 as the best λ.

From Table 11, we can see that λs of 0.1, 0.2 and 0.3 actually
have very similar RMSE, with 0.4 and above steadily wors-
ening in RMSE as λ increases. N -CCR exhibits the pattern
of RMSE worsening as N increases.

Table 10: Performance of BKT, EMA and N -CCR when com-
bined with Hill-climbing Q-matrix - RMSE on Intermediate-
2018 dataset
n con BKT EMA (λ, RMSE) N -CCR (N , RMSE)

1 0.4364 0.3, 0.3793 1, 0.3925
2 0.4037 0.3, 0.2977 1, 0.3083
3 0.4012 0.3, 0.2751 1, 0.2842
4 0.4050 0.3, 0.2610 1, 0.2726
5 0.4021 0.3, 0.2469 1, 0.2578
6 0.4045 0.3, 0.2433 1, 0.2541
7 0.4072 0.3, 0.2370 1, 0.2455
8 0.4068 0.3, 0.2306 1, 0.2389
9 0.4076 0.2, 0.2213 1, 0.2281
10 0.4060 0.2, 0.2175 1, 0.2242

(sec) 29.1 28.7 28

Table 11: Hyperparameter values of EMA (λ) and N -CCR
(N) vs RMSE for n con = 10 when combined with Hill-
climbing Q-matrix on Intermediate-2018 dataset

λ
(EMA) RMSE N

(N -CCR) RMSE
0.2 0.2175 1 0.2242
0.3 0.2176 2 0.2354
0.1 0.2197 3 0.2429
0.4 0.2203 4 0.2573
0.5 0.2265 5 0.2758
0.6 0.2373 6 0.2989
0.7 0.2543 7 0.3217
0.8 0.2793 8 0.3550
0.9 0.3127 9 0.3870

Table 12: Per-concept RMSE for BKT, EMA and N -CCR
(best models) for Hill-climbing Q-matrix on intermediate
2018 dataset

Skill RMSE
(BKT) Skill RMSE

(EMA) Skill RMSE
(N -CCR)

0 0.4366 0 0.3803 0 0.3925
1 0.3851 1 0.1844 1 0.1897
2 0.3970 2 0.2245 2 0.2282

3 0.2155 3 0.2339
4 0.1790 4 0.1854
5 0.2279 5 0.2339
6 0.1856 6 0.1854
7 0.1792 7 0.1854
8 0.1137 8 0.1071
9 0.1786 9 0.1854
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Table 13: Performance of BKT, EMA and N -CCR when
combined with ALS on Expert Q-matrix - RMSE on
Intermediate-2018 dataset

n con BKT EMA (λ, RMSE) N -CCR (N , RMSE)
8 0.3930 0.4, 0.2815 1, 0.1977

(sec) 8.01 4.95 4.33

Table 14: Hyperparameter values of EMA (λ) and N -CCR
(N) vs RMSE for n con = 8 when combined with ALS on
Expert Q-matrix on Intermediate-2018 dataset

λ
(EMA) RMSE N

(N -CCR) RMSE
0.4 0.2815 1 0.1977
0.5 0.2821 2 0.2009
0.3 0.2821 3 0.2093
0.2 0.2837 4 0.2145
0.6 0.2844 5 0.2205
0.1 0.2861 6 0.2247
0.7 0.2899 7 0.2365
0.8 0.3018 8 0.2481
0.9 0.3265 9 0.2636

From Table 12, we see that, across all algorithms, the per-
skill RMSE is not uniform at all. For example, for N -CCR,
skill 8 has an RMSE of 0.1071, while skill 0 has an RMSE of
0.3925. This can be interpreted as being caused by a large
variance in student proficiency for certain skills, or that some
skills are a lot harder to learn than others.

From Table 13, we see that N -CCR performs better than
EMA. N -CCR has chosen 1 as the best N, while EMA has
0.4 as the best λ.

From Table 14, we see that—while there is no pattern of
worsening RMSE as λ increases for EMA—the first 7 values
of λ have very very similar RMSE (differences lesser than
0.01). For N -CCR we see that RMSE steadily worsens as
N increases. It is also interesting to note that the worst
N -CCR model (RMSE = 0.2636) performs better than the
best EMA model (RMSE = 0.2815).

From Table 15, we see again that per-concept RMSE has
high variance, more so with EMA and N -CCR than BKT.
Skill 7 has the highest RMSE when EMA is used, with an
RMSE of 0.5888. Meanwhile, the skill with the worst RMSE

Table 15: Per-concept RMSE for BKT, EMA and N -CCR
(best models) on Intermediate-2018 dataset

Skill RMSE
(BKT) Skill RMSE

(EMA) Skill RMSE
(N -CCR)

0 0.4071 0 0.2691 0 0.1854
1 0.4105 1 0.1787 1 0.1854
2 0.4040 2 0.2079 2 0.2748
3 0.4061 3 0.1787 3 0.1854
4 0.3618 4 0.1788 4 0.1071
5 0.3776 5 0.1787 5 0.1854
6 0.3246 6 0.2079 6 0.1854
7 0.3374 7 0.5888 7 0.2280

Table 16: Performance of BKT, EMA and N -CCR when
combined with ALS on Hill-climbing Q-matrix - RMSE on
Intermediate-2018 dataset
n con BKT (RMSE) EMA (λ, RMSE) N -CCR (N , RMSE)

1 0.4122 0.3, 0.1782 1, 0.1854
2 0.3955 0.4, 0.2341 1, 0.2549
3 0.4152 0.4, 0.2215 1, 0.2377
4 0.4117 0.6, 0.2608 1, 0.2952
5 0.4097 0.6, 0.2448 1, 0.2803
6 0.3990 0.5, 0.2453 1, 0.2693
7 0.3980 0.5, 0.2425 1, 0.2636
8 0.3995 0.5, 0.2593 1, 0.2865
9 0.3998 0.4, 0.2289 1, 0.2465
10 0.4050 0.4, 0.2397 1, 0.2621

(sec) 27.2 31.8 30

Table 17: Hyperparamer values of EMA (λ) and N -CCR (N)
vs RMSE for n con = 1 when combined with ALS on Hill-
climbing Q-matrix on Intermediate-2018 dataset

λ
(EMA) RMSE N

(N -CCR) RMSE
0.3 0.1782 1 0.1854
0.4 0.1787 2 0.1877
0.2 0.1790 3 0.1889
0.5 0.1801 4 0.1896
0.1 0.1813 5 0.2198
0.6 0.1830 6 0.2220
0.7 0.1900 7 0.2248
0.8 0.2092 8 0.2289
0.9 0.2582 9 0.2335

for N -CCR is skill 2 which only has an RMSE of 0.2748.

It is interesting that, compared to the hill-climb Q-matrix
without ALS refinement, the results in Table 16 show that
ALS on Hill-climbing Q-matrix perform best when using Q-
matrices with a smaller numbers of concepts.

From Table 17, we see the familiar pattern of N -CCR se-
lecting 1 to be the best N regardless of number of concepts,
while EMA has many different values of λ being the best
for different numbers of concepts. The largest λ found is 0.6
when we use the Q-matrix with 5 concepts - this yields an
RMSE of 0.2608, which in fact is better than even the best
BKT model by a decent margin.

6.3 Advanced-2018
From Table 18, it is interesting to see that a large number of
concepts (6) was best for EMA and N -CCR as compared to
the Beginner and Intermediate datasets. BKT, on the other
hand, performed best with only 2 concepts. The optimal λ
and N were at 0.1 and 1, respectively.

Another interesting finding is that a different N is optimal
for N -CCR, depending on the number of concepts. For 1 or
2 conepts, the optimal N is 2 instead of 1.

From Table 19, we do see the pattern for both EMA and
N -CCR where performance worsens as the respective pa-
rameters increase in value, with RMSE increasing rapidly
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Table 18: Performance of BKT, EMA and N -CCR when com-
bined with Hill-climbing Q-matrix - RMSE on Advanced-2018
dataset
n con BKT EMA (λ, RMSE) N -CCR (N , RMSE)
1 0.3573 0.1, 0.2117 2, 0.2115
2 0.3439 0.2, 0.2130 2, 0.2178
3 0.3580 0.2, 0.2215 1, 0.2254
4 0.3618 0.1, 0.2074 1, 0.2102
5 0.3557 0.1, 0.2086 1, 0.2114
6 0.3555 0.1, 0.2048 1, 0.2081
7 0.3581 0.2, 0.2308 1, 0.2346
8 0.3631 0.2, 0.2228 1, 0.2274
9 0.3636 0.2, 0.2191 1, 0.2233
10 0.3660 0.2, 0.2157 1, 0.2204
(sec) 6.22 5.55 5.33

Table 19: Hyperparameter values of EMA (λ) and N -CCR
(N) vs RMSE for n con = 6 when combined with Hill-
climbing Q matrix on Advanced-2018 dataset

λ
(EMA) RMSE N

(N -CCR) RMSE
0.1 0.2048 1 0.2081
0.2 0.2050 2 0.2168
0.3 0.2079 3 0.2191
0.4 0.2133 4 0.2215
0.5 0.2216 5 0.2241
0.6 0.2333 7 0.2295
0.7 0.2497 9 0.2305
0.8 0.2716 6 0.2309
0.9 0.2994 8 0.2310

Table 20: Per-concept RMSE for BKT, EMA and N -CCR
(best models) on Advanced-2018 dataset

Skill RMSE
(BKT) Skill RMSE

(EMA) Skill RMSE
(N -CCR)

0 0.3589 0 0.2117 0 0.2159
1 0.3283 1 0.2127 1 0.2159

2 0.2347 2 0.2378
3 0.1553 3 0.1551
4 0.2119 4 0.2159
5 0.1787 5 0.1843

Table 21: Performance of BKT, EMA and N -CCR RMSE
when combined with ALS on Expert Q-matrix - RMSE on
Advanced-2018 dataset
n con BKT EMA (λ, RMSE) N -CCR (N , RMSE)

9 0.3667 0.4, 0.3116 1, 0.4160
(sec) 1.67 0.841 0.846

Table 22: Hyperparameter values of EMA (λ) and N -CCR
(N) for n con = 9 when combined with ALS on Expert Q-
matrix on Advanced-2018 dataset

λ
(EMA) RMSE N

(N -CCR) RMSE
0.4 0.3116 1 0.4160
0.3 0.3119 2 0.4173
0.5 0.3122 3 0.4186
0.2 0.3129 6 0.4274
0.6 0.3143 7 0.4274
0.1 0.3145 4 0.4286
0.7 0.3190 5 0.4286
0.8 0.3283 8 0.4323
0.9 0.3447 9 0.4327

as λ rises to 0.8 and 0.9.

From Table 20, we see that per-concept RMSE is relatively
stable for EMA and N -CCR as compared to the previous
dataset, with BKT in fact having very close RMSE between
the two concepts. This could be interpreted as concepts
having less variance in difficulty, though we have to keep
in mind that this is the Advanced dataset, which has the
least number of students by far (731) compared to the Be-
ginner and Intermediate datasets of the same year (7956 and
4756). It also has the least number of questions (22) com-
pared to Beginner and Intermediate which have 29 and 25
respectively.

From Table 21, we can see that performance across all 3 al-
gorithms with 9 concepts from an expert Q-matrix passed
through ALS is worse compared to the previous Hill-climbing
Q-matrix method. N -CCR with an N of 1 performed worse
than EMA with an λ of 0.4.

From Table 22, we see that there is no pattern of worsening
performance as parameters increase for both EMA and N -

Table 23: Per-concept RMSE for BKT, EMA and N -CCR
(best models) on Advanced-2018 dataset

Skill RMSE
(BKT) Skill RMSE

(EMA) Skill RMSE
(N -CCR)

0 0.3483 0 0.3251 0 0.1843
1 0.3263 1 0.1719 1 0.1843
2 0.3730 2 0.3250 2 0.1843
3 0.3675 3 0.1726 3 0.1843
4 0.3874 4 0.1727 4 0.1843
5 0.4161 5 0.1748 5 0.1843
6 0.3486 6 0.1726 6 0.1843
7 0.3352 7 0.5223 7 0.7709
8 0.3021 8 0.4796 8 0.8846
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Table 24: Performance of BKT, EMA and N -CCR when
combined with ALS on Hill-climbing Q-matrix - RMSE on
Advanced-2018 dataset
n con BKT EMA (λ, RMSE) N -CCR (N , RMSE)
1 0.3793 0.7, 0.2511 2, 0.2551
2 0.3500 0.5, 0.2192 2, 0.2428
3 0.3516 0.3, 0.2556 1, 0.2655
4 0.3496 0.3, 0.1899 1, 0.1988
5 0.3480 0.5, 0.2162 2, 0.2266
6 0.3544 0.5, 0.2234 3, 0.2341
7 0.3570 0.4, 0.2135 2, 0.2290
8 0.3677 0.4, 0.2250 1, 0.2331
9 0.3641 0.2, 0.2367 1, 0.2433
10 0.3682 0.5, 0.2552 3, 0.2625
(sec) 5.69 6.09 5.88

Table 25: Hyperparameter values of EMA (λ) and N -CCR
(N) for n con = 4 when combined with ALS on Hill-climbing
Q-matrix on Advanced-2018 dataset

λ
(EMA) RMSE N

(N -CCR) RMSE
0.3 0.1899 1 0.1988
0.2 0.1900 2 0.2051
0.4 0.1927 3 0.2074
0.1 0.1930 4 0.2279
0.5 0.1985 6 0.2287
0.6 0.2074 7 0.2287
0.7 0.2200 5 0.2302
0.8 0.2380 8 0.2372
0.9 0.2647 9 0.2372

CCR. While both methods don’t show much of a difference
between their best and worst parameter values (within 0.03
difference for both methods), it is worth noting that the
worst EMA model still outperforms the best N -CCR model.

From Table 23, we see much more variance in per-concept
RMSE as compared to the previous method, though we do
have to consider that this method simply also has more con-
cepts. An extreme example of this can be seen in the table
for N -CCR, in which skills 0 to 6 all have the same low
RMSE of 0.1843, while skill 7 and skill 8 have RMSE val-
ues of 0.7709 and 0.8846 respectively. It could simply be
that 9 concepts is too many for this dataset, even though
the expert deems 9 to be the correct number, with ALS not
zeroing-out any concepts.

From Table 24, we see that applying ALS on the Hill-climbing

Table 26: Per-concept RMSE for BKT, EMA and N -CCR
(best models) on Advanced-2018 dataset

Skill RMSE
(BKT) Skill RMSE

(EMA) Skill RMSE
(N -CCR)

0 0.3346 0 0.2235 0 0.2248
1 0.3091 1 0.1723 1 0.1843
2 0.3565 2 0.1723 2 0.1843
3 0.3801 3 0.1723 3 0.1843
4 0.3352

Q-matrices (see Table 20) reduced the number of concepts
that was optimal, from 6 to 4, and in fact also improved the
RMSE, for EMA and N -CCR. For BKT this increased the
number of optimal concepts from 2 to 5.

It is also interesting to see that for the Q-matrix with 1
concept, the best λ for EMA is 0.7, which is the largest
we have observed so far. Across the other Q-matrices the
optimal λ also varies.

In addition, Table 24 shows thatN -CCR has a large variance
in the optimal values for N across the different numbers of
concepts as compared to previous results.

From Table 25, we do see that RMSE worsens as N increases
for N -CCR. Meanwhile, for EMA, RMSE stays relatively
similar for the first 6 values of λ, then worsens quicker be-
yond 0.6.

Table 26 shows us that RMSE stays very stable across the
different concepts across all 3 algorithms - very different
from when we had 9 concepts (see table 25). This shows
us that the optimal number of concepts is in fact small for
this dataset, much smaller than the number of concepts de-
signed by an expert.

6.4 2018 Summary
For all three datasets, the best models are EMA together
with the novel Q-matrix method of applying ALS to the
Hill-climbing Q-matrices (refer to Table 27). This combi-
nation does not need any expert opinion or human input,
and can be fully automated, provided that example student
responses are given. Also note that the runtime is relatively
quick.

6.5 2019 Summary
For the 2019 datasets, 2 out of 3 datasets have ALS+Hill-
climb as the best Q-matrix method, and 2 out of 3 datasets
have EMA as the best Mastery Score method. All 3 com-
binations of Q-matrix and Mastery Score methods can be
automated and require no human input.

In fact, the only Q-matrix method which requires human
input is the ALS+Expert method which, of course, has the
first step of initialising a Q-matrix by getting an expert to
manually create one from inspecting the data/questions.

7. OVERALL RESULTS DISCUSSION
7.1 Automation
Recall that we have 3 Q-matrix generation methods - Hill-
climbing, ALS on an expert-initialized Q-matrix, and ALS
on a hill-climbing-initialized Q-matrix (novel combination
of the first two methods). The first and third methods do
not need human input and need only response data, while
the second method does need human input as the initial
Q-matrix is initialised by an expert.

One of the goals of this study was to investigate methods of
automating the whole pipeline from data to domain mod-
elling to student modelling to prediction (which can then
be used for task sequencing), which means that it would be
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Table 27: Summary of 2018 results - best models and baselines

Best Baseline
RMSE

Best Method
Q-matrix : Mastery Score : RMSE

: n concepts : runtime (sec)
Beginners-2018 0.4899 ALS+Hill-climb : EMA : 0.1319 : 1 : 55.8

Intermediate-2018 0.4880 ALS+Hill-climb : EMA : 0.1782 : 1 : 31.8
Advanced-2018 0.4280 ALS+Hill-climb : EMA : 0.1899 : 4 : 6.09

Table 28: Summary of 2019 results - best models and baselines

Best Baseline
RMSE

Best Method
Q-matrix : Mastery Score : RMSE

: n concepts : runtime (sec)
Beginners-2019 0.4629 ALS+Hill-climb : EMA : 0.1243 : 1 : 59.8

Intermediate-2019 0.4832 Hill-climb : EMA : 0.1130 : 1 : 37.1
Advanced-2019 0.4427 ALS+Hill-climb : N -CCR : 0.0790 : 1 : 6.4

best to require as little human input as possible at any point
in the pipeline.

With this in mind, it is encouraging that, out of the 6
datasets, the best performing combinations of Q-matrix and
Mastery Score algorithms all use either ALS on Hill- climb-
ing Q-matrix or just a Hill-climbing Q-matrix, both of which
do not need human input. All 3 Mastery Score algorithms
do not need human input.

In fact, 5 out of 6 combinations use ALS on Hill-climbing
Q-matrix which is our proposed novel method. As we have
seen in the previous results, in most datasets, applying ALS
on the Hill-climbing Q-matrices will bring about an improve-
ment in RMSE on most Mastery Score algorithms, as com-
pared to using Hill-climbing Q-matrices without ALS.

7.2 Runtime
One drawback of ALS on Hill-climbing Q-matrix is that it
first requires calculating the Hill-climbing Q-matrices, which,
based on our setup with multiprocessing on 10 cores, would
take a few hours on the largest of our datasets (see Table 2).
However, we must consider that this can be run offline and
only needs to be run once.

In a real life scenario, we start with some historical data
to generate the Q-matrices. Hill-climbing would take a few
hours, and then applying ALS on the resulting Q-matrices
would only take a few seconds.

Once this is done, then this Q-matrix can be used in con-
junction with EMA or N -CCR (which perform better than
BKT in our experiments) on any new student responses to
predict their mastery of each concept. This only takes a few
seconds. Predictions on mastery of concepts can then be
used for things such as task sequencing - for example, if we
identify that a student is weak at certain concepts, then we
can recommend other questions which test that same con-
cept as remedial questions.

The Q-matrix can then be updated once sufficient new data
has been accumulated by running the algorithm from scratch
with the new data. Again, the long runtime doesn’t really
matter since this can be run offline, and until it is done

running, the old Q-matrix can be used.

7.3 BKT Performance
It is interesting that, for all the datasets, BKT performed
worse than EMA and N -CCR. One explanation for this
could be the variance in student skill. One limitation of
BKT is that, when the parameters are fit on the data, what
is really being captured are patterns in the average difficulty
of the questions in the dataset. As such, it is best used when
students are of a similar skill, whereas student skill in our
data set varies wildly, even within one difficulty level (Begin-
ner, Intermediate, Advanced). EMA and N -CCR are much
simpler algorithms, and perhaps the issues that affect BKT
do not affect these two algorithms quite as much.

8. LIMITATIONS AND FUTURE WORK
8.1 Q-matrix Interpretability
One limitation of the best Q-matrix generation algorithm
(ALS on Hill-climbing Q-matrix) is interpretability. With a
Q-matrix that is designed by an expert, obviously it would
be clear what each concept actually represents - e.g. the
labels can be ”for-loops”, ”while-loops” etc.

However, when the Q-matrix is learned from data without
human intervention (as in the case of ALS on Hill-climbing
Q-matrix), each concept only has an index as a label. In-
terpreting what each concept represents would require an
expert to inspect the Q-matrix together with the questions
and responses.

Nevertheless, it can be argued that this is beyond the scope
of this study, since we are concerned only with whether the
process can be automated, and if the pure-automation ap-
proach performs better than the expert-initialised approach
(any combination with ALS on expert Q-matrix) with re-
spect to predicting future task performance.

8.2 Alternative Preprocessing Methods
Our algorithms require the student response data to be in
the form of one response per question, with the response
being either correct or wrong. This is not really the case
for our data, where a programming question allows multi-
ple attempts not a single one, and correctness is measured
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based on how many test cases are passed. To deal with this,
we aggregated the student’s attempts into a single score as
explained in the preprocessing section. Other methods for
preprocessing and aggregation of the student’s score can be
explored in future work and may result in better perfor-
mance.

8.3 User Testing
An interesting direction for future work would be user test-
ing. In this study, we measured the performance of a model
by its ability to predict future task performance for a ques-
tion on the same concept using the mastery score, with the
hope that this could then be used for task-sequencing. It
would interesting to test this method in a real intelligent
tutoring system for sequencing remedial tasks and see the
proportion of students who agreed that the questions that
were recommended for remedial were targeting concepts that
they felt weak at. Or in other words, to test if the students
agreed that the system recommended the right questions,
which was one of the evaluation methods used in [2].

9. CONCLUSION
This study investigated if it is possible to combine methods
from domain modelling and student modelling in a single
automated pipeline that could go from raw response data
on a set of questions, to learning the mapping from con-
cepts to questions, and predicting future task performance
for a student, given the student’s responses to questions for
a given concept.

We experimented with combinations of three Q-matrix gen-
eration methods (domain modelling) and three Mastery Score
methods (student modelling), and performed experiments
on 6 large datasets containing data from students learning
to program in Python for 2 years (2018 and 2019) at three
different levels (beginner, intermediate and advanced).

We found that for 5 out of the 6 datasets, the best combi-
nation of domain modelling and student modelling used our
proposed method, ALS on Hill-climbing Q-matrix, as the do-
main modelling algorithm. For the last dataset (Intermedi-
ate-2019), the best method was Hill-climbing Q-matrix. For
5 out of the 6 datasets, the student modelling algorithm in
the best combination was EMA, while for the last dataset
(Advanced-2019) N -CCR was the best method.

Since none of the best combinations used ALS on Expert Q-
matrix as the best domain modelling technique, we conclude
that it is possible to fully automate the pipeline from raw
data to task sequencing with no human input, relying only
on learning from data. The results are promising, in terms
of both prediction accuracy and runtime, and are consistent
across the datasets from the two different years and three
levels.
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ABSTRACT
Regular expression (regex) coding has advantages for text
analysis. Humans are often able to quickly construct intel-
ligible coding rules with high precision. That is, researchers
can identify words and word patterns that correctly clas-
sify examples of a particular concept. And, it is often easy
to identify false positives and improve the regex classifier
so that the positive items are accurately captured. How-
ever, ensuring that a regex list is complete is a bigger chal-
lenge, because the concepts to be identified in data are often
sparsely distributed, which makes it difficult to identify ex-
amples of false negatives. For this reason, regex-based clas-
sifiers suffer by having low recall. That is, it often misses
items that should be classified as positive. In this paper, we
provide a neural network solution to this problem by identi-
fying a negative reversion set, in which false negative items
occur much more frequently than in the data set as a whole.
Thus, the regex classifier can be more quickly improved by
adding missing regexes based on the false negatives found
from the negative reversion set. This study used an existing
data set collected from a simulation-based learning environ-
ment for which researchers had previously defined six codes
and developed classifiers with validated regex lists. We ran-
domly constructed incomplete (partial) regex lists and used
neural network models to identify negative reversion sets in
which the frequency of false negatives increased from a range
of 3%-8% in the full data set to a range of 12%-52% in the
negative reversion set. Based on this finding, we propose
an interactive coding mechanism in which human-developed
regex classifiers provide input for training machine learn-
ing algorithms and machine learning algorithms “smartly”
select highly suspected false negative items for human to
more quickly develop regex classifiers.

Keywords
Qualitative coding, Regex, text classification, neural net-
work, recall, false negative density, negative reversion set

1. INTRODUCTION

Data mining, as Baker (2010) described, is the “field of dis-
covering novel and potentially useful information from large
amounts of data”[2]. A critical challenge in educational data
mining (EDM) is extracting information from text data. In
education settings, text data might come from team chats
in collaborative learning environments[4], conversations be-
tween computer agents and human learners[12], team dis-
cussions, notes, essays and reports in virtual internship[8,
10], etc. Traditionally, qualitative coding is the first and
most important step in analyzing text data[11, 6]. But as
the size of data increases, manual coding becomes expensive
and in some cases impossible. Machine learning (ML) based
text classification methods thus play an important role in
EDM.

1.1 Challenges in Automated Text Classifica-
tion

Unsupervised ML, such as topic modeling, can automatically
extract collections of words that might serve as topics in text
data[3, 5]. Supervised ML, such as neural network text clas-
sification algorithms[13, 1] can be trained on a subset of
manually coded data to predict coding for the remainder of
the data. While such ML algorithms can quickly code large
data sets, they have disadvantages that may lead to biased
classification. For example, unsupervised ML algorithms of-
ten generate topics that occur with high frequency. Codes
with relatively low frequency are often missed or vaguely rep-
resented[7]. Supervised ML algorithms, on the other hand,
rely on human coded data, thus bias in training data will be
inherited by machine learning models. Moreover, in some
circumstances, the amount of human-coded data required
to produce a reliable classifier using supervised ML meth-
ods can be prohibitive.

A third approach to automated coding is to use human-
developed regular expressions (regex). Humans are often
able to quickly construct intelligible coding rules with high
precision. That is, researchers can identify words and word
patterns that correctly classify examples of a particular con-
cept. It is often easy to identify false positives and improve
the regex classifier so that the positive items are accurately
captured. However, ensuring that a regex list is complete
is a bigger challenge. Because the concepts to be identi-
fied in data are often sparsely distributed, examples of false
negatives are difficult to identify. This causes the low-recall
problem in regex based classifiers. That is, the regex based
classifiers often miss items that should be classified as posi-
tive.
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In this paper, we explore the possibility of constructing
an interactive coding mechanism in which human-developed
regex classifiers provide input for training machine learning
algorithms and machine learning algorithms provide cues for
human to construct better unbiased regex classifiers.

2. OVERVIEW OF CODING PROCESSES
2.1 Manual Coding
Manual coding of text data is a complex process. Done
well, it requires researchers to intensively read their data
to discover and construct appropriate theories and develop
codes that reflect those theoretical machinery [11, 16, 15].
Hand coding typically begins when text data is segmented
into meaningful units, or items of data. Codes are then in-
duced by sorting and interpreting observations item by item.
A grounded coding process iterates through three coding
phases: open coding, axial coding and selective coding. In
open coding, a researcher goes through the data to identify
preliminary concepts. The concepts are then compared and
categorized in axial coding. Once a conceptual framework
is established, the researcher focuses on a fixed set of codes
in the selective coding phase and identifies which items each
code occurs.

Key to the process of manual coding is identifying a precise
definition for each code (usually accompanied by examples
from the data). However, coding depends on how individual
researchers understand each code: there are no rules speci-
fied that convert text into code in a deterministic way.

To address this concern, manual codes are validated, either
through a process of social moderation (sometimes call dual
coding) in which two or more coders come to agreement
about each code for each observation in the data, or using
some form of interrater reliability (IRR) that quantifies the
rate of agreement between two coders.

Because manual coding requires that at least one human
rater codes each item of the data and includes triangula-
tion with at least one more human rater, the results from
manual coding are considered the most accurate (compared
with machine coding methods) and often serves as the gold
standard orground truth to which other coding methods are
compared.

Despite this advantage in terms of coding validity, manual
coding can only be applied to data sets with relatively small
size. Thus researchers turn to a variety of machine-based or
machine-augmented coding techniques.

2.2 Keyword/Regex-based Coding
In the selective coding phase, when the size of a data set is
too large for manual coding, researchers may turn to rule-
based automatic coding [9]. Rules can be expressed in terms
of text patterns described by regexes [14]. The simplest form
of regex is a word, such as “teach”. If this word is used to
represent a code “Education”, then the code “Education” oc-
curs if and only if the text contains the string “teach”. Thus,
if a text contains the words “teacher”,“teachers”,“teaches” or
“teaching”, the code occurs, because “teach” is a sub-string
of all these words. Regexes use a set of operators to spec-
ify complex patterns. The most frequently used operators

Figure 1: nCoder flowchart.

include the pipe symbol “|”, period “.”, brackets “[]”, and
star “*”. The pipe symbol “|” is used to compose alterna-
tive strings. For example, the regex “teach|student|school”
matches a text containing any of the strings “teach”, “stu-
dent” or “school”. A period “.” indicates an arbitrary text
character and brackets “[]” indicate a range of characters
(e.g., [aeiouy] indicates any vowel in English), and the star
“*” indicates an arbitrary repetition of the previous char-
acter. So the regex “my favorite vowel.*[aeiouy]” would
code for the text “my favorite vowel” followed anywhere
in the text string by a vowel. In this way, very compli-
cated patterns can be represented by a single regex(see, e.g.,
https://www.regular-expressions.info/tutorial.html).

One powerful publicly available tool for regex-based coding
is nCoder (https://app.n-coder.org/). nCoder uses an active
machine learning approach to generating a regex-based clas-
sifier. Figure 1 shows the typical work flow of nCoder. A
researcher starts from an initial regex list. nCoder uses that
regex list to select a set of items to present to the researcher
for rating. The set may proportionally include items that
the regex list classified as positive or negative. nCoder then
allows the researcher to rate the items and compares the re-
searcher’s rating with the regex classification. When conflict
occurs, the researcher may revise the regex list, change his
or her rating, or leave the conflict unresolved. Inter-rater
reliability (IRR) between the researcher and the regex clas-
sifier is then computed based on hypothesis testing. nCoder
may present another set of items and repeat the rating-
testing process. The process continues until the researcher
and regex classifier reach a satisfactory level of agreement.
The developed regexes are saved before the process termi-
nates.[16].
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The convergence of the above procedure depends on what
data items are presented to the researcher. If a presented
item is one that the human and regex classifier have agree-
ment, no information is provided to the human to improve
the regex list. Rather, it is the items where the two ratings
conflict that help improve the regex list. This conflict may
occur in two ways: one is false positive, in which the regex
coded positive but the human coded negative; the other is
false negative, in which the regex coded as negative but the
human coded as positive.

Conceptually, we can partition a data set D into two sets:
a positive set P̃ ⊂ D of the items that would be coded as
positive by current regex, and a negative set Ñ = D−P̃ that
would be coded as negative by the regex list. False positive
items are a subset of the positive set P̃ (because a false
positive requires that the regex codes an item as positive);

and false negative items are only in the negative set Ñ (by
similar reasoning).

Notice, however, when the frequency of a code is low (that is,
there are few items that should be coded positive), the prob-
ability of sampling a false positive item from the positive set
P̃ may be much higher than sampling a false negative item
from the negative set Ñ . Thus, it is more difficult for the
active machine learning system to present users with false
negatives, potentially allowing the regex development pro-
cedure to converge on a regex list with high precision but
potentially lower recall (see the definition of precision and
recall in section 3.4).

2.3 Machine learning-based Coding
Machine learning algorithms can be applied to both code
discovery and selective coding. In the domain of code dis-
covery, unsupervised machine learning algorithms, such as
topic modeling, can automatically extract from a data set
lists of related words that might potentially serve as codes.
However, research shows that in most cases these word lists
do not produce codes of interest to qualitative researchers
without further refinement. But topic modeling can help
identify missing codes by providing potential keywords for
coding[5].

One popular approach to using ML for selective coding is
LSTM (Long Short Term Memory) neural network models.
These models take as input a set of coded data items, and
return an algorithm that can predict coding for the rest of
the data. Figure 2 shows the model used in this study.
A text data item enters from the input layer as an ordered
word list. The embedding layer represents each unique word
by a vector. The ordered vectors are input to a bidirectional
LSTM layer that creates two vector representations of the
input data line. The two vectors are merged into a single
vector representation and 50% of the nodes are removed in
the dropout layer to control over-fitting. The sigmoid layer
converts the vector into a class probability output, which
indicates for each item how likely the model thinks it should
be coded positive. The probability values are then converted
to a binary coding value using a cutoff threshold, say, 0.5.
That is, when the probability is greater than 0.5, the item is
coded as 1, otherwise 0. (Readers interested in more details
about LSTM models can find more information in neural
network publications such as [13].)

Table 1: Manual, Regex and ML Coding

Manual Regex ML

Evidence Explicit Explicit Implicit

Precision High High Medium

Recall High Low Medium

Coding size Limited Unlimited Unlimited

Cost High Low Medium

This kind of neural network model can represent very com-
plicated patterns of words that serve as indicators for a code.
However, it usually requires a large number of coded data
items to train a neural network model to reach an accept-
able accuracy; thus preparing the training data for the neu-
ral network model could be expensive. Moreover, like many
other machine learning models, neural network models are
a black box : the output is hard to interpret. When a neu-
ral network model flags the occurrence of a code in a data
item, it can be hard (and often impossible) for a researcher
to determine what specific evidence the algorithm used to
make its decision. This makes it difficult for qualitative re-
searchers to establish a theory with clear interpretation. In
addition, it makes it difficult for researchers to understand
potential biases in the codes and to warrant to end users
that the result of the coding is fair.

2.4 Combining manual, regex and ML coding
Table 1 summarizes the advantages and disadvantages of
the three coding methods we have discussed so far. In what
follows, we construct and test an approach to coding that in-
tegrates these three methods together into a single process,
in which we iterate between manual coding and regex cod-
ing to train a regex list. Then we use the data coded by the
regex list to train the neural network model. The disagree-
ments between regex coding and neural network coding are
presented back to the researcher to further refine the regex
coding. We will show that this combination helps solve the
low recall problem in regex coding.

2.5 Approach
For a given data set D and and a code c, let a human rater’s
classification be D = P + N , where P is the set of positive
items (i.e., items in which code c occurs) and N is the set of
negative items. The plus sign “+” denotes the union of two
sets. In practice, the number of items in P is usually much
smaller than in N (i.e., |P | ≪ |N |), because researchers
are often interested in codes that do not occur with high
frequency.

Of course, for a given item x ∈ D, the coding algorithm
cannot determine whether x ∈ P or x ∈ N without asking
the human rater. Therefore, it is impossible for an algorithm
to sample a new item from P (or N) unless they have already
been classified by the human rater. In this sense, the sets
P and N are unsamplable, while the set D is samplable.
That is, a machine algorithm can choose an item x ∈ D but
it cannot choose with certainty whether sample x ∈ P or
x ∈ N .

Consider a regex classifier that classifies the data set D =
P̃ + Ñ . Since the machine knows the classification of all
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Figure 2: LSTM neural network model for text classification

items in D, the sets P̃ and Ñ are samplable. The regex
classifier is perfect if P = P̃ . In reality, however, this is
rarely the case.

The data set D thus can be decomposed as the union of
four sets (from now on we use the notion XY to denote the
intersection of the sets X and Y ):

D = PP̃ + PÑ +NP̃ +NÑ

where

• PP̃ : true positive set of the regex classifier relative to
human;

• PÑ : false negative set of the regex classifier relative
to human;

• NP̃ : false positive set of the regex classifier relative to
human; and

• NÑ : true negative set of the regex classifier relative
to human.

Notice that, since P and N are unsamplable, none of the
above sets (PP̃ , PÑ , NP̃ , or NÑ) is samplable.

As described above, the performance of the regex classifier
development process depends on its ability to present users
with false positives NP̃ and false negatives PÑ . When P̃ ≪
Ñ , the false negative items are less recoverable, in the sense
that the probability of sampling a false negative item is much
smaller than false positive.

Let us use an example to show this. Suppose the data size is
|D| = 10, 000 and a regex classifier identified 1000 positive

items
∣∣∣P̃
∣∣∣ = 1000 with 500 false positive and 500 false nega-

tive:
∣∣∣NP̃

∣∣∣ = 500 and
∣∣∣PÑ

∣∣∣ = 500. Since the false positive

items are in the samplable set P̃ , we can sample from P̃
to find false positive items. The probability of sampling a
false positive item from P̃ is 500/1000 = 0.5. On the other

hand, false negative items are in the samplable set Ñ , which
contains 10000 − 1000 = 9000 items. The probability of
sampling a false negative item from Ñ is 500/9000 ≈ 0.056.

The above example shows that, when developing a regex
classifier, it is hard for the machine to find false negatives
— that is, to find examples of items that the human would
classify as positive but the regex classifier does not. This
means that positive cases outside of the scope of the current
regular expression list are difficult for the regex classifier to
identify, which causes the low recall problem.

Here we ask whether it is possible to use a neural network
model trained from the regex coded data to identify false
negative items. For example, if a regex list for the code “ed-
ucation” contains “teach”, “student” and “school”, a neural
network model may be able to tell that the items containing
“class”, “book” should be included in the positives. Thus,
if we sample items that the regex classified as negative but
neural network model classified as positive, we may be able
to increase the probability of finding examples that the hu-
man rater would code as positive but the regex classifier
would not.

Consider a neural network model that classifies D = ˜̃P + ˜̃N .
The regex false negative set PÑ is decomposed by the neural
network classifier as

PÑ = PÑ ˜̃P + PÑ ˜̃N.

We are mostly interested in the items that regex classifies
as negative but neural network model classifies as positive.
We call the set of such items Negative Reversion Set, which
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can be written as

Ñ ˜̃P = PÑ ˜̃P +NÑ ˜̃P.

Notice that the negative reversion set Ñ ˜̃P is the intersec-
tion of the regex negative set (items coded negative by the

regex) Ñ and the neural network positive set (items coded

positive by the neural network) ˜̃P . Since both Ñ and ˜̃P are

samplable, the negative reversion set Ñ ˜̃P is samplable.

2.6 Research question
In what follows, we ask two research questions:

2.6.1 RQ1
Is the probability of finding a regex false negative item higher

from the negative reversion set Ñ ˜̃P than from the regex neg-
ative set Ñ? In other words, are the false negatives denser

in the negative reversion set Ñ ˜̃P than in the regex negative
set Ñ?

We define the false negative density dA of a set A as the
proportion of the number of false negative items in the set
A. That is,

dA =

∣∣∣PÑA
∣∣∣

|A| .

Thus, the false negative density of a negative reversion set

Ñ ˜̃P is

d
Ñ ˜̃P

=

∣∣∣PÑ ˜̃P
∣∣∣

∣∣∣Ñ ˜̃P
∣∣∣
,

and the false negative density of a regex negative set Ñ is

dÑ =

∣∣∣PÑ
∣∣∣

∣∣∣Ñ
∣∣∣
.

Using the notation of false negative density, the mathemat-
ical form of this research question is whether or not the
following equation holds:

d
Ñ ˜̃P
≫ dÑ (1)

2.6.2 RQ2
If a set A is found dense with false negatives, does it also
has an acceptable false negative recovery rate?

Sampling false negatives in a denser set certainly helps.
However, it is also important that the denser set should be
large enough to include a certain proportion of false nega-
tives. We define the false negative recovery rate rA of a set
A as the proportion of false negatives included in the set A,
that is

rA =

∣∣∣PÑA
∣∣∣

∣∣∣PÑ
∣∣∣
. (2)

So, we ask whether or not the false negative recovery rate
of the negative reversion set r

Ñ ˜̃P
is large enough.

Table 2: Code definition.

Code Description

CONSTRAINTS Referring to inputs: material,
processing method, surfactant,
and CNT.

PERFORMANCE Referring to attributes: flus,
blood cell reactivity,
marketability, cost, or reliability.

COLLABORATION Facilitating a joint meeting or
the production of team design
products.

DESIGN Referring to design and
development prioritization,
tradeoffs, and design decisions.

DATA Referring to or justifying
decisions based on numerical
values, results tables, graphs,
research papers, or relative
quantities.

REQUESTS Referring to or justifying
decisions based on internal
consultant’s requests or patient’s
health or comfort.

2.6.3 General method
To answer these questions, we investigate a text data set
with full regex lists developed and validated for multiple
codes. The full regex lists coded data is used as “true hu-
man ratings”. We then randomly sample a partial regex list
from the full regex list of each code. Partial regex lists are
treated as the regex classifiers under development. Neural
network models are built from the data coded by these par-
tial regex lists. So, given this data set, we are able to obtain
“human ratings” (actually full regex list coding), regex clas-
sifier (actually partial regex classifier) and neural network
classifier (trained on partial regex classifier). The negative
reversion sets are then determined from these three classi-
fications. We are then able to compute the false negative
density and the false negative recovery rate of the obtained
negative reversion sets to get the answers to our research
questions.

3. METHODS
3.1 Data
The data used in this study consists of 50,818 participant
utterances collected from novice engineering design teams
participating in an engineering virtual internship Nephrotex,
in which students worked as interns at a fictitious company
that designs and manufactures ultrafiltration membranes for
hemodialysis machinery used to treat end-stage renal fail-
ure[8]. Table 2 shows the definition of six codes defined
by previous researchers, including Tech Constraints, Perfor-
mance, Collaboration, Design, Data and Requests.

Using nCoder tool (https://app.n-coder.org/), researchers
developed and validated the regex lists. Table 3 shows the
regex list for each code, together with “base rate” (BR) and
kappa values. The base rate of a code was the proportion of
items in the data set the code occurred. The kappa values
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Table 3: Regex lists for each code, the base rates (BR), and the kappas between human rater 1 (H1) and human rater 2 (H2),
human rater 1 and computer (C) and human rater 2 and computer.

Code Regex BR(%) H1-H2 H1-C H2-C

CONSTRAINTS \bPESPVP, \bdry-jet, \bnegative charge, \bsurfactant,
\bchemical, \bvapor deposition polymerization, \bjet
\bPMMA, \bPRNLT, \bmanufacturing process, \bmaterials,
\bphase inversion, \bvapor, \bsteric, \bPolyamide, \bnano,
\bbiological, \bprocesses, \bpolysulfone, \bhydro, \bcarbon
nanotube, \bCNT

16.086 0.96 1.00 0.96

PERFORMANCE \bafforda, \bBCR, \bflux, \bexpensive, \bmarketa,
\bcharacteristic, \bcatagories, \bsafe, \bprice, relia, \bblood
cell, bility, \bcost

14.508 0.88 0.93 0.84

COLLABORATION \bmeeting, \bwe all, \bdiscussion, \bwhat should,
\beverybody, \bwe could, \bdo we, \bteammates, \bshar,
(.*?\bpeople.*?\bteam.*?), (.*?\bteam.*?\bpeople.*?), \bwe
should, \bsuggesting, \bshould we

8.861 0.76 0.87 0.76

DESIGN \bfinal decision, \bdecision, \bwent with, \bbased each design,
\bbalance, \bsacrifice, \bsay the first, \bpick, \bI think we
should, \bwe had to find, \bbalance, \bmaybe use, \bwe could,
\bare we doing, \bcompromise, \bwe changed, \bstick with,
\bchoosing, \bdecide, \bliked best, \bbalancing, \bshould we
raise, \bimprove the design, \bIm trying that one, \bhow did
you design, \bchoose, \bwe want to design,
(.*?\bincrease.*?\bdesign.*?), (.*?\bdesign.*?\bincrease.*?),
\btargeted, (.*?\bcould be.*?\bdesign.*?),
(.*?\bdesign.*?\bcould be.*?), \bI would say, \bwe raised,
\bdecrease, \bcomparing, \bsuperior, (.*?\bwe
could.*?\bdesign.*?), (.*?\bdesign.*?\bwe could.*?),
(.*?\bbest.*?\boption.*?), (.*?\boption.*?\bbest.*?), \bchose
\beither way, \blet’s go with, \bwe do it like, \bchoice, (.*?\bI
think.*?\bbest.*?), (.*?\bbest.*?\bI think.*?), \bwe can do,
(.*?\bI think.*?\bsubmit.*?), (.*?\bsubmit.*?\bI think.*?),
\bdo we want, \btradeoff, \bbest way, \bmanipulated,
\bminimize, \btrade off \bchose

10.291 0.89 0.86 0.84

DATA (.*?\blowest.*?\bcheapest.*?), (.*?\bcheapest.*?\blowest.*?),
\bperformed well, \bmaximizes, \bhad great reliability,
\bresult, \brates, \bscore, \b(?<!player)(?<!player
)(?<![])(?<!:)[1-9][0-9](?!%)(?! %)(?!min)(?!
min)(?!:)(?!pm)(?!am), \bhad the lowest reliability \bscore,
(.*?\bseems to be.*?\bcostly.*?), (.*?\bcostly.*?\bseems to
be.*?), \bworst, \bpoor, \bchart, \bequal value, \bresults,
\bwas found to be, \breading, \btoo high,
(.*?\bperformed.*?\buniformly.*?),
(.*?\buniformly.*?\bperformed.*?), \bperform well, \baverage,
\btests, \bcost more, \bwas good in, \bgraph, \bgraph,
\brates, \bdata, \bperforms.*?\breliability,
(.*?\boverall.*?\bperformed.*?),
(.*?\bperformed.*?\boverall.*?)

10.405 0.94 0.9 0.89

REQUESTS \buser, \bDuChamp, \bPadma, \bsafety, \bhospital,
\bstandard, \bcomfort, \brecommendations, \bRudy,

(̂?:(?!\bexternal).)*\bconsultant(?!.*\bexternal), \bMichelle,
\bminimum, \bWayne, \brequest, \bsatisfy, \bpatient,
\bProctor, \binternal consultant, \bHernandez, \brequirement
\bAnderson, \bunacceptables, \bclient, \bAlan, \bRao

7.059 0.88 0.94 0.94
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were computed on the ratings from two human raters (H-1,
H-2) and the regex classifier (C). Because of the high kappa
values, we considered these regex lists as “complete” and
represent the “true classification” by human raters. In the
discussions below, we use“full regex classification”to replace
“human classification”.

We decomposed the items in the regex lists if they were
connected by a pipe symbol “|”. For example, if an item
was “r1|r2”, then it was decomposed as two items “r1” and
“r2”. Of course, all items in the list for a given code could be
composed back as a single regex by re-connecting them with
a pipe symbol “|”. We decomposed the regex in this way so
that we could more meaningfully sample partial regex lists.

3.2 Data splitting
The data set D was randomly split into a training set S and
a test set T , each of which consisted of 25,409 items. The
training set S was used for sampling items to train neural
network models, while test set T was used for computing
final results.

3.3 Coding by three classifiers
3.3.1 Full regex coding

Full regex lists for the six codes were used to code the whole
data set D, which formed the “true classification” of the
whole data D = PD +ND. Consequently, the training set S
and the test set T are also “truly” classified as S = PS +NS
and T = PT + NT . Under this classification, the positive
rates (base rates) for the six codes range from 7% to 16%
(see Table 3).

3.3.2 Partial regex coding
For a given code, a partial regex list was constructed using
the following procedure:

1. Start with an empty regex list L = {∅} and full regex
list Rc for a code c;

2. Randomly select a regex r ∈ Rc and add it to the
partial regex list L;

3. Code the whole data set D by the partial list L to
produce P̃D/L;

4. Compute the number of positive items
∣∣∣P̃D/L

∣∣∣ coded

by L;

5. If
∣∣∣P̃D/L

∣∣∣ > |PD|
2

, end the procedure; otherwise go back

to step 2.

Through this procedure, the number of positive items clas-
sified by a partial regex list L is equal to or greater than half
of the true positive items. Each partial list L decomposed
the training set and test set into the following samplable sets
(for parsimony, we define P̃A ≡ P̃A/L):

• P̃S : regex positives in training set;

• P̃T : regex positives in test set;

• ÑS : regex negatives in training set; and

• ÑT : regex negatives in test set.

3.3.3 Neural network coding
In this paper, the neural network models were trained based
on the classification of partial regex classifiers. For a given
partial regex classifier and a given sample size n, a random
sample sn ∈ S with size n was taken from the training set.
Each item in the sample contained two fields: the text field
X and the classification value Y (1 when the regex list was
matched and 0 otherwise). The text field X is used as the
input and the partial regex classification value Y is used
as the output to train a predictive LSTM neural network
model. The testing set was then coded by the predict func-
tion of the LSTM model, with the cutoff probability 0.5.
Thus, the neural network model classified the test set into
the samplable sets:

• ˜̃PT : neural network positive in test set; and

• ˜̃NT : neural network negative in test set.

3.3.4 Sample size and repetition of partial regex lists
In training the neural network models, we used five different
sample sizes: n = 100, 200, 400, 800, 1600. In order to reduce
the random effect in partial regex construction, 12 random
partial regex lists were drawn for each code using the partial
regex construction procedure. So, for each of the six codes,
the test set had the following classifications:

• 1 “true classification” T = P +N ;

• 12 partial regex list classification T = P̃i + Ñi, (i =
1, 2, · · · , 12);

• 60 neural network classification (12 partial regex list, 5

sample sizes each) T = ˜̃Pin+ ˜̃Nin, (i = 1, 2, · · · , 12;n =
100, 200, 400, 800, 1600).

In the notions above, P̃i and Ñi were the positive and neg-
ative set, respectively, classified by the ith partial regex for

the given code; and ˜̃Pin and ˜̃Nin were the positive and nega-
tive set, respectively, classified by the neural network model
trained on the ith partial regex list with sample size n.

3.4 Performance metrics
Before moving on, we define three measures for the perfor-
mance of classifiers: precision, recall and Cohen’s κ. For a
given classifier, denote the proportion of true positives, false
positives, false negatives and true negatives by tp, fp,fn and
tn, respectively.

• The precision of a classifier is the ratio of true positive
to the sum of true positive and false positive, namely

precision =
tp

tp+ fp
.

• The recall of a classifier is the ratio of true positive to
the sum of true positive and false negative, namely

recall =
tp

tp+ fn
.
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• The Cohen’s kappa κ of a classifier is the ratio of the
difference between observed probability and chance prob-
ability to one minors chance probability, namely,

κ =
po − pc
1− pc

.

where

po = tp ∗ fp,
and

pc = fp ∗ fn+ (1− fp) ∗ (1− fn).

4. RESULTS
4.1 Single model comparison
Table 4 shows an example classification on code “Tech Con-
straints” with its full regex list, one randomly constructed
partial regex list and one neural network model trained from
the partial regex list with sample size 400.

In this example, the classification of the test set by the full
regex classifier, which was considered the “true classifica-
tion”, yielded 3976 positive items (set P ) and 21,431 nega-
tive items (set N). Notice that there were far more negative
items than positive items. The partial regex classifier cor-
rectly identified 2,133 positive items (set PP̃ ). However, it

falsely classified 1845 positive items as negative (set PÑ).
Since the partial regex was a subset of the full regex list,
any item matched by the partial regex was in turn matched
by the full regex. In other words, any item not matched by
the full regex was not matched by the partial regex. Thus,
no negative item was falsely classified as positive (set NP̃ );
and the partial regex classifier agreed with the full regex
classifier on all 21,431 negative items (set NÑ). As a result,

the partial regex got a larger negative set Ñ = PÑ + NÑ
with a total of 23,276 items. The false negative density in
the negative set Ñ was thus dÑ = 1845/23276 ≈ 7.92%.

The third column of the table shows the classification results
of the neural network model trained on the data classified
by the given partial regex list with sample size 400. There
were 1170 items that were correctly classified by both partial

regex list and the trained neural network model (set PP̃ ˜̃P ).
963 positive items were correctly classified by the partial
regex list but falsely classified as negative by the neural net-

work model (set PP̃ ˜̃N). Most interestingly, there were 288
positive items that were falsely classified as negative by the
partial regex list but correctly reversed as positive by the

neural network model (set PÑ ˜̃P ). 1557 positive items were
falsely classified as negative by both the partial regex list
and neural network model. For the 21,431 negative items,
the neural network falsely classified 302 items as positive

(set NÑ ˜̃P ) and correctly classified 21,129 items as negative

(set NÑ ˜̃N).

The negative reversion set Ñ ˜̃P was the union of the sets

PÑ ˜̃P and NÑ ˜̃P , which contained 288 correctly reversed
items and 302 falsely reversed items. Therefore, the false

negative density in the negative reversion set Ñ ˜̃P was d
Ñ ˜̃P

=

288/(288 + 302) ≈ 48.81%, which was much larger than the
density in the regex negative set dÑ = 7.92%.

Table 4: An example of false negative recovery for Tech Con-
straints with training size 400.

Full Regex Partial Regex Neural Network

P (3976)

PP̃ (2133)

PÑ (1845)

PP̃ ˜̃P (1170)

PP̃ ˜̃N (963)

PÑ ˜̃P (288)

PÑ ˜̃N (1557)

N(21,431)

NP̃ (0)

NÑ (21,431)

NP̃ ˜̃P (0)

NP̃ ˜̃N (0)

NÑ ˜̃P (302)

NÑ ˜̃N (21,129)

Figure 3: False negatives density in partial regex negatives
versus in negative reversion set.

This example gives us a positive answer to our first research
question. That is, the false negative density in the negative
reversion set is much higher than in the regex negative set.

To answer the second question, we computed the false nega-
tive recovery rate in the negative reversion set. From Equa-
tion 2, we had r

Ñ ˜̃P
= 288/1845 ≈ 16%.

If our goal is to find all false negatives, this number is not
very high, because 84% false negatives are still sparsely dis-
tributed in the regex negative set Ñ . However, we argue
that this number is large enough for constructing iterative
methods, which we will talk more about in the discussion
section.

4.2 Average false negative density
The above example showed false negative density and the
false negative recovery rate in the negative conversion set
for one code, one random partial regex list and one neural
network model with sample size 400. To answer our research
questions more reliably, we computed the average false neg-
ative density for each code with 12 randomly drawn partial
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Table 5: False negative recovery rate, training size=400

Code PÑ ˜̃P PÑ ˜̃N r (%)

Tech Constrains 195.83 1579.67 11.03

Performance 270.17 1338.00 16.80

Collaboration 23.75 900.58 2.57

Design 76.67 1908.17 6.53

Data 19.67 1027.67 1.88

Requests 38.25 615.25 5.85

Figure 4: False negative density in negative reversion set for
all sample sizes.

regex lists. The results show that the false negative den-
sity for all codes were several times higher in the negative

reversion set Ñ ˜̃P than in the regex negative set Ñ . Figure
3 shows the results for sample size=400. While the density
dÑ in the regex negative set ranged from 3% to 8%, the den-
sity d

Ñ ˜̃P
in the negative reversion set ranged from 12% to

52%. For example, the density for the code “Performance”
increased from dÑ = 7% to d

Ñ ˜̃P
= 52%.

4.3 Average false negative recovery rate
For each code, we computed the average false negative recov-
ery rate over 12 randomly drawn partial regex lists. Table
5 shows, with neural network training size=400, the num-

ber of items in sets PÑ ˜̃P and PÑ ˜̃N and false recovery rate
as percentages. The average false negative recovery rates
ranged from 1.88% to 16.88% and the average number of
false negative items included in the negative reversion set
ranged from 19.67 to 270.17.

4.4 Sample size effect
In the above, we only showed the results for the neural net-
work models trained from sample size n = 400. Figure 4
and Figure 5 show the average false negative density and
false negative recovery rate in the negative reversion set for
each code as a function of neural network training size. For
the codes “Tech Constraints”, “Collaboration” and “Design”,

Figure 5: False negative recovery rate for all sample sizes.

the density change was very small after size 400. For code
“Performance” and “Requests”, the density for larger train-
ing size was larger. However, they suffered from reduced
false negative recovery rate.

We also computed Cohen’s kappa between different models.
Figure 6 shows the mean Cohen’s kappas for each code as
functions of sampling size for neural network model. The
kappa means were computed over the 12 partial regex lists
for each code. The blue lines are the kappas between full
regex and partial regex lists. They are horizontal lines be-
cause they have nothing to do with the sample size. The
green lines are kappas between partial regex lists and neural
network models. As sample size increases, the green lines
increases. That indicates that neural network models could
be close to the partial regex list model as the sample size
increases. For codes “Tech Constraints” and “Performance”,
the green lines even go beyond the blue lines when the sam-
ple size is large. This is normal because the neural network
models were trained from partial regex list. The red lines are
kappas between the full regex and neural network models.
Although the red lines also increase, they never go beyond
the blue lines. That indicates that, although neural net-
work models may help identify items missed in partial regex
list, they don’t perform better than the regex classifier from
which they are trained.

5. CONCLUSIONS
In this study, we used neural network models trained from
partial regex classifier to help identify the false negatives
from partial regex classifiers. The so called negative rever-

sion set Ñ ˜̃P was of our most interest in this study. This set
consisted of conflict items that the partial regex classifier
coded as negative but the neural network classifier coded
as positive. Since the neural network classifiers was trained
from the data coded by the partial regex classifiers, the nega-
tive reversion sets were actually error sets - the false positive
sets relative to the partial regex coded data. That is, the
neural network models didn’t correctly predict how the par-
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Figure 6: Kappa as functions of training size between three
pairs of coding: partial regex and full regex coding, neural
network and full regex coding, and and neural network and
partial regex coding.

tial regex classifiers code such items. However, our study
showed that this “error set” had a much higher density of
regex false negatives. This indicates that the neural network
models had some ability in detecting the error contained in
the training data. It is unclear how this happened. Our cur-
rent theory is that, since the neural network model was built
on semantic representations (word embedding layer captures
the word meaning and the LSTM layer captures the word or-
der information), it could be able to detect certain violations
of semantic consistency. For example, if “table” and “chair”
are included in a partial regex list, the neural network model
may suggest that “furniture” shouldn’t be excluded.

The results show the differences of the density increases
among codes. The increased density in the false negative
reversion set doesn’t correlate to the original density in the
regex false negative set. The source of the difference is un-
known. However, the fact that the density in the false nega-
tive reversion set is from 3 to 12 times higher suggests that
this technique could improve classifier performance.

The results showed that false negative recovery rate ranged
from 2% to 17%, depending on the specific code and neural
network training size. This indicates that, while it is easier
to find false negative items from the negative reversion set,
many false negative items remain in other sets. We suggest
that, when searching for false negative items, the negative
reversion set and the whole regex negative set should both
be considered.

The training size issue in this study is more complex. In
general, more training data results in better neural network
models. However, in our case, we are expecting a larger

“error set” Ñ ˜̃P . When the training size is too large, the
“error set” shrinks and thus reduces the false negative recov-
ery rate. From our study, it appears that a training size of
approximately 400 is adequate.

Figure 7: Neural network assisted regex development.

More generally, our study is limited by the use of one specific
data set, six specific codes, and a specific ratio (1:2) between
the partial regex and the full regex. In practice, the partial
regex corresponds to the regex list under development and
the full regex corresponds to the human understanding of
the code. When the partial regex is close to the “full regex”,
the density in the negative reversion set may become small.

While, of course, training the neural network models from
manually coded data would produce a better predictor, it
would require a human rater to code a large number of
items. But, as we argued above, even if enough manual
coding could be provided, training a neural network model
directly from the manually coded data will result in a classi-
fier that is hard to interpret and defend. Instead, we suggest
using an imperfect neural network model to augment regex-
based classification, so that when a regex classifier codes a
positive item, it will be clear to researchers and end users
why each item has been coded.

The last but not least, we didn’t use real human coding in
this study, which limited our investigation on false negative
items only, because a partial regex classifier will never have
false positive prediction in relation to a full regex classifier.
However, in the case of real human coding, false positives are
likely to occur. Similar to the negative reversion set, we may
define a positive reversion set as the set of items for which
the regex classifier coded as positive but the human rater
coded as negative. It could be the case that the positive
reversion set also contains denser false positives. However,
this is less important when the positive rate is small.
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To conclude this paper, we propose the following iterative
procedure for better development of regex classifiers (see
Figure 7):

1. The user enters initial regex list for development;

2. A machine learning model is trained based on the ini-
tial regex list classification and prepares reversion sets;

3. The computer selects highly likely conflict items sug-
gested by machine learning model;

4. The user rates the item ;

5. If a conflict occurs, the user resolves the conflict and
updates the regex list;

6. The computer computes agreement statistics (IRR)
based on the ratings from the user, regex list and neu-
ral network model;

7. If the statistics show that the IRR is not high enough,
go back to the reversion set preparation step and reit-
erate the process;

8. If the statistics show high agreement, end the process.
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ABSTRACT
Student grade prediction is a popular task for learning ana-
lytics, given grades are the traditional form of student per-
formance. However, no matter the learning environment,
student background, or domain content, there are things in
common across most experiences in learning. In most previ-
ous machine learning models, previous grades are considered
the strongest prognosis of future performance. Few works
consider the breadth of instructor features, despite the ev-
idence that a great instructor could change the course of a
student’s future. We strive to determine the true impact of
an instructor by analyzing student data from an undergrad-
uate program and measuring the importance of instructor-
related features in comparison with other feature types that
may affect state-of-the-art student grade prediction models.
We show that adding extensive instructor-related features
improves grade prediction, when using the best supervised
learning classifier and regressor.

Keywords
Grade Prediction, Student Performance Prediction, Feature
Analysis, Instructor Features, Learning Analytics

1. INTRODUCTION
Student performance prediction is a useful service for multi-
ple educational stakeholders in a university and other educa-
tional contexts. For example, it is a frequent feature in learn-
ing analytics software, like in early-warning systems [6], cur-
riculum personalization [5], cultivating student study skills [13],
characterizing course difficulty [31], and can be incorporated
into Intelligent Tutoring Systems [22], Massively Open On-
line Courses [26], and Learning Management Systems [17]. It
makes sense that a student would want to use their predicted
grade in future courses for short-term course planning, or if
an instructor or advisor would want to predict the grades of
their students as an early indication of which students are
likely to need more assistance.

Intuitively, it would appear that student history would be
sufficient to predict future grades. However, in a classroom
environment,the student and their past grades are not the
only factors that dictate the student’s performance. The
specific course for which the grade is being predicted and
the particular instructor can also affect the outcome of the
student’s efforts. It is common knowledge that students have
varying strengths and weaknesses that interact with courses
and their materials. This is reflected in machine learning
(ML) models that attempt to carry out student grade pre-
diction by including course-based features. Furthermore,
the content of the course and the student’s ability to re-
tain the information and skills they learned can also have
an impact on student performance (e.g. [27]). Similarly, it
is also known that instructors can have a monumental im-
pact on students. For example, good teachers can improve
standardized testing scores in reading and math [20]. When
considering a teacher’s motivation level, there is a direct
link to students’ academic achievement [4]. Furthermore, it
is a common anecdote for someone to be able to point to a
teacher that had greatly affected who they became later in
life, usually by reinforcing positive traits or shielding from
negative influences (e.g. [9]). Yet, an instructor’s impact on
a student’s performance has not been fully explored, quan-
titatively and in ML models.

In this paper we take a first step to characterize the feature
space that can describe the instructor effect on student grade
prediction. We experiment with several ML algorithms, us-
ing a dataset with thousands of student data records from
a large, public university, and show that adding extensive
instructor-related features improves grade prediction. Our
evaluation shows that GradientBoost is the best supervised
learning classifier and regressor, and we will use it to com-
pare instructor-based features with other feature types.

2. PREVIOUS WORK
Student performance prediction is a popular research sub-
ject, given its varied applications and approaches. Some
works have approached the problem of binary classification
of student performance (e.g., predicting pass/fail), to focus
educators’ attention to the needy students. However, our
focus is on overall prediction of the Grade Point Average
(GPA) of the final grade in a course, along with a corre-
sponding 5-class breakdown of the grade1, to explore the
possible effect that instructor features have over a course’s

1The categories and corresponding GPA values can be found
in Table 3.
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final grade. Many works also attempted to train models that
predicted multi-class classification (e.g., categorical/letter
grading) or regression (e.g., percentage) [1], but with no
attempt to include instructor characteristics.

Recent published work in grade prediction has focused on ex-
perimenting with different ML models, using features such
as student characteristics, domain content, or other course
characteristics. Morsy and Karypis [19] focused on assigning
knowledge component vectors for each course, paired with
a student’s performance in those courses, to inform a re-
gression model, and attained up to 90% accuracy for some
predictions with leeway up to 2 half-grades away2. Polyzou
and Karypis [25] employed Matrix Factorization, previously
found in recommendation systems, and focused on historical
student grades as the primary feature category, achieving an
average error between 2 to 3 half grades. Widjaja et al. [34]
combined a Matrix Factorization model, Factorization Ma-
chines (FM), with a Long Short-Term Memory neural net-
work, using multiple course and student features, achieving
an error between 1 to 2 half grades. None of these works
included instructor-based features. For comparison, we will
use an FM [29] model as one of our baselines.

Most research to date in this area focuses on past student
performance, student-based features, and more recently on
course-based features, like in the examples given above. Poly-
zou [24] went further in an attempt to enumerate student
grade and course-based features, but applied the models
only to predicting several binary classifications (e.g. will the
student fail the course?). They found that for some classifi-
cation tasks, some feature types improved the performance,
while in other classification tasks, they made things worse.

Given that our focus is to add instructor features, we ex-
amined works that included them. Ren et al. [28] used only
an instructor’s ID when training a neural collaborative fil-
tering model and achieved an error within two half grades.
Zhang et al. [35] had a feature list that included 4 instructor-
based features (that were grouped with course-based fea-
tures), namely “teacher’s seniority, teacher’s age, teacher’s
title, [and] teacher’s nation.” They applied a variation on
a Convolutional Neural Network, achieving an F1-score of
0.805 for a 5-grade classification task. Hu et al. [14] included
three instructor features in their datasets, namely instruc-
tor’s rank, tenure status, and average GPA over all of the
courses they taught in the dataset; they achieved an average
error up to 1 grade level difference with regression. Sweeney
et al. [32] used 4 instructor features, classification, rank,
tenure status, and a bias term introduced in their model,
features which focused on their official positions rather than
experience, and achieved an error range of two half grades.
Each of these works haphazardly included a few instructor
features. Only Sweeney et al. analyzed the instructor fea-
tures’ effects on the performance of their chosen models,
and found that the instructor’s bias feature was the third-
most important feature, yet was only one-third as important
as the student’s bias feature. Our work makes headway in
instructor-based features, and examines the number and im-
portance of such features in more detail.

2We define half grades to be when the grade changes by one
step (e.g., from A to A− or B+ to A-), while a full grade
change is when the letter changes (e.g., from A to B)

3. DATASET
3.1 Program Curriculum
The dataset is taken from a computer science (CS) four-year,
undergraduate degree program at the main campus of a large
American public university. This university has four inde-
pendent satellite campuses that may offer similar courses,
but do not offer the same curriculum. However, it is com-
mon for students to transfer from satellite campuses to the
main campus and enroll in the CS degree, and some courses
students took at the satellite campuses can be transferred
into the main campus’ CS program with approval from the
main campus undergraduate program director.

Courses in the program are split into three categories: manda-
tory, electives, and a capstone. There are 8 mandatory
courses that all students who intend to graduate with a CS
degree must take (unless students will enter with Advanced
Placement/International Baccalaureate CS credit or trans-
fer courses from other campuses). For electives, students
pick at least 5 upper-level CS courses that pertain to their
interests and strengths. Each course may or may not con-
tain prerequisites, and if they do, they tend to be other CS
courses. Some mandatory courses have co-requisites, mean-
ing certain courses may be taken at the same time. Stu-
dents must pass each course with a grade of “C” or higher;
if a student does not reach this threshold, they are given
the opportunity to retake the course up to two additional
times. The last grade that the student received for a course,
regardless if it is higher or lower than any previous attempt,
is the final grade recorded for the course. The capstone is a
project-oriented course as a culmination of the CS curricu-
lum, but not relevant to this research.

Instructors are given flexibility in how they wish to teach
their course, as long as they follow the generalized syllabus
that is agreed upon by the area faculty for that course. The
syllabus contains a list of topics that instructors are expected
to cover, but does not prescribe the depth that the instructor
must reach for each topic. Should instructors believe there
are additional important topics not covered by the general-
ized syllabus, they are also free to add them into their course.
A specific order is similarly not imposed by the generalized
syllabus, but topics tend to build on each other naturally,
common in STEM fields (e.g. [15]), which imposes a soft or-
dering. However, due to individual preferences on how to
present concepts to students, instructors have the freedom
to conduct their courses differently. Given different degrees
are offered on satellite campuses, we expect that in the same
course, satellite instructors will present their concepts dif-
ferently from instructors in the main campus.

The main campus CS degree program also is involved in a
college-in-high-school (CHS) program, where the CHS pro-
gram director and a faculty liaison provide materials to high
school teachers, and if the student earns a passing grade
given by the high school teacher, they qualify for college
credit, as if the student took the course at the university.
The material high school teachers receive is more structured
than the generalized syllabus that instructors for undergrad-
uate students receive, and the university provides training
for those teachers to ensure the material that is taught is at
the same level of rigor as what is expected for the undergrad-
uate course. The high school teachers assign the final grade,
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Table 1: Dataset Statistics

Category Sub-Category Count

Grade
Records

Raw 186,316
Non-CE Students 165,655
Non-CE CS-Course Only 30,672
Fully Cleaned 28,150

Students
Raw 3,646
CE Students 524

Courses

Raw 77,733
CS 4,994
CS at Main Campus 4,560
Unique CS 136
Unique CS at Main Campus 84

Instructors

Raw 12,264ab

All CS 667b

University Only CS 259
Main Campus CS 233

a Upper bound due to 3,786 courses missing instructor data.
b Upper bound due to 408 CS CHS courses missing instruc-
tor data.

Table 2: Student Demographics

Category Sub-Category Count %

Gender
Male 3,013 82.6
Female 622 17.1
Other/Unknown 11 0.3

Ethnic
Group

American Indian/
Alaskan Native

2 0.1

Asian 618 17.0
Black/
African American

131 3.6

Hispanic/Latino 106 2.9
Multi-Racial 118 3.2
White 2,568 70.4
Other/Unknown 103 2.8

First
Generation
Undergraduate

First Generation 416 11.4
Not First Generation 2,424 66.4
Unknown 806 22.1

Origin
In-State 2,778 76.2
Out-of-State 868 23.8

Total 3,646 100.0

which are recorded in the official university transcripts.

3.2 Summary Statistics
Transcripts of 3,646 students, all of whom enrolled in at
least one of the first two computer science major mandatory
courses (since those two can be taken in any order and have
no prerequisites) were retrieved from the university regis-
trar. Records spanned between August, 2006 and Decem-
ber, 2019, for a total of 186,316 grade records. Not all stu-
dents have completed the degree program, but the university
does not have an official denotation for when students have
decided they no longer wish to pursue their studies at the
university or are taking a break from their studies.

3.3 Data Cleaning
To retain consistency, students enrolled in the computer
engineering (CE) program, which for a time took many

of the same mandatory courses of the CS program, but
with a different passing grade requirement, were removed
from the set, leaving 3,122 students. We further cleaned
the dataset by removing all non-CS courses and non-letter
grades (e.g. “Withdraw”,“Satisfactory”, etc.), leaving 28,150
“fully-cleaned” grade records. Basic statistics can be found
in Table 1.

4. METHODOLOGY
Our goal is to generate a supervised ML model that can
predict a student’s grade for a target CS course in a given
semester of their undergraduate career, and use that model
to run a comparison between the different feature types (i.e.,
to figure out which feature types contribute the most to the
best prediction), which will include instructor features.

4.1 Features
We include four types of features in our models: Student
Characteristics, Student Grade History, Course Characteris-
tics, and Instructor Characteristics, as detailed below. There
are 571 features altogether. The first feature that we include
with any model we will train is the target course number, to
indicate which course the training grade label came from.

4.1.1 Student Characteristics
Student Characteristics are features that describe the stu-
dent themselves that are not directly related to their courses.
We include a student’s ethnic group, gender, math and ver-
bal SAT scores, ACT scores3, high school GPA, whether
they are the first in their family to attend college, and whether
they are an in-state or out-of-state student. Furthermore,
with the anecdotal knowledge that instructors have particu-
lar jargon, preferences, and quirks, we add a feature indicat-
ing if the student has ever encountered the same instructor
for the target course, or if the instructor was the same for
the target course’s prerequisite, in the belief that a student
who encounters the same instructor again has a better un-
derstanding of how to satisfy the instructor’s requirements.
This provides a total of 9 features.

Demographic breakdown of the students in the dataset can
be found in Table 2.

4.1.2 Student Grade History
Student Grade History features are a simple enumeration of
all CS courses a student has taken in their undergraduate
career. Each course is represented by a pair of features, the
grade they received as a GPA value (e.g., 4.0 instead of A),
and the semester number they took the course relative to
the first CS course they took, which includes the summer
term. As an example, assume a student took their first ever
CS course, CS 101, in the spring term and received a B+,
and took CS 102 in the fall term of the next school year and
received a A−; the resulting grade and semester pairs for
CS 101 and CS 102 would be ⟨3.25, 0⟩ and ⟨3.75, 2⟩, respec-
tively. We use relative semester value given that students

3The SAT and ACT are common standardized exams that
high school students take for entry to an American under-
graduate program. For this university, these scores are not
required, and are given 0 if no score is provided. Note that
0 is not a valid score for either exam.
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have other general education requirements to fulfill not re-
lated to the major, and thus can choose to delay taking CS
courses, or take the initial CS courses more leisurely. This
provides a total of 218 features. Note that each feature will
be considered independently when training the models.

The grading scale, GPA-equivalent, and distribution of grade
records can be found in Table 3.

4.1.3 Course Characteristics
Course Characteristics describe the courses. We generate
these characteristics for the target course, which will be the
direct context that the model can use in the grade predic-
tion task. We include the target course’s semester relative
to the student’s first semester taking a CS course and maxi-
mum enrollment size. We also compile the history of grades
for the target course before the semester the student com-
pleted the course by providing the parameters that describe
their fitted distributions over the GPA-equivalent conver-
sion. We provide the Weibull distribution, which can be
described over three parameters: location, shape, and scale,
aside from the normal distribution’s mean and standard de-
viation. Lastly, we derived a feature to denote whether the
target class started in the morning (AM) or afternoon and
evening (PM). For completeness, we also provide the max-
imum enrollment size for all courses the student has taken.
This provides a total of 117 features.

4.1.4 Instructor Characteristics
Instructor Characteristics describe a target course’s instruc-
tor, and were chosen here as an attempt to reflect the in-
structor’s tendencies and experience, which, under our hy-
pothesis, may have an effect on student performance. We
generated the cumulative number of students taught by that
instructor in any course to characterize the instructor’s ex-
perience. In addition, we include the instructor’s official
rank at the time of the target course. In understanding
an instructor’s grading behavior, we consider the instruc-
tor’s past history of assigning grades, in an attempt to cap-
ture how “demanding” the instructor is, by including fea-
tures that describe the distribution of the instructor’s given
grades. We generated the Weibull distribution parameters,
location, shape, and scale, along with the mean and standard
deviation, for the collection of grades that the instructor has
assigned for the target course, for all courses they have ever
taught, and for grades they have given for only morning or
evening classes. For completeness, we include the instruc-
tor’s ID as a base feature for every course the student has
taken (or null if the student has not taken the course at the
time of the target semester), representing the history of in-
structors that the student has encountered. This provides a
total of 226 features.

Relating to instructor’s official rank, the CS department
under study has several official teaching positions, namely
“Teaching Fellow,” “Part-Time Instructor,” “Lecturer,” “Se-
nior Lecturer,”“Visiting Lecturer,”“Visiting Professor,”“As-
sistant Professor,” “Associate Professor,” and “Full Profes-
sor.” We opted to merge “Teaching Fellow” with “Part-Time
Instructor,” given their duties are exactly the same, but the
former corresponds with PhD students. Each instructor’s
rank was consistent with the position they held at the be-
ginning of the semester that they taught a course. In addi-

tion, we included another category, “High School Teacher,”
to indicate teachers who taught through the college-in-high-
school program, given students who are enrolled in the pro-
gram may have a CHS course (or several) on record. Finally,
we include a “Satellite Instructor” title, given the courses
taught at the satellite campuses are different, despite the
true title that those instructors have.

4.2 Comparison Metrics
We compare the models using weighted average F1-score
(Weighted F1) for classification, as well as mean absolute
error (MAE) and root mean square error (RMSE) for regres-
sion. We also conduct cross-metric comparisons for com-
pleteness. For computing MAE and RMSE for each clas-
sifier, we converted the predicted letter grade directly into
their corresponding GPA value. For computing Weighted F1
for each regressor, we took the predicted value output, which
represents an expected GPA, converted it to the closest let-
ter grade, and dropped the plus or minus, where applicable.
Conversions between GPA values and letter grades can be
found in Table 3.

The F1-score formula is defined as

F1 = 2 · precision · recall

precision + recall
=

TP

TP + 1
2

(FP + FN)

where TP is the true-positive rate, FP is the false-positive
rate, and FN is the false-negative rate. For multiclass clas-
sification, weighted average F1-score formula is defined as

Weighted F1 =

∑
c nc · F1(c)∑

c nc

where F1(c) is the F1-score for class c, and nc is the number
of data points that are part of class c. This metric gives more
weight towards correctly predicting larger-sized classes.

The MAE is defined by the following formula

MAE =

∑n
i=1 |yi − xi|

n

where yi is the value predicted by the algorithm, xi is the
true value, and n is the number of data points. MAE can be
preferred for grade prediction because the absolute distance
can translate directly into GPA values without additional
penalty for significant wrong predictions.

The RMSE is defined by the following formula

RMSE =

√∑n
i=1 (yi − xi)2

n

where yi, xi, and n have the same definitions as those in the
MAE formula. As opposed to MAE, RMSE penalizes large
errors, which can be useful in spotting cases where excellent
grades are predicted as failing grades, and vice versa.

Note that higher values of Weighted F1 mean the model is
better, while for MAE and RMSE, lower values mean that
the model is better.

4.3 Data Preparation and Model Selection
Recall that the task is to predict the grade of a student for a
target course. Towards that aim, we first clean the dataset
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Table 3: Grade class, university’s letter grade, GPA equivalent, and final grade percentage required for the letter grade, along
with the percentage of grade records that were given the letter grade and percentage of records for the combined classes.

Class A B C D F

Letter Grade A+/A A− B+ B B− C+ C C− D+ D D− F
GPA 4.0 3.75 3.25 3.0 2.75 2.25 2.0 1.75 1.25 1.0 0.75 0.0
Grade Threshold (%) 92.5 90.0 87.5 82.5 80.0 77.5 72.5 70.0 67.5 62.5 60.0 0.0

Grade Records (%) 28.9 8.7 9.4 18.2 5.7 5.7 11.4 1.0 1.2 3.1 0.5 6.3
Class Records (%) 37.6 33.3 18.1 4.8 6.3

as described in Section 3.3, and then compile the features
for each student, ensuring that the feature vector is consis-
tent with the known information at the time they would be
taking the course, so that future information cannot inform
past courses. For example, if the student is taking CS 102
in the third semester, then only grades from before the third
semester will be part of the input. Note that, for the pur-
poses of training the algorithms, we ignore prediction for CS
courses offered for non-majors, given that CS students are
unlikely to be taking those courses, especially after they have
already started taking the mandatory courses. As a result,
the total dataset transformed into 25,354 rows, an average
of 7.7 transcript moments (or courses and grades) per stu-
dent considered. The dataset was randomly split 80-20 for
training and testing, respectively.

We decide to compare several classifiers and regressors, as
described below. We use implementations by Scikit-learn [23],
unless otherwise noted. For the classification task, we only
require the models to predict from the five letter grades (i.e.
{A,B,C,D,F}, where +/− is dropped). For the regression
task, we train the models to predict GPA values using the
university’s scale (found in Table 3).

We train five different classifiers: majority classification (Ma-
jority) as a baseline, decision tree model (DT), K-neighbors
model (K = 2, 2Neigh), AdaBoost classifier (AdaClass),
and GradientBoost classifier (GradClass). To reduce vari-
ability, we utilize five-fold training; we tested typical cross-
validation, “soft” voting, and “hard” voting [21]. We explain
the first two here for completeness, and we report soft voting
because it yielded the best results. In typical 5-fold cross-
validation (we assume 5 folds in this paper), five mutually-
exclusive and equally large portions of the training set are
generated, the classifier is trained on four folds of the data
and validated on the fifth, generating a model instance. This
procedure is repeated five times, generating 5 different classi-
fier model instances trained on different subsets of the data.
We then select the instance with the best performance, and
use that model to label new input. In five-fold soft voting,
rather than selecting one instance, we average across all in-
stances, and the class with the highest average is the label
assigned to the input.

Due to the imbalance of the classes (see Table 3 for a break-
down), we attempted class-balancing via upsampling and
downsampling (e.g. SMOTE [8]). However, in the final
models trained, we do not perform any rebalancing, because
while all models improved on the “C,”“D,” and “F” classes,
they did not improve enough to offset the loss of performance
in the “A” and “B” classes.

We train seven different regressors. Following the lead of
previous works that utilize regression models, we opt to use
a Matrix Factorization technique, specifically FM, using a
Python wrapper [18] of an existing package [30], along with
Linear Regression (LinReg). We also include the regression
version of the decision tree model, using both mean-squared
error (DT(MSE)) and mean-absolute error (DT(MAE)) to
determine the best split, and the K-neighbors model (K =
2, 2Neigh). Finally, we also use the AdaBoost regressor
(AdaReg), and GradientBoost regressor (GradReg). We
train each model five times, and take the average result.

Using the results from Table 4, the GradientBoost classifier
performs the best because it provides the highest weighted
average F1-score on the testing set, and has a slight edge on
MAE and RMSE over the AdaBoost and decision tree clas-
sifiers. When selecting a regressor, the F1-score is less rep-
resentative due to the prediction of continuous GPA values;
even though FM performs better on the weighted average
F1-score, we select the GradientBoost regressor because it
provides the lowest RMSE and ties with FM on MAE.

5. DISCUSSION
5.1 Individual Feature Weights
Referring to Figure 1, we see that for classification, “instruc-
tor grade weibull loc” has the largest feature weight; this
feature describes one of the parameters for the fitted Weibull
distribution, namely “location.” Location for the Weibull
distribution is analogous to the mean for the normal distri-
bution. In our case, the “instructor grade weibull loc” sum-
marizes the instructor’s grades for the target course across
all semesters in the dataset before the target semester. Sim-
ilarly, for regression, the instructor’s mean grade for the
target course instead factors as the most-predictive feature.
With grading strategies like curving or partial credit, it is
easy to see how the instructor’s (subjective) grading style
can affect the final grade. We also notice that the differ-
ence in contribution between the top-two features is quite
large. The difference between the top contributor in classi-
fication (approx. 0.16) and the second contributor (approx.
0.10) greatly exceeds the difference between the remaining
consecutive features (<0.02). A similar effect can be seen
in regression, where the top contributor has a feature im-
portance that is more than double the second feature. This
shows that the grades that an instructor is likely to give in a
target course is a strong predictor of what kind of grade the
student is likely to achieve in the target course. We examine
the distribution type in more detail in Section 5.3.

Six out of the top 10 features are grades that the student
achieved in the given course number. In this case, all 6
courses are mandatory (out of 8 total) for CS majors to
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Table 4: Comparison between different models. Italics represent the best among only classifiers or regressors, while bold
represents best overall.

Training Testing
Weighted F1 MAE RMSE Weighted F1 MAE RMSE

Classifiers

Majority 0.20 1.07 1.55 0.20 1.07 1.55
DT 0.55 0.57 1.00 0.48 0.65 1.05
2Neigh 0.68 0.46 0.94 0.40 0.83 1.24
AdaClass 0.51 0.63 1.02 0.49 0.66 1.06
GradClass 0.53 0.60 1.02 0.50 0.63 1.04

Regressors

FM 0.60 0.44 0.64 0.47 0.66 0.93
LinReg 0.40 0.71 0.93 0.39 0.73 0.98
DT(MSE) 0.48 0.64 0.87 0.44 0.71 0.96
DT(MAE) 0.50 0.62 0.95 0.45 0.68 1.01
2Neigh 0.57 0.47 0.66 0.38 0.86 1.16
AdaReg 0.27 0.80 1.00 0.27 0.81 1.00
GradReg 0.44 0.66 0.88 0.44 0.66 0.89

take at the university. The second-most predictive feature
for both classification and regression are also for the same
mandatory course. It seems intuitive that these courses
would provide insight into how students would do in future
courses, emphasized by the idea that the curriculum requires
students to take these mandatory courses first. However, it
is likely that the importance of each course is inflated sim-
ply because of the mandatory requirement, and as a result
provides the initial information that is necessary to predict
courses earlier in a student’s undergraduate career. This
type of result may not hold as strongly in a major that does
not provide a mandatory course schedule.

High school GPA rounds out the top-three. This is consis-
tent with previous literature that indicates that the overall
grades received by an incoming student can predict success
at the university level [16], from student retention (e.g. [12])
to higher freshmen grades (e.g. [10]). The combined verbal
and math score for the SAT also stands out as one of the
top features, but is not as predictive as high school GPA,
which consistent with the literature [3]. Typically, college-
preparedness features are assumed to only have the most
impact upon arrival at the university, which is why the typ-
ical benchmark for student success that uses these features
tends to be freshmen grades. From our work here, it may
suggest that these features are more representative of stu-
dent success throughout the student’s undergraduate career.

While not as predictive as some of the top features, “tar-
get semester” appears as a top-15 feature for both classifi-
cation and regression, which may suggest that the timing in
which a student takes a particular course in their major in
relation with other major courses is correlated to their suc-
cess. However, it is not clear what the causal link may be; it
is reasonable to hypothesize that students who take courses
in close succession are likely to do better, but it may also be
the case that students who do better are more likely to take
courses in quick succession. There is also a likelihood that
delays in taking courses due to repeating failed courses may
be captured by this feature.

5.2 Feature Type Comparisons
To provide a proper comparison between feature types (each
of which is detailed in Section 4.1), we choose to retrain

and retest GradientBoost over each feature type by itself to
contrast them with the model trained over all feature types.
Given our goal in this paper is to determine the impact that
instructor features have on grade prediction models, we also
compare a model trained with all feature types except for
Instructor Characteristics. We perform the same validation
techniques as mentioned in Section 4.3 (5-fold soft vote for
classification and 5-run average for regression).

We can see that the Student Grade History feature cate-
gory continues to be the main feature type for student grade
prediction. From Table 5, we note that for all comparison
metrics, either the classifier or regressor trained with only
Student Grade History features outperforms all other singu-
lar feature type trained models. Furthermore, when train-
ing GradientBoost over all features, Figure 2 shows that
Student Grade History features provides the highest fea-
ture weight among all categories. Along with the discussion
about course grades from the section above, this provides
further evidence to confirm previous research indicating that
past student grades are a good predictor for future grades.

Instructor Characteristics comes closely in second, on many
of the same angles presented for Student Grade History.
From Table 5, we note that the classifier and regressor trained
with only Instructor Characteristics has a similar perfor-
mance with Student Characteristics and outperforms Course
Characteristics on all comparison metrics. In terms of fea-
ture weights, we also see in Figure 2 that Instructor Char-
acteristics comes closely in second and is almost on par with
Student Grade History in the classification task. While indi-
vidually, an instructor’s grade distribution retains the high-
est feature weight (as seen in Figure 1), collectively, they
still fall short of Student Grade History.

To provide assurance that Instructor Characteristics helps
with student grade prediction, we compared two feature sets
when training and testing GradientBoost, one trained with
all features, and one trained without Instructor Character-
istics. Results in Table 5 indicate that for both classifica-
tion and regression, GradientBoost performs better when
Instructor Characteristic features are included. We further
examine the classification confusion matrix in Figure 3; in
comparing Figures 3a and 3b, we see that adding Instruc-
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(a) Top 15 features for GradClass (b) Top 15 features for GradReg

Figure 1: Top 15 features on average utilized by the GradientBoost model when training over all features. Features with
names like“grade ⟨num⟩”describe the grade that the student received in the indicated course number. Features that start with
“instructor grade”each describes a parameter of the instructor’s grade distribution. “pm”(e.g. in“instructor pm grade mean”)
further indicates the grade distribution assigned by the instructor for courses that start in the afternoon or evening.

(a) Top feature categories for GradClass (b) Top feature categories for GradReg

Figure 2: Top feature categories on average utilized by the GradientBoost model when trained over all features. Feature
categories are described in Section 4.1. “target course” is the feature that describes which course the grade label comes from
during training or should be assigned to during testing.

tor Characteristics does have a general positive effect on
the accuracy of the classification, given that the number of
correct classifications (numbers on the diagonal) increases,
and the number of incorrect classifications (numbers not on
the diagonal) decreases. Furthermore, we also note that the
total misclassifications that are one grade away (adjacent
to the diagonal) increases, while the total misclassifications
elsewhere decreases. This further confirms that instructor
features do have a positive impact in overall classification,
not just in singularly increasing recall or precision.

5.3 Grade Distributions and Representation
We tested 103 different distribution types (implemented by
SciPy [33]), as well as the logit-normal distribution [2], over
the full dataset to determine which kind of distribution best
represents the grades’ GPA-equivalent values. We evaluated
each distribution using the sum of squared error, and the
best fit was the Weibull distribution, which can be repre-
sented by three parameters, location, shape, and scale. For
every relevant grade distribution, we fit a Weibull distribu-
tion to the corresponding grouping, and each parameter was
then considered an independent feature. Overall, 10 features
were derived from the normal distribution, and 15 were de-
rived from the Weibull distribution. In addition, out of the
25 total features, 5 were Course Characteristics (all grades

ascribed to the course up to the target semester, regardless
of instructor), and 20 were Instructor Characteristics.

There is some controversy about using the normal distribu-
tion for representing grades [11], so we briefly investigated
the effect of having only the Weibull distribution or the nor-
mal distribution represent the grades. We retrained and
retested the GradientBoost classifier and regressor with the
same procedure in Section 4.3 (5-fold soft vote for classifi-
cation and 5-run average for regression), both of which are
reported in Table 6. From the results, having at least one
representation of grade distribution provides some benefit
over not having a representation at all, with no difference
in performance between the distribution type. Having both
provides little-to-no benefit, so it is easy to conclude that
it does not matter which grade distribution representation
is included, so long as a representation is expressed in the
feature set.

Feature weights provided a different angle with which to de-
termine any effects that may stem from the different kinds
of distributions. We first examined the effect that historical
grades and their distributions had on future grade prediction
by examining the weights of those features separately from
the main categories. Figure 4 shows that Student Grade
History grades and Instructor Category grade distributions
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Table 5: Comparison between different feature types. The fifth category combines the first three feature categories together.
Italics represent the best among singular feature type, while bold represents best over any category. Note that the “All
Features” section mirrors the results from Table 4.

Feature
Category

Model
Training Testing

Weighted F1 MAE RMSE Weighted F1 MAE RMSE
Student
Characteristics

GradClass 0.41 0.75 1.18 0.40 0.77 1.18
GradReg 0.30 0.77 1.01 0.29 0.77 1.01

Grade History
GradClass 0.46 0.70 1.13 0.44 0.74 1.16
GradReg 0.37 0.70 0.93 0.36 0.72 0.94

Course
Characteristics

GradClass 0.39 0.79 1.22 0.36 0.83 1.24
GradReg 0.23 0.80 1.03 0.22 0.81 1.04

Instructor
Characteristics

GradClass 0.42 0.75 1.17 0.38 0.79 1.19
GradReg 0.29 0.78 1.01 0.29 0.79 1.03

Student + Grade +
Course Characteristics

GradClass 0.49 0.65 1.06 0.46 0.68 1.09
GradReg 0.41 0.68 0.91 0.40 0.70 0.94

All Features
GradClass 0.53 0.60 1.02 0.50 0.63 1.03
GradReg 0.44 0.66 0.88 0.44 0.66 0.89

(a) Only Student Characteristics, Student Grade History, and
Course Characteristics feature types used in training.

(b) All feature types used in training.

Figure 3: Confusion matrices for the GradientBoost classifier on the test set with the given feature set.

Table 6: Training and testing GradientBoost with different grade distribution types. Note that the rows with all features and
both distribution types are the same as those in Table 4.

Feature
Set

Distribution
Type

Model
Training Testing

Weighted F1 MAE RMSE Weighted F1 MAE RMSE

All
Features

None
GradClass 0.50 0.64 1.06 0.46 0.68 1.09
GradReg 0.40 0.69 0.91 0.39 0.70 0.93

Weibull
Only

GradClass 0.53 0.61 1.02 0.49 0.64 1.05
GradReg 0.44 0.66 0.88 0.43 0.67 0.90

Normal
Only

GradClass 0.53 0.60 1.01 0.49 0.64 1.05
GradReg 0.44 0.66 0.88 0.44 0.66 0.89

Both
GradClass 0.53 0.60 1.02 0.50 0.63 1.04
GradReg 0.44 0.66 0.88 0.44 0.66 0.89

Instructor
Characteristics

Only

None
GradClass 0.41 0.79 1.23 0.37 0.82 1.24
GradReg 0.20 0.80 1.03 0.20 0.81 1.04

Weibull
Only

GradClass 0.42 0.75 1.16 0.39 0.78 1.18
GradReg 0.29 0.78 1.02 0.29 0.78 1.02

Normal
Only

GradClass 0.41 0.75 1.17 0.39 0.78 1.19
GradReg 0.29 0.78 1.01 0.29 0.78 1.02

Both
GradClass 0.42 0.74 1.16 0.39 0.78 1.19
GradReg 0.30 0.78 1.01 0.29 0.79 1.03
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(a) Classification (b) Regression

Figure 4: Top feature categories on average utilized by the GradientBoost model when grades and grade distribution features
are separated from their original categories. Feature categories are described in Section 4.1. Categories with the suffix of
“Grades” are only features from the category prefix that use GPA as their values, while categories that end with “Non Grades”
are the remaining non-GPA-based features.

(a) Classification (b) Regression

Normal distribution features only

(c) Classification (d) Regression

Weibull distribution features only

Figure 5: Top 15 features on average utilized by the GradientBoost model when varying the type of distribution of grades.

would be the top two feature categories, if they were on their
own. We then compared the effect that having a singular
distribution type has on feature weights, to see if there were
any notable changes. Figure 5 shows that no matter which
distribution type is being used, the mean or the Weibull dis-
tribution’s analogous parameter, location, will remain the
top feature overall. However, it is important to note that
for the regression task, GradientBoost assigns a much higher
weight to the mean than to Weibull’s location parameter,

and even the sum of all three Weibull distribution parame-
ter feature weights, indicating a stronger preference for the
normal distribution for regression. We also see this effect ap-
pear when both distributions are used, as seen in Figure 1;
classification prefers Weibull’s location parameter, while re-
gression prefers the mean. This may provide evidence that
the mean captures information that overlaps with more fea-
tures, more so than the Weibull distribution, given that the
performance does not noticeably increase. As for feature
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Figure 6: Top feature categories on average utilized by the
GradientBoost classifier model when only using the normal
distribution to describe grades. Feature categories are de-
scribed in Section 4.1. “target course” is the feature that
describes which course the grade label comes from during
training or should be assigned to during testing.

categories, no placement change was noted. However, in
Figure 6, we see that the total feature weight for Instructor
Characteristics is almost on par with Student Grade History
during classification, further emphasizing the role that the
normal distribution can have on predictive models.

5.4 Implications
While our model still has room for improvement for student
grade prediction, there are several key items that can be
derived from this research.

First, instructor-based features have a place in student grade
prediction. The Student Grade History feature type contin-
ues to provide the most predictive power for grade predic-
tion, and Instructor Characteristics follows closely behind in
second place, while other feature types lag behind.

Second, the distribution of instructor grades is an important
feature class to include in future student grade prediction
models. It may not matter what kind of grade distribution
representation is needed, despite prior research into the “ap-
propriate” distribution, but the parameters for the normal
distribution may assist with feature selection, given its high
weight in the regression task.

Third, given the strong importance of the distribution of
grades that an instructor assigns in their courses, more re-
search is needed to determine the best way to either reduce
the impact that instructors have on final grades through
teaching ability or subjective measures, or conversely, en-
suring that the grades that instructors assigned are truly
unbiased and dependent only on the student’s performance
in the course. Indeed, it is a long-standing question about
the reliability and validity of grades themselves as a mea-
surement of knowledge, given the significant variability in
assigning them [7]. One could attempt to expose some of
these subjective items by measuring student satisfaction for
the instructor, characterizing the instructor’s teaching style,
or determining the instructor’s efficacy when utilizing learn-
ing management systems, but those would all require addi-
tional data collection beyond what a university might readily

have access to.

Lastly, there is still significant room for improvement in ex-
plainable student grade prediction. One area where signifi-
cant work has been done is in Knowledge Tracing to diag-
nose student issues while they complete a course. Intuitively,
understanding how students are doing within a course will
ultimately determine how students will do overall, given
the knowledge dependency within the course, which is espe-
cially important in STEM majors. While Knowledge Trac-
ing does provides additional insight, the effort for train-
ing a model significantly increases due to the variation in
course content material; it remains to be seen if Knowl-
edge Tracing-adjacent or domain-agnostic Knowledge Trac-
ing features can be generated to assist with generalized stu-
dent grade prediction without introducing an extra heavy
burden.

6. CONCLUSION
In attempting to characterize the relationship between in-
structor features and predicting a student’s grade, we first
enumerated the feature space in grade prediction, with ad-
ditional emphasis on generating features that describe an in-
structor’s history and experience in teaching. These features
were then extracted from over 13 years and thousands of stu-
dents’ grade records from a large, public, American univer-
sity, and used to train and test several supervised ML mod-
els. From our experiments, the GradientBoost algorithm,
both as classifier and regressor, has the best performance
when compared with other supervised ML models.

We then used GradientBoost as our comparison algorithm
between different features and feature types, in order to de-
termine the utility of features that define an instructor in a
grade prediction model. First, we noted that the distribu-
tion of grades that an instructor gives, specifically the mean
or the Weibull distribution’s analogous parameter, location,
is a major factor in grade prediction. Upon further review,
it was found that the distribution representation does not
make a major difference in the performance of the model.
We then grouped features by type and found that Instruc-
tor Characteristics has the second-highest combined feature
weight, closely behind Student Grade History. We further
trained GradientBoost with and without Instructor Char-
acteristics, and found that Instructor Characteristics con-
tributed to better predictions of student grades for both
classification and regression. Therefore, we strongly insist
that future ML models should include features that describe
Instructor Characteristics, or at the very least, features that
describe the distribution of grades that an instructor assigns
to a course.
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ABSTRACT 
Gaming the system, a behavior in which learners exploit a system’s 

properties to make progress while avoiding learning, has frequently 

been shown to be associated with lower learning. However, when 

we applied a previously validated gaming detector across 

conditions in experiments with an algebra tutor, the detected 

gaming was not associated with learning, challenging its construct 

validity. Our iterative exploratory data analysis suggested that 

some contextual factors that varied across and within conditions 

might contribute to this lack of association. We present a latent 

variable model, item response theory-based gaming detection 

(IRT-GD), that accounts for contextual factors and estimates latent 

gaming tendencies as the degree of deviation from normative 

behaviors across contexts. Item response theory models, widely 

used in knowledge assessment, account for item difficulty in 

estimating latent student abilities: students are estimated as having 

higher ability when they can get harder items correct than when 

they only get easier items correct. Similarly, IRT-GD accounts for 

contextual factors in estimating latent gaming tendencies: students 

are estimated as having a higher gaming tendency when they game 

in less commonly gamed contexts than when they only game in 

more commonly gamed contexts. IRT-GD outperformed the 

original detector on three datasets in terms of the association with 

learning. IRT-GD also more accurately revealed intervention 

effects on gaming and revealed a correlation between gaming and 

perceived competence in math. Our approach is not only useful for 

others wanting to apply a gaming assessment in their context but is 

also generally applicable in creating robust behavioral measures. 

Keywords 
Gaming the system, item response theory, behavior modeling 

 

 

1. INTRODUCTION 
Assessing students’ engagement levels or motivation from their 

interaction behaviors in digital learning environments is a 

compelling challenge both practically and theoretically. Practically, 

valid behavioral assessment of student engagement can drive 

adaptations that adjust to students’ needs, leading to greater 

learning and motivation; theoretically, valid behavioral assessment 

of student engagement can be used to better understand when and 

why interventions or system designs work for enhancing student 

learning or motivation. One frequently explored behavioral 

indicator of student engagement is “gaming the system”, which is 

defined as “attempting to succeed in an educational environment 

by exploiting properties of the system rather than by learning the 

material and trying to use that knowledge to answer correctly” [6]. 

Many studies have demonstrated that gaming the system 

(abbreviated as gaming in this paper) is associated with poor 

learning outcomes in the short term or the long term [2, 5, 12, 30]. 

Prior research suggests that interventions directly targeting gaming 

can reduce gaming behaviors [4, 33] and improve learning [4], 

demonstrating the practical value of gaming detection. Recent work 

[28] has also shown that the positive effect of learning with an 

educational game was fully mediated by lower levels of gaming the 

system, showcasing the theoretical value of gaming detection for 

understanding how a specific intervention influences learning. 

Past research has leveraged two classes of approaches to model 

gaming behaviors: knowledge engineering where experts develop 

rational rules that identify gaming behaviors [21, 25, 26] and 

machine learning where the model designer creates a set of features 

first and then a supervised learning algorithm is used to select 

features for predicting human coded gaming labels [6, 32]. Mainly 

the emphasis has been put on student features [21, 25, 26], such as 

how students utilize help (e.g., help abuse [1]) and make errors 

(e.g., systematic guessing [32]). Task or system features have been 

investigated to a limited extent although they have been found to 

be important contextual factors for gaming. For example, [8] found 

that system features explained more variance in gaming behaviors 

than student characteristics on a year-long log dataset with 22 

different lessons of Cognitive Tutor Algebra. In particular, the 

results showed that gaming was more frequent in lessons that were 

abstract, ambiguous, and had unclear presentation of the content or 

task. Another study [22] also found that differences in gaming 

behaviors were more strongly associated with the learning 
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environments than with student populations. Some machine-

learned models have incorporated one or two task features in the 

initial set of features [6, 32]. For example, [32] included features 

related to question types (top-level or follow-through helping 

questions) and interfaces (multiple-choice or textbox) in the initial 

feature set, yet they did not mention whether these features 

remained in the final model. Meanwhile, in knowledge-engineered 

gaming detectors, task features typically are not (explicitly) 

considered [21, 25], i.e., rules to identify gaming behaviors are 

described in a task type-independent way. Such limited 

consideration of task features may limit the generalizability of 

gaming detectors to new contexts with task or system design 

substantially different from that of the original context. In addition, 

some research has identified cases where detected gaming 

behaviors were not harmful [6, 12] or were even good learning 

behaviors [31], further suggesting the necessity to look carefully 

into the contexts for identifying or interpreting gaming behaviors. 

However, such unconventional findings (unconventional in the 

sense that gaming has frequently been shown to be associated with 

lower learning) still have not received enough attention in the 

development of gaming detectors.  

Obtaining a student-level gaming estimate has been valuable for 

studying the relation between student attributes and gaming or 

intervention effects on gaming. Prior work has predominantly used 

direct aggregation of detected (or observed) gaming by computing 

the proportion of gamed transactions or the average of predicted 

probabilities of gaming for each student [6, 22, 27]. However, [13] 

showed that the observation-level simple average failed to reveal 

correlations between motivation and gaming (except for one 

motivational measure), while a simple latent variable model that 

estimated a latent gaming tendency for each student controlling for 

the effect of curricular sections on detected gaming yielded strong 

associations between a range of motivational measures and gaming 

tendencies. Inspired by this prior work, we identified an overlooked 

connection between existing behavior modeling paradigms and 

knowledge modeling paradigms: latent variable models widely 

used for estimating student abilities or knowledge levels can also 

be used to obtain more valid student-level behavioral constructs, 

thanks to their capacity to account for both task and student features 

in a single framework. One widely used latent variable modeling 

paradigm for knowledge assessment in psychometrics is item 

response theory (IRT) [14]. IRT models the observed correctness 

on each item (e.g., problem steps) of each student as a function of 

item difficulty and student ability. Instead of using the proportion 

of correctly answered items as the measure of student ability, IRT 

accounts for item difficulty in estimating latent student abilities. In 

essence, students are estimated as having higher ability when they 

can get harder items correct than when they only get easier items 

correct. IRT models have been further extended to model dynamic 

student knowledge by considering the temporal aspect [17], and 

also by decomposing items into knowledge components (e.g., 

skills, concepts) shared across items [11].  

With the increasing demand of learning engineering efforts towards 

building effective, engaging learning systems, the generalizability, 

interpretability, and development cost of gaming detectors are 

becoming increasingly important. Recent studies [23, 24] 

compared three previously separately validated gaming detectors 

across multiple systems: a knowledge-engineered model [25], a 

machine-learned model [7], and a hybrid model [24] that combines 

both knowledge engineering and machine learning. In particular, 

the knowledge-engineered model was developed by using 

cognitive task analysis to elicit knowledge about how experts code 

students as gaming or not in Cognitive Tutor Algebra [19]. It 

consists of 13 patterns of students’ systematic guessing and help 

abuse behaviors. The comparisons [23, 24] focused on predictive 

performance of expert labels of gaming in held-out test sets in the 

original data and two new datasets collected from two other 

learning environments [3, 27]; the comparison also considered the 

interpretability of models. Results showed that the knowledge-

engineered model achieved greater generalizability to new datasets 

and interpretability than the machine-learned model, and achieved 

comparable to slightly better generalizability and interpretability 

than the hybrid model. Although there was initial cost (higher than 

that of the machine-learned model) in developing the knowledge-

engineered model, it could be directly used in new datasets without 

further cost (since actions that match any of the 13 patterns can be 

directly labeled as gaming). However, one may need to retrain the 

machine-learned or hybrid model (that needs a machine-learned 

model as input), given the much lower (and even unacceptable) 

predictive performance of the machine-learned model than the 

knowledge-engineered model on new datasets [23]. Thus, this 

knowledge-engineered gaming detector [25], which is referred to 

as KE-GD in this paper, appears to be the best choice (to build on) 

among the three detectors, considering generalizability, 

interpretability, and development cost in a new context altogether; 

it also represents a broad class of behavioral detectors that are built 

based on rational rules specified by experts. However, predictive 

performance of expert labels is only one aspect of construct 

validity; the establishment of construct validity of a gaming 

detector also requires examining the association between detected 

gaming and learning. Past studies [23, 24, 25] have not examined 

the association between detected gaming by KE-GD with learning, 

while other studies on other detectors have frequently shown that a 

higher detected gaming level is associated with lower learning [5, 

15, 20, 21, 28].    

In this work, we propose a latent variable model, item response 

theory-based gaming detection (IRT-GD), that estimates a latent 

gaming tendency for each student accounting for contextual factors 

(i.e., task and student features): students are estimated as having a 

higher gaming tendency when they game in less commonly (or 

frequently) gamed contexts than when they only game in more 

commonly (or frequently) gamed contexts. IRT-GD builds on a 

previously validated knowledge-engineered gaming detector (KE-

GD) that focuses on students’ action features and the predictiveness 

of human labels. We started with applying KE-GD on a dataset 

collected from experimentation with an algebra tutor, and 

examined the association between detected gaming and learning,  

an important aspect for the construct validity of gaming measures. 

Observing the lack of association with learning, we conducted an 

iterative exploratory data analysis, and found that this lack of 

association might result from some contextual factors not 

considered in KE-GD that varied across and within conditions. 

Without complex human feature engineering, we integrated 

contextual factors as predictors in a mixed effect model predicting 

whether a transaction was detected as gaming by KE-GD, and 

extracted the student random intercepts as the latent gaming 

tendencies. We compared KE-GD and IRT-GD by the association 

with learning in nine contexts, obtained from three datasets and 

three condition configurations per dataset. Finally, we 

demonstrated two applications of IRT-GD: to study whether there 

was a difference in the level of gaming between the two conditions 

from our experimentation with the tutor, and to explore the relation 

between gaming and motivation. The development and evaluation 

process of IRT-GD is explained as follows.  
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2. DEVELOPMENT OF IRT-GD 

2.1 The Tutor 
We used datasets collected from an algebra intelligent tutoring 

system for middle and high school students [18]. Students learn 

about writing algebraic expressions in story problems in various 

task (problem) formats: writing an expression in a textbox with 

dynamic scaffolding steps that appear if a student fails in the 

original question (text format); writing expressions in a table where 

the main question step and scaffolding steps are accessible at any 

time and are all required (table format); explaining a set of 

expressions extracted from a given equation by choosing the 

matching textual description from a dropdown menu for each 

expression (menu format); and given an equation, writing a set of 

expressions that match a given set of textual descriptions (flipped-

menu format). These tasks also vary in the complexity of the 

expressions involved (e.g., one or two operators).  

The algebra tutor was continuously redesigned and tested in three 

experiments with different student populations across three years. 

In each experiment (eight sessions over four weeks), we compared 

two versions of the tutor corresponding to two conditions differing 

in task design and sequencing. The control (CT) condition, 

corresponding to the original tutor, provided a normal deliberate 

practice schedule. Students received full tasks representing the full 

version of the problem requiring filling in all steps (including 

scaffolding steps) given a cover story. There were three consecutive 

units: the first unit contained all the table tasks, the second unit 

contained less complex menu and flipped-menu tasks, and the third 

unit contained more complex menu and flipped-menu tasks. Steps 

were labeled with coarser-grained knowledge components (KCs; 

skills). Students received individualized practice until reaching 

mastery of all KCs in a unit before moving on to the next unit. 

Across the three experiments, the design of the control condition 

remained the same. The experimental (EXP) condition, the data-

tuned adaptive condition,  corresponds to a redesigned tutor with 

redesign decisions drawn from data mining outcomes of student log 

data. It provided an intense deliberate practice schedule with task 

design and sequencing based on a refined, larger KC model 

revealing hidden difficulties (i.e., original KCs were split to 

differentiate easier and harder use cases). Focused tasks were 

introduced to reduce over-practicing easier KCs and target 

particularly difficult KCs. Examples of focused tasks include: text 

format tasks asking for the final expression without the mandatory 

intermediate steps required in table task; text format tasks that 

further remove the story and focus on learning algebraic grammar 

rules; and simpler menu and flipped-menu tasks with equations less 

complex than the original equations. There were three or more 

learning units where different task formats or task types (full or 

focused) were interleaved in each unit. Students received 

individualized practice until reaching mastery of all KCs in a unit 

before moving on to the next unit. Across the three experiments, 

the design of the experimental condition was continuously refined 

aiming at promoting greater learning. Our prior work has shown 

that the experimental condition led to better learning outcomes 

compared to the control condition [18]. Here, we are interested to 

see whether intense deliberate practice (i.e., the experimental 

condition) also led to higher behavioral engagement, particularly 

lower levels of gaming the system, and also whether gaming was 

linked with motivation.  We started our investigation with the first 

dataset collected from the first experiment explained below.  

2.2 A Previously Validated Knowledge-

Engineered Gaming Detector Did Not 

Generalize 
We chose a previously validated knowledge-engineered gaming 

detector, KE-GD, as the starting point for studying students’ 

behavioral engagement when using the algebra tutor. KE-GD 

contains 13 interpretable patterns modeling systematic guessing 

and help abuse. For example, one pattern is “the student enters an 

incorrect answer, enters a similar and incorrect answer in the same 

part of the problem and then enters another similar answer in the 

same part of the problem”. It is coded as “incorrect → [similar 

answer] [same context] & incorrect → [similar answer] & [same 

context] & attempt”, consisting of constituents such as “[similar 

answer]” (judged by Levenshtein distance), and action types such 

as “attempt” (correct or incorrect) or “help”. If a sequence of 

transactions (i.e., student-step interactions considering multiple 

attempts per step) matches any one of the 13 patterns, then all 

transactions involved are labeled as gaming. Details of the patterns 

and the validation of KE-GD could be found in [23, 25]. 

We used KE-GD to label transactions as gaming or not and then 

examined the construct validity of detected gaming in our dataset. 

We defined two metrics of construct validity in the current study, 

both of which evaluate the association between gaming and 

learning. The primary metric was the correlation between gaming 

levels and normalized learning gains over students. For each 

student, we computed a gaming level using the proportion of gamed 

transactions (referred to as proportion of detected gaming or 

detected gaming (proportion)) for KE-GD, or the estimated gaming 

tendency for IRT-GD (explained in Section 2.3.2); we computed 

the normalized learning gain using the widely adopted formula, 

(posttest - pretest) / (1- pretest). We used Spearman correlation 

(rho) because it is less sensitive to outliers than Pearson correlation. 

As a supplementary metric, we conducted a regression analysis 

predicting posttest scores controlling for pretest scores and gaming 

levels over students and examined the coefficient of the variable of 

gaming levels. We considered negative correlations and coefficient 

values at a significance level of 0.10 as acceptable construct 

validity. Prior studies have used significance levels of 0.05 and 0.10 

for correlation analyses involving behavior measures [5, 13, 31]. 

Two observations emerged. First, the detected gaming proportion 

18% (last column in Table 1) was much higher than the previously 

reported proportions (3.5% in [13] and 6.8% in [25]) of the same 

detector in other math intelligent tutoring systems. Second, there 

was a lack of association between detected gaming and learning 

(correlation: rho=-.02, p=.86; regression coefficient: b=0.07, 

p=.69), challenging KE-GD’s construct validity in our context.  

Table 1. Statistics of the Fall 2019 dataset including the 

proportion of gamed transactions (considering all attempts of 

all steps) detected by KE-GD. 

#stu #transaction 

(tx) 

#tx of 1st attempts 

of steps w/ KCs 

Avg proportion of 

gamed tx over stu 

129 98,176 32,419 .18 (SD=.08) 
 

2.3 Identifying and Integrating Contextual 

Factors to Improve Construct Validity 
Next, we conducted iterative exploratory data analysis on the first 

dataset to identify contextual factors that might explain the lack of 

association between detected gaming by KE-GD and learning, and 
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integrated the contextual factors through latent variable modeling 

analogous to item response theory modeling, explained as follows.  

2.3.1 Identifying the effect of task formats 
One notable feature of our dataset compared to other datasets for 

developing gaming detectors is that it was collected from 

experimentation with two conditions with substantial differences in 

task design and sequencing. So, we first conducted a moderation 

analysis to test whether the condition moderated the relation 

between detected gaming and learning. We constructed a 

regression model predicting posttest scores for each student given 

the pretest scores, the condition indicator, detected gaming 

proportion and an interaction term between the condition and 

detected gaming proportion. The interaction was significant (b=-

0.98, p=.007) and the control condition showed a relation opposite 

to theoretical prediction: higher proportion of detected gaming was 

associated with higher posttest scores (Figure 1).  

 
Figure 1. The interaction plot between the condition and 

detected gaming proportion of the regression model predicting 

posttest scores with pretest scores controlled for.  

To understand this interaction, we started an exploratory data 

analysis on the overall dataset to examine when and how students 

gamed according to KE-GD. We used the unit of analysis normally 

used for modeling student learning, knowledge components (KCs), 

for better drawing insights into the relation between gaming and 

learning. We used the KC model previously validated for this 

dataset [18] based on model fitness. It includes 26 KCs shared by 

both conditions. We first examined whether students gamed much 

more on some KCs than on others, and if so whether there was a 

pattern in this variation. A pattern emerged (see Figure 2) showing 

that students gamed substantially more on KCs required in menu 

and flipped-menu formats than those required in table and text 

formats. Meanwhile, we knew that the control condition positioned 

menu and flipped-menu tasks in later units, whilst the experimental 

condition interleaved menu and flipped-menu tasks with text and 

table tasks in earlier units. Having in mind that higher detected 

gaming was associated with higher posttest scores in the control 

condition (Figure 1), we wondered whether this association was 

because students with higher abilities (who usually also have higher 

posttest scores) progressed faster to later units and thus accessed a 

higher proportion of menu and flipped-menu steps, which were 

highly-gamed contexts, than students with lower abilities. We 

approximated students’ abilities by pretest scores and investigated 

this relation. Indeed, as shown in Figure 3, students with higher 

pretest scores in the control condition accessed a higher proportion 

of menu and flipped-menu steps than students with lower pretest 

scores (which was not the case for the experimental condition), and 

as a result, they might appear to game more than students with 

lower pretest score. Thus, the positive association between detected 

gaming and posttest scores in the control condition was spurious 

due to a confounder, the proportion of highly-gamed format steps a 

student accessed. The association between detected gaming 

revealed by KE-GD and posttest scores was biased. If we introduce 

task formats to account for (part of) the detected gaming, then this 

bias may be reduced.  

 
Figure 2. Detected gaming proportion by KCs averaged over 

students. 95% confidence intervals are plotted. (Only first 

attempts of steps with KCs are considered.)  

 
Figure 3. Correlations between pretest scores and proportion 

of highly-gamed formats (menu, flipped-menu) per condition.  

2.3.2 The basic latent variable model accounting 
for task formats 
Based on the first set of exploratory data analyses, we formulated a 

basic latent variable model, the simplest form of our proposed  IRT-

GD, that explains detected gaming by both task formats and 

students’ latent gaming tendencies, analogous to explaining item 

performance by both item difficulties and students’ latent abilities 

in Rasch model [14], the simplest form of item response theory 

(IRT) models. To illustrate our model, a student with a high 

proportion of detected gaming due to having a high proportion of 

menu steps will not be estimated as having a high gaming tendency 

if he or she does not game more than the average level of the student 

population on format steps. The model predicts the binary detected 

gaming label per transaction (i.e., an attempt on a student-step) G 

asserted by KE-GD, given the student identity and the current 

format (using a generalized linear mixed model):   

Detected gaming: G ~ (1|Student) + Format         (1) 

Gaming tendency: 𝛼 = exp(𝜃)                            (2) 

where the student identity is modeled as a random factor and the 

format of the current step is modeled as a fixed factor. Formula (1) 
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is written using the syntax of R’s lme4 package for better 

replicability; a formal mathematical description is that the log odds 

of a transaction being labeled as gaming by KE-GD is a linear 

function of the student’s identity (of which the coefficient is the 

student’s random intercept 𝜃) and the current format. In formula 

(2), a student’s gaming tendency 𝛼 is obtained by exponentiating 

the student’s random intercept 𝜃 from formula (1), converting log 

odds scale to odds scale. This basic model improved over KE-GD 

in terms of the sign and strength of the association with learning 

(Table 2 row #1), but the statistical significance was insufficient, 

demanding further investigation. 

2.3.3 Identifying other contextual factors 
Based on prior literature, we hypothesized that students’ prior and 

dynamic knowledge levels (i.e., learning) might also account for 

detected gaming. The theoretical foundation can be found in several 

studies: [29] showed that avoiding help and failing repeatedly 

(which may be considered as systematic guessing, a form of 

gaming) is associated with better learning than seeking help on 

steps for which students have low prior knowledge; [31] suggested 

that the behavior of bypassing abstract hints in search of a concrete 

solution (traditionally considered as help abuse, a form of gaming) 

may be an engaged learning behavior where students use bottom-

out hints as worked examples; [13] also suggested that detected 

gaming can be a desirable adaptive learning behavior when students 

encounter challenges far beyond their abilities. Students’ dynamic 

knowledge levels were often included as features in machine-

learned gaming detectors [6, 32] but absent in KE-GD. Thus, we 

conducted further exploratory data analysis to examine the effect 

of prior knowledge (approximated by pretest scores) and dynamic 

knowledge (approximated by practice opportunities) on detected 

gaming. More specifically, since we had already identified task 

formats as an important contextual factor, we hypothesized that 

there might be interactions between prior knowledge and formats, 

as well as between practice opportunities and formats, on detected 

gaming. 

 
Figure 4. Correlations between pretest scores and detected 

gaming proportion per task format over students (considering 

all attempts of all steps).  

Figure 4 shows that on flipped-menu and menu formats, students 

with lower pretest scores gamed much more than students with 

higher pretest scores, while this was not the case for other formats. 

Figure 5 shows that on table formats, students were more likely to 

game on earlier than later opportunities and reduced gaming 

quickly over opportunities. Discussion of these findings can be 

found later in Section 5. Based on this second set of exploratory 

data analysis, we integrated the discovered contextual factors into 

a latent variable model explained below.  

 
Figure 5. Correlations between practice opportunities and 

detected gaming per task format. Each point corresponds to the 

average proportion of detected gaming at an opportunity over 

students (considering all attempts of all steps). The blips at the 

end of the curves are due to small sample sizes. 

2.3.4 The full latent variable model accounting for 
critical contextual factors 
Based on the second set of exploratory data analyses, we identified 

two groups of contextual factors that might be important to explain 

general gaming behaviors: the first group captures the effect of 

pretest scores adjusted by formats; the second group captures the 

effect of learning adjusted by formats. We then estimated students’ 

latent gaming tendencies accounting for these contextual factors. 

The underlying rationale of our model can also be explained as 

follows. Since the proportion of detected gaming is usually a low 

proportion of a full dataset under a study (typically less than 7% in 

past studies and less than 20% in our datasets), it is sound to assume 

that a model describing well the detected gaming behaviors of a full 

dataset captures the normative behaviors of a population, and the 

deviation from the normative behaviors represents the intended 

gaming construct. Essentially, students are estimated as having a 

higher gaming tendency when they game in less frequently gamed 

contexts than when they only game in more frequently gamed 

contexts according to the general behaviors. This is analogous to 

IRT models where students are estimated as having higher ability 

when they can get harder items correct than when they only get 

easier items correct. The full formulation of our latent variable 

model IRT-GD is as follows (using a generalized linear mixed 

model):  

   Detected gaming: G ~ (1|Student) + Format   

                                    + Pretest + Pretest:Format     

                 + Opportunity  + Opportunity:Format      (3) 

   Gaming tendency: 𝛼 = exp(𝜃)                                                (4) 

Formula (3) is written using the syntax of R’s lme4 package for 

better replicability; a formal mathematical description is that the 

log odds of a transaction being labeled as gaming by KE-GD is a 

linear function of the student’s identity (of which the coefficient is 

the student’s random intercept 𝜃), the format of the current step, the 

student’s pretest score, the interaction between the pretest score and 

the format, the practice opportunity count of a format of the student 

(note that all steps of a task are considered as having the same 

opportunity count of the corresponding format), and the interaction 

between the opportunity count and the format. Except for the 

student identity modeled as a random factor, all other predictors are 
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modeled as fixed factors. In formula (4), a student’s gaming 

tendency 𝛼 in odds scale is obtained by exponentiating the student’s 

random intercept 𝜃 from formula (3). 

Table 2. Associations between gaming tendencies estimated by 

different variants of IRT-GD and learning. Correlations with 

normalized learning gains and coefficients of gaming tendency 

variables in regression predicting posttest scores are reported 

(p<.10: boldfaced and italicized; p<.05: boldfaced). 

I

D 
Level Predictors 

Cor with 

NLG 

Post~ 

Pre+G 

1 Format (1|Stu)+F 
rho=-.07 

p=.44 

b=-.02 

p=.31 

2 Format (1|Stu)+F+Pre 
rho=-.14 

p=.11 

b=-0.03 

p=.16 

3 Format (1|Stu)+F+Pre+Pre:F1 rho=-.16 

p=.07 

b=-0.03 

p=.14 

4 Format (1|Stu)+F+Pre+Pre:F+Opp 
rho=-.16 

p=.07 

b=-0.03 

p=.14 

5 Format 
(1|Stu)+F+Pre+Pre:F+Opp+F:Opp 

(The final chosen model)  

rho=-.18 

p=.04 

b=-0.04 

p=.09 

6 Format 
(1|Stu)+F+Pre+Pre:F+Opp+F:Opp 

(1st attempts of steps w/ KCs) 

rho=-.26 

p=.00 

b=-0.08 

p=.01 

7 KC 
(1|Stu)+K+Pre+Pre:K+Opp+K:Opp2  

(1st attempts of steps w/ KCs) 

rho=-.25 

p=.00 

b=-0.07 

p=.01 

 

Table 2 shows the construct validity metrics of full models (row 

#5-#7) as well as reduced models (row #1-#4) of IRT-GD. All the 

seven variants reached higher validity than KE-GD in terms of 

having stronger associations with learning, and the three full 

models reached desirable statistical significance (row #5-#7). The 

five predictors increasingly strengthened the association (except 

when adding the single opportunity term in row #4 before adding 

the interaction term) and were necessary for reaching acceptable 

validity in this dataset. In formulating the full models, we explored 

two other configurations: one that used KCs as the unit (row #7) 

and fit the model using first attempts of steps with KC labels 

(without modifying the detected gaming labels associated with 

these transactions); another that used the same data subset as the 

KC-level model to fit the model but maintaining the unit of format. 

We found that a format-level modeling worked as well as the KC-

level modeling, when using the same subset (row #6 vs. #7). We 

also found that using the subset with only first attempts of steps 

labeled with KCs could improve validity compared to using all 

attempts of all steps (row #6 vs. #5) in this dataset. However, using 

all attempts of all steps does not require additional KC labels, so 

we chose to fit IRT-GD with all attempts of all steps for potentially 

greater generalizability. The final chosen model for the rest of the 

paper was the one in row #5 in Table 2. We further examined the 

fitted parameters of the chosen model (Table 3) and found that they 

had high consistency with the patterns observed in our exploratory 

data analyses (note that some differences may be due to the 

differences in statistical methods and data processing used in the 

two kinds of analyses). We thus concluded the formulation of IRT-

GD for valid gaming detection in our tutor. 

 

 
1 In R’s lme4 package, a colon : is used to denote an interaction term. 
2 We treated the KC variable as a random factor. R formula:     

   G~(1|Stu)+(1+Pre+Opp|K)+Pre+Opp. 

Table 3. Parameters of the chosen full model of IRT-GD (row 

#5 in Table 2). Categorical variables were dummy coded and 

continuous variables were standardized for reducing 

multicollinearity. The coefficients are in log odds scale.  

Modeling purpose Regression term Coefficient 

Effect of format 

Intercept (Text) 𝛽=-2.09, p<.001 *** 

Table 𝛽=-1.50, p<.001 *** 

FlipMenu 𝛽=0.09, p=.03 * 

Menu 𝛽=1.12, p<.001 *** 

Effect of prior 

knowledge adjusted 

by formats 

Pretest (Pretest:Text) 𝛽=-0.09, p=.13 

Pretest:Table 𝛽=0.04, p=.37 

Pretest:FlipMenu 𝛽=-0.19, p<.001 *** 

Pretest:Menu 𝛽=-0.10, p=.01 * 

Effect of learning 

adjusted by formats 

Opp (Opp:Text) 𝛽=0.01, p=.71 

Opp:Table 𝛽=-1.13, p<.001 *** 

Opp:FlipMenu 𝛽=-0.00, p=.99 

Opp:Menu 𝛽=-0.01, p=.84 

3. GENERALIZABILITY OF IRT-GD 
In the previous section, we conducted exploratory data analysis and 

validity evaluation on the same dataset and on a single dataset, 

which might risk overfitting to the dataset. In this section, we tested 

the generalizability of IRT-GD to two new datasets. We looked into 

conditions separately and together for all three datasets, resulting in 

nine contexts across different populations and designs of the 

system. The two new datasets were collected in 2020 Spring (20S) 

and 2021 Fall (21F) from the second and third experiments with the 

tutor with some design changes derived from data mining in the 

experimental (EXP) condition: new units were introduced for 

providing focused practice on prerequisite KCs; a lower proportion 

of menu and flipped-menu tasks was positioned in earlier units 

compared to the first dataset;  a new task format was introduced in 

the 21F dataset involving interactions with animations. The four 

task formats identified in the first dataset were still present in the 

two new datasets. On the other hand, the control condition 

remained the same.  

Table 4 shows statistics of all datasets including detected gaming 

by KE-GD. Again, the detected gaming proportions were high 

(16%) in the new datasets. When applying both KE-GD and IRT-

GD to the nine contexts (see Table 5), IRT-GD consistently 

outperformed KE-GD in reaching higher associations with learning 

in all nine contexts, except one (21F dataset the EXP condition) 

where the correlation of IRT-GD was slightly weaker but of the 

same level of significance as KE-GD. In particular, when 

examining both conditions together and the EXP condition, IRT-

GD reached high construct validity (i.e., rho<0 and p<.05) in all six 

contexts, while KE-GD only reached construct validity in half of 

the contexts. When examining the control condition, IRT-GD also 

improved on KE-GD by reversing positive correlations to the 

theoretically consistent negative correlations for all datasets and 

reached acceptable significance on the 20S dataset, although the 

correlations did not reach acceptable significance in other datasets. 

We conducted further investigation next.  
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Table 4. Statistics of datasets including detected gaming by KE-

GD (CT/EXP: control/experimental condition). 

Data 
#stu 

#transactions  
Avg proportion of 

gamed tx over stu All CT EXP 

19F 129 69 60 98,176 .18 (SD=.08) 

20S 222 106 116 109,193 .16 (SD=.11) 

21F 99 46 53 59,703 .16 (SD=.11) 
 

Table 5. Associations between gaming from KE-GD or IRT-GD 

with learning across nine contexts. The Gaming variables in 

regression models predicting posttest scores for KE-GD and 

IRT-GD are of different scales. (p<.10: boldfaced and italicized; 

p<.05: boldfaced; NLG: normalized learning gain; CT: control 

condition; EXP: experimental condition.) 

Da

-ta 

Detect-

or 

All CT EXP 

Cor w/ 

NLG 

Post~ 

Pre+G 

Cor w/ 

NLG 

Post~ 

Pre+G 

Cor w/ 

NLG 

Post~ 

Pre+G 

19

F 

KE-GD 
rho=-.02 

p=.86 

b=0.07 

p=.69 

rho=.14, 

p=.25 

 b=0.34 

p=.11 

rho=-.29 

p=.02 

b=-0.71 

p=.02 

IRT-GD 
rho=-.18 

p=.04 

b=-0.04 

p=.09 

rho=-.02. 

p=.86 

b=-0.01 

p=.62 

rho=-.41 

p=.00 

b=-0.10 

p=.02 

20

S 

KE-GD 
rho=-.04 

p=.55 

b=0.01 

p=.92 

rho=.16, 

p=.10 

b=0.25 

p=.10 

rho=-.13 

p=.17 

b=-0.32 

p=.12 

IRT-GD 
rho=-.20 

p=.00 

b=-0.04 

p=.00 

rho=-.19 

p=.05 

b=-0.05 

p=.03 

rho=-.21 

p=.02 

b=-0.03 

p=.06 

21

F 

KE-GD 
rho=-.29 

p=.00 

b=-0.45 

p=.00 

rho=.00 

p=.98 

b=-0.04 

p=.85 

rho=-.52 

p=.00 

b=-0.83 

p=.00 

IRT-GD 
rho=-.36 

p=.00 

b=-0.05 

p=.00 

rho=-.20 

p=.18 

b=-.02 

p=.19 

rho=-.48 

p=.00 

b=-0.09 

p=.00 
 

3.1 Identifying deeper task format effects 

for refining the input detector 
To understand and address the lack of validity of IRT-GD in the 

control condition in two datasets (Table 5), we conducted further 

investigation on the 19F dataset where IRT-GD showed the 

weakest association with learning. We wondered whether the 

bottleneck lay in the input detector KE-GD. If the gaming labels 

(i.e., values of the dependent variable for fitting IRT-GD) were too 

noisy, it would be hard to get accurate tendency estimates by any 

means. If we decompose a gaming label, it is the union of 13 

gaming labels corresponding to 13 gaming patterns defined in KE-

GD. Could some of the patterns under some formats be better 

considered as not gaming in our control condition context? In other 

words, we hypothesized that there might be deeper task format 

effects in students’ interaction patterns. We conducted a third set of 

exploratory data analysis where we examined the associations 

between detected gaming proportions of each of the 13 patterns 

from KE-GD with learning under each format. We used a local 

normalized learning gain computed using tasks related to a specific 

format rather than all tasks in the pretest and posttest. The results 

in Table 6 suggest that on different formats, the same gaming 

pattern could be helpful or harmful for learning, supporting our 

hypothesized deeper format effect. To account for this contextual 

factor, we updated the detected gaming labels from KE-GD in the 

control condition by using the union of only the patterns that were 

negatively associated with learning (regardless of statistical 

significance) for each format while maintaining the labels of the 

experimental condition. This was a change in the dependent 

variable rather than the predictors in IRT-GD. We used the updated 

dataset to fit new IRT-GD variants, referred to as IRT-GD-PR, and 

estimated gaming tendencies for the control condition and the 

overall dataset. Table 7 shows that IRT-GD-PR achieved 

acceptable validity for the control condition and also boosted the 

validity for the overall dataset compared to IRT-GD and KE-GD. 

We leave for future work to further improve and test this local 

refinement method. 

Table 6. Correlations between local normalized learning gains 

and proportion of each gaming pattern detected by KE-GD in 

the control condition in the 19F dataset. Pattern #8 was omitted 

due to its absence. (+: rho>0, -: rho<0, ∙: p<.10) 

Format 1 2 3 4 5 6 7 9 10 11 12 13 

Avg prop .01 .08 .01 .00 .13 .00 .01 .01 .01 .00 .01 .02 

Table - + - - + -∙ - - - + - + 

Menu + - +∙ - - - + - - - -∙ - 

Flip-M + - + na - - + + - + - + 
 

Table 7. Associations between gaming (from KE-GD, IRT-GD, 

or IRT-GD-PR) with learning. Rho and p values are reported 

for correlation with normalized learning gains; coefficients and 

p values of Gaming variables are reported for regression.   

Detector 
All CT (control condition) 

Cor w/ NLG Post~Pre+G Cor w/ NLG Post~Pre+G 

KE-GD -.02(.86) 0.07(.69)  .14(.25)  0.34(.11) 

IRT-GD -.18(.04) -0.04(.09) -.02(.86) -0.01(.62) 

IRT-GD-PR -.27(.00) -0.07(.01) -.23(.06) -0.06(.04) 
 

4. APPLICATIONS OF IRT-GD 
In this section, we demonstrated two applications of IRT-GD. We 

used the estimated gaming tendencies from IRT-GD to study 

whether there was a difference in the level of gaming between the 

two conditions from our experimentation with the tutor, and to 

explore the relation between gaming and motivation. 

4.1 Intervention effects on gaming 
Our prior work [18] has shown that the data-tuned adaptive 

condition (that provided intense deliberate practice) led to greater 

learning outcomes compared to the control condition (that provided 

normal deliberate practice) in the first experiment (19F dataset); we 

are interested to see whether the intervention also led to higher 

behavioral engagement, particularly lower levels of gaming the 

system. We conducted a regression analysis predicting levels of 

gaming over students given the condition indicator on the three 

datasets. The two detectors had contradicting results on the 19F and 

20S datasets. On the 19F dataset, KE-GD showed that the 

intervention led to significantly higher levels of gaming while IRT-

GD showed that there was no statistical difference (Table 8 the 2nd 

column). The suggested intervention effect of increased gaming 

levels by KE-GD contradicted the previously validated intervention 

effect of improved learning, since higher levels of gaming are 

usually associated with lower learning. Thus, IRT-GD more 

accurately revealed the intervention effect on this dataset. We 

hypothesized that this could be due to KE-GD not being able to 

account for the task format effect. We computed the proportion of 

highly-gamed formats over transactions and the normalized 

learning gain per student per condition. We found that the EXP 

condition had a higher average proportion of highly-gamed formats 

(Table 9 the 2nd column), consistent with our hypothesis. On the 
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20S dataset, KE-GD showed that the intervention led to 

significantly lower levels of gaming while IRT-GD showed that 

there was no statistical difference (Table 8 the 3rd column). 

However, both conditions have similar normalized learning gains, 

and the control condition had a much higher average proportion of 

highly-gamed formats (Table 9 the 20S columns). This again 

suggests that KE-GD provided biased gaming assessment by using 

direct proportion of gaming without accounting for formats. This 

set of analyses shows that IRT-GD more accurately revealed 

intervention effects on gaming than KE-GD in our experiments.   

Table 8. Intervention effects on gaming examined by regression 

predicting gaming proportions or tendencies given the 

condition variable (Control: 0, Experimental: 1). Coefficients 

of the condition variable are reported.  

Detector 19F 20S 21F 

KE-GD b=0.02, p=.03 b=-0.09, p<.001 b=0.03, p=.15 

IRT-GD b=-0.05, p=.68 b=0.03, p=.79 b=0.16, p=.48 
 

Table 9. The proportion of highly-gamed formats (PHGF) in 

transactions and normalized learning gain per condition. Mean 

and SD are reported. Higher values are in boldface.  

Cond 
19F 20S 21F 

PHGF NLG PHGF NLG PHGF NLG 

CT .38(.22) .16(.29) .31(.22) .12(.34) .16(.17) .14(.20) 

EXP .44(.09) .24(.28) .06(.13) .14(.39) .40(.16) .15(.25) 
 

4.2 Motivation and gaming 
The investigation of the relation between motivation and gaming 

contributes to understanding why students game and developing 

behavioral measures of motivation. Prior work [9] indicated that 

students’ attitudes and interest towards the domain was related to 

detected (observed) gaming frequency. More recent work [13] 

applying a simple latent variable model identified strong 

associations between several motivational measures and estimated 

gaming tendencies. Our investigation of the relation between 

motivation and gaming adds to the limited empirical evidence in 

this space. On our datasets, motivational surveys with four scales 

(Table 10) were collected at the first and the last sessions of each 

month-long experiment. Each question used a 7-point Likert rating; 

responses for each scale were averaged to present students' 

motivation along the scale. Table 11 shows correlations between 

motivational measures from surveys and estimated gaming 

tendencies over students. Among the four scales, only perceived 

competence in math (PC) showed consistent significant 

correlations with gaming and only in the experimental condition 

across three datasets; the sign of the correlations was negative as 

theoretically predicted. The correlations between PC and gaming 

did not appear to be due to students’ abilities approximated by 

pretest scores, because we did not find correlations between pretest 

scores and gaming tendencies. To understand why PC was only 

associated with gaming in the experimental condition that provided 

intense deliberate practice but not in the control condition that 

provided normal deliberate practice, we compared objective 

difficulties measured by the proportion correct of first attempts and 

subjective difficulties measured by the difference between the final 

and the initial values of PC between the conditions (Table 12). We 

found that the experimental condition had lower objective 

difficulties but higher subjective difficulties. We discussed the 

results in the next section.  

 

Table 10. Motivational survey inventory. 

Scale Question 

Perceived competence 

in math (PC) 

How good at math are you? 

Compared to most of your other school 

subjects, how good are you at math? 

Math utility value 

(UV) 

How important is it to you to learn math? 

How important do you think math will be 

to you in the future? 

Interest in math (IM) How interesting is math to you? 

Interest in tutor (IT) 
How excited are you to do math on a 

computer? 
 

Table 11. Correlations between motivational measures from 

surveys and estimated gaming tendencies. Correlations with 

pretest scores were added for contrast.  

Scale Cond 19F 20S 21F 

PC 

CT -.00(.97) -.10(.31) -.03(.84) 

EXP -.26(.046) -.18(.05) -.32(.02) 

All -.11(.20) -.15(.03) -.12(.25) 

UV 

CT -.11(.38) .00(.98) -.31(.04) 

EXP .09(.50) -.03(.78) -.17(.22) 

All .01(.94) -.02(.78) -.21(.04) 

IM 

CT .04(.73) -.03(.75) -.05(.73) 

EXP -.07(.60) -.13(.18) -.11(.41) 

All .02(.87) -.08(.21) -.04(.66) 

IT 

CT .11(.37) -.03(.75) -.01(.97) 

EXP .06(.64) -.06(.55) -.01(.93) 

All .12(.19) -.04(.54) -.01(.93) 

Pretest 

CT -.04(.74) -.01(.91) -.06(.68) 

EXP -.01(.92) -.03(.74) -.06(.66) 

All -.01(.90) -.04(.61) -.07(.52) 
 

Table 12. Objective difficulties measured by the proportion 

correct of first attempts (prop cor) and subjective difficulties 

measured by the difference of PC between the final value and 

the initial value (𝜟PC) per condition. Mean and SD are 

reported. Higher values are in boldface.  

Cond 
19F 20S 21F 

prop cor 𝜟PC prop cor 𝜟PC prop cor 𝜟PC 

CT .60(.17)  .02(.86) .60(.14) -.03(.83) .61(.16)  .02(1.11) 

EXP .62(.10) -.22(.91) .69(.11) -.09(.86) .70(.10) -.22(.98) 

5. DISCUSSION AND CONCLUSION 
In this paper, we demonstrate a latent variable model for more valid 

and robust gaming assessment, item response theory-based gaming 

detection (IRT-GD), that estimates latent student gaming 

tendencies accounting for contextual factors. We started with 

applying a previously validated knowledge-engineered gaming 

detector (KE-GD) to a dataset collected from an algebra tutor with 

varying task design and sequencing across conditions. However, 

the detected gaming level by KE-GD was not associated with 

learning, challenging its construct validity in our context. We 

conducted exploratory data analyses and identified contextual 
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factors that could capture the normative interaction behaviors of the 

population that might explain this lack of association. We then built 

an IRT-GD model that explains detected gaming from KE-GD by 

both contextual factors and students’ intrinsic gaming tendencies; 

it estimates a student-level latent gaming tendency as the degree of 

deviation from normative behaviors of a population across 

contexts. We tested the generalizability of IRT-GD and found that 

it outperformed KE-GD on three datasets across different contexts 

in construct validity measured by associations with learning. Our 

approach is not only useful for others wanting to apply a gaming 

assessment in their context, but is also generally applicable in 

creating more robust behavioral measures. 

There are two notable features of our approach that may be 

particularly relevant for anyone building or using behavioral 

detectors. One is that our modeling approach adapts an existing 

behavioral detector to new contexts without complex feature 

engineering, which may be attractive for the learning engineering 

community to maximally build on past methods and adapt them to 

new contexts. For example, the learning effect on detected gaming 

is incorporated through practice opportunity counts without an 

additional process to estimate dynamic knowledge as in [6, 32]. 

Another feature is that our modeling and evaluation approaches do 

not require extra human labeling and focus on the association 

between the behavior measure and learning. Many past works 

constructed and validated detectors solely by predictions of human 

labels; although human labels have undeniable merits, they may 

contain bias. For example, in the development of KE-GD [25], 

experts examined each clip, which consists of five consecutive 

actions, from a set of clips randomly selected from log data and 

decided whether the clip would be coded as gaming or not. A clip 

was shown in a textual format giving individual-level information 

about the actions within the clip (e.g., each action's time, the 

problem context, the input entered, the relevant skill, whether the 

input was right, wrong, a help request or a “bug”), and experts made 

judgements about gaming without population-level information 

(e.g., the median time of the step of the population), or information 

outside the clip from previous or future clips. This may increase the 

speed and ease of labeling, yet it may risk introducing bias. For 

example, if the student did not deviate much from the general 

behavior of the population or if the student could get a similar step 

correct in a future clip on their first attempt, then it may be better 

to label this clip as not gaming. Thus, behavioral detectors validated 

solely by predictions of human labels looking at isolated clips may 

not always reliably capture unproductive or harmful behaviors for 

learning. Our approach reduces bias and enhances the support for 

learning when applying a behavioral detector by considering 

contextual factors that were not considered in the original human 

labeling process, but are important for identifying behaviors 

harmful for learning. Although further examination of generality, 

stability, and reliability (as elaborated later) of IRT-GD may be 

needed to strengthen the validity claim of our approach, we think 

current evidence suffices to suggest that IRT-GD and our latent 

variable modeling approach can enhance (rather than replace) 

existing behavior measures for more valid and most robust 

behavioral assessment. One may consider using IRT-GD and our 

latent variable modeling approach when an existing behavior 

measure lacks validity in a specific context.  

We identified strong contextual factors, i.e., the task format and its 

interaction with students' practice opportunities, aligning with 

previous research. The menu format led to the highest detected 

gaming, which coheres with prior work hinting at the high 

propensity of the multiple-choice format (which also involves 

selecting an option given a set of options) for triggering detected 

gaming. One explanation may be that the cognitive cost [16] in 

making attempts in menus is low since it does not require typing, 

and different descriptions may only have subtle differences, so 

students might have developed a trial-and-error strategy with 

genuine engagement. This explanation could also be applied to the 

second highest gamed format, flipped-menu, where students might 

enter several expressions extracted from a given equation 

corresponding to a description rather than writing expressions from 

scratch as in other formats. Cognitive cost of a format is implicitly 

considered in IRT-GD and may be worth more attention for others 

developing gaming detectors. Meanwhile, students more likely 

decreased detected gaming as their prior knowledge levels 

increased on menu and flipped-menu formats compared to other 

formats, suggesting that certain game-like learning strategy (e.g., a 

trial-and-error strategy) may only be likely when the cognitive cost 

is low and students are of low prior knowledge. Moreover, we 

found that students decreased detected gaming faster on the table 

format over successive practice opportunities than on other 

formats, suggesting the reasons for students to game on this format 

might be different from the reasons they gamed on menus or 

flipped-menus. Examining the interface, one explanation may be 

that there are no clear instructions on how to fill in the various cells 

of the table, e.g., under the column labeled as “Show your work”, 

it is not clear whether a student could enter 15+10 (graded as 

wrong) instead of 3*5+10 (the correct answer). This coheres with 

prior work suggesting that students gamed more when the 

presentation is unclear [8], and that students may game as a way to 

obtain worked examples [31]. Further analysis on student answers 

may support our hypothesized explanations. A final remark 

regarding task formats is that in the tutor we studied, the 

interpretation of task formats requires caution since a task format is 

not only coupled with a specific interface design (as the name 

format suggests), but also a specific scaffolding design (e.g., fixed 

or dynamic scaffolding) as well as specific KCs. A future direction 

is to study them separately through experimentation.   

In a context where IRT-GD did not reach statistically significant 

associations with learning, we conducted local refinement of the 

input detector, KE-GD, by considering deeper format effects, i.e., 

the interaction between formats and specific interaction patterns. 

Our refinement led to acceptable validity and further confirms the 

importance of task features and demonstrates the flexibility of our 

latent variable approach. A next step is to test whether this local 

refinement approach is robust in other contexts. In some contexts, 

KE-GD already reached acceptable validity, although IRT-GD 

further improved on it by reaching stronger associations with 

learning. A next step is to apply IRT-GD to other learning 

environments and to study more automatic ways to identify 

contextual factors important in a specific context.  

One aspect that needs further examination is whether and how well 

a fitted IRT-GD model extrapolates to unseen students or formats. 

This aspect is especially relevant to online intervention where the 

tutor has to react to gaming as designed for new students or formats. 

In Section 4, we conducted one kind of generalizability checking 

where we used the same independent variables in the IRT-GD 

model for the first dataset to construct IRT-GD models for new 

datasets fitted to the complete set of the new datasets. The new 

format (animation) was handled through adding a new dummy 

coded variable. We showed that the structure (i.e., predictors) of 

IRT-GD generalizes to new students and new versions of the 

system. This checking is most relevant if one uses IRT-GD to 

conduct offline student-level analysis as was done in Section 4. 

However, we have not examined how well a fitted IRT-GD model 

extrapolates to unseen students or formats, i.e., predicts detected 
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gaming or estimates gaming tendencies for unseen students or 

formats, which is important when using IRT-GD for online 

intervention. In theory a fitted IRT-GD model can extrapolate to an 

unseen or newly seen student: we first plug in the values of the fixed 

factors which equates to using the population mean to obtain a 

prediction; after observing at least one data point of the new 

student, we can (repeatedly) reestimate the parameters with the 

accumulated data with a random intercept added for the new 

student. Meanwhile, the extrapolation to unseen formats is also 

feasible: we can first treat a new format as a seen, similar format, 

and after observing at least one data point of the new format, we 

can (repeatedly) reestimate the parameters with a parameter fitted 

for the new format3. A promising modification of IRT-GD that 

enables greater generalizability is to replace the dummy coded 

format variables with a variable that describes key properties of 

formats, e.g., whether a response set is given or can be easily 

inferred. As for the question of how well, we plan to test the 

“online” predictiveness of IRT-GD used in the aforementioned 

ways for extrapolation as a next step. 

A related examination that could further support the validity of 

IRT-GD is to examine the stability and reliability of estimated 

gaming tendencies. To examine stability, we may check whether 

gaming tendencies estimated from the first half of students’ 

temporally ordered interactions correlate with those estimated from 

the second half of the student interactions, i.e., whether students 

who tend to game more earlier also tend to game more later. To 

examine reliability, we may check whether gaming tendencies 

estimated from interactions of a set of formats correlate with those 

estimated from interactions of other formats, i.e., whether students 

who tend to game more in some formats also tend to game more in 

other formats. The higher the validity and reliability, the higher the 

truthfulness of the underlying assumption of IRT-GD about a 

latent, stable gaming tendency construct and the soundness of the 

identified contextual factors.  

Although we have focused on a student-level gaming estimate by 

IRT-GD, it can also give a transaction-level gaming estimate for 

online intervention. For example, we can first fit an IRT-GD model 

to past data using the full formulation. Then, we can apply the fitted 

model without using the random student intercepts to predict 

whether an average student may game (as defined by KE-GD) on a 

step according to current contextual factors. Then we compare this 

population-level prediction (considering an interval of uncertainty) 

to the gaming label by KE-GD to identify cases where gaming is 

not acceptable, i.e., deviating too much from the norm, and finally 

activate the pre-designed intervention.   

One seemingly conflicting result with prior studies is that we did 

not find an association between gaming tendencies with pretest 

scores (Table 11), where prior studies have shown that lower prior 

knowledge levels were associated with higher gaming frequencies 

[5, 20]. This is because IRT-GD already includes pretest scores and 

relevant interactions as predictors for detected gaming. IRT-GD is 

intentionally designed to extract latent gaming tendencies that are 

not (primarily) triggered by prior knowledge, but by other factors 

such as students’ motivation or metacognitive skills. This may lead 

to tutor design that focuses on promoting students’ motivation or 

metacognition. However, our latent variable modeling approach is 

flexible in that one could consider dropping the pretest scores 

 
3 Treating a categorical variable with few levels as a random factor may 

lead to imprecise estimates [10]. Thus, we do not consider this as a next step 

when the number of formats is small (e.g., <10). 

related predictors if they are interested in gaming tendencies 

triggered by prior knowledge. 

One finding seemingly less consistent with prior work and harder 

to interpret is the link between motivation and gaming. We found a 

negative correlation between perceived competence in math and 

gaming in the experimental condition (i.e., the intense deliberate 

practice condition), consistent with the reported negative 

correlation between self-efficacy in math and gaming in [13], but 

we did not find any correlations between other motivational 

measures and gaming, such as students’ interest towards the 

domain and gaming reported in [9, 13], or any correlations in the 

control condition (i.e., the normal deliberate practice condition)4. 

Rather than prematurely attributing the general lack of correlation 

between motivation and gaming to the lack of validity of estimated 

gaming tendencies, we hypothesize several reasons. There may be 

interactions between different student attributes (measured or 

unmeasured in the current study) or between student attributes and 

system attributes not considered in a simple zero-order correlation 

we did here. Additionally, the motivational survey was deployed at 

the first session but was used to correlate with month-long 

accumulated behaviors. After all, there is still limited empirical 

evidence of the relation between motivation and gaming, so further 

investigation is needed. To explain why there was a negative 

correlation between perceived competence in math and gaming in 

the intense deliberate practice condition but not in the normal 

deliberate practice condition, we conducted a preliminary 

exploration and found that the objective difficulty (measured by the 

proportion correct of first attempts) of the intense deliberate 

practice condition was lower than the normal deliberate practice 

condition but the subjective difficulty (measured by perceived 

competence in math) of it was higher. One hypothesis is that the 

patterns of successes or failures may matter more than the 

proportion of success for students’ perceived competence. The 

intense deliberate practice driven by a more fine-grained and larger 

KC model may have more constantly pushed students to work on 

their weak spots in new tasks (i.e., put them on the edge of 

competence), challenging their perceived competence. It may be 

worth considering letting students to occasionally work on already 

mastered skills to boost their perceived competence, or preparing 

students better for desirable difficulties or failures. Combining this 

finding with the finding that intense deliberate practice alone did 

not reduce gaming tendencies, one promising direction is to 

introduce motivational interventions or designs that could maintain 

or promote perceived competence or self-efficacy in the task 

domain under intense deliberate practice, to reach a potential 

multiplier effect of both cognitive and motivational interventions.   
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ABSTRACT
Collaborative problem solving (CPS) is a 21st-century skill 
essential for learning gains, workplace success, and tackling 
increasingly complicated global problems. Group diversity 
plays a vital role during collaborative activities, especially in 
a digital space. Although CPS involves dynamic communi-
cation behaviors, few studies have considered the impact of 
cultural diversity on the complex and reoccurring discourse 
involved in CPS tasks. In this study, we explore team con-
versations during a CPS task to understand the role of cul-
tural diversity on team communication patterns. First, we 
characterized team dialogues with an existing CPS frame-
work; then used recurrence quantification analysis (RQA) to 
quantify group communication and capture recurrent pat-
terns. Finally, we compared the patterns across groups with 
varying degrees of cultural diversity. Our results suggest 
that groups with higher levels of cultural diversity, com-
pared to more homogeneous groups, had a higher number of 
group messages, spent more time in group discussions, and 
demonstrated greater convergence and complexity in com-
munication patterns. These intricate and complicated com-
munication patterns support the notion that cultural diver-
sity can produce both positive and negative outcomes and 
may explain the perception of cultural diversity in teams as 
a “double-edged sword”.

Keywords
cultural diversity, collaborative problem solving, recurrent 
quantification analysis, group dynamics

1. INTRODUCTION

Collaborative problem solving (CPS) involves individuals
working together to solve a problem and promotes division of
labor, sourcing information from different perspectives and
backgrounds, and increasing innovation and creative solu-
tions that stem from the presence of multiple group mem-
bers [52]. CPS has been identified as a key 21st century
skill [9, 80] that plays a pivotal role in both workplace [22]
and educational environments [12]. Furthermore, CPS has
increasing international importance and has been shown to
be an essential skill needed across several domains to solve
complex environmental, social, and public health problems
[52, 29]. From a socioeconomic perspective, the rise of com-
plicated global issues requires innovative solutions derived
from individuals working together and generating solutions
from diverse perspectives [22]. In professional environments,
employers often report problem-solving [49, 60] and collab-
oration [49] as skills that are essential for the success and
employability of recent college graduates. In educational
contexts, CPS is also a key component for successful team-
work and student learning [52, 27, 28]. Positive collaborative
interactions have been shown to improve student psycholog-
ical and performance outcomes [1, 35, 34, 44, 42, 41, 18, 20,
62].

Given the pivotal role of collaboration across multiple disci-
plines, it is unsurprising that an increasing number of stud-
ies have explored which team attributes are important for
successful CPS outcomes. For example, studies have con-
sidered the impact of group size [68, 45, 57], group diversity
[33, 66, 6, 21, 7, 75], and personality differences [37, 32] on
team performance. This area of research has consistently
highlighted that team diversity in general, and cultural di-
versity in particular, play a critical role in successful team
collaboration [66, 7, 75, 33]. Notably, this line of previous
work has generally focused on measuring the effects of team
diversity on static post-collaboration measures (e.g., perfor-
mance outcome) [66, 33, 77]. However, there have been lim-
ited research efforts devoted towards understanding the role
of diversity from a more dynamic, process-oriented perspec-
tive, which are fundamental to collaborative interactions [19,
16, 42]. As such, current studies on diversity in teams are
limited in offering insight on many interdependent aspects
within collaborative interactions such as negotiation, coor-
dination, and regulation, among others. In order to explore
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how these fine-grained collaborative interactions are influ-
enced by diversity, more nuanced techniques are needed.

To address this gap, we use a dynamical systems lens to
explore cultural diversity in teams and team communica-
tion patterns [58, 15, 79]. Specifically, we apply recurrence
quantification analysis (RQA) [78] to quantify team dynam-
ics, and capture recurrent patterns of interaction amongst
the members. Using this novel approach, we aim to uncover
low-level temporal patterns in CPS communication and vari-
ations therein across groups with different levels of cultural
diversity. Group communication is inherently interdepen-
dent and research has shown that group composition factors
are associated with different aspects of social and cognitive
processes during collaborative interactions [20, 19, 42, 55,
11, 10, 17]. Therefore, we are motivated to examine whether
cultural diversity as a team composition factor is associated
with different collaborative communication dynamics and
structures.

The remainder of the paper is organized as follows. First, we
review the literature on diversity in teams and the impact of
diversity on team outcomes and communication. Second, we
provide an overview of the current practices in quantifying
communication in CPS tasks and the previous work related
to RQA in the context of teams and group dynamics. Third,
we present our methodological approach including a descrip-
tion of our CPS task, the qualitative coding of CPS skills
exhibited in group communication, and the RQA measures.
Finally, we present our RQA analysis results with regards
to cultural diversity in groups as well as discuss our findings
and their implications for understanding communication be-
haviors in CPS.

2. RELATED WORK
2.1 Diversity in Teams
Diversity in teamwork and its impact on group’s perfor-
mance outcomes has been studied extensively across mul-
tiple disciplines and contexts (c.f. [33, 21, 72, 77, 66], for
meta-analyses on this topic). However, studies have demon-
strated mixed findings on the impacts of team diversity on
various team outcomes. Horwitz & Horwitz, 2007 found a
positive association between task-related diversity in groups
and performance, yet no direct relationship between demo-
graphic diversity and group performance. There is some
evidence to show that diversity in groups can result in pos-
itive outcomes, such as increased innovative and creative
ideas [33, 66]. However, other studies suggest that diver-
sity can result in negative outcomes such as increased con-
flict and lower group cohesion [65, 66]. Although the di-
rect impact of diversity on team outcomes remains unclear
[8, 66, 77], several studies have demonstrated that differ-
ent sources of diversity (personality, cognition, gender, race,
ethnicity, etc.) can impact groups to varying degrees [59,
33]. The impact of diversity is often associated with the
type of diversity: surface-level diversity (i.e., easily observ-
able attributes such as gender, race, ethnicity) v.s. deep-
level diversity (i.e., less overt attributes such as personality,
cognition, values/beliefs) [59, 31]. Initially, surface-level at-
tributes may influence group dynamics, but over time deep-
level attributes may become more salient and influential
[59]. Considering the interactions among the participants
in this study and many other collaborations are short-term

(20-minute discussions), surface-level diversity and cultural
diversity in particular can prove to be highly influential on
group interactions. In the current study, we focus on a
surface-level attribute, cultural diversity operationalized by
ethnic compositions in group, and its relationship to the
communication dynamics during CPS.

2.2 Cultural Diversity in Teams: A Double
Edged-Sword

Although there are various forms of group diversity, cultural
diversity has often been of particular interest to scientists be-
cause of the increased globalized and interconnected work-
force [7, 71]. Moreover, an array of collaboration technolo-
gies and online platforms enable distance teamwork, and cre-
ate greater collaborative opportunities for individuals with
different cultural backgrounds[22, 29]. Previous studies sug-
gest that the role of cultural diversity on team performance
is nontrivial. However, the effect of cultural diversity on
group performance is mixed. These effects are often me-
diated by factors such as creativity, conflicts, communica-
tion effectiveness, social integration, and satisfaction [66].
For example, although culturally diverse teams benefit from
higher levels of creativity and satisfaction, they also suffer
from lower social integration and more conflicts [66]. In ad-
dition, it is commonly assumed that people with different
cultural and ethnic backgrounds are likely to hold different
views and priorities when communicating with others [65,
14]. Following this assumption, higher degrees of cultural
diversity in groups may contribute to more complex inter-
personal dynamics and information sharing behavior. To
extend our understanding of communication patterns asso-
ciated with cultural diversity, we took on a dynamical sys-
tem lens to examine structural and temporal processes in
CPS discourse.

2.3 Quantifying the Impact of Cultural
Diversity

The literature on cultural diversity in teams covers a wide
range of domains and collaborative contexts. Existing stud-
ies have extensively focused on static team or individual out-
comes such as performance [70, 76], number or quality of
ideas generated [50, 53], decision-making tasks [81, 40, 64],
achieved learning [24], and psychological measures such as
learner experience and attitude towards group interactions
[54]. These studies have extended our knowledge on the re-
lation between cultural diversity and the end product of the
collaboration. However, few studies [69, 73] have consid-
ered how cultural diversity impacts more dynamic aspects
of the group collaboration process, such as language and
group discourse. For example, Tenzer et al., (2014) found
that cultural-based language differences can impact group
perceptions of trust and competencies. CPS is inherently
interactive and dynamic. Collaborative interactions involve
reoccurring and interrelated discourse as teams exchange
ideas, negotiate, and share information. Thus, it is neces-
sary to unpack collaborative process with regards to cultural
diversity compositions. To address this gap, our study fo-
cuses on the fine-grained temporal communication patterns
across cultural diverse and culturally similar groups.
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2.4 Quantifying CPS Communication
in Teams

Collaborative problem-solving involves dynamic interpersonal
exchange and shared cognitive behavior of individuals [19,
12]. Successful CPS requires multiple skills and subskills for
effective communication stages, including negotiation, infor-
mation sharing, coordination and so on. Language is consid-
ered a less intrusive means compared to traditional survey
sampling to reveal cognitive processes of the human mind.
A number of existing assessment frameworks have been de-
veloped to identify and capture CPS skills from interactive
dialogues. For example, the Programme for International
Student Achievement (PISA) [52], identifies a framework
with three social competencies (i.e., establishing and main-
taining shared understanding, taking appropriate action to
solve the problem, and establishing and maintaining team
organization) and four cognitive processes (i.e. exploring
and understanding, representing and formulating, planning
and executing, and monitoring and reflecting). This frame-
work was first introduced by OECD to evaluate CPS skills
during various computer-simulated assessment tasks, high-
lighting important aspects unique to collaborative interac-
tions mediated by computers. Other CPS frameworks that
subsequently surfaced follow similar ontology. For instance,
Liu et al. (2016) [43] proposed a framework that concep-
tualizes four broad CPS skills: sharing ideas, assimilating
and accommodating knowledge/perspective taking, regulat-
ing problem solving ideas, and maintaining positive com-
munication. Andrews-Todd & Forsyth mapped out more
nuanced skills under the social and cognitive domains [2].
More recently, some researchers propose to conceptualize
CPS interactions as a continued sociocognitive spectrum,
in contrast to the previous dichotomous view on social and
cognitive processes [18]. Through this lens, CPS practices
could best be described as sociocognitive in nature, allowing
more opportunities for adopting computational methods to
meaningfully capture natural language patterns of learners.
Increasingly, studies have suggested that natural language
processing and other artificial intelligence techniques are ef-
fective ways to measure CPS skills [13, 74]. Given this trend,
researchers have called for more efforts towards developing
and adapting innovative data mining methods to effectively
quantify CPS patterns and make sense of learner communi-
cation behavior [38].

2.5 Communication in Teams as a Dynamical
System: RQA

Communication and CPS skills can be considered a dynamic
and complex system [46, 23, 36]. Several methods can be
used to quantify and analyze group dynamics. However,
Knight, et al. (2016) point out that each are limited by
a lack of consideration for time dependencies and there-
fore oversimplification of group dynamics [36]. RQA, on the
other hand, is a non-linear dynamical systems approach that
enables the evaluation of recurring patterns across times
[78]. RQA has be widely used recently to study social inter-
actions, group communication, and group dynamics [3, 4, 36,
25, 26, 15, 67]. For example, Fusaroli & Tylén (2016) took
advantage of RQA and cross-recurrence quantification anal-
ysis (CRQA) to analyze dyadic conversations patterns and
subsequent performance. Based on RQA and CRQA, they
defined measures of interactive alignment, interpersonal syn-

ergy, and self-consistency. Interpersonal synergy serve as a
significant predictor of performance suggesting the impor-
tance of complimentary conversations between the dyads.
This dynamic system approach, to our knowledge, has not
yet been applied to investigate the communication group
dynamics in culturally diverse and homogeneous teams.

In the current study, we use RQA to measure structural
components of groups’ conversations. Specifically, we focus
on time-series data that map CPS skills exhibited in student
discourse based on the ontology presented in Andrews-Todd
et. al., [2]. RQA results can be visualized using a recurrence
plot. The recurrence plot gives a visual representation of the
components of each time-series data and plots their recur-
rence over time. Figure 1 provides an example of RQA in
the context of CPS skills. Figure 1A depicts chat discussions
during a typical CPS task. Each color in the chat discussion
depicts a coded CPS skill (e.g., information sharing) that
results in a times series of skills used labeled in Figure 1B.
Figure 1C illustrates a recurrence plot based on the chat
discussions in Figure 1A. The CPS skills on X and Y axis
correspond to the temporal sequence of chat utterances and
each dot is an instance in which the CPS skill has recurred
in the group conversation. The central diagonal line repre-
sents the sequence of CPS skills plotted against themselves,
also known as the line of identity (LOI). The recurrence of a
skill code used previously in the conversation is represented
by dots in the recurrence plot. The recurrence points along
with their patterns and alignment provide insight to struc-
tural components of group communication. For example,
the recurrence of Sharing Information (green) took place at
time points four, five, nine, and eleven and the recurrence
of Shared Understanding (orange) on times three and eight
are recurrence points.

Of particular interest, is any group of dots that create a diag-
onal line and that are not part of the LOI. A diagonal line of
length l is an indication of a recurring pattern of l skill codes
in the same sequence. For example, the sequence Monitoring
(purple), Shared Understanding (orange), and Information
Sharing (green) creates a diagonal line of length 3. These
exhibited CPS skills occurs back to back at position, two,
three, and four and then again at seven, eight, and nine,
thus creating a recurrence of CPS skills.

3. CURRENT WORK
CPS tasks involve dynamic discourse and communication
between groups. Therefore, by understanding how cultural
diversity impacts these dynamic communication patterns
and CPS skills, we can gain insight on the impact of cul-
tural diversity beyond outcome measures such as CPS per-
formance. The current study investigates how cultural diver-
sity in teams impacts group communication behaviors from
a dynamical system lens. We explore the linguistic CPS
patterns that emerge in culturally homogeneous and diverse
groups of undergraduate students as they complete an on-
line CPS task. Specifically, we aim to explore the following
research questions:

RQ1: Does cultural diversity impact structural components
(as captured with RQA) of a group’s conversation?

RQ2: How does cultural diversity impact structural compo-
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the venue? 

I put BCA 
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So, we all agree that B is 
best. 

Why did you put C next? 

C included the discount 
and had storage. 

 

Please list your features 
for A and C. 

Team member #1 
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Team member #3 
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I think we can say A is the 
worse? 

Team member #3 

I said A because C has so 
many negative reviews 

Team member #4 

Chat Data CPS Skills Code 
B 

Figure 1: Example chat discussions in the CPS task (A). Chat text is colored coded by CPS skills: Maintain Communication
(Blue), Monitoring (Purple), Shared Understanding (Orange), Sharing Information (Green), Execute (Yellow). Text data is
then given a CPS Skills Code (B). Illustration of recurrence plot (C) is based on coded chat (B). Each dot on the recurrence
plot represents a CPS skill with the respective color described above.

nents (as captured with RQA) of a group’s conversation?

For RQ1, we examine if the degree of cultural diversity in
teams is related to different CPS skills discourse patterns.
Given that previous findings demonstrate that cultural di-
versity can impact team communication [69, 73], we hypoth-
esize that we would detect differences in CPS skills across
teams with varying degree of cultural diversity. For RQ2,
we use RQA to explore how CPS skills’ patterns of commu-
nication are impacted by various degrees of cultural diver-
sity ranging from cultural homogeneous to cultural hetero-
geneous groups.

Figure 2 outlines the methodological approach and research
workflow that was employed in the current study. First, we
sourced student data from an online CPS task completed
in small groups with varying degrees of cultural diversity
[5]. Second, we extracted chat discourse data from these
online interactions and characterized the discourse with a
CPS skill framework [2]. Third, RQA was applied to the
coded data to generate recurrence plot and RQA measures
for each conversation. Finally, Kruskal-Wallis test was used
to compare

the structural components of group conversation (obtained
from RQA) across groups with varying degrees of cultural
diversity. In the next section, we provide further details of
our methods to evaluate the dynamic communication pat-
terns across culturally diverse groups.
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Figure 2: Methodological Approach
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4. METHODS
4.1 Participants
A total of N = 514 undergraduate students from a large
university in the U.S. southwest participated in the study.
Participants were randomly assigned into teams to take part
in a Hidden Profile CPS task (described below). In total
N = 129 teams were included in the study. Teams are pre-
dominantly four person groups with a few exceptions that
consist of three or five people. In this study we consider four-
person groups only for the sake of consistency in analysis.
Over a half of our participants were female (N = 347), and
most of them were freshman (N = 342) or junior (N = 128).
The average age of the participants was 19.5 years, with the
90% of the participants between the ages 18 to 22 years old.
Of those participants who reported their race and ethnicity
(497 out of 514), 62 (12%) of the participants were White,
9 (1.7%) were Black or African American, 209 (40.6%) were
Asian or Asian American, 162 (31.5%) were Hispanic or
Latino, and 9 (1.7%) were multiracial. Out of 502 partici-
pants who reported their first language the breakdown was
as follows: 142 English, 152 non-English, and 208 bilingual.
Additionally, over half of students (N = 277) identified as
first-generation students.

4.2 Procedure
Participants were randomly assigned into teams of four in-
dividuals to complete a decision-making task on the Edu-
cation Platform for Collaborative Assessment and Learning
(EPCAL) [30]. EPCAL is a platform by Educational Test-
ing Service that provides a collaboration space for partici-
pants to communicate, for teachers or organizers to manage
the participants and team formations, and for researchers
to study team collaboration in a computer-mediated en-
vironment. Prior to beginning the task, participants were
asked to complete a background survey to collect informa-
tion on race, gender, education level, and native language.
Next, students were prompted with a problem (e.g., “choose
the best apartment”) and were asked to rank three options
based on positive features (e.g., “this apartment is at a
prime location”) and negative features (e.g., “the rent is ex-
pensive”). Teams were randomly assigned to one of four
decision-making scenarios including ranking apartments, pro-
fessors, party venues, and job candidates. Each individual
was provided with different features relevant to the problem.
In the team discussion phase, participants synchronously
chatted with other teammates to share information that
they held in order to achieve the optimal ranking. The
group communicated through text-based and communica-
tion lasted for 20 minutes.

4.3 CPS Skills: Qualitative Coding
In an attempt to qualitatively annotate the utterance data,
we adapted the CPS framework from [2]. We removed one
cognitive skill code, exploring and understanding, given that
it was not as eminent in our data set and was less relevant
to our CPS task. The resulting CPS skills are divided into
social and cognitive interactions. Each social and cognitive
category includes four CPS skill codes, resulting in eight skill
codes in total. Social skills include maintaining communica-
tion (SMC), sharing information (SSI), establishing shared
understanding (SESU), and negotiating (SN); while cogni-
tive skills consist of representing and formulating (CRF),

planning (CP), executing (CE), and monitoring (CM). Ta-
ble 1 present the definitions and examples of each CPS skill.

CPS skill coding was completed at the chat utterances level
and each utterance was assigned one primary code (i.e. eight
CPS skill codes aforementioned) and 29 subskills that corre-
spond to each high-level CPS skill. For the purpose of this
study, we only focused on the eight main CPS skills. Four
undergraduate research assistants were trained as raters to
coded the content of students’ discourse (7,711 total ut-
terance events). Raters were trained on the adapted CPS
framework. Then, we retrieved a random sample of 20% of
all utterances in the data and assigned each rater to code
independently. All raters discussed their codes and address
any discrepancies. The inter-rater reliability (Kappa = .81)
achieved among all raters is considered high (Kappa > .60;
[39]). Next, the remaining 80% of the data were split evenly
into four groups. One of the four trained raters coded each
of these four groups independently.

4.4 Recurrence quantification analysis
We used recurrence quantification analysis (RQA) to visu-
alize and quantitatively assess students’ behaviors within
a CPS environment. Specifically, we used PyRQA Python
framework1 [56] to run RQA experiments efficiently. Explor-
ing the recurrence of human behavior would help us better
understand how underlying communication patterns occur,
and how the phases and dynamics of a system change over
time. The time series data required for RQA can be cate-
gorical or continuous.

4.4.1 Recurrence plot
Recurrence plot gives us a visual two-dimensional represen-
tation to discover repetition, recurrence, and underlying pat-
terns across time from a one-dimensional time series data.
For a time-series data t of length ℓ, the recurrence plot R
is a ℓ ∗ ℓ matrix consisting of 0, 1 values, where Ri,j = 1 is
an indication of recurrence between ti and tj (ti = tj). An
example of this process is provided in Figure 1.

4.4.2 Recurrence quantification
Visually, the recurrence plot provides valuable qualitative
information about the group dynamics and the structure
of the dynamical system. However, RQA’s quantified mea-
sures, calculated based on the recurrence plot, allow us to
quantitatively evaluate a dynamical system beyond visuals
and qualitative observations. The following provides a brief
description of the main metrics of RQA (for more informa-
tion on RQA measures see [78, 47]).

• Recurrence Rate: Recurrence rate (RR) shows the rate
and the density of recurrence points in a recurrence
plot. It is calculated by dividing the recurrence points
by the total number of cells in the plot which is the
length of the time series squared. Higher recurrence
rate would show a higher frequency of repetition in
actions and the system to revisit previous states. RR
ranges from 0 to 1, while 0 shows a system without

1https://pypi.org/project/PyRQA/
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Table 1: CPS skills description

CPS skill code Definition Examples

Social Maintaining
Communication
(SMC)

Off-Topic Communication,
Rapport Building Communica-
tion, Inappropriate Communi-
cation

• “nice job guys”
• “no problem”

Sharing Informa-
tion (SSI)

Share Own Information, Share
Task or Resource Information,
Share Understanding

•“candidate A was listed
as having good leader-
ship skills”

Establish Shared
Understanding
(SESU)

Presentation Phase, Acceptance
Phase

• “What skills do we
need?”

Negotiating (SN) Express agreement or disagree-
ment, Resolve conflicts

• “You’re right”
• “My list shows that
candidate C is unwilling
to further their educa-
tion.”

Cognitive Representing
and Formulating
(CRF)

Represent the problem using
words, Proposes specific concep-
tual thinking

• “Yeah I feel that B is
the best because every-
thing is nearby and the
landlord offers a 24-hour
maintenance service”

Planning (CP) Set Goals, Develop Strategies • “we have to choose be-
tween a and B for being
the best”

Executing (CE) Suggesting an action to a team-
mate, Report of own action

•“Please list all your fea-
tures for candidate C”

Monitoring (CM) Monitor progress toward the
goal, Monitor whether team-
mates are present

• “so we in agreement to
make B the best?”

any recurrences, and 1 shows a fully recurrent system.

RR =
1

ℓ2

ℓ∑

i,j=1

R(i, j) (1)

• Determinism: Determinism measures the distribution
of recurrence points that form a diagonal line. In
other words, determinism is the percentage of recur-
rence points that align on a diagonal line. The more
recurrence points that align on a diagonal line in a
recurrence plot, the higher the determinism. As seen
in Figure 1, we have four diagonal lines (two diago-
nal lines of length 3, and two diagonal lines of length
2) we have a fully deterministic system with the de-
terminism of 1. A system with a higher determinism
is is considered ordered and repetitious with periodic
patterns over the time. A system with a lower deter-
minism can be a sign of a more chaotic system. To
compute determinism, lmin needs to be considered as
a minimum length of which diagonal lines to consider.
For instance, a lmin = 3 would eliminate the two diago-
nal lines of length 2 in Figure 1 and therefore lower the
determinism compared to the default value (lmin = 2).

DET =

∑N
ℓ=ℓmin

ℓP (ℓ)
∑N
ℓ=1 ℓP (ℓ)

(2)

• Laminarity: First introduced by [48], laminarity is de-
signed to capture the percentage of recurrence points
that align on a vertical line. A continuation of the
same event in a system forms a vertical line. In our
study, same skill codes appearing in consecutive mes-
sages results in a vertical line. For the computation, a
minimum line length of vmin needs to be set to possibly
restrict the length of vertical lines in the calculation of
laminarity.

LAM =

∑N
v=vmin

vP (v)
∑N
v=1 vP (v)

(3)

• Entropy of diagonal lines: Entropy reflects the com-
plexity of the length of diagonal lines in a recurrence
plot. It is calculated using the Shannon entropy [63] of
P (ℓ) distribution, where P (i) is the probability to find
a diagonal line of length i in the recurrence plot. High
entropy is an indication of high variation in length of
recurrent sequences. In contrast, in a recurrence plot
where all diagonal lines are the same length, the en-
tropy would be zero.

p(ℓ) =
P (ℓ)∑N

ℓ=lmin
P (ℓ)

,ENTR = −
N∑

ℓ=ℓmin

p(ℓ) ln p(ℓ)

(4)
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Table 2: Descriptive statistics of measures by cultural diversity

Cultural diversity degree
1 2 3 4 Full Sample

Measures M(SD) M(SD) M(SD) M(SD) M(SD)
Determinism 0.52 (0.2) 0.5 (0.15) 0.46 (0.15) 0.56 (0.12) 0.49 (0.15)
Divergence 0.22 (0.1) 0.22 (0.16) 0.24 (0.17) 0.12 (0.06) 0.22 (0.16)
Entropy 0.96 (0.62) 0.92 (0.47) 0.81 (0.34) 1.22 (0.44) 0.9 (0.43)
Laminarity 0.71 (0.15) 0.67 (0.14) 0.66 (0.13) 0.72 (0.11) 0.67 (0.13)
Longest diagonal line 6.29 (4.07) 6.41 (4.28) 5.62 (2.93) 11.24 (6.06) 6.48 (4.21)
Recurrence rate 0.24 (0.06) 0.25 (0.05) 0.25 (0.06) 0.25 (0.06) 0.25 (0.06)
Discussion Time 715.15 (183.38) 727.34 (358.15) 885.42 (431.21) 1141.0 (285.84) 850.47 (404.31)
Average diagonal line 2.9 (1.23) 2.72 (0.73) 2.44 (0.37) 3.2 (1.25) 2.63 (0.74)
Number of messages 39.86 (11.02) 49.96 (31.14) 59.24(31.93) 77.47 (27.38) 57.0 (31.69)
notes: M = Mean, SD = Standard Deviation

• Longest Diagonal Line and Divergence: Another mea-
sure related to diagonal lines are (1) the longest diag-
onal line, Lmax, excluding the line of identity, and (2)
divergence which is the reverse of Lmax. Along with
determinism, these two measures are indicators of con-
vergence, chaos, and stability in the system. The lower
the Lmax, the higher the divergence, chaos, and insta-
bility within the dynamical system.

DIV =
1

Lmax
(5)

4.5 Data Processing
4.5.1 RQA time series

To prepare the data for RQA, we created time series data
using the skill codes associated with each chat within the
same conversation. The utterances were grouped together
based on the team identification code and therefore each
group conversation is represented by a time series of mes-
sages and their associated skill codes. Categorical skill codes
were mapped to a numeric code that represents that skill
throughout the analysis. The mapping is one-to-one mean-
ing that each skill is only mapped to one number and each
number only represents one skill. RQA was then applied to
the time series of numeric skill codes to explore structural
patterns within the group conversation.

4.5.2 Cultural diversity
We quantified cultural diversity based on the heterogeneity
of ethnic identities. To determine cultural diversity level, we
calculated how many unique ethnicities existed in each group
according to the students self-reported demographic infor-
mation. Since groups consist of four members, there were
four possible levels of group diversity ranging from fully ho-
mogeneous groups (coded as 1) to fully heterogeneous groups
(coded as 4). Below is a breakdown of group compositions
and their associated degrees of cultural diversity:

1: (4 White members), N = 7;

2: (3 White members, 1 Asian member) or (2 White mem-
bers, 2 Asian members), N = 42;

3: (2 White members, 1 Asian member, 1 Hispanic member),
N = 67;

4: (1 White member, 1 Asian member, 1 Hispanic member,
1 Black member), N = 13

4.5.3 Statistical Analysis
RQA was applied to a time series of CPS skill codes asso-
ciated with each message in a conversation. As described
in Section 4.4, RQA allowed us to study team dynamics,
underlying behavioral patterns, and their complexity. In or-
der to examine the influence of cultural diversity on CPS
communication dynamics, we performed a Kruskal-Wallis
test on each RQA measure to see whether structural compo-
nents of dialogues were different across groups. In addition
to seven RQA measures described, we also included the to-
tal amount of time (seconds) that students spent discussing
their decision and the number of messages sent within that
discussion time as conversational measures. We also con-
ducted pairwise Wilcoxon rank tests as a post-hoc analy-
sis with Benjamini-Hochberg p-value adjustment to further
locate where the significant difference specifically resides.
This analysis enabled us to detect significance of variations
of conversational measures and their relation to the level of
team diversity. The code and results of the RQA Analysis
is available on Github at: github.com/The-Language-and-
Learning-Analytics-Lab/cult-div-rqa

5. RESULTS
Descriptive statistics of conversational measures by cultural
diversity is available in Table 2. Results for each Kruskal-
Wallis tests on Table 3 suggest significant effect of cultural
diversity on entropy at [H (3) = 9.077, p = 0.029, η2 =
0.049], longest diagonal line at [H (3) = 14.405, p < 0.01,
η2 = 0.091], average diagonal line at [H (3) = 10.858, p =
0.01, η2 = 0.063], longest diagonal line and divergence at
[H (3) = 14.405, p = 0.003, η2 = 0.091], number of messages
sent at [H (3) = 11.231, p = 0.01, η2 = 0.066]), and the
time spent in discussion at [H (3) = 12.334, p = .007, η2

= 0.075]). Notably, due to the relationship of divergence
and longest diagonal line in Equation 5, the same results for
these two measures were expected. Combined, these suggest
structural differences in conversations across the four groups,
in terms of complexity of activity and patterns of behavior.
We followed up this significant result with pairwise Wilcoxon
rank tests reported in Table 4.

The post-hoc analysis suggests significant differences be-
tween the most diverse group and the rest of the diversity
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Table 3: Results of Kruskal-Wallis test of conversational and recurrence measures by diversity

Conversational measure df χ2 p η2

Recurrence Rate 3 0.669 0.880 -0.019

Determinism 3 6.354 0.096. 0.027

Laminarity 3 3.678 0.300 0.005

Entropy of Diagonal Lines 3 9.077 0.029∗ 0.049

Average Diagonal Line 3 10.858 0.010∗∗ 0.063

Longest Diagonal Line 3 14.405 0.003∗∗ 0.091

Divergence 3 14.405 0.003∗∗ 0.091

Discussion Time 3 12.334 0.007∗∗ 0.075

Number of Messages 3 11.231 0.010∗∗ 0.066

notes: χ2 = Chi-Squared, df = degrees of freedom

. = p < .1, ∗ = p < .05, ∗∗ = p < .01, ∗∗∗ = p < .001

Table 4: Pairwise comparisons using Wilcoxon rank sum exact test presented by p values of recurrence and conversational
measures grouped by degree of cultural diversity

Entropy
Diversity 1 2 3
2 0.753 − −
3 0.753 0.370 −
4 0.120 0.120 0.015∗

Average diagonal line
Diversity 1 2 3
2 0.681 − −
3 1.00 0.145 −
4 0.172 0.145 0.010∗∗

Divergence
Diversity 1 2 3
2 0.849 − −
3 0.852 0.849 −
4 0.070 0.005∗∗ 0.001∗∗∗

Longest diagonal line
Diversity 1 2 3
2 0.849 − −
3 0.852 0.849 −
4 0.070 0.005∗∗ 0.001∗∗∗

Discussion Time
Diversity 1 2 3
2 0.812 − −
3 0.433 0.080 −
4 0.010∗ 0.004∗∗ 0.067

Number of Messages
Diversity 1 2 3
2 0.786 − −
3 0.112 0.112 −
4 0.020∗ 0.020∗ 0.071

groups in most occasions, with the most difference apparent
in time spent on discussions and longest diagonal line. The
most culturally diverse groups spent more time (in seconds)
discussing the problem (M = 1141, SD = 285.84) than all
three other culturally demographic compositions (Level 1 di-
versity, M = 715.15, SD = 183.38; Level 2 diversity, M =
727.34, SD = 358.15; Level 3 diversity, M = 885.42, SD =
431.21). Descriptive statistics of the measures grouped by
degrees of cultural diversity are available in Table 2. These
findings further demonstrate the impact of cultural diver-
sity on the group dynamics and key components of group
discussions. Figure 3 visualizes the linear relationship be-
tween the RQA measures explored in the post-hoc analysis
and the amount of cultural diversity in each group. Of the
five RQA measures examined, we observed a steady increase
in discussion time, number of messages, and longest diago-
nal line as degree of cultural diversity increased. In addition,
both entropy and average diagonal line increased at a less
consistent rate. Specifically, entropy and average diagonal
line increased mostly between the second most culturally
diverse groups and the most culturally diverse groups. We

discuss the implications of the results in the next section.

6. DISCUSSION
CPS has been increasingly recognized as an essential 21st
century skill in both educational and workplace environ-
ments [22, 12], especially in settings where teams are becom-
ing increasingly more diverse and international. As such, ex-
ploring ways to further our understanding of the communi-
cation behavior patterns in diverse teams and advance CPS
skills has been at the forefront of educational research [12,
29]. In this study, we extended current literature that mea-
sures performance outcomes by using a dynamical systems
lens to examine how the level of in-group diversity influences
team communication behavior. Specifically, we quantified
CPS skills exhibited in group discourse and characterized
conversational structures through RQA measures.

In response to RQ1, we found that degrees of cultural di-
versity in teams are associated with systematic outcomes
of group communication captured through RQA measures.
Specifically, these outcomes include number of messages,

270



Figure 3: Normalized values of quantified measures of communication plotted by cultural diversity. Each dot represents individual
values for the five measures, along with the fitted regression line. Shaded regions around the lines represents the confidence
intervals for each regression.

time spent in chat, complexity and unpredictability of re-
current patterns (entropy), average length of recurrent pat-
tern (average diagonal line in recurrence plot), and longest
recurrent pattern (longest diagonal line in recurrence plot).
Regarding RQ2, our post-hoc analysis further reveal that
groups with the highest degree of cultural diversity had di-
agnostically different structural patterns of communication
compared to more homogeneous teams. Specifically, groups
with the highest level of heterogeneity spent more time and
sent more messages in chat, had greater complexity in inter-
personal exchange, and lower divergence in group discourse.
Notably, there was no sign of significant difference among
the moderately diverse groups and homogeneous groups. We
discuss the implications of results in greater details as follow.

First, the finding that groups with greater culturally diver-
sity spent more time and sent more messages during the
discussion could indicate positive or negative group dynam-
ics. On the positive side, higher number of messages signals
more opportunities for information sharing and exchange
of ideas, which may suggest that members in these teams
are more actively engaged in the collaborative discourse and
provided their diverse perspectives to the problem. On the
other hand, it might also indicate teams getting stuck or
struggle to reach consensus. Teams that struggle with inter-
nal conflicts also tend to spend more time on communication
to resolve disagreements. This issue is more signified in the
context of a CPS ranking task. Greater cultural differences
in teams might result in different preferences and priorities
over different job candidates, apartments, party venue, and
professor qualities [14]. As such, increased cultural diversity
in teams could bring challenges in team communication that
are reflected through frequencies of messages and time spent
on discussion. This finding is consistent with the notion that

cultural diversity in teams can be a “double-edged sword”.
It has been widely suggested that cultural diversity is asso-
ciated with both positive and negative team outcomes [66].
Previous studies demonstrate that compared to culturally
homogeneous groups, culturally diverse teams are associated
with higher levels of innovation and creativity but are also
prone to more conflicts, less effective communication, and
less cohesion [66]. It is worth noting that the interpreta-
tion of the results has to be situated in the context of tasks.
For instance, in open-ended tasks like brainstorming, longer
time spent and more messages are typically indications of
more innovative perspectives and creativity. However, in
decision making tasks, especially when groups were under
time constraints to arrive at a decision, more time spent
on the task and greater amount of discourse may suggest it
takes more effort for heterogeneous groups to build shared
understanding and reach a solution collectively.

Our RQA analysis further revealed more culturally diverse
teams were associated with more complexity in the distribu-
tion of recurrent patterns (higher entropy), longer recurrent
patterns of interactions (higher average length of diagonal
lines, and higher longest diagonal line). The increased com-
plexity in culturally diverse teams can signal less rigidity,
more adaptability, and higher responsivity in team interac-
tions. These attributes have been found to be key for in-
novation, creativity, and information sharing in team com-
munication [61]. For instance, Fusaroli and Tylén found
entropy and average diagonal line of recurrences in tran-
scripts between the dyads to have a positive association
with their performance [25]. In conjunction with our first
finding, longer discussion time and higher number of mes-
sages may provide more opportunities for diverse groups to
display recurrent patterns, which may explain why diverse
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groups have higher longest recurrent patterns. Interestingly,
we found that the most culturally diverse groups have notice-
ably higher longest recurrent patterns and lower divergence,
suggesting higher convergence within group discussion over
time. This is in contrast to previous research which has
typically associated high cultural diversity with divergent
communication behavior [66]. We consider two potential ex-
planations for how higher convergence was reached in team
interactions within the most diverse teams. First, the im-
pact of diversity on performance can be mediated through
goal-orientation and information elaboration [51]. We hy-
pothesize that longer and more active discussions in more
diverse groups allowed much more opportunities for infor-
mation elaboration which may account for a longer recur-
rent pattern in diverse teams. Moreover, the goal-oriented
nature of CPS decision making task may cultivate more con-
vergent collaborative interaction patterns. Second, higher
entropy in more diverse groups indicates the higher com-
plexity in the recurrent patterns. Therefore, although the
longest recurrent pattern shows convergence in discussions
of more diverse teams, higher entropy suggests less rigidity
in the patterns of behavior which allows for less habitual
patterns and more flexibility in social and cognitive interac-
tion sequences. These findings indicate a potential increased
willingness within cultural diverse teams to engage in ac-
tive information exchange and leverage different perspec-
tives during collaborative discussions. Taken together, this
finding suggests highly diverse groups’ flexibility in commu-
nication structure and openness to new information. High
convergence indicated their capacity in perspective-taking
as well as the elaborated processing of new information.
Moreover, higher longest diagonal line could possibly be a
sign of lengthier discussion and argumentation to reach a
conclusion which could be a result of less effective commu-
nication. This could be meaningful characteristics to look
for as teams across educational and professional settings are
increasingly diverse. Further research would be needed to
examine whether such pattern is associated with productive
performance and psychological outcomes for participating
members.

Our work serves as a starting point for future studies to
leverage RQA in establishing the possible positive and neg-
ative links between cultural diversity, communication dy-
namics, and other post-collaboration measures such as per-
formance and team satisfaction. Moreover, we contribute
a structural view of the recurrences of CPS skills through
sociocognitive processes in discourse. By taking a look into
how the temporal sociocognitive processes that occur dur-
ing collaborative interactions are shaped by cultural diver-
sity during CPS tasks, we can begin to take a step towards
understanding factors in learning environments that make
CPS communication more or less effective. In addition to
leveraging CPS frameworks such as [2] to characterize group
discourse, future research may also operationalize group dy-
namics by capturing linguistic features based on the content
of messages through syntactic and semantic similarity, i.e.,
Conceptual Recurrence Plots [3]. This analysis would not
only allow for more complexity and possibilities in the way
recurrence appears in group communication, but also poten-
tially reveal more nuanced linguistic patterns with respect
to cultural diversity in teams. Finally, our current study
mainly concerns with the degree of cultural diversity, how-

ever there is also a need to investigate the communication
behavior of specific demographic subgroups (i.e. female, un-
derrepresented minorities) in CPS. Further investigation on
the differences within these demographic groups could ex-
amine how these factors independently and in combination
play a role in shaping diverse groups. We call for more
efforts towards promoting inclusivity and equity in teams.
Future studies along this line should aim to provide further
insights on identifying group patterns that promote effective
problem solving and meaningful experiences among diverse
teams.

7. CONCLUSION
We focused on the impact of cultural diversity on group
communication in CPS. Our novel approach leveraged RQA
to study the dynamics in group communication. Apply-
ing RQA to analyze CPS discourse provides a means to un-
cover how groups with different degrees of diversity exhibit
different patterns of behavior during the collaborative pro-
cess. Understanding these behaviors is essential given the
dynamic and interdependent nature of CPS tasks. Specifi-
cally, insight on how group dynamics impact culturally di-
verse groups has important implications on monitoring and
improving diverse group communications. In sum, our study
emphasizes the need to further our understanding of the
role of diversity in group communication behaviors as teams
share information, negotiate, and navigate the problem-solving
task. Exploring the intricacies of these group dynamics sets
a first step towards future research on understanding how
these behaviors relate to group outcomes such as perfor-
mance, psychological experiences, and group satisfaction.
Furthermore, this study aligns with the agenda of promot-
ing diversity and inclusivity in AI systems. Our findings
could be meaningful for the researchers in the greater EDM
community for applying such methods to diagnose diverse
team dynamics, as well as further inquiring positioning AI’s
critical role in structurally complex collaborative processes
across diverse teams.
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ABSTRACT
The need to identify student cognitive engagement in online-
learning settings has increased with our use of online learn-
ing approaches because engagement plays an important role 
in ensuring student success in these environments. Engaged 
students are more likely to complete online courses success-
fully, but this setting makes it more difficult for instructors 
to identify engagement. In this study, we developed pre-
dictive models for automating the identification o f cogni-
tive engagement in online discussion posts. We adapted the 
Interactive, Constructive, Active, and Passive (ICAP) En-
gagement theory [15] by merging ICAP with Bloom’s tax-
onomy. We then applied this adaptation of ICAP to label 
student posts (N = 4,217), thus capturing their level of cog-
nitive engagement. To investigate the feasibility of automat-
ically identifying cognitive engagement, the labelled data 
were used to train three machine learning classifiers (i.e., 
decision tree, random forest, and support vector machine). 
Model inputs included features extracted by applying Coh-
Metrix to student posts and non-linguistic contextual fea-
tures (e.g., number of replies). The support vector machine 
model outperformed the other classifiers. Our findings sug-
gest it is feasible to automatically identify cognitive engage-
ment in online learning environments. Subsequent analyses 
suggest that new language features (e.g., AWL use) should 
be included because they support the identification o f cog-
nitive engagement. Such detectors could be used to help 
identify students who are in need of support or help adapt 
teaching practices and learning materials.

Keywords
cognitive engagement, Coh-Metrix, discussion forums, nat-
ural language processing (NLP), online learning

1. INTRODUCTION

Educational theories and empirical studies have emphasized
the importance of learner engagement [34]. Engaged learn-
ers are active; they invest time and effort during the learn-
ing process [44, 56, 66]. Empirical studies have corrobo-
rated the importance of engagement for student learning
and well-being [39, 57, 74]. Studies have consistently found
a significant association between student engagement and
the cognitive and non-cognitive skills of students. For ex-
ample, engaged students are more likely to be academically
successful [89], retain knowledge [9], and show higher levels
of critical-thinking [13] and problem-solving [61, 97]. Fur-
thermore, engaged learners are more likely to show higher
levels of school belongingness and socio-emotional well-being
[22, 36, 73]. They are also are less likely to drop-out [2, 3, 41]
or demonstrate negative behaviors in school [62, 93]. Con-
sistent with these general educational outcomes, a positive
association between active participation in online discussion
forums and academic achievement has been found [23, 51,
85]. Learner engagement, therefore, is a vital and predictive
aspect of student learning and well-being [30].

Given that student engagement is a strong correlate of stu-
dent achievement, researchers have long been interested in
identifying student engagement levels to improve student
success and learning processes. Identifying student engage-
ment levels could be used to generate actionable feedback for
students [52]. This feedback can be provided by instructors
or through automated feedback that is delivered via learn-
ing dashboards or system features that nudge students to
engage with the task.

However, identifying student (dis)engagement is difficult for
instructors in online settings. In recent years, researchers
have been interested in automating engagement identifica-
tion. Automatically identifying students’ engagement levels
may also help instructors identify potentially at-risk stu-
dents. Instructors may intervene to minimize the negative
impact of disengagement on student learning. Furthermore,
engagement detection could generate real-time feedback that
instructors could use themselves. This critical feedback may
be used to inform and evaluate the effectiveness of instruc-
tional practices employed in the class. Additionally, engage-
ment detection could be embedded in instructor-facing ana-
lytics dashboards to help them understand student engage-
ment in their classes [67]. Detecting that many learners are
disengaged with the task could help instructors change their
instructional strategy and practice, adjusting to meet the

G. Gorgun, S. N. Yildirim-Erbasli, and C. D. Epp. Predicting cog-
nitive engagement in online course discussion forums. In A. Mitrovic
and N. Bosch, editors, Proceedings of the 15th International Confer-
ence on Educational Data Mining, pages 276–289, Durham, United
Kingdom, July 2022. International Educational Data Mining Society.

© 2022 Copyright is held by the author(s). This work is distributed
under the Creative Commons Attribution NonCommercial NoDeriva-
tives 4.0 International (CC BY-NC-ND 4.0) license.
https://doi.org/10.5281/zenodo.6853149

276



needs of learners in their class [1, 68]. Providing instruc-
tors with information about learner engagement could also
enable them to intervene in a timely manner [31].

Instructors can harness information that is easily obtained
in face-to-face learning environments to observe student be-
havior and make inferences about how they are engaging.
However, certain types of engagement (e.g., cognitive, affec-
tive) are not directly observable. Students may also feign
engagement. Even if the form of engagement the instructor
is interested in monitoring is easy to observe in person, that
may not be the case in online settings. With the recent chal-
lenges that the COVID-19 pandemic has brought and the
associated widespread use of online learning environments
[69], the automated detection of learner engagement has be-
come more vital yet more complicated. With the use of log
data and dashboards, instructors could evaluate learner time
within the system or time on task as an indication of behav-
ioral engagement [67]. Unfortunately, proxies, such as time
spent within a system, will not help an instructor extract
the type of cognitive engagement that students demonstrate
in online learning environments.

Many have tried to define student engagement, which is la-
tent and inherently multi-faceted. Along with this, they
have tried to model different types of learner engagement
(e.g., academic, behavioral, affective, cognitive) in various
learning contexts (e.g., online education, in-person classes).
Typically, engagement is defined as students’ motivation,
willingness, effort, and involvement in school or learning-
related tasks [19, 87]. It is operationalized as students’ in-
vestment of resources such as effort, time, and energy into
learning [53, 60, 61, 62].

Behavioral, emotional, and cognitive engagement are fre-
quently studied types of engagement. Behavioral engage-
ment is generally defined as time on task [18, 42, 50, 64,
94], and focuses on overt student behaviors [7]. Emotional
engagement typically refers to learners’ feelings, affect, and
emotional reactions [77, 81, 83]. Cognitive engagement is
conceptualized as employing learning strategies and invest-
ing effort and persistence into the task at hand [18, 42, 86,
94]. Different types of engagement are not mutually exclu-
sive. For example, some researchers have argued that cog-
nitively engaged learners are also behaviorally engaged, but
the reverse is not necessarily true [50].

Cognitive engagement is one of the most challenging types
of engagement to detect. Although there are certain theories
developed for characterizing and capturing cognitive engage-
ment in physical classroom settings (e.g., ICAP; [15]), they
can be difficult to directly apply in online discussion envi-
ronments, particularly in discussion forum posts (see [90]).

In this study, we focused on developing predictive models
for automating cognitive engagement detection in discus-
sion posts using natural language processing (NLP) and ma-
chine learning (ML) methods. This will help us evaluate
the feasibility of automating cognitive engagement identifi-
cation in online discussion posts. We will also analyze the
classification errors and feature importance when predicting
cognitive engagement through these relatively transparent
models. Understanding feature importance and classifica-

tion errors may help us develop better models for detecting
cognitive engagement.

2. ENGAGEMENT IDENTIFICATION AP-
PROACHES

Dewan and colleagues [30] proposed an engagement detec-
tion taxonomy and grouped engagement detection methods
under three main categories: manual (e.g., self-report mea-
sures), semi-automatic (e.g., engagement tracing), and au-
tomatic (e.g., log file analysis).

Manual engagement detection methods include self-report
measures, checklists, and rating scales. Using self-report
measures, students are asked to indicate their own engage-
ment levels (e.g., [5, 12, 43]). Although it is easier to admin-
ister and use self-report measures [82], one major limitation
of these instruments is their susceptibility to reporter bi-
ases. When learners rate their own engagement level, they
may not accurately reflect their engagement during learn-
ing processes [35] because they lack the capacity to do so,
or students may not reflect their true engagement status to
avoid getting in trouble in a class (e.g., [45]). Therefore, self-
report measures may not provide an objective evaluation of
engagement.

The checklists and rating scales that instructors use are less
prone to self-report biases (e.g., self-serving bias) during the
coding process. Yet, checklists and rating scales also have
certain limitations. Using these methods requires a great
deal of time and effort [30]. For example, instructors, espe-
cially in large-scale classrooms or online environments, may
not track each learner accurately. Learners may also pre-
tend to be on task when in fact they are not engaged with
the task. Hence, teacher evaluations made through such
means may not accurately present the engagement levels of
learners in class. Additionally, both self-report measures
and checklists may not accurately capture fluctuations in
learner engagement [90].

Semi-automatic engagement detection methods include en-
gagement tracing. Using log or trace data, the timing and
accuracy of learner responses have been employed to iden-
tify engaged and disengaged learners [8, 54]. For example,
an unrealistically short response time is considered an indi-
cation of student disengagement during a quiz attempt.

Finally, automatic engagement detection methods include
sensor data, log data, and computer vision-based approaches
that analyze eye movement, body posture, or facial expres-
sions [30]. These detection methods may automatically ex-
tract features from learners’ body movement or facial expres-
sions using sensor data as input [91]. Additionally, learner
activities have been traced in learning management systems
to automatically extract features related to engagement de-
tection [16, 17]. These approaches may provide useful real-
time information about student engagement, but they intro-
duce privacy concerns such as being recorded.

2.1 Cognitive Engagement Frameworks
Two frequently employed cognitive engagement frameworks
include Community of Inquiry (CoI; [46]) and Interactive,
Cognitive, Active, and Passive engagement (ICAP; [15]).
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The CoI framework identifies three elements (i.e., social pres-
ence, teaching presence, and cognitive presence) that sup-
port successful learning. The cognitive presence element of
the CoI framework has been widely used by researchers (e.g.,
[58, 70]) for analyzing student learning and developing pre-
dictive models in online courses. In those studies, cognitive
presence encompasses five phases: triggering event, explo-
ration, integration, resolution, and other.

The ICAP framework [15] conceptualizes hierarchical cogni-
tive engagement levels. Higher levels are related to higher
cognitive engagement and learning growth. From top to bot-
tom, the order of cognitive engagement levels is interactive,
constructive, active, and passive.

Although both frameworks have been used to model engage-
ment, they approach the categorization of engagement dif-
ferently and have distinct aims [38]. The CoI framework
specifically targets online learning environments and tries
to model how students develop ideas in online discussions.
The ICAP framework has been used to characterize learn-
ing in both in-person and online learning environments. It
focuses on students’ active learning behaviors [15]. Both
frameworks appear to be promising theoretical approaches
for cognitive engagement modeling and prediction. CoI fo-
cuses on different phases whereas ICAP focuses on different
levels of cognitive engagement.

In a recent study, Farrow and colleagues [38] compared these
engagement frameworks to decipher their commonalities and
differences. They found similarities between the predictors
used for engagement detection (e.g., message length was cor-
related with higher levels of engagement in both frameworks)
whereas there were differences in the interpretation of classes
(e.g., ICAP rewarded interactivity more than CoI).

2.2 Identifying Engagement in Online Envi-
ronments

Some studies of online learning have used qualitative con-
tent analysis methods [90, 98] to detect engaged and disen-
gaged learners. These studies start with developing a coding
scheme reflecting different levels of engagement (e.g., active
or passive engagement). This coding scheme is then used by
the trained coders to manually label learner activities. This
labelling process requires that considerable time and man-
ual labor be invested, which is why it is not surprising that
automating engagement identification via machine learning
methods has emerged as a viable approach.

There are several potential benefits of automating cogni-
tive engagement detection that go beyond the reduction in
human fallibility and manual labor. These potential bene-
fits include reducing coding time, rapidly identifying at-risk
students in terms of engagement, and the possibility of in-
tegrating learner engagement information into dashboards
and learning management systems. Moreover, automation
can build on the prior work that manually labelled student
engagement and helped us to understand it at a smaller
scale.

Automated engagement detection methods in online envi-
ronments can be divided into two groups [56]. The first
group of studies focuses on automatically extracting features

pertaining to learners’ physical cues such as body movement,
heart rate, head posture, or where learners are looking (e.g.,
[55, 65]). In a recent study, Li and colleagues [65] extracted
students’ facial features and trained a supervised model to
classify student cognitive engagement type. Although facial
features were found to be powerful predictors of cognitive
engagement, these types of studies may require webcams to
extract learners’ facial features, body posture, or head pos-
tures. Additionally, the learners could be aware of the fact
that they are being recorded, which can lead them to ex-
perience discomfort [29]. Furthermore, the implementation
of such systems may be costly (e.g., integrating webcams)
compared with extracting learner trace data from learning
management systems.

The second group of studies focuses on using a less sensor-
heavy approach. They extract linguistic features (e.g., co-
herence, number of words) and trace data (e.g., time on
task, number of clicks) from online learning environments
to detect engagement (e.g., [6, 58, 59, 70]). For exam-
ple, Kovanović and colleagues [58] employed n-grams and
part-of-speech features to train a predictive model of cog-
nitive presence using the CoI framework [46]. Their model
achieved 58.38% accuracy (K = .41). In a similar study,
Kovanović and colleagues [59] extracted features using Coh-
Metrix, Linguistic Inquiry and Word Count (LIWC), and
latent semantic analysis (LSA) similarity to represent av-
erage sentence similarity. Their best model achieved 72%
accuracy (K = .65). Moving from the COI lens to that
of ICAP, Atapattu and colleagues [6] used word embeddings
from Doc2Vec to detect only the active and constructive lev-
els of cognitive engagement in a MOOC, where they ignored
posts that were of a social nature. They argued that learn-
ers with active engagement posts paraphrased, repeated, or
mapped resources whereas learners with constructive posts
proposed new ideas or introduced external material going
beyond what was covered in class [6]. Therefore, discussion
posts similar to course content remained in close proximity
to the vector space generated by Doc2Vec. These posts were
classified as active engagement whereas discussion posts that
were far away from the vector space were classified as con-
structive engagement.

Some linguistic and course-based contextual features might
limit the generalizability of predictive models (e.g., n-gram
based models are sensitive to vocabulary choices) of cogni-
tive engagement across different courses and contexts. For
example, in a recent study, Neto and colleagues [70] ana-
lyzed model generalizability across educational contexts by
employing Coh-Metrix features and the CoI framework. In
their study, the baseline model was trained with a biology
course dataset and achieved 76% accuracy (K = .55). When
applied to a dataset from a technology course, the model had
an accuracy of 67% (K = .20), which indicates some limita-
tions to the generalizability of the model to new courses.

3. PRESENT STUDY
The purpose of this study is to evaluate the feasibility of au-
tomating cognitive engagement identification in fully online
graduate courses through the lens of the ICAP framework.
Given that engagement is a latent trait, researchers typi-
cally start with creating labeled data so that they can train
supervised ML models. Most studies have employed CoI for
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labeling cognitive presence (e.g., [37, 58, 70]).

ICAP and CoI have different aims and operationalizations of
cognitive engagement (see section 2.1). In this study, we de-
fined cognitive engagement as investing effort and cognitive
resources. ICAP is more congruent with our cognitive en-
gagement definition since we want to identify different levels
of engagement in posts. Therefore, we employed the ICAP
framework as our theoretical background that informed la-
beling decisions.

There is a lack of consensus concerning the coding scheme
of ICAP for online environments even though the available
coding schemes partly overlap with one another. For ex-
ample, while Atapattu et al. [6] employed a binary coding
scheme (i.e., active vs constructive), Yogev et al. [95] em-
ployed a coding scheme with six categories.

We first adapted the available coding schemes for online dis-
cussion posts by aligning the engagement levels with Bloom’s
taxonomy [4]. This was done to emphasize the increased
nature of cognitive complexity in both the taxonomy and
cognitive engagement. Then, we developed three supervised
ML models to analyze the feasibility of cognitive engagement
prediction in online discussion environments. We also ana-
lyzed feature importance to evaluate whether we identified
the same order of features across the classifiers employed in
this study.

Our research questions were as follows:

RQ1: To what extent can a model trained with Coh-Metrix
and contextual features be used to automatically classify
discussion posts based on cognitive engagement level?

RQ2: Which features are more important for cognitive en-
gagement prediction?

RQ3: What types of misclassifications occur?

4. METHODS
The data for this study consists of discussion forums from
fully-online, graduate-level courses. The course forums dif-
fered in terms of facilitation method (i.e., peer-facilitated vs
instructor-facilitated) and course length, i.e., regular-term
courses (long) and summer-term courses (short).

4.1 Participants and Study Context
The data used in this study were collected from an online
discussion platform that is used to deliver courses in a highly
ranked college of education in Canada. The data collection
protocol was reviewed and approved by the university’s re-
search ethics board prior to completion. Participant con-
sent was obtained for supplementary data collection. The
dataset included 4,217 posts that had been produced by 111
students. In Table 1, we present the number of students,
term length, facilitation method, and percentage of cogni-
tive engagement posts in each course.

The courses span departments within the college and cover
topics from language learning to educational psychology, ed-
ucational technology, and educational policy.

Table 1: Number of students, term length, facilitation
method, and percentage (%) of cognitive engagement levels
by course.

ID n Length Method S A C I
1 31 Long Instructor 57 24 17 2
2 18 Short Instructor 10 30 41 19
3 17 Short Peer 44 22 12 22
4 22 Long Instructor 24 31 23 24
5 23 Long Peer 11 29 17 43

Note. Social (S), Active (A), Constructive (C), Interactive (I)

Demographic data were not collected and the previous dei-
dentification of the data means that it cannot be obtained
retroactively. It is worth noting that students could have
their data excluded at the post level by marking it as pri-
vate.

4.2 Data Coding Procedure
Our coding scheme is largely informed by the coding frame-
work developed by Wang et al. [90] and Yogev et al. [95].
We altered and simplified the coding scheme based on the
challenges we observed during the coding process.

We informed the coding scheme with Bloom’s revised tax-
onomy [4] and adapted it to reflect the higher-order cog-
nitive complexity in the ICAP framework. Specifically, we
map Bloom’s taxonomy level indicators onto cognitive en-
gagement indicators. Bloom’s taxonomy was chosen because
it is widely used by K-12 and higher education instructors
to develop measurable and observable instructional objec-
tives, tapping different levels of cognitive complexity. Cog-
nitive complexity refers to the amount of cognitive demand
required to complete a task. Higher levels of cognitive en-
gagement necessitate higher effort investment and align with
higher levels of cognitive complexity in Bloom’s taxonomy.
Hence, we emphasized the presence of higher-order skills
when identifying higher levels of cognitive engagement in
the coding scheme.

Figure 1 shows the cognitive engagement coding scheme we
used for labelling the discussion forum posts.1 It highlights
how the hierarchical nature of cognitive engagement aligns
with Bloom’s taxonomy levels. For example, in the lower
levels of the taxonomy, we have remembering and under-
standing. Active engagement corresponds to these levels in
the taxonomy since posts with active engagement include
elements of paraphrasing, mapping resources, and retriev-
ing the same or similar concepts that are covered in class.
Constructive engagement aligns with the level of applying
and analyzing in Bloom’s taxonomy since these posts com-
pare, contrast, illustrate, and argue in a cause and effect
fashion. Finally, Interactive engagement relates to the lev-
els of evaluating and creating in the taxonomy because these
discussion posts make judgments and evaluations about the
topics covered.

Our coding scheme included four categories: social, active,
constructive, and interactive. The engagement categories
are hierarchical, and social engagement is the lowest cate-

1We cannot share the post content due to learner privacy.
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Figure 1: Cognitive engagement coding scheme.

gory followed by active, constructive, and interactive engage-
ment. Note that we did not use passive engagement since
our goal is not to categorize students’ engagement levels but
rather to categorize the engagement observed in posts. Pas-
sive engagement entails that students read the posts but
do not produce any posts, hence it cannot be employed for
categorizing engagement in discussion posts. We also intro-
duced a social engagement level corresponding to posts that
are off-task and are meant to support relationship building
(e.g., students introducing themselves).

Based on the coding scheme, we first identified whether the
posts were on-task or off-task. Then, we asked whether the
post exhibited reasoning, argumentation, or elaboration on
a topic. Finally, we asked whether there was an evaluative
argument and a clear counterpart in each post. While coding
the posts, we assigned the highest engagement level observed
in each post.

The coding was done by two content experts (Authors 1
and 2) who had previous experience with data coding and
who were familiar with the cognitive engagement literature.
First, we had a training session where we coded a sample
of discussion posts, identified challenges, and reconciled dis-
crepancies during the coding process. After the training
session, we each coded a sample of discussion posts inde-
pendently and we checked agreement between raters using
the percent agreement method. We had an inter-rater reli-
ability of .91.

Table 2: Distribution of cognitive engagement levels

ID Label Engagement Type Number (%)
0 Social 1197 (28)
1 Active 1173 (28)
2 Constructive 930 (22)
3 Interactive 917 (22)

Table 2 shows the distribution of the four levels of cognitive
engagement across all posts. The most frequently observed
levels of cognitive engagement were social (28%) and active
(28%). Given that constructive and interactive levels of en-
gagement require higher cognitive effort and complexity, we
expected to observe fewer constructive and interactive en-
gagement level posts. Even though we expected to observe
class imbalances based on previous studies (e.g., [38, 70]), we
had a nearly balanced distribution of cognitive engagement
levels. This might be due to the class structure where some
instructors relied on peer facilitation as a management strat-
egy for the course forums. Alternatively, having graduate-
level courses could explain this balance.

4.3 Feature Extraction
This study used Coh-Metrix and non-linguistic contextual
features to classify the cognitive engagement level seen in
discussion posts.

Coh-Metrix is a tool used for discourse analysis. It esti-
mates the cohesion, coherence, linguistic complexity, read-
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Table 3: Hyperparameter search space used for model tuning

ML Classifier Parameters Values
Decision Tree Max depth 3, 6, 9, 12, None

Min samples leaf A random integer between 1 and 10
Max features A random integer between 1 and 10
Criterion ’Gini’, ’Entropy’

Random Forest Max depth 3, 6, 9, 12
Min samples leaf 2, 4, 6, 10
Max features 5, 10, 20, 30, 40,50, 60, 70, 80, 90, 100, 107
Number of estimators 500, 1000
Min samples split 5, 10
Criterion ’Gini’, ’Entropy’
Bootstrap ’True’, ’False’

Support Vector Machine Kernel ’linear’, ’sigmoid’, ’poly’, ’rbf’
C 50, 10, 1, 0.1

ability, and lexical category use in a text [32]. The English
version of Coh-Metrix incorporates 108 features including
referential cohesion, deep cohesion, and narrativity [33]. In
previous studies on text classification, Coh-Metrix and con-
textual features were shown to be promising for cognitive
presence identification (i.e., Community of Inquiry; [70]),
suggesting their potential for supporting cognitive engage-
ment detection in online discussion environments.

In addition to the Coh-Metrix features, we included three
contextual features. These contextual features included in-
formation about whether a discussion post is a reply to an-
other post, the number of replies that the post had received,
and a count of the use of vocabulary from the academic word
list (AWL) [20]. Whether a post is a reply was a binary vari-
able, the number of replies a post received was an integer,
and AWL count was an integer representing the total num-
ber of academic words in a post.

4.4 Data Pre-processing
To clean and prepare the corpus for training and classifi-
cation, we ran several pre-processing steps. Our goal was
to build a cognitive engagement classifier, thus we tried to
create a corpus that was as clean and close to human read-
able form as possible [32]. We removed website links and
“see attached” notations; stripped the html tags, eliminated
new lines, white spaces, and tabs; expanded contractions;
removed numbering and bullet points; and corrected mis-
spelled words.

Because our unit of analysis was discussion posts, we created
separate files for each post after applying the above data
cleaning steps. We then ran Coh-Metrix 3.0 [47] to extract
linguistic features for each post. All discussion posts have a
single paragraph, so we removed the Coh-Metrix indicators
of paragraph count (i.e., DESPC), standard deviation of the
mean length of paragraphs (i.e., DESPLd), the mean of the
LSA cosines between adjacent paragraphs (i.e., LSAPP1),
and the standard deviation of LSA cosines between adjacent
paragraphs (i.e., LSAPP1d). Finally, we created a data file
containing all of the input features and the class labels. The
input features included the 104 Coh-Metrix indicators and
three other non-linguistic contextual features (e.g., whether
a post is a reply). This data file was then used to train our

classifiers for cognitive engagement prediction.

4.5 Model Selection
To train and test models for predicting cognitive engage-
ment, we split the dataset in two: 70% was used as a training
set and the remaining 30% was used as a test set.

To answer our research questions, we trained three types of
supervised classifiers:

• a decision tree (DT) [10] was selected because this ap-
proach is easier to interpret and the graphical represen-
tation of the tree can help us understand the relative
importance of features;

• a random forest classifier (RF) [80] was chosen because
it is an ensemble method that often exhibits superior
performance on classification tasks in educational con-
texts (e.g.,[59, 70]); and

• the support vector machine (SVM) [21] algorithm was
chosen because it is designed to handle multidimen-
sional data which may lead to superior performance
when predicting cognitive engagement in discussion
posts [40].

In addition to the above attributes, these types of models
have previously performed well in other forum classification
tasks [88] or they have supported educational data mining
tasks with similarly sized or smaller data sets [25, 78]. More-
over, these classification algorithms are relatively transpar-
ent so they can aid us in understanding the contribution of
each feature to cognitive engagement prediction.

4.6 Model Tuning
Model training, hyperparameter tuning, and analyses were
conducted in Python (Version 3.8.8) using the sklearn [71]
and mlxtend [75] packages.

We tuned the hyperparameters of each classifier using ran-
domized search with 10-fold nested cross-validation. In Ta-
ble 3, we summarize the hyperparameters and values used
to tune the models for each classifier. For the decision tree,
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Table 4: Model performance by model and cognitive engagement level (Cog. Engage.)

Decision Tree Random Forest Support Vector Machine
Cog. Engage. P R F1 Acc. (%) P R F1 Acc. (%) P R F1 Acc. (%)
Social .65 .70 .68 71 .77 .74 .76 73 .79 .83 .81 83
Active .50 .46 .48 46 .56 .56 .56 52 .60 .54 .57 54
Constructive .71 .58 .64 62 .74 .69 .71 68 .77 .73 .75 73
Interactive .55 .65 .59 64 .60 .68 .64 70 .64 .73 .68 73
Full .59 .58 .58 60 .66 .66 .65 66 .70 .71 .70 71

the best model performance was obtained with max depth
= 6, criterion = Gini, max features = 106, and min samples
leaf = 7. For RF, the best model performance was obtained
with max depth = 40, criterion = entropy, and number of
estimators = 600. The best performing SVM model was
obtained with kernel = linear and regularization (C) = 0.1.

The best model achieved 68% accuracy for the decision tree,
95% accuracy for random forest, and 85% for SVM on the
training set.

4.7 Model Comparison and Analysis
We evaluated classifier performance with the test set using
accuracy (Acc), Cohen’s Kappa (K), precision (P), recall
(R), and F1 using 10-fold cross-validation. We use Landis
and Koch’s guidelines to interpret Cohen’s Kappa, where
values below .20 indicate slight agreement, values between
.21 and .40 indicate fair agreement, values between .41 and
.60 indicate moderate agreement, values between .61 and .80
indicate substantial agreement, and values greater than .81
indicate strong agreement [63].

We also statistically compared the model performance using
Cochran’s Q test. Cochran’s Q test is a generalized ver-
sion of McNemar’s test and it can be used to compare more
than two classifiers [76]. The null hypothesis for Cochran’s
Q test states that there is no difference between model clas-
sification accuracies. We also used McNemar’s test, a non-
parametric statistical test, to perform the subsequent paired
comparisons [76]. We report continuity corrected p-values
for paired comparisons.

We analyzed feature importance across models to evaluate
feature contribution towards cognitive engagement identifi-
cation. For the decision tree, we evaluated feature impor-
tance with the Gini index. For random forest, we used the
Mean Gini Decrease value to evaluate the features with the
most explanatory power. For the support vector machine,
after hyperparameter tuning with kernel and regularization
parameter (C), we evaluated the feature importance by com-
paring the size of the support vector coefficients with one
another.

4.8 Error Analysis Procedures
To better understand the classification errors, we analyzed
the confusion matrix and the misclassified discussion posts.
The confusion matrix allowed us to analyze the number of
errors across models. We also compared the error rates (in-
stead of the absolute number of errors) by dividing each
value in the confusion matrix by the number of posts in the
corresponding class and depicted the model performance in
Figure 3. The rows represent the actual (human-assigned)

labels; the columns represent the predicted labels. This pro-
cedure allowed us to, first, identify which types of cognitive
engagement tend to be misclassified as another type. Sec-
ond, we compared the descriptive statistics of predictors of
those misclassified posts to examine the reasons for misclas-
sification.

5. RESULTS
5.1 RQ1: Model Performance
In Table 4, we provide the performance measures (i.e., pre-
cision, recall, F1 score, and accuracy) for all three models by
cognitive engagement level. We also provide these measures
for the full model (i.e., when all classes are being consid-
ered). Note that the accuracy of the zero-rule classifier for
the full model would be 28.4%. As can be seen in Table 4,
all of the models outperformed this simple baseline. More-
over, Cochran’s test revealed statistically significant differ-
ences between the classifiers we built, Q = 55.68, p < .001.
We report the results of specific paired model comparisons
below.

For the decision tree, we obtained 60% accuracy (K = .46)
for the full model. If we consider the F1 scores for each level
of cognitive engagement within the decision tree model, we
can see that it did a relatively good job of predicting social
and constructive engagement. Whereas, active engagement
scored below .5 on all of precision, recall, and F1. While
this is better than chance, these are the lowest performance
measures observed across all three models.

The accuracy of the random forest classifier was higher than
that of the decision tree (McNemar’s χ2 = 21.70, p < .001).
However, this increased accuracy was not accompanied by
a change in agreement-level (K was .55). Again, we con-
sider the model’s relative performance across levels of cogni-
tive engagement, which showed that it performed best when
predicting social and constructive engagement. It also per-
formed relatively well for interactive engagement.

The support vector machine classifier outperformed both the
decision tree (McNemar’s χ2 = 61.31, p < .001) and the ran-
dom forest (McNemar’s χ2 = 19.04, p < .001) models on the
full prediction task. The SVM model’s Kappa value (.61)
suggested substantial agreement between the predicted and
human-assigned labels [63]. Similar to the models trained
with the random forest and decision tree algorithms, we ob-
tained the best model performance for social and construc-
tive engagement followed by interactive and active engage-
ment.

5.2 RQ2: Feature Importance
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Figure 2: The feature importance scores for the 20 most im-
portant features for cognitive engagement prediction using
random forest.

To evaluate feature importance for predicting cognitive en-
gagement and answer our second research question, we first
analyzed the decision tree classifier. The classification tree
suggested that the most important predictor was the aca-
demic word list count (AWL Count), followed by whether a
post is a reply, Flesch-Kincaid grade level (i.e., Coh-Metrix
indicator of RDFKGL), and number of words (i.e., DESWC
from Coh-Metrix).

To interpret the random forest classifier, we used the mean
decrease in Gini coefficient because it supports the evalua-
tion of the contribution of each feature to the model’s pre-
diction [48]. Higher values of mean decrease in Gini score
indicate that the feature contributed more when perform-
ing the prediction. Similar to the decision tree model, we
found that the most important features were the number of
words (i.e., DESWC), number of academic word list items
(AWLCount), type-token ratio for all words (LDTTRa), and
Flesch-Kincaid grade level (RDFKGL). Figure 2 shows this
model’s most important twenty features and their relative
weights.

For the support vector machine model, we evaluated the co-
efficient importance and found that the most important fea-
ture was second language readability (RDL2). This feature
was followed by type-token ratio (LDTTRc), the standard
deviation of the number of syllables in words (DESWLsyd),
and LSA overlap between verbs (SMCAUSIsa).

We found that the decision tree and random forest models
identified the same features as most important, yet their
relative contribution to the prediction task changed across
models. The support vector machine, on the other hand,
identified a different set of features as most important.

5.3 RQ3: Error Analysis
All classifiers provided better prediction performance for so-
cial and constructive engagement (see Table 4). Table 5
presents the confusion matrix for the classifiers. The su-
perior performance of the support vector machine model is
evident in Table 5, where the misclassification of posts was
the lowest across engagement categories.

We analyzed the performance measures and evaluated preci-
sion, recall, and F1 scores for each classifier and engagement
category. This showed the jump between the precision and

Figure 3: Classification error rates for decision tree, random
forest, and support vector machine.

recall measures for constructive and interactive levels for the
decision tree. For decision tree, the true positive rate was
65% for the interactive posts; that is, the classifier missed
35% of the interactive posts that should have been labelled
with interactive. On the other hand, 45% of the posts were
incorrectly identified as interactive. Furthermore, the true
positive rate was 71% for the constructive posts. That is,
the decision tree missed 29% of the constructive posts that
should have been labelled with constructive, and 58% of the
posts with other engagement levels were incorrectly identi-
fied as constructive.

The length of the posts and the smaller AWL count seem
to be the primary reasons why social and active engagement
posts were confused with each other. For misclassified social
engagement posts, the mean post length (MS = 134), AWL
count (MS = 19.25), and Flesch-Kincaid grade level (MS

= 12.4) were similar to the mean post length (MA = 138),
AWL count (MA = 12.93), and Flesch-Kincaid grade level
(MA = 11) of active engagement posts. For the misclassi-
fied interactive posts, we observed a similar pattern. The
mean post length (MI = 129.5), AWL count (MI = 17.9),
and Flesch-Kincaid grade level (MI = 12.65) were similar to
those extracted from the active posts.

Additionally, the confusion matrix (Table 5) suggested that
all classifiers tend to misclassify social engagement with ac-
tive engagement. Of those misclassified posts, approximately
70% of social posts were classified as active engagement
across the predictive models. That is, social engagement
was incorrectly grouped into the higher level. The active
engagement level tended to be misclassified as social engage-
ment, indicating model confusion between adjacent engage-
ment categories. Of the misclassified active posts, approx-
imately 55% of them were classified as social engagement
across all predictive models. In contrast, constructive en-
gagement tended to be misclassified as interactive engage-
ment across all classifiers. Of the misclassified constructive
posts, approximately 40% of them were classified as inter-
active engagement across all predictive models. Effectively,
this means that it was incorrectly grouped into the higher
level. Misclassifications of interactive engagement went in
the opposite direction and were not for the neighbouring
class. Rather, these errors were classified as active engage-
ment instead of their being recognized as interactive posts.
Of the misclassified interactive posts, approximately 60% of
them were classified as active engagement across all predic-
tive models. One possible explanation for this misclassifi-
cation is as follows: Active and interactive discussion posts
tended to be shorter in length compared with those at the
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Table 5: Confusion Matrix for Decision Tree, Random Forest, and Support Vector Machine

Decision Tree Random Forest Support Vector Machine

P
re

d
ic

te
d

Actual
S A C I S A C I S A C I

Social (S) 244 72 11 22 258 66 12 13 289 44 6 10
Active (A) 89 158 33 62 69 190 30 53 67 185 36 54
Constructive (C) 22 38 175 65 1 33 206 60 5 30 218 47
Interactive (I) 18 49 29 179 6 53 29 187 4 47 23 201

constructive engagement level. Although constructive posts,
in general, had higher word counts (MC = 339) and AWL
counts (MC = 40.3), some of the misclassified active posts
were shorter. This conflicted with the fact that constructive
posts expanded course content with reflections and argu-
mentation and were thus expected to be longer with greater
use of academic vocabulary. This expectation did not hold
in all cases and may explain why constructive engagement
posts were misclassified as interactive.

To further evaluate misclassification errors for each classi-
fier, we plotted model error rates. Figure 3 shows the kinds
of errors that the decision tree, random forest, and sup-
port vector machine made. Rows represent actual classes
and columns represent predicted classes. Across all models,
social, constructive, and interactive engagement were less
likely to be misclassified with each other. For the model
trained with SVM, active and constructive as well as the
active and interactive engagement levels were less likely to
be misclassified with one another.

6. DISCUSSION
The purpose of this study was to develop models that iden-
tify cognitive engagement in online discussion forums. Us-
ing the post features that were extracted with Coh-Metrix,
we trained three classifiers. Employing transparent classi-
fiers allowed us to more easily evaluate feature importance
for cognitive engagement prediction. We also conducted an
error analysis to better understand the classification errors
across models. Below, we discuss the implications of our
findings in the context of each research question.

6.1 Feasibility of Automating the Prediction
of Cognitive Engagement

Of the three types of predictive models we trained (i.e., de-
cision tree, random forest, and support vector machine), the
support vector machine performed sufficiently well for it to
be used to identify engagement levels in discussion posts.

Previous studies generally focused on cognitive engagement
prediction using the random forest algorithm and the CoI
framework. We used a different cognitive engagement frame-
work (i.e., ICAP), and our best model (SVM) demonstrated
similar accuracy (70.3%) and Cohen’s kappa values (K =
.63) to those that used random forest under the CoI model
of cognitive presence (e.g., [38, 59].

The development of these models is the first step towards
supporting instructors who want to be able to identify stu-
dent engagement so that they can improve their teaching
practices and intervene when student engagement levels are

low. These types of analytics fall into the category of those
desired by instructors as they capture aspects of student post
quality that are not currently available in most dashboards
[1]. The models could be used to inform instructors about
the engagement status of students in online course discus-
sions. Given model performance, it would be important to
effectively communicate uncertainty in its labelling of stu-
dent posts [24]. Approaches, such as those suggested by
Brooks and Greer [11], could be used to mitigate the risk of
instructors relying on misclassified data so that they appro-
priately trust the output of the model and act in accordance
with its limitations. For example, the system could identify
the students who are disengaging to warn instructors so that
they adjust their teaching and instructional practices. Ad-
ditionally, such systems could be used to nudge students to
better engage with tasks or to recommend posts that may
enhance student engagement levels [14].

6.2 Feature Importance for the Prediction of
Cognitive Engagement

By investigating how different features contribute to model
performance, we can better understand the underlying phe-
nomena which, in turn, will support the development of
better predictive models for detecting cognitive engagement.
Our study also provided further empirical evidence of feature
importance, corroborating the findings of previous studies.

Both the decision tree and random forest feature importance
analyses identified similar features (e.g., AWL count, Flesch-
Kincaid grade level, word count). The features identified for
the models in the present study were consistent with previ-
ous studies (e.g., [38, 59]). Similar to these previous studies,
we found that higher levels of cognitive engagement were
associated with longer messages. Our work builds on this
by highlighting the importance of vocabulary use through
the AWL count feature, which was not included in the other
studies. Rather, those studies captured vocabulary through
other means (e.g., Linguistic Inquiry and Word Count [84]).
Our findings indicate that the use of academic vocabulary,
like those in the AWL, that are not specific to a discipline
(words such as hypothesis, conclude) support the identifica-
tion of cognitive engagement. Moreover, their more general
nature means that they should support generalization across
courses at similar academic levels.

6.3 Interpreting Classification Errors
Classification errors occurred between the active and social
engagement labels. Across all of the algorithms we used
in our study, the worst performance was observed for ac-
tive engagement. In a recent study, Farrow and colleagues
[38] also found similar results for their prediction of active
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engagement using random forest and the CoI framework.
However, they did not perform an error analysis.

Our analysis of active and social engagement classes sug-
gested that median word count, median AWL count, and
Flesch-Kincaid grade level were similar for these two en-
gagement levels. Furthermore, the dispersion of predictor
values for active engagement was wide, overlapping with the
range of predictors of other engagement levels. This helps
explain what may have contributed to the poor performance
of models for active engagement identification. Constructive
engagement, on the other hand, had more distinct disper-
sion than other engagement levels, which could explain why
the models were more successful when predicting construc-
tive engagement. These results suggest the importance of
having distinct engagement categories for successfully dif-
ferentiating the vector space, thus achieving higher model
performance and accuracy across engagement categories.

6.4 Limitations and Future Directions
Like all models, ours capture certain characteristics of stu-
dent engagement and the decisions we made influence both
their accuracy and the extent to which they are expected to
generalize to other settings. We discuss these issues below
and their potential for creating new opportunities for the
development and use of models in online-learning settings.

The overall performance of the models suggests there is room
for improvement. Nonetheless, these models can provide a
snapshot of the engagement level in each post, providing an
early signal of student engagement in online learning envi-
ronments. This signal could help instructors to derive in-
sight from this student-engagement data.

We labelled the data with the highest engagement level ob-
served in a post. However, different cognitive engagement
levels (e.g., social and constructive) may co-exist in a sin-
gle post. While this type of coding approach is commonly
employed [90], it may have limited the performance of our
classifiers. It also prevents a more nuanced understanding
of the types of cognitive engagement demonstrated by stu-
dents. To support more nuanced representations of student
engagement, future research can consider the co-existence
of different engagement levels or how engagement relates to
different areas of a course using something akin to aspect-
based sentiment analysis [96].

Another limitation of our study is that we focused on identi-
fying cognitive engagement in online discussion posts. That
is, posts are classified rather than students. Because en-
gagement may fluctuate based on course content or a weekly
basis, we employed post-level analyses, which is a common
practice in such research (e.g., [38, 70]). However, this may
influence performance metrics. Future research can focus on
how to derive an appropriate measure and representation of
a student’s cognitive engagement based on the varied levels
of engagement that are exhibited across their posts. Perhaps
more importantly, students who did not post to the discus-
sion forums or those who only read posts and did not create
messages (i.e., online listeners [92]) have not been included
because there were no posts from these students. Alter-
native mechanisms need to be found to characterize their
engagement through a listening lens. Since simply opening

a post is not enough to infer cognitive engagement, proxy
measures may need to be developed. Behavioural patterns
such as the ratio between the re-reading of posts and posts
made [1, 72] or scan-rate [49] may provide reasonable signals
of online listener engagement.

7. CONCLUSION
In this study, we gauged the feasibility of automating cogni-
tive engagement prediction through NLP and ML methods.
We first manually coded over 4,000 posts using the cod-
ing scheme we adapted from ICAP and Bloom’s taxonomy.
Then, we extracted linguistic and contextual features and
trained three machine learning classifiers to predict the level
of cognitive engagement demonstrated in a forum post. We
obtained promising results with a support vector machine.

Now that we have models that can identify the highest level
of cognitive engagement seen in a single post, we can start to
consider how other factors might interact with student cog-
nitive engagement. For example, we know that the course
structure, length, and facilitation method influence student
participation [72], language use [27], and social support [26,
72]. Additionally, the system used to deliver a course can in-
fluence student engagement [28, 79]. Future research could
improve cognitive engagement identification by integrating
such information.

This work makes several contributions, with some at the
theoretical level and others at the empirical level. First,
we mapped cognitive engagement levels onto Bloom’s tax-
onomy. Bloom’s taxonomy places cognitive complexity in
hierarchical order, as does our ICAP-based cognitive en-
gagement coding scheme. Second, this study illustrated the
utility of different classifiers for cognitive engagement pre-
diction in graduate-level online courses. Our analysis of the
importance of model features and errors is consistent with
previous studies; it confirmed the importance of word count
for predicting cognitive engagement and revealed the im-
portance of AWL count and Flesch-Kincaid grade level for
predicting cognitive engagement. Future studies can include
these features and use a support vector machine to develop
a predictive model for cognitive engagement in online learn-
ing environments. Building on this work will enable the
development of better models that can then be used to in-
form teaching and learning when online discussion forums
are part of course delivery.
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attributes that inform depth and quality of
participation in course discussion forums. In
Proceedings of the Tenth International Conference on
Learning Analytics & Knowledge, pages 129–134, 2020.

[39] R. Ferguson and D. Clow. Examining engagement:
analysing learner subpopulations in massive open
online courses (moocs). In Proceedings of the fifth
international conference on learning analytics and
knowledge, pages 51–58, 2015.

[40] M. Fernández Delgado, E. Cernadas Garćıa,
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ABSTRACT
In collaborative problem solving (CPS), people’s actions are
interactive, interdependent, and temporal. However, it is
unclear how actions temporally relate to each other and
what are the temporal similarities and differences between
successful vs. unsuccessful CPS processes. As such, we ap-
ply a temporal analysis approach, Multilevel Vector Autore-
gression (mlVAR) to investigate CPS processes. Our data
were collected from college students who collaborated in tri-
ads via a video-conferencing tool (Zoom) to collaborately
engage a physics learning game. Video recordings of their
verbal interactions were transcribed, coded using a validated
CPS framework, and organized into sequences of 10-second
windows. Then, mlVAR was applied to the successful vs.
unsuccessful CPS sequences to build temporal models for
each. A comparison of the models together with a quali-
tative analysis of the transcripts revealed six temporal re-
lationships common to both, six unique to successful level
attempts, and another eight unique to unsuccessful level at-
tempts only. Generally, for successful outcomes, people were
likely to answer clarification questions with reasons and to
ask for suggestions according to the current game situation,
while for unsuccessful CPS level attempts, people were more
likely to struggle with unclear instructions and to respond
to inappropriate ideas. Overall, our results suggest that ml-
VAR is an effective approach for temporal analyses of CPS
processes by identifying relationships that go beyond a cod-
ing and counting approach.

Keywords
Collaborative Problem Solving, Multilevel Vector Autore-
gression, Temporal Analysis, Interaction Patterns

1. INTRODUCTION
Collaborative problem solving (CPS) is a process where mul-
tiple people pool knowledge, skills, and efforts to solve com-
plex problems [1, 26], and can be an effective approach com-
pared to working individually [27, 28]. For example, in one
study, pairs of people performed better than single individu-
als in discovering scientific laws [27]. In recent decades, CPS
has appeared in more and more contexts such as schools [26,
36], online learning [34] and military tasks [41], and is rec-
ognized as an essential 21st century skill [1, 26].

But what exactly does CPS ential? Swiecki et al. argued
that CPS is an interactive, interdependent, and temporal
process [41]. Specifically, a typical CPS process involves two
types of interactions: 1) people-task interactions where peo-
ple interact with the environment or tools to solve problems
[3] and 2) people-people interactions where team members
interact with each other (e.g. exchanging information or
coordinating behavior) to facilitate taskwork [23]. Interde-
pendence refers to the fact that people rely on other people’s
contributions to complete tasks, such as incorporating other
people’s work/ideas into the solution and getting help from
other people [25, 21]. Temporality refers to the fact that ac-
tions are produced as a series of inter-connected steps, and
the strength of these connections relates to the temporal dis-
tance of the actions (the larger the distance, the weaker the
connection) [8]. Thus, actions taken by the team at a certain
time have an impact on the actions that the team will take
in the near future, but this impact diminishes as time goes
on. For example, when a question is asked, there is an im-
mediate increase in the likelihood that the question will be
answered, but this likelihood decreases as time progresses.

Since CPS is interactive, interdependent, and temporal, peo-
ple’s behaviors ostensibly affect how tasks will be explored
and whether tasks will be completed successfully or unsuc-
cessfully. Emerging research has focused on discovering rela-
tionships between team behaviors and problem solving suc-
cess [42, 1, 17, 6, 39]. However, as reviewed below, most ex-
isting work has investigated CPS behaviors independently,
without effectively considering the interaction and interde-
pendence between them [42, 1, 17]. This raises the following
questions that motivate our work: how do teammates’ be-
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haviors temporally relate to each other and what are the
temporal similarities and differences between successful vs.
unsuccessful CPS processes?

Further, with rapid development of remote collaboration
tools and the high risk imposed by COVID-19 for holding
face-to-face meetings, more and more collaborations are car-
ried out remotely. Although remote collaboration has many
advantages, it also narrows the communicative bandwidth
[29]. For example, gesturing to physical objects is much
more complex than in face-to-face communication [40] and
certain patterns of social-visual attention (e.g., mutual gaze)
are disrupted [43]. Given the necessity and challenges of re-
mote collaboration, we focus on investigating the temporal
dynamics of behaviors in remote CPS contexts.

2. RELATED WORK
Our literature review mainly focuses on two aspects of CPS
processes related to our study: 1) successful vs. unsuccessful
CPS and 2) temporal analysis of CPS behaviors.

2.1 Successful vs. Unsuccessful CPS Processes
Prior research has applied several methods to investigate
CPS processes, such as qualitative analysis [2], coding-and-
counting [1, 17, 6], and temporal analysis [6, 39]. For qual-
itative analysis, Barron studied face-to-face collaboration
while solving math problems [2] using data from two three-
people teams whose verbal interactions during collaboration
were coded with three distinct functions: 1) articulation of
solutions, 2) repetitions of proposals, and 3) responses to
proposals. A qualitative analysis on the conversations re-
vealed that successful CPS exhibited more effective mutual
exchanges, better joint engagement, and shared goals.

Coding-and-counting analyses mainly count the occurrence
of particular behaviors/actions and relate them to a desired
outcome [42, 1, 17, 6, 39]. For example, Tausczik et al. an-
alyzed data from an online mathematical problem solving
community (MathOverflow) [42]. They first human-coded
the discussion data with five distinct behavioral indicators
and then built regression models to discover the association
between indicator occurrences and solution quality [42]. Re-
sults showed that clarifying questions, critiquing answers, re-
vising an answer and extending an answer significantly pre-
dicted solution quality. Similarly, Andrews-Todd et al. ap-
plied coding-and-counting to analyze college students’ chat
texts generated while collaboratively solving simulated elec-
tronics problems [1]. Based on the coded behaviors, they
categorized students into four groups by a 2 × 2 median
split - social (high vs. low) × cognitive (high vs. low).
Analysis results showed that the low social - low cognitive
group performed worse than the other three groups. Ad-
ditionally, having at least one high social - high cognitive
student in the team could increase performance.

A few studies applied basic temporal analyses of CPS be-
haviors in addition to coding-and-counting methods. For
example, Hao et al. analyzed CPS skills at the unigram and
bigram levels [17]. They manually coded participants’ col-
laboration chat texts generated while completing simulation-
based tasks with four skills: sharing ideas (Share), negoti-
ating ideas (Negotiation), regulating problem solving (Reg-
ulation), and maintaining communication (Maintain). Re-

sults indicated that at the unigram level (i.e., individual
skills), effective CPS processes contained more negotiation
than ineffective processes. At the bigram level (e.g., Share-
Negotation), effective processes had more share → negoti-
ate, negotiate → share, regulate → share, and negotiate →
negotiate patterns.

In another study, Chang et al. applied coding-and-counting
and lag sequential analysis to examine students’ interactions
in simulated CPS scenarios [6]. Participants collaborated as
triads (teams of three) via a chat box to solve physics prob-
lems. The chat texts were coded based on the Programme
for International Student Assessment (PISA) CPS frame-
work [26]. A counting based analysis indicated that success-
ful groups had a high percentage (out of the total number
of actions taken by the group) of two actions: 1) monitoring
and reflecting on what they have done and 2) discussing the
actions to take. Temporal lag sequential analysis showed
that some students who engaged in trial-and-error failed to
solve the problem in the end, while those demonstrating ef-
fective reasoning were more likely to solve the problem suc-
cessfully. Similarly, Sun et al. applied coding-and-counting
together with a pattern analysis approach to examine re-
mote collaboration while students played a physics learning
game [39]. Audio recordings of their verbal communications
were transcribed and coded based on a validated CPS frame-
work [38]. A coding-and-counting analysis showed that cer-
tain actions (e.g. discussing appropriate ideas, confirming
understanding) were predictive of success in the game. Pat-
tern analysis examining the co-occurrence of actions within
short temporal windows revealed the importance of forming
interactive communications among team members to estab-
lish common ground and support each other.

In sum, results from prior research suggested that CPS suc-
cess is associated with both the occurrences of individual
actions [2, 42, 1, 17] and connections between actions [17,
6, 39]. However these studies mainly utilized coding-and-
counting to examine CPS success [42, 1, 17], and the tem-
poral analyses were limited [17, 6, 39]. Next, we review
studies that go beyond basic counts of individual behaviors
by investigating temporal relationships of CPS behaviors.

2.2 Temporal Analysis of CPS
Prior work on temporal analyses of CPS has mainly fo-
cused on detecting the connections between individual ac-
tions from team interaction sequences [19, 7, 41, 9, 30,
22]. For example, Kapur applied lag sequential analysis
to discover the most frequent communication patterns that
emerged in CPS discussions [19]. Participants in the study
coordinated in triads via online text chat to solve physics
problems. Two experimental conditions (well-structured vs.
ill-structured problems) were compared. The resultant chat
texts were coded based on the Functional Category System
framework [31]. Then, lag sequential analysis was sepa-
rately applied to each condition to compute the transition
frequency between indicators in consecutive utterance pairs.
A comparison of the two resulting models showed that the
ill-structured condition had several temporal between-action
connections that occurred at least twice as frequently as
those in the well-structured condition, whereas the well-
structured condition had no such connections. This is a
finding that coding-and-counting approaches did not reveal.
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Csanadi et al. applied epistemic network analysis to investi-
gate collaboration and thought processes of problem solving
[7] and compared it with a coding-and-counting analysis. In
that study, pre-service teachers were asked to reason about
a pedagogical problem either in pairs or individually (fol-
lowing a think aloud protocol). Audio recordings of the dis-
cussions were segmented into propositional units, and coded
with eight distinct indicators. Then epistemic network anal-
ysis was applied by sliding a window of two utterances on
the coded sequences to discover co-occurrences of indica-
tors. Based on the co-occurrence frequencies, a weighted,
undirected graph was generated to represent the connections
between indicators. A comparison of the networks for dyads
and individuals showed that these two conditions had dif-
ferent indicator co-occurrence patterns. Again, the coding-
and-counting analysis did not reveal such a finding.

Similarly, Swiecki et al. also applied epistemic network
analysis to investigate the verbal interactions between team
members in simulated military training scenarios [41]. In
that study, 16 Navy air defense warfare teams performed
the detect-to-engage sequence, which detects and identifies
vessels or tracks, assesses whether tracks are threats, and
decides what actions to take. Each team consisted of six
roles and the analysis focused on the interactions between
the tactical action officer and the other five members. Audio
recordings of the verbal interactions were transcribed and
coded via an automated coding scheme (nCodeR) [24]. Two
conditions using a standard system (control) vs. a decision
support system (experimental) were compared. In the epis-
temic network analysis, a sliding window of 5 utterances was
applied to discover the temporal co-occurrence of indicators.
Results showed that in the control condition, the tactical ac-
tion officers frequently sought out information, while in the
experimental condition, they mainly contributed informa-
tion about the tactical situation. Again, the coding-and-
counting analysis did not reveal such a finding.

Besides examining coded sequences, researchers have also
investigated other types of sequences such as transcripts [9]
and log traces [30, 22]. For transcripts, Dowell et al. applied
group communication analysis to detect roles that emerged
during group collaboration [9]. The analysis relied on com-
putational linguistic techniques to map utterances into a
latent semantic space (a n-dimension numerical space) upon
which six measures were defined to describe the profile of
each individuals’ verbal contributions (e.g. social impact,
overall responsivity, newness). Then, k-means clustering
was applied to the profiles to detect emerging roles, result-
ing in six clusters with unique characteristics (e.g. “high so-
cial impact, responsiveness, and internal cohesion”). For log
trace analysis, Perera et al. used sequential pattern mining
to examine the process of competing a group course project
for software development [30]. In that study, students col-
laborated in an online learning environment which logged
events of group wiki editing, ticket management, and version
changes. The event sequence of each group was then seg-
mented into shorter sequences and sequential pattern mining
was used to count the frequency of consecutive events (pat-
terns) for each team. The analyses identified patterns (e.g.,
“1 version activity by 1 author” followed by “1 ticket activ-
ity by 1 author”) that can distinguish the well-performing
teams from the ill-performing ones.

2.3 Research Questions and Contributions
As reviewed above, researchers are beginning to uncover the
specific behaviors - both individually as well as behavioral
sequences - that predict CPS outcomes. Prior studies indi-
cate that there are meaningful and detectable temporal con-
nections between people’s verbal actions (or problem solv-
ing actions) in CPS processes [19, 7, 41, 9]. Further, tem-
poral analyses are sometimes more effective than coding-
and-counting analyses for understanding collaborations [19,
7]. In the current study, we continue this line of research
by utilizing multi-level vector autoregression (mlVAR) for
a temporal analysis of CPS behaviors. mlVAR is a net-
work analysis approach that examines temporal connections
between actions in consecutive windows via linear mixed-
effects models, thereby accounting for clustered/nested data.
Specifically, for each variable in window t, mlVAR builds a
linear model that uses all the variables in the t− 1 window
to predict its value. mlVAR has been successfully applied
in many domains, such as patient-physician interactions [16]
and symptom-psychopathology interplays [10]. However, to
our knowledge, it has yet to be utilized to investigate col-
laborative problem solving behaviors.

Towards this goal, we analyzed data from a study where stu-
dents collaborated in triads via video conferencing to play
a physics learning game. Next, we transcribed and seg-
mented recordings of students’ verbal communication into
utterances, human-coded each utterance based on a vali-
dated CPS framework [39] and aggregated the occurrence of
indicators with 10-second windows. We then applied mlVAR
to the resultant multivariate time series to generate tempo-
ral graphs depicting relationships among indicators. Our
primary research question is what are the temporal similari-
ties and differences between successful vs. unsuccessful CPS
interactions. We investigate this question by building sep-
arate mlVAR models for multivariate behavioral sequences
associated with successful vs. unsuccessful CPS outcomes
(i.e., solving a game level vs. failing to solve a level). Then,
we compare the two resultant networks to discover the simi-
larities and differences and conduct a qualitative analysis to
further examine what interactions may facilitate CPS and
what are the challenges people may face during CPS.

Our work extends existing CPS research in several ways.
Whereas temporal approaches have been applied to ana-
lyze CPS data, some previous studies only focused on logged
system actions rather than verbal communications [30, 22],
which provides limited insights into how the collaboration
unfolds (e.g. how students share information and negoti-
ate). Of the studies that applied temporal analysis on coded
sequences, some only considered the co-occurrence of indi-
cators in a sliding window (e.g. epistemic network analysis),
without specifying the direction of the relations [7, 41, 39].
Others only focused on the 1-to-1 temporal connections be-
tween variable pairs at time t− 1 and t (e.g. lag sequential
analysis) [17, 6, 19], rather than n-to-1 connections as an
action can be predicted by multiple prior actions [8, 9].

The approach we use in this work, mlVAR, has a number of
desirable statistical properties over other approaches. First,
unlike lag sequential analysis, which examines the 1-to-1
temporal connections between variables, mlVAR uses a set
of variables at time t − 1 to predict a variable at time t,
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resulting in n-to-1 temporal connections. This allows it to
discover temporal connections fully in context. Second, as
a statistical procedure, mlVAR allows for uncertainty quan-
tification of findings through the use of p-values and stan-
dard errors. Finally, mlVAR analysis is inherently multi-
level, thereby statistically accounting for the fact that CPS
data is generally clustered within teams. Failure to take
such clustering into account may yield untrustworthy results
due to phenomena such as the Simpson’s Paradox [20]. The
multilevel nature of mlVAR also allows for the estimation
of both team-specific networks and general networks repre-
senting the dynamics of the average team. Another novelty
is that we employed a quasi-experimental matching proce-
dure to balance the number of successful vs. unsuccessful
instances across multiple factors (e.g. school, experimental
block, time duration) to factor out their possible impacts.
Finally, rather than emphasizing short-term temporal rela-
tionships between actions (i.e., using the previous utterance
to predict the next), we combined behaviors across short
windows spanning an average of three utterances to better
capture aspects of the unfolding trialogue (conversations in-
volving three participants).

3. DATA SET
The data were collected as part of a larger study [11] involv-
ing collaborative problem solving. Only aspects germane to
the present work are reported here.

3.1 Participants
A total of 303 Students (56% female, average age = 22 years)
from two large public universities participated in the study.
Self-reported race/ethnicity information indicated that 47%
of participants were Caucasian, 28% Hispanic/Latino, 18%
Asian, 2% Black or African American, 1% American Indian
or Alaska Native, and 4% “other”. Students were assigned
to 101 triads based on their scheduling availability. Thirty
participants from 18 teams indicated they knew at least one
person in their team prior to study. Participants were com-
pensated with a $50 Amazon gift card (96%) or course credit
(4%) after completing the study.

Figure 1: A screenshot of the collaboration scenario

3.2 CPS Task
Participants were tasked with collaboratively solving levels
in a learning game “Physics Playground” [37], which is de-
signed for young adults to learn Newtonian physics (e.g.,
Newton’s laws of force and motion). The goal for each level
is to create objects and use physics laws to move a ball to a

designated target (a red balloon) as shown in Figure 1. Ev-
erything in the game obeys basic physics laws (e.g., there is
gravity, each object has its own mass). As such, to move the
ball in a desired way, students need to use simple machines
such as levers and springboards. These, along with other ob-
jects (e.g., weights) are drawn using the mouse, upon which
the new object becomes “alive” in the game and interacts
with other existing objects following basic physics laws. Stu-
dents can restart (clearing objects) or quit a game level at
any time. They receive a gold coin if they solve a level with
an optimal solution (i.e., with minimal objects), and they
receive a silver coin for a sub-optimal solution (i.e., with
more objects). No coin is rewarded for unsolved levels.

The game includes 17 levels covering two physics concepts:
“energy can transfer”(EcT, 9 levels) and“properties of torque”
(PoT, 8 levels). Each concept contains several subconcepts.
For example, kinetic energy and gravitational potential en-
ergy belongs to EcT. The 17 levels varied in difficulty (as
rated by two physics experts) and the levels were organized
into three “playgrounds”, one per block in the study (de-
tailed below). In the navigation page, students can choose a
level to enter from the “playground” they are in or view the
tutorials that introduce the game mechanics.

3.3 Procedure
The study involved an individual “at-home” part and a col-
laborative “in-lab” part. Materials (Qualtrics surveys) for
the“at-home”part were emailed to students at least 24 hours
prior to the lab session. It included several individual differ-
ence measures (e.g., prior knowledge, personality), a short
tutorial on how to use Physics Playground, a short (around
15-mins) individual practice with the game, and other as-
pects unrelated to this study.

Students completed the “in-lab” part of the study in triads,
using computer-enabled workstations equipped with a we-
bcam and headset microphone. All collaborations occurred
via the Zoom video-conferencing tool (as shown in Figure 1),
and participants in the same group sat away from each other
to avoid in-person interactions. The study involved three
15-min CPS blocks. (There was a fourth block for a dif-
ferent task not analyzed here.) In each block, one person
was randomly assigned the role of a controller and the other
two were tasked with being contributors. Assignment of
the controller role rotated across blocks, so each teammate
served as the controller for one of the three blocks. The
game was loaded on the controller’s computer, so only the
controller could directly interact with the game. The con-
troller’s screen was shared with the contributors using the
screen sharing feature of Zoom. Contributors participated in
the problem solving process through verbal communications
(e.g., proposing ideas, giving instructions).

The first block included five easy-to-medium levels involv-
ing a mix of EcT and PoT concepts. After that, all teams
completed two 15-min experimental blocks, on either EcT
or PoT levels (counterbalanced across teams) and with a
specific CPS goal (delivered via verbal and on-screen mes-
sages): “solve as many levels as possible” or “get as many
gold coins as possible”. The CPS goal and physics concept
for the two experimental blocks were within-subjects factors,
counter-balanced across teams.
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Table 1: Facets and Indicators

Facet Indicator

1) Talks about challenge situations (Situations)

Constructing 2) Suggests appropriate ideas (ApporIdeas)

Shared 3) Suggests inappropriate ideas (InapporIdeas) [N]

Knowledge 4) Confirms understanding (Confirms)

5) Interrupts others (Interrupts) [N]

6) Provides reasons to support a solution (Reasons)

7) Questions/Corrects others’ mistakes (Questions)

8) Responds to other’s questions/ideas (Responds)

Negotiation 9) Criticizes, makes fun of, or being rude

and to other (Criticizes) [N]

Coordination 10) Discusses the results (DiscuResults)

11) Brings up giving up the challenge (GivingUp) [N]

12) Strategizes to accomplish task goals (Strategizes)

13) Tries to quickly save an almost successful

attempt (Saves)

14) Asks others for suggestions (AskSuggest)

Maintaining 15) Compliments or encourages others (Compliments)

Team 16) Initiates off-topic conversation (InitOffTopic)

Function 17 ) Joins in off-topic conversation (JoinOffTopic) [N]

18) Provides instructional support (Instructions)

19) Apologizes for one’s mistakes (Apologizes)

3.4 Coding Collaboration Behaviors
We adopted the validated coding scheme developed by Sun
et al. [39] to code student’s verbal communications, which
includes three main CPS facets: constructing shared knowl-
edge, negotiation/coordination, and maintaining team func-
tion. Within each facet, there are several indicators that
specify the concrete function(s) of each utterance as shown
in Table 1 (see coding examples in Section 5.2). Construct-
ing shared knowledge contains two aspects: a) disseminat-
ing knowledge, ideas, and resources among team members
and b) establishing common ground for understanding the
task and solutions [1, 26, 32]. Negotiation and coordination
pertains to reaching a consensus on a solution plan to be
carried out, such as dividing labor, resolving conflicts, inte-
grating different perspectives, and monitoring execution [1,
18, 35]. Maintaining team function reflects efforts to main-
tain a functional team via assuming individual responsibili-
ties, taking initiative, and co-regulation [5, 18, 33]. Most of
the indicators in Table 1 describe positive (beneficial) CPS
behaviors, and the negative behaviors were marked with N.

Coding was done on machine generated transcripts of stu-
dents’ verbal communications using IBM Watson’s auto-
matic speech recognition software [14]. IBM Watson both
segments the audio into individual utterances and provides
transcriptions of the utterances along with word timings.
Utterances spoken by the same person within two seconds
were merged to address segmentation errors (a 2-sec thresh-
old was selected after considering a range of thresholds).
The coders also viewed the video recordings of gameplay
during coding to understand the context of students’ inter-
actions, nonverbal behaviors of the group dynamics, and to
address speech recognition errors. An utterance was coded
with an indicator if it contained evidence of the function
described by the indicator. The coders marked the number
of occurrences of each indicator per utterance, and multiple

indicators could occur for a given utterance (see Table 7 in
Section 5.2 for an example). Three trained human coders
coded the data. Each received two rounds of training be-
fore performing individual coding. After the second round
of training, they all reached a high percentage of agreement
(89% – 100%) and a high Gwet’s AC1 value (0.91 to 1.00),
a measure of interrater reliability specifically designed for
cases of high agreement where more traditional metrics like
Cohen’s kappa yield unexpected results (sometimes called
the paradoxes of kappa [15]).

3.5 Level Matching
Considering that besides collaboration behaviors, other fac-
tors such as level difficulty, the physics concept involved,
and the problem solving goal (originally designed for other
studies and not involved in our analysis) could also affect
the problem solving outcome, we used a quasi-experimental
matching procedure to factor out their possible impacts on
level attempt success in our analysis. Specifically, an ini-
tial processing of the game logs yielded 1,164 level attempts
(27% gold, 29% silver, and 44% no coin). Then, level at-
tempts shorter than 60s were excluded, resulting in 808
level attempts. We removed short attempts because they
are likely to be cases that students were exploring a level to
decide whether to attempt it or not.

A preliminary analysis indicated that Energy can Transfer
(EcT) levels (18% attempts succeeded, 7% earned a gold
coin) were more difficult than Properties of Torque (PoT)
levels (63% attempts succeeded, 40% earned a goal coin).
To ensure a sufficient number of matches, matches for EcT
levels focused on a coin (gold or silver) vs. a no coin com-
parison, whereas matches for PoT levels focused on gold vs.
silver vs. no coin outcomes (i.e., a triplet). Matching was
based on the following covariates: 1) school, 2) level iden-
tifier, 3) manipulation (i.e., gold coins vs. solve many lev-
els), 4) block number (first or second) for the experimental
blocks, and 5) duration of the level attempt. Level attempt
duration was constrained to be at most 0.25 standard devi-
ations of the mean duration of all the level attempts. An
initial matching (using the “bmatch” function in the R pack-
age “designmatch” [46]) yielded 131 level attempt matches
(33 Warmup, 69 EcT, and 29 PoT). Given the labor inten-
sive nature of coding, 81 matches were randomly selected
from the 131 candidates for analyses. The resulting data
set included 209 level attempts: 66 (22 × 3) Warmup at-
tempts from 47 unique teams, 68 (34 × 2) EcT attempts
from 49 unique teams, and 75 (25 × 3) PoT attempts from
54 unique teams. A preliminary analysis on the resulting
matches revealed that the matching indeed balanced school,
manipulation, and block across the outcome groups (coins
in this case). These data were coded for the CPS indica-
tors as noted above. In our analysis, the level attempts that
resulted in a coin (either gold or silver) were considered as
successful attempts, whereas those resulted in no coin were
treated as unsuccessful ones.

4. ANALYTICAL METHODS
4.1 Data Organization
Since students collaborated in triads in our studies, we ag-
gregated the utterances into windows spanning an average
of three utterances to investigate how their CPS interactions
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Table 2: Average speaker changes and utterances with differ-
ent window sizes

Size (Seconds) Speaker changes Utterances

8 1.604 (1.531) 2.559 (1.721)

9 1.850 (1.672) 2.849 (1.853)

10 2.087 (1.793) 3.150 (1.979)

11 2.340 (1.940) 3.457 (2.112)

12 2.587 (2.064) 3.741 (2.240)

unfolds. We used windows instead of utterance batches for
the aggregation because the utterances varied in length and
the windows can better balance the amount of information
across units in the sequences. To find an appropriate window
size, we tested 11 different sizes from 5 seconds to 15 sec-
onds (sample shown in Table 2). As expected, the number of
speaker changes (i.e., when the speaker changes between ut-
terance t+1 and t) and number of utterances in each window
increased for larger window sizes. We selected the window
size of 10 seconds because it has an average of two speaker
changes and three utterances in each window, which would
accommodate one utterance for each of the three speakers,
though windows ranging from 9 to 11 seconds would also
have been suitable.

The aggregation sums up the occurrences of each indicator
in each window, resulting in sequences of integer vectors.
An utterance was assigned to a window if: 1) the center
(midpoint) of the utterance lies in the window or 2) it over-
laps with the window for more than one second (since the
mean utterance duration was 2.08 seconds). Of the 19 indi-
cators, 9 were exceedingly rare, occurring in less that 1 per-
cent of the utterances. Accordingly, we merged these into a
miscellaneous other indicator category (OtherIndi). We also
grouped the utterances that were not coded with any indica-
tors into a no indicator category (NoIndi). Finally, to reflect
changes in the game, we applied a validated motion tracker
tool [45] to capture changes in the game area. We used
screen motion instead of logs to reflect game state because
the logs only recorded the addition/deletion of objects, but
not their interactions, and are generally limited for open-
ended games where players can draw objects of any shape.
The use of screen motion is also more generalizable and has
been used in other studies investigating CPS [44]. In sum,
our models contained 13 variables (12 indicator-related vari-
ables as shown in Table 3 + Screen Motion).

We conducted a few additional data processing steps prior
to constructing the models. First, sequences shorter than
150s were excluded to ensure that each sequence has at least
13 transitions for our 13-variable models (detailed below).
Second, windows shorter than 5 seconds (50% of normal
window length) at the end of the sequences were removed
because they were too short to be considered as a complete
window, and then the last window of each sequence was re-
moved. The second step removed the last 5 - 15 seconds
of each level attempt to alleviate the concern that the lan-
guage/indicators might have focused on the success or failure
of the outcome rather than the problem solving process.

The final data set contains 133 level attempts (82 successful
[silver or gold coin] and 51 unsuccessful [no coin]) from 74

Table 3: Average number of each indicator per window

Facet Variable Successful Unsuccessful

Constructing Confirms 0.30 (0.60) 0.33 (0.60)

Shared ApporIdeas 0.23 (0.51) 0.14 (0.41)

Knowledge InapporIdeas 0.15 (0.43) 0.21 (0.49)

Situation 0.17 (0.49) 0.16 (0.49)

Negotiation Responds 0.33 (0.63) 0.31 (0.60)

and Reasons 0.14 (0.38) 0.11 (0.34)

Coordination DiscuResults 0.09 (0.33) 0.08 (0.30)

Maintaining Instructions 0.27 (0.60) 0.33 (0.65)

Team Compliments 0.20 (0.48) 0.16 (0.42)

Function AskSuggest 0.03 (0.17) 0.04 (0.21)

Other OtherIndi 0.21 (0.50) 0.24 (0.54)

Variables NoIndi 1.22 (1.31) 1.31 (1.30)

matches (detailed in section 3.5). For successful attempts,
sequence length ranges from 14 to 85, with an average of
30.82 (SD = 15.93). Each window has 2.03 (SD = 1.79)
speaker changes on average, 3.03 (1.89) utterances, and 17.08
(11.78) words. For unsuccessful attempts, sequence length
ranges from 15 to 87, with an average of 36.92 (SD = 21.00).
Each window has 2.12 (SD = 1.73) speaker changes on av-
erage, 3.14 (1.80) utterances, and 18.02 (11.42) words. In
both data sets, each sequence has at least 13 transitions
(minimal sequence length (14) - 1) for our 13-variable mod-
els. Table 3 shows the average number of each indicator per
window, showing mean (SD).

4.2 Multilevel Vector Autoregression
Multilevel vector autoregression (mlVAR) is a network anal-
ysis method for understanding temporal dynamics between
multiple variables nested within multiple higher order clus-
ters (e.g., individuals or teams) [4, 13]. It is multilevel in
that linear mixed-effects models are built to examine tem-
poral connections at the individual level while accounting
for group differences. Vector autoregression is the process
of predicting a vector of variables at time t using the same
vector at time t−n (n is known as the lag). We utilized the
R package “mlVAR” (version 0.5) for all analyses [12].

mlVAR analyzes the relations between temporal vectors by
building a series of linear mixed-effects models, each of which
uses the vector at time t−n [y(t−n)i1, y(t−n)i2, ..., y(t−n)iJ ]
to predict an element of the vector at time t, denoted as
y(t)ij , where i is subject id (in our case, level attempt id), j
is variable id, and J is the length of the vectors (in our case,
J = 13 as we have 13 variables). The mixed-effects models
can be described by the following equations:

y(t)i1 = yi(t− n)b1 + yi(t− n)ui
1 + e1,

y(t)i2 = yi(t− n)b2 + yi(t− n)ui
2 + e2,

...

y(t)iJ = yi(t− n)bJ + yi(t− n)ui
J + eJ ,

(1)

where yi(t− n) is the 1× J vector at time t−n for subject
i, (y(t− n)i1, y(t− n)i2, ..., y(t− n)iJ); each of b1, . . . ,bJ is a
J×1 coefficient vector for the fixed-effects, which associates
yi(t− n) to y(t)ij ; each of ui

j, . . . ,u
i
j is a J × 1 random-
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Figure 2: In the graphs, nodes were colored based on their facet, blue for constructing shared knowledge, orange for maintaining
team function, purple for negotiation and coordination, and gray for other variables. Nodes with the same facet were grouped
together to make within and between facet connections more obvious. Green lines in the graphs represent positive temporal
relations and red lines represent negative relations. Dashed lines represent the relations that exist in both models, while solid
lines represent the relations that exist only in one model. Arrows show the direction of the temporal relations and line thickness
indicates the strength of the relationship (magnitude of the coefficient). Full names of the indicator labels are shown in Table 1.

effects vector, describing the deviation of individual i from
the fixed-effects b1, . . . ,bJ; each of e1, . . . , eJ is a resid-
ual variable, describing the difference (error) between the
model’s prediction and the actual value. Before estimating
parameters for the linear mixed-effects models, all the vari-
ables are standardized using a z-transformation to ensure
that the coefficient values are in the same range and com-
parable. We set the lag to be 1 as we were interested in
fine-grained temporal effects (i.e., between 10-second con-
secutive windows). We also explored lag 2, but the resulting
models had very few connections in them.

In mlVAR, a temporal connection exists between two vari-
ables if the “earlier” one y(t−n)ij is a significant predictor of

the“later”one y(t)ij in the corresponding linear mixed-effects
model. We used a p-value of .05 to denote a significant effect
as other studies did [16, 10]. The temporal connections be-
tween variables can be represented by a directed, weighted
graph (network), as shown in Figure 2.

5. RESULTS
Our temporal analysis of CPS processes consists of a quan-
titative analysis comparing the mlVAR models built on suc-
cessful vs. unsuccessful level attempts and a qualitative
analysis to interpret the patterns in the data.

5.1 mlVAR Analysis
For the successful and unsuccessful outcomes, the linear
mixed-effects sub-models in the mlVAR model reached an
average root mean squared error of 0.887 (SD = 0.062) and
0.906 (0.045) respectively in our standardized data. Fig-
ure 2 shows a comparison of the network for the successful
vs. unsuccessful model. Since we are interested in whether
there exist temporal connections between indicators rather
than how strong the connections are, we treated all the sig-

nificant connections equally (indicated by the lines in the
networks) and did not account for their strength (indicated
by line thickness). As we can see, the graphs contain several
kinds of relations, including self-loops, positive relations and
negative relations. A positive self-loop suggests that the ap-
pearance of an action in window t−1 informs the appearance
of the same kind of actions in window t. Generally, positive
self-loops indicate that the indicator occurs across multiple
consecutive windows. By contrast, a negative self-loop indi-
cates that if an action appears in a window, it is less likely
that the same kind of actions will appear in the next win-
dow. Given that the self-loops are easy to understand, we
do not discuss them further.

Regarding between-indicator relations, most of the negative
relations only exist in one of the two models. This is not
surprising because actions can be absent for many reasons,
such as being replaced by other actions or simply not be-
ing appropriate with respect to collaborative discourse (e.g.,
discussing the challenge situation after receiving a comple-
ment) or the stage in the problem solving process. As such,
we mainly focus on the positive between-action relations.

Table 4 shows a summary of the positive between-action re-
lations, where they were grouped into three categories based
on whether they occurred in 1) both models (Common), 2)
the successful model only (Successful), and 3) the unsuccess-
ful models only (Unsuccessful). The “Common” category
had 6 relations, 4 of which involved “confirms understand-
ing”. Among them, “proposes appropriate ideas” and “pro-
poses inappropriate ideas” were likely to influence “confirms
understanding” questions, while “provides instructional sup-
port” and “responds to others’ ideas/questions” were likely
reactions to “confirms understanding” questions. The other
two relations “asks others for suggestions”→ “proposes ap-
propriate ideas” and “provides instructional support”→ “re-
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Table 4: Positive between-action connections
Common

Proposes appropriate ideas → Confirms understanding

Proposes inappropriate ideas → Confirms understanding

Confirms understanding → Provides instructional support

Confirms understanding → Responds to other’s questions/ideas

Asks others for suggestions → Proposes appropriate ideas

Provides instructional support → Responds to other’s

questions/ideas

Successful
Confirms understanding → Provides reasons to support a solution

Provides reasons to support a solution → Confirms understanding

Screen motion → Asks others for suggestions

Screen motion → Talks about challenge situations

Screen motion → No indicators

Proposes appropriate ideas → Responds to other’s questions/ideas

Unsuccessful
Provides instructional support → Confirms understanding

Proposes appropriate ideas → Provides instructional support

Proposes appropriate ideas → Provides reasons to support a

solution

Proposes inappropriate ideas → Responds to other’s questions/

ideas

No indicators → Proposes appropriate ideas

No indicators → Asks others for suggestions

Talks about challenge situations → No indicators

Asks others for suggestions → Responds to other’s questions/ideas

sponds to others’ ideas/ questions”are ordinary interactions.
The common relations suggest that the process of establish-
ing shared understanding via asking and reacting to “con-
firms understanding” (clarification) questions was common
to both successful and unsuccessful level attempts and likely
underlies basic collaborative discourse.

Successful model: For the successful level attempts, there
was a bidirectional temporal relation between “confirms un-
derstanding” questions and “provides reasons to support a
solution”. Both reflect efforts to enhance shared understand-
ing and thus the interactions between them may facilitate
successful CPS. Importantly, we found that the degree of
screen activity (“screen motion”) was a significant temporal
predictor for three variables: “asks others for suggestions”,
“talks about challenge situations”, and “no indicator utter-
ances”. This suggests that people in successful CPS pro-
cesses reflected on the current game situation. Among the
three relations, “screen motion”→“talks about challenge sit-
uations” reflects that successful teams were linking what oc-
curred in the game with the underlying challenge situation,
which can be considered a form of metacognitive processing.
The “screen motion”→ “no indicator utterances” indicates
that people were likely to talk following screen change but
the language was not captured by the coding scheme since
it might not have been CPS-related discourse. The “screen
motion”→“asks others for suggestions”suggests that people
were likely to ask for suggestions according to the current
game state. Ostensibly, this relation connects people to the
game and thus may facilitate CPS. The “proposes appropri-
ate ideas”→ “responds to others’ ideas/questions” reflects
that people were likely to express their thoughts towards
appropriate ideas, suggesting a form of affirming dialogue.

Unsuccessful model: In the “unsuccessful” model, “confirm
understanding”questions were likely to appear following“pro-
vides instructional support”. This relation together with
the “confirms understanding”→“provides instructional sup-
port” in the “common” category forms a bidirectional rela-
tion, which indicates that people were looping between giv-
ing instructions and confirming understanding. This loop
suggests that people had difficulty with conveying and un-
derstanding instructions accurately.

There were three relations involving proposing ideas, both
appropriate and inappropriate. The“proposes inappropriate
ideas”→“responds to others’ ideas/questions” suggests that
people were likely to discuss inappropriate ideas, which is
different from the “proposes appropriate ideas”→ “responds
to others’ ideas/questions” in the “successful” model. This
contrast suggests that devoting efforts to appropriate ideas
rather than inappropriate ideas may help solve the problem.
Additionally, “proposes appropriate ideas” was a significant
temporal predictor of “provides instructional support” and
“provides reasons to support a solution”. Given that pro-
viding instructions and reasons both give details to support
an idea, these two relations suggest that the proposed ideas,
though appropriate, needed further illustration or justifica-
tion. The “no indicator utterances” (NoInd) were involved
in three relations. Since these relations involved communi-
cation functions that were not described by the CPS coding
scheme, we do not discuss them further. Finally, “asks oth-
ers for suggestions” was a significant predictor of “responds
to others’ ideas/questions”. We noticed that there was a
common relation “asks others for suggestions”→ “proposes
appropriate ideas” in both the “successful” and “unsuccess-
ful” models. This suggests that the most common reaction
to suggestion requests is directly proposing an idea. Thus,
reacting to suggestion requests by simply responding to oth-
ers, rather than proposing new and task appropriate ideas,
reflects that people were unsure about what to say, or how
to proceed with solving the problem.

Figure 3: Screenshot for qualitative analysis examples

5.2 Qualitative Analysis
To further interpret the temporal patterns revealed by ml-
VAR analysis, we conducted a qualitative analysis to ex-
amine what actually happened behind the patterns. Given
the page limit, we focused on two important CPS factors:
1) establishing shared understanding, and 2) linking peo-
ple to the game. As discussed above, shared understanding
was often established via asking and reacting to “confirms
understanding” (clarification) questions. Thus, we exam-
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Table 5: “Screen motion”→ “Asks others for suggestions” examples from successful level attempts

Example 1: Asking for suggestions after starting a level
Time Window Speech/Actions
40-50 1 [controller actions]: Entered the game and made a few objects, but did not figure out how to

solve the level. [Screen motion] value: 0.117 (> 99.32% instances)
54-58 2 Controller: Do you guys have any suggestions? [AskSuggest]

Example 2: Asking for suggestions after an attempt
490-500 46 [controller actions]: Created a heavy weight and deleted it to spring the ball up, but it did not go

high enough. [Screen motion] value: 0.010 (> 78.62% instances)
502-504 47 Controller: Should I try it again with, like Bigger? [AskSuggest]

Table 6: “Confirms understanding”←→ “Provides reasons to support a solution” examples from successful level attempts

Example 1: “Confirms understanding”→ “Provides reasons to support a solution”
Time Window Speech/Actions

[Scenario]: The ball is dropping repeatedly and the team is trying to figure out how to capture and move it, as shown
in Figure 3.a. (The key to solve this level is to catch the right timing.)
317-319 17 Contributor1: When you see the ball start to drop, let go. [Instructions]
319-323 17 Controller: To drop and let go? [Confirms]
323-325 18 Contributor1: So when the ball begins falling on the screen-
325-325 18 Controller: Uh-huh.
325-328 18 Contributor1: Then stop drawing, [Instructions] ’cause that’s when it’ll start to fall. [Reasons]
328-329 18 Controller: Okay. (silence) [Responds] [in-game action: the controller then solved the level]

Example 2: “Provides reasons to support a solution”→ “Confirms understanding”
[Scenario]: The team is trying to rotate an object.
392-410 18-19 Contributor1: Oh. I would maybe try to put... now, um, get rid of those dots and um, put a new

dot where um, the tip is. [ApporIdeas] So it could like move more forward. [Reasons]
410-411 19 Controller: Like here? [Confirms] [in-game action: pointed to a position using mouse]
411-417 19 Contributor1: Um, yeah. Like how you connected them. Connect them again at like, the bottom

of the thing. [Instructions]

Table 7: “Confirms understanding”←→ “Provides instructional support” example from an unsuccessful level attempt

Time Window Speech/Actions
[Scenario]: One contributor is trying to convey the idea of using a springboard to bounce the ball up (see Figure 3.b).
281-291 26-27 Contributor1: Like, put it like under. Actually no, I feel like that’s too...No like, you have to like

connect and like, and like, put it underneath. [Instructions] Like you feel-
291-292 27 Contributor2: What? (laughs). [Confirms]
292-307 27-28 Contributor1: Like, connect the two dots, then like put it under the ball. [Instructions] Because like,

you’re going to delete that black line [Instructions] and then it’s going to fall on the...i-it’s going to
end up falling on the bouncy board and hopefully go up. [Reasons]

307-308 28 Controller: Oh, wait. So go like this? [Confirms] [in-game action: drew a short line that connected
two dots, but still did not make a springboard]

308-312 29 Contributor1: Yeah, and then make it go under, don’t hit that...um black. [Instructions]
312-313 29 Controller: Huh? [Confirms]
313-313 29 Contributor2: What? [Confirms]
313-318 29 Contributor1: Yeah, make it just, make it go under, like the black and under the ball. [Instructions]

... ...

ined the temporal differences that involved “confirms under-
standing”: 1) “confirms understanding”←→ “provides rea-
sons to support a solution” in the “successful” model and 2)
“confirms understanding” ←→ “provides instructional sup-
port” in the “unsuccessful” model. The link between people
and game was reflected by “screen motion” involved connec-
tions. Among the three such relations (all in the “successful”
model), the “screen motion”→ “talks about challenge situ-
ations” was easy to understand and “screen motion”→ “no
indicator utterances” involved language that was not cap-
tured by our coding scheme. Thus, we examined only the
“screen motion”→ “asks others for suggestions”.

Table 5 shows two typical scenarios for the “screen motion”

→ “asks others for suggestions”, showing the time in the
block in seconds (Time), order of the window in the level
attempt sequence (Window), and the speech/actions that
occurred in the window. In example 1, the controller asked
for suggestions right after a level started, where a screen
refresh resulted in a large screen motion. In example 2, the
controller asked for suggestions after a failed attempt that
contains a series of large in-game motions. These examples
revealed that in successful level attempts, controllers were
likely to ask for suggestions according to the current game
situation.

Next, we investigate the bidirectional relation “confirms un-
derstanding”←→ “provides reasons to support a solution”.
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An examination of the coded sequences showed that in most
cases, these two relations exist independent of each other,
rather than form a semantically connected loop. So, we in-
vestigate each of them independently as shown in Table 6.
In the “confirms understanding”→“provides reasons to sup-
port a solution” example, a contributor answered the con-
troller’s clarification question with an instruction and a rea-
son to clarify its purpose (to catch the right timing, which
is the key to solve the level). This suggests that in success-
ful CPS processes, people were likely to answer clarification
questions with reasons. In the “provides reasons to support
a solution”→ “confirms understanding” example, a contrib-
utor proposed an idea to move the object, and gave a reason
to clarify the goal, but the controller did not fully under-
stand the idea and asked a clarification question. This rela-
tion does not align with our intuition that providing reasons
increases clarity and reduces confusion. A potential expla-
nation is that reasons were used conditionally on unclear
or complex ideas, rather than unconditionally or randomly
on all ideas. However, more investigations are needed to
understand how reasons were provided.

An examination of the coded sequences for the bidirectional
relation“confirms understanding”←→“provides instructional
support” showed that there exist many cases where these
two relations were semantically connected, forming a loop.
Table 7 shows an example of it, where we can clearly see
that Contributor1’s unclear instructions repeatedly confused
both the other two people and raised clarification questions.
Note that the examples in Table 6 and Table 7 indicated
that semantic connections do exist between utterances that
are not in consecutive order. This suggests that aggregat-
ing utterances with windows is a valid way to examine the
temporal relations between actions.

6. DISCUSSION
This work applied multilevel vector autoregression (mlVAR)
to investigate the temporal similarities and differences in
verbal behaviors between successful vs. unsuccessful collab-
orative problem solving (CPS) outcomes. The remainder of
this section discusses the main findings, applications, limi-
tations and future work.

Main findings Our comparison of the“successful”vs. “unsuc-
cessful” model together with a qualitative analysis revealed
six between-action temporal relationships common to both,
six unique to successful level attempts, and another eight
unique to unsuccessful level attempts. The common rela-
tions suggest that the process of establishing shared under-
standing via asking and reacting to “confirms understand-
ing” (clarification) questions was common to both success-
ful and unsuccessful level attempts. For successful level at-
tempts, people were likely to answer “confirms understand-
ing” questions with reasons and to ask for suggestions ac-
cording to the current game situation, while for unsuccess-
ful level attempts, teams were more likely to struggle with
unclear instructions and to respond to inappropriate ideas.
Next, we discuss why certain behaviors in successful level
attempts may facilitate CPS processes and what makes it
hard to convey instructions.

Our analysis revealed that controllers in successful level at-
tempts were likely to ask for suggestions according to the

current game situation (typically when they got stuck). This
behavior may facilitate productive CPS because asking for
suggestions can increase other people’s participation. Fur-
ther, other people’s contributions are more helpful when the
controller has no idea about how to solve the level. Addi-
tionally, in successful level attempts, people were more likely
to answer clarification questions with reasons. As discussed
above, this behavior may facilitate CPS because providing
reasons enhances the clarity of the ideas/instructions being
conveyed.

For unsuccessful level attempts, people were likely to strug-
gle with unclear instructions. From the example in Table 7,
we noticed at least two potential reasons for that. First, the
team does not have a shared concept of a springboard, and
thus Contributor1 had to describe how to make it (“connect
the two dots, then like put it under the ball”) and how it
works (“it’s going to end up falling on the bouncy board and
hopefully go up”). Second, Contributor1 had to describe ev-
erything via words, rather than point to the screen directly,
which largely reduced the clarity of her descriptions.

Future applications: A potential application of this work is
to support the provision of timely CPS feedback in computer
supported collaboration environments. For example, when
a “confirms understanding”←→ “provides instructional sup-
port” loop is detected, the system could send an interactive
message to the team asking whether people are struggling
with conveying clear instructions. If so, the system can pro-
vide suggestions such as describing the high level idea rather
than low level actions. Another potential application is to
provide CPS analytics for people to inspect their collabora-
tion behaviors and improve CPS skills.

Limitations and future work: A limitation of our work is that
we aggregated the data with 10-second windows, and thus
the mlVAR analysis only effectively captures the connec-
tions between two consecutive windows. Connections with
a short or longer temporal distance cannot be effectively
discovered. Future studies could aggregate the data with
different window sizes and see what other temporal patterns
can be found. The second limitation is our data were col-
lected in a specific lab setting where triads collaborated via
video conferencing to play a physics learning game. Thus, it
is unclear whether our findings can be generalized to other
collaboration scenarios (e.g. real-world activities, face-to-
face coordination). Third, we did not account for people’s
roles in our analysis (due to limited sample size). Roles
can largely influence people’s actions (e.g. only contribu-
tors “provide instructional support”), and therefore taking
roles into account may provide more insights into the CPS
processes. Finally, we did not compare mlVAR with other
temporal analysis approaches (e.g. lag sequential analysis)
to see whether they would generate similar or different in-
sights. This is a potential future research direction.
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ABSTRACT 
Automatic speech recognition (ASR) has considerable potential to 
model aspects of classroom discourse with the goals of automated 
assessment, feedback, and instructional support. However, 
modeling student talk is besieged by numerous challenges 
including a lack of data for child speech, low signal to noise ratio, 
speech disfluencies, and multiparty chatter. This raises the question 
as to whether contemporary ASR systems, which are benchmarked 
on adult speech in idealized conditions, can be used to transcribe 
child speech in classroom settings. To address this question, we 
collected a dataset of 32 audio recordings of 30 middle-school 
students engaged in small group work (dyads, triads and tetrads) in 
authentic classroom settings. The audio was sampled, segmented, 
and transcribed by humans as well as three ASR engines (Google, 
Rev.ai, IBM Watson). Whereas all three ASRs had high word error 
rates, these mainly consisted of deletion errors. Further, Google 
successfully transcribed a greater proportion of utterances than the 
other two, but with more word substitutions; insertions were low 
across the board. ASR accuracy was robust to different speakers 
and recording idiosyncrasies evidenced by <5% of variance in error 
rates attributable to the student and recording session. We found 
that ASR errors had a larger negative effect on downstream natural 
language processing tasks at the word, phrase, and semantic levels 
rather than at the discourse level. Our findings indicate that ASR 
can be used to extract meaningful information from noisy 
classroom speech and might be more suitable for applications that 
require higher precision but are tolerant of lower recall. 

Keywords 
automatic speech recognition, collaborative problem solving, 
classroom speech, natural language understanding 

1. INTRODUCTION 
Students learn by telling and doing. Indeed, decades of educational 
research has converged on one (among several) perspectives of 
learning as a social and collaborative activity [8, 89, 97]. Effective 
collaborative learning (CL) activities give students the opportunity 
to work together towards a common goal, share their ideas and 

build upon the ideas of others, negotiate strategies, monitor 
execution of plans, and reflect on outcomes [17, 28, 33, 39, 72, 75]. 
Thus, the benefits of CL are manifested not only in the acquisition 
of domain knowledge [86], but also in the development of essential 
21st century skills such as collaborative problem solving and critical 
thinking [27, 29]. 

Despite a strong consensus on the value and merits of CL, its 
widespread implementation in contemporary classrooms is limited. 
A key factor limiting its adoption is that it is extremely challenging 
for teachers to effectively orchestrate rich CL activities in their 
classes. To support successful CL, teachers must monitor group 
progress on time-sensitive activities, provide guidance and help 
when students get stuck and risk disengagement, and ensure that 
students engage in productive knowledge-building conversations, 
all while ensuring that classroom norms for respectful discourse are 
maintained [71, 88]. To complicate things further, teachers must 
perform these demanding activities simultaneously across multiple 
(often 5-10) groups – a daunting assignment. Can intelligent 
systems, which unlike teachers, are able to be omnipresent across 
multiple student groups, enhance teachers’ ability to scaffold rich 
CL experiences for all their students? 

One exciting possibility is to design systems capable of natural 
language understanding (NLU) to support CL in student groups. 
Indeed, the linguistic content of discourse during CL is considered 
the “gold mine of information” on how students acquire knowledge 
and skills [32, 73]. However, despite an extensive body of research 
demonstrating the utility of other modalities (e.g., body movement, 
gesture, eye-gaze, paralinguistics, see review [62] for automatically 
analyzing collaboration, an automated approach for capturing, 
transcribing, and analyzing student speech during face-to-face CL 
in the classroom has yet to be developed. Most language-based 
approaches to date thereby rely on typed transcripts from chats (or 
human-transcribed speech) to analyze and support collaborative 
discourse [21, 30, 52, 76]. 

At the heart of this challenge lies an extremely difficult technical 
hurdle: using automatic speech recognition (ASR) to obtain 
accurate (or even serviceable) transcriptions of student discourse in 
noisy, real-world classrooms. This endeavor is complicated by 
multiple compounding challenges. Namely, with upwards of 20-30 
students in a typical US classroom [57] with multiple student 
groups simultaneously engaged in CL activities, speech signals are 
obfuscated by background chatter and ambient noise. In addition, 
ASR systems already have difficulty recognizing children’s speech 
(even in ideal, noise-free environments), as they tend to speak less 
clearly than adults [46]. In fact, even the basic acoustic 
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characteristics of children’s voices and language use [25, 46], differ 
from adults (on whose voices most ASR systems are trained), 
resulting in a degradation in performance when these systems are 
applied to children’s speech [70]. Multiparty speech recognition is 
another challenge for ASR [12, 65], where utterances - from an 
unknown number of unique speakers - may overlap, whereas ASR 
systems are generally trained on audio where speakers have already 
been separated.  

Despite these challenges, pursuing technologies capable of 
automatically capturing and analyzing student speech during face-
to-face CL in authentic school environments is an important avenue 
of research. These technologies have the potential to significantly 
improve orchestration and support of CL [73], whether by 
providing teachers with feedback on progress of student groups 
(e.g., via a teacher dashboard [87]), or enabling real-time 
interventions to guide groups of learners towards equitable and 
productive collaboration.  

In this paper we take a first step towards understanding the 
feasibility and challenges of automatically analyzing student 
speech in classrooms. Specifically, we investigate: (1) patterns of 
errors in widely used commercial ASR systems for transcribing 
student discourse in authentic collaborative learning settings; and 
(2) the influence of ASR errors on downstream natural language 
understanding tasks at the word, phrase, semantic, and discourse 
levels. In doing so, we take an important step towards deploying 
speech-based collaborative learning technologies in classrooms.  

1.1 Background and Related works 
There is a large body of research on analyzing student- and teacher- 
classroom discourse [10, 54], so to keep scope manageable we 
focus on the automatic analysis of student speech and classroom 
speech. 

1.1.1 Challenges with child speech recognition 
Speech recognition in children is a well-documented challenge, 
with recognition accuracy substantially lower for children's speech 
than adult's [25, 61, 74]. Yet, both commercially-available and 
research ASR systems are generally trained with clean audio data 
from adult speakers, with one speaker per utterance, and often 
reading from a script, which perform substantially worse on 
realistic, spontaneous speech [83]. These systems do not easily 
generalize to child speech where vocal characteristics such as 
higher fundamental and formant frequency and greater variability 
in pitch, and linguistic factors such as disfluency rate, differ 
between children and adults, as well as changing as children mature 
[25, 46]. In an analysis of Google, Bing and Nuance ASR systems, 
[70] found that age significantly impacted performance for all 
ASRs except Google. Further, accented speech of non-native 
speakers impacts ASR performance, as articulation and 
pronunciation differ from the training data [19]. The classroom 
setting provides an additional challenge. Howard et al. [34] 
reported that the typical classroom signal-to-noise ratios range from 
−7 dB to +5 dB, further impeding ASR [95]. Finally, microphone 
placement impacts recognition - the further the speaker from the 
microphone, the greater the impact of reverberation and other 
signal degradation on ASR [23, 56]. 

1.1.2 Child speech recognition in controlled 
learning environments 
Numerous educational applications which use ASR on children’s 
speech have been developed, albeit outside of the hustle and bustle 
of the classroom. One strand of research uses ASR as part of 
automatic reading tutors for young children learning to read aloud 

from text. Here, the reference (ground-truth) transcript is available 
in the form of reading materials, and by comparing this to the ASR 
output, pronunciation errors can be identified and fed back to the 
student or their teacher [3, 51, 60, 66]. Generally, these systems are 
used in a quiet environment such as a library [66], and in all cases 
are designed with the expectation that only a single speaker is 
reading at a time. Another application of ASR is in conversational 
tutors, where both speech recognition and language generation are 
combined in a real-time system. One example is My Science Tutor 
(MyST [92]) which supports one-on-one and small-group science 
learning [13]. The MyST ASR system was trained using a dataset 
of elementary school students, and achieves a word error rate 
(WER) of 0.30 (about 70% accuracy) on a reduced vocabulary of 
~6000 words. However tutoring sessions did not take place in the 
main classroom, and users wore a headset, both of which avoided 
some of the key challenges of classroom ASR. Online learning 
environments also simplify the collection of clean, speaker-
separated speech recordings, and several examples exist of 
automated analysis of student-teacher dialog starting from ASR 
transcripts [47, 94]. 

1.1.3 Automated analysis of teacher speech in the 
classroom 
Recent advances in ASR make the prospect of sufficiently accurate 
transcription of speech in the classroom a possibility. Most of the 
ASR literature focuses on adult speech, and this is mirrored in the 
availability of commercially available, cloud-based ASR APIs, (for 
examples, see [20] but see [15] for a child-tailored ASR service). 
As a result, most automated approaches have focused on analyzing 
teacher speech with varying degrees of automation including ASR-
only [9, 37, 38, 42, 81, 96], human transcripts [82], or a 
combination of both [7]. There are also differences in the depth of 
the construct being modeled. For example, Zylich and Whitehill 
[96] recently aimed to automatically detect 21 key phrases (e.g., 
“good job”) in teacher talk from audio, but stopped short of 
measuring pertinent discourse constructs. In contrast, Kelly et al. 
[42] and Jensen et al. [37, 38] developed fully automated 
approaches to model five features of discourse: questions (vs. 
statements), authentic (open-ended), instructional utterances, 
elaborated evaluations, cognitive level, goal specificity, and 
presence of disciplinary terms. 

One advantage of focusing on teachers is that it is easier to affix 
high-quality microphones on a single teacher than an entire 
classroom of students. For example, the Kelly and Jensen studies 
used a unidirectional, noise-canceling microphone with cardioid 
pickup pattern which is most sensitive to sounds from the front of 
the mic, thereby canceling background noise [37, 38, 42]. Despite 
a high-quality mic, classroom ASR is still challenging due to 
background noise, multidisciplinary chatter, dialectical variations, 
and so on. To this point, [5] and [18] compared several ASR 
engines for accuracy in transcribing teacher speech recorded in 
authentic classrooms.  These two studies tested 7 ASRs yielding 
word error rates ranging from .31 to 1.00.  

It is important that these studies are replicated due to the rapid 
advancement in ASR technologies each year. For example, using 
the same microphone and ASR engine on similar classroom data, 
Jensen et al. [37] obtained a major reduction in error (from 44% 
WER to 28%) in 2020 compared to Blanchard’s (2015) study [5]. 

1.1.4 Automated analysis of student speech in 
classrooms 
Examples of automated analysis of classroom audio focused on 
student speech are rare, as justified by the many acoustic and 
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linguistic challenges inherent in the full pipeline from recording 
speech, to transcription in the context of overlapping, non-adult 
speakers in a noisy environment, to extracting meaning from 
language patterns of students still undergoing linguistic 
development. Nevertheless, several recent works have utilized non-
specialized commercial ASR services for child speech with 
promising results - demonstrating that ASR transcriptions can be 
used to derive useful downstream measures despite very high WER 
[64, 84]. 

To our knowledge, the only example where ASR is used to 
transcribe conversations among students as input to an NLP model 
is in the context of a collaborative problem solving (CPS) study 
conducted in both the classroom and lab [64]. Here, students aged 
12-15 participated in two CPS activities in math and physics. 
Participants wore headsets with microphones and completed the 
task (in dyads) over Zoom from a shared computer lab at the school, 
or for a subset of participants, in a laboratory. Captured speech was 
manually segmented into utterances, then transcribed using the 
IBM Watson speech-to-text service [36]. Performance degradation 
attributable to the classroom environment was evident, with a word 
error rate (WER) of 0.78 in the classroom, meaning only 22% of 
human-transcribed words were correctly transcribed, as compared 
to a WER of 0.54 for dyads recorded in the laboratory. 

ASR has also been used to capture classroom conversation in 
preschool children. Lileikyte et al. [48] used LENA’s wearable 
audio recorders, which are designed for capturing speech in young 
children, to train an ASR with custom acoustic and language 
models using data augmentation, obtaining a WER of 0.64 on 
spontaneous conversation in 2–5-year-old children. Using the same 
wearable devices in preschoolers, Tao et al. [84] ran audio through 
Google Cloud ASR [26] and used the transcripts to derive network 
representations of groups in social interactions based on word count 
vector similarity between utterances, though ASR accuracy is not 
reported. Further, the use of LENA is cost-prohibitive, with pricing 
in the thousands of dollars, which is infeasible at scale. 

Beyond these examples, speech analysis in the classroom is limited 
to extraction of non-linguistic (i.e., acoustic/prosodic) features, 
which nevertheless show promise for classification of discourse 
categories [6, 40, 91], speaker identification [84] and diarization to 
identify speaker turns [49, 53].  

1.1.5 Is perfect ASR needed? 
As reviewed above, ASR in the classroom is beset by many 
challenges, especially for analyzing student speech. However, the 
goal of many applications is not to obtain perfect transcripts of 
speech, but to use the transcripts for downstream NLU tasks 
relevant to education (e.g., assessment, feedback, intervention). 
Indeed previous research has indicated that useful information can 
be obtained from imperfect transcripts. Pugh et al. [64] found that 
using ASR instead of human transcripts led to only a 14% decrease 
in classifier performance (still significantly above chance) despite 
a WER of 0.78. Outside the classroom, Stewart et al. [78] reported 
a mere 4.2% decrease in accuracy for classifying collaborative 
skills using ASR versus human transcripts. Indeed, the question of 
robustness of models of team performance to simulated ASR errors 
was addressed by [22], with even a WER of 57% only decreasing 
classifier performance by 20% relative to perfect transcription. The 
authors suggest that the constrained, contextualized nature of 
conversation makes discourse-level NLP models robust to 
modifications of individual words. 

Of course, there is likely an upper limit to errors beyond which the 
signal to noise ratio is too low to be useful, a likely possibility for 

analyzing multiparty collaborative child speech in the classroom. 
This raises the questions of whether it is feasible to obtain 
meaningful information on student collaborative discourse despite 
noisy ASR and to what extent do ASR errors impact the meaning 
conveyed in an utterance and how does this impact downstream 
NLU tasks. 

1.2 Current Study, Contribution, & 
Novelty 
In this study, we take an important first step towards the automated 
analysis of student collaborative discourse in noisy, authentic 
classrooms. We compare a variety of commercially available ASR 
systems on both speech to text transcription, and we investigate the 
influence of ASR errors on downstream NLU tasks using a novel 
dataset of audio recordings from real-world middle-school 
classrooms where multiple student groups are engaged in CL.  

Specifically, we quantify ASR performance in terms of traditional 
evaluation metrics (e.g., Word Error Rate [WER]), and investigate 
the types of speech recognition errors encountered (e.g., 
substitutions, deletions). Further, we seek an understanding of the 
sources of variability in ASR errors at the level of the utterance, 
student, and session by systematically sampling students across 
multiple recording contexts (i.e., across different lessons, student 
groups, and days). This information can provide insights into 
potential disparities of ASR systems, which may have unequal 
impacts on individual student outcomes when used as inputs to 
downstream applications. To this point, we also compare ASR 
errors and their influence on downstream NLU applications (e.g., 
semantic similarity of transcripts [43], recognition of task-relevant 
content words, assessing collaboration skills) to probe the 
feasibility of using automated transcripts for NLU-based CL 
analytics in the classroom. 

To our knowledge, this is the first attempt to systematically analyze 
automated transcriptions of face-to-face student collaborative 
discourse in a real K-12 school environment. Although other 
studies use ASR as input to language-based models of classroom 
discourse, the majority of these focus on teacher speech [5, 9, 14, 
37, 38] or collaborative problem solving in adult undergraduates 
[63, 78, 79]. We also use inexpensive, commercially available 
microphones placed on the tabletop, each capturing speech from 2-
4 students, which allows us to expose the challenges of capturing 
real-world classroom audio where multiple speakers are intermixed 
in a single-channel recording with additional impacts of 
reverberation and background noise. This contrasts with prior 
studies analyzing classroom audio, which mostly employ 
individual microphones to isolate speech [5, 37, 47, 48, 64]. Also, 
we use data collected in the context of a live, face-to-face discourse 
rather than an online learning environment [47, 94]. The choice to 
use table-top mics rather than individual noise-canceling lapel 
microphones or headsets is motivated both by practicality and cost 
considerations, and by the concern that individually miking 
students would feel intrusive and even impede collaboration.  

Finally, with respect to scope, we focus on widely available 
commercial ASR services in lieu of customized ASR systems with 
acoustic and language models trained on our target demographic 
and data. This may disadvantage speech recognition performance, 
however using publicly available ASR providers is desirable for 
practical reasons including the simplicity of integration due to a 
well-documented API, and the likely continuation of updates to the 
model in the future. We also don’t seek to improve or engineer 
better performance out of these systems in the current work because 
the goal is to establish baseline performance of out-the-box ASR 
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systems on the difficult task of analyzing child collaborative talk in 
noisy classrooms. 

2. METHODS 
2.1 Data Collection 
The data was collected as part of a larger project involving a 
Research-Practice Partnership [41] focused on using co-design and 
professional learning to support the use of programmable sensor 
technology and computational thinking for authentic inquiry in 
middle school science and STEM classrooms [4]. We analyzed 
audio and video data from one participating U.S. public middle 
school teacher in this work.  

2.1.1 Learning Context: Sensor Immersion 
Participating teachers implemented a multi-day curriculum unit 
called Sensor Immersion that focuses on students working 
collaboratively to understand how to program and wire sensors to 
collect data about their local environments, empowering students 
to be data producers [31] and answer questions that they find 
personally meaningful and relevant. The Sensor Immersion 
curriculum uses an interactive data display called the Data Sensor 
Hub (DaSH [11]; Figure 1) as an anchoring phenomenon [24]. 
Students explore the system, create scientific models and learn to 
replicate its functionality in the context of their own investigations. 
Along the way, students develop a program that can control a 
variety of physical sensors including a sound sensor, moisture 
sensor, and an environmental sensor. 

Sensor Immersion is broken down into five lessons, each of which 
can span multiple days. Lesson 1 focuses on question generation 
and modeling. Throughout the following lessons, students work to 
answer their questions about how the DaSH works. To do so they 
learn to program and wire the sensors, working in pairs doing a 
pair-programming task using MakeCode block programming 
(Figure 2). Students gradually build on their understanding of 
programming and sensors by working together to program and wire 
one sensor and eventually building and programming a sensor 

system to answer questions about a personally meaningful 
phenomenon. Opportunities for small-group collaboration around 
these sensors and their programming are designed into each lesson.  

Figure 1. Close-up of the DaSH system which links sensors to 
the computing interface. Various sensors can be wired to the 
system to measure local environmental conditions such as soil 
moisture levels (pictured), CO2, humidity, temperature and 
ambient room noise. 
2.1.2 Participants 
The data sample included 30 students from 4 cohorts taught by a 
single teacher in a suburban school district in the US. All 
procedures were approved by designated Institutional Reseearch 
Boards and data were only collected from students who provided 
both personal assent and their parent’s signed consent forms. Most 
of the students were in the 6th-8th grades except for one class of 
5th graders.  Across the school district, the ethnicity of students 
enrolled (as of the 2021-2022 school year) was as follows:  62% 
White, 30% Hispanic, 3% Asian, 3% two or more races, 1% Black, 
0.3% American Indian or Alaska Native, and 0.1% 
Hawaiian/Pacific Islander [77]. About half (49%) were female.

 
Figure 2. Screenshot of the MakeCode programming interface 
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2.1.3 Microphone 
Our choice of microphone was influenced by several factors 
including audio quality, cost, power source, form-factor, and ease 
of use. We evaluated a range of candidates (e.g., MXL, Sony ICD 
PX370, ZOOM H1n, AudioTechnica-ATR, AudioTechnica-Omni, 
AudioTechnica-Cardioid, ProCon, Saramonic), we chose the Yeti 
Blue. This microphone has a user-configurable effective pickup 
pattern: omnidirectional, polar, XY stereo or cardioid, costing 
around $100USD. It is USB-powered, enabling use with an iPad 
without the need for an external mixer or phantom power. 

2.1.4 Procedure 
During each class, researchers placed microphones (Yeti Blue) at 
tables around the classroom. Groups of 2-4 consenting students 
were seated at each table. Depending on the lesson the students 
either worked as a team or as multiple dyads (during pair 
programming). The microphone was placed on the table roughly 
equidistant from all students, using the omnidirectional setting 
when recording 3 or more students, or the stereo setting when two 
students were sitting at either side of the microphoneThe 
microphone was connected to an iPAD via USB that hosted the 
recording software recording at 48kHz sampling rate. . We also 
collected iPAD video from a subset of students. Microphones were 
set up by a researcher who recorded field notes on different events 
(e.g., start of lesson, start of small group work, technical failures). 

2.2 Data Treatment 
2.2.1 Sample Selection.  
We opted to select recordings with both audio and video to aid in 
ground-truth speaker diarization efforts (i.e., who is speaking). Of 
a total of 118 recordings, 79 met this criterion, of which we selected 
49 recordings which contained small-group work, where at least 
one student in each group appeared in a minimum of 4 recordings.  

From each video, five 5-minute candidate samples were selected 
from within the small-group work segment of the lesson, 
constrained to the middle of the segment such that the random 
sample included the midpoint of the small-group interval as 
beginning and end of the task tended to include less on-topic 
speech. A researcher then listened to each of the five random 
samples in turn. If the sample met the 20-word criterion, then it was 
selected for the sample. If it did not meet the criteria (n = 17), the 
next segment was listened to and so forth. If none of the 5 segments 
met the criteria, then the recording was excluded entirely.  Through 
this process, we ended with 32 samples totaling 160 minutes of 
speech from 30 students. A majority (70%) of the students were in 
at least two recordings (Table 1).  

Table 1. Sample summary 

 M (SD) Range 
No. students per recording 2.6 (0.7) 2-4 
No. recordings per student 2.7 (1.6) 1-5 
No. utterances per recording 61.6 (29.6) 21-139 
No. utterances per student 65.7 (47.2) 10-188 
Wordcount per utterance 4.55 (4.03) 1-47 
 
2.2.2 Transcription and annotation 
Samples were transcribed in ELAN annotation software by trained 
transcribers, who recorded millisecond-resolution timestamps 
(based on the audio waveform) for utterance start and end times 
along with speaker identity. Where speaker identity was clear, but 
speech was too indistinct to transcribe, some or all of the utterance 
content was coded as "[inaudible]". This resulted in 2207 student 

utterances, of which 1970 contained at least 1 audible word (See 
Table 1).  

Utterance-level audio segments were automatically transcribed by 
three cloud-based ASR services: Google Speech-to-text [26], 
Rev.ai [68], and IBM Watson [36]. We selected Google because it 
has been shown to work as well for children as adults [70] and in a 
recent review was shown to outperform similar services [20]. 
Watson has been used in multiple publications for ASR 
transcription of teacher talk [5, 37, 38] and as input to CPS 
linguistic models [63, 64]. Rev.ai was used as they claim equal or 
greater performance than Google [69]. We deemed these three 
ASRs sufficient for the present purposes of investigating patterns 
in and downstream influences of ASR errors and not to evaluate all 
available commercial ASR engines. 

For Google, audio was first segmented using the human-segmented 
utterance-boundaries and individually submitted to the ASR. We 
used the video-optimized model as this was determined to 
outperform the default model in preliminary testing. For Rev.ai and 
Watson, all utterances from a given recording were concatenated 
before transcribing, as this theoretically allows the models to use 
prior language context to boost performance. The ASR result 
contains word-level timestamps which were used to split the full 
transcript back into the original utterances. We also tested using 
per-utterance transcripts for Watson and the Google streaming 
speech recognition API using the single_utterance=True option 
optimized for short utterances. Due to poorer performance than the 
main Watson and Google models, these were not analyzed further. 

2.3 Measures 
Before computing measures on the transcripts, all texts (human and 
ASR transcribed) were normalized to facilitate comparison. Non-
word indicators used by the transcribers and ASR systems such as 
"[inaudible]", "[redacted]" and "%HESITATION" were stripped 
out. Numbers were spelled out if transcribed as digits. Leading and 
trailing punctuation was stripped from each word, and hyphens 
replaced by space. Finally, all words were transposed to lowercase. 

2.3.1 Word Error Rate.  
Using standard procedures [83], for each utterance, we used the 
Levenshtein algorithm at the word-level, which finds the minimum 
number of word substitution (S), insertion (I) and deletion (D) 
operations to align the reference (human transcript) to the 
hypothesis (ASR transcript).  We used word error rate (WER) as a 
measure of transcription accuracy, which is given by: 𝑊𝐸𝑅	 =
	(𝑆	 + 	𝐷	 + 	𝐼)/	𝑁reference  (number of words in the reference text). 
Proportion of insertion, substitution, and deletion errors were 
computed by dividing utterance-level error counts with the number 
of words in the human transcript. We also computed the number of 
words in the ASR transcripts along with a binary variable indicating 
whether the ASR returned any transcript at all. 

2.3.2 Downstream NLP Measures 
We focused on NLP tasks at the word, semantic, and discourse 
levels. In each case, we are interested in the error (distance) 
between the ASR (hypothesized) and human (reference) values. 

2.3.2.1 BLEU Scores 
The BLEU metric was developed to assess the performance of 
machine translation systems by comparing a gold standard 
translation to an output translation [59]. BLEU scores quantify 
sentence similarity based on modified n-gram precision, where 
scores vary from 0 (no match) to 1 (perfect match). This captures 
higher-order structure than WER: it is invariant to n-gram order, 

306



 

 

and encapsulates longer subsequences than WER which is defined 
only at the individual word level. We computed the BLEU score 
for unigrams, bigrams, trigrams, and quad-grams and computed an 
unweighted average of the four, which was reversed (i.e., 1-BLEU) 
to get the BLEU distance (or error) 

2.3.2.2 Topic Word Analysis.  
At the word level, we quantified students’ uses of topic words that 
might be indicative of their cognitive engagement with the sensor 
immersion unit. The curriculum materials consist of storyboards, 
lesson plans, tutorials, etc., from which we generated a frequency 
dictionary of the named entities using the Named Entity 
Recognition algorithm from the Stanford CoreNLP toolkit [55].  
Functional words were removed, resulting in 2,438 candidate 
words. Next, we used an existing Latent Dirichlet Allocation 
(LDA) topic model (created for an auxiliary purpose), which learns 
distinct topics from the document and returns the top 20 words that 
have the highest correlation with each of 20 topics. We computed 
the intersection of the 400 topic words and the 218 candidate named 
entities that occurred more than 20 times. This threshold ensured 
candidate words appeared at multiple points in the curriculum 
documents while keeping the list to a manageable size. This 
produced a set of 66 initial topic words. These topic words were 
then reviewed by curriculum experts who selected a subset of 33 
topic words aligned to the following categories: science (e.g. 
environmental), coding (e.g. function), and wiring (e.g. sensors). 
For each utterance, we computed the number of topic words 
recognized by each ASR and the human transcript. To measure 
ASR fidelity specific to topic words, we compute Topic Distance 
as the absolute difference in utterance-level topic word counts 
between the human and ASR derived transcripts, with a lower 
bound of 0 and an undefined upper bound. 

2.3.2.3 Semantic Distance 
Beyond words themselves, we also evaluated the ASR transcripts 
using the semantic distance metric, which measures the similarity 
of a reference and a hypothesis transcript in a sentence-level 

embedding space (using a pre-trained language model to obtain the 
embeddings), and has been shown to be a better predictor of 
performance on downstream NLP tasks than traditional metrics 
such as WER [43]. Following the procedure outlined in [43], we 
first extracted utterance-level embeddings using the sentence-
transformers Python library [67] and the ‘all-distilroberta-v1’ 
model [50]. Then, we computed the cosine distances between the 
embeddings of each ASR (hypothesized) transcript and the 
reference human transcript. The cosine distance is defined as 1- 
cosine similarity (which ranges from -1 to 1), so it can take on 
values from 0 (identical) to 2 (dissimilar). To obtain a baseline 
value, we randomly shuffled the human transcripts within each 5-
minute recording, then computed the semantic distance to each 
ASR transcript as described above. The average semantic distance 
over all ASRs was used as a baseline. 

2.3.2.4 CPS Skill Classification 
At the discourse level, we evaluated the utility of our ASR 
transcripts for a concrete NLP application: classifying collaborative 
problem solving (CPS) skills from student transcripts, which is one 
of the target applications noted in Section X. Specifically, we 
applied an existing classifier [63], which was trained to identify the 
following three CPS skills based on a validated CPS framework 
[80]: constructing shared knowledge;  negotiation/coordination; 
maintaining team function, to our dataset. The classifier was a pre-
trained BERT [16] model fine-tuned on a data set of 31,533 expert-
coded student utterances (transcribed using the Watson ASR).  
Although the classifier was trained on a different dataset, it has 
been shown to be generalizable across domains [63], so we deemed 
it suitable for the present purposes. As such, we submitted both the 
human and ASR transcripts to the classifier, which outputs the 
predicted probabilities for the three CPS facets on each utterance. 
For each ASR, we computed the three-dimensional Euclidean 
distance between the ASR- and human- (reference) predicted 
probabilities as a measure of dissimilarity (CPS Distance). We also 
obtained a baseline shuffled value similar to the baseline Semantic 
Distance.

 

Table 2. Sample sentences and their corresponding ASR transcriptions. CPS codes: Const. = constructing shared knowledge; Neg. = 
negotiation/coordination; Maintain. = maintaining team function 

Speaker Human Transcript Google Watson Rev CPS 
Code 

A just start with the show 
number 

start remove the show 
number 

system started with the 
show numbers 

start with the show 
number 

Const.  

B oh - okay okay None  
A okay so you get rid of the 

show number 
okc get rid of the 
sheriff 

okay okay so you get rid of the 
sharon remember 

Maintain.  

A just drag it stretch dr don't - Maintain.  
C don't don't do that don't don't do that don't don't don't do that don't do that Maintain.  
A get rid of it - - get rid of it Maintain.  
C just okay just okay it Neg. 
B and now put this in this 

thing 
i am for this and this 
thing 

okay but this in this 
thing yeah 

put this and this thing Const.  

A yes - yeah - Neg. 
C no now you eat a taco you know how you 

eat a taco 
yeah are you talking you need to talk Maintain. 

B no do i put it in there - - - Const. 
C yeah - - - Neg.  

A yes - - - Neg.  
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2.4 Data Treatment 
All measures (proportions of insertion, substitution and deletion 
errors; BLEU distance, Topic distance, semantic distance, CPS 
distance) were averaged per speaker per recording, resulting in 82 
observations per ASR. This was done to obtain more reliable 
estimates due to the principle of aggregation. Because the distance 
metrics are only meaningful for utterances where the ASR returns 
a nonempty transcript, the averages for BLEU, Topic, Semantic and 
CPS distances were computed over nonempty transcripts only. To 
analyze the effects of ASR service and word errors on downstream 
measures, we used mixed effects linear regression models with 
speaker and recording identifier as random intercepts to account for 
the nested and repeated structure of the data with multiple speakers 
nested within recordings. Further, we used the robustlmm package 
in R [45], which provides estimates that are robust to outliers and 
other contaminants in the data. We used estimated marginal means 
(emmeans package in R) for pairwise comparisons using false-
discovery rate adjustments for multiple comparisons and 
Satterthwaite’s degrees of freedom method. We used two-tailed 
tests with a p < .05 cutoff for significance. 

3. RESULTS 
3.1 ASR Errors 
3.1.1 Patterns in Error Types  
Table 3 provides descriptives on ASR performance measures 
averaged by student by recording. Immediately apparent is that the 
vast majority of ASR errors were deletion errors (67%) compared 
to substitution (17%) and insertion errors (6%; the sum of errors 
does not add up to 100% because of words correctly recognized). 
Indeed, when error rate was regressed on error type (three level 
categorical variable) and number of words in the human transcript 
(as a covariate), we found the following significant (ps < .001) 
pattern in the errors: Deletion > Substitution > Insertion (Table 3). 

3.1.2 Comparing ASR Engines 
We regressed each error type on ASR (a three-level categorical 
effect with Google as the reference group) and reference (human) 
transcript word count as a covariate. For deletion errors, we found 
Watson and Rev to be statistically equivalent and higher than 
Google suggesting the following significant (ps < .0001, FDR 
correction for 3 tests) pattern in the data: [Watson = Rev; p = .61] 
> Google. This pattern was largely flipped for substitution errors: 
Google > Watson > Rev; p < .004. For insertion errors, Google 
resulted in more insertion errors than Watson, but Rev was 
intermediate and not significantly different from either. Deletion 
errors (p < .001) were less likely as reference word count increased, 
but substitution (p = .582) and insertion (p = .137) errors were not. 

Since insertion errors were rare, the tradeoff involved deletion and 
substitution errors (Figure 3) with Google providing fewest 
deletions but the most substitutions, the opposite for Rev, and 
Watson was intermediate. All things equal, the choice of ASR thus 
depends on obtaining as many transcriptions of speech as possible. 
Google provided a non-empty transcript for on average 61% of the 
cases, far exceeding the others (47% for Watson, 41% for Rev), and 
even among the utterances with nonempty ASR transcriptions, 
Google had a lower rate of deletions (0.29) than Rev (0.33) and 
Watson (0.44). 

 

 

Table 3. Summary statistics of ASR results. M (SD) over 
utterances 

 Google Rev Watson 
N utterances 1970 1970 1970 
N averaged 82 82 82 
ASR metrics 
ASR wordcount 2.37 (1.36) 1.71 (1.46) 1.31 (0.95) 
Nonempty ASR  0.61 (0.22) 0.41 (0.22) 0.47 (0.22) 
Perfect ASR  0.05 (0.06) 0.04 (0.05) 0.02 (0.06) 
Insertion rate 0.06 (0.09) 0.08 (0.16) 0.04 (0.08) 
Substitution rate 0.21 (0.11) 0.12 (0.08) 0.19 (0.13) 
Deletion rate 0.56 (0.18) 0.72 (0.17) 0.72 (0.17) 
WER 0.84 (0.15) 0.91 (0.19) 0.95 (0.11) 
Downstream NLP metrics 
Topic Distance 0.05 (0.10) 0.05 (0.09) 0.05 (0.07) 
BLEU Distance 0.83 (0.11) 0.82 (0.15) 0.94 (0.06) 
Semantic Distance 0.56 (0.14) 0.52 (0.15) 0.68 (0.09) 
CPS Distance 0.29 (0.14) 0.29 (0.15) 0.33 (0.16) 
 

 
Figure 3. Density plots of deletion and substitution errors by 
ASR 

3.1.3 Sources of Variance 
We carried out a multilevel decomposition of variance [35] on each 
type of ASR error, at three levels: utterance, speaker and recording. 
Utterances are nested within speakers, and speakers within 
recordings. We computed the proportion of variance attributable to 
speaker and recording by decomposing the data into a linear sum 
of cluster-level averages and within-cluster deviations. The 
variance between-cluster and within-cluster sums to the total 
variance, under the assumption that errors at utterance, speaker, and 
recording are independent. We found that the majority of variance 
(between 91 and 98%) was at the utterance level for all error types 
and ASRs, with just 1-3% attributable to individual students and 1-
5% to the specific recording (Table 4). This suggests that each ASR 
system had stable performance across recording contexts and 
individual differences in vocal parameters. 
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Table 4. Multilevel variance decomposition. Proportion of 
variance attributable to each hierarchical level. 

ASR Error type Utterance Student Recording 
Google Insertion rate 0.981 0.009 0.010 
Google Substitution rate 0.980 0.010 0.010 
Google Deletion rate 0.943 0.032 0.025 
Rev Insertion rate 0.980 0.004 0.016 
Rev Substitution rate 0.971 0.009 0.020 
Rev Deletion rate 0.914 0.032 0.053 
Watson Insertion rate 0.976 0.009 0.015 
Watson Substitution rate 0.972 0.011 0.017 
Watson Deletion rate 0.950 0.025 0.025 
 

3.2 Downstream NLP measures 
The Spearman correlations between distance metrics for the four 
downstream tasks are shown in Table 5. The most highly correlated 
metrics were semantic distance and BLEU distance (r = .83), 
whereas the CPS distance was only moderately correlated (rs 
between .3 and .4) with these measures. Topic distance was not 
correlated with any other metric, which may be a result of topic 
words being so rare in the utterance (about 5% of words). 

Table 5. Correlations between transcript distance metrics. *** 
p<0.001 

  BLEU 
Distance 

Topic 
Distance 

Semantic 
Distance 

Topic Distance -0.118   
Semantic Distance 0.830*** -0.040  
CPS Distance 0.321*** 0.076 0.402*** 
 

Figure 4 shows the distributions of CPS and semantic distances. 
The peak of the distribution was lower than the baseline (derived 
by computing the average distances between ASR and human-
transcribed utterances after shuffling; see Methods) for all three 
ASRs and for both CPS and Semantic distances. In fact, 97.5% of 
semantic distances were less than the shuffled baseline, and 79% 
for CPS, indicating that a degree of higher-order meaning was 
generally extracted from the ASR transcripts.  

 
Figure 4. Density plots of CPS Distance and Semantic Distance 
by ASR. Dashed line shows the random baseline for shuffled 
utterances. 

3.2.1 Comparing ASRs on Downstream NLP 
We regressed each distance metric on ASR (a three-level 
categorical effect with Google as the reference group) and reference 
(human) transcript word count, with random intercept of student 
and recording. As indicated in Figure 5, the ASR services did not 
vary for Topic word distance (p = .929), but did for the other 
measures. Specifically, the pattern of significance (ps < .001) for 
BLEU and semantic distances was: Watson > Google > Rev. For 
CPS distance it was Watson > Rev, p = 0.03; Watson = Google, p 
= 0.16; Rev = Google, p = 0.46.  

Figure 5. Estimated marginal means and 95% confidence 
intervals for NLP distance metrics for each of the ASR services 

3.2.2 ASR errors on downstream NLP tasks 
To test whether specific ASR errors impact downstream NLP 
metrics, we also fit a linear mixed-effects model to predict each 
distance metric from the rates of three ASR errors (Table 6). 
Whereas insertion errors did not significantly predict any of the 
outcomes, both substitution and deletion errors were negatively (ps 
< .001) associated with BLEU, semantic, and CPS distance 
measures, more so for the former. Specifically, a one standard 
deviation increase in each error type was associated with an 
approximately equivalent increase for BLEU and semantic 
distances, but only about a half a standard deviation increase for the 
CPS tasks. Error type was not associated with topic word distance, 
presumably due to a restriction of range with this measure.
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Table 6. Mixed-effects model predicting distance metrics from ASR errors, showing standardized Beta values 

  BLEU Distance Topic Distance Semantic Distance CPS Distance 

Predictors std. Beta p std. Beta p std. Beta p std. Beta p 
(Intercept) 0.07 <0.001 -0.27 0.020 0.05 <0.001 -0.05 0.189 
Substitution rate 0.91 <0.001 -0.05 0.231 1.04 <0.001 0.46 <0.001 
Deletion rate 1.08 <0.001 -0.05 0.256 1.12 <0.001 0.49 <0.001 
Insertion rate -0.03 0.345 0.01 0.676 0.03 0.446 -0.01 0.870 

4. DISCUSSION 
We investigated the feasibility of using commercially available 
ASRs to transcribe student discourse from a collaborative learning 
activity in a middle school classroom with an eye for downstream 
NLP tasks aimed to support student learning. In the remainder of 
this section, we discuss our main findings, applications, limitations, 
and areas for future work. 

4.1 Main Findings 
Overall, WER was very high (.84-.95) compared to performance on 
benchmark datasets, and even compared to WER from prior CL 
studies using classroom audio, such as in Pugh et al. 2021 who 
reported a WER of .78 using Watson, but with individual 
microphones in a more restricted in-class data collection setting 
compared to the current in-the-wild classroom context. At first 
blush, these high WERs suggest that it might be futile to expect 
meaningful ASR in noisy classroom environments without 
explicitly instrumenting the classroom for this purpose [1] or 
resorting to miking individual students with customized high-
fidelity microphones [90]. However, an in-depth analysis of the 
pattern of errors suggests that there is hope: specifically, the ASRs 
had a large proportion of deletion errors and fewer substitution and 
almost no insertion error meaning that they tended towards high 
precision but low recall and are thereby feasible for applications 
that match this profile (as elaborated below). 

Comparing the three ASR engines we examined, Google and Rev 
were biased towards more substitutions and deletions respectively, 
but also relevant is the proportion of utterances which did not get 
transcribed at all. Here, Google provided a clear advantage with 
nonempty results returned for 60% of utterances compared to less 
than 50% for the other two. Reassuringly, the variance in ASR 
errors was overwhelmingly from utterance-level differences, with 
very little attributable to recording or student. In addition, of 1970 
utterances, only 477 (24%) returned no transcript from any ASR, 
raising the possibility of combining outputs from multiple ASRs. 

We computed several distance metrics to capture ASR quality as 
reflected in downstream NLP measures, in each case computing the 
deviations between ASR-produced and human-transcript versions 
of each measure. With respect to the four measures, topic word 
usage was rare and there was very little variability in this measure 
so unsurprisingly there were no differences for it. Turning to the 
other measures, Watson was consistently outperformed by Google 
and Rev, which were equivalent on CPS distance. However, BLEU 
and semantic distance, which were strongly correlated, were best 
captured by Rev, despite Google having lower word-level error 
rates. Thus, Rev had a slight edge over Google for the downstream 
NLP tasks, but not sufficient to compensate for its higher deletion 
rate. Finally, as the NLP analyses got more abstract, ASR errors 
had less of an impact. The effect of substitutions and deletions on 
CPS distance (a discourse-based construct) was about half that of 
semantic and BLEU distances, (i.e. word- and semantic-level 

measures). Whereas this pattern is intuitively plausible it awaits 
replication with additional downstream NLP measures.  

4.2 Applications 
The ability to automatically capture and transcribe student speech 
during CL activities in the classroom opens the door for numerous 
applications. Fair and accurate ASR transcripts are the first step for 
automated interventions that aim to support CL in classrooms. One 
promising strand of research involves designing teacher-facing 
applications, such as teacher dashboards, which convey 
information about student collaborative talk to the teacher. The 
design space for such technologies is broad and relatively 
unexplored. While there is potential for abuses such as increased 
monitoring and evaluation of student talk, responsible innovations 
can also leverage student transcripts to celebrate students’ 
contributions, build communities within classrooms and foster 
authentic collaboration motivated by student interest, not desire for 
positive reinforcement. For example, information gathered from 
CL discourse could be presented to a teacher offline (i.e., after 
class), illustrating any number of relevant details about the CL 
activity (e.g., what students talked about when on-task versus off-
task, balance of speaking time, quality of collaboration). To 
demonstrate, we created an example dashboard visualization of the 
model-estimated occurrence of three CPS facets in student 
utterances (Figure 4) using both human- and Google- generated 
transcripts. As evident in the figure, model estimations are notably 
impacted by ASR error (i.e., in this group, the model 
underestimates the use of constructing shared knowledge by 
students A and C). Although model estimations will be imperfect, 
they can still provide valuable insights, and the impact of errors can 
be diminished by aggregating over longer time scales. These after-
action reviews could greatly benefit teachers, giving them insight 
into how they might better support CL in their classroom. This 
includes designing new activities to better engage students, 
understanding which student groups may need additional support 
in future classes and what CPS skills students need help developing. 

Similarly, these insights could be conveyed to the teacher online 
(i.e., during class) via a real-time teacher dashboard. Real-time 
feedback on CL groups could also enhance a teacher’s ability for 
more effective classroom orchestration by providing them with 
novel insights into how groups are working together and what kinds 
of feedback and encouragement will help increase productive 
collaboration for students. Ultimately, the specifics of these 
teacher-facing applications, such as what information to present, 
when to present it (e.g., real-time, offline), how to display it (e.g., 
graphic representations, transcripts of speech) and at what level of 
granularity (e.g., individual students, CL groups, whole class) will 
require co-design, testing, and refinement with teachers. 

In addition to teacher-facing applications, ASR systems could be 
used to create student-facing CL supports in the classroom. These 
technologies could take many forms, from real-time or after-action 
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feedback that helps students develop CPS skills to a conversational 
agent which serves as a socio-collaborative ‘partner’, working 
together with student groups to enhance learning, equitable 
participation, and collaboration. Current approaches to support 
student collaboration (for example by prompting for the use of 
high-quality discourse called academically productive talk) have 
been shown to be successful in the context of text chat [85]. Further, 
after-action reviews to support CPS by providing feedback based 
on ASR/NLP models has demonstrated potential in the lab [64], but 
has yet to be tested in classrooms. Whether this is applied to 
student- or teacher-facing tools, fair and accurate ASR in 
classrooms has the potential to spotlight students’ verbally-
expressed ideas and contributions. This offloads the demand that is 
normally placed on written work and provides more multimodal 
dimensions for classroom feedback and support.  

Whereas perfect ASR should not be a prerequisite for several 
applications (as argued in the Introduction), the patterns in ASR 
errors should be carefully considered in that the ASRs have high 
precision (relatively low substitution and insertion errors) but low 
recall (high levels of deletion errors). This suggests that these data 
are best suited for applications for which transcription of a 
sampling of utterances is sufficient, for example, assessments of 
constructs with high-base rates (e.g., CPS skills) rather than those 
focused on rare events. This high precision could be helpful in 
avoiding unwarranted interventions triggered by CL supports, as 
there should be a low rate of false alarms of discourse features 
detected based on the ASR results. Nevertheless, our findings 
suggest that a real-time conversational partner will likely be off the 
table until ASR deletion errors can be reduced. Nevertheless, 
robustness of NLP models to ASR errors can be improved by data 
augmentation approaches where models are trained on ASR 
hypotheses as well as human transcripts [58].  

 
Figure 5. Predicted probabilities of CPS skills over a sample 5-
minute recording (using the student group shown in Table 2) 
based on human (left) and Google ASR (right) transcripts 

4.3 Limitations and Future Work 
There were several limitations to this study. First, although we 
investigated an automated approach to transcribe student 
utterances, we did not incorporate automatic utterance 
segmentation in our pipeline. Rather, utterances were manually 
identified and segmented by a human observer before being 
processed by the ASR systems, which is consistent with prior work 
on comparing ASRs [5, 18]. This was done because the present 
focus was on speech-to-text transcription and not utterance-
segmentation, so we opted for a gold-standard baseline for the latter 
to compare the various ASRs for the former. Further, utterance-
segmentation is technically not needed as a separate step in an 
automated pipeline in that the entire five-minute audio segment 
could be submitted to the ASR engines for combined utterance 

segmentation and speech transcription, albeit less accurately than 
human segmentation. Indeed, longer context than single utterances 
are beneficial in modeling CL [64]. 

Another limitation is that we only tested out-of-the-box cloud-
based ASR systems. One problem with this approach is that 
reliance on cloud-based services may be unrealistic in the near-
term. In the US, nearly 28 million students did not have sufficient 
internet bandwidth for multimedia learning [97]. Similarly, we did 
not attempt to improve the performance of these out-of-the-box 
systems (e.g., by fine-tuning a custom ASR model on our data or 
providing a task-specific vocabulary) because the present goal was 
to compare these systems “as-is” since many researchers might not 
have the technical expertise needed to train customized models or 
fine-tune existing models. However, recent advances in deep-
learning-based ASR mean pretrained models are widely available 
and a relatively small amount of data is needed for fine tuning [2, 
74], which may provide better performance in this domain than 
standard cloud-based systems. To this point, we are currently 
developing a customized, locally hosted ASR system to improve 
upon the present results and address the limitations above.  

One additional limitation is the lack of diversity in our sample. 
Whereas student-level demographic data was unavailable, district-
level information suggests that 92% of the students were either 
White (62%) or Hispanic (30%). Racial disparities in ASR 
performance [44], as well as challenges with non-native English 
speakers [93] are well documented and may have 
disproportionately adverse effects on underrepresented groups 
when ASR is used for downstream applications. Thus, the lack of 
variability at the student level might be partly because our sample 
was non-representative. To create more fair ASR transcripts, non-
native English speakers and students from non-dominant cultures 
should be oversampled to create representation, and thus accuracy, 
equal to students from dominant cultures. We also chose to include 
data from a single (although multi-lesson and multi-day) 
curriculum unit as implemented by one teacher with a small number 
of students. In sum, these factors reduce the generalizability of our 
findings to groups historically underrepresented in STEM. Our 
future work will aim to address these limitations by collecting 
classroom speech from racially and socioeconomically diverse 
populations, and examining ASR performance across different 
groups to identify sources of bias or nonequivalence. 

4.4 Conclusion 
Automated speech recognition in conjunction with natural 
language processing has the potential to unlock collaborative 
learning supports in the classroom. We recorded authentic small-
group interactions in middle school STEM classrooms using 
inexpensive, commercially-available equipment, and analyzed the 
transcripts provided by several cloud providers. We show how 
different types of transcription errors influence downstream 
linguistic models, and find that the impact of ASR errors is smaller 
for the predictive accuracy of a CL model than for upstream 
measures capturing more literal aspects of speech content. Our 
results demonstrate the challenges of automating speech 
recognition in the classroom, but suggest the potential of using 
imperfect ASR to gain insights into collaborative discourse. 
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ABSTRACT
As outlined by Benjamin Bloom, students working within
a mastery learning framework must demonstrate mastery
of the core prerequisite material before learning any subse-
quent material. Since many learning systems in use today
adhere to these principles, an important component of such
systems is the set of rules or algorithms that determine when
a student has demonstrated mastery. A relevant issue when
discussing mastery learning is its durability—in particular,
we are interested in the relationship between different mas-
tery learning thresholds and the forgetting of the learned
material. As such, in this study we investigate this ques-
tion using a large data set from the ALEKS adaptive learn-
ing system. Applying a quasi-experimental design, we find
evidence that, while a higher mastery threshold is initially
associated with a higher rate of knowledge retention, after
several weeks this difference has largely disappeared.

Keywords
Mastery learning, forgetting, adaptive learning

1. INTRODUCTION
Many adaptive learning and intelligent tutoring systems in
use today employ the principles of mastery learning. As out-
lined by Benjamin Bloom [9], in such a framework students
must demonstrate mastery of the core prerequisite mate-
rial before working on any subsequent material. Thus, an
important component of any system implementing mastery
learning is the set of rules or algorithms used to determine
when a student has mastered a skill or problem type. Over
the years, important families of models have been developed
for this purpose, with perhaps the most noteworthy being
Bayesian knowledge tracing (BKT) and its derivatives [6,
17, 43, 68], and the factors analysis family of models, with
examples of the latter including Learning Factors Analysis
(LFA) [13] and Performance Factors Analysis (PFA) [45].
Additionally, other simpler rules and heuristics, such as re-

quiring students to correctly answer a certain number of
questions in a row [32], are also utilized.1

As there is a balance between ensuring students have suffi-
ciently mastered a problem type, while not subjecting them
to more practice than necessary—variously referred to as
“over practice” [14] or “overlearning” [51]—previous works
have looked in detail at mastery learning thresholds and
how to optimize them for various factors such as student
learning efficiency [7, 14] and classification performance [22,
32]. Additionally, it has been argued that the choice of data
and the threshold used are more important than the specific
type of model being applied [46].

A related subject is that of knowledge retention and for-
getting. In particular, the Ebbinghaus forgetting curve [4,
21] models the decay of knowledge over time, with numerous
studies having looked at the conditions affecting these curves
in settings as varied as laboratory experiments [26, 40, 42,
56], classrooms [2, 8, 25], and adaptive learning and intelli-
gent tutoring systems [37, 38, 62, 65, 66]. Other works have
shown that learning systems benefit greatly by accounting
for forgetting [16, 35, 47, 63] and having personalized inter-
ventions and review schedules [34, 44, 55, 58, 67].

In this work, we are interested in the relationship between
different mastery thresholds and the retention of knowledge.
Additionally, we compare and contrast the frequencies at
which problem types are successfully learned under these
mastery thresholds. To perform these analyses, we take ad-
vantage of a “natural” experiment that occurs within the
ALEKS adaptive learning system where, depending upon
the outcome of an assessment given at the beginning of a
course, problem types are assigned to two different mastery
thresholds. By comparing the outcomes from these different
thresholds, we hope to understand more about the relation-
ship between higher mastery, extra practice, and forgetting.

2. BACKGROUND
In this section we give a brief background of the ALEKS
system. Within the system, a topic is a problem type that
covers a discrete unit of an academic course. Each topic con-
tains many examples called instances, with these examples
being chosen so that they cover the same content and are

1Interestingly, recent work has shown that some of these
simpler models—including the one we consider in this
study—can be viewed as special cases of BKT [19].

1
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equal in difficulty. The topics in an ALEKS course contain
many prerequisite relationships. That is, topic x is a pre-
requisite for topic y if x contains certain core concepts and
material that must be learned before it’s possible to learn
the material in y.

At the start of an ALEKS course, the student’s incoming
knowledge is measured by an adaptive initial assessment.
After each question of this assessment, a probability esti-
mate is computed for each topic in the course, with this
probability measuring how likely it is that the student knows
the topic. At the end of the assessment, based on both these
probability estimates and the prerequisite relationships be-
tween the topics, the ALEKS system partitions the topics
in the course into the following three categories.2

• Topics that are most likely known

• Topics that are most likely unknown

• All remaining topics (uncertain)

Next, in the ALEKS learning mode a student is presented
a topic the system believes they are ready to learn, and the
student can access additional topics they are ready to learn
from a graphical list. In all cases, the topics being learned
are from the uncertain and unknown categories. To deter-
mine mastery, a high mastery threshold is used for the un-
known topics, while a low mastery threshold is used for the
uncertain topics (we give precise definitions of these thresh-
olds shortly). As the system is not sure if the uncertain top-
ics are actually known by the student, relaxing the threshold
allows the student to more quickly demonstrate mastery.

When learning a topic, a student can take three possible
actions: submitting a correct answer, submitting a wrong
answer, or accessing an explanation page with a worked so-
lution to the current instance. We define the learning se-
quence to be the sequence of actions taken by the student
while working on a particular topic. A student begins their
learning sequence with a score of 0, whereupon they are
presented an example instance with a worked explanation.
Following this, the student receives another instance for ac-
tual practice. Each time the student receives a new instance,
they can try to answer it, or they can access the explanation
page. Note that a student is always given a new instance af-
ter a correct answer, viewing an explanation, or submitting
two consecutive wrong answers. Depending on the student’s
action, the score is updated based on the following rules.

(1) A single correct answer increases the score by 1; how-
ever, if the correct answer immediately follows a pre-
vious correct answer, the score increases by 2 instead.

(2) An incorrect answer decreases the score by 1 (unless
the score is already at 0).

(3) Viewing an explanation does not change the score.
However, it does affect rule (1)—for example, if a stu-
dent answers correctly immediately after viewing an
explanation, the score increases by only 1 point, rather
than 2, regardless of the student’s previous responses.

2While beyond the scope of this study, the validity of both
the probability estimates and the topic categorizations have
been evaluated in works such as [18, 39].

For an unknown topic, the student must achieve a score
of 5 before the topic is considered mastered—this is the
aforementioned high mastery threshold. Alternatively, top-
ics that are classified as uncertain only require a score of 3 to
achieve mastery—this is the low mastery threshold. Finally,
if a student gives five consecutive incorrect answers, this is
considered to be a failed learning attempt—in such a case,
the student is gently prompted to try another topic.

3. EXPERIMENTAL SETUP
Our study uses data from 13 different ALEKS mathematics
products, ranging from elementary school mathematics to
college-level algebra. From these products, we gathered data
for a total of 2,235,061 students over a three-year period
starting in January 2017. While we don’t have access to
detailed demographic information for our sample, we can
say the majority of the K-12 students are from U.S. public
schools, while the higher education products contain a mix of
students from community colleges and four-year institutions,
again mainly from the U.S.

To test the retention of the topics after they are mastered, we
make use of the ALEKS progress assessment, an assessment
given at regular intervals that is focused on the student’s
recent learning. The progress assessment plays a key role
in the ALEKS system, as it enforces two learning strategies
that have been shown to help with the retention of knowl-
edge: spaced practice [30, 64] and retrieval practice [5, 31,
48, 49, 50]. To evaluate student knowledge retention, we
define the retention rate—or, the correct answer rate—to
be the proportion of the time that students answer topics
correctly in the progress assessment after having mastered
the topics in the ALEKS system.

Our analysis is complicated by a selection bias that ex-
ists with the assignment of the different mastery thresh-
olds. That is, the topics using the low mastery threshold,
being from the uncertain category, are the ones for which
the ALEKS assessment was not confident enough to clas-
sify as either known or unknown by the student—as such,
it stands to reason that some proportion of these topics are
likely known by the students, or that, at the very least, these
topics tend to be easier for the students to learn. In com-
parison, the topics that are classified as unknown by the
ALEKS system are typically more difficult for the students.

Thus, to compensate for this issue, we apply the elements of
a regression discontinuity design (RDD) [59] to our analysis.
RDD is a popular quasi-experimental design that is com-
monly used in fields such as econometrics [3] and political
science [23]. The idea is that, given an experimental condi-
tion assigned by an arbitrary cutoff, it’s plausible the data
points close to this cutoff are similar, regardless of which
side of the cutoff they ultimately fall on. In this study, we
leverage the fact that a probability cutoff determines the
assignment of the mastery threshold in the ALEKS system,
with topics below the cutoff being assigned the high mastery
threshold, while topics above the cutoff are assigned the low
mastery threshold. By comparing topics with probabilities
close to the cutoff, we hope to get accurate estimates of the
differences between the two mastery thresholds.

In order to apply these ideas, we must account for the fact
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that the ALEKS system also uses the information from the
prerequisite relationships to assign the mastery threshold to
topics. For example, suppose topic x is a prerequisite for
topic y. Because of this relationship, if x is answered incor-
rectly during an ALEKS assessment, topic y will most likely
be classified as unknown and thus given the high mastery
threshold. Since this decision does not depend directly on
the probability cutoff, we exclude these examples from all of
our subsequent analyses, so that the probability cutoff is the
sole determining factor in assigning the mastery threshold.

4. ANALYZING LEARNING RATIOS
Our first analysis attempts to quantify the differences be-
tween the mastery thresholds by comparing the learning ra-
tios—that is, the proportions of topics worked on by stu-
dents that are eventually mastered. As just discussed, we
want to only look at data points which have the mastery
threshold determined exclusively by the probabilities. Ad-
ditionally, we restrict our analysis to learning data prior to
a student’s first progress assessment, as this assessment can
alter the mastery threshold assigned to a topic, and we only
select data points for which some work has taken place—
for the latter, we minimally require that the student has at
least looked at an example instance of the topic. Finally,
out of the 2,154 total topics in our data set, we remove 7
that, due to technical issues, have systematic problems with
their probability estimates. This leaves us with a total of
58,891,970 data points from 2,181,646 unique students.

Our next step is to select a reasonable bandwidth to conduct
the RDD analysis, that is, a narrow interval around the
probability cutoff to which the data points will be further
restricted. While, all else equal, we want to have as much
data as possible to work with, we also want our bandwidth
to be narrow enough so that the included topics are expected
to be similar in difficulty. We choose a bandwidth of 0.02
around the cutoff, which we believe works reasonably well
at balancing these competing concerns. This leaves us with
1,949,102 data points from 984,138 unique students.

Table 1: Comparison of outcomes for the low mas-
tery and high mastery groups.3

Mastery threshold Learn Fail Inc. No resp.

High (956,260) 0.847 0.057 0.062 0.034
Low (992,842) 0.865 0.052 0.050 0.033

For these data points, Table 1 shows the summary statistics
after partitioning the learning outcomes into the following
four categories.

• Learn: topic successfully mastered

• Fail: topic failed by submitting five consecutive incor-
rect answers

• Incomplete: at least one answer submitted, but topic
is neither learned nor failed

• No response: an instance of the topic is viewed—and
possibly an explanation page, as well—but no answers
are submitted

3Based on 10,000 cluster bootstrap samples—with the data
from each student representing a single “cluster”—the 95%
confidence intervals for the point estimates in Table 1 are
all less than 0.002 in width.

Based on this partitioning, the learning ratio is simply the
proportion of the outcomes in the Learn category. From Ta-
ble 1 we can see that the topics in the high mastery group
have a lower learning ratio in comparison to the low mas-
tery topics—0.847 vs. 0.865, respectively. Furthermore, the
high mastery group has larger proportions of incomplete and
failed topics. Note that all of these results make intuitive
sense—that is, all else being equal, for a given topic we ex-
pect it to be harder to learn under the high mastery thresh-
old in comparison to the low mastery threshold.

One concern we have is that students may be actively seek-
ing out one mastery threshold or the other, with perhaps
the most prominent worry being that students would try to
find the topics with the low mastery threshold, as this infor-
mation is available to them. While our previous experience
working with the ALEKS system has shown us that stu-
dents mostly work on the specific topic the system presents
to them, this is still worth investigating. As a start, we can
look at the proportions in the No resp. column of Table 1—
here, it’s reassuring that these values are similar for the two
different mastery thresholds.

Next, we can look at a density plot of the probabilities to see
if there is an abrupt change as we move across the probability
cutoff. Partitioning the interval [−0.02, 0.02] into 100 bins of
width 0.0004 each, in Figure 1 we plot the relative frequency
(proportion) vs. the average distance from the threshold,
based on the probabilities in each bin. While there’s an in-
creasing trend in the density as the x-values increase—which
is a reflection of the distribution of the probabilities, rather
than any particular student behavior—we are specifically
interested in what happens around the probability cutoff,
which is at 0 on the x-axis. As there doesn’t appear to be
clear evidence of a discontinuity—i.e., an abrupt increase or
decrease—around the cutoff, we can use a density test to
more precisely check for such a change [41]. Specifically, we
apply the procedure outlined in [11], where the null hypoth-
esis assumes there is no discontinuity in the density around
the cutoff. Using the R implementation of this procedure in
the rddensity package [12], the resulting p-value is 0.61—
thus, the null hypothesis of no discontinuity is not rejected.
Taking these results together, conservatively we can at least
say there are no obvious signs of a bias from students elect-
ing to work on topics based on the mastery threshold.

5. FORGETTING AND RETENTION
In this next section, we attempt to estimate the differences
in retention and forgetting between the topics that have been
learned with the two mastery thresholds. While doing so,
there are two important factors to consider. First, the stu-
dents who learn with the high mastery threshold get more
practice, as they tend to answer more questions in com-
parison to those who learn with the low mastery threshold.
Second, as we saw previously the high mastery threshold is
associated with a lower learning ratio in comparison to the
low mastery threshold. This indicates there is a selection
bias when we look at the students who learn a topic with
the high threshold and compare them to students who learn
with the low threshold—that is, the students who pass the
high threshold tend to have a slightly better grasp of the ma-
terial, or are perhaps slightly stronger students. Note that
we’d expect both of these factors to benefit the knowledge
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Figure 1: Density plot of the probability values,
based on the distance from the probability cutoff.
(More precisely, the x-axis reports the difference
topic probability − cutoff probability.)

retention of the students who learn with the high threshold.

While it would be of interest to isolate these factors as much
as possible, we won’t be able to separate them in the analysis
that follows, as they are directly connected to the specific
mastery threshold used. On the one hand, from a purely
scientific perspective this is unfortunate, as it would be of
interest to, say, precisely compare the associations between
the different amounts of practice. On the other hand, from a
more practical viewpoint we can still analyze the overall dif-
ferences between the mastery thresholds, which is arguably
of more value for designing and improving adaptive learning
and intelligent tutoring systems.

Table 2: Average number of actions per learning
sequence—numbers in parentheses show the relative
proportion of each action, based on the average total
number of actions in the bottom row.

High mastery Low mastery
(278,126) (302,191)

Correct answers 3.6 (0.66) 2.3 (0.61)
Wrong answers 1.3 (0.23) 1.0 (0.27)
Explanations 0.6 (0.10) 0.5 (0.12)

Total 5.4 3.8

Starting with the data set summarized in Table 1, we extract
the subset of data points that (a) are successfully learned
and (b) appear as questions in the student’s first progress
assessment—this leaves us with 580,317 data points from
436,735 unique students. In Table 2 we show the learning se-
quence statistics partitioned by the mastery threshold. The
high mastery threshold topics have about 1.6 more learning
events, with about 1.5 of these being either correct or wrong
answers. Next, in Figure 2 we show a plot of the reten-
tion rates based on the distance from the probability cutoff,
with the data points being divided into equal-width bins of
0.005, starting at -0.02 and ending at 0.02. For each bin the
y-value represents the average correct answer rate when a
topic appears in a student’s first progress assessment, while
the x-value is the average distance from the probability cut-

-0.02 -0.01 0 0.01 0.02
Distance from probability cutoff

0.60

0.62

0.64

0.66

0.68

0.70

Co
rr

ec
t r

at
e

Figure 2: Retention (correct) rates based on the
distance from the probability cutoff.

0 7 14 21 28 35 42 49 56 63 70
Time (days)

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Co
rr

ec
t r

at
e

High mastery
Low mastery

Figure 3: Mastery threshold forgetting curves.

off. Note there is a clear drop in retention as we move across
the probability cutoff to the low mastery threshold topics.
However, as we are studying the retention of knowledge, one
factor we haven’t taken into account is time. In particular,
we next look at the forgetting curves for these data to see
how these relationships might change at different time scales.

To generate these curves, for each data point we compute
the time in days between the learning of the topic and its
appearance on the progress assessment. Then, we group the
data points into bins of width one day, compute the reten-
tion rate within each bin, and plot the results in Figure 3.
The solid (blue) line shows the curve for the high mastery
threshold topics, while the dashed (orange) line shows the
curve for the low mastery threshold topics. For time values
less than two weeks, the retention rate for the high mastery
threshold group is higher—however, for larger time values
it’s not quite as clear how much of a difference, if any, exists
between the retention curves.

We next use a linear regression model to more precisely es-
timate the differences in retention between the two mastery
threshold groups—as our outcome variable is binary, this
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model is known as a linear probability model. While the use
of a generalized linear model—such as logistic regression—
is typically recommended with binary outcome variables, we
prefer to use a linear regression here to make it easier for us
to interpret the coefficients. Although the use of a linear
model with a binary outcome variable could theoretically
lead to biased estimates, it’s been argued that this bias is
typically low [3]. Additionally, a criticism of the linear prob-
ability model is that it could give invalid probability esti-
mates less than zero or greater than one. However, based
on previous works analyzing forgetting in the ALEKS sys-
tem [18, 36, 37, 38], we expect the probability estimates of a
correct answer to be bounded well away from zero and one.

As some students appear multiple times within our data,
we treat data points associated to the same student as a
“group” or “cluster”—this leaves us with 436,735 clusters,
one for each unique student. To handle these clusters ap-
propriately, in each of our analyses we fit a marginal model
using the generalized estimating equation (GEE) class in
the statsmodels [54] Python library. GEE models are com-
monly applied in epidemiological studies and analyses con-
taining repeated measurements [27, 28, 33, 57], making them
well-suited for our study.

Our regression models include the following predictors.

• x1: 1 for high mastery; 0 for low mastery

• x2: Initial assessment probability estimate

• x3: Initial assessment score = (number of topics clas-
sified as known) / (total number of topics in course)

• x4: Categorical variable encoding ALEKS product

• x5: Categorical variable encoding first event in learn-
ing sequence (correct, incorrect, or explanation)

• x6: Categorical variable encoding time (in weeks) since
topic was learned (see Table 3)

• x7: Interaction between mastery and time (x1 × x6)

The variables x1 and x7 are our main focus, as we want to
estimate the average difference in retention between the two
mastery groups—additionally, we want to see if these differ-
ences vary across the categories of the time variable. The
remaining predictors are control variables, as they can help
adjust for factors such as variation in starting knowledge
(x3), general differences between students using the various
ALEKS products (x4), and the amount of initial struggle
experienced by the students while learning the topics (x5).
Finally, it’s generally considered good practice to include
the assignment variable, represented here by the probability
estimate x2, in the regression as well [23].

Regarding the time since the topic was learned, a complica-
tion with this variable is that it’s technically a post-treatment
variable—that is, it’s measured after the“treatment”occurs,
where in our case the treatment corresponds to the success-
ful learning of the topic with the high mastery threshold. If a
causal link is suspected between the post-treatment variable
and the treatment, including the post-treatment variable in
the regression could bias the estimate of the coefficient for
the treatment variable [1, 53]. While we don’t have a com-
pelling reason to think there is a causal link between the

Table 3: Categorical variable for time (x6).

Category Description

1 Less than 7 days after learning
2 Between 7 and 14 days after learning...
9 Between 56 and 63 days after learning
10 More than 63 days after learning
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Figure 4: Coefficient estimates of the retention rate
differences.

mastery threshold and the time variable, we use the follow-
ing procedure in an attempt to address the possibility of
post-treatment bias. First, we run our regression analysis
including the categorical variable for time. Next, we re-run
our analysis using the two-step regression procedure known
as the sequential g-estimator [29, 60]. Using this procedure
allows us to make an estimate of β, the coefficient of the
treatment, that adjusts for possible bias from the inclusion
of the post-treatment variable [1, 24, 29, 60, 61]. Compar-
ing the results using the sequential g-estimator to our first
regression, we do not see any substantial differences—for
example, in the first model we fit, the estimates of the co-
efficients of interest differ by less than 0.0013 in absolute
value. Thus, to simplify the exposition, in what follows we
describe and report the results from the models fit without
using the sequential g-estimator.

Figure 4 shows the results from fitting a model with vari-
ables x1 through x7. For the given time category, each (blue)
dot represents the estimated average difference in retention
between the two mastery thresholds, with the dashed lines
showing the 95% confidence interval for each estimate. For
example, the first dot represents the data points with a re-
tention time of less than seven days, where the high mastery
group has an estimated average retention rate that’s higher
by about 0.03, with a 95% confidence interval of (0.025,
0.036). The general trend suggests that larger time values
are associated with smaller retention differences between the
two groups. These results appear to be consistent with the
plots shown in Figure 3, where the gap between the two
forgetting curves is smaller for the larger time values.

Next, we take a different approach and use a type of matched
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Figure 5: Matched data coefficient estimates, using
bandwidths of 0.02 (top) and 0.04 (bottom).

design. Starting with the 580,317 data points from our pre-
vious analysis, we restrict the data to the 59,689 students
who have learned topics using both mastery thresholds. This
leaves us with 72,279 high mastery topics and 73,851 low
mastery topics. The results from fitting a model using the
variables x1 through x7 are shown in the top plot of Fig-
ure 5. Similar to the results from the unmatched data in
Figure 4, the estimated average difference is about 0.03 for
week 1, while then dropping below 0.02 for week 2. While
the point estimates appear to have a negative trend—that is,
the higher time values are associated with smaller estimated
retention rate differences between the two mastery thresh-
olds, on average—the trend is not nearly as pronounced as
the one in Figure 4, and the estimates tend to be noisier.

In an attempt to get cleaner estimates of the average reten-
tion differences between the two mastery groups, we enlarge
our data set by using a wider bandwidth of 0.04—this gives
a total of 1,163,706 data points. Restricting our analysis to
the 168,339 students who have examples of topics learned
with both mastery thresholds, we have a new data set con-
sisting of 476,105 data points. The results from the regres-
sion fit on this new data set are shown in the bottom plot of
Figure 5, where it’s instructive to see that there is a clearer
pattern than in the top plot—that is, using the enlarged
data set, there appears to be a fairly strong negative associ-
ation between the time values and the estimated differences
in retention, similar to the results shown in Figure 4.

6. DISCUSSION
In this work we presented a detailed comparison of two mas-
tery learning thresholds that are used in the ALEKS system.
Attempting to adjust for selection effects and other possible
confounding variables, we utilized elements of a regression
discontinuity design by leveraging the fact that the assign-
ment of the mastery threshold is determined by a probability
cutoff value. Focusing on topics with probabilities close to
this cutoff, we looked at the learning outcomes for the two
different mastery threshold groups, with the results suggest-
ing that, while differences do exist, they are not particularly
large. For example, the average learning ratio difference
between the two groups was less than 0.02. Additionally,

we used regression models to estimate the average differ-
ence in knowledge retention between the mastery threshold
groups. The overall retention rates were more similar than
we might have expected a priori and, furthermore, we saw
evidence that the difference in retention rates between the
two groups was negatively associated with time—that is,
longer time gaps between the initial learning and the test of
retention had smaller average differences in retention.

While performing our analyses, we investigated, and at-
tempted to adjust for, several potential sources of bias and
confounding. Nonetheless, being an observational study it’s
possible that other sources of bias exist. Thus, in what fol-
lows we interpret our results within the larger literature on
learning and retention, and also discuss potential implica-
tions for the ALEKS system, all while keeping this caveat
in mind. To start, given that the difference in retention be-
tween the mastery threshold groups was smaller for larger
time values, this might suggest that any possible gains from
the high mastery threshold are not persistent. Notably, prior
research on learning has shown that massed practice (i.e.,
grouping learning into a single session) and overlearning (i.e.,
continuing to practice after a skill has been mastered), while
possibly beneficial in the short-term, do not lead to learning
that is especially durable or long lasting [30, 51]. However,
as most experiments studying these learning strategies in-
volve simple verbal tasks in a laboratory setting [10, 15, 51],
we found it informative to see similar results for students
learning mathematics in an adaptive learning system.

Furthermore, while only a limited number of experiments
investigate these issues for learning mathematics, two par-
ticular studies seem relevant and informative for our current
work. First, the results in [51] indicated that the gains from
massed practice of mathematics problems did not appear
to be as durable as those from using distributed practice—
specifically, while the benefits from these techniques ap-
peared similar after a week, with a longer gap of four weeks
distributed practice was superior. Second, in [52] two massed
practice conditions for learning mathematics problems—with
these conditions being somewhat analogous to our high mas-
tery and low mastery conditions—were compared, with no
clear difference in performance observed between the condi-
tions. Thus, the outcomes of these two studies are seemingly
consistent with the results from our current work.

If the results of this study prove to be valid, a possible ad-
justment to the ALEKS system is to reduce the usage of
the higher mastery threshold for topics close to the proba-
bility cutoff. The benefit of this approach is that it would
allow students to more efficiently learn additional topics.
Taking a slightly different view, it’s well-documented that
distributed practice is more effective as an overall learning
strategy in comparison to massed practice [10, 15, 20, 30,
64]. Thus, rather than removing the high mastery threshold
completely, perhaps the extra practice enforced by the high
mastery threshold could be distributed over multiple learn-
ing sessions. Additionally, as previous work found evidence
that retrieval practice within the ALEKS system is associ-
ated with better retention [38], it would be of interest to find
the most effective way of combining the principles of both
retrieval and distributed practice in the system. This is a
line of research we are currently exploring in more detail.
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ABSTRACT
Peer assessment systems are emerging in many settings, such
as peer grading in large (online) classes, peer review in con-
ferences, peer art evaluation, etc. However, peer assessments
might not be as accurate as expert evaluations, thus ren-
dering these systems unreliable. The reliability of peer as-
sessment systems is influenced by various factors such as
assessment ability of peers, their strategic assessment be-
haviors, and the peer assessment setup (e.g., peer evaluat-
ing group work or individual work of others). In this work,
we first model peer assessment as multi-relational weighted
networks that can express a variety of peer assessment se-
tups, and can also capture conflicts of interest and strategic
behaviors. Leveraging our peer assessment network model,
we introduce a graph neural network which can learn assess-
ment patterns and user behaviors to more accurately predict
expert evaluations. Our extensive experiments on real and
synthetic datasets demonstrate the efficacy of our approach,
which outperforms a variety of peer assessment methods.

Keywords
Peer Assessment, Graph Neural Network.

1. INTRODUCTION
Peer assessment systems have emerged as a cost-effective
and scalable evaluation mechanism in many settings such
as peer grading in large (online) classes and peer review
in conferences. In these systems, peers assess each others’
work (e.g., assignments, papers, etc.) in lieu of a set of
pre-appointed experts responsible for evaluation (e.g., in-
structors, teaching assistants, program committee members,
etc.). These peer assessment systems not only make the
evaluation of thousands of contributions plausible, but also
help to deepen peers’ understanding [22], and facilitate peers
providing feedback to each other [20]. However, the reliabil-
ity of peer assessment systems is directly impacted by the
accuracy of peers in their assessments. Peers might lack
knowledge or motivation to accurately evaluate others, or

they might be strategic in their assessments for their own
gain [1, 12, 11, 2, 15, 34, 25, 21].

Related work. Two classes of approaches are taken to ad-
dress reliability challenges. One primarily focuses on de-
signing strategy-proof peer assessment mechanisms, which
incentivize peers to accurately assess each other [6, 24, 9,
16, 11, 35, 32]. The other class of approaches—most relevant
to our work—emphasizes learning peer aggregation mecha-
nisms, which aggregate noisy peer assessments for an item
(e.g., assignment or paper) as an estimate of its ground-
truth valuation (or expert evaluation) [19, 27, 7, 30, 4].
The learning methods for peer assessment aggregation fall
into unsupervised [27, 19, 5] and semi-supervised [7, 30] ap-
proaches based on whether or not a subset of ground-truth
labels are used for training in addition to peer assessment
data. These models usually possess particular inductive bi-
ases such as peer’s assessment accuracy being correlated
with his/her item’s ground-truth valuations (e.g., the grade
of his/her assignment) [19, 27, 7]; or peer’s accuracy in an
assessment depending on the extent of its agreement with
others’ assessments or ground-truth valuations [30]. How-
ever, these machine learning methods are empirically shown
to be only as effective as simple aggregation mechanisms
such as averaging [23]. Moreover, these approaches are not
flexible and general enough to accommodate a wide variety
of peer assessment modes (e.g., when an individual assesses
the group contribution of others or self assessments). Our
focus in this paper is to develop a semi-supervised aggrega-
tion mechanism without any specific or restrictive inductive
bias, accommodating various modes of peer assessments.

Contribution. We first introduce our graph representation
model of peer assessment, which we call social-ownership-
assessment network (SOAN).1 Our SOAN model can ex-
press a wide variety of peer assessment setups (e.g., self-
assessment and peer assessment for both individual or group
contributions) and represent conflict-of-interest relations be-
tween peers using auxiliary information, such as social net-
works. Leveraging our SOAN model, we then introduce
a semi-supervised graph convolutional network (GCN) ap-
proach, called GCN-SOAN, which can learn assessment pat-
terns and behaviors of peers, without any restrictive induc-
tive bias, to predict ground-truth valuations. We run ex-
tensive experiments on real-world and synthetic datasets to
evaluate the efficacy of GCN-SOAN. Our GCN-SOAN out-
performs a wide variety of baseline methods (including sim-

1SOAN can read as “swan.”
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ple heuristics, semi-supervised, and unsupervised approaches)
on the same real-world dataset [23], which was shown to be
challenging for machine learning approaches. Our GCN-
SOAN also outperforms others on a wide range of synthetic
data, which captures strategic assessment behavior between
users, follows the assumptions of competitor baselines, or
considers strict and generous graders. GCN-SOAN can be
a stand-alone approach or possibly be integrated with some
incentivizing mechanisms (e.g., [32, 5, 35]).

2. PROPOSED APPROACH
Our goal is to predict the ground-truth assessments (e.g.,
expert evaluations of educational or professional work) from
noisy peer assessments. We first discuss our proposed graph
representation model, social-ownership-assessment network
(SOAN), for capturing the peer grading behavior. We then
present a modified graph convolutional network (GCN), which
leverages our SOAN model, to predict the ground-truth as-
sessments. We call this approach GCN-SOAN.

2.1 Social-Ownership-Assessment Model
We assume that a set of n users U (e.g., students or schol-
ars) can assess a set of m items I (e.g., a set of educational,
professional, or intellectual work). The examples cover var-
ious applications ranging from peer grading in classrooms
to peer reviewing scientific papers, professional work, or re-
search grant applications. We also consider each item i ∈ I
possesses a (possibly unknown, but verifiable) ground-truth
value vi ∈ R+ (e.g., staff grade for a course work, or expert
evaluation of intellectual or professional work).

The user-item assessments can be represented by assessment
matrix A = [Aui], where Aui is the assessment (e.g., grade
or rating) of user u ∈ U for item i ∈ I. We let Aui = 0
when the user u’s assessment for item i is missing; other-
wise Aui ∈ R+. As the assessment matrix A is sparse, we
equivalently represent it by an undirected weighted bipartite
graph, consisting of two different node types of users U and
items I, and weighted assessment edges between them (see
Figure 1a as an example).

We introduce a social-ownership-assessment network (SOAN),
an undirected weighted multigraph, consisting of three types
of social, ownership, and assessment relationships on two
node types of users and items. In addition to the assess-
ment matrix A, this network consists of two other adja-
cency matrices: social matrix S = [Suv] ∈ Rn×n and own-
ership matrix O = [Oui] ∈ Rn×m. The social matrix S,
by capturing the friendship and foe relationships between
users U , can accommodate “conflict of interest” information.
The ownership matrix O, by capturing which users to what
extent own or contributed to an item, not only completes
conflict of interest information but also provides flexibility
of modeling group contributions, self-evaluation, etc. We
let G = (S,O,A) denote the tuple of all three networks
of SOAN. Figure 1 demonstrates some instantiations of our
models for various settings. SOAN offers various advantages
over the existing peer assessment models (e.g., [27, 19, 7, 4]):

Expressiveness. Our model is more expressive as it facilitates
the representation of many various peer assessment settings
that could not be accommodated in the existing models. Its
expressive power can be realized in the settings such as self

assessments (Figure 1b), peer assessments for both solo and
group work (Figures 1e and 1f), and the mixtures of peer
and self assessments for solo and group work (Figures 1c
and 1d). For all of these settings, our SOAN model can
also express conflict of interest (which is neglected in other
models) through a social network (see Figure 1g).

Less Assumptions. Dissimilar to some existing models (e.g.,
[27, 19, 7, 30]), our model avoids making explicit or implicit
assumptions about the relationships between ground-truth
values (or grades) and the quality of peer assessments. It
is still flexible enough to learn such correlations from as-
sessment data if it exists. Our experiments below have
shown that our model outperforms other models with re-
strictive assumptions regardless of whether their assump-
tions are present in the data or not.

2.2 Graph Convolutional Networks
Our learning task is semi-supervised. Given a social-ownership-
assessment network G = (S,O,A) and a set of ground-truth
valuations VD = {vj |j ∈ D} for a subset of items D ⊂ I ,
we aim to predict vi for i /∈ D. More specifically, we aim to
learn the function f(i|θθθ,G) for predicting the ground-truth
valuation vi by v̂i = f(i|θθθ,G). The model parameters θθθ
are learned from both the observed ground-truth valuations
VD = {vj |j ∈ D} and social-ownership-assessment network
G. We formulate the function f by a modified graph convo-
lution network (GCN) with a logistic head:

f(i|θθθ,G) = σ
(
w(o)zi + b(o)

)
, (1)

where σ(.) is the sigmoid function for converting the linear
transformation of the node i’s embedding zi into its pre-
dicted valuations. Here, wo and bo are the weight vector
and the bias parameter for the output layer. The node (i.e.,
item) embedding zi is computed with K layers of graph

convolution network. Let H(l) be the (n + m) × d matrix
of d-dimensional node embeddings at layer l for all users U
and items I such that user u and item i’s vector embeddings
are located at the u-th and (m+ i)-th rows, respectively. In
Eq. 1, the item i’s embedding zi is the (m + i)-th row of

H(K) with the updating rule of

H(l+1) = g(l)
(
D−1MH(l)W(l)

)
. (2)

The matrix M is constructed from the graph G = (S,O,A)

by M =

(
S P
P⊤ 0m

)
+ I, where P = O + A, ⊤ is the

transpose operator, 0m is m ×m zero matrix, and I is the
identity matrix. In Eq. 2, D is the diagonal matrix with
Dii =

∑
j 1[Mij ̸= 0] with 1[.] as the indicator function.

The core idea in Eq. 2 is to update the node embeddings at
layer l + 1, denoted by H(l+1), from layer l’s node embed-
dings H(l). This update includes the multiplication of the
layer l’s embeddings H(l) by the normalized matrix D−1M,
then linear transformation by learned weight matrix W(l)

at layer l, and finally passing through a non-linear activa-
tion function g(l). The initial embedding matrix H(0) can
be node-level features (e.g., textual features for items, user
profiles for users, etc.). When the node-level features are
absent, the common practice is to initialize the embeddings
with one-hot indicators [14, 28, 10]. As our GCN is built
upon SOAN, we refer to this combination as GCN-SOAN.
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Figure 1: Different instantiations of social-ownership-assessment network (SOAN): (a) assessments provided by users to items as
weighted edges; thicker lines for higher weights; (b) self assessments of users for their own items; (c) combination of self and peer
assessments of solo contributions; (d) self and peer assessments of both solo and group contributions; (e) peer assessments of
solo contributions; and (g) self and peer assessments of group contributions with the social networks between users for capturing
conflict of interest.

The updating rule in GCN-SOAN (see Eq. 2) benefits from
row normalization of the adjacency matrix similar to many
other graph neural networks [31, 26, 28, 29]. As the choice
of an effective normalization technique is an application-
specific question [10, 3], we have decided to normalize our
weighted SOAN model by taking an unweighted average,
which has been suggested as a solution to address the sensi-
tivity to node degrees for neighborhood normalization [10].

Our GCN-SOAN differentiates from vanilla GCN in various
ways: (i) GCN-SOAN supports weighted graphs as opposed
to GCN which solely is designed for unweighted graphs; (ii)
it has asymmetric normalization as opposed symmetric nor-
malization. These properties well-equip our GCN-SOAN
to aggregate the information from multi-hop neighborhoods
(e.g., neighbors, neighbors of neighbors, and so on) of SOAN,
thus successfully capturing various assessment behaviors and
patterns as evidenced in our experiments below.

Richer data as node-level features. To incorporate richer
data for users (e.g., grader’s profile, reviewer’s expertise
level, reviewer’s interest, etc.) and items (e.g., textual or
visual information) in peer assessment systems, our GCN-
SOAN can readily accommodate those information in the
form of their node-level features. For example, the expertise
level of peers can be represented as the one-hot encoding
for initial embeddings. These initial embeddings can be ex-
tended with any other type of peers’ auxiliary information
(e.g., education, age, sex, etc.). Similarly, initial embeddings
of items can accommodate item features (e.g., the keywords
for papers, textual features extracted from a paper, etc.).

Learning. Given the SOAN of G and a small training set of
ground-truth valuations VD, we learn GCN-SOAN parame-
ters by minimizing the mean square error of its predictions:

L(θθθ|G,D) = 1
|D|
∑|D|
i=1

(
vi − f (i|θθθ,G)

)2
, where |D| is the

number of items in the training dataset, and f (i|θθθ,G) is
the estimated valuation of GCN-SOAN for item i. This loss
function can be minimized by gradient-based optimization
techniques (e.g., stochastic gradient descent, Adam, etc.).

As opposed to many existing peer assessment systems with
unsupervised learning approaches (e.g., [19, 4, 27]), we de-
liberately have adopted a semi-supervised learning approach
for predicting ground-truth assessment. This choice offers
many advantages at some cost of access to a small training
dataset. By learning from the training data, GCN-SOAN is
well-equipped to mitigate the influence of strategic behav-
iors, assessment biases, and unreliable assessments in peer
assessment systems. Of course, the extent of this mitigation
depends on the size of training data.

3. EXPERIMENTS
We run extensive experiments on real-world and synthetic
datasets to compare our GCN-SOAN model against other
peer assessment methods. While the real-world datasets al-
low us to assess the practical efficacy of our approach, we
generate various synthetic data to assess its robustness in
various settings (e.g., strategic and biased assessments).2

Real-world dataset. The peer grading datasets of Sajjadi
et al. [23] includes peer and self grades of 219 students
for exercises (i.e., questions) of four assignments and their
ground-truth grades.3 For each specific assignment, the sub-

2See the longer version for additional experiments [17].
3The datasets can be found at http://www.tml.cs.
uni-tuebingen.de/team/luxburg/code_and_data/peer_
grading_data_request_new.php. The original datasets are
for six assignments. However, two of the datasets have
ordinal peer gradings, not applicable to our experiments.

327



Table 1: The summary statistics of real-world peer grading datasets.

Average Grades Number of

Asst. ID Ground-truth Peer Self Exercises Groups Students Items Peer grades Self grades

1 0.62± 0.27 0.70 ± 0.26 0.74 ± 0.22 3 75 183 225 965 469
2 0.71 ± 0.24 0.76 ± 0.23 0.80 ± 0.22 4 77 206 308 1620 755
3 0.69 ± 0.33 0.75 ± 0.31 0.82 ± 0.26 5 76 193 380 1889 890
4 0.59 ± 0.27 0.68 ± 0.29 0.76 ± 0.24 3 79 191 237 1133 531

missions are group work of 1–3 students, but each student
individually has self and peer graded all exercises of two
other submissions (in a double-blind setup). We treat all
data associated with each assignment as a separate dataset,
where all the submitted solutions to its exercises form the
item set A and the user set U includes all students who have
been part of a submission. We also have scaled peer, self,
and ground-truth grades to be in the range of [0, 1]. Table
1 shows the statistics summary of our datasets.4

Synthetic datasets. We discuss different models used for the
generation of our synthetic data.

Ground-truth valuation/grade generation. For all i ∈ A, we
sample the true valuation vi from a mixture of two nor-
mal distributions vi ∼ P (x;πππ,µµµ,σσσ) =

∑2
c=1 πcN (x;µc, σc),

where πππ = (π1, π2), µµµ = (µ1, µ2), and σσσ = (σ1, σ2), with πk,
µk, and σk being the mixing probability, mean, and standard
deviation of the component k.

Social network generation. We create social networks be-
tween users by Erdős-Rényi (ER) random graph G(n, p)
model: each pair of n users are connected to each other
with the connection probability of p.

Ownership network generation. For all synthetic datasets,
we randomly connect each user to just one item (i.e., one-to-
one correspondence between users and items). This setup is
in favor of existing peer assessment methods (e.g., [19, 27,
7]), which does not support group ownerships of items.

Assessment network (or peer grades) generation. To gener-
ate peer assessment for each item i ∈ A, we first randomly
select a set of k users N(i) ⊂ U such that |N(i)| = k. Then,
for each u ∈ N(i), we set u’s assessment for item i, denoted
by Aui, using one of these two models. The strategic model
sets Aui = 1, if the grader u is a friend of the user j who owns
the item i (i.e., suj .oji = 1); otherwise Aui comes from a nor-
mal distribution with the mean of vi and standard deviation
of σH . This implies that friends collude to peer grade each
others with the highest grade, but would be relatively fair
and reliable in assessing a “stranger.” The bias-reliability
model draws Aui from the normal distribution N (x; µ̂, σ̂)
with the mean µ̂ = vi + α and σ̂ = σmax(1− βvl), where vl
is the true valuation of item l owned by user u, and σmax is
the maximum possible standard deviation (i.e., unreliabil-
ity) for peer graders. Here, the bias parameter α ∈ [−1, 1]
controls the degree of generosity (for α > 0) or strictness
(for α < 0) of the peer grader. The reliability parameter β

4While GCN-SOAN can easily accommodate user/item fea-
tures, we were not able to explore its full potential due to a
lack of access to datasets with such features.

controls the extent that the reliability of the grader is cor-
related with his/her item’s grade (i.e, the peer graders with
higher grades are more reliable graders). The inductive bias
of many peer assessment models (e.g., [27, 7, 19]) include
the assumption that the grader’s reliability is a function
of his/her item’s grade. Our bias-reliability model allows
us to generate synthetic datasets with the presence of this
assumption. So we can compare our less-restrictive GCN-
SOAN with those models tailored to this specific assumption
in such datasets.

Baselines. We compare the performance of our GCN-SOAN
model with PeerRank [27], PG1 [19], RankwithTA [7], Van-
couver [4], Average, and Median. Average and Median (resp.)
outputs the average and median (resp.) of each item’s peer
grades as its predicted evaluation. As PeerRank, PG1, and
RankwithTA treat users and items interchangeably, they
can’t be directly applied to our real-world data with individ-
ual assessments on group submissions. For these methods,
we preprocess our real-world dataset by taking the average
of the grades provided by a group’s members for a particular
submission as the group assessment for the submission. For
the PeerRank and PG1, we have used the same parameter
settings reported by the original papers. The parameters
for RankwithTA and Vancouver are selected by grid search
with multiple runs, since the optimal parameters either were
not reported or result in non-competitive performance.5

Experimental setup. We implement GCN-SOAN based on
PyTorch [18] and PyTorch Geometric [8].6 For all experi-
ments, we use two GCN-SOAN convolutional layers with an
embedding dimension of 64 and ELU as activation functions
of all hidden layers. We train the model for 800 epochs with
Adam optimizer [13] and a learning rate of 0.02. We initial-
ize the node embeddings with vectors of ones. We use Monte
Carlo cross-validation [33] with the training-testing splitting
ratio of 1:9 (in synthetic data) or 1:4 (in real-world data),
implying that just 10% or 20% data is used for training and
the rest for testing. To make our results even more robust,
we run all tested methods (our model and baselines) on four
random splits and report the average error over those splits.
For each random split, we compute the root mean square
error (RMSE) over testing data as the prediction error.

Results: Real-World Datasets. To assess the effectiveness
of GCN-SOAN in predicting ground-truth valuations, we
compare it against the baseline methods on eight real-world

5We set the Vancouver’s precision parameter to 0.1. For
RankwithTA, we set 0.8 and 0.1 (respectively) for the pa-
rameters controlling the impact of working ability on grading
ability and grading ability on the grade (respectively).
6The implementation of GCN-SOAN can be obtained from:
https://github.com/naman-ali/GCN-SOAN/
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Table 2: Root mean square error of various methods over two classes of real-world datasets. The first and second best are shown
with dark and light gray backgrounds, respectively. ↑ and ↓ denote better and worse than Average. GCN-SOAN (ours) is the
only method that consistently has outperformed Average for all datasets. Results are averaged over three runs.

Peer evaluation Peer and self evaluation

Model Asst. 1 Asst. 2 Asst. 3 Asst. 4 Asst. 1 Asst. 2 Asst. 3 Asst. 4

Average 0.1917 0.1712 0.1902 0.1989 0.1944 0.1681 0.2023 0.2117
Median 0.1991 ↓ 0.1843 ↓ 0.2047 ↓ 0.2250 ↓ 0.2111 ↓ 0.1750 ↓ 0.2333 ↓ 0.2538 ↓
PeerRank 0.1913 ↑ 0.1762 ↓ 0.2235 ↓ 0.2087 ↓ 0.1888 ↑ 0.1721 ↓ 0.2203 ↓ 0.2168 ↓
PG1 0.1919 ↓ 0.1669 ↑ 0.2110 ↓ 0.2161 ↓ 0.2009 ↓ 0.1680 ↑ 0.2111 ↓ 0.2304 ↓
RankwithTA 0.1922 ↓ 0.1903 ↓ 0.2183 ↓ 0.1740 ↑ 0.1884 ↑ 0.1845 ↓ 0.2137 ↓ 0.1792 ↑
Vancouver 0.1851 ↑ 0.1688 ↑ 0.1951 ↓ 0.2071 ↓ 0.1815 ↑ 0.1672 ↑ 0.1945 ↑ 0.2101 ↑
GCN-SOAN (ours) 0.1795 ↑ 0.1673 ↑ 0.1869 ↑ 0.1822 ↑ 0.1778 ↑ 0.1621 ↑ 0.1840 ↑ 0.1821 ↑

datasets. These datasets differentiate on (i) which assign-
ment dataset is used and (ii) whether both peer and self-
grades are used or only peer grades. For GCN-SOAN, we
just create an assessment network, thus allowing us to mea-
sure how the assessment network alone can improve the
predication accuracy. As shown in Table 2, our GCN-SOAN
model outperforms others in five datasets and ranked sec-
ond in remaining ones with a small margin. RankwithTA
and PG1 are the only models that slightly outperform GCN-
SOAN for those three datasets. Notably, GCN-SOAN is the
only model which consistently outperformed the simple Av-
erage benchmark. This observation is consistent with Saj-
jadi et al.’s findings [23] on the same dataset that the existing
machine learning methods (not including ours) could not im-
prove results over simple baselines. However, the conclusion
does not hold anymore as our machine learning GCN-SOAN
approach could consistently improve over simple baselines.
This improvement mainly arises from the expressive power
and generalizability of GCN-SOAN (discussed in Section 2).

Results: Synthetic Data with Bias-Reliability. We run an ex-
tensive set of experiments with the bias-reliability peer grade
generation model to assess our GCN-SOAN under various
peer assessment settings. For these experiments, we define
a default setting for all parameter of synthetic generation
methods (e.g., bias parameter α, reliability parameter β,
etc.). For each experiment, we fix all parameters except
one; then, by varying that parameter, we aim to understand
its impact on the performance of GCN-SOAN and other
baselines. Our default setting includes a number of users
n = 500 and number of items m = 500; random one-to-
one ownership network; µµµ = (0.3, 0.7), σσσ = (0.1, 0.1), and
πππ = (0.2, 0.8) for the ground-truth generation method;7 the
number of peer grades k = 3,8 σmax = 0.25, bias parame-
ter α = 0, and reliability parameter β = 0 for assessment
network generation; and no social network generation.9

Figure 2a shows how the prediction error changes with the
number of peer graders k while the other parameters are
fixed to the default setting. Unsurprisingly, the performance

7This setting for ground-truth distribution is motivated by
two-humped grade distribution in academic classes.
8This choice of 3 is motivated by the fact that most practi-
cal applications (e.g., conference review or peer grading in
classrooms) do not require more than 3 peer assessment per
item due to time-consuming nature of assessment processes.
9We have run some other experiments with different default
settings. The results were qualitatively similar.

of all methods improves with k. GCN-SOAN not only out-
performs others for any k, but also exhibits significant im-
provement over others for a relatively small k (e.g., k ≤ 4).
This superiority of GCN-SOAN with minimal number of
peer graders is its strength to make peer assessment suitable
and practical for different applications, as so many peer as-
sessment requests will put unnecessary stress and burden on
users, thus impeding the practicality of the system.

Figure 2b illustrates the errors for each model while changing
the bias parameter α (and keeping other parameters fixed
to default). GCN-SOAN performs significantly better than
other models for any bias values, including generous (α > 0)
and strict graders (α < 0). GCN-SOAN owes this success
to its ability to learn students’ grading behavior by leverag-
ing a small portion of ground truth grades and assessment
network structure. These experiments show that our model
could be a great choice for those peer assessment settings
where the peer grades are intentionally or unintentionally
overestimated/underestimated.

Figure 2c reports the errors for various values of reliabil-
ity parameters β. Recall that the β controls the extent
that the accuracy of each peer in his/her assessments is cor-
related with his/her item’s grade. Our results show that
GCN-SOAN is very competitive to other models, even those
built based on this correlation assumption (e.g., [27, 19]).
We observe that only when β > 0.8, PeerRank outperform
GCN-SOAN. One might argue that β > 0.8 is implausible
scenario in practice. However, this result suggests that our
model is still competitive choice for settings in which peer
assessment accuracy is correlated with peer success.

To study how various ground-truth generation distribution
impacts the prediction error of various method, we first
change the default biomodal mixture of normal distributions
(for ground truth generation) to a normal distribution by
setting µ1 = µ2 and σ1 = σ2 = 0.15. Then, we only vary the
mean of distribution while other parameters are fixed to de-
fault. As shown in Figure 2d, GCN-SOAN consistently out-
performs others regardless of the underlying ground-truth
distribution. Notably, PeerRank and RankwithTA do not
perform well when most users own items with low grades.

Results: Synthetic Data with Strategic Assessment. We study
the performance of all peer assessment methods under the
strategic model discussed above. For this set of experiments,
we define this default setting: number of users n = 500 and
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Figure 2: Root mean square errors of various methods, synthetic data with bias-reliability peer generation model, default setting
for all parameters but varying (a) number of peer graders k, (b) grading bias α, (c) reliability parameter β, or (d) ground-truth
mean µ. Average over four runs.

Figure 3: Average of root mean square errors, synthetic data
with strategic peer grade generation model and random graph
model.

number items m = 500; random one-to-one ownership net-
work; µµµ = (0.3, 0.7), σσσ = (0.1, 0.1), and πππ = (0.2, 0.8) for the
ground-truth generation method; the number of peer grades
k = 3 and σmax = 0.25 for assessment network generation
by the strategic model; and ER random graph model with
n = 500 and p = 0.05 for social network generation. We
only vary the connection probability p while keeping other
parameters fixed to study how the connection density of col-
luding social networks impact the accuracy of peer assess-
ment methods. Figure 3 show the outstanding performance
of our model compare to other benchmarks and illustrate
how our model is more resilient to colluding behaviors. This
result suggest that GCN-SOAN is well-eqiupped to detect
conflict-of-interest behaviors and mitigate the possible im-
pact of any strategic behaviors.

Discussion. Our experiments show that GCN-SOAN learns
very well various grading behaviors, even when graders have
intentional or unintentional biases in their evaluations. We
also observe that our GCN-SOAN can outperform other
benchmarks even when their main inductive biases are strongly
present in the dataset (e.g., when the grading ability of users
are strongly correlated to the quality of their own work).

Our set of benchmarks, in spite of being very competitive,
does not cover all ML-based peer assessment methods. We
make a few remarks about this. PG3 [19] is missing in our
experiments as its implementation was not publicly available
and we could not properly implement it to gets its compet-
itive performance. However, we expect that GCN-SOAN
outperforms PG3 since the relative improvements of GCN-

SOAN over PG1 is 10.27% (on average) compared to the
average relative improvement of 1.76% for PG3 over PG1
(as reported in their original paper [19]). We also spec-
ulate that the other traditional ML-based methods might
not outperform our GCN-SOAN for at least one reason:
except graph neural networks, most ML methods assume
that the data points (e.g., peer grades, ground-truth valu-
ation, etc.) are identically and independently distributed
(i.i.d.). However, as argued earlier, the peers’ grading be-
haviors, ownerships, social connections, and valuations of
their owned items are all dependent on each other. Ignor-
ing these dependencies in machine learning methods with
i.i.d. assumptions make them less competitive to our GCN-
SOAN in which these dependencies are well-expressed by our
proposed SOAN and well-exploited by our proposed graph
neural network algorithm. This might explain why the lit-
erature has even been thin in successfully exploring other
advanced machine learning models and Sajjadi et al. [23]
concluded that machine learning methods cannot improve
over simple heuristics (e.g., average).

4. CONCLUSION AND FUTURE WORK
We represent peer assessment data as a weighted multi-
relational graph, which we call social-ownership-assessment
network (SOAN). Our SOAN can easily express many dif-
ferent peer assessment setups (e.g., self assessment, peer
assessment of group or individual work, etc.). Leveraging
SOAN, we introduce a modified graph convolutional net-
work approach, which learns peer assessment behaviors, to
more accurately predict ground-truth valuations. Our ex-
tensive experiments demonstrate that GCN-SOAN outper-
forms state-of-the-art baselines in a variety of settings, in-
cluding strategic behavior, grading biases, etc.

Our SOAN model provides a solid foundation for the broader
investigation of graph neural network approaches for peer
assessments. Our GCN-SOAN can be extended to mitigate
the over-smoothing effect observed in our experiments, or to
include a different set of network weights for each relation
type of social, assessment, and ownership. Another promis-
ing direction is to assess the effectiveness of GCN-SOAN or
its extensions on real-world assessment data, with the pres-
ence of social network data. Finally, it would be interesting
to collect data with richer node features in order to evaluate
how node features can further improve our GCN-SOAN.
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ABSTRACT 
Considerable amount of research in educational data mining has fo-
cused on developing efficient algorithms for Knowledge Tracing 
(KT). However, in practice, many real-world learning systems used 
at scale struggle to implement KT capabilities, especially if they 
weren’t originally designed for it. One key challenge is to accu-
rately label existing items with skills, which often turns out to be a 
herculean task. In this paper, we investigate whether an increas-
ingly popular approach to knowledge tracing, the use of neural 
network models, can be a partial solution to this problem. We con-
ducted a case study within a commercial math blended learning 
system. Using the data collected from middle school students’ use 
of the system over two years, we compare the performance of a 
neural network-based KT model (DKVMN) in three scenarios: 1) 
with the original (possibly unreliable) system-provided skill tags, 
2) with coarser-grained domain tags based on state standards, and 
3) without inputting any mappings between content and skills. Our 
results suggest that including the system-provided skills in the 
training of the model leads to the worst performance. The best per-
formance is observed when the skills are entirely disregarded. This 
supports the possibility of bypassing the laborious step of item-skill 
tagging in real-world learning systems which were not originally 
designed to work with KT models, especially if the goal is only to 
predict the performance of a student on future items. We discuss 
the implications of our findings for practice and future research. 

Keywords 
Knowledge Tracing, Skill Tagging, Deep Learning, DKVMN, 
Adaptive Learning  

1. INTRODUCTION 
Knowledge tracing has become an essential part of modern adap-
tive learning systems and even many non-adaptive learning 

systems. The ability to infer a students’ latent knowledge of a skill 
-- or at least predict their performance on future items within the 
skill -- has several applications. One of the key applications of 
knowledge tracing is mastery learning [7]. A system using 
knowledge tracing for mastery learning divides content into skills 
(sometimes also called concepts or knowledge components), and 
once a student starts a skill they cannot advance beyond it without 
demonstrating that they have mastered the skill. Knowledge tracing 
is also often used for creating reports for teachers [31] or open 
learner models for students [4]. A third use of knowledge tracing is 
as a component in automated detectors that recognize a range of 
student behaviors or states, including help-seeking strategies [1], 
and disengaged behaviors such as gaming the system [18].  

While the first learning systems to use knowledge tracing were de-
signed with that function in mind [2], many real-world learning 
systems used at scale today were not designed with knowledge trac-
ing or adaptive learning originally in mind. Increasingly, these 
systems are being retrofit to use some form of these types of func-
tionality [16]. One of the key ways that these systems often differ 
from learning systems originally designed for use with knowledge 
tracing is in how content is mapped to skills (often referred to as 
skill-item mappings or as KC mappings -- KC stands for knowledge 
component – [13]). Systems designed from the start to use KT first 
select what skills are to be included, and then develop items tailored 
to those skills [2]. Afterwards, there may even be a process of using 
data to refine the KC mapping, attempting to improve the correla-
tion of items to each other while maintaining human 
comprehensibility of the overall mapping [12, 14, 15]. By contrast, 
when content is retrofit for use with knowledge tracing, items are 
created first, and then the items are labeled with skills.  

Labeling an existing item with a skill is much harder than creating 
a new item for a skill. Often, items have been developed by multiple 
authors over time, or have come from different original sources 
such as different textbooks. Mapping this disparate content -- some-
times tens of thousands of items -- to a set of skills can be a 
herculean task. In many cases, items have been tagged in terms of 
governmental curricular standards, but these standards are typically 
much coarser-grained than the types of skills used within 
knowledge tracing models [6]. Therefore, there is a challenge to 
using many of the classic approaches to knowledge tracing, used at 
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scale in past real-world systems, with content not initially designed 
with this use in mind.  

In this paper, we investigate whether an increasingly popular ap-
proach to knowledge tracing, the use of neural network models [12, 
17, 33], can be a partial solution to this problem. Unlike earlier ap-
proaches to knowledge tracing (i.e. [8, 19]), neural network models 
do not require a KC model in order to predict student performance 
on future items. As such, it may be possible to bypass the step of 
developing a KC model entirely, at least for goals such as choosing 
what problem to give the student next. In investigating this, we se-
lect the DKVMN (Dynamic Key-Value Memory Network – [33]) 
algorithm, a generally successful early approach to neural network-
based knowledge tracing, as it has the ability to both use an existing 
KC model and to fit a new KC model, giving us the ability to com-
pare between using a KC model known to have considerable 
limitations and using no KC model at all.  

Towards this goal, we conduct a case study within a commercial 
math blended learning system. Using the data collected from mid-
dle school students’ use of the system over two years, we compare 
the performance of KT models in three scenarios: 1) with the orig-
inal (possibly unreliable) system-provided skill tags, 2) with 
coarser-grained domain tags based on state standards, and 3) with-
out inputting any mappings between content and skills. Our results 
suggest that including the system-provided skills in the training of 
the model leads to the worst performance. The best performance is 
observed when the skills are entirely disregarded. This supports the 
possibility of bypassing KC modelling in real-world learning sys-
tems which were not originally designed to work with KT models, 
especially if the goal is only to predict the performance of a student 
on future items.  

2. MOTIVATION 
2.1 Knowledge Tracing 
There have been a range of algorithms used for knowledge tracing 
over the last three decades. The first widely-used knowledge trac-
ing algorithms relied on a KC model, as mentioned in the 
introduction. Perhaps the first widely-used algorithm for 
knowledge tracing was Bayesian Knowledge Tracing [8], based on 
a simple Markov Model (and also mathematically equivalent to a 
simple Bayesian Network – [27]). More recently, models based on 
logistic regression have become popular in the literature [5, 20] alt-
hough they remain rare within real-world use (but see [16]). 
Algorithms related to item response theory (IRT) such as Elo [21] 
and temporal IRT [30] have also become more widely seen in the 
literature recently, and are used at scale in several learning systems 
[3, 22, 30]. While Elo and temporal IRT can be used without a KC 
model, typically a separate Elo model is used for each of several 
skills.  

A contrasting set of approaches uses neural networks to avoid the 
need for a KC model. The first member of this family of algorithms, 
deep knowledge tracing [24], discovered complex item-to-item 
mappings as part of predicting future performance on items. Later 
approaches such as DKVMN introduced the ability to use or fit 
skill-item mappings (KC models) as well [33]. The last five years 
have seen a proliferation of knowledge models based on neural net-
works [11, 17, 29, 33], gaining increasing ability to predict future 
performance. However, due to concerns about unpredictable be-
havior [9, 32], and the challenge of using this type of models for 
mastery learning and reporting on student skill (as discussed above, 
the main applications of knowledge tracing in contemporary learn-
ing systems), neural networks have been much more popular in the 
published literature on knowledge tracing than in actual real-world 

use. One of the key limitations to neural network models in this 
regard has been that they predict correctness on specific problems 
but do not map that back to inferring proficiency on human-inter-
pretable skills. Recent extensions have taken this step, suggesting 
the potential for broader real-world use and uptake of neural net-
work knowledge tracing models. In particular, an extension in [28] 
can be applied to any neural network knowledge tracing model for 
which there is a KC model available (even at the coarse level of 
state standards).  

2.2 Case Study: A Commercial Learning Sys-
tem with Imperfect Skill Tags 

This study uses data from a commercial math blended learning plat-
form used in schools across the United States by students from 
kindergarten through Algebra II. This platform allows teachers to 
assign problem sets to students by standards and topics, and assign-
ments can be personalized based on the teacher’s assessment of a 
student’s progress. The system measures a student’s mastery of un-
derlying mathematical concepts through Bayesian Knowledge 
Tracing (BKT), and may suggest more foundational or advanced 
assignments based on a student’s performance. In this way, the sys-
tem contains several elements frequently seen in intelligent tutoring 
systems. Assignments may be worked on at home or at school, and 
guidance provided by the creators of the platform suggest that stu-
dents should work in the platform for approximately 30 minutes per 
week. 

The learning platform has two classes of problems, authored in dif-
ferent ways. In the “classic” problems, students answer multiple-
choice, multi-step word problems, with a series of scaffolded, 
smaller word problems triggered when the student answers the ini-
tial problem incorrectly. The second “new” class of problems tends 
to be more interactive: for example, students plot points and lines 
on a graph, rotate shapes, and sort statements or numbers using 
drag-and-drop functionality. These problems tend to be open-re-
sponse and typically lack the kind of scaffolding seen in the classic 
problems.  

The difference in the content within this system can be attributed to 
the development of the content in two phases. In a first phase of 
development, a team of math content specialists created multiple-
choice items with scaffolding for incorrect answers (based on the 
model in [26]). In this model, students that answer an item correctly 
will move onto the next problem, but if a problem is answered in-
correctly initially, the problem will be broken into a series of 
additional, smaller questions that scaffold an effective set of prob-
lem-solving steps. The math content specialists tagged each item 
with a set of skills based on mathematics standards. After the ac-
quisition of the system by a different company, and the subsequent 
departure of the original development team, a different approach 
was adopted to build out additional content for the same courses. In 
this new approach, existing content created by an outside company 
was added to the system. This additional content had more item 
types, as discussed above. However, this new content did not use 
the same scaffolding model as the original content. Items had been 
tagged by the outside company according to the same overall math-
ematics standards, but there were considerable inconsistencies and 
incompatibilities between the two tagging approaches. The result 
was an overall set of skill tags that were of uncertain usability. 

While the case of a system being acquired by a different company 
and adopting a new process for content is perhaps somewhat unu-
sual, the overall problem of content and skill tags being developed 
by different teams over time is not unusual. Many contemporary 
online learning systems integrate data from different textbooks, 
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shift the membership of content authoring teams over the span of 
many years, and tag content according to multiple state standards 
and internal content schemas. While many of the systems which are 
most heavily published on at this conference (and related confer-
ences) do not have these issues, it is likely that the majority of 
learning systems used at large scale suffer from these issues to at 
least some degree.  

3. METHODS 
3.1 Data Collection 
The analyses presented here are based on data collected as part of 
a larger, exploratory study on the implementation of the blended 
learning platform discussed in section 2.2. Though the focus of the 
study was on 6th-8th grade students, we also collected data from 
sections of Algebra I and Geometry students when a teacher taught 
across several grade levels and wanted to use the platform across 
their classes. These data were collected in the 2018-19 and 2019-
20 school years from students located in 19 schools across Texas. 
These schools tended to be located in less populated areas, with 
11% of schools in the sample in cities (according to Federal classi-
fication), 5% of schools in the sample in suburbs, 26% in towns, 
and 58% in rural areas. 41% of the students in our sample schools 
identified as white, 9% as African-American/Black, 46% as His-
panic, and 1% as Asian. 60% of students in sample schools 
qualified for free/reduced price lunches. 

Data collected occurred across two years, with 38 teachers and 
2069 students participating in the first year, and 14 teachers and 
743 students participating in the second year. Teachers were in-
structed to have students engage with the blended learning software 
for approximately 30 minutes each week, though use of the system 
diminished over the course of the school year (cf. [23]). The pri-
mary goal of the larger study was to examine the naturalistic 
relationships between learning, engagement, and classroom imple-
mentation, so researchers interfered very little in how teachers and 
students decided to use the platform. Teachers used the software 
differently: some teachers sat their students in front of the system, 
offering little help, while others used the system while teaching to 
the class, talking about the problems presented. Some teachers dis-
liked the scaffolding problems and checked students’ answers to 
top-level problems to avoid their students receiving scaffolding 
problems. In some classes, students asked each other for help, while 
in others they were expected to work alone.  

3.2 Descriptive Statistics 
This analysis involves data from 2564 students. Table 1 presents 
the number of problems, skills, and first attempts for classic and 
new content. The overall correctness of students’ first attempts on 
problems is 32% across all the problems. However, when the con-
tent is categorized based on the new and classic content (see 
description in Section 2.2), we see that the percentage correctness 
is higher for classic content (59%) with the new content having a 
much lower correctness (15%). There are several possible explana-
tions for this finding. Students may be more likely to get 
scaffolding problems correct than initial problems, as scaffolding 
problems are designed to have lower difficulty.  In addition, the 
more interactive problems often require the student to take several 
actions or input multiple steps in order to arrive at the correct final 
answer, which creates more opportunities for mistakes. Due to the 
clear differences in these two types of learning content, we will 
look at these separately in our final experiment.  

 

Table 1. Total number of problems, skills, first attempts, and 
percentage correctness for all content, classic content, and new 
content in the data used in this analysis 

Content 
Type 

#prob-
lems 

#skills #first at-
tempts 

%correct 

All content 7252 2,237 110,214 32% 

Classic con-
tent only 

1764 532 42,353 59% 

New con-
tent only 

5488 1,705 67,861 15% 

 

3.3 DKVMN 
In this analysis, we use Dynamic Key-Value Memory Networks 
(DKVMN; [33]) for knowledge tracing. DKVMN is a KT model 
developed based on neural networks and has demonstrated im-
proved performance compared to traditional KT models, such as 
Bayesian Knowledge Tracing or Performance Factors Analysis [25, 
28, 33]. In DKVMN, the model employs two matrices to predict 
student performance on items and estimate mastery on a set of au-
tomatically-derived skills. By learning from the relationships 
between the two matrices (i.e, a static matrix that stores skill rela-
tionships and a dynamic matrix that stores and updates mastery 
level), the algorithm generates underlying skills associated with 
items and identifies connections between them, creating a skill 
map. DKVMN utilizes the map to make predictions on student per-
formance and estimates mastery learning, as opposed to the human-
generated skill-item mapping that the traditional KT models rely 
on. Given DKVMN's capability of automatically generating under-
lying skills and exploiting the relationships between them, we are 
interested in investigating how the algorithm can be applied to han-
dle data with unreliable skill tagging.  

4. ANALYSIS 
The goal of our analysis in this paper is to investigate the use of a 
neural network-based KT model (DKVMN) that doesn’t require 
skill tags, for a system where the skill tags may be unreliable or 
inconsistent. Accordingly, we compare the performance of KT 
models with and without mappings between content and skills. 
Since we don’t have out-of-system performance data on students to 
validate knowledge estimates, we infer performance within the sys-
tem rather than outside the system (note that DKVMN can also be 
used to predict out-of-system performance – [28]). Thus, we vali-
date the model based on its ability to predict a student’s correctness 
on the next problem. We use [33]’s implementation of the DKVMN 
model with a set of hyperparameters that have been reported to pro-
duce optimal outcome for a previously collected dataset (the 
ASSISTments2009 data set in [33]), including a state dimension of 
50 and a memory size of 20. We use this previously established set 
of hyperparameters instead of tuning them, to avoid overfitting. In 
addition, since the goal of the paper is to study whether the skill 
tags are useful and whether DKVMN can compensate for a lack of 
good skill tags in a data set of this nature, tuning the hyperparame-
ters to find the best performing KT model is not related to the goals 
of the analysis. We evaluate our model using AUC ROC. We per-
form a student-level 10-fold cross validation, and the reported 
results are the average across the CV folds.  

Using this approach, we conduct the following three kinds of anal-
ysis: 

1) Experiment #1 (Default-Skills): In this experiment, we 
chose to include the initial skill mapping provided by the 
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learning system during the training of the DKVMN 
model. The system provides a total of 2237 skills.  

2) Experiment #2 (Domains): In this experiment, instead of 
using the default skills, we group the skill tags provided 
by the learning system into coarser-grained domains de-
fined by the Common Core Standards [6].  We derive 
domain information from the nomenclature used within 
the standards (e.g., exponential functions, quadratic 
equations, and two-dimensional shapes). This reduced 
the 2237 skills to 24 domains.  

3) Experiment #3 (No-Skill): In this experiment, we disre-
gard the skill tags entirely and instead treat all problems 
as a single skill. As discussed above, DKVMN will then 
find a latent mapping of skills to the problems on its own. 

We repeat these three experiments for three data setups: 1) with all 
content, 2) classic content only, and 3) new content only. In the last 
two settings, we separate the training and testing data to only in-
clude new content or classic content since we have some evidence 
that data for these two types of content is qualitatively different (see 
discussion in Section 2.2).  

5. RESULTS 
Table 2 presents the results of our experiments. Here we summarize 
our observations: 

1) Experiment #1 (Default-Skills): We observe that includ-
ing the system-provided skills in the training of the 
DKVMN model leads to the worst performance in all 
three cases (all content, classic content, new content). For 
all content and classic content models, the model perfor-
mance as measured by cross-validated AUC ROC is 
between 0.5 and 0.6 (0.564 and 0.532), relatively modest 
improvements on chance and much lower than is typi-
cally seen for DKVMN (e.g. [25, 33]). 

2) Experiment #2 (Domains): When the system-provided 
skills are grouped into coarser-grained domain mappings, 
we observe a big improvement in DKVMN’s perfor-
mance. For example, there is a 0.206 increase in AUC 
when the model trained on all content uses the domain 
tags instead of skill tags (0.770 vs. 0.564). Similarly, 
there is a big increase in AUC of 0.233 for the model 
trained on new content (0.900 vs. 667). However, there 
is a relatively smaller increase in AUC of 0.084 for the 
model trained on classic content (0.616 vs. 0.532). 

3) Experiment #3 (No-Skill): Finally, disregarding the skills 
entirely leads to the best performance in all three cases: 
0.821 for all content, a still relatively unimpressive 0.634 
for classic content, and 0.920 for new content.   

4) If we compare the results of the DKVMN models sepa-
rately for the new and classic content, we observe that the 
model trained only on new content perform much better 
than models trained only on classic content (e.g, 0.667 
vs. 0.532 with default skills and 0.920 vs. 0.634 with no 
skills) 

Table 2. Average AUC of DKVMN models across 10-fold cross-
validation for the four experiments conducted using default 
skills (#1), domains (#2), no skills (#3), and for new and classic 
content separately. 

Content Type Default-Skills 
(exp #1) 

Domains 
(exp #2) 

No-Skill 
(exp #3) 

All content 0.564 0.770 0.821 

Classic con-
tent only 

0.532 0.616 0.634 

New content 
only 

0.667 0.900 0.920 

 

Overall, we also see that the DKVMN model trained without the 
skill information on all content (0.821) or new content (0.920) has 
a comparable or better performance than the best-performing mod-
els reported on some benchmark datasets (0.827 for Synthetic-5, 
0.816 for ASSISTments2009, 0.727 for ASSISTments2015, 0.828 
for Statics2011; [33]). With the exception of ASSISTments2015 
dataset, the best performing models for the other three datasets have 
achieved AUCs between 0.80 and 0.83. Our best-performing model 
for all content combined (0.821) is comparable to the performance 
of the best models on these benchmark datasets. The best model 
trained only on new content has higher performance (0.920) than 
the best models on benchmark datasets. However, the best model 
for the classic content has much lower performance (0.634) than 
previous uses of DKVMN.  

6. DISCUSSION 
Knowledge tracing models are often used in learning systems to 
estimate students’ knowledge of a skill. In some cases, this is oper-
ationally defined as simply predicting whether or not a student will 
get the next problem (or a specific problem) right. Accordingly, 
considerable amount of research has focused on developing effi-
cient algorithms for knowledge tracing. However, in practice, many 
real-world learning systems used at scale are difficult to implement 
knowledge tracing for, especially if the system or content was not 
originally designed for use with a skill model. The key challenge is 
to accurately label existing items with skills, which often turns out 
to be a herculean task (Section 1). Little research has explored ways 
to address this practical constraint limiting the use of knowledge 
tracing models at scale. In this paper, we investigate whether an 
increasingly popular approach to knowledge tracing, the use of neu-
ral network models, can be a partial solution to this problem. 

Our analysis investigates the use of a neural network-based KT 
model (DKVMN) that doesn’t require skill tags (and can even au-
tomatically assign its own skill tags) to bypass the step of 
retrofitting content with skills. We conduct a case study of a com-
mercial math blended learning system which has a potentially 
unreliable and/or inconsistent skill tagging, due to the content and 
skill tags being developed by different teams over time (Section 
2.2). We collected data from 6th-8th grade students’ system usage 
over two years within 19 schools across Texas. We compare the 
performance of DKVMN in three scenarios: 1) with the potentially 
unreliable default system-provided skill tags, 2) with coarser-
grained domain tags based on state standards, and 3) without input-
ting any mappings between content and skills. We also investigate 
differences in predictive performance for two disparate content 
types in the system: classic content (multiple choice, with scaf-
folds) and new content (more interactive, open-response, with no 
scaffolds).  

Our results suggest that including the system-provided default 
skills in the training of the DKVMN model leads to the worst per-
formance at predicting future student performance within the 
learning system. The AUC ROC for this case is much lower than 
what is typically seen for DKVMN. Big improvements in perfor-
mance are observed when the system-provided skills are grouped 
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into coarser-grained domain mappings. However, the best perfor-
mance is obtained when the skills are entirely disregarded. To our 
surprise, there is a noticeable difference in the improvement be-
tween the classic and new content, with relatively smaller increase 
in AUC for the model trained on classic content.  

6.1 Implications 
The objective of our investigations was to explore the possibility of 
bypassing the herculean task of item-skill tagging (KC model) for 
real-world learning systems which were not originally designed to 
work with KT models. Our results provide some support to this 
possibility, especially if the goal is only to predict the performance 
of a student on future items. For example, if a KT model is being 
developed for a system for optimal next problem selection, using a 
neural network-based model like DKVMN and ignoring the skill 
tags may be more effective than using unreliable system-provided 
skills.  

However, our results were not consistent across all content, sug-
gesting that this approach may not be sufficient for all legacy 
content. Despite using DKVMN, the best model for classic content 
still achieves an AUC that is much lower than is typically seen for 
neural network-based KT models. Therefore, careful consideration 
is needed before making the decision on deploying such a model to 
make real-time decisions on what content the student will see next. 
In comparison, the DKVMN model trained on new content without 
any skill information is at par with the best models on benchmark 
KT datasets. It is difficult at this point to explain why DKVMN was 
so much more successful for new content than for classic content. 
There is no obvious reason why either of the two clear attributes of 
the older content – scaffolding problems and the use of multiple-
choice – would lead to poorer prediction by DKVMN, given the 
past successful use of DKVMN and related algorithms on content 
with these attributes. 

Though these findings suggest that DKVMN may be useful for leg-
acy systems with unreliable or inconsistent skill tags, it is important 
to keep a few things in mind before assuming that these findings 
will apply to other contexts. First, this is a case study of one com-
mercial learning system. These results need to be replicated in other 
content types, system design, subject matters, student de-
mographics, etc. We have made the code public at (redacted for 
review) to aid replication. Second, a better performing model may 
still not necessarily serve all student subgroups equitably. Before 
actually applying an algorithm, it is necessary to investigate it for 
potential biases that could lead to discriminatory behaviors. In this 
case, a biased KT model could deliver content below a student’s 
actual skill level more often for students from certain subgroups, 
leading to missed learning opportunities. Since neural network 
models are prone to overfitting due to their complex decision 
boundaries, it is particularly important to investigate whether a 
model like DKVMN generalizes less well for students who are un-
represented in the training data. For instance, it may be that a neural 
network model captures complex interrelationships between skills 
that only occur in students with specific past curricular experiences. 

6.2 Limitations and Future Work 
There are a few limitations to the analysis conducted in this paper. 
First, since the learning system itself made pedagogical decisions 
based on a knowledge tracing model using unreliable skill tags, the 
problems it gave students were probably not always appropriately 
chosen. As such, the data may not represent students participating 
in mastery learning (although this is also true of the data sets used 
to initially train KT for mastery learning in other commercial sys-
tems). Second, we chose to explore DKVMN because it has 

generally been reported to be successful, and generates its own skill 
mapping. A more comprehensive comparison between other neural 
network-based models could be helpful in understanding whether 
other algorithms can perform better for the old content. Lastly, be-
fore disregarding non-neural network-based KT models for the case 
discussed in this paper, it may be worth comparing these results 
with newer extensions proposed for classic KT models. For exam-
ple, future work could explore BKT variants that include skill 
refitting (cf. [12]). 

Future work also may be able to shed more light on the contexts 
where this approach does and does not work. For instance, why is 
there a noticeable difference in the improvement between the clas-
sic and new content with relatively smaller increase in AUC for the 
model trained on classic content? Exploring answers to this ques-
tion may help identify cases where this approach may be more 
efficient than others and identify ways to improve it. 

Finally, like most neural network models, DKVMN lacks easy in-
terpretation. This could make it harder for instructors to trust its 
recommendations and hard to troubleshoot. A potential solution is 
to interpret the output of the DKVMN model. Considering that 
DKVMN creates its own internal tag-concept mapping, this study’s 
results suggest that it may be worth studying those mappings in 
greater detail. Since the no-skill model outperformed the default-
skill model to such a degree in this dataset, it is likely that 
DKVMN’s distilled concepts represent accurate relationships be-
tween the problems in the data. Zhang and colleagues [33] mention 
the possibility of using DKVMN for concept discovery, but most 
subsequent work on the algorithm has instead focused on its pre-
dictive accuracy (but see [10], who discuss interpretability). 
Additional research on DKVMN’s process of concept discovery 
could not only improve its interpretability but potentially also allow 
for better automated skill tagging and more accurate student skill 
level estimation. 
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ABSTRACT
Emoji are commonly used in social media to convey atti-
tudes and emotions. While popular, their use in educational
contexts has been sparsely studied. This paper reports on
the students’ use of emoji in an online course forum in which
students annotate and discuss course material in the mar-
gins of the online textbook. For this study, instructors cre-
ated 11 custom emoji-hashtag pairs that enabled students
to quickly communicate affects and reactions in the forum
that they experienced while interacting with the course ma-
terial. Example reporting includes, inviting discussion about
a topic, declaring a topic as interesting, or requesting assis-
tance about a topic. We analyze emoji usage by over 1,800
students enrolled in multiple offerings of the same course
across multiple academic terms. The data show that some
emoji frequently appear together in posts associated with
the same paragraphs, suggesting that students use the emoji
in this way to communicating complex affective states. We
explore the use of computational models for predicting emoji
at the post level, even when posts are lacking emoji. This
capability can allow instructors to infer information about
students’ affective states during their ”at home” interactions
with course readings. Finally, we show that partitioning
the emoji into distinct groups, rather than trying to pre-
dict individual emoji, can be both of pedagogical value to
instructors and improve the predictive performance of our
approach using the BERT language model. Our procedure
can be generalized to other courses and for the benefit of
other instructors.

Keywords
Affect recognition, Course Forums

1. INTRODUCTION
Students typically experience a range of affective responses
to learning materials, taking the form of emotions, beliefs

and attitudes that have a profound effect on their learning
(and vice versa) [7]. Understanding what students are feel-
ing when they learn can, therefore, be useful for teachers
who may wish to adapt course content and/or delivery in
response to student affect [26, 18, 1].

Emoji are conventionally used in social media to enhance the
meaning of text or to be used as substitute for words [17].
When conversing through text, such as with written posts
in course forums, emoji can be a natural way for students to
express what they are feeling about the learning material.
A body of work in the social and computational sciences
has studied people’s use of emoji, and used them to facil-
itate computational tasks such as sentiment analysis and
emotion recognition [19, 13]. However, the use of emoji by
students in educational forums has been much less studied.
Our contribution is a computational analysis of students’
use of emoji in a course forum with over 1,800 of students.

Students in this course use the Nota Bene (NB) collabora-
tive annotation-based forum, which allows them to anchor
messages directly to reading material in their online course
textbook. Course instructors designed a set of 11 emoji
that allow students to communicate affective responses in
their posts, such as expressing curiosity or confusion about
topics in the course, or inviting discussion about a topic.
Students were incentivized to use these emoji by receiving
course points on their reading assignment for using at least
one emoji in their forum posts.

We provide a detailed analysis of emoji usage in the course
at the post level as well as the paragraph level in the read-
ing material that the post refers to. We find that the most
commonly used emoji request discussion and assistance from
instructors or peers, and that in some cases students com-
bine several emoji in the same post to create complex affects.
Some emoji frequently appear together in posts that are an-
chored in the same paragraph, suggesting that students may
simultaneously experience a combination of responses to the
course readings or that they choose to use multiple emoji to
express more complex affects that are not sufficiently well
represented by a single emoji.

We explore the use of computational models for classify-
ing emoji use at the individual and group level. We use a

A. Blobstein, K. Gal, D. Karger, M. Facciotti, H. Kim, J. Almah-
moud, and K. Sripathi. #lets-discuss: Analyzing student affect in
course forums using emoji. In A. Mitrovic and N. Bosch, editors,
Proceedings of the 15th International Conference on Educational
Data Mining, pages 339–345, Durham, United Kingdom, July 2022.
International Educational Data Mining Society.

© 2022 Copyright is held by the author(s). This work is distributed
under the Creative Commons Attribution NonCommercial NoDeriva-
tives 4.0 International (CC BY-NC-ND 4.0) license.
https://doi.org/10.5281/zenodo.6853101

339



pre-trained deep-learning language model (BERT) to predict
emoji at the post level. This model significantly outperforms
a Long-Short-Term-Memory (LSTM) architecture that was
used by others to predict emoji in social media model, but
was trained on the same task. [13, 3].

In agreement with course instructors, we cluster the emoji
into categories, based on the relationship between the pre-
dicted emoji probabilities that are outputted by the BERT
model. We partition the emoji into eight distinct groups (3
groups containing an emoji pair, and 5 groups containing
a single emoji). Partitioning the emoji into these distinct
groups makes pedagogical sense to the course instructors
while also improving performance when predicting emoji-
groups rather than individual emoji.

The contribution of this work is in a new computational
model for predicting student affect that was trained on stu-
dents’ self-reported emoji without requiring hand-labeling
of the data by experts. The model can directly be applied
to any discussion forum, even where emoji information is
not readily available, potentially increasing its impact. Our
work can help instructors, particularly in high-enrollment
courses, decide where and how to intervene in discussions,
and to assess where content or course revisions might be
made to improve student learning.

2. RELATED WORK
Our work relates to past studies for inferring student affect
from their online text conversations, as well as computa-
tional work that analyzes the use of emoji in social media.
We mention relevant prior works below and refer the reader
to the review of the field by Kastrati et al. [16] for additional
details.

Basic approaches to infer students’ sentiments in online con-
versations used classic NLP methods (parsing, lexical dic-
tionaries) [8, 6]. Studies showing the correlation between
affects and dropout [28] and the correlation between affects
and exams scores exist [23]. Jena [15] used classical machine
learning methods (SVMs, Naive Bayes) to learn the sen-
timent polarity (positive, negative, and neutral) from stu-
dents’ posts, as well as predicting basic students’ emotions
from text (e.g., anxiety, bored, confused, excited). Estrada
et al. [12] used deep neural networks, such as convolutional
neural network and LSTMs, as well as evolutionary gen-
erative models, in order to classify sentiment polarity and
emotions.

As noted by Kastrati et al. there are relatively few works on
recognizing students’ emotions from text, despite the ped-
agogical importance of this task, and the growing preva-
lence of online learning [26, 18]. One possible reason for this
scarcity of works is the reliance on hand-labeled data sets
which are costly and time-consuming to obtain. We directly
address this gap in our work by using students’ self-reported
affect in the form of emoji as proxies for their emotional
state.

There is growing research studying the use of emoji as tools
in computer-mediated communication [25, 17]. Emoji can
be used in two different ways. They can appear alongside
text to include an affect or to enhance the meaning of a

text. They can also be used as a substitute for words, or to
conform a new notion.

Zhang et al. [29] investigated the use of emoji among stu-
dents in the Nota Bene framework and showed the potential
of detecting students’ affects by training a classifier in or-
der to distinguish between confusion and curiosity. Geller
et al. [14] defined rules for confusion detection that are
based on students’ use of two types of emoji. They showed
that the resulting rules closely align with the ground truth
judgement of educational experts. We generalize both works
to the more challenging task of recognizing multiple affects,
and explore ways to facilitate this task by combining clus-
tering methods with input from the course staff.

Felbo et al. [13] trained an LSTM architecture to predict
emoji use in Twitter as proxies for users’ emotional states.
They show the model was able to generalize to other datasets
containing self-reported emotional states. They employed
clustering methods to learn relationships between 64 differ-
ent emoji. We go beyond this work in several ways. First,
we study the relationship between emoji use on the topic
level. Second, we use the clusters to build better predictive
models. Third, we involve course instructors in the analysis
and use them to determine the best partition.

Çöltekin and Rama [10] used SVMs to predict emojis with
a bag-of-b-grams feature set, combining both character n-
grams and word n-grams and weighted by the TF-IDF score.
This model achieved top performance in a recent competi-
tion for predicting 20 emoji on Twitter (SemEval 2018 task
2) [2]. Zhang et al. [30] used a BERT model for the emoji
prediction task that outperformed Çöltekin and Rama [10]
approach. We directly extend Zhang et al. model in adapt-
ing BERT to a biology course setting with an additional
pre-training over the course’s previous data.

3. THE NB SETTING
The Nota Bene (NB) web application is an open source so-
cial annotation tool that was developed at MIT [31]. NB
is used in hundreds of university courses and includes more
than 40,000 registered student users. The main feature of
Nota Bene gives users the ability to directly annotate course
content. Course content (PDF, HTML, or video file) is up-
loaded to the NB website by instructors. Students can anno-
tate the content by highlighting a passage in the document
(called “the marked text”) and then add a post by typing
into a text field that appears in the margin. These annota-
tions may be used to create a post or to ask questions about
the content. Classmates are encouraged to reply to other
students’ comments and to answer any posted questions.

NB posts are organized into threads, which consist of a start-
ing comment or question followed by all the replies made by
other students or instructional team to the initial annota-
tion or to the subsequent replies. The in-place structure of
the NB tool allows students to interact in the forum while
they are reading the course material and provides context
to the discussion. This structure has been shown to be ben-
eficial for learning [22]. The NB interface allows students
to express emotions and other affects in their comments via
hashtags (which are translated to graphical representations
of emoji), thus allowing students and instructors to filter
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students’ comments based on the type of affect in which
they are interested.

3.1 The FYBIO course and emoji
FYBIO (First Year BIOlogy) is a general biology course re-
quired for all life sciences majors at a large, public univer-
sity and is typically taken by students during their first year
of study. Depending on the academic term it is offered,
the course consists of 25 or 26 lectures. During this study,
the course staff posted reading materials before each lec-
ture and the students were assigned to read these materials
and to provide three substantial posts in NB before each
class. This encouraged active participation in forum discus-
sions. Students received additional credit for including at
least one emoji in at least one of their posts per lecture.
The NB interface displays the hashtags graphically using
relevant emoji symbols in students’ posts. The emoji were
designed by the course instructors to allow students the op-
tion to express emotions and opinions about course material,
as well as invite assistance or participation from their peers
or instructors. For the remainder of this paper, we will use
the term “affects” to refer to all of the above expressions.

A full list of the emoji and their intended uses is shown in
Table 1. Some examples of emoji and their intended uses are
as follows: The #i-think emoji expresses an idea to share;
the #lets-discuss emoji invites students and instructors to
contribute to a discussion; the #learning-goal emoji iden-
tifies a topic or idea related to the course objectives; the
#question emoji requests help from the course staff regard-
ing a topic.

Table 1: Hashtags in NB, their associated emoji, intended
uses and percentage of usage

Nota Bene provides instructors with a heatmap showcasing
students’ use of the different emoji (See Figure 1). Each
emoji is displayed using a different color, and the brightness
varies with respect to the density of the emoji in the posts.

Instructors can filter which emoji to display.

Figure 1: Emoji heat map in Nota Bene

Table 2: Statistics of our data set (different course instances
of FYBIO)

Statistics (Num.) Winter 2021 Summer 2021 Winter 2022 Total
Lectures 14 26 14 54
students 758 182 905 1,845

posts 28,072 15,072 36,165 79,309
emoji 23,867 10,635 28,674 62,906

Our dataset contained 79,309 unique student posts from
three instances of the FYBIO course, as shown in Table 2.
In total, 55,437 posts contained at least one emoji.

All students who participated in FYBIO courses filled a con-
sent form allowing their data to be anonymized and analyzed
for the sake of this study. The study was reviewed by the
IRB (1456274-1) and deemed exempt. All students whose
data was included in the study filled out a consent form and
opted into the study.. The high fraction of posts containing
emoji (over 70%) shows that students’ use of this tool went
beyond the requirement in the course and echos past work
demonstrating the educational benefits of affect [1, 18, 27].

4. METHODOLOGY AND RESULTS
Our goal is to provide teachers with better tools for making
sense of students’ affect in the course. To this end, we ex-
plore two main research questions. First, how do students
use emoji in their posts? Second, can we use machine learn-
ing to infer how students would have tagged posts using the
available emoji?

Our methodology addresses the first research question with
a detailed analysis of emoji usage at the post and paragraph
level, and addresses the second research question with the
design of language models for emoji classification from text.

4.1 Analysis at the post level
Table 1 shows the percentage of emoji use in FYBIO. The
table shows that the #question and #i-think emoji were
used most often. Both of these emoji reflect uncertainty
about the material and invite participation by instructors
and students. The emoji expressing more direct requests for
participation (e.g., #lets-discuss, #lost) were used much less
frequently. This may reflect a resistance towards revealing
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information about understanding that may have an adverse
affect for students (e.g., peer pressure or getting a lower
grade). Future editions of FYBIO will allow anonymous
posting, which may change the way students use these posts.

By analyzing students’ comments we have found that about
70% of posts included at least one emoji. The majority
(about 89%) of these posts include a single emoji, showing
that students express a single affect in each post. The use
of multiple emojis in the same post creates a complex affect.
10% of the posts contained two emoji and less than 1% of
the posts contained 3 or 4 emoji.

4.2 Classifying individual emoji
In this section we describe how we use language models to
classify students’ use of emoji at the post level. A good
classification model can potentially aid instructors in making
sense of students’ affective states in situations where emoji
are not used, which is the case for most forums.

The model provides a mapping from a post to the most
relevant emoji for the post according to the family. To this
end we define a multiclass prediction task where the target
class is the set of emoji shown in Table 1.

An instance was created for each post in the FYBIO dataset,
and labeled with the relevant emoji for the post. For posts
with multiple emoji, duplicate instances of the post were cre-
ated for each emoji. The instances were split into training
(85%) and test sets (15%), such that 15% randomly sam-
pled instances of the training set are used as a validation
set. We stratified the training and test sets such that each
set contains approximately the same percentage of samples
of each target class. In no case did the training and test sets
include an instance with the same post. We compare two
types of language models for the classification task. BERT
is a pre-trained, transformer based language model that is
commonly used in state-of-the-art natural language tasks
[11]. We used an open-source BERT configuration (“bert-
base-uncased”) that was trained on broad domain corpora
(English Wikipedia and BooksCorpus).1 The architecture
contains 12 layers, 768 hidden units and 12 attention heads.
We use this architecture in all of our experiments. Augment-
ing BERT with a pre-training procedure has demonstrated
promising results in downstream NLP tasks [5, 20].

Our proposed model architecture (See Figure 2) consists of
two components: 1) A language representation model (pre-
training step) and 2) a fully connected neural network (fine
tuning step). The language representation model was pre-
trained using two sources: The FYBIO text book (150K
words), as well as students’ posts from past instances of the
course in 2020 (6.4M words). “bert-base-uncased” comes
with a predefined vocabulary which consist of the approx-
imately 30K most frequent words and sub-words from its
pre-training corpus. We initiated the BERT model previ-
ously described, with its pre-trained weights, and afterwards
trained the model for 50 additional epochs with a learning
rate of 2e − 5, which gave us the best results. Note that
BERT allows the user to add special words or sub-words

1https://huggingface.co/transformers/modeldoc/
bert.html

that are unique to our domain. Since we pretrained using
the Biology text book, we did not encounter words that are
out of vocabulary, and so did not change the vocabulary.

The neural network was trained for the emoji classification
task using 768 nodes with a softmax activation function
above the additional pre-trained model. The input to this
network was the embedded student’s post using the language
representation model. The output of the network is a prob-
ability distribution over the 11 emoji in the target class. We
fine-tuned the model with an addition of three epochs with
a learning rate of 2e − 5, using a maximal sentence length
of 250, which gave us the best results.

We compared BERT to a bi-directional LSTM architecture,
similar to the one used by Felbo et al. and Baziotis et al.
[13, 4] to classify emoji in social media. The model included
five layers. One layer was used to embed words in students’
posts as high-dimensional vectors; three layers for classifica-
tion consisting of 64 LSTM units (32 units in each direction);
the final layer was an attention mechanism layer that con-
nects words in posts with preceding and succeeding words
while computing the importance of each word with the corre-
sponding label. The model was implemented using Python’s
keras package [9]. We used a separate pre-training process
using word2vec [21] to construct a high dimensional 200-
sized vector representation of words in students’ posts. The
pre-training used the FYBIO textbook, as well as students’
posts from 2020 and implemented using Python’s Gensim
package [24].

Table 3 compares the BERT and LSTM models when classi-
fying emoji according to precision, recall, and weighted F-1
scores. We can see that the BERT model outperforms the
Bi-LSTM model in all three metrics by a significant margin
(McNemar’s test, p < 1.16 · e−35). We attribute this dif-
ference to the pre-trained language model in BERT which
allows it to generalize to domains with low amounts of train-
ing data [11].

Table 3: Model output comparison

Model Precision Recall F-1 Score
BERT 40.2% 43.3% 40.7%
LSTM 26.6% 32.8% 29.3%

We note that prior work using BERT to classify emoji report
a macro F-1 score of 38.5% [30], while our Macro-F1 score
is lower (32.2%). However, we do not compare directly with
these models for several reasons. First, they used an order of
magnitude more data (550K tweets vs. 50K posts). Second,
their target set was larger (20 vs. 11 emoji). Third, the
emoji setting is different (e.g., smiley-faces, hearts, etc.) and
is used in different ways (e.g., use the same emoji in different
parts of the sentence).

Table 4 breaks down the performance of the model accord-
ing to individual emoji. The table shows a positive relation-
ship between the amount of training data for a given emoji
and the prediction performance of the model for the emoji.
An interesting exception is the #lets-discuss emoji, which
is pedagogically important and represents more than 6% of
the dataset, but achieves very low performance. The reason
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Figure 2: Model architecture used for Emoji prediction

Table 4: BERT prediction score, divided by prediction output score for each emoji

Metric

Precision 0.55 0.49 0.37 0.4 0.33 0.33 0.18 0.31 0.33 0.39 0.19
Recall 0.72 0.62 0.28 0.52 0.34 0.26 0.05 0.23 0.28 0.2 0.05

F-1 Score 0.62 0.55 0.32 0.45 0.34 0.29 0.08 0.26 0.3 0.26 0.07

is that the model misclassified over 50% of #lets-discuss as
#i-think, suggesting that students may use these two emoji
interchangeably to convey the same affect. We study this
question in the next section.

Another possible reason for the low performance for some
of the emoji may be that they were used by students to
convey different affects than those intended for the emoji.
For example, the following post shows a student has reached
a conclusion but does not understand why it is true. This
reflects a question rather than total confusion which was
the originally intended purpose of this emoji: I also get the
impression that not having similar proof-reading mechanisms
in transcription means that they are less severe. However.
I’m not sure why this would be the case #lost.

4.3 Classifying groups of emoji
In this section, we exploit the fact that emoji are often
used together in paragraphs to cluster the emoji into ped-
agogically meaningful categories and predict the categories,
rather than individual emoji. Felbo et al [13] clustered emoji
based on the relationships between predicted probabilities of
a computational model. We follow their approach and ap-
ply a hierarchical clustering algorithm with average linkage
on the correlation matrix on the predicted probabilities of
the BERT model shown in Table 4. Each emoji is repre-
sented as a vector of predicted probabilities for each post
in the test set. To illustrate this approach, consider the
following post from the test set: is there an operon for
every single metabolite? [trp] operon applies to tryptophan
while lac operon applies to lactose. how many different types
of operons are there and how do they function differently?
The BERT model, applied to this post, outputted the high-
est probability for the #question and #just-curious emoji
(0.467 and 0.45 probability, respectively) and low proba-
bility for the rest of the emoji (e.g., 0.008 probability for
the #interesting-topic emoji, and 0.003 probability for the
#lightbulb-moment emoji). Note that because we are us-
ing the softmax function, these probabilities add up to 1,
although the two emoji have a combined probability of ap-
proximately 0.92. The fact that the model is likely to as-
sign a high or low probability to both #question and #just-

curious emoji for a given post suggests that they should form
a single category.

Figure 3 shows the dendrogram that is outputted by apply-
ing hierarchical clustering. The height of each node in the
y-axis is proportional to the value of the intergroup dissimi-
larity between its child nodes. The distance threshold of the
clustering is used to determine which nodes to put in the
same cluster.

In concurrence with the FYBIO instructions, we determined
a threshold of 1. This threshold grouped the 11 emoji into
three emoji pair clusters and 5 singleton emoji clusters:
(#question, #just-curious),(#lets-discuss, #i-think), (#im-
portant, #learning-goal), (#surprised), (#lightbulb-moment),
(#lost), (#interesting-topic), and (#realworld-application).

Figure 3: Hierarchical clustering of the emoji based on the
model’s prediction. The dashed red line represents the con-
fidence threshold.

The justification provided by the course instructors for this
division are as follows: With respect to the cluster contain-
ing the emoji (#question,#just-curious), instructors claimed
that they invite a response from peers or the instructors, re-
marking that “They are both requesting responses but with
different urgency.” The individual emoji were also highly
correlated on the paragraph level. Both of these aspects led
instructors to agree to put them in the same category.

343



Table 5: Model score of each cluster and the weighted average
score of all labels

Cluster Precision Recall F-1 Score

#question, #just-curious 77.8% 83.9% 80.7%

#lets-discuss, #i-think 58.4% 60.5% 59.5%

#important, #learning-goal 47.3% 51.4% 49.3%

Total Score (8 Categories) 55.2% 56.8% 55.8%

With respect to the cluster containing the emoji (#lets-
discuss, #i-think), instructors claimed that “both of these
emoji indicate enthusiasm to continue around a topic, ei-
ther for curiosity or sometimes to clarify [...] they are ex-
pressing how they understand it and want clarification or
alternate views from peers.” The individual emojis were
also highly correlated on the paragraph level.

With respect to the cluster with the emoji (#important,
#learning-goal), instructors claimed that both emoji de-
pict students’ perspectives on exam-related content. They
claimed that “these emojis are used when students identify
parts of the text that they believe are important for them to
perform well in the course - that may be linked to assessment
or the development of knowledge that build towards good per-
formance on assessments.”

Interestingly, the emoji-pair (#surprised, #interesting-topic)
exhibited a high correlation on the paragraph level but was
deemed sufficiently distinct by instructors to warrant a sep-
arate affect category for each emoji. Instructors claimed
that “Both emoji are expressions of ”enjoyment” of the text
- though as noted slightly different.”

The last part of our methodology was to study whether pre-
dicting the 8 categories, rather than the 11 original emo-
jis, would improve prediction performance. To this end we
trained the BERT model with the same architecture as de-
scribed in Section 4.2, using the 8 categories as the target set.
Table 5 shows the performance for the three emoji-pair clus-
ters as well as total performance over all 8 of the categories.
As shown by the Table, there was an improvement of 15%
in prediction performance (from 40% to 55.8%) when com-
pared to using a target set containing the original 11 emoji.
We note that an improvement in prediction performance was
to be expected, given the reduction in the size of the target
set. What is interesting is that the two emoji #lets-discuss
and #learning-goal, which achieved very low performance
when predicted as individual emoji (see Table 4), exhib-
ited significant improvement when clustered together with
another emoji (F-Score of 59.5% and 49.3% respectively).
The cluster with the emoji pair (#question, #just-curious)
received the greatest score across all metrics. In terms of
predicting the clusters with a single emoji, we saw a slight
reduction in performance (less than one percent).

5. DISCUSSION AND CONCLUSIONS
This paper studied students’ use of emoji in a large scale
course forums used by hundreds of students. We found that
when made available to them, students tend to use emoji
in their posts to enhance their meaning or to express affect
(an emotion, belief and opinion), rather than as a substitute

for words. The most popular use of emoji was to invite fur-
ther explanation or to express an interest in a given topic.
Emoji expressing confusion or misunderstandings were less
popular, and may reflect students’ hesitation to expose these
affects in public. Students’ use of emoji is complex. In some
cases, students use multiple emojis in the same post to con-
vey a joint affect, while in other cases students use different
emoji interchangeably to mean the same affect. Some stu-
dents may use emoji in a different way than their intended
use, and instructors may wish to present their meaning to
students in the beginning of the course.

We began to explore the use of emoji as a pedagogical tool
by instructors to aid course design or guide students. To
this end, we analyzed how topics in the course material gen-
erate different emoji reactions from students. This led us
to partition emoji into groups using hierarchical clustering.
We identified the most pedagogically meaningful emoji clus-
ters with the help of the course instructors, and designed a
language model based on BERT that was able to classify
students’ posts to the right cluster with good performance.

The language model allows to classify students’ posts with
affects even when emoji are absent from the post, which can
naturally extend our contributions to other courses and fo-
rums. By adding more data to the learning process, we hope
to improve our language model. Following the improvement,
we want to apply the model in two separate scenarios. (1)
non-bio NB course (with same emojis) (2) course forum with
different labels in hope that the model is able to learn affects
signals from students writes.

We also intend to use our insights and computational tools
to help teachers make sense of student affect in an active
class. We envision a dashboard that would alert instructors
to affects they care about, like confusion, or insights con-
veyed by students about learning goals. We wish to study
how teachers use this tool to inform their course design, or
to actively intervene in a forum to guide discussion.
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ABSTRACT 
Instruction in many STEM domains heavily relies on visual repre-
sentations, such as graphs, figures, and diagrams. However, 
students who lack representational competencies do not benefit 
from these visual representations. Therefore, students must learn 
not only content knowledge but also representational competencies. 
Further, as learning progresses, knowledge likely becomes more 
abstract, so that content knowledge may no longer be tied to a spe-
cific representation. This raises the question of whether students 
integrate representational competencies with content knowledge as 
learning progresses. The present study addresses this question by 
building knowledge-component models using log data collected 
from two studies in an introductory electrical engineering course. 
We compared knowledge-component models that separate repre-
sentational competencies from content knowledge to knowledge-
component models that integrate representational competencies 
with content knowledge. Our results show that as learning pro-
gressed, integrated knowledge-component models had better model 
fit. This finding indicates that over time, students’ representational 
competencies become gradually integrated into content knowledge. 
Further, this suggests that different knowledge-component models 
might be needed at different times during a learning progression.  

Keywords 
Representational competencies, content knowledge, knowledge-
component model, intelligent tutoring system 

1. INTRODUCTION 
The success of adaptive educational technologies depends on anal-
yses of students’ knowledge growth during their interaction with 
problem-solving activities. These analyses equip the educational 
technology with information about the students’ current learning 
progress to mastery of the targeted knowledge [32] and enables it 
to provide adaptive feedback or to select appropriate interventions 
[16]  based on the individual student’s learning progress [7]. This 
capability has contributed to the success of adaptive educational 
technologies [30]. 

Therefore, much research has investigated how to analyze students’ 
knowledge growth based on log data generated by students’ prob-
lem-solving interactions in educational technologies. The first step 
in analyzing knowledge growth is to capture students’ knowledge 
in a way that can then be used to trace their knowledge acquisition 
over time [4, 7]. Knowledge-component models are a common way 
of capturing students’ knowledge [15]. The basic assumption of 

knowledge-component models is that knowledge consists of fine-
grained “atom-like” components [15]. Hence, knowledge-compo-
nent modeling seeks to identify all knowledge components required 
for mastering the targeted knowledge [13].  

Traditional knowledge-component models have focused on captur-
ing content knowledge. However, focusing on only content 
knowledge may not adequately enable educational technologies to 
support students’ learning, especially in STEM fields. Previous re-
search showed that, students often have difficulties understanding 
visual representations, while most STEM instruction heavily relies 
on multiple visual representations [2, 17]. Such struggles can im-
pede their content learning [24]. For example, electrical 
engineering courses on signal processing frequently use visual rep-
resentations as shown in Fig. 1 to explain concepts related to 
sinusoids. While visual representations are often thought to support 
learning [1], they can impede learning for students who do not 
know how to interpret the visual representations. For instance, if 
the students are unfamiliar with time-domain graphs (Fig. 1a) or 
phasor graphs (Fig. 1b), they may struggle to understand the con-
cept of the sinusoid. This example typifies that many instructional 
scenarios expect students to have representational competencies. 
Representational competencies are defined as the knowledge and 
skills that enable students to understand and use visual representa-
tions to reason and solve tasks [9].  

While most research on knowledge-component models has focused 
on content knowledge, only a few studies show that capturing rep-
resentational competencies in addition to content knowledge 
improves the fit of knowledge-component models [25]. A limita-
tion of these studies is that they have assumed a static structure of 
knowledge-component models; that is, representational competen-
cies and content knowledge were captured as separate knowledge 
components, and this did not change over time. However, as learn-
ing progresses, students’ content knowledge likely becomes more 
abstract and their use of representational competencies becomes 
more automated. Thus, the goal of this paper is to address this lim-
itation by comparing knowledge-component models that separate 
or integrate representational competencies and content knowledge 
in various ways. 

2. LITERATURE REVIEW 
In the following, we first review research on representational com-
petencies. Then, we briefly review the few prior studies that have 
captured representational competencies in knowledge-component 
models. 

2.1 Representational Competencies 
The educational psychology has identified several types of repre-
sentational competencies that enable students to learn content 
knowledge from visual representations [24]. 

First, students need visual-understanding competencies: the ability 
to map visual features to relevant to-be-learned content [28]. In the 
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previously mentioned example of a student learning about sinus-
oids, visual-understanding competencies allow the student to map 
a visual feature (e.g., the peak in the time-domain graph) to the con-
cept it depicts (e.g., the amplitude of a sinusoid).  

Second, students need conceptual connection-making competen-
cies: the ability to conceptually understand similarities and 
differences between multiple visual representations [1]. This allows 
students to explain how domain-relevant concepts are depicted in 
different visual representations [29]. For example, the red arrow in 
Fig. 1 illustrates how a student should connect the amplitude in the 
time-domain graph (Fig. 1a) to the phasor’s magnitude in the 
phasor graph (Fig. 1b). Conceptual connection-making competen-
cies also involve identifying visual features that have surface 
similarities among visual representations but are conceptually irrel-
evant [11]. For example, a student may notice that both the time-
domain graph (Fig. 1a) and the phasor graph (Fig. 1b) have two 
axes. Yet, the axes represent different concepts: time and amplitude 
in the time-domain graph, the imaginary and real parts of the phasor 
in the phasor graph. 

Third, students need perceptual connection-making competencies: 
the ability to effortlessly and efficiently translate between multiple 
visual representations [12]. Students with perceptual connection-
making competencies can intuitively translate between two visual 
representations and quickly judge whether they depict the same 
concept, without experiencing mental effort when executing this 
task [12]. For example, a perceptually proficient student would see 
"at a glance" the phasor graph in Fig. 1b represents the amplitude 
of the sinusoid in Fig. 1a. 

 
Figure 1. Mapping time-domain graph amplitude (a) to phasor 
graph magnitude (b). 

2.2 Knowledge-Component Model 
Adaptive educational technologies require information about the 
students’ learning progress in order to provide individualized sup-
port. [30]. They must describe the knowledge students have already 
learned and what knowledge they still have to learn [6]. Further-
more, adaptive educational technologies rely on algorithms that 
predict which types of support (e.g., contextual feedback, choice of 
problem-solving activities) would help the student acquire the 
knowledge s/he has not yet learned [21].  

Educational technologies rely on knowledge-component models to 
trace students’ knowledge acquisition and to predict the growth of 
students’ knowledge. Knowledge-component models represent 
“acquired units of cognitive function that can be inferred from per-
formance on a set of related tasks” [15]. Here, knowledge 
components refer to a unit of distinct skills or concepts, which to-
gether compose the knowledge students learn in problem-solving 
activities. Therefore, the accuracy of a knowledge-component 
model depends on identifying all relevant knowledge components 
that describe the targeted knowledge [13, 16].  

Cognitive Task Analysis (CTA) is one prominent method to de-
scribe the requisite knowledge components to perform a task [33]. 
However, since CTA relies on a thorough analysis of how experts 
solve tasks, it is time consuming. To increase the efficiency of 
knowledge-component modeling, educational data mining tech-
niques can be used to automate the process of building models, 
including learning factors analysis (LFA) [4],  Knowledge Spaces 
[31], and matrix factorization [8]. Typically, multiple potential 
models are compared using Akaike Information Criterion (AIC) 
and Bayesian Information Criterion (BIC) scores [14]. However, 
since this research has focused mostly on modeling content 
knowledge, the interplay between representational competencies 
and content-focused knowledge components remains unexamined.  

One study compared knowledge-component models that captured 
(1) only content knowledge and (2) content knowledge and repre-
sentational competencies. Capturing both content knowledge and 
representational competencies resulted in better model fit [25]. A 
follow-up study tested whether adapting instructional support to 
students’ representational competencies in addition to content 
knowledge resulted in higher learning outcomes than adapting only 
to content knowledge [23]. Results showed that adapting to stu-
dents’ representational competencies in addition to content 
knowledge enhanced students’ learning of content knowledge.  

However, this prior research is limited in two ways. First, while 
most prior research focuses on modeling content knowledge [18, 
20], the few studies that have also modeled representational com-
petencies [23, 25] have focused on a particular domain; namely 
chemistry. Therefore, we seek to replicate these findings in another 
domain. A second limitation is that the prior studies assumed that 
the structure of the knowledge-component model remains static 
over time. Yet, according to expert-novice research, students grad-
ually acquire highly abstract schemas about the content knowledge 
relevant to a given domain [5, 10]. This yields the hypothesis that 
capturing representational competencies separately from content 
knowledge is most important early in a learning progression 
whereas later in a learning progression, representational competen-
cies likely become integrated with content knowledge.  

3. HYPOTHESES 
To address the limitations of prior research just described, we test: 

Hypothesis 1: A knowledge-component model that captures repre-
sentational competencies and content knowledge is more accurate 
than a knowledge-component model that captures only content 
knowledge or a knowledge-component model that captures only 
representational competencies. 

Hypothesis 2. As students’ learning progresses, a knowledge-com-
ponent model that integrates content knowledge and 
representational competencies is more accurate than a knowledge-
component model that captures content knowledge separately from 
representational competencies. 

4. DATASETS 
To test these hypotheses, we use log data generated from students’ 
problem-solving interactions in Signals Tutor, an intelligent tutor-
ing system (ITS) for undergraduate electrical engineering. In the 
following, we first describe the problem-solving activities in Sig-
nals Tutor, and then the log data we used to test our hypotheses. 
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4.1 Signals Tutor 
Signals Tutor supports learning through problem solving [22, 27, 
30]. As is typical for ITSs, Signals Tutor provides step-by-step 
guidance for complex problem-solving tasks [30], detects multiple 
possible solution paths, provides personalized feedback that ad-
dresses diagnosed misconceptions, and on-demand hints for each 
step. As illustrated in Fig. 2, students work with interactive visual 
representations to visually depict concepts related to sinusoids. 
Because Signals Tutor incorporates multiple visual representations, 
it offers opportunities for students to practice representational com-
petencies. Specifically, students practice visual-understanding 
competencies when they interact with one visual to make sense of 
sinusoid concepts. Students practice conceptual connection-mak-
ing competencies when they have to integrate information from 
multiple visual representations to understand sinusoid concepts. 
They practice perceptual connection-making competencies when a 
task requires translating quickly among multiple visual representa-
tions to extract relevant information about sinusoids. 

4.2 Log Data 
We collected log data from two studies that were conducted as part 
of an introductory electrical engineering course on signal pro-
cessing at a university in the Midwestern U.S. Study 1 was 
conducted in Fall 2020; Study 2 was conducted in Spring 2021. The 
course was taught online during both semesters. Students used Sig-
nals Tutor as part of the course for a study described elsewhere [26]. 
The present paper focuses on log data generated from students’ in-
teractions with two units of Signals Tutor that provided 
opportunities to practice the representational competencies de-
scribed above. Specifically, we extracted 84,960 transactions 
generated by 136 students from Study 1 log data and 76,786 trans-
actions generated by 145 students from Study 2. These transactions 
involved problem-solving steps where students constructed visual 
representations and equations and answered conceptual questions 
by selecting answers from drop-down menus or via text input. 

5. ANALYSIS 
To test hypothesis 1, we created knowledge-component models 
with and without representational competencies. To test hypothesis 
2, we created several knowledge-component models that captures 

the integration of content knowledge and representational compe-
tencies. We compared the fit of each model in the earlier vs. the 
later unit of Signals Tutor. 

5.1 Knowledge-Component Models with and 
without Representational Competencies 

To test hypothesis 1, we created three knowledge-component mod-
els: (1) the only-content-KC model captures only content 
knowledge, (2) the only-RC-KC model captures only representa-
tional competencies, and (3) the both-content-and-RC-KC model 
captures both content knowledge and representational competen-
cies. The knowledge components captured by each model were 
derived from manual cognitive task analysis relying on expert con-
tent knowledge provided by an engineering professor who taught 
the course for more than 30 years/decades.  

First, the only-content-KC model contains 9 only-content 
knowledge components that describe concepts and skills irrespec-
tive of the representational competencies, listed in Table 1. For 
example, the knowledge component ‘Inference’ in Table 1 refers 
students’ ability to make an inference about changing a value of the 
given sinusoid’s frequency into the angular frequency. 

Second, the only-RC-KC model captures only representational 
competencies but not content knowledge. It contains 11 knowledge 
components, listed in Table 1. As mentioned above, Signals Tutor 
offers opportunities to practice three types of representational com-
petencies. The only-RC-KC model describes the competencies 
students need to understand the visual representations used in the 
problems; for example, conceptual connection-making competen-
cies (e.g., ‘Conceptual_time-phasor’) and perceptual connection-
making competencies (e.g., ‘Perceptual_time-phasor’) related to 
translating a time-domain graph to a phasor graph.  

Finally, the both-content-and-RC-KC model captures both content 
knowledge and representational competencies. It contains 42 
knowledge components, listed in Table 1. To develop content 
knowledge of translating a time-domain to a phasor graph, students 
practice competencies for making both conceptual and perceptual 
connections among visuals. For example, consider the following 
steps that provided practice opportunities for conceptual connec-
tion-making competencies. Students first built a time-domain graph  

Figure 2 Example of a problem in Signals Tutor and steps that labelled with different knowledge components for hypothesis 1 
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representing a given sinusoid represented in the equation form (e.g., 
‘Conceptual_step1_equ-time’ KC in Table 1). The next step is to 
find the value of phase shift (e.g., ‘Conceptual_step2_phaseshift’), 
which is basis for building a corresponding phasor graph in the next 
step. In the third step, students translate the time-domain graph to a 
phasor graph (e.g., ‘Conceptual_step3_time-phasor’).  

Hypothesis 1 predicts that the both-content-and-RC-KC model has 
better model fit than the other knowledge-component models. 

5.2 Knowledge-Component Models with and 
without abstracted Knowledge Compo-
nents 

To test hypothesis 2, we created two knowledge-component mod-
els: (1) the separate-RC-KC model describes the knowledge 
structure of students starting at the novice-level (2) the integrated-
RC-KC model describes the knowledge structure of students reach-
ing to the expert-level through working on Signals Tutor, detailed 
in the following. 

First, based on learning gains we observed between units [26], we 
assumed that structural changes in knowledge components would 
occur between units 1 and 2. Therefore, we chose to investigate 
knowledge components that were common to units 1 and 2 and ex-
amined how these knowledge components changed after finishing 
each unit. Thus, starting with the list of knowledge components in 
the both-content-and-RC-KC model described in 5.1, we identified 
33 knowledge components that unit 1 and unit 2 had in common. 

This yielded the separate-RC-KC model. Given that this 
knowledge-component model separately captures content 
knowledge and representational competencies, we anticipate that 
this might capture the knowledge structure of novice students in the 
first unit.  

Second, based on previous studies’ finding that sufficient training 
makes students’ knowledge become abstracted [5, 10] or abstracted 
away from the type of representational competencies [25], we as-
sumed that students’ knowledge components started to be 
integrated into content knowledge after finishing unit 1. Thus, we 
identified lists of knowledge components from the both-content-
and-RC-KC model that describe similar content knowledge. For ex-
ample, in Signals Tutor, students learn about concepts related to the 
phase shift of sinusoids, which we classify as content knowledge. 
Depending on how students interact with the visual representations 
that depict these concepts, they practice different representational 
competencies. The both-content-and-RC-KC model contains six 
knowledge components related to phase shift, illustrated in Table 
1: three knowledge components describe students’ ability to con-
ceptually connect a sinusoid’s shifted amount and direction shown 
in a time-domain graph to a phasor’s rotational direction and 
amount shown in a phasor graph (e.g., ‘Concep-
tual_step1_equ_time’, ‘Conceptual_step2_phaseshift’, 
‘Conceptual_step3_time-phasor’), and two knowledge components 
describe students’ ability to make perceptual connections between 
a time-domain graph and a phasor graph by treating the representa-
tions holistically (e.g., ‘Perceptual_time-phasor (0)’, 

Knowledge 
Components 

Examples of  
knowledge components Description Example 

only-content 
KC 

Inference 
Make inferences about changing the 

value of frequency to angular frequency 
or vice versa. 

𝑥(𝑡) is has an angular frequency 𝜔 of 
!
"
 in radians/sec. The frequency in cy-

cles/sec is [.25]. 

Planning Plan how to represent the sinusoid using 
different type of visual representation. 

The complex amplitude can be repre-
sented visually by a [phasor]. 

Build phasor graph Construct a phasor graph of a given si-
nusoid Plot the phasor corresponds to 𝑥(𝑡). 

Build time-domain graph Construct a time-domain graph of a 
given sinusoid 

Plot this sinusoid on the given time-
domain graph. 

only-RC KC 
Conceptual_time-phasor 

Make sense of how a time-domain vis-
ual correspond to a given phase-domain 

visual 

The given graph shows a sinusoid 
𝑥(𝑡). Plot the phasor corresponding 

to 𝑥(𝑡). 

Perceptual_phasor-time Translate a phase-domain visual to a 
time-domain visual 

Here’s a phasor. Which cosine func-
tion represents that phasor? 

both- 
content-and-

RC KC 

Conceptual_step1_equ_time 
Given a cosine function, build a time-
domain graph representing the given 

time-domain equation 

For the equation 𝑥(𝑡) = 3cos	(𝜋𝑡), 
plot 𝑥(𝑡). 

Conceptual_step2_phaseshift After building a time-domain graph in 
step 1, identify its value of phase shift The phase shift 𝜑 of 𝑥(𝑡) is [0]. 

Conceptual_step3_time-phasor 
Based on identified information in step 
2, translate a time-domain graph to a 

phasor graph 

Draw the phasor associated with 
𝑥(𝑡), 𝑐 = 𝐴𝑒#$. 

Conceptual_step4_phasor-exp 
After building a phasor graph in step 3, 
write corresponding complex exponen-

tial notation. 

We may express 𝑥(𝑡) in complex ex-
ponential notation as     

𝑅𝑒{[3]exp(𝑗[0])exp(𝑗[3.14]𝑡)} 

Perceptual_time-phasor  
(clockwise) 

Translate a time-domain graph to a 
phasor graph (rotated in the clockwise 

direction) 

Here’s a sinusoid (cosine function). 
Which phasor represents that sinus-

oid? 

Perceptual_time-phasor  
(counter-clock) 

Translate a time-domain graph to a 
phasor graph (rotated in the counter-

clockwise direction) 

Here’s a sinusoid (cosine function). 
Which phasor represents that sinus-

oid? 

Table 1 Examples of knowledge components in Signals Tutor (For the value in [ ], students type in their answer). 
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‘Perceptual_time-phasor (clockwise)’, ‘Perceptual_time-phasor 
(counter-clock)’).  

If these six representational competencies become more integrated 
with content knowledge about phase shift after practice (hypothesis 
2), separating these representational competencies from content 
knowledge may no longer adequately describe students’ abstracted 
knowledge structure. To capture this more abstracted understand-
ing, we built new knowledge-component models that contained 
merged knowledge components. Starting with the knowledge com-
ponents from the separate-RC-KC model, we first merged 
knowledge components that covered similar content knowledge. 
For example, ‘Conceptual_step1_equ_time’, ‘Concep-
tual_step2_phaseshift’, ‘Conceptual_step3_time-phasor’ and 
‘Perceptual_time-phasor (clockwise)’ were merged into the ‘Build 
phasor graph’ knowledge component, which is one of the 
knowledge components from the only-content KC model. We then 
tested whether merging these knowledge components improved 
model fit using AIC and BIC scores. If it did, we kept the merged 
knowledge component; if it did not, we kept the separated 
knowledge components. We repeated these steps until there were 
no more opportunities to merge knowledge components. We car-
ried out these steps separately for the data from Studies 1 and 2, 
yielding integrated-RC-KC model-1 and integrated-RC-KC model-
2 as shown in shown in Table 2.  

Hypothesis 2 predicts that the integrated-RC-KC model-1 and the 
integrated-RC-KC model-2 have a better model fit compared to the 
separate-RC-KC model in unit 2. Similarly, since students are nov-
ice at the beginning stage, hypothesis 2 predicts that the separate-
RC-KC model shows better model fit compared to the integrated-
RC-KC model-1 and the integrated-RC-KC model-2 in unit 1. 

Table 2.  Separate and integrated knowledge components.  

Separate KCs in  
unit 1 Integrated KCs in unit 2 

Conceptual_step3_time-phasor 

Build phasor graph 
(integrated-RC-KC 

model-1) 

Perceptual_time-phasor (0) 
Perceptual_time-phasor  

(clockwise) 
Perceptual_time-phasor  

(counter-clockwise) 

Perceptual_phasor-exp Write complex  
exponential notation 
(integrated-RC-KC 

model-1) 
Conceptual_step4_phasor-exp 

Perceptual_phasor-cartesian 
Write cartesian form 
(integrated-RC-KC 

model-2) 

Individual_phasor-cartesian  
(real part) 

Individual_phasor-cartesian  
(imaginary part) 

6. RESULTS 
To test hypothesis 1, we compared the model fit of the only-con-
tent-KC model, only-RC-KC model, and both-content-and-RC-KC 
model using data from Studies 1 and 2. Table 3 shows that the both-
content-and-RC-KC model has a better model fit than the only-con-
tent-KC model and the only-RC-KC model in Study 1 and Study 2. 
For AIC scores, the lower AIC indicate a better-fit-model, and more 
than -2 is considered significantly better than model it is being com-
pared [3]. Similarly, a decrement greater than 10 indicates very 

strong evidence in terms of BIC [19]. Lower values of RMSE also 
indicate better fit. These results support hypothesis 1. 

To address hypothesis 2, we compared the model fit of the sepa-
rate-RC-KC model, the integrated-RC-KC model-1, and the 
integrated-RC-KC model-2 as shown in Table 4. For Study 1, re-
sults show that in unit 1, the separate-RC-KC model shows the 
better fit than the integrated-RC-KC models. By contrast, in unit 2, 
the integrated-RC-KC model-1 shows better model fit than the sep-
arate-RC-KC model in terms of AIC and RMSE (but based on BIC 
the integrated-RC-KC model-2 shows the best model fit).  This sup-
ports hypothesis 2. 

For Study 2, we found that in unit 1, the separate-RC-KC model 
shows a better model fit than the integrated-RC-KC models in terms 
of AIC as shown in Table 5. However, the BIC and RMSE scores 
indicated that the integrated-RC-KC model-1 had the best model 
fit. By contrast, in unit 2, the integrated-RC-KC model-2 shows the 
best model fit. This result supports hypothesis 2 in terms of AIC 
scores. For BIC and RMSE scores, the results partially support hy-
pothesis 2, because the integrated-RC-KC model-1 shows the better 
model fit than the integrated-RC-KC model-2. 

Table 3. Test of hypothesis 1: Model accuracy for study 1 and 
study 2. Bold stands for the best fit.  

Study KC Model # of 
KC AIC BIC RMSE 

1 

both-content-
and-RC 42 22,123 24,221 0.4422 

only-RC 34 22,736 24,709 0.4456 

only-content 9 23,853 25,446 0.4537 

2 

both-content-
and-RC 42 18,559 20,358 0.4370 

only-RC 34 19,120 20,796 0.4421 

only-content 9 20,133 21,418 0.4544 

 

Table 4. Test of hypothesis 2: Model fit by unit (Study1). Bold 
stands for the best fit.  

Unit RC-KC Model # of 
KC AIC BIC RMSE 

1 
 

separate-RC-
KC model 33 9,733 11,488 0.4367 

integrated-RC-
KC model-1 30 9,779 11,491 0.4368 

integrated-RC-
KC model-2 27 9,803 11,492 0.4374 

2 

separate-RC-
KC model 33 10,387 12,133 0.4414 

integrated-RC-
KC model-1 30 10,372 12,075 0.4387 

integrated-RC-
KC model-2 27 10,396 12,054 0.4399 
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Table 5. Test of hypothesis 2: Model fit by unit (Study 2). Bold 
stands for the best fit.  

Unit RC-KC Model # of 
KC AIC BIC RMSE 

1 

separate-RC-
KC model 33 8,134 9,587 0.4445 

integrated-RC-
KC model-1 30 8,156 9,567 0.4431 

integrated-RC-
KC model-2 27 8,201 9,570 0.4461 

2 

separate-RC-
KC model 33 9,095 10,598 0.4278 

integrated-RC-
KC model-1 30 9,085 10,546 0.4263 

integrated-RC-
KC model-2 27 9,080 10,498 0.4264 

 

7. DISCUSSION 
Our results show that the knowledge-component model incorporat-
ing both representational competencies and content knowledge had 
the best model fit (hypothesis 1). This result aligns with findings 
from a previous study that investigated whether a knowledge-com-
ponent model should incorporate representational competencies 
using chemistry students’ learning data. Our results replicate this 
finding in the electrical engineering domain.  

Further, we found that students’ representational competencies be-
come abstracted and integrated with content knowledge as students 
practice representational competencies (hypothesis 2). This shows 
that as students’ learning progress, their representational competen-
cies are gradually merged with content knowledge. We note that 
the time at which each representational competency is integrated 
into the content knowledge may not be uniform. For instance, while 
students’ representational competency of translating a time-domain 
graph to a phasor graph were merged with content knowledge in 
unit 2, the representational competency of translating a phasor 
graph to a time-domain graph remained separate from content 
knowledge. It is possible that after more practice, the latter repre-
sentational competency would also merge with content knowledge.  

Additionally, our results indirectly suggest that students’ timelines 
may differ depending on their learning rates. Specifically, we found 
differences between the Study 1 and Study 2 cohorts. The fact that 
BIC, AIC, RMSE disagreed as to whether the integrated-RC-KC 
model-1 or the separate-RC-KC model had a better model fit for 
unit 1suggests that students in Study 2 started with somewhat more 
integrated knowledge and ended with more integrated knowledge 
compared to students in Study 1. We do not want to speculate what 
might have caused these cohort effects because there are numerous 
possible reasons, but it suggests that students may start and end at 
different points on a separate-to-integrated knowledge trajectory.  

Our study makes novel contributions to the field of educational data 
mining because it is, to our knowledge, the first study capturing 
dynamic development of students’ representational competencies 
using knowledge-component models. Knowledge-component 
modeling allowed us to identify dynamic, developmental patterns 
of representational competencies and to show that they are not 
static. Further, our finding that knowledge-component models 
should incorporate representational competencies in addition to 

content knowledge expands the search space for knowledge-com-
ponent models in future work.  

Our findings also have important implications for the design of 
adaptive educational technologies. First, technologies that use vis-
ual representations should trace students’ acquisition of 
representational competencies in addition to content knowledge. 
Doing so is particularly important at the beginning of a learning 
sequence. When students first learn a new concept with visual ma-
terials, instructional supports should be designed with 
consideration of students’ representational competencies and con-
tent knowledge. Second, as students’ representational 
competencies change dynamically through practice, the educa-
tional technology may no longer need to monitor representational 
competencies separately from content knowledge. This, however, 
may need to be adapted to the rate at which students learn specific 
representational competencies and content knowledge. 

8. LIMITATIONS & FUTURE WORK 
Our results should be interpreted considering the following limita-
tions. First, we collected log data from students working on Signals 
Tutor in the context of online learning. Online learning differs from 
in-person learning in multiple ways. Therefore, future studies 
should replicate our results in the context of in-person learning. 
Second, our experiment was constructed in a specific electrical en-
gineering course. Even though visual representations are 
commonly used in many STEM instructions, representational com-
petencies are domain-specific and highly dependent on the 
particular content knowledge covered. Thus, future research needs 
to test whether our results generalize to other STEM domains and 
topics. Finally, open questions remain about the suitable length of 
a learning intervention to ensure that all representational competen-
cies become integrated with content knowledge. Although this 
study found that the students’ representational competencies are 
gradually integrated with content knowledge, it did not examine 
when each representational competency becomes fully integrated 
into the content knowledge. To address this limitation, a longer in-
tervention is needed. Such research could help establish the length 
of learning trajectories that relate to representational competencies.  

9. CONCLUSION 
The present paper shows that the structure of students’ knowledge 
changes over time. Consequently, different knowledge-component 
models are best suited at different times during a learning trajec-
tory. While modeling representational competencies is important, 
representational competencies become integrated with content 
knowledge with practice. Thus, educational technologies should 
employ dynamic knowledge-component models that capture repre-
sentational competencies separately from content knowledge at the 
beginning of a learning trajectory while merging them with content 
knowledge later in a learning sequence. The way in which these 
knowledge components are merged may depend on the student’s 
learning rate. Given that prior research shows that adapting instruc-
tional support to students’ representational competencies can 
significantly enhance their learning of content knowledge and 
given the prevalence of visual representations in STEM instruction, 
our study may have considerable impact on the effectiveness of ed-
ucational technologies.  
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ABSTRACT
Online educational technologies facilitate pedagogical exper-
imentation, but typical experimental designs assign a fixed
proportion of students to each condition, even if early results
suggest some are ineffective. Experimental designs using
multi-armed bandit (MAB) algorithms vary the probability
of condition assignment for a new student based on prior
results, placing more students in more effective conditions.
While stochastic MAB algorithms have been used for edu-
cational experiments, they collect data that decreases power
and increases false positive rates [22]. Instead, we propose
using adversarial MAB algorithms, which are less exploita-
tive and thus may exhibit more robustness. Through simula-
tions involving data from 20+ educational experiments [29],
we show data collected using adversarial MAB algorithms
does not have the statistical downsides of that from stochas-
tic MAB algorithms. Further, we explore how differences in
condition variability (e.g., performance gaps between stu-
dents being narrowed by an intervention) impact MAB ver-
sus uniform experimental design. Data from stochastic MAB
algorithms systematically reduce power when the better arm
is less variable, while increasing it when the better arm is
more variable; data from the adversarial MAB algorithms
results in the same statistical power as uniform assignment.
Overall, these results demonstrate that adversarial MAB al-
gorithms are a viable “off-the-shelf” solution for researchers
who want to preserve the statistical power of standard exper-
imental designs while also benefiting student participants.

Keywords
MAB, bandits, experimental design, hypothesis testing

1. INTRODUCTION
Digital educational technologies offer unique opportunities
to conduct pedagogical experiments and learn how to im-
prove student outcomes. For example, experimenters can
compare worked examples versus tutoring [19] or vary an
avatar’s dialect [9]. When an intervention’s impact is mea-

sured soon after the intervention (e.g., via response times as
in [32] or later problem correctness as in [18]), real-time data
could be used to direct more students to more effective con-
ditions. Multi-armed bandit (MAB) algorithms have been
proposed as a way to conduct such adaptive experiments [15]
and used for optimizing A/B comparisons (e.g. [16,25,26]).

While MAB assignment tends to improve outcomes for par-
ticipants, it poses problems for drawing conclusions from the
data. Prior research has shown systematic measurement er-
rors, increases in false positive rate (FPR), and decreases in
power when stochastic MAB algorithms are used for A/B
comparisons (e.g., [22]). Potential benefits to student par-
ticipants could thus be outweighed by harm to the research:
lower power decreases the probability that effective inter-
ventions will be detected and deployed outside the trial, and
higher FPR may lead to deploying unhelpful interventions
at significant cost. While developing new algorithms and
analysis approaches for these challenges is an active area of
research (e.g., [5, 8]), these approaches are not yet an “off-
the-shelf” solution for MAB-based experimental design.

In this paper, we consider the impact of using MAB algo-
rithms that make performance guarantees in the adversar-
ial case. These algorithms make weaker assumptions about
their environment [4], decreasing the degree to which they
can assign more students to a perceived better condition.
Yet, we hypothesize that these relaxed assumptions may also
decrease the negative consequences for drawing conclusions
from the data, resulting in collected data that is more ro-
bust to the realities of educational experiments. Adversar-
ial MAB algorithms could thus be used by researchers who
want some of the benefits of condition-assignment via MAB
algorithms but where their primary focus remains on draw-
ing generalizable conclusions. These algorithms could also
be more effective than uniform random assignment in some
cases, as they can be sensitive to condition variability, and
allocating more participants to an extremely variable condi-
tion can result in a better measurement of its effectiveness.

Using simulations, we first explore how 22 previously con-
ducted experiments [29] might have been impacted if con-
ditions had been assigned with a stochastic bandit algo-
rithm (Thompson sampling [30]) or with one of three ad-
versarial MAB algorithms in the Exp family [4], rather than
with uniform random assignment.1 These experiments were
all conducted in ASSISTments homework assignments [11],

1All code: http://tiny.cc/MABExpDesign (OSF link).

Y. Zhi-Han, S. Zhang, and A. Rafferty. Adversarial bandits for draw-
ing generalizable conclusions in non-adversarial experiments: an em-
pirical study. In A. Mitrovic and N. Bosch, editors, Proceedings of the
15th International Conference on Educational Data Mining, pages
353–360, Durham, United Kingdom, July 2022. International Educa-
tional Data Mining Society.

© 2022 Copyright is held by the author(s). This work is distributed
under the Creative Commons Attribution NonCommercial NoDeriva-
tives 4.0 International (CC BY-NC-ND 4.0) license.
https://doi.org/10.5281/zenodo.6853039

353



leading to a thorough investigation of how these algorithms
might perform in real-world settings. We go beyond prior
work that has often focused on binary outcomes for students
(e.g. [35]) to examine real-valued outcomes that may follow
idiosyncratic distribution patterns. We show that the Exp
family of adversarial bandit algorithms largely avoids the
measurement and hypothesis testing inaccuracies incurred
by stochastic bandits, while still providing a small but reli-
able improvement in average student outcomes.

We then turn to exploring MAB algorithms in the context
of experiments where conditions differ in variance, which
occurs when interventions narrow (or widen) gaps among
students. We find that the potential power advantage for
adversarial MAB algorithms is not realized in practice, al-
though there are some scenarios in which the more exploita-
tive stochastic MAB algorithm does increase power.

Overall, we make the following contributions: (a) introduc-
ing the idea of adversarial and stochastic-adversarial MAB
algorithms as an off-the-shelf solution for allocating students
to conditions; (b) demonstrating that these MAB algorithms
have minimal detrimental impacts on the performance of
statistical hypothesis testing in a range of real-world edu-
cational experiments; and (c) illustrating that differences in
variance across two conditions are not sufficient for condition
assignment with adversarial MAB algorithms to increase
power over uniform assignment. These results suggest that
adversarial and stochastic-adversarial MAB algorithms offer
a good solution for researchers who want to improve student
participant’s experiences without negatively impacting their
own ability to learn from the experiment and improve expe-
riences for the many students who are not participants.

2. RELATED WORK
Assigning participants to experimental conditions using MAB
algorithms has been proposed as an alternative to uniform
assignment (e.g., [12, 31, 34]). In clinical trials, a variety of
methods that adapt based on previous results have been pre-
sented (e.g., [3,5,7], often to more quickly use data to benefit
patients (e.g., [36]). More closely related to our work, appli-
cations of MAB algorithms to educational settings can help
to more quickly identify pedagogically effective conditions
(e.g., [15, 16, 33]) and lower barriers to teachers conducting
experiments in their classrooms [35]. While MAB algorithms
have also been used in education to assign students to ed-
ucational interventions with the sole goal of producing the
best outcomes for that particular student (e.g., [6, 13]), we
focus here specifically on cases where there is a desire to ex-
trapolate beyond individual students and draw generalizable
conclusions, as in traditional scientific experiments.

While MAB algorithms are a natural choice for assigning
participants to conditions to limit how many students are
assigned to less effective conditions, these algorithms have
consequences for researchers’ ability to use the collected
data to draw conclusions about the relative effectiveness of
conditions. Traditional stochastic MAB algorithms mini-
mize regret, but this can lead to systematically biased esti-
mates of arm means (e.g., [5,20,37]). They also impact tra-
ditional statistical hypothesis testing: false positive rates,
where there is no actual effect in the population but the
test points to there being an effect, can be increased, and

power, which measures how often a test will detect a differ-
ence when there is one, can be decreased (see e.g., [22], for
specific documentation of these phenomena with Thompson
sampling [1, 30], which we compare to in this paper). A
variety of approaches have been taken to addressing these
issues, including both statistical approaches to create unbi-
ased estimators from the collected data (e.g., [5]) and algo-
rithmic approaches that incorporate measurement into the
algorithms’ objective (e.g., by including estimation accu-
racy in the objective [8] or incorporating lower bounds on
power [38]). Using such approaches off-the-shelf can be chal-
lenging: the power-constrained bandits algorithm [38] makes
multiple decisions about one participant, rather than learn-
ing across participants, and researchers may wish to use their
standard statistical estimators and tests rather than switch-
ing to a different paradigm. In this paper, we take a slightly
different approach by exploring an alternative class of MAB
algorithms and examining their performance in real-world
scenarios.

3. BANDIT-DRIVEN EXPERIMENTS
MAB problems are a kind of reinforcement learning problem
focused on maximizing immediate rewards. A classic exam-
ple is allocating limited pulls to a set of slot machines. In
these problems, agents must balance collecting new informa-
tion about little explored arms and exploiting information
from received rewards. Here, we model selecting better ed-
ucational interventions as a MAB problem: Each interven-
tion is an arm (action) the system can choose, and initially,
rewards are unknown. After a student experiences an in-
tervention, the system receives a stochastic reward (e.g., a
measure of the student’s understanding/efficiency) that in-
fluences the arm choice for the next student.

Stochastic bandit algorithms. These algorithms assume there
is some stationary reward distribution underlying each arm.
Here, we focus on Thompson sampling (TS; [2, 30]), which
maintains an estimate of the reward distribution of each
arm. From the reward that it gets from each choice, it up-
dates this distribution. At each time step, the algorithm
samples from the posterior reward distribution of each arm
and chooses the arm that has the highest sampled value.

Adversarial bandit algorithms. Adversarial bandits make no
statistical assumptions about the reward distribution of each
arm, making them appropriate for reward distributions that
are non-stationary or of unknown form. Because of the lack
of assumptions, they are designed to explore more strongly
and adapt more quickly to perceived changes in reward dis-
tributions. If the rewards in fact follow stationary distribu-
tions, this can lead to lower expected reward than stochastic
bandit algorithms, but when reward distributions deviate
from these assumptions, adversarial bandit algorithms have
stronger performance guarantees than stochastic bandit al-
gorithms. From the perspective of using MAB algorithms
for experimental design, the extra exploration in adversarial
algorithms could collect better data for drawing conclusions
about differences between arms, albeit while lowering bene-
fits for participants in the experiment.

In this work, we focus on the popular Exp3 family of adver-
sarial bandit algorithms [4]. Exp3 balances exploration and
exploitation via an exploration hyperparameter that influ-
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ences both the probability of picking an arm uniformly at
random and the strength of response to high rewards from
low-probability arms. This hyperparameter allows an ex-
perimenter to adjust the amount of exploration, potentially
increasing reward at the cost of collecting more biased data.
Because this choice is difficult to optimize ahead of time, we
also examine the performance of Exp3.1, which eliminates
the hyperparameter and provides worst case performance
guarantees regardless of the true reward distributions [4].

One algorithm that has performance guarantees in both
stochastic and adversarial environments is Exp3++ [28].
While this algorithm achieves lower expected rewards than
TS, it often improves upon the obtained reward of Exp3
while still employing enough exploration to perform well in
adversarial environments. It also can be used off-the-shelf,
with fixed values for the hyperparameters that probabilisti-
cally guarantee asymptotic performance [27].

We want to explore how well adversarial and stochastic MAB
algorithms meet the needs of researchers for data collection
in educational experiments and how they impact student ex-
periences compared to traditional uniform assignment. We
hypothesize that the adversarial bandit algorithms (Exp3
with a fixed value of 0.05 for the hyperparameter, Exp3.1,
Exp3++) will have comparable performance for collecting
research data to uniform random allocation, with benefits
to students that are greater than uniform random allocation
but less than those from a representative stochastic bandit
algorithm (TS). Further, Exp3++ is likely to improve on
the purely adversarial algorithms’ performances in assign-
ing more students to better arms.

4. EVALUATING ADVERSARIAL BANDITS:
ASSISTMENTS EXPERIMENTS

The probabilistic asymptotic performance guarantees of MAB
algorithms, both in stochastic and adversarial environments,
suggest that student participants would benefit if these al-
gorithms were used for experimental design. However, these
guarantees do not speak to how biased the collected data will
be, nor whether standard statistical hypothesis testing will
be able to draw accurate conclusions from that data. Fur-
ther, real educational experiments may have non-normally
distributed outcome measures, impacting the collected data
and performance of each algorithm. To explore how well the
Exp3 variants meet the needs of researchers to draw accurate
conclusions and the desire to place more students in a better
condition, we conduct simulations that leverage previously
collected datasets from educational experiments, conducted
on the ASSISTMents platform [11]. We use these datasets
as a case study for how to apply MAB algorithms to sce-
narios with varying, real-valued reward distributions, where
some students reach mastery quickly and others never do so,
and by repeatedly simulating the potential impact of each
of the four bandit algorithms (TS, Exp3, Exp3.1, Exp3++),
we can measure statistical power, false positive rate (FPR),
and accuracy of arm measurement across algorithms.

4.1 Methods
4.1.1 Modeling real-world datasets

We focus on datasets from 22 randomized controlled exper-
iments run inside the SkillBuilder interface of the ASSIST-

ments online learning platform [29], which focuses primarily
on 4th-12th grade math. These datasets included a total
of 14,947 students in grades 5-12 (25% of students lacked
a reported grade). Students had 200 different teachers and
were drawn from 19 states (states deidentified in the data),
and included a “guessed” gender based on name for 68% of
students (of these, 53% were female; see [10] for informa-
tion on gender methodology). No information on student
race/ethnicity or SES was available, and experiments were
IRB approved; see [29] for more dataset details.

In each experiment, students were placed into one of two
conditions when completing homework. Each student must
answer several consecutive problems correctly to complete
the homework (typically three), and the number of problems
P the student attempted before completion was recorded.
Both completing homework and doing so in fewer problems
are desirable, and we translate these measures into a reward
signal for the MAB algorithms. To eliminate scaling issues,
rewards are scaled to a fixed range as follows. Based on
examination of the range of problems to completion across
experiments, we cap the maximum number of problems at
30. If P ≥ 30 or the student did not complete the homework,
then we set P to 30. Because lower values of P are better,
reward is then r = 30− P . This reward is guaranteed to be
in [0, 30] and is then linearly interpolated into [0, 1] for the
MAB algorithms. We refer to the better condition as arm 1
and the worse condition as arm 2 on all datasets.

To conduct repeated trials with data from previously con-
ducted experiments, our framework resamples an outcome
associated with the chosen condition in the dataset when
that condition is assigned to an incoming student. Within
each trial, we fix the number of students n to the number in
the original experiment (n ∈ [129, 1797]).

4.1.2 Simulation setup
To assess the ability of traditional hypothesis tests to draw
accurate conclusions from the collected data, we measure
(1) power – the proportion of the time an effect is detected
when one exists – using scenarios where two conditions are
different and (2) false positive rate (FPR) – the proportion
of the time an effect is falsely detected when one does not
exist – using scenarios where two conditions are the same
in terms of expected reward. For (1), we focus on the seven
ASSISTments datasets with the largest effect sizes measured
in terms of Cohen’s d (0.16 ∼ 0.51), as larger effect sizes are
more likely to reflect educationally relevant differences and
may lead to larger differences across algorithms; we refer
to these as ASSISTments-GES (greater effect size). We ex-
amine how the allocation methods impact average reward,
which measures student outcomes, and statistical power and
measured arm means, which are of large importance to re-
searchers. For (2), we create modified datasets in which
each condition’s reward list contains all rewards from both
arms. This creates two conditions with the same expected
outcome while keeping their realistic reward distributions.
We refer to these 22 modified datasets as ASSISTments-RC
(reward combined). Because no allocation method could in-
crease benefits to students given that the conditions do not
differ, we focus here on examining FPR and measured arm
means. For both (1) and (2), we follow Section 4.1.1 and
run 1000 trials for each dataset-algorithm combination.
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Figure 1: In terms of benefiting students as measured by
mean average reward (a), all Exp allocations under-performed
TS but out-performed uniform (except on dataset 293151).
This was possible even when Exp3.1 and Exp3++ allocation
achieved comparable power to uniform allocation, as indi-
cated by overlapping error bars on all seven datasets (b).
Error bars show ±1.96× SE.

4.1.3 Data collection and analysis
For each trial, we record all condition assignments and un-
scaled rewards. We then compute: the average reward per
student, the average reward µ̂ for each condition (true ex-
pected reward denoted by µ∗), and the conclusion of a two-
sided hypothesis test of whether the two conditions differ
at a population level. Because capping P as discussed in
Section 4.1.1 can lead to strong bimodality in reward dis-
tributions, which dissatisfies the assumptions of a standard
t-test, we use the non-parametric Brunner-Munzel test for
testing for a difference between conditions in the collected
data. This test assumes neither normality nor equivariance
of the distributions from which the samples are drawn. We
consider the test to detect an effect if and only if p < .05.

To determine if a statistic differed reliably based on condi-
tion allocation method, we use generalized linear regression,
with factors for algorithm (with uniform as reference group)
and ASSISTments dataset. We report two decimal places
except for small or similar values.

4.2 Results
4.2.1 Datasets with effects: ASSISTments-GES
Mean average reward: All MAB allocations were associated
with significantly higher benefits to students, as measured
by mean average reward, than uniform allocation (coefficient
for TS: 0.80; Exp3: 0.19; Exp3.1: 0.10; Exp3++: 0.15; all
p < .001). TS collected data with highest mean average re-
ward (16.34), followed by Exp3 (15.74; 24% of the reward
gain of TS over uniform), Exp3++ (15.69; 19% of TS over
uniform), Exp3.1 (15.64; 12% of TS over uniform), and Uni-
form (15.54). For a breakdown by dataset, see Figure 1a.

Power: TS and Exp3 allocations had significantly lower power
than uniform (coefficient for TS: −1.42; Exp3: −0.18; both
p < .001), while allocation with the other two algorithms
did not (Exp3.1: −0.05, p = .22; Exp3++: −0.07, p = .11).
On average, TS collected data with lowest power (0.40), fol-
lowed by Exp3 (0.59), Exp3++ (0.61), Exp3.1 (0.61) and
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Figure 2: TS allocation led to a clear, systematic underesti-
mation of arm 2 [worse arm] on all seven datasets (a), while
Exp allocations resulted in arm mean estimates similar to
those of Uniform (a). Error bars are not shown for clarity
and are delegated to hypothesis testing. Also, the worst-case
µ̂’s are much worse for TS allocation than for Exp (b).

Uniform (0.62). Figure 1b shows a breakdown by dataset.

Measured arm means: Our work replicates prior work show-
ing that TS underestimates the worse arm in binary tri-
als [22] and further finds a small underestimation of the
better arm (arm 1 [better arm] coefficient: −0.05; arm 2
[worse arm] coefficient: −0.76; all p < .001). The Exp
algorithms resulted in more accurate measurement of arm
means: while Exp3 and Exp3++ also underestimate both
arms, the extent to which they underestimate the worse arm
is much less than TS (for Exp3: arm 1 coefficient: −0.02,
p < .05; arm 2 coefficient: −0.04, p < .05; for Exp3++:
arm 1 coefficient: −0.02, p < .01; arm 2 coefficient: −0.04,
p < .05). Arm mean estimates using data from Exp3.1 did
not differ significantly from those derived from uniform al-
location (arm 1 coefficient: 0.004, p = .71; arm 2 coefficient:
−0.007, p = .69). See Figure 2a for a qualitative comparison
by dataset and Figure 2b for a worst-case analysis showing
results for the trial with the most inaccurate µ̂.

4.2.2 Datasets without effects: ASSISTments-RC
FPR: TS allocation was associated with significantly higher
FPR than uniform allocation (coefficient for TS: 0.56, p <
.001), while allocation with the other three algorithms was
not (coefficient for Exp3: 0.0065, p = .88; for Exp3.1: −0.0019,
p = .97; for Exp3++: −0.0047, p = .91). On average, TS
collected data with the highest FPR (0.0867) and is followed
by Exp3 (0.0517), Uniform (0.0514), Exp3.1 (0.0513) and
Exp3++ (0.0512). As shown in Figure 3a, TS inflates FPR
for almost all datasets, while the other algorithms have FPR
< .06 for the vast majority of datasets.

Measured arm means: Since the two arms are identical and
within a trial, their average values are not independent, we
arbitrarily examine one of the two arms for each trial. Al-
location using TS, Exp3, and Exp3++ was associated with
significantly lower estimates of arm means compared to uni-
form allocation (coefficient for TS: −0.42; Exp3: −0.0320;
Exp3++: −0.0274; all p < .001); note that the bias for TS
is much larger than for Exp3 and Exp3++. Similar results
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Figure 3: (a) TS allocation results in more datasets with in-
flated FPR than uniform and adversarial allocations. Re-
maining figures show the distribution of (µ̂arm1, µ̂arm2) pairs
of TS (b) and of all Exp algorithms (c) on dataset 226210-RC,
with hue showing Narm1/Ntotal. Clearly, TS has trials where
one arm is very badly estimated while Exp algorithms don’t.
Hue offers an explanation: for TS (b), µ̂arm1 is roughly unbi-
ased when arm 1 is pulled more often (a proxy of appearing to
be better) and negatively biased when it is pulled less often (a
proxy of appearing to be worse early-on); Exp algorithms (c)
allocate more evenly, indicating that it explored both arms
beyond initial under/over-estimation.

hold if we arbitrarily analyze the other arm instead. Exp3.1
did not have a significant negative bias with one choice of
arm for analysis (coefficient: −0.0092, p = .23), but did for
the other (coefficient: −0.0173, p < .05), suggesting a weak
negative bias in estimated mean. This replicates results for
TS from prior work [22] and shows the same underestimation
can occur for adversarial bandits, albeit with much smaller
magnitude of underestimation: in all cases, the MAB algo-
rithm underestimates the mean of the arm that appears, due
to random sampling, to be worse, and then samples the arm
that appears to be better more often, leading the estimate
of the other arm to be below its true mean. See Figure 3b
and c for a comparison between TS and Exp algorithms.

Overall, these results show that experimental design using
the Exp family of algorithms can collect data that meets
researchers’ needs better than a purely stochastic bandit al-
gorithm, with higher power, lower FPRs, and more accurate
condition measurement. These algorithms do not benefit
students as much as the purely stochastic TS, but all Exp
algorithms do improve on uniform allocation. Exp3++ pro-
vides a balance between Exp3.1 and Exp3, achieving 19% of
the reward gain of TS, requiring no hyper-parameters, and
demonstrating only a slight underestimation of arm means.

5. POWER AND UNEQUAL VARIANCE
The ASSISTments simulations demonstrate that across a
range of educational experiments, the Exp algorithms per-
formed better when measured in terms of researchers’ con-
cerns, like power and arm mean estimates, while TS attained
greater benefits for students. More generally, both TS and
Exp aim to optimize reward, but they do so with different
assumptions about the environment, meaning that the spe-
cific characteristics of an experiment will influence how well
each performs on both student- and researcher-centric mea-
sures. However, because the ASSISTments experiments do

not vary systematically from one another, they are not an
ideal platform for exploring the impact of specific experi-
mental characteristics on the MAB algorithms’ performance
compared to one another and compared to uniform alloca-
tion. We thus turn to simulations with constructed datasets
to explore the impact of one experimental characteristic: the
relative variability of the two conditions.

Ideally, pedagogical interventions increase equity and nar-
row achievement gaps between students, indicated by lower
variability among students who experience the intervention,
but in the non-ideal case they also could widen these gaps.
Interestingly, differences in condition variability affect what
allocation of students is best for power: uneven allocation
that places more students in the more variable condition
will result in higher power than uniform allocation, at the
potential cost of reward. In the simulations that follow, we
examine how allocation using TS and Exp algorithms juggles
power with reward differently, as well as whether Exp algo-
rithms’ adversarial assumptions and sensitivity to condition
variability make them improve upon uniform allocation for
measures like power that are researchers’ primary concern.

5.1 Methods
5.1.1 Two-arm scenarios

To systemically investigate the impact of having conditions
that differ in variability, we construct artificial scenarios
with two arms that have normally distributed rewards. We
fix the expected reward of arm 1 as 1 and that of arm 2 as
0, and vary whether the better or worse arm has a higher
variance and the magnitude of the differences in variance;
specifically we consider the following 19 scenarios:

{(1, 1)} ∪ ({1} × {2 : 10})︸ ︷︷ ︸
Worse arm has higher SD

∪ ({2 : 10} × {1})︸ ︷︷ ︸
Better arm has higher SD

where each tuple gives the standard deviation (SD) of arm
1 followed by arm 2.

As in Section 4, rewards are interpolated into [0, 1] for the
MAB algorithms. Rewards are first clipped to [−30, 31],
where −30 is the mean of the worse arm (0) minus three
times the maximum possible SD (10) and 31 is the mean of
the better one (1) plus three times the maximum possible
SD. We run 10000 trials for each scenario-algorithm combi-
nation, and each trial includes 250 simulated students.

5.1.2 Data collection and analysis
Data collection is described in Section 4.1.3. For analysis,
we use Welch’s test (t-test that does not assume equal vari-
ances) instead of the Brunnzer-Munzel test, as raw rewards
are normally distributed and the clipping range is wide.

To determine if a statistic for data collected using the MAB
algorithms differed reliably from that for data collected us-
ing uniform allocation, we use generalized linear regression,
with factors for algorithm (with uniform as reference group),
standard deviation of the arm with variable variance, and
the interaction between the two.

5.2 Results
As shown in Figure 4, the impact of allocation method on
power differed systematically based on whether the better
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Figure 4: TS has higher power than uniform when the better
arm is more variable (a), but lower power when the worse arm
is more variable (b); Exp algorithms and uniform perform
similarly. In all cases, MABs outperform uniform, with TS
attaining the highest reward (c-d). Error bands: ±1.96 SE.

or worse arm had higher variance. TS allocation was associ-
ated with significantly higher power than uniform allocation
when the better arm was more variable (coefficient: 0.20;
p < .001; Figure 4a), but significantly lower power when the
worse arm was more variable (coefficient: −1.94, p < .001;
Figure 4b). In contrast, the three Exp algorithms performed
qualitatively similarly to uniform allocation in both scenar-
ios, with a small but reliable decrease in power for Exp3 and
Exp3.1 when the worse arm was more variable (coefficient
for Exp3: −0.13, p < .001; Exp3.1: −0.09, p < .01). No
other power differences were detected. While the potential
of TS to increase power in some situations seems promising,
researchers will not know in advance whether to expect TS
to increase or decrease power, and the decreases in power
from TS when the worse arm has higher variance are larger
than the increases in the opposite case. Further, designing
an intervention where the better arm is more variable is gen-
erally undesirable: it corresponds to a scenario in which an
intervention that helps students on average also widens gaps
among individual students.

As expected and shown in Figure 4c-d, TS had larger reward
compared than the Exp algorithms, but all MAB algorithms
resulted in reliably higher reward – i.e., benefits to students
– than uniform allocation (better arm more variable: coeffi-
cient for TS: 0.47; Exp3: 0.07; Exp3.1: 0.03; Exp3++: 0.07;
worse arm more variable: TS: 0.45; Exp3: 0.08; Exp3.1:
0.04; Exp3++: 0.07; all p < .001).

6. DISCUSSION
Pedagogical experiments are a useful tool for improving ed-
ucation, but allocating students to conditions uniformly at
random can pose challenges, with larger subject pools lead-

ing to more students experiencing an inferior educational
condition but smaller subject pools potentially decreasing
the ability of researchers to differentiate conditions with
certainty. Our results suggest that adversarial bandit algo-
rithms offer a way to increase the proportion of students
assigned to a better condition with limited compromises
to the conclusions that can be drawn from the experimen-
tal results. Hyper-parameter free adversarial bandit algo-
rithms like Exp3++ thus offer a researcher-friendly option
for experimental design that performs well even with non-
standard outcome distributions, as we saw in the ASSIST-
ments simulations. While TS improved power when the bet-
ter condition had higher variance, it also decreased power
when the worse arm had higher variance. Researchers are
unlikely to know which of these scenarios applies before col-
lecting results, and this unpredictability of the impact of TS,
coupled with the higher FPR and lower power on average in
the real educational datasets, may make stochastic bandits
less attractive to researchers.

One limitation of this work is its use of simulations rather
than new experiments. Importantly, simulations are needed
to measure power and FPR, but field testing with adversarial
algorithms is also needed to assess their real-time feasibil-
ity as well as the existence and impact of temporal trends in
outcomes. All studied algorithms run in real-time on a single
CPU, but students may complete homework contemporane-
ously, with some assigned a condition prior to another stu-
dent finishing and thus without incorporating the outcome
of that student. This could be handled by batch updat-
ing [17,21], but there has been limited exploration of the im-
pact of batching on analyzing the collected data. Temporal
trends may occur in experiments if, say, higher prior knowl-
edge students complete homework first, or multiple schools
participate in an experiment at different times. Adversar-
ial bandit algorithms should outperform stochastic ones in
these situations, but empirical study is necessary.

A second limitation is our assumption that one arm is better
for all students, without regard for personalization. While
personalization is an exciting area for future work, incor-
porating personalization in bandit algorithms for education
poses its own ethical conundrums, including potentially lesser
outcomes for less well-represented groups (see [14]).

Future work should also examine other scenarios where ban-
dit algorithms might increase power. Here, we focused only
on conditions with differing variance, but other interesting
scenarios include experiments with more conditions, with
predicted outcome distributions that exhibit particular non-
standard characteristics (e.g., bimodality), or with different
analysis goals than detecting if two conditions differ in mean.
One or more types of bandit algorithms (e.g., stochastic,
adversarial, or best-arm identification [23]) may be best for
each scenario; based on their weak environmental assump-
tions, we believe adversarial bandits may be reasonable in
all of these scenarios. Work in optimal experiment design
(OED; see, e.g., [24]) shows the potential of non-uniform
allocation to increase the information gained from an ex-
periment. Bandit algorithms often require less setup and a
priori knowledge than OED, and thus identifying informa-
tion gain benefits of these algorithms in particular settings
could benefit both researchers and student participants.
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ABSTRACT
Despite calls to increase the focus on explainability and in-
terpretability in EDM and, in particular, student success
prediction, so that it becomes useful for personalized inter-
vention systems, only few efforts have been undertaken in
that direction so far. In this paper, we argue that this is
mainly due to the limitations of current Explainable Arti-
ficial Intelligence (XAI) approaches regarding interpretabil-
ity. We further argue that the issue, thus, calls for a a
combination of AI and social science methods utilizing the
strengths of both. For this, we introduce a step-wise model
of interpretability where the first step constitutes of know-
ing important features, the second step of understanding
counterfactuals regarding a particular person’s prediction,
and the third step of uncovering causal relations relevant
for a set of similar students. We show that LIME, a current
XAI method, reaches the first but not subsequent steps. To
reach step two, we propose an extension to LIME, Mini-
mal Counterfactual-LIME, finding the smallest number of
changes necessary to change a prediction. Reaching step
three, however, is more involved and additionally requires
theoretical and causal reasoning - to this end, we construct
an easily applicable framework. Using artificial data, we
showcase that our methods can recover connections among
features; additionally, we demonstrate its applicability on
real-life data. Limitations of our methods are discussed and
collaborations with social scientists encouraged.

Keywords
Educational Data Mining, Student Drop-Out Prediction,
XAI, Explainability

1. INTRODUCTION
Educational Data Mining (EDM) and in particular its sub-
field of student success and dropout prediction has gained
prominence in recent years due to the increased digital ed-
ucation data availability and because the prediction of stu-
dents’ successes and struggles poses an important real-life

problem. Accordingly, a multitude of studies exist testing
various Machine and Deep Learning techniques on differ-
ent data with some achieving remarkable accuracy and F1-
valuesof more than 80 or even 90% regarding drop-out or
success prediction [19, 13, 14, 6, 11]. This seems impressive
and Xing & Du [17] write that individual drop-out prob-
abilities can be used to “provide stronger and prioritized
intervention to these students as a way of personalization”
(p. 558). However, simply using the predictions will not
enable one to do that. These only allow us to know who
is likely to drop out; but in order to do anything with this
prediction, we ought to know why the prediction has been
made. Understanding why a prediction is made, is the topic
of another timely topic in computer science, Explainable
Artificial Intelligence (XAI). There, the why is split up fur-
ther in global and local feature importance. With global,
we mean what features are generally considered important
by the model for predictions. This is valuable information
so that we can control that features which would lead to a
biased system discriminating against certain populations or
features mistakenly included do not have an impact. A local
explainability of a prediction, in contrast, relates to the im-
portance of features regarding a specific person’s prediction.
This is important when we aim to use our predictions to help
and advice a student predicted to be at risk as it allows us
to understand what features contribute to their prediction
specifically. Providing a basis to construct a personalized
intervention system is the aim of this paper - thus, we work
with local explainability.

The importance of XAI in EDM seems obvious and we are
not the first to think so. Chitti et al. [5] heavily advo-
cate a use of XAI techniques in future studies lamenting a
lack thereof in current research. Alhamri & Alharbi [2] in-
vestigated the use of XAI and explainability techniques in
performance prediction and came to the conclusion that few
studies focus on it, and that those doing so merely focus on
global explainability and do not employ techniques offered
by XAI, instead simply using standard techniques as Deci-
sion Trees and looking at the generated rules. Indeed, it
seems that with one notable exception [3], hardly any cur-
rent research includes local explainability.

At first, it seems surprising that XAI techniques have not
been employed more frequently as comparatively easy to use
and model agnostic methods to extract important features
exist1. However, we will see in this paper, that employing

1SHAP for global, and LIME for local explainability [10,
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XAI techniques off-the-shelf still leads to rather empty ex-
planations. While knowing the important features explains
why a prediction has been made, we also need to be able
to interpret why and how these features matter at all. To
better distinguish between those concepts, we argue for a
distinction between explainability - which in this paper will
relate to explaining the decision of the model, i.e. knowing
the important features - and interpretability - which in this
paper will relate to being able to interpret why and how
features are important. Current XAI methods, as we will
demonstrate later on, do not allow for interpretability.

Upon showing this, the objective of this paper is to provide
a way of reaching interpretability as a basis for construct-
ing personalized interventions. To this end, we will turn to
another discipline, social science, that is traditionally well-
equipped to deal with causal mechanisms and combine the
predictive abilities of Machine Learning with the theory and
causal analysis tools of social science. More precisely, we
will:

• after a brief introduction to LIME, introduce a step-
wise model of interpretability that will be illustrated
with an example showing that XAI alone only achieves
explainability but not interpretability.

• argue for a combination of XAI with social science,
allowing us to gain full interpretability to construct a
personalized intervention system. To this end, we will
introduce a pipeline employing techniques from both
disciplines.

• evaluate the approach on artificial data, so that we can
test whether causal relationships are recovered; and
show the applicability of the approach on real-life data.

• discuss the limitations of the approach and call for
more collaborations among social scientists and com-
puter scientists.

2. LIME
The aim of a personalized intervention system is both to
provide a student with an idea of why they are predicted
to struggle and what can be done to change this; and to
provide pointers to those concerned with tailoring programs
to help students. The requirements are, thus, to know what
exact features contribute to a specific student’s prediction
(local explainability), which features’ values would need to
change in what way to change the prediction, and what un-
derlying causal mechanisms are at work.2 Note that when
we consider causal mechanisms, we stray away from what

15].
2Note that while with global XAI, we often strive to exclude
features that could be discriminating (e.g. age, gender, ...),
local interpretability and the task of providing personalized
intervention systems allows us to use those features as (a)
people are not selected into programs because of it and more
importantly (b) because we can try to mitigate difficulties
certain populations have. If we identify, e.g., that some older
students struggle, we could think about the mechanisms be-
hind this, (e.g. older students generally have other respon-
sibilities such as jobs and family competing for time), and
and try to find solutions (e.g. provide flexible timetables,
childcare on campus, ...).

XAI and purely data-driven approaches can provide. XAI
techniques are concerned with explaining a model’s decision
but when we are interested in the causal mechanisms behind
the important features we a) can no longer use XAI off-the-
shelf and b) simultaneously make the assumption that the
features important for the model also carry importance in
real-life. The latter assumption should be kept in mind as
it is not necessarily a given. Nonetheless, XAI can serve as
a valuable basis for interpretability. Due to our focus on lo-
cal interpretability, we choose to employ LIME. LIME is an
acronym for Local Interpretable Model Agnostic Explana-
tions which - as the name says - works for every model and
finds local explanations for each instance. The basic idea is
to randomly sample n feature vectors around the instance
we want to explain given the normal distribution and to then
weigh these new instances according to the distance to the
instance we want to explain. Furthermore, the predicted
label for each sample is obtained by feeding the feature vec-
tor into the model (note, that this works regardless of the
specific method making it model agnostic). Based on this,
Lasso regression is employed on the generated data with the
predicted labels being the dependent (or target) variable.
This allows us to extract the k most important features for
the prediction [15].

3. A MODEL OF INTERPRETABILITY
One of the reasons why XAI techniques have not been used
much may relate to their limitations regarding actual in-
terpretability [9, 8, 1]. To illustrate our argument, consider
Figure 1. It shows a Directed Acyclical Graph (DAG) of fac-
tors influencing whether a course, C1, is completed. We can
observe whether courses C2, C3, and C4 are taken in par-
allel or not. These are our observable variables that could
be used as features in a ML model. Taking these classes
in parallel does not influence the completion of C1 directly.
However, they do so indirectly through latent factors we can-
not observe. Courses C2 and C3 compliment the contents
of C1 well and taking them in parallel increases the com-
petences required to complete C1 which then increases the
probability of finishing the course. C4 is not related to C1
regarding content and thus does not contribute to compe-
tence important to complete C1. All three classes C2, C3,
and C4 contribute to the workload, though. Having a high
workload decreases the probability of finishing C1. Imagine
now that for a student, Alice, the drop-out probability for
C1 is predicted to be high. In order to fully leverage on this
prediction, we should walk through each of the three steps
of interpretability.

1. Understand which features matter. This means that we
know which features matter for a person’s prediction
(local explainability). In our example, this means that
the most important features regarding Alice’s predic-
tion are revealed to be the parallel taking of C2, C3,
and C4. Furthermore, we know at this step that all
three have a negative impact on completing C1. This
is good to know but knowing the direction and impact
of features is not equal to knowing what has to change
in order to change the prediction. Should Alice not
take any of these classes in parallel?

2. Understand what would need to change to change the
prediction. In other words, we are looking for coun-
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Figure 1: An example of causal modelling explaining factors
influencing whether Course 1 (C1) is dropped or not.

terfactual explanations. In our case, we want to know
whether not taking one or a combination of the classes
will lead to a different prediction of our model. This
can provide sensible advice.

3. Understand the causal relationships among features and
latent factors. This refers to a causal understanding of
features and latent factors. In this last step, we try to
uncover the DAG (as shown in Figure 1) by theorizing
about latent factors and testing whether the observa-
tions support this. We aim to understand that the
courses influence latent factors competence and work-
load and which course influences which factor in which
way. Not only does this lead to the best intervention
for Alice; moreover, we can use this knowledge to con-
struct better programs for all students.

If we use LIME off-the-shelf, we can extract the k most
important features per person but counterfactual explana-
tions are not provided. Thereby, we reach the first but not
subsequent steps of interpretability. This limitation of XAI
particularly regarding counterfactual explanations has been
addressed and sometimes dealt with by other scholars as
well [9, 8, 1]. Given these limitations, it is, therefore, maybe
not surprising that few scholars saw it worth to employ XAI.
How can we reach the other steps of interpretability and find
a basis for personalized intervention? We argue that in par-
ticular reaching the third step calls for turning towards and
employing techniques of social science. Firstly, we need an
understanding of the concept of counterfactuals and aim to
extend LIME in that way. Secondly, we need a theory-, in-
stead of data-driven approach to explore causal mechanisms.
Social science is well equipped for this task.

3.1 Reaching Step 2: MC-LIME
Reaching step 2 is easily possible as it rather naturally ex-
tends the idea of LIME, but requires an understanding of
the concept of counterfactuals common in social science. In
short, we attempt to answer the question of what would
have happened regarding the outcome (the prediction) if the
treatment (the features’ values) had been different. In our
case, we consider the k features extracted by LIME that have
a positive impact on the drop-out probability (i.e. make it
more likely that someone drops out). Then, we check for
the smallest subset of these features that - when changing

their values - changes the prediction and return the features
and changed values3. We achieve this by iteratively chang-
ing one feature’s value; if this never leads to a prediction
change, we check for all combinations of two features etc.
Because we look for the smallest necessary change, we call
this approach Minimally Counterfactual LIME (MC-LIME).
If multiple subsets of the same size exist, but we only want
a certain number, we can select to receive the c changes that
lead to the largest difference in the output probability. This
procedure is straightforward for binary variables where we
can simply use the complementary value. For categorical
and ordinal features, we propose iterating through all pos-
sible values; all values, for which a change is reported, are
stored - the highest change counts towards the selection of
the top c features. For count features, we propose shifting
the value a standard deviation towards the mean, so that
the change is large enough to make a substantial difference.
The resulting subset tells us what would minimally need to
change in order to change the prediction and how this change
would need to look like.

3.2 Reaching Step 3: A Causal Analysis
While this information is already very important, it is not
enough to provide good interventions and to potentially con-
struct programs, though. In order to know why features
matter - for the model but hopefully also overall - we propose
to use all features LIME returns (positive and negative im-
pact) as a basis for a deeper analysis. For this theory-driven
approach, we propose to follow the steps:

1. Extract all features and their impacts and use it to
cluster people into groups. Therefore, we only work
with a subset of all extracted variables that are known
to be relevant for a set of students thereby simplifying
the model while at the same time assuring that we use
relevant features.

2. For the demographic (and if available social and psy-
chological) features, e.g., age, having a student job,
living closer or further away from university, look for
social science studies that investigate their effect on
drop-out and let it inform you on causal mechanisms.
If you find that other features could also be important,
add them.

3. For features specific to your domain, e.g. the courses
offered, try to understand what they are about and
how this could influence the outcome variable, i.e. the
drop-out.

4. Begin drawing a DAG and consider the following ques-
tions: (a) Is a connection between two variables direct
or does it go through a latent variable we cannot ob-
serve? Does the latent variable mediate the effect? (b)
Is there an actual relationship between two variables
or are they confounders meaning that a third variable
effects both? (c) Does a third variable moderate the
effect between two variables? (d) Is the effect linear or
quadratic?

3Note that this is very similar to LIME’s understanding of
feature importance.
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5. Model a regression formula according to your DAG and
run the regression on the training data with success or
drop-out being the dependent (or target) variable.

6. Check the effects of the terms of your formula. What
is significant? Does the direction conform to your the-
oretical considerations?

7. Construct personalized interventions according to so-
cial science theory and in combination with the in-
sights of step 2.

4. EVALUATION
In order to demonstrate the pipeline and its applicability,
we test our approach on an artificial and a real-life set of
data.

4.1 Data
Artificial Data. As, typically, we do not know the real causal
mechanisms and can only make informed guesses consider-
ing the existing literature and our own reasoning, we test
MC-LIME and our causal framework on artificial data. Re-
garding MC-LIME we can test whether it returns the feature
subset that is intended to make a difference. It is, of course,
not very telling to use this data on our causal framework
as we know the causal mechanisms we decided on. How-
ever, it is still valuable to see whether we can recover the
intended effects and their directions as specified in data gen-
eration. Our data consists of the target variable drop-out
and 26 other binary features. Of these 26 features, when
they are set to 1, eight have no effect, three have no direct
effect but do have one when combined with other variables,
two have a negative impact on drop-out that reverses when
combined with other variables, three have a positive impact
that reverses when combined with other variables, five have
a negative effect and five have a positive effect. The first
row of Table 1 summarizes this; a plus indicates a positive
effect on drop-out, a minus a negative effect. The number of
symbols represents the strength of the effect, as each causal
relationship was given a weight by which the probability of a
drop-out changes. We created 10,000 instances by randomly
sampling features. The drop-out value was determined by
the sum of of the weights of the non-zero variables. If the
sum was 0.5 or higher, we assigned a 1, else we assigned a
0. This resulted in 30% of instances having assigned a 1.

Real-Life Data. In order to demonstrate the process on real-
life data, we gathered information on a mandatory first-year
theoretical computer science course - that we will call C1
- part of a three-year Bachelor degree at the University of
Mannheim, Germany.4 We have information on all students
that registered for this course between 2010-2020 and try to
predict who will drop out. Note that students who failed or
dropped out once and then registered in subsequent years
may appear in the data twice. Our data contains 1,738 in-
stances. Furthermore, even though the course is meant to
be taken in the first year, many students take it later. The
data contains seven demographic features, and 160 features
on high school results, previous courses taken, previous re-
sults and drop-out behavior, and classes taken in parallel.

4The data was k-anonymized prior to analysis to ensure pri-
vacy.

To understand our data structure, consider a course A. This
course has four features assigned to it: whether is is taken
in parallel to C1, whether the student failed it, whether the
student dropped out, or whether the student passed. Note
that a student can have 1 assigned to several of these fea-
tures, if, e.g., a person first dropped and then passed course
A. Again, remember that this only encompasses the infor-
mation we have at the time when the student registers for
the course we are predicting on. In total, we consider 30
courses. Table 2 provides summary statistics of the data.

4.2 Step 1: LIME
For both sets of data, we predicted the drop-out using sev-
eral methods: Support Vector Machine (SVM), a simple
Deep Neural Network (DNN), Naive Bayes, Decision Tree,
and Random Forest. Then, we selected the model leading
to the highest F1-value and accuracy in the test data. For
the artificial data, this was the DNN with an accuracy of
99.5% and a F1-value of 0.99. For the real data, it was the
SVM with an accuracy of 87.12% and an F1-value of 0.9.
Having selected the best model, we extracted the ten most
important features and their directions for each instance of
the test data. We only considered those instances for which
drop-out was predicted, as these are the ones we are most
interested in.

Artificial Data. 318 of the 1,000 test instances were pre-
dicted to drop out. Table 1 shows which features where
extracted at least for one instance. We can see that feature
V 8 was not considered important at all, even though it is
supposed to have a negative effect on drop-out. In contrast,
V 20 was extracted once, even though it should not have an
effect. Furthermore, V 17 and V 18 were not extracted; these
features do not have an effect on their own, but do when
combined. The most extracted features were V 2, V 11, V 12,
and V 13 which were extracted for each instance, followed by
V 5 (316), V 1 (312), V 6 (284), and V 3 (213). Note that this
does not mean that for all those predicted to drop out, each
of these variables was set to 1 or had a positive impact as
the table also includes features that have a negative impact
on drop-out. As a matter of fact, the extracted directions
of the effects are correct for all extracted features that upon
being set to 1 are supposed to have a positive or negative
effect on drop-out. For those features for which the direc-
tion of the effect changes upon combination with others, we
can see that the reverse effect is extracted. This shows the
limitations of LIME and, therefore, the importance of our
remaining steps.

Real Data. For 26 instances the label drop-out was pre-
dicted. In total, 25 important features were extracted; of
these, six only appeared once. The most frequently ex-
tracted features were whether a person planned to take the
exam on the first date or in the resit (26)5, the study year
(26), the age (26), whether two other first year classes were
taken in parallel (24 each), whether one of these first-year
courses had been dropped before (20), and whether a second
year course had been passed (12).

5Students have the opportunity to decide between taking
the exam right after the lecture period or two months later;
the latter is known as the resit date.
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Table 1: Artificial Data - variables, their effects, and what could be recovered using LIME and regression on extracted features.

Effects Pos. Effect Neg. Effect Effect in Combination No Effect
Variables V1(++), V2(++),

V3(++), V4(++),
V5(++)

V6(−−), V7(−), V8(−),
V9(−), V10(−)

V11(−−)+V12(−−)+V13(No): +++;
V14(+)+V15(+)+V16(+): −−−;
V17(None) + V18(None): ++

V19-V26(No)

Recovered
(LIME)

V1(+), V2(+), V3(+),
V4(+), V5(+)

V6(−), V7(−), V9(−),
V10(−)

V11(+), V12(+), V13(+),
V14(−),V15(−), V16(−)

V20(−)

Changed Predic-
tion (MC-LIME)

V1, V2, V3, V4 V6, V9 V11, V12, V13 V20

Recovered (Re-
gression)

V1(+), V2(+), V3(+),
V4(+), V5(+)

V6 (−), V7 (−), V9(−),
V10(−)

V11(−)+V12(−)+V13(None): +;
V14(+) + V15(+) + V16(None): − ;
V17(None) + V18(None): +

V20(−)

Table 2: Summary statistics of real-life data regarding the
first year course C1.

Variable Key Statistics
Age 20.49 (min: 16, max: 36)
Year 1.7 (min: 1, max: 5)
N of Attempts 1.3 (min: 1; max: 3)
Gender female: 18.35%, male: 81.65%
Nationality domestic: 83.77%
Domestic HS Degree 91.48%
Drop-Out of C1 41.49%

4.3 Step 2: MC-Lime
Artificial Data. We now selected those important features
that have a positive effect on drop-out for each instance and
iteratively changed the values. For 302 instances, it was
enough to change a single value to change the prediction;
for 14 of these, there was only one feature which managed
to change the prediction on its own. Table 1 displays what
features changed the prediction on their own for at least one
instance. 14 instances needed two changes, the remaining
three changes. The feature most often leading to a change
when assigned a different value was V 11 (291), followed by
V 13 (288), 12 (287), and V 2 (112). Interestingly, V 20 also
changed the prediction on its own once. Several variables
could not change the prediction on their own. Apart from
V 5, though, these are only variables that have a small im-
pact on the drop-out rate in comparison.

Real Data. Proceeding in the same fashion, we found that
14 instances only needed a change in one feature to change.
This rose to 19 when we considered changes in features re-
ferring to the same course as just one. There were 10 in-
stances for which only one specific feature changed the pre-
diction. Two instances needed two changes, the remaining
instances three or more. 16 features changed the prediction
on their own for at least one instance. The instances most
often leading to changes were relating to two of the three
classes extracted as important before (16, 13), the variable
indicating the date (16), the age (8), and semester (6). Of
course, a person cannot change their age upon learning that
this contributes to the prediction. However, universities can
identify causal mechanisms explaining the importance of age
and then construct specialized offers. In order to be able to
this, we of course need to continue with step 3.

4.4 Step 3: Regression and Modelling

Artificial Data. For the artificial data, we simply used all the
extracted features and our knowledge 6 about the data gen-
eration to construct the logistic regression formula. Then,
we entered this together with the training data in a logis-
tic regression. The last row of Table 1 shows the recovered
effects. All variables entered into the regression were signif-
icant (then they were given the sign of the direction of their
effect in the table) apart from V 16 and V 11 - even V 20
(albeit only on the 5%-level) which means that by chance
in data generation, more instances got the label drop-out
assigned which also received a 1 in this variable. V 16 was
positive but not significant, even though it should be. V 11
was correctly identified as no longer being significant once
combined with the other two variables. All effects now also
had the correct directions. Interaction terms of V 11, V 12,
and V 13 and V 14, V 15, and V 16 were also significant and
had the correct direction. We can see that reasoning about
and investigating causal mechanisms made it possible to re-
cover most effects and their directions.

Real-Life Data. For the real-life data, as explained above,
we first clustered our test instances using k-Nearest Neigh-
bor based on the features extracted so that we only focus
on features relevant for this set of students. We chose k = 3
upon visual inspection. For illustrative and space reasons,
we will focus on the largest of the clusters containing twelve
instances. We used all features that were extracted for more
than one instance in the cluster (Table 3). The only two
features that are not specific to our setting are the variables
age and nationality. Therefore, we consult the literature
on these variables. For age, scholars are divided. While
some studies stress that older students are generally more
successful and achieve higher grades, others find that ad-
vances in age can also be seen as a positive predictor for
drop-out [16, 18, 4]. The former is generally attributed to
older students being more certain of their goals and having
an increased focus; the latter is often attributed to having
other important parts of life such as a family or a job. Based
on this, we theorize that those being a little older are influ-
enced by the former, and those who are much older by the
latter; thus, for the regression, we include age and age2. Of
course, that age has been selected in the first place, could
also be due to the fact that those students taking the class
later in their studies are older and may regularly struggle
with courses. To account for this, and because it is also ex-
tracted as a feature, the number of years one has studied
is also included. For domestic nationality, the likely reason

6Therefore also entering V 17 and V 18 again.
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for the negative effect LIME implies is that the degree is
in German which creates a language barrier to non-German
speaking students [12, 7]. This might be mitigated when a
student already received their high school diploma in Ger-
many; thus, we enter this variable in an interaction term,
even though, it is not extracted as an important feature.
The other features are specific to our setting. We argue that
having failed the course before leads to a decreased proba-
bility of dropping out because students have already com-
pleted the course before. Writing the exam on the resit date
leads to an increased probability of dropping out because
the exam is written almost two months after the end of lec-
tures meaning that a) students may have not paid enough
attention on this course during the lecture period and b)
students may have forgotten important information in the
meantime. We argue that having passed courses C2, C3, and
C4 leads to a decreased drop-out probability, because these
courses have connected contents and require a similar skill-
set. Those who did not struggle much with these courses
can then also complete this one. Likewise, having struggled
in these courses leads to a higher drop-out probability. Fur-
thermore, we argue that taking C2 and C3 together with
our queried course C1 - as intended by the study program
- may lead to a very high workload; thus, we also include
an interaction term of these. Table 3 shows our results, the
middle column summarizes the results of the logistic regres-
sion without interaction or quadratic terms, the right-hand
column the results including these terms. The symbol “+”
indicates a positive effect on the drop-out probability, sym-
bol “-” a negative one. One “+” indicates an effect on the
10%, two on the 5%, and three on the 1% level; a “No” indi-
cates no significant effect. We can see that the effect for age
- which is at first positive - reverses when age2 is added with
higher age now leading to a decreased drop-out probability
on average, though age2 is not itself significant most likely
due to the small sample size. Similarly, the non-significant
effect for domestic students and high school diploma may be
due to that. The study year does not matter, but the date
greatly matters with taking the exam at a later date leading
to a higher probability on average. Having failed the course
before, leads to a smaller drop-out probability, but having
dropped it to a larger one. Only taking C3 in parallel seems
to have an effect on its own. C2 has no effect. For C3 we
see that those who dropped this also have a higher proba-
bility of dropping C1; having passed C3 also means that C1
will likely be completed. For C4, even not having passed
already leads to a smaller probability of drop-out. Hav-
ing passed all three courses also leads to a smaller drop-out
probability. What do we take away from this? Generally,
we should investigate whether the age effect that compar-
atively old and young students struggle persists across the
overall program. If so, we should think about how to help
these age groups. Furthermore, considering this course in
particular, we should encourage the students to not choose
the resit date. We should also identify students who have
struggled with the courses of similar content before and of-
fer increased assistance and attention to them. How to best
do this, is something social science may also help us with.
Finally, we combine our insights of step 2 and 3 for each
student to tailor the best intervention.

5. CONCLUSIONS, LIMITATIONS, & FU-
TURE WORK

Table 3: Regression results of real-life data.

Variable Without
Interaction

With Interac-
tion

Age, Age2 + −, No
Y ear, Y ear ∗Age No No, No
Date +++ +++
Domestic, Domestic ∗HS No No, No
failC1, dropC1 No, + −, +
parC2, parC3, parC4,
parC2 ∗ parC3

No (all) No, −, No,
No

failC2, dropC2, pasC2 No(all) No(all)
failC3, dropC3, passC3 No, +, No No, +, −
failC4, dropC4, passC4 −, No, −− −, No, −−
passC2 ∗ passC3 ∗ passC4 −

In this paper, we addressed the issue of a lack of XAI in
EDM. More specifically, we attempted to provide a frame-
work enabling us to use the information extractable from
predictions as a basis for a personalized intervention sys-
tem. To highlight the challenges and requirements, we came
up with a step-wise model of interpretability where step 1
means identifying important features, step 2 identifying the
minimal set of value changes to change the prediction, and
step 3 identifying causal mechanisms. We described meth-
ods to reach each of the steps and evaluated them on an
artificial and real-life dataset showing the applicability. Our
results on artificial data showed that the method works well
when we correctly theorize about causal mechanisms. Of
course, we may not always able to do that. This is a limita-
tion of our work which, in general, provides no “one size fits
all”-formula, but needs to be adjusted for different settings.
Furthermore, our methods can certainly be further refined
but we hope that our step-wise model of interpretability pro-
vides a good orientation. A third limitation is that we do
not show an actual application of our method in a real-life
setting meaning that we cannot evaluate whether the con-
clusions derived from our analysis benefit the students in
practice. This is a future endeavour. When using predic-
tive systems in practice, we would like to once again stress
that this should be made clear to students and should be
very transparent. Finally, we would like to argue for an
increased collaboration among social and computer scien-
tists. Whereas computer scientists are typically experienced
with predictions and deriving knowledge from data, they
lack experience when it comes to theory-driven approaches
and causal analysis. Social scientists, in contrast, typically
do not work on predictions but are knowledgeable regarding
statistical tools to uncover causal mechanisms and deriving
models from theory. While these differences in approaches
are prone to hinder collaboration, for this task it will greatly
benefit both disciplines. Furthermore, while social science
informs our models, it can also gain new insights through
large-scale predictions and deriving information from data.
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ABSTRACT
The recent trend of embedding source code for machine
learning applications also enables new opportunities in learn-
ing analytics in programming education, but which code
embedding approach is most suitable for learning analyt-
ics remains an open question. A common approach to em-
bedding source code lies in extracting syntactic informa-
tion from a program’s syntax tree and learning to merge
these into continuous distributed vectors (e.g., code2vec).
Code2vec has been predominantly investigated in the con-
text of professional programming languages, but learning
analytics are particularly important in the context of edu-
cational programming languages such as Scratch. In this
paper, we therefore instantiate the popular embedding ap-
proach code2vec for Scratch programs, create three dif-
ferent classification tasks with corresponding datasets, and
empirically evaluate code2vec on them. Our experiments
demonstrate that a transfer of code2vec to the educational
environment of Scratch is feasible. Our findings serve as a
basis to apply code embeddings to further educational tasks
such as automated detection of misconceptions of program-
ming concepts in Scratch programs.

Keywords
code2vec, Scratch, programming education.

1. INTRODUCTION
The application of natural language processing (NLP) and
machine learning (ML) methods in the field of software en-
gineering (SE) is gaining popularity in research and indus-
try [27]. A central prerequisite for such machine learning
applications on source code is to represent semantically simi-
lar code as similar continuously distributed vectors, the code
embeddings, in a vector space. Popular code embeddings
such as code2vec [6] have been successfully used for pro-
gram analysis tasks such as predicting method and variable
names, or identifying bugs and misconceptions [3, 5, 17].

Programming education research frequently relies on analy-
sis of learners’ programs, for example to automatically de-
tect incorrectly used programming concepts and bugs [2,11,
25, 26]. Code embeddings bring the promise of novel ap-
plications also in the educational domain [9, 10, 24]; e.g.,
continuously distributed vectors make it possible to monitor
learner trajectories or to detect outliers and anomalous be-
havior. However, code embeddings are predominantly gen-
erated from syntactic features of the source code. For ex-
ample, code2vec considers the relation of pairs of textual
tokens in the context of the syntax tree that results from
parsing the source code. Most code embedding approaches
are designed for textual programming languages such as
Java or Python. Programming education, however, is fre-
quently based on simplified block-based programming lan-
guages such as Scratch [22]. These programming languages
are intentionally designed to reduce the syntactic overhead
for learners, and may thus affect the same syntactic prop-
erties of programming languages that make them amenable
to code embedding models. This may in turn affect the ap-
plicability of these models in an education context.

The aim of this paper is to adapt and investigate the pop-
ular code2vec code embeddings for the educational pro-
gramming language Scratch. We implement an analysis
for Scratch programs that extracts the path context infor-
mation on which code2vec is built. We then create three
different classification tasks with corresponding datasets to
study the suitability of the resulting embeddings:

• Girls and boys are known to implement different project
types and programming concepts [13, 16]; we explore
whether code embeddings can capture these nuances.
• A major characteristic of Scratch programs with ed-

ucational implications [1] is their type (e.g., game, an-
imation, etc.). We explore whether code embeddings
enable the prediction of project types from code.
• The original evaluation of code2vec explored the abil-

ity of embeddings to capture semantic content by pre-
dicting names of methods. We adapt this task to
Scratch by predicting names of sprites.

Although Scratch code differs from text-based code in im-
portant ways affecting code embeddings, such as the struc-
ture or size of syntax trees, or the organisation into sprites
and scripts rather than classes and methods, we find that
code2vec nevertheless performs well at these tasks.

B. Fein, I. Graßl, F. Beck, and G. Fraser. An evaluation of code2vec
embeddings for Scratch. In A. Mitrovic and N. Bosch, editors, Pro-
ceedings of the 15th International Conference on Educational Data
Mining, pages 368–375, Durham, United Kingdom, July 2022. Inter-
national Educational Data Mining Society.
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2. BACKGROUND AND RELATED WORK
To understand the application of code2vec to the introduc-
tory programming language Scratch, this section outlines
the concepts and their use cases.

2.1 The Scratch Programming Language
Scratch is a block-based programming environment that
is particularly designed for learners due to its ease of use
through the arrangement of visual blocks [22]. In Scratch,
the behavior of graphical objects, the sprites, is controlled by
means of code blocks, which are assembled to scripts. The
code blocks have particular shapes so that they can only be
assembled in syntactically valid ways, without the need for
the syntactic overhead of text-based programming languages
(such as indentation, braces, semicolons, etc.) Code blocks
control the appearance and behavior of sprites, as well as
interactions with the user.

Besides the intuitive programming user interface, the popu-
larity of Scratch is also supported by a rich ecosystem of
users sharing their programs publicly and interacting around
them. In addition to accessing this information through
the user interface, it is also possible to use a REST-API to
programmatically access all publicly available data conve-
niently, which is helpful to enable data mining applications.

Scratch programs are categorized into one or more project
types: games, stories, animations, music, art, and tutori-
als. It has been established that some project types require
certain programming concepts more than others [1,18]. Fur-
thermore, it has been repeatedly observed [13,16] that there
are gender-dependent preferences regarding the project type
and thus in the programming concepts: While girls mainly
prefer programs with storytelling elements, boys implement
more programs with game structures [1, 13,16].

2.2 Analyzing Scratch Programs
The source code of programs in text-based programming
languages is represented using plain text files. In contrast,
block-based programs require an intermediate format to de-
scribe the program blocks. In particular, Scratch programs
are represented using JavaScript Object Notation (JSON)
format. These JSON files organize programs in terms of
their “targets” (stage and sprites), and for each target the
JSON file lists its name, its procedures (i.e., custom blocks),
scripts, variables, lists, messages, sounds, costumes, and
blocks. The blocks are organized as lists, where each ele-
ment contains a unique identifier as well as the identifiers of
the parent and successor blocks, we well as any parameter
blocks. Whereas text-based programs are often used directly
as input for machine learning approaches, this JSON format
is intuitively less suitable for NLP-based approaches.

Static program analysis is usually not conducted on the raw
text representation, but the abstract syntax tree (ASTs) in-
termediate representation, which results from parsing the
source code. An AST-like representation is used by the
Scratch virtual machine in order to interpret Scratch pro-
grams. The LitterBox [12] analysis framework provides
a Java API to parse Scratch programs and apply static
analysis. Figure 1 shows a publicly shared example project1

1https://scratch.mit.edu/projects/18024798

(a) The game in action. (b) Code of the level sprite.

StmtList

forever

Script

when clicked

go to x: y: show

set x to

0

-

scrollx

mod

480

0 0 backward 100 StmtList

switch costume to

round

scrollx

+

720

/

480

(c) Abstract syntax tree of the script in Fig. 1b.

Figure 1: Example project (ID: 18024798): Flappy mario.

implementing a flappy bird game (Fig. 1a). Figure 1b shows
the code of one of its 24 sprites: This sprite represents the
ground and the script implements the scrolling motion to
simulate movement of the “flappy Mario” character. Fig-
ure 1c shows the AST representing the same script: Al-
though this AST is slightly simplified for space reasons, it is
noteworthy that this AST is less “abstract” than an AST for
other languages would be. For example, while a text-based
programming language would likely define an abstract to-
ken type for binary operators, with the actual operator as
one of its leaf children2, in Scratch none of the operators
are leaves, while only variables, literals, menu-options (e.g.,

backward ▼ ), and blocks without parameters (e.g., show ) ap-

pear as leaves in the AST. The AST can be used for analysis
tasks such as identifying bugs [11], code smells [15], evidence
of misconceptions [2], or progress and understanding [19].

2.3 Code2vec Code Embeddings
Code2vec [6] learns code embeddings from the syntactical
representation of programs through a neural network, where
semantically similar code snippets, which are implemented
differently but serve the same purpose, represent vectors
with a small distance to each other in the vector space. As
a basis, code2vec extracts path contexts from the AST: A
path context consists of two leaves together with the path

2For example, https://javaparser.org/
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that connects them. For example, consider the two scrollx

variable tokens in Fig. 1c, which are connected by a path
that ascends from the leaf node up to the abstract StmtList
node, which is the least common ancestor of the two leaves,
and then descends to the other leaf:

scrollx ↑ - ↑ mod ↑ set x to ↑StmtList↓ switch costume to ↓ round ↓ / ↓ + ↓ scrollx

Code2vec extracts the path contexts for all pairs of leaves
in the AST [17]. Then, a neural attention model is used
to combine the path contexts to a single vector representa-
tion, i.e., the code embedding [6]. The attention mechanism
learns to assign weights to path contexts depending on their
importance to the semantics of the code snippet, which is
assumed to be captured by method names. Consequently,
code2vec is applied to individual functions; note that, ex-
cept for custom blocks, Scratch scripts are not named. The
final single vector that represents the code is calculated as
a weighted sum over the learned individual vectors for the
path contexts [6]. When given an unseen code snippet, the
network can then use the learned weights of the paths to
calculate such a weighted sum again and therefore assigns a
similar vector to semantically similar program code.

2.4 Code Embeddings in CS Education
Various approaches to create code embeddings have recently
been considered in an education context. Piech et al. [21]
created embeddings for programs written in a text-based
educational language by executing unit tests; these embed-
dings were shown to be useful for predicting which students
would benefit from instructor feedback. Azcona et al. [7]
demonstrated that code2vec embeddings on Python code
are particularly promising on learner’s code when compared
to word embeddings applied directly to tokens. Cleuziou et
al. [9] proposed a two-step embedding approach where first
the AST paths executed by predefined test cases are ex-
tracted, and embeddings are created using document embed-
ding techniques. This approach was applied to Python code
for the task of propagating teacher feedback. Shi et al. [23]
evaluated the two code embedding techniques code2vec
and ASTNN [28] for the supervised learning task of bug pre-
diction on Java programs. Paassen et al. [20] introduced the
ast2vec approach for embedding Python programs, with
the aim to also support transformations back from embed-
dings to source code. Finally, Bazzocchi et al. [8] proposed to
bypass the embedding problem by using an encoder-decoder
architecture directly on Python source code. All of these
approaches have in common that they are applied to text-
based programming languages.

To the best of our knowledge, there is only one prior investi-
gation of code2vec on block-based programs: Shi et al. [24]
applied code2vec to Snap [14] and clustered the embedded
programs to identify clusters representing common miscon-
ceptions. Shi et al. demonstrated that for this application
code2vec embeddings are superior to other models of the
code, such as Bags of Words. In this paper we aim to shed
more light on how code2vec generalizes to other tasks. Al-
though Snap represents programs using XML files that are
closer in their structure to regular programs, the resulting
ASTs are similar to those of Scratch, and so we expect our
findings to generalize also to Snap.

3. METHOD
To evaluate the code2vec code embeddings for Scratch
programs, we investigate the following research questions:

RQ 1 Gender: How accurately can code2vec assess a bi-
nary classification task on Scratch programs?

RQ 2 Category: How accurately can code2vec assess a
multi-class classification task on Scratch programs?

RQ 3 Sprite naming: How accurately can code2vec assess
a classification task on Scratch programs?

3.1 Datasets
The RQs require different datasets for their classification
tasks: predicting gender, project type, and sprite names.

RQ1. To answer RQ1, we use a dataset of 317 Scratch pro-
grams [13], of which 171 were created by 64 (self-identified)
girls and 146 by 68 boys in the range of 8–10 years. The
programs are the result of the final task of a multi-day in-
troductory programming course; the children were tasked
to implement a Scratch program based on a topic of their
own choice. The resulting programs were then manually la-
belled with the students’ genders. The programs of both
genders are comparable in block size (on average: boys 27,
girls 22) and number of sprites (on average: girls 6.10, boys
4.78) although the types of blocks and sprites differ [13].

RQ2. To answer RQ2, we sampled 216 000 Scratch pro-
grams publicly shared between March 2021 and June 2021.
Since the REST API of the Scratch website3 does not pro-
vide information about project types, we downloaded pro-
grams from each category individually by using GET re-
quests containing certain category names4. To create a bal-
anced dataset we subsampled these programs to create a uni-
form distribution of labels; each program can belong to one
or more categories. Since users often use hashtags with all
category keywords to gain more visibility, the dataset con-
tains a high percentage of misclassifications. To mitigate
these misclassifications, we applied several filtering steps:
First, we excluded duplicates and remixed programs. We
then also excluded programs tagged as games from the mu-
sic and tutorial categories, as users often incorrectly add the
hashtag music to their game programs simply because they
contain background music. In addition, we removed pro-
grams in the tutorial, art, music categories that contain their
category keyword in the notes and credits section, as users
would state credits to the music they included. We eval-
uated the effectiveness of these filtering steps by manually
classifying 10 randomly selected programs from each cate-
gory, which confirms a decrease of the misclassification rate
to 20 % or less in every category. The final dataset consists
of 50 560 multi-labelled Scratch programs in 40 categories
representing various combinations of the six base-categories.

RQ3. To answer RQ3, we created a randomized sample of
530 696 Scratch programs publicly shared between April
2007 and April 2020. The data mining was realized by re-
trieving the 10 000 most recently publicly shared Scratch
programs each day using the REST API of the Scratch
website in the mentioned period.

3https://github.com/LLK/scratch-rest-api/wiki
4https://scratch.mit.edu/explore/programs/all/
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Figure 2: Cumulative distribution of block counts.

3.2 Data Analysis
Each dataset is divided into training, validation and test
dataset with a ratio of 80:10:10. For RQ1, the training
set contains 253 programs, the test and validation set 32
programs each; for RQ2 the training set contains 34 639
programs, the test and validation set 4335 programs each.
To answer RQ3, we use a classification task to identify the
names of sprites based on their code, thus resembling the
method name prediction task [6]. In contrast to RQ1/RQ2,
this task considers the ASTs of individual sprites, rather
than entire programs. The training set contains 504 503 pro-
grams with 4 487 940 sprites, the test set 15 000 programs
with 137 429 sprites and the validation set 15 000 programs
with 132 875 sprites. The training dataset contains 247 317
different names with 90 802 of them appearing more than
once. The 100 most frequent names are used for 580 544
sprites. We use accuracy, precision, recall and F1-score to
quantify the performance of the generated models. To better
understand the contribution of the code structure versus the
literals used in programs, we conduct a small ablation study
with a model for each task where literal values are replaced
with abstract tokens for their type (string or number).

3.3 Data Preprocessing
The Scratch programs must first be processed to extract
the path contexts in an appropriate format for the code2vec
model. Scratch programs are saved as .sb3 files, contain-
ing image and audio files as well as the JSON program code.
We use LitterBox [12] to parse these JSON files into their
AST representation. We extended LitterBox with the ex-
traction and cleanup of the path contexts, such that no ad-
ditional intermediate representations of the graph structure
are needed. The extraction of path contexts ignores non-
code related aspects of the AST, such as the positions of
blocks in the code editor or post-it style comments.

For RQ1 and RQ2, the entire AST of the program, starting
with the Program root node, is considered when extracting
path contexts, and the labels are included in the dataset.
For RQ3, we extract the path contexts per sprite from their
sub-trees (ActorDefinition nodes in LitterBox), as well as
the sprite name as the label for the classification task. Sim-
ilar to how code2vec treats method names, sprite names
are split on special characters into subtokens, and the subto-
kens are normalized to only contain lowercase letters. The
final sprite name is then obtained by joining the non-empty

Table 1: Hyperparameters used for Java code [6] compared
to the ones for Scratch experiments.

Java RQ1 RQ2 RQ3

number of contexts 200 200 1000 200
embedding size 128 128 128 128
max path length 8 8 12 8
dropout keep rate 0.75 0.75 0.75 0.75
batch size 1024 16 512 1024

subtokens back together with a vertical bar“|”as separating
character to support manual interpretation. Additionally,
there can be sprites that have the default name (depending
on the language settings, e. g., “sprite”) after this normal-
ization step. These are sprites that were not named by the
user, and therefore the name cannot be assumed to describe
the code. We excluded these sprites from the dataset.

3.4 Neural Network Structure
For all experiments we used the network structure as de-
scribed by Alon et al. [6] and their implementation5. Even
after extensive hyperparameter tuning by rerunning the ex-
periment while iteratively changing the parameters one at
a time, most of the values as used by Alon et al. for their
analysis on Java code [6] also perform best on Scratch code
(see Table 1). Consequently, we mainly re-used the default
or similar values for common hyperparameters. We adapted
batch sizes for the different experiments based on the dataset
sizes: For the small dataset for RQ1 we reduced the batch
size to 16; for RQ2 we used a batch size of 512.

Of the additional hyperparameters specific to the domain
of code embeddings, the maximum considered path length
and the number of path contexts used for the representation
require particular consideration: Increasing the maximum
path length allows the model to learn about related elements
that are further apart in the source code. However, this also
increases the number of generated path contexts. Due to
the limited amount of memory available to us during the
training phase, a random sample of those has to be chosen.
By generating too many path contexts, the chance of missing
semantically important ones during sampling increases.

Generally, the maximum path length that should be consid-
ered in the case of Scratch is higher than for the original
Java method name experiment: Even a single sprite encap-
sulates the full behavior of a figure in a game and can contain
multiple scripts, each controlling different aspects of behav-
ior. Therefore, a sprite can be seen as comparable to a class
in Java with scripts corresponding to methods. This results
in long paths especially for connections between AST leaves
placed in different scripts or sprites. Figure 2 shows the av-
erage program sizes for the three different datasets, showing
that the RQ2 and RQ3 datasets have substantially larger
programs than the gender classification task (RQ1). As the
project categorization task (RQ2) considers entire programs,
only 2 % of all paths would be retained when pruning at
the maximum of eight, as used in the original Java study
(Fig. 3). Consequently, for RQ2 we increased the length to
12, resulting in 18 200 path contexts.

5https://github.com/tech-srl/code2vec
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Figure 3: Cumulative distribution of path lengths.
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Figure 4: Cumulative distribution of path context counts.
Maximum path length hyperparameter in parentheses.

Figure 4 shows the trade-off between increasing the max-
imum path length and the number of programs for which
sampling the path contexts is necessary. Limited by graphics
card memory, the model was allowed to use up to 1000 path
contexts which allows us to include all of them for nearly
60 % of all programs. Lowering the number of considered
path contexts showed worse results during hyperparameter
tuning. For RQ1, the default value of 200 was sufficient due
to the small size of the programs. For RQ3, the default
value of a maximum path length of eight combined with
a maximum count of 200 also yielded the best results; the
average number of path contexts in this dataset (1319) is
significantly smaller compared to the one for RQ2.

3.5 Threats to Validity
Although our experiments aim to improve external valid-
ity by investigating code2vec on three different Scratch
tasks, results may not generalize to other tasks and embed-
dings (e.g., [4,28]). Although we applied methods to ensure
data quality, additional filtering may further improve re-
sults. To decrease the influence of the random initialization
of internal model parameters on the small RQ1 dataset, we
re-ran the experiment for each hyperparameter setting mul-
tiple times with/without reshuffling of the training set. We
performed incremental hyperparameter tuning using a val-
idation set not used during training and are reporting the
results on a separate test set. Nevertheless, on different
datasets other hyperparameters might yield better results.
To support independent validation, our code is open source6,
and data is available on request.

6https://github.com/se2p/litterbox

Table 2: Top-1 and top-5 accuracy, precision, recall, and F1-
Score for code2vec when replacing literal values with abstract
tokens (AT) and when keeping them.

Task\Metric Prec. Recall F1 Acc. Top-5 Acc.

RQ1 (AT) 78.1 78.1 78.1 78.1 —
RQ1 90.6 90.6 90.6 90.6 —

RQ2 (AT) 63.3 59.2 61.2 57.9 93.4
RQ2 64.1 60.0 62.0 58.9 93.6

RQ3 (AT) 45.4 41.6 43.4 41.5 51.9
RQ3 57.4 53.5 55.3 53.8 61.2

4. RESULTS
To evaluate the code2vec embeddings for Scratch, Ta-
ble 2 shows the performance of the code2vec model on
three different classification tasks.

4.1 RQ1: Gender Classification
The gender classification task shows a very high accuracy of
90.6 %, suggesting that the projects are quite homogenous
within the two gender groups. Grassl et al. [13] observed
structural differences between the projects of the two gen-
ders, which is reflected by the high accuracy. For example,
boys tend to produce interactive projects using event han-
dling blocks and loop control structures, while girls produce
more sequential programs. We observe a sharp drop in accu-
racy when ignoring literals (Table 2); we conjecture that this
is also related to the reported sequential nature of the girls’
projects: Girls tend to produce story-like projects where
sprites speak more, thus using more string literals.

RQ1 Summary. code2vec is able to predict the gender
based on code with a high accuracy of 90.6 %.

4.2 RQ2: Project Type Classification
Compared to the gender classification task, the project cate-
gory classification task shows a substantially lower accuracy
of 58.9 % (Table 2). The lower accuracy is likely influenced
by the more challenging multi-class classification task, more
noise in the data compared to the small gender dataset, and
the generally larger projects used in this dataset.

While the accuracy is lower, it is comparable to the perfor-
mance of the original analysis by Alon et al. [6], which was
applied to individual methods. The results on the project
category task thus confirm that code2vec can also be ap-
plied to whole Scratch programs. We initially assumed
that the model requires more path contexts to be able to
extract information from the larger scope of the whole pro-
gram. However, changing the maximum number of con-
texts to values between 100 and 1000 did not impact the
prediction quality. In all cases the accuracy remained be-
tween 56.7 % and 58.9 %. We assume that the model does
not actually use the path contexts as such to categorize the
programs but instead focuses on the presence or absence of
certain block types within the path contexts. For example,
the dataset contains the categories “animations”, “games”,
and “music”. Games obviously contain many blocks based
around the user’s interaction with the program, whereas an-
imations rarely do. Similarly, musical programs can be iden-
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Figure 5: Example prediction with the top-4 paths with the
highest attention weights, and the top-3 predictions.

tified by containing many sound-related blocks. As long as
even the small path context samples contain some of those
blocks distinctive to a program type, the model appears to
have enough information to predict the correct category.

This conjecture is supported by the results without literals
(Table 2), which even slightly increases the accuracy. This
could be caused by two possible factors: The literal values
might not be distinctive for project types; e.g., the move-
ment of sprites in both animations and games relies on sim-
ilar bounds checks on the visible stage area. Alternatively,
some literal values are at least somewhat distinctive for the
project type, but the attention mechanism focuses on other
more significant differences. In both cases the model uses
the attention mechanism to increase the weight for paths
that contain project type specific blocks instead of relying
on their start and end values. This coincides with our other
hypothesis about the required number of path contexts.

RQ2 Summary. The model is able to extract semantic
information from whole programs and is able to predict
the project type with nearly 60 % accuracy.

4.3 RQ3: Sprite Name Classification
The sprite naming task is most similar to the task used
by Alon et al. [6] in the initial code2vec evaluation, i.e.,
method name prediction. Alon et al. report F1 scores of
slightly below 60 %, and our results are quite close with an
F1 score of 55.3 % (Table 2). We conjecture that the slightly
lower score is a result of the sprite naming task being slightly
more challenging, as a sprite can consist of multiple scripts,
and the name likely carries less semantic information than
a descriptive method name.

To demonstrate that the embeddings actually represent se-
mantic information, Table 3 shows example words and the

Table 3: Closest terms in the vector space for the example
words “game”, “mario”, “easy” and “sound”.

game mario easy sound

profile luigi hard music
controls link medium music player
text sonic insane sounds
word wario extreme audio
jimmy yoshi impossible sfx

five closest words in the embedding space. All the terms
close to “game” clearly have a connection to games them-
selves: Games tend to have player “profiles”, players interact
using“controls”. Similarly, the terms close to“mario”mostly
represent other characters from the Super Mario universe.

Unlike the project category task, the literals do contribute
to some degree to the performance of the classification (Ta-
ble 2). For example, Fig. 5 visualizes the most important
paths in the “level” sprite from Fig. 1 as determined by
the attention mechanism. In particular, the neural network
gives the path between the tokens “100” and “480” the most
attention; the number 480 represents the width of the stage,
and thus is likely to be used in similar contexts.

RQ3 Summary. Code2vec can predict sprite names with
a top-5 accuracy of more than 60 %, suggesting that se-
mantic information is successfully captured.

5. CONCLUSIONS AND FUTURE WORK
Code embeddings are a trending approach for program anal-
ysis, and the computer science education community has re-
cently joined this trend and is exploring novel applications
in learning analytics. An important prerequisite for apply-
ing machine learning methods is a better understanding of
the capabilities and limitations of such approaches.

In order to contribute to such an improved understanding,
we evaluated the popular code embedding method code2vec.
This is the first application of code2vec to the Scratch
programming language, and our work has identified a num-
ber of important differences between regular, text-based pro-
gramming languages, and block-based languages like Scratch,
such as differences in named entities (e.g., classes or meth-
ods) and the overall structure of the resulting AST.

Our experiments on three different classification tasks, pre-
dicting gender, project type, and sprite names, suggests that
the adaption of code2vec to the educational domain of
Scratch is highly feasible, but there is room for improve-
ment. This suggests that future work should investigate
alternative code embedding methods, both those based on
syntax (e.g., [28]) or graph neural networks [4].
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ABSTRACT 
The challenge of learning programming in a MOOC is twofold: ac-

quiring programming skills and learning online, independently. 

Automated testing and feedback systems, often offered in program-

ming courses, may scaffold MOOC learners by providing 

immediate feedback and unlimited re-submissions of code assign-

ments. However, research still lacks empirical evidence of their 

effect on learning behavior of MOOC learners, with diverse back-

grounds and goals. Addressing this gap, we investigated the 

connections between the use of automated feedback system and 

learning behavior measures, relevant for MOOCs: engagement, 

persistence and performance. Further, two subjective measures of 

success are examined: sense of learning and intention fulfilment. In 

an experimental design, we analyzed data of active learners in a 

Python programming MOOC (N=4652), comparing an experi-

mental group provided with automated feedback with a control 

group that did not. In examining the effect of automated feedback, 

prior knowledge of programming and Python was considered. Em-

pirical evidence was found for the relation between automated 

feedback usage and a higher engagement and better performance, 

as well as higher attendance in "active watchers" and "high-per-

formed completers" clusters, obtained by cluster analysis. Learners 

reports on their experience with the automated feedback system 

supported these findings. Regarding the subjective measures of 

success, however, no difference was found between groups. Our 

study and the offered future research may contribute to the consid-

erations regarding the integration of automated feedback in 

MOOCs for programming. 

 

Keywords 
automate feedback, MOOC for programming, learning behavior, 

prior knowledge, educational data mining, cluster analysis 

1. INTRODUCTION 
Massive Open Online Courses (MOOCs) for programming have 

the potential to teach programming to a broad and diverse audience   

[28]. The high demand for computer professionals and labor market 

needs have led to an abundance of courses, with large numbers of 

enrolees [25]. However, many learners struggle in these courses. 

Learning programming is challenging, but MOOC learners face ad-

ditional difficulties, as they have to self-regulate their learning 

(SRL) and to cope with course content almost without the assis-

tance of instructors [11]. The provision of feedback may assist 

learners with these challenges. Feedback is considered essential in 

online learning, both as formative assessment, promoting learning 

and increasing learner engagement and as an acceleration of the 

SRL process [16]. 

In programming courses, the practice of writing and running code 

is the basis for acquiring software developing skills [5, 48]. An im-

mediate, detailed and accurate feedback makes practice more 

effective and may significantly improve learning [38, 40]. But in 

large scale courses, and especially in MOOCs, instructors cannot 

provide feedback on each submission [15]. Automated testing and 

feedback (ATF) systems address the need, allowing an unlimited 

number of learners and submissions [22]. Upon uploading a solu-

tion to the system, the learner receives immediate feedback and is 

given the option to resubmit a revised code, to complete the learn-

ing process. Feedback may address syntax errors, the correctness 

of results, the efficiency of the code and whether it fulfils instruc-

tions accurately [13, 48]. It can consist of basic feedback, including 

only correct/incorrect information or presenting the correct answer, 

or a detailed feedback, suggesting possible causes of error and hints 

for the solution [22, 44]. 

ATF systems were developed decades ago, and today there is a va-

riety of tools and systems employing diverse technologies and 

methods for testing and generating feedback [9, 22, 37]. Previous 

research suggested that incorporating an ATF system into a pro-

gramming course improves affective measures, such as satisfaction 

and sense of learning [4, 6]. The automated feedback is perceived 

by learners as enhancing learning as well as contributing to moti-

vation and engagement [2, 32, 37]. Results regarding the system's 

impact on performance, however, were not conclusive (e.g. [7, 13, 

14]).  

Yet, most studies in the field of ATF have only focused on frontal 

courses, or online courses offered as part of an academic curricu-

lum. Students in these courses have extensive interaction with the 

faculty, which enhances their learning [36, 42] and might "over-

shadow" the impact of automated feedback on learning outcome 

[15]. In MOOCs, ATF system may have a different effect. Further-

more, the diverse goals and intentions of MOOC learners may 

affect their learning behavior and performance [24, 29], and conse-

quently the impact of automated feedback [34].   

To gain the full potential of ATF in MOOCs, empirical research 

needs to be conducted in order to better understand the impact of 

automated feedback on learning behavior and outcomes. Yet, em-

pirical research in this field is still lacking [1]. With the aim of 

addressing the gap, this study set out to investigate the connections 

between automated feedback usage and learners’ learning behavior 

and outcomes, in MOOCs for programming.  

It is now well established from a variety of studies that the relevant 

measures for learning behavior in MOOCs are engagement (meas-

ured through learning activity), persistence and performance [18, 
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20, 24, 51]. Additional success measures refer to learners’ percep-

tion of achieved knowledge levels and intention fulfilment [17, 39]. 

Hence, the research questions we posed are as follows: 

RQ1: What are the differences, if any, in engagement, persistence, 

and performance between ATF users and not-users? 

RQ2: Is there any difference in learners’ perceptions of achieved 

knowledge levels and intention fulfilment between ATF users and 

not-users? 

Previous studies suggested that prior knowledge, related to the 

course content, may influence learning behavior and the impact of 

automated feedback [28, 33, 46]. Therefore, the investigated learn-

ing behavior measures were analysed with prior knowledge as a 

covariate. 

Using a quantitative method and learning analytics approach, we 

compared data of two groups of learners in a Python programming 

MOOC incorporating ATF system: An experimental group who 

was given feedback on the code assignments by using the system, 

and a control group who did not. Collecting data from the course 

and system logs, cluster analysis was applied to identify and com-

pare learning behavior patterns. Subjective success measures were 

compared based on learners' self-report data. 

2. RELATED WORK 

2.1 Measures of learning behavior in MOOCs 
Previous research has established that given the heterogeneity of 

learners in MOOC, the appropriate measures of learning outcomes 

differ from those of formal education context [10, 24]. The most 

commonly used indicator to measure learning outcomes in MOOCs 

is learning engagement, measured by the number of lecture videos 

watched, the number of posts to forums, the number of quizzes 

taken, and the number of tasks completed [20, 52]. Another com-

mon measure is persistence, as measured by the learner's 

determination to complete tasks and the achieved degree of pro-

gress. The relevant measures are therefore the number of attempts 

to solve course exercises, the number of learning units that were 

studied (watching video or attempt to solve an exercise) as well as 

the most advanced unit that was studied [10, 20]. Learner’s perfor-

mance in the course is often measured by the scores on the exercises 

and assignments [18, 47]. 

Several studies applied cluster analysis to identify learning behav-

ioral patterns and classified learner’ groups by similar learning 

characteristics. A key study, establishing the main characteristics 

of MOOC learners, suggested four identified groups: completers 

(students who completed most assignments), auditing (students 

who did few-to-no assignments but engaged in watching videos), 

disengaging (students who did assignments early in the course, but 

later stopped participating), and sampling (students who watched 

videos only in the beginning of the course) [24]. A similar research 

described 3 groups of MOOC learners as: (1) active engaged (those 

who submit assignments and were actively involved in forums); (2) 

passive engaged (those who watch video or show passive involve-

ment in forums); and (3) disengaged (learners whose activity 

decreased throughout the course) [41]. Recently, a study investi-

gated learners' interactions with video, exercises and discussion 

forums, identifying seven patterns of learners’ behavior: tasters, 

downloaders, disengagers, offline engagers, online engagers, and 

two patterns characterized by moderate and high social engagement 

[21]. The variables used to derive these patterns were the number 

of videos watched, in-video questions answered, exercises and as-

signments submitted, thread views and activity in the discussion 

forums. 

Considering the suggested measures of learning behavior in 

MOOCs, in the current study we first applied cluster analysis to 

identified groups of learners who behaved similarly and then inves-

tigated the connections between behavior patterns and ATF usage. 

2.2 Subjective measures of success in MOOCs 
A variety of reasons motivate learners to enroll in MOOCs [29], 

with a variety of learning outcomes to expect [39]. Thus, it has been 

proposed that the success of learning in MOOCs should be evalu-

ated through learner-centered measures. One suggested criterion is 

fulfillment of learner intentions [17]. In research conducting self-

reported surveys, learners' intention fulfillment was found to be 

correlated with their engagement in course activities [39]. “Sense 

of learning” or “sense of achievement” , representing the perceived 

increase of knowledge, is another criterion for successive learning, 

being in use in previous studies to measure learning success and 

outcomes in MOOCs [30, 49, 51].  

2.3 The effect of ATF in MOOCs on learning 
In the context of MOOCs for programming, only a few studies have 

examined the impact of automated feedback, provided on code as-

signment, on learning behavior and outcomes. Regarding the 

aforementioned affective measures, several studies noted that auto-

mated feedback was perceived by learners as improving 

performance, increasing engagement and having a positive impact 

on learning strategies [8, 27]. An interesting study suggested that 

learners who “committed” by formal registration to use an ATF 

system in MOOC for programming were more engaged in solving 

code assignments, in compared with those who used it only par-

tially, without registration [12]. Recent study came up with similar 

results [43]. No effect of using the system was found, however, re-

garding performance and course completion rates.  

Most studies on automated feedback propose advanced algorithms 

and new approaches to improve error detection and feedback accu-

racy, but do not evaluate its effectiveness as a learning tool [31, 45, 

50]. Several research reports on future intention to evaluate the im-

pact of the examined ATF system on learning outcomes, yet to be 

done [5, 25]. Others suggest factors to consider while choosing or 

developing ATF systems for MOOCs, but no empirical results are 

provided [48]. 

Overall, there seems to be some evidence to indicate that automated 

feedback has the potential to support learners and enhance learning 

success in MOOCs for programming. The findings of the current 

study contribute to empirically based knowledge in this area. 

3. METHOD 

3.1 Course and ATF system 
To answer research questions, we conducted an experiment in 

MOOC to learn the Python programming language, offered on Edx-

based platform for MOOCs. The course consists of nine learning 

units, each of which includes content videos with comprehension 

questions, closed exercises (such as multiple-choice questions), and 

code-writing assignments. Answering the closed exercises is fol-

lowed by feedback (correct/incorrect and an explanation).  

The ATF system integrated in the course is INGInious - an open-

source software, suitable for online programming courses, provid-

ing grades and textual feedback for code assignments (for more 

details on INGInious, see [19]). The system was incorporated into 

the course as an external tool, and registration was necessary for 

access. It was configured to allow unlimited submission of solu-

tions. The textual messages provided as part of the feedback were 

adapted to the code assignments, containing different levels of 
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feedback according to error-type (e.g. correct / incorrect, expected 

correct answer or more elaborated feedback), as classified by [44]. 

3.2 Experimental design 
Using the cohort-mechanism embedded in Edx platform, we ran-

domly divided the learners enrolled for the course into control 

group (control-g) and experimental group (atf-g). Learners in the 

experimental group gained access to the ATF system. Those who 

chose to use it uploaded solutions for the code assignments, re-

ceived feedback, and then were able to resubmit revised solutions. 

In the current experimental set, however, it was not possible to get 

information about how the learners in the control group solved the 

code assignments. 

3.3 Data resources and definitions of 

measures 
Research questions were answered by gathering data from different 

sources and harvesting measures to be compared. Definitions of re-

search variables are provided in this section. 

1) Demographics and prior knowledge (PK) in programming and 

Python obtained by pre-course questionnaire. To avoid sub-

jective assessment, PK was defined in a Boolean manner 

(there is / there is no PK). From learners’ responses we derived 

three PK categories: None, Programming (other language), 

Python [3]. 

2) Learning behavior data, consists of engagement, persistence 

and performance, obtained from course event logs (table 1). 

As we do not have information regarding the number of code 

assignments solved by learners who did not use the ATF sys-

tem (control group and learners in atf-g who chose not to use 

the system), it was not defined as a measure of activity.  

3) Log files of the ATF system, which contain information on 

submitted solutions, were analyzed to assess the use of auto-

mated feedback (relevant only to the experimental group). 

4) Subjective measures were collected from the "learning expe-

rience" questionnaire, completed by learners at the end of 

learning. "Sense of learning" refers to the learner's evaluation 

of the level of knowledge achieved at the end of learning pro-

cess. Learners were asked to choose one of four statements, 

representing four levels of knowledge. Intention fulfilment de-

fined as one of three values (Yes / Partially / No). 

5) Learners in the experimental group were asked to answer two 

additional questions regarding their perception of how the use 

of the system affected their engagement (Likert scale 1-5): 

"The system contributed to the motivation to complete more 

tasks in the course", “The option to correct my solution and 

resubmit prompted me to make an effort for a higher score”. 

The obtained responses were used as supportive data to the 

results of the comparison between the two research groups. 

The research was conducted under the rules of ethics, while pro-

tecting privacy and maintaining the security of information, and in 

accordance with the approval of the university ethics committee. 

3.4 Research population 
The study was conducted in the second half of 2021. Following the 

screening of non-active enrollees and learners who did not provide 

information about prior knowledge, N=4652 learners were included 

for our final study population, 15.6% (724) of which in the experi-

mental group (hereinafter: atf-g) and 84.4% (3928) in the control 

group (hereinafter: control-g). The imbalance between the research 

groups was caused by technical reasons, as the system was inte-

grated for the first time during the course cycle in which the study 

was conducted. To ensure that none of this affected the results, all 

Table  1 : Learning behavior calculated measures 

 

the analyses were repeated several times, comparing the experi-

mental group (atf-g) with random groups drawn from the control 

group, of the same size as atf-g. Upon completion of this study, 

which was also a technical pilot, all learners in the following course 

cycles were able to enjoy the benefits of using the ATF system.  

Participants were all Hebrew speakers, which is the language in 

which the course is taught, and were interested in learning Python. 

In terms of gender identification, learners’ distribution was 73.5% 

male, 25.9% female, and 0.6% unidentified. The learners ranged in 

age from less than 11 to over 75, with the majority in the age at the 

range of 12-34 (79.3%).  

According to self-reported prior knowledge, 30.4% of learners had 

prior programming skills but not Python (PK=Programming), 

15.1% reported of Python (and programming) knowledge (PK=Py-

thon) and 54.5% had no prior knowledge relevant to course content 

(PK=None). Chi-square test indicated no significant difference be-

tween the experimental and control groups regarding the 

distribution of prior knowledge. 

4. FINDINGS 
This section presents the results aimed to answer research ques-

tions. To control the impact of PK on the effect of automated 

feedback as a covariate, the comparison of the two research groups 

in all tests was conducted separately at each level of PK. The find-

ings are presented without regard to this covariate unless it is found 

to affect the results in a significant manner.  

In regard to the imbalanced research groups, five repeats of the 

analyses with random subgroups from control-g, equal to the size 

of atf-g, yielded identical answers to research questions. Therefore, 

Description variable 
  

Number of watched videos (0-

29) 
watched 

video 

Engagement 

(activity) 

Number of units in which at 

least one video was watched (0-

9) 

watched 

units 

Ratio between the number of 

videos in which the learner 

solved a comprehension ques-

tion and the total number of 

videos watched (0-1) 

active-

watched 

ratio 

Number of closed exercises 

(CE) learner attempted (0-39) 
solved ex-

ercises 
Number of units in which at 

least one exercise was attempted 

(0-9) 

solved 

units 

Mean attempts per exercise 
mean at-

tempts 

Number of units in which the 

leaner watched a video or at-

tempted an exercise (0-9) 

units 

touched 

persistence The most advanced unit in 

which the learner watched a 

video or attempted an exercise 

(1-9) 

max unit 

touched 

The mean score in closed exer-

cises (0-10) 
grade performance 
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we have chosen to present the comparison between the experi-

mental group (Natf-g = 724) and the entire control group (Ncontrol_g = 

3928). 

Table 2: Descriptive statistics of learning behavior measures 

(Natf-g = 724, Ncontrol-g = 3928 M=mean, MD=median, 

SD=standard deviation) 

 

4.1 RQ1: The connection between ATF usage, 

learning behavior and performance 

4.1.1 Comparing learning behavior variables 
The operational variables of learning behavior and performance (ta-

ble 1) were calculated from data and compared between research 

groups. Mann-Whitney test was applied, as the homogeneity as-

sumption required for the t-test was not met. In the experimental 

group, the mean and median values of all behavioral variables were 

higher, as illustrated in table 2 and figure 1. This difference was 

found to be significant at the p<.001 level (Mann-Whitney U 

ranged between 1050975 – 954295.5), with small-medium effect 

size, given by the rank biserial correlation (0.228 - 0.402).  

Figure 1: Mean values of learning behavior variables 

 Another way to measure persistence is to compare, per number of 

“touched” units, the percentage of learners from each group who 

reached this number. Chi-square test revealed significant difference 

between learners’ percentage of each group (X2(8) = 165.34, N = 

4652, p<.001). From three units above, the number of units 

“touched” by the experimental group is higher (see figure 2).  

More specifically, it can be claimed that a higher percentage of 

learners from the experimental group completed the course, i.e. 

learned all the lessons. Further evidence of this fact comes from a 

finding that a higher percentage of learners from the experimental 

group studied units 7-9, the advanced units of the course. A signif-

icant difference was indicated between learners’ percentage from

 

Figure 2: Comparison of learners’ percentage per number of 

units "touched" (Natf-g = 724, Ncontrol-g = 3928) 

each group who solved exercises in these units (X2
unit 7 (2) = 100.00, 

X2
unit 8(2) = 67.20, X2

unit 9(2) = 34.42, p<.001). Nevertheless, for 

learners with prior knowledge of Python, the difference between 

the groups regarding solving the exercises of the last unit (unit 9) 

was not statistically significant. 

4.1.2 Cluster analysis of learning behavior variables 
Among the variables representing learning behavior and perfor-

mance, five "differentiating" variables were identified using PCA: 

active watched ratio, solved units, mean attempts, max unit touched 

and grade. k was assumed a priori to be between 4 and 6 so that the 

clusters would be distinct, but not too many. The elbow method plot 

and silhouette score were then used to identify the most fitting num-

ber of five clusters, explaining 72.7% of variance in data (R2 = 

0.727). Table 3 summarizes the clusters obtained and the mean val-

ues of the differentiating variables within each cluster. Following 

the behavior patterns characterizing each cluster, they were named 

as follows: (1) “Touched and left”: those who log in but showed 

almost no engagement with course content. This pattern, which rep-

resents learners who actually dropped out shortly after they started, 

was the most frequent. (2) “Completers, high performers”: learners 

with highest performance and completing rates, while only moder-

ate consumption of content. This pattern was the second in number 

of learners (3) “Active-watchers”: those who watched video ac-

tively, answering in-video comprehension questions. (4) “Good 

starter, mean progress”: those who solved correctly few exercises, 

mainly of the first one or two units, but had no intention to complete 

the course. (5) “Trail-error solvers”: those who try to solve few ex-

ercises, with many attempts, low success and no progress. This was 

the least desirable behavior pattern. 

Examining the presence of learners from each group within each of 

these clusters, presented in figure 3, revealed relatively high per-

centage of atf-g learners in clusters 2,3 (42.40%, 24.17%, 

respectively) and higher percentage of the control-g learners in 

cluster 1 (41.42%). Chi-square test indicated a statistically signifi-

cant difference between atf-g and control-g (X2(4) = 277.208, N = 

4652, p<.001) over all levels of PK. Yet, cluster 2 was found to be 

significantly different from the other four clusters in terms of PK, 

as determined by one-way ANOVA (F(4,4647) = 32.664, p<.001) 
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 M MD SD M MD SD 

watched video 12.7 11 9.0 8.8 5 8.6 

watched units 4.3 4 2.9 3.1 2 2.7 

active-watched ratio 0.4 0.4 0.2 0.3 0.3 0.3 

solved exercises 15.2 12 12.9 8.3 1 11.8 

solved units 4.3 4 3.1 2.4 1 2.9 

mean attempts 2.4 2.1 2.0 1.7 1.6 2.0 

units touched 4.7 4 3.0 3.4 2 2.8 

max unit touched 4.8 4 3.0 3.7 2 3.0 

grade 0.8 1 0.3 0.5 0.8 0.5 
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and Tukey’s HSD test for multiple comparisons (p<.001 for all the 

comparisons of cluster 2 and other clusters). 

 

Table 3: Cluster characteristics and mean value of learning be-

havior variables (In bold: characterizing attribute of each 

cluster) 

 

4.1.3 Learners’ perception of ATF effects 
Two questions about the effect of using the system were answered 

by 126 learners. In their responses, learners indicated they believed 

that using the ATF system affected their engagement and perfor-

mance. The majority of respondents agreed with the statements that 

the option to correct and resubmit prompted them to make an effort 

for a higher score (87%) and using the ATF system motivated them 

to be more engaged in solving course exercises (81%). PK level had 

no impact on learners' perceptions. 

  

Figure 3: The percentage of learners from each group within 

each cluster 

 

RQ2: Connections between automated feed-

back and success measures 
Of the study population, 401 learners (9.87%) completed the 

“learning experience” questionnaire. Among the respondents, 

32.27% (126) belong to the experimental group and 67.73% (275) 

to the control group. As can be seen in table 4, the majority of re-

spondents described their achieved level of learning as “Can write 

basic code, needs more supported practice” (49.63%), followed by 

“Can write complex code and practice independently” (35.94%). 

Only 5.8% felt confident to start working in Python. To the ques-

tion of intention fulfilments, however, the most frequent answer 

was “Yes” (81.91%). 

Table 4: Subjective measures, learning experience question-

naire (N=401) 

Sense of learning  

Understands the concepts, can't write code  

independently 
8.56% 

Can write basic code, needs more supported practice 49.63% 

Can write complex code and practice independently 35.94% 

Can work in Python 5.87% 

Intention fulfilment  

No 0.98% 

Partially 17.12% 

Yes 81.91% 

 

Applying the chi-square test to compare between research groups, 

no significant difference was found in all levels of PK. Notably, an 

expected significant dependency was found between PK and sense 

of learning (X2(6) = 67.73, N = 401, p<.001), as prior knowledge 

led to higher assessment of the achieved level of knowledge. 

5. DISCUSSION 
With respect to the first research question, findings demonstrate 

connections between ATF system usage and learning behavior, as 

learners in the experimental group were more engaged with the 

course material and completed it at a higher rate. These results are 

in line with previous studies, suggesting that feedback (in general) 

enhances learners’ engagement and persistence in online courses 

(e.g. [16, 20]) as well as in programming courses, not necessarily 

be offered online (e.g. [12]). Notably, in the current study all learn-

ers received feedback on the closed exercises, and the difference 

between groups was due to the additional feedback provided to the 

experimental group for code assignments. Therefore, it should be 

assumed that feedback on code assignments in MOOCs for pro-

gramming is of utmost importance. Our findings, however, are 

contrary to those of [43] who did not observe a connection between 

feedback and learners’ engagement. A possible explanation for this 

might be differences in feedback and course characteristics, which 

affect feedback effectiveness [33]. 

The current study indicates a connection between automated feed-

back and learners’ performance and suggests positive trend of 

higher grades of the ATF users. Previous studies have not conclu-

sively established this connection (e.g. [13, 14]). Nevertheless, due 

to our experimental design, we defined performance by closed ex-

ercises score and not by programming abilities (e.g. grades of code 

4.28

18.09

24.17

42.40

11.05

2.55

15.91

18.38

21.74

41.42

percent out of control_g percent out of atf_g
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Completers, high 

performers

Active watchers

Good starter, 

mean progress

Trail-error 

solvers

Cluster 1 2 3 4 5 

Size 1707 1161 897 756 131 

percent-

age of 

N=4652 

36.91% 25.10% 19.39% 16.35% 2.83% 

Active-

watched 

ratio 

0.142 0.428 0.604 0.15 0.329 

Solved 

units 
0.164 7.205 2.557 1.655 1.473 

Mean at-

tempts 
0.179 2.556 2.338 2.319 9.152 

Max unit 

touched 
2.17 7.999 3.198 2.298 2.183 

Grade < 1 95.1 87.4 95.1 67.4 
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assignments). As such, the evidence of higher performance of atf-

g in this case may indicate in fact a deeper understanding of pro-

gramming principles [26]. 

Our clustering of learners based on learning behavior variables is 

similar to behavior patterns classified in previous studies [21, 24, 

41], even though the number of clusters we selected is different. 

Learners of the experimental group were more “present” in the 

clusters described as “completers, high performers” and “Active-

watchers” characterized by patterns identified as related to success 

in MOOCs [23]. The cluster analysis results support and expand the 

findings obtained for each variable as stand alone. 

Interestingly, most of the analyses we conducted did not reveal any 

effect of prior knowledge on the connection between learning be-

havior and automated feedback. These findings do not support 

previous study, suggesting that prior knowledge affects the effec-

tiveness of feedback in online learning environments [35]. Further 

research, with higher resolution determination of prior knowledge 

level, may shed light on this issue. One exceptional of our results is 

the case in Unit 9, where similar percentages of the Python experi-

enced learners of two groups solved the closed exercises. It may be 

that the prior Python knowledge obscured the differences between 

groups, as experienced learners wanted to test their knowledge in 

this very specific unit, which is the most advanced one.  

In support of the findings based on (objective) log files, the percep-

tions of the learners in the experimental group suggest that the 

automated feedback they provided heightened their motivation to 

be more engaged in solving exercises and encouraged them to score 

higher. This attitude is similar to learners’ perception towards au-

tomated feedback reported in previous studies, in the context of in-

class programming courses (e.g. [2, 32]). With regards to affective 

measures, therefore, automated feedback is perceived beneficial in 

both frontal and online learning environments. 

With respect to the second research question, however, finding of 

the current study do not indicate a connection between the use of 

the ATF system and the subjective measures of success - intention 

fulfillment and sense of learning. These results differ from previous 

studies which have suggested that intention fulfillment is correlated 

with engagement in solving exercises in MOOC [39]. A two-way 

effect may have been created here: On one hand, the automated 

feedback may have led learners in the experimental group to more 

comprehensive learning [38] and on the other, they were more 

aware of errors and incorrect solutions, leading to a lower assess-

ment of their abilities in Python. 

6. CONCLUSIONS AND FUTURE WORK 
Overall, the results of this study indicate a connection between the 

use of the ATF system, providing automated feedback, and learning 

behavior. Furthermore, the findings suggest that the automated 

feedback enhances the learners' engagement and persistence in the 

course as well as their performance. Nevertheless, we must be cau-

tious in this context, and further research is needed to examine the 

effects of feedback on learning behavior (e.g. examining a "direc-

tional" connection). This is primarily due to the finding that the 

sense of learning and intention fulfilment were not affected by the 

use of ATF, suggesting the effect of feedback is likely to be com-

plex and non-uniform within different facets of learning outcomes. 

However, the inability to obtain an objective assessment of the level 

of knowledge at the end of the learning is one of the current study 

limitations. The result of a final exam, for example, may reveal dif-

ferences between research groups that are not apparent in self-

reported evaluation. Nonetheless, there is no mandatory assessment 

in a MOOC due to its nature. 

A further limitation is that the experimental design prevented a 

comparison of the research groups in regard to solving code assign-

ments, which in fact is the subject of feedback. Future research be 

undertaken with a setup allowing the comparison of these data as 

well, might bring additional insight into the effect of automated 

feedback.  

Lastly, the feedback provided by the ATF system was referred to 

in the current study as "black box". In light of the concept proposed 

by Narciss [33], which links the characteristics of feedback to its 

effectiveness, further experimental research is needed to analyze 

the effects of feedback characteristics (e.g. the structure of textual 

message) on learning in MOOCs for programming. Expanding em-

pirical research knowledge regarding the impact of automated 

feedback on learning may contribute to the effective integration of 

ATF systems and thus promoting learners' acquisition of program-

ming skills and achievement of learning goals. 
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ABSTRACT
Although badges are among the most-used game elements
in gamified education, studies about their optimal features
to motivate learning are scarce. How should a badge be
designed to represent an incentive for a specific goal like op-
timal exam preparation? This study examines usage data
of a higher education learning app to determine whether the
used badges have the intended motivational effect. The pre-
liminary results suggest that the badges that were initially
implemented in the app have the intended effect in most
cases, but the stages of the multi-level badges could be op-
timized. The methodological framework used in this study
can be transferred to usage data of other similar learning
tools. With the help of easy-to-interpret outputs of decision
trees, researchers and practitioners alike can work towards
an optimal badge design.
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1. INTRODUCTION
Badges are among the most used elements in game-based
learning [1, 18, 14]. Yet, little is known about their opti-
mal design in the educational domain. I define a design in
this context as optimal if a badge can only be earned by
following a learning strategy that leads to improved learn-
ing outcomes. The inspiration for the design of badges in
game-based learning often comes from entertainment games
[3, 22]. However, the goals of such games are usually dif-
ferent from those of learning tools used in school or higher
education [20]. This difference also applies to commercial
learning apps such as Duolingo. In Duolingo, for example, it
is possible to earn a badge called “Weekend Warrior” if you
use the app on a Saturday or Sunday and a badge called
“Photogenic” if you upload a profile picture1. These two
badges are presumably intended to maximize usage time or
identification with the app and are not necessarily aimed

1https://duolingo.fandom.com/wiki/Achievements

at an optimal learning strategy. Since designers of game-
based learning tools may use such commercial apps as a
blueprint, they run the risk of copying badges that motivate
non-optimal learning strategies. This study should help ed-
ucators that use badges in their learning tools to evaluate
whether their chosen design motivates learning strategies
that lead to better learning outcomes.

Empirical studies that investigate optimal badge design in
learning contexts are rare. Easley and Ghosh [9] analyzed
optimal badge design with a game-theoretic approach from
a general but not an educational point of view. Antonaci et
al. [1] link the effects of different game elements on learning
outcomes in their literature review to investigate the ques-
tion of which game elements cause which effects. They find
that some game elements can have either a positive or a neg-
ative effect depending on the context (e.g., specific setting,
other game elements used and the personality of the stu-
dents). This result is also confirmed by recently conducted
meta-studies [2, 15, 24]. They all report an overall posi-
tive significant small to medium effect size of game-based
learning on learning outcomes. However, it is still unclear
which factors contribute most to the success or failure of
game-based education. In addition, the meta-studies above
shed light only on the overall effects of combinations of dif-
ferent game elements. A more in-depth analysis of different
badge designs (or other single game elements) does not exist
yet. Facey-Shaw et al. [12] provide an overview of different
badge designs and their functions in various educational ap-
plications. Still, they do not link the different designs to
the achieved effects on the learning outcomes. The present
study will contribute to this research gap.

The data set used in this study consists of usage data from a
gamified learning app that has been in use for four semesters
in an accounting lecture at a large European university.
Among other game elements, the app uses badges to mo-
tivate the students to learn. The required achievements to
earn the badges include specific amounts of consecutive us-
age days or answered questions. The corresponding goals
were developed based on learning theories and practical ex-
periences from past lectures but without any empirical val-
idation. The goal of this study is to answer the question
of whether students who aligned their learning strategy to
the given badge goals performed better on the exam. Based
on the results, the basic features but also the levels of the
badges can be discussed. For example, the badge awarded
for the amount of answered questions in the data set has
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three levels. The highest level is earned when a student
answers 1,000 questions. Unless a large proportion of the
top students answered that many questions in the app, you
could conclude that the threshold might be too high. If the
level is too high, earning that badge could even be a predic-
tor for a bad performance in the exam, i.e., students who
answer too many questions might overestimate the app as a
learning tool and neglect other learning materials. The fol-
lowing two research questions will be answered in this study
to contribute to the discussed research gap:

RQ1: Do the badges that were initially implemented in the
gamified learning app incentivize a learning strategy that
leads to good exam results?

RQ2: Are the levels of the multi-level badges optimally set?

2. RESEARCH SETTING
2.1 Lecture and App
The research subject of this study is data from a gami-
fied learning app that was used in an undergraduate ac-
counting course at a large public university in Europe. The
course is usually taken by approximately 600 students per
semester (see Table 1) and consists of a weekly lecture and
bi-weekly tutorials and small group exercises. Attendance
at the classes is voluntary. The learning materials consist
of a script, a collection of exercises and a trial exam. In
addition, a textbook and the corresponding exercise book
are recommended for further study. Apart from the written
exam at the end of the semester, there is no other formal
assessment. In evaluations of past semesters, students often
commented that there was no contemporary way to engage
with the subject matter in addition the aforementioned tra-
ditional learning materials. As a result, the responsible chair
applied for funding and planned to develop a smartphone
app with gamification elements.

The launch of the app took place in the summer semester
of 2019. Like attendance at the classes, the use of the app
is voluntary and no formal advantages for the exam can be
gained by using the app. The app is widely accessible, as
in addition to an app version in Google Play Store and Ap-
ple App Store, it is also available as a web version that can
be accessed via the browser. Over 550 questions were de-
veloped for the quiz app, covering all nine chapters of the
course. There are four question types in the app: single
and multiple-choice, as well as sorting and cloze text tasks.
Students can use the app in three different modes: Chapter
Mode, Random Mode, and Weekly Challenge. In Chapter
Mode, students can choose to be shown only questions from
a specific chapter. When they master a chapter, the next
chapter is unlocked. The current status in a chapter is vi-
sualized by a progress bar. The corresponding progress is
measured by the so-called Skill Level Indicator (SLI), which
was designed based on Ebbinghaus’s forgetting curve [10].
When a question is answered correctly, the SLI increases to
100%. The result is that the corresponding question is no
longer displayed for the time being. However, over time,
the SLI decreases again to indicate that the content of the
question may have been forgotten. After a certain dura-
tion (which becomes increasingly longer after answering the
same question several times), the question is displayed again
to check whether it is still correctly answered. In the second

mode, Random Mode, questions are randomly drawn from
the pool that have already been unlocked by the student. In
the third mode, the Weekly Challenge, students can answer
25 randomly selected questions once a week from chapters
that have already been covered in the lecture. They can then
compare their performance with that of fellow students on a
leaderboard. The more questions students answer, the more
learning points they earn in the app and level up accordingly.
Moreover students can earn the before mentioned badges for
certain achievements (see Figure 2). A detailed description
of the initial badge set is outlined in Section 2.4 and more
information about the app in general and its usage can be
found in [19].

2.2 Data Sources
The collected data in this study consists of three different
sources over four semesters (see Table 1): the exam results
of every enrolled student, the app usage data and responses
from a survey conducted each semester.

Table 1: Data Sources and Sample Sizes

SS19 WS19 SS20 WS20
App 559 595 447 546
Exam 575 648 616 644
Survey 127 108 114 167
App+Exam 230 243 190 190

The collected usage data from the app consists of various
details, including the exact time a question was answered,
the answer given, and whether it was correct or incorrect.
The functions and design of the app did not change in any
of the four semesters considered in this study. Since no
laboratory conditions prevail in the present setting, it was
important to keep as many parameters constant as possible
[5, 11]. In addition to the app version, the instructors, the
learning materials, and the type of exam were not changed
over the entire observation period. In each semester, the
exam consisted mainly of arithmetic problems and contained
three major tasks, each worth 30 points, which were divided
into smaller sub-tasks. Even though the style of the exam
remained identical over the semesters, it cannot be guar-
anteed that the level of difficulty remains the same between
semesters. This circumstance is considered in the evaluation
and assignment of grades, i.e., a specific number of points
can result in a different grade in different semesters. There-
fore, the analysis in this study uses grades rather than points
as the dependent variable to control for the effect of varying
difficulty. Grades in this setting range from 1.0 (very good)
to 5.0 (failed).

One limitation regarding the analysis of the data is that I
need the students’ matriculation numbers to be able to con-
nect the data points from the app and the exam. Due to
data protection rules, I was was obliged to ask the students
for their matriculation number in the app on a voluntary
basis. As not every student provided his or her matricu-
lation number, I am only able to connect the data of the
two data sources for a limited number of students (see Ta-
ble 1). Therefore, I cannot analyze the app’s influence on
every exam result because I do not know for every student
in the exam score list to which extent they used the app. To
address this issue, a later section of this paper will examine
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whether students who gave consent for their data to be used
for research purposes differ significantly from students who
withheld consent.

The third data source is a survey that was conducted every
semester. Although the average response rate of the survey
(26%) is comparable with similar prior studies [25, 17, 26], I
decided not to connect the survey answers to the other two
data sources for the present study. To be able to connect
the survey answers, the students also needed to submit their
matriculation number with the survey answers. As only a
small fraction followed this request, the sample size with in-
formation from all three data sources would be significantly
smaller than the sample size with data only from the app
and the exam (see Table 1). However, Table 2 shows with
data from the survey that the four cohorts did not differ sig-
nificantly in the major demographics and can therefore be
considered comparable for this study.

Table 2: Demographics of the Four Cohorts

SS19 WS19 SS20 WS20
Male 59.05% 53.70% 47.30% 49.18%
Female 40.95% 46.30% 52.70% 50.82%
∅ Age 21.82 21.10 21.81 21.24
∅ Semester 3.73 3.27 3.61 3.41

2.3 Methodology
To analyze the badges implemented initially, the badges and
the corresponding learning metrics are discussed below in a
first step. In a second step, to answer the first research
question, I will analyze whether students who followed the
learning strategy motivated by the badges performed better
in the exam by comparing the average grades. To answer the
second research question, a decision tree is built to illustrate
the influence of certain limits of the previously mentioned
learning metrics on the average grades. The decision tree
method is used because its results are easy to interpret and
explain. This advantage is significant if the results and the
corresponding analysis framework are to be used in practice.
For this, especially the graphical representation method is
very suitable, especially in comparison to a traditional re-
gression output. The disadvantages of the method are the
lower predictive accuracy (e.g., compared to random forests)
and the fact that they are less robust than other approaches
[16]. However, from my point of view, the advantages out-
weigh the disadvantages for the chosen purpose. All analy-
ses for this study were conducted in R (4.1.1) and to create
the decision tree the packages rpart (4.1-15) and rpart.plot
(3.1.0) were used. The resulting flow chart of a decision tree
can be used to evaluate and adjust the limits of the multi-
level badges to increase the motivational effect if necessary.
In practice, the optimized badge set would then be used for
another term and afterwards the resulting usage data would
again be evaluated with regards to the target variable. This
general iterative process can be summarized as outlined in
Figure 1.

2.4 Initial Badge Design
The initial badge set included badges in six categories (see
Figure 2). The badges can be divided into single-level badges
(one learning metric results in one single badge) and multi-
level badges (one learning metric results in multiple badges

Figure 1: Iterative Optimization Process

divided into different stages). The first badge was awarded
for students entering their matriculation number to share
their usage data for research purposes. Since this is not a
learning strategy or a measure of learning success, this badge
will not be discussed further in this study. The remaining
five badge categories and the corresponding learning metrics
are discussed in the following sections.

2.4.1 Unique Questions
The second badge in Figure 2 is awarded if a student an-
swered every question in the database correctly once. The
influence of this badge is evaluated with the learning metric
“Unique Questions”. This metric measures how many differ-
ent questions a user has answered. As explained in Section
2.1, the SLI ensures that a question that has been answered
correctly is only displayed again after a certain time. Never-
theless, each question can in principle be answered multiple
times, which is why “Unique Questions” provides valuable
information. The further a user has worked through the
chapters, the higher this metric will be. If a student uses
the app regularly, but only answers questions from the first
chapter, this may result in a high number of total answers,
but probably does not reflect a meaningful learning strategy.
A user with the same number of total answered questions
but more unique questions presumably has learned more and
therefore a higher probability for a good exam performance.

2.4.2 Maximal Chapter
As described in Section 2.1 the rules of the app require a user
to work through one chapter at a time. This means that each
student starts in the first chapter and must master it to a
certain degree to unlock the second chapter. This process
continues until the final chapter nine. When a chapter is
unlocked, the corresponding badge is awarded to the stu-
dent. The learning metric “Maximal Chapter” measures the
highest chapter a user has unlocked. As discussed in the pre-
vious section, a learning strategy that covers higher chapters
is presumably more successful regarding exam preparation
than an intensive usage only in lower chapters. A student
with the same number of answers but a higher number of
different chapters likely prepared better for the exam than
a student with the same (or a higher) number of questions
that only cover the topics of the first chapters.
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Figure 2: Initial Badge Design

2.4.3 Highest Streak
According to prior research, the sequence of learning days
can play a decisive role in determining learning success [21].
Continuous learning is considered to be better suited for
knowledge retention than concentrating the same learning
time on a few days. The goal of the badge in the fourth
category in Figure 2 was to promote a continuous learn-
ing strategy. Using the app for several continuous days can
manifest a habit, making it easier to learn for the days to
come. The extent to which this learning strategy was used is
measured by the learning metric “Highest Streak”. It states
the highest number of consecutive usage days of a user in
each semester. The intention of this badge was that a higher
streak would lead to a better exam result. This badge is the
first multi-level badge in Figure 2. The three stages are 3,
5, and 15 consecutive days.

2.4.4 Total Answers
The number of total answers given provides a basic estimate
of the quantitative intensity of app usage. If a student has
used the app frequently, this is necessarily indicated by a
high number of answered questions. In comparable studies
with data from learning management systems, such a con-
clusion is not so simple, since, for example, documents can
also be read, but the actual reading time is not necessarily
reflected in the log data [8, 13]. The click on a document in
an LMS is captured, but usually there is no data about how
long (and focused) the document was read. However, since
there is no information to be passively consumed in the app
other than feedback messages after a question, there is no
reason to believe that a student remains studying at a single
question for an extended time after answering it. If a student
uses the app more, it presumably means that he or she learns
more in general. On the one hand, it is proof of the fact that
the student learns directly in the app. On the other hand,
more intensive app use can also be a proxy for the fact that
the student generally learns more and, for example, also en-
gages more with the other learning materials. Nevertheless,
this metric is a purely quantitative measurement without a
qualitative assessment of the learning strategy. For exam-
ple, a student with a certain number of answers that are all
false has the same value of this learning metric as a student
with exclusively right answers. However, as more learning
time is considered to lead to better performance, this badge
was designed to motivate a higher degree of usage time [4,
27]. This badge is the second multi-level badge in Figure 2
and is awarded for the stages of 50, 500, and 1000 answers.

2.4.5 Weekly Challenges
Competitive students are considered to be more motivated
to achieve a better result in the final exam [6]. Therefore,
the last badge in Figure 2 should motivate to participate in
the Weekly Challenge. As the Weekly Challenge is entirely
voluntary and no real rewards can be earned, an intensive
use of this mode is considered a good proxy for a student to
be highly competitive. The influence of this badge is ana-
lyzed with the learning metric“Weekly Challenges”, measur-
ing the number of Weekly Challenges a student participated
in. This multi-level badge is awarded for the stages 1, 5, and
10 Weekly Challenges.

3. RESULTS
3.1 Evaluating Initial Badges (RQ 1)
The following analyses examine whether the badges initially
implemented in the app motivate successful learning strate-
gies. For this purpose, I examine whether the students who
earned the badges achieved a better grade on average than
the students who did not.

Table 3: Unique Questions

Badge Grade Average n
No 2.84 799
Yes 1.95 53

Table 4: Maximal Chapter

Badge Grade Average n
0 3.37 137
1 3.34 87
2 3.21 88
3 3.22 79
4 2.74 54
5 2.54 43
6 2.61 27
7 2.92 25
8 2.56 45
9 2.13 267

Tables 4 and 5 show the average grades of the students who
received the different badges based on the learning metrics
“Unique Questions” and “Maximal Chapter”. In Table 4,
it can be seen that the average grade of the students who
answered all 551 questions is better than that of the compar-
ison group. A similar picture emerges for the learning metric
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Table 5: Highest Streak, Total Answers, Weekly Challenges

Highest Streak Total Answers Weekly Challenges
Badge Grade Average n Grade Average n Grade Average n
none 3.00 539 3.38 226 3.13 432
bronze 2.43 200 2.94 284 2.55 335
silver 2.41 108 2.36 134 1.93 56
gold 2.46 5 2.21 208 2.07 29

“Maximal Chapter”. The general trend shows that the more
chapters have been unlocked, the better the average grade of
the students. Although the trend is not ascending in every
chapter step but has a small bump at chapters 3, 6, and 7,
the result suggests that students who unlock more chapters
perform better in the exam.

The following analyses examine the multi-level badges in
the initial badge set (see Table 5). Students are divided
into four groups: Those who did not achieve even the small-
est stage, and those who achieved at least bronze, silver,
or gold, respectively (see Figure 2). Here, too, the aver-
age grades in the final exam are compared group by group.
Again, the trend for all three badges is that the higher a
student climbs on the badge levels, the better the average
grade on the exam. However, the effect size differs from
badge to badge. For the badge “Highest Streak” the average
grade improves by 0.54 to 0.59 depending on which stage was
reached. Nevertheless, it should be noted that the gold stage
was only achieved by 5 students. This already indicates that
the highest stage may have been set too high. The average
grade difference between the students who did not achieve
any badge in the category “Total Answers” and those who
achieved gold status is exceptionally high. Students who
have not achieved any of the three levels obtained an aver-
age grade of 3.38 while students with a gold badge had an
average grade of 2.21. The badge “Weekly Challenges” also
shows that students at the higher levels tend to have better
average grades. However, students with a gold badge have
a slightly lower average grade (2.07) than students with a
silver badge (1.93). The analysis of this badge also shows
(although not quite as strongly as“Highest Streak”) that the
higher levels were only achieved by comparatively few stu-
dents suggesting that the thresholds were set too high. In
summary, however, all initially created badges seem to moti-
vate learning strategies that lead to better grades. The first
research question (see Section 1) can therefore be answered
affirmatively.

3.2 Evaluating Stages of Multi-Level Badges
(RQ 2)

Still, as indicated in the previous analyses, the designs of
initial badges should be further investigated to answer the
second research question. Since the thresholds of the multi-
level badges were based on common sense but not empiri-
cally validated due to a lack of data, I analyze in the next
step, whether other stages are more appropriate to provide
an optimal motivational effect. For this purpose, a deci-
sion tree will be generated with the app usage data as inde-
pendent variables and the exam grades as dependent vari-
able. The idea of such a decision tree is to determine the
boundaries of the learning metrics that are best suited to
divide the group into different subgroups. In other words,

at what level of the metrics is the difference between the
group that exceeds the level to the group that does not ex-
ceed the level the greatest. For example, if all students who
answered more than 3,000 questions have a 1.0 on the exam,
it would seem to make little sense to include another stage
at 4,000 answered questions. Since the discussed learning
metrics are at least partially related (e.g., higher maximum
chapter necessarily results in higher unique questions), all
learning metrics are examined simultaneously. Moreover,
all badges and not only the ones originally created as multi-
level are considered in the calculations. This will allow to
identify whether there are reasonable thresholds for single-
level badges as well, and whether they should therefore be
converted into multi-level badges. The result of the corre-
sponding decision tree is shown in Figure 3.

Figure 3: Decision Tree with Initial Badges

The decision tree can be interpreted as follows. “Maximum
Chapter” is the most important learning metric for group
classification in the data set. The average grade for all stu-
dents is 2.8. For students who have only worked on chapters
1 to 3, the grade average is 3.3, and for students who have
worked on at least chapter 4, the grade average is 2.4. The
result can be interpreted in such a way that, for example, the
badge for chapter 4 should be particularly highlighted, as it
seems to mark an important threshold. In the next step,
the learning metric “Unique Questions” is used for further
subdivision. If students have answered at least 479 unique
questions, the grade average improves to 2.0, if not, it de-
clines to 2.6. The badge for “Unique Questions” has so far
only been awarded if all questions, i.e. 551, have actually
been answered. The data show that a change should be con-
sidered, and the badge should be changed from a single-level
to a multi-level badge with one level at around 479. In the
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next step, the group with less than 479 unique questions
is subdivided according to the metric “Weekly Challenges”.
If a student participated in less than 2 Weekly Challenges,
the average grade worsens from 2.6 to 2.8. If the number of
Weekly Challenges is at least 2, the average grade increases
to 2.2. Since the smallest level of this multi-level badge was
1, the result not necessarily indicates a need for action at
this point. In the last step, the group is subdivided based on
the “Total Answers”. However, the subdivision goes in the
opposite direction at this point. The average score improves
to 2.0 if less (!) than 1,130 questions were answered. If more
than 1,130 questions are answered, the average grade dete-
riorates to 3.1. Therefore, it does not seem to be a good
strategy to simply answer as many questions as possible.
However, it should be emphasized that this advice includes
all the subdivisions made previously, so the limit of 1,130
answers should not be considered in isolation. In addition,
it should be emphasized that “Highest Streak” was also in-
cluded in the analysis but is apparently not suitable as a
criterion for subdividing the groups.

3.3 Group Comparison
As discussed in Section 2.2, the data used in this study only
comes from students who gave consent to sharing their usage
data for research purposes. As all other usage data cannot be
connected to exam results, it is omitted from the analyses
in this study. This circumstance entails the risk that the
corresponding results can only be interpreted considering
a selection bias. Table 6 contains the result of the group
comparison regarding the learning metrics of all active users
that gave consent to share their usage data with the students
who did not:

Table 6: Group Mean Comparison (Active Users)

Yes No
Consent (n=838) (n=1,023)
Unique Questions 254.13 170.08
Maximal Chapter 5.42 4.04
Highest Streak 2.77 2.22
Total Answers 649.81 405.38
Weekly Challenges 1.79 0.95

The results show that there is a substantial difference be-
tween the two groups. An evaluation of every difference
with a two-sided t-test showed a high significance in each
comparison (p < 0.01). Users who have entered their ma-
triculation number in the app and thus consented to the use
of their data for research purposes are more active in the app
than those who have withheld this consent. As the analy-
ses in the preceding sections only contain the data from the
subgroup who gave consent to the usage of their data, the
effects of the learning metrics on exam score from the ex-
amined subsample cannot be unconditionally generalized to
the whole sample due to a selection bias.

4. DISCUSSION
The objective of the present study was to develop an ap-
proach to test the design of badges in a gamified learn-
ing app with respect to the motivation of optimal learning
strategies. In the first step, I examined whether the badges
developed for the launch of the app motivate learning strate-
gies that lead to better grades. This could be affirmed. In

the second step, I evaluated whether the levels of multi-level
badges were optimally selected. A decision tree was devel-
oped for this purpose. The result of this analysis was that
the originally selected levels could be optimized. However,
as the decision tree output suggests a single threshold for
each badge, a still open question is whether this threshold
should be a replacement or if the future badge should only
have two stages. This result could be considered in one of
the next updates and in the following semester it could be
checked if the newly chosen levels are optimal. This iterative
process can also be applied to other learning applications.
The major advantage of a decision tree here is that the re-
sults are very easy to interpret and transfer into practice.
In my view, this advantage outweighs the disadvantages of
this method (e.g., lower accuracy).

While the proposed process can be applied to other learn-
ing applications, the specific results for this project must be
interpreted with caution. Due to the strict data protection
rules at the university, I could not evaluate the data of all
users, but only of those who gave us their permission to do
so. This leads to a selection bias in the results. Thus, the
effect of the badges cannot be confirmed for the entire co-
hort and therefore any adjustments to the badge architecture
have to be made taking this issue into account. As previ-
ously described, one result of the study is that the levels of
multi-level badges should be reconsidered. However, it could
also be that certain learning strategies are not represented
at all by the currently implemented badges. Therefore, in a
future study, other learning strategies and the correspond-
ing learning metrics will be developed and it will be exam-
ined whether these led to better exam results. If so, design-
ing a corresponding badge to motivate the learning strategy
would need to be considered. Until now, for example, the
temporal aspect of the learning process has not been taken
into account. Theoretically, the usage measured with most
of the previously determined learning metrics could have
taken place on one single day of the semester. More realistic
are probably multiple days, but these could have been, e.g.,
shortly before the exam (indicating a cramming behavior)
or directly at the beginning of the semester. A large body of
research suggests that spaced repetition is best for optimal
learning success [7]. If a student follows this strategy, he or
she will have used the app on more days than a student who
only started studying shortly before the exam and therefore
followed a cramming strategy. This fact could be measured
by a metric that states how many days in the semester a
student has answered at least one question. In principle,
it can be assumed that on average more learning days lead
to a better performance in the exam. However, since there
may also be an upper limit above which the marginal ben-
efit decreases, a multi-level badge could be a suitable solu-
tion. Moreover, an early start could be decisive for successful
course completion [23]. Therefore, the first use of the app in
relation to the exam date could be measured in days. The
extent of usage is measured by the metrics already discussed
but this metric would measure whether a student started to
use the app early in the semester. Therefore, students with
an extreme cramming strategy, i.e., with the intention to
start learning shortly before the exam would have a low ex-
pression of this figure. An implementation of this learning
metric into the decision tree would show if there is a certain
starting date that should be incentivized by a badge.
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ABSTRACT
An online peer-assessment system typically allows students
to give textual feedback to their peers, with the goal of
helping the peers improve their work. The amount of help
that students receive is highly dependent on the quality of
the reviews. Previous studies have investigated using ma-
chine learning to detect characteristics of reviews (e.g., Do
they mention a problem, make a suggestion, or tell the
student where to make a change?). Machine-learning ap-
proaches to peer-assessment evaluation are heavily reliant
on labeled data to learn how to identify review character-
istics. However, attaining reliable labels for those charac-
teristics is always time-consuming and labor-intensive. In
this study, we propose to apply pseudo-labeling, a semi-
supervised learning-based strategy, to improve the recogni-
tion of reviews that detect problems in the reviewed work.
This is done by utilizing a small, reliably labeled dataset
along with a large unlabeled dataset to train a text classi-
fier. The ultimate goal of this research is to show that for
peer assessment evaluation, we can utilize both unlabeled
and labeled datasets to obtain a robust auto-labeling sys-
tem and thereby save much effort in labeling the data.

Keywords
Peer assessment, Problem detection, Natural language pro-
cessing, Semi-supervised learning, Pseudo labeling

1. INTRODUCTION
Peer assessment has long been used as a pedagogical tech-
nique in project-based courses [10, 11, 13, 14]. An online
system typically allows students to provide numerical scores
and give textual feedback on other teams’ work. It has
been shown to be remarkably effective in improving stu-
dents’ learning and teaming skills [10]. Peer assessment
can also help instructors evaluate student work and assign

grades to it. Double et al. [3] presented a meta-analysis sug-
gests that peer assessment improves academic performance
even more than teacher assessment. However, the reliability
and validity of peer assessment are completely determined
by peer-review quality [15]. High-quality reviews can help
authors precisely identify issues with their work and make
corresponding revisions. Low-quality reviews could be un-
helpful or even detrimental to students’ learning.

Hence, there is a growing interest in evaluating the review
quality in peer assessment research [12]. However, having
the instructors or TAs evaluate or grade all peer-review com-
ments would be extremely time-consuming. Consequently,
several studies have investigated machine-based automated
review evaluation with the help of natural language process-
ing techniques as well as machine learning, Nelson et al. [12]
carried out a pioneering study on identifying high-quality
reviews by investigating the features in the review text and
determining what type of comments are most helpful and
why. Xiao et al. proposed a machine-learning NLP-based
approach for finding problem statements [18] (e.g., Do they
mention any problems in the work that required revisions)
and suggestions (e.g., Do they provide any suggested solu-
tions on how to revise the work) [[23]] in the peer review
comments.

As with most AI tasks, the biggest challenge for applying
machine learning and deep learning algorithms to peer as-
sessment is collecting labeled data [18]. Identifying whether
review comments contain problem statements and sugges-
tions is sometimes subjective, so the same review will be la-
beled differently by different students. This creates a major
obstacle in collecting precise and reliable labels for the text
analysis. Researchers have suggested approaches to tackle
this problem of unreliable and insufficient labeling. Jia et
al. [8] proposed an annotation process by two graduate stu-
dents and measured the inter-annotator agreement between
them to improve labeling validity. Xiao et al. [18] proposed
to apply transfer learning and active learning to tackle the
insufficient-labeling problem by using knowledge from a re-
lated task that has already been learned. All previous ap-
proaches required intervention from either human effort or
out-of-domain knowledge; there is not a single study on peer
assessment evaluation that has examined how to train a ro-
bust classifier on the data alone, and in particular how to
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make good use of unlabeled dataset, which is much easier to
collect. Semi-supervised learning has proven to be a effective
approach to address these issues [6].

Semi-supervised learning is a learning paradigm that stands
between unsupervised and supervised learning [6]. The goal
of semi-supervised classification is to train a classifier that
uses both a small labeled dataset and a large unlabeled
dataset to outperform the traditional supervised classifier
trained only on the labeled data. Basic approaches to semi-
supervised learning involve a well-known technique called
pseudo-labeling [9], in which method a classification model
is first trained on the labeled dataset and then used to in-
fer pseudo-labels on the unlabeled dataset. Then the un-
labeled dataset with pseudo-labels is combined with the la-
beled dataset, so that the predicted labels are used as ground
truth. This allows us to essentially scale up the labeled
dataset in order to train a more robust model.

Xie et al. [19] conducted an extensive study on pseudo-
labeling and presented a self-training method with “student”
and“teacher”models on image classification tasks (note that
“student” and “teacher” here are not referring to the user of
the model), which achieved an outstanding result. The idea
is almost the same as the pseudo-labeling approach. Initially
a “teacher” model is trained on the labeled dataset and used
to predict pseudo-labels on the unlabeled dataset, then a
“student” model will be trained on the combination of the
labeled and the pseudo-labeled dataset, these steps will be
run iteratively. In each iteration, once the “student” model
is trained, it will be used as the “teacher” model to gener-
ate predictions in the next iteration. This has proven to be
a promising approach by creating more labeled data to ad-
dress the data-insufficiency issue. Pseudo-labeling and self-
training strategies have been widely applied in computer vi-
sion tasks [5, 19]. However, very few studies have attempted
this approach in natural language processing tasks. This
paper aims to apply natural language processing techniques
and text-classification models to investigate the validity of
applying pseudo-labeling to improve the performance of de-
tecting characteristics in the peer review comments.

The main pedagogical contribution of this study to the peer
assessment evaluation is to show how to deploy our student
taggers (people who labeling the review data) more effec-
tively and eventually build an auto-labeling system. More
specifically, in our peer assessment system, the labels can
only be collected from student taggers, and, if they are re-
quested to label numerous comments, they may potentially
become careless, resulting in the poor labeling quality. We
could deploy them more successfully by applying the pseudo-
labeling approach to build a text classifier for evaluating peer
reviews with considerably less labeled data.

2. METHODOLOGY
2.1 Automated peer-review quality evaluation
Although peer review is a widely accepted approach in the
educational setting, the effectiveness of peer review in pro-
moting students’ learning can vary significantly. Most re-
search has investigated the overall pedagogical contribution
of peer review of writing. However, research on evaluating
review quality is particularly lacking.

Nelson et al. [12] demonstrated that high-quality review has
proven to be a great benefit in improving students’ learning.
Their paper proposed an approach to determining what type
of feedback is most helpful and why it is helpful to students’
writing performance. They also listed the features for identi-
fying high-quality peer reviews. This study laid an excellent
foundation for later research projects on automatically de-
tecting characteristics of peer review comments.

The earliest study on automated peer-review quality eval-
uation was conducted by Cho et al. [1]. This study pro-
posed a machine-learning algorithm to evaluate peer reviews
collected from SWoRD—a web-based reciprocal peer-review
system. The review data was encoded for multiple charac-
teristics such as problem detection, solution suggestion, etc.,
and then several traditional machine learning algorithms
(Naive Bayes, SVM, and Decision Tree) were applied on the
text-classification task to evaluate quality.

Subsequently, automated evaluation became increasingly fash-
ionable in peer assessment. Xiong et al. applied supervised
machine learning to automatically identify problem local-
ization (pinpoint the location of where the problem is) [20,
22] and helpfulness [21] in peer review comments using NLP
techniques. Zingle et al. [23] describe a method for auto-
matically detecting suggestions in the review text, Xiao et
al. [17] proposed to auto-detect problem statement in review
comments.

Our study introduces an intriguing approach for automat-
ically assessing review quality by detecting problem state-
ments in the comments and applying a semi-supervised learn-
ing approach to address the problem of labeled-data insuffi-
ciency. Our goal is to help students get instant and accurate
feedback on the reviews they write and enable them to im-
prove their reviewing. This approach can also significantly
reduce the workload of student taggers who label those char-
acteristics in peer-review comments.

2.2 Semi-supervised Learning & Pseudo-labeling

Deep learning has achieved great success in the area of artifi-
cial intelligence; however, most of the state-of-the-art (SotA)
models were trained using supervision, which required a
large labeled dataset to attain excellent performance [6]. In
most cases, labeling was a difficult and time-consuming task;
even if we devote the time to do this, we would still be ig-
noring potential insights from the unlabeled dataset, which
is far easier to collect in the real world. Semi-supervised
learning has shown promise from using both labeled unla-
beled data. The objective of semi-supervised learning is to
improve learning behavior by combining labeled and unla-
beled data, or equivalently, to achieve the same model per-
formance with a relatively small labeled dataset.

Pseudo-labeling is one of the most effective and efficient
methods in semi-supervised learning [9]. With pseudo-labeling,
the initial model is trained on the labeled dataset:

DL =
{

(xi, yi)
}NL

i=1
(1)

, where xi represents each input, yi ⊆ {0, 1} is the corre-
sponding labels where 0 represents “does not include prob-
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Figure 1: Self-training workflow

lem statement”and 1 represents“does include problem state-
ment”, NL is the size of the labeled dataset. There is also
an unlabeled dataset:

DU =
{

(xi)
}NU

i=1
(2)

where xi represents each input without labels, and NU is
the size of the unlabeled dataset. In most cases NU ≫ NL,
so we believe that the unlabeled dataset may potentially
contain more valuable features than the labeled set. Next,
the model trained in the initial step generates predictions
ỹi as pseudo-labels on the unlabeled set DU ; hence we can
construct a pseudo-labeled set:

DU =
{

(xi, ỹi)
}NU

i=1
(3)

where ỹi will be used as the ground-truth label yi to compute
the loss in back-propagation in the next training phase, after
this, another model is trained on the combination dataset:

DC = DL +DU (4)

and we believe that with more training data, the model will
become still better.

Pseudo-labeling is often performed through an iterative pro-
cess rather than one-step label generation. Self-training [19,
5] can be interpreted as an iterative pseudo-labeling ap-
proach. Defining the model used to generate labels as“teach-
ers” and the model trained on both pseudo-labeled and la-
beled dataset as “students”, the two roles will be swapped in
each iteration after incorporating more pseudo-labeled data
into the labeled dataset (as shown in Figure 1). In this
way, we can achieve our initial goal of improving model per-
formance with the help of the valuable unlabeled dataset
without human intervention or external knowledge.

3. EXPERIMENT
3.1 Datasource
The dataset we used in this paper comes from [Redacted]
[4], a web-based peer review system that allows students
to provide both numerical ratings and textual feedback to

other groups’ assignments. Each student must review mul-
tiple assignments and provide appropriate peer assessments
to earn credits. The scores assigned by peer reviewers help
the instructor or TAs to give a final grade to the assign-
ments. The textual feedback also helps the authors to make
revisions. Students have the chance to earn extra credit by
labeling the review comments they received from the peer
reviewers, and these labels support the construction of text
classifiers for peer-review evaluation as ground-truth labels.

Student taggers label the review comments for whether or
not they contain characteristics such as: problem state-
ments, suggestions, and explanations. In this study, we only
use the problem statement label. The quality of these labels
cannot be fully guaranteed, but the success of training a
robust model depends heavily on the quality of the ground-
truth labels. We propose a data-filtering approach to select
the review comments with the most reliable labels. When
students use the [Redacted] system, up to four students on
a team will label the same review comments they received
on their team’s work. We will not select a review comment
for the dataset if any team members disagree on the label
(this will be defined as “taggers agreement rule” in the fol-
lowing section). Initially, 48,412 review comments with the
corresponding labels were pulled from [Redacted] from the
Fall 2017 to Fall 2020 semesters of a masters-level object
oriented design class. After the raw data was filtered by the
taggers agreement rule, 3100 pieces of “high-quality” labeled
data were collected. Since our goal is to investigate the ef-
fectiveness of the unlabeled set, only a small labeled subset
is required to train the initial model. Because of that, we ex-
tract 1600 review comments as the training set and 1500 as
the validation set. The remaining 45,312 review comments
that do not follow the taggers agreement rule will have their
labels stripped and used as the unlabeled dataset.

Another motivation for pseudo-labeling is to compare the
effectiveness of this strategy on different sizes of labeled
datasets. If the amount of labeled data required can be
reduced without harming the model performance, our ap-
proach can have a great impact on peer-assessment evalu-
ation. For this paper, we conducted multiple experiments
with different sizes of labeled sets. We will report only
which size brings the most improvement after applying our
strategy, rather than comparing model performance between
different-sized datasets, as it is an indisputable fact that
more labeled data will produce a better result.

3.2 Model implementation
Comparing the performance of different deep-learning mod-
els was not a goal of this study; hence we will only select
one language-classification model to train both the teacher
and student models. We use the transformer-based language
model known as Bidirectional Encoder Representations from
Transformers (Bert), which was first introduced by Google
in 2019 [2]. Transformers apply a specific self-attention
mechanism, which is designed for language understanding
[16]. Self-attention emphasizes which part in an input sen-
tence is crucial to the understanding. The transformer is an
encoder-decoder-based architecture consisting of a standard
feed-forward layer and a special attention layer, as shown in
Figure 2 [16].
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Figure 2: The Transformer - model architecture [16]

The traditional language model reads the input sentence in
a single direction, either left to right, or right to left, which is
enough for the task of next-word prediction. However, for a
deep understanding of the sentence, the context is necessary.
For a given word, considering both the previous and next to-
ken is valuable in learning the text representations, which is
why the Bert model can achieve such superior performance
on language-understanding tasks.

The Bert model consists of several layers of transformer
blocks; the base model has 12 layers with 110 million pa-
rameters. By comparison, the large model has 24 layers with
340 million parameters [16]. Note that the Bert model only
uses the encoder part of the transformer, which is respon-
sible for reading the input text and processing it. In this
study, we will only apply the Bert base model, considering
the training efficiency.

The Bert model is trained in two phases, pre-training and
fine-tuning. Pre-training includes two NLP tasks: Masked
Language Modeling (MLM) and Next Sentence Prediction
(NSP), using 3.3 billion words from Wikipedia and BooksCor-
pus; note that all data is unlabeled. Then the pre-trained
model is used for the downstream NLP tasks in the fine-
tuning phase, like text classification. In our study, we sim-
ply used the pre-trained Bert base model, then fine-tuned
the model by feeding our peer-review data to carry out the
text-classification task.

3.3 Pseudo-labeling setting
As mentioned in Section 2.2, we initially trained a teacher
model only on the labeled dataset. We aimed to assess the
improvement achieved by our strategy with three different
sizes of the labeled set. Accordingly, 400, 800, and 1600
labeled reviews were randomly selected from the training set.
These samples were used to train the initial teacher model
and later combined with pseudo-labeling data to train the
student model in the self-training loop.

After the pseudo-labels are generated on the unlabeled dataset,
another attractive experiment is to investigate whether we
should use the entire pseudo-labeled dataset, or just a part
of it, to train the student model. There are three common
approaches for selecting the pseudo-labeled subset. We de-
fine them as—

• Full selection: Combine the entire pseudo-labeled set
with the labeled set to train the student model.

• Random selection: Randomly select a subset from the
pseudo-labeled set and combine it with the labeled set;
the labels of the remaining samples will be stripped,
and those samples will be considered as the unlabeled
dataset in the next iteration.

• Top-k% selection: Follow almost the same steps as
random selection, except for the sampling method, as
shown in Figure 3, the teacher model will retain the
prediction score while generating the pseudo-labels,
and then only the samples with the k% highest pre-
diction scores will be selected.

For this paper, we use the Top-k% selection method to cre-
ate the subset of the pseudo-labeled dataset in each iter-
ation. This proved to be an effective way to address the
confirmation-bias issue (Section 3.4), below. In our study,
k = 100% (same as full selection) was chosen as a baseline,
and the k = 10, 20, 40% were selected for the experiment.

As previously mentioned, pseudo-labeling is implemented
as an iterative process so top-k% selection will be applied
in each iteration. Once a pseudo-labeled subset has been
selected, the remaining pseudo-labeled data is used as the
unlabeled set and new predictions are generated from the
teacher model in the next iteration. We ran this process 10
times (epochs = 10) and for consistency, the entire pseudo-
labeled dataset will be fed into the model in the last itera-
tion.

3.4 Handling confirmation bias
Machine-learning models predict incorrect labels when they
are unable to learn enough patterns from the data. In
pseudo-labeling, overfitting the student model to these in-
correct labels predicted by the näıve teacher model is defined
as confirmation bias. This leads to a significant impairment
of the pseudo-labeling strategy. Initially, the teacher model
could well be affected by noise, especially with very little la-
beled data being trained. Although this cannot be avoided
fundamentally, there are still some approaches that can help
reduce the effects of confirmation bias.

3.4.1 Top-k% selection
As mentioned in section 3.3, random selection would poten-
tially perform better than full selection as it can alleviate the
negative impact of bias, since only a subset of the pseudo-
labeled data will be fed into the model in each iteration.
In this way, relatively less bias will be introduced into the
model.

Instead of randomly selecting the subset, the top-k% se-
lection method is based on the prediction scores generated
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Figure 3: Top-k% selection workflow

by teacher models. Only the data points with the high-
est predicted probability score will be selected and included
into the labeled set. The theoretical justification for this is
similar to entropy regularization [7], which is another semi-
supervised learning technique that encourages the classifier
to infer confident predictions on the unlabeled dataset. For
example, we would prefer to assign the unlabeled data a
high probability of belonging to a particular class, rather
than diffuse probabilities across different classes. However,
this confidence-based approach must assume that the data
are clustered according to class, which means that neighbor-
ing data points should have the same class, while the points
in different classes should be widely separated.

3.4.2 Weighted loss
Another approach to handlling confirmation bias is to re-
define the cross-entropy loss as a weighted summation be-
tween the labeled and pseudo-labeled set. Initially, the näıve
teacher model is incapable of generating reliable pseudo-
labels. If we simply add the unlabeled loss to the labeled
loss, especially when the size of unlabeled dataset is much
larger, the model tends to overfit on the unreliable pseudo-
labeled data and consequently generate wrong predictions.

Therefore Lee et al. [9] proposed to use weight in the loss
function. The overall loss function looks like this:

L =
1

n

n∑

m=1

C∑

i=1

L (ymi , f
m
i ) + α (t)

1

n′

n′∑

m=1

C∑

i=1

L
(
y
′m
i , f

′m
i

)

(5)
In simple terms, the equation can be interpreted as follows:
Loss per Batch = Labeled Loss + Weight × Unlabeled Loss
In this equation, the weight (alpha value) is used to con-
trol the contribution of the unlabeled loss to the total loss.
The value is initialized small and slowly increases during
the model training. Since few training epochs are needed
to fine-tune the Bert model for text-classification tasks, it
does not seem necessary to define the alpha as a function of
time. Therefore, in this study, we simply initialize the alpha
value to be 0.1 and increase it by 0.1 in each epoch.

Considering the obstacle of calculating the loss after combin-
ing the labeled and pseudo-labeled sets, we designed the ex-
periment as training on the pseudo-labeled set for each epoch
and calibrating on the labeled set every three epochs. The

Accuracy F1 score
Initial Final Imp Initial Final Imp

Training with 400 labeled data
Baseline 85.3% 84.7% -0.6% 83.4% 82.1% -1.3%
k=10% 85.3% 91.8% 6.5% 83.4% 90.6% 7.2%
k=20% 85.3% 90.5% 5.2% 83.4% 87.7% 4.3%
k=40% 85.3% 90.2% 4.9% 83.4% 88.1% 4.7%
Training with 800 labeled data
Baseline 88.9% 88.0% -0.9% 86.2% 84.5% -1.7%
k=10% 88.9% 92.8% 3.9% 86.2% 92.1% 5.9%
k=20% 88.9% 91.9% 3% 86.2% 90.6% 4.4%
k=40% 88.9% 91.5% 2.6% 86.2% 89.6% 3.4%
Training with 1600 labeled data
Baseline 89.8% 89.3% -0.5% 87.2% 86.2% -1%
k=10% 89.8% 92.6% 2.8% 87.2% 90.3% 3.1%
k=20% 89.8% 92.1% 2.3% 87.2% 89.7% 2.5%
k=40% 89.8% 91.7% 1.9% 87.2% 88.8% 1.6%

Table 1: The improvement of accuracy and F1 score

alpha value is multiplied by the pseudo-labeled loss in each
epoch and increases during the training iterations, while the
labeled loss will remain the same.

4. RESULTS
Figure 4(a) displays the learning curve of validation accu-
racy and Figure 4(b) displays the F1 score, with different
sizes of labeled data over 10 epochs. The performance of
different values for k are compared in each plot. Table 1
demonstrates the measurement before and after applying
the pseudo-labeling method. Our goal is to compare the
improvement in each experiment setting to assess the effec-
tiveness of the Top-k% selection approach and the impact
of the labeled data size.

RQ1: Does the pseudo-labeling improve the model perfor-
mance?
We can see from Figure 4 that in general the learning curve is
continuously rising with each experiment setting, and all set-
tings achieved a significant improvement in the last epoch,
except where k = 100%; we will analyze this in the following
section. These results undoubtedly show that by applying
the pseudo-labeling approach, we can obtain a robust clas-
sifier using a large unlabeled dataset.
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Figure 4: Validation accuracy and F1 score for different size of labeled subset

RQ2: Does the top-k% selection approach help reduce con-
firmation bias?
We use k=100%, with the entire pseudo-labeled dataset se-
lected as the baseline, to assess the effectiveness of the top-
k% selection approach. As shown in Figure 4, the learn-
ing curve of k=100% for each setting does not change over
epochs and there is a notable drop in the early epochs, indi-
cating that the pseudo-labeling does introduce bias into the
model training in the absence of top-k% selection.

Both Figure 4 and Table 1 illustrate that the improvements
are slightly different with a different k value; k = 10% yields
the best result regardless of the size of the labeled dataset.
Table 1 shows that on an average we are able to achieve
4.4% improvement in accuracy and 5.4% improvement in
F1 score with k = 10%, which is higher than with the other
k values. This result clarifies that by selecting the pseudo-
labeled subset based on the prediction score, we can obtain
high-confidence predictions as reliable labels. The result also
supports the cluster assumption in our case, which means
that the review comments containing the problem statement
are distinguishable from the comments not containing it.

RQ3: Does the pseudo-labeling work better on a small la-
beled set or large labeled set?
From Table 1 we can clearly see that regardless of the k
value, the overall improvement on the small labeled set is
comparatively higher than on the large labeled set, which
indicates that the pseudo-labeling strategy works better on
the small labeled set. This also implies that the unlabeled
dataset can be more valuable than labeled set in certain
practical problems, and using the unlabeled set can signifi-
cantly improve the learning accuracy.

5. CONCLUSIONS
This paper presents a semi-supervised learning approach
based on pseudo-labeling for evaluating peer-assessment qual-
ity. We investigated the effectiveness of the pseudo-labeling

technique for different sizes of the labeled set. The re-
sults indicate that our approach can achieve an outstand-
ing result with a small labeled dataset by augmenting it
with an unlabeled set. The main contribution of this study
to the peer-review process is the fact that not much la-
beled data is required to detect problem statements in peer-
assessment comments; our student taggers do not have to
label so much data. With less labeled data required, stu-
dent taggers can be more careful to assign correct labels.
In addition, we can find some better filtering approach to
extract the smaller “high-quality” labeled data, which can
greatly facilitate building our automatic labeling system.

Although we achieved a good result by using the top-k%
selection approach as well as the weighted loss function to
handle confirmation bias, the same success is not guaranteed
on other tasks: confidence-based selection approaches are
not always applicable; they will not work well without the
cluster assumption.

The results of this study point the way to more efficiently
analyzing review comments. Our pseudo-labeling approach
can easily calculate how much labeled data for each charac-
teristic is required for training a robust text classifier. For
example, given a 91.8% classification accuracy in problem
detection achieved with only 400 labeled data (a 6.5% im-
provement from supervised training alone), we can save a
lot of labeling effort—effort that can then be devoted to
identifying other salient review characteristics. Further re-
search can explore better filtering approaches (similar to
the tagger-agreement rule) for extracting small quantities of
higher-quality labeled data in order to build a more reliable
auto-labeling system.
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ABSTRACT 
Research into "gaming the system" behavior in intelligent tutoring 

systems (ITS) has been around for almost two decades, and detec-

tion has been developed for many ITSs.  Machine learning models 

can detect this behavior in both real-time and in historical data. 

However, intelligent tutoring system designs often change over 

time, in terms of the design of the student interface, assessment 

models, and data collection log schemas. Can gaming detectors still 

be trusted, a decade or more after they are developed? In this re-

search, we evaluate the robustness/degradation of gaming detectors 

when trained on older data logs and evaluated on current data logs. 

We demonstrate that some machine learning models developed us-

ing past data are still able to predict gaming behavior from student 

data collected 16 years later, but that there is considerable variance 

in how well different algorithms perform over time. We demon-

strate that a classic decision tree algorithm maintained its 

performance while more contemporary algorithms struggled to 

transfer to new data, even though they exhibited better performance 

on unseen students in both New and Old data sets by themselves. 

Examining the feature importance values provides some explana-

tion for the differences in performance between models, and offers 

some insight into how we might safeguard against detector rot over 

time. 

Keywords 
Intelligent Tutoring Systems, Gaming the System, Detector Rot 

1. INTRODUCTION 
Adaptive systems like intelligent tutoring systems (ITSs) depend 

on inferential models to understand and respond to individual stu-

dents. Some of these systems and models have now been applied to 

modeling knowledge and behavior for decades [7]. For instance, 

Bayesian Knowledge Tracing (BKT) models have been used in 

ITSs for almost 30 years [11]. Even the use of more complex ma-

chine-learned models now has an extensive history; for example, 

gaming the system models which predict when students are at-

tempting to find ways other than learning to advance through the 

system [2, 5, 26], have been in use for 18 years.  

Gaming the system models are used for several purposes, including 

evaluating the quality of content [13, 24], research on the longitu-

dinal impacts of disengagement [1, 34], and automated intervention 

[3]. Even as ITSs have become more adaptive and user interfaces 

have become more engaging, students have continued to find ways 

to disengage from these systems [38]. 

While BKT models are easily and frequently refit in industrial prac-

tice, models of constructs like gaming the system require 

supplementary data collection beyond the standard logged data 

stream, in order to create new training labels. As a result, they are 

expensive to fit and are not refit often. Is this a dangerous practice?  

An analogy can be made to code rot, a phenomenon in computer 

software where over time systems degrade in performance due to 

their reliance on aging library dependencies, hardware updates, and 

breakdown in the structural integrity of design patterns [18]. Mod-

els developed through machine learning and artificial intelligence 

(AI) may suffer a similar fate, “detector rot”, where a model stops 

functioning as expected over time. When a piece of code simply 

fails to work, it is obvious, but there may be less obvious failure 

modes for machine learned models. Machine Learning packages 

change in their functionality over time and become obsolete; just 

because a model is still runnable does not necessarily imply that it 

is functioning in the same way. This problem has been noted in 

machine learning research in general, where many past research re-

sults can no longer be reproduced [17]. 

Furthermore, even if a model is functioning the same way as it did 

a decade ago, that does not mean that it has not experienced a form 

of decay. There is more to decay in a model over time than just 

reproducibility. Take the Cognitive Tutor [31], the system which 

many of the first models detecting gaming were developed for [2, 

6]. The design and interface of Cognitive Tutors have gone through 

significant changes over the years (and the system has been re-

branded MATHia). The changes over time involve both cosmetic 

changes and changes in pedagogical strategies and content. We 

elaborate further on these changes in a dedicated section below. 

Students, teachers, and learning contexts also change over time. In 

1995, Janet Schofield reported many students in Pittsburgh skip-

ping lunch and staying after school to use ITSs [35], a behavior not 

commonly reported in U.S. classrooms today. ITSs are much more 

prevalent in classrooms than even 10 or 15 years ago, students and 

teachers are more familiar with instructional technology, and stu-

dents use technology at-home more often compared to an earlier 

focus primarily on classroom use [16]. Students today are also 

much more likely to be comfortable quickly locating information 

on the internet and may expect this same immediacy in their inter-

action with ITSs [36]. As such, detector rot may be as much a 

problem of generalizability as reproducibility -- the model might 

have been completely valid in 2008, and may even still function 

exactly the same way, but may not be valid anymore in 2021. As 

such, we can and should ask: will models trained on older data (in 

this case, 2005) maintain accuracy when tested on current data 

(2021)? Beyond this, has student gaming behavior changed over 

the last 15 years as indicated by different features becoming 

more/less important when detecting gaming behavior?  

This question seems on its surface to be a question about algorithm 

effectiveness today, based on historical models. But it is also im-

portant to ask, do we have any reason to believe our models will 

work tomorrow? One challenge in answering this question is that 

the algorithms we use today are different than those used fifteen 

years ago. Significant advances have occurred in machine learning 

algorithms over the last 16 years [20]. We can have somewhat more 

confidence in the potential of today’s algorithms to work tomorrow, 
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by conducting an anachronistic form of analysis -- applying current 

algorithms to older data and seeing how well they work on contem-

porary data. One class of algorithm that has seen recent success is 

gradient boosted descent trees. The eXtreme gradient boosting 

package (xgboost) [10] has met and surpassed state of the art results 

across a variety of machine learning applications including the de-

tection of gaming the system [30]. Contemporary machine learning 

algorithms generally achieve better predictive performance than 

older algorithms, as the proceedings of this conference over the last 

few years shows. Will contemporary machine learning models also 

be more robust over time than older algorithms?  

To answer these questions, this paper compares the functioning of 

gaming detectors over time, using data sets from 2005 and 2021. 

We will evaluate the effectiveness of a model trained on data from 

2005 and tested on data from 2021. We will also compare which 

features are most important within models trained on the Old data 

to which features are most important in models trained on the New 

data, to see whether the behaviors that are predictive remain con-

sistent over time. Additionally, we will then apply a variety of 

machine learning models including both classic algorithms and 

contemporary algorithms, to determine if each of these types of al-

gorithms is robust to changes over time. 

This paper will begin by discussing how the system being studied 

(MATHia/Cognitive Tutor) has changed over time, and how these 

changes may impact the manifestation of gaming behavior. In the 

methods section we describe the process of obtaining training la-

bels for newer data, the feature set implementation, and the 

modeling process. Next we present results, comparing models' per-

formance over time and dig deeper into the most important features 

of the most effective models. We discuss potential implications for 

practice in the use of detectors in real-world learning systems, and 

finally conclude with a synthesis of our findings and potential ave-

nues for future research. 

1.1 Mathia 
We studied the issue of detector rot using log data generated by 

Carnegie Learning’s MATHia (formerly known as Cognitive Tutor 

– [30]) ITS at two time periods separated by approximately 16 years 

(2005 and 2021). Throughout their histories, MATHia/Cognitive 

Tutor has been the software component of a typically blended core 

curricula for middle school and high school mathematics. In 

blended, core implementations, Carnegie Learning recommends a 

mix of collaborative classroom work guided by its paper worktexts 

(60% of instructional time) as well as individual student work (40% 

of instructional time) in the ITS. MATHia/Cognitive Tutor presents 

students with complex, multi-step math problems mapped to fine-

grained skills (often also referred to as knowledge compo-

nents/KCs; [23]. Within each problem, the ITS provides context-

sensitive help and feedback, sensitive, for example, to particular 

solution strategies a student might adopt (e.g., surfacing feedback 

that an incorrect answer reflects an inappropriate problem-solving 

strategy).Implementing mastery learning [33], the ITS tracks stu-

dents’ progress to mastery of KCs using an implementation 

of  Bayesian Knowledge Tracing (BKT; [11]) and presents prob-

lems to students until they demonstrate mastery of all KCs 

associated with each topical lesson or “workspace.” When a student 

has mastered all KCs in a workspace, they are moved on to the next 

workspace in an assigned sequence of workspaces, typically corre-

sponding to a course like Algebra I or Grade 6 Math. Within 

MATHia, the tutor judges a KC as mastered when the student 

reaches a 0.95 probability estimate for having mastered that KC.  

Timestamped log data track student actions (e.g., making a prob-

lem-solving attempt, requesting a hint) at each step of problems 

within each workspace, as well as feedback from the ITS (e.g., a 

correct response or that an error triggers just-in-time feedback be-

cause it reflects a common misconception, etc.). Data also track the 

input values provided by students, the KC to which a particular 

problem-step is mapped, and BKT’s ongoing estimation of a stu-

dent’s probability of having mastered the KC.  

1.2 Mathia Changes Between 2005 and 2021 
In general, the Cognitive Tutor Java application of 2005 was more 

compartmentalized (with multiple windows displaying problem-

solving elements) than the more contemporary web-based delivery 

of 2021. One prominent difference in the layout of the user inter-

face concerns the extent to which the “skillometer” for visualizing 

student progress to skill mastery has evolved from a display that 

was “expanded” by default (displaying skill names and progress to 

mastery) to a more visually compact representation (circles that 

“fill” as students make skill progress) that can be expanded by the 

student to see their progress in more detail. 

Changes have more recently been implemented in how BKT tracks 

student progress to skill mastery, especially related to how the stu-

dent’s use of hints impacts their knowledge estimates. First, hints 

are now delivered in MATHia with a delay between “hint levels.” 

After the student requests an initial hint, which typically re-states 

the goal for the current problem-solving step, there is a delay of a 

few seconds before the student can request another hint, which pro-

vides detail on how to accomplish the goal. This initial delay and 

short delays for each additional hint are designed to encourage re-

flection on the help requested and discourage students from rapidly 

seeking the “bottom out” hint, which provides the answer [2].In the 

Cognitive Tutor circa 2005 (and for many subsequent years), a stu-

dent’s request for a hint on a first attempt at a problem-solving step 

was treated as an incorrect response, resulting in a decrease in the 

ITS’s estimate of skill mastery. The 2021 version of MATHia only 

treats the “bottom out” hint that presents the student with the an-

swer as an incorrect attempt. Correct attempts after an initial hint 

are now credited (i.e., skill mastery estimates increase) like imme-

diate correct attempts, and correct attempts after mid-level hints 

now leave the skill mastery estimate unchanged. In addition, MA-

THia’s BKT parameter estimates for each skill (used to determine 

the models’ responsiveness to correct and incorrect answers) are 

now frequently set based on data-driven estimation techniques [32, 

39] as opposed to mostly being set according to expert judgment in 

earlier Cognitive Tutor versions.  

2. METHODS 

2.1 Labeling Gaming Behavior 
We obtained the data set used to develop the gaming detector in [6]. 

This original detector was a J48 (C4.5) decision tree classifier [29] 

built using training labels developed using text replays. Text re-

plays allow coders to directly label “clips” (segments of log data), 

presented as a sequence of actions and their context [4]. Text re-

plays have been used in a range of projects as a fast and accurate 

method to label a range of types of student behavior for classifier 

development within various types of learning systems [4, 6, 12, 

26].  

For the older data set [6], we obtained data from the PSLC 

DataShop [22], data set “Algebra I 2005-2006 (3 schools)”, includ-

ing both training labels derived using text replays and partially-

distilled log data. 18,737 training labels were included in that data 

set.  
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The New data set was obtained directly from the Mathia team (this 

data set is not currently on DataShop, due to government-agency-

level contractual restrictions on data sharing). We conducted an 

identical text replay approach to [6], obtaining the original text re-

play software from the first author of that earlier work. We used a 

textual sequence of student activity of a duration of 20 seconds or 

8 actions (whichever occurred last) from MATHia’s log data as a 

clip for labeling. Every clip contained the student ID, timestamp of 

each action (in relation to the first action in clip), the problem name 

and step, student’s input, relevant knowledge/skill production and 

system estimate, and the outcome as assessed by system (correct, a 

misconception (bug), wrong answer, a request for hint (initial or a 

deeper level). This set of clips was then coded for gaming the sys-

tem behavior.  

“Gaming the system” behavior was defined as the learner misusing 

the system’s help and feedback to get correct answers and advance 

in their trajectory within the ITS [6]. A clip was labeled as gaming 

the system when a learner asked for hints in quick and repeated 

successions until the system revealed the answer, or systematically 

input answers rapidly until they got the correct one. For example, a 

student entering a sequence like "1,2,3,4,5,6,7,8" in rapid succes-

sion would be labeled as engaging in gaming behavior. For further 

detail on the behaviors treated as gaming the system in the coding 

process, please see [27]. 

For the more recent data set, two coders (2nd & 3rd authors) ini-

tially labeled 60 text replays to establish inter-rater reliability, and 

attained a kappa of 0.62, comparable to the original data set [6], and 

over the 0.6 cut-off often treated as standard for coding ill-defined 

constructs such as disengaged behavior [25]. Subsequently, the first 

coder labeled a total of 600 clips from which 6 were removed as 

unclassifiable. Out of the 594 labels, 31 were coded as ‘gaming’, 

and the remaining 563 as ‘not gaming’. Thus, around 5% of the 

total clips were coded as gaming for this data sample, which is in 

alignment with previously observed proportions of gaming behav-

ior in ITS [6]. 

2.2 Feature Engineering 
The features developed for this research are based on the original 

research published in [6]. In order to maintain fidelity with the orig-

inal work we followed the process of creating the original features 

as closely as possible, but in order to make sure the features were 

comparable across data sets, we re-distilled the features for the orig-

inal data set. The features are described in table 1. 

All features were engineered on the full data-set of student log data, 

and then aggregated for the labeled clips. Each clip consists of a 

series of actions so the features were aggregated together to create 

a single row of data labeled as either gaming behavior or not. The 

aggregate columns created for each feature were: Count of non-null 

values, Mean, Standard Deviation, Minimum, 25th percentile, 50th 

percentile (median), 75th percentile, Maximum, Sum. In total, 17 

features were distilled at the transaction level, and each of these 17 

features was aggregated in 9 ways in the final training data. The 

final training data had 17*9 = 153 features. 

 

 

 

 

 

 

Table 1. Gaming the System Features 

Feature Name Description 

assess_COR-

RECT 
correct answer 

assess_BUG  error tracked by MATHia for just-in-time 

context-sensitive feedback (e.g., a known mis-

conception, a number as input that appears in 

the problem but is incorrect); typically  

indicates a common  

mistake that the tutor knows how to respond 

to 

assess_ERROR error not tracked for feedback, i.e. less com-

mon mistakes 

assess_INI-

TIAL_HINT 
first-level hint provided 

as-

sess_HINT_LEV

EL_CHANGE 

a "deeper" level of hint provided 

pknow The probability estimate that the student 

knows this skill based on internal Bayesian 

Knowledge  

Tracing model of the  

student's mastery of this skill 

pknow_direct [8] If the current action is the student’s first at-

tempt on this problem step, then pknow-direct 

is equal to pknow, but if the student has al-

ready made an attempt on this problem step, 

then pknow-direct is -1. 

duration How many seconds the action took 

duration_sd duration expressed in standard deviations 

from the mean time taken for this problem 

step across all problems 

duration 

sd_prev{3,5} 
sum of duration_sd for  

previous 3 and 5 actions respectively 

wrong_attempts  total number of times a student has gotten this 

problem step wrong  

(including within past problems) 

error_perc percentage of past problems the student has 

made errors on this same  

problem step 

help_and_er-

rors_count 
number of times the student asked for help or 

made errors on this skill across all previous  

problems 

num_steps  count of attempts on this step for this problem 

help_at-

tempts_last8 
How many times has the student asked for 

help in their last 8 actions 

er-

ror_count_last5 
How many errors the  

student has made in the last 5 actions (in-

cludes both BUG and ERROR) 

prob-

lem_step_count_

last5 

how many of the last 5  

actions involved the same problem step 

2.3 Modeling 
As in [6], we modeled gaming detection as a binary classification 

problem - a clip with gaming the system was labeled as 1, and 
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without as 0. We conducted three overall types of comparisons. 

First, we trained models on the Old data and tested them on the Old 

data (Old to Old). Second, we trained models on the New data and 

tested them on the New data (New to New). For the Old to Old and 

New to New comparisons, we used a 4-fold student-level cross val-

idation in which we left out 25% of students from each training set. 

We then tested each model on the left-out set of students, pooled 

the labels from each split, and calculated metrics on the pooled la-

bels. In our third comparison, we took a model trained using all of 

the Old data and tested it on all of the New data (Old to New), using 

the entire training set since there was no risk of any students being 

present in both data sets, given the 16 year gap. We did not train a 

model on the New data and test it on the Old data, as doing so would 

not answer our research questions. There are cases where it may be 

of interest to conduct the ahistorical analysis of training on newer 

data and testing on legacy data -- such as cases where labels cannot 

be obtained for past data -- but it is not relevant to this use case, 

since text replays can be conducted on legacy data.  

There was considerable imbalance between the classes in the la-

beled data. 5.5% of clips in the Old data set were labeled as gaming 

behavior, and 5.2% of clips in the New data set were labeled as 

gaming behavior. In order to account for this imbalance, we over-

sampled the minority class to achieve a 50-50 balance between the 

classes, in the training sets only (not in the test sets). For over-

sampling the minority class we used Synthetic Minority 

Oversampling Technique (SMOTE) [9] to synthesize new training 

data, without undersampling the majority class, to preserve all data. 

We used the area under the receiver operating characteristic curve 

(AUC ROC) to evaluate not just the predictive accuracy of our 

models but also the performance of our model at all classification 

thresholds. AUC ROC is thought to be better at evaluating classifi-

ers in cases with strong imbalance [19], as is seen here. Gaming 

detection probabilities are frequently used in research involving de-

tectors [28, 30] rather than using a single threshold; AUC ROC 

indicates how effective a model is across confidence levels.  

We applied a variety of classic (available at the time of the original 

publication of the gaming detector [6]) and contemporary machine 

learning models on both the Old and New data sets.  We were un-

certain that the specific original algorithm used in [6], the WEKA 

J48 implementation of C4.5 incorporated into RapidMiner 4.6, 

could be replicated exactly at this point, so scikit-learn’s Decision-

TreeClassifier, which implements the similar algorithm CART 

(Classification and Regression Trees), was selected as a close sub-

stitute. Scikit-learn’s implementations of Neural Networks, 

Random Forest, and XGBoost were also used. Of these, only 

XGBoost was completely unavailable in 2008 [10]. All code for 

this research is available for reference on github at https://anony-

mous.4open.science/r/CogTutorGamingDetectors-627E. 

3. RESULTS 

3.1 Model Performance 
The results of our analyses evaluating different classification mod-

els in our three training-testing scenarios are shown in Table 2. In 

the table columns, we can see the different combinations of training 

and testing. 

All of the classifiers performed well when trained on the Old data 

and also tested on the Old data (Old to Old). The best performance 

was obtained by Random Forest, achieving an AUC ROC of 0.784. 

XGBoost was second-best with an AUC ROC of 0.763, and Deci-

sion Tree was third-best, performing 0.048 worse than Random 

Forest. We evaluated the statistical significance of the difference 

between Random Forest and Decision Tree (the algorithm closest 

to the original paper), using the method outlined in [14] to conduct 

a Z test to compare the area under two ROCs. In this case, Random 

Forest was a statistically significant improvement over Decision 

Tree, Z = 2.334, two-tailed p < 0.05.  

When detectors were developed for the New data and tested on the 

New data (New to New), performance was generally higher than 

for Old to Old, rising above 0.85 for Random Forest, XGBoost, and 

Neural Network. However, for Decision Tree the improvement was 

negligible, rising from 0.736 to 0.738. Random Forest still obtained 

the best performance out of any of the models -- an AUC ROC of 

0.929 for New to New, statistically significantly better than the 

0.784 obtained in the Old to Old model, Z=3.764, two-tailed 

p<0.001. Decision Tree, the algorithm closest to the algorithm used 

in the original paper, was the only model which did not improve 

significantly in performance on the New to New data set, Z=0.03, 

two-tailed p=0.973.  

Table 2. ROC AUC for different models 

Model Trained on 

Old 

Tested on 

Old 

Trained on 

New 

Tested on 

New 

Trained on 

Old 

Tested on 

New 

Decision Tree 0.736 0.738 0.716 

Random Forest 0.784 0.929 0.509 

Neural Net 0.649 0.879 0.398 

XGBoost 0.763 0.921 0.333 

Our primary research question was whether gaming detector mod-

els would degrade over time. This would be shown if the Old 

models achieved poorer performance when applied to New data 

(Old to New), compared to the within-year Old to Old and New to 

New comparisons. All three newer models showed some degrada-

tion in performance, but there was substantial difference in 

degradation between algorithms. The Old to New performance for 

Decision Tree (AUC ROC = 0.716) appeared to have a small de-

cline in performance relative to Old to Old (AUC ROC = 0.738, a 

0.022 decline) but the difference was not statistically significant, 

Z=0.360, two-tailed p = 0.719. The Old to New performance for 

Decision Tree (AUC ROC = 0.716) was also not significantly lower 

than the New to New performance (AUC ROC = 0.736), Z=0.241, 

two-tailed p=0.810, though again there was some appearance of 

slightly poorer performance. 

By contrast, the Old to New performance for Random Forest (AUC 

ROC = 0.509) was statistically significantly worse than the Old to 

Old Performance (AUC ROC = 0.929), Z=6.948, two-tailed 

p<0.0001. It was also significantly worse than the New to New per-

formance for that algorithm (AUC ROC = 0.784), Z=3.380, two-

tailed p<0.001. The Old to New performance for Neural Network 

(AUC ROC = 0.398) was significantly worse than Old to Old Per-

formance (AUC ROC = 0.649), Z=4.445, two-tailed p<0.001. It 

was also significantly worse than the New to New performance for 

that algorithm (AUC ROC = 0.879), Z=6.826, two-tailed p<0.001. 

The Old to New performance for XGBoost (AUC ROC = 0.333) 

was the worst of all, significantly worse than the Old to Old Perfor-

mance (AUC ROC = 0.763), Z=6.498, two-tailed p<0.001. It was 

also significantly worse than the New to New performance for that 

algorithm (AUC ROC = 0.921), Z=7.926, two-tailed p<0.001. 
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All four algorithms were able to achieve much better than chance 

performance in the Old to Old as well as the New to New scenarios, 

but the three newer algorithms struggled to make predictions about 

the New data when trained on the Old data. Decision Tree was the 

only model able to transfer from Old Data to the New without drop-

ping substantially in performance. Decision Tree’s performance 

was essentially equal when applied to unseen students in the same 

data set and unseen students in a new data set, suggesting that it 

may not have overfit to the features of the learning system/popula-

tion it was being applied to. The other three algorithms (all of them 

less conservative algorithms than Decision Tree) performed signif-

icantly worse when comparing Old to Old performance and Old to 

New performance. The drops in performance on newer models and 

the relative robustness of the more classic decision tree model indi-

cates that not all algorithms may be equally prone to detector rot. 

3.2 Feature Importance 
To understand how gaming the system is associated with student 

behavior in the logs, and whether this differs between time periods, 

we examined the feature importances of XGBoost, the algorithm 

with the worst drop in performance (also the newest) and Decision 

Tree, the algorithm with the least drop in performance (also the 

closest to the original paper). In doing so, we compared the models 

trained on the Old data and New data. Doing so can also provide 

evidence on how student behaviors have changed or remained con-

sistent over time. The XGBoost algorithm calculates the 

importance of each feature as the 'gain', i.e. "the improvement in 

accuracy brought by each feature across all splits the feature is used 

in" [39]. In the figure below we can see the top 15 features ranked 

by gain in both the Old and New models, for XGBoost.

 

 
Figure 1. XGBoost Old and New Top Features 

 

For XGBoost, in the Old Data we see that the majority of the pre-

dictive power is taken up by the features generated by the ITS’s 

response to the student based on the answer the student has given. 

In particular, we see that rates of correct (assess_CORRECT) 

responses and incorrect (assess_ERROR, assess_BUG) responses 

throughout a clip are strong predictors of gaming behavior, as well 

as the use of hints. 

In the XGBoost model for New data, we see features that are more 

related to time. The sum of the trailing count of how many of the 

last 5 steps were on the same problem (prob_step_last_5_sum) was 

the most important feature. This feature indicates that a student is 

taking many actions on the same problem step, which could indi-

cate that they are trying to game the system by attempting to guess 

the correct answer. In the other top features, we see the average 

time spent on the previous 5 actions in standard deviation units 

based on the distribution of time spent on these problems by all 

students (dur_sd_prev5_mean), the minimum time spent on any ac-

tion within the clip (time_min), and the average time spent on each 

action in standard deviation units (duration_sd_mean). This is more 

in line with features developed in previous gaming detectors [4, 3]. 

Additionally, we see more of a focus on student behavior features, 

like error counts and wrong attempts. This represents a contrast to 

the XGBoost model trained on the Old Data, where most of the 

features were derived from the correctness of student responses and 

whether their errors reflect common errors (perhaps reflecting gen-

uine errors) or rarer ones (perhaps reflecting systematic guessing). 

The features around bugs may be vulnerable to change over time, 

as the list of bugs (and the messages in response to them) has 

changed over the years. Features around hints could also have been 

impacted by changes in hint message content (which may impact 

learning and therefore how often they are used by non-gaming stu-

dents) and by the changes to credit given to non-bottom-out hints. 

By comparison, when we look at the features used by Decision 

Tree, we see a very different pattern. In figure 2 we see that alt-

hough features such as student rates of within-clip correct, 

incorrect, and bugs are relevant within the Decision Tree model for 

the Old data (as with  XGBoost), the variety of types of features 

being used by the Decision Tree model built on Old data is broader 

than for XGBoost. For instance, we see a feature representing 

whether or not this is the student's first time attempting a particular 

problem step attempt on a problem within the clip 

(prob_first_att_max) in the top 6. We also see the 8th most im-

portant feature was pknow-max, assessing how high the student’s 

mastery of the best-known KC in the clip is. These features, which 

are not present in the XGBoost model of the Old data, are helpful 

in understanding the student's relationship with the problems they 

are facing in a given clip.Overall, comparison of feature impor-

tances indicates that the decision tree was making predictions from 

more disparate features than XGBoost. 

When trained on the New data, the Decision Tree focused on a very 

small group of features that were similar to the features most im-

portant to XGBoost when trained on the New data. Again, we see 

the sum of the trailing count of how many of the last 5 steps were 

on the same problem step (prob_step_last_5_sum) as the most im-

portant feature in the New data. In the case of the Decision Tree 

trained on New data, this feature was the most important by a wide 

margin. In the next four features there are two related to evaluating 

the correctness of student responses (assess_CORRECT) and two 

that are related to the number of errors made by students in the clip 

(error_count_last_5_50%, error_perc_sum). These features also 

showed up in the XGBoost feature importance table, although at 

slightly different positions. The relatively stable performance of 

Decision Tree may be due to the stability in the meaning of the 

correctness assessments as opposed to the bug and error assess-

ments (which may have shifted more in meaning between versions, 

with errors becoming bugs as more errors were identified). 
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Figure 2. Decision Tree New and Old Top Features 

 

4. DISCUSSION AND CONCLUSION 
Our primary research question was the degree to which models of 

a complex educational phenomena such as gaming the system can 

be trusted over time. To investigate this question, we analyzed 

whether gaming detectors built on data from over 15 years ago can 

make reliable predictions for contemporary data. To our pleasant 

surprise, an older model (Decision Tree) trained on older data (from 

17 years ago) still functioned well on contemporary data. However, 

newer, less-conservative algorithms performed much more poorly 

when trained on older data and tested on newer data, a phenomenon 

we term “detector rot”. Across all of our newer models, we ob-

served significant rot -- significant degradation in prediction -- 

when training on Old data and predicting on New data.  

Initial findings conducted with training and test sets from the same 

year initially looked positive for the newer algorithms. More spe-

cifically, Random Forest and XGBoost were able to outperform the 

other algorithms in both the Old to Old and New to New scenarios. 

This corresponds to other findings that contemporary machine 

learning models can offer a better fit and better cross-validated per-

formance for gaming detection e.g. [29]. However, XGBoost was 

the worst-performing algorithm when trained on Old data and 

tested on New data. This result (plus the considerable degradation 

seen for the Neural Network algorithm) raises the concern that 

more advanced models may generally have more difficulty when 

applied to future samples or data drawn from different contexts.  

This set of findings has important implications for detectors of 

complex phenomena currently in place, for the detectors being de-

veloped today, and for best practices when retraining models. We 

suggest the community should be cautious in using newer machine 

learning models -- they may initially be more accurate (even for 

unseen students) but may become less accurate more quickly over 

time than simpler models. At minimum, models developed using 

contemporary algorithms may need to be re-checked more often 

than models using classic algorithms. However, it is not yet clear 

how often new data should be collected or whether old and new 

data should be combined (see, for instance, [20]). 

In our modeling attempts most features were not important to the 

models. Future research might look to analyze these features and 

remove some of the redundancy to reduce overfitting. It is possible 

that this method of reducing overfitting may reduce some of the 

overfit to specific years, but the prominence of specific features in-

volving student errors in the model suggests that changes in 

semantics between the 2005 and 2021 datasets may have been a 

bigger part of the explanation for the observed detector rot. It is 

important to acknowledge that it is not clear from our findings 

which changes between the Old and New data sets resulted in the 

detector rot observed. Across the span of 17 years, changes in the 

user interface, updates to the content of the ITS, and changes in 

student behavior may have impacted the ability of the gaming de-

tectors to transfer. It may be worth attempting to directly identify 

how specific design changes impact detector performance -- for in-

stance, by collecting text replays from right before and right after a 

design change. This might help understand exactly how feature im-

portance and model functional form shifts due to this type of 

change, eventually helping us develop detectors resistant to these 

shifts and understand which design changes may reduce the effec-

tiveness of existing detectors. 

Our findings open a broad range of questions to further research on 

detector rot. Gaming the system is one of many classification tasks 

in educational data mining research and practice. Future research 

should investigate whether other important EDM classification 

problems such as drop-out/stop-out prediction and affect detection 

are impacted by detector rot. There is already evidence for one form 

of detector rot in the case of MOOC stop-out: classifiers trained on 

the first session of a MOOC can be less effective in later sessions 

[8, 36]. However, this finding may be due to differences in the pop-

ulations of students who choose to take a MOOC in its first session, 

rather than the degradation of detectors over time -- i.e. selection 

bias rather than detector rot. Studying what systems and detection 

tasks are most prone to detector rot would be an important contri-

bution to the practical use of detectors in real-world settings. 

One of the exciting aspects of educational data mining over the last 

decade has been the rapid developments in the algorithms available 

for us to use. Newer algorithms offer the promise of better predic-

tive performance on long-standing problems. There is a temptation 

to always go with the newest, most exciting algorithm available, 

and to focus on cross-validated performance or a held-out test set 

from the current data set, rather than looking at replication and gen-

eralizability (see discussion in [14]).  However, our findings 

suggest some of our predictive models may be aging, and this may 

be a more serious problem for contemporary algorithms which 

achieve higher initial performance. Future work can help us under-

stand which changes in learning systems and student populations 

result in detector rot, and how to develop adaptive and future re-

sistant models that will support learners now and for years to come. 
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ABSTRACT 
The complex and dynamic nature of collaboration makes it chal-
lenging to find indicators of productive learning and quality 
collaboration. This exploratory study developed a collaboration 
metric to capture temporal patterns of joint attention (JA) based on 
log files generated as students interacted with an immersive astron-
omy simulation using augmented reality headsets and tablets. JA is 
defined as the ability to coordinate attention, which thus plays an 
important role in collaborative problem-solving to build the com-
mon ground for knowledge co-construction. We first developed a 
JA metric consisting of six distinct but closely relevant states as a 
measure of the collaboration process. We then conducted descrip-
tive statistics to compare frequency and temporal pattern of JA 
states across three learning performance groups. Our results 
showed that high-learning-gain groups demonstrated visual coordi-
nation behaviors more frequently and utilized this collaboration 
strategy in the early stage. We then investigated sequences of these 
JA states, focusing on one key behavior: long and consistent shared 
view as a proxy for collaboration. This sequential analysis revealed 
two different collaboration profiles: attention follow-leader and 
turn takers, suggesting the existence of asymmetrical participation. 
Our findings indicate the potential of JA metric to predict overall 
collaboration quality, identify undesirable collaboration behaviors, 
and serve as an early warning to provide just-in-time guidance. 

Keywords 
Joint Attention, Shared View, Collaborative Problem-Solving, Im-
mersive Learning Environments 

1. INTRODUCTION 
Collaborative problem-solving (CPS) is considered a core compe-
tency of the 21st century [14]. CPS refers to the capacity of an 
individual to solve a problem by sharing their knowledge, skills, 
and efforts with two or more people [26]. CPS provides opportuni-
ties for learners to develop the cognitive and social skills required 
for effective collaboration. Computer-supported collaborative 
learning (CSCL) environments are thus designed to facilitate this 
joint activity by allowing individuals to monitor collaborative pro-
gress, accommodate different perspectives, and develop a solution 
(e.g., [24]).  

As more advanced technologies such as augmented reality (AR) 
emerged, there have been challenges to understand how students 
use these technologies and further how technological features need 
to be designed to support the students’ CPS process [17]. Such 
learning platforms provide immersive learning experiences in a 
classroom setting; yet it is challenging to understand their collabo-
ration process due to the complexity (e.g., [38]). Exploring novel 
ways to understand collaborative learning in immersive learning 
environments becomes critical. In this regard, this exploratory 
study investigates joint attention (JA) as a proxy for collaborative 
behaviors in a multi-device collaborative learning platform. 

JA has been studied to understand how students coordinate atten-
tion to build shared understanding in collaborative tasks. Existing 
studies have focused mainly on joint visual attention (JVA) using 
eye-tracking data and showed correlations between JVA and col-
laboration quality [33, 34]. However, most studies considered 
moments of joint visual attention (JVA) as a binary variable, which 
may be insufficient to capture the complex process of collaboration. 
We therefore developed a JA metric consisting of six distinct but 
closely relevant states as a measure of the collaboration process. 
More specifically, we investigated JA states as preliminary evi-
dence to understand how students coordinate attention across 
different types of devices (AR headsets, tablets) and identify col-
laboration patterns that may contribute to learning gains in CPS.  

2. RELEVANT WORK 
2.1 CPS in immersive learning environments 
CPS refers to the process when students attempt to form a shared 
understanding and co-construct knowledge by working on a com-
mon problem or project known as the joint problem space [32]. 
Advanced educational technologies like AR emerged as a medium 
for immersive collaborative simulations [11]. This technology 
brings new affordances and challenges for students to participate in 
CPS and for researchers to understand CPS behaviors.  

Studies have suggested that immersive learning environments en-
hance face-to-face interaction and collaboration [39], support 
collaborative inquiry learning [37], and facilitate collaborative 
knowledge construction [21]. Pervasive AR headsets and mobile-
AR systems enhance social interactions in the sense that students 
can collaborate through both digital devices and face-to-face inter-
actions [4]. Immersive technologies also create a sense of 
immersion [9] that contributes to an authentic learning experience 
[39]. From this perspective, immersive learning environment fos-
ters collaborative learning and problem-solving as it affords a dual 
interaction space: (1) the social interaction space through both face-
to-face communication and interactions enabled by the device, and 
(2) the cognitive problem space by proving a simulated or 3D ob-
ject that students can respond to and build knowledge on.   
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However, an immersive learning environment also brings chal-
lenges when it comes to understanding students’ learning and 
collaboration processes. Given the immersive nature of this envi-
ronment, it often requires expensive monitoring devices such as eye 
trackers, motion trackers, and video cameras to understand how 
students utilize these technologies [10]. How students navigate 
multiple representations in such an environment remains unex-
plored, and there is limited evidence suggesting how the navigation 
and exploration patterns generate learning opportunities [1]. An-
other challenge lies in the lack of peer awareness in immersive 
learning environments [7, 17], in which students are not aware of 
their peers’ actions when they explore and solve tasks. An analysis 
of how they coordinate their attention to build close connections 
between social and cognitive problem space is fundamental to the 
understanding of the CPS in immersive learning. 

2.2 Understanding CPS Using Log Data 
Log data offers a particular advantage to examine the complex na-
ture of human interactions in CSCL environment. While traditional 
quantitative methods rely on outcome variables and static variables 
from subjective measures, log data enables the analysis of collabo-
ration as a dynamic process. It can capture sequences of actions and 
events, and thus provide an opportunity to examine collaborative 
learning from a process perspective. A common and significant 
characteristic of sequential analysis is its emphasis on the interrela-
tions between actions over time instead of the presence or absence 
of the actions in isolation [20]. The application of sequential mining 
approaches has proven successful to identify interaction patterns 
differentiating low and high-achieving groups [22, 40], discover 
problem-solving modes in pair programming [31], identify naviga-
tion behavior patterns in the CPS process [19], and understand how 
regulation processes unfold over time in group work [12].  

The benefits of sequential analysis are further reflected by Han et 
al. [15]. The authors point out the necessity to examine time-related 
factors when implementing collaboration analytics, as characteris-
tics of collaboration such as coordination between group members 
may differ over time. Temporal aspects like sequence provide a 
unique perspective to understand CPS as a complex and dynamic 
process. However, most research efforts focused on exploring CPS 
supported by single platform (e.g., online learning platforms, ITS, 
multi-touch tablets, interactive whiteboard). There is much less re-
search on how to discover and analyze patterns of interactions when 
students collaborate across multiple devices [10]. 

2.3 Joint Attention and Collaboration  
One of the potential proxies for collaboration is JA, which is de-
fined as “the ability to coordinate attention toward a social partner 
and an object of mutual interest” [3, 25]. Solving problems together 
requires students to share ideas and build a mutual understanding 
of problem-solving rules, in which students help each other think 
through the problem [7, 15, 28]. If JA is not achieved between part-
ners, it is less likely for them to regulate their attention and build 
the necessary common ground for further discussion, and actively 
contribute to problem-solving. In this regard, JA is closely related 
to productive collaboration [27]. A prototypical example of JA in-
volves visual synchronization, which refers to JVA—the mutual 
coordination of eye gaze [6]. JVA was first introduced by Scaife 
and Bruner [6] to study the focus of attention in infants and has 
been studied to understand collaboration dynamics. Previous re-
search mainly used mobile eye-trackers to measure JVA and found 
correlation between JVA and dyad productivity [18], collaboration 
quality [33], and other outcome measures like learning gains and 
task performance [34]. Although these findings demonstrated the 

potential of JVA to serve as a proxy for quality collaboration, high-
level JVA moments may hide unbalanced participation known as 
the free-rider effect, suggesting the partner dominance in terms of 
gaze initiation [34]. Schneider and Pea [33] categorized this dyad 
as leader and follower, inspired by four collaboration profiles that 
students assume [35]: turn takers, driver-navigator, driver-passen-
ger, and independent. This asymmetrical collaborative pattern was 
found negatively correlated with learning gains, as students who 
less frequently initiate and respond to joint objects benefit less from 
JVA moments. This finding points out limitations of JVA as it may 
hide undesirable collaboration mode and thus insufficient to meas-
ure collaboration quality.  

Another limitation of existing literature is the perception of JVA as 
a binary and momentary event that students are either in or not in 
this state [18, 33, 34]. Relying on this binary classification, JVA 
may not accurately or sufficiently represent the process of collabo-
ration considering its complex and dynamic nature. Siposova and 
Carpenter [36] argued that the jointness of attention comes in de-
grees rather than as arbitrary, discrete, and uniform events. They 
developed a systematic framework containing four levels of social 
attention (monitoring, common, mutual, and shared). According to 
their framework, attention levels are nested hierarchically and exist 
on a scale of jointness. It is important to distinguish between these 
levels as they may support different interactions and communica-
tions. To achieve a more comprehensive understanding of 
collaboration, it is necessary to investigate JA as a process consist-
ing of interrelated states rather than a binary phenomenon. 

2.4 Research Aim 
To fill in these gaps, we conducted an exploratory study to investi-
gate JA in a CPS process based on fine-grained log data in a multi-
device immersive environment. We hope to go beyond the previous 
binary classification of JVA and provide insights into how students 
coordinate attention in the CPS process. Therefore, we designed a 
JA metric that consists of six different states, inspired by the spec-
trum of jointness framework [36]. We then explored the sequences 
of these states to characterize the process of attention coordination 
in CPS. Using a sequential analysis approach, we investigated the 
relationship between groups’ JA states and their learning gains. Our 
goal is to understand how CPS unfolds over time using a sequential 
analysis method. By extracting key collaboration patterns that po-
tentially lead to quality collaboration and better learning 
performances, we hope to characterize dynamics of JA in the con-
text of CPS. The research questions guiding our analysis are: (1) 
What are temporal patterns of joint attention that are indicators of 
collaborative problem-solving? and (2) How do these joint atten-
tion patterns vary across groups with different learning gains?  

3. METHODS 
3.1 CEASAR 
Connections of Earth and Sky with Augmented Reality (CEASAR) 
employed a digital planetarium simulation software designed to in-
vestigate collaborative learning in immersive augmented reality. 
CEASAR allows the exploration of the night sky through three 
scenes: Horizon (default), Earth, and Star. It simulates a first-per-
son view of the night sky from a specific location and time. The 
Earth scene allows users to observe the entire Earth from space. 
Users can drop a pin on any location of the Earth’s sphere to change 
their location or obtain its coordinate. The Star scene provides ac-
cess to the complete celestial sphere and cataloged western 
constellations. Users can shift between these three views, manipu-
late the location and simulation time, or change their direction of 
view to explore the sky. Since this platform was designed to support 

407



collaboration, annotations (e.g., mark a constellation) made in one 
device will be simultaneously visible to all users in the same group. 

3.2 Participants and Tasks 
This study involved 77 undergraduate students enrolled in an intro-
ductory astronomy course from a mid-western university in the 
United States. Students participated in three weekly one-hour ses-
sions. The first two sessions helped students familiarize themselves 
with the simulation platform using gesture-controlled AR headsets 
(Microsoft HoloLens 2) and touch-based tablets. In the third ses-
sion, 25 self-assigned groups of three to four solved a CPS task 
called “Lost at Sea”. Each group was provided with one AR device 
and two tablets. Students were expected to leverage these digital 
devices determine the location of a space capsule that has crashed 
somewhere on Earth. To complete the task, groups need to identify 
the hemisphere of their location, find the correct cardinal directions 
by identifying key stars or constellations as reference points, and 
estimate their latitude and longitude. Aside from the group task, 
students were required to complete individual pre- and post-paper-
based assessments to measure their conceptual knowledge relevant 
to the task’s topic. Each assessment took about five minutes. 

3.3 Data Source 
This study explores the students’ collaboration patterns using data 
collected from video recordings of group work, screen recordings 
from the devices (Figure 1), and interactions with the simulation in 
the form of logs obtained from both AR and tablets. The interaction 
logs were recorded as rows of events, where event = {Username, 
Groupname, Device, Activity, Event, UTC time, Heading vectors, 
Simulation time, Crashsite, Location, Scene, Selected object, Se-
lected star}. A new event was generated each time students moved 
their devices to change the direction of view, selected a star or con-
stellation, chose a different scene, or manipulated the simulation 
time within the platform. In this study, we only focused on log fea-
tures relevant to the identification of JA. The pre-/post-assessments 
contain one open-ended question to measure the students’ under-
standing of latitude and longitude calculation, which was scored by 
researchers from 0 to 2 based on the completeness and accuracy of 
students’ responses.  

 
Figure 1. Screen overlap in Horizon scene across three devices–
MS HoloLens2 (top right) and tablets (bottom right and left). 

3.4 Data Processing 
The following describes a multiple-step process of extracting JA 
states from raw log data.  

Step1: Individual Inactivity Extraction This step filtered active ep-
isodes and prepared for further analysis at a second granularity. We 

defined 20 seconds as the threshold to distinguish active and inac-
tive episodes. This time frame was chosen based on classroom 
recordings and previous study [22] showing that elapsed time be-
yond this threshold should be differentiated, beyond which the set 
of actions were perceived less relevant and supposed to belong to a 
different action episode. If students did not trigger any event within 
this 20-second time gap, subsequent seconds (i.e., from the 21st 
second) were labeled as inactivity until the next event. It is worth 
noting that during inactivity students may participate in off-task be-
haviors like idling or engage in task-relevant activities without 
using the devices, like paper sheet filling.  

Step 2: Device Pair We then labeled the scene for each second, 
yielding a time series containing four types of scene values (Hori-
zon, Earth, Star, and inactivity). Next, we combined the individual 
scene values to code the JA state of each device pair as inactivity, 
no overlapping, or scene overlapping. Inactivity means that neither 
device triggered any event within the 20-seconds time gap. No 
overlapping contains two possible situations: (1) two students ex-
plore the simulation in two different scenes (2) one student explores 
the simulation while the other is inactive. Both situations suggest a 
lack of JA as students engage in different activities or scenes. Scene 
overlapping represents that both students are in the same scene and 
observe the simulation from the same perspective. This initial cod-
ing created a state sequence for each dyad within a group, resulting 
in a total of three device pairs for each group (i.e., tablet1-tablet2, 
tablet1-HL2, and tablet2-HL2). We observed a tendency for groups 
to only use two devices most of the time. Considering all the dyad 
sequences may lead to misleading results as one device may not be 
used consistently and may look like a student was not engaging in 
the task and JA. Thus, we picked one dyad sequence that represents 
the whole group based on the level of participation (i.e., a dyad with 
the least number of inactivity and no overlapping states).      

Step 3: Pair Scene Overlapping Coding This step extracted higher-
level JA behavior (i.e., scene overlapping) in the horizon scene us-
ing the shared view (SV) metric (see details in [10]). SV metric 
tracks whether two devices’ screens overlapped, indicating students 
were looking at the same area of sky or celestial objects. This con-
tinuous value ranges from 0 to 1, representing the screen overlap 
ratio, where 1 indicates a perfect shared screen, and 0 means no 
overlap. By watching screen capture recordings (see Figure 1), we 
found that a SV value larger than 0.35 allows students to look at the 
same area and was thus used as the threshold to filter shared view 
state in Horizon scene. We also incorporated more contextual in-
formation to this state by characterizing it as ‘short’ and ‘long’ 
based on state duration. We chose 15 seconds as the delimiter based 
on our observations in terms of whether students were having a 
quick or in-depth longer discussion with their partners. 

Step 4: Consistent State Extraction We then extracted consistent JA 
episodes longer than 5 seconds. Previous research pointed out that 
students need around 2 seconds to focus their attention on the object 
mentioned by their peers [30]. Considering our simulation platform 
requires students to manually move their screens and find the ref-
erence points or shift the scene, we set the threshold as 5 seconds. 
A state lasting 5 seconds or less was not sufficient to be counted as 
a consistent state as it may be generated by accident.  

Finally, six mutually exclusive states (shown in Table 1) were iden-
tified. These states were ordered according to levels of participation 
and attention coordination; that is, three hierarchical levels. Each 
level may require varying amounts of effort to achieve attention 
coordination and visual synchronization. At the top level, we uti-
lized a previously developed SV metric [10] to capture consistent 
screen overlapping behavior in Horizon. In the subsequent level, 
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we focused on scene overlapping behavior in the Earth or Star 
scenes. The lowest level included no overlapping and inactivity 
state, which could be perceived as lack of JA. JA states in Horizon 
was differentiated from the other two scenes and perceived as the 
higher level for the following reason. The current calculation 
method of SV metric only applies to Horizon scene, which captures 
the moments when students looked at the same region of the simu-
lated sky. This is typically achieved with the help of a reference star 
or constellation (see the marked constellation in Figure 1). Students 
need to move their screens or AR headsets to find the reference 
object first before achieving the visual synchronization in Horizon. 
For the other two scenes (Star and Earth), however, students only 
need to click the button to select the same scene. Therefore, the 
extra efforts required in Horizon may indicate more verbal commu-
nication to coordinate the screens to achieve synchronization. 
Considering the fact that JA states differ in the level of attention 
and coordination, overlapping in Horizon scene is more likely to 
represent a high-level, intentional coordination behavior to build a 
shared problem space.  

Table 1. JA states description 

JA State Scenes Description 
Inactivity  
(INACT) 

N/A Both students do not 
trigger any event 
within the 20 seconds  

No scene overlapping  
(NO) 

All Students explore in 
different scenes OR 
one is inactive  

Scene overlapping in 
Earth or Star 
(SO_Earth/Star) 

Earth and 
Star  

Both students stay in 
Earth or Star scene 

Scene 
over-
lapping 
in 
Hori-
zon 

No shared view 
in Horizon 
(SO_HZ_NO) 

Horizon Both students stay in 
the Horizon scene but 
no screen overlap 

Short-shared 
view 
(SO_HZ_SRT) 

Horizon a quick screen overlap 
(<15 seconds) 

Long-shared 
view 
(SO_HZ_LNG) 

Horizon a long and consistent 
screen overlap behav-
ior (>15 seconds) 

 
3.5 Group Exclusion and Classification 
We used pre- and post-assessment scores as an outcome measure 
of learning performance. Students wrote a short response explain-
ing the multiple steps to complete the location calculation given the 
visible stars and constellations, which was graded as 0, 1, or 2 based 
on a rubric developed during a pilot study. We computed individual 
normalized gains (i.e., post - pre / post-max - pre) to obtain each 
group’s average normalized learning gains. Among 25 groups, the 
mean of normalized learning gains was 0.283 (SD = 0.290), and the 
median was 0.313. Six groups earned no or negative learning gains. 
For the rest, we conducted a median split and ended up with three 
performance groups: no-learning-gain (n = 6), low-learning-gain (n 
= 9), and high-learning-gain (n = 10). One group in no-learning-
gain began with a full score in the pre-assessment and was removed 
given the ceiling effect. Four groups were removed as the students 
frequently shared only one device, making the logs unable to cap-
ture their collaborative behaviors. As such, a total of 20 groups 
were included for the further analyses: no-learning-gain (n = 4), 
low-learning-gain (n = 9), and high-learning gain (n = 7). 

3.6 Analysis 
Our analysis consists of two parts. First, we conducted descriptive 
analysis to compare aggregated values of JA states across the three 
learning performance groups. Examining the distribution of screen 
overlapping states across groups with different learning gains 
yields a preliminary understanding of the association between 
screen overlapping behaviors (i.e., JA states) and learning perfor-
mance. Then we applied sequential analysis to search for patterns 
that characterize JA from a process perspective. Specifically, we 
looked at the transition probabilities between the six JA states to 
uncover more interesting patterns of collaboration dynamics. Two 
transition metrics were utilized to explore the state sequences: the 
Markov-chain model (MCM) and the L* metric.  

MCM is a transition metric that calculates the conditional probabil-
ity of one state following another based on the assumption that the 
occurrence probability of one state depends on the previous state. 
We used the TraMineR and seqHMM packages in R to build Mar-
kov models for our sequence data [13, 16]. Two important 
parameters in MCM are (1) the transition probabilities between the 
states and (2) the initial probabilities for each state. Transitions with 
higher probability within the sequence can be interpreted as com-
mon collaboration patterns to characterize the groups' JA dynamics. 
However, one limitation of MCM is the failure to take base rates 
into account (i.e., the initial probability of each state in the se-
quence). This may impact how we interpret transition probabilities 
and understand the relationship between states in the sequence. 

We therefore applied L* metric as a complementary method. L* 
was chosen as the best metric for sequences without consecutive 
repetitive states according to the discussion in [5]. L* compares the 
actual occurrence probability with a calculated base rate, which is 
the transition probability assuming the states in the sequence are 
randomly ordered [23]. The use of base rates in the calculations of 
the L* metric makes it well suited for between-group comparison, 
while MCM is better suited for within-group comparison (i.e., com-
parison between two transitions of the same group). L* illustrates 
the degree to which transition between two states is more likely 
than in a randomly ordered sequence of states, given the base rates 
of each. The range of L* is (−∞, 1] where the negative value repre-
sents the specific transition is less likely to occur compared to the 
chance level, and 0 means this transition occurs as often as expected 
in a randomly ordered sequence.  

4. RESULTS 
4.1 Descriptive Analysis 
Table 2 presents the distribution of each state across three learning 
levels. It suggests no-learning gain group stayed either inactivity or 
no overlapping states most of the time. Comparably, high-learning-
gain groups had more scene overlapping states. This difference sug-
gests that high-learning-gain groups are more likely to demonstrate 
JA behaviors such as screen coordination to maintain mutual atten-
tion and construct a shared problem space for in-depth discussion. 
We also examined the temporal aspect of data. One interesting find-
ing was the early adoption of collaboration strategies of high-
learning-gain group. We compared the long-shared view state dur-
ing the first 30 states, which roughly corresponds to the first twenty 
minutes. While five out of seven groups in the high-learning-gain 
groups demonstrate long-shared view in the early stage, only one 
in the no-learning-gain groups and three in the low-learning-gain 
group demonstrate long-shared view. These results suggest that 
high-learning-gain groups not only demonstrate more high-level JA 
behavior such as screen coordination but also tend to demonstrate 
this behavior in the early stage of collaborative problem-solving. 
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Table 2. JA state descriptions in each learning gain group 

State No Gain 
(n=4) 

Low Gain 
(n=9) 

High Gain 
(n=7) 

INACT a19.00 
b(29.8%) 

14.78 
(25. 2%) 

14.57 
(23.9%) 

NO 30.50 
(47.7%) 

28.00 
(47. 2%) 

27.71 
(45. 2%) 

SO_HZ_NO 9. 25 
(14.5%) 

9.67 
(16.8%) 

12.14 
(19.7%) 

SO_Earth/Star 2.75 (4. 2%) 3.11 (4.7%) 2.14 (3.3%) 
 SO_HZ_SRT 1.00 (1.6%) 2.11 (3.5%) 2.00 (3.1%) 
SO_HZ_LNG  1.50 (2.3%) 1.44 (2.6%) 3.00 (4.9%) 

Note. aAverage number of states; bAverage proportion of each state 
within each group sequence.  

4.2 Sequential Analysis 
We further looked at transition probabilities between states to iden-
tify collaboration patterns able to differentiate learning groups (see 
Figure 2). We particularly focused on the transitions relevant to the 
long-shared view state (SO_HZ_LNG), which is a key collabora-
tive behavior. An interesting difference was found in the transition 
probabilities between the long-shared view and the other two states: 
no overlapping (NO) and scene overlapping in Horizon 
(SO_HZ_NO). These two transition sequences represent two dif-
ferent JA patterns, indicating to what extent groups engage in 
collaborative participation (e.g., symmetrical to asymmetrical par-
ticipation).  

SO_HZ_LNGàNO indicates that only one student remained ac-
tive and interacted with the platform after the end of a higher-level 
JA state (i.e., long-shared view). Meanwhile, another student no 
longer triggered any event. By looking at the session video record-
ings, we found this transition typically occurred when one student 
initiated the screen coordination and dominated the problem-solv-
ing processes, while another student was less engaged. 
SO_HZ_LNGàSO_HZ_NO suggests a more positive collabora-
tive behavior where pairs remained in the same scene and actively 
interacted with the simulation platform after leaving the screen 
overlapping state. Although these pairs no longer looked at the 
same area of simulated sky, they both continued individual explo-
ration in a shared problem space (i.e., the same scene). We observed 
that this transition typically occurred when students ended discus-
sion around the reference stars and went back to individual 
exploration in the same scene.  

   
Figure 2. Markov-chain model of JA states 
As shown in Figure 2, MCM presented transition probabilities 
within the same learning gain group. Results revealed that low-
learning-gain groups showed a much higher probability for transi-
tion SO_HZ_LNGàNO (0.83) among all other potential 
transitions. Although this transition probability became smaller for 
low-learning-gain groups (0.5), it still remained larger compared to 
SO_HZ_LNGàSO_HZ_NO (0.33). Comparably, high-learning-
gain groups showed an opposite trend. They had a higher 

probability for SO_HZ_LNGàSO_HZ_NO (0.52) compared to 
SO_HZ_LNGàNO (0.43).  This means the long-shared view state 
is more likely to be followed by no shared view in Horizon for high-
learning-gain groups. Recall that SO_HZ_LNGàSO_HZ_NO 
suggests both students continued individual exploration after the 
long-shared view state, creating opportunities for information ex-
change and screen coordination later in the session.   

Additionally, we applied the L* metric [23] to account for differ-
ences in base rates, thus allowing for between-group comparisons. 
When interpreting L* values, a larger absolute value indicates a 
stronger dependence between two consecutive states, while the 
value’s sign (positive or negative) indicates the direction of de-
pendence. As shown in Table 3, for SO_HZ_LNGàSO_HZ_NO, 
the high-learning-gain groups showed the highest L*, while the no-
learning-gain groups showed the lowest L*. This positive value 
means given the previous state is SO_HZ_LNG, students in this 
group are more likely than chance to enter the SO_HZ_NO state. 
Interestingly, SO_HZ_LNGàNO showed the opposite trend, and 
the only negative value was detected in high-learning-gain groups. 
This means that, given SO_HZ_LNG as the previous state, the cur-
rent state is less likely than chance to be NO. 

In summary, L* metric can detect transitions occurring more or less 
frequently than random chance, providing insights about when stu-
dents intentionally engage those transitions. The overall results 
suggest that when high-learning-gain groups exit the long-shared 
view state, they are more likely than chance to follow this state by 
entering the scene overlapping in Horizon. Similarly, when this 
group exit the long-shared view state, they are less likely than 
chance to follow this state with no shared attention at all. In con-
trast, this transition is around chance level (0.06) for low-gain 
groups or more likely than chance (0.85) for no-gain groups. 

Table 3. L* Transition probabilities between long-shared view 
and the other states  

Transition Group L* 
SO_HZ_LNG à NO  No Gain 0.85 

Low Gain 0.06 
High Gain -0.15 

SO_HZ_LNG à SO_HZ_NO No Gain -0.11 
Low Gain 0. 23 
High Gain 0.35 

5. DISCUSSION 
Our exploratory analysis identified six JA states to investigate the 
dynamics of JA, which provide insights into how groups coordinate 
their attention and solve the simulation task during a CPS process. 
The results revealed that groups with higher learning gains demon-
strated a higher frequency of long and consistent shared view in the 
early stage. These preliminary findings support the previous studies 
that showed joint visual attention is associated with quality collab-
oration and contributes to learning gains (e.g., [18, 33]).  

The examination of the sequence of states allowed us to identify 
different collaboration profiles. We observed an undesirable behav-
ioral pattern that after a group exited a long-shared view state only 
one student remained active and interacted with the simulation, 
while another student no longer triggered any event. We perceived 
such different tendencies as a visual attention leader (the former) 
and a visual attention follower (the latter) [34, 35]. These two pro-
files (i.e., leader and follower), captured by the JA state sequence, 
illustrate the imbalanced responsibility to initiate discussion and 
level of engagement within the simulation. On the contrary, another 
sequence transited to individual exploration, which was more likely 
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to occur in the high-learning-gain groups, suggested more balanced 
engagement and equal responsibility of exploring the simulation 
environment. This transition aligns with the profile of turn takers 
[35], which is a more effective collaboration behavior as both par-
ticipants actively engage in and maintain a joint focus on the task 
to solve the problem. Overall, high-learning-gain groups were most 
likely to demonstrate balanced, mutual collaboration while no-
learning-gain groups demonstrate imbalanced participation. This 
detection of asymmetrical participation suggests interesting lines of 
follow-up inquiry on transitions of other JA states to gain a better 
understanding of various collaboration profiles in CPS.  

The novelty and contributions of this paper lie in the following two 
aspects. First, we presented an exploratory study of utilizing logs 
to capture JA to uncover how students collaboratively solve a group 
task in an immersive learning environment. Understanding how 
students interact with immersive learning environments can be 
challenging due to its open-endedness, leading to unstructured in-
teractions. This unconstrained nature of interactions makes it 
difficult to understand how students navigate the environment and 
collaborate, leading to limited evidence suggesting what collabora-
tion patterns are associated with learning opportunities [1]. Our 
study contributed by developing JA metric to investigate how stu-
dents coordinate their attention across devices. This method allows 
us to look for dynamic and fine-grained patterns of JA that charac-
terize successful CPS and productive collaboration.  

Second, we investigated JA from a process perspective, which was 
typically studied as aggregative values of a binary event (i.e., 
whether students have or not have JA) [18, 33, 34]. Our approach 
revealed that temporal characteristic also matters as high-learning-
gain groups demonstrate visual coordination in the early stage of 
task session. This finding suggests that early visual coordination 
behavior patterns have the potential to inform the following collab-
oration quality. Lack of such behaviors in the beginning stage can 
serve as a signal for early interventions to prevent persistent unde-
sirable or unproductive collaboration. Studies are needed for 
further explorations of the relationship between early collaboration 
patterns and following collaboration quality. Sequential analysis al-
lows us to detect asymmetrical participation. This finding supports 
previous studies [34] that although high-level JVA is correlated 
with quality collaboration, it may also hide a free-rider effect and 
thus requires a finer-grained examination on this feature. 

6. DESIGN IMPLICATIONS  
One implication is to design learning environments in a way that 
facilitates the process of obtaining JA, considering the potential of 
JA to enhance productive collaboration. For example, we can sup-
port peer awareness by adding visual pointers like an arrow to 
pinpoint the direction their peers are looking at, or a coordination 
shortcut allowing students to synchronize the screens or scenes in 
the simulation quickly. Such design can facilitate coordination and 
visual synchronization and consequently yield quality collabora-
tion. This is especially the case when students do not have sufficient 
domain knowledge to communicate the correct direction to move 
their screens for a shared problem space for further discussion. 
Given the nature of the learning environment with immersive tech-
nologies, gaze visualizations are more likely to be utilized in 
linguistically complex environments where it is difficult to describe 
reference objects or directions to look at [8]. Moreover, visual at-
tention awareness provides evidence that other group members are 
engaged and indeed getting the information communicated [29]. 
Such awareness contributes to an improved feeling of presence [2] 
and encourages learners to maintain JA.   

7. LIMITATIONS AND FUTURE RE-
SEARCH 

This work has several limitations that we plan to address in future 
studies. First, we have a small sample size containing 20 groups. 
Although our analysis shows interesting patterns across groups, the 
comparison test does not have enough statistical power to identify 
significant difference. Second, the L* metric has a typical bias that 
inflates transition probability as our state sequence does not contain 
self-transition loops, which impacts the estimation of the base rate. 
To the best of our knowledge, transition metric for original se-
quences without self-transition loops is still an open issue. Current 
methods require the original sequences to contain self-transition 
loops to calculate base rates before loop removal. We also com-
puted different transition metrics and found that MCM and L* are 
the most meaningful metrics for our dataset. Our work is explora-
tory in nature and still in its early stage. Future research will include 
more participants and combine multiple data sources like video re-
cordings and qualitative codes to better understand how 
collaboration unfolds. 

8. CONCLUSION 
This exploratory study focused on JA, a cornerstone of productive 
collaboration, to better understand how students regulate and coor-
dinate their attention during CPS in an immersive learning 
environment. We identified different JA states and key collabora-
tion patterns associated with learning. Specifically, we were 
interested in long and consistent screen overlapping across devices 
(i.e., long-shared view state). To advance the understanding of 
CPS, we applied the following approaches: (1) descriptive analysis 
(2) sequential analysis on JA state transition utilizing the Markov 
chain model and L* metric. This preliminary exploration provides 
evidence that long-shared view state, representing the highest level 
of JA state, is closely related to students’ positive collaborative 
learning experiences. More specifically, high-learning-gain groups 
demonstrate a higher frequency of long and consistent shared view 
in the early stage. A closer examination of the JA state sequence 
revealed two different collaboration profiles: attention follow-
leader and turn takers. Overall, our findings unravel the complex 
process of attention dynamics and yield a better understanding of 
attention coordination during CPS in an immersive learning envi-
ronment. This understanding consequently informs the design of 
computer-supported collaborative learning tools and environments 
to enhance learning. 
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ABSTRACT
This work explores how population-based engagement pre-
diction can address cold-start at scale in large learning re-
source collections. The paper introduces i) VLE, a novel
dataset that consists of content and video based features ex-
tracted from publicly available scientific video lectures cou-
pled with implicit and explicit signals related to learner
engagement, ii) two standard tasks related to predicting
and ranking context-agnostic engagement in video lectures
with preliminary baselines and iii) a set of experiments that
validate the usefulness of the proposed dataset. Our ex-
perimental results indicate that the newly proposed VLE
dataset leads to building context-agnostic engagement pre-
diction models that are significantly performant than ones
based on previous datasets, mainly attributing to the in-
crease of training examples. VLE dataset’s suitability in
building models towards Computer Science/ Artificial Intel-
ligence education focused on e-learning/ MOOC use-cases
is also evidenced. Further experiments in combining the
built model with a personalising algorithm show promising
improvements in addressing the cold-start problem encoun-
tered in educational recommenders. This is the largest and
most diverse publicly available dataset to our knowledge
that deals with learner engagement prediction tasks. The
dataset, helper tools, descriptive statistics and example code
snippets are available publicly.

Keywords
Population-based Engagement, Cold-start, Educational Rec-
ommender, Personalised Education, AI in Education

1. INTRODUCTION
With the growth of Open Educational Resources (OER) [38,
6, 32] and Massively Open Online Courses (MOOC) [34, 23],
large educational repositories need scalable tools to under-
stand the engagement potential of newly added materials
[14]. While contextualised engagement can be defined as
learner’s engagement driven by the context at a given time

in their learning path (e.g., learning needs/goals, knowl-
edge state etc.), context-agnostic engagement aims to cap-
ture patterns and features associated with engagement that
instead are applicable to an entire learner population rather
than individual contexts of specific learners [7]. Put simply,
context-agnostic engagement is concerned with the features
that generally make an educational material engaging.

While many datasets capturing contextual engagement of
learners exist, our contribution: Video Lecture Engagement
(VLE), focusing on context-agnostic engagement, is a novel
dataset that presents around 12,000 peer-reviewed scientific
videos constructed from a popular OER repository and con-
tains a variety of lecture types ranging from scientific talks
and expert panels to MOOC-like lectures. VLE provides
textual and video-specific features extracted from the lec-
ture transcripts, together with Wikipedia topics covered in
the video (via entity linking) and user engagement labels
(both explicit and implicit) for each video. In educational
recommenders, VLE dataset helps solving both i) user cold-
start, where new users join the system and we may not have
enough information about their context and ii) item cold-
start, where new educational content is released, for which
we may not have user engagement data yet and thus an
engagement predictive model would be necessary. While
utility of context-agnostic engagement models for cold start
is previously demonstrated [7], VLE is the largest dataset
for building such models. This work is aimed not at re-
placing personalised recommendation but to complement it
by addressing the cold-start problem. While VLE dataset
is a major contribution of this work, several additional ex-
perimental results make up the overall contribution. These
results demonstrate the usefulness of VLE dataset via an-
swering a set of critical research questions.

2. RELATED WORK
The majority of work in Intelligent Tutoring Systems (ITS)
and Educational Recommendation Systems (EduRecSys) re-
volve around contextual learner engagement [26, 9]. While
many explore the connection between engagement and learn-
ing gains [2, 20, 28], public datasets in this realm are hard
to come by. MOOC platforms such as edX [23] and Khan
Academy [29] harvest valuable data created in an in-the-
wild setting, yet this data is gated within course owners
and consortia [21] (or heavily anonymised) due to its pro-
prietary nature. However, with the boom of online educa-
tion, it is greatly imperative that such datasets are democra-
tised so that under-researched areas such as context-agnostic
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(population-based) engagement can be widely understood to
push the frontiers of AI-supported online education. Study
of context-agnostic engagement of video lectures so far has
been mainly qualitative, deriving guidelines such as keeping
videos short and in parts [23, 3]. While these findings are
useful in content creation stage, they have little use in mod-
erating the mammoth of materials already circulating in the
Internet. Our work proposes building predictive models that
can be utilised post-creation for scalable quality assurance
and content recommendation.

2.1 Related Datasets
Many video engagement prediction works revolve around
YouTube[16, 24] and uses platform specific features (e.g.
channel reputation, category etc.) exclusively. While large-
scale datasets for this task is published, these datasets in-
clude general-purpose videos (largely entertainment related)
rather than educational videos [40]. Some features proposed
in these works share similarity to our proposal (such as du-
ration, language and topic features). However, no content-
based features (based on transcript) relating to understand-
ability and presentation are used, making the methods hard
to generalise outside of YouTube. Educational Information
Retrieval [36, 15] and Wikipedia page quality prediction [19,
39] has been attempted using features such as text style,
readability, structure, network, recency and review data.
Publicly available Wikipedia article quality dataset [19] with
human annotated (explicit) labels is used to tackle the latter
task although implicit labels are not included in this dataset.
Similar datasets are available for automated essay scoring
[37]. But, none of these datasets fill the lack of datasets for
predicting engagement of educational videos.

In the educational context, measuring learner engagement
using multi-modal data such as brain waves [41], facial ex-
pressions [25] etc. are conducted in controlled environments
and lacks ”in-the-wild” signals [22]. Large public datasets
and competitions also relate to students answering questions
in-the-wild (e.g. ASSISTments [30] or multiple choice ques-
tions [13]), contrary to the proposed VLE dataset, lacks im-
plicit feedback relating to learners acquiring skills/knowledge.
More relevant datasets studying population-based engage-
ment revolves around MOOCs. Studying approximately
800 videos from edX platform, Guo et al. [23] manually
processed and provided a qualitative analysis of engage-
ment, with a few features being relatively subjective and
difficult to automate. A similar work [35] takes 22 edX
videos, extracts cross-modal features and manually anno-
tates their quality with no focus on learner engagement.
Neither dataset is publicly available. MOOCCube is a re-
cently released dataset that contains a spectrum of details
relating to MOOC interactions [42]. Although large, the
video watch logs in MOOCCube come from 190,000 users
contrary to over 1.1 Million users of VLE. The dataset is
also not tested for engagement prediction by its publishers
raising uncertainty in its promise.

Our prior work [7] explored the possibility of building context-
agnostic engagement models using implicit watch time-based
labels and showed that these models can address the cold-
start problem. We identify this contribution most relevant
to the proposed dataset. Our prior work publishes a dataset
of 4,000 lectures with labels coming from 150,000 learners.

VLE, expands this dataset with 3 times as many videos with
engagement signals generated by 7 times as many learners.
The new dataset also restricts itself to English lectures to
refine relevance of the proposed features. Additionally, VLE
introduces a new set of Wikipedia-based topical features.

3. VLE DATASET
VLE dataset is created using the aggregated video lectures
consumption data coming from VideoLectures.Net (VLN).
These videos are recorded when researchers are presenting
their work at peer-reviewed conferences. Lectures are thus
reviewed and material is controlled for correctness of knowl-
edge. The collection consists of scientific talks and tutorials
that are mainly geared towards university level learners. In
that aspect, many videos in the dataset are stylistically sim-
ilar to conventional MOOC lectures. VLE dataset provides
a set of features together with labels based on subjective
assessment metrics such as star ratings and view count. We
believe that this dataset enables understanding the connec-
tion between content features and the collective engageabil-
ity of learners with an educational video.

3.1 Feature Extraction
The video metadata and transcriptions are transformed into
i) content-based textual features, ii) Wikipedia topic-based
features and iii) video-specific features. Majority of the ex-
tracted features are cross modal (e.g. books, websites and
audios) and are easily automatable.

Content-based Features. Based on prior proposals [7], we
extract Word Count [39], Title Word Count and Document
Entropy [1], language style features [18], Preposition Rate,
Auxiliary Rate, To Be Rate, Conjunction Rate, Normalisa-
tion Rate, Pronoun Rate, readability related Easiness (FK
Easiness)[18] and vocabulary related Stop-word Presence
Rate, Stop-word Coverage Rate [1, 31]. To represent Fresh-
ness of lectures (recency), we calculate the number of days
between January 01, 1960 and the video published date to
use it as a proxy for recency of the lecture [7].

Wikipedia-based Features. We use Wikifier [4] to extract
topical features capturing topic authority and coverage.

The top-5 authoritative topic URLs and top-5 PageRank
scores features represent the Topic Authority feature ver-
tical. Wikifier [4] produces a PageRank score [5] that indi-
cates the marginal authoritativeness of a Wikipedia concept
among all Wikipedia concepts associated with a lecture. It is
noteworthy that authority of a learning resource entails au-
thor, organisation and content authority [11]. The proposed
features represent content authority.

The top-5 covered topic URLs and top-5 cosine similar-
ity scores features represent Topic Coverage feature verti-
cal. The cosine similarity score cos(str, c) between the Term
Frequency-Inverse Document Frequency (TF-IDF) represen-
tations of the lecture transcript str and the Wikipedia page
of concept c is also an output from the Wikifier. These fea-
tures are used as a proxy for topic coverage.
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Figure 1: WordClouds summarising the distribution of top 25
(i) most authoritative and (ii) most covered Wikipedia topics
in the dataset. Note that Data Science and Computer Science
related topics are most dominant topics.

These four feature sets create 20 distinct feature columns.
Figure 1 presents two word clouds that show the 25 most au-
thoritative and covered topics in the VLE dataset and show
that there are distinct differences between topic presence
in the two feature sets. The authoritative topics are top-
ics that are highly connected to other topics in the lecture
whereas covered topics have high textual overlap between
lecture transcript and Wikipedia concept page.

Video-specific Features. We identify a set of easily au-
tomatable, prior proposed [7] video specific features. Lec-
ture Duration, Is Chunked, Lecture Type[23], Silence Period
Rate (SPR) and Speaker Speed [7] are calculated based on
prior work . Lecture Duration is reported in seconds. Is
Chunked is a binary feature which indicates if a lecture has
multiple parts. Lecture type value is derived from the meta-
data. This diverse dataset contains many different types of
videos ranging from presentations, panels to tutorials.

3.2 Labels
Three main types of quantification of engagement labels are
presented in the dataset.

Explicit Ratings and Popularity. Mean Star Rating based
on a scale of 1-5 (5 being best) for each video is provided.
Ratings are paired with the number of ratings used to com-
pute the mean. The proposed dataset has 2,127 ratings (al-
most 2x than [7]). Missing ratings are labelled with -1. Cap-
turing popularity, the total number of views, named View
Count, for each video as of February 1, 2021 is provided.

Watch Time/Engagement. Many labels in this dataset are
based on watch time [16]. Normalised Engagement Time
(NET) is computed for each video as it has been proposed
as the gold standard for learner engagement [23]. The Me-

dian of NET (MNET) and Average of NET (ANET) is calcu-
lated from NET. To have the MNET and ANET labels in the
range [0, 1], we set the upper bound to 1, deriving Saturated
MNET (SMNET ) and Saturated ANET (SANET ) that are
included in the dataset. The standard deviation of NET (Std
of Engagement) is also reported, together with the Number
of User Sessions used for calculating MNET and ANET. These
measures allow understanding stability of the centres pub-
lished. The set of individual NET values are also published
to allow future researchers to exploit the true distribution
of values.

3.3 Preserving Anonymity and Ethics
Users of VLN repository formally agree that all user gener-
ated content is available for research. We further anonymise
and aggregate interactions to ensure privacy. Aggregated re-
sults are only published in lectures with atleast 5 user views
to preserve k-anonymity [17]. The presenters and authors of
videos in VLN also formally agree to the video, presentation
slides and supplementary material to be published under an
open license and can be used for educational and research
purposes. Still, a regime of techniques outlined below are
used to preserve presenter anonymity in order to avoid hav-
ing unanticipated effects on lecturer’s reputation by asso-
ciating implicit learner engagement values to their content.
Rarely occurring Lecture Type values are grouped together
to create the other category. Life Sciences, Physics, Tech-
nology, Mathematics, Computer Science, Data Science and
Computers categories are grouped as stem and all other cat-
egories as misc category. Rounding is used with Freshness
and Lecture Duration to the nearest 10 days and 10 seconds
respectively. Gaussian white noise (10%) is added to Title
Word Count feature and rounded to the nearest integer.

VLN repository is concentrated with videos about Computer
Science (see Figure 1), a subject area with gender imbalance
in both audience and presenters. We avoided using feature
classes that could potentially reflect gender characteristics
to improve neutrality of the dataset (and models). Visual
features (facial features, emotions...) and audio features
(pitch, tone...) that may actively/passively embed gender
is avoided. We focused primarily on features that reflect in-
formational content. Where video specific features are used,
generic features such as ”speaker speed” that are unlikely to
be correlated to gender or age are used.

3.4 Final Dataset
The final dataset contains 11,548 lectures across 21 subjects
(eg. Computer Science, Philosophy, etc. with a majority
from AI and Computer Science) that are published between
September 1, 1999 and December 31, 2020. The engage-
ment labels are created from events of over 1.1 Million users
logged between December 01, 2016 and February 01, 2020.
The collection of videos span various video lengths with the
duration distribution having two modes at approx. 2000s
(33 mins) and 4000s (1hr) time points which align with typ-
ical lengths of research talks and presentations. The mean
word count of the videos is 5347.9. The video lecture collec-
tion uses on average 93.9 learners per video when calculating
engagement centres. The dataset, helper tools and example
code snippets are available publicly1.

3.5 Supported Tasks
Scalable Quality Assurance and Educational Recommenda-
tion are two key downstream applications of context-agnostic
engagement prediction. We establish two main tasks, which
we mainly focus on in this paper, that can be objectively
addressed using the VLE dataset. These are:

• Task 1: Predicting context-agnostic (population-based)
engagement of video lectures

• Task 2: Ranking of video lectures based on engagement

1https://github.com/sahanbull/VLE-Dataset
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Other Tasks. Beyond the proposed tasks, this dataset is
suitable for, not limiting to, several tasks such as i) un-
derstanding influential features for engagement prediction
and ii) understanding the strengths and weaknesses of dif-
ferent implicit/explicit labels, that have been investigated
in our prior work with similar datasets [7, 33]. The textual
and topical representations, with the use of unsupervised ap-
proaches can be used in a range of tasks from understanding
meaningful hidden patterns within clusters of videos (e.g.
talks vs. lectures vs. tutorials) to deducing the structure of
knowledge based on how topics co-occur within videos.

3.6 Evaluating Performance
We identify Root Mean Squared Error (RMSE) as a suitable
metric for evaluating Task 1. Measuring RMSE against the
original labels published with the datasets will allow differ-
ent works to be compared fairly. With reference to Task 2,
we identify Spearman’s Rank Order Correlation Coefficient
(SROCC) as a suitable metric. SROCC is suitable for com-
paring between ranking models that create global rankings
(e.g. point-wise rankers).

We use 5-fold cross validation to evaluate model performance
with tasks 1 and 2. The folds are released together with the
dataset, to allow to facilitate fair comparison and reproduca-
bility. 5-fold cross validation allows reporting the confidence
intervals (1.96 × Standard Error) of the performance esti-
mate, which we include in Table 1.

4. BASELINES AND EXPERIMENTS
Through our experiments, we aim to answer research ques-
tions relevant to the supported tasks (in section 3.5) and
other facets that further demonstrate the utility of this dataset.
The main research questions of interest are:

• RQ1: Does the newly constructed VLE dataset lead
to training more performant prediction models?

• RQ2: How does the larger quantity of training data
affect predictive performance?

• RQ3: Is the model useful for modelling engagement
with Computer Science materials?

• RQ4: Is this dataset useful for modelling engagement
in E-Learning lectures and MOOC videos?

• RQ5: Does context-agnostic engagement prediction
help in the cold-start scenario?

Our previous work [7] demonstrated Random Forest (RF)
model obtains best performance among linear and non-linear
models in similar datasets. Therefore, we use the RF model
to benchmark the new VLE dataset for Tasks 1 and 2 de-
scribed earlier.

4.1 Labels and Features for Baseline Models
SMNET label is used as the target variable for both tasks.
Preliminary investigations indicated that SMNET label fol-
lows a Log-Normal distribution, motivating us to use a log
transformation on the SMNET values before training the
models. Empirical results further confirmed that this step

improves the final performance of the models. We undo this
transformation for computing RMSE while this transfor-
mation doesn’t affect SROCC.

All the features outlined as the content-based and video-
based sections in section 3.1 are included in the baseline
models. The models are trained with three different feature
sets in an incremental fashion:

1. Content-based : Features extracted from lecture meta-
data and the transcript-based textual features.

2. + Wiki-based : Content-based + 2 Wikipedia-based
features (Top 1 Most Authoritative Topic URL and
Most Covered Topic URL).

3. + Video-based : Content-based + Wiki-based + Video-
specific features.

However, due to the large amount of topics in the Wikipedia-
based feature groups, we restrict to the top 1 authoritative
and covered topic features where they are encoded as binary
categorical variables. Practitioners are encouraged to try
further encoding of the topic variables, as it will likely have
a positive impact on the performance.

4.2 Experiments
Addressing RQ1, the RF models are trained with the three
proposed feature sets using 5-fold cross validation with the
prior proposed, smaller 4k dataset [7] and the newly pro-
posed VLE dataset (12k). This setup allows identifying how
performance gains are achieved through i) adding each new
group of features and ii) adding new observations. Follow on
experiments addressing RQ2 and RQ3 are run using hold-
out validation technique where fold 5 is held out. We ex-
periment by using varying proportions of training data in
RQ2 to train the model. When selecting training data, ran-
dom sampling is used All the trained models in RQ2 are
evaluated using the same held out test set.

To validate RQ4, we partition the entire dataset into i) tuto-
rial videos (vtt lecture type) and ii) all other videos, as test
and train data respectively. However, tutorials conducted in
conferences significantly vary from e-learning videos geared
for MOOCs. To address this mismatch, we further identified
1,035 videos (among the tutorials) that exclusively belong
to the Open Course Ware Consortium (OCWC)2. OCWC
exclusively contains university lectures intended for teach-
ing and devises different MOOC production techniques such
as classroom, talking head and power point methods [23].
In RQ5, we train the model using all non-tutorial lectures
and test the engagement prediction/ranking performance on
i) OCWC videos (ocw), ii) all tutorials but OCWC (!ocw)
and iii) all tutorials vtt, (entire test set). Experiments of
(RQ2-4) are only done with the best performing model from
Table 1 (RF model with Content + Wiki + Video feature
group) to reduce computational cost.

To tackle RQ5, we utilise TrueLearn Novel [9] (hereby re-
ferred to as TrueLearn), a personalisation model that pre-
dicts learner engagement with video lectures. A key lim-
itation of many such models is lack of information in the
2http://videolectures.net/ocwc
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Table 1: RMSE and SROCC with confidence intervals for the
engagement prediction (Task 1) and lecture ranking (Task
2) using the Random Forests model with both 4k [7] and 12k

(Our VLE) datasets. Better performance highlighted in bold.
RMSE with Task 1 SROCC with Task 2

Feature set 4k 12k (Ours) 4k 12k (Ours)
Content-based .1801±.006 .1170±.006 .6190±.011 .7504±.013
+ Wiki-based .1798±.007 .1178±.006 .6251±.014 .7505±.013
+ Video-specific .1728±.007 .1098±.007 .6758±.020 .7832±.009

Figure 2: Predictive performance for (i) engagement predic-
tion and (ii) lecture ranking tasks with varying proportions
of randomly sampled training data. The test set performance
for full test dataset (Blue) and subsets of test dataset that
consists of CS lectures only (Orange) and Non-CS lectures
only (Green) are also reported

Table 2: Performance for OpenCourseWare (ocw), Non-
OpenCourseWare (!ocw) tutorial and All tutorial (vtt)
videos for engagement prediction and lecture ranking tasks.
Better performance per task is highlighted in bold.

ocw !ocw vtt From Table 1
RMSE with Task 1 .0539 .0404 .0406 .1098
SROCC with Task 2 .9485 .9209 .9223 .7832

early stages of the user session (cold-start problem) to make
accurate predictions. In this experiment, we created a hy-
brid recommender that combines the TrueLearn model with
the proposed context-agnostic engagement prediction model
(hereby referred to as TrueLearn++). For simplicity, we
use ”switching” [12] in TrueLearn++, where the pre-trained
context-agnostic model makes the prediction on the first
event of each user (where the personalistion model has no in-
formation) and switches to TrueLearn that can exploit user
history. PEEK dataset [8], with more than 20,000 learner
sessions, is used for the experiment where the context agnos-
tic model is trained using lectures not present in the PEEK
test data. Then the predictive performance on the PEEK
test data using TrueLearn (The baseline) and TrueLearn++

(the hybrid model) is measured using Accuracy, Precision,
Recall and F1-Score. A learner-wise, one-tailed paired t-test
is used for statistical significance testing.

5. RESULTS AND DISCUSSION
The performance metrics observed with the RF model on
Task 1 and 2 (RQ1) are outlined in Table 1. Figure 2 illus-
trates how the training data size impacts the i) RMSE and
ii) SROCC (RQ2) as well as showing the engagement pre-
diction performance on Computer Science (CS) videos vs.
Non-CS videos (RQ3). Table 2 presents predictive perfor-
mance of the model on e-learning type lectures and tutorials
(RQ4). Finally, the overall performance comparison relating

to the effect of combining the context agnostic model with
personalisation models to battle cold-start problem (RQ5)
is reported in Table 3.

5.1 Performance Gains and Causes (RQ1-2)
Table 1 shows that the larger VLE leads to significant perfor-
mance gains in both engagement prediction and video rank-
ing tasks over the 4k dataset [7]. When using all feature sets
with the RF RMSE on Task 1 drops by 41% while SROCC
on Task 2 jumps by 15%. The labels in VLE dataset have
more statistical stability as the centres are computed using
more data points collected over a wider time window. Us-
ing more feature groups also leads to improved performance.
Results for VLE dataset in Table 1 shows this trend where
best performance is evidenced with all the features (+ Video-
specific group) used. However, using cross-modal content-
based features (Content-based + Wiki-based) alone leads
to substantial performance. This result indicates that en-
gagement prediction is still feasible only depending on easy
to automate, cross modal features. Wikification, used in
generating Wiki-based features, also operates in web-scale3.
While Table 1 results don’t show a significant bump when
Wiki-based features are added, we believe that this is due
to the simplicity of features used with much room for more
sophisticated features (e.g. semantic relatedness between
Wikipedia topics [10]) that will lead to performance gains.

Figure 2 confirms that the increase of training data improves
performance in both tasks. RMSE continues to shrink in
Figure 2(i) while SROCC in Figure 2(ii) tells a different
story where improvements saturate at 60%. This suggests
that improving ranks gets significantly harder around 5,500
training examples (≈ 60% of training set).

5.2 Relevance to AI/CS Education (RQ3) and
E-learning Scenarios (RQ4)

Figure 2 shows that VLE dataset is suitable for training
models for CS-only lectures leading to test set RMSE of ≈ .1
and SROCC of ≈ .8. This may be due to i) the higher di-
versity (significant differences between subjects) of lectures
within the non-CS group and ii) the majority of CS/AI (e.g.
Machine Learning, Ontology, Semantic Web etc.) related
videos being present within the VLE dataset (see Figure
1). Table 2 shows strong evidence that the models trained
with VLE dataset generalise really well for engagement mod-
elling in e-learning type videos created for course teaching
amid the dataset containing many different video types. The
models trained are much better at engagement prediction
and ranking of tutorial-like videos than general scientific
talks. Having tested with lectures that have been recorded
using different MOOC video production techniques, the high
performance obtained on ocw lectures confirms that VLE
dataset can be highly effective in building context-agnostic
engagement models for e-learning and MOOC systems.

5.3 Addressing the Cold-Start Problem (RQ5)
Table 3 shows that simply combining the context-agnostic
engagement prediction with TrueLearn Novel algorithm (to-
gether becoming TrueLearn++) can lead to significant im-
provements in accuracy and precision. The same table also

3http://wikifier.org
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Table 3: Average test set performance for Accuracy (Acc.), Precision (Prec.), Recall (Rec.) and F1-Score (F1) in predicting
first event and all events. The more performant value is highlighted in bold. The metrics where the proposed model that
outperform the baseline counterpart in the PEEK dataset (p < 0.01 in a one-tailed paired t-test) are marked with ·(∗).

Predicting first event Predicting all events
Model Acc. Prec. Rec. F1 Acc. Prec. Rec. F1

Truelearn 44.21 44.21 100.00 61.32 62.69 57.54 81.88 64.98

Truelearn++ 56.09·(∗) 50.32·(∗) 53.58 51.90 63.51·(∗) 57.91·(∗) 79.13 64.39

shows that the drop of overall F1 score can be attributed to
the comparatively steeper drop of Recall Score. Inspecting
left part of Table 3 sheds more light into where this steep
drop of recall occurs. This is, the TrueLearn model always
predicts positive engagement for the first event of the user.
At the first event, the recall of TrueLearn being 1.0 while
the accuracy and precision being the same depicts this fact.
TrueLearn predicts positive in event 1 of each user because
the model has no information to base the prediction on [9].
However, the scenario is different in TrueLearn++ in the first
event as the model has additional information. Both accu-
racy and precision of predictions in first event of the learner
population significantly improves. The recall will fall as the
proposed context-agnostic model only captures a population
based prior which may deviate from the individuality of the
learners. However, it can be argued that making a predic-
tion with additional information is better than predicting
with no prior information. In the bigger picture (in Table 3
right part), being able to make slightly more informed and
varied predictions for the first event of learners based on
lecture content features enable significantly improving pre-
diction accuracy and precision of TrueLearn++. It is also
noteworthy that our experiment, for the sake of simplic-
ity, uses a rule that could be significantly improved further,
e.g. using weights of the probabilities of both population-
based and personalised models at the beginning of a user
session (also known as stacking [12]), where the weight of
population-based engagement decreases as we gather more
information about the user.

5.4 Opportunities and Limitations
The VLE dataset is one of the biggest datasets for modelling
context-agnostic engagement of educational videos (15× than
[23] and 3× than [7]). This unlocks potential to apply com-
plex model families (e.g. deep learning) with the potential
to periodically expand the dataset to further push the froun-
tiers of research. The Wiki-based features open up limitless
possibilities as many sophisticated feature sets can be built
and experimented. Due to the connectivity to Wikipedia,
both its content and link structures can be exploited to in-
vent meaningful, yet interpretable features. A further step
can enable other data structures such as knowledge bases
(e.g Wikidata) and category trees. to be used for feature
creation. As the VLE dataset captures how content features
relate to engagement, this dataset can be used to solidify our
understanding on how to create engaging learning materials
[27, 23, 3, 7].

There also exists limitations. VLE dataset is largely com-
prised of Computer Science and Data Science materials (Fig-
ure 1) that are delivered all in English. While this is an
opportunity for AI and Computer Science education, results
in Figure 2 also shows that this fact leads to comparatively

less fruitful non-CS results. The dataset and its features are
also not suitable for non-English video collections. Amid its
size, the dataset still lacks variety of materials in topical
and lingual sense. As pointed out in section 3.3, we have
taken some measures to restrict the feature set to what we
believe to be more neutral features that do not discriminate
gender or age. However, since we do not have access to gen-
der information in the data collected, it is impossible to test
and guarantee that VLE dataset doesn’t carry negative gen-
der,age biases. Care should be taken when enhancing these
features and there is room to do more rigorous tests to un-
derstand if any gender biases are present within the dataset.
Learner Engagement is a loaded concept with many facets.
In relation to consuming videos, many behavioural actions
such as pausing, rewinding and skipping can contribute to
latent engagement with a video lecture [28]. Due to the
technical limitations of the platform and privacy concerns,
only watch time, view and mean ratings are included in this
dataset. Although watch time has been used as a represen-
tative proxy for learner engagement with videos [23, 40, 16],
we acknowledge that more informative measures may lead
to more complete engagement signals.

6. CONCLUSION
In order to push the frontiers of context-agnostic engage-
ment prediction, we construct and release the VLE dataset
consisting of i) content-based, ii) Wiki-based and iii) video-
specific features with multiple explicit and implicit labels.
Two formal tasks are established to predict engagement and
rank videos with baseline models that significantly outper-
form predecessors. Empirically, i) improvement of perfor-
mance with training data size, ii) suitability of VLE dataset
for CS/AI education, iii) relevance to MOOCs and e-learning
and iv) the feasibility of using context-agnostic engagement
prediction to address cold-start problem in personalised (con-
textual) educational recommedation is demonstrated.

In retrospect of section 5.4, expanding the dataset vertically
(with diverse observations) and horizontally (with novel fea-
tures) is our highest priority going forward. As a future di-
rection, much richer learner engagement signals (e.g. pauses,
replays, skips etc.) can be incorporated to the dataset with-
out compromising user privacy. When better understanding
of learner engagement is gained, training examples coming
from other modalities (e.g. PDF and E-books) can be added
to the dataset to further widen the scope of the dataset, en-
abling understanding of learner engagement across different
types of learning resources. The attempt to improve per-
sonalisation using population-based models in our work is
barely scratching the surface. There is a lot of potential to
extensively propose sophisticated and rigorously tested ap-
proaches to exploit this idea, which we will also explore in
future work.
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ABSTRACT
The value of an instructor is that she exactly recognizes what
the learner is struggling with and provides constructive feed-
back straight to the point. This work aims at a step towards
this type of feedback in the context of an introductory pro-
gramming course, where students perform program execu-
tion tracing to align their understanding of Java instructions
with reality. The students’ submissions are analyzed for re-
peating mistakes across different exercises by representing
the context surrounding the error by a graph and applying
graph mining techniques to discover their common grounds.
The patterns need to be annotated only once and help to
address misconceptions of individual students. They may
also be used to select follow-up exercises automatically, that
contain the same intricacy.

Keywords
graph mining, formative feedback, teaching programming,
misconception

1. INTRODUCTION
Automatized grading is integrated (to varying extent) in
many educational systems. It is often limited to compar-
ing a correct answer against the submission (or applying
unit tests), but is nevertheless welcomed by both, students
and instructors, for different reasons: While students appre-
ciate immediate feedback, instructors are relieved that the
burden of manual grading is lifted. But a student who has
missed the point of some problem and thus repeatedly gets
the answers wrong would benefit much more from personal
feedback from an instructor who is capable of recognizing
and directly addressing the student’s problem. And if none
of the submissions is inspected manually any more, the in-
structor withholds his diagnostic skills that may otherwise
have been proven useful to identify misconceptions of sev-
eral course members. In this work we investigate – for a
particular type of exercises in programming courses – how
this situation may be improved.

We consider an introductory programming course in Java for
students who have no programming experience yet. While
students may struggle with programming for a large number
of reasons (e.g. fighting with the development environment,
getting a grip on computational thinking, etc.), in this work
we concentrate on a single aspect only: instruction compre-
hension. Especially for students who have no experience in
programming, we observe in lab discussions that their per-
ception of an instruction often deviates from reality. Sticking
to a wrong mental model of program execution makes it dif-
ficult to write correct programs. A human advisor can (1)
discover the misconception (even if it did not occur before),
(2) explain the problem (and link it to the course mate-
rial), and (3) challenge the student afterwards (to monitor
progress). The research question of this paper is how such
an ideal instructor might be mimicked (in the given con-
text). In particular, is it possible to support the instructor
in the discovery of new misconceptions without falling back
to time-consuming manual inspection of all submissions?

2. RELATED WORK
The importance of dedicated feedback has been acknowl-
edged by many researchers ([5] gives a review). In the con-
text of programming, several approaches derive precise com-
mands to fix the mistakes of a submitted solution (e.g. [9,
11]). While being helpful to fix a technical problem, apply-
ing detailed instructions mechanically will unlikely trigger a
change of the students’ mental model – the same mistake
might be made again if nothing can be learned from the
feedback (e.g. because it is lacking explanations). Different
hint levels are offered as a solution in [10]: On the first level,
a hint points to the problem but still requires the right stu-
dent action, while a hint on the second level enables them
to fix the problem mechanically. When misconceptions are
known beforehand, their discovery in a submission turns into
a classification problem. Recently a number of deep learning
approaches have been proposed to predict whether a student
will complete an exercise [14], the code exhibits certain logic
errors [6], or some free-text answer hints towards a common
misconception [7]. For all those misconceptions a dedicated
feedback may be prepared only once (manually by the in-
structor) and whenever it is predicted in a new submission
the feedback can be provided automatically. This is effective
for known misconceptions, but such approaches do not help
to discover new misconceptions.

One of the few approaches that may also help to discover
new problems (and is therefore close to what we have in
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mind) is suggested in [8], where the focus is on program-
ming bugs. Common coding errors (for the same exercise)
are discovered by finding subtrees (in the submissions’ ab-
stract syntax trees1 (AST)) that correlate with failed unit
tests, hinting at typically wrong code fragments for the given
exercise. As with other approaches, an instructor provides
feedback for a buggy subtree that will be delivered later
whenever a similar subtree occurs again. The focus of these
explanations is, however, restricted to the exercise at hand
– a buggy subtree in one exercise may be correct in another.

3. PROGRAM EXECUTION TRACES
When an instructor explains some concepts in class it is dif-
ficult to verify that the students perceive the concepts in the
intended way. This holds in general and for instructions of
a programming language in particular. If a student has only
vague ideas about stack and heap, call-by-value/reference,
array organization, etc., programming errors will happen
sooner or later. But since code will be executed by man-
made machines, we know the ground truth (just find a de-
bugger) and can ask students to simulate program execution
(to some extent). Paper-based analysis of variable tracing
exercises have been used to investigate misconceptions in the
literature [1, 2, 4, 12]. Gaining an understanding of the me-
chanics how the language implementation worked, was also
identified as a key issue in [13]. Employing tracing exercises
in class has been reported to increase the students’ perfor-
mance in [3]. We thus consider execution traces as a helpful
tool to align mental models and encourage students to verify
their understanding by filling out traces: for every executed
code line the content of all variables has to be documented.

Fig. 1 shows a Java code snippet on the right that uses a
mixture of language elements for demonstration purposes.
We ask the students to fill out an execution trace as shown
on the left, which is basically a large table where each line
corresponds to a complete memory snapshot – ordered in
time from top to bottom. For each row, the student has to
provide the line number that is executed next (e.g. execu-
tion starts with the first line 11 of the main function). The
state of all variables must be entered for each row after the
corresponding code line has been executed. For instance,
when line 12 got executed there is a new variable x on the
stack which points to the heap address 0x0, where an array
of length 2 has been instantiated and initialized with null

references. Students enter such traces in a web application,
which marks erroneous lines but not the exact error posi-
tion to make the students think about their input and make
trial and error strategies less attractive. The downside of
this practice is that students may get stuck at some point
because they are simply not aware of what they are doing
wrong. A lab advisor, pointing them to the nature of their
problem, would be appreciated by them.

4. OUTLINE OF THE APPROACH
Although a full trace may consist of a considerable num-
ber of inputs (cf. Fig. 1), most of the student’s input is not
very informative because it (hopefully) corresponds to the
already known solution. The valuable sources of information
are the deviations alone, because they may hint to miscon-

1An AST is build by a parser and represents the syntactical
structure of code while omitting some less relevant details.

ceptions. A wrong value in the trace alone does not tell us
anything about possible reasons why this error was made.
This can only be judged if more context is given, that is,
the situation in which the error occured. If errors re-occur
in similar situations, the likelihood of a misconception rises
– otherwise it just might be a typo. The context is the Java
program itself. However, similar situations do not neces-
sarily correspond to identical source lines. For the sake of
simplicity, let us consider the case of a student who is con-
fused by assignments where the same variable occurs on the
left and the right hand side of the assignment. (Sometimes
beginners read instructions with = as a mathematical equa-
tion rather than an assignment.) Fig. 2 shows a simplistic
code example together with the correct trace. Can we tell
from the student’s input if he is affected by this misconcep-
tion? There are two places in the trace (marked in yellow)
which we can associate with this misconception: the value
of variable b after executing line 7 and the value of variable
a after executing line 9 as both lines exhibit the discussed
kind of assignment. If both places – or similar places in
other traces – are wrong, chances rise that assignments have
not yet been understood correctly. We have identified these
two places in the trace because we knew what kind of mis-
conception we were looking for. At these places the proba-
bility P (error|misconception) of an faulty input rises, given
the misconception holds. As it may be difficult to come up
with an operational definition of misconception, we retreat
to P (error|context) and will define context as a situation
or pattern that can be matched against the traces and the
source code.

Recalling the research question, we seek a mechanism that
identifies both, the context (of a potential misconception) as
well as the positions affected by it. If the context is easily
understandable, such a mechanism would enable us to mim-
ick the behaviour of a valuable instructor with only little
manual intervention: (1) discovery: if errors in an (auto-
matically derived) context accumulate substantially (across
all students), it is likely the context captures a problem-
atic situation. The instructor inspects the context once and
decides what a likely root cause might be. Once it got ac-
cepted as a misconception in this way, it can be discovered
in subsequent submissions automatically. If the errors ac-
cumulate for some individual student, we conclude that he
suffers from this misconception. (2) feedback: The instruc-
tor writes a short explanation when the problem was discov-
ered for the first time (or may link it to existing material).
As with other approaches, this feedback can be delivered in
subsequent occurrences. (3) challenge: Beyond the textual
feedback, we need a challenge to check for an improved un-
derstanding. We characterize a student by a set of pending
misconceptions and, in the same way, we characterize exer-
cises by the contexts they contain. A suitable challenge is
thus a challenge that matches the students profile best (in
the fashion of an adaptive recommendation system).

A context must address properties of the source code and the
trace: We want to align errors in the trace to properties of
the source code. The plain code (Fig. 2(right)) is therefore
transformed into a graph as shown in Fig. 3 as follows: The
first step is the creation of an abstract syntax tree, which
already provides most of the nodes in the graph. Starting
from the top node we can see the method declaration (of
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StepCodeline

1 package test;
2 public class Demo {
3 static int ic;
4 int a,b;
5 public Demo() {
6 ic++;
7 a=ic; b=ic*ic;
8 }
9 public static void main(String[] args) {
10 int v = 42;
11 Demo[] x = new Demo[2];
12 x[0] = new Demo(); x[0].a=4;
13 x[1] = x[0]; x[1].b=7;
14 } }

Figure 1: For the example code on the right, the corresponding execution trace is shown on the left. The different memory
areas stack, heap, and static data are shown in blue, yellow, and red, resp.

10

10 12

10 10

10 0

42 0

24 0

Stack

4 1

5 2

6 3

7 4

8 5

9 6

StepCodeline

1 package test;
2 public class Assign2 {
3 public static void main(...){
4 int a = 10;
5 int b = 12;
6 b = a;
7 b = b - a;
8 a = 42 + b;
9 a = a / 2 + 3;
10 } }

Figure 2: Code (right) and corresponding trace (left). Yellow
marks indicate where the misconception may be observed.

main), which contains a body (instruction block {}) with
6 statement nodes, two declarations and four assignments.
But the AST does not yet suit the trace, it represents the
static structure of the code, but the trace is concerned with
the dynamic evolution of the variables during code execu-
tion. We bridge this gap by two changes:

1. Every occurrence of the same variable in the code in-
troduces a new node in the AST, but it has a unique
position in memory (and thus a unique position in the
trace). Therefore all AST nodes that refer to the same
variable are united to a single node, turning the tree
into a graph. In Fig. 3 both nodes for the variables a

and b are shaded in gray. Every incoming edge into
one of these variable nodes correspond to the use of
the variable in the code.

2. The content of the trace is aligned with the code lines,
but by looking at an AST graph one cannot tell which
instruction comes from which code line. So we intro-
duce a new node for each code line (shown in blue in
Fig. 3) and link them with all instructions from this
code line. (For instance, the rightmost assignment
node in Fig. 3 occurs in line 9 of Fig. 2.) We cap-
ture the program flow by connecting code line nodes
that may get executed in sequence. In the example we
have no loops or conditional statements, so the nodes
connect linearly (Line 5 to Line 6, Line 6 to 7, etc).

This graph combines information from code and trace, but
does not yet encode where the student entered a wrong
value. The error position in the trace is identified by row

and column (cf. yellow circles in Fig. 2): The column cor-
responds to the variable and the row corresponds to a time
step during execution, which always refers to a specific code
line. An additional focus node (orange in Fig. 3) thus en-
codes the error position by connecting to both, the variable
for which an erroneous value has been entered in the trace2,
and the code line node whose execution has been traced.

We denote such a graph G as a code graph. A context may
now be represented as a subgraph C of G. In Fig. 3 such
a subgraph has been highlighted with red lines. We read
the subgraph as follows: We focus on a code line (here: line
7) that contains an assignment where the variable (here: b)
on the left hand side also occurs in the expression on the
right hand side of the assignment. The context graph is
also shown isolated in Fig. 4(left). If this context accumu-
lates a high number of student errors, it can be shown to
the instructor and should be reasonably simple to interpret.
The instructor may then decide that this context represents
a misconception and writes a short explanation for the con-
text pattern as indicated in Fig. 4(right). The text template
may refer directly to nodes in the context graph (e.g. [var-
name_2]). These references are replaced with the true line
numbers or variable names from the real exercise the stu-
dent is currently working on. This links the feedback text
very tight to the exercise just submitted by the student.

To match such a subgraph to other occurrences, it has to
be anonymized, for instance, the variable names have to be
replaced by placeholders ’varname’ (as we have already seen
in Fig. 4). Variables have unique nodes in the graph and
we no longer need the variable’s name for disambiguation.
Other graph transformations may be applied to compensate
structural differences in the AST that are not helpful for
our purposes. For instance, we want the context to match
twice in the example code of Fig. 2, but the subtree for
the expression on the right hand side of b=b−a is less com-
plex than that of a=a/2+3, so the code graph is structurally
different. To ensure that a context can still match both
occurrences, we apply two measures: Firstly, the graph is
transformed to simplify some technical details (we collapse
a tree of expression nodes into a single expression node).
Secondly, we extend the expressiveness of a context: Rather
than only simple edges we allow, e.g., for transitive connec-

2only if there is one; line number errors do not have an
associated variable
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Figure 3: A graph that fuses information from the abstract syntax tree (black), the execution trace (blue) and a potential error
position in the trace (orange). A potential misconception can be characterized as a subgraph (red).
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“You seem to have difficulties
with assignments that use the
same variable on both sides of
the assignment, as it happens
in line [codeline 2] with variable
[varname 5]. In Java the ’=’ sign
does not indicate a mathemati-
cal equation but...”

Figure 4: Context graph and excerpt from a text template
to deliver meaningful feedback to a student with a potential
misconception.

tions (a path of arbitrary length from the expression node
to the variable node instead of a direct neighbour).

5. ERROR CONTEXT DISCOVERY
In this section we briefly sketch a graph mining approach to
discover context patterns automatically from data.

5.1 Code and Context Graphs
Our input consists of various Java sources, the correct so-
lution trace and the student’s input. The example graph
shown in Fig. 3 focusses on a specific position in the trace
(row/column as encoded by the codeline and varname

nodes linked to the focus node). We create corresponding
graphs for every position (row/column) in a trace. At first
glance, this affects only the edges of the focus node while
the rest of the graph remains unaltered (for a given trac-
ing exercise). However, the relevant context for entering a
wrong value in the trace can be narrowed down to the al-
ready passed code lines: The reason for a mistake cannot
be found in source code lines yet to come. Knowing which
code line we are focussing at, we remove all AST nodes that
correspond to code beyond the focus line.

Apart from the transformations already mentioned in Sect. 4
(renaming variable nodes, flattening expressions), we intro-

duce extra edges from an instruction block to the very first
and last statement of the block (labelled first and last).
Other transformations replace numbers by a literal label,
or re-insert information about variable names: whenever two
variables have the same name (before replacing them) we
add a samename-edge between them. A code graph is then
defined as follows: A triple G = (V,E, λ) is called code
graph, iff V is a non-empty set of nodes, E ⊆ V × V is a
set of directed edges between nodes, λ : (V ∪ V × V ) → L
is a function that assigns labels (from a set of labels L)
to nodes and edges, and there is exactly one v ∈ V with
λ(v) = focus ∈ L.

We assume that a set G of all code graphs is given. Having
a graph G ∈ G for every individual cell (of every trace), we
associate counters with them to track how often the respec-
tive cell has been entered correctly or not in the submissions.
We denote the (absolute) frequencies of correct and incor-
rect entries by pos(G) and neg(G), resp. For a given context
C the core operation is to decide whether C can be found
in a given code graph G, which is abbreviated as C v G.
Then we define

P (error|context C) =

∑
G∈G,CvG neg(G)∑

G∈G,CvG pos(G) + neg(G)
(1)

The graph mining algorithm then searches for a context C
that maximizes P (error|context C). Formally, we define a
context pattern as follows: A tuple P = (V,E, λ, τ) is called
context graph, iff V is a non-empty set of nodes, E ⊆ V ×V is
a set of directed edges between nodes, λ : (V ∪V ×V )→ L∪
{∗} assigns labels to nodes and edges (where * is a wildcard
label), there is exactly one v ∈ V with λ(v) = focus, and
τ : E → {N,X, T,W} classifies edges into one of four types:
normal (N), excluding (X), transitive (T) or wildcard (W).

The semantics of the edge types and the wildcard label
(which matches any other label) is defined along with the
definition of graph inclusion v as follows: A context graph
C = (VC , EC , λC , τC) is contained in a code graph G =
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(VG, EG, λG), C v G for short, iff there is a bijective
function σ : VC → VG such that all node labels match
(∀v ∈ VC : λC(v) = λG(σ(v))) or the context label is a
wildcard (λC(v) = ∗), and for all edges in C there are cor-
responding edges in G. An edge (u, v) ∈ EC has a cor-
responding edge if: (1) for normal edges (τ((u, v)) = N)
we have (σ(u), σ(v)) ∈ EG ∧ λC((u, v)) = λG((σ(u), σ(v))),
(2) for transitive edges (τ((u, v)) = T ) there is a path
(w1, w2, . . . , wk) in G with σ(u) = w1, σ(v) = wk, and
∀i : λC((u, v)) = λG((wi−1, wi)), (3) for wildcard edges
(τ((u, v)) = W ) we have (σ(u), σ(v)) ∈ EG, (4) for ex-
cluding edges (τ((u, v)) = X) we have (σ(u), σ(v)) ∈ EG ∧
λC((u, v)) 6= λG((σ(u), σ(v))).

5.2 Mining Algorithm
In contrast to other graph mining algorithms, our notion of
subgraph inclusion (v) is more complicated due to the differ-
ent edge types. But we benefit from the fact that we have
a clear starting point for inclusion tests because a unique
focus node is required in both, code graphs and context
graphs. The out-degree for many nodes is limited by the
fixed syntax of Java instructions, but this does not hold for
nodes like instruction blocks or expressions.

From a context graph that may serve as an indicator for
a misconception we expect a higher rate of faulty student
inputs than on average. A context graph C matches various
cells in the traces, but the total number of correct inputs
is usually much larger than the total number of incorrect
answers. To account for this imbalance, we normalize the
correct (and incorrect) number of answers in context C:

pC =

∑
G∈G,CvG pos(G)∑
G∈G pos(G)

, nC =

∑
G∈G,CvG neg(G)∑
G∈G neg(G)

We define an objective function f to rate context C as:

f(C)
max!
= log2

(
nC
pC

)
(2)

If the fractions nC and pC are about the same, the answers
in context C do not distinguish from the average rate over
all cells and we obtain f(x) = log2(1) = 0. If we manage to
find a context C that covers twice as many erroneous cases
(than on average) and half as many correct cases (than on

average), it evaluates to log2

(
2
1
2

)
= 2. We perform a beam

search in the space of context graphs to identify the context
that maximizes (2). Details about the search algorithm are
given in the appendix A.

6. EXPERIMENTAL EVALUATION
When the students filled out the execution traces, the sub-
mitted solution may contain multiple errors. It is likely that
the first error in the trace causes subsequent faults: If the
student enters a wrong value in some cell, but this vari-
able is not altered in subsequent code lines, the wrong value
remains and invalidates multiple trace lines. Therefore we
consider only the first error from each submission, which
most likely contains its root cause. In total, there were
roughly 100 accounts (some were used only a few times)
and all traces together consisted of |G| = 7128 different in-
put cells. All students together pressed the ’evaluation’ but-
ton almost 92000 times. The total number of correct and
incorrect entries in the submissions was 2.4M and 64k, resp.

6.1 Discovered Contexts
In this section we present and discuss a few of the context
graphs that were automatically discovered by the algorithm
from Sect. 5. The objective is to investigate meaningful-
ness and interpretability of the discovered contexts. In the
figures, the node labels carry unique numbers for easier ref-
erence (e.g. focus_0 denotes node #0) and the edges have
a suffix indicating their edge type (e.g. N for normal edge)
and a varying line style (N : solid, W : dotted, X : red).

The context in Fig. 5 addresses the lifetime of local vari-
ables. Many students have a superfluous entry on the stack
in this context. The variable #2 has been declared #3 in an
instruction block #6, whose last statement is an assignment
(#5, connects to #6 with edge labelled last). This is the
last statement of the block #6 and the superfluous variable
has been observed in the next executed line (#1, connected
to #4 with an edge labelled prevex (previously executed)).
This code line is thus the first after the end of block #6 and
variable #2 should have vanished because its lifetime ended.

A somewhat surprising context is shown in Fig. 6, which
describes a code line #1 with an if -statement #5, where
the focussed variable #2 is somehow involved in the control-
expression #6 of the if -statement. An inspection of the sub-
mitted traces reveals that some students stored the boolean
result of the control expression on the stack. (Probably the
students thought that the evaluation result must be traced
somehow, but as it does not affect any variable it is not.)3

Fig. 7 captures a context where local variables and attributes
are mixed up. The focus is on a local variable #2 (local
because of its path to #6) in a function #6 of a class #7
that also contains a field declaration #8. The local variable
has a samename-edge to another variable, which causes the
confusion. Although the equally named variable #4 is not
connected to the field declaration #8, it corresponds to it
in all matching code graphs. So the student was not aware
which variable was addressed in the code and picked the
wrong one.

Some contexts may not really relate to code understanding,
but point at pitfalls when starting to use the web applica-
tion. Programs usually start with some variable declaration,
so the attention is initially on the stack – and filling out the
line number is easily forgotten: In Fig. 8 the expected code
line (whose line number was not entered correctly) contains
a declaration #2, which is the first instruction in the body
#3 of a function #8 – it thus most likely corresponds to the
very first code line that has to be traced.

Discussion: The graph mining approach delivered various
meaningful context patterns that correspond well to our ex-
pectations as well as some unexpected patterns. Once an
instructor gets used to them, the graphs are comparatively
easy to interpret, which was a requirement for the envisaged
approach to solve the research question in Sect. 4 – although
sometimes it may be necessary to have a look at the submis-
sions to get an idea what types of error were made. Not all
of the discovered patterns were useful, some are too general
in nature or mix up several problems. But compared to the

3We consider it unlikely that they tried to mimick the JVM-
internal evaluation of expressions.
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Table 1: Based on the performance over a series of exercises,
the students are classified in three groups S+, S↑, S−. The
table shows how many students belong to which group (per-
centage) and the median number of exercises per group.

group size % practise #
context S↑ S+ S− S↑ S+ S−
line number 39.6 27.9 32.4 52 26 25
missing stack 29.8 51.8 18.2 26 19 19
wrong heap value 18.8 64.1 16.9 48 27 20
expected reference 50.2 36.1 13.6 44 31 23
Fig. 5 33.3 44.4 22.2 16 12 13
Fig. 7 20.0 40.0 40.0 23 16 19

time spent on inspecting many raw submissions manually, it
takes an instructor much less time to select useful patterns
and write an accompanying explanation.

6.2 Evaluating Demand and Progress
Whenever a new concept or instruction has been introduced
during the lecture, one group of students (S+) will have no
problems at all with the new instruction type and will enter
the traces flawlessly. The second group, which experiences
problems, splits up further: the group of reflective students
(S↑) will notice the knowledge gap, may read the course
material or offered help text again, and will at some point
close the gap – in the future this type of mistake will happen
only occassionally and incidentally. We expect a significant
reduction in the error rate for this group of students. The
remaining group (S−) does, for some reason, not improve.
We can distinguish these three groups on the level of individ-
ual misconceptions as follows: For a given error context, we
collect all submissions of a student and order them in time.
For any given point in time t we may characterize the stu-
dents performance before and after t by counting how often
the student got the trace in this context right or not. If we
can find a point in time t such that there is a significant im-
provement in the distribution of mistakes before and after t,
we say that this student belongs to group S↑. We assign stu-
dents with a rather low error rate (say, consistently ≤ 10%)
to group S+ (at such a low error rate it is very difficult to
improve significantly). The remainder belongs to group S−.

Table 1 shows the size of the groups (percentage) and the
median number of exercises per group. The rows aggregate
a few different context graphs related to line number errors,
missing values on the stack, wrong values on the heap, and
situations in which a reference was expected but a number
was entered. The numbers for the context patterns of Fig.
5 and 7 are also shown. The table shows that members of
S↑ have traced more exercises than any other group (some-
times more than twice as many as group S−), so the success
is correlated with the gained practice. It is not surprising
that the median number of practised exercises per context
in group S+ is more similar to group S− than to S↑: If they
do it right from the beginning, there is less need for further
practising.

The experiments show that we can measure (by means of
the statistical test) whether an individual student performs
significantly worse on a context patterm than the course on
average and whether he has improved over time. Similar to
feedback from a lab advisor, which is rare but to the point,
we may provide feedback to detect misconceptions only if
the students make mistakes in the error context significantly
more often than the course average (rather than annoying
a student with hints at the first incidental mistake). The
numbers from Tab. 1 also show that there is demand for
support, a relevant fraction of the course did not manage to
significantly improve on their own.

7. CONCLUSION
A considerable fraction of the participants did not manage
to overcome tracing difficulties on their own, which shows
the demand for constructive feedback that goes beyond a
right/wrong classification. The automatically discovered
context graphs can be assessed by an instructor with com-
paratively low effort, because they are quite easy to inter-
pret and meaningful. This paves the way for identifying
even new misconceptions in reasonable time. The context
graphs allow us to analyse the students’ state of knowledge
and consequently deliver purposeful feedback when needed.
It also enables us to recommend suitable exercises to check
an improved understanding afterwards. Just like a human
advisor, we may congratulate the student if the error rate
decreased significantly. This will bring us, in response to the
research question, quite close to a human advisor.
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APPENDIX
A. MINING ALGORITHM
We incrementally explore the space of all possible context
graphs by extending it step by step (add an edge and/or
node). To evaluate which extension improves the objective
function most, we need to match a new context C′ to the
graphs G ∈ G, that is, we have to make sure that a bijective
mapping σ exists. Finding the possible mappings σ each
time from scratch would imply substantial computational
cost (especially as we have matched the first n− 1 of the n
nodes in the previous expansion already), so we keep track
of the mappings σ that have been used for the current con-
text so far. The bookkeeping is illustrated in Fig. 9. On the
top left a context graph and on the top right excerpts from
a code graph are shown. The node sets V consist of natural
numbers, which are shown in subscript next to the assigned
labels. Initially we start with a context graph C0 that con-
sists of a focus node alone (V = {1}, λ(1) = focus). At
that time, the mapping σC0 needs to map only node #1 to
node #3. Below the two graphs, the row σC0 shows the
mapping (1 → 3 or σ(1) = 3). Suppose C0 is extended
by a codeline node to context C1. Now σC1 needs to map
two nodes, but rather than starting from scratch, we assume
that the previous n−1 nodes have been assigned already and
only the new node #2 has to be assigned. There is only one
possibility in the code graph of Fig. 9, we map 2 → 5. In
the figure σC1 corresponds to a list of length 1, with a single
entry (2 → 5). This entry, however, also points (vertically)
to the previous assignment 1→ 3: Following the pointers in
vertical direction reconstructs the full mapping σC1 (1→ 3,
2 → 5). So the σ-mapping of a new context is based on an
existing successor node mapping and we only supplement
the assignment of the latest node to complete it.

focus1

codeline2
varname4

assignment3

focus3

codeline5 varname8

assignment12assignment9

C0 = ({1}, ..) σC0 1→ 3

C1 = ({1, 2}, ..) σC1 2→ 5

C2 = ({1, 2, 3}, ..) σC2 3→ 9 3→ 12

C3 = ({1, 2, 3, 4}, ..) σC3 4→ 8 4→ 8

C4 = ({1, 2, 3, 4}, ..) σC4 4→ 8

Figure 9: Efficient data structure to keep track of node as-
signments during the search. As a context pattern evolves
(node by node) we re-use all mappings σ of successor graphs.

The main algorithm is shown in Alg. 1, which takes the set
G of code graphs and a start context C0 (usually consisting
of the focus node alone). In line 1 we initialize the search
front S, which is a priority queue of limited size (we used
1000) ordered by (2). By Σ0 we denote the set of all valid
initial mappings Σ0 = {{σG0 } |G ∈ G}, where σG0 maps the
unique focus node in the context to the unique focus node
in the code graph G.

In line 2 we initialize a set X of explored nodes: it may hap-
pen at some point of the search that we re-consider a context
graph we have visited earlier, simply because the nodes and
edges of the same context graph could have been inserted
in a different order. To avoid wasting time on examining
graphs that were already explored, we store a hash code of
all explored context graphs in X (set of explored graphs). In
our implementation, we use a hash of the Weisfeiler-Lehman
kernel [15] for this purpose. The remainder of Alg. 1 repre-
sents the search loop: we pick the best-so-far context graph
C, expand it, check for an improvement and return the best
found context C∗ in the end.

Algorithm 1 ContextMining(G,C0)

1: S = {(C0,Σ0)} . search front as priority queue
2: X = ∅; (C?,Σ?) = (⊥,⊥) . visited nodes, best context
3: while S 6= ∅ do . queue not empty
4: (C,Σ) = top(S) . pick best context from queue
5: S = expand(C,Σ, S,X) . expand context
6: if C? = ⊥ ∨ f(C) > f(C?) then . improvement?
7: C? = C; Σ? = Σ . update best-so-far
8: end if
9: X = X ∪ {h(C)} . save hash of explored graph

10: end while
11: return (C?,Σ?) . return best context graph

Algorithm 2 expand(C,Σ,S,X)

1: Q = explore(C,Σ); E = ∅
2: for e ∈ Q do . for all possible extensions
3: apply extension e to context C and obtain C′

4: if h(C′) 6∈ X ∧ size(C′) < limit then
5: Σ′ = prolong-and-filter(C’,Σ)
6: if C′ is substantial improvement of C then
7: C′.momentum = 2 . restore to max
8: else
9: C′.momentum = C.momentum− 1

10: end if
11: if f(C′) > worst(S) ∧ C′.momentum > 0 then
12: S = S ∪ {(C′,Σ′)}
13: end if
14: end if
15: end for
16: return S

The node expansion is shown in Alg. 2. It calls a func-
tion explore(.) in line 1, which provides a priority queue
(size:60) of the best possible extensions of the current con-
text C (which includes all mentioned types of edges). This
allows us to concentrate on the best extensions before we
actually expand the context in the search front S. We ex-
clude a new context if it has been explored earlier (line 4)
or it becomes too large (max. 12 nodes per context). If the
extended context passed all checks, we prolong or adapt the
σ-mappings (line 5) to reflect newly inserted nodes. We as-
sign a momentum to each context, which is initialized to a
small number (here: 2) and reduced by 1 for each extension
that did not lead to a substantial improvement in the object
function (2). If the momentum has reached 0, the context
graph will not be considered further in the search front. We
use a statistical test (G-test) on the 2x2 contingency table
of positive and negative cases before and after the extension
to decide whether the extension was substantial.
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ABSTRACT
Recommender systems in educational contexts have proven
effective to identify learning resources that fit the interests
and needs of learners. Their usage has been of special in-
terest in online self-learning scenarios to increase student
retention and improve the learning experience. In current
recommendation techniques, and in particular, in collabora-
tive filtering recommender systems, the quality of the rec-
ommendation is largely based on the explicit or implicit in-
formation obtained about the learners. On free massive on-
line learning platforms, however, the information available
about learners may be limited and based mostly on logs from
website analytics tools such as Google Analytics. In this pa-
per, we address the challenge of recommending meaningful
content with limited information from users by using rat-
ing estimation strategies from a log system. Our approach
posits strategies to mine logs and generates effective ratings
through the counting and temporal analysis of sessions. We
evaluate different rating penalty strategies and compare the
use of per-user and global metrics for rating estimation. The
results show that using the average number of lessons viewed
per-user is better than using global metrics with a p-value
under 0.01 for 4 of our 5 hypotheses, showing statistical sig-
nificance. Additionally, the results show that functions that
penalize the rating to a lesser degree behave better and lead
to a better recommendation.

Keywords
Recommender systems, log mining, learning trajectories

1. INTRODUCTION
The number of users enrolled in learning web platforms (i.e.,
MOOCs) [1] has a constantly grown in the last 8 years [2].
The recent COVID-19 pandemic has reinforced this phe-
nomenon, and web virtual learning platforms are taking on

an importance not previously seen. The pandemic forced
learners, course designers and instructors to migrate to vir-
tual environments where the learning content is mainly de-
livered in digital formats with a limited or none face-to-face
interaction. Existing work have shown the importance of
simple but effective virtual learning environments, which al-
low a progressive adaptation according to learners needs and
preferences in order to keep their motivation and engage-
ment [3, 4].

To adapt the learning environment and give meaningful con-
tent recommendations to learners, learning platforms should
be able to profile the learner in terms of a set of features such
as preferences, behaviors, or learning needs. A question then
arises in this context: how to obtain relevant learners’ infor-
mation? While more traditional approaches ask the learner
directly through surveys and registration forms, modern ap-
proaches complement this explicit information with implicit
data extracted from interactions with the platform (i.e.,
logs) [5, 6]. The amount and quality of information that
can be extracted depends largely on privacy regulations,
the administrator guidelines, and the platform technologi-
cal capabilities. Therefore it is not unusual to find open
virtual learning scenarios where the information collected
and available about learners is limited. This is the case for
the GCFGlobal learning platform.1

The GCFGlobal Learning Program objective is to teach dif-
ferent basic skills necessary for the 21st century, online, in an
open modality, and without cost. According to GCFGlobal ’s
Web page“gcfglobal.org”offers training in more than 40 top-
ics, ranging from Microsoft Office and email usage to read-
ing, math, and more. A GCFGlobal course contains several
lessons. GCFGlobal offers more than 360 courses, counting
for more than 6,400 lessons, more than 2,500 videos, and
more than 50 interactive activities and games”. In 2021 the
number of users who used the English, Spanish and Por-
tuguese sites and visited at least one course was around 41
million. GCFGlobal establishes as a regulatory principle of
its operation that access to their learning content has to be
open to anyone in the world, and the only requirement is
internet access. The courses are online, self-paced and self-
directed (i.e., without a tutor). Registration and authenti-

1GCFGlobal learning platform:https://bit.ly/3tBpGa5
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cation on the platform is not mandatory and it is estimated
that only 2% of users are registered, thus, there is no ex-
plicit information about learners (i.e., identity data). The
information that is available comes mainly from the logs via
Google Analytics tool. Google Analytics is a standard and
popular tool used in e-commerce that has been also posi-
tioned itself as a useful tool in learning platforms [7, 8]. Its
popularity is due to its ease of implementation and its capa-
bilities to filter and analyze large volumes of logs. Although
log analysis has limitations when it comes to identifying a
user, it is the most likely type of data that can be found in
any existing web-based platform.

In this paper, we present an empirical study for rating es-
timation from Google Analytics logs. These ratings express
the preferences of the learners and allow the construction
of recommender systems. Our evaluation is focused on how
these ratings behave in a course recommendation scenario.
The contributions of our work are summarized as follows.
(1) Dedicated strategies for counting lessons seen by a user,
and to process the timelines from logs. (2) A strategy to
generate ratings that contemplate per-user and global met-
rics based on lesson counting. (3) A comparison of previous
strategies in a course recommendation system.

2. RELATED WORK
A recommender system in a learning platform aims to iden-
tify the most interesting learning content for learners accord-
ing to their preferences [9]. The most popular recommen-
dation techniques described in the literature are collabora-
tive filters (CF), content-based techniques (CB), and hybrid
models that combine both CF and CB [10, 11, 12, 13]. CF
uses information about the rating that learners assign to
courses or learning content to generate a recommendation
[14, Ch.3]. CF-based systems assume that if a learner X
has the same/similar rating as a learner Y on a course, X
is more likely to have the same/similar rating as Y on a
different course [14, Ch.3]. CB filters use a course as the
basis of the recommendation, rather than a learner. That
is, a CB filter uses the characteristics of the course (i.e.,
descriptions, tags, content, topics, classifications) to make
recommendations. CB filters use course characteristics to
search for courses similar to those a learner has previously
taken [13]. To address specific disadvantages of CF and CB
models, hybrid models work on the idea of merging them to
enhance the result.2

Existing work have shown the effectiveness of recommenda-
tion engines in learning platforms. For instance, Campos
et al. [9] propose a CB filter that uses topic modeling for
a big corpus of courses from different education platforms.
Ma et al. [15] use a similar CB technique but their eval-
uation focuses on user experience and usability. Another
common approach is to use of data mining techniques such
as associate rules; for example Intayoad et al. [16] use clas-
sification algorithms and associate rules to create a system
that exploits the learner’s content access history to propose
recommendations.

Following the trend of e-commerce recommender systems,

2A discussion of the advantages and disadvantage of CB and
CF is given by Xiao et al. [13]

there is a recent increase of hybrid models use combining
both CF and CB. A representative strategy in that trend
is to use a CB model to manage the problem of the cold
start and CF to take advantage of the information that is
produced by learners in their interaction with the platform.
CB models are used to recommend items for learning content
for which there is not enough information for a CF strategy.
For example, a course recommendation engine can use the
CB model for new students, and a CF model for existing
students [13, 10]. Wang et al. [12] use a similar hybrid tech-
nique with the DCBVN framework, where the model is built
with a Variational Autoencoder Network combined with a
CF model to generate recommendations. DCBVN considers
the course difficulty and the skills of learners to generate the
recommendations.

Yin et al. [11] use three models: CF, CB (using a topic clas-
sification technique), and a transition probability model to
produce a single rating for a course. The transition probabil-
ity model is used to manage the relationship of prerequisites
between courses. Shanshan et al. [17] use a hybrid tech-
nique to generate recommendations with a CF model and
an ontology to calculate similarities. This technique uses a
cascade evaluation to refine the recommendation list with a
rule association algorithm.

The aforementioned models often operate in rich informa-
tion scenarios. In these scenarios, demographic information,
evaluation results or perception surveys are available to fa-
cilitate the construction and evaluation of the recommender
system. The problem of inferring ratings is not addressed
to the extent that this information is explicitly provided by
the learner.

3. METHODOLOGY
In this paper, we focus on the estimation of users results
and their ratings for courses via a CF recommendation tech-
nique. CF requires a rating matrix to find similar learners.
However, we do not have these ratings explicitly, therefore,
it is necessary to infer them from Google Analytics logs.
A course developed by GCFGlobal is composed of a set of
lessons. The analysis of the number of lessons accessed by
the learner and the associated session time are the basis for
generating the rating. In the following we present the raw
data extracted from Google Analytics and its processing, as
well as the rating generation strategies.

3.1 Data processing
The logs in Google Analytics are consolidated under the con-
cept of a session. Sessions are defined as the set of events
generated by user’s actions within the platform without ex-
ceeding 30 minutes of inactivity.3 Due to the way the logs
layer is deployed, we have to assume that the same user
accesses the platform through the same device. This state-
ment is true in most cases and allows us to group sessions
in a timeline per user. We are interested in the “PageView”
event that provides the URL of the page that the user ac-
cesses. The page URLs in the learning platform are defined
by a unique path for each course-lesson pair, which allows
us to identify the course and lessons related to a “PageView”

3Google Analytics forum: https://bit.ly/3IRlAAY
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event; URL paths are as“language/course/lesson/additional-
params”.

We use two filters to select users and lessons from Google
Analytics. The first filter removes sporadic users, keeping
users with at least 30 sessions during the year (2021-01-31
to 2022-01-31). The second filter ensures that the sessions
belong to at least three different courses. This filter allows
us to guarantee the future construction of the dataset and
ground truth to evaluate the recommendation system. We
use at least two courses to build the ratings for the col-
laborative filter and the third one for its evaluation. It is
important to mention that the temporality of the sessions is
taken into account in the construction of the dataset. The
first two courses in temporal order are used in the construc-
tion of the collaborative filter and the last seen was used to
evaluate the recommendation. We also consider the session
time factor for lesson counting as explained in the following.

After building a base of users and sessions, we proceed to
perform the pre-processing steps described in Figure 1. In
step 1, the base of users and sessions extracted from Google
Analytics is loaded into a local database in order to be able
to perform transformations on the data in an easy and effi-
cient way. In step 2, the timestamp column is transformed
and standardized in such a way that the records can be or-
dered from the most recent session to the most distant. As
mentioned previously, this allows us to identify the chrono-
logical route that the user made through the courses and
their lessons. In step 3, we identify the time spent by the
user in each lesson (“ lesson duration”). Step 3 is not trivial
as the different sessions in which the same lesson is visited
must be reconciled. An intra-lesson analysis is performed
first, followed by an inter-lesson consolidation.

In the intra-session analysis, the time that a user spent
in lessons of the same session is extracted. The time is
calculated as the difference between the timestamp of the
“PageView” event of the lesson URL and the immediately
following event timestamp if it exists. In the case that the
session ends with a visit to a lesson and there is no subse-
quent event for the calculation, we use imputation using the
average lesson time over all users. For lessons with multiple
visits in the same session, the times obtained were added.
Table 1 shows an example of the calculation of the time
spent in the lessons within the same session. Being the last
event of the lesson, the time of lesson “D” is imputed using
the average duration of the lesson over all users. Then an
inter-lesson level analysis is carried out where the times of
the lessons that were visited in different sessions are added
to consolidate a total “lesson duration” per user.

Table 1: Intra session analysis example. Four “PageView”
events to lessons A, B, C, and D. The time spent in lesson D
is calculated as the average of all users.

Lesson Timestamp Time Spent (min)

A 2021-01-29 08:49:01 20
B 2021-01-29 09:09:01 18
C 2021-01-29 09:27:01 21
D 2021-01-29 09:48:01 17

In steps 4 and 5, the number of lessons that make up each
course is consolidated, then, for each user-course combina-
tion, the number of lessons viewed is counted. With these
results, in step 6, the percentage of lessons viewed is calcu-
lated per user-course. In step 7, the percentages obtained
in step 6 are averaged to obtain a per-user metric of the
percentage of lessons viewed.

In step 8, users who have seen lessons from more than 50
courses are removed. These are considered outliers because
they are more than three standard deviations from the mean
[18, p.19]. A total of 4 users were removed, one of them with
a total of 131 courses viewed. Considering the minimum 3
courses filter explained at the beginning of this section, our
dataset only contains users who have seen courses in the
range (2,50).

In step 9, we add a filter to the count made in step 5 accord-
ing to the user’s lesson duration. Lessons below a stipulated
time will not be considered. The exclusion of lessons by
duration is controlled by a parameter, and the effect of this
parameter is evaluated in the experimentation. Our hypoth-
esis is that the inclusion of this filter will allow discarding
lessons that a user addressed lightly and possibly incom-
pletely, thus improving the results of the recommendation.

Finally, in the last step (step 10), we split the data into
a subset for training (i.e., construction of the collaborative
filter) and another for testing. The split maintains the tem-
poral order, therefore, the test set always has courses viewed
after those in the training dataset per user. We use the first
70% of the courses for building the collaborative filter and
the last 30% for evaluation. In the worst case when a user
has only seen three courses, two will be used for training
and one for evaluation.

3.2 Rating Estimation
As mentioned above, these ratings are essential for the con-
struction of the collaborative filter [14, Ch.2]. In this section,
we explain how we estimate these ratings. Our hypothesis
is that the number of lessons accessed by a user in a certain
course is an expression of the level of liking of a learner for
it. Being open courses where the courses and lessons are
approached by the will of the learner, it seems valid to as-
sume that the perception about a course is reflected in the
number of lessons taken by the learner.

To estimate ratings we use a threshold between 0 and 5,
common in recommender systems [14, Ch.2]. Courses with
a percentage of lessons viewed above a threshold will obtain
the maximum grade (5), and those that are below will be pe-
nalized according to a penalty function. We use two thresh-
old metrics: (1) the average percentage of lessons viewed
per course by a user (per-user metric), and (2) the overall
average percentage of lessons viewed per course for all users
(global metric). These two metrics are inspired by the differ-
ent ways of calculating similarities [14, Ch.2], where knowing
if a rating is above or below the average is considered more
valuable than the rating itself. It is known that user ratings
in different domains tend to be very close to the average.
While a rating in the middle does not say much, a rating far
from it is a clear indication of like or dislike.
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Figure 1: Data processing steps

For the rating penalty, 5 different functions will be evalu-
ated: logarithmic, square root, quadratic, linear, and step
(Equations 1 to 5). The combination of thresholds and
penalty functions give us 10 different ways of calculating
the ratings.

f1(x) =

{
5, x ≥ threshold
5 ∗ ( x

threshold
)2, x < threshold

(1)

f2(x) =

{
5, x ≥ threshold
5 ∗ x

threshold
, x < threshold

(2)

f3(x) =

{
5, x ≥ threshold
5 ∗ log2(( x

threshold
) + 1), x < threshold

(3)

f4(x) =

{
5, x ≥ threshold
5 ∗
√

x
threshold

, x < threshold
(4)

f5(x) =

{
5, x ≥ threshold
0, x < threshold

(5)

3.3 Collaborative Filter
We use a classic collaborative filter approach since our objec-
tive is to evaluate the effect of the rating generation strate-
gies on the recommendation as well as the temporal analysis
in the filtering of the lessons.

Our collaborative filter uses the turicreate python library
that implements an item-based CF. We use cosine similarity
to identify similar courses based on ratings (Equation (6)).

CS(i, j) =

∑
u∈Uij

rui ∗ ruj
√∑

u∈Ui
(rui)2 ∗

√∑
u∈Uj

(ruj)2
(6)

where Ui is the set of users who rated item i, and Uij is
the set of users who rated both items i and j.4 The library
4Turicreate documentation: https://bit.ly/3y0vJsx

has a default threshold of 0.001 where users with a lower
similarity coefficient are excluded when making the rating
prediction.

3.4 Evaluation setup
In step 10 of the data processing flow (Figure 1), the dataset
is built using 70% of the courses for training and the remain-
ing 30% for evaluation. Given that the average number of
courses viewed by each user in our dataset is 6.64, in the
average case, there are four courses for the construction of
the collaborative filter and two for its evaluation.

The performance of the recommender system was evaluated
by precision at k (P@k), a typical metric for the evaluation
of Top-N recommender tasks [10, 11, 19, 20]. We found in
the literature that a value of N usually used in recommender
systems in learning environments is N ∈ [5, 10] [10, 11].
A higher number of recommendations could overwhelm the
learner, in particular in partially known domains of knowl-
edge, and a lower number could include elements that are
not diverse. However, the use of k = N = 5 for evaluation
poses a challenge to the extent that in our dataset most of
the users do not contain 5 relevant courses in the evaluation
set. To avoid an overpenalization in the calculation of the
P@k, we define the k per user in the range 1 ≤ k ≤ 5 ac-
cording to the number of courses in the test set. The results
reported are the P@K average over all users. A Wilcoxon
rank-sum test with the Bonferroni correction was used for all
our statistical significance tests (ρ < (0.05/#hypothesis)).

4. RESULTS
After processing the data, 56466 sessions were obtained, a
total of 7071 users extracted, and 230 different courses were
considered from the GCFGlobal learning platform. Table 2
presents the results obtained using the rating strategies ex-
plained in Section 3.2.

The results suggest that a custom threshold (PU: per-user) is
better than a global one (GPC). However, it is not conclusive
on the use of penalty functions. To identify if there are
significant differences in the precision obtained by different
combinations of penalty functions and threshold strategies,
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Table 2: Precision results for the PU (Per-user metric) and
GPC (Global metric)

Penalty Function Threshold Strategy Precision @ 5

F1 (Quadratic)
PU 0.3928
GPC 0.3923

F2 (Lineal)
PU 0.3759
GPC 0.3711

F3 (Logarithmic)
PU 0.3783
GPC 0.3753

F4 (Square root)
PU 0.3911
GPC 0.3824

F5 (Step)
PU 0.1677
GPC 0.0526

we built a set composed of 100 sample. Each sample is
built by selecting randomly 3000 users from the total set of
users (i.e., 7071). Then, we repeat the process of building
and evaluating the recommendation engine. In Table 5, we
present the average precision obtained per penalty function
over the 100 experiments. As can be seen in the table, a
similar behavior where the custom threshold (PU) and a
square root function (F4) lead to a better recommendation
results. Regarding the penalty functions, a very interesting
behavior is evident: the lower the penalty, the better the
recommendation. Figure 2 shows the penalty functions for a
particular threshold from which it is possible to identify that
there is a correspondence between the order in the results
F4(best)-F3-F2-F1-F5(worst) and the penalty degree of the
function.

We perform a statistical significance via Wilcoxon rank-sum
test where the null hypothesis is that the P@K obtained
by the two threshold metrics have the same distribution.
The alternative hypothesis is that the distribution of P@k
obtained by one metric is stochastically greater than the dis-
tribution of the other. We repeated this test for each penalty
function, therefore a total of 5 hypotheses were evaluated.
The results of the tests for each penalty function are shown
in Table 3. Our first relevant finding is that the results
obtained by a custom threshold (PU) are statistically sig-
nificant in most cases. Only for the quadratic function, the
null hypothesis was not rejected.

We repeat a similar test but for the penalty functions. Us-
ing PU as the threshold, we test if the results obtained via
F4 are statistically significant in comparison with the others
penalty functions. The test results are reported in Table 4
and show that results obtained via F4 are statistically sig-
nificant compared to all other functions except again for the
quadratic function.

Our final experimentation is related with the lesson duration
(i.e., Step 9 in Figure 1). We want to see the effect on
the recommendation precision of adding a lesson duration
filter prior to counting and calculating the percentage of
lessons viewed. The filter removes lessons with a duration
less than x value. We use PU as threshold metric and F4 as
penalization strategy. Figure 3 shows the results obtained as

Table 3: PU (Per-user metric) vs GPC (Global metric)
Wilcoxon test results.

Penalty Function ρ-value (ρ < (0.05/5))

F1 (Quadratic) 0.448

F2 (Lineal) 5.273e-32

F3 (Logarithmic) 9.649e-32

F4 (Square root) 5.750e-32

F5 (Step) 1.261e-34

Table 4: F4 vs other penalty functions via Wilcoxon test.

Penalty Functions ρ-value (ρ < (0.05/4))

F4 (Square root) vs F1 (Quadratic) 0.033

F4 (Square root) vs F2 (Lineal) 7.837e-09

F4 (Square root) vs F3 (Logarithmic) 8.400e-05

F4 (Square root) vs F5 (Step) 1.261e-34

Table 5: Average precision over 100 randomly datasets. PU:
Per-user metric, GPC: Global metric

Penalty Function Threshold Strategy Avg. Prec. @ 5

F1 (Quadratic)
PU 0.225
GPC 0.225

F2 (Lineal)
PU 0.239
GPC 0.214

F3 (Logarithmic)
PU 0.241
GPC 0.218

F4 (Square root)
PU 0.246
GPC 0.223

F5 (Step)
PU 0.09
GPC 0.03

Figure 2: Behavior of penalty functions with a threshold of
0.8 (80%) for a given course. The estimated rating is 5 if the
percentage of lessons accessed is greater than 80%. For lower
values, the rating is given by the penalty functions F1-F5.

the filter becomes more restrictive. One of the consequences
is that as the minimum lesson duration time is restricted, the
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size of the dataset is reduced. This means that after applying
the filter there are users with less than 3 courses and they
are thus removed from the analysis. Figure 4 shows how the
size of the number of users decrease with the increase of the
lesson duration filter.

Figure 3: Lesson duration filter vs recommendation precision

Figure 4: Lesson duration filter vs number of users in dataset

5. DISCUSSION AND FUTURE WORK
In relation to penalization functions, we observe that less
penalty lead to a better recommendation. This indicates
that a low number of lessons viewed per course cannot be
directly related to low preference. Being open learning re-
sources where the learning process is self-directed, there are
many other variables that can affect the non-continuity in
the learning process that are impossible to identify in our
context (i.e., learning priorities, time, health). It should
also be taken into account that since it is an implicitly ex-
tracted rating, it is to be expected that it does not accurately
reflect the user’s preferences. We also conclude that the F4
(square root) penalty function leads to better recommenda-
tion results, and there is statistical significance concerning
F3, F2, and F5.

The experiments suggest that a per-user metric works bet-
ter than a global metric. This result is not surprising to

us as using a custom metric for each user should better re-
flect their behavior and therefore their preferences. Despite
this, keeping this metric updated is a process that can be
exhausting in a productive environment, since it must be re-
calculated for each new interaction with a lesson. The global
is expected to fluctuate less and can be recalculated every
certain time interval.

Regarding the duration of the lesson, the figures show the
more restrictive the filter is, the better is the recommen-
dation precision. This behavior is independent of the way
the session is processed (i.e., inter vs intra). We attribute
this result to the fact that the lesson duration filter reduces
the data set to users for which we have (1) more information
(i.e., more lesson interactions), and (2) more precision in the
rating calculation. As users spent more time going through
the lessons, it is more likely that those lessons were of in-
terest to them. In consequence, we can conclude that the
rating estimation strategy based on course lesson complete-
ness better reflects the preferences of learners with greater
lesson duration times.

There is a wide range of future work that we want to address
based on the results presented in this paper. Now that we
have found an appropriate strategy to build the ratings from
logs, we want to explore more advanced techniques for build-
ing the CF engine such as matrix factorization strategies and
recent deep learning approaches [21, 22]. We also want to
explore hybrid recommendation techniques that combine CF
and CB making use, on the one hand, of textual descriptions
of lessons and on the other hand, on semantic descriptions
that can be enriched via knowledge graphs [23].

6. CONCLUSION
This paper addresses the problem of course recommendation
under limited information scenarios. We posit a process for
course rating estimation based on log information for a CF-
based recommender system. Our strategy to exploit the
limited information available in logs uses the combination of:
(1) the percentage of the lessons accessed in a course, (2) a
threshold definition, and (3) different penalty functions to
estimate the learner perception about the course. Then, we
evaluate the influence of the duration of a user in a lesson
in the definition of the rating.

As a threshold, we found that a personalized average per-
user is better than a global one. Regarding penalty func-
tions, F4 present the best results, and in general we found
that the functions that penalize to a lesser degree lead to a
better recommendation. Finally, we found that“lesson dura-
tion” plays an important role to improve rating estimation.
The more demanding the ”lesson duration” filter better our
rating estimation and the recommendation precision. How-
ever, using the lesson duration as a filter has the side effect
of reducing the number of users in the dataset because a
great number of lessons access records are discarded.
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ABSTRACT
Machine learning is a powerful method for predicting the
outcomes of interactions with educational software, such as
the grade a student is likely to receive. However, a predicted
outcome alone provides little insight regarding how a stu-
dent’s experience should be personalized based on that out-
come. In this paper, we explore a generalizable approach for
resolving this issue by personalizing learning using explana-
tions of predictions generated via machine learning explain-
ability methods. We tested the approach in a self-guided,
self-paced online learning system for college-level introduc-
tory statistics topics that provided personalized interven-
tions for encouraging self-regulated learning behaviors. The
system used explanations generated by SHAP (SHapley Ad-
ditive exPlanations) to recommend specific actions for stu-
dents to take based on features that most negatively in-
fluenced predicted learning outcomes; an “expert system”
comparison condition provided recommendations based on
predefined rules. A randomized controlled trial of 73 par-
ticipants (37 expert-system condition, 36 explanation condi-
tion) revealed similar learning and topic-choosing behavior
between conditions, suggesting that XAI-informed interven-
tions facilitated student statistics learning to a similar de-
gree as expert-system interventions.

Keywords
Machine Learning Explainability, Online Learning,
Self-regulated Learning, Educational Interventions

1. INTRODUCTION
Personalization promotes learning by providing meaningful,
timely, and relevant support that is tailored and paced to
an individual’s needs and preferences [4, 32]. Thus, many
intelligent tutoring systems (ITSs) have integrated person-

alization aspects that can automatically suggest which ma-
terials to study [9], reorient attentional states [15], and con-
struct personalized feedback [20]. Such interventions are of-
ten driven by predictions using past learners’ data to build
machine learning models, whose underlying mechanisms can
be difficult to interpret. Yet, understanding the reasons be-
hind a prediction is essential for educational software that
needs to respond not only to what is likely (i.e., predicted)
to happen, but also why it is likely.

Explainable artificial intelligence (XAI) methods [8, 17] have
been developed to circumvent the opaque nature of complex
machine learning models, which may thus enable a new gen-
eration of educational software with increased user trust and
perceived usefulness [12, 13]. In this paper, we create per-
sonalized interventions driven by explanations, rather than
by predictions, for the purpose of adapting students’ behav-
iors in a computer-based learning environment. We focus
on encouraging self-regulated learning (SRL) behaviors in
particular [33]. SRL is especially important in online and
computer-based learning contexts, where teachers are often
less available (versus classroom learning contexts) to guide
the learning process. However, many students need assis-
tance with these SRL decisions [37, 45, 36], and thus stand
to benefit from computer-based learning environments that
fill the gaps in SRL skills by suggesting appropriate activities
to students.

We present work from a randomized controlled trial for which
we developed an online, computer-based education platform
for college-level introductory statistics topics. We explored
how machine learning model predictions, coupled with ex-
planations, can personalize interventions to support SRL re-
viewing behaviors. Our study provides a rigorous compari-
son of an XAI-driven intervention against an active expert-
system intervention consisting of predefined rules based on
the amount of time spent studying each topic and the ex-
pected order of topics in the curriculum.

The XAI-driven interface adaptations in this work raise sev-
eral research questions (RQs) related to the effect interven-
tions have on learning and the effects adaptations have on
behaviors. These RQs have implications for computer-based
education (and for broader understanding of how simple

P. Hur, H. Lee, S. Bhat, and N. Bosch. Using machine learning ex-
plainability methods to personalize interventions for students. In
A. Mitrovic and N. Bosch, editors, Proceedings of the 15th Inter-
national Conference on Educational Data Mining, pages 438–445,
Durham, United Kingdom, July 2022. International Educational
Data Mining Society.

© 2022 Copyright is held by the author(s). This work is distributed
under the Creative Commons Attribution NonCommercial NoDeriva-
tives 4.0 International (CC BY-NC-ND 4.0) license.
https://doi.org/10.5281/zenodo.6853181

438



XAI-driven interventions affect student behaviors).

RQ1: What are the effects on learning and self-regulated
learning behaviors when students receive XAI-informed in-
terventions vs. expert-system interventions?

Hypothesis: We expected that the participants in the XAI-
informed intervention group will learn more than those re-
ceiving expert-system interventions due to XAI-informed in-
tervention group studying topics directly related to improv-
ing their predicted learning outcome. Furthermore, we ex-
pected that XAI-informed interventions would lead to more
frequent reviewing SRL behaviors. Although both the XAI-
informed and expert-system condition interventions in our
study were created with the goal of supporting SRL review-
ing behaviors (re-taking quizzes and re-reading texts), we ex-
pected that XAI-informed interventions would better high-
light topic areas that needed the most studying based on
learning outcome predictions.

RQ2: Do XAI-informed interventions lead to different topic
choosing behaviors compared to the expert-system interven-
tion?

Hypothesis: XAI-informed interventions may impart topic
choosing strategies based on predicted knowledge gaps, which
we expected would lead to lower proportions of students fol-
lowing the default intended order of topics. Furthermore,
we expected that students would follow interventions in the
expert-system condition more frequently because these in-
terventions often recommended a top-to-bottom reading or-
der of topics that may align with students’ natural inclina-
tions.

2. RELATED WORK
Here, we highlight work on self-regulated learning in online
and computer-based education environments and interface
adaptations informed by XAI.

2.1 Supporting Self-Regulated Learning
Self-regulated learning (SRL) refers to the metacognitive,
motivational, and emotional processes behind acquiring in-
formation or skills [48, 33]. SRL has been identified as an
important skill for succeeding in postsecondary education
[27, 31]. Developing SRL skills is difficult, however; stu-
dents struggle to differentiate effectiveness between learning
strategies [50], and may not be aware of how to develop SRL
skills [5]. There are three general groups of strategies iden-
tified in major SRL models: preparation, performance, and
regulation [33, 10, 38, 44, 50, 38, 44] (though there is some
variation, including SRL strategies that occur after/between
learning sessions [49]). It is regulation behaviors (e.g., re-
visiting materials or re-taking quizzes to prepare for a final
test) our study interventions target, since reviewing behav-
iors can be supported by recommending review of specific
learning material during test preparation.

Within the past two decades, a substantial amount of work
has been carried out encouraging SRL in online learning
environments, such as MOOCs [25, 23], where SRL skills
may be especially important since learners are required to
learn autonomously [2, 42]. Researchers have developed
computer-based education environments to support SRL skills,

such as MetaTutor [3], Betty’s Brain [24], and Cognitive
Tutor [40], which aid SRL skills via adaptive pedagogical
agents or by automatically personalizing the presentation of
information. These systems, along with other research in on-
line contexts [14, 34], demonstrate the feasibility of utilizing
data recorded in log files to examine SRL behaviors through
modeling SRL behaviors and predicting student outcomes.

2.2 Adaptations using XAI
In this paper, we focus on a particular XAI method called
SHAP (SHapley Additive exPlanations) [26]. SHAP is well-
suited to driving interface adaptations because it provides,
for every prediction, an indication of how much each feature
(i.e., predictor variable) influenced the decision made by a
machine learning model. SHAP values capture direction-
ality (e.g., the value of feature X1 for this prediction con-
tributed positively vs. negatively to the prediction) as well
as magnitude, via a game-theoretic approach [22]. Hence, an
interface can adapt to the needs of users based on feature
values and the effects those values have on predictions (i.e.,
the SHAP values), provided that the features themselves are
interpretable [6].

Within XAI research, there has been less focus on XAI sys-
tems that leverage machine learning explainability for adap-
tation for education purposes. Conati et al. used XAI for
integrating explanation functionality for adaptive hints in
an Adaptive CSP (ACSP) [12], and found that explana-
tions increase students’ trust, perceived usefulness, and in-
tention to use the hints again. In another study by Mu [30],
researchers used XAI to develop suitable interventions for
wheel-spinning students with simulated data and hypothet-
ical interventions predicted for a previous study [30]. The
work in our paper significantly extends this previous work
[30] by examining one possible application of XAI-driven in-
terventions (i.e., supporting SRL behaviors) via a random-
ized controlled trial. We also explore how XAI approaches
such as SHAP can help education researchers discover sen-
sible interventions for any learning behavior (e.g., suggest
different things to different students in a plausible way)—in
our case, SRL reviewing behaviors.

3. METHODS
Next, we discuss our online learning system and SRL inter-
ventions, the machine learning model for predicting student
learning outcome and interpretation via SHAP (SHapley
Additive exPlanations) values, and the experiment setup.

3.1 Self-guided Online Learning System
We developed a self-guided, self-paced online learning sys-
tem which displays both learning content and interventions
as students navigated through the interface, agnostic of con-
tent type (images, text, videos, etc.). The system also col-
lected logs including some general interaction behaviors such
as web page visits, time spent on each page, and more spe-
cific study-related data such as automatically assessed quiz
scores, pretest scores, and posttest scores.

We focused on introductory statistics because it is an im-
portant yet difficult-to-learn subject for many college de-
grees [46, 39, 41]. We developed a small curriculum of 12
introductory statistics topics in consultation with university
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statistics instructors and educational websites (e.g., course
pages). Each topic consisted of a reading (text tutorials and
accompanying figures) and a corresponding 3-question, mul-
tiple choice mini quiz. These materials could be accessed
from the main interface of the topics menu page (Fig. 2).
The curriculum also included two variations of a 12-question
multiple choice question test (a pretest and a posttest), with
each question of the tests corresponding directly to one of
the 12 topics. Both tests asked about the same core con-
cepts and differed only with slight variations in questions,
such as the specific values used. We designed the final cur-
riculum to take a total of 90 minutes to complete, including
the pretest, 12 readings, 12 quizzes, and the posttest.

3.2 Expert-system Intervention
We designed an expert-system version of the self-regulated
learning intervention for the system (Fig. 1, top image) with
a simple yet precise message of a topic suggestion based on
reading time. However, we decided that the expert-system
intervention should first suggest an unseen topic over topics
with little study time, since learning outcomes improve when
students at least touch on all material in time-limited sce-
narios [28]. We anticipated that the statistics topics on the
system required careful reading in order to fully learn and
perform well, as the study’s statistics topics have been cited
to be prone to misconception [43], and difficult to teach [11].
Thus, we expected that time spent on readings was closely
connected to posttest scores. If a student knew that they
had spent a lower amount of time reading one of the topics
relative to others, they may self-reflect and be more likely to
prioritize reviewing that topic over others they have already
studied more thoroughly.

We implemented the expert-system intervention in the on-
line learning system by displaying the intervention message
when the student reached the 30 minute mark in the self-
guided study session (Fig. 2), then again at 40 minutes, and
finally, at 50 minutes. We chose these time points to pro-
vide sufficient data collection before the first intervention to
enable an accurate prediction of student outcome, and re-
peated the intervention at 10-minute intervals to give the
students additional suggestions. At the 60 minute mark,
students were automatically taken to the posttest. Since
the study session was self-guided, it was left up to the dis-
cretion of the student to read, review, or skip topics, and
spend as little or as much time—up to 60 minutes—as they
wished to complete the study session.

3.3 Piloting and Training Data Collection

Figure 1: Examples of the expert-system (top) vs. XAI-
informed (bottom) intervention messages.

Figure 2: A portion of the topics menu from a self-paced
learning session.

We recruited student participants via student mailing lists
and digital bulletin boards, seeking students with minimal
college statistics experience (0 or 1 college-level statistics
courses) in order to avoid ceiling effects from participants
with extensive preexisting knowledge of the material. The
study session was fully online. The study included a demo-
graphics survey, a pretest, a self-guided learning session (12
readings and 12 quizzes), and a final posttest. Participants
were compensated $15 USD. Based on participant feedback
from semi-structured interviews (compensated an additional
$5), we made various minor changes, such as clarifying the
topics menu page instructions, adjusting names to reduce
cultural specificity, noting topics from the topics menu were
related to the pretest and posttest questions, and including
a proceed to posttest confirmation page.

After making the final changes to our system, we recruited a
total of 58 participants for the first round of data collection.
The goal of the first round of data collection was to collect
training data for the machine learning model to predict the
posttest score, which is described in the next section.

3.4 XAI-informed Intervention
Table 1: Example subset of SHAP values from a posttest
score prediction for one student, indicating that the student’s
current time spent on topic 8 (i.e., 0 seconds) has the most
negative impact on their predicted posttest outcome.

Feature name Feature value SHAP value

Pretest score 50% 2.454

Quiz 1 score 67% 0.206

Quiz 2 score 100% 0.221

... ... ...

Topic 6 reading time 658 seconds 3.734

Topic 7 reading time 0 seconds -3.860

Topic 8 reading time 0 seconds -6.187

With the training data collected with 58 participants, we
trained a random forest regressor using pretest score, quiz
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score (12 topics), and reading time (12 topics) features to
predict posttest score. We trained the final model on all
data with 100 trees and a maximum tree depth of 4 (the
only hyperparameter tuned). We used the tree explainer
(shap.TreeExplainer) in the Python shap library [26] to
interpret model behavior of the posttest score predictions in
terms of SHAP values. The feature with the most negative
SHAP value represented the feature which contributed most
to lowering a student’s posttest score.

For the XAI-informed intervention message (Figure 1, right
image) used for the XAI-informed condition, the topic (quiz
or reading) with the most negative SHAP value was selected
to be recommended to the student. The intervention text
also communicated to the student that the recommendation
was based on a system prediction of the student’s posttest
score to help the student better understand the reason for
suggesting the particular topic.

We examined what happens when a student follows the XAI-
informed intervention recommendation of the feature with
the most negative SHAP value. Table 1 shows an excerpt
of results from a SHAP analysis of a student during a study
session. At the time of this particular prediction, Topic
8 reading time had the most negative SHAP value with -
6.187—substantially lower than the next feature, Topic 7
reading time at -3.860. This indicates that, based on the
model’s posttest prediction, topic 8 reading time is nega-
tively impacting the predicted posttest score of this student
by 6.187 points out of 100 possible points on the posttest,
and should be recommended to the student to study.

Figure 3 shows how the SHAP value of one example fea-
ture, Topic 6 reading time, changed with each additional 20
seconds of studying time for one student. The SHAP value
trended in the positive direction as reading time increased
until a point between around 140 seconds of total reading
time when the SHAP value plateaued at ≈ 4. The model ap-
pears to have learned that short studying times do not yield
learning, and that very long studying times (relative to the
brief topics used in this experiment) do not help past a cer-
tain point, thus yielding an approximately sigmoid-shaped
curve. In this example, what was previously negatively in-
fluencing the predicted posttest score is now predicted to
contribute around +4 points toward the final posttest score.
Using the intuition from this example, our XAI-informed in-
tervention recommends a topic to review to the student such
that each student receives a personalized recommendation of
the most helpful topic for improving their posttest score.

3.5 Expert-system vs. XAI-informed Interven-
tion Experiment

We carried out a randomized controlled trial to compare
the expert-system intervention and the XAI-informed inter-
vention. We recruited 73 participants with minimal college
statistics experience (0 or 1 college-level statistics courses)
via campus mailing lists and—with the aid of university re-
search support—targeted emails to undergraduate students
with no statistics course on their academic course record.
We also recruited students from research subject pools and
introductory psychology undergraduate courses.

We randomly assigned students to conditions, with 37 stu-
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Figure 3: Changes in student’s total time spent on reading
topic 6 and resulting SHAP values (in % change in grade)

dents and 36 students assigned to the expert-system and
XAI-informed conditions, respectively. The study session
structure was identical to the training data study sessions:
a video-call meeting followed by the student independently
working through the study consisting of a demographics sur-
vey, a pretest, a self-guided learning session (12 readings and
12 quizzes), and a final posttest. Students were told that the
estimated total completion time was around 90 minutes, and
were compensated $15 USD. However, for the experiment,
in the case that a participant wanted to skip out of the self-
guided learning session early and proceed to the posttest,
they would receive an intervention on the confirmation page
and be offered the opportunity to return to the learning ses-
sion. We included this final intervention to ensure that every
student saw at least one intervention message regardless of
whether they reached the 30 minute mark.

4. RESULTS
In this section, we report participant demographics, various
learning outcome comparisons, and finer-grained analyses of
participants’ topic ordering learning behaviors.

4.1 Demographics Information
Among the 73 participants from the randomized control
trial, 73% identified as female, 26% as male, and 1% as non-
binary. Students had a mean age of 19.58 (SD = 1.71) years
old, with a minimum age of 18 and a maximum of 27. Over
35 college majors were represented by our participant pop-
ulation. Finally, 55% identified as White, 27% Asian, 12%
Hispanic or Latina/o, 3% Black/African American, and 1%
Native American.

4.2 Learning Behaviors and Outcomes
Table 2 summarizes the differences in pretest and posttest
scores between the expert-system and XAI-informed groups.
The mean improvement from pretest to posttest score was
18.03 (out of 100) for the expert-system condition, and 10.88
for the XAI-informed conditions, suggesting—contrary to
RQ1 expectations—that students in the expert-system con-
dition may have learned more. However, the difference in
improvement between between the two conditions was not
significant, t(71) = 1.924, p = .058. We also calculated
the Bayes factor (BF ) using JASP [19]; BF represents how
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likely the null or alternate hypothesis model is through a
Bayesian approach [18]. Established guidelines [18] suggest
that BF = 1–3 provides anecdotal evidence and BF = 3–10
provides substantial evidence. Through this metric, there
is anecdotal evidence that the expert-system intervention
group had greater grade improvement, BF = 2.24. Table 2
also shows that both groups’ mean scores were not likely
to have been influenced by ceiling effects from prior statis-
tics knowledge; furthermore, no student in either condition
achieved a perfect score (100) on the pretest.

Table 2: Comparison of pretest and posttest scores between
expert-system and XAI-informed conditions

Group Count Mean score Std. dev.

Expert-system (pretest) 37 47.1% 16.10

XAI-informed (pretest) 36 50.2% 19.87

Expert-system (posttest) 37 65.1% 16.30

XAI-informed (posttest) 36 61.1% 20.70

4.3 Model Evaluation and XAI-informed Pre-
dictions

We performed 5-fold cross-validation with the model train-
ing data to estimate model accuracy and obtained a mean
R2 value of .262 (SD = .067), a mean RMSE of 15.17 (on a
0–100 posttest grade scale, SD = 2.20), and a mean Pear-
son’s r of .576. Mean R2 value was somewhat variable across
cross-validation folds; however, the trained model worked
relatively well overall when considering the small size of our
training data.

We analyzed the predictions made by our model and the
activity logs of the XAI-informed intervention group par-
ticipants. We found that the top three most often recom-
mended topics were Probability Introduction, Introduction
to Regression, and Calculating Probability. These represent
the most frequently recommended topics that had the most
negative SHAP values at the time of displaying the interven-
tion, across the 30 minute, 40 minute, 50 minute mark, and
on the posttest confirmation page. Two of the three most-
recommended topics were related to probability. Probability
is widely recognized as a difficult topic to learn for students
due to misconceptions about the subject [7, 16, 21, 43], and
our findings here support this assertion.

4.4 Self-Regulated Learning Behaviors
In order to evaluate the effects of the interventions on self-
regulated learning behaviors, we defined two metrics which
are shown in Table 3: attempts at quizzes already taken
and rereading texts that had already been read. The dif-
ferences in the number of quiz retakes were not significant,
t(71) = -1.618, p = .110, but there was anecdotal evidence
that the XAI-intervention group did more quiz retakes, BF
= 1.354. Similarly, the number of text reviews was not
significantly different, t(71) = -1.186, p = .240, but there
was anecdotal evidence of the XAI-intervention group hav-
ing higher number of text reviews, BF = 2.263. The mean
number of interventions seen prior to the posttest was 3.16
for the XAI-informed intervention group, and 2.75 for the

expert-system intervention group. However, there were sev-
eral participants who only saw a single intervention: 10 from
the XAI-informed intervention group and 3 from the expert-
system intervention group.

The results in Table 3 suggest minimal reviewing behaviors
in both conditions, though that may be expected given that
learning session included enough content that students could
spend most or all of their time on new topics.

Table 3: Comparison of metrics for SRL reviewing behaviors.

Group Quiz retakes Texts reread

Expert-system 1.054 11.514

XAI 1.583 15.444

4.5 Learning Order Analysis
We carried out an analysis to examine orders in which stu-
dents in each condition studied the 12 topics. We analyzed
the degree to which students deviated from the baseline
learning topic order by calculating the proportion of topic
component (reading or quiz) selection actions that did not
follow the direction of the default learning order presented
on the topics menu page (Fig. 2). For example, if the student
studied the first three topics in order and then studied the
sixth topic, the learning order deviation value for readings
would be .333. These learning order deviation values were
calculated for the learning periods before and after students
saw the first intervention. This analysis was done for par-
ticipants who studied any amount of material after the first
intervention n(XAI) = 26, n(expert-system) = 34.

The results in Table 4 show that students in both conditions
deviated from the typical top-to-bottom topic significantly
more frequently after intervention: XAI-informed, t(25) =
4.262, p < .001; expert-system, t(33) = 3.240, p = .003.
These differences before and after the intervention were ex-
pected, per RQ1, especially for the XAI-informed interven-
tion condition since it is more likely to recommend topics
out of order according to students’ individual needs.

Table 4: Proportion of actions in which students deviated
from a typical top-to-bottom topic order during their selec-
tions of what topic to pursue next.

Topic order deviation

Expert-system XAI

Before 1st intervention .552 .539

After 1st intervention .709 .727

Difference before/after .157 .188

5. DISCUSSION
Here, we discuss the main findings and implications and also
discuss generalization of our approach, limitations of our
study, and possible future work.

5.1 Learning and SRL Behaviors (RQ1)
We hypothesized that the students in the XAI-informed con-
dition would have greater learning gains when compared
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to those receiving the expert-system intervention because
XAI interventions would give suggestions to review the most
critical topics for improving posttest score rather than the
expert-condition suggestions based on time. However, the
findings did not support our hypothesis. Learning gain was
not significantly different between the two conditions. The
overall average pretest score being 48.6% and average posttest
score 63.1%, and thus students may have benefited from
studying almost any topic. In such cases, an intervention to
encourage specific SRL behaviors would not be needed until
the student has spent much longer studying.

Additionally, our machine learning model was trained from
a relatively small amount of training data of 58 students,
which may have contributed noise to the predictions, and
consequently, less effective XAI-informed interventions which
recommended unhelpful topics for improving the posttest
score. However, both the expert-system and XAI-informed
groups had significant, notable improvements in pretest to
posttest scores, showing that our curriculum (and perhaps
both interventions) was effective for teaching the statistics
topics.

We hypothesized that the XAI-informed interventions would
have lead to more frequent SRL reviewing behaviors due to
bringing to light more directed learning strategies motivated
by improving one’s posttest score, and therefore, have lead
to more regular and frequent self-reflection to identify ap-
parent gaps in learning. The findings were inconclusive for
answering our hypothesis since there were few instances of
SRL reviewing behaviors (Table 3). While there were no
statistical differences between the mean quiz and text re-
viewing behaviors, Bayes factor values show that there was
anecdotal evidence of the XAI-informed group having both
slightly higher mean rates of retaking quizzes and rereading
texts. This suggests that there may indeed be intervention
effects that could emerge more clearly in large datasets and
longer learning sessions.

5.2 Topic Choosing Behaviors (RQ2)
We expected that participants receiving the expert-system
interventions would have been more receptive to following
the interventions’ suggestions compared to those receiving
the XAI-informed interventions. The expert-system inter-
ventions recommended topics based on the lowest reading
time spent, or to suggest the next unstudied topic in the ex-
pected order. This would have aligned with some students’
natural inclinations of studying through the topics in the de-
fault order as presented on the topics menu page (Figure 2).
Furthermore, we expected the XAI-informed intervention
group to strategize their topic choosing behavior without
the influence of a necessarily top-to-bottom order sugges-
tion, and choose more autonomously, based on strategies of
identifying gaps in knowledge (discussed in section 5.1).

The results show that there were increased effects on topic
choosing deviation behaviors in the two conditions. XAI-
informed and expert-system conditions both had increased
proportions of topic selection behaviors deviating from the
top-to-bottom order after the first intervention. The results
suggest the possibility that both interventions facilitated
self-directed learning behaviors of students to make topic
choosing behaviors most beneficial for their learning.

When understanding the results of RQ1 on learning perfor-
mance and topic suggestions together, the findings from our
paper may suggest that the XAI-informed interventions fa-
cilitated students’ statistics learning to a similar degree to
a method which prioritized unseen topics over mastery of a
smaller amount of material. Additionally, average pretest
scores were quite low for both conditions (Table 2), which
likely made any amount of scaffolding helpful.

5.3 Generalization to Other Domains
In our study, we used the possible reasons from quizzes
and readings for the posttest score predictions to person-
alize interventions to scaffold SRL behaviors through en-
couraging the review of specific topics. However, the same
XAI approach could be applied to cases where the goal is
to help a student improve almost any predicted outcome.
For example, one could predict student dropout from online
learning based on relevant student factors (constructs re-
lated to study skills, learning material interaction patterns,
stress, motivation, etc.) [35], combined with complex or
uninterpretable factors, and implement XAI-informed alerts
via interfaces or targeted emails for the student throughout
the course period to take actions reducing the likelihood of
dropout based on the most impactful of the interpretable
factors. Other applications could follow a similar approach,
such as helping students resolve confusion during attempting
algebra assignments [1], preventing learner disengagement
from reading texts [29], or improving student performance
in interactive online question pools [47].

5.4 Future Work and Conclusion
Future work could expand on this research by increasing the
number of participants in both the training data and exper-
iment as we were limited by our relatively small pilot and
experiment sample sizes. It may also be possible to reduce
idling behavior instances by using pre-screening surveys to
gauge their motivation for learning the material, or better
controlling the experiment through an in-person lab setting
where participants may be observed. It would also be in-
formative to explore our approach to other types of study
material, such as more advanced statistics topics or math-
ematics, and explore ways to support other SRL behaviors
such as planning or goal-setting.

In this study, we leveraged machine learning to predict fu-
ture student outcomes, explained the predictions via an XAI
method, and implemented personalized system interventions.
Specifically, we explored supporting SRL behaviors in an
online learning environment for learning college-level intro-
ductory statistics topics through personalized interventions.
Despite limited differences in learning gain, SRL reviewing
behaviors, and topic choosing behaviors, our findings sug-
gest that XAI-informed interventions facilitate learning to
a similar benefit as expert-system interventions. We expect
that the approach examined in this experiment could be gen-
eralized across other applications, and could serve as one
reference for designing system implementation informed by
XAI methods.
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ABSTRACT
Academic grades in assessments are predicted to determine
if a student is at risk of failing a course. Sequential models
or graph neural networks that have been employed for grade
prediction do not consider relationships between course de-
scriptions. We propose the use of text mining to extract se-
mantic, syntactic, and frequency-based features from course
content. In addition, we classify intended learning outcomes
according to their higher- or lower-order thinking skills. A
learning parameter is then formulated to model the impact
of these cognitive levels (that are expected for each course)
on student performance. These features are then embed-
ded and represented as graphs. Past academic achievements
are then fused with the above features for grade predic-
tion. We validate the performance of the above approach
via datasets corresponding to three engineering departments
collected from a university. Results obtained highlight that
the proposed technique generates meaningful feature repre-
sentations and outperforms existing methods for grade pre-
diction.

Keywords
Grade prediction, graph networks, course descriptions, se-
mantic similarities, cognitive levels

1. INTRODUCTION
Detecting students at the risk of failing university courses
based on predicted grades is essential for administering early
intervention strategies. From a regression problem per-
spective, grades obtained from prior courses in previous
semesters are used to predict grades for pilot courses reg-
istered in the upcoming semester.

1.1 Related Models for Grade Prediction
Existing techniques for grade prediction using past academic
records include conventional regression models such as ran-
dom forest, support vector machine, and K-nearest neigh-
bor [1, 10, 15] as well as the factorization machine in a col-
laborative filtering setting [33]. In addition to the use of
past examination results, information derived from online
click-stream data on learning management systems has been
used to augment the prediction capability of a model [25,26].
More recently, sequential models such as the long short-term
memory (LSTM) have been developed to capture the tem-
poral dynamics of past academic performance [12]. While
such deep learning models have achieved reasonable success
in grade prediction, existing temporal-based approaches do
not take the relationships among courses and among stu-
dents into account. Consideration of these relationships is
essential since information pertaining to courses with similar
content and students with similar cognitive levels would aid
in grade prediction. In addition, the performance trend of
an academically-inclined student or a well-performed course
in the current semester may continue for the upcoming
semesters [23].

Notwithstanding the above, graph neural networks have re-
cently been employed to generate meaningful feature rep-
resentations which model the transitions of grade distribu-
tions between courses across semesters [11]. Similar to social
multi-relational networks [14] with nodes representing either
students or courses, three graphs—student-course, student-
student, and course-course graphs—consisting of edge links
computed via grade distribution similarities or correlations
have been constructed [21,23]. Modeling the student-course
relations have also been achieved via knowledge graphs to
extract course and student embeddings as well as to encode
temporal student behavioral data [17]. Pre- or co-requisites
between courses have also been considered for grade predic-
tion [27].

Despite adopting multi-dimensional approaches toward an-
alyzing prior course grades to predict student perfor-
mance [35], existing models assume that the relationship
among courses depends solely on the grade distribution;
these models do not consider topics covered and the intended
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via prior grades and text mining on course descriptions: Course out-
lines and intended learning outcomes. In A. Mitrovic and N. Bosch,
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learning outcomes defined by the course instructors. These
aspects are important since the process of knowledge acqui-
sition often involves assimilating and discerning information
from myriad sources [29], i.e., academic performance has
shown to be dependent on prior experience and how the
student has understood certain concepts. Moreover, course
content that overlap or are highly inter-dependent may in-
fluence how well the student can achieve the intended learn-
ing outcomes for the upcoming semesters [38]. While course
syllabus has recently been used to extract frequency-based
features for the determination of course similarities [16], it
does not analyze the intended learning outcomes nor capture
the relationship between courses holistically. It is also not
surprising to expect that students who are less academically
inclined often struggle in courses that require higher-order
thinking skills. Information pertaining to the thinking skills
required for prior courses will, therefore, allow the grade-
prediction model to better represent grades achieved from
previous semesters.

1.2 Grade Prediction From Curriculum De-
velopment Perspective

From a curriculum development perspective, course descrip-
tions comprise topics to be covered and the intended learning
outcomes for each course designed by the course instruc-
tor [34]. The importance of identifying suitable topics is
motivated by an earlier study where first-year university
students who had been exposed to fundamental concepts
in high school have shown to perform better than those
who had not studied similar content before [13]. In today’s
context, this highlights the intrinsic (and often intimate)
relationships including pre-requisites, recommended litera-
ture, and course content that define dependencies between
courses. Coupled with the fact that course instructors often
adopt the constructivist approach in curriculum design [6],
analysis of course content is important for grade prediction.

Apart from course content, outcome-based teaching and
learning require course instructors to identify suitable in-
tended learning outcomes and assessments that measure
those learning outcomes [4, 30]. In this regard, learning ac-
tivities with various cognitive complexity levels should be
designed and aligned with the learning outcomes construc-
tively throughout the course [2,5,9,32]. Alignment of learn-
ing activities can be achieved via the revised Bloom’s Tax-
onomy with the recollection of information being associated
with the lowest-order thinking skill to generating creative
outcomes being associated with the highest-order thinking
skill [20]. Given that less academically-inclined students of-
ten face challenges in higher-order thinking skills [39], it is
important to consider the influence of learning outcomes on
student performance for grade prediction.

1.3 Contribution of This Work
In this work, we propose a course description-based grade
prediction (CODE-GP) model that employs text mining
techniques for extracting features associated with (i) course
content similarities and (ii) higher- or lower-order thinking
skills required for each course. With regards to the first
dimension highlighted in Table 1, we propose three types
of course similarities extracted from topic outlines and in-
tended learning outcomes found within course descriptions.

Table 1: Overview of text mining approaches in the proposed
CODE-GP model

Dimension Type Description

Course
similarities
from course
outlines and

learning
outcomes

Semantic
Contextual closeness

of course content

Syntactic
Grammatical

differences across
cognitive levels

Frequency-
based

Overlapping works
appearance in
descriptions

Student
similarities
based on
thinking

skills required

Higher-order
H

Verbs
corresponding to
creative outcomes

Lower-order
L

Verbs
corresponding to
recalling concepts

These similarities include semantic [22], syntactic [3], and
frequency-based features [36]. The use of these features is in
contrast to the use of grade distributions as edge weights for
generating similarities [11]. The basis for our proposed ar-
chitecture is motivated by the need to consider both course
outlines and intended learning outcomes, since both the in-
tended learning outcomes and syllabus are important for the
development and implementation of teaching programs [28].
In addition, we also consider past performance of each stu-
dent from the perspective of thinking skills required for each
course. In particular, the proposed model employs a doc-
ument classification approach that tags each course with
higher- or lower-order thinking skills according to the re-
vised Bloom’s Taxonomy. A learnable parameter is then
used to aggregate the respective grades achieved for both
lower- and higher-order thinking skill courses. This allows
the proposed model to establish the relationship between the
complexity of courses and academic performance.

As shown in Figure 1, we adopt graph neural networks
to generate representations of the above text mining fea-
tures. These features are represented as course- and student-
similarity graphs with nodes corresponding to courses and
students, respectively. The edge weights for the former are
computed based on the proposed three text features. For the
latter, past academic grades are aggregated, and the simi-
larity related to Jensen-Shannon Divergence (JSD) is then
computed among the grade distributions [23]. These graphs
are subsequently embedded and trained using a graph con-
volutional network (GCN) layer.

In addition and similar to [12], we incorporate temporal in-
formation extracted from past examination records for each
student across semesters. Grade embeddings, the corre-
sponding student vector, and prior course vectors acquired
from the GCN for each semester are then concatenated as a
representation vector. This temporal representation serves
as the input to LSTM, which exploits the sequential rela-
tionships and predicts the grade for a course to be taken in
the coming semester.
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Figure 1: Process flow of the proposed CODE-GP model.

2. THE PROPOSED CODE-GP MODEL
The task of grade prediction involves predicting the grade
for student si who has registered a pilot course. Given NC
number of prior courses and NS students, the set of prior
courses is defined as C = {c1, c2, . . . , cNC} and the set of
students as S = {s1, s2, . . . , sNS}. We define ĝsi as the pre-
dicted grade of a given pilot course for the student si.

2.1 Construction of Course Similarities
Graph Based on Course Descriptions

The CODE-GP model incorporates semantic, syntactic, and
frequency-based features extracted from course descriptions
that comprise topic outlines and intended learning out-
comes. These features are subsequently used for construct-
ing the course-similarity graph. We first pre-process the
text by removing symbols, diagrams, equations, numbers,
punctuation marks, and stop-words (e.g., “and”, “or”). All
remaining characters are set to lower case [32].

Semantic similarity based on word embeddings has been em-
ployed to assess student capability for the recommendation
of similar courses [24]. In the context of CODE-GP, we
first define topic outline as qi corresponding to course ci. A
topic outline vector vqi is then generated from qi based on
the bidirectional encoder representations from transformer
(BERT) embeddings [7,8]. The cosine similarity between qi
and qj is then computed between two course outlines via

cos
(
θ(ci, cj)

)
=

vqi · vqj
||vqi ||||vqj ||

. (1)

With 0 ≤ cos
(
θ(ci, cj)

)
≤ 1, a value of 1 implies an almost

semantically similar pair of courses ci and cj .

Syntactic features for CODE-GP comprise phrase types (i.e.,
regular expressions (regexes)) that are extracted from state-

ments associated with the intended learning outcomes. In
this context, we first extract noun- and verb-phrases from
the intended learning outcome document li corresponding
to course ci. These (multiple) phrases are then associated
with their parts-of-speech tags resulting in the set of regexes
Rli [31]. Overlaps between the regex sets are then computed
via the Jaccard similarity given by

Φ(ci, cj) =
|Rli ∩Rlj |
|Rli ∪Rlj |

, (2)

where 0 ≤ Φ(ci, cj) ≤ 1. The number of common occur-
rences is denoted by |Rli ∩Rlj | while |Rli ∪Rlj | refers to the
total number of regexes. A high Jaccard similarity, there-
fore, implies a high proportion of similar phrase types occur-
ing between a course pair regardless of whether the topics
covered are identical.

The term frequency-inverse document frequency (TF-IDF)
determines the uniqueness of a word within a set of doc-
uments [37]. To account for word appearance similarity,
we include TF-IDF weighting on both the topic outlines qi
and intended learning outcomes li for course ci. These fea-
tures are extracted from each concatenated course document
di = q⌢i li, where ⌢ denotes the concatenation of two texts.
We then compute the cosine similarity Ω(ci, cj) ∝ vdi · vdj
similar to (1) but between bag of words (BoW) vectors
vdi and vdj corresponding to each course document. Here,
vdi = [α(w1, di), α(w2, di), . . . , α(wNW , di)] with wk denot-
ing the kth word in document di. The BoW vector length
is based on the word vocabulary size NW across the entire
corpus. The value of each element corresponding to the TF-
IDF weight for word wk is given by [37]

α(wk, di) =
Nwk,di

L(di)
× log

(
ND

Nwi + 1

)
, (3)
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where Nwk,di is the number of times wk occurs in di, L(di)
denotes the length of that document, ND the total number
of documents, and Nwi the number of documents in which
wi occurs. The obtained TF-IDF values are subsequently
normalized to prevent bias in the term frequency variable
due to document length L(di).

With nodes of the course-similarity graph denoted by each
course ci ∈ C, the edge weights are determined via

aCij ∝
(
βsemantic × cos

(
θ(ci, cj)

)
, βsyntactic × Φ(ci, cj),

βfrequency × Ω(ci, cj)
)
, (4)

where βsemantic, βsyntactic, and βfrequency are the trainable
weights. Each of the variable aCij is used within the adja-
cency matrix

AC =




aC11 · · · aC1NC

...
. . .

...
aCNC1 · · · aCNCNC


 (5)

corresponding to the course-similarity graph.

2.2 Temporal Grade Information
Before attempting the pilot course in the current semester,
we assume, for each student si, availability of prior course
grades in C across semesters t ∈ {1, . . . , NT } , where NT
is the total number of semesters, gtsi,ci denotes the grade
that student achieves for ci in semester t. Hence, the grade
vector for student si in semester t is given by

gtsi = [gtsi,c1 , · · · , g
t
si,cNC

], (6)

where Nc is the total number of prior courses across all NT
semesters. It is important to note that for a given semester,
only a subset of these Nc prior courses are attempted, i.e.,
gtsi is not a full vector and null elements will be assigned
for courses not attempted during that semester. Across all
previous NT semesters, we acquire the temporal grade in-
formation for each student, as shown in Figure 1. Such
temporal grade information would be used in two ways—(i)
being aggregated according to the thinking skills required
for each course and to generate student similarity as will be
described in Section 2.3 and (ii) being concatenated with
the course and student embeddings as input for LSTM.

2.3 Construction of Student Similarities
Graph Based on Cognitive Levels

Construction of the student-similarity graph is based on
cognitive levels associated with each course according to
Table 1. Each of the prior courses is first categorized as
one that requires high-order thinking skills H or lower-order
thinking skills L. This is achieved by first classifying each
course intended learning outcome statement via document
classification described in [31] with classes being defined ac-
cording to Bloom’s Taxonomy. Each course is then tagged
as H (or L) if more statements are classified as labels asso-
ciated with high-order (or lower-order) thinking skills.

For each student, we compute the frequency distribution pL
si

and pH
si corresponding to courses that require lower- and

higher-order thinking skills. This is achieved by first divid-
ing the grade range (1-100) into five bins of twenty-point

Table 2: Details on datasets from three departments

Department
Pilot

course
index

NS NC NT
Number of

records

Department 1
c1 453 16 5 7241
c2 645 20 6 11197

Department 2
c3 575 16 6 9234
c4 688 16 6 10977

Department 3
c5 711 23 7 13616
c6 540 17 6 8785

intervals before determining the number of courses (in each
H and L category) that falls under each bin. Contributions
of these two distributions are then learned via

psi = βg × pL
si + (1− βg)× pH

si , (7)

where βg is a learnable weight for psi . With the above,
student similarities are obtained via the JSD between the
grade distribution for each pair of students, i.e.,

aSij = 1− JSD
(
psi ||psj

)
. (8)

Therefore, a higher aSij implies that the two students possess
similar higher- or lower-order skills (measured by how they
perform in the prior courses). With the student similarity
graph shown in Figure 1 comprising students as nodes, the
corresponding adjacency matrix AS is generated based on
aSij similar to (5).

2.4 GCN and Embeddings
After constructing the course- and student-similarity graphs,
we employ a two-layer GCN to embed each graph. Both
course and student nodes are encoded with one-hot vectors
to obtain encoded matrices XC and XS . The embedding
vector EC for the course-similarity graph is generated via

EC = WCXC (9)

such that the one-hot vectors are represented as dense vec-
tors of lower dimensions. Here, WC is the weight matrix.
With ES being generated similarly, and with AC and AS
derived from Sections 2.1 and 2.3, two GCN layers [18] are
then applied to obtain latent representations of all nodes in
course-similarity graph C and student-similarity graph S. In
particular, the (G + 1)th layer for C is computed via

Z
(G+1)
C = σ

(
D

− 1
2

C ACD
− 1

2
C Z

(G)
C W

(G)
C

)
, (10)

where DC =
∑

ci
AC is the degree matrix, Z

(0)
C = EC , and

W
(G)
C is the weight matrix. The output of the GCN for

course-similarity graph is denoted as matrix RC = Z
(2)
C

with each row vector rci being associated with course ci.
The above computation is also applied on student-similarity
graph S to obtain the graph embedding matrix RS with
each row vector being defined as rsj for student sj .

To generate representations for the prior grades achieved,
embedding is applied for each grade. With a one-hot vector
representing a unique value of prior grade gtsi,cj , the embed-
ding vector for a student prior grade is learned via

etsi,cj = WG One-hot
(
gtsi,cj

)
, (11)
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Table 3: Prior courses list for pilot course c5 from Department 3

EA101 Dynamics IC102 Physics A CS108 Computing
EC180 Mathematics 1 EC181 Mathematics 2 EC280 Mathematics A
EA201 Mechanics of Materials EA202 Theory of Mechanism EA203 Intro to Thermofluids
EA204 Engineering Materials EA205 Engineering Graphics EA206 Engineering Mathematics
EA207 Thermodynamics EA305 Control Theory EA306 Fluid Mechanics
EA271 Laboratory Experiments EA371 Engineering Experiments EA301 Machine Element Design

EA209
Intro to Electrical

Circuits Electronic Devices
EA102

Fundamentals of
Engineering Materials

CS103
Introduction to

Engineering and Practices

EA302
Solid Mechanics
and Vibration

EA304
Mathematical Methods

in Engineering

(a) Cosine similarity (b) Jaccard similarity (c) TF-IDF similarity

Figure 2: Visualization of three similarities among different prior courses from an engineering department (Department 3) of a university.

where WG is the weight matrix. The three embedding vec-
tors from course-similarity graph, student-similarity graph,
and temporal grade information are then concatenated for
each semester to form a (la +NC × (lb + lc))× 1 vector

etsi = [rsi , rc1 , e
t
si,c1 , . . . , rcNC

, etsi,cNC
]T , (12)

where la, lb, and lc denote the embedding length for rsi , rcj ,

and etsi,cj , respectively, and T denotes transpose. Each of
these vectors are then concatenated to form a feature matrix

Esi = [e1si , . . . , e
NT
si ] (13)

of each student si for the subsequent prediction model.

2.5 Grade Prediction using LSTM
LSTM models time-series representations and is used to
predict the pilot grade based on sequential matrix Esi for
each student. Through the use of input, output, and forget
gate, LSTM aggregates important and permutes less signif-
icant representations to achieve prediction of pilot grades in
semester NT + 1. LSTM is employed for grade prediction
via the hidden state

htsi = LSTM(etsi ,h
t−1
si ), (14)

where htsi denotes the hidden state for semester t. The pre-
dicted grade ĝsi for student si obtained from the last hidden
state is then given by

ĝsi = wL · hNT
si + b, (15)

where wL and b are defined, respectively, as the weight vec-
tor and bias scalar for the predictor.

3. RESULTS AND DISCUSSION
3.1 Datasets and Implementation Details
Open-source datasets employed for grade prediction do not
include course descriptions. We collected data that include
both academic records and course descriptions (compris-
ing both course outlines and intended learning outcomes).
These are obtained from three engineering departments in
a university to evaluate the models. Each dataset is ob-
tained with the student name and identity being hashed by
another office (authorized to handle such data) to protect
privacy. Table 2 summarizes details for each dataset used.
In particular, NT for each dataset is determined by the max-
imum number of semesters the students within the cohort
take to complete all courses under consideration. The prior
course list for each pilot course consists of the core courses
corresponding to the department’s curriculum. In addition,
NC and NS are distinct for each dataset. In our experi-
ments, the training, validation, and testing ratio are set as
6:2:2.

We employed the mean squared error (MSE)

MSE =
1

NS

NS∑

i=1

(
ĝsi − gsi

)2
(16)

for performance evaluation, where gsi denotes the actual
grade obtained by student si for a given pilot course. In
terms of hyperparameter selection, course description docu-
ment embeddings are trained using BERT with a dimension
of 768. During GCN training, the dropout rate was set as
0.5, while the Adam optimizer with a learning rate of 0.001
was used. A weight decay parameter was set to 5× 10−4 to
prevent overfitting.
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Table 4: Performance evaluation across grade prediction algorithms

Mean Squared Error (MSE)

Methods
Department 1 Department 2 Department 3

Average
c1 c2 Ave. c3 c4 Ave. c5 c6 Ave.

LR 0.0360 0.0199 0.0280 0.0262 0.0247 0.0255 0.0264 0.0576 0.0420 0.0318
LSTM [12] 0.0309 0.0210 0.0260 0.0191 0.0259 0.0252 0.0164 0.0377 0.0270 0.0252
GCN [19] 0.0356 0.0214 0.0285 0.0259 0.0251 0.0245 0.0224 0.0276 0.0250 0.0263

Proposed CODE-GP 0.0296 0.0203 0.0250 0.0159 0.0184 0.0172 0.0188 0.0299 0.0244 0.0222

Table 5: Ablation test results

Approach(es) MSE MAE
Temporal only (LSTM) 0.0252 0.1288

Graph only (GCN) 0.0263 0.1244
Removal of student-similarity graph 0.0225 0.1223
Removal of course-similarity graph 0.0231 0.1224

Proposed CODE-GP 0.0222 0.1221

3.2 Performance Analysis
We take pilot course c5 from Department 3 as an example to
illustrate the impact of considering the semantic, syntactic,
and frequency aspects of words used in course outlines and
intended learning outcomes. Three heatmaps with colors
depicting the similarity values described in Section 2.2 are
provided while details pertaining to prior course information
are shown in Table 3.

Figure 2(a) illustrates the semantic cosine similarity where
high similarities in terms of the closeness of course con-
tent are indicated by the dark shades. It can be seen that
the mathematics-based prior course EC180 exhibits high se-
mantic similarity with other prior courses EC280, EA206,
EC181, and EA304, which have high mathematical content.
On the other hand, computing course CS108 exhibits lower
semantic similarity with the most of other non-programming
courses. Figure 2(b) highlights how (dis)similar phrase types
are between the course outlines and the intended learning
outcomes of two prior courses. We note that EC181 ex-
hibits higher Jaccard similarity with courses that require
fundamental scientific and mathematical knowledge such
as EC180, IC102, and EC280. TF-IDF weighting, on the
other hand, indicates the choice and uniqueness of words
being used in the course outlines and intended learning out-
comes. Figure 2(c) highlights the high variability in words
used between the courses being considered—only a few pairs
of course outlines and intended learning outcomes exhibit
high TF-IDF similarity. In addition, we also note that the
similarity between content is irrelevant. This can be ob-
served from the fact that even though EC180 and EC181 are
mathematics-related, their frequency-based TF-IDF similar-
ity is relatively low.

We next compare the performance of the proposed CODE-
GP model with LSTM based grade-prediction model [12],
GCN [19], and the conventional logistic regression (LR)
model. While LR and LSTM focus on temporal informa-
tion and GCN exploits the interrelationship between courses
and students, the proposed model considers both aspects.
We note from Table 4 that the proposed CODE-GP model
achieves the highest grade prediction capability than the
LR, LSTM, and GCN. While the proposed model requires
higher complexity than these three baseline models, CODE-

GP achieves the lowest mean MSE of 0.0222 (11.9% improve-
ment compared to LSTM), across the three departments as
seen in Table 4. These results highlight the importance of
course descriptions when constructing student- and course-
similarity graphs with time series information. Features ex-
tracted from course descriptions enhance the grade predic-
tion capability instead of using only a single modality.

We further performed an ablation test by excluding each
input graph/temporal representations. Table 5 summarizes
the MSE and mean absolute error (MAE) across all three
departments. We note that the use of all three aspects
in CODE-GP is vital to provide a holistic perspective for
grade prediction. It is interesting to note that grade pre-
diction performance is more sensitive to course-similarity
graph (compared to student-similarity graph). This suggest
that information derived from course descriptions can assist
in grade prediction since performance is closely related to
achieving the set of intended learning outcomes depicted in
course descriptions. These results also highlight that tempo-
ral information and graphs provide complementary features
which contribute jointly to the success of grade prediction.

4. CONCLUSIONS
We propose a grade prediction model that considers course
descriptions and prior academic results. Text mining tech-
niques determine the edge weights of the course- and
student-similarity graphs. A three-pronged model that
constitutes the semantic, syntactic, and frequency-based
feature extraction methods is formulated for course sim-
ilarities. Student performance in terms of their achieve-
ments in courses associated with low- or high-order thinking
skills have also been incorporated to construct the student-
similarity graph. The LSTM synthesizes these aspects be-
fore performing prediction.

An accurate and just-in-time prediction of performance en-
ables course instructors to administer early interventions.
Once the predicted results indicate a tendency of a student
in failing a course, student support staff can respond and
plan for a personalized intervention strategy for each stu-
dent. Moreover, early detection of at-risk students can po-
tentially reduce the drop-out rate. Future work may include
techniques that incorporate other data modalities such as
student demographic or online learning behavior while pro-
tecting student privacy.
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ABSTRACT
Block-based visual programming environments are increas-
ingly used to introduce computing concepts to beginners.
Given that programming tasks are open-ended and concep-
tual, novice students often struggle when learning in these
environments. AI-driven programming tutors hold great
promise in automatically assisting struggling students, and
need several components to realize this potential. We inves-
tigate the crucial component of student modeling, in par-
ticular, the ability to automatically infer students’ miscon-
ceptions for predicting (synthesizing) their behavior. We in-
troduce a novel benchmark, StudentSyn, centered around
the following challenge: For a given student, synthesize the
student’s attempt on a new target task after observing the
student’s attempt on a fixed reference task. This challenge
is akin to that of program synthesis; however, instead of syn-
thesizing a {solution} (i.e., program an expert would write),
the goal here is to synthesize a {student attempt} (i.e., pro-
gram that a given student would write). We first show that
human experts (TutorSS) can achieve high performance
on the benchmark, whereas simple baselines perform poorly.
Then, we develop two neuro/symbolic techniques (NeurSS
and SymSS) in a quest to close this gap with TutorSS.

Keywords
block-based visual programming, programming education,
program synthesis, neuro-symbolic AI, student modeling

1. INTRODUCTION
The emergence of block-based visual programming platforms
has made coding more accessible and appealing to beginners.
Block-based programming uses“code blocks”that reduce the
burden of syntax and introduces concepts in an interactive
way. Led by initiatives like Hour of Code by Code.org [10, 8]
and the popularity of languages like Scratch [41], block-
based programming has become integral to introductory CS

∗Correspondence to: Adish Singla <adishs@mpi-sws.org>;
Authors listed alphabetically.

education. Considering the Hour of Code initiative alone,
over one billion hours of programming activity has been
spent in learning to solve tasks in such environments [8].

Programming tasks on these platforms are conceptual and
open-ended, and require multi-step deductive reasoning to
solve. Given these aspects, novices often struggle when
learning to solve these tasks. The difficulties faced by novice
students become evident by looking at the trajectory of stu-
dents’ attempts who are struggling to solve a given task. For
instance, in a dataset released by Code.org [10, 8, 35], even
for simple tasks where solutions require only 5 code blocks
(see Figure 1a), students submitted over 50, 000 unique at-
tempts with some exceeding a size of 50 code blocks.

AI-driven programming tutors have the potential to sup-
port these struggling students by providing personalized as-
sistance, e.g., feedback as hints or curriculum design [37].
To effectively assist struggling students, AI-driven systems
need several components, a crucial one being student mod-
eling. In particular, we need models that can automatically
infer a student’s knowledge from limited interactions and
then predict the student’s behavior on new tasks. However,
student modeling in block-based visual programming envi-
ronments can be quite challenging because of the following:
(i) programming tasks are conceptual with no well-defined
skill-set or problem-solving strategy for mastery [23]; (ii)
there could be a huge variability in students’ attempts for a
task [52]; (iii) the objective of predicting a given student’s
behavior on new tasks is not limited to coarse-grained suc-
cess/failure indicators (e.g., [50])—ideally, we should be able
to do fine-grained synthesis of attempts for the student.

Beyond the above-mentioned challenges, there are two criti-
cal issues arising from limited resources and data scarcity for
a given domain. First, while the space of tasks that could be
designed for personalized curriculum is intractably large [1],
the publicly available datasets of real-world students’ at-
tempts are limited; e.g., the Hour of Code: Maze Challenge
domain has datasets for only two tasks [35]. Second, when
a deployed system is interacting with a new student, there
is limited prior information [15], and the system would have
to infer the student’s knowledge by observing behavior on a
few reference tasks, e.g., through a quiz [21]. These two is-
sues limit the applicability of state-of-the-art techniques that
rely on large-scale datasets across tasks or personalized data
per student (e.g., [50, 28, 29, 36])—we need next-generation
student modeling techniques that can operate under data
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def Run(){
RepeatUntil(goal){
If(pathAhead){
move

}
Else{
turnLeft

}
}

}

Datasets for
reference task

(a) Reference task T18 with solution code and datasets

def Run(){
RepeatUntil(goal){
move
turnLeft
move
turnLeft
move

}
}

(b) stu’s attempt for T18 (c) Target task T18x

?
(d) stu’s attempt for T18x

Figure 1: Illustration of our problem setup and objective for the task Maze#18 in the Hour of Code: Maze [9] by Code.org [8].
As explained in Section 2.2, we consider three distinct phases in our problem setup to provide a conceptual separation in terms
of information and computation available to a system. (a) In the first phase, we are given a reference task T18 along with its
solution code C?T18 and data resources (e.g., a real-world dataset of different students’ attempts); reference tasks are fixed and
the system can use any computation a priori. (b) In the second phase, the system interacts with a student, namely stu, who
attempts the reference task T18 and submits a code, denoted as CstuT18 . (c, d) In the third phase, the system seeks to synthesize
the student stu’s behavior on a target task T18x, i.e., a program that stu would write if the system would assign T18x to the
student. Importantly, the target task T18x is not available a priori and this synthesis process would be done in real-time.

scarcity and limited observability. To this end, this paper
focuses on the following question: For a given student, can
we synthesize the student’s attempt on a new target task af-
ter observing the student’s attempt on a fixed reference task?

1.1 Our Approach and Contributions
Figure 1 illustrates this synthesis question for a scenario in
the Hour of Code: Maze Challenge [9] by Code.org [8]. This
question is akin to that of program synthesis [20]; however,
instead of synthesizing a {solution} (i.e., program an ex-
pert would write), the goal here is to synthesize a {student
attempt} (i.e., program that a given student would write).
This goal of synthesizing student attempts, and not just so-
lutions, requires going beyond state-of-the-art program syn-
thesis techniques [3, 4, 25]; crucially, we also need to define
appropriate metrics to quantitatively measure the perfor-
mance of different techniques. Our main contributions are:

(1) We formalize the problem of synthesizing a student’s at-
tempt on target tasks after observing the student’s be-
havior on a fixed reference task. We introduce a novel
benchmark, StudentSyn, centered around the above
synthesis question, along with generative/discriminative
performance measures for evaluation.

(2) We showcase that human experts (TutorSS) can achieve
high performance on StudentSyn, whereas simple base-
lines perform poorly.

(3) We develop two techniques inspired by neural (NeurSS)
and symbolic (SymSS) methods, in a quest to close the
gap with human experts (TutorSS).

We provide additional details and results in the longer ver-
sion of the paper [47]. We will also publicly release the
benchmark and implementations to facilitate future research.

1.2 Related Work
Student modeling. For close-ended domains like vocabulary
learning ([42, 36, 22]) and Algebra problems ([12, 40, 43]),
the skills or knowledge components for mastery are typically
well-defined and we can use Knowledge Tracing techniques
to model a student’s knowledge state over time [11, 33].
These modeling techniques, in turn, allow us to provide
feedback, predict solution strategies, or infer/quiz a stu-
dent’s knowledge state [40, 21, 43]. Open-ended domains
pose unique challenges to directly apply these techniques

(see [23]); however, there has been some progress in this
direction. In recent works [28, 29], models have been pro-
posed to predict human behavior in chess for specific skill
levels and to recognize the behavior of individual players.
Along these lines, [7] introduced methods to perform early
prediction of struggling students in open-ended interactive
simulations. There has also been work on student modeling
for block-based programming, e.g., clustering-based meth-
ods for misconception discovery [18, 44], and deep learning
methods to represent knowledge and predict performance [50].

AI-driven systems for programming education. There has
been a surge of interest in developing AI-driven systems for
programming education, and in particular, for block-based
programming domains [37, 38, 51]. Existing works have
studied various aspects of intelligent feedback, for instance,
providing next-step hints when a student is stuck [35, 53, 31,
15], giving data-driven feedback about a student’s miscon-
ceptions [45, 34, 39, 52], or generating/recommending new
tasks [2, 1, 19]. Depending on the availability of datasets and
resources, different techniques are employed: using historical
datasets to learn code embeddings [34, 31], using reinforce-
ment learning in zero-shot setting [15, 46], bootstrapping
from a small set of expert annotations [34], or using expert
grammars to generate synthetic training data [52].

Neuro-symbolic program synthesis. Our approach is related
to program synthesis, i.e., automatically constructing pro-
grams that satisfy a given specification [20]. The usage of
deep learning models for program synthesis has resulted in
significant progress in a variety of domains including string
transformations [16, 14, 32], block-based visual program-
ming [3, 4, 13, 48], and competitive programming [25]. Pro-
gram synthesis has also been used to learn compositional
symbolic rules and mimic abstract human learning [30, 17].

2. PROBLEM SETUP
Next, we introduce definitions and formalize our objective.

2.1 Preliminaries
The space of tasks. We define the space of tasks as T; in
this paper, T is inspired by the popular Hour of Code: Maze
Challenge [9] from Code.org [8]; see Figure 1a. We define
a task T ∈ T as a tuple (Tvis, Tstore, Tsize), where Tvis de-
notes a visual puzzle, Tstore the available block types, and
Tsize the maximum number of blocks allowed in the solution
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code. The task T in Figure 1a corresponds to Maze#18 in
the Hour of Code: Maze Challenge [9], and has been studied
in a number of prior works [35, 15, 1].

The space of codes. We define the space of all possible codes
as C and represent them using a Domain Specific Language
(DSL) [20]. In particular, for codes relevant to tasks consid-
ered in this paper, we use a DSL from [1]. A code C ∈ C has
the following attributes: Cblocks is the set of types of code
blocks used in C, Csize is the number of code blocks used, and
Cdepth is the depth of the Abstract Syntax Tree of C.

Solution code and student attempt. For a given task T, a
solution code C?T ∈ C should solve the visual puzzle; addi-
tionally, it can only use the allowed types of code blocks
(i.e., Cblocks ⊆ Tstore) and should be within the specified size
threshold (i.e., Csize ≤ Tsize). We note that a task T ∈ T may
have multiple solution codes; in this paper, we typically refer
to a single solution code that is provided as input. A student
attempt for a task T refers to a code that is being written by
a student (including incorrect or partial codes). A student
attempt could be any code C ∈ C as long as it uses the set
of available types of code blocks (i.e., Cblocks ⊆ Tstore).

2.2 Objective
Distinct phases. To formalize our objective, we introduce
three distinct phases in our problem setup that provide a
conceptual separation in terms of information and compu-
tation available to a system. More concretely, we have:

(1) Reference task Tref: We are given a reference task Tref

for which we have real-world datasets of different stu-
dents’ attempts as well as access to other data resources.
Reference tasks are fixed and the system can use any
computation a priori (e.g., compute code embeddings).

(2) Student stu attempts Tref: The system interacts with a
student, namely stu, who attempts the reference task Tref

and submits a code, denoted as CstuTref . At the end of this

phase, the system has observed stu’s behavior on Tref and
we denote this observation by the tuple (Tref, CstuTref).

1

(3) Target task Ttar: The system seeks to synthesize the stu-
dent stu’s behavior on a target task Ttar. Importantly,
the target task Ttar is not available a priori and this syn-
thesis process would be done in real-time, possibly with
constrained computational resources. Furthermore, the
system may have to synthesize the stu’s behavior on a
large number of different target tasks from the space T
(e.g., to personalize the next task in a curriculum).2

Granularity level of our objective. There are several differ-
ent granularity levels at which we can predict the student
stu’s behavior for Ttar, including: (a) a coarse-level binary
prediction of whether stu will successfully solve Ttar, (b)
a medium-level prediction about stu’s behavior w.r.t. to
a predefined feature set (e.g., labelled misconceptions); (c)
a fine-level prediction in terms of synthesizing CstuTtar , i.e., a
program that stu would write if the system would assign

1In practice, the system might have more information, e.g.,
the whole trajectory of edits leading to CstuTref .
2Even though the Hour of Code: Maze Challenge [9] has
only 20 tasks, the space T is intractably large and new tasks
can be generated, e.g., for providing feedback [1].

Ttar to the student. In this work, we focus on this fine-level,
arguably also the most challenging, synthesis objective.

Performance evaluation. So far, we have concretized the syn-
thesis objective; however, there is still a question of how
to quantitatively measure the performance of a technique
set out to achieve this objective. The key challenge stems
from the open-ended and conceptual nature of programming
tasks. Even for seemingly simple tasks such as in Figure 1a,
the students’ attempts can be highly diverse, thereby mak-
ing it difficult to detect a student’s misconceptions from ob-
served behaviors; moreover, the space of misconceptions it-
self is not clearly understood. To this end, we begin by
designing a benchmark to quantitatively measure the per-
formance of different techniques w.r.t. our objective.

3. BENCHMARK
In this section, we introduce our benchmark, StudentSyn.

3.1 STUDENTSYN: Data Curation
We begin by curating a synthetic dataset for the benchmark,
designed to capture different scenarios of the three distinct
phases mentioned in Section 2.2. In particular, each scenario
corresponds to a 4-tuple (Tref, CstuTref , T

tar, CstuTtar), where CstuTref

(observed by the system) and CstuTtar (to be synthesized by
the system) correspond to a student stu’s attempts.

Reference and target tasks. We select two reference tasks
for this benchmark, namely T4 and T18—they correspond to
Maze#4 and Maze#18 in the Hour of Code: Maze Chal-
lenge [9]. These tasks have been studied in a number of
prior works [35, 15, 1] because of the availability of large-
scale datasets of students’ attempts. For each reference task,
we manually create three target tasks—Figure 2b illustrates
target tasks for T18; the target tasks for T4 can be found in
the longer version of the paper [47]. These target tasks are
similar to the corresponding reference task in a sense that
the set of available block types is same and the nesting struc-
ture of programming constructs in solution codes is same.

Types of students’ behaviors and students’ attempts. For
a given reference-target task pair (Tref, Ttar), next we seek
to simulate a student stu to create stu’s attempts CstuTref

and CstuTtar . We begin by identifying a set of salient stu-
dents’ behaviors and misconceptions for reference tasks T4

and T18 based on students’ attempts observed in the real-
world dataset of [35]. In this benchmark, we select 6 types of
students’ behaviors for each reference task—Figure 2c high-
lights the 6 selected types for T18; the 6 selected types for T4

can be found in the longer version of the paper [47].3 For a
given pair (Tref, Ttar), we first simulate a student stu by asso-
ciating this student to one of the 6 types, and then manually
create stu’s attempts CstuTref and CstuTtar . For a given scenario

(Tref, CstuTref , T
tar, CstuTtar), the attempt CstuTtar is not observed and

serves as a ground truth for evaluation purposes; henceforth,
we interchangeably write a scenario as (Tref, CstuTref , T

tar, ?).

Total scenarios. We create 72 scenarios (Tref, CstuTref , T
tar, CstuTtar)

in the benchmark corresponding to (i) 2 reference tasks, (ii)
3 target tasks per reference task, (iii) 6 types of students’
behaviors per reference task, and (iv) 2 students per type.

3We note that, in real-world settings, the types of students’
behaviors and their attempts have a much larger variability
and complexities with a long-tail distribution.
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def Run(){
RepeatUntil(goal){
If(pathAhead){
move

}
Else{
turnLeft

}
}

}

Datasets for
reference task

(a) Reference task T18 with solution code and datasets (b) Three target tasks for T18: T18x, T18y, and T18z

def Run(){
RepeatUntil(goal){
If(pathAhead){
move

}
Else{
turnRight

}
}

}

def Run(){
RepeatUntil(goal){
If(pathLeft){
turnLeft
move

}
Else{
move

}
}

}

def Run(){
RepeatUntil(goal){
If(pathAhead){
turnLeft

}
Else{
turnLeft

}
move

}
}

def Run(){
RepeatUntil(goal){
move
turnLeft
move
turnLeft
move

}
}

def Run(){
move
If(pathAhead){
move

}
Else{
turnLeft

}
}

def Run(){
move
turnLeft
move
move
move
move
turnRight
move
move
move
move
move

}

(c) Example codes (i)–(vi) corresponding to six types of students’ behaviors when attempting T18, each capturing different misconceptions

Figure 2: Illustration of the key elements of the StudentSyn benchmark for the reference task T18 shown in (a)—same as
in Figure 1a. (b) Shows three target tasks associated with T18; these target tasks are similar to T18 in a sense that the set
of available block types is same as T18store and the nesting structure of programming constructs in solution codes is same as
in C?T18 . (c) Shows example codes corresponding to six types of students’ behaviors when attempting T18, each capturing a
different misconception as follows: (i) confusing left/right directions when turning or checking conditionals, (ii) following one
of the wrong path segments, (iii) misunderstanding of IfElse structure functionality and writing the same blocks in both the
execution branches, (iv) ignoring the IfElse structure when solving the task, (v) ignoring the While structure when solving
the task, (vi) attempting to solve the task by using only the basic action blocks in {turnLeft, turnRight, move}.

?
stu’s attempt for T18x
in Figure 1

def Run(){
move
move
turnLeft
RepeatUntil(goal){
If(pathRight){
turnRight
move

}
Else{
move

}
}

}

option (a)

def Run(){
move
move
turnLeft
move
move
move
move
turnRight
move
move
move
move

}

option (b)

def Run(){
move
move
turnLeft
RepeatUntil(goal){
If(pathLeft){
turnLeft
move

}
Else{
move

}
}

}

option (c)

def Run(){
RepeatUntil(goal){
If(pathLeft){
turnLeft
move

}
Else{
move

}
}

}

option (d)

def Run(){
RepeatUntil(goal){
move
turnLeft
move
turnRight
move

}
}

option (e)

def Run(){
move
move
turnLeft
If(pathRight){
turnRight
move

}
Else{
move

}
}

option (f)

def Run(){
move
move
turnLeft
RepeatUntil(goal){
If(pathRight){
move

}
Else{
move

}
turnRight

}
}

option (g)

def Run(){
move
turnLeft
move
move
move
move
move
turnRight
turnRight
turnLeft
move

}

option (h)

def Run(){
turnLeft
move
move
If(pathRight){
turnRight
move

}
Else{
move

}
}

option (i)

def Run(){
move
move
turnLeft
RepeatUntil(goal){
turnRight
turnLeft
turnLeft
move

}
}

option (j)

Figure 3: Illustration of the generative and discriminative objectives in the StudentSyn benchmark for the scenario shown
in Figure 1. For the generative objective, the goal is to synthesize the student stu’s behavior on the target task T18x, i.e., a
program that stu would write if the system would assign T18x to the student. For the discriminative objective, the goal is to
choose one of the ten codes, shown as options (a)–(j), that corresponds to the student stu’s attempt. For each scenario, ten
options are created systematically as discussed in Section 3.2; in this illustration, option (a) corresponds to the solution code
C∗T18x for the target task and option (e) corresponds to the student stu’s attempt as designed in the benchmark.

3.2 STUDENTSYN: Performance Measures
We introduce two performance measures to capture our syn-
thesis objective. Our first measure, namely generative per-
formance, is to directly capture the quality of fine-level syn-
thesis of the student stu’s attempt—this measure requires
a human-in-the-loop evaluation. To further automate the
evaluation process, we then introduce a second performance
measure, namely discriminative performance.

Generative performance. As a generative performance mea-
sure, we introduce a 4-point Likert scale to evaluate the
quality of synthesizing stu’s attempt CstuTtar for a scenario

(Tref, CstuTref , T
tar, ?). The scale is designed to assign scores

based on two factors: (a) whether the elements of the stu-
dent’s behavior observed in CstuTref are present, (b) whether
the elements of the target task Ttar (e.g., parts of its solu-
tion) are present. More concretely, the scores are assigned as
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follows (with higher scores being better): (i) Score 1 means
the technique does not have synthesis capability; (ii) Score 2
means the synthesis fails to capture the elements of CstuTref and
Ttar; (iii) Score 3 means the synthesis captures the elements
only of CstuTref or of Ttar, but not both; (iv) Score 4 means the
synthesis captures the elements of both CstuTref and Ttar.

Discriminative performance. As the generative performance
measure requires human-in-the-loop evaluation, we also in-
troduce a disciminative performance measure based on the
prediction accuracy of choosing the student attempt from a
set. More concretely, given a scenario (Tref, CstuTref , T

tar, ?), the
discriminative objective is to choose CstuTtar from ten candidate
codes; see Figure 3. These ten options are created automat-
ically in a systematic way and include: (a) the ground-truth

CstuTtar , (b) the solution code C?Ttar , (c) five codes Cstu
′

Ttar from
the benchmark associated with other students stu′ whose
behavior type is different from stu, and (iv) three randomly
constructed codes obtained by editing C∗Ttar .

4. METHODOLOGY
In this section, we design different techniques for the bench-
mark StudentSyn. First, we consider a few simple base-
lines for the discriminative-only objective (RandD, EditD,
EditEmbD). Next, we develop our two main techniques in-
spired by neural/symbolic methods (NeurSS, SymSS). Fi-
nally, we propose performance evaluation of human experts
(TutorSS). Table 1 illustrates how these techniques differ
in required inputs and domain knowledge. Below, we pro-
vide a brief overview of these techniques; we refer the reader
to the longer version of the paper for full details [47].

Simple baselines. As a starting point, we consider simple
baselines for the discriminative-only objective; they do not
have synthesis capability. Our first baseline RandD simply
chooses a code from the 10 options at random. Our next two
baselines, EditD and EditEmbD, are defined through a dis-
tance function DTref(C, C

′) that quantifies a notion of distance
between any two codes C, C′ for a fixed reference task. For a
scenario (Tref, CstuTref , T

tar, ?) and ten option codes, these base-
lines select the code C that minimizes DTref(C, C

stu
Tref). EditD

uses a tree-edit distance between Abstract Syntax Trees as
the distance function, denoted as Dedit

Tref . EditEmbD extends
EditD by considering a distance function that combines
Dedit

Tref and a code-embedding based distance function Demb
Tref ;

in this paper, we trained code embeddings with the method-
ology of [15] using a real-world dataset of student attempts
on Tref. EditEmbD then uses a distance function as a con-
vex combination

(
α ·Dedit

Tref (C, C′)+(1−α) ·Demb
Tref (C, C′)

)
where

α is optimized for each reference task separately.

Neural synthesizer NEURSS. Next, we develop our technique,
NeurSS (Neural Program Synthesis for StudentSyn), in-
spired by recent advances in neural program synthesis [3, 4].
A neural synthesizer model takes as input a visual task T,
and then sequentially synthesizes a code C by using pro-
gramming tokens in Tstore. However, our goal is not simply
to synthesize a solution code for the input task T as con-
sidered in [3, 4]; instead, we want to synthesize attempts of
a given student that the system is interacting with at real-
time/deployment. To achieve this goal, NeurSS operates in
three stages, where each stage is in line with a phase of our
objective described in Section 2.2. At a high-level, the three

stages of NeurSS are as follows: (i) In Stage-1, we are given
a reference task and its solution (Tref, C?Tref), and train a neu-
ral synthesizer model that can synthesize solutions for any
task similar to Tref; (ii) In Stage-2, the system observes the
student stu’s attempt CstuTref and initiates continual training
of the neural synthesizer model from Stage-1 in real-time;
(iii) In Stage-3, the system considers a target task Ttar and
uses the model from Stage-2 to synthesize CstuTtar .

Symbolic synthesizer SYMSS. As we will see in experiments,
NeurSS significantly outperforms the simple baselines in-
troduced earlier; yet, there is a substantial gap in the per-
formance of NeurSS and human experts (i.e., TutorSS).
An important question that we seek to resolve is how much
of this performance gap can be reduced by leveraging do-
main knowledge such as how students with different be-
haviors (misconceptions) write codes. To this end, we de-
velop our technique, SymSS (Symbolic Program Synthesis
for StudentSyn), inspired by recent advances in using sym-
bolic methods for program synthesis [24, 52, 1, 26]. Simi-
lar in spirit to NeurSS, SymSS operates in three stages
as follows: (i) In Stage-1, we are given (Tref, C?Tref), and de-
sign a symbolic synthesizer model using Probabilistic Con-
text Free Grammars (PCFG) to encode how students of dif-
ferent behavior types M write codes for any task similar
to Tref [5, 27, 52]; (ii) In Stage-2, the system observes the
student stu’s attempt CstuTref and makes a prediction about
the behavior type Mstu ∈ M; (iii) In Stage-3, the system
considers a target task Ttar and uses the model from Stage-1
to synthesize CstuTtar based on the inferred Mstu.

Human experts. Finally, we propose an evaluation of human
experts’ performance on the benchmark StudentSyn, and
refer to this evaluation technique as TutorSS. These eval-
uations are done through a web platform where an expert
would provide a generative or discriminative response to a
given scenario (Tref, CstuTref , T

tar, ?). In our work, TutorSS
involved participation of three independent experts for the
evaluation—these experts have had experience in block-based
programming and tutoring. We first carry out generative
evaluations where an expert has to write the student at-
tempt code; afterwards, we carry out discriminative evalua-
tions where an expert would choose one of the options.

5. EXPERIMENTAL EVALUATION
In this section, we evaluate the performance of different tech-
niques discussed in Section 4. Our results are summarized
in Table 1 and Figure 4. Below, we provide a brief overview
of the evaluation procedures and results; we refer the reader
to the longer version of the paper for full details [47].

Generative performance. As discussed in Section 3.2, we
evaluate the generative performance of a technique in the
following steps: (a) a scenario (Tref, CstuTref , T

tar, ?) is picked;
(b) the technique synthesizes stu’s attempt; (c) the gener-
ated code is scored on the 4-point Likert scale. The scor-
ing step requires human-in-the-loop evaluation and involved
an expert (different from the three experts that are part
of TutorSS). Overall, each technique is evaluated for 36
unique scenarios in StudentSyn—we selected 18 scenarios
per reference task by first picking one of the 3 target tasks
and then picking a student from one of the 6 different types
of behavior. The final performance results in Table 1 are re-
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Method Generative Performance Discriminative Performance Required Inputs and Domain Knowledge
Reference task Reference task Reference task Reference task Ref. task dataset: Ref. task dataset: Student Expert Expert

T4 T18 T4 T18 student attempts similar tasks types grammars evaluation

RandD 1.00 1.00 10.0 10.0 - - - - -
EditD 1.00 1.00 31.5 48.9 - - - - -

EditEmbD 1.00 1.00 39.6 48.9 7 - - - -

NeurSS 3.00 2.83 43.8 57.2 7 7 - - -
SymSS 3.78 3.72 88.1 62.1 - - 7 7 -

TutorSS 3.85 3.90 89.8 85.2 - - - - 7

Table 1: This table shows results on StudentSyn in terms of the generative and discriminative performance measures. The
columns under “Required Inputs and Domain Knowledge” highlight information used by different techniques (7 indicates the
usage of the corresponding input/knowledge). The values are in the range [1.0, 4.0] for generative performance and in the
range [0.0, 100.0] for discriminative performance—higher values being better. Human experts (TutorSS) can achieve high
performance on both the measures, whereas simple baselines perform poorly. NeurSS and SymSS significantly improve upon
the simple baselines; yet, there is a high gap in performance in comparison to that of human experts.

?
(a) Attempt CstuT18x

def Run(){
move
move
turnLeft
RepeatUntil(goal){
If(pathRight){
turnRight
move

}
Else{
move

}
}

}

(b) Solution C?T18x

def Run(){
RepeatUntil(goal){
move
turnLeft
move
turnRight
move

}
}

(c) Benchmark code

def Run(){
RepeatUntil(goal){
move
move
turnLeft
move
move
move
move

}
}

(d) NeurSS

def Run(){
move
move
turnLeft
RepeatUntil(goal){
turnRight
move
move

}
}

(e) SymSS

def Run(){
RepeatUntil(goal){
move
move
turnLeft
move
move
turnRight
move
move

}
}

(f) TutorSS

Figure 4: Qualitative results for the scenario in Figure 1. (a) The goal is to synthesize the student stu’s behavior on the
target task T18x. (b) Solution code C?T18x for the target task. (c) Code provided in the benchmark as a possible answer for this
scenario. (d, e) Codes synthesized by our techniques NeurSS and SymSS. (f ) Code provided by one of the human experts.

ported as an average across these scenarios; for TutorSS,
each of the three experts independently responded to these
36 scenarios and the final performance is averaged across ex-
perts. The simple baselines (RandD, EditD, EditEmbD)
have a score of 1.00 as they do not have a synthesis capa-
bility. TutorSS achieves the highest performance; SymSS
also achieves high performance (only slightly lower than that
of TutorSS)—the high performance of SymSS is expected
given its knowledge about types of students in StudentSyn
and the expert domain knowledge inherent in its design.
NeurSS improves upon simple baselines, but performs worse
compared to SymSS and TutorSS. Figure 4 illustrates
the codes generated by different techniques for the scenario
in Figure 1—the codes by TutorSS and SymSS are high-
scoring w.r.t. our 4-point Likert scale; however, the code
by NeurSS only captures elements of the student’s behav-
ior in CstuTref but misses elements of the target task Ttar. We
provide additional details and statistical significance results
w.r.t. χ2 test [6] in the longer version of the paper [47].

Discriminative performance. As discussed in Section 3.2, we
evaluate the discriminative performance of a technique in
the following steps: (a) a discriminative instance is created
with a scenario (Tref, CstuTref , T

tar, ?) picked from the bench-
mark and 10 code options created automatically; (b) the
technique chooses one of the options as stu’s attempt; (c)
the chosen option is scored either 100.0 when correct, or
0.0 otherwise. For all techniques except TutorSS, we per-
form evaluation on a set of 720 instances (360 instances per
reference task); for TutorSS, we perform evaluation on a
small set of 72 instances (36 instances per reference task),
to reduce the effort for human experts. The final perfor-
mance results in Table 1 are reported as an average predic-

tive accuracy across the evaluated instances; for TutorSS,
each of the three experts independently responded to the in-
stances and the final performance is averaged across experts.
Results highlight the huge performance gap between the
human experts (TutorSS) and simple baselines (RandD,
EditD, EditEmbD). Our proposed techniques (NeurSS
and SymSS) have substantially reduced this performance
gap w.r.t. TutorSS. SymSS achieves high performance
compared to simple baselines and NeurSS; moreoever, on
the reference task T4, its performance is close to that of
TutorSS. The high performance of SymSS is partly due to
its access to types of students in StudentSyn; in fact, this
information is used only by SymSS and is not even available
to human experts in TutorSS (see column “Student types”
in Table 1). NeurSS outperformed simple baselines but its
performance is below SymSS and TutorSS. We provide
additional details and statistical significance results w.r.t.
Tukey’s HSD test [49] in the longer version of the paper [47].

6. CONCLUSIONS
We investigated student modeling in the context of block-
based visual programming environments, focusing on the
ability to automatically infer students’ misconceptions and
synthesize their expected behavior. We introduced a novel
benchmark, StudentSyn, to objectively measure the gen-
erative as well as the discriminative performance of differ-
ent techniques. The gap in performance between human
experts (TutorSS) and our techniques (NeurSS, SymSS)
highlights the challenges in synthesizing student attempts
for programming tasks. We believe that the benchmark will
facilitate further research in this crucial area of student mod-
eling for block-based visual programming environments.
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ABSTRACT
Doing assignments is a very important part of learning. Stu-
dents’ assignment submission time provides valuable infor-
mation on study attitudes and habits which strongly cor-
relate with academic performance. However, the number
of assignments and their submission deadlines vary among
university courses, making it hard to use assignment submis-
sion time as a feature to predict academic performance. In
this paper, we propose a new method called Relative Assign-
ment Submission Time (RAST) which uses the assignment
submission information of peer students to improve the cor-
relation with course grades. Experiments on real-life data
of 20 courses show that RAST has a high correlation with
students’ academic performance. We also build a machine
learning model using RAST as a feature to detect students
who would suffer from poor grades. Our method outper-
forms the traditional method by up to 61% on f1-score. We
believe that our proposed method can help other studies on
assignment submission time to improve the prediction ac-
curacy on academic performance and detecting at-risk stu-
dents.

Keywords
assignment submission time, peer information, academic per-
formance, machine learning, students at-risk

1. INTRODUCTION
Doing assignments is a traditional method of testing the
quality of students’ learning and consolidating what they
have learned. Typically, instructors assign some exercises or
projects to students at the end of a class, and then in most
cases students are required to submit their assignments by
a certain deadline. Many studies have shown that there
is a strong correlation between assignment completion and
academic performance in the corresponding courses [7, 20,
21]. Some studies also show that the time when students
start doing assignments can also reflect students’ learning

∗The corresponding author.

psychology [1]. Generally speaking, the time when students
start doing assignments is related to students’ procrastina-
tion psychology. If a student suffers from serious procrasti-
nation, the student is likely to choose to start doing assign-
ments close to the deadlines, which could result in late or
poor-quality submissions. A meta-analysis [11] on 33 studies
confirms that procrastination is negatively correlated with
academic performance.

Many studies have demonstrated the impact of students’
assignment behavior (including time spent on assignments,
help-seeking behavior, etc.) on academic performance in
online learning environments [7, 20, 21]. In most offline
learning environments, however, it is hard to know exactly
when students start working on their assignments, how they
work out the solution, and how much time they spend on the
assignments, etc. The difference between online and offline
settings makes the methodologies in many studies limited
to online teaching platforms only. In most offline learning
environments, the only data on assignment behavior is the
submission time.

Different from other continuous learning behavior data such
as class attendance, assignment submission time could have
distinctive implications before and after the corresponding
deadline. In most learning environments, late submissions of
assignments receive penalties on grading, which makes the
deadline a watershed on student behavior. The straightfor-
ward way of using the difference between submission time
and its deadline cannot capture all the information of sub-
mission time. In this paper, we propose an approach to
process late and normal submissions separately while still
using submission time data as a single continuous fashion,
so that the new variable can be easily integrated into ma-
chine learning prediction methods that require continuous
features.

The popularity of Learning Management Systems (LMS)
makes it possible to collect data and study multiple courses
at the same time; however, it is still challenging to ap-
ply analysis on submission time data from multiple courses.
Most studies in the literature focus on using the data from
one course only. The key issue is that cross-course data anal-
ysis is fundamentally different across different courses. The
numbers of assignments in different courses are different.
More assignments usually mean less time to work out the
solution, so that it is hard to analyze the submission time of
different courses together. Furthermore, the difficulty levels
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of assignments may vary a lot. Even with the same number
of assignments, courses with difficult assignments may have
larger numbers of late submissions. Students of course A
with difficult assignments may tend to submit assignments
closer to the deadlines than other students, but this does not
necessarily mean that students of A are more procrastinat-
ing. Inspired by a recent study [5] that compares attendance
rates using peer attendance data, this study proposes a new
indicator on assignment submission time that incorporates
peer information so that submission time data from multi-
ple courses can be compared and used in a machine learning
model. So far as we know, there is no previous study that
applies peer information on assignment submission time.

In this paper, we propose a new indicator called Relative
Assignment Submission Time (RAST), which reflects the
average distance between a student’s assignment submis-
sion time and the corresponding deadline, while using peer
assignment submission information to eliminate differences
in time limits and difficulty levels of assignments. Our ap-
proach treats late and normal submissions in different groups
but computes the new indicator as a single continuous vari-
able, so that it can be easily applied to most machine learn-
ing methods as a prediction feature. We investigate the cor-
relation between RAST and academic performance on real-
life data from 5679 samples of 20 courses, showing that there
is a high Pearson correlation between RAST and course
grades. We also use RAST and other commonly available
features to build models to detect at-risk students. Using
the data from the first half of the semester, our method out-
performs the traditional method by up to 61% on f1-score.
We believe that our method can help other studies on assign-
ment submission time to improve the prediction accuracy on
academic performance and detecting at-risk students.

The rest of the paper is organized as follows. Section 2 dis-
cusses related work. Section 3 describes the preliminary.
Section 4 introduces the method we propose, including the
definition of Relative Assignment Submission Time (RAST).
Section 5 presents the experimental results on real-life data
and the analysis of the experimental results. Section 6 dis-
cusses the limitations of this paper and the future work.
Section 7 concludes the paper.

2. RELATED WORK
Assignments are very important to learning. With the de-
velopment of online education over the last decade, many
platforms and methods have been proposed to help people
collect and analyze students’ assignment information. Jivet
et al. [10] designed a learning analytics dashboard for Cours-
era MOOCs which can record when learners submit assign-
ments. Studies in [2, 25] used clickstream data (including
submitting assignments) in online teaching platforms to an-
alyze students’ behavior. [3] predicted the decrease of stu-
dents’ engagement in typical MOOC tasks such as watching
lecture videos or submitting assignments.

Many studies have shown a correlation between students’
assignment completion and procrastination. Studies in [19]
analyzed student self-discipline by tracking student behav-
ior including assignment submission. [17] comprehensively
studied the relationship between students’ learning behav-
iors and procrastination. [1] proposed a new measure called

Procrastination Index, which represents a learner’s degree
of procrastination in the start time of doing assignments.
[24] studied the relationship between procrastination and
assignment deadlines. The authors showed that dependen-
cies between students’ historical activities and the future
ones provide meaningful interpretations in terms of students’
procrastination behaviors.

Many studies have analyzed the relationship between assign-
ment and academic performance. [7] explored the effects
of help-seeking behavior on learning assignments to aca-
demic performance. [20] analyzed the relation between con-
sistency in students’ online work habits (including assign-
ment submissions) and academic performance in a blended
course. [21] confirmed the positive correlation between the
time students spend on assignments and their academic per-
formance.

An important topic in educational data mining is to iden-
tify and help at-risk students. Studies in [6] proposed a
classifier to identify students at-risk for disengagement from
coursework. [8] proposed a solution in the absence of data
from previous courses to identify students at risk of failing
the course. [13] developed a machine learning framework to
conduct accurate at-risk student identification specialized in
K-12 multimodal online environments. [15] identified at-risk
students based on their behavior of handing in assignments
on online platforms. Using features of attendance rate, grade
retention and student profile, [23, 14] established early warn-
ing systems to identify at-risk students.

Recently, [4, 16, 12] studied the impact of assignment sub-
mission time on academic performance. [4] used students’
precise assignment submission time to identify at-risk stu-
dents, but without introducing peer information from the
classmates. The authors suggested that assignment sub-
mission time is not easy to predict at-risk students, as the
relationship between submission time and marks varies de-
pending on both the student and the assignment context.
[16] studied patterns in assignment submission time. By
building a machine learning model, the authors found that
completion time performs better in predicting students’ as-
signment grades than quizzes and exam grades in a one-
semester physics course with 1374 students. [12] applied the
assignment submission time with temporal learning analyt-
ics to aid precision education. The authors analyzed the
transitional patterns between successive assignments with
Markov chains and the relationship between the patterns
and the passes with association rules from 69 students.

[5] proposed a method called Relative Attendance Index to
measure attendance rates, which reflects students’ efforts on
attending courses. While traditional attendance focuses on
the record of a single person or course, relative attendance
emphasizes peer attendance information of relevant individ-
uals or courses, making the comparisons of attendance more
justified. However, due to the different nature of the data
(attendance vs. submission time) the specific method of in-
troducing peer information in that paper cannot be applied
to assignment submission time.

None of the above studies applied peer information to study
assignment submission time.
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3. PRELIMINARY
Logistic regression is a statistical model that in its basic form
uses a logistic function to model a binary dependent variable
[22]. Given dataset D = {(x1, y1), (x2, y2), ..., (xN , yN ),xi ∈
Rn, yi ∈ {0, 1}, i = 1, 2, ..., N}, the loss function to minimize
is the cross entropy loss function below.

L(w, b) =
1

N
(

N∑

i=1

yi ln f(xi) + (1− yi) ln (1− f(xi))). (1)

Sometimes, we will encounter the problem that the differ-
ence between the number of positive (y = 1) and the number
of negative (y = 0) samples is too large. A simple way is to
use the loss function in the “balanced”mode [18]. The “bal-
anced” mode uses the values of y to adjust weights in the
loss function. In the “balanced” mode, the weight of y = 0
will be given by N/(2 × count(y = 0)) and the weight of
y = 1 will be given by N/(2× count(y = 1)). In this paper,
we will refer to the original method without adjusting the
loss function as the “unbalanced” mode.

4. METHOD
To give the definition of Relative Assignment Submission
Time (RAST), we need to define some quantities first.

How long a student submits an assignment before the dead-
line is an indicator of study habits and attitude, we define
it as Submission Buffer.

Definition 1 (Submission Buffer ∆c,s,i): Given course c and
student s, let µc,i be the deadline for submission of the ith
assignment of course c; let tc,s,i be the submission time of
the ith assignment of course c for student s. Then the Sub-
mission Buffer is defined as below.

∆c,s,i = µc,i − tc,s,i. (2)

The average assignment submission time of a student in a
course can be defined straight-forwardly.

Definition 2 (Average Submission TimeASTc,s): Given course
c and student s, let nc be the number of assignments in c,
then the Average Submission Time (AST) of c and s is de-
fined as below.

ASTc,s =
1

nc

nc∑

i=1

∆c,s,i. (3)

One drawback of AST is that it mixes the data of late sub-
missions with normal submissions together. Late submission
reflects the punctuality and study habits of the students. If
a student has large submission buffers in some assignments,
late submission information (even if it is a frequent pattern)
will be buried in the average of submission buffers. There-
fore, in our method we separate normal submissions and late
submissions in the calculation of the new index.

Positive and negative submission buffers indicate normal
and late submissions respectively.

Definition 3 (Normal Set S+
c,i and Late Set S−

c,i) Given the
definition of submission buffer ∆c,s,i, let Sc be the set of

students who registered for course c, then normal set (S+
c,i)

and late set (S−
c,i) represent normal and late submissions.

S+
c,i = {s : ∆c,s,i ≥ 0|s ∈ Sc},

S−
c,i = {s : ∆c,s,i ≤ 0|s ∈ Sc}.

With the definitions of Normal Set and Late Set, we further
define a notion called Submission Deviant to reflect how a
submission is different from submissions of other students
in the same course in terms of submission time. We pro-
cess normal and late submissions in their own category to
preserve the difference between late and on-time submis-
sions. For an assignment submission, Submission Deviant is
defined as the submission buffer divided by the largest sub-
mission buffer of the same category (late or on-time). The
peer information of other students’ submission time helps
normalizing the significance of a late or normal submission.
For example, if a student submits an assignment early but
not that early when compared with the best student in the
class in terms of submission buffer (who has the earliest
submission), the significance of this early submission is low;
similarly, if a student submits an assignment late but not
that late when compared with the worst student in the class,
the significance of this late submission is also low. Formally,
Submission Deviant is defined as below.

Definition 4 (Submission Deviant dc,s,i): The Submission De-
viant of the ith assignment submission of student s in course
c is defined by the formula below.

dc,s,i =





∆c,s,i

max
s′∈S

+
c,i

|∆c,s′,i|
∆c,s,i ≥ 0

∆c,s,i

max
s′∈S

−
c,i

|∆c,s′,i|
∆c,s,i ≤ 0

(4)

By the definition, normal and late submissions have positive
and negative submission deviants respectively.

Finally, Relative Assignment Submission Time (RAST) is
defined as the average submission deviant over all assign-
ments of a course for each student.

Definition 5 (Relative Assignment Submission TimeRASTc,s):
Given course c and student s, the Relative Assignment Sub-
mission Time (RAST) is defined as below.

RASTc,s =
1

nc

nc∑

i=1

dc,s,i. (5)

Relative Assignment Submission Time (RAST) reflects the
average distance between a student’s assignment submission
time and the corresponding deadline, while using peer as-
signment submission information to eliminate differences in
time limits and difficulty levels of assignments. Compared
with Relative Assignment Submission Time (RAST), As-
signment Submission Time (AST) in Definition 2 does not
consider peer assignment submission information.

Lemma 1: Given student s in course c and the Relative
Assignment Submission Time RASTc,s, RASTc,s ∈ [−1, 1].
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Table 1: Courses in The Experiment

Course code Course title
CSC1001 Programming Methodology
CSC1002 Computational Laboratory
CSC3001 Discrete Mathematics
CSC3002 Programming Paradigms
CSC4020 Fundamentals of Machine Learning
EIE2050 Digital Logic and Systems
ERG2050 Introduction to Data Analytics
FIN2020 Foundation of Finance
MAT2002 Ordinary Differential Equations
MAT2007 Elementary Real Analysis II
MAT2040 Linear Algebra
MAT3007 Optimization
MAT3040 Advanced Linear Algebra
MAT3253 Complex Variables
STA2001 Probability and Statistics I
STA3010 Regression Analysis
STA3020 Statistical Inference
STA3100 Advanced Statistics

Proof. The proof is straightforward.

Students who are always submitting assignments before class-
mates (and ahead of the deadlines) will have an RAST of
1, while students who are always missing the deadlines and
are the last one to submit assignments have an RAST of -1.
The fixed range of [−1, 1] provides the minimal and maxi-
mal values of RAST, which can make the data analysis more
convenient.

5. RESULTS
5.1 Datasets
The anonymous data used in this paper were collected from
a university in China in the Fall 2020 semester and the
Spring 2021 semester. Note that all data collection and us-
age in this project have been approved by the university
management. To protect students’ privacy, all student IDs
were encrypted and processed into hash codes, with other
data related to a student being linked by the corresponding
hash code. The data came from 20 undergraduate courses
(15 in the Spring 2021 semester and 5 courses in the Fall
2020 semester). As shown in Table 1, these courses covered
multiple topics on Computer Science (CSC), Math (MAT),
and Statistics (STA). MAT2040 and MAT3007 were offered
in both semesters. We collected the deadline for each as-
signment in a course and then the submission time of each
assignment for each student from the LMS system “Black-
board”. In all the courses, students received letter grades
from A to F at the end of the courses. The corresponding
relationship between letter grades and numerical grades is
shown in Table 2. The proportions of different grades in dif-
ferent courses were not exactly the same, but the differences
were not very significant due to the grading quality control
of the university. Many courses had the policy of not accept-
ing submissions of 4 or more days late. For the simplicity
of data reprocessing, we considered missing assignments as
3-day late. These samples only account for 4.2% of all the
5679 samples.

Table 2: Corresponding Relationship between Grades and
Numeric Grades

Letter grade A A- B+ B B- C+

Numerical grade 4.0 3.7 3.3 3.0 2.7 2.3

Letter grade C C- D+ D D- F

Numerical grade 2.0 1.7 1.3 1.0 0.7 0

Table 3: Correlation Coefficient between RAST/AST and
Numeric Grades

course enrollment AST RAST

MAT3253 (21 spring) 76 0.69 0.73

MAT3007 (21 spring) 150 0.71 0.73

MAT2002 (21 spring) 212 0.56 0.72

CSC1001 (21 spring) 1037 0.39 0.69

CSC3001 (20 fall) 301 0.47 0.67

MAT2040 (20 fall) 452 0.51 0.65

MAT2040 (21 spring) 184 0.59 0.63

STA2001 (21 spring) 818 0.53 0.62

MAT2007 (21 spring) 107 0.54 0.61

CSC4020 (21 spring) 103 0.45 0.60

MAT3007 (20 fall) 343 0.41 0.58

CSC1002 (21 spring) 930 0.38 0.57

EIE2050 (20 fall) 121 0.45 0.57

CSC3002 (20 fall) 151 0.32 0.54

ERG2050 (21 spring) 82 0.46 0.52

STA3010 (21 spring) 217 0.48 0.46

STA3100 (21 spring) 100 0.27 0.35

STA3020 (21 spring) 100 0.36 0.32

FIN2020 (21 spring) 157 0.25 0.29

MAT3040 (21 spring) 56 0.21 0.25

5.2 Correlation with Academic Performance
Many previous studies showed that assignment submission
is correlated with academic performance. We calculated the
Pearson correlation between students’ Relative Assignment
Submission Time (RAST) and their course numeric grades
across 20 courses. As a comparison, we also calculated
the Pearson correlation between the corresponding Average
Submission Time (AST) and the course numeric grades. The
results are shown in Table 3 (sorted by the correlation coeffi-
cient of RAST). The second column of the table is the course
enrollment number, the third column is the AST correlation
coefficient, and the fourth column is the RAST correlation
coefficient. The correlation coefficients between RAST and
course grades are higher than that of AST across 18 courses.
The p-values of all the correlation coefficients in Table 3 are
all well below 0.005, which shows that the correlation coef-
ficients are statistically significant [9].

5.3 RAST Distribution
In order to show the different distributions on RAST of high
and low course grade students, we selected two sample sets
from all the data in the Fall 2020 semester of our dataset,
one with grades greater than or equal to A- (sample size
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438), and the other with grades less than or equal to C+
(the sample size 208). Figure 1 shows the distribution on
RAST of samples with grades ≥ A- (in blue) and the distri-
bution on RAST of samples with grades ≤ C+ (in grey) in
Fall 2020. The data of the two sets came from five courses
(CSC3001, CSC3002, MAT2040, MAT3007, and EIE2050)
in Fall 2020. For samples with higher grades (in blue), the
RAST values of 79% samples are greater than 0, and 13%
samples are greater than 0.25. For samples with lower grades
(in grey), the RAST of the 75% samples are less than 0, 39%
samples are less than -0.25, and 19% samples are even less
than -0.5. We can see that students with high grades have a
higher probability of having high RAST, whereas students
with lower grades have a higher probability of having low
RAST. We did a similar experiment on Spring 2021 data
(The two sample sets are of size 1422 and 705 respectively),
and the results are shown in Figure 2. The distributions are
similar to those in Figure 1.

5.4 Predicting Academic Performance
In this experiment, we used students’ RAST and some other
attributes as features in logistic regression models to pre-
dict their academic performance. More precisely we pre-
dicted whether a student will have a struggling performance
(course grade ≤ C+). The data used in our experiments
came from 20 courses. For each sample {x, y}, x is a vector
consisting of 4 features, including the RAST in the course,
average GPA in previous semesters, year in university, and
the school (in one-hot coding). y = 1 if grade ≤ C+, or
otherwise y = 0. Note that we used a mix of data from
different courses because the grading criteria for each course
are not very different and RAST is in the range of -1 to
1. We randomly divided the data into a training set and
a test set according to the ratio of 4:1. We used the cross
entropy loss function for Logistic Regression training in or-
der to avoid overfitting. The total number of samples is
5697, with 15.6% of them being positive samples (y = 1).
Since the data is imbalanced, we experimented both with
and without the “balanced” mode. As discussed in the Pre-
liminary (Section 3), the “balanced” mode can improve the
recall while sacrificing the precision. All experimental re-
sults are averaged after ten repetitions. At the same time,
we also tried replacing RAST with AST and conducted ex-
periments for comparison. The results are shown in Table 4.
In the unbalanced mode, RAST is better than AST on pre-
cision (0.80 vs. 0.68), while AST is better than RAST on
recall (0.49 vs. 0.44). The two methods are tied on f1-score.
In the “balanced” mode, however, RAST is better than AST
on all the three measures (precision, recall and f1-score).

Furthermore, in order to evaluate the feature importance of
RAST, we also repeated the above experiment without using
RAST as a feature. The results (with standard deviation
values) are shown in the Table 5. Compared with the results
using RAST, the f1-score decreased by 28% (0.57 vs. 0.41)
with the “unbalanced” mode, and the f1-score decreased by
0.25% (0.68 vs. 0.51) with “balanced” mode.

5.5 Application of Half Semester Data
In real-life applications, it is important to detect at-risk stu-
dents long before the semester is over. Therefore, in this
experiment we used only the data from the first half of the
semester to perform the training. We repeated the same ex-

Figure 1: RAST Distributions of Fall 2020 Data

Figure 2: RAST Distributions of Spring 2021 Data

Table 4: Results of the Logistic Regression Models (with stan-
dard deviation values in the parenthesis)

RAST “unbalanced” mode “balanced” mode

precision 0.80 (± 0.05) 0.56 (± 0.04)

recall 0.44 (± 0.02) 0.85 (± 0.03)

f1-score 0.57 (± 0.01) 0.68 (± 0.01)

AST “unbalanced” mode “balanced” mode

precision 0.68 (± 0.06) 0.53 (± 0.03)

recall 0.49 (± 0.02) 0.76 (± 0.04)

f1-score 0.57 (± 0.03) 0.62 (± 0.04)

Table 5: Results of the Logistic Regression Models without
Using Submission Time Features

“unbalanced” mode “balanced” mode

precision 0.63 (± 0.04) 0.38 (± 0.02)

recall 0.31 (± 0.05) 0.76 (± 0.04)

f1-score 0.41 (± 0.03) 0.51 (± 0.04)
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Table 6: Results of the Logistic Regression Models with Half
Semester Data

RAST “unbalanced” mode “balanced” mode

precision 0.76 (± 0.07) 0.52 (± 0.02)

recall 0.41 (± 0.03) 0.83 (± 0.05)

f1-score 0.53 (± 0.04) 0.64 (± 0.02)

AST “unbalanced” mode “balanced” mode

precision 0.62 (± 0.02) 0.52 (± 0.01)

recall 0.45 (± 0.03) 0.71 (± 0.02)

f1-score 0.33 (± 0.02) 0.56 (± 0.02)

periments as in the previous section, except that only the
assignment data from the first half of the semester are used
to train the prediction models. The results (with standard
deviation values) are shown in Table 6. We can see that
only using half semester data, models with RAST can still
achieve better results than models with AST. In unbalanced
mode, the f1-score of RAST is 61% better than that of AST
(0.53 vs. 0.33). In the balanced mode, the f1-score of RAST
is 14% better than that of AST (0.64 vs. 0.56). We notice
that for RAST the f1-scores are only slightly worse than the
original experimental results in Table 4 (0.53 vs. 0.57 for
“unbalance” mode and 0.64 vs. 0.68 for “balanced” mode),
even though using half amount of the data. Our experimen-
tal results inspire us to use our method to predict students
who are likely to be struggling in the course halfway through
the course, which allows us to take steps early to provide as-
sistance to these students in need.

Moreover, we conducted additional experiments on individ-
ual courses, with all experimental settings unchanged. Ex-
perimental results show that our method can achieve stronger
results in some individual courses, including EIE2050 (0.86
f1-score), CSC3001 (0.81 f1-score), and CSC3002 (0.80 f1-
score) of Fall 2020, as well as MAT3040 (1.00 f1-score),
MAT3007 (0.81 f1-score) and STA3020 (0.79 f1-score) of
Spring 2021. The f1-score of other testing courses are below
0.79. See the appendix for the complete results.

6. DISCUSSION
Studies have shown that students tend to delay assessment
submissions until deadlines approach [1, 3]. Our data also
indicate that more than 60% of students did not submit
assignments until the last 24 hours before the deadlines. The
submission distribution may vary in different courses due to
the assignments’ difficulties and the students’ average level.
Hence, AST reflects limited information about the objectives
of students. RAST takes other students in the same course
into consideration. The performance of RAST better than
the AST manifests that RAST is a more general feature to
estimate whether a student’s assignment submission time is
in a normal stage.

We have considered the circumstances that students submit
their assignments after the deadlines. Even though late sub-
missions receive heavy penalties on grading, students may
be overwhelmed with the workload or forget to submit as-
signments, causing slightly late submissions. However, the
assignments usually account for a limited proportion of the

final grade. By finishing the assignments, students practice
a review and raise the chance of getting a good mark in
the final exam. In this sense, late submissions are better
than making no submission, and late submissions contain
valuable information. Compared with the general regular-
ization, RAST divides submissions of the same course into
two groups (late and normal) to capture the information
from late submissions.

In Table 3, three STA courses attain low correlation val-
ues between RAST/AST and course grades. We conjecture
that course difficulty and assessment composition may influ-
ence the correlation. For example, STA3010, STA3100 and
STA3020 are all advanced statistics courses. The exams are
difficult, so that their final exam scores are dominant in the
course grades. For such courses, assignment submission time
may not be sufficient to trace students’ learning status be-
cause besides the assignments students still need to spend a
lot of time reviewing and understanding the course contents.
In contrast, STA2001 the elementary statistics course (this
university set up statistics course codes from 2000 instead
of 1000), gains a much higher correlation coefficient between
RAST and course grades.

7. LIMITATIONS AND FUTURE WORK
In this paper, we studied assignments finished offline and
submitted online through LMS. Since in such a setting we
cannot collect the time the students start doing the assign-
ments, the submission time may not always reflect students’
study attitudes. For example, a student may complete an
assignment early, but submit it close to the deadline.

Although we mentioned in the paper that the grading stan-
dards of the courses included in the data used in this paper
are not very different, in other scenarios, if the evaluation
standards of different courses are very different, it may be
necessary to consider the difference on grading schemes be-
tween courses when using Relative Assignment Submission
Time (RAST) on multiple course data. We leave the study
of such scenarios to future work.

8. CONCLUSION
Students’ assignment submission time is an important fac-
tor on study psychology and behavior analysis. In this pa-
per, we proposed a new indicator using peer assignment sub-
mission information called Relative Assignment Submission
Time (RAST). Our experiments on real-life data showed
a high correlation coefficient between RAST and students’
academic performance. Using relative assignment submis-
sion time as a feature, we built a machine learning model to
predict students who are likely to suffer from poor perfor-
mance in courses. The experimental results show that the
prediction ability of the model is significantly improved by
adding RAST as a feature. We also used half semester data
to train prediction models which allow us to identify stu-
dents who may be struggling in the course earlier and make
it easier for schools and teachers to take relevant measures
in time to help these students.
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APPENDIX
Table 7: F1-Score for All Courses in Section 5.5

course f1-score

MAT3040 (21 spring) 1.00

EIE2050 (20 fall) 0.86

MAT3007 (21 spring) 0.81

CSC3002 (20 fall) 0.80

CSC3001 (20 fall) 0.79

STA3020 (21 spring) 0.79

FIN2020 (21 spring) 0.75

MAT2002 (21 spring) 0.67

CSC4020 (21 spring) 0.67

CSC1001 (21 spring) 0.65

MAT2040 (20 fall) 0.65

MAT3253 (21 spring) 0.65

STA2001 (21 spring) 0.64

CSC1002 (21 spring) 0.63

STA3010 (21 spring) 0.63

STA3001 (21 spring) 0.61

MAT2007 (21 spring) 0.59

MAT3007 (20 fall) 0.53

MAT2040 (21 spring) 0.43

ERG2050 (21 spring) 0.31
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ABSTRACT
Curriculum research is an important tool for understanding
complex processes within a degree program. In particular,
stochastic graphical models and simulations on related cur-
riculum graphs have been used to make predictions about
dropout rates, grades, and degree completion time. There
exists, however, little research on changes in the curriculum
and the evaluation of their impact. The available evaluation
methods of curriculum changes assume pre-existing strict
curriculum graphs in the form of directed acyclic graphs.
These allow for a straightforward model-oriented probabilis-
tic or graph topological investigation of curricula. But the
existence of such graphs cannot generally be assumed. We
present a novel generalizing approach in which a curricu-
lum graph is constructed based on data, using measurable
student flow. By applying a discrete event simulation, we in-
vestigate the impact of policy changes on the curriculum and
evaluate our approach on a sample data set from a German
university. Our method is able to create a comparably effec-
tive and individually verifiable simulation without requiring
a curriculum graph. It can thus be extended to prerequisite-
free curricula, making it feasible to evaluate changes to flex-
ible curricula.

Keywords
Curriculum change, curriculum graph, student flow, discrete
event simulation, degree completion time

1. INTRODUCTION
Curriculum Analytics is a recognized tool in Educational
Data Mining to study the structure of curricula at a uni-
versity [18]. One goal is to examine the structure of a cur-
riculum and its influence on students’ study progress. Of-
ten a graphical representation of the curriculum is formed,
which is then called a curriculum graph, where vertices rep-
resent courses and edges a type of dependence, for example,
a strict prerequisite. Due to the frequency of curricula with
strict prerequisites, a commonly considered graph type is

the directed acyclic graph (DAG) (e.g., [1, 25]), where edges
represent prerequisites between courses. For graphs of this
type, probabilistic algorithms like Bayesian Networks can
be applied to predict e.g. grades and dropout rates [22].
Furthermore, directed curriculum graphs offer a strict logic
according to which students are guided through their degree
program. This can be exploited for a discrete event simula-
tion to simulate student flow, predict the degree completion
time (DCT) [9, 8, 19], and investigate policy changes on
the curriculum [14]. A discrete event simulation models the
operation of a complex system in discrete time steps. Pro-
cesses in the system are described by events, which can only
take place at discrete time steps. This allows, for example,
to simulate a redesign of the system [5]. In the context of
degree programs, events are often modeled as courses or the
corresponding exams, and time steps as semesters.

But not every degree program is based on a curriculum that
can be translated into a DAG to be used in a discrete event
simulation. For instance, such strict curricula hardly exist in
Germany. In order to include a flexible curriculum and its
influence in predictive methods, the relationships between
courses must be obtained from the data. In Raji et al. [17]
and Backenköhler et al. [3], grade correlations were used to
form graphs of a prerequisite-free curriculum. The results
are undirected cyclic graphs (UCG) that can be used for vi-
sualization and grade predictions using Markov approaches
[21]. However, Markov-Networks suffer from the curse of di-
mensionality and thus small data set sizes, like the one we
will introduce, are insufficient. Further, the resulting graphs
contain no information about the actual order in which stu-
dents take courses. To overcome these problems, one could
try to use a discrete event simulation from the context of
a DAG and generalize it to a non-strict curriculum using
a data-generated curriculum graph. But a UCG does not
offer a strict student transition logic as a DAG offers, there-
fore, it is not clear how students can be simulated through
their degree program. Existing approaches that do not use
a DAG, are limited to supply-demand modeling [20, 13] in
which the supply capacities of courses and teachers and the
demand of the students are simulated. As far as we know,
all approaches using discrete event simulation to simulate
student flow are lacking a data-driven evaluation of the sim-
ulation accuracy for individual students.

We model a data-driven directed cyclic curriculum graph
(DCG) using time-dependent student flow, comparable to
curriculum mining approaches [15, 7], and use the directed
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Table 1: Data Set Variables
Variable Description

ID Anonymized student ID
Course Course name

Exam - Grade Grade in range 0− 100
Exam - Time Exam’s term
Exam - Try Attempt number

Exam - Credits Credits for passing

edges to simulate a student’s transition from one course to
the next. Thus, we get a logic comparable to that of strict
curricula (DAG), but we can simulate and analyze flow in
non-strict curricula (UCG). In this work in progress study,
we build a generalizing approach to simulate student flow
on a curriculum with no given prerequisite relations. This
allows for simulating new policy changes, for example, in-
creasing the proposed workload in a semester, or changing
the frequency of exams. Further, it gives us the advantage of
labeled data, and therefore makes individual error analysis
possible, as our first results show. The main contributions
of our paper can be summarized as follows:

1. Building a directed student flow graph using a small
data set of an Applied Computer Science program.

2. Building a student flow-based logic and running an
individually verifiable discrete event simulation of the
DCT to investigate policy changes to the curriculum.

2. DATA
The data set consists of examination data from the Bache-
lor’s program Applied Computer Science at the Ruhr Uni-
versity Bochum. The years 2013-2020 were considered, as
there has been no policy change to the curriculum during
this period. Each entry in the data set consists of exam-
related variables described in Table 1. The degree program
has a workload of 180 credit points. Each of these credits
corresponds to a time commitment of 30 hours. In order
to complete the program, with a standard length of study
of 6 semesters, 30 credits must be completed each semester.
Of the 180 credits, 117 credits are in 19 compulsory courses
that must be taken to earn the degree. We limit ourselves
to these compulsory courses, as the remaining credits can
be obtained from a wide range of available elective courses
so that the data becomes too sparse. Besides the require-
ment to pass the courses, there are no other requirements
to these courses, such as a fixed sequence or prerequisites,
which is common in Germany. We were able to process data
of a total of N = 405 students. These are students who are
currently attending the university. Therefore, the number
of students who have passed the compulsory courses for a
given semester is decreasing significantly, as Table 3 shows.
Here, the semesters are indicated in the row ’Term’ and the
number of students who have passed all courses from the
associated term is indicated in the row ’No. Students’. We
see that only 33 students have passed all courses of the 5
semesters. In the future, the data set will be expanded to
include students who completed or dropped out of the pro-
gram. The grades in the degree program are given in per-
centages from 0 to 100. An exam and thus the associated
course is considered passed when 50 percent is achieved. We
will look at the grades in increments of 10. In this way, we

Table 2: Lowest Pass Rate Courses Regarding Group G∗

Course Name Pass Rate
Mathematics II 0.909

Web-Engineering 0.818
Operating Systems 0.818
Database Systems 0.757

try to counteract the sparsity of the data and at the same
time ensure a lower deanonymization risk. The grading scale
thus goes from 1 to 10 and an exam is considered passed if
the student receives a grade of 6 or higher. In terms of
simulation, we will focus on the 33 students from Table 3
who successfully passed all compulsory courses and call this
group of students G∗ in the following.

2.1 Data Privacy and Ethics
An important issue in the use of personal data in Germany
and the European Union is compliance with the applica-
ble data protection law (General Data Protection Regula-
tion (GDPR) [23]). The implementation of the GDPR on
our data set was carried out by a third-party university
office in close cooperation with the data protection officer
of the University. The anonymization includes name en-
cryption, omission of demographic information (e.g., origin
and gender), and aggregation of courses that are too small
(N < 10) into their upper course categories (e.g., specializa-
tion courses). All grades were randomized with a stochastic
noise z ∈ [−5, 5] in the 0-100 percentage scale. This ensured
that the anonymity of individuals was adequately protected
when processing the data according to the GDPR. Ethically,
the implementation of the procedures in practice regarding
the following methodology has not yet been clearly formu-
lated. The fairness of the methods still needs to be ensured
to prevent discrimination against individuals or groups at
all costs.

2.2 Pass Rates, Workload and Retake Bonus
In the following, we present statistical insights of our data
set that influenced the later process of simulation. At first,
we define the Degree Completion Time (DCT) as the num-
ber of semesters taken to pass all 19 compulsory courses.
The DCT will be the output value of the simulation, which
will be called DCT simulation (DCT-SIM) in the follow-
ing. Pass rates of a student should be of great influence
for the DCT value. Nevertheless, our considered group G∗

is so good that we can observe only very high pass rates,
as Table 2 indicates. This table shows the 4 courses in
which group G∗ had the lowest pass rates on the first try
of an exam. A larger data set would probably show more
representative values. However, we aim to ensure that our
methodology is also applicable to an extended data set with-
out restrictions. In contrast to the pass rates of group G∗,
the workload has an impact on the DCT of the observed
group. Table 3 shows that in each semester different num-
bers of courses are proposed by the curriculum, where the
courses also have unequal workloads. This is also reflected
in the data. In Table 3 the average workload of the students
of G∗ in the first 5 semesters was calculated and compared
to the workload proposed by the curriculum. For example,
3 compulsory courses worth 23 credits are recommended in
the third semester and 2 courses worth 13 credits in the
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Table 3: Basic Statistics Regarding Terms

Term 1 2 3 4 5
No. Courses 5 5 3 4 2

Workload 27 30 23 24 13
No. Students 185 80 55 35 33

Mean Workl. G∗ 26.70 30.00 22.24 23.18 6.42

fifth semester. Unlike semesters 3,4 and 5, no courses other
than compulsory courses are recommended in the first and
second semesters. In semester 1, this creates a time deficit
of 3 credits. Even the high-performing students from group
G∗ perceive this time delay with an average workload of
26.697 and have to compensate it later by doing more work
or achieving a higher DCT. Furthermore, we will address
the change of grades when students retry a failed exam. An
exam may be attempted a total of three times before a stu-
dent is disenrolled. Since our data set is small, we decided
to determine the average grade change from the first to the
second take of an exam. The difference is added as a bonus
to the grade of the first attempt to simulate the grade of the
second attempt. This works under the assumption that the
students perform similarly much better in all courses if they
take an exam for the second time. The resulting global aver-
age is an improvement of 2.622 out of 10 using all available
student data.

3. METHODS
We want to find a simulation strategy that matches the De-
gree Completion Time (DCT) distribution of a given student
group. In addition, it should be possible to evaluate policy
changes to the curriculum using the DCT-SIM. In particu-
lar, we want to simulate group G∗. The DCT-SIM should
remain as generalizable as possible for future changes in the
data set. Therefore, we use the data of all available 405
students in each step of the DCT-SIM of group G∗. For
example, we train prediction methods course by course, so
we can use more data in the first semester than in the last
semester. We have divided our methodology into three sec-
tions: Student Flow, DCT-SIM, and Policy Changes. The
Student Flow indicates the transition rates of students from
one semester to the next and forms the basis of our approach.
The DCT-SIM is formulated using a data-driven logic based
on the Student Flow, grades, and workload of all available
students in the data set. We pass a group of students to
our method and get the DCTs back as a distribution. The
Policy Changes show the use of our DCT-SIM even for small
groups, such as G∗.

3.1 Student Flow Network
Since no strict course prerequisites are given in the curricu-
lum and thus no directed relationships between two courses,
we must model these connections in a data-driven way. The
flow network is a directed cyclic graph Gf = (Vf , Ef ,Wf ),
where Vf , Ef , and Wf are the sets of vertices, edges, and
edge weights, respectively. Each vertex v ∈ Vf represents a
course. A directed edge e ∈ Ef is drawn if students traverse
from one course in one semester to another different course
in the next semester. The percentage of students across
all semesters who are in a vertex in a semester and now
move along an edge to the next vertex in the next semester
corresponds to the edge weight w ∈ Wf . The sum of the

outgoing percentage weights equals 1. A student is usu-
ally located on several vertices at the same time within one
semester depending on the number of courses he/she is at-
tending. Figure 1, generated using NetworkX [10], shows
the complexity of the flow. Here the courses are arranged
as recommended by the curriculum. From left to right in
semester ascending order the courses in one column belong
to one semester. For example, the first column corresponds
to the first semester. The course vertex size corresponds to
the number of students that managed to finish the course.
The graph is highly connected (329 of 361 possible edges) be-
cause in a lot of courses students violate the recommended
curriculum. The darkness and thickness of edges indicate
the weight of the flow. If an edge eu,v ∈ Ef between two
vertices u, v ∈ Vf corresponds to the weight value wu,v = 1,
it means that all students who attended course u in one
semester attended course v in the next semester. The edges
in Figure 1 suggest that the flow for the majority of students
is from left to right according to the recommended curricu-
lum. From the later semesters, when the amount of data
decreases, the flow starts to become more chaotic, for ex-
ample students move from right to left. This suggests that
the observed students adhere less to the study plan as they
progress in the degree program.

3.2 Degree Completion Time Simulation
The DCT-SIM consists of three steps: Initialization, course
selection, and pass/fail prediction. The DCT-SIM of a stu-
dent is completed, when all 19 courses are passed. In one
DCT-SIM run, we sample every student of group G∗ exactly
once.

3.2.1 Initialization
We initialize each student of G∗ by having him/her attend
a random subset of all the courses recommended for the
first semester up to the workload that was extracted from
the data of that specific student. If a student has a work-
load in the first semester, that exceeds the workload of all
first semester courses, we assign second semester courses
randomly until the workload is filled. We identified a sta-
tistically significant correlation between the grades of the
courses in the first semester. We intended to include the
correlation via a multivariate Gaussian distribution in the
initialization. Unfortunately, the grade distributions of the
courses are multi-modal. Therefore, we sample from the
grade combinations of the first semester given by the data
of the specific student that gets simulated. In that way, we
can incorporate the grade correlations of the first semester
courses as well.

3.2.2 Credit Workload and Course Selection
Various factors play a role when a student chooses the work-
load for an upcoming semester [12]. When simulating stu-
dents from group G∗, we draw the workload from the data of
the specific student that gets simulated. If a workload of 0 is
drawn, it is randomly re-drawn from the normal distribution
with the mean and the standard deviation of the workloads
of other students from group G∗ in that semester. This
happens, for example, when a student has not taken any
courses in a semester. If the DCT-SIM leads to semesters in
which no data are available, a workload of 15 credits is set.
Next, we need to select courses to fulfill the chosen work-
load. Courses are randomly drawn based on the student

472



Figure 1: Student Flow based Curriculum Graph Gf

flow graph Gf as follows. First, the courses that have not
been passed before are selected. Given the remaining work-
load, we draw courses based on the courses already passed
using the graph Gf until the workload is reached. For this
purpose, we go through the passed courses in random order.
For each passed course, we draw one course from the not yet
passed neighboring courses from Vf , which are connected to
the current course via edges from Ef . The associated transi-
tion rates Wf are used in the drawing process as transition
probabilities. If a course is selected, it can no longer be
drawn over other courses.

3.2.3 Pass/Fail Prediction
Grade prediction depends on the quality of the data that is
available. Group G∗ consists of students who have very low
failure rates, as we have shown above. To examine which
is a good prediction method for all data in our data set,
we want to obtain a subset that is as representative as pos-
sible. We consider student groups G(t), which contain all
students who attempted all courses from term t. This gives
us the cardinalities |G(1)| = 245, |G(2)| = 111, |G(3)| = 86,
|G(4)| = 56, and |G(5)| = 50. To test the accuracy of dif-
ferent methods, we calculate the average accuracy values
over all terms t. In addition, we limit ourselves to the la-
bels ”passed” and ”failed”. As a baseline, we use the pre-
diction that always predicts the most frequent class ’passed’
(72.2%) and compare it with the following methods. The
first method ’Global’ draws ’pass’ with the average pass
rate as probability, independently of course and student.
The method ’Course’ uses course-specific pass rates and the
method ’Student’ uses student-specific pass rates. In addi-
tion to these simplified methods, we use Naive Bayes and
Decision Tree, implemented using scikit-learn [16], based on
the promising results in past studies [2]. Balanced accuracy
(bACC) defined as

bACC :=
1

2

(
TP

TP + FN
+

TN

TN + FP

)
,

is used as a measure of accuracy, where TP/FP and TN/FN
are the true/false positives and true/false negatives, respec-

tively [6]. In addition to predicting new grades, grades must
also be predicted when a student repeats a course exam. We
have seen that repeating students perform better on aver-
age in the second attempt of an exam. If a student fails an
exam, the grade of the next try is predicted to be the old
grade plus a grade bonus, which equals the average perfor-
mance gain of 2.622. To fit the grade scale, the grade bonus
is rounded up to 3. It is further assumed that the bonus
applied from the second to the third attempt does not differ
from the bonus applied from the first to the second attempt.

3.2.4 DCT Simulation Assumptions
The following summarizes the assumptions used for the DCT-
SIM.

1. All courses can be attended every semester and all stu-
dents attend courses every semester.

2. Workload and first semester grades are drawn from the
data.

3. If a student’s drawn workload is 0, we draw a workload
from the normal distribution given the mean and the
standard deviation of the other student’s workloads.

4. If we need to draw workloads without a data basis, we
set them to 15.

5. Students do equally better in all courses when they
retake an exam (grade bonus = 3).

6. DCT-SIM finishes when every course is finished.

3.3 Policy Changes
Policy changes to the curriculum are a powerful tool to
change student behavior. Its use should be all the more
careful. Our DCT-SIM offers the ability of an approximate
evaluation of these sensitive changes. First, we consider the
workload. Since the proposed number of courses in the first
semester results in a workload of 27 credits, we examine the
effect of changing the workload. We simulate the impact of
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increasing the workload by exactly one course, which cor-
responds to a minimum of 5 credits. Second, we consider
the course exams. In the current curriculum, one exam per
semester is offered. This is different in other degree pro-
grams where there are two exams every two semesters or
even two exams every semester. This means that students
may be able to continue their studies without delay even
if they do not pass the first exam. The policy changes are
summarized as follows:

1. ’Workload’: 5 credit raise of workload in the first term,

2. ’Exam (2-2-2)’: Every exam takes place twice every
term,

3. ’Exam (2-0-2)’: Every exam takes place twice only ev-
ery two terms.

3.4 Evaluation Metrics
As in Fiallos et al. [9], we use the mean DCT to compare
two DCT distributions to benchmark our results. The au-
thors additionally used a Mann-Whitney U test to evaluate
the statistical significance of the simulated DCT distribu-
tion. The test can support the alternative hypothesis that
two samples correspond to different probability distributions
rejecting the null hypothesis that the corresponding distri-
butions are equal. Since the p-value is defined as the con-
ditioned probability of the observed statistic conditioned on
the null hypothesis, a high p-value fails to reject the null hy-
pothesis but does not necessarily accept it [24]. Therefore,
we will instead simulate individuals and thus introduce a
DCT based L1 error measure using the ground truth DCT
as

EDCT :=
1

|S|

|S|∑

i=1


 1

|G∗|

|G∗|∑

j=1

|DCTjsimulated −DCTjdata|



i

,

where |S| corresponds to the number of DCT-SIM runs. In
the following, we set |S| = 100.

4. RESULTS
4.1 Pass/Fail Prediction and DCT Simulation
Since in the baseline method we always assume label ’pass’,
the true positives (TP) correspond to the actual pass rate
and the false positives (FP) to the actual failure rate across
all courses in the degree program. Table 4 shows the pass/fail
prediction results of the various methods. For the baseline
method the true positive percentage (TP) is high reflecting
that the pass rate across all courses in the degree program
is 0.722. The balanced accuracy (bACC) is 0.5. We note
that the accuracies of the Global (0.555) and Course (0.553)
methods are not significantly greater than the baseline. On
the other hand, the Student method (0.608) achieved the
best values for true negative and false negative percentages.
The Naive Bayes method achieved the highest true positive
percentage, while the Decision Tree method had the best
overall bACC with 0.648 and the best false positive percent-
age. Therefore, we used the Decision Tree method in the
DCT-SIM.

Figure 2 shows the DCT distributions of the DCT-SIM in
light grey and the data in dark grey. The bars indicate the

Figure 2: Evaluation of DCT Simulation

average percentage values achieved over a total of 100 sim-
ulation runs. The DCT distributions of the simulation and
the data reveal similar values in terms 4 and 5. In the other
terms, when the data of the G∗ group are sparser, since most
of the students already completed all courses, the accuracy
of the DCT-SIM also decreases noticeably. However, there
is a small error of 0.087 between the mean values of the DCT
distributions with a p-value of 0.897, which is comparable
to Fiallos et al. [9]. According to our DCT based L1 er-
ror measure, we reach a value of EDCT = 0.926. This value
corresponds to an average individual DCT error of 0.926
semesters.

4.2 Policy Changes
In the DCT simulations of the policy changes, for the sake
of clarity, we have chosen a cumulative representation of the
DCT distributions in Figure 3. The two graphs in gray cor-
respond to the distributions of the data and baseline DCT-
SIM as shown in Figure 2. We see that the workload change
appears to be very effective, as the graph appears to be con-
sistently above that of the baseline DCT-SIM. It turns out
to be an improvement in the DCT means of −0.232. Thus,
this change leads to a shortening of the DCT. The minor
improvement of −0.035 by policy change ’Exam (2-2-2)’ is
only noticeable from term 6. In contrast, the policy change
’Exam (2-0-2)’ leads to a global increase of the DCT of 0.591.

5. DISCUSSION AND LIMITATIONS
We were able to show that student-dependent pass/fail pre-
diction using the groups G(t) performs better than the as-
sumption of a global pass rate or a course-specific pass rate.
Overall, it is worthwhile to use the existing student perfor-
mance data to increase accuracy.

Regarding the DCT-SIM, research in student flow simula-
tion lacks good evaluation methods. Evaluation methods
on the individual student level are missing, instead global
DCT or dropout distributions are compared with the ground
truth. This is due to the lack of use of labeled data and the
resulting loss of assignability of students to their simulated
counterparts. Using our generalizing approach, we were able
to obtain comparable mean DCT errors on a global scale. In
addition, through the intensive use of data, we were able to
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Table 4: Pass/Fail Prediction Methods Scores with 70:30 Train-Test Split

Score \Methods Baseline Global Course Student NB DT
TP 0.722 0.574 0.585 0.643 0.701 0.645
FP 0.278 0.223 0.226 0.182 0.143 0.124
TN 0.000 0.055 0.052 0.096 0.068 0.088
FN 0.000 0.148 0.137 0.079 0.087 0.143

bACC 0.500 0.555 0.553 0.608 0.617 0.648

Figure 3: Evaluation of Simulated Policy Changes

evaluate our DCT-SIM individually for each student from
group G∗. The error measure EDCT has shown that the
evaluation with an average individual misfit of 0.926 can
be quite high without having a globally large effect. This
results in the necessity to specify the goodness of fit of a
DCT-SIM not only on a global level in the form of a mean
DCT. We believe that a good DCT-SIM should be able to
simulate each student as accurately as possible. Otherwise,
a practical implementation of changes based on the observed
DCT-SIM could lead to unexpected dynamics and thus to
unfair conditions for an individual student. Policy changes
for a curriculum are a relevant use case for a DCT-SIM be-
cause a data-generating process is needed to produce results.
For our approach, we could identify two types of changes:
Additive policy changes and restrictive policy changes. The
former is characterized by changes in the frequency or ac-
celeration in time of exams. For example, an increase in
workload conditions the speed at which courses can be at-
tended. The latter type, under which the ’Exam (2-0-2)’
change falls, directly restricts the frequency of exams in ev-
ery second term. Our method was able to evaluate changes
in the first category very well. The policy changes ’Work-
load’ and ’Exam (2-2-2)’ show plausible results. In particu-
lar, ’Exam (2-2-2)’ equates to a global increase in pass rates
in our setting, due to the assumption of a grade bonus when
repeating an exam. Since we have shown that students from
group G∗ have very high pass rates, it makes sense that the
effect is small for this group.

The ’Exam (2-0-2)’ change appears to be leading to a global
extension of DCT. We have seen that the policy change
’Exam (2-2-2)’ behaves similarly to the baseline simulation.
Therefore, we conclude that the policy change ’Exam (2-0-

2)’ also behaves similarly to the policy change ’Exam (1-0-
1)’. We point out the step-shaped graph in Figure 3. Look-
ing at the number of courses per semester in Figure 1 and the
average semester workloads of group G∗ in Table 3, we see
that in semesters 1, 3 and 5 the average workload difference
from the recommended workload is higher than in semesters
2 and 4. Thus, the case occurs where a student has com-
pleted all subjects from semesters 2 and 4 in semester 6,
but is missing subjects from semesters 1, 3 and 5 that can-
not be completed until semester 7 or even 9. As a result,
few students finish in 6 or 8 semesters, as seen in Figure
3. This shows the still existing rigidity of our workload ap-
proach. We believe that predicting workload as a function
of courses, grades, and exam attempts, rather than deriving
it directly from the student being simulated, may lead to a
more robust DCT-SIM with respect to policy changes.

Awareness regarding algorithmic bias and fairness is emerg-
ing in the field of Educational Data Mining. Especially when
a model gets implemented in practice so that students are
affected in their learning environment, an identification of
bias and fairness of the data and methods used as well as
their resulting actions have to be assured [4, 11]. In addition
to the mentioned limitations of our method, we are aware
of the performance bias (i.e. we mainly consider successful
students) in the data used and would like to remove it in
the future by expanding and balancing our data set.

In terms of computational power, we observe a time con-
sumption for one non parallelized DCT-SIM of student group
G∗: |G∗| it · 0.714 s/it = 33 it · 0.714 s/it = 23.571 s, using
an Intel(R) Core(TM) i5-6200U CPU @ 2.3GHz processor.

With respect to the DCT mean, we were able to obtain a
comparatively well-fitting DCT distribution from our DCT-
SIM in which only student data were processed. The de-
pendence on the data offered us the ability to construct a
student flow based curriculum graph in a maximally flexible
study plan, perform an individual evaluation of the DCT-
SIM using the EDCT error measure and investigate and eval-
uate policy changes in a highly flexible curriculum. In this
sense, we were able to generalize existing approaches. In or-
der to implement our approach for university practitioners
in the future, we will conduct further research. The first
priority is the extension of the data set as well as achieving
high individual accuracy. An ethical analysis with the in-
volvement of student and teacher representatives is planned.
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ABSTRACT 
The National Council of Teachers of Mathematics (NCTM) has 

been emphasizing the importance of teachers’ pedagogical commu-

nication as part of mathematical teaching and learning for decades. 

Specifically, NCTM has provided guidance on how teachers can 

foster mathematical communication that positively impacts student 

learning. A teacher may have different academic goals towards 

what needs to be achieved in a classroom, which require a variety 

of discourse-based tools that allow students to engage fully in math-

ematical thinking and reasoning. Accountable or academically 

productive talk is one such approach for classroom discourse that 

may ensure that the discussions are coherent, purposeful and pro-

ductive. This paper discusses the use of a transformer model for 

classifying classroom talk moves based on the accountable talk 

framework. We investigate the extent to which the classroom Ac-

countable Talk framework can be successfully applied to one-on-

one online mathematics tutoring environments. We further propose 

a framework adapted from Accountable Talk, but more specifically 

aligned to one-on-one online tutoring. The model performance for 

the proposed framework is evaluated and compared with a small 

sample of expert coding. The results obtained from the proposed 

framework for one-on-one tutoring are promising and improve 

classification performance of the talk moves for our dataset. 

Keywords 
accountable talk framework, classroom discourse, one-on-one 

online tutoring, transfer learning. 

1. INTRODUCTION 
Productive classroom discourse is positively associated with stu-

dent learning [6,7,13,15] across multiple content areas, including 

reading comprehension [18], academic vocabulary learning [9] de-

velopment of collaborative reasoning [14], persuasive writing 

performance [1] historical reasoning [26], scientific argumentation 

[5], and mathematical reasoning [13]. Additionally, academically 

rigorous classroom discussions are explicitly promoted in mathe-

matical pedagogy [3,19] and in the Common Core State Standards 

[20] that guide teachers’ instructional practices. 

The oft-cited, common pattern of classroom talk, Initiation-Re-

sponse-Evaluation (IRE) [11] emerged in early research 

investigating the forms and functions of classroom talk [12]. This 

minimal unit of interactional exchange includes a teacher’s initia-

tion, then a student’s response, followed by the teacher’s evaluation 

of the response. The IRE pattern is most commonly noted in 

teacher-led lessons (i.e., direct instruction) which tends to be the 

default in many classrooms. The IRE pattern of classroom talk 

demonstrates a transmission style of instruction such that the 

teacher is in a position of authority and controls the content of the 

discourse as well as who engages in it [4]. Indeed, this pattern of 

monologic classroom discourse is still common in many class-

rooms despite research demonstrating the benefit of dialogic and 

reasoning-based discourse [6,15,17]. 

Dialogic discourse, on the other hand, aligns with Vygotsky’s [25] 

sociocultural theory stipulating that learning is more likely to occur 

when thinking is socialized, particularly within the range of a stu-

dent’s ability when provided with appropriate guidance (i.e., Zone 

of Proximal Development; ZPD). Interactions between teachers 

and students serve as a scaffold for knowledge acquisition during 

instruction [21,24]. A hallmark of this type of scaffolded, dialogic 

classroom discourse is the Accountable Talk framework [15].  
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2. ACCOUNTABLE TALK FRAMEWORK 
The Accountable Talk Framework divides teacher and student dis-

course into three broad categories (see Table 1 for definitions and 

respective examples): accountability to the community, accounta-

bility to accepted standards of reasoning, and accountability to 

knowledge [15]. Talk that is accountable to the community is char-

acterized as cutting across disciplines and “attends seriously to and 

builds on the ideas of others” [15, p. 286]. Accountability to stand-

ards of reasoning involves making logical and reasonable 

connections, explanations, and conclusions. Accountability to 

knowledge emphasizes sensemaking based on facts and authorita-

tive knowledge. The latter categories of discourse practices 

promoting accountability to standards of reasoning and knowledge 

are generally more discipline-specific.  

Table 1. Accountable Talk framework teacher and student talk moves definitions and examples 

Talk Moves Definition and Example(s) 

Teacher Talk Move 

Learning Community 

Keeping Together Keeping everyone together; prompting students to be active listeners and orienting students to each other. 

For example, turn to the student sitting next to you; what do you think; What did X just say the equation 

was?  

Relating Students Getting students to relate to other students’ idea; prompting students to respond to what a classmate said. 

For example, would someone like to add on to what X said; do you agree with Y that the answer is; does 

anyone understand how Z solved this problem?  

Restating Repeating all or in part of what a student said. For example, Student: the factors, Teacher: factors 

Content Knowledge 

Accuracy Pressing for accuracy; prompting students to make a mathematical contribution or use mathematical lan-

guage. For example, can you give an example of X; What’s another word for that? 

Rigorous Thinking 

Revoicing Repeating what a student said but changing the wording or adding to it; using at least a key mathematical 

word or idea from what the student said. For example, Student: it is x squared; Teacher: so, instead of a 

cube it will be squared. 

Reasoning Pressing for reasoning; prompting students to explain or provide evidence. For example, can you explain 

why you think this is the answer; why would you add two and not three? 

Student Talk Move 

Learning Community 

Relate to another stu-

dent 

Comment on or ask questions about another student’s idea or use another student’s idea to form your own 

basis. For example, I got the same answer as X; I was about to say what Y just said. 

Asking for more infor-

mation 

Ask for help in case confused or request more information about a math topic. For example, can you 

please explain this again; I did not understand this; Is this multiplication or division? 

Content Knowledge 

Making a claim Make a factual statement about a mathematical concept; list a step to arrive at an answer; make a mathe-

matical claim. For example, I got this answer by dividing the two numbers; X is the profit. 

Rigorous Thinking 

Providing evidence or 

explanation 

Provide the evidence or explanation for the mathematical claim or explain their thinking. For example, 

you cannot divide the number by zero as that will result in an infinite number; four multiplied by five 

gives me twenty. 

Prior research evaluating implementation and benefit of discourse 

using dialogic frameworks was conducted by transcribing and hand 

coding hours and hours of classroom audio or video recordings 

[22]. This method is labor intensive and time consuming thus mak-

ing it difficult to provide teachers with feedback on their 

implementations of academic discourse. Suresh and colleagues [22] 

used automatic speech recognition and machine learning to evalu-

ate teacher-student interactions using the Accountable Talk 

framework. The machine learning models trained as part of their 

TalkBack application showed promise as a medium to provide 

teachers with important feedback regarding their pedagogical prac-

tices. However, this work has only been applied to traditional 

classroom instruction. Therefore, less is known about the applica-

tion of the Accountable Talk framework in discourse occurring 

outside of the traditional classroom. The recent shift to hybrid or 

online learning necessitated by the COVID-19 pandemic, provides 

a rich opportunity to apply machine learning models to teacher-stu-

dent interaction in an online environment. The capability to 

evaluate academic discourse and provide feedback to teachers that 

may lead to improved student learning is particularly important 

given the concern over learning gaps being exacerbated by the pan-

demic [2].  

The present study builds on this work using the machine learning 

models developed by Suresh and colleagues to detect evidence of 

the Accountable Talk framework [15] in teacher-student interac-

tions in online, one-on-one tutoring. For the purpose of this study, 

we adopted the same talk moves outlined in Suresh [22]. We further 

refined our analysis by including moves that would be included in 

a one-on-one tutoring interaction and excluded those that could 

only occur in traditional, whole class settings. Specifically, talk 

moves related to accountability to the community were removed 

from data for the model to be re-trained for the proposed framework 

as they are focused on ensuring learners have a shared focus and on 

developing collegial interactions between students. Since there was 

only one student and one teacher in each tutoring session, no utter-

ances exemplifying these two talk moves were present in our data. 
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3. METHOD 

3.1 Participants 
The student population was recruited for online tutoring in summer 

and fall of 2019 from four high schools in the Broward school dis-

trict. Participants included 40 students who did not pass the Algebra 

1 course or were not successful on the end of course (EOC) exam. 

Tutoring was provided during school hours on school grounds in 

the summer or fall semester. Sessions were planned for up to 10 

hours, but the number of hours varied from 1 to 20 with a mean of 

5 hours of tutoring. Tutoring was conducted by credentialed math 

teachers with at least two years of experience in the Florida system 

to ensure that they were familiar with the targeted curriculum stand-

ards. Tutoring sessions were conducted online using Study Edge’s 

GoBoard video conferencing system which supports shared note-

taking (pen-casts). During the online tutoring sessions, both the stu-

dent’s and the tutor’s computer screens were recorded, which 

included an audio and video recording of their conversation. The 

audio recordings were later transcribed to obtain the student-

teacher discourse during the tutoring session. This study was ap-

proved by the Institutional Review Board and all participants in this 

study consented to the use of their data in accordance with APA 

guidelines. 

3.2 Data 
Three different data sets were used in this study. The first set was 

the talk moves labeled data available from prior research. The sec-

ond data set was a subset of the first set that was filtered for talk 

moves. The second data set was more aligned with the one-on-one 

tutoring discourse. The third data set consisted of the unlabeled data 

containing teacher and student utterances from one-on-one tutoring 

discourse. Examples of teacher and student talk moves from the 

data sets discussed below are shown in Table 2. 

Table 2. Talk Moves examples (Teacher Talk Moves – 1: none; 

2: Keeping everyone together, 3: getting students to relate, 5: re-

voicing, 6: Press for accuracy; Student Talk Moves – 1: none, 2: 

relating to another student, 3: asking for more information, 4: mak-

ing a claim, 5: providing evidence/explaining reasoning) 

Speaker Sentence Teacher 

Tag 

Student 

Tag 

Teacher Who can help her notice 

where she went wrong 

3 nan 

Teacher <<student1 name>> 2 nan 

Student She kept the six nan 2 

Teacher <<student2 name>> 2 nan 

Student She put the eight so eve-

rything after the decimal 

number that you need 

changed 

nan 5 

Teacher You underline you look at 

an arrow then what 

6 nan 

Student Whats that one negative 

51 

nan 3 

Teacher Mixed numbers you were 

right 

5 nan 

Student Its like one and one half 

or one and three thirds or 

something like that 

nan 4 

Teacher All right I see some disa-

greements here 

1 nan 

Student I was waiting nan 1 

3.2.1 Data Set 1 
The Data Set 1 included annotated transcripts of classroom dis-

course in mathematics collected in public schools in the US and are, 

therefore, aligned with our Algebra tutoring data set. This talk 

moves data was obtained from [23], which included entire lessons 

and short excerpts from lessons. The data set consisted of 230,778 
utterances (172,309 teacher utterances and 58,469 student utter-

ances) from 559 lesson transcripts.  

3.2.2 Data Set 2 
The full data set (Data Set 1) was filtered for talk moves applicable 

to one-on-one tutoring discourse from the original data set [23]. The 

filtered dataset consisted of 199,123 utterances (147,145 teacher ut-

terances and 51,978 student utterances) from 558 lesson transcripts. 

3.2.3 Data Set 3 
The tutoring data used to classify the talk moves consists of 87,100 

utterances 62,370 teacher and 24,730 student utterances). The final 

dataset consisted of transcripts from 130 one-on-one tutoring ses-

sions between 25 teachers and 39 students. 

3.2.4 Talk Moves data set creation via expert coding 
Expert coding of the data was conducted in two phases: training 

and data coding. Training was conducted using the Data Set 1 con-

sisting of transcripts for individual student-teacher conversations. 

The transcripts in this original data were coded for six mutually ex-

clusive teacher talk moves, and five student talk moves that were 

adapted from the Accountable Talk framework. The teacher or stu-

dent utterances that did not contain a talk move were labeled as 

“None-1”. Strings of utterances by the teachers that were aimed at 

direct instruction were considered “None-1” as they were not aimed 

at fulfilling one of the six accountable talk moves outlined in the 

framework. Four undergraduate research assistants were trained to 

code a sample of each teacher and student ‘talk move’.  

The first step in training the coders involved acquainting them with 

each of the types of talk moves explicated in the Accountable Talk 

framework [15]. Research assistants met with a researcher and dis-

cussed examples of each type of Talk Move for both teachers and 

students. Importantly, coders learned to determine which utterances 

were part of direct instruction or not consequential (e.g., classroom 

management utterances such as “get out your textbook”) to eliciting 

student responses; these are coded as “1-None”. The talk moves 

being classified in this framework consist of turns of an interaction 

between student(s) and teachers with the goal of knowledge con-

struction. Following the initial group training, each coder was given 

one of two practice sets created from the large data set provided by 

[23]. Equal numbers of each type of move were included in the data 

set such that coders had 100 target sentences for each of the six 

mutually exclusive teacher talk moves and five of the student talk 

moves. The teacher and student talk moves were separated (i.e., one 

practice sheet for teachers and one for students) and randomized so 

that no patterns could be detected. The interrater reliability 

(weighted kappa) for the first pair of coders for teacher practice set 

A was 0.44 and 0.61 for student practice set A. The interrater reli-

ability (weighted kappa) for the second pair of coders was 0.65 for 

both teacher and student practice set B. The moderately low inter-

rater reliability suggested that either coders were not quite familiar 

enough with the codes or that the utterances were too difficult to 

code when taken out of the context of the discourse. Using the stu-

dent utterance was necessary to accurately determine the context, 

particularly for the restating and revoicing teacher talk moves. Ad-

ditionally, multiple utterances may be included in one sentence and 

there may be multiple sentences included within a turn. Therefore, 
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all four coders were given a second practice data set (revised ver-

sion) that included utterances in context. For example, coders 

received spans of sentences that included both the teacher utter-

ances and the student utterances. Prior to starting on the new 

practice data set, coders were provided with a short training re-

fresher video. The interrater reliability for the student tags in the 

second practice set ranged from 0.42 to 0.74 with a weighted kappa 

of 0.60 for all raters. The interrater reliability for the teacher tags in 

the second practice set ranged from 0.52 to 0.71 with a weighted 

kappa of 0.60 for all raters. Weighted kappa ranging from 0.41 to 

0.60 suggest moderate agreement [8]. Following the training sets, 

the two coders with the highest interrater reliability were provided 

with a subset of Data Set 3 to code, containing 570 teacher utter-

ances and 183 student utterances. The interrater reliability for the 

experimental data was 0.90 weighted kappa for teacher utterances 

and 0.95 weighted kappa for student utterances. Weighted kappa 

over 0.81 suggest nearly perfect agreement [8]. 

3.2.5 Model architecture 
Because our data (Data Set 3) was not labeled/coded for talk moves 

initially, we used the labeled data (Data Sets 1 and 2) available from 

prior research [23] and the filtered data set for initial model devel-

opment. The labeled data was split into training (75%), validation 

(5%) and test (20%) sets to verify that the prior research results 

could be replicated. We used the RoBERTa-base transformer 

model [10], a model pretrained with Masked Language Modeling 

(MLM) using five data sets including BookCorpus - a dataset con-

sisting of 11,038 unpublished books; English Wikipedia; CC-News 

- a dataset containing 63 million English news articles; Open-

WebText - an open-source recreation of the WebText dataset used 

to train GPT-2; and Stories - a dataset containing a subset of Com-

monCrawl data, to train our model. RoBERTa allows the model to 

learn a bidirectional representation of a sentence.  

The models were trained using sentences that were preprocessed 

into turns, where each turn constituted a student utterance followed 

immediately by a teacher utterance for the teacher talk moves 

model. Similarly, for student talk moves, each turn consisted of a 

teacher utterance immediately followed by a student utterance. A 

teacher or a student turn could also include multiple utterances. 

There were very few student-student pair utterances as compared 

to the original/prior data (classroom setting) because our data con-

stituted one-on-one tutoring transcripts. Both the student and 

teacher utterances were required to set the context particularly for 

the restate and revoice teacher talk moves, and make a claim and 

provide evidence or reasoning student talk moves. The input sen-

tences were also cleaned of any punctuation and converted to 

lowercase. The pretrained model from the Hugging Face library 

was used and the model was trained using a Tesla P100 GPU. Code 

was implemented using TensorFlow framework with Python ver-

sion 3.7. The batch_encode_plus method was used for tokenizing 

and encoding the pair of sentence sequences and AdamW was the 

optimizer. The hyperparameters used for training and tuning the 

model included a learning rate of 2e-5, and number of epochs and 

batch size as 4. The talk moves were used as the dependent varia-

bles. 

3.2.6 Analytic framework 
The study was performed as a set of five experiments. First, a trans-

former model was trained and tested using Data Set 1 [23], the 

model trained using Data Set 1 was then used to classify our unla-

beled tutoring data (Data Set 3) for both student and teacher talk 

moves. The second experiment was performed to compare the con-

sistency between the distributions of the talk moves for Data Set 1 

and the predicted talk moves for Data Set 3. In the third experiment, 

after determining the consistency between the talk moves distribu-

tion of the two data sets (Data Set 1 and Data Set 3), the prior data 

(i.e., Data Set 1) was filtered for talk moves that are more applicable 

to one-on-one online tutoring. The teacher talk moves keeping eve-

ryone together and getting students to relate were removed as these 

talk moves are more relevant to classroom teaching rather than one-

on-one online tutoring. Similarly, the utterances labeled as student 

talk move relating to another student were also removed. Prior re-

search data, filtered for one-on-one online tutoring aligned talk 

moves (Data Set 2), was used to re-train and re-test the model. The 

re-trained model was used to classify our unlabeled data (Data Set 

3) again for both the teacher and student one-on-one tutoring re-

lated talk moves. The distribution of the talk moves for the filtered 

datasets was compared again to confirm whether the newly trained 

model classified the talk moves consistently with the prior research 

data that was labeled in the fourth experiment. The fifth experiment 

evaluated the performance of the model that was trained using talk 

moves applicable to one-on-one tutoring. The predicted talk moves 

for Data Set 3 were compared with the expert coded talk moves for 

a small sample of Data Set 3.  

4. RESULTS 

4.1 Model Performance for Data Set 1: Origi-

nal Framework 
The first set of experiments included training a transformer model 

using the Data Set 1 (training set) and classifying the teacher and 

student talk moves on the test set for the talk moves defined in the 

original accountable talk framework. The confusion matrix for the 

teacher and student talk moves for Data Set 1 (test set) are shown 

in Figure 1 (a and b), respectively. The micro F1 and macro F1 

scores obtained for the teacher test set were 0.89 and 0.79, respec-

tively. The Matthew correlation coefficient (MCC) was 0.79. The 

F1 scores for the student talk moves were lower than the teacher 

talk moves and were 0.80 (micro F1) and 0.76 (macro F1), and the 

MCC was 0.71. The precision, recall, and F scores of the talk moves 

for both teachers and students were also computed. The teacher talk 

moves getting students to relate and revoicing had the lowest F 

scores, 0.68 and 0.67 respectively. The teacher talk moves press for 

reasoning, press for accuracy, and restating had higher and com-

parable F scores (0.80-0.84). The student talk move relating to 

another student performed the worst with an F score of 0.58 and 

other student talk moves had higher and comparable F scores (0.76-

0.79).  

 
Figure 1. The teacher and student talk move accuracy and la-

bels: None (no talk move), KeepEverTgthr (keeping everyone 

together), StudentRelate (getting students to relate to other stu-

dents’ ideas), Restate (restating), Revoice (revoicing), PrsAcc 

(press for accuracy), and PrsRsn (press for reasoning), RelAnoth-

erStu (relating to another student), AskMoreInfo (asking for more 

information), MakeClaim (making a claim), and PrsEvd (providing 

evidence or explaining reasoning). 
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4.2 Talk Moves Distribution Comparison 

(Data Set 1 vs. Data Set 3): Original 

Framework 
The second experiment included comparing the talk moves distri-

bution of the original data (Data Set 1) and the predictions for our 

data (Data Set 3) obtained using the model trained in the first ex-

periment. The distribution of the teacher and the student talk moves 

across the two datasets was found to be comparable and consistent 

with slight variations. Both datasets found 67.42-76.03% of utter-

ances did not contain a teacher talk move. The remaining teacher 

talk moves in order of frequency were, pressing for accuracy 

(10.59-13.07%), keeping everyone together (9.44-12.97%), and re-

voicing (2.15-2.27%). Getting students to relate to another 

student’s idea was the least classified (0.14%) teacher talk move in 

our dataset (Data Set 3). The remaining teacher talk moves shown 

in Figure 2 (a and b) had similar distributions.  

 
Figure 2. The teacher talk move distribution and labels for 

Data sets 3 and 1: None (no talk move), KpTgthr (keeping every-

one together), StudRelate (getting students to relate to other 

students’ ideas), Restate (restating), Revoice (revoicing), PrsAcc 

(press for accuracy), and PrsRsn (press for reasoning). 

The predicted student talk moves also had consistent distribution 

with the prior labeled data (Data Set 1). Following not a talk move, 

the student talk move making a claim was the second most abun-

dant with 28.25-30.66% utterances falling into that category. 

Asking for more information was the least observed talk move in 

both the data sets (see Figure 3 (a and b)).  

 
Figure 3. The student talk move distribution labels for Data sets 

3 and 1 are: None (no talk move), RelateStu (relating to another 

student), MoreInfo (asking for more information), claim (making a 

claim), and ProEvidence (providing evidence or explaining reason-

ing). 

The consistent distributions of talk moves across the two datasets 

combined with very few utterances classified in the talk moves cat-

egories of getting students to relate to another student’s idea 

(teachers) and relate to another student (students) suggest that the 

classification model trained on Data Set 1 can be used for Data Set 

3. The two minimally classified talk moves are not directly appli-

cable or aligned to one-on-one tutoring thus increasing our 

confidence that the classification model can be used for our one-

on-one tutoring dataset with minor updates to the model.  

4.3 Model Performance for Data Set 2: Pro-

posed Framework 
Experiment 3 was similar to the first experiment except the trans-

former model was trained using prior data for talk moves that are 

more aligned and applicable to one-on-one tutoring (i.e., Data Set 

2) rather than the original set (Data Set 1) of talk moves. Figure 4 

(a and b) shows the confusion matrix for the teacher and student 

talk moves for the test data from Data Set 2, respectively. The micro 

F1 for the teacher test set improved from 0.89 to 0.94 and macro F1 

score increased from 0.79 to 0.83, respectively. The Matthew cor-

relation coefficient (MCC) was higher (0.79 vs. 0.83). The F1 

scores for the student dataset were lower than the teacher talk 

moves but improved from 0.80 to 0.86 (micro) and 0.76 to 0.82 

(macro), and the MCC is higher (0.71 vs 0.78). The precision, re-

call, and F scores for each talk move, for both teachers and students, 

are also computed. The teacher talk move revoicing had the lowest 

F score, 0.67, which aligns with the original accountable talk frame-

work. The student talk move asking for more information 

performed the worst with an F score of 0.76.  

 
Figure 4. The teacher and student talk move labels for the pro-

posed framework are: None (no talk move), Restate (restating), 

Revoice (revoicing), PrsAcc (press for accuracy), and PrsRsn 

(press for reasoning) and the student talk moves in Figure 4(b) are: 

None (no talk move), AskMoreInfo (asking for more information), 

PrsEvd (providing evidence or explaining reasoning) and Make-

Claim (making a claim). 

4.4 Talk Moves Distribution Comparison 

(Data Set 2 vs. Data Set 3): Proposed 

Framework 
This experiment is comparable to the second experiment except that 

the distributions of talk moves are for the data aligned to one-on-

one tutoring instead of the talk moves from the original accountable 

talk framework [22,23]. The teacher talk moves distributions for 

both Data Set 2 and the predicted talk moves for Data set 3 using 

the model trained in the third experiment were found to be con-

sistent with press for reasoning having the lowest frequency 

(0.38% and 1.36%) and press for accuracy as the second highest 

frequency (11.84% and 15.3%) next to no talk move. 

 

The distributions for both Data Set 2 and the predictions of student 

talk moves for Data Set 3 were similar except for the providing ev-

idence talk move (see Figure 6 (a and b)). Very few (3.39% 

utterances) were classified as providing evidence talk moves for 
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Data Set 3, whereas the original labeled filtered dataset had a higher 

percentage (~15%) of talk moves belonging to this category. 

 

4.5 Model Performance for Data Set 3: Pro-

posed Framework 
The student and teacher talk move predictions using the proposed 

framework model for Data Set 3 when compared with the expert 

coding achieved 0.88 accuracy for teacher talk moves and 0.81 for 

student talk moves. The weighted average and micro precision, re-

call and F scores were in the range of 0.87-0.88 for teacher talk 

moves and 0.79-0.83 for the student talk moves. The teacher talk 

move pressing for reasoning had the worst performance and the 

student talk move asking for more information performed the worst 

of all the talk moves. The confusion matrix for both the talk moves 

are shown in Figure 7 (a and b). The teacher and student talk moves 

labels in the Figures 7 (a and b) are: None; restating; revoicing; 

pressing for accuracy and pressing for reasoning, and None; asking 

for more information; providing evidence or explaining reasoning; 

and making a claim for (1-5) and (1-4) respectively. 

   

5. DISCUSSION 
The Accountable Talk framework has been used to classify teacher 

and student talk moves as a method of providing feedback and guid-

ance to teachers on the discourse strategies they use in their 

classrooms. Until recently, this type of discourse analysis has been 

cumbersome and labor intensive. Furthermore, it has been re-

stricted to face-to-face or in-person classrooms mostly. The present 

work extends the work of Suresh [22,23] in the application of deep 

learning to a transcribed data set of student and teacher utterances 

gathered from an online, one-on-one algebra tutoring system. The 

data set provided by Suresh [23] was used to train our model which 

was then applied to our unlabeled data set. The data available from 

prior research (Data Set 1) was used to train a transformer model 

(RoBERTa) and the test set achieved an accuracy higher than that 

mentioned in the literature on a similar data set for several deep 

learning models including Long Short Term Memory (LSTM) unit, 

Bi-LSTM, gated recurrent unit (GRU), and recurrent neural net-

work (RNN). The Bi-LSTM had outperformed all the other models 

with an F1 measure of 65% [23]. However, our model RoBERTa 

achieved an accuracy of 0.89 and 0.94 for the original framework 

and the proposed framework respectively for the teacher talk 

moves. The student talk move model accuracy for the original 

framework and the proposed framework are 0.80 and 0.86 respec-

tively. The talk move distributions for both teacher and student for 

our data set (Data Set 3) were also found to be consistent with the 

prior data (Data Set 1) and the filtered prior data (Data Set 2). In 

addition, high performance was observed for most of the talk moves 

for the proposed framework model when applied to our unlabeled 

data set (Data Set 3) and compared with the expert coding. The 

teacher talk move press for reasoning and the student talk move 

asking for more information performed the worst when compared 

with the expert coding. One probable reason for low performance 

could be very few instances belonging to these talk moves in the 

test set or a skewed distribution of the talk moves. Therefore, this 

needs to be explored further to determine the reason for low perfor-

mance of these specific talk moves. 

6. LIMITATIONS 
The work described in this paper is novel and not without limita-

tions. The first limitation is that we could not evaluate the 

classification model for Data Set 3 using Data Set 1, the model 

based on the full Accountable Talk framework from discourse in a 

traditional classroom. Our data was gathered from one-on-one 

online tutoring, which inherently prevents classification of talk 

moves that require additional community members as in the origi-

nal dataset based on classroom discourse.  

The second limitation to note is the limited amount of human-coded 

data to evaluate the classification of talk moves by the proposed 

model. We recognize that a larger percentage of human-coded val-

idation data is desirable and plan to address this limitation in future 

work. 

7. CONCLUSION 
The academic discourse that occurs between teachers and students 

in the interest of knowledge creation has a rich history of research 

demonstrating the importance of each turn. Despite the importance 

of these classroom exchanges, providing feedback to teachers is 

nearly impossible due to the labor-intensive task of collecting and 

categorizing discourse according to an evidence-based framework 

such as the Accountable Talk framework [16].  

Recent events have demonstrated that academic discourse is not re-

stricted to traditional, whole group classroom instruction; therefore, 

it is equally important to evaluate the quality of discourse occurring 

in online, one-on-one tutoring sessions. The work described in this 

paper is both novel and promising as a means to reliably categorize 

teacher and student talk moves by applying machine learning mod-

els slightly modified from those validated on a complete 

framework. Future work is needed to further test and validate (with 

human coding) the machine learning model that was modified to 

accommodate one-on-one instruction (i.e., without talk moves for 

accountability to the community). Overall, this work has the poten-

tial to introduce a beneficial and simplified mechanism to provide 

feedback for teachers, thus affording strong potential to improve 

instructional practice and student learning outcomes.   
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Using Markov Models and Random Walks to Examine 
Strategy Use of More or Less Successful Comprehenders 

 

ABSTRACT 
Prompting students to generate constructed responses as they read 

provides a window into the processes and strategies that they use to 

make sense of complex text. In this study, Markov models exam-

ined the extent to which (1) patterns of strategies and (2) strategy 

combinations could be used to inform computational models of stu-

dents’ text comprehension. Random Walk models further revealed 

how consistency in strategy use over time was related to compre-

hension performance. High school (n = 257) and college students 

(n = 153) produced constructed responses at predetermined points 

while reading a scientific text. Each constructed response was 

scored for the presence of three common comprehension strategies 

(i.e., paraphrasing, bridging, elaborating), such that each con-

structed response could then be categorized as one of eight 

combination types. Markov chains revealed that more and less suc-

cessful comprehenders leveraged different comprehension 

strategies, such that skilled comprehenders were more likely to use 

combinations of strategies while reading the text, particularly par-

aphrasing and making connections between ideas within the text 

(i.e., bridging). Random Walk analysis further demonstrated that 

successful comprehenders employed strategies more consistently. 

The results demonstrate the utility of Markov and Random Walk 

models in profiling learners' strategy use based on their constructed 

responses. 

Keywords 
Reading comprehension, Strategies, Markov models, Random 

Walk 

1. INTRODUCTION 

Reading is a fundamental life skill, whether one is trying to read a 

novel, a science textbook in a university course, a technical docu-

ment for work, or an instruction manual for assembling furniture. 

However, many students struggle to comprehend texts. For 

example, 30% of U.S. students perform below basic proficiency in 

reading comprehension [24]. Several factors contribute to success-

ful comprehension. To understand texts, particularly texts with 

complicated syntax or unfamiliar topics, readers engage in a variety 

of processes and strategies, including paraphrasing, bridging, and 

elaborating. When students paraphrase, they put the text in their 

own words. By contrast, bridging and elaborating require the gen-

eration of inferences that contain information that is not explicit in 

the text. Bridging refers to connecting ideas and information from 

different parts of the text. Bridging has been shown to be one of the 

most effective strategies for reading comprehension, particularly if 

the bridges connect more distant areas of text [18]. Elaborating is 

expanding on what one has learned from the text with one’s prior 

knowledge about the topic.  

Using bridging and elaborative inferences strategies has been found 

to improve comprehension on standardized reading tests [14]. More 

skilled readers are more likely to engage in more complex compre-

hension strategies, such as bridging and elaboration, that help them 

comprehend the text, while less skilled readers are more likely to 

rely on paraphrasing [7]. One way to encourage students to engage 

in such strategies is to ask them to self-explain a text as they read. 

Self-explanation prompts help students think deeper about the text, 

which facilitates strategy use and improves comprehension [25]. 

The strategies participants use while reading are typically examined 

via constructed response protocols (CRs). In CRs, students report 

their processes during a learning task. One method of obtaining 

CRs is asking participants to self-explain a text at specific points, 

and to type out these explanations. Prior work has shown that expert 

raters can reliably identify different comprehension strategies 

within CRs [17] and recent advances in natural language processing 

(NLP) have allowed researchers to develop and refine algorithms 

that can match these human judgments [4, 15]. Thus, mining read-

ers’ CRs can serve as a powerful tool to generate high quality 

learner models based on students’ differing strategy use. The cur-

rent study uses hand-coded CRs to examine participants’ dynamic 

strategy use. 

Several intelligent tutoring systems (ITSs) have been developed to 

enhance students’ use of effective reading strategies. For example, 

iSTART [21] provides students with self-explanation reading train-

ing using a combination of instruction and practice via lesson 

videos, mini-games and reading practice. Training students on ef-

fective self-explanation reading strategies has been demonstrated 
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to improve students’ text comprehension [20]. ITSs such as 

iSTART rely on the automated identification of different reading 

strategies in CRs to drive feedback to students on their self-expla-

nations or other reading behaviors. The feedback may re-direct 

students to lessons on strategy use or provide recommendations of 

other strategies to leverage while reading. In order to better train 

students to modify their strategy use in ways that enhance reading 

comprehension, it is beneficial to understand the different ways stu-

dents use strategies to engage with texts. 

Past research more commonly examines paraphrasing, bridging, 

and elaboration strategies as independent variables or outcomes and 

measures strategy use in terms of their overall frequency of use [15, 

23]. However, some types of strategy combinations may be more 

effective in promoting reading comprehension than using any one 

strategy in isolation. One possibility is that paraphrasing, by creat-

ing a more complete understanding of the most recently read text, 

facilitates the use of further strategies such as bridging and elabo-

ration. The current study therefore examines combinations of 

strategy use within CRs, rather than overall frequencies of para-

phrasing, bridging, and elaborating. Additionally, traditional 

analyses of CRs rely on an overall proportion or score across an 

entire text. This approach ignores the moment-to-moment changes 

in processing that occur as properties of texts change across sen-

tences and paragraphs [22]. 

1.1 Our Approach 
The current study aims to use two approaches that are more com-

mon in other areas to examine dynamic patterns in strategy use: 

Markov Chains and Random Walk analyses. These analyses are in-

tended to reveal systematic differences in the ways that more and 

less successful comprehenders engage with texts. That is, the com-

binations and patterns of strategy use in students’ CRs will vary in 

relation to their performance on a text comprehension assessment. 

More specifically, we predict that readers who more successfully 

comprehend a text will be marked by more frequent use of effective 

comprehension strategies, such as bridging and elaboration, and in 

particular, the use of combinations of strategies, such as para-bridg-

ing (i.e., combining paraphrasing and bridging within one CR). 

This prediction naturally stems from successful readers knowing 

how to use more strategies and use them in various contexts. Suc-

cessful readers will also show a tendency towards certain types of 

switches, rather than randomly switching between strategies. Less 

successful comprehenders will be more likely to use strategies in 

isolation, especially paraphrasing, and will show less consistency 

in their strategy use patterns. 

Markov chains are used to simulate processes with patterns that can 

be imprecisely predicted through probabilities [10]. In such pro-

cesses, the probability of a given outcome depends on the previous 

outcome. For this study, the outcomes are different types of strate-

gies, and the probability of using a strategy in a self-explanation 

depends on the strategy that was used in the previous self-explana-

tion. The probabilities are determined based upon previously 

collected data and then displayed in a Markov chain visualization. 

Markov chains have been used in studies of mastery of ending letter 

sounds [12], and student knowledge and learning have been mod-

eled using hidden Markov models in Bayesian Knowledge Tracing 

[6, 26, 29]. By contrast, Markov chains have not been widely ex-

plored as a method of studying comprehension processes in CRs. 

Cohesive features that help text comprehension, such as cues about 

causality, time, and space, are not always uniformly distributed 

within text; readers need to be sensitive to these features and adjust 

their strategy use accordingly to successfully comprehend a text 

[22]. Successful comprehenders are likely to be strategic in their 

uses of comprehension processes, meaning they match their strat-

egy use to the text [8]. Their strategy use is likely to be more 

structured, with consistent patterns in the types of switches that oc-

cur between strategies. Using Markov chains provides a learning 

analytic technique with strong potential to reveal students’ flexibil-

ity in comprehension strategy use, as well as how those dynamic 

processes differ as a function of text comprehension performance. 

To show the consistency of pattern use over time for individual par-

ticipants, the current study uses random walk models, which are a 

type of sequential pattern analysis tool. They provide a spatial rep-

resentation of an individual’s path taken over time [2]. Such 

representations have commonly been used in the field of ecology, 

such as modeling animal migration patterns [3]. The movements of 

red deer are modeled on a graph with an x- and y-axis; every move-

ment of the deer is plotted as a movement on the graph. Random 

walks have been used for a variety of other purposes, including de-

cision making [9] and numerical cognition [5]. Using CRs allows 

us to code participants’ strategy use and in turn, random walk mod-

els afford examining the consistency of students’ strategy use over 

time.  

Participants’ random walks all start at (0, 0) on a graph. Four types 

of strategy use are defined as four different directions on the graph. 

Each CR counts as one step of the walk and moves one unit in a 

direction, based on the strategy used. The end point of each stu-

dent’s walk is plotted on a graph. Participants with more consistent 

strategy use have end points farther from the origin, while partici-

pants who frequently switch their strategy use have end points 

closer to the origin. Students who have more structured strategy use 

are likely to have some consistencies in the types of strategies they 

use, such as relying on paraphrasing and bridging. Inconsistent 

strategy use could indicate participants are not creating thoughtful 

explanations or using strategic choices for text comprehension. 

Their random walks may display multiple switches in strategy use 

and/or reliance on ineffective strategies. Random walk models of-

fer additional information compared to Markov chains by showing 

the consistency of strategy use for individual participants, rather 

than the aggregated switching tendencies displayed by a Markov 

chain. Additionally, the random walk model is designed to show 

each participants’ overall consistency over time, while Markov 

chains show probabilities of switching for each individual strategy. 

The current study uses two extant datasets to help determine the 

generalizability of the research findings. Dataset 1 included 2322 

CRs from 234 high school students (158 female; mean age = 17.58) 

[16]. Dataset 2 included 2448 CRs generated by 153 undergradu-

ates. We predict that the results will be similar across datasets, but 

that the older, likely more skilled readers, in Dataset 2 would show 

more frequent use of effective strategies, more frequent use of com-

binations of strategies, and greater consistency of strategy use, 

compared to participants in Dataset 1. 

2. METHOD 

2.1 Datasets 
In Dataset 1, participants read one of two texts, “Heart Disease” or 

“Red Blood Cells”. Participants were asked to provide self-expla-

nations at nine points in their assigned text. Both texts contain about 

300 words and use scientific terminology suitable for the age of the 

participants. They have been validated in prior studies and matched 

for linguistic difficulty. In Dataset 2, participants read a text called 

“Cell Division”, containing about 600 words, and were asked to 

self-explain the text at 16 different points. In both datasets, partici-

pants completed comprehension questions about the text after 
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reading. Performance on these questions serves as the dependent 

variable, which reflects students’ comprehension success. 

2.2 Expert Rating of Strategy Use 
Verbal protocols were scored by expert raters using a self-explana-

tion rubric that assesses the presence or absence of three reading 

strategies: paraphrase, bridging, and elaboration [17]. Paraphrase 

presence was scored based on the inclusion of idea units from the 

most recently read sentence. Bridging presence was scored based 

on the inclusion of references to other parts of the text.  Elaboration 

presence was scored based on the inclusion of words or ideas that 

elaborate on the text but were not directly present in the text. Since 

paraphrase, bridging, and elaboration were scored independent of 

one another, the presence of any one strategy could be observed on 

its own or in combination with any of the other two strategies. 

Then, responses were categorized as containing one of eight strat-

egy combination types, based on the presence of individual 

strategies: “None”, “Paraphrase” (paraphrasing in isolation), 

“Bridge” (bridging in isolation), “Elaboration” (elaborating in iso-

lation), “Para-bridge” (paraphrasing and bridging in combination), 

“Para-elab” (paraphrasing and elaborating in combination), 

“Bridge-elab” (bridging and elaborating in combination), and “All” 

(paraphrasing, bridging, and elaborating in combination). These 

categories did not include the order in which strategies were used 

within a single response, as the strategies were sometimes inter-

mixed within a single response. For example, a “para-bridge” 

response means that paraphrasing and bridging were both used, but 

not in any particular order. 

Scoring training was deemed complete when raters reached suffi-

cient reliability for each coding category (weighted kappa ≥ 0.71). 

CRs were divided between pairs of raters such that each scored 60% 

of participant protocols, with 20% of participant protocols being 

scored by both raters. To calculate inter-rater reliability, protocols 

scored by both expert raters were compared per dataset, per text, 

and per coding category on a regular basis up to the latest point 

where both raters had scored the same protocols. Expert raters dis-

cussed coding disagreements to reach a consensus on the score. 

Following discussions, each rater independently reviewed and 

rescored as needed their entire set of protocols.  Once raters com-

pleted scoring for a given text, scores were finalized only after 

raters achieved 0.71 or above weighted kappa per coding category. 

2.3 Data Analysis 
In both datasets, participants were divided into two groups based 

on the median performance (50%) in the text comprehension test. 

In Dataset 1, the low comprehension group included 102 partici-

pants, and the high comprehension group included 111 participants; 

21 participants who scored on the median were excluded. In Dataset 

2 (median = 50%), each group included 72 participants; 9 partici-

pants who scored on the median were excluded. The code used to 

create the Markov chains and the Random Walk displays can be 

found at https://github.com/kchristhilf/Markov-Chains. 

Markov chains were used to examine the dynamic nature of stu-

dents’ strategy use, as well as the overall frequency of different 

strategies. For each chain, we calculated the frequency of each type 

of strategy switch from one CR to the next. For instance, if a par-

ticipant used paraphrasing in one CR and used para-bridging in the 

following submission, we added “1” to the overall frequency of 

switching from paraphrasing to para-bridging. The frequency of 

switches from a strategy were divided by the total number of 

switches from that strategy overall to calculate the probability of 

switching from one strategy to the next. We also calculated the 

number of times each strategy was used overall.  

These calculations were visibly represented in Markov chain dia-

grams created using ‘Matplotlib’ in Python (see Figures 2 and 3). 

Nodes were created to represent each strategy that was used more 

than five times. The area of the node was scaled relative to the over-

all number of times that strategy was used. The probability of 

switching from one strategy to another was represented by arrows 

between nodes. Wider arrows indicate a higher probability of 

switching from the origin node to the end node. Strategy use fre-

quencies and transition probabilities are labeled when possible. 

To examine consistency of strategy use over time, the current study 

uses random walk visualizations. As there are several possible 

“strategy moves” that a reader can make, we opted to simplify the 

analysis to four choices for visibility. Strategy use per trial was de-

fined as using no strategies, paraphrasing in isolation, bridging in 

isolation, or two or more strategies in combination. The two or 

more strategies grouping includes para-bridging, para-elaborating, 

and para-bridge-elaborating. Each of these strategy combinations 

are an example of supplementing paraphrasing with one or more 

strategies, so we chose to combine them into a single group. For 

every participant’s Random Walk analysis, each CR is coded as one 

“strategy move”, and each strategy move is associated with a one 

unit movement in a specified direction. “No strategies” means one 

step down on the y-axis, “paraphrasing” means one step left on the 

x-axis, “bridging” means one step right on the x-axis, and “two or 

more strategies” means on step up on the y-axis. A single partici-

pants’ full random walk is shown in Figure 1. The visualization 

shows that the participant primarily used paraphrasing or two or 

more strategies as their walk remains in the upper left quadrant. The 

student sometimes switched between different strategy types as 

shown by the relative distance away from the origin. In Figures 4 

and 5, just the endpoints of each participant’s walk were plotted 

onto a graph with an origin of (0, 0). For each random walk visual-

ization, the participants’ endpoint of the walk was graphed as a dot 

with 30% visibility, so that endpoints with more participants are 

darker. The graphs were created in Python using Matplotlib. 

 

Figure 1. Example of a single participant’s Random Walk. 

3. RESULTS 

3.1 Markov Chains 
Elaboration in isolation and the combination of bridging and elab-

oration were not included as nodes in the Markov chains because 

participants used those strategies fewer than five times for each 
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chain. The six strategies that are represented in the Markov chains 

are no recorded strategies (labeled “None” or "N"), paraphrasing 

(“Para”), bridging (“Bridge” or “B”), paraphrasing and bridging in 

combination (“Para-Bridge”), paraphrasing and elaborating in 

combination (“Para-Elab” or “P-E”), and paraphrasing, bridging, 

and elaborating in combination (“All”). 

 

Figure 2a. Markov chain for low comprehension group in Da-

taset 1. 

 

Figure 2b. Markov chain for high comprehension group in Da-

taset 1. 

The variation in strategy use comparing more and less successful 

high school readers (Dataset 1) is shown in Figure 2. The low-com-

prehension group had high probabilities (>40%) for the following 

transitions: none to paraphrase (43%), paraphrase to paraphrase 

(56%), bridge to paraphrase (43%), para-bridge to para-bridge 

(50%), para-elab to para-bridge (44%), and all to para-bridge 

(55%). The high-comprehension group had high probabilities for 

none to para-bridge (67%), paraphrase to para-bridge (55%), bridge 

to paraphrase (60%), para-bridge to para-bridge (61%), para-elab 

to para-bridge (49%), and all to para-bridge (45%). The low com-

prehension group tended to paraphrase (n=503 instances) more than 

para-bridge (n=420). Paraphrasing was the only strategy students 

were more likely to continue using than to switch to another strat-

egy from. Participants were also more likely to use none of the 

analyzed strategies (n=52) than all three (n=21). Meanwhile, the 

high comprehension group used more para-bridging (n=568) than 

paraphrasing (n=309), as shown in Figure 2. Para-bridging was the 

only strategy students were more likely to continue using than to 

switch from. Students in the high comprehension group were more 

likely to use a combination of all three strategies (n=61) than no 

strategies (n=8). They were also more likely to switch to using para-

bridging than the low comprehension group, even when their pre-

vious response used no strategies. Participants in the high 

comprehension group were more likely to use para-elaboration as a 

strategy than the low comprehension group (n=18, n=48). These 

results suggest paraphrasing is used by most readers. However, 

readers who are more successful at comprehending texts supple-

ment paraphrasing with other strategies, particularly through para-

bridging but also through para-elaborating and para-bridge-elabo-

rating. 

 

Figure 3a. Markov chain for low comprehension group in Da-

taset 2. 

 

 

Figure 3b. Markov chain for high comprehension group in Da-

taset 2. 

As predicted, the college students in Dataset 2 showed similar 

trends, as shown in Figure 3. The low-comprehension group had 

high probabilities (>40%) for the following transitions: paraphrase 

to paraphrase (53%), para-bridge to para-bridge (60%), para-elab 

to para-bridge (50%), para-elab to paraphrase (43%), and all to 

para-bridge (40%). Participants in the low comprehension group 

were more likely to use none of the analyzed strategies (n=98) than 

all three (n=15). Less successful comprehenders used paraphrasing 

in isolation more frequently than more successful comprehenders. 
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In the high comprehension group, more distinct trends emerge. 

Most of the high probability switch types involve para-bridging: the 

most common switches were none to paraphrase (43%), paraphrase 

to paraphrase (46%), paraphrase to para-bridge (46%), bridge to 

para-bridge (55%), para-bridge to para-bridge (74%), para-elab to 

para-bridge (60%), and all to para-bridge (72%). They were more 

likely to use a combination of all three strategies (n=63) than no 

strategies (n=30). Participants in the high comprehension group, 

compared to the low comprehension group, used more para-bridg-

ing (n=738, n=541) and were more likely to continue para-bridging 

from the previous CR (74% vs 60%). When paraphrasing in isola-

tion, they were equally likely to switch to para-bridging as to 

continue paraphrasing in isolation (46%), compared to the low 

comprehension group that was more likely to continue paraphras-

ing in isolation (53%). More successful comprehenders seem to 

rely on the combination of paraphrasing and bridging. This sug-

gests that the combination of paraphrasing and bridging is generally 

the most effective aid to comprehension, compared to other exam-

ined strategy combinations. 

Overall, participants tended to not switch between using no strate-

gies or paraphrasing and using all strategies. Participants were 

much more likely to switch from using a single strategy to two strat-

egies or vice versa. Participants with high comprehension were 

more likely to switch between using one to three strategies, while 

participants with low comprehension were more likely to switch 

from using between zero to two strategies. 

The two datasets have some differences from each other, likely due 

to the differences in age and education between the two groups. In 

Dataset 2, both groups were more likely to para-bridge than to par-

aphrase, while in Dataset 1, the low comprehension group was less 

likely to use para-bridging than paraphrasing. In both datasets, par-

ticipants tended to continue to use the same strategy rather than 

switching. As para-bridging seems to be the more useful strategy in 

text comprehension, students in Dataset 2 may be more skilled, 

which can be expected given that they are university students, ra-

ther than high school students. The differences in strategy use 

between datasets may also be due to differences in the difficulty of 

the text used, as participants in Dataset 2 read a more complicated 

text, potentially requiring strategic processing to a greater extent. 

One potential argument against examining participants’ probabili-

ties of switching between strategies is that switching is solely 

dependent on overall strategy use. For instance, one might argue 

that participants frequently switch to para-bridging because that 

strategy is used commonly in general. A series of chi-square anal-

yses were conducted to determine if transitions were random 

(solely dependent on base frequencies of strategy use), or if there 

were meaningful trends in switching. Chi-squares were conducted 

for each switch type grouping (all switches from none, all switches 

from paraphrasing, etc.). Only transition types with an expected 

value of 5 or more were calculated (all ps < .05). In Dataset 1, for 

the low comprehension group 3 out of 6 chi-squares were signifi-

cant; for the high comprehension group 2 out of 4 were significant. 

In Dataset 2, 3 out of 5 chi-squares in the low comprehension group 

and 4 out of 5 chi-squares in the high comprehension group were 

significant. 

3.2 Random Walk 
In Dataset 1 (Figure 4), each participant had 9 steps, leading to a 

maximum distance of 9 from the origin if the same strategy was 

repeatedly used. In Dataset 2 (Figure 5), each participant had 16 

steps. Good comprehenders are shown in blue, while poorer com-

prehenders are shown in pink. 

For Dataset 1, visual inspection reveals a broad pattern of readers 

ending in the upper right quadrant, replicating the findings from the 

Markov chains analyses such that readers tend to use paraphrase 

and para-bridge most commonly. Participants who comprehended 

the text less successfully showed less consistency in their strategy 

use than other participants, as shown in Figure 5 by the endpoints 

that are closer towards the origin. They were more likely to have 

switched to using bridging or no strategies. Those who were more 

successful consistently used paraphrasing or a combination of strat-

egies. For Dataset 2, participants in the low comprehension group 

showed less consistency in their strategy use, compared to the high 

comprehension group. Low comprehension group participants 

were more likely to use no strategies and bridging compared to par-

ticipants in the high comprehension group. Both groups showed a 

tendency towards using paraphrasing and using two or more strat-

egies in combination. Dataset 2 has considerably more variability 

than Dataset 1. This may be due to the higher number of response 

opportunities compared to Dataset 1 (16 vs 9). Participants in Da-

taset 2 may have needed to use a greater variety of strategies to 

understand the more difficult text, or they may have experienced 

more fatigue towards the end of the task. 

 

Figure 4. Random Walk for Dataset 1. 

 

Figure 5. Random Walk for Dataset 2. 

To quantify these Random walks, we calculated average Euclidean 

distance. Euclidean distance represents the distance of each step 

from the origin. It is used as a quantitative measure of the con-

sistency of participants' strategy use. Pearson product-moment 

correlation tests showed that Euclidean distance was significantly 
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correlated with comprehension score (Dataset 1, n = 234, r = .291, 

p < .001; Dataset 2, n = 153, r = .293, p < .001). This suggests that 

readers who were more consistent in their strategy use (as reflected 

by greater distance from the origin) had better overall comprehen-

sion success. 

4. DISCUSSION 
Discourse comprehension researchers commonly examine overall 

frequencies of different types of strategies, rather than the dynamics 

of strategy use. The current study applied Markov chains, a meth-

odology previously used in EDM, and Random Walk analysis, a 

methodology used in other domains, to better understand the dyna-

ics of strategy use in reading comprehension. These data analytic 

techniques yielded qualitative evidence that more successful com-

prehenders engaged in markedly different strategy use patterns than 

their less-successful peers. For instance, Markov chains showed 

that high text comprehension performance was associated with use 

of multiple strategies, as well as switching to and from para-bridg-

ing. Poorer text comprehension was associated with using 

strategies in isolation, such as paraphrasing and bridging, and less 

structure in switching between strategies. Random walk analysis 

illustrated that students who are less successful in text comprehen-

sion are less consistent in their strategy use. They switch between 

using strategies in isolation, and at times use no strategies at all. On 

the other hand, more successful comprehenders rely on using para-

phrasing and combinations of strategies that include paraphrasing, 

and they rarely switch to using solely bridging or no strategies. Un-

derstanding the dynamics of strategy use has been elusive [8], and 

so these types of analytic tools provide new insights about strategy 

use and how it differs across readers. These analyses show that 

solely examining the types of strategies used within constructed re-

sponses neglects the ways in which patterns of strategy use differ 

among readers. 

Our results suggest that examining combinations of strategies may 

be useful for gaining a more complete picture of students’ strategy 

use. Markov chains and Random Walk models show that readers 

who are comprehending texts successfully use multiple strategies 

while reading. They are frequently using multiple strategies within 

a single CR of a small section of text. Prior studies have shown that 

skilled readers are more likely to bridge than less-skilled readers. 

Examining combinations of strategies demonstrates that successful 

readers are not foregoing paraphrasing for better comprehension; 

they continue to ground their understanding of the text in para-

phrasing, and frequently use other strategies to deepen 

comprehension. Because bridging is connecting information from 

different parts of the text, it contributes to a more coherent under-

standing of the text. However, it is difficult to connect different 

parts of text without a solid understanding of each of the individual 

parts. When the syntax, vocabulary, or concepts in a sentence are 

difficult, it may be challenging to build a mental representation of 

the sentence without paraphrasing it. This mental representation 

must be constructed prior to higher-order strategies such as bridg-

ing and elaborating. The results suggest that models of student 

strategy use should include the combinations of strategies students 

use, not just the individual types of strategies. 

One limitation of the work is that some analyses relied on a median 

split. While such an approach is common for exploring differences 

between more and less successful comprehenders [11, 19], this di-

chotomy can mask within-group differences. There may also exist 

more than two types of patterns in strategy use. Future research 

should use a more nuanced approach to determining differences in 

strategy use and how they relate to reading comprehension. For ex-

ample, we are currently exploring approaches such as k-means 

clustering [26] to identify profiles of readers' use of combinations 

of strategies and transitions between strategies. 

Similarly, the chi-square analyses used to assess the Markov chains 

are limited in their interpretability. Such tests show that there are 

differences in patterns, but not the full nature of those patterns. We 

are exploring approaches such as lag sequential analysis [8, 27], 

which could be conducted for the transitions that are embedded 

within the chi-square tests. However, this inherently comprises 10 

to 16 transition types to test for significance, which potentially in-

flates Type I errors. Future work should thus leverage the current 

results to determine in advance the most common transition types 

to assess using lag-sequential analysis.  

Finally, our analysis focuses on differences across comprehension 

of a specific text, rather than on relatively stable individual differ-

ences (e.g., reading skill). Future work should explore how readers' 

individual differences in comprehension-related factors such as 

reading skill [15], prior knowledge [28], and motivation [1] relate 

to strategy use and strategy patterns, and the extent to which strat-

egy use on a given text influences text comprehension beyond 

general reading skill (as measured by an outside assessment, such 

as the Gates-MacGinitie Reading Test [13]). Further studies should 

also consider extending this work to other populations, such as sec-

ond language learners and struggling readers. 

The current study relies on human judgements of strategy use, 

which are formed through retroactive analysis of data. Researchers 

are in the process of refining NLP-driven algorithms that can detect 

these strategies during reading. The current work suggests the pos-

sibility of combining these detectors with Markov models and 

Random Walk analysis as a means of providing real-time stealth 

assessment of student learning and just-in-time support. These 

analyses can be used to create different profiles of learners and de-

termine the types of strategy use that are most helpful to 

comprehension. These profiles could include the types of strategies 

used and the number of times users switch between different strat-

egies. Once these profiles are established, real-time analysis of 

students’ strategy use within their typed responses in an automated 

system can be leveraged to augment feedback. For example, if a 

student were demonstrating ineffective strategy patterns, an adap-

tive learning environment (or an instructor using a teacher 

interface) could intervene and encourage revising the self-explana-

tion or scaffolding to help the student to use more effective 

strategies. Combining these data mining approaches with adaptive 

feedback would allow teachers to provide high-quality, real-time 

individualized instruction that can help a greater number and vari-

ety of students to become more successful comprehenders. 
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ABSTRACT
Language learners are underserved if there are unlearned
meanings of a word that they think they have already learned.
For example, “circle”as a noun is well known, whereas its use
as a verb is not. For artificial-intelligence-based support sys-
tems for learning vocabulary, assessing each learner’s knowl-
edge of such atypical but common meanings of words is de-
sirable. However, most vocabulary tests only test the typical
meanings of words, and the texts used in the test questions
are too short to apply readability formulae. We tackle this
problem by proposing a novel dataset and a flexible model.
First, we constructed a reliable vocabulary test in which
learners answered questions regarding typical and atypical
meanings of words. Second, we proposed a simple but pow-
erful method for applying flexible and context-aware masked
language models (MLMs) to learners’ answers in the above-
mentioned vocabulary test results. This is a personalized
prediction task, in which the results vary among learners for
the same test question. By introducing special tokens that
represent each learner, our method can reduce the personal-
ized prediction task to a simple sequence classification task
in which MLMs are applicable. In the evaluation, item re-
sponse theory (IRT)-based methods, which cannot leverage
the semantics of test questions, were used as baselines. The
experimental results show that our method consistently and
significantly outperformed the IRT-based baselines. More-
over, our method is highly interpretable because one can
obtain the learners’ language abilities from the first princi-
pal component scores of the token embeddings representing
each learner.

Keywords
Second Language Learning, Item Response Theory, Masked
Language Models, Natural Language Processing

1. INTRODUCTION
In intelligent tutoring systems, it is important to accurately
identify what is known and what is unknown to the learner

to recommend learning items according to the learner’s char-
acteristics, such as the learner’s ability. When there are
many learning items, it is difficult to test them all. In this
case, only some of the knowledge is tested, and the test re-
sults are used to predict the other held knowledge.

This is especially fitting to vocabulary learning support sys-
tems for foreign languages. Because of the large vocabulary
of a foreign language, research has been conducted in the
fields of natural language processing (NLP) and applied lin-
guistics to test only some words and to predict the held
knowledge of other words based on the test results [19, 15,
10, 9, 8, 16]. As a result, standardized test questions have
been developed to test learners’ knowledge.

However, for polysemous words, where a word has multi-
ple meanings, the task of testing knowledge of only typical
meanings and predicting the held knowledge of unexpected
meanings from only the test results is a challenge. Because
polysemous words are especially common in high-frequency
words (words with high frequency in large corpora) that for-
eign language learners learn early on, it is also important
for learners to properly grasp and understand the meaning
of these words in context. However, many studies on for-
eign language learning support have focused on vocabulary
size, and this area has been relatively unexplored. To the
best of our knowledge, standardized questions that test the
meanings of polysemous words have not been developed.

In the case of polysemous words, it is difficult to test for
meanings other than the most typical ones. This can be at-
tributed to the large number of words that must be learned;
testing a learner’s knowledge of a single word more than once
would impose a greater testing burden on learners. Hence,
learners may often fail to learn word meanings other than
the most representative meaning.

To improve learners’ language abilities, it is important to
ensure that they learn all major meanings of polysemous
words. In the development of artificial intelligence (AI)-
based systems that support language learners by identifying
and recommending such unlearned meanings, it is essential
to identify the meanings of polysemous words that a given
learner already knows. However, considering the testing bur-
den, sufficient time is available to test only a few additional
word meanings. Given that vocabulary tests use numerous
words to measure a learner’s overall vocabulary, most typical
vocabulary tests query only the major meanings of polyse-
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It was a difficult period.
a) question
b) time
c) thing to do
d) book

(a) An example question in the vocabulary size test [3],
which tests typical meanings of words.

She had a missed .
a) time
b) period
c) hour
d) duration

(b) An example of a question that tests atypical
meanings of a word.

Figure 1: Outline of the task. Our goal is to predict whether a learner knows this word (i.e., can correctly answer the question)
from the results of typical meanings of words to prevent these meanings from being left unlearned.

mous words. Therefore, it is desirable to be able to predict
the extent to which a learner knows the non-representative
meanings of a word by using existing test results for major
word meanings. For example, it should be possible to pre-
dict whether a learner who knows the meaning of “figure”
referring to a number also knows the meaning of “figure”
referring to a person.

Intuitively, one can easily think of a two-step approach in
which one first predicts the meaning of a polysemous word
in a running sentence and then assigns the difficulty of each
meaning of a word. However, this approach is impracti-
cal because the categorization of meanings by linguists is
not typically designed for language learning. For example,
Figure 1 show examples of the word “period” used in dis-
tinctly different contexts. However, linguistic categorization
can be too fine-grained for language learners. For example,
WordNet [12], one of the most carefully designed thesauri
for the English language, separately lists “period” as a geo-
logical period as being a different meaning from “period” as
a timespan. This is counter-intuitive for language learners
and impractical for estimating the difficulty of “period” as a
geological period separately from that as a timespan. Hence,
another approach is necessary in which one directly predicts
how likely it is that the language learner understands the
meaning of a word used in an input sentence.

To the best of our knowledge, no existing datasets or meth-
ods have been provided in the literature to evaluate the ex-
tent to which such problems can be solved. Because it is
presumably difficult to capture the meanings of words in
running texts, these types of questions have not been exten-
sively studied in vocabulary testing studies in applied lin-
guistics [19, 15, 20]. Therefore, in this study, we propose
a dataset and methods to evaluate how well these prob-
lems can be solved. Figure 1 are examples of the dataset.
To this end, we used deep transfer learning state-of-the-art
neural language models (MLMs), namely masked language
models such as bidirectional encoder representations from
transformers (BERT) [5]. Deep-learning-based NLP tech-
niques cannot simply be applied to this personalized predic-
tion problem in which different predictions must be made
for each learner, even for the same given input sentence. Al-
though recent educational AI studies also used BERT [24,
23, 25], they did not address this issue because they do not
deal with personalized prediction tests.

In the proposed method, we demonstrate a simple approach
to reduce this personalized prediction problem to a typi-
cal sequence classification problem in NLP by adding spe-

cial tokens that represent learners in language models. In
our experiments, the prediction performance of the proposed
method was superior to that of other methods such as item
response theory (IRT) by a statistically significant margin.

Our method also showed high interpretability matching that
of the IRT models: one merit of using IRT models is that
they are highly interpretable, e.g., capable of extracting the
ability estimates from the model, which BERT models can-
not do. We showed that the first principal component scores
of the embedding of the tokens representing each learner had
a statistically significant correlation with the learners’ abil-
ity values obtained using the IRT.

The contributions of this paper are as follows.

• We focused on the importance of predicting whether
language learners know the atypical meanings of a word
and developed an evaluation dataset for this purpose.

• In addition, we proposed a simple method for apply-
ing deep transfer learning techniques to the aforemen-
tioned personalized prediction problem by introducing
tokens that represent learners. The prediction perfor-
mance of the proposed method is superior to that of
IRT by a statistically significant margin.

• Finally, we demonstrated that with the proposed method,
we can easily obtain learners’ ability values by using
the first principal component scores of token embed-
ding. This indicates that our method is highly inter-
pretable, and hence suitable for educational use.

2. RELATED WORK
In educational data mining, [4] models the spaced repetition,
or students’ memorization of learning items repeatedly, by
extending statistical models. While [4] focuses on the tem-
poral aspect in the process of learning second language vo-
cabulary, we focus on predicting each learner’s knowledge of
atypical meanings of words from the test results of typical
meanings of words, considering text semantics and contexts.
In AI in education, [1] addressed a case study of the per-
sonalized English vocabulary learning of 37 Syrian refugees
using a language learning application called SCROLL. This
study did not address the methodology or algorithm used in
SCROLL but the case study of using it. While [7] applied
BERT to readability prediction, [7] was not personalized.

Vocabulary test datasets were previously published via self-
report testing [11, 18], or multiple-choice testing [6]. How-
ever, to the best of our knowledge, no reliable vocabulary
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test datasets in which typical and atypical meanings of words
have both been tested have been published.

Other datasets seemingly similar to our dataset include the
SLAM dataset [22], which is based on responses to ques-
tions on the language learning application Duolingo, and
the Complex Word Identification (CWI) dataset [26], where
a large number of language learners were asked to annotate
unfamiliar words in a sentence. The difference between these
datasets and ours is that each subject answered only a small
portion of the many questions.

3. VOCABULARY TESTING DATASETS
This section elaborates on our dataset. [6] is a publicly avail-
able dataset of vocabulary test results of language learn-
ers. However, it does not include questions regarding any
typical/atypical meanings of words. Nevertheless, for com-
parability, we adopted their settings to build our dataset.
Our dataset was compiled from the crowdsourcing service
Lancers 1. To find learners who had some interest in learn-
ing English, only learners who had taken the Test of English
for International Communication (TOEIC) test 2 in the past
were permitted to take the vocabulary test. As a result,
235 subjects responded to the questionnaire. Because most
learners in Lancers are native Japanese speakers, the native
language of the learners was also assumed to be Japanese.

For typical vocabulary test questions, we used vocabulary
size test (VST) [3], as [6] did. However, unlike [6], our focus
is highly frequent words. In VST, the questions are ordered
by the frequency of the corpus that [3] used for making VST.
To reduce the test burden on the participants and to eas-
ily collect accurate answers, we eliminated 30 low-frequency
words from the test. The remaining 70 questions were used
for a typical vocabulary test. An example of these ques-
tions is shown in Figure 1 (a). The word(s) being tested are
underlined in the sentence. The subject is asked to choose
the option that is closest in meaning to the original sentence
when the word(s) being tested are replaced. All options were
designed to be grammatical when replaced.

We developed 13 questions that tested atypical meanings
of words as follows. First, a computer science researcher,
who was a non-native but fluent English speaker, drafted
the questions. Second, English professors, namely two na-
tive English speakers (i.e., an American English speaker and
an Australian English speaker) and a non-native speaker,
checked and edited the questions for validity. In the actual
examples of these two test sets in Figure 1 (b), the word“pe-
riod” has a physiological meaning in addition to the usual
meaning as a timespan. The subjects were asked to answer
13 questions, such as Figure 1 (b) before the 70 lexical test of
typical usage. We included one question with an unexpected
meaning but without a corresponding question on the group
of typical word meaning questions. Therefore, the number
of question pairs was 12. More details of our dataset are
provided in the Appendix.

4. ITEM RESPONSE THEORY
1https://lancers.co.jp/
2https://www.ets.org/toeic

Figure 2: Deep transfer learning procedure

Figure 3: Proposed method to enable personalized prediction
using BERT

This section briefly describes the IRT models. Let the num-
ber of subjects be J and the number of questions (or items)
be I. For simplicity, we identify the index of the subject with
the subject and the index of the item with the item. For ex-
ample, the I-th item is simply written as I. We assume that
yij is 1 when subject j answers item i correctly, and 0 when
the subject answers incorrectly. Given the test result data
{yij |i ∈ {1, . . . , I}, j ∈ {1, . . . , J}}, the 2PL model models
the probability that subject j answers item i correctly with
the following equation

P (yij = 1|i, j) = σ(ai(θj − di)) (1)

Here, σ is the logistic sigmoid function defined as σ(x) =
1

1+exp(−x) . where the σ is a monotonically increasing func-

tion with (0, 1) as its value range and σ(0) = 0.5. The σ(x)
is used to project real numbers into the range of (0, 1) and
treat them as probabilities. In (1), θj is called the ability
parameter, and is a parameter that represents the ability of
the subject. di is the difficulty parameter representing the
difficulty of the item. From (1), when θj is greater than di,
the probability of the subject answering correctly is higher
than that of answering incorrectly. The value ai > 0 is usu-
ally positive and is called the discrimination parameter. The
larger this value, the more θj − di affects the probability of
correct or incorrect answers. It is called “discrimination” be-
cause θj − di makes it easier to distinguish whether subject
j will answer question i correctly or not. More intuitively,
this indicates that question i is a good question in that it
can accurately distinguish between learners with high ability
and those with low ability.

5. PROPOSED METHOD
5.1 Deep Transfer Learning
In this section, we describe our proposed method. The pro-
posed method is based on Transformer models such as BERT
[5]. Transformer models employ transfer learning to cap-
ture the semantics of texts written in natural language Fig-
ure 2. First, a pre-trained model is prepared using large raw
(i.e., unannotated) texts. This model can be trained using
raw texts written by native English speakers, such as the
Wikipedia text. This procedure is called pre-training. Typ-
ically, pre-training incurs high computational costs. Hence,
we downloaded and prepared publicly available pre-trained
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models. Each model is identified by an ID such as bert-large-
cased, which denotes that the model was trained on a large
Wikipedia corpus in a case-sensitive manner. Importantly,
a pre-trained model can be used for many tests depending
on the fine-tuning.

Then, an additional fine-tuning is performed to train the
pre-trained model to the intended task. To this end, a small
annotated corpus must be prepared for use in a supervised
learning procedure. Such corpora are generally costly to
construct; in this case, the corpus comprised the results of
a vocabulary test. After the model is fine-tuned, it can be
used to make predictions based on new input sentences.

5.2 Reducing the Personalized Prediction into
Sequence Classification

Given a language learner taking a test and a word in a
sentence, as shown in Figure 1 (b), our goal is to predict
whether the test-taker knows the word. Notably, this is a
personalized prediction; the prediction results differ among
individual learners. In contrast, deep transfer learning does
not support personalized predictions. Publicly available pre-
trained models are preferable because pre-training is costly.
Moreover, designing a new model that can achieve high per-
formance using the available pre-trained models is relatively
difficult. Thus, reducing the personalized prediction prob-
lem to a typical NLP task can be a practical solution, instead
of developing a novel neural model for this task.

We reduced the personalized prediction task into a sequence
classification task as shown in Figure 3. Sequence classi-
fication is a task in which a classifier takes a sequence or
text as the input and predicts its label. Hence, to train
the classifier, pairs of text and associated labels are used
to constitute a small corpus for supervised learning in the
fine-tuning phase. Thus, to use sequence classifiers in this
task, we first need to convert the original vocabulary test
result dataset into a sequence classification dataset so that
sequence classifiers can handle the dataset.

In the example of Figure 3, USR3, the test-taker whose ID
was 3 answered correctly on a multiple-choice question of
the typical meaning of the word “period,” but incorrectly
answered a question on the atypical meaning. To convert
this record into a format that accepts a sequence classifier,
we added special tokens: [USRn].

Here, [USRn], where n is replaced by the test-taker ID, rep-
resents each test-taker, or learner (user). By placing this at
the beginning of the sequence, we notify the classifier that
we want to predict the response of the test-taker specified by
this token. Therefore, the example in Figure 3 shows that
we aim to predict the response of USR3 to the sequence “It
is a difficult period.”. In this example, as USR3 answered
the multiple-choice question correctly, the label for the ques-
tion was set to 1. The rationale behind this conversion is
that the test-taker could read the sentence if the test-taker
answered the question correctly. Hence, the label denotes
that the test-taker was able to successfully read the short
sentence “It is a difficult period.”

Likewise, USR3’s answer to an atypical question can be con-
verted to the sequence on the right-hand side of Figure 3. In

this example, as USR3 answered incorrectly, the label for the
question was set to 0. The option that is incorrectly chosen
by USR3 (“hour” in the example of Figure 3) is ignored in
the sequence. This ensures a fair and accurate comparison,
because IRT-based methods also do not consider the incor-
rect options or distractors chosen by the test-taker. Rather,
they only consider whether a test-taker chooses the correct
option. As each of these tokens represents a test-taker, there
are as many tokens as the number of test-takers, starting
from [USR1].

Thus, the dataset can be converted into a sequence classifi-
cation format. In the transformers library, the tokens used
for Transformer models can be added using the add tokens
function. After conversion, we simply use the AutoMod-
elForSequenceClassification to construct sequence classifiers.
Note that this conversion enables BERT to handle personal-
ized prediction by introducing [USRn] tokens. We introduce
special tokens for each user and insert the token into the
beginning of the sentence.

6. IRT-BASED ANALYSIS
To obtain the difficulty and discrimination parameters for
IRT, we used the pyirt Python library 3. This library was
developed to conduct IRT analyses using marginalized max-
imum likelihood estimation (MMLE) [2, 21]. For the dataset
described above, we used the 2PL model to obtain the above-
mentioned parameters. The dataset includes 12 pairs of
questions, such as Figure 1. The difficulty parameters for
the usual and unexpected examples are shown on the hor-
izontal and vertical axes, respectively, and plotted at the
same scale and range on the horizontal and vertical axes in
Figure 4. Each point represents a single word.

A dotted diagonal line is shown from the lower left to the
upper right of Figure 4. The horizontal and vertical axes of
Figure 4 represent the values of the difficulty parameter; the
higher the value, the more difficult the task was judged to be.
The point to the upper left of the diagonal line indicates that
the difficulty level of an example that seemed unexpected to
the learner was higher than that of the typical example.
Moreover, the word was judged to be more difficult for the
learner to correctly answer questions from the vocabulary
test data. The results of the Wilcoxon test showed that the
column of values on the vertical axis was larger than that
on the horizontal axis by a statistically significant margin
(p < 0.01), suggesting that the vertical-axis questions were
more difficult than the horizontal-axis questions.

Discrimination was also analyzed. The plot is omitted for
space limitation. Atypical meanings are expected to be less
discriminating than typical meanings, because even high-
ability learners may not know the correct answers of atypi-
cal meanings, whereas low-ability learners may know them.
This tendency was observed as follows: For all words, it was
estimated that the discrimination of typical examples was
higher than that of unexpected examples. This result was
found to be statistically significant using the Wilcoxon test
(p < 0.01).

7. EXPERIMENTS OF PREDICTIONS
3https://github.com/17zuoye/pyirt
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Figure 4: Plot of the difficulty of a typical meaning (horizon-
tal) vs. that of an atypical meaning (vertical) for each word.

7.1 Item Response Theory-Based Settings
A naive method to deal with the difficulty of an atypical
meaning of a word is to simply regard its difficulty as being
the same as that of its typical meaning. Hence, we mea-
sured the negative effects of substituting the difficulty of
the atypical meanings of a word with the difficulty of its
typical meanings on predicting the subjects’ responses.

To investigate this, we conducted the following experiment,
as shown in Figure 5. First, we divided 235 subjects into
135 and 100 subjects. We estimated the parameters with-
out using the responses of the latter 100 subjects for the
12 questions (1,200 responses). The parameters of the 12
atypical example questions were estimated only from the re-
sponses of the former 135 subjects, while the parameters of
the 70 typical example questions were estimated from the
responses of all 235 subjects. From (1), we can see that the
estimated values of subject ability θj and the difficulty of
the example di are sufficient to predict if subject j answers
question i correctly or not by checking if θj > di or not, re-
spectively. Hence, once all thetaj and di can be estimated,
we can make predictions. For the 12 typical and atypical
question pairs, we have two prediction methods: one that
uses the difficulty parameters of the typical examples of the
pairs for di and one that uses that of atypical examples of
the pairs. Thus, we compared the prediction accuracy of
these 1,200 responses.

Several methods are conventionally used to estimate the pa-
rameters of IRT models. As in the previous sections, we used
the pyirt library, which implements MMLE, for parameter
estimation. MMLE assumes that the ability parameter can
only take several values to marginalize. This causes stepwise
shapes in the resulting ability parameter plots.

7.2 Our Settings
We constructed a BERT-based personalized predictor [5].
For the neural classification, we used the same settings de-
scribed in Section 5.2. As described in Table 1, we compared
the pre-trained Transformer models, all of which were pub-
licly available from the HuggingFace website 4. Then, we
conducted a fine-tuning by using our own data.

4https://huggingface.co/

Figure 5: Experiment setting. Filled areas are training data,
i.e., used for estimating the parameters. All methods are eval-
uated based on the accuracy of the responses of the dashed
area, i.e, the responses for atypical words of the 100 test
learners.

Table 1: Transformer Models Used for Experiments

Model Name Model cased/uncased

bert-base-cased BERT [5] cased
bert-base-uncased BERT [5] uncased
bert-large-cased BERT [5] cased
roberta-base RoBERTa [17] cased
albert-base-v2 ALBERT [14] uncased

Here, we describe how we converted the personalized predic-
tion of whether a learner knew a given word into the task of
sequence classification and its fine-tuning. Sequence classi-
fication is a supervised classification task in which the goal
is to predict labels by using a sequence as an input. Here,
the label is 1 if the learner knows the meaning of the word,
i.e., answered the question about the meaning of the word
correctly; otherwise, the label is 0.

Because the aim is to make personalized predictions, it is
necessary to incorporate learner test-takers in the sequence.
Thus, we added special tokens to represents individual learn-
ers. For example, if the sequence starts from “[USR3]”, this
means that we want to predict whether the learner with ID
3 can read the sentences that follow. Hence, “[USR3] It was
a difficult period.” asks if the learner with ID 3 could read
the sentence “It was a difficult period.”. The goal of the task
is to predict 1 or 0, where 1 indicates that the learner could
read the specified sentence, and 0 indicates that the learner
was unable to do so. We fine-tuned the pre-trained BERT
model in this manner using the “training” data shown in
Figure 5. For the estimation, we used the Adam optimizer
[13], in which the batch size was 32.

7.3 Results
Table 2 shows the predictive accuracies of all methods. The
results showed that the prediction accuracy of the direct
method was 64.4% and that of the alternative method was
54.4%, a difference of 10 points. This difference was signifi-
cant at p < 0.01 in the Wilcoxon test. This result indicates
that estimating the difficulty of atypical meanings of words
from those of typical words is a challenging task.
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Table 2: Predictive Accuracies of the Dashed Area
Base Method Accuracy

IRT (ability - diffcl. of typical word) 0.544
IRT (ability - diffcl. of atypical word) 0.644
OURS (bert-large-cased) 0.674 (**)
OURS (bert-base-cased) 0.688 (**)
OURS (bert-based-uncased) 0.655
OURS (roberta-base) 0.681 (**)
OURS (albert-base-v2) 0.671 (*)

Our model achieved the best performance among the listed
models. The name in () indicates the pre-trained model used
for the experiments. In particular, our model significantly
outperformed the IRT models with the best accuracy. This
result was also statistically significant using the Wilcoxon
test (p < 0.01). This is denoted by (**) in Table 2. As BERT
considers the semantics of the question, this result suggests
that the traits of each learner test-taker was captured via
the embeddings of the [USR] tokens during the fine-tuning.

Table 2 showed the best performance for bert-base-cased.
bert-base-cased achieved a performance better than bert-
large-cased. The reasons of this are presumably as follows.
Although the word embeddings of Transformer models are
trained by many examples in their pre-trained corpus, the
word embedding vectors of learner tokens, which represent
learners’ characteristics, such as their abilities, were trained
solely on a relatively small training data in the fine-tuning
phase. Obviously, no learner tokens appeared in the pre-
trained corpus. Hence, it could be possible that bert-large-
cased has too many parameters to be tuned using the small
training data in fine-tuning compared with bert-base-cased.

Table 2 also shows that a model must be cased to achieve a
good accuracy, considering that roberta-base is cased whereas
albert-base-v2 is uncased. This is presumably because the
model needs to recognize the start of a sentence, which starts
with a capitalized word, since each question consists of a
short sentence in this experimental setting.

8. EXTRACTING ABILITY VALUES
As stated above, our method handles learners as tokens.
Transformer-based methods internally use“word embeddings”
that represents the meaning of the tokens in the form of
vectors. Hence, by obtaining the word embeddings of the
learner tokens that we introduced, it was possible to analyze
learners’ characteristics, such as their language abilities.

As word embeddings are typically multi-dimensional, dimen-
sion reduction methods such as principal component analysis
(PCA), can be used to obtain abilities from the embeddings
of learner tokens. Figure 6 shows the plot of a PCA of
the ability parameters of test-takers of the vocabulary test
dataset against the first principal component scores of each
token of the token embeddings in the case of bert-large-cased
in Table 2. A clear correlation can be observed between the
two. The correlation coefficient was 0.72, and was statisti-
cally significant (p < 0.01). In this manner, learners’ abili-
ties can be obtained through PCA of the test-taker tokens
in our method, which means that our method is equipped

Figure 6: Relationship between IRT ability parameters esti-
mated by pyirt (horizontal) and the first principal component
of the learner token embeddings (vertical)

with the interpretability of IRT models.

In Figure 6, we used pyirt for estimating the ability param-
eters. To check the correlation using IRT software other
than pyirt, following a standard textbook for educational
psychology [21], we also conducted experiments using the
R “ltm” package, which was developed completely indepen-
dently of pyirt. Unlike pyirt, which uses MMLE, ltm uses
the expected a posteriori (EAP) method for parameter esti-
mation. Again, a statistically significant correlation was ob-
served: the Pearson’s correlation was also 0.72, (p < 0.01).

9. CONCLUSION
In this study, we tackled the task of predicting whether lan-
guage learners know the atypical meanings of a word and
developed an evaluation dataset for this purpose. We pro-
posed a simple method for applying MLMs to the afore-
mentioned personalized prediction problem by introducing
tokens that represent learners. The prediction performance
of the proposed method was superior to that of IRT by a
statistically significant margin. We also showed that, with
the proposed method, one can easily obtain learners’ ability
values using the first principal component scores of token
embeddings. This result indicates that our method is highly
interpretable and, hence, suitable for educational use.

The learner token embeddings that we introduced are multi-
dimensional. While we showed that the first principal com-
ponent score significantly correlated with the test-taker’s
ability parameter, the other components may encode the
learner’s other types of ability. In IRT, there is a similar
idea to model the learner’s ability as a multidimensional
vector, called “multidimensional IRT”. Our future work is
to compare the other principal components of learner token
embeddings with multidimensional IRT.
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APPENDIX
A. DATASETS
The dataset used in this paper will be publicly available.
Details of the dataset will be available at http://yoehara.

com/ or http://readability.jp/. Some previous datasets
such as [6] are available at http://yoehara.com/.

B. DISCUSSION
In this paper, we have made two important suggestions.
The first is to introduce learner tokens to apply Transformer
models to the personalized prediction task. The second is
that the learner ability can be extracted from the first prin-
cipal component of the learner token embedding vectors.

A research question that directly follows from this result
is: Is it always possible to extract learner ability from the
Transformer models? We provide our views on this topic.

An important point of the experimental settings shown in
Figure 5 is that all learner tokens are trained using the same
70 test questions. (Strictly speaking, as for the 100 learners
in Figure 5, their learner tokens were trained without test
questions for atypical words.) The word embeddings, other
than the learner token embeddings, were already trained us-
ing the pre-trained model. Therefore, although words other
than the learner token in a sentence had a strong influence
on the training of learner token embeddings, they were all
trained in a similar way except for the response of the learner
to the test question text: correct/incorrect. Hence, it is
natural that learner token embeddings mainly reflect the re-
sponse of the learner to each question text.

Hence, in a setting in which each learner responds to com-
pletely different test question texts, it is expected that ex-
tracting the learner’s ability values using the first principal
score of the learner token embedding vectors will be diffi-
cult. This setting can also be seen in the case where the
matrix Figure 5 is sparse because each column, i.e., each
test question, was filled by a small number of learners.

C. SCATTER PLOTS

Figure 7: The horizontal axis shows the discrimination pa-
rameters and the vertical axis shows the difficulty parame-
ters.

Figure 8: The horizontal axis shows the discrimination pa-
rameter of the typical meanings and the vertical axis shows
the discrimination parameter of atypical meaning.

Figure 9: Relationship between the learner ability parameter
estimated by the pyirt software (horizontal) and the second
principal component of the learner token embeddings (verti-
cal)

Figure 10: Relationship between IRT ability parameters es-
timated by ltm on the R language (horizontal) and the first
principal component of the learner token embeddings (verti-
cal)
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ABSTRACT 
Typical data science instruction uses generic datasets like survival 

rates on the Titanic, which may not be motivating for students. Will 

introducing real-life data science problems fill this motivational 

deficit? To analyze this question, we contrasted learning with ge-

neric datasets and artificial problems (Phase 1) with a community-

sourced dataset and authentic problems (Phase 2) in the context of 

an 8-week virtual internship. Retrospective survey questions indi-

cated interns experienced increased motivation in Phase 2. 

Additionally, analysis of intern discourse using Linguistic Inquiry 

and Word Count (LIWC) indicated a significant difference in lin-

guistic measures between the two phases. Phase 1 had significantly 

greater measures of pronouns with a small-medium effect size, 2nd 

person words with a medium-large effect size, positive emotion 

with a medium effect size, inter-rogations with a medium-large ef-

fect size, question marks with a medium-large effect size, risk with 

a medium-large effect size, and causal words with a medium effect 

size. These results in conjunction with a retrospective survey sug-

gest that phase 1 had more questions asked, more causal 

relationships defined, and included linguistic features of success 

and failure. Results from Phase 2 indicated that community-

sourced data and problems may increase motivation for learning 

data science. 

Keywords 
Virtual internship, motivation, service-learning, language analysis 

1. INTRODUCTION 
Data science curriculum development is challenging due to prereq-

uisites in statistics, programming, and machine learning [35]. 

Dataset complexity is another challenge: while educators 

acknowledge that data science embraces messy data, typical prac-

tice is to use sanitized or “canned” datasets to demonstrate a 

particular approach [3][10]. For example, the UCI Machine Learn-

ing Repository, a popular source of datasets, lists datasets on irises, 

adult income in 1996, and the geographic origin of wines as its top 

three downloaded datasets [9]. 

The practice of using canned datasets illustrates the pedagogical 

tension between keeping intrinsic cognitive load low [33] without 

sacrificing learning opportunities to develop key data science skills 

for working with messy data. Cognitive load theorists have pro-

posed that motivation is particularly important for learning 

complex skills over time, because motivation causes learners to in-

vest in germane cognitive load [20]. 

In the context of learning data science, dataset manipulation is a 

potential avenue for increasing motivation. Personalization has 

been used in previous research to increase motivation for learning 

[8]. For example, personalization might entail allowing the learner 

to choose the dataset or matching a dataset based on the learner’s 

preference profile. However, this type of data personalization can 

be challenging because the data in question may not be accessible 

or suitable for advancing a learning goal. 

The alternative explored in the present study is to use datasets and 

problems sourced from community partners. In the framework of 

self-determination theory [26], this approach should build intrinsic 

motivation through the constructs of relatedness (by working on a 

problem of concern in their community), autonomy (by deciding 

how to address the problem of concern rather than being told to 

perform a specific analysis), and potentially competence (by mak-

ing progress on the problem and so increasing self-efficacy in data 

science). 

Within our research context of an 8-week data science virtual in-

ternship, we hypothesized that interns would experience increased 

motivation during the final phase of the internship in which they 

worked on community-based problems. To evaluate this hypothe-

sis, we conducted retrospective surveys and analyzed the 

communications between interns for linguistic indicators of in-

creased motivation, effort, confidence, competence, and emotion. 

2. BACKGROUND 

2.1 Internship & motivation 
Traditional internships offer a markedly different context for learn-

ing compared to formal education. While formal education 

typically engages in prescriptive or rote learning, internships are 

grounded in real-world tasks that have material impacts on interns 

in terms of compensation and future employment opportunities. As 

such, internships have substantial potential to enhance motivation 

around learning in a way that parallels, and perhaps even surpasses, 

project-based learning in formal education [2]. 

The motivational impacts of internships have been found across the 

literature. [15] worked with IT interns to consider the roles of tasks, 

learners, and mentors in a project-based intern program. It was 

found that mentors increased the learners’ successful expectancies 

and therefore increased learners’ self-efficacy. Because of this, it 

was hypothesized that mentoring increases the learner’s self-deter-

mination and subsequently their motivation. [19] a study based on  
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167 college interns working in retail, it was discovered that emo-

tional sharing is positively related to learning and mentoring. 

Research in cognitive neuroscience leads us to believe that emo-

tions activate neural circuits which engage sensory systems that 

increase attention and motivate perceptual processing [17]. Positive 

emotion was hypothesized to relate to motivation in that by increas-

ing these perceptual factors, learners would be more compelled to 

learn. 

Similar results have been found in virtual internships [13]. Virtual 

internships are becoming a popular alternative to in-person struc-

tures due to the Covid-19 Pandemic, and they have the potential to 

offer a unique educational strategy. Research has shown that learn-

ing efforts outside of traditional classrooms are needed to address 

systemic disparities within education [30]. In [25] it was seen that 

virtual internship programs provide a quality opportunity for non-

traditional students to participate in practical experiences regard-

less of their physical location and other obstacles. 

The virtual internship discussed in this paper follows through on 

goals to help students during the pandemic. This includes paying 

learners, offering them loaner laptops, and creating a pedagogy that 

motivates students when working with a local community partner 

in need. 

[18] showed that service-learning increased civic skills, problem-

solving, and motivation. This leads to the idea that service-learning 

internships have the potential to enhance motivation, especially if 

the service is aligned with the intern’s beliefs and values. Service-

 

1 https://github.com/memphis-iis/datawhys-content-notebooks 

learning gained attention in the 1970s [29] and has become increas-

ingly popular in engineering [4] as well as data science, as 

evidenced by such programs as Data Science for the Social Good. 

2.2 Research Context 
We designed an 8-week data science internship with two phases. 

Phase 1 of the internship was an educational data science boot camp 

that consisted of Jupyterlab Python notebooks1 with a Blockly 

plugin (Anonymous) so that students could solve data science prob-

lems with a block-based programming language. Learners were 

split into pods which was a distributed team of students ranging 

from 3-4 people including a student mentor. The notebooks con-

sisted of materials that span across data science top ics, such as 

cleaning data, Random forests, regression trees, and cross-valida-

tion. To cover these topics according to a fixed schedule, Phase 1 

used common generic datasets with artificial problems.   

(i.e., problems proscribed by the learning materials). Each topic 

was covered by introducing it as a worked example in the morning 

followed by problem-solving in the afternoon. At the end of the day, 

they would engage in peer grading and review, which would cul-

minate in a group discussion led by a faculty member. In addition to 

the notebooks, students were provided a reference manual that ab-

stracted key steps from the notebooks, based on an observation that 

interns sometimes struggled with learning transfer (Anonymous). 

Further, Phase 1 implemented a problem-based learning environ-

ment, with mentors to help get through the questions. This style of 

 

Figure 1 Jupyter Notebook Lesson on Simple Linear Regression 
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learning has been seen to increase intrinsic motivation [5] [16]. This 

is a type of instructional design suggested by [30] such that students 

learn from failure, and that they can- not fail in this environment 

due to the time allowed to rework, fix, and learn from their mistakes. 

This is motivating due to the lack of pressure on the student to be 

correct. 

In Phase 2 of the internship, students were regrouped into two 

teams such that they could work on a respective community-partner 

project. The projects consisted of harm-reduction data from a clean 

needle and Narcan mutual aid group (A Betor Way), and event data 

from a group that helps battered women get into safe homes and 

supplies resources (Restoration Time Family Youth Services). Both 

community partners are locally based. Before Phase 2, each partner 

presented to the interns and faculty for 10 minutes and took ques-

tions about their work and data. After the presentations, each intern 

rank-ordered their preferences of which project they wanted to be 

on, which was considered and distributed based on their prefer-

ences and the number of students in each group. Each team worked 

with 1-2 faculty members that they met with on a regular basis (e.g., 

2-3 times a day). The faculty members provided guidance and 

helped set goals and schedules. Each team was also provided with 

a captain that was nominally for coordinating within team mem-

bers. An important factor of Phase 2 is that it keys in on reinvention 

and reconfiguration during a learning task, which has been seen to 

add meaning to the learning experience [6]. In an experiential ac-

tivity, such as a real-world authentic problem, motivation to learn 

is cultivated [24]. This can be seen in a study conducted over five 

forms of experiential learning, which reported a high self-percep-

tion of learning in a service-learning setting [7]. 

2.3 LIWC 
Linguistic Inquiry and Word Count (LIWC) calculates linguistic 

measures using a dictionary-based approach that counts words in 

the given text according to the categories in which they belong [24]. 

For example, if you use the word “sad” it will be counted as a target 

word that matches a dictionary word for the category of negative 

emotion words. The dictionary is composed of 94 categories and 

almost 6,400 dictionary words like this. The full comprehensive 

text can be found in [24]. The 2015 version of the software, which 

was used in this study, supports the languages of Spanish, German, 

Dutch, Norwegian, Italian, and Portuguese. 

The usage of LIWC in discourse spans many topics in education 

such as understanding learners’ difficulties, discovering motiva-

tional insights to learning styles, and analyzing the sentiment of 

experts and non-experts over time. In [11] it was seen that various 

language modeling tactics, including LIWC, lead to the understand-

ing that researchers could interpret learners’ needs and difficulties 

in learning. This insight was used to change the materials and 

course settings such that the learner experience was increased [11]. 

LIWC was also used in [36] to develop research around learning 

styles while classifying the motives behind them. This study found 

that LIWC could be used to identify the motives for different stu-

dents’ needs and what learning styles could be used to facilitate 

them. Further showing the application of LIWC in educational set-

tings, [1] studied the emotional states of learners in an online Stack 

Overflow learning community. They found that learners were more 

analytical and less authentic over time, meaning learners pro-

gressed in their learning capabilities but became less honest in their 

posts. It was also found that the clout (e.g., confidence) levels of 

non-experts decreased overtime in their question-and-answer posts, 

while experts only had a decrease in clout for their answer posts – 

not the question posts. This indicates that learners became less con-

fident in their materials over time, while experts doubted their 

answers but had strong questions. LIWC has been used across var-

ying processes, tasks, and materials to understand the social reality 

of learner discourse.  

Figure 2 Intern Visualization for A Betor Way Project 
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In the present study, LIWC2015 was used to analyze the change in 

discourse between Phase 1 and 2 as an indicator of motivation, 

emotional resonance, confidence, competence, and effort. These 

constructs were analyzed using LIWC with data extracted from 

Discord, an online messaging and communication platform that 

learners used to communicate with each other, their mentors, and 

faculty. It is important to note that from a psychological perspec-

tive, style words such as pronouns and 2nd person reflects how 

people are communicating, while content words such as the ones 

that fall under the positive and negative emotion category convey 

what people are saying [34]. In terms of what people are saying, 

different variables, such as word count, can be used to determine 

the characteristics of a speaker, such as effort. In this way, the dis-

cussed constructs can be operationalized in terms of the LIWC 

variables. For example, affective indicators of emotional tone, af-

fect, positive emotion, and negative emotion could be used to 

represent emotional tendencies. The reason for looking at this con-

struct is the expectation that when students have a moral 

responsibility to help a community partner in need, they will have 

a larger emotional resonance with the task and therefore be more 

motivated. 

3. METHODS 

3.1 Participants 
There were 10 participants in this study, 5 men and 5 women. For 

the A Betor Way project, there were 3 men and 2 women. For the 

Restoration Time Family Youth Services project, there were 2 men 

and 3 women. All but one intern was from LeMoyne Owen College, 

a private Historically Black College and University (HBCU) in 

Memphis, TN. The HBCU participants came from a variety of ma-

jors, and the remaining participant was an incoming data science 

graduate student. Three participants were mentors. One was an in-

coming graduate student, and the other two were former interns. 

3.2 Materials and Procedure 
Data for LIWC analysis were collected through mining the conver-

sations students were having over the messaging platform Discord. 

Channels for each pod were created, a help channel, a general chat 

channel, and two channels for each community-partner project. The 

text logs from Phase 1 were collected using the pod channels, and 

the text logs from Phase 2 were collected using the community-

partner channels. Voice channels for general, help, each team, and 

each project were also created, but data from these sources has been 

excluded because we did not save this method of communication. 

Discord chat logs were exported as JSON files using the Discord 

Chat Exporter2. Then, we used a Python script to collect word 

counts and length of words per post by each student by afternoon 

and morning notebook. We aggregated the posts from each student 

into a single text for Phase 1 and again for Phase 2. The resulting 

texts were put into an Excel file and used for LIWC analysis with 

each student and all the words they used per phase as a datapoint. 

Survey items were distributed to students retrospectively (e.g., at 

the end of phase 2) over Google Forms. The items were constructed 

by centering the constructs of motivation and affiliation. Questions 

used a 5-point Likert scale, designating no influence in the question 

asked to a very strong influence. Two of the questions, the last two 

 

2 by Github user Tyrrrz (https://github.com/Tyrrrz/DiscordChatEx-

porter).   

rows in Table 2, used the number three option as a designator for 

no influence whatsoever. 

4. RESULTS 
 

Table 1 LIWC measures with significant changes across phases 

Measure Phase 1 Phase 2 p d 

  
M SD M SD   

pronoun 59.00 48.85 40.90 55.86 .048 .34 

 

you 

 

13.20 

 

16.22 

 

4.75 

 

7.42 

 

.027 

 

.67 

 

interrog 

 

8.50 

 

5.70 

 

4.84 

 

5.44 

 

.048 

 

.66 

 

posemo 

 

16.10 

 

13.24 

 

9.40 

 

13.61 

 

.037 

 

.50 

 

cause 
 

9.81 
 

7.91 
 

5.55 
 

8.30 
 

.009 
 

.53 

 

risk 

 

3.58 

 

3.36 

 

1.75 

 

2.69 

 

.027 

 

.60 
 

Qmark 
 

8.68 
 

8.16 
 

4.44 
 

6.63 
 

.019 
 

.57 
       

 

4.1 LIWC 
All measures reported by LIWC were analyzed using the Wilcoxon 

signed ranks test, but due to space constraints, we only report sig-

nificant results in Table 1. The indicated p-values are not corrected 

for significance due to chance (type 1 error), which is expected 

when performing 88 tests at once. When we corrected the p-values 

using the strict Holm-Bonferroni method and less strict Benjamini-

Hochberg method, no significant differences were found. Post-hoc 

power analysis using GPower 3 revealed that the design was under-

powered, with power .28 to find a medium effect with α = .05. 

All measures in Table 1 significantly decreased from Phase 1 to 

Phase 2. Personal pronouns are “I, them, her itself” and include 

‘you’. This measure had small-medium effect size, whereas the 

other measures had a medium or medium-large effect size You 

measures 2nd person words such as “you, your, yourself”. Iterrog 

means interrogatives such as “how, when, what”. Posemo means 

positive emotion and includes words such as “love, nice, sweet”. 

Cause means causation words, such as “before, effect”. Risk means 

words associated with risk such as “danger, doubt”. Finally, Qmark 

means the number of question marks used. 

4.2 Survey Results 
Only 5 interns responded to the survey. In the survey results, it was 

found that students self-reported higher motivation when working 

on the community projects in Phase 2. Table 2 shows the survey 

questions and their respective scores., The scores across all ques-

tions indicate that the interns perceived an increase in motivation 

during Phase 2. Additionally, interns developed a sense of under-

standing that data science can affect their local communities and it 

helped develop a sense of connection to their communities. Overall, 
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the outcomes of this survey were very positive, but limitations exist 

in the lack of power present with such a low N. 

Table 2 Retrospective motivational survey of interns 

 

Question M SD 

How did working with a community partner 

increase your motivation? 
5.00 .00 

How did working on your team’s project in-

crease your connection to the community? 
4.00 .49 

How did knowing that your project was with 

community-based data increase your efforts? 
5.00 .00 

To what degree did working with a community 

partner influence your perspective on data sci-

ence’s power to have a local impact? 

 
4.43 

 
.19 

To what degree did your interest in social jus-

tice work change since the beginning of the 

community project 

 
4.20 

 
.44 

 

5. DISCUSSION 

5.1 Interpretation 
Students reflexive posting indicates that they wrote more questions, 

explained the processes, took more risks, and had a more positive 

attitude in Phase 1. Nothing resulted in an increase in Phase 2, 

which was contrary to our results. The present study expected to 

primarily see an increase in motivation, and secondarily see an in-

crease in effort, competence, confidence, and emotion. The only 

construct in the LIWC analysis that matches what we were expect-

ing was positive emotion, but the results came out in the other 

direction. However, our primary hypothesis of motivation comes 

out correct in the retrospective survey results. 

Along with questions being asked, we can interpret the causal 

words, 2nd pronoun usage, and pronoun usage. These categories in-

dicate the prevalence of explanations by means of needing to 

indicate causal relationships, direct others on what to do, and refer 

to objects and people. Additionally, since “pronoun” and “you” 

words both decreased, this means no other subtypes o pronouns 

changed. Since “you” is nested in “pronoun”, this implies that the 

change was all in “you”. In other words, the “pronoun” result is 

entirely dependent on “you”. In [31] pronouns were negatively re-

lated to relationship quality. This means that since “you” decreased, 

an improvement in relationship quality changed from phase 1 to 

phase 2. However, this could just be due to time, not to the phase 2 

activity. 

The results of interrog and Qmark indicate the construct of ques-

tions, so it can be said more questions were asked in Phase 1. This 

makes sense because there is a back-and-forth dialogue between 

learners and mentors – both must ask each other questions. In Phase 

2, questions seemed to be one direction, as in learners and mentors 

were asking questions that a faculty member could answer with or 

without another question. Here, it is important to consider that fac-

ulty posts were not measured, so if they responded back with a 

question, it was not reported. Additionally, it was found in [27] that 

lower-status language is more self—focused and tentative, while 

high-status language speaks more often and freely makes state-

ments. The use of first-person plural usage correlated with higher 

rank, but the opposite pattern was found for question marks 

compared to lower-ranked members of a crew. A reduction of ques-

tion marks could indicate an increased sense of status and therefore, 

self-efficacy. 

Because causal words went down, the language can be said to have 

been less complex over time as the interns had more knowledge and 

didn’t have to explain themselves as much when talking to each 

other. This can be related to literature from [14] that such discus-

sions are the most complex part of an article because results must 

be integrated and differentiated from past findings. It can also be 

related to the literature of [12] which studied how prepositions sig-

nal the speaker is providing more complex and concrete 

information about a topic, showing that words greater than six let-

ters are also indicative of more complex language. These causal 

relationships show that there is a complexity to the conversation 

which does not occur in Phase 2 possibly due to the nuanced form 

of problem-based learning.  

The results of risk and positive emotion are a bit fuzzier, but they 

seem to reflect a dichotomy of failure and success. Risk words in-

clude a language of doubt and tentability. This is a bit strange to 

see in Phase 1, but it starts to make sense when contextualized to 

the failure literature of [30]. When students are in an environment 

where they have the option to fail, doubt occurs, and a sense of risk 

is invoked due to the consequential fear of getting problems wrong. 

Positive emotion reflects the opposite of this – the joy of getting 

answers correct. Since there are no problem sets in Phase 2, only a 

project to complete, there are less iterations of the failure and suc-

cess dichotomy, which results in fewer positive emotion and risk 

words. Additionally, since positive emotion words went down, this 

could indicate there was less agreement in Phase 2 than Phase 1. 

The task was more difficult and had multiple solutions in Phase 2. 

Since risk also went down, this could mean that concerns went 

down. This would make sense because the learners had an increased 

ability at this point. Lowering of these concerns could indicate in-

creased self-efficacy. 

In the rest of this section, the nuances of each result will be dis-

cussed: 

Pronoun means total pronouns used. This is represented by the 

words “I, them, her, itself”. It was found that the use of pronoun 

words dropped in Phase 2, which could be because there was more 

direct mentoring in Phase 1. This is exemplified in the sentence 

“You’re gonna set one of them to Import: “pandas” – as – “pd”. 

This sentence shows the use of variable pronouns directed at an-

other person in need of assistance. Compare this to the sentence: 

“Sorry, I got super dugged dow with a dumb error on the scatter 

matrix, but I’m done now. I’m trying to add a new/return-dependent 

color to the Narcan Given histogram.” This shows the use of pri-

marily one type of pronoun – personal. It is possible that in Phase 

1 lots of different pronouns were used, indicating acts of mentoring 

and calls for help of assistance, while Phase 2 used a smaller cate-

gory of pronouns to update the chat on what they were doing on the 

project. 

You means 2nd person words used. This is represented by the words 

“you, your, yourself”. IT was found that the amount of you were 

dropped in Phase 2, which could indicate there was more instruc-

tion in Phase 1. This is similar to the thought pattern behind the 

pronoun decrease – there was more variability in pronouns, espe-

cially 2nd  person words, in the first phase but the instruction of this 

type was lacking in Phase 1. However, we do not see an increase in 

1st person words in Phase 2, which means if there was an increase 

in these types of words in Phase 1 it did not happen at any signifi-

cant level. 
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Interrog means interrogatives, and Qmark means question marks. 

These words are represented by “how, when, what” and “?” respec-

tively. They will be discussed together due to the correlation of the 

categories and ideological similarities in what they represent – 

questions. There were more interrogatives and question marks in 

Phase 1 than in Phase 2, and they both had about the same number 

in both phases. This could be because interrogatives and question 

marks are linked in their representation of questions, which makes 

sense for these to be more prominent in Phase 1 than Phase 2 due 

to the direct problem-solving nature of tasks in Phase 1. In Phase 2, 

there seemed to be a culture of putting question marks behind things 

they were trying to verify, such as: “I guess we have to get dummies 

for all the non-numerical stuff, right?”, whereas in Phase 1 there 

were more questions from both interns and mentors, such as the 

question: “What kind of error are you getting?”. Mentors needed to 

ask questions to assist, as well as interns asking the questions to get 

answered. This two-ended need for questions could account for the 

almost double amount of question marks and interrogatives in 

Phase 1. 

Cause means causation words, such as “before, effect”. These 

words were higher in Phase 1 than in Phase 2, which could be be-

cause of a need for understanding the problems in Phase 1, and the 

mentors giving answers in this fashion. Take the example sentence 

“Ok, it’s because the last 3 freestyle blocks go outside the main 

block, like this: [screenshot]”. It shows a mentor answering a ques-

tion in a causal style. Examples like this are plentiful in Phase 1, 

but they are lacking in Phase 2 due to less of a need to understand 

what is happening and more of a need to update the channel on what 

they are accomplishing. The explanation of how or why they are 

doing such a thing is not there because everyone already under-

stands the underlying mechanisms. 

Risk means risk in the LIWC dictionary, and it accounts for words 

such as “danger, doubt”. This could be because of learners’ hesi-

tancy in what the materials they are learning. It represents a 

tenability in answering problems because there is an underlying 

fear of getting the questions wrong. 

Posemo means positive emotion, which is represented by the 

words “love, nice, sweet”. These words were more prominent in 

Phase 1 than in Phase 2, contrary to our hypothesis. This could be 

because learners were more likely to express gratitude for answers 

in Phase 1, and there were not that many questions in Phase 2. 

Additionally, it could represent the happiness one feels when get-

ting an answer correct or getting the solution they need. It could 

also represent the gratitude learners had to their mentors for help-

ing them. In this sense, the linguistic feature of positive emotion 

represents the other opposite of risk, meaning these two categories 

might have a relationship in the problem-based learning context.  

Overall, these results can be interpreted as more questions being 

asked, and more causal relationships being defined. 

5.2 Limitations 
The study has several limitations. The study was nonexperimental 

with low sample size, reducing our power to find an effect or claim 

causality. The order of the phases was not counterbalanced, by ne-

cessity, so it is possible that some changes in discourse are due to 

maturation and not the community project in Phase 2. The analysis 

done in LIWC uses a dictionary approach – words are matched 

based on predefined categories instead of studying word relation-

ships and their contextual clues [22]. Finally, the survey questions 

were asked retrospectively, so there was no baseline to measure 

change, and the participants may have had bias responses due to the 

retrospective phrasing of the questions. 

5.3 Future Research 
In the future, more participants should be studied because the power 

of this research is very low for both LIWC and Survey measures. 

Motivational surveys should be distributed before and after the in-

ternship, instead of just after. Also, questions should be reworded 

and put on the same scale. 

This study should also be used as a comparison metric for the same 

internship next year. By doing so, insights could be found on the 

similarity between years to see if any language changed over the 

course of a year’s development of the program. 

Another future research point would be to include the 4 summary 

variables in the LIWC dictionary (e.g., analytic, clout, tone, and 

authentic) to see if there were any changes over the phases per per-

centile scoring. Word count could also be analyzed, as well as 

words per sentence if set up correctly with stopper marks. 

Finally, it would be good to measure the language usage in a time 

series of days per week over the four weeks to see what changes 

happen per day. This would allow us to see the movement and var-

iability of sentiment change. 

5.4 Conclusions 
In conclusion, this study shows that learners asked more questions, 

described more relationships, and were more positive in Phase 1. It 

was also found that students were more motivated in Phase 2. 

It is important to look at the LIWC analysis between phases because 

it highlights the psychological underpinnings of learners. There is 

potential to discover constructs laying within the text. In the case 

of this study, those constructs were more questions asked, discus-

sion of causal relationships, and the success and failure influences. 

Even though our hypotheses of confidence, competence, and effort 

were not detected, we did find increases of motivation and discov-

ered constructs that exist in Phase 1. This is valuable research 

because it suggests that in a problem-based learning environment 

with mentors more questions will be asked, more relationships will 

be discussed, learners will be willing to take more risks, and they 

will emotionally reap the rewards of getting things correct by taking 

those risks. 

This study also resulted in a finding of our secondary hypothesis of 

an emotion change, but it occurred in the opposite direction than 

we were expecting. This result was attributed to the joy of success 

when solving problems, instead of the joy of working with a com-

munity partner. Although we did not see a linguistic increase in 

positivity, we did find that learners had an increased interest in so-

cial justice activities and were more motivated to complete the 

project. This means that despite the LIWC results, we can still say 

Phase 2 had an impact on learners. 

The significance of this research lays in educational design such 

that project-based service-learning programs do increase motiva-

tion, and a problem-based environment induces the discussed 

constructs. 
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ABSTRACT
In computer science education timely help seeking during
large programming projects is essential for student success.
Help-seeking in typical courses happens in office hours and
through online forums. In this research, we analyze students
coding activities and help requests to understand the inter-
action between these activities. We collected student’s help
requests during coding assignments on two different plat-
forms in a CS2 course, and categorized those requests into
eight categories (including implementation, addressing test
failures, general debugging, etc.). Then we analyzed the pro-
portion of each type of requests and how they changed over
time. We also collected student’s coding status (including
what part of the code changed and the frequency of com-
mits) before they seek help to investigate if students share a
similar code change behavior leading to certain type of help
requests.

Keywords
Help Seeking, Categorization, Data Mining, CS2, Computer
Science Education

1. INTRODUCTION
Help seeking is a complex cognitive skill involving metacog-
nition and self-evaluation to identify the need for assistance,
identification of problems for support, and formulating re-
quests [1, 16, 15]. Help seeking is essential for learners to
develop a better understanding of assignments or class con-
tent that they do not understand [15]. Effective help-seeking
is a key part of learning and is associated with a capacity for
self-regulated learning through monitoring and goal-setting
among other aspects [22, 24]. Motivation in help-seeking has

been analyzed by a number of authors [19, 4, 25, 5, e.g] .
These researchers have noted that learners who felt comfort-
able and skillful in relating to others were more likely to ask
for help. Further studies of specific help-seeking behaviors
(e.g. [17, 18, 21]) has included analyses of the interaction be-
tween help-seeking and instructor feedback. However, most
of this prior research focused only on students’ help seeking
behaviours in isolation or in the context of relatively focused
problem solving. It has not typically exampled that help-
seeking responds to prior problem-solving, and how these
help requests affect their subsequent work.

In this study, our goal is to explore the motivations, help-
seeking, and problem solving actions of computer science
students seeking help for their programming projects. We
chose to focus on coding for two reasons. First, computer
science skills have become an increasingly important domain
at all levels with increased demand at all grade levels and
coding is an essential part of that [2]. Second, program-
ming is a complex task that involves students in long-term
complex problem solving which offers multiple opportunities
for help-seeking and for a complex interrelationship between
problem-solving, assistance, and outcomes. In contrast to
prior research, we combined different types of student help
seeking behaviours including attending office hour and post-
ing on a public class forum. We analyze how students change
their code when trying to receive help from others. Thus, in
this work, we answer the following research questions.

• RQ1: What types of help are students seeking in online
forums and office hour settings and how do they differ?

• RQ2: How does the frequency of help-seeking change
over the course of students’ complex assignments, and
can we use the project stages or sub-goals to predict
this help-seeking?

• RQ3: What types of coding behaviors do students en-
gage in before seeking help?

In order to address these questions we began by identifying
common help requests and coding behaviors. We manually
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labeled help seeking requests from two different platform
from a blended course. We then analyzed how these differ-
ent types of help seeking requests changed during the cod-
ing project lifespan. Finally, we compared students’ coding
changes based on the commit frequency and the number of
their passed test cases before and after they seek help.

2. RELATED WORK
2.1 Help Seeking Behaviours
As prior researchers have shown self-regulation of learning
through modulation of affective, cognitive, and behavioral
processes is an essential component of learning across do-
mains [23]. This regulation and essential help-seeking is
driven in part by students personal motivations [13, 14, 12],
and by their general attitude toward learning [19]. In general
students who have better performance in an educational en-
vironment tend to have better metecognitive skills and tend
to seek help more frequently [10]. Ryan et al. [19], for ex-
ample, investigated motivational influences on help seeking
behavior in math classrooms, focusing on early teenagers’
perception of the benefits and threats associated with such
behaviour. They designed a survey for 203 seventh and
eighth graders on perceptions of social and cognitive com-
petence, achievement goals, attitudes, and avoidance of and
adaptive help seeking behaviour. There finding indicates so-
cial competence had an indirect effect on avoidance of help
seeking. And the results illustrate the importance of linking
cognitive and social characteristics of students to provide a
full understanding of teenager help seeking.

Help seeking is an important factor to success in learning
programming. Bumbacher et al. [3], for example, devel-
oped novel models to predict student learning gains based
upon their semantic and structural features of their coding
submissions. They found that these code features extracted
from a single assignment can be used to predict whether
or not students got help. Marwan et al. [11] focused on
analyzing and classifying students’ help-seeking behaviors.
Based upon an analysis of student-system logfiles they pro-
posed a taxonomy of unproductive help seeking behaviour
in a programming environment. They then used these find-
ings to design a hint interface that scaffolded appropriate
help-seeking. Students using their platform were ultimately
less than half as likely to produce unproductive help-seeking
and thus improved overall.

2.2 Student Help Seeking Behaviour Analysis
Unlike in-person environments online help-seeking is far more
open and produces a higher volume of data [9]. Prior studies
of online learning have typically shown a positive relation-
ship between help seeking behaviours and academic perfor-
mance.

In-person or small-group online office hours are an impor-
tant venue for support in traditional and blended courses.
Guerrero et al. [8] noted that students fail to take advantage
of office hours when they are available despite the fact that
the use of office hours correlates with performance. Griffin
et al. [7] extended this work by working to identify distinct
factors that influence students’ use of office hours. To that
end they developed a survey with 625 valid responses from
undergraduate students at a large public university. The re-
sults revealed that factors that significantly affect student

use of office hour vary with one exception: usefulness of in-
structional staff feedback. Thus, in this study, they suggest
instructors provide more efficient feedback to solve students
problems to encourage students to engage in office hour.

3. DATASET
3.1 Course Background
The data for this work originates from the Fall 2020 offering
of a CS2 course at a research intensive university in the
Southeast United States. Students in the course complete
two projects, each worth 22% of their overall grade. Each
project consists of two parts: 1) designing the system and
creating a testing plan and 2) implementing the teaching
staff (TS) UML diagram. Our focus will be on the second
part of each project.

The course initially offered both online and in-person sec-
tions; however, due to the COVID-19 pandemic, all under-
graduate courses covered in our dataset were moved online
a few weeks into the semester. The overall structure of the
course as well as the task deadlines remained the same with
interactions including office hours moving to individual web
meetings but retaining their overall structure.

As a first step in their course projects the students are re-
quired to develop UML diagrams for the problem task. How-
ever for the later coding stage the students must all follow
the instructor-provided UML diagram. This allows them
to fit a shared model for testing and evaluation. Students
manage their repository using a Github1 enterprise server.
Whenever they push code, Jenkins2, a continuous integra-
tion system, runs an Ant-driven build. Each build compiles
the code, runs static analysis tools (Checkstyle3, PMD4,
SpotBugs5), compiles the teaching staff test cases against
the code to ensure it abides by the provided UML diagram,
runs student-written tests to check for coverage metrics, runs
teaching staff tests, and finally provides feedback to the stu-
dent based on their status. For the purposes of our analysis
we recorded the state of their code on each commit along
with a record of the unit test results.

Over the course of the project, there are two intermediate
milestones, or Process Points, for students to follow. Achiev-
ing the first two milestones provide a fraction of their project
grade, while the final milestone defines the requirements to
receive full credit.

• Milestone 1 - Process Points 1: students complete a
compiling skeleton, at least one test case, and fully
Javadoc (i.e. no Checkstyle notifications) their code.

• Milestone 2 - Process Points 2: students achieve 60%
statement coverage on their self-written tests.

• Milestone 3 - Done: students achieve 80% statement
coverage, have no static analysis notifications, and all
tests are passing (both teaching staff and student writ-
ten).

1https://github.com/
2https://www.jenkins.io/
3https://checkstyle.sourceforge.io/
4https://pmd.github.io/
5https://spotbugs.github.io/
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After achieving each of the milestones, the students receive
feedback on their code based upon the shared tests. At the
start, students only receive information about their com-
piling status and Checkstyle notifications related to devel-
oping Javadocs for their code. Once a student completes
Milestone 1, they begin to see feedback about the remain-
ing static analysis notifications. For completing Milestone
2, they begin seeing feedback regarding teaching staff test
case failures. This feedback includes the number of tests
passing or failing and for the failing tests it provides a hint
to reproduce locally. For the purposes of our analyses we
defined four project stages based upon these milestones. At
the beginning of the project students are in stage 0, they
then move to stage 1 after completing Milestone 1, and so
on.

3.2 Help Seeking
Students in this course had two options for help, general
questions could be posted to Piazza an online question and
answer forum that was monitored by the instructors and
took answers from other students; and office hours which
were accessed via a help request system called My Digital
Hand.

Piazza: At any time during the semester, students are able
to post questions or comments on Piazza, an online forum
for the class. When posting, students are required to select
a category for their question. These categories correspond
to logistics or each assignment, lab, or project. Students are
able to make their posts private to instructors, but they are
encouraged to post publicly so other students are able to
answer questions or receive similar help. The teaching staff
also uses Piazza as a place to post updates or announce-
ments. We remove the teaching staff posts and filter posts
down to only the second part of each project. We focus our
attention only on the initial posting and remove all replies.

Office Hours During teaching staff office hours, students re-
quest help by filing a help ticket using My Digital Hand
(MDH) an online support system [20]. Students seeking
help through MDH fill out a form listing the tasks they are
working on, what question they have or problem they are
struggling with, and what steps they have taken thus far.
The students are then placed in a queue which is monitored
by the teaching staff. The teachers prioritize students to
help based upon their questions and may help them individ-
ually or in small groups. After the interaction is complete
the teachers will close the ticket and both they and the stu-
dent can enter followup information to describe the advice
given, rate the outcome, and any potential followups. Stu-
dents who require more assistance may have their tickets
re-opened or, more commonly, make a new ticket with addi-
tional questions. In our analysis, we first remove all tickets
that were not related to the second part of the projects.
Next, we remove any follow-up tickets or tickets that were
re-opened with the same content.

3.3 Commit mining
After the semester concluded, we ran the BuildDataCol-
lector6. This tool iterates over each commit from each
repository and runs the Jenkins build. The output files are

6https://github.com/SOS-CER/BuildDataCollector

mined for relevant data. The data includes commit meta-
data, static analysis notifications, information about all test
cases, code counts, and coverage metrics. The data are
stored in a SQL database.

4. METHODOLOGY
4.1 RQ1: Categorization of Help Requests
In developing our analysis we held the initial expectation
that students’ coding behaviors would differ based upon the
type of help that they required. Thus, we began by classi-
fying the students’ help requests based upon their question
content. In general students begin the project by seeking to
understand the overall functionality of the system, and to
build the general structure. They typically turn to author-
ing their own test cases based upon the functional goals with
the goal of unlocking the instructor test cases on which their
grade is partially based. Once these are unlocked students
frequently use the test cases to drive their development pro-
cess, as intended, so they often focus their questions around
those tests. Across all of these stages they also face chal-
lenges with basic implementation errors and general static
analysis notifications. Our goal was to separate students
who were seeking to support with basic development tasks
(e.g. debugging) or with specific test cases from those who
were seeking to address deeper comprehension questions, or
general notifications.

We therefore classified student help requests as follows:

• General debugging and addressing issues: students in-
dicate they are receiving an error (i.e. null pointer ex-
ception) or describe unexpected behavior in their code.

• Implementation and understanding: students ask about
how to implement some portion of the project or ask
for clarification.

• Improving test coverage: students ask about how to
improve their code coverage to acheive the 60% or 80%
threshold.

• Addressing TS test failures: students indicate they are
failing specific teaching staff test cases.

• Addressing student-written test failures: students indi-
cate they are failing specific tests they wrote.

• Addressing general test failures: students indicate they
are struggling with testing, but do not specify which
type of test.

• Addressing static analysis notifications: students ask
about Spotbugs, Checkstyle, or PMD notifications they
receive.

• Others or unclear: students ask about unrelated topic
(i.e. coding environment setup, documentation) or
they are unclear with the type of help they need (i.e.
a method name without explanation).

Manual Annotation To support our analysis we engaged three
experienced TAs to manually tag the student questions across
the two help contexts. We began by developing a shared cod-
ing process using a subset of Piazza and MDH posts. An
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initial round of grading yielded a Fleiss’ Kappa agreement
of 0.73 for MDH data and 0.69 for Piazza data. After one
round of iterative evaluation and agreement we achieved a
final agreement of 0.81 for MDH data and 0.72 for Piazza.
The primary area of disagreement in the Piazza data lies be-
tween questions in the Implementation and General Debug-
ging categories. We therefore opted to perform additional
segmentation based upon whether or not students showed
evidence of code execution.

4.2 RQ2: Timeline analysis
After the categorization was complete, we examined the fre-
quency of the students’ help requests by type and the change
in those frequencies over time. Our hypotheses in this anal-
ysis were:

• Hypothesis 1: At the early stages of the project (before
the Milestone 2 deadline), students mainly ask Imple-
mentation questions.

• Hypothesis 2: After achieving Milestone 2, students
mainly asked about General Debugging and TS Test
Failure questions.

We believe that, consistent with instructor guidance, the
students will try to understand the requirements of the project
and how to implement each function first. Moreover, since
Milestone 2 requires students to achieve 60% test coverage,
it indicates that students need to finish most of the imple-
mentation to develop corresponding tests and reach Mile-
stone 2. Therefore, we believe that prior to the Milestone
2 deadline, the most frequently asked questions should be
Implementation related.

Moreover, after Milestone 2, students unlocked the TS test
cases and also needed to develop more self-written tests to
reach 80% code coverage. We believe that during this pro-
cess, the students’ main goal will be to correct their im-
plementation based on the feedback of error messages and
testing failures. Therefore, later in the projects, questions
related to General Debugging and TS Test Failures should
be more prevalent.

4.3 RQ3: Pre-help code analysis
In order to analyze the precursors of students’ help requests
we analyzed the state of the students’ code on the last com-
mit before they post a question to Piazza or file a ticket on
MDH. We define these as the pre-help commit states. In
analyzing these precursors we began by analyzing how fre-
quently students made commits within 1 hour before their
pre-help commit. We believe that a higher volume of pre-
help commits indicate that the students are unlikely to be
working on higher level implementation and are more fo-
cused on small-scale debugging or test passing.

In addition to the commit frequency, we also examined where
code changes were made prior to help requests. Prior to re-
quests for implementation help we imagine that most com-
mits include changes to the core functionality, while help re-
quests for coverage focus on changes to the student-written
unit tests. This leads to the following hypotheses:

Category MDH Piazza Overall
Implementation 334 281 615
General Debugging 392 316 708
TS test failures 127 307 434
Self-written test failures 30 90 120
General test failures 103 64 167
Improving test coverage 21 31 52
static analysis notifications 9 38 47
Others/Unclear 314 75 389

Total 1330 1202 2532

Table 1: Categorization Results

• Hypothesis 3: Before an Implementation request, stu-
dent commit frequency is low and before a TS test
failure request, the frequency is high.

• Hypothesis 4: Before an Implementation request, stu-
dents are making changes to their source code and be-
fore a Coverage request, students are making changes
to their test code.

5. RESULTS
5.1 RQ1
Table 1 lists the results of our final request categorization. In
both of the help platform, the most popular type of request
is General Debugging; We identified 392 (29.4%) MDH re-
quests and 316 (26.3%) Piazza requests in this category. For
office hours request, the next popular category is Implemen-
tation (25.1%), while for Piazza, there are more requests on
Addressing TS Test Failures (25.5%) than Implementation
(23.3%). The remaining categories are relatively uncommon
with a frequency lower than 10% on each platform, except
for the Others/Unclear category. We found a large amount
of MDH requests containing very vague descriptions, which
were categorized as Other/Unclear (23.6%). This is caused
by the nature of the office hours process, the description we
collected from MDH does not ask student to give very de-
tailed information and students do not rely on it for getting
the actual help; they would prefer to briefly describe their
problem on MDH and elaborate on the detail orally when
meeting with the teaching staff. This also matches with
Gao’s founding on the usage of MDH [6]. In piazza, since
students more reliant on the description to get help, the
amount of requests categorized as Others/Unclear is only
75 (6.2%).

5.2 RQ2
5.2.1 MDH Requests Timeline Analysis

Figure 1 shows how the student’s help request types changed
over time during office hours. Prior to the Milestone 1 dead-
line, students mainly asked the Implementation and General
Debugging questions; during the next stage, before the Mile-
stone 2 deadline, Implementation questions are dominating
the help requests and maintain a very high number every sin-
gle day. Then, after the Milestone 2 deadline, the amount
of Implementation questions suddenly drop to less than 10
each day; while we witness a great increase in both the Gen-
eral Debugging and TS Test Failures, especially the General
Debugging.
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Figure 1: Project 1 Office Hours request timeline for each
type.

Figure 2: Project 2 Office Hours request timeline for each
type.

Similarly, Figure 2 provides the project 2 office hour re-
quests. This also contains a high number of Implementation
questions leading up to the Milestone 2 deadline, while after
the deadline, Implementation instantly becomes less com-
mon. However before Milestone 1, the General Debugging
is also one of the dominating categories, with roughly the
same amount as Implementation. After Milestone 2, Gen-
eral Debugging stays as the most common request while the
amount of TS Test Failure requests increase similar to the
first project.

Furthermore, both project 1 and project 2 have the most
requests at the exact date of each deadline. The project
deadlines have more requests than the Milestone 2 deadlines,
which have more requests than the Milestone 1 deadlines.
This observation shows that most students are completing
their work on the deadline date and require more help.

5.2.2 Piazza Requests Timeline Analysis
Figures 3 and 4 show the number of help requests student
made on Piazza each day during the two projects. The
three vertical lines represent the milestones and final dead-
line dates.

Figure 3 shows the number of requests in Piazza that stu-
dents made during project 1. We observed that the General
Debugging category reaches the peak at all deadlines; the
Implementation category is prominent during the first few
stages;and the TS Test Failure category increases after the
first milestone deadline and reaches its peak during the final
deadline.

Figure 3: Project 1 Piazza request timeline for each type.

Figure 4 shows the number of requests in Piazza that stu-
dents made during project 2. We observed that the General
Debugging category always peaks at each deadline; the Gen-

Figure 4: Project 2 Piazza request timeline for each type.

Implementation Coverage Overall
src change 79.65% 60.78% 73.25%
test change 64.25% 84.31% 70.12%

Table 2: Percentage of pre-help commits with source or test
code changes

eral Testing and Self-Testing categories peak at the project
deadline; the TS Test Failure category raises rapidly from
the Milestone 2 deadline to Project deadline; and the Imple-
mentation category increase before each deadline, but over-
all decreases after each subsequent deadline.

5.3 RQ3
5.3.1 Frequency of pre-help commits

When comparing the frequency of commits, we find that stu-
dents who ask about TS Test Failures are on average making
more commits in the last hour than students making other
help-seeking requests, 4.6 commits and 2.9 commits respec-
tively (p-value < 0.0001). Similarly, we see that students
who seek help on Implementation requests are on average
making fewer commits in the last hour than students who
make any other request, 2.4 and 3.4 commits per hour re-
spectively (p-value < 0.0001).

5.3.2 Code changes of pre-help commits
For the Implementation pre-help commits, 490 (79.65%) of
those commits contains source code changes. Our chi-square
test proves that Implementation requests have a significant
higher number of pre-help commits with source code change
(p-value < 0.05). For the Coverage pre-help commits, we
found 43 (84.31%) of those commits contains test code changes.
Similarly, we proved that this high number of commits with
test code changes is significant than the rest of commits (p-
value < 0.01).

6. DISCUSSION AND CONCLUSIONS
Our goal in this work was to investigate what kinds of re-
quests students make when they seek help and what precur-
sors exist in their code state before such requests are made.

In addressing RQ1, we categorized the help requests based
on student’s purpose. Our results shows that students are
mostly asking questions about General Debugging, Imple-
mentation, and Addressing TS Test Failures. For office
hours, General Debugging is the most popular category fol-
lowed by Implementation followed by Addressing TS Test
Failures. For Piazza requests, General Debugging are also
the most common type, but Addressing TS Test Failures are
more common than Implementation.

In RQ2, we analyzed the amount of help request each day
and observed how it changed during different stages of the
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project. We proved both of our hypothesis. Before Milestone
2, Implementation is the most common request (Hypothesis
1). After Milestone 2, General debugging is the most com-
mon request. We also see an obvious increase of TS Test
Failure requests after Milestone 2 (Hypothesis 2).

In RQ3, we examined students’ commits immediately prior
to each help-request and define it as the pre-help commit.
We firstly looked at how frequently students are making
commits 1 hour before seeking help. Our analysis shows
that the frequency of committing before an Implementation
request is significantly lower and for TS Test Failures, it’s
significantly higher. Then, we analyzed where the students
change their code right before the help request. We find that
most students change their source code before Implementa-
tion requests and change their test code before Coverage-
related requests.

Our current results shows student’s coding behavior is quite
predictable and it does change when they need different
types of help. Instructor can use our conclusion as a start,
and think about how to lead students to an efficient path
when they encounter different types of difficulty throughout
the projects.

7. LIMITATIONS AND FUTURE WORK
Our study only analyzed the data from a single CS2 course
in a single offering. Additional analysis of future semesters
and other courses would enhance our understanding of how
stable these behaviors are across cohorts and projects. Ad-
ditionally the quality of our analysis is limited by our post
annotations. The high rate of disagreement for the Oth-
ers/Unclear category was driven in part by how little infor-
mation students included in their MDH requests. In future
semesters we plan to address this problem by refining our
analysis and addressing potential changes to the MDH plat-
form to enforce more complex comments.

Additionally, our examination of the pre-help commits was
focused on both general frequencies and gestalt features. In
future studies we will conduct a more detailed analysis of
the code status and align the contents of the help requests
to specific code features and file locations. Finding such link
of code features and request content would improve our un-
derstanding of when students seek help and potentially lead
to an automotive model for detecting and predicting stu-
dents who need help. Such a model would help instructors
to actively and efficiently intervene student’s behavior, and
support a much effective help management for the course.

Besides the pre-help commits, we also plan to analyze changes
that the students make to their code during and after help
requests to get a better assessment of how they process and
implement guidance. This work has long-term potential to
guide automated feedback and to assist in general triage for
help responses. For example, after we figure out an accu-
rate way to measure the success of commits, we can com-
bine it with this work and evaluate the effectiveness of each
help-seeking interaction by monitoring when student make
an successful commit after the help. The instructor can use
this information to quickly identify which students need fur-
ther guidance or analyze why the help is ineffective.
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ABSTRACT
Peer assessment can be a more effective pedagogical method
when reviewers provide quality feedback. But what makes
feedback helpful to reviewees? Other studies have iden-
tified quality feedback as focusing on detecting problems,
providing suggestions, or pointing out where changes need
to be made. However, it is important to seek students’
perspectives on what makes a review helpful to a revie-
wee. This study explores the helpfulness of feedback from
students’ perspectives when the feedback contained sugges-
tions or mentioned problems or both. We applied natural
language processing techniques to identify suggestions and
problems mentioned in peer reviews. We also analyzed im-
portant text features that are associated with suggestions or
problems detected by the peer feedback. The result showed
that students are likely to find a review helpful if a sugges-
tion is provided along with the problem mentioned in the
feedback rather than simply identifying the problem.

Keywords
Peer assessment, neural-network, natural language process-
ing, correlation coefficient, suggestions

1. INTRODUCTION
Peer assessment has been proven to be an effective learning
approach in both face-to-face and distance learning classes.
It is especially useful in massive open online courses (MOOCs)
where the potentially overwhelming number of students has
no fixed bound. All of these students must be assessed by
someone, and there are only a limited number of staff. Peer
assessment can be as accurate instructor assessment, since
artifacts are reviewed by multiple assessors who can invest
more time than a teacher could [17]. It can also provide
timely feedback [1] that helps students to focus on their
weaknesses. Peer assessors pick up some of the feedback
workload for instructors, who can then offer more help to
students who are in need.

Peer assessors provide assessment in two forms. One is tex-
tual feedback, which takes the form of prose feedback to a
peer. This is usually used as formative feedback. Another is
numerical scores, on a Likert scale, which allows a summa-
tive grade to be calculated. Most online peer-assessment en-
vironments use both kinds of feedback. Studies have shown
that students learn more from giving feedback than receiv-
ing it [13, 2, 7, 5] and giving feedback engage students in
active learning [16]. It forces students to think metacogni-
tively [4], and learn in-depth, as reviewing a peer requires a
good hold on the topic [8].

However, the learning experience in a peer-review environ-
ment depends on the quality of reviews provided by the stu-
dent peers. The goals of fairness and equity require that, in-
sofar as possible, all students receive helpful formative feed-
back on their work. But, not all assessors provide construc-
tive feedback, due to lack of knowledge in the topic or simply
carelessness. To encourage and guide students in reviewing
the artifacts, instructors typically need to scrutinize reviews
manually. This consumes a good portion of the time that
would be saved by having students provide quality feedback.
An automated analysis could save considerable time.

A few studies [20, 19] have tried to lessen the instructors’ as-
sessment burden by automatically detecting characteristics
of a quality review. That raises the question of what defines
a quality review. According to Nelson and Schunn [10] high-
quality feedback consists of (i) identifying a problem and (ii)
suggesting a solution. However, their finding was based on
students’ performance and not from their (students’) per-
spective. It is important to identify whether “quality feed-
back” is actually helpful to the reviewees, based on students’
opinion of what feedback is helpful.

In this paper, we propose a method using natural language
processing (NLP) and neural networks to automate the pro-
cess of analyzing and classifying reviews to discover whether
they contain suggestions and/or problems. We analyzed the
words that are used to include suggestions or problems in
feedback. Our goal is to answer the following research ques-
tions:

• RQ1: Can we build a model to accurately detect com-
ments containing suggestions or detecting problems?

• RQ2: Are “quality comments”—those containing sug-
gestions, detecting problems, or both—actually helpful
from the student’s point of view?

M. P. Rashid, Y. Xiao, and E. F. Gehringer. Going beyond “good
job”: Analyzing helpful feedback from the student’s perspective. In
A. Mitrovic and N. Bosch, editors, Proceedings of the 15th Inter-
national Conference on Educational Data Mining, pages 515–521,
Durham, United Kingdom, July 2022. International Educational
Data Mining Society.
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• RQ3: Can an automated process effectively identify
helpful feedback?

2. RELATED WORK
This section discusses related work on identifying the prop-
erties of a “quality“ or “helpful“ peer assessment.

Nelson and Schunn [10] examined five features of feedback
(summarization, specificity, explanations, scope, and affec-
tive language) that constitute good-quality reviews, and the
correlations among them. Their study divided the features
of feedback into cognitive and affective components. Ac-
cording to their findings, summarization, specificity, expla-
nations, and scope are cognitive in nature. Cognitive fea-
tures of a review are expected to most strongly affect under-
standing. This explanation helped us to identify suggestions
and problem detection as a property of quality feedback.

An approach to improve review quality is to provide the
reviewer with a rubric defining the characteristics of a qual-
ity review. Jaco du Toit [3] conducted a study to identify
the impact of peer review on essay assignments. The study
showed that giving students a rubric describing the charac-
teristics of a good essay can provide them with the insight to
produce better quality assessments than they would other-
wise produce. But this study did not specify the qualities of
a good review. When they received poor reviews, they were
confused about the quality of their work, sometimes feeling
a false sense of accomplishment. Rashid et al [15] analyzed
rubric items to determine which of them induce peer re-
viewers to write quality feedback using NLP approaches. In
their work quality feedback was identified if the review text
contained a suggestion, detected a problem problem, or was
localized (pinpointing the place where a revision should be
made).

McGrath and Taylor did a study on students’ perception of
helpful feedback for writing performance [9]. Their study de-
fined quality feedback (“developed feedback”) as clear, spe-
cific, and explanatory in nature. They measured students’
perception of developed feedback by having them rate the
feedback on a Likert scale. The results showed that students
rated developed feedback highly for helpfulness.

A survey of 44 students done by Weaver showed that, in
order to use the feedback, students needed advice (sugges-
tions)[18]. The analysis of the feedback content and stu-
dents’ responses uncovered that vague feedback (e.g., “Good
job”) is unhelpful, lacking in guidance (void of suggestions),
or focused on the negative (mentioning only problems), or
was unrelated to assessment criteria.

Ramachandran et al. [14], developed an automated system
to evaluate reviews and show how they compared to other
reviews for the same assignment. They extracted attributes
like relevance to the submission, content, coverage, tone, and
volume of feedback to identify a good-quality review. They
constructed word-order graphs to compare the reviews with
submission text and extract features from the reviews.

To identify localization and make suggestions to improve the
review Nguyen et al. [11] applied natural language process-
ing techniques. They provided real-time formative feedback

to reviewers on how to localize their review comments.

Zingle et al. [20] used neural-network approaches to find sug-
gestions in the review text, and compared them against rule-
based NLP approaches. In a similar work Xiao et al. [19]
used NLP techniques with several ML and neural-network
approaches to identify problem statements in review text.
Our work takes this a step further and asks whether it is
enough for a review to detect problems, or whether reviews
that also make suggestions are more helpful.

3. DATA
Machine-learning and neural network-based models can per-
form as well or as badly as the data they are given. However,
obtaining good labeled data is expensive. For the purpose
of our experiment, we have collected labeled datasets for
comments with three different characteristics:

• detects a problem: A review comment is labeled yes
or no according to whether it detects a problem.

• contains a suggestion: A review comment is labeled yes
or no according to whether it contains a suggestion.

• is helpful: A review comment is labeled yes or no de-
pending on whether the reviewee found it helpful.

We acquired this labeled peer-review data from the Exper-
tiza system in a systematic manner. Expertiza is a system to
support different kinds of communications that are involved
in the peer-assessment process. It supports double-blind
communications between authors and reviewers, assessment
of teammate contributions, and evaluations by course staff.

For the purpose of this study, we collected the data from
Object-Oriented Design and Development course at NC State
University for about three years. This course used the Ex-
pertiza system to manage the peer-review assessment pro-
cess for evaluating the students. In each semester, this
course typically assigns three peer-reviewed assignments to
students, who work in teams consisting of two to four mem-
bers. Even though the assignments are done in a group
setting, the submissions are reviewed by individual students
from other groups. After receiving the reviews from peers,
teams revise their work and resubmit it for grading. The sec-
ond round of the assessment is generally summative, where
along with textual comments, the peer-reviewers assign scores
to the submission.

Generally, a small number of people cannot annotate a large
dataset. It is better to have a large number of people each
undertake a small number of annotation tasks; this lessens
the chance that an annotator will become fatigued and as-
sign inaccurate labels. We engaged students in the labeling
task by offering a small amount of extra credit. After receiv-
ing peer feedback, students were asked to label the feedback
to identify whether the reviewer mentioned a problem or
suggested a solution. They were also asked whether they
considered the feedback to be helpful. In different assign-
ments, students were asked to label the feedback for differ-
ent characteristics; the same comments were not necessarily
labeled for all three characteristics. After labeling was com-
plete, the course instructor and TAs spot-checked the data
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Table 1: Sample review comment and annotations done by students (’1’ indicates ’yes’ and ’0’ indicates ’no’)

Review Comment Detects Problem
The Travis CI Build is Failing as of now. No conflicts as per the GitHub report. 1
Yes, the explanation is elaborative and complete. 0
Since the build failed, I would not recommend adding it to the production server yet. 1

Review Comment Gives Suggestion
Test Plan is too verbose. Trivial areas can be trimmed off. 1
The team needs to look into Travis CI log & 1 1
Many test cases in terms of controllers, but none for models. 0

Review Comment Is Helpful
The build is failing due to 4 failures in the model specs. 1
The writeup is clear. 0
Since the build failed, I would not recommend adding it to the production server yet. 1

Figure 1: Flow diagram of peer review and feedback annota-
tion process

that each student labeled. If any labels were found to be in-
correct, the data labeled by that student was excluded from
the dataset.

Since the reviews were done on team projects, and labeling
was done individually, two to four students had the oppor-
tunity to label (or “tag”) the same review comments. If
multiple students did tag the same comment, inter-rater re-
liability (IRR) could be calculated. We chose Krippendorff’s
α [6] as the metric for IRR. We chose this metric because
it is not impacted by missing ratings, which were common
since not all students availed themselves of the extra-credit
opportunity. In an effort to use only the most reliable la-
beling, we included only labels that were assigned (or not
assigned) by all the students in the team that was reviewed.
This allowed us to raise Kirppendorff’s α of our dataset from
0.696 to 1. Figure 1 shows the peer-review and annotation
process.

Following the described process we accumulated 18,392 an-
notations for problem detection, 7,416 for suggestion-detection
and 3,970 for helpfulness-detection datasets. All the three
datasets have an equal ratio of the binary class labels (i.e.,
they are balanced). Sample comments from the three datasets
are shown in Table 1

4. METHOD
Our goal in this study is to analyze students’ perspectives
on helpful comments that mentioned problems and/or sug-
gestions. To conduct the study, we had students annotate
comments on the basis of whether they found them helpful.
We need an automated process to identify those review com-
ments that contain suggestions and/or problem statements.
We first train a model (the problem-detection model) to clas-
sify reviews that contain a problem statement by training
and testing with the problem-detection dataset. We build
a second model (the suggestion-detection model) to clas-
sify the presence of suggestions in a review comment by
using the suggestion-detection dataset. As model perfor-
mance matters, we applied several ML and neural-network
models to pick the most accurate models for annotating the
helpfulness-detection dataset. Figure 2 shows the annota-
tion process of the helpfulness-dataset using the models.

When approaching a classification problem by any type of
machine-learning (ML) or neural network models, there are
many different approaches to choose from. No one model
is best for all problems. In our study, we have chosen Sup-
port Vector Machine (SVM), Random forest (RF), classical
ML models and compared their performance with Bi Direc-
tional Long Short-term Memory (Bi-LSTM), and Bidirec-
tional Encoder Representations from Transformers (BERT)
models. We used TF-IDF for ML models and Global Vec-
tors for Word Representation (GloVe) for Bi-LSTM to per-
form word vectorization. Before we applied any word vector-
ization techniques, we cleaned the text by removing URLs,
stop words, and applying stemming. We use our problem-
detection dataset and suggestion-detection dataset on these
model with 80:10:10 ratio for traing, testing and validation.

4.1 Classical Machine-Learning Models
4.1.1 Input Embedding with TF-IDF

Machine-learning models are suitable for capturing complex
relationships between the input data. But they require nu-
meric input. The review data that we have in our dataset is
textual. We have to convert them to numbers and also al-
low the model to capture the important features of the text.
One way to do that is term frequency-inverse document fre-
quency (TF-IDF). TF-IDF measures the importance of a
word in a document using statistical calculation. If a word
appears more times in a document the importance of the
word in the document increases proportionally. We used
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Figure 2: Annotation process of the helpfulness-dataset for mentioned problem and suggestions in the comments using models.
The models were trained for detecting problems or suggestions mentioned in the review text. The training datasets were
annotated by human (students).

scikit-learn [12] library to implement TF-IDF and vectorize
the words in the feedback.

4.1.2 SVM
SVM is very popular for high accuracy and low computa-
tional cost. For a classification problem between two classes,
SVM maximizes the margin of the separation plane between
the two classes. We provided the feature vector of the re-
views converted by TF-IDF to the SVM model to classify
the review for having a particular property (contains prob-
lem or suggestion in the comment). We applied a grid search
to find the best inverse regularization parameter C.

4.1.3 RF
We used Random Forest for its popularity to make more
accurate classification with a simple approach. RF makes
an ensemble decision from a forest consisting of multiple
uncorrelated decision trees. The general idea of the RF is
that the decision from individual decision trees increase the
accuracy of overall result. We varied the number of decision
trees and depth of the trees to get the best result. We used
TF-IDF for making feature vectors from the review text.

4.2 Neural-Network Models
4.2.1 Input Embedding

Neural network models are popular for text classification
tasks. However, to improve the performance of the neural-
network models on the text data, it is necessary to repre-
sent the data that is suitable for the model to work with,
and without losing the underlying latent relations among
the features of the data. For our experiment we have used
GloVe with Bi-LSTM. GloVe not only measures the statis-
tical significance of words, it also considers the statistical
co-occurrence and semantic relation of the words.

4.2.2 Bi-LSTM
Bi-Long Short-Term Memory is in general used for sequen-
tial data classification tasks. It is a good fit for peer-review
texts. Review comments are sequential data, and the words
of the text have latent semantic and contextual relations
with each other. As Bi-LSTM model takes input from both
right and left direction of the text, it can capture the rela-
tionship between the words in texts occurring in any order.

Table 2: Hyperparameters of Models

Model Hyperparameter
SVM c=1

RF
tree = 100

max depth = 4

Bi-LSTM

maximum text length = 300
Embedding = 300d

Hidden layer activation = ReLu
dropout = 0.4

optimizer = Adam
Output layer activation = Sigmoid

Epoch=20

BERT
optimizer = AdamW
Learning rate = 2e-5

Epoch=4

4.2.3 BERT
BERT is based on Transformer model and use attention
mechanism to learn the contextual relations of the words
in a sentence. Being a bi-directional input reader, BERT
learns the context of word in sentence by considering words
occurring before and after.

5. RESULTS
In this study, if a feedback comment mentions problems
and/or suggestions, we are considering it to be quality feed-
back. Our first step is to construct two separate models
where one identifies whether feedback contains a problem
statement and another identifies whether feedback contains
a suggestion. To identify the best-performing models we
trained and tested the performance of several classical ML
models and neural-network models and compared their per-
formance.

RQ1: Can we build a model to accurately detect comments
containing suggestions or detecting problems?

Figure 3 reports the comparison of the F1-score values of the
classical machine-learning (ML) models and neural-network
models on the problem-detection dataset and suggestion-
detection dataset. To compare the performance of the mod-
els we use the F1-score, as this represents the harmonic mean
of precision and recall.

• On the problem-detection dataset: Among the classical
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Figure 3: F1-score comparison to measure performance on
classifying review text on problem detection and suggestion
detection using classical ML and neural-network models. In
overall F1-score comparison, the BERT model shows the best
performance.

ML models SVM made the highest f1-score 0.90 and
among the neural-network models; BERT obtains the
overall highest F1-score, 0.92.

• On the suggestion-detection dataset: BERT achieved
the highest F1-score, 0.91. Among the classical ML
models, SVM achieved the highest F1-score, 0.87.

To gain a deeper insight into the words that are highly cor-
related with text where a problem mention or suggestion
is mentioned, we analyzed the top 10 positive and negative
correlation coefficient values calculated by the SVM model.
Figure 4(a) shows the coefficient values that the problem-
detection model has calculated for various words. Note that
it has positive coefficient values for words such as “however”,
“but”, and “not”. In the English language these words are
more likely to be used when stating problems. Similarly
words like “yes”, “completed” and “good” are not likely to
occur in a problem statement. Figure 4(b) shows that the
suggestion-detection model has positive coefficient values for
words like“should”, “would”, “more”, “suggest”. These words
are likely to be used in suggestions. On the other hand,
words “yes”, “completed”, and “cannot” are more likely not
to be used to express suggestions; thus they have negative
coefficient values.

As BERT outperformed all other models on both problem
and suggestion datasets, we trained two separate BERT
models to annotate the feedback comments contained in the
helpfulness-detection dataset. The BERT-created annota-
tions recorded whether each comment in the helpfulness-
detection dataset detected a problem or offered a sugges-
tion. The models annotated each comment with either “1”
or “0”, indicating having the property or not. We perform
an and-operation using the BERT-created annotations. If
both the problem and suggestion were mentioned in a com-
ment the and-operation yields 1 otherwise 0. The resulting
helpfulness-detection dataset is shown in Table 3.

RQ2: Are“quality comments”—those containing suggestions,
detecting problems, or both—actually helpful from the stu-

(a)

(b)

Figure 4: Top 10 positive and negative coefficient value of
words from the problem-detection and suggestion-detection
datasets

(c)

(d)

Figure 5: Venn diagram of helpful feedback annotated for
mentioned suggestion and/or problem
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Table 3: Table shows sample comments from helpfulness-detection dataset and corresponding annotations. Note that“Is Helpful”
annotations are done by humans (students), while “Detects Problem” and “Gives Suggestion” are annotated by the BERT
model. “Contains Problem and Suggestion” is from anding the “Detects Problem” and “Gives Suggestion” columns.

Review Comment
Is Helpful
(human-annotated)

Detects Problem
(machine-annotated)

Gives Suggestion
(machine-annotated)

Contains Problem
and Suggestion
(and-operation)

The build is failing due to 4 failures in the model specs. 1 1 0 0
The writeup is clear. 0 0 0 0
Since the build failed, I would not recommend adding it to the production
server yet.

1 1 1 1

I would recommend adding more code for helping following their changes. 1 0 1 0

dent’s point of view?

After we computed the annotations for problem detection
and suggestions, we did a Venn diagram analysis on the
updated helpfulness-detection dataset. The diagrams illus-
trate the overlap of comments that both detect a problem
and offer a suggestion. Figure 5(c) shows that 1,985 com-
ments in the helpfulness-detection dataset were annotated
by students as being helpful. Among the helpful comments,
1,417 were annotated for having problems and/or sugges-
tions mentioned in the feedback. Out of these 1,417 helpful
comments, 912 of them were machine-annotated as contain-
ing both problem detection and suggestions. A total of 568
helpful comments did not have any problem or suggestion
mentioned, based on machine-annotation.

On the other hand, out of the 1,985 comments that were
human-annotated as not helpful [Figure 5(d)], 673 comments
were annotated as having either a problem and/or sugges-
tion mentioned. Among those 673 comments, only 174 were
annotated as having both suggestion and problem mentioned.
A total of 1,312 comments that did not have any problem or
suggestion mentioned were annotated as not helpful by the
students.

To summarize the Venn diagram analysis, comments that
the students found helpful mostly detected problems and/or
contained suggestions. However, among those comments
noting suggestions and/or problems, students annotated as
helpful mostly comments that both pointed out problems
and gave suggestions. This indicates that peer feedback is
more helpful to the students when a suggestion is given in
a comment that detects a problem. On the flip side, Fig-
ure 5(b) suggests that students rarely find comments helpful
when they do not mention any problem or contain a sugges-
tion.

RQ3: Can an automated process effectively identify helpful
feedback?

A key question is whether comments automatically anno-
tated as“quality” (meaning that they both identified a prob-
lem and gave a suggestion) were the same comments that the
students considered helpful (that they manually labeled as
helpful). Among the comments that the students considered
helpful, 64% of them both mentioned a problem and gave a
suggestion. Conversely, of the comments that the students
labeled as not helpful, 66% of them neither mentioned a
problem nor contained a suggestion.

The results indicate that the automated annotation per-

formed by the BERT model can be very effective in predict-
ing which comments students will consider helpful. While
it can’t deliver an actual count of helpful comments in a
particular review, that is not important. It can determine
whether the feedback provided by the reviewer contains a
substantial number of quality comments. That is what is
needed to automatically detect helpful reviews.

6. CONCLUSION
This study constitutes the first analysis of the helpfulness of
peer-assessment feedback from student’s perspective. Feed-
back that mentions problems or includes suggested changes
was considered to be quality feedback. We used natural
language processing (NLP) techniques in conjunction with
several ML and neural networks to identify quality peer feed-
back. We systematically collected and scrutinized 18,392
comments mentioning problems, 7,416 comments contain-
ing suggestions, and 3,970 comments that were annotated
by humans (students) as being helpful.

Using the annotated dataset, we trained our ML and neural-
network models to identify quality feedback. For identifying
suggestions and problems mentioned in the review text, the
BERT model outperformed the other models. As the BERT
model focuses on the important features of the text, it was
best at identifying suggestions and problems in the feedback.
We used the BERT model to automatically annotate com-
ments as mentioning problems or making suggestions, and
compared these annotations with comments that students
had manually annotated as being helpful. We also analyzed
important words that are frequently present in comments
mentioned a problem or suggestion.

A key finding of this study is that the students find review
comments more helpful when peer reviewers both mention
problems in the reviewed artifact and provide suggestions
on how to resolve the issue. We can use a state-of-the-art
BERT model to automatically identify the helpful review
comments.

It should not be hit-or-miss whether students receive helpful
reviews on their submitted work from peer reviewers. This
study helps identify helpful feedback and therefore, help stu-
dents to improve their work.
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ABSTRACT
How can we test whether state-of-the-art generative models,
such as Blender and GPT-3, are good AI teachers, capable
of replying to a student in an educational dialogue? Design-
ing an AI teacher test is challenging: although evaluation
methods are much-needed, there is no off-the-shelf solution
to measuring pedagogical ability. This paper reports on a
first attempt at an AI teacher test. We built a solution
around the insight that you can run conversational agents
in parallel to human teachers in real-world dialogues, sim-
ulate how different agents would respond to a student, and
compare these counterpart responses in terms of three abil-
ities: speak like a teacher, understand a student, help a stu-
dent. Our method builds on the reliability of comparative
judgments in education and uses a probabilistic model and
Bayesian sampling to infer estimates of pedagogical ability.
We find that, even though conversational agents (Blender in
particular) perform well on conversational uptake, they are
quantifiably worse than real teachers on several pedagogical
dimensions, especially with regard to helpfulness (Blender:
∆ ability = −0.75; GPT-3: ∆ ability = −0.93).

Keywords
student-teacher dialogue, conversational agents, chatbots,
Blender, GPT-3, evaluation methods, pairwise comparisons,
Bayesian Bradley-Terry model

1. INTRODUCTION
Conversational agents (or chatbots) offer promising oppor-
tunities for education. They can fulfill various roles (such as
intelligent tutors and service-oriented assistants) and pursue
different objectives (e.g., improving student skills, boosting
student motivation, and increasing instructional efficiency)
[20]. Among all of these different vocations of an educational
chatbot, the most prevalent one is the AI teacher helping
a student with skill improvement and providing more op-
portunities to practice. Some recent meta-analyses have
even reported a significant effect of chatbots on skill im-

provement, for example in language learning [1]. What is
more, current advances in AI and natural language process-
ing have led to the development of conversational agents that
are founded on more powerful generative language models.
Blender [17], for instance, is a state-of-the-art open-domain
chatbot trained to blend skills such as being empathetic and
knowledgeable [18], which are undeniably important char-
acteristics of a good AI teacher. Furthermore, the current
state-of-the-art in natural language generation is GPT-3 [4],
a 175B-parameter model that is able to multitask different
language generation skills (such as conversation). The as-
tonishing power of GPT-3 is that it can perform these skills
with few-shot in-context learning, merely from seeing a short
prompt describing the task at hand (e.g., The following is a
conversation with an AI assistant.). Emergent models such
as GPT-3 have been described as foundation models since
they serve as the “common basis from which many task-
specific models are built via adaptation” [2, p.7].

Despite these promising opportunities, the use of powerful
generative models as a foundation for downstream tasks also
presents several crucial challenges. In the educational do-
main in particular, it is important to ascertain whether that
foundation is solid or flimsy. Bommasani et al. [2, pp.67-72]
stressed that, if we want to put these models into practice as
AI teachers, it is imperative to determine whether they can
(a) speak to students like a teacher, (b) understand students,
and (c) help students improve their understanding. Conse-
quently, there is a critical need to establish good evaluation
methods of AI teachers. This is a hard problem because
there is no off-the-shelf and universal solution to measuring
teaching ability and effectiveness.

Therefore, we took on the challenge of designing an AI
teacher test and conducted a pilot study. We ran Blender
and GPT-3 in parallel to human teachers in language and
mathematics educational dialogues, observed how they re-
sponded to a student, and compared these counterpart re-
sponses in terms of pedagogical ability. The major contri-
butions of this work are as follows:

1. We pose the AI Teacher Test Challenge.

2. We implement a human-in-the-loop pairwise compari-
son test as a first attempt at an AI Teacher Test.

3. Our results show quantitatively how far conversational
agents, particularly Blender and GPT-3, are behind
human teachers in terms of pedagogical ability, despite
them performing well on conversational uptake.

A. Tack and C. Piech. The AI teacher test: Measuring the pedagogical
ability of blender and GPT-3 in educational dialogues. In A. Mitrovic
and N. Bosch, editors, Proceedings of the 15th International Confer-
ence on Educational Data Mining, pages 522–529, Durham, United
Kingdom, July 2022. International Educational Data Mining Society.

© 2022 Copyright is held by the author(s). This work is distributed
under the Creative Commons Attribution NonCommercial NoDeriva-
tives 4.0 International (CC BY-NC-ND 4.0) license.
https://doi.org/10.5281/zenodo.6853187
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Our solution has several strengths: (1) it leverages the
proven reliability of comparative judgments in education
[10, 12], (2) it incorporates a Bayesian sampling method that
allows us to attribute an ability score to a teacher response,
whilst ensuring normality and providing a belief in our es-
timates, and (3) it produces scores and ranks that could be
used to develop autonomous methods. We open-source our
work, code, and data.1

2. THE AI TEACHER TEST CHALLENGE
Consider the following scenario, which is illustrated in Fig-
ure 1. Two agents, a student and a teacher, are interacting
in an educational setting. The student is working to improve
a specific skill (e.g., the use of phrasal verbs) in a given do-
main (e.g., English language). The teacher could be either
a human agent or an artificial agent who is helping the stu-
dent with improving this skill. The student and teacher
each take turns, resulting in a sequence of student-teacher
dialogic pairs. This student-teacher dialogue is open-ended:
for a given student utterance, there exists a variety of ways
in which we could imagine a teacher agent to respond. For
example, Figure 1 shows three possible replies to a student
utterance: the actual teacher’s response and two comple-
tions that were automatically generated from a state-of-the-
art language model. It is clear to see that, in the space of
possible replies, not all responses will be equally preferable.
Some responses may be more characteristic of a teacher,
some may be taking up more from the student’s utterance,
and some may be more helpful. In this scenario, we are in-
terested in the following challenge: given a space of possible
responses (either human or artificially generated), evaluate a
reply in terms of pedagogical ability and estimate this score
relative to other replies.

2.1 Desiderata
We think that a good AI teacher test should at least account
for the following aspects. Firstly, the test should be able to
evaluate a teacher agent’s response in context. At minimum,
the test should consider the preceding student utterance.
Additionally, the test could also take into consideration the
entire preceding dialogue and surrounding educational set-
ting. Secondly, the test should be able to score the agent’s
response with respect to several pedagogical abilities. Fol-
lowing Bommasani et al. [2, pp.67-72], we believe that the
test should consider the following three abilities: whether
the agent can speak like a teacher, understand the student,
and help the student. Finally, the test should also be able to
consider other possibilities (which may be better or worse)
and rank the teacher’s response in comparison to these. In
this way, the test could also be used to suggest one or more
ways in which a response could be enhanced in terms of the
three abilities listed above.

Unfortunately, standard methods of evaluating automati-
cally generated language and conversational agents do not
meet our desiderata. Perplexity, for example, measures how
well a generative model is able to sample a given response
from its probability distribution. However, it does not con-
sider the preceding utterance (desideratum #1). Other met-
rics such as BLEU and F1 score measure the n-gram overlap
between a generated response and a correct response. By

1https://github.com/anaistack/ai-teacher-test
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and a cat. I love them
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Yes, good! And to charge it up, you
need to __ it ___
...

connect to the source of electricity

i understand

plug it __?
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Teacher
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Student

Figure 1: Illustration of the AI Teacher Test Challenge: Esti-
mates of Pedagogical Ability and Rankings of Human and AI
Teachers Replying to a Student in an Educational Dialogue

contrast, our test is open-ended (see above) and does not
presuppose the existence of a correct response. Recently,
Pillutla et al. [15] introduced MAUVE, an evaluation met-
ric for open-ended language generation. Because this metric
uses the Kullback–Leibler divergence, it cannot be used to
compare two specific language utterances (desideratum #3).
Most importantly, none of these methods meet our second
desideratum, which is to score an agent’s response with re-
spect to several pedagogical abilities.

2.2 Related Work
We can gain insight into measuring pedagogical ability from
prior work into assessing human teachers. Educational re-
search is abundant in methods for evaluating teacher effec-
tiveness, ranging from teacher self-reports and interviews
to classroom observations, student evaluation surveys, and
tests of student achievement [9, 14]. However, not all of
these methods seem easily applicable to assessing AI teach-
ers. It is obvious that evaluating AI teacher effectiveness
from self-reports and interviews would be a difficult thing
to do. We could, however, resort to systematic observations
of AI teachers, human evaluation surveys, and measures of
student outcome.

Other studies have focused on the possibility of measuring
ability in teacher language. Demszky et al. [6], for instance,
examined several ways of determining how well a teacher
replies to a student in student-teacher interactions. Their
data comprised 2,246 student-teacher dialogic pairs taken
from the National Center for Teacher Effectiveness Main
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Study (NCTE)2, a three-year long observation of mathe-
matics instruction. First, they collected human evaluations
of conversational uptake, a measure of how well the teacher’s
reply expanded on the student’s utterance (e.g., by acknowl-
edging, reformulating, elaborating), as illustrated below.

Student: Seven plus seven is fourteen.
Teacher: Okay, so you doubled. You did your doubles

first. Okay. Fourteen plus eight?
(Uptake = high)

Besides human evaluations of uptake, Demszky et al. [6] also
developed an automated method that could predict uptake
as a next-utterance classification task. They fine-tuned a
BERT language model [7] and found a significant correlation
(ρ = .54) with human evaluations.

This automated measure of conversational uptake can serve
as a solid baseline for our study. First, the next-utterance
classification predicts uptake based on the preceding student
utterance and, therefore, meets our first desideratum. Sec-
ond, conversational uptake also somehow measures whether
a speaker understands the interlocutor. If a teacher’s re-
sponse strongly expands on the student’s utterance (i.e.,
high uptake), it can be deduced that the teacher was able
to understand the student. As such, it measures one of the
three pedagogical abilities targeted in our second desidera-
tum. Finally, because we can run the predictive model on
different responses to the same student utterance and com-
pare these responses in terms of uptake, the measure meets
our third and final desideratum.

3. OUR AI TEACHER TEST
As a possible solution to the AI teacher challenge described
in Section 2, we adopted the following method. First, we
ran Blender and GPT-3 on real-world educational dialogues
and simulated responses to student utterances. We then
paid human raters to compare pairs of responses on several
different pedagogical dimensions. Finally, we ran a proba-
bilistic model to compute aggregate scores. In addition, we
also ran the model developed by Demszky et al. [6] on our
data in order to compare our scores to predictions of uptake.

3.1 Student-Teacher Dialogues

Table 1: Datasets of Student-Teacher Interactions
Domain Dataset Dialogues Dialogic Pairs
Language TSCC [5] 102 4439
Mathematics Uptake [6] 0 2246

The two datasets used in this study are listed in Table 1. The
Educational Uptake Dataset compiled by Demszky et al.
[6] includes 2,246 dialogic pairs sampled from the NCTE
transcripts (see Section 2.2). The complete dialogue tran-
scripts, however, have not yet been made available. The
Teacher-Student Chatroom Corpus (TSCC) compiled by
Caines et al. [5] includes 102 anonymized student-teacher di-
alogues in second language education. Each chatroom is a
lesson where a teacher converses with a student in order to
work on a language exercise and assess the student’s English

2https://doi.org/10.3886/ICPSR36095.v3

language proficiency. The corpus includes 13,215 turns and
130 turns on average per dialogue. Each utterance is anno-
tated with several metadata, including conversational orga-
nization (e.g., opening, closing, eliciting, scaffolding, and re-
vision) and teaching focus (e.g., vocabulary). Figure 1 shows
an example excerpt of a teacher’s eliciting, scaffolding, and
revision. It should be noted, however, that the TSCC di-
alogues include many consecutive utterances by either the
student or the teacher. Therefore, the data were slightly
adapted for this study: all successive utterances by the same
speaker were concatenated into one turn such that each con-
versation was composed of alternating dialogic pairs. As a
result, the data included 4,439 student-teacher pairs.

3.2 Simulating Agent Responses
For each dialogic pair in the student-teacher dialogues, we
automatically generated AI teacher responses. We used the
ParlAI framework [13] to load the student-teacher dialogues,
to generate responses to each student utterance, and to com-
pute several standard evaluation metrics. In this study, we
focused on two models. We ran several Blender models
(90M, 400M, 3B, 9B parameters) on the language (TSCC)
and mathematics (Uptake) educational dialogues. We im-
plemented a new agent that made requests to the OpenAI
API in order to obtain generated responses for each stu-
dent utterance. Each request included a mandatory prompt
with instructions for GPT-3 (The following is a conversation
with a teacher. The teacher is polite, helpful, professional,
on topic, and factually correct.), the preceding dialogue his-
tory (restricted to meet the maximum number of tokens per
request), and the student’s utterance. We obtained comple-
tions from the smallest (Ada) and largest (Davinci) models.

3.3 Measuring Pedagogical Ability
After collecting AI teacher responses in educational dia-
logues, we collected evaluations of pedagogical ability via an
online survey. First, participants were given a short intro-
duction and a consent form. Then, participants were given
the same example to familiarize themselves with the task
at hand. In the following comparative judgment task (Fig-
ure 2), 15 items were randomly and evenly selected from a
pool of relevant items. Each item had three components:
a dialogue context (limited to 100 tokens), one comparison
of two teacher replies, and three questions targeting a ped-
agogical ability (speak like a teacher, understand the stu-
dent, and help the student). For each participant, one pair-
wise comparison was randomly selected from three possible
combinations (Teacher vs. Blender, Teacher vs. GPT-3, or
Blender vs. GPT-3) and the order of the comparative pair
was randomly shuffled.

Item Selection. A crucial challenge in the evaluation pro-
cess was to pinpoint those teacher utterances that were im-
portant to evaluate. In the student-teacher dialogues de-
scribed in Section 3.1, not all teacher utterances were nec-
essarily relevant. In fact, many conversational turns were
not pertaining to any educational goal, such as opening se-
quences, closing sequences, and other chit-chat. From the
6,685 eligible dialogic pairs, only those utterances were se-
lected where the teacher was actually eliciting and scaffold-
ing the student’s understanding. Additionally, short utter-
ances that comprised of single words or sentence fragments
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Figure 2: Screenshot of the Comparative Judgment Task

(e.g., Perfect!, Yay! ) were also excluded.3 Furthermore,
the results of a pilot study with eight evaluators highlighted
that the dialogic pairs taken from the Uptake dataset were
difficult to evaluate because there was no informative con-
text. Consequently, we focused only on the TSCC dataset
for the comparative judgment task, carefully screened the
corpus for relevant items and informative dialogue contexts,
and ended up with a sample of 52 items.

Participants. We recruited a sample of 120 participants
from Prolific Academic, a crowdsourcing platform developed
at Oxford University. Participants were prescreened to en-
sure a balanced gender representation (50% female, 50%
male). Study participants were aged 19 to 66 (M = 33,
SD = 11.3; female: M = 32.4, SD = 10.9; male: M = 33.5,
SD = 11.7) and resided in the United Kingdom (n = 86)
or the United States (n = 34). On average, participants
had an excellent Prolific score of 99.2% (SD = 1.4; female:
M = 99.1, SD = 1.6; male: M = 99.3, SD = 1.3) and
took 18 minutes to complete the survey (SD = 11.2; fe-
male: M = 18.9, SD = 11.1; male: M = 17.3, SD = 11.4).
Because the tasks required a fair amount of cognitive in-
volvement (reading the dialogue, reading different replies,
comparing different options), we estimated that the survey
would take about 30 minutes. We then used the default pay-
ment rate of £7.50/h. Participants were paid according to
estimated study completion time (£3.75 for 30 minutes).

Agreement. There was a high observed agreement be-
tween evaluators on the example given before the compara-
tive judgment task (Figure 2). Most agreed that option A
(the true teacher response) was more likely said by a teacher
(95%), understanding the student more (83%), and helping
the student more (86%).

3It should be noted that this exclusion criterion did not ap-
ply to the generated responses. As shown in Figure 1, some
generated responses comprised of single words or sentence
fragments (e.g., yes! ). Although this could be seen as giv-
ing an advantage to the teacher responses, it was only meant
to focus our test on more expressive teacher language. In
a future study, we might try to capture the full range of
teacher language, from single words to complex utterances.

Outlier Detection. To detect potential outliers among the
evaluators, we identified those who consistently chose op-
tion A or B in the paired comparisons. This first-position
(or “home-field” advantage) effect was detected by estimat-
ing an intercept parameter α0 in the model described be-
low. However, instead of estimating different α parameters
for each teacher response (combining the scores of all eval-
uators), we reversed the method and computed different α
parameters for each evaluator (combining the scores for all
items evaluated by the evaluator). Evaluators were excluded
when the credible interval around the intercept was above or
below zero, which indicated that they were biased towards
selecting either option A (CI above zero) or option B (CI be-
low zero). Based on this outlier detection method, the data
from seven evaluators were removed. The remaining data
included 4,782 comparisons from 113 evaluators and 10.9
evaluations on average for each pair (Teacher vs. Blender,
Teacher vs. GPT-3, or Blender vs. GPT-3).

Bayesian Bradley-Terry Model. A Bradley-Terry model
[3] is a probabilistic model that predicts the outcome of one
or more pairwise comparisons. Consider n items (i.e, a stu-
dent utterance and preceding dialogue), a set of t possible
responses (i.e., Teacher, Blender, GPT-3) to each item, and
a set of m abilities (i.e., speak like a teacher, understand
the student, help the student). For each item l ∈ [n] and
for each ability k ∈ [m], we inferred a latent parameter αikl
for each possible teacher response i ∈ [t]. The outcome
yijkl was an independent Bernoulli variable with a param-
eter pijkl ∈ [0, 1] measuring the chance that, for an item
l and an ability k, teacher response i would be preferred
over teacher response j, for all i, j ∈ [t] and i ̸= j. This
probability was defined as

pijkl := σ (αikl − αjkl)⇒ log
pijkl

1− pijkl
= αikl − αjkl (1)

where σ is the logistic function σ(x) = 1
1+e−x and αi, αj

are the latent parameters that measure the strengths of i
and j respectively. In case of ties (the I cannot tell option),
the outcome was picked uniformly at random. We used an
extended version of the basic Bradley-Terry model including
an intercept parameter α0 ∈ R, which measures a “home-
field” advantage.

pijkl := σ(α0kl + αikl − αjkl) (2)

If α0 > 0, there was a greater chance that the evaluator
would pick the first element in the comparison. If α0 = 0,
there was no order effect. To infer the latent parameters
α⃗kl = (α0kl, ..., αtkl), we adopted a Bayesian approach by
drawing samples from the posterior p(α|y) ∝ p(y|α)p(α)
with a non-conjugate prior distribution, α ∼ N (0, 1). We
used Stan [19, 16] to compute posterior means and 95% HDI
(Highest Density Interval) credible intervals from 4,000 sim-
ulations using Hamiltonian Monte Carlo (HMC) sampling
[8] and the NUTS (No-U-Turn Sampler) algorithm [11]. For
each simulation, the estimated ability parameters were used
to rank each response on each item and for each ability.

4. RESULTS
4.1 Baseline: Conversational Uptake
We start our analyses with a comparison of conversational
uptake in human and AI teacher responses, for the two
student-teacher dialogue datasets presented in Section 3.1.
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Figure 3: Predicted Uptake of Human and AI Teacher Re-
sponses in Language and Math Educational Dialogues

Figure 4: Associations Between Generative Performance
(Model Perplexity, F1 Unigram Overlap) and True Teacher
Uptake (Z-Score) in Mathematics Educational Dialogues

Figure 3 shows the predicted uptake for the smallest and
largest Blender and GPT-3 models, compared to the ac-
tual teacher’s responses. The results show that the largest
Blender model (with 9B parameters) outperformed all others
for both the language (TSCC) and mathematics (Uptake)
educational dialogues. This suggests that Blender tended to
generate better next utterances to student utterances.

Figure 4 zooms in on the AI teacher responses in the math-
ematics educational dialogues. Several correlation analy-
ses were run to examine the association between generative
performance (perplexity and F1 score) and the human an-
notations of teacher uptake collected by Demszky et al. [6].
Perplexity (lower is better) indicates how well the model
can generate a linguistic utterance from its probability dis-
tribution, whereas F1 score (higher is better) indicates the
unigram overlap between the generated response and the
teacher’s response. There was a negative, statistically sig-
nificant, and large correlation between model perplexity and
true teacher uptake, as measured by Pearson’s product-
moment correlation coefficient, r = −0.31, 95% CI [-0.34,
-0.26], t(1996) = −14.32, p < .001. Similarly, there was
a positive, statistically significant, and small correlation be-
tween F1 unigram overlap and true teacher uptake, r = 0.16,
95% CI [0.12, 0.20], t(1996) = 7.35, p < .001. In other
words, Blender tended to generate better responses in cases
where the actual teacher was also judged to have given a
better response (more uptake). Moreover, this association

Figure 5: Bayesian Estimates and Rankings of Pedagogical
Ability in Replying to a Student in an Educational Dialogue,
Compared to Predictions of Conversational Uptake

between generative performance and teacher uptake was ob-
served for all Blender and GPT-3 models (see Figure 4).
These findings suggest that some student utterances may be
simply easier to reply to, for both human and AI teachers.

4.2 Our Test: Pedagogical Ability
We now focus all following analyses on the selection of
teacher responses that were compared in terms of peda-
gogical ability. Figure 5 shows a boxplot of the expected
values of α (and associated rankings) for each possible re-
sponse to a student utterance on the three pedagogical di-
mensions. The figure also compares these scores to predic-
tions of conversational uptake. In terms of conversational
uptake, the results showed no significant differences between
human and AI teachers, as indicated by the overlapping
notches in the boxplot. In terms of pedagogical ability, how-
ever, a one-way ANOVA revealed a statistically significant
difference between human teachers and AI teachers on the
three dimensions cited above, F (2, 144) = 13.1, p < .001,
F (2, 144) = 11.8, p < .001, F (2, 144) = 22.3, p < .001, re-
spectively.4 Tukey’s HSD post hoc test for multiple compar-
isons showed that, compared to the actual teacher, the mean

4A Shapiro-Wilk test showed that the assumption of nor-
mality was not violated for any of the three pedagogical
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Table 2: Pearson Correlations Between Uptake and Ability

r t df p
likely said by a teacher .35 3.47 85 <.001
understanding the student .38 3.82 85 <.001
helping the student .33 3.27 85 .002

Table 3: Percentage of Replies with a Positive Ability or
where the 95% CI Excludes Zero (Either Above or Below)

Agent Ability α > 0 0 ̸∈ CI
Teacher speak like a teacher 69% 8%
Teacher understand the student 71% 6%
Teacher help the student 78% 14%
Blender 9B speak like a teacher 41% 6%
Blender 9B understand the student 45% 10%
Blender 9B help the student 35% 8%
GPT-3 Dav. speak like a teacher 35% 6%
GPT-3 Dav. understand the student 35% 2%
GPT-3 Dav. help the student 33% 12%

ability of Blender was significantly lower for speaking like a
teacher (∆ alpha = −0.60, [95CI −0.93, −0.26], p < .001),
understanding the student (∆ alpha = −0.55, [95CI −0.90,
−0.20], p < .001), and helping the student (∆ alpha =
−0.75, [95CI −1.10, −0.40], p < .001). Similarly, compared
to the actual teacher, the mean ability of GPT-3 was signif-
icantly lower for speaking like a teacher (∆ alpha = −0.67,
[95CI −1.00, −0.33], p < .001), understanding the student
(∆ alpha = −0.67, [95CI −1.02, −0.32], p < .001), and
helping the student (∆ alpha = −0.93, [95CI −1.28, −0.58],
p < .001). As for Blender and GPT-3, there was no statisti-
cally significant difference between the two when it came to
speaking like a teacher (∆ alpha = 0.071, p = .41). Overall,
Blender seemed better at understanding (∆ alpha = +0.12)
and helping (∆ alpha = +0.18) the student but these differ-
ences were not significant (p = .47, p = .53, respectively).

Table 2 shows that our estimates of pedagogical ability were
significantly correlated with conversational uptake. Inter-
estingly, the highest correlation was observed for the ability
of understanding the student. This result was not surpris-
ing: as previously noted in Section 2.2, uptake also somehow
measures whether a speaker understands the interlocutor.

Finally, we examined the pedagogical ability of human and
AI teachers on a per-item basis. Table 3 shows the per-
centage of teacher replies for which the expected value of
α was positive. For 69-78% of dialogue contexts, the ac-
tual teacher’s response was positively evaluated and, there-
fore, highly ranked. For helpfulness in particular, 78% of
human teacher responses were positively evaluated. There
was also a higher percentage (14%) of certainty in the esti-
mates of helpfulness. Nevertheless, there were many cases
(22-31% of dialogue contexts) where the actual teacher’s re-
sponse was negatively evaluated as well as cases (33-45%)
where artificially generated responses were positively eval-
uated. The following example illustrates a case where the
response generated by Blender was largely preferred over the

dimensions, W = 0.99, p = 0.76, W = 0.99, p = 0.19,
W = 0.99, p = 0.15, respectively.

actual teacher’s response.

Teacher: People are looking forward to it = there is
a lot of . . . ?

Student: excitement
#1 Blender: Excitement is a good one! People are very

excited about it. Do you have any more?
- likely said by a teacher = 1.52
- understanding the student = 1.32
- helping the student = 1.52

#2 Teacher: ok good! Coronavirus has caused a lot of
. . . among the population.
- likely said by a teacher = -0.90
- understanding the student = -0.57
- helping the student = -0.61

#3 GPT-3: excitement about the next World Cup. . .
- likely said by a teacher = -0.61
- understanding the student = -0.60
- helping the student = -0.90

5. CONCLUDING DISCUSSION
How well are state-of-the-art conversational agents, such as
Blender and GPT-3, capable of replying to a student in an
educational dialogue? When it comes to uptaking from and
expanding on a student’s utterance, Blender comes out on
top, outperforming the actual teacher and GPT-3. Based
on the results of our AI teacher test, we come to similar
conclusions. Although our test does not corroborate that
Blender can actually outperform a human teacher, there is
nevertheless a closer gap with human performance when it
comes to understanding the student. Blender scores notice-
ably better on this specific pedagogical dimension, with a
higher percentage of positively evaluated responses. These
findings may be attributed to Blender’s particular training
objective, namely blended skill talk. By learning to be more
empathetic, Blender might be incidentally learning to take
up more from and be more understanding of its interlocutor.
By contrast, the results of our AI teacher test show that
GPT-3 performs quantifiably worse than Blender and sig-
nificantly worse than real teachers on all measured abilities,
despite its proven capacity for few-shot in-context learning.
What is more, both Blender and GPT-3 are well behind
human performance when it comes to helping the student.

A secondary finding of our AI teacher test is that not all hu-
man teacher responses are necessarily positively evaluated.
Even though the AI teacher responses generally fall short
regarding pedagogical ability, we could still leverage gener-
ated responses as a means of sampling and recommending
potentially better responses.

The solution proposed in this paper is surely not a perfect
test, but it is a first step towards building much-needed eval-
uation methods.
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ABSTRACT
Learning objectives, especially those well defined by ap-
plying Bloom’s taxonomy for Cognitive Objectives, have
been widely recognized as important in various teaching and
learning practices. However, many educators have difficul-
ties developing learning objectives appropriate to the levels
in Bloom’s taxonomy, as they need to consider the progres-
sion of learners’ skills with learning content as well as de-
pendencies between different learning objectives. To remedy
this challenge, we aimed to apply state-of-the-art computa-
tional techniques to automate the classification of learning
objectives based on Bloom’s taxonomy. Specifically, we col-
lected 21,380 learning objectives from 5,558 different courses
at an Australian university and manually labeled them ac-
cording to the six cognitive levels of Bloom’s taxonomy.
Based on the labeled dataset, we applied five conventional
machine learning approaches (i.e., naive Bayes, logistic re-
gression, support vector machine, random forest, and XG-
Boost) and one deep learning approach based on pre-trained
language model BERT to construct classifiers to automat-
ically determine a learning objective’s cognitive levels. In
particular, we adopted and compared two methods in con-
structing the classifiers, i.e., constructing multiple binary
classifiers (one for each cognitive level in Bloom’s taxon-
omy) and constructing only one multi-class multi-label clas-
sifier to simultaneously identify all the corresponding cogni-
tive levels. Through extensive evaluations, we demonstrated
that: (i) BERT-based classifiers outperformed the others
in all cognitive levels (Cohen’s κ up to 0.93 and F1 score
up to 0.95); (ii) three machine learning models – support
vector machine, random forest, and XGBoost — delivered
performance comparable to the BERT-based classifiers; and
(iii) most of the binary BERT-based classifiers (5 out of
6) slightly outperformed the multi-class multi-label BERT-

∗Corresponding authors.

based classifier, suggesting that separating the characteriza-
tion of different cognitive levels seemed to be a better choice
than building only one model to identify all cognitive levels
at one time.

Keywords
Learning Objectives, Bloom’s Taxonomy, Classification, Ma-
chine Learning, BERT

1. INTRODUCTION
A learning objective is a clear and specific statement defin-
ing knowledge and skills that learners are expected to ac-
quire after completing an educational activity [19]. A well-
articulated learning objective can benefit course designers,
instructors and learners. For instance, learning objectives
can inform course design, as they often signal how course
materials should be organized to ensure a suitable sequenc-
ing of instruction and optimize learning activities through-
out the semester. Instructors can utilize learning objec-
tives to assess learners’ progress; meanwhile, learners can
use learning objectives to get an overview of knowledge and
skills they should possess after receiving instruction [38], and
to support their studying for an exam, e.g., by developing
questions for self-testing prior to an exam [2].

Educators in many courses create learning objectives that
reflect knowledge/skills of different levels of cognitive com-
plexity. For example, evaluating whether a formula from a
textbook can be applied to solve a math problem is cogni-
tively a more complex skill compared to recalling that same
formula from a textbook. However, a learner needs to be
able to recall the formula first, and then evaluate its util-
ity in the context of a genuine problem, i.e., low-order skills
are precursors to high-order skills [1, 12]. To define learning
objectives at different skill levels, educators often use edu-
cational taxonomies (e.g., Bloom’s [1, 4], Gagne’s [12], and
Jensen’s [16]). For instance, over decades educators have
widely utilized Bloom’s taxonomy for Cognitive Objectives
[1] to define learning objectives, as this framework can ac-
count for a broad range of learning objectives and provide
means for evaluating learner achievements relative to those
objectives [17]. Bloom’s taxonomy consists of six levels of
cognitive skills that include 3 low-order (remember, under-
stand, and apply) and 3 high-order cognitive skills (analyze,
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evaluate, and create).

Although Bloom’s taxonomy has been regarded as a helpful
pedagogical framework [19], many educators have difficulties
developing learning objectives appropriate to the levels spec-
ified in Bloom’s taxonomy [21]. This is because they need
to consider the progression of learners’ skills with learning
content and also take into account dependencies between
learning objectives, e.g., a learner must be able to define
and explain a math formula before applying it [19]. These
difficulties may lead to subsequent challenges in measuring
learners’ progress, i.e., difficulties to determine whether a
learner has progressed to upper levels of Bloom’s taxonomy
[21]. To ensure learning objectives educators create can be
mapped to Bloom’s taxonomy levels properly, the educators
often need support from educational experts [13], which are
not easily available in many departments in higher educa-
tion. Everything considered, the process of developing well-
articulated learning objectives to support teaching, learn-
ing and assessment activities is usually time- and resource-
consuming.

To remedy this challenge and help educators determine the
level of each learning objective they create according to
Bloom’s taxonomy, in the present study, we explored the
possibility of using state-of-the-art natural language process-
ing, machine learning and deep learning techniques to auto-
matically classify learning objectives. To date, researchers
have developed a few computational models for automatic
classification of different types of educational texts based on
cognitive levels in Bloom’s taxonomy, including exam ques-
tions (e.g., [6, 15, 25, 40]), participants’ contributions to dis-
cussion forums (e.g., [11]), and learning outcomes (e.g, [36]).
Researchers have demonstrated a considerable classification
accuracy of these models. However, even though the classi-
fication of learning objectives based on Bloom’s taxonomy
has been recognized as an important problem, to our knowl-
edge, there has yet to be developed a classification system
that accurately automatizes this work. To address this gap,
we obtained and manually annotated 21,380 course learning
objectives from 5,558 courses from all the 10 constituent fac-
ulties at an Australian university, and applied both machine
learning and deep learning models to construct classifiers to
automatically identify the cognitive levels of these learning
objectives.

2. RELATED WORK
2.1 Bloom’s Taxonomy
Bloom’s taxonomy [1, 4] was originally introduced to reduce
educators’ labor when preparing the materials for annual
comprehensive examinations. The taxonomy proposes six
hierarchically-arranged levels of cognition: remember, un-
derstand, apply, analyze, evaluate, and create. These levels
reflect the cognitive complexity of a learning objective or
an assessment question [15]. In particular, remember, un-
derstand, and apply are considered low-order, whereas an-
alyze, evaluate, and create are considered high-order cogni-
tive skills. Mastering a skill at a higher level is dependent
upon mastering a prerequisite skill or a group of prerequi-
site skills at lower levels in Bloom’s taxonomy. Due to its
well-developed structure, educational researchers and prac-
titioners have widely utilized Bloom’s taxonomy for both
research and instructional purposes, including the classifica-

tion of learning objectives [36]. We use Bloom’s taxonomy
as a theoretical framework to guide this study.

2.2 Automated Analysis of Educational Texts
Based on Bloom’s Taxonomy

Despite its educational promises, the use of Bloom’s taxon-
omy is usually not straightforward. Many educators struggle
to manually classify instructional and assessment activities,
specify the knowledge associated with each level in Bloom’s
taxonomy, and measure student progress accordingly ([21]).
To overcome these challenges and facilitate instructional ac-
tivities, researchers have created several computational sys-
tems for the automated classification of educational texts
based on Bloom’s taxonomy. Wen-Chih et al. [5] developed
a keyword-based system to automatically classify teachers’
questions into different cognitive levels of Bloom’s taxon-
omy. For this purpose, the authors developed a dictionary
of keywords mapped to the corresponding cognitive levels of
Bloom’s taxonomy. The classification system developed in
this way achieved a considerable accuracy of 75% in identi-
fying questions at the remember level, whereas the system’s
performance in identifying questions at other levels was no-
ticeably lower (25% – 59%). Amali et al. [28] developed
several models to automatically classify exam questions into
cognitive levels in Bloom’s taxonomy. The models included a
rule-based part-of-speech classifier, support vector machine,
naive Bayes and K-nearest Neighbor classifiers with word
vectors as inputs. Similar to [5], the models performed best
in identifying exam questions at the remember level (87%
– 100%) but achieved a lower overall performance (60% –
72%). The authors further created an ensemble model that
achieved 82% overall accuracy by combining the four models.
Jayakodi et al. [15] utilized semantic similarity algorithms
to develop a rule-based classifier that identifies a cognitive
level of an exam question according to Bloom’s taxonomy.
This system achieved a classification accuracy up to 0.70 in
identifying a correct cognitive level for an exam question.
Similarly, Echeveria et al. [11] computed TF-IDF features
in student discussion posts as input for a rule-based classifier
that categorizes a post into one of the levels of Bloom’s tax-
onomy. The authors reported an accuracy of nearly 0.77.
Waheed et al. [40] and Mohammed et al. [25] developed
a group of supervised machine learning models to classify
open-ended questions according to Bloom’s taxonomy. The
authors computed a variety of linguistic features from ques-
tion text, e.g., TF-IDF [32] and word2vec [24]. Whereas
these supervised machine learning models were trained us-
ing relatively small datasets (i.e., less than 1,000 questions),
most of them achieved a substantial classification perfor-
mance with their F1 scores ranging between 0.70 and 0.90.

In line with the increased use of deep learning methods
in educational research over the past few years, James et
al. [44] utilized BERT [10], a pre-trained language model,
to classify educational questions relative to Bloom’s taxon-
omy in a cognitive domain. The models performed well in
identifying questions at the levels that were frequent in the
dataset (remember, understand, analyze – achieving 82.61%
accuracy), whereas the identification of questions at less fre-
quent levels (apply, evaluate, create) remained a challenge
(59.2% accuracy with all cognitive levels included). This
study demonstrated the potential of deep learning methods
to assist educators in determining Bloom’s cognitive levels
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of educational questions if a sufficiently big pool of questions
at all cognitive levels is available to train the deep learning
models. Further, Sarang et al. [36] utilized the pre-trained
language model Wiki Word Vectors to generate word em-
beddings for learning objectives and assessment questions.
The word embeddings were used as input to the Long Short
Term Memory (LSTM) model classifying learning objectives
and assessment questions into different levels of Bloom’s tax-
onomy. This model achieved a weighted average F1 score of
0.73 in correctly classifying learning objectives and a macro-
average F1 score of 0.82 in correctly classifying the assess-
ment questions. Moreover, to our knowledge, this study is
the first to automatically classify learning objectives (among
other forms of educational texts) according to Bloom’s tax-
onomy and the considerable classification performance re-
ported in the study encourages further research. Overall,
the classification models developed to date promise to pro-
vide at-scale support to educators who aim at categorizing
educational texts, e.g., discussion forum posts, assessment
questions, and, more recently, learning objectives, based on
cognitive levels of Bloom’s taxonomy.

Although researchers have begun increasingly harnessing the
automated text analysis methods to classify different educa-
tional texts based on Bloom’s taxonomy, only a small group
of researchers has considered exploring the possibility of us-
ing these methods to automatically classify learning objec-
tives, despite the challenges documented that many educa-
tors report when attempting to manually classify learning
objectives according to the cognitive levels of Bloom’s tax-
onomy [21]. Additionally, all of the relevant studies that we
found assumed each piece of text to belong to only one cogni-
tive level while the possibility existed for learning objectives
to have more cognitive levels as educators could have com-
bined several learning objectives in one sentence. We also
note that practical challenges in obtaining a large, manually
labeled dataset, with a sufficient number of learning objec-
tives at each of the six levels of Bloom’s taxonomy to train
the classification models, could have been an important ob-
stacle to this line of research [36]. To address these gaps,
we gathered a large number of authentic learning objectives
across different university courses and manually labeled each
learning objective with at least one cognitive level in Bloom’s
taxonomy. Next, we developed classification models based
on machine learning and deep learning methods to automat-
ically classify learning objectives. More specifically, we at-
tempted to answer the following research question: To what
extent can machine learning and deep learning classifiers ac-
curately classify a learning objective into the cognitive levels
of Bloom’s taxonomy?

3. METHODOLOGY
3.1 Data Collection and Labeling
We collected 21,380 learning objectives publicly available
from 5,558 courses provided by the 10 faculties at an Aus-
tralian university in 2021. To collect the data, we developed
a web scraper using Python to automatically parse the con-
tent of the available course web pages to obtain learning
objectives of a course.

One human coder, who had previously received training on
Bloom’s taxonomy, manually categorized the learning ob-
jectives into their corresponding cognitive levels of Bloom’s

taxonomy. Some learning objectives were categorized into
more than one cognitive level, i.e., 2,325 learning objectives
were labeled with two cognitive levels, 280 with three and
2 with four levels. We provide a sample of coded learning
objectives in Table 1.

To ensure the reliability of data labeling, we included a sec-
ond human coder trained on Bloom’s Taxonomy in cognitive
domain who randomly selected 30% of the learning objec-
tives labeled by the first coder and independently labeled
those learning objectives. The two coders achieved a sub-
stantial inter-coder agreement (Cohen’s κ 0.63), according
to the recommendations provided in [22]. The two coders
discussed the labeling disagreement cases between them and
found out that the major source of disagreement was because
many learning objectives from the low-cognition category
remember were wrongly categorized as the high-cognition
category apply. The coders revised the corresponding la-
bels in the entire dataset accordingly which increased inter-
coder agreement on the 30% of sample to 0.80, measured
with Cohen’s κ. We proceeded with feature engineering
and model development using the labeled dataset to answer
our research question. The detailed descriptive statistics are
provided in Table 2.

3.2 Classification Models
To answer our research question, we developed and exam-
ined six classification models. Of these, five models were
based on traditional machine learning algorithms, support
vector machine (SVM), logistic regression (LR), naive Bayes
(NB), random forest (RF) and XGBoost. These algorithms
have been widely utilized for text classification tasks in ed-
ucational research (for an overview see [35]). Moreover, in-
spired by the increasing use of deep learning approaches in
educational research over the past few years (e.g., [7, 9, 14]),
we developed deep learning classifiers based on the BERT
pre-trained language model. Specifically, we coupled the
pre-trained BERT sequence classifiers with a single layer for
classification and trained the model using the data we col-
lected.

Recall that, in our collected dataset, each learning objec-
tive can be assigned with either only one cognitive label or
multiple labels at the same time. Correspondingly, we could
tackle the classification task by using two different meth-
ods. The first method is to construct a binary classifier
for each cognitive level in Bloom’s taxonomy (e.g., those la-
beled as remember vs. those not), and the second method
is to build one multi-class multi-label classifier for all the
cognitive levels in Bloom’s taxonomy (i.e., identifying all
the cognitive labels specific to a learning objective). Given
that part of our research goal was to shed light on the best
way to tackle this problem, we implemented both methods
for comparison purposes. More specifically, we used each
of the models described above to construct a binary clas-
sifier for each cognitive level in Bloom’s taxonomy, i.e., we
constructed a total of 36 binary classifiers. Then, we con-
structed two multi-class multi-label classifiers (i.e., a Ran-
dom Forest model and a BERT model), as these two mod-
els have been demonstrated effective in tackling multi-class
multi-label classification problems in previous research ([27,
37, 39, 42, 43]).
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Table 1: Example of learning objectives categorized into the cognitive levels in Bloom’s taxonomy.

Learning Objective Examples Labels

Recognise the key role that human factors play in the leadership and
development of a highly functional perioperative team.

Remember

Describe the general characteristics of the modern X-ray system used in clinical practice,
including scientific principles, and production of the digital image.

Understand

Apply research skills to operate effectively as a member of a research project team. Apply

Identify an issue of relevance to the practice of perioperative medicine
capable of further investigation and research within the context of a capstone project.

Analyze

Ability to articulate critical interpretations of dramatic texts and
processes in systematic written argument.

Evaluate

A capacity to design, manage, and carry out a research project. Create

Analyze and apply contemporary management theory and research to current organizational issues. Apply & Analysis

Assess and synthesise diverse information about up-to-date information and knowledge
management systems market and how to use implementation strategies to maximise their
strengths and minimise their weaknesses.

Evaluate & Create

Table 2: Descriptive statistics of the Learning Objective (LO) dataset.

Total Remember Understand Apply Analyze Evaluate Create Multi-Label

# Total LOs 21,380 886 5,079 5,074 2,311 2,468 2,955 2,607

# Avg. words per LO 17.81 16.14 17.42 18.55 16.68 16.64 16.27 21.52

# Avg. unique words per LO 15.75 14.59 15.33 16.40 15.05 14.91 14.74 18.25

3.3 Study Setup
3.3.1 Data Pre-processing

Prior to conducting any experiments, we randomly split the
dataset in an 80:20 ratio, i.e., 80% of data was used as a
training set and 20% of data was used as a testing set. We
used these same datasets across all classification tasks to
ensure fair comparisons between different models.

The textual data was initially pre-processed in the same
fashion for both the machine learning models and the BERT-
based deep learning model by converting them to lower-
case. We extracted multiple features that had been proven
to be useful not only for educational forum post classifica-
tions [35], but also in other studies sharing a similar context
to ours ([25], [32]) to empower the five conventional ma-
chine learning models described above. In particular, we
computed a group of features in n-gram form, including un-
igrams (1,000 most frequent excluding stopwords) and bi-
grams (1,000 most frequent excluding stopwords); TF-IDF
features (1,000 most frequent excluding stopwords); auto-
mated readability index [33] for each learning objective; and
93 features derived from the LIWC dictionary [31] reflecting
a frequency of different psychologically meaningful words,
e.g., cognitive processes, function words, words reflecting
summary, relativity and time orientation, leading to a to-
tal of 3,094 features. For our BERT-based deep learning
model, unlike some previous studies ([18, 25, 28]) where
the researchers used word2vec to generate word embeddings,
we employed BERT-uncased shared by HuggingFace [41] to
generate word embeddings, because BERT generated em-
beddings had been proven to be capable of capturing con-

textual information and properties at the sentence level (in
this study, the learning objective level) [23].

3.3.2 Model Implementation
To implement and examine the five conventional machine
learning models, we utilized the Python package Scikit-Learn
[30] to develop naive Bayes, logistic regression, support vec-
tor machine, and random forest classifiers, and the package
XGBoost [8] to develop the XGBoost classifier. We per-
formed hyper-parameter tuning with 3-fold cross-validation
on these models using grid search in order to find the most
suitable parameters for our models. F1 score was used as the
evaluation metric when performing hyper-parameter tuning.
The details of the parameters were all documented in our
source code and would be open-sourced together with the
data collected in this study, and thus be made available to
other researchers for replications1

For the BERT-based model, we applied the BERT-uncased
shared by HuggingFace [41]. The model included 12 hid-
den layers, each with 768 neurons. The vocabulary size
was 30,522 and the dropout rate was 0.1. For binary se-
quence classifiers, the number of output neurons is 2, each
predicting the probability of the text belonging to differ-
ent classes (0 and 1 as class labels). Therefore, we applied
a softmax function on these probabilities to find the cor-
responding class labels for the texts. For the multi-class
multi-label sequence classifier, the number of output neu-
rons is 6, predicting the probabilities of the text belonging

1https://github.com/SteveLEEEEE/EDM2022CLO.git
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to the six cognitive levels. Thus, we used a sigmoid function
on these probabilities and set the probability threshold to
0.50 to find their predicted class labels. The entire BERT
models were fine-tuned without freezing the parameters in
any layers for all experiments.

3.3.3 Model Training
The training data were used to train all the machine learn-
ing models without further splitting. However, for our deep
learning models, the 80% training data were further split
with 80% being training set and 20% being validation set.
The batch size was set to 64 for all the deep learning models
and the number of epochs was set to 3. Early-stopping was
applied in order to avoid over-fitting. When the F1 scores
stopped improving on 10 consecutive validations, the train-
ing terminated and the model weights rolled back to the best
performing one.

3.3.4 Evaluation Metrics
We evaluated the performance of the classification models by
computing the following performance metrics: accuracy, Co-
hen’s κ, Area Under the ROC Curve (AUC), and F1 score.
To find out the categorical performance on the multi-class
multi-label classifiers, we separated the classification results
for each of the cognitive levels on testing data and made
comparisons with the humanly assigned ones to find out
their individual accuracy, Cohen’s κ, AUC, and F1 scores.

4. RESULTS
Our results provide evidence that it is possible to develop
highly accurate supervised machine learning and deep learn-
ing models to classify learning objectives into skill levels
based on Bloom’s taxonomy, answering our research ques-
tion. In particular, the high-performing models included
those based on SVM, RF, XGBoost and BERT (Table 3).
All of the high-performing models achieved Cohen’s κ score
spanning between 0.79 and 0.93, while the prediction accu-
racy of these models spanned between 0.92 and 0.99, i.e.,
the models can accurately classify at least 92% of learn-
ing objectives into a corresponding skill level of Bloom’s
taxonomy. Equally importantly, the F1 scores of the high-
performing models were between 0.83 and 0.95, indicating a
high precision and recall achieved by SVM, RF, XGBoost,
and BERT in identifying each of the six cognitive levels in
Bloom’s taxonomy. We note that the binary BERT models
outperformed all the binary machine learning models ob-
served. These models achieved an outstanding classification
performance, as measured by Cohen’s κ (0.87 to 0.93), ac-
curacy (0.96 to 0.99), and F1 scores (0.88 to 0.95). The
classification performance of other models observed in this
study (i.e., naive Bayes and logistic regression) was notice-
ably lower, e.g., with Cohen’s κ typically not exceeding 51%
for naive Bayes and 73% for logistic regression.

Furthermore, by comparing the performance between binary
and multi-class multi-label random forest classifiers, it is ev-
ident that binary random forest classifier outperformed the
multi-class multi-label one in most cases except for under-
stand. Meanwhile, the multi-class multi-label BERT-based
classifier performed better than all the binary and multi-
class multi-label machine learning models from the same
cognitive level, but rarely outperformed binary BERT-based

classifiers in terms of the prediction performance. The ex-
ception was the cognitive level evaluate where binary BERT-
based classifier achieved a similar but slightly lower perfor-
mance than the multi-class multi-label BERT-based classi-
fier (i.e., 0.001 difference in Cohen’s κ and F1 score).

5. DISCUSSION
5.1 Interpretation of the Results
Many educators across a range of disciplines develop learn-
ing objectives for their courses based on Bloom’s taxonomy
for Cognitive Objectives [1]. Even though Bloom’s taxon-
omy has been widely deemed a useful pedagogical frame-
work [19], educators often find it challenging and tedious
to develop learning objectives to describe cognitive skills at
different levels of Bloom’s taxonomy [21]. To remedy this is-
sue, in this study, we explored whether machine learning and
deep learning methods can be used do develop the classifica-
tion model that can automatically classify a learning objec-
tive into appropriate cognitive level in Bloom’s taxonomy.
Overall, our results indicated that three traditional machine
learning models, i.e., support vector machine, random for-
est, and XGBoost, and one deep learning model based on
BERT, may be the viable approaches towards solving this
problem.

The four high-performing classification models achieved con-
siderable performance not only relative to commonly ac-
cepted standards in discourse analysis [3], but these models
also outperformed the models from prior research that tar-
geted similar classification tasks. Importantly, all the mod-
els performed well in correctly classifying learning objectives
at each level of Bloom’s taxonomy. Given that both conven-
tional machine learning (e.g.,[5, 28]) and deep learning ap-
proaches (e.g, [44]) have been documented to perform poorly
in classifying educational texts into higher-order cognitive
levels of Bloom’s taxonomy (e.g., analyze, evaluate, and cre-
ate), the results of our study add to the body of knowl-
edge in educational research showing that advanced conven-
tional machine learning and deep learning models trained on
a large corpus of educational textual data can provide useful
classifications across all the levels in Bloom’s taxonomy.

Moreover, our findings resonate with prior research show-
ing that deep learning models can provide a more accurate
classification results in educational classification tasks, com-
pared to conventional machine learning algorithms [35]. We
also note that, given the performance scores the naive Bayes
classifier consistently achieved across the six tasks in our
study, it appears that this classifier may be the least prefer-
able algorithm for classification tasks based on Bloom’s tax-
onomy, corroborating evidence provided in [29] where the
authors pursued the question classification task based on
Bloom’s taxonomy and found that naive Bayes under-performed
other classifiers in this task.

Last, we observed that, though multi-class multi-label clas-
sifiers achieved satisfactory performance, binary classifiers
using the same model (i.e., BERT) still attained better per-
formance. This might be mainly because that, while multi-
class multi-label classifiers tried to minimize the overall er-
rors across different cognitive levels during the model train-
ing process, binary classifiers tended to focus comprehen-
sively on minimizing the errors on a single category. There-
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Table 3: Classification Performance of the binary and multi-class multi-label (MCML) classifiers, i.e., Support Vector Machine
(SVM), Naive Bayes (NB), Logistic Regression (LR), Random Forest (RF), XGBoost, and the BERT-based classifier. The best
results are in bold for each evaluation metric in each level of Bloom’s taxonomy.

Methods
Remember Understand Apply

Acc. Cohen’s κ AUC F1 Acc. Cohen’s κ AUC F1 Acc. Cohen’s κ AUC F1

Binary
Classifiers

NB 0.640 0.111 0.716 0.198 0.642 0.327 0.716 0.581 0.778 0.507 0.781 0.668
SVM 0.982 0.827 0.923 0.837 0.922 0.801 0.891 0.855 0.923 0.805 0.890 0.858
LR 0.960 0.485 0.681 0.503 0.891 0.714 0.839 0.787 0.896 0.726 0.837 0.793
RF 0.983 0.830 0.892 0.839 0.920 0.793 0.880 0.847 0.936 0.837 0.904 0.881

XGBoost 0.981 0.820 0.916 0.830 0.928 0.818 0.900 0.867 0.938 0.844 0.914 0.887
BERT 0.987 0.871 0.916 0.878 0.971 0.926 0.959 0.947 0.961 0.904 0.951 0.931

MCML
Classifiers

RF 0.982 0.809 0.989 0.818 0.927 0.811 0.970 0.860 0.921 0.794 0.970 0.847
BERT 0.984 0.848 0.988 0.856 0.955 0.889 0.982 0.920 0.951 0.877 0.976 0.912

Methods
Analyze Evaluate Create

Acc. Cohen’s κ AUC F1 Acc. Cohen’s κ AUC F1 Acc. Cohen’s κ AUC F1

Binary
Classifiers

NB 0.549 0.183 0.684 0.392 0.596 0.234 0.703 0.447 0.676 0.300 0.743 0.474
SVM 0.956 0.832 0.897 0.858 0.959 0.861 0.922 0.886 0.942 0.791 0.880 0.825
LR 0.936 0.732 0.818 0.767 0.920 0.694 0.799 0.739 0.902 0.604 0.762 0.659
RF 0.961 0.851 0.902 0.874 0.967 0.887 0.932 0.907 0.943 0.792 0.877 0.826

XGBoost 0.959 0.844 0.903 0.868 0.964 0.878 0.924 0.900 0.944 0.796 0.882 0.829
BERT 0.975 0.906 0.950 0.922 0.974 0.913 0.954 0.929 0.962 0.866 0.924 0.888

MCML
Classifiers

RF 0.951 0.803 0.972 0.831 0.950 0.822 0.981 0.852 0.928 0.715 0.964 0.755
BERT 0.971 0.890 0.984 0.907 0.974 0.914 0.989 0.930 0.958 0.846 0.971 0.872

fore, with adequate data collected, tackling the problem as
multiple binary classification tasks may be a better solution.

5.2 Practical Implications
In this study, we made a first step towards developing fu-
ture computational tool that can provide at-scale support to
instructors, instructional designers, and other educational
stakeholders who aim at developing learning objectives well
aligned to Bloom’s taxonomy. The system will automati-
cally analyze learning objectives using the classification rou-
tines developed in this study. For instance, an instructional
designer may submit the list of manually created course
learning objectives to this future system and obtain a highly
accurate classification of the learning objectives into cogni-
tive levels of Bloom’s taxonomy. Using this information, the
instructional designer may determine whether all the learn-
ing objectives are provided, relative to course requirements,
e.g., “It looks like I yet to develop a learning objective at
the create level. Since this is an advanced writing course,
the create learning objectives should be included” or “Even
though I have created a few learning objectives for the skills
at the apply level, my list is missing lower-level learning ob-
jectives that represent the corresponding pre-requisite skills”.
Overall, the classifiers developed in this study can be used to
automatically diagnose the cognitive levels of learning objec-
tives for courses and educational programs across different
higher education institutions.

In addition, coupled with the systems for natural language
generation, the classifiers of learning objectives might be fur-
ther enhanced to automatically generate learning objectives
from course content. This, in turn, may reduce time educa-
tors dedicate to this task and may mitigate inconsistencies
educators introduce among each other when defining learn-
ing objectives, e.g., two instructors defining different learn-

ing objectives for the same subject. We also anticipate our
work will benefit students by providing means for automatic
development of questions of different cognitive levels for self-
assessment. For example, automatically generated learning
objectives can be further coupled with the systems for au-
tomatic question generation to obtain interrogative form for
objectives. Questions developed in this way may provide
at-scale support to students studying for assessment.

6. LIMITATIONS AND FUTURE WORK
We identified several limitations in this study that may be
considered in future research. Firstly, even though all the
learning objectives we collected were classified into at least
one of the cognitive levels in Bloom’s taxonomy, it is, how-
ever, possible that some learning objectives cannot be cate-
gorized relative to a cognitive domain but relative to other
domains instead, e.g., affective domain [26]. In future re-
search, the learning objectives dataset should be further la-
beled from other domains, and relevant classifiers should be
trained to recognize these types of learning objectives. Sec-
ondly, the supervised machine learning and deep learning
methods utilized in this study require extensive amounts of
labeled data to achieve a highly accurate prediction per-
formance. As preparing such a large-scale dataset can be
costly and time-consuming, researchers may consider us-
ing semi-supervised machine learning approaches (e.g., semi-
supervised Random Forest [20]) or training strategies like ac-
tive learning [34] to enable more effective and efficient model
construction process in the future.
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[9] B. Clavié and K. Gal. Edubert: Pretrained deep
language models for learning analytics. arXiv preprint
arXiv:1912.00690, 2019.

[10] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova.
Bert: Pre-training of deep bidirectional transformers
for language understanding. arXiv preprint
arXiv:1810.04805, 2018.
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learning and theory of instruction. Holt, Rinehart and
Winston, 1985.

[13] R. Gluga, J. Kay, R. Lister, Simon, and S. Kleitman.
Mastering cognitive development theory in computer
science education. Computer Science Education,
23(1):24–57, 2013.

[14] S. X. Guo, X. Sun, S. X. Wang, Y. Gao, and J. Feng.
Attention-based character-word hybrid neural
networks with semantic and structural information for
identifying of urgent posts in mooc discussion forums.
IEEE Access, 7:120522–120532, 2019.

[15] K. Jayakodi, M. Bandara, I. Perera, and
D. Meedeniya. Wordnet and cosine similarity based
classifier of exam questions using bloom’s taxonomy.
International Journal of Emerging Technologies in
Learning, 11(4), 2016.

[16] A. Jensen. Varieties of individual differences in
learning. in, rm gagne. Learnin˜ and Individual
Differences. Columbus, Ohio: Merrill Books, 1967.

[17] P. C. Kyllonen and V. J. Shute. Taxonomy of learning
skills. Technical report, UNIVERSAL ENERGY
SYSTEMS INC DAYTON OH, 1988.

[18] M. Laddha, V. Lokare, A. Kiwelekar, and L. Netak.
Classifications of the summative assessment for
revised bloom’s taxonomy by using deep learning.
International Journal of Engineering Trends and
Technology, 69:211–218, 03 2021.

[19] M. B. Larson and B. B. Lockee. Streamlined ID: A
practical guide to instructional design. Routledge,
2019.

[20] C. Leistner, A. Saffari, J. Santner, and H. Bischof.
Semi-supervised random forests. In 2009 IEEE 12th
international conference on computer vision, pages
506–513. IEEE, 2009.

[21] S. Masapanta-Carrión and J. Á. Velázquez-Iturbide. A
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ABSTRACT
Higher education often aims to create job-ready graduates.
Thus, the skills and knowledge taught in professional de-
grees are expected to align with the needs of the labor mar-
ket. However, the dynamic nature of the job market makes
it challenging to ensure that this alignment occurs. In this
study, we show how Skills Analytics can be used to identify
critical skills in the workforce, mapping these to the cur-
riculum offerings of a university. This enables us to identify
skill gaps between what is taught and what is needed in
the job market. Methods are presented that allow universi-
ties to test the alignment of their curriculum offerings with
the job market. Where gaps are identified, this would en-
able universities to update their curriculum more rapidly to
produce graduates equipped with up-to-date skills required
by the local job market. Our contributions include: a new
method for ranking skills in curricula based on their relative
importance in the job market; and proof of concept meth-
ods to find skills gaps between curriculum offerings and an
identified job market that can lead to curriculum redesign
and enhancements.

Keywords
Curriculum analytics, Skills Analytics, Skills gap

1 Introduction and Prior Research
As modern society increases in complexity, higher education
is often seen as a necessity for achieving success in the work-
place [7]. While this claim is sometimes challenged [5], ter-
tiary training is still often regarded as the entry-level qual-

ification for a professional job [21]. While many claim that
higher education should be aiming not just to develop work
readiness but also to support people in becoming critical
thinkers able to contribute to the betterment of our soci-
ety [11], we increasingly see both government and employers
pushing universities to prepare graduates who can make an
immediate contribution in the workplace [16, 19].
How do we know that a university degree adequately pre-
pares a student for the labor market? Over the years, a wide
range of computational models have been developed to iden-
tify and/or catalog the skills and knowledge associated with
a course or degree program. One popular method arises from
the curation of ontologies describing a set of skills identified
as critical by professional associations, employers, or some
form of project. For example, the Association for Comput-
ing Machinery (ACM) has been recommending curriculum
for various computer science disciplines for decades. The
most recent Computing Curriculum (CC2020), includes rec-
ommendations about curriculum covering: Computer Engi-
neering; Computer Science; Cybersecurity; Information Sys-
tems; Information Technology; Software Engineering; and
an emerging Data Science category. These standards tradi-
tionally represent the curriculum for a job role as a Body
of Knowledge (BoK) consisting of a set of knowledge areas
(KAs), both of which contain about ten more specialized
knowledge units (KUs) described by a short document. Such
formal ontologies and mappings of KAs are often applied in
EDM to support various Intelligent Tutoring Systems (ITS)
[10].
Ontologies are often leveraged by semantic web technologies
to represent curriculum [22, 12, 1], an approach that can
help to ensure interoperability of curriculum data between
institutions [9]. Gasmi and Bouras [13] demonstrate that it
is possible to compare the competencies required by indus-
try with those taught by education using a semantic web
ontology and then propose an inference engine that can be
used to match students or curriculum to jobs. However, to
the best of our knowledge their proposed system was never
deployed at scale.
An alternative, less manual way in which to link curriculum
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ceedings of the 15th International Conference on Educational Data
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to skills involves the use of Natural Language Processing
(NLP). A number of different papers have extracted skills
from curriculum documents using simple term frequency-
inverse document frequency (TF-IDF) approaches [23, 14,
17]. More advanced methods have used simplified-supervised
Latent Dirichlet Allocation (ssLDA) to compare computer
science (CS) related curriculum offerings across 10 differ-
ent universities in the United States [20]. This method was
used to model a complete curriculum pathway by finding
the center of all points corresponding to a syllabus in a
degree program. However, while interesting computational
approaches, these methods only work because the detailed
ACM curriculum documentation has been carefully curated.
This is a significant impost, and is not one that has been re-
peated by many other sectors. As such, it is not a method
that scales to an entire university curriculum.
Various nations and even the private sector, have attempted
to address the problem of field specificity by developing na-
tional standards for the skills, competencies, knowledge and
abilities required for the entire workforce. Examples include:
the USA based Occupational Information Network Program
(O*NET); Singapore’s Skills Framework; and the classifica-
tion of European Skills, Competences, Qualifications, and
Occupations (ESCO). In the same vein, numerous compa-
nies are working to provide technical solutions that support
people in becoming more employable, from large companies
like Microsoft who are using the knowledge graph acquired
from their acquisition of LinkedIn, to start ups and Small to
Medium Enterprises (SMEs) such as Faethm, who have re-
cently been acquired by Pearson. Similarly, EMSI-Burning
Glass technologies (EBG) collect data by web scraping over
40,000 distinct job boards and company websites, and pro-
vides detailed daily information about labor and skill de-
mand posted online.
Multiple studies have taken advantage of these skill tax-
onomies to explore labor market dynamics and the skills
demanded by employers. For example, Clemens et al. [6]
investigated whether minimum wage increases result in sub-
stitution from lower-skilled to slightly higher-skilled labor.
Brüning and Mangeol [4] investigated the geographical vari-
ation of employer demand for graduate skills within and
among occupations. Interestingly, these skills taxonomies
are sometimes provided with services to parse documents
and return a list of skills. This type of functionality was
leveraged in a recent LAK paper by Kitto et al. [18] that
defined a notion of Skills Analytics to support the Recogni-
tion of Prior Learning (RPL) between two institutions, but
this same type of mapping is in principle possible between a
student and a job, and in an EDM poster by the same group
to perform some preliminary profiling of the entire curricu-
lum offered across one university [15]. However, a problem
remains: not all skills contribute equally to the employabil-
ity of a graduate. Which skills are the most important?
Intriguingly, Dawson et al. [8] used Burning Glass data, cou-
pled with a measure from labor economics, Revealed Com-
parative Advantage (RCA) [3, 2] to calculate the relative
importance of skills that are associated with job ads of dif-
ferent occupations. This index is based on Ricardian trade
theory and is widely used in international economics for cal-
culating the relative advantage or disadvantage of a certain
country in a certain class of commodity as evidenced by
trade flows. RCA works for skills in the same way, enabling
the calculation of the advantage conferred by a skill to a per-

son in a particular context. As such, the RCA provides us
with a promising method for analyzing the relative impor-
tance of a specific skill to a job, or to a curriculum offering,
or indeed, to a graduate when they attempt to find a job.
However, to the best of our knowledge this metric has yet to
be applied to the problem of finding gaps in an institution’s
curriculum that would reduce a graduate’s potential future
employability. This is the gap in the literature addressed by
our paper, which proceeds by asking the following Research
Question:

RQ: How can we identify skills gaps between content taught
at an institution (i.e. its curriculum offerings) and the
requirements of a local job market?

We adopt an approach based upon Skills Based Curriculum
Analytics [18] to link university curricula with job market
data. Extending the methodology proposed by Dawson et al.
[8], we present an approach that enables the comparison of
the skills taught within a specific degree program offered by
a university with the skills sought by employers for a set
of occupations targeted by that degree program. A proof
of concept is presented, which contributes: (i) The use of a
measure from labor market economics, Revealed Compara-
tive Advantage (RCA), to weight skills according to the ad-
vantage they confer to a specific context; (ii) A method for
evaluating the skills gaps that occur between a curriculum
offering (i.e. identified degree program) and specific occu-
pations targeted by that degree program; (iii) A method for
measuring the criticality of any skills gaps, which can be
used by university decision makers to prioritize curriculum
redevelopment.

2 Methods
2.1 Definitions
For the sake of clarity, we will define here the precise mean-
ing of different terms used across this paper. We will denote
a course as a “course of study” or a degree or credential pro-
gram offered by a University (e.g. a Bachelor of Science or
a Master of Information Technology). A subject is taken to
be a specific unit of study that a student undertakes during
a course (e.g. Introduction to Programming, Introductory
Calculus). A job reflects a one-on-one relationship between
an employee and an employer hence a job ad represents a
single vacancy. An occupation is a group of jobs that share
very similar characteristics. For example, “teacher” is an
occupation, but there are many different types of teachers,
such as special education teachers and biology teachers. We
use the term skill to denote skills, capabilities and knowl-
edge components that are associated with a subject, course,
job, or occupation interchangeably. In this study, we will
represent subjects, courses, jobs and occupations as bags of
skills where each bag of skills represents the skill set taught
in a subject, attained by completing a course, or required
for a job or an occupation, respectively.

2.2 Data Preparation
To prepare the skill-based presentation of the entire curric-
ula of our university, we took every subject offered at the
University of Technology Sydney (UTS) and extracted the
following information from the Curriculum Information Sys-
tem: a general description of each subject, any information
available about content taught, learning objectives, gradu-
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ate attributes, and a high-level overview of every assessment.
Next, this extracted textual data was sent to a parsing ser-
vice offered by EMSI-Burning Glass Technology (EBG) (i.e.
the curriculum parser tool) through API calls for skill tag-
ging. EBG provides a taxonomy of more than 33,000 skills
that are curated from job advertisement data. For each API
call, the curriculum parser uses NLP to extract a list of
skills which are probabilistically correlated to the subject
information. This method returned skill lists for 2,747 sub-
jects, resulting in a grand total of 138,455 skill tags. The
occupational data used in this pilot study includes a rela-
tively small set of job advertisements posted during 2020 (N
= 144k) that represents a total number of 612 occupations
covering 78k unique job titles. The mapping of the job ads
to the occupation titles and their underlying skills (1.4M
skill tags) was carried out by EBG.

2.3 Finding skill gaps between courses and the
occupations they target

The procedure used to identify skills gap between curricula
and job market is as follows:

Step 1: Calculate the importance of skills for each subject
Step 2: Calculate the importance of skills for each job ad
Step 3: Calculate the pair-wise co-occurrence of skills for
each subject
Step 4: Calculate the pair-wise co-occurrence of skills for
each job ad
Step 5: Calculate the averaged importance of the skills as-
sociated with the job ads of each occupation
Step 6: Calculate the averaged importance of the skills as-
sociated with the subjects of each course
Step 7: Compute the pairwise similarity matrix of all courses
and all occupations

For details about the calculations themselves, and how the
RCA was implemented, the paper by Dawson et al. [8] should
be consulted.

3 Results
Having used the RCA to weight the relative importance of
skills, and constructed a similarity matrix, we can now work
to identify skills gaps between the occupations targeted by
various courses, and the skills that those courses teach. In
this section we will demonstrate how these methods might be
used in an institutional setting to extract actionable insights
capable of informing curriculum development.

3.1 The RCA downgrades common skills
Firstly, we note that the RCA can help us to reduce the rel-
ative importance of very general skills. For example, at UTS
‘Creativity’ is returned by the EBG tagger 1,496 times across
all courses that return at least one skill (see Table 1 for more
examples). While possessing these general skills is expected,
having them on a resume is unlikely to distinguish graduates
in the job market. The RCA scoring method downgrades
common skills with lower scores. Cross-checking these skills
with the O*NET categorization of skills confirms that they
tend to belong to the basic skill category. On the other side,
skills with a high RCA score were not present in the basic
skills category and so represent more specialized skills that
distinguish individuals with respect to specific jobs. This in-

Table 1: Highly common skills in UTS curricula, with their
counts across the 2,747 subjects, and the % column giving
the relative frequency.

Skill Count %

Research 2368 86%
Teamwork / Collaboration 1788 65%
Writing 1647 59%
Creativity 1496 54%
Planning 1419 51%
Communication Skills 1401 51%
Problem Solving 1356 49%
Project Management 1337 48%
Customer Service 1240 45%
Organizational Skills 1218 44%
Building Effective Relationships 1181 42%
Budgeting 1169 42%
Presentation Skills 1160 42%
Detail-Oriented 1098 39%
Written Communication 1077 39%
Scheduling 1053 38%
Microsoft Excel 1050 38%
Biologics Development 1045 38%
Microsoft PowerPoint 1026 37%
Multi-Tasking 994 36%

dicates that the RCA is largely behaving as expected in its
ranking of skills. It is important to note that some analyses
might not want to downgrade common skills in this manner,
in which case a different weighting method could be used.

3.2 Skill gaps across a collection of courses
With the methods described in Section 2 it is now possible
to explore how various courses offered by UTS align with
the occupations that they are attempting to prepare their
students for. We have selected 10 courses which aim to pre-
pare their students for professional careers (and so should
align well to the needs of the job market), and examined
their curriculum descriptions to extract target occupations
(e.g. “The course prepares students to participate in a vari-
ety of emerging careers with the growth of data science —-
Data Scientist, Data Engineer...”). We also selected a small
number of occupations not being targeted by any course in
our sample. We then performed the analysis represented
by Steps 1 to 7 to calculate the average similarity between
the bag of skills returned for each course and each of the
selected occupations. The results of this analysis are pre-
sented in Figure 1. According to this heatmap, the group
of Information Technology courses show a relatively small
skills gap for the IT related occupations, and a correspond-
ingly high skills gap for the occupations that they are not
claiming to prepare the students for. For example, these
courses perform fairly poor in preparing graduates for phar-
macy related occupations. On the other side, it is evident
that the pharmaceutical occupations in fact show a small
skills gap with the Master of Pharmacy. One interesting
finding of this presentation is the fact that some courses in
fact represent a low skills gap with some occupations that
they are not targeting. For instance, the Master of Forensic
Sciences shows a relatively small skills gap with Data Sci-
entist occupation. This is likely due to a strong emphasis
upon analytical thinking and some data analysis skills which
are used to provide insights into the elements of a crime.
This brings another application of the proposed method; to
identify potential alternative career pathways for students
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Figure 1: A heat map, representing the skills gap between 50 selected occupations and 10 courses offered at UTS.

beyond their chosen enrollment if they are dissatisfied with
their existing pathway. We reserve the examination of such
applications of our method for future work.
The hierarchical clustering of the occupations has success-
fully identified two major clusters, one including IT related
occupations, and a second cluster that covers a number sub-
clusters representing the other occupation categories chosen
(i.e. pharmaceutical, finance, design, language, and foren-
sic). Note in particular, that the occupations to the far right
of Figure 1 show a high skill gap. This is a good sign, as
they were the occupations chosen which are not targeted
by any of the courses we chose to investigate. Given that
the similarity calculation ranges from 0 to 1, these results
are surprisingly good for two reasons. First, there are 6,684
skills in the occupation space (extremely unique skills are
removed) and and 3,467 skills in the curriculum space. The
fact that there is such overlap between the courses and their
intended occupations is a sign that the courses are indeed
doing a good job in preparing their students with the skills
required in the labor market. Second, as mentioned in Sec-
tion 2, the occupational data used for this study includes
the job advertisements of only one year (2020). This nega-
tively impacts the results of our analysis because it reduces
the accuracy of the RCA scores (as a job ad with an unusual
skill profile can have a disproportionate influence over the
form an occupation takes). Furthermore, the small sample
means that some of the skills taught in the course that are
in fact required for a given occupation are not identified in
the job ads that we had access to. We expect our results to
improve with access to a larger job ad dataset.

4 Discussion and Conclusions
Returning to our original research question (in Section 1),
this paper has presented a new method that shows clear
promise for identifying skill gaps between the content taught
by an institution and the job market that it is targeting.
The methods proposed in this paper are based on the as-
sumption that relevant textual data can be represented as

a bag of skills. Keeping that notion in mind, our methods
can be used in other scenarios as well. For example, this
same method could potentially be used when developing a
new course or subject to identify significant overlaps in the
skills covered by two existing subjects, which may indicate
that resources could be more effectively allocated towards
the teaching of new content instead. In the same vein, this
technique could be adopted for the automated identification
of existing competencies, which could be used to identify
students who are enrolling in a subject that is unlikely to
add much value to their current skill set. While the potential
applications of the method presented here are broad, it cur-
rently has some limitations. By far the most concerning cen-
ters upon the notion of skillifying1 curriculum, occupations,
or even a person’s resume or portfolio. We admit that this
approach necessarily entails a highly simplified representa-
tion of each of these complex entities, and may be critiqued
for this reason. However, we feel that the potential utility
of the approach in supporting institutions to improve the
employability of their graduates justifies this simplification.
We believe that RCA can be used for recommending sub-
jects/courses that minimize the skill gaps of each individual
with respect to occupation goals that they specify in an in-
terface. Such an interface could also be used to support stu-
dents in identifying alternative occupation goals that they
have not yet considered. We reserve these intriguing possi-
bilities for future work.
In conclusion, this paper has provided a proof of concept
method for mapping between the skills sought in a local job
market, and the skills taught by an institution, an advance
that will help to improve student employability in a rapidly
changing workforce.
Acknowledgments: We acknowledge the support of Burning
Glass in provisioning the API tools and data that were used
in this study.
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ABSTRACT
Knowledge Tracing (KT), the task of tracing students’ knowl-
edge state, has attracted attention in the field of artificial
intelligence. Recently, many researchers have proposed KT
methods using deep learning to predict student performance
on unknown tasks based on learning history data. Espe-
cially, the latest DeepIRT reportedly has high predictive ac-
curacy and parameter interpretability. Nevertheless, some
room remains for improvement of its prediction accuracy
because it does not optimize the degree of forgetting of past
data. Specifically, although its forgetting parameters are op-
timized solely using current input data, it should use both
current input and past data to optimize them. Therefore,
for better parameter estimation to improve accuracy, this
study proposes a new DeepIRT that optimizes the degree
of forgetting of past data. The proposed method has a hy-
pernetwork to balance both the current and the past data
in memory, which stores a student’s knowledge states. Re-
sults of experiments demonstrate that the proposed method
improves the prediction accuracy compared to earlier KT
methods.

Keywords
Deep Learning, Hypernetwork, Item Response Theory, Knowl-
edge Tracing

1. INTRODUCTION
Recently, with the development of online education [24, 25,
26], Knowledge Tracing (KT) has attracted broad attention
for helping students to learn effectively by presenting opti-
mal problems and a teacher’s support. [3, 7, 10, 15, 16, 17,
28, 29, 33, 34, 35]. Important tasks of KT are tracing the
student’s evolving knowledge state and discovering concepts
that the student has not mastered based on the student’s
past learning history data. Furthermore, accurate prediction
of a student’s performance (correct or incorrect response to
an unknown item) is important for adaptive learning. Al-
though KT methods have been proposed as probabilistic

approaches [3, 7, 28, 29, 34] and deep-learning-based ap-
proaches [17, 28, 29, 33, 35], the latter have been studied
more actively in recent years because they reportedly have
high prediction accuracies.

Various deep-learning-based approaches have been proposed
to improve the prediction accuracy of a student’s perfor-
mance[1, 20, 21, 32]. Most recently, Ghosh et al. (2020)
proposed attentive knowledge tracing (AKT) [5], which in-
corporates a forgetting function of past data to attention
mechanisms: the Transformer method [27]. In addition,
AKT optimizes the parameters to weight the data necessary
for student performance prediction from past learning data.
Therefore, AKT has the best performance for predicting a
student’s responses among earlier KT methods. However,
the interpretability of the parameters is limited because it
cannot express a student’s ability transition of each skill [5,
14, 22].

On the other hand, to express a student’s the knowledge
state transition for deep-learning-based approaches, Zhang
proposed the dynamic key-value memory network (DKVMN)
[35]. DKVMN traces the knowledge state transition us-
ing a Memory-Augmented Neural Network and attention
mechanisms. It can estimate the relations between under-
lying skills and items addressed by students. In addition,
DKVMN has a memory updating component to allow for-
getting and updating of the latent variable memory, which
stores the students’ knowledge states in the learning process
[35]. For interpretability of the parameters, the memory
updating component in DKVMN is more effective than the
forgetting function of AKT because it updates the current
latent variable memory, which stores the students’ skills and
abilities, using only the immediately preceding values.

To improve the interpretability of the parameters of DKVMN,
DeepIRT was proposed by combining DKVMN with an Item
Response Theory (IRT) [2, 11, 30] module [33]. It includes
the students’ ability parameters and the items’ difficulty pa-
rameters. However, it was insufficient to improve the in-
terpretability because a student’s ability of DeepIRT de-
pends on each item characteristic. To resolve this short-
coming, Tsutsumi et al. proposed DeepIRT methods with
independent redundant student and item networks [22, 23].
They can learn the student’s ability and item difficulty in-
dependently to avoid impairing the predictive accuracy. For
DeepIRT [23], a student’s ability is constant throughout
a learning process because it is structured for test theory.

E. Tsutsumi, Y. Guo, and M. Ueno. DeepIRT with a hypernetwork
to optimize the degree of forgetting of past data. In A. Mitrovic and
N. Bosch, editors, Proceedings of the 15th International Conference
on Educational Data Mining, pages 543–548, Durham, United King-
dom, July 2022. International Educational Data Mining Society.
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Therefore, it can not be applied to KT. To apply DeepIRT
to KT, DeepIRT [22] was proposed using architecture of
DKVMN. In DeepIRT [22], a student network employs mem-
ory network architecture to reflect dynamic changes of stu-
dent abilities as DKVMN does. Because the student’s abil-
ity parameters of the DeepIRT [22] are independent of each
item characteristic, it has higher interpretability than the
earlier method has [33]. Furthermore, the DeepIRT [22] can
express a student’s ability transition for each skill by esti-
mating relations among the multidimensional skills. Conse-
quently, the DeepIRT provides high interpretability without
impairing the predictive accuracy.

However, room for improvement of prediction accuracy of
the DeepIRT remains [22] because it does not optimize the
degree of forgetting the past data. Specifically, in DKVMN
and DeepIRT methods, the forgetting parameters which con-
trol the degree of forgetting the past data are optimized from
only the current input data: the student’s latest response to
an item. As a result, it might degrade the prediction accu-
racy of the DeepIRT because the value memory insufficiently
reflects the past learning history data. Namely, it might be
difficult to reflect the past data accurately in a long learning
process. It should use not only the current input data but
also past data to optimize the forgetting parameters.

In this study, we propose the new DeepIRT with a hypernet-
work to optimize the forgetting parameters. The hypernet-
work [4, 6, 8, 9, 12, 13, 19, 31] balances both current and the
past data in the latent variable memory, which stores a stu-
dent’s knowledge state data. Before the model updates the
latent variable memory, it optimizes not only the weights of
the forgetting parameters but also the past latent variable
memory. Experiments were conducted to compare the per-
formances of the proposed method and those of the earlier
KT methods. The results demonstrate that the proposed
method improves the prediction accuracy of the DeepIRT
[22]. They also indicate the proposed method as effective,
especially for tasks with a long-term learning process.

2. DKVMN AND DEEP-IRT METHODS
DKVMN and DeepIRT methods [22, 33, 35] have the same
memory updating component to update and forget the stu-
dents’ knowledge states in the learning process [35]. The
value memory Mv

t , which traces the process of student abil-
ity growth, is updated in this memory updating component.
They use cj based on input qj , which reflects a latest stu-
dent’s response data utj to item j at time t.

cj =

{
[0, qj ] utj = 1

[qj ,0] utj = 0.
(1)

Here, 0 is a zero vector consisting of J zero values. They
updated the value memory Mv

t as

vt = W vcj + τ v, (2)

et = σ(W evt + τ e), (3)

at = tanh(W avt + τ a), (4)

(5)

and

M̃v
t+1,l = Mv

t,l ⊗ (1− wtlet) + wtla
⊤
t , (6)

where W v,W e and W a are the weight matrices, and τ v, τ e

and τ a are the bias vectors. Furthermore, wtl signifies the
degree of strength of the relations between the underlying
skill l and skill tags addressed by a student at time t. It is
noteworthy that et, and at are forgetting parameters, which
adjust the degrees of forgetting the past data and reflecting
the current input data. et influences how much the value
memory forgets (remembers) the past ability. Additionally,
at controls how much the value memory reflects the current
input data.

For the interpretability of the parameters, this memory up-
dating component is more effective than the forgetting func-
tion of AKT because it updates the current latent variable
memory which stores the student’s skills and abilities using
only the immediately preceding values. However, the for-
getting parameters are optimized only from current input
data. It should use not only the current input data but also
past data to optimize them. Additionally, the weights are
fixed values and are not optimized for each time point. As
a result, DKVMN and DeepIRT might degrade the predic-
tion accuracies because of value memory Mv

t,l which only
insufficiently reflects past learning history data. Especially,
it might be difficult to reflect past data accurately in a long
learning process.

3. PROPOSED METHOD
The preceding section described that the forgetting parame-
ters of DeepIRT are not optimized using both current input
data and past data. However, when using both current in-
put data and past data, it is difficult to optimize the weight
parameters directly because the number of parameters in-
creases dynamically.

Recent studies in the field of Natural Language Processing
(NLP) proposed the extension components to LSTM [18] in
the form of mutual gating of the current input data and the
previous output hidden variables [6]. These extension com-
ponents are called hypernetworks. A hypernetwork supports
the main recurrent neural network by optimizing the non-
shared weights for each time point in the hidden layers [6].
In standard LSTM [18], the hidden variables change with
time, but the weights used to update them are fixed val-
ues and are not optimized for each time point. To resolve
this difficulty, various hypernetworks have been proposed to
optimize the non-shared weights in the LSTM at each time
point. [4, 6, 8, 9, 12, 13, 31]. Their results demonstrate that
LSTM with a hypernetwork works better than the standard
LSTM [18].

Melis et al. earlier proposed the ”Mogrifier component”
which is a kind of hypernetwork for LSTM in the field of
NLP [12]. Mogrifier also scales the weights and the hidden
variables using not only the current inputs but also the out-
put of the hidden variable at the previous point in time.
They reported that the LSTM with Mogrifier component
outperforms the other methods for a long input data length.
Inspired by those studies, this study proposes a new hyper-
network that optimizes the degree of forgetting of past data
in the DeepIRT [22] to improve prediction accuracy with the
parameter interpretability. We incorporate the proposed hy-
pernetwork in the memory updating component, which up-
dates the latent variable Mv

t , to avoid greatly increasing
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Figure 1: Network architecture of the proposed DeepIRT.

Figure 2: Proposed hypernetwork architecture.

number of parameters. Before the model updates the latent
variable Mv

t+1, the proposed hypernetwork optimizes not
only the weights of the forgetting parameters but also the
past latent variable Mv

t . The proposed hypernetwork esti-
mates the optimal forgetting parameters by balancing both
the current input data and the past latent variable. In adi-
tion, the Mogrifier component [12] used constant values as
the tuning parameters in the hypernetwork. For this study,
we optimize the tuning parameters to adjust the hypernet-
work for each dataset. No report of the relevant literature
has described a study of the use of the hypernetworks for KT
methods. Figure 1 presents the architecture of the proposed
method. The right side of Figure 1 presents the hypernet-
works and the memory updating component. The left side of
Figure 1 shows the independent student and item networks.

3.1 Hypernetwork
To optimize the forgetting parameters at time t, the pro-
posed hypernetwork balances the current input data and the
past value memory Mv

t to store sufficient information of the
learning history data before calculating the latent variables
Mv

t+1. The proposed hypernetwork structure is located at
the beginning of the Memory Updating Component on the
right side of Figure 1 (shown in red).

Figure 2 shows the structure of the proposed hypernetwork.
The inputs of the hypernetwork are the past value memory

Mv
t and current input data (sj , uj) = sj+uj ∗S when a stu-

dent responds to item j of skill sj . Therein, S ∈ {1, 2, ..., 2S}
represents the number of skills. The embedding vector of
(sj , uj) denoted as vt ∈ Rdv . Because of the repeating mul-
tiplications as shown in Figure 2, this hypernetwork balances
current data vt and past value memory Mv

t . For the pro-
posed methods, we optimize the number of rounds r for each
learning dataset.

3.2 Memory Updating Component
Next, we estimate the forgetting parameters et and at us-
ing the optimized vrt and Mvr

t in the hypernetwork. These
forgetting parameters are important to update the latest
value memory Mv

t+1 optimally. The earlier memory updat-
ing component of DKVMN and DeepIRT methods calculates
the forgetting parameters from vt with only current input
information in equation (3), (4). By contrast, we calculate
them using the optimized current input data vrt and the past
latent value Mvr

t . Therefore, the forgetting parameters et,
and at are also be estimated as optimizing the degree of
forgetting of past data and as reflecting the current input
data. Furthermore, the proposed method can capture the
student knowledge state changes accurately because the la-
tent knowledge state Mv

t has sufficient information of the
past learning history data.

4. EXPERIMENTATION
4.1 Datasets and Experiment Setting
This section presents comparisons of the prediction accu-
racies of the proposed method with those of earlier meth-
ods (Tsutsumi et al. and AKT) [5, 22]. We use two stan-
dard benchmark datasets ASSISTments2009 and ASSIST-
ments2017 collected from an online tutoring system. Table
1 presents the number of students (No. Students), the num-
ber of skills (No. Skills), the number of items (No. Items),
the rate of correct responses (Rate Correct), and the aver-
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Table 1: Summary of datasets

Dataset No. students No. skills No. Items Rate Correct Learning length
ASSISTments2009 4151 111 26684 63.6% 52.1
ASSISTments2017 1709 102 3162 39.0% 551.0

Table 2: Prediction accuracies of students’ performances

Dataset metrics Tsutsumi et al. AKT Proposed
AUC 80.70 +/- 0.56 82.20 +/- 0.25 81.57 +/- 0.39

ASSISTments2009 Acc 76.13 +/- 0.58 77.30 +/- 0.55 76.85 +/- 0.56
Loss 0.54 +/- 0.10 0.49 +/- 0.10 0.53 +/- 0.13
AUC 74.15+/- 0.27 74.54+/- 0.21 76.85 +/- 0.39

ASSISTments2017 Acc 68.73+/- 0.11 69.83+/- 0.15 71.08 +/- 0.50
Loss 0.57+/- 0.06 0.58+/- 0.06 0.55 +/- 0.06
AUC 77.42 78.37 79.21

Average Acc 72.43 73.56 74.00
Loss 0.56 0.54 0.54

age length of the items which students addressed (Learning
length).

We used five-fold cross-validation to evaluate the prediction
accuracies of the methods. The item parameters and hyper-
parameters are trained by 70% of each dataset. Given the
estimated parameters, the students’ abilities are estimated
at each time using the remaining 30% of each dataset accord-
ing to an earlier study [22]. We employ Adam optimization
with a learning rate of 0.003 and batch-size 32. Addition-
ally, 200 items was set as the upper limit of the input length
according to the earlier studies [22, 33, 35]. For this study,
we leverage three metrics for prediction accuracy: Accuracy
(Acc) score, AUC score, and Loss score.

4.2 Prediction Accuracy
The respective values of Acc, AUC, and Loss for ASSIST-
ments2009 and ASSISTments2017 datasets [5, 22] are pre-
sented in Table 2. We compared the performances of the
proposed method with those of DeepIRT [22] and AKT for
each dataset with item and skill tag inputs according to [5].
Additionally, this report describes the standard deviations
across five test folds.

Results indicate that the proposed method, which optimizes
the forgetting parameters, provides the best average scores
for all metrics. Especially, the proposed method outperforms
the Tsutsumi el al. [22] and AKT for ASSISTments2017.
ASSISTments2017 has a long learning length. By contrast,
the proposed method tends to have lower prediction accu-
racies for ASSISTments2009 with a shorter learning length
than AKT has. Results suggest that the proposed hypernet-
work functions effectively, especially for datasets with long
learning lengths.

5. CONCLUSIONS
Recently, to express a student’s the knowledge state transi-
tion for deep-learning-based approaches, DKVMN and Deep-
IRT methods have been proposed. Tsutsumi et al. (2021)
proposed a DeepIRT with independent redundant student
and item networks [22]. It can learn the student’s ability and

item difficulty independently to avoid impairing the predic-
tive accuracy. Furthermore, the DeepIRT [22] can express a
student’s ability transition for each skill by estimating rela-
tions among the multidimensional skills. the DeepIRT [22]
has a memory updating component to allow forgetting and
updating of the latent variable memory, which stores the
students’ knowledge states in the learning process. How-
ever, the forgetting parameters which control the degree of
forgetting the past data are optimized from only the cur-
rent input data. It might degrade the prediction accuracy
of the DeepIRT because the value memory insufficiently re-
flects the past learning history data. It should use not only
the current input data but also past data to optimize the
forgetting parameters.

This study proposed a new DeepIRT with a hypernetwork
that optimizes the degree of forgetting of the past data for
parameter estimation to improve prediction accuracy with
the parameter interpretability. In the proposed method, the
hypernetwork balances the current input data and the past
value memory to store sufficient information of the learning
history data before calculating the latent variables. Specifi-
cally, it scales not only the weights of the forgetting param-
eters but also the hidden variables using the current inputs
and the output of the hidden variable at the previous point
in time.

Experiments conducted with the benchmark datasets demon-
strated that the proposed method improves the prediction
accuracies of the earlier KT methods. Especially, results
showed that the proposed method is effective for tasks with
a long-term learning process. As future work, we will evalu-
ate the interpretability of the ability parameters of the pro-
posed method by comparing the parameter estimates with
those of the earlier DeepIRTs [22, 33]. Furthermore, we will
clarify the mechanism of how the proposed hypernetwork
functions to increase the predictive accuracy.
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ABSTRACT
Two students in the same course working toward the same
learning objectives may have very different strategies. How-
ever, on average, there are likely to be some patterns of
student actions that are more common than others, espe-
cially when students are implementing typical self-regulated
learning strategies. In this paper, we focus on distinguish-
ing between students’ typical actions and unusual, anoma-
lous sequences of actions. We define anomalous activities as
unexpected activities given a student’s preceding activities.
We distinguish these anomalies by training a self-supervised
neural network to determine how predictable activities hap-
pen (the complement of which are anomalies). A random
forest model trained to predict course grades from anomaly-
based features showed that anomalous actions were signif-
icant predictors of course grade (mean Pearson’s r = .399
across 7 courses). We also explore whether humans regard
the anomalous activities labeled by the model as anoma-
lies by asking people to label 20 example sequences. We
further discuss the implications of our method and how de-
tecting and understanding anomalies could potentially help
improve students’ learning experiences.

Keywords
Anomalies, Human understanding of anomalies, Log activi-
ties

1. INTRODUCTION
Online education systems can provide personalized learning
experiences by understanding students’ learning behavior
automatically, given rich data that can be collected through
such systems [18, 6, 12, 33]. Most research in this area fo-
cuses on investigating specific, theory-driven phenomena via
data analytics and employs data-driven approaches to un-
derstand typical learning behaviors (the most frequent ac-
tions, most commonly studied resources, etc.) [33, 44, 23]
and prediction tasks (grade/dropout prediction, test recom-
mendation, etc.) [6, 25, 32, 41, 35]. These approaches, while

valuable, rarely consider the role of anomalous behaviors,
which are also important to understand. For example, ex-
isting work has shown that some anomalous behaviors pos-
itively correlate with high course grade [17]. Much remains
to be discovered regarding anomalous actions, how to de-
termine which kinds of activities are anomalous activities,
and how humans perceive anomalies. In this paper, we de-
fine students’ activities in terms of typical (i.e., predictable)
activities and anomalous activities (i.e., unpredictable activ-
ities), and describe a method for uncovering these anoma-
lies. In addition, we investigate whether human experts’
perceptions of anomalies align with anomalies identified by
the proposed method, and explore how humans distinguish
anomalous versus typical student activities.

We focus on data from log files [5], which accumulate a great
deal of interaction information to understand anomalies in
student learning behaviors. Due to the large amount of data
in log files, it is difficult to glean insights from these manu-
ally. Thus, researchers have devised methods like behavior
mining to extract insights computationally [20, 31]. How-
ever, behavior-based inferences mainly rely on handcrafted
features [40, 43, 36] (e.g., number of occurrences of spe-
cific activities), which usually capture frequent or expected
activities. Conversely, there may be anomalous activities
that relate to learning as well, which are—by definition—
unexpected and thus difficult to discover. In this paper,
we propose and evaluate a generalizable approach to reveal
anomalous activities by examining the prediction errors of
neural networks.

Analyzing anomalies requires defining them, which may be
difficult. Manual examination and inference based on expert
knowledge is one possible approach for discovering specific
constructs in data [30]. However, defining and determining
anomalies is time-consuming and constrained to the limits of
expert knowledge. In statistics and data mining, anomalous
activities refer to data deviating from patterns exhibited by
the majority of data [13, 29]. In this perspective, anomalous
activities are those where, given a sequence of activities, the
activities that followed are unexpected—similar to defini-
tions for time series data [26, 42]. Anomalies in this defini-
tion indicate deviations from predictable learning strategies
[14], and thus may be the result of deviations from com-
mon learning strategies or from the ways in which instruc-
tors expect students to go through course materials. Con-
sequently, a method to discover students’ anomalous learn-
ing behaviors might inspire changes to our understanding
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of e-learning strategies and could eventually help refine the
design of learning experiences.

We approach this problem by training a self-supervised neu-
ral network to learn typical activity sequences, then detect
anomalies based on the prediction errors. We demonstrate
one aspect of the usefulness of our method by exploring the
correlation between students’ anomalous actions and stu-
dents’ learning outcomes. We further contribute to this
problem by understanding how humans perceive anomalous
activities and whether those perceptions are aligned with
proposed approach.

2. RELATED WORK
In this section, we first discuss the concept of anomalies and
provide an overview of applications of anomalies to high-
light the potential for work in this area with educational
data (section 2.1). We then investigate existing research on
log data from learning management systems (section 2.2) to
show the importance of behavioral data and how our ap-
proach contributes to related work in this area.

2.1 Anomalies
Anomalies are generally understood as rare data that do
not conform to preconceptions or expectations derived from
the majority of data [7]. Anomalies can be identified with
statistical and machine learning techniques, and in various
types of data, such as images and time series data [34, 3,
37, 26, 42]. However, in the context of students’ behavioral
sequences, anomalies are relatively poorly understood.

In image and video data (outside of educational contexts),
anomalies refer to a set of features that are not expected,
which provides context for how anomalies are defined and
detected in general. For time series data, the data are lin-
early ordered and the definition of anomalies may differ as a
result. A particular data value could be an anomaly in a spe-
cific context, and might be considered typical (not anoma-
lous) in other contexts. Malhotra1 et al. [26] and Zhang
et al. [42] leveraged prediction errors as an indication of
anomalies.

We are aware of only one study that focused on anomalies
in education-related sequential data [37]. They considered
response time as an indicator of anomalous learning. After
plotting the sequence of response times, the authors derived
a posterior predictive distribution and regarded the learn-
ers as anomalous when they had an unusually high or low
response time. However, time spent is not the only way in
which actions might be anomalous; moreover, unusually high
or low response times might actually be expected for some
students when considered in the context of their previous
behaviors.

An alternative way to distinguish anomaly versus normal
actions is to analyze them in the context of a student’s se-
quence of behaviors, which is the approach we take in this
paper.

2.2 Data Mining in Log Activities
In recent years, there has been an increasing interest in
analyzing log activities from e-learning environments. Re-

searchers have done a large number of tasks that try to un-
derstand students’ behaviors, academic performance, and
learning processes [10, 1, 28, 38, 39].

Much of the work [9, 44] on data-driven discovery in educa-
tion focuses on extracting frequent sequential patterns that
are common and thus may characterize the behaviors of stu-
dents from a specific group or across an entire dataset. In
contrast, our focus is on behaviors that distinguish students
from their peers. Some existing works [30, 15, 19] build be-
havior models that incorporate relationships between past
activities and current activities, or past state and current
state, as we do in this study. Other works that rely on
log files have explored connections between students’ actions
and high-level learning information. One research direction
is to detect students’ learning behaviors or learning prefer-
ences [25, 32, 41] as evident in logged activity data, with
the goal of enabling personalization of learning experiences
after identifying students’ needs and preferences.

The methods discussed above do not directly examine anoma-
lies; they rely on extracting features from log files to discover
connections between those features and student outcomes or
states, or to explore properties of the learning domain and
task itself. However, these studies do show that the behav-
ioral data reflects various states of students, and is thus a
promising area for further exploration, such as with respect
to anomalous behaviors.

3. METHOD
In this section, we describe the data used in our study and
present the methods used to answer each of the research
questions stated in the Introduction.

3.1 Dataset
We analyzed the Open University Learning Analytics Dataset
(OULAD) [24] in our experiments. The data included in
OULAD were collected from 2013 to 2014. The dataset
contains information about 22 sections of 7 different courses
(labeled A through G), including 32,593 students and their
aggregated interactions with an LMS in terms of per-day
counts of different types of actions.

We combined multiple sections of the same courses assum-
ing that different sections of each course should be relatively
similar. Based on the frequency of each activity, we ob-
served that some activities rarely happened and appeared
to be less meaningful for understanding student behaviors.
In this work, we aim to detect anomalous activities in a given
context instead of mining activities that happen rarely. We
decided to group extremely uncommon interaction activities
to simplify analysis and interpretation, though exploring the
extremely rare events is one possible area for future work.
Thus, we chose a threshold (i.e., less than twice per stu-
dent on average) and grouped all interaction activities less
frequent than the threshold into an “other” category. More
information regarding specific actions can be found in ex-
isting work with this dataset (e.g., Figures 2 and 4 in [24],
Table 2 in [21]).

3.2 Anomaly Detection
As discussed above, an “anomaly”, generally speaking, refers
to an unusual event. In our task, we formalized “typical”
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events as predictable activities given a previous action se-
quence. In contrast, anomalies are students’ activities that
do not conform with predictions. Anomaly detection in-
cluded two steps: (1) use machine learning to model typ-
ical activities and (2) measure the model’s prediction er-
rors. In particular, we trained a self-supervised sequential
neural network to model activity sequences, leaving poorly-
predicted activities as anomalies.

Our prediction model consists of three layers (though in
principle the model could be expanded for datasets with
more complex inputs ): (1) the encoding layer, which is used
for representation generation; (2) a sequential layer (e.g.,
convolution, recurrent), which is used for feature extraction;
and (3) a fully connected layer with sigmoid activation to
predict the next step in the sequence. In our experiments,
we split the dataset into train and test sets with a ratio of
9:1. We ran experiments on two models: one with a con-
volutional layer for feature extraction, as described above,
and an alternative model based on long short-term memory
(LSTM) instead. The model takes three sequential actions,
predicts the following action, and convolves over time. We
set the kernel width of the convolutional layer to 3 and the
number of filters to 20. For the LSTM model, we used a sim-
ilar configuration (i.e., 20 LSTM cells). We trained models
for 50 epochs with batch size 32. We used Adam as the
optimizer [22] with a .004 learning rate for all seven courses
after tuning the rate from .001 to .01 on course A.

To compute prediction error, we calculated the difference be-
tween actual actions and predicted actions for each times-
tamp. For each student, we computed the L2 loss (mean
squared difference) between predicted actions and actual ac-
tions of each timestamp in the test set as an indicator of how
well at each point a student conformed to expected behav-
iors. Thus, for a student activity sequence of length l, the
error between actual and predicted action sequences can be
represented by an l-length sequence, which has d dimensions
(one for each action type).

3.3 Correlation with Grade
A common approach for predicting students’ outcomes is to
engineer features from students’ activities that are believed
to have some relationship to outcomes [4]. Analogously, we
expected that a student’s activity typicality (anomalous ver-
sus typical actions) directly relates to their learning out-
comes if anomalous behaviors are evidence of adapting be-
haviors (e.g., via self-evaluation) or the opposite. We tested
this hypothesis by calculating correlations between anomaly
loss features and students’ outcomes.

To model the relationship between activity typicality and
student’s outcomes, we represented each student with a d-
dimensional vector where each element in the vector is the
aggregated error for a specific action. That is, we defined
anomaly loss as the aggregated error for each possible action
for each student. We computed anomaly loss by aggregat-
ing error from anomaly detection at the student level by
calculating the mean for each possible action. We further
determined which actions were most important by training
random forest regression with 25 trees to predict students’
outcomes from the anomaly loss. During whole process, we
conducted experiments only on the test set in the dataset

we used to model students’ activities. We further split the
test set into train and test subsets randomly in a 2:1 ratio,
ensuring that data from each student appeared in only one
subset or the other. The usefulness of anomaly loss for each
action can then be calculated from the feature importance
values of the random forest regressor.

3.4 Human Perceptions of Anomalies
Anomaly detection is mostly rooted in the statistics and ma-
chine learning communities [2, 7, 14]. Whether or not the
anomalies detected by the proposed approach align with hu-
man intuition is still unclear. Thus, we conducted a small
survey in which we asked four people with data mining expe-
rience to make their own assessments of anomalous student
behaviors. We selected 10 sequences that were representa-
tive from the top 5% of most anomalous sequences, and 10
sequences from the 5% most typical. We presented 20 se-
quences (half typical activities, half anomalous activities),
descriptions of the types of activities, and asked the partici-
pants (i.e., “coders”) to determine whether the activities that
happened on day 4 were typical or anomalous given three
previous days of activities. After they finished coding the
activities, we asked participants to provide insight into their
coding strategy and their perceptions of what an anomaly
is. Specifically, we asked them to describe how they perceive
anomalies versus typical activities.

4. RESULTS AND DISCUSSION
4.1 Behavioral Prediction Models
The losses of CNN and LSTM models indicated that they
worked approximately equally (mean of loss of LSTM was
1.3% higher; details can be found in the Appendix) well
for feature extraction and the behavioral prediction task.
We focused on the CNN model alone in the remainder of
analyses for the sake of simplicity, since the two models were
similarly accurate.

4.2 Correlation with Grade
In this section, we present the results of the analysis com-
paring anomalies and grade.

For all courses, predicted grade—from a random forest model
with anomaly-based features—had a substantial correlation
(mean r = .399, SD = .073) with actual grade. Correlations
ranged from r = .295 (for course D) to .494 (for course G)
with all p-values less than .05, indicating that correlations
were positive across courses; even the lowest correlation in-
dicated a moderate relationship between course grades and
predictions made based on anomalies. Thus, we conclude
that anomalies are important to investigate since they re-
late to students’ academic outcomes.

To further explore which types of anomalous actions were
most related to students’ course grades, we analyzed feature
importance of the random forest model. We used course A
as an example. Feature importances in Table 1 show that
the top five most important actions were exam, other, oucon-
tent, resource, and gap. These actions were not necessarily
the most common, yet still important because of their role
in learning. Anomalous exam-related actions, in particular,
explained over half of the model’s feature importance (which
sums to 1 in a random forest). Other important anomalous
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actions may relate to self-regulated learning behavior; for ex-
ample, gap-related anomalies may indicate irregular course
participation.

Table 1: Importance for each feature in random forest grade
prediction. Top five important actions shown in bold. De-
tailed information of actions can be found in existing work
with this dataset (e.g., Figure 2 and 4 in [24], Table 2 in [21])

Action Feature Action Feature

Importance Importance

Exam .596 Quiz .001

Forumng .020 Register .006

Gap .064 Resource .054

Homepage .018 Subpage .008

Other .085 Transfer .012

Oucontent .073 Unregister .022

Ouwiki .000 Url .040

4.3 Results of Anomaly Detection
Self-supervised neural networks, such as the model we trained
in this study, learn the conditional probability distribution of
possible elements in a sequence [16, 27, 11]. In our anomaly
detection framework in particular, the model learns the prob-
ability of each activity occurring given activities in the pre-
ceding three days. We provided example sequences of activ-
ities labeled by the proposed method in Appendix Table 4
in appendix. The criteria the model learns for predicting
activities may be complex, but Appendix Table 4 does il-
lustrate some reasonable high-level patterns learned by the
model. For example, if the activities that occurred on day
4 were not consistent with preceding activities (either stu-
dents performed many more or fewer than the previous ac-
tivity pattern), they were tagged as anomalous. In contrast,
if the activities on day 4 appeared in the previous days once
or more, then they were usually labeled as typical. The con-
ditional probability of an activity is just one way of defining
anomalies, however, and may not align with human percep-
tions of what anomalies are. Thus, we also explored human
perceptions of anomalies, as described next.

4.4 Results of Human Perception
For each pair of four human coders, we calculated Cohen’s
kappa coefficient to measure their inter-rater agreement [8],
as shown in Table 2.

Table 2: Kappa coefficients among machine learning and hu-
man coders of anomalous vs. typical sequences.

Model Coder 1 Coder 2 Coder 3
Coder 1 .00
Coder 2 .60 .00
Coder 3 .00 -.20 -.20
Coder 4 .40 .20 .42 -.20

Inter-rater agreement results show that coder 2 and coder 4
agreed somewhat with each other and with the model: the
kappa coefficient between coder 2 and the model was .60,
between coder 4 and model it was .40, and between coder
2 and coder 4 kappa was .42. Conversely, both coder 1
and coder 3 had close to zero agreement with others: the
mean kappa coefficients between coder 1, coder 3 and others

were .00 and -.13 respectively. Similarly, kappa coefficients
among coder 1, coder 3, and the model were -.07, on average,
indicating that coder 1 and coder 3 also did not agree with
each other or with the model.

Coders’ perceptions of anomalies largely aligned with whether
they agreed with each other and with the model: coder 2
and coder 4 determined anomalies from a more statistical
perspective, while coder 1 and coder 3 mostly determined
anomalies subjectively (they imagined whether or not the se-
quences were consistent with their own behaviors). In their
descriptions of anomalies, they mentioned that if students
had different activities (either fewer or much more activi-
ties) on day 4 than what happened on day 1 to day 3, they
considered the activities on day 4 to be anomalous. For
example, as coder 2 said:

Coder 2: The first [criterion I used] is if the ac-
tivities included many more than what I expected
to be there from the past three days. For example,
if on days 1-3 the user only went to the Home-
page plus one other place, and on day 4 the user
went to many different places, I considered that
anomalous.

Conversely, coder 1 suggested that if a student did not use
the discussion forum on day 1 to day 3 but used it on day
4, then the activities on day 4 are anomalies. In addition,
coder 1 thought if a student only watches content to pre-
pare for an exam, then the exam happening on day 4 is
an anomaly. Coder 3 decided the typicality of activities by
linking them to his/her own experience. Coder 3 thought
that classes rarely require a consistent effort on the same
activities throughout any given week:

Coder 3: If activity types appear to be too consis-
tent in Days 1-3, I became doubtful that any ac-
tivity in Day 4 would be a typical activity. From
my experience taking college courses, classes rarely
require a consistent effort on the same types of
activities throughout any given week, so too much
consistency made me more likely to believe that
the activities on Day 4 were anomalous.

5. CONCLUSIONS
Our goal in this study was to more deeply understand stu-
dents’ behavior in web-based learning systems, specifically
in terms of anomaly detection. We formally defined anoma-
lies as unexpected activities given preceding activities and
demonstrated that these anomalies are significantly related
to student outcomes. We only tested our method with a
selection of the previous three days’ activities as context for
the next day’s activities prediction. However, larger fixed
sequence intervals could be of interest. We further inves-
tigated if anomalies detected by our method aligned with
human perceptions of anomalies, finding that the method
indeed aligns with some conceptions of what anomalies are,
though further research is needed to explore alternative con-
ceptions. Ultimately, anomaly detection may lead to im-
provements in student modeling, activity recommendations,
and even modifications of course materials and learning en-
vironments as researchers and teachers rely on methods like
these to identify and address critical moments in learning
processes.
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APPENDIX
In the appendix, we provide details of our experiments. We
include the losses of our behavior model for all courses in
Appendix Table 3. We also introduce samples of anomalous
activities and typical activities labeled by our method in
Appendix Table 4.

Table 3: Loss (binary cross-entropy) of the behavioral pre-
diction model based on different architectures.

Loss Course A B C D E F G

LSTM 0.0039 0.0025 0.0028 0.0037 0.0035 0.0041 0.0026

CNN 0.0037 0.0024 0.0029 0.0037 0.0034 0.0042 0.0025

Table 4: Examples of activities labeled by our proposed ap-
proach The last column refers to the typicality of activities
on day 4 given the activities from day 1 to day 3, which are
labeled by the proposed approach.

Activities for each day

Day 1 Day 2 Day 3 Day 4 Day 4 Type

Homepage Forum Forum Exam Anomalous

Homepage Homepage Forum

Content Homepage

Content

Resource

Subpage

URL

Forum Forum Forum Gap Anomalous

Homepage Homepage Homepage

Content Content Content

Subpage Subpage Subpage

URL URL URL

Gap Homepage Gap Exam Anomalous

Content

Subpage

Forum Homepage Homepage Homepage Typical

Homepage

Content

Exam Gap Forum Gap Typical

Homepage

Content

Resource

Subpage

Homepage Homepage Homepage Homepage Typical

Content

Subpage

URL
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ABSTRACT
Item response theory models the probability of correct stu-
dent responses based on two interacting parameters: student
ability and item difficulty. Whenever we estimate student
ability, students have a legitimate interest in knowing how
certain the estimate is. Confidence intervals are a natu-
ral measure of uncertainty. Unfortunately, computing confi-
dence intervals can be computationally demanding. In this
paper, we show that confidence intervals can be expressed
as the solution to a feature relevance optimization problem.
We use this insight to develop a novel solver for confidence
intervals and thus achieve speedups by 4-50x while retain-
ing near-indistinguishable results to the state-of-the-art ap-
proach.

Keywords
item response theory, confidence intervals, relevance inter-
vals, approximation

1. INTRODUCTION
Item response theory (IRT) is a well-established method to
model the responses of students on a test [1, 5, 8]. The
basic version models the probability of student i to answer
correctly on item j as pi,j = 1/(1 + exp[bj − θi]), where θi
is a parameter representing the ability of student i, and bj
is a parameter representing the difficulty of item j. If a stu-
dent’s ability exceeds the item’s difficulty, the success prob-
ability is larger than 0.5, and vice versa. Numerous exten-
sions have been developed over the years, such as parameters
for item discrimination (two-parameter IRT), base success
chance due to random guessing (three-parameter IRT) [1,
5], IRT for multiple skills [10], performance factor analysis,
which describes the increased success chance for repeated
attempts [12], or combinations with machine learning [11,
13].

Whenever we use IRT to estimate student ability, students
have a legitimate interest in making sure that our model does

not underestimate them (in line with the European Union’s
concept of a right to explanation [6, 9]). Accordingly, it is
important that we not only estimate each student’s ability,
but also our uncertainty. We can quantify uncertainty in
IRT models via confidence intervals [3, 4]. Roughly speak-
ing, an α-confidence interval describes a range of possible
parameter values such that the ‘true’ value is outside the
range with probability at most α. For example, Wald’s
method assumes that parameters are Gaussian-distributed
and uses the Gaussian’s standard deviation to estimate con-
fidence intervals [3]. While this is efficient, the Gaussian
approximation assumes symmetry of the distribution and is
only valid for large numbers of items in the test[4]. This is
often unrealistic, which is why Wald’s method tends to pro-
vide inaccurate confidence intervals in practice [4]. Doebler
et al. have reacted by providing more exact methods under
the assumption of constant item parameters but the result-
ing confidence intervals are disconnected regions [4], which
are challenging to interpret.

More recently, Chalmers et al. [3] suggested the likelihood
profile method, which is based on a likelihood ratio test. In
particular, we look for a parameter range in which the log-
likelihood is at least the optimal log-likelihood minus half
the 1− α-quantile of the χ2-distribution with one degree of
freedom. Because this method does not assume symmetry
and works on the ’true’ likelihood, it improves the accuracy
of confidence intervals considerably. However, the computa-
tion requires a nested optimization scheme for every single
parameter, which is computationally demanding, especially
for large numbers of students.

In this paper, we provide a new perspective by showing that
likelihood profile confidence intervals are equivalent to fea-
ture relevance intervals, which can be found via an optimiza-
tion problem [7]. Second, we utilize this theoretical insight
to develop a novel solver for confidence intervals which is
considerably faster (by factors of 4-50x), while the resulting
confidence intervals are almost indistinguishable from direct
computation. We evaluate our proposed solver on a range of
synthetic experimental conditions from 30-500 students and
tests with 10 or 20 items. The experimental code can be
found at https://github.com/bpaassen/ability_bounds.

2. METHOD
Our goal is to develop a faster solver for confidence bounds
for ability parameters of IRT models via the likelihood pro-
file technique [3]. For an illustration of the technique, con-
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Figure 1: Illustration of the optimal NLL we can achieve for a
certain value of θi in a single-student, single-item setup with
C = 1 and y1,1 = 1. The dashed line shows the loss bound
for α = .05, the solid lines mark the corresponding confidence
interval

sider Fig. 1. The blue curve illustrates the best negative
log-likelihood (NLL) ` we can achieve when fixing the abil-
ity parameter θi to the value on the x axis. The likelihood
profile technique now asks for the values θ−i and θ+

i , such
that the NLL is exactly `∗ + 1

2χ
2,−1
α , where `∗ is the overall

minimum NLL and χ2,−1
α is the 1 − α quantile of the χ2

distribution with one degree of freedom. Our α confidence
interval is, then, given as [θ−i , θ+

i ].

More precisely, the NLL of an IRT model on a dataset with
m students and n items is given as

`(~θ,~b) =
m∑

i=1

n∑

j=1
−yi,j · log[pi,j ]− (1− yi,j) · log[1− pi,j ]

+ 1
2C · (‖

~θ‖2 + ‖~b‖2), (1)

where yi,j is 1 if student i answered correctly on item j and
is 0, otherwise, pi,j = 1/(1 + exp[bj − θi]), and C is the
variance of a Gaussian prior on the ability parameters ~θ and
item parameters ~b [1] (chapter 7).

Now, let ~θ¬i denote the vector ~θ without its ith element
and let `i(θi) := min~θ¬i,~b

`(~θ,~b). In other words, `i(θi) is
the minimum NLL value we can achieve if we hold θi fixed
but optimize all other parameters. Then, the likelihood pro-
file method solves the equation `i(θi) = `∗ + 1

2χ
2,−1
α , where

`∗ = min~θ,~b `(~θ,~b). Because ` is convex in θi, this equation
has exactly two solutions, which correspond to our interval
bounds. The drawback of the likelihood profile method is its
computational demand. For each student i, we need to solve
a nested optimization problem, where the outer optimization
searches for a solution to the equation `i(θi) = `∗ + 1

2χ
2,−1
α ,

and the inner optimization computes `i(θi) for each value of
θi probed by the outer optimization. We look for a way to
speed up this computation.

Our key inspiration is the concept of feature relevance in-
tervals (FRI) proposed by Göpfert et al. [7]. The FRI for
some parameter θ is defined as the interval between the min-
imum and maximum value that still retains a loss of at most
(1− δ) times the optimal loss, where δ is a user-defined hy-

perparameter. More precisely, given some loss function ` of
some parameter vector ~θ and some specific parameter θi, the
FRI for θi is computed by solving the following minimiza-
tion/maximization problem:

min
~θ
/max

~θ
θi s.t. `(~θ) ≤ `∗ · (1 + δ). (2)

Note that this concept is more general than confidence inter-
vals and is mostly intended for classifiers in machine learning
[7]. However, for IRT, confidence intervals via the likelihood
profile method and FRIs happen to be equivalent.

Theorem 1. Let `∗ = min~θ,~b `(~θ,~b) for the NLL (1) and
some C > 0. Then, for any α ∈ (0, 1) and any i ∈ {1, . . . ,m},
it holds: Problem (3) is convex with a global optimum ~θ±,~b±,
such that `(~θ±,~b±) = `i(θ±i ) = `∗ + 1

2χ
2,−1
α .

min
~θ,~b

/max
~θ,~b

θi s.t. `(~θ,~b) ≤ `∗ + 1
2χ

2,−1
α . (3)

Proof. As a notational shorthand, let Lα := `∗+ 1
2χ

2,−1
α .

Note that the objective function of (3) is linear and hence
convex. Now, consider the feasible set X = {(~θ,~b)|`(~θ,~b) ≤
Lα}. Let x, y ∈ X and let zγ = γ · x + (1 − γ) · y for some
γ ∈ [0, 1], that is, zγ is on the connecting line between x
and y. Then, it must hold: `(zγ) ≤ γ · `(x) + (1− γ) · `(y),
because ` is convex with respect to ~θ and ~b. Further, because
x, y ∈ X , `(x) ≤ Lα and `(y) ≤ Lα. Therefore, `(zγ) ≤ Lα,
implying that zγ ∈ X . Hence, X is convex and (3) is convex.

Next, note that, for any α ∈ (0, 1), χ2,−1
α is strictly larger

zero. Therefore, the feasible set X is not empty (it contains
at least the minimizer of `). In turn, problem (3) must have
a optimum (~θ±,~b±) with `(~θ±,~b±) = Lα because the objec-
tive function is strictly increasing.

Finally, we need to show that `i(θ±i ) = Lα. Assume this
is not the case. If `i(θ±i ) > Lα, then min~θ¬i,~b

`(~θ,~b) >

`(~θ±,~b±), which is a contradiction. If `i(θ±i ) < Lα, we need
to inspect the behavior of `i in more detail. Let (θ∗, b∗) be the
solution to the unconstrained problem min~θ,~b `(~θ,~b). Then,
we know that `i attains its minimum at θ∗i with `i(θ∗i ) = `∗.
Further, because `i is defined as the component-wise mini-
mum of a convex function, it is convex itself [2] (p. 87). In
turn, we know that for any θi > θ∗i , `i is increasing and for
any θi < θ∗i , `i is decreasing. Because C > 0, it is also
guaranteed that `i(θi) exceeds Lα for sufficiently large/small
θi, e.g., `i(±

√
2 · C · Lα) > 1

2C
√

2 · C · Lα2 = Lα. Now,
consider the minimization version of (3). In that case, we
certainly have θ−i ≤ θ∗i , otherwise θ−i would not be mini-
mal. Now, because `i(θ−i ) < Lα, because `i is decreasing
for all values θi < θ∗i , and because `i is continuous, there
must exist some value θi < θ−i with `i(θ−i ) < `i(θi) ≤ Lα.
Therefore, (~θ−,~b−) is not a solution for the minimization
version of (3), which is a contradiction. The argument for
the maximization version is analogous.

Fig. 1 provides a graphical intuition for the proof: We can
find the two solutions to `i(θi) = `∗ + 1

2χ
2,−1
α by starting

at the minimum θ∗i of ` and then decreasing/increasing θi
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as much as possible while maintaining a loss that is at most
`∗ + 1

2χ
2,−1
α . To do so, we automatically need to adjust all

other parameters to allow for as much slack as possible to
increase θi.

Alternating optimization solver. The key insight for our
solver is that problem (3) becomes much more efficient if we
only optimize over θi and not over any remaining parame-
ters. In particular, we can re-write the NLL (1) as:

˜̀
i(θi) =

n∑

j=1
−yi,j · log[pi,j ]− (1− yi,j) · log[1− pi,j ]

+ 1
2C · θ

2
i + `¬i, (4)

where `¬i is a constant term that does not depend on θi.
Computing ˜̀

i only requires O(n) computations, whereas the
full NLL (1) requires O(m · n). Overall, we obtain the sim-
plified problem:

min
θi

±θi s.t. ˜̀
i(θi) ≤ `∗ + 1

2χ
2,−1
α . (5)

By extension of Theorem 1, solving (5) is equivalent to solv-
ing the equation ˜̀

i(θi) = `∗ + 1
2χ

2,−1
α , which we can do

efficiently via standard nonlinear equation solvers.

Importantly, our solution of (5) will be sub-optimal accord-
ing to the original problem (3) because ˜̀

i only approximates
`i. Therefore, we update ˜̀

i by keeping θi fixed and mini-
mizing over all other parameters ~θ¬i and ~b. Then, we can
solve (5) again, and so forth, until convergence. This is our
proposed alternating optimization (AO) solver.

Figure 2 shows an illustration of the algorithm. To infer the
upper bound θ+

i , we start at θ+
0,i = θ∗i , i.e. the optimal value

according to the NLL. We obtain the next estimate θ+
1,i by

solving the −θi version of (5) with respect to the current
surrogate NLL ˜̀+

0,i. Then, we update all other parameters
~θ¬i and ~b by minimizing the NLL (1), yielding a new surro-
gate ˜̀+

1,i. Solving (5) again yields the next estimate θ+
2,i. In

this example, θ+
2,i would already be indistinguishable from

the optimal θ+
i according to (3) because ˜̀+

1,i and `i strongly
overlap. In general, we can prove that θ+

t,i converges to θ+
i .

Theorem 2. Let θ±0,i = θ∗i , where (~θ∗,~b∗) minimizes the
NLL `(~θ,~b). Let ˜̀±

t,i be the surrogate NLL (4) for parame-
ters min~θ¬i,~b

`(~θ,~b) for fixed θi = θ±t,i, and let θ±t+1,i be the
solutions of the ∓ versions of (5) for ˜̀

i = ˜̀±
t,i. Then, for

C > 0 and t → ∞, θ±t,i converge to solutions of the mini-
mization/maximization version of (3).

Proof. As a notational shorthand, let Lα := `∗+ 1
2χ

2,−1
α .

For simplicity, we only consider θ+
t,i here; the proof for θ−t,i is

analogous. First, observe that, for all t, we have ˜̀+
t,i(θ+

t,i) =
`i(θ+

t,i) by construction, and we have ˜̀+
t,i(θ+

t+1,i) = Lα, oth-
erwise θ+

t+1,i would not be a solution to (5). Further, by
definition, we have ˜̀+

t,i(θi) ≥ `i(θi) for all t and all θi ∈ R.
Therefore, we obtain ˜̀+

t,i(θ+
t,i) = `i(θ+

t,i) ≤ ˜̀+
t−1,i(θ+

t,i) = Lα.

0.5 1 1.5 2 2.5

1
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`∗ + 1
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θ+
1,i θ+

2,i
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`i(θi)
˜̀+
0,i(θi)

˜̀+
1,i(θi)

Figure 2: Illustration of the alternating optimization algo-
rithm. We start with the optimum value for θ+

0,i = θ∗1 , then
maximize θi via (5), yielding θ+

1,i, then update ˜̀
i, then max-

imize θi via (5) again, and so forth.

Accordingly, whenever we solve (5) in step t + 1, θ+
t,i is a

feasible initial point. Therefore, θ+
t+1,i ≥ θ+

t,i.

Whenever θ+
t+1,i = θ+

t,i, we have ˜̀+
t+1,i = ˜̀+

t,i and, thus,
θ+
t,i = θ+

t+1,i = θ+
t+2,i = . . ., that is, we have a fixed point.

Further, we have `i(θ+
t+1,i) = ˜̀

t+1,i(θ+
t+1,i) = ˜̀

t+1,i(θ+
t,i) =

Lα, which is a solution to the maximization version of (3).
Before the fixed point, the sequence θ+

0,i, θ
+
1,i, . . . is strictly

increasing. Since `i is convex with a minimum at θ+
0,i, the

sequence `i(θ+
0,i), `i(θ+

1,i), . . . is also increasing. For C > 0,
it would eventually grow beyond bounds due to the regular-
ization term, but since it is upper-bounded by Lα, it must
converge to Lα and, hence, θ+

t,i must converge to θ+
i .

While Theorem 2 only holds in the limit, very few steps t
suffice for a close-to-optimal solution in practice (e.g., Fig-
ure 2). We investigate this issue in more detail in our ex-
periments.

3. EXPERIMENTS
In our experiments, we simulate synthetic data from a ground-
truth IRT model with ability and difficulties sampled from
a standard normal distribution. We varied the number of
students m in the range {30, 50, 100, 500} and the number
of items n in the range {10, 20} (similar to the protocol of
[3]). For each model, we repeated the sampling 10 times
to asses variation. In each repeat, we computed confidence
intervals for θi at α = 0.05 via Wald’s method, the like-
lihood profile-method via solving `i(θi) = `∗ + 1

2χ
2,−1
α for

each i (LP), a log-barrier solver (barrier) for (3), and our
proposed alternating optimization scheme (Theorem 2) for
t = 1 (AO(1)), t = 2 (AO(2)), and t = 3 (AO(3)) steps.
All experimental code is available at https://github.com/
bpaassen/ability_bounds.

Coverage. Table 1 shows the coverage rates of all methods,
that is, the rate at which the ground truth θi value was in-
cluded in the confidence interval [θ−i , θ+

i ] [3]. For α = 0.05,
the coverage rate should be as close as possible to 0.95. We
observe that Wald’s method selects too large confidence in-
tervals, yielding rates close to 100%. The barrier method
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Table 1: Coverage rates of all methods across experimental conditions
m n Wald LP barrier AO(1) AO(2) AO(3)
30 10 0.983± 0.022 0.943± 0.054 0.910± 0.056 0.943± 0.054 0.943± 0.054 0.943± 0.054
30 20 1.000± 0.000 0.943± 0.021 0.083± 0.050 0.940± 0.025 0.943± 0.021 0.943± 0.021
50 10 0.998± 0.006 0.926± 0.041 0.884± 0.047 0.920± 0.041 0.926± 0.041 0.926± 0.041
50 20 0.998± 0.006 0.942± 0.039 0.098± 0.039 0.938± 0.040 0.942± 0.039 0.942± 0.039
100 10 0.998± 0.004 0.934± 0.028 0.892± 0.029 0.933± 0.027 0.934± 0.028 0.934± 0.028
100 20 0.999± 0.003 0.937± 0.030 0.059± 0.012 0.933± 0.031 0.937± 0.030 0.937± 0.030
500 10 0.998± 0.002 0.940± 0.011 0.898± 0.015 0.939± 0.010 0.940± 0.011 0.940± 0.011
500 20 1.000± 0.001 0.949± 0.008 0.097± 0.016 0.948± 0.008 0.949± 0.008 0.949± 0.008
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Figure 3: Log-Log plots for the runtime in seconds versus m
for n = 10 (top) and n = 20 (bottom). Dotted, gray lines
show linear functions at .1, 1, 10, and 100ms per student.

selects smaller confidence intervals, yielding rates around
90% for n = 10 items. If we choose n = 20 items, the bar-
rier method becomes numerically unstable and the coverage
rates degrade (smaller 10%). The likelihood profile (LP)
method consistently achieves rates between 92% and 95%
and thus is closest to the desired value of 95%. Alternating
optimization achieves indistinguishable results to LP at 3
significant digits for t ≥ 2 (AO(2) and AO(3)).

Runtime. Figure 3 displays the time it took to compute
confidence intervals for all students in every experimental
settings in log-log plots. Dotted, gray lines are linear refer-
ence functions at .1, 1, 10, and 100ms per student. Using
linear fits, we find that Wald’s method is fastest (at about
.3ms per student), followed by AO(1) (about .8ms per stu-
dent), barrier (about 4ms per student), AO(2) (about 9ms
per student), AO(3) (about 12ms per student), and finally
LP (about 37ms per student). Accordingly, AO(1) is roughly
50x faster than LP, and AO(2) is roughly 4x faster.

4. DISCUSSION AND CONCLUSION
In this paper, we introduced a new solver for confidence
intervals on item response theory parameters via the like-
lihood profile method. In particular, we found that our

alternating optimization solver was 4-50 times faster than
the existing solver while achieving almost indistinguishable
results. For anyone who seeks to compute confidence inter-
vals, this should provide massive speedups in practice. More
generally, though, we hope that our new solver can help the
community to respond to an emerging need in educational
data mining: more and more, policy makers and the general
public expect machine learning models to provide explana-
tions for their decisions. This is exemplified by recent policy
initiatives in the European Union for a right to explanation
and a risk-based approach to regulate artificial intelligence.
Grading student ability—like in item response theory—will
likely be under increasing scrutiny in the years to come. As
such, we believe that it is crucial to quantify a model’s un-
certainty precisely, which our solver can help to do.

We also provide a key theoretical insight in our paper: Tradi-
tionally, confidence intervals express the range of parameter
values which is likely to contain the ’true’ value. We showed
that the likelihood profile method for confidence intervals
can also be interpreted as an optimization problem: We try
to find the minimum/maximum ability value for a student
which is still consistent with a high likelihood of the data.
This interpretation provides a new way to explain an ability
estimate: The upper bound of our confidence interval is the
highest possible grade we can give to a student while still
being consistent with the responses they provided.

Beyond this paper, there remains ample room for future
work. Our evaluation has only covered synthetic data to
validate the runtime advantage and the closeness to existing
methods. Future work could investigate how large confi-
dence intervals tend to be in practical scenarios. Further,
our experiments indicated that the size of our confidence
is still larger than it would need to be to cover the ’true’
ability value. Future work could try to find new methods
to compute confidence intervals which are more precise. In
particular, it may be promising to investigate combinations
with recently proposed models for variational item response
theory [14].

Acknowledgements
Funding by the German Ministry for Education and Re-
search (BMBF) under grant number 21INVI1403 (project
KIPerWeb) is greatfully acknowledged.

5. REFERENCES
[1] F. Baker and S.-H. Kim. Item Response Theory:

Parameter Estimation Techniques. CRC Press, Boca

558



Raton, FL, USA, 2 edition, 2004.
[2] S. Boyd and L. Vandenberghe. Convex Optimization.

Cambridge University Press, Cambridge, UK, 2009.
[3] R. P. Chalmers, J. Pek, and Y. Liu. Profile-likelihood

confidence intervals in item response theory models.
Multivariate Behavioral Research, 52(5):533–550, 2017.

[4] A. Doebler, P. Doebler, and H. Holling. Optimal and
most exact confidence intervals for person parameters
in item response theory models. Psychometrika,
78(1):98–115, 2013.

[5] S. Embretson and S. Reise. Item response theory for
psychologists. Psychology Press, New York, NY, USA,
2000.

[6] European Commission. Laying down harmonised rules
on artificial inteligence and amending certain union
legislative acts, 2021.
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ABSTRACT
Research on tailored gamification has shifted from analysing
single students’ characteristics (e.g. gender or behavioural
profiles) to multiple characteristics and how they are influ-
enced by gamification (e.g. context and system log usage).
Yet, few studies have been conducted that are concerned
with culture, which influences many of the students’ charac-
teristics and, consequently, their learning performance. In
order to provide a better gamified experience, it is impor-
tant to understand culture and how it impacts on students’
perceived importance of gamification elements, so these el-
ements can be adapted to specific cultures. To this end,
we conducted an exploratory study using Association Rule
Mining, to explore how the cultural landscape (country) in-
fluences the students’ behaviour and perceived importance
of gamification elements in educational environments. We
collected and analysed data (N = 1296) from two different
countries, Brazil (N = 428) and the United States (N = 868)
and identified significant differences between the perceived
importance of some gamification elements.

Keywords
gamification, association rules, culture, personalisation

1. INTRODUCTION
Personalised gamification in learning environments has be-
come a trend in the past few years [7, 6]. This field of study
focuses on enhancing existing gamification approaches with

user-centred and personalised design, tailored to the specific
characteristics of the user, which will have an impact on their
perceived satisfaction, engagement, and motivation, when
using a gamified system [4]. Tailored gamification engaged
the interest of researchers and educational professionals, due
to facilitating positive effects associated with it, such as mo-
tivation and performance increase [12].

Recent studies focused on the use of personalised approaches
using student demographics (e.g. gender) [21], gamer pro-
files (e.g. using the HEXAD [22] model), and gaming pref-
erences (e.g. users’ favourite game genres or elements) [14]
as part of the gamification design.

Whilst these recent studies demonstrated that personalised
gamification tends to have a positive influence on students’
motivation and performance, there is still no consensus on
what kind of personalisation and which attributes should
be considered, since most studies focus only on single fac-
tors [16]. Literature on personalised gamification points to
a lack of studies that deal with other learners’ characteris-
tics that can also influence their perception and interaction
with gamification; one such important characteristic being
culture [6, 13].

Culture is not a trivial concept to define; according to [18],
culture is an evolving cognitive structure, which influences
the behaviour of members of a given group. Features in-
cluded in the schema of this structure are those that influ-
ence and are influenced by the geographical location of an
individual and educational contexts they are exposed to [17].
It is this aspect of ’culture’ that we will seek to investigate
within the rest of this paper. Recently, culture’s importance
to gamification has come to the fore [2, 24, 19]. In spite
of this surge in interest, according to [19], most existing
gamification studies that address education and culture are
focused on language learning, rather than on understanding
how culture can impact on gamification design.

A. Toda, A. Klock, F. D. Pereira, L. A. Rodrigues, P. T. Palomino,
V. Lopes, C. Stewart, E. H. T. Oliveira, I. Gasparini, S. Isotani, and
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Based on what has been exposed, this paper aims to answer
the following research question ”Does culture impact on the
importance of gamification elements?”. We answer this re-
search question, by conducting a relatively large and rep-
resentative1 quantitative study, analysing the perceived im-
portance of gamification elements in two different countries
(United States and Brazil). Our results provide empirical
evidence on the differences between the perceived impor-
tance of gamification elements for these two different coun-
tries, which can guide designers when considering national
culture as a set of variables2 in gamification design for learn-
ing environments, and also guide researchers to conduct new
research in this field. In summary, our main contributions
are new insights on which game elements for education are
preferred in different countries.

2. METHODS
Considering our main research question, we designed an ini-
tial sub-research question to identify if a certain gamifica-
tion element is more important in a country than in another
(here, Brazil versus US). We use <gamification element> for
any element from the Taxonomy of Gamification Elements
for Education (TGEE) proposed by [20], while the ’country’
refers to data collected from people living in a given country.

We opted for the TGEE [20] due to it being the first clas-
sification created and evaluated for educational purposes.
TGEE is composed of 21 gamification elements, alongside
its synonyms, descriptions, and examples of use. These ele-
ments are classified in 5 categories that deal with students’
performance, sociability, personal information, and experi-
ence, and the environment ecosystem.

Through analysing the perceived importance of gamification
elements in different countries, we can infer how the culture
can influence the design of personalised gamified applica-
tions for education. To conduct this research, first we used
inferential statistics, to test our assumption that the ele-
ments’ perceived importance differs, depending on the coun-
try of residence. To do so, we used the Mann-Whitney U
test (due to the non-parametric and independent nature of
our data [11]) and Cliff’s delta, to understand to what extent
perceptions differ (i.e., the effect size) [10]. Following this we
conduct an exploratory analysis, using unsupervised learn-
ing algorithms and descriptive/inferential statistics to pro-
vide inferences that can be explored deeply in future studies.
The data-driven pipeline consists of data collection, filtering,
and analysis, further explained in the respective sections.

To collect our data, we relied on the survey method, due
to its low cost and other benefits (e.g. speed of obtaining
answers) [8]. The survey used in this study was designed
in Google forms and consists of two parts. The first col-
lects self-reported demographic information about the re-
spondents, such as gender, country (of residence) and some
information regarding their ’gamer’ status, such as: years

1According to Sample Size calculator, our sample is rep-
resentative for both US and Brazil. Link: https://www.
checkmarket.com/sample-size-calculator/
2It is important to note that culture itself cannot be defined
in one single variable (e.g. country), but a set of character-
istics from that might be associated with the place of origin,
social group, etc..

playing games, hours per week spent playing, favourite game
genres and favourite setting (single or multiplayer games).
Whilst it is known that games and gamification are not the
same, however, recent studies [15] demonstrated that gam-
ing characteristics of users do influence their gamification
acceptance. Previous literature also showed that students’
player profile might additionally influence their performance
when using gamified learning environments. Based on these
premises, we collect the participants’ gaming culture infor-
mation, to establish how it influences the perceived impor-
tance of the gamification elements. The second part of the
survey consists of 21 gamification elements that were pro-
posed for educational contexts, where we asked what the
respondents’ perceived importance for each of the 21 gami-
fication elements was, on a Likert scale [9] from 1 to 5, where
1 meant “not important at all” and 5 “extremely important”.

The recruitment of respondents occurred via (1) Amazon
Mechanical Turk, demonstrated to be an effective platform
to obtain a representative sample of answers especially in
the US [3], and (2) social networks, which allow us to reach
a broad audience and can also be useful tools for survey
recruitment [3], social networks were used mainly to collect
data from Brazil. We left the survey open for answers for 3
months. The first page of the survey contained the informed
consent form3, which the participant needed to agree to, in
order to participate in the study, as well as the information
regarding the study’s objectives, as suggested in [5].

After preparing our dataset, we used descriptive statistics
and ARM to explore it. Descriptive statistics allow us to un-
derstand the significant differences between countries, which
in addition can support us in answering. ARM consists of
verifying the associations between the data, by presenting if-
then-else clauses that are explained using a given set of met-
rics. It is mainly used in market-basket analysis, to identify
possible combinations of elements [1]. In this work, we will
consider support (related to the frequency of a given item),
confidence (related to the strength of the clause based on
its frequency), and lift (which measures the independence of
the items in the clause) as the main metrics for ARM.

3. RESULTS AND DISCUSSIONS
In this section, we present the results of our analyses using
the given dataset. Initially, our raw data consisted of 1952
answers; after applying our filters, as described in the previ-
ous section, we obtained a total of 1296 respondents who live
in Brazil (n = 428; 33%) or the US (n = 868; 67%). Consid-
ering the country distribution and genders (Table 1), 428 are
from Brazil (33%) and 868 from the US (67%). Among the
respondents, 447 identify themselves as female (34.5%), 839
as male (64.7%), nine as non-binary (0.7%) and one person
preferred not to disclose (0.1%).

Considering their age and time spent on games distribu-
tion: the minimum age (in years) is 16, with maximum age

3The consent allows us to analyse and publish the answers
of the respondents. The data collected within this study is
in accordance with the General Data Protection Regulation
(GDPR4) and any kind of personal information was removed
prior to the analysis. This research was also approved by an
ethical committee 42598620.0.0000.5464 at University of Sao
Paulo.
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Table 1: Gender distribution

Gender distribution
Brazil US Total

N % N %
Female 81 18.93 366 42.17 447
Male 344 80.37 495 57.03 839
Non-Binary 3 0.70 6 0.69 9
Prefer not to disclose 0 0 1 0.12 1
Total 428 100 868 100 1296

77. The medium age of the population is 29.7 with a stan-
dard deviation of 10. Considering the experience and gam-
ing preferences of our population, they had an average of
18.7 years of playing games (SD = 8.2), and an average of
14 hours per week (SD = 13.8). The top 3 favourite game
genres were RPG (499 answers, 38.5%), adventure (259 an-
swers, 20%) and strategy (186 answers, 14.4%).

The favourite setting (Table 2) of the respondents was single
player games (898 answers, 69.3%), followed by multiplayer
games (398, 30.7%). In Brazil, the top 3 favourite game
genres were RPG (N = 182, 42.5%), followed by Adventure
(N = 66, 15.4%), and Strategy (N = 65, 15.2%). As for the
US, they considered RPG (N = 317, 36.5%), followed again
by Adventure (N = 193, 22.24%), and Strategy (N = 121,
13.94%).

Table 2: Favourite setting distribution

Favourite setting
Brazil US Total
N % N %

Multiplayer 137 32,009 261 30,069 398
Singleplayer 291 67,991 607 69,931 898
Total 428 100 868 100 1296

When applying our sub-research question formula to each
of the elements, we can see in Table 3 that only 6 elements
showed a significant difference (p < 0.05, after corrected
with False discovery rate (FDR)). We also applied Cliff’s
Delta to measure the effect size (since this delta can be used
to measure the effect size of different size populations) and
obtained small effect size results on the same 6 elements [23].

Considering the results seen in Table 3, we can observe that 6
elements (Cooperation, Novelty, Stats, Sensation, Narrative,
and Storytelling) had a significant difference in the hypoth-
esis tests (p < 0.05), and a small effect-size (up to 0.3). In
practice, this means that each of the analysed countries con-
sider these elements to a different degree of importance. The
low effect-size indicates that these element differences may
pose a significant impact when tied with other elements con-
sidering the respondents’ country; this must be confirmed
with empirical studies using these elements.

As for the Association Rules, when mining all the rules that
contain the variable country, we found 937 rules. In this
work, we considered only rules that contained a gamifica-
tion element and that satisfies the following conditions: (A)
confidence > 0.8; and (B) lift > 1.1, similar as seen in [21].

Considering our conditions, we found 44 rules for condition
(A); and 295 for condition (B). When considering the in-

tersection between condition A and B, we found 40 rules
(A ∩ B = 40). The strongest rule (rule 3275, confidence =
0,93; lift = 1,99) that was mined was associating Brazil with
Objective, Storytelling, and Narrative. The following rules
also associated Brazil with different gamification elements as
Progression (rule 3279), Sensation (rule 3270) and charac-
teristics as favourite setting as single player (rule 3278). The
same set of gamification elements (Narrative, Storytelling,
Progression, and Objectives) were also associated with the
United States. The major difference was in the Sensation el-
ement that was found in the strongest rules associated with
Brazil (Table 4).

4. CONCLUSIONS AND FUTURE WORKS
This paper presented a data-driven work focusing at explor-
ing cultural differences between Brazil and the US regarding
their perceived preferences on gamification elements. We
found significant and interesting associations and groups of
gamification elements that can be used in educational envi-
ronments (both virtual and non-virtual). These can also be
used as input for adaptive gamification environments as a
new set of variables that can be grouped by the country of
origin of the student.

In summary, we provide as the main contributions of our
work the first empirical evidence on the impact of culture in
the perceived importance of gamification elements, compar-
ing Brazil and the US, as well as providing new strategies
based on respondents’ country of origin and others easy-to-
obtain characteristics that can be used in adaptive gamified
learning environments.

In future works, we intend to expand the research by apply-
ing other unsupervised algorithms, and investigating other
sub-cultures within these countries and identify different and
similar patterns. We also intend to expand the concept of
culture and not associate it only with a country, but also in-
cluding the region the respondent was raised and live nowa-
days, as well as other variables that can be related to their
education level, or gaming preferences that might have an
influence on their perceived importance of gamification ele-
ments. Another future work is related to the implementation
of these strategies in a real educational environment. Fi-
nally, it would be interesting to also analyse other countries
and see the differences and similarities between patterns.
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Table 3: Summary of gamification elements. Elements were organised based on the order they appeared in the survey.

Element
Brazil US Mann-whitney

P-value
FDR

Cliff’s Delta
Effect SizeMean SD Mean SD

point 3.4 1.23 3.34 1.23 0.46 0.48 0.03
level 4.02 0.96 3.87 1.06 0.03 0.08 0.07
cooperation 3.55 1.16 3.31 1.25 0 0.01 0.10
competition 3.05 1.29 3.17 1.34 0.14 0.21 -0.05
renovation 3.64 1.01 3.52 1.05 0.09 0.16 0.06
progression 4.41 0.82 4.35 0.81 0.08 0.16 0.05
objectives 4.35 0.83 4.25 0.88 0.05 0.11 0.06
puzzle 3.82 0.99 3.73 1.12 0.35 0.41 0.031
novelty 3.98 0.92 3.72 1.01 0 0 0.14
chance 3.19 1.20 3.08 1.12 0.10 0.17 0.05
social pressure 2.59 1.22 2.50 1.25 0.16 0.21 0.05
acknowledgement 3.55 1.18 3.45 1.21 0.15 0.21 0.05
stats 4.05 0.97 3.82 1.07 0 0 0.12
rarity 3.38 1.18 3.30 1.19 0.39 0.43 0.03
imposed choice 3.14 1.09 3.24 1.1 0.09 0.16 -0.06
time pressure 2.58 1.15 2.64 1.24 0.51 0.51 -0.02
economy 3.14 1.28 3.2 1.26 0.36 0.41 -0.03
sensation 4.31 0.9 3.80 1.1 0 0 0.27
reputation 3.02 1.18 3.16 1.2 0.04 0.11 -0.07
narrative 4.41 0.91 3.93 1.12 0 0 0.26
storytelling 4.35 0.91 4.05 1.13 0 0 0.15

Table 4: Top 15 rules found in ARM.

Rule ID Left-hand side Right-hand side Support Confidence Coverage Lift

3275
{country=Brazil,objectives=5,
storytelling=5} {narrative=5} 0.11 0.93 0.11 1.99

3279
{country=Brazil,progression=5,
storytelling=5} {narrative=5} 0.11 0.88 0.12 1.88

3269
{country=Brazil,sensation=5,
narrative=5} {storytelling=5} 0.10 0.87 0.12 1.74

3287
{country=Brazil,fav setting=Singleplayer,
storytelling=5} {narrative=5} 0.12 0.87 0.14 1.86

3270
{country=Brazil,sensation=5,
storytelling=5} {narrative=5} 0.10 0.87 0.12 1.85

3273
{country=Brazil,objectives=5,
narrative=5} {storytelling=5} 0.11 0.87 0.12 1.73

2321 {country=Brazil,storytelling=5} {narrative=5} 0.17 0.86 0.19 1.84

3374
{gender=Female,fav setting=Singleplayer,
progression=5} {country=United States} 0.10 0.85 0.12 1.27

3310
{country=Brazil,fav setting=Singleplayer,
progression=5} {gender=Male} 0.10 0.85 0.12 1.32

2692 {gender=Female,renovation=4} {country=United States} 0.11 0.85 0.13 1.26

3283
{gender=Male,country=Brazil,
storytelling=5} {narrative=5} 0.13 0.85 0.15 1.81

2732 {gender=Female,fav setting=Singleplayer} {country=United States} 0.21 0.84 0.24 1.26

3765
{country=United States,fav setting=Singleplayer,
progression=5,narrative=5} {storytelling=5} 0.11 0.84 0.13 1.68

2695 {gender=Female,novelty=4} {country=United States} 0.11 0.84 0.13 1.25
1573 {country=United States,fav genre=Adventure} {fav setting=Singleplayer} 0.12 0.82 0.15 1.19
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ABSTRACT 
The number of unfilled jobs in Science, Technology, Engineering 

and Mathematics (STEM) is predicted to rise while young people’s 

interest in STEM careers and education is declining. Efforts to un-

derstand this decline have identified some potentially contributing 

factors based on statistical correlation analysis. However, these cor-

relations can sometimes have relatively low effect-sizes. In these 

cases, Machine Learning (ML) techniques may provide an alterna-

tive by uncovering more complex patterns that provide stronger 

predictive accuracy. In this pilot study of Irish school children aged 

9-13, supervised ML techniques were applied to model interest in 

pursuing education and careers in STEM fields. Despite the rather 

low coefficients from Pearson Correlation, the ML techniques were 

able to predict an individual’s interest in STEM careers and educa-

tion with accuracies of 72.79% and 79.88% respectively. Our 

results suggest that ML techniques could be an important tool in 

understanding young people’s interest in STEM careers and educa-

tion by providing models that derive more complex relationships. 

Keywords 
STEM Attitudes, Machine Learning, Educational Data Mining, 

STEM Interest in Ireland 

1. INTRODUCTION 
The importance of Science, Technology, Engineering and Mathe-

matics (STEM) skills is increasing, both in our everyday lives and 

in the demands on our future workforce [5]. Meanwhile, current 

educational systems are unable to keep up with this increasing de-

mand; STEM courses tend to suffer from high drop-out rates [17] 

and only around half of STEM students go on to pursue STEM ca-

reers [3]. Coupled with a decrease in young people’s interest in 

STEM [1, 6, 7], concerns have been raised about the increasing 

skill-gap; the STEM Education Policy Statement 2017–2026 from 

the Irish Department of Further and Higher Education, Research, 

Innovation and Science [5] highlights both the economic and per-

sonal consequences in a world that relies on modern technologies. 

An important part of addressing this skill shortage is to understand 

the underlying factors that drive young people’s interest in STEM 

fields. Previous studies have employed statistical techniques to 

identify correlated attributes, including the student’s gender, grades 

and school experience [4], their self-efficacy scores [11, 20] and 

affective stereotypical values about STEM major choices [20]; ex-

ternal factors included parents’ education and STEM knowledge [9, 

20], as well as their teacher’s knowledge about STEM [20]. 

While traditional statistical techniques can provide valuable in-

sights, these techniques are not always sufficient to establish strong 

correlations, e.g. the Pearson Correlation coefficient for individual 

attributes may be relatively low in relation to the target variable. 

Supervised Machine Learning (ML) techniques may offer a solu-

tion to this, by modelling complex patterns in the data through more 

advanced mapping functions that predict the outcome variable. 

In this pilot study, five traditional ML algorithms – Logistic Re-

gression, k-Nearest Neighbour, Decision Trees, naïve Bayes and 

Support Vector Machines (SVM) – were applied to predict interest 

in STEM careers and education among Irish school children aged 

9-13. Further, an epilogue experiment was carried out using a Neu-

ral Network (Deep Learning) model, to assess whether this may 

offer additional benefits over the traditional ML techniques. 

The code for the experiments is made publicly available online: 

https://github.com/KeithQuille-TUDublin/Supervised-Machine-

Learning-for-Modelling-STEM-Career-and-Education-Interest-in-

Irish-School-Childre 

2. DATASET 
The data used in this study consist of a sub-set of answers collected 

during 2020 through an online survey directed at Irish primary 

school children. Participants were recruited from a random selec-

tion of primary schools on the Irish government's list of national 

schools. Consent was obtained from parents by providing a consent 

form via email, to comply with the COVID-19 stay-at-home orders 

at the time; the filled-out forms were collected by teachers and ei-

ther emailed back as scanned copies or posted as hard copies.  

From the survey’s 48 questions, two yes/no questions were selected 

as target variables: “I would like to study STEM in the future” and 

“I am interested in a career in STEM” (referred to as Career in 

STEM and Study STEM). 36 of the remaining 46 questions were 

considered as potential independent variables. (These 38 questions, 

along with their answer types, are listed in Table 3 in the 
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Appendix.) Out of the 309 participants who filled out the survey, 

255 (82.5%) answered all 38 questions of interest. Future surveys 

will include validation to prevent missing data, and introduce op-

tions such as “Don’t know” or “Not applicable” for all relevant 

questions. For this study, incomplete instances were not included 

in the analysis. Gender balance and target variable class balances 

were measured before and after to ensure no bias was introduced 

with respect to these factors. Proportions remained highly similar, 

with 40.1% female before and 40.8% after, with interest in Career 

in STEM changing from 49.5% positive to 49.4%, and Study 

STEM changing from 69.6% positive to 70.2%. 

2.1 Data Preparation 
Two datasets were constructed, each including one of the two target 

variables (Careers in STEM and Study STEM) along with a subset 

of the 36 potential independent attributes. The two subsets of the 

independent variables were selected based on statistical correlation 

between each attribute and each of the target variables. The reason-

ing behind this, was to reduce the number of noisy attributes. This 

initial sub-selection can work well even when the correlation mag-

nitude is relatively low as it still helps to filter out those with very 

low or no correlation. In this study, Pearson Correlation (PC) and 

Multiple Regression Analysis (MRA) were employed, which are 

typical techniques for this purpose. Both techniques were applied 

independently, so that if two different sets of attributes were iden-

tified, each set could be used for developing a separate model. Cut-

off values for attribute selection were determined by visually ex-

amining bar charts of the ordered absolute coefficients for PC and 

MRA respectively; the selected cut-off values were based on attrib-

ute grouping and the elbow method. Future work will include a 

more comprehensive analysis of the attribute selection step by in-

cluding additional considerations, such as p-values. 

For the Career in STEM dataset, the selected cut-off values for PC 

and MRA were 0.2 and 10.00 respectively. Both methods produced 

the same ten attributes (although the order was different): 

▪ Age 

▪ County 

▪ Do you have family in STEM? 

▪ I am good at projects involving Science Technology En-

gineering and Maths. 

▪ I would like to participate in more after-school programs 

in Science Technology. 

▪ Confident to problem solve. 

▪ Confident to do science tasks. 

▪ Homework in Science Technology Engineering and 

Maths is easy. 

▪ Science Technology Engineering and Math is important. 

▪ On average, how long, per day, do you spend using tech-

nology at home? 

For Study STEM, PC and MRA both produced the same set of 8 

attributes with a threshold of 0.21 and 10.73 respectively: 

▪ Age 

▪ Confident to problem solve. 

▪ Confident to do science tasks. 

▪ Confident to use technology in schoolwork. 

▪ I am good at projects involving Science Technology En-

gineering and Maths. 

 

1 https://scikit-learn.org/ 

▪ Homework in Science Technology Engineering and 

Maths is easy. 

▪ I would like to participate in more after-school programs 

in Science Technology. 

▪ Science Technology Engineering and Math is important. 

The cut-off point for the Study STEM data was more ambiguous 

than for the Career in STEM data. To avoid omitting two poten-

tially beneficial borderline attributes, two separate datasets were 

constructed: Study STEM A which only includes the top 8 attrib-

utes, and Study STEM B which includes two additional attributes 

based on lowering the thresholds for PC and MRA to 0.18 and 7.83 

respectively. These attributes were: 

▪ Do you have family in STEM? 

▪ I am good at using technology and completing coding 

tasks. 

Following the attribute selection process, each selected attribute 

was assessed for outliers by examining the range and spread of val-

ues using standard deviation. No significant outliers or unexpected 

values were identified. 

3. MACHINE LEARNING TECHNIQUES 
The Machine Learning (ML) investigations of this study were im-

plemented in Python 3.7, using the Scikit-learn1 v1.0.2 library for 

the traditional ML algorithms, and TensorFlow2 v2.1 for the epi-

logue Deep Learning experiment. All code was run on a PC with 

an Intel Core i9 CPU, 32GB RAM and NVIDIA RTX 2070 Super 

GPU with 8GB RAM. The following sections briefly discuss each 

algorithm and how they make predictions about a binary class label. 

3.1 Logistic Regression 
Logistic Regression (LR) is used to predict the binary class label of 

a data point by estimating the probability of the positive class based 

on a set of attributes, without having to meet requirements regard-

ing normal distribution or homogeneity of variance [2]. LR can 

model non-linear relationship between one or more attributes and 

the class label, according to the following equations: 

𝑡𝑋 =  ∑ 𝑥𝑖𝑤𝑖

𝑁

𝑖=1

, 𝑃(𝑋) =  
1

1 +  𝑒−𝑡𝑋  
 

where 𝑤𝑖  are the learned model weights, 𝑥𝑖 is a single attribute and 

𝑁 is the number of attributes. 𝑃(𝑋) denotes the probability of the 

positive class, with 𝑃(𝑋) ≥ 0.5 resulting in a positive prediction. 

3.2 k-Nearest Neighbour 
k-Nearest Neighbour (k-NN) is used to predict the class label for a 

new data point based on the class label of known data points that 

have similar attributes to the new data point. The model selects the 

k closest neighbours (based on a chosen distance metric) and pre-

dicts the class label by majority voting [10, 14]. In this study, a 

value of k=3 was used along with the Euclidean distance. 

3.3 Naïve Bayes 
Naïve Bayes is based on the Bayes Theorem, which is given by 

𝑃(𝑌|𝑋) = 𝑃(𝑋|𝑌) ∙
𝑃(𝑌)

𝑃(𝑋)
. This assumes the interdependence be-

tween all attributes in the term 𝑃(𝑋|𝑌) whose calculation becomes 

intractable in practice. Hence, a simplified version, known as naïve 

2 https://www.tensorflow.org/ 
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Bayes, is often used where 𝑃(𝑋) is assumed to be constant and the 

attributes are assumed to be conditionally independent. In practice, 

it has been shown to provide strong predictive performance even 

when this assumption is violated [13, 14]. For a binary classifica-

tion task, the probability of the positive class is given by 𝑃(𝑦) =
𝑃(𝑌) ∙ ∏ 𝑃(𝑥𝑖|𝑌)𝑁

𝑖=1  where 𝑃(𝑌) is the prior probability of class 𝑦.  

3.4 Decision Trees 
Decision Trees provide class predictions through a tree-like 

flowchart where the next branch is selected based on the value of a 

single attribute. The cut-off points for the attribute values of these 

branches are decided based on the optimal splitting of the training 

data into class labels. Once a leaf-node is reached (i.e. no further 

branching), a class label is assigned based on the majority class of 

the training data points that were routed to that node [10, 14]. In 

this study, binary branching was used based on a measure called 

GINI Gain which aims to reduce the GINI Impurity calculated by 

∑ 𝑝(𝑦𝑖) ∙ (1 − 𝑝(𝑦𝑖))𝐶
𝑖=1  where 𝑝(𝑦𝑖) denotes the probability of 

each class label. 

3.5 Support Vector Machines 
Support Vector Machines (SVM) is a class of algorithms that gen-

erates a discriminant function to separate the data points belonging 

to each class label. The SVM used in this study is a linear SVM that 

uses Sequential Minimal Optimization [16]. This algorithm is 

grounded in principles of the optimal hyperplane from statistical 

learning theory [19]. The optimal hyperplane is found by maximis-

ing the perpendicular distance between the closest vector to the 

hyperplane and the hyperplane itself [8]. Given a dataset 
(𝑥1, 𝑦1), … , (𝑥𝑛 , 𝑦𝑛) ∈ 𝑋 × {±1} where each 𝑥𝑖 has been sampled 

from some space 𝑋, the optimal hyperplane can be found by solving 

the dual-form Lagrangian, which is subject to the constraints 𝛼𝑖  ≥
 ∀𝑖  and ∑ 𝛼𝑖𝑦𝑖 = 0𝑚

𝑖=1 : 

𝑊(𝛼) =  ∑ 𝛼𝑖 −  
1

2
∑ 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗(𝑥𝑖 ∙  𝑥𝑗)

𝑚

𝑖,𝑗=1

𝑚

𝑖=1

 

4. EVALUATION AND METRICS 
To promote generalisable model results, 10-fold cross-validation 

(10FCV) is considered the gold standard validation techniques for 

these ML algorithms [10]. 10FCV randomly splits the dataset into 

(as near as possible) equally sized folds; any number of folds can 

be chosen, with 10 being the typical number. Training is performed 

on data from all folds except one which is left for evaluation (i.e. 

the unseen data), and this process is repeated until the algorithm has 

been trained and evaluated on each fold. The result from each fold’s 

evaluation are averaged to obtain the final result. Thus, all data is 

considered for evaluation, while at the same time ensuring that test 

data is never seen during training. This reduces the risk of both un-

der- and overfitting to the data [10]. 

The metrics used for this study were sensitivity, specificity, and ac-

curacy, each relating to predictions about two mutually exclusive 

classes, where “yes” is positive class, and “no” the negative class. 

True Positives (TP) are correct predictions of the positive class, 

while True Negatives (TN) are correct predictions of the negative 

class. Likewise, False Positives (FP) are incorrect predictions of the 

positive class, while False Negatives (FN) are incorrect predictions 

of the negative class. Accuracy refers to the proportion of correct 

predictions (for both the positive and the negative class) in relation 

to the total number of predictions. Sensitivity refers to the propor-

tion of correctly predicted positive instances 𝑇𝑃, in relation to the 

total number of positive instances 𝑇𝑃 + 𝐹𝑁 in the data. High 

sensitivity indicates that most of the positive cases are likely found, 

so if a negative case is predicted, it is highly likely that it is indeed 

negative. Specificity refers to the proportion of correctly predicted 

negative instances 𝑇𝑁, in relation to the total number of negative 

instances 𝑇𝑁 + 𝐹𝑃 in the data. High specificity means most of the 

negative cases are likely caught; thus, any positive predictions are 

highly likely to indeed be positive. 

5. RESULTS 

5.1 Career in STEM 
As shown in Table 1, the highest accuracy was achieved by the 

SVM model, followed by Logistic Regression (LR), naïve Bayes 

(nB), Decision Trees (DT) and k-NN. An ANOVA test was carried 

out, showing statistically significant (p < .001) differences between 

the accuracies with F(5,255) = 215.8951. Standard deviation was 

calculated after applying the binomial distribution formula. 

Table 1. Results for the five traditional ML algorithms on pre-

dicting an individual’s interest in a STEM career 

Algorithm Accuracy Sensitivity Specificity 

Logistic 

Regression 

71.84% 72% 72% 

SVM 72.79% 75% 70% 

k-NN 59.15% 58% 60% 

Decision Tree 60.02% 60% 63% 

Naïve Bayes 71.50% 81% 63% 

There is a clear gap in accuracy between the best three models (all 

above 70%) and the worst two (accuracy around 60%). A possible 

explanation is the difference in algorithm types; the top three are 

known for better handling of higher dimensional data with noisy 

attributes. While steps were taken during the data preparation phase 

to reduce the number of attributes and lower the risk of noisy data 

(see sections 2.1), the results indicate that this is an issue that should 

still be considered during the model design phase. 

Sensitivity and specificity followed a similar trend with respect to 

performance ranking. LR was the best-balanced prediction model 

with 72% in both sensitivity and specificity. Meanwhile nB was the 

most imbalanced with 81% sensitivity and 63% specificity, indicat-

ing a strong bias towards making positive predictions.  

5.2 Study STEM 
For the Study STEM target variable, results are reported for both 

the Study STEM A and Study STEM B datasets (described in sec-

tion 2.1). Table 2 shows that for STEM A, naïve Bayes (nB) gave 

the best accuracy, followed by SVM, Logistic Regression (LR), k-

NN and Decision Tree (DT); for Study STEM B, the order was the 

same except for LR and SVM switching places. 

ANOVA tests showed statistically significant (p < .001) differences 

between the model accuracies for both datasets, with F(5,255) = 

257.2687 for Study STEM A and F(5,255) = 257.4049, for Study 

STEM B. The standard deviation was calculated after applying the 

binomial distribution formula. 

The top three models in terms of accuracy, on both datasets, are the 

same as for predicting Career in STEM (see section 5.1). However, 

the differences are less pronounced for Study STEM, and the sen-

sitivity and specificity metrics do not show the same clear pattern. 
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Interestingly, the sensitivity-specificity balances among the top 

three performers show the opposite relationship from the results on 

Career in STEM. Overall, the accuracy levels on this task were 

higher while the balance of nearly all models were worse, mainly 

due to low levels of specificity; this is not unexpected considering 

the class-imbalance for the Study STEM target variable, with 

70.2% of cases belonging to the positive class, in contrast to the 

more well-balanced Career in STEM target where the positive class 

constituted 49.4% of the cases. Only the nB model performed well 

on specificity for this task, with 70.77% on the Study STEM B data. 

Table 2. Results for the five traditional ML algorithms on the 

Study STEM A and Study STEM B datasets 

Algorithm Accuracy Sensitivity Specificity 

Logistic 

Regression 

A: 76.74 % 

B: 76.84 % 

A: 88.12 % 

B: 87.50 % 

A: 49.23 % 

B: 50.77 % 

SVM A: 77.25 % 

B: 76.82 % 

A: 88.12 % 

B: 87.50 %     

A: 50.77 % 

B: 50.77 % 

k-NN A: 74.11 % 

B: 73.70 % 

A: 85.62 % 

B: 84.38 % 

A: 46.15 % 

B: 47.69 % 

Decision Tree A: 73.16 % 

B: 72.35 % 

A: 81.88 % 

B: 78.12 % 

A: 50.77 % 

B: 50.77 % 

Naïve Bayes A: 78.50 % 

B: 79.88 % 

A: 85.62 % 

B: 83.75 % 

A: 61.54 % 

B: 70.77 % 

The results are similar between Study STEM A and Study STEM 

B, with the exception of the increase in specificity for the nB mode. 

This, again, highlights the influence that the model selection can 

have on the outcome. Furthermore, depending on the application of 

the model, there may also be a preference for better sensitivity or 

specificity (or indeed a balance between the two) as well as the 

preference for a simpler model with fewer attributes. 

5.3 Deep Learning Epilogue Experiment 
Finally, a small epilogue experiment was carried out with a Neural 

Network model consisting of two layers with 1000 and 8000 Rec-

tified Linear Units (ReLU) [15] respectively, along with a single 

sigmoid output unit, outputting a value between zero and one; a cut-

off point of ≥ 0.5 is used to predict the positive class label. The 

network was trained with the backpropagation algorithm, using the 

binary cross-entropy function to calculate the network error. 

Each dataset was split into a training and test set, with 66% and 

34% using random selection. Training was performed iteratively 

through repeated exposure of the training set, where one pass 

through the data is called an epoch. Accuracy was measured on 

both the training and test set after each epoch. 

  

Figure 1. Accuracy at each epoch for Career in STEM (above), 

Study STEM A (bottom left) and Study STEM B (bottom 

right). Upper (blue) lines show performance on training data, 

while bottom (orange) lines show performance on test data. 

In Figure 1, the upper lines represent the accuracy on the training 

set, with the lower lines representing the accuracy on the test set. 

As is common for this type of model, these accuracies diverge once 

the network becomes overfitted to the training set. Future experi-

ments will employ techniques for mitigating this, including 

reducing the number of model weights and implementing early 

stopping on an additional validation set. The best preliminary re-

sults are found at around epoch 80 for the Career in STEM model 

where the accuracy is near 70% which is roughly on par with the 

top three traditional algorithms. For the Study STEM, the best test 

results are found around epochs 8 and 10 respectively, with around 

80% accuracy for Study STEM B, and slightly lower on Study 

STEM A, which again is on par with the traditional ML results. 

6. DISCUSSION 
The ML algorithms were all able to predict the target variable to 

some extent. The best accuracies achieved were 72.79% for pre-

dicting an interest in a career in STEM and 79.88% for studying 

STEM. A simple baseline that always predicts the most common 

class would have accuracies of 50.6% and 70.2% respectively. 

Thus, while the accuracy for the Study STEM task was higher, the 

improvement over baseline performance was greater for the Career 

in STEM task; the latter showed an improvement of 22.19 percent-

age points or a 43.85% relative increase in predictive performance. 

The more advanced algorithms performed better than the simpler 

models, possibly suggesting that the underlying patterns were too 

complex to be explained by individual attribute contributions. On 

the other hand, complexity of interpretation increases along with 

the complexity of the model. To improve the practical usefulness 

of applying ML models to this problem, future work will consider 

various interpretation methods, including advanced techniques 

such as LIME [18] and SHAP [12] that offers a interpretability for 

the overall results as well as for individual predictions. 

7. CONCLUSION AND FUTURE WORK 
This pilot study has demonstrated the potential benefit of Machine 

Learning (ML) algorithms to model young people’s interest in pur-

suing STEM careers and education. The more advanced techniques 

(Logistic Regression, Support Vector Machines and naïve Bayes) 

achieved higher accuracy levels than the simpler ones (k-Nearest 

Neighbour and Decision Trees), suggesting that the advanced algo-

rithms may have an advantage in modelling the complex interplay 

between contributing factors. Future work will aim to distil practi-

cally useful insights about these relationships by leveraging 

existing techniques for interpreting the outcome of ML models. Ad-

ditionally, we intend to apply these methods on datasets from 

longitudinal studies to predict changes in interest in STEM after 

introducing STEM-promoting activities and interventions.  

We wish to emphasise that our long-term goal is to use ML algo-

rithms to identify underlying factors that influence interest in 

STEM careers and further education, to address the predicted skill-

gap, and to inform strategies towards more equitable access to 

STEM jobs. The methods presented here, while predictive in na-

ture, are not intended to be used as prescriptive tools to encourage 

or discourage individual students of partaking in the STEM field. 

Even well-intended applications of such nature would need to care-

fully consider potential consequences, to avoid furthering existing 

biases and inequities. 
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APPENDIX 
Table 3 lists the relevant survey questions that were used in this 

study. The checkbox answers were translated into attributes with a 

value of 0 or 1; an additional attribute was created to indicate if no 

option was selected. 

Table 3. Survey questions for the 36 attributes and the two tar-

get variables; N = number, B = binned numbers, T = text, L = 

Likert scale answers given as Strongly Agree, Agree, Neutral, 

Disagree, Strongly Disagree, CB = checkbox answers (zero or 

more allowed) 

Question Type 

Age N 

County T 

On average, how long, per day, do you spend using 

technology? 

B 

On average, how long, per day, do you spend using 

technology in school? 

B 

On average, how long, per day, do you spend using 

technology at home? 

B 

Confident to work in groups with other. L 

Confident to be creative. L 

Confident to problem solve. L 

Confident to do science tasks. L 

Confident to do maker tasks. L 

Confident to use technology in schoolwork. L 

Confident to use technology to complete coding 

tasks. 

L 

I enjoy using technology. L 

I dislike the challenge of Science Technology Engi-

neering and Maths. 

Y/N 

I am good at projects involving Science Technol-

ogy Engineering and Maths. 

Y/N 

Question Type 

What I learn in Science Technology Engineering 

and Math has no value to me. 

Y/N 

I do not understand Science Technology Engineer-

ing and Maths. 

Y/N 

Do you have any experience with coding? Y/N 

Homework in Science Technology Engineering and 

Maths is easy. 

Y/N 

I struggle in Science Technology Engineering and 

Maths classes. 

Y/N 

I would like to participate in more after-school pro-

grams in Science Technology. 

Y/N 

I am good at using technology and completing cod-

ing tasks. 

Y/N 

I understand what Artificial Intelligence (AI) is. Y/N 

Science Technology Engineering and Math is im-

portant. 

Y/N 

Gender M/F 

At home do you have: 

Computer 

Tablet 

Laptop 

SmartPhone 

CB 

I use technology to play computer games. Y/N 

I use technology to watch TV. Y/N 

I use technology to talk to friends. Y/N 

I use technology to learn at home. Y/N 

I use technology to code. Y/N 

Do you have family in STEM? Y/N 

I would like to study STEM in the future. Y/N 

I am interested in a career in STEM. Y/N 
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ABSTRACT
At present, the educational data mining community lacks
many tools needed for ensuring equitable ability estima-
tion for Neurodivergent (ND) learners. On one hand, most
learner models are susceptible to under-estimating ND abil-
ity since confounding contexts cannot be held accountable
(e.g. consider dyslexia and text-heavy assessments), and on
the other, few (if any) existing datasets are suited for ap-
praising model and data bias in ND contexts. In this pa-
per we attempt to model the relationships between con-
text (delivery and response types) and performance of ND
students with zero-inflated learner models. This approach
facilitates simulation of several expected ND behavioural
traits, provides equitable ability estimates across all stu-
dent groups from generated datasets, increases interpretabil-
ity confidence, and can significantly increase the quality of
learning opportunities for ND students. Our approach con-
sistently out-performs baselines in our experiments and can
also be applied to many other learner modelling frameworks.

Keywords
Neurodiversity, Zero-Inflated Models, Learner Models, Item
Response Theory, Data Simulation

1. INTRODUCTION
In the UK, it is estimated that 15% of the population are
ND, having neurological functions that differ from what is
considered typical [22]. Neurodiversity covers the range of
differences in individual brain function and behavioural traits,
regarded as part of normal variation in the human popula-
tion [37]. Each Neurodivergent Condition (NDC) uniquely
affects how information is absorbed, processed, and commu-
nicated [30, 4]. Our objective is to adapt Learner Models
(LMs) for the individual requirements of a number of NDCs

∗Corresponding author.

in learning environments, focusing specifically on dyslexia,
dyscalculia and Sensory Processing Disorder (SPD) (with
prevalences of 10%, 6% and 5-15% respectively [7, 36, 9]).

Achievement gaps due to NDCs occur early in life and per-
sist through adolescence into adulthood [8]. In many cases,
impeded learning opportunities for ND students result from
unsuitable learning contexts or lack of adequate student
support rather than intrinsically low student ability [29].
However, as learning begins to move further into the digital
space [14, 34], LMs, which are statistical models of student
attainment, will use historic performance to estimate stu-
dent ability. Owing to a legacy of potentially poor learn-
ing contexts, the ability of ND students tends to be under-
estimated by LMs since they are not equipped to distinguish
between context- and ability-based explanations of perfor-
mance. Without deliberate effort, therefore, it is very likely
that LMs will become biased and offer inequitable recom-
mendations for ND students. On the other hand, opportu-
nities to quell these achievement gaps before they grow are at
hand in smart learning environments if LMs are empowered
to reason about alternative explanations of performance.

LM research is highly active in the Educational Data Min-
ing (EDM) community. State-of-the-art approaches include
deep neural networks [33, 11, 28], and nonparametric Bayesian
methods [15]. We find that the literature is sparse for in-
clusive LMs applied to ND populations, and we were unable
to find many bespoke models or datasets (real or synthetic)
even in recent literature reviews [1, 21]. Kohli et. al. [16] in-
troduced an approach for identifying dyslexic students based
on historic patterns of behaviour and artificial neural net-
works. Mejia et. al. [26] approached the task by estimat-
ing learner’s cognitive deficit specifically for students with
dyslexia or reading difficulties. Ensuring the equity of LM
is an important area of research, and learning interfaces can
be improved by offering multiple assessment Delivery and
Response Type (DRT) [29]. Other works have elaborated
further on scores and metrics for ethical and equitable rec-
ommendation systems with broad stakeholders, including
dyslexic students [25]. Equity is also explored along ex-
plainability and interpretability axes. Some classical LMs
are readily interpretable and offer intuitive explanations of
datasets [31, 24], though caution must be exercised to avoid
over-interpreting models [13].
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ND students face at least two additional hurdles than Neu-
rotypical (NT) students in learning environments: 1) their
ability is inaccurately modelled due to LMs shortcomings;
and 2) choosing the most suitable learning context for them
to express their true ability is rarely considered. Further-
more, the EDM community currently lacks datasets and
simulation tools for developing LMs and assessing equity for
NDC contexts. We address these three limitations in this
work, by motivating and defining equitable LMs for ND stu-
dents (Sec 2), defining a simulation environment (Sec 2.2),
and demonstrating strong performance in our results and
conclusions (Secs 3 and 4).

2. METHODS
Due to a lack of available datasets that include ND students,
we explore equitable estimation in simulations. Our model
combines the use of Zero-Inflated Models (ZIMs) [17] and
Item Response Theory (IRT) [2, 20]. Our assumption is that
DRT choices will affect the quality of learning opportunities
for ND students, with unsuitable DRT resulting in lower
Learning Quality Factor (LQF). Without considering the
suitability of DRTs for students, LMs risk recommending
low-quality learning opportunities and mis-interpreting poor
performance on these as an indication of low student ability.
The model and simulation procedure proposed is designed
to be used to identify the best DRTs for each student, and
prevent underestimation of abilities.

2.1 IRT-based Zero-Inflated Learner Model
Our proposed approach, Zero-inflated Learner Models (ZILMs),
shown in Eqn (1), builds on the assumption that there are
two explicit explanations of zeros: 1) low ability relative to
difficulty (low p); and 2) low LQF (high π). With this for-
mulation, a zero from a student with high ability with in an
unsuitable DRT can be explained by the poor LQF since π
has high responsibility for the outcome [3].

Pr(Y = y) =

{
π + (1− π) · (1− p) if y = 0

(1− π) · p if y = 1
(1)

In our setting, p is based on IRT, and π (which reflects
LQFs) is parameterised by item, NDC and DRT features
(c.f. Sec 2.2), resulting in IRT-based ZILM (IRT-ZILM).

IRT was chosen as the base LM in IRT-ZILM over alter-
native options as: 1) IRT is well-understood and simple to
interpret; 2) Bayesian Knowledge Tracing (BKT) is known
to have over- and under-estimation problems [6, 18] that
may muddle our understanding of equity for ND students;
3) several technical hurdles need to be overcome to incorpo-
rate our approach into BKT; and 4) although Deep Knowl-
edge Tracing (DKT) [33] models can probably learn latent
representations that correlate to DRT preferences, this is at
the expense of control and interpretation of the effects.

2.2 Simulations
In the simulated dataset, we assume that the ability of ND
and NT students are drawn from the same distribution,
meaning that ability and NDCs are independent. The NDCs
considered in this initial work are dyslexia, dyscalculia, and
SPD. These chosen conditions reflect a wide range of effects
from different delivery and response types, but this work
could be applied to others.

Table 1: Description of parameter distributions used to gen-
erate synthetic dataset. Each parameter was randomly as-
signed from distributions. Users are given an intrinsic ability
and the possibility of one or more ND conditions. Items are
assigned a difficulty, discrimination, guessing, subject, con-
tent type, information density, delivery type and response
type. Information density describes how much information is
provided—0.1 represents only a few words, 1 is a large block
of text—designed to reflect how clearly an item is presented.

Parameter Value (Range) Probability

Ability (−∞,∞) N (0, 1)

ND condition
Dyslexia,

Dyscalculia, SPD
0.1, 0.06, 0.11

Difficulty (-2, 2) uniform
Discrimination (0.5, 4) uniform

Guessing (0, 0.15) uniform
Subject Maths, English 0.5, 0.5

Content type Letter, Digit, Both
M: 0.1, 0.5, 0.6,

E: 1, 0, 0
No. attempts 20 fixed
Info. density (0.1, 1) N (0.35, 0.15)
Delivery type Read, Listen, Both 0.3, 0.3, 0.4

Response type
Written, Speak,
Click Picture,
Click Read

0.4, 0.2, 0.2, 0.2

Datasets are created based on the parameters outlined in
Table 1. These features contribute to the estimation of LQFs
and the probability a user will respond to an item. For
example, a dyslexic user’s learning quality is impacted by
delivery types involving reading letters, and response types
involving reading letters to click the correct answer(s) or
writing an answer that includes letters. A dyscalculic user is
affected by delivery and response types involving digits. And
someone with SPD is impacted when the delivery involves
both reading and listening with either letters and/or digits,
as this can cause sensory overload [29].

Collectively, these features are used to describe the suitabil-
ity of DRT to a variety of NDCs, which we now relate back
to Eqn (1). If a poorly chosen DRT is selected for a ND
student, this will result in poor learning opportunities due

4 2 0 2 4
Ability

0.0

0.2

0.4

0.6

0.8

1.0

S
uc

ce
ss

 P
ro

ba
bi

lit
y

LQF = 1
LQF = 0.8
LQF = 0.6
LQF = 0.4
LQF = 0.2
actual ability
perceived ability
effect of LQF

Figure 1: This image shows that LQFs can make the per-
ceived ability of an affected student much lower than their
true unobserved ability. ♢ shows a student’s true ability, ◦
shows the impact of low LQFs, and □ shows the perceived
ability if LQF is not considered.
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Figure 2: Comparison of attempt outcomes for each NDC
(dyslexia: upper left; dyscalculia: upper right; SPD: lower
left; all: lower right) when a single delivery type is used for all
items (R and L correspond to ‘read’ and ‘listen’ respectively).

to a low LQF (i.e. large π). However, if a suitable DRT is
selected for a student, the suitability is reflected in higher
LQFs. Synthesising datasets that adapt to DRTs and NDCs
requires specification of the weight vectors to adapt π to
context (e.g. ‘reading’ should increase π / reduce LQF for
dyslexic but not for dyscalculic students). Although specifi-
cation of weight vectors is a subjective process, it allows us
to express our intuition and instincts about the influential
pathways. These are fully described in our implementation1.

The effect of LQFs on an item’s characteristic curve can be
seen in Fig 1. As the LQF decreases, the upper asympotote
is reduced, indicating that their opportunity to learn from
the interaction is compromised. With this, we interpret LQF
as a measure of the contextual inequity.

3. RESULTS AND DISCUSSION
There are four main questions we want to explore in this
work: 1) how much are ND users learning opportunities
impacted by poor DRTs; 2) is it possible to identify users
with potential NDC based on their performance on items
with a range of DRTs; 3) is it possible to estimate user true
abilities, accounting for any poor performance due to other
factors; and 4) can student learning quality and success be
improved through active selection of DRTs?

3.1 How are ND users impacted?
Fig 2 shows how ND student performance is affected if a
learning environment only delivers information in a single
format. Across the full neurodiverse population, the mean
performance is approximately the same for all learning ma-
terial formats. There are also no observable differences in
performance for users with dyscalculia. However, for users
with dyslexia or SPD there are noticeable differences. For
users with dyslexia, they answer 6–11% more attempts cor-
rectly and are able to attempt 9–15% more items when the
item has a listening component. For users with SPD, they
answer an item correctly, and are able to attempt, 19–24%
more attempts when the item is only delivered in one for-
mat compared to multiple formats. The probability of a

1github.com/niall-twomey/zero-inflated-learner-models

user succeeding at an item is can be drastically effected by
a poor learning quality.

3.2 Can NDCs be identified from interactions?
To investigate if users with a potential NDCs can be iden-
tified from the interactions, we have compared individuals
mean performance in different subjects and on items with
different delivery types (Fig 3). When Maths and English
are compared (Fig 3 left), dyscalculic users have attempted
more English items than Maths (large spike on ‘Not an-
swered’). Additionally, when Maths is attempted, there
is a lower success rate than in English (dip in ‘Correct’).
Their performance in terms of ‘Incorrect’ counts in English
and Maths are equivalent. However, this tally is achieved
with 30% fewer attempts, indicating poor performance in
Maths, further illustrating the effect of their NDC (i.e. 10/20
vs. 5/15). The most noticeable effects between read vs. listen
DRT (Fig 3 middle) are seen by a clear increase in number
of not answered items and decrease in the number of cor-
rect answers for ‘dyslexia’ and ‘dyslexia & SPD’ students.
SPD students are unaffected by these DRTs. Comparing the
‘read & listen’ and ‘read’ delivery types (Fig 3 right), there
are features seen with the dyslexia users, as above, but the
SPD users now show a significant difference in performance,
with large increases on ‘not answered’ and decreases on ‘cor-
rect’. So, by comparing individual students’ performance in
different subjects and DRTs, it’s possible to identify the ND
students and their condition. In practices, these compar-
isons could be used to identify what contexts a student may
be struggling with, and additional support they may need.

3.3 Can a user’s true ability be estimated?
One aspect of ensuring each user gets suitable learning ma-
terial is understanding their true ability. Fig 4 compares the
performance of classical IRT and our IRT-ZILM model for
parameter recovery. With IRT, most of the ability values are
under-estimated, particularly for students with 1 or 2 NDCs
(Fig 4a). Under-estimated ability makes sense given our
expected inflated zero counts. However, the bias of under-
estimated ability for ND students is concerning given that
ND and NT abilities were drawn from the same distribution.
On the other hand, IRT-ZILM is a much better estimator
of true abilities (Fig 4b). Additionally, there is no obvious
gap in ability estimates for students with NDCs compared
to NT students. Table 2 summarises the predictive accu-
racy of the considered models. Although the performance
of all models is approximately equivalent (only small gains
for our approach) the lack of distorted recovered parameters
may indicate stronger reliability of IRT-ZILM.

Table 3 summarise parameter estimation using Pearson and
Spearman correlation coefficients, and have included linear
KTM [39] (using contextual features) as another baseline.
KTM, like IRT also under-estimates ND ability, and IRT-
ZILM is a significantly better estimator of the true param-
eters.

3.4 Can learning quality be improved?
We explore the effect of actively selecting DRTs to improve
LQFs and the number of successful learning attempts for
ND students in Table 4. The table shows the potential that
selecting the most suitable DRT can have on learning qual-
ity, with large lifts on students with 1 or 2 NDCs.
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Figure 4: Scatter plots of true vs. estimated ability param-
eters from IRT and IRT-ZILM. Perfect estimation will place
all points on diagonal. IRT is biased against ND students,
while IRT-ZILM parameter estimation is very reliable.

Table 2: Predictive test metrics. Similar performance ob-
tained with all models, though IRT-ZILM is slightly more
performant than baselines.

Metric IRT KTM IRT-ZILM

Accuracy 0.734 0.742 0.753
F1 0.559 0.567 0.583
NLL 0.513 0.499 0.494

Brier Score 0.170 0.166 0.163

3.5 How can this model be applied?
As already discussed, comparing user interactions in dif-
ferent contexts can identify students who may need addi-
tional support in specific areas. Often, high achieving ND
students needs can be overlooked since their performance
doesn’t tend to require interventions. With IRT-ZILM, sup-
port/adaptions can be put in place early to enable them to
reach their full potential since this model is less susceptable
to the biases of traditional LMs. IRT-ZILM can be used
to better estimate a students true ability, by adapting it to
contexts and underestimating their DRTs preferences. This
can help identify and explain causes for underperforming
students. By understanding which DRTs a student strug-
gles to engage with, alternative items can be provided to

Table 3: Pearson and Spearman correlation coefficients be-
tween true and recovered parameters. Values of 1 indicate
perfect matches. IRT-ZILM parameter estimation is the most
accurate across both metrics for all parameters.

Pearson Spearman

IRT KTM IRT-ZILM IRT KTM IRT-ZILM

Ab 0.839 0.955 0.993 0.929 0.966 0.996
Diff 0.394 0.686 0.953 0.413 0.707 0.954
Disc 0.270 0.544 0.932 0.234 0.610 0.942

Table 4: Increase (and decrease) of learning opportunities
obtained with active (and adversarial) DRT selection.

1 NDC 2 NDCs

Baseline 0.391 0.123

Lift 1.432 ↑ 1.898 ↑
Drop 0.248 ↓ 0.014 ↓

help them reach their full potential. These insights can also
be used by teachers to explore if the DRTs of their content
can be expanded to create an accessible learning environ-
ment for all. Education traditionally has taken a one size
fits all approach. By harnessing models that incorporate
contextual understanding, learning can be tailored to each
student, reaching many of those who may previously have
felt dejected in learning, as their needs weren’t being met.

4. CONCLUSIONS
Our application of zero-inflated models in learning contexts
offers a rich simulation environment of neurodivergent condi-
tions in question answering settings, unbiased evaluations of
neurodivergent learners, encourages increased learning qual-
ity, and more reliably recovers unbiased ability parameters.
On the basis of our successful results we believe that further
study and exploration of zero-inflated learner models can
yield an inclusive framework for equitable, explainable, and
reliable learner models in diverse educational data mining
contexts. Future work will expand on the experimentation
to new contexts, and the model to new domains.
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Appendix
This section gives supplementary details of our proposed
model, see Sec 2.1.

Delivery and Response Weakening
We adapt learner models for NDCs by taking inspiration
from techniques used in Weakly Supervised Machine Learn-
ing(WSML) [41]. Our approach is to model the interplay
between item DRTs and NDCs. Let a binary random vari-
able be drawn from a Bernoulli distribution, y ∼ Ber(p),
and let us assume that a label flipping process acts upon y
and this results in observations of the corrupted labels, ỹ.
The mixing matrix, M , is defined as follows:
(

1− q0 q1
q0 1− q1

)
=

(
Pr(Ỹ = 1|Y = 1) Pr(Ỹ = 1|Y = 0)

Pr(Ỹ = 0|Y = 1) Pr(Ỹ = 0|Y = 0)

)

The qỹ variables can be selected using prior knowledge and
assumptions on the data distributions [27, 32]. In our set-
ting, we are interested particularly in the contexts when
learning of ND students is being sabotaged by the environ-
ment, i.e. q0. We therefore model q0 (previously introduced
as a global parameter) and parameterise it with ND, LQF
and interaction features.

IRT-based Zero-Inflated Learner Model
Our IRT-ZILM merges LMs and ZILM as follows:

Pr(Y = y | x) =

{
π(xπ) + (1− π(xπ))(1− p(xp)) if y = 0

(1− π(xπ))p(xp) if y = 1

where π and p from Eqn (1) are now functions leveraging
ND/LQF/content features (xπ) and LM/collaborative fea-
tures (xp).

By separating the functional contribution of confounders (π)
and ability (p) in IRT-ZILM, we hope to unambiguously
decouple these aspects from each other and improve inter-
pretability and explainability. The model is learnt by gra-
dient descent of negative log likelihood of the training data
to optimise all parameters. In WSML it is common to learn
in a two-step process, for example, by iteratively fixing and
optimising IRT and weak label weights [32].

ZIMs have been used to account for excess zeros in many
counting tasks using Poisson and negative binomial mod-
els [17, 40, 38, 23], and in learning analytics as statistical
counting models in self-regulated learning [12]. An impor-
tant property of statistical models is identifiability as it al-
lows for the precise estimation of the values of its parame-
ters [10, Sec 4.5]. Parallel theoretical analysis has considered
identifiability of the counting model parameters [35] and the
mixture components [19]. It is worth noting that IRT also
suffers from identifiability problems (c.f. [5, p.6] and [10, Sec
14.]) but using priors or regularisation can alleviate these.

As far as we are aware, this is the first work to incorpo-
rate ZIM in this manner. Choosing IRT as the base LM in
IRT-ZILM over alternative options is motivated for several
reasons. Firstly, IRT is well-understood and simple to in-
terpret, and using this model as a platform to demonstrate
new properties of equity in this early work carries the same
benefits. Secondly, BKT is known to have over- and under-
estimation problems [6, 18] which may muddle our under-

standing of equity for ND students. Additionally, several
technical hurdles need to be overcome, notably adaptation
for contextualised individualisation in mixed graphs. Fi-
nally, although DKT [33] models can probably learn latent
representations that correlate to DRT preferences, this is at
the expense of control and interpretation of the effects.

Extra Results
Fig 5 shows this effect for four user/item pairs. For example,
the first student should be 60% (orange) successful on this
item, however, their LQF is 0.25 (blue), so their success rate
drops to 15% (green). Therefore, LQF can be interpreted as
a measure of the contextual inequity in these settings.

Although the purpose of this research is to provide equitable
estimates of student ability and to provide enabling technol-
ogy that selects the most appropriate DRT for students, we
note that we may also identify students that need additional
support in specific areas by recognising potentially uniden-
tified NDCs. We can approach this by creating two models:
letM0 be the model for a student’s reported NDC state (the
‘null’ model), and let M1 be a model trained on data as-
suming an alternative NDC state (the ‘alternative’ model).
Since we have already shown that metrics and likelihood is
improved with IRT-ZILM, a statistical hypothesis test can
be performed on both likelihoods to determine whether the
null or alternative NDC offers a better explanation of data.
We leave further elaboration of this approach as future work
since it is outside the scope of our direct objectives.
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ABSTRACT
We consider the equity and fairness of curricula derived from
Knowledge Tracing models. We begin by defining a unify-
ing notion of an equitable tutoring system as a system that
achieves maximum possible knowledge in minimal time for
each student interacting with it. Realizing perfect equity re-
quires tutoring systems that can provide individualized cur-
ricula per student. In particular, we investigate the design of
equitable tutoring systems that derive their curricula from
Knowledge Tracing models. We first show that the clas-
sical Bayesian Knowledge Tracing (BKT) model and their
derived curricula can fall short of achieving equitable tutor-
ing. To overcome this issue, we then propose a novel model,
Bayesian-Bayesian Knowledge Tracing (B2KT), that natu-
rally allows online individualization. We demonstrate that
curricula derived from our model are more effective and equi-
table than those derived from existing models. Furthermore,
we highlight that improving models with a focus on the fair-
ness of next-step predictions can be insufficient to develop
equitable tutoring systems.

Keywords
equity & fairness, knowledge tracing, intelligent tutoring

1. INTRODUCTION
In recent years Massive Open Online Courses (MOOCs) and
online educational platforms have gained significant impor-
tance. They hold the opportunity of providing education at
scale and making education accessible to a larger part of the
world’s population. To facilitate learning in online educa-
tion and enable customized learning paths for all students,
intelligent tutoring systems can be employed while limiting
the amount of manual work necessary for each student [11].

In that context, moving education from an offline setting to
an online setting, has the potential to promote Inclusion,
Diversity, Equity, and Accessibility (IDEA). In particular,
by reducing personnel efforts for tutoring, there is the op-
portunity to include students with diverse backgrounds and

skills, and, importantly, to support their learning equitably.
To achieve this, an intelligent tutoring system must be able
to adapt to the specific characteristics of each student.

While individualized tutoring has been studied in the com-
munity for many years, we consider individualization with a
focus on equitable and fair tutoring in this paper. We start
by providing a unifying definition of an equitable tutoring
system. Our definition is based on the ethical principles
of beneficence (“do the best”) and non-maleficence (“do not
harm”) which are commonly adopted in bioethics and medi-
cal applications [1]. These principles dictates that we should
provide tutoring which maximizes the achieved knowledge
while minimizing a student’s efforts. In particular we fo-
cus on modifying Bayesian Knowledge Tracing (BKT) [2]
to better realize these ethical principles. To this end, we
propose the Bayesian-Bayesian Knowledge Tracing (B2KT)
model and demonstrate its advantages for equitable tutor-
ing in several experiments. Furthermore, we investigate the
relation of the commonly considered AUC score concerning
the derived tutoring policies, finding that even if a BKT
model appears fair in terms of the AUC score, the derived
tutoring policies can be inequitable.

In summary, we make the following contributions: (i) We
propose a unifying definition of equitable tutoring moti-
vated by ethical principles. (ii) We propose the B2KT model
which allows for effective individualization and demonstrate
its benefits concerning equitable tutoring. (iii) We highlight
that focusing on equity in terms of AUC can be insufficient
to ensure equitable tutoring in terms of our definition.

An longer version of this paper with additional experimental
results and extended discussion is available [15].

2. RELATED WORK
Fairness in online education and BKT. Several works have
considered fairness in data-driven educational systems and
intelligent tutoring, e.g., [7, 4, 17, 8]. In [7], the authors dis-
cussed implications of using data-driven predictive models
for supporting education on fairness. They identified sources
of bias and discrimination in “the process of developing and
deploying these systems”, and discussed high-level possibili-
ties to improve fairness of systems in the“action step”. In [8,
17], it was investigated how different data sources can pro-
vide helpful information to predict students’ success in ed-
ucation. Key insights were that different data sources can
help to make better predictions but have different character-
istics in whether they over- or underestimate students’ suc-
cess [17], and that such predictions can include gender and

S. Tschiatschek, M. Knobelsdorf, and A. Singla. Equity and fairness
of Bayesian knowledge tracing. In A. Mitrovic and N. Bosch, editors,
Proceedings of the 15th International Conference on Educational
Data Mining, pages 578–582, Durham, United Kingdom, July 2022.
International Educational Data Mining Society.
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578



racial bias in some fairness measures which can be partly
alleviated through post-hoc adjustments [8]. In [4] fairness
in the context of BKT was studied, and it was found that
tutoring policies basing on inaccurate BKT models can be
inequitable, when considering the difference in learning suc-
cess for different subpopulations as a measure of unfairness.
Related work also considers adopting a Bayesian perspective
for realizing fair decision rules under model uncertainty [3]
and fairness in the context of non-i.i.d. data [19].

Individualization in BKT. Several papers have studied in-
dividualization of BKT models per student, e.g., [9, 10,
18]. In [10] the prior per student model was introduced
which uses a student-specific parameter characterizing the
students’ individual knowledge. [18] considered individual-
ization through defining student and skill specific parame-
ters which are fitted through gradient descent.

Instructional policies. Key for achieving equity according to
our definition are instructional policies which stop practicing
a skill at the right time. This problem has for instance been
considered in [6, 12]. Further related work has investigated
approaches leveraging deep models for creating policies to
quickly assess students’ knowledge [16] and using reinforce-
ment learning for optimizing tutoring policies [14, 5].

3. BACKGROUND & NOTATION
Bayesian Knowledge Tracing. Bayesian knowledge tracing
(BKT) [2] is a model characterizing the skill acquisition pro-
cess of students. For a single skill, it can be understood as
a standard hidden Markov model in which the binary (la-
tent) state encodes the mastery of the skill, and the binary
observations indicate whether a practicing opportunity of
the skill was solved correctly. Upon practicing a not yet
mastered skill, the student acquires the skill with probabil-
ity p(T ). Once a skill is mastered, it remains mastered. If
a student has mastered the skill practiced by an exercise,
they solve this exercise correctly with probability 1− p(S).
If a student has not mastered the skill, it guesses the correct
answer with probability p(G). At the beginning, a student
has already mastered the skill with probability p(L0).

Notation. We consider the interaction of students s ∈ S with
an intelligent tutoring system. The interaction history up
to time t is denoted as Dst = {(z1, c1), (z2, c2), . . . , (zt, ct)},
where zt′ ∈ Z is the skill practiced through an exercise at
time t′, ct′ ∈ {0, 1} is an indicator of whether the exercise
was solved correctly, and Z is the set of skills. In the context
of BKT, we refer to the random variables (RVs) indicating
whether skill i ∈ Z is mastered at time t as Zit and to
the RVs indicating whether an exercise practicing that skill
would be solved correctly as Cit . Sometimes we add another
superscript s to indicate the student the RVs correspond to.
Upper-case terms like Zit denote RVs and their lower-case
counterparts like zit denote particular instantiations.

4. EQUITABLE TUTORING
In this section, we provide a definition of equity in intelligent
tutoring and discuss its operationalization.

4.1 Definition
We consider a tutoring setting in which a total of K sills
ought to be taught to a set of students S by an intelligent tu-
toring system employing a tutoring policy π : H → I ∪{⊤}.
This policy maps histories h ∈ H consisting of observations

of a student’s learning process to an exercise e ∈ I to be
practiced next or to a stop-action ⊤, which ends the teach-
ing process. Each student can have different learning charac-
teristics. Every tutoring policy π has an expected stopping
time T s(π), i.e., the expected time of executing the stop ac-
tion, and an expected knowledge Ls(π) acquired by the end
of the teaching process, i.e., Ls(π) is the expected number
of mastered skills upon executing the stop action.

Our notion of equity is based on the ethical principles of
beneficence and non-maleficence. We understand them to
translate into the objective of maximizing a student’s knowl-
edge using as little of the student’s resources as possible, i.e.,
performing a minimal number of exercises:

Definition 1. Consider a tutoring system employing a tutor-
ing policy π. The policy π is equitable for student s iff

T s(π) = min
π′,Ls(π′)=K

T s(π′) and Ls(π) = K.

A tutoring system is equitable if its tutoring policy is equi-
table for all students s ∈ S.
Thus, informally, a tutoring system is equitable if it can
teach all K skills in the minimal amount of time possible to
any student. Note that our notion of equity is strongly re-
lated to that introduced in [4] (cf. discussion below). In the
above definition, we implicitly assume that all students can
master all K skills.1 Importantly, a tutoring system can only
be equitable if it is adaptive to the students which are inter-
acting with it. In particular, it has to individualize the as-
signment of exercises and needs to carefully select the ”stop
action”, in order to achieve equity. The above definition de-
scribes an idealized notion of equity which in general cannot
be achieved as the tutoring policy would have to teach using
the optimal policy right from the beginning. Nevertheless,
we can compare tutoring policies π in the spirit of the above
definition. In particular, given two tutoring policies π and
π′ which both teach the same number of skills, we consider
the policy π to be more equitable as compared to π′ if for
all students s ∈ S it holds that T s(π) ≤ T s(π′).

We note that our notion of equity is strongly related to that
introduced in [4]. In [4], the authors “assume that an equi-
table outcome is when students from different demographics
reach the same level of knowledge after receiving instruc-
tion”. The desideratum of achieving knowledge fast is later
also added to their notion of equity whereas in our case it is a
fundamental constituent. Furthermore, our interest extends
to downstream implications of such a definition of equity,
namely the individualization of knowledge tracing.

Theoretical Implications. Our definition of equity leads to
the following (probably obvious) but important observation:

Observation 1. A tutoring system for a population of stu-
dents with different learning characteristics can only be eq-
uitable if its tutoring policy is adaptive to the students.

Thus, we note that if the tutoring policy is derived deter-
ministically from a non-adaptive, initially incorrect, model
of the students, the tutoring system will in general not be
equitable. Achieving equity would require basing a policy on
rich side information in order to employ an optimal tutoring
policy for each student right from the beginning. But such
rich side information might not be available.
1Our definition can be easily generalized to account for an
individual student’s maximal achievable knowledge.

579



Zi
0

Ci
0

Zi
1

Ci
1

Zi
2

Ci
2

Zi
3

Ci
3

· · ·

L0 T

S G

∀1 ≤ i ≤ K

Figure 1: Graphical model of B2KT. The acquisition and ap-
plication of the K skills depends on p(L0), p(S), p(G), p(T ).

4.2 Operationalization
Tutoring policies are often either simple fixed strategies or
derived from a model, e.g., a BKT model, such that each
knowledge component is repeatedly exercised until it is mas-
tered with a certain probability. But tutoring policies based
on incorrect or non-adaptive models can result in a student
not acquiring all skills or suggest to perform too many prac-
ticing opportunities. Thus the following two general direc-
tions are important for building equitable tutoring systems:
(i) Using side information. Any available side information
about a student should be used to individualize the underly-
ing models. In the context of classical BKT models, the side
information could be used to make an initial guess about
the key parameters of the model (p(L0), p(S), p(G), p(T )).
(ii) Online adaptation. Even when using side information, a
model is likely not perfectly individualized to all students.
To further adjust the models in such cases, online adaption
of the models during interaction seems promising.

5. PROPOSED APPROACH: B2KT
In this section, we propose a Bayesian variant of the classi-
cal BKT model which enables online adaption to student’s
parameters from which individualized — potentially more
equitable — policies can be derived, cf. Figure 1.

We assume that each student s has its own learning dy-
namics, described by student-specific parameters θs. If the
learning dynamics can be described using a BKT model,
θs = (p(Ls0), p(T s), p(Ss), p(Gs)). We assume these learn-
ing dynamics to apply for the acquisition of all skills. In
practice, we don’t know these parameters and need to infer
them. To this end, we take a Bayesian approach, and we
assume a set of possible parameters Θ such that θs ∈ Θ and
a prior distribution p0(θs). Based on t observations of a stu-
dent’s practicing exercises collected in Dt, we can compute
the probability that a student has mastered a specific skill
and base tutoring policies thereon. As we don’t know θs,
this requires marginalizing out the (unknown) parameters
θs. In this way the different possible parameters and their
influence for predicting the knowledge state get re-weighted
according to the available data. In particular, we compute

p(Zs,it | Dt) =

∫

θ∈Θ

p(Zs,it | θ,Dt)︸ ︷︷ ︸
=:(#1)

p(θ | Dt)︸ ︷︷ ︸
=:(#2)

dθ, (1)

where Zs,it is a random variable indicating whether skill i
is mastered at time t by student s. For only a few possible
parameters θ, the above equation can be solved exactly by
enumeration and by observing that both terms (#1) and
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Figure 2: Equity gap vs number of excess learning opportuni-
ties. B2KT becomes more equitable as more skills are taught.

(#2) can be computed efficiently by the following recursion:

αθ0(l) = p(Zs,i0 = l | θ) = p(L0)l(1− p(L0))1−l

αθt+1(l) = p(Zs,it+1 = l, cit+1)

=
∑

z
s,i
t

p(cit+1|Zs,it+1 = l)p(Zs,it+1 = l|Zs,it = zs,it )αt(z
s,i
t )

Here cit collects all observations with respect to practicing
the ith skill up to time t, and cit′ is the t′th entry of cit. Then

(#1) = p(Zs,it = 1 | θ,Dt) =
αθ
t (1)

αθ
t (0)+α

θ
t (1)

, and

(#2) = p(Θ = θ | Dt) =
p0(θ)·(αθ

t (0)+α
θ
t (1))∑

θ′∈Θ p0(θ′)·(αθ′
t (0)+αθ′

t (1))
.

6. EXPERIMENTS
We perform experiments on synthetic data and consider set-
tings in which the learning rate p(T s) is assumed to be un-
known. This is motivated by previous work which has iden-
tified the learning rate as a key parameter for improving
BKT based models [18]. In all presented results we denote
the average stopping time of a policy for a population of
students by Tstop and the average number of acquired skills
by % skills. We consider Threshold(τ) curricula based on
knowledge tracing models. These curricula repeatedly ex-
ercise a skill until it is mastered with a probability of at
least τ under the model. We consider the following models:
(i) BKT: the classical BKT models with fixed parameters;
(ii) B2KT: the proposed Bayesian-BKT model.

Students with different learning behaviors. We study the
equity of tutoring policies when the students are sampled
uniformly from two groups, each containing students with
learning dynamics described by a ground truth BKT model.
In particular, we build on the experimental setup from [4]
where there is a group of slow learners (BKT slow) and fast
learners (BKT fast). In [4], the authors also fitted a BKT
model to interaction data from students from both groups;
we refer to the corresponding BKT model as BKT mixed.
The parameters of the considered models are as follows:

p(Ls0) p(Ss) p(Gs) p(T s)
BKT slow 0.0 0.2 0.2 0.05
BKT fast 0.0 0.2 0.2 0.3

BKT mixed 0.071 0.203 0.209 0.096

We considered the interaction with 400 students, 200 from
the slow and the fast group, respectively, and we compared
the performance of Threshold(0.95) tutoring policies based
on these models for different numbers of skills that ought to
be taught in Table 1. We observe that in the case of mis-
match of the student properties and the BKT models used
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Table 1: Equity trade-offs of curricula derived from different models/parameterizations.

1 skill 5 skills 20 skills

slow learners fast learners slow learners fast learners slow learners fast learners

Threshold(0.95) % skills Tstop % skills Tstop % skills Tstop % skills Tstop % skills Tstop % skills Tstop

BKT slow 97.00 24.14 99.50 9.49 97.20 122.80 99.90 66.00 97.55 492.64 99.90 183.84

BKT fast 61.00 13.85 97.50 5.96 62.60 71.98 96.10 29.81 64.20 288.76 97.23 120.59

BKT mixed 95.00 23.51 100.00 8.33 95.40 113.67 99.90 40.93 94.53 466.55 99.68 169.86

B2KT 94.50 24.04 100.00 7.88 97.70 120.87 98.40 32.61 96.68 493.00 96.66 120.05

for the threshold policy, either only a small fraction of the
skills (clearly below 95 %) is acquired or that more than
necessary time is spent exercising. The mismatch issue is
alleviated in the case of the B2KT model (assuming a uni-
form prior over both types of students), in particular for a
larger number of skills. Intuitively this is because, in the
case of multiple skills, the model has more opportunities to
learn about the students’ characteristics and leverage this
knowledge in later tutoring. This fact is also illustrated in
Figure 2 in which we reproduce and extend an experiment
from [4] in which we compare the “equity gap” (the differ-
ence in the percentage of skills mastered by fast and slow
students, respectively) to the number of excess learning op-
portunities. Importantly, B2KT becomes more equitable as
more skills are taught.

Out-of-distribution generalization. We test whether B2KT
can help with aspects relevant to inclusion and diversity. In
particular, we consider a stylized mismatch setting in which
a tutoring system interacts with students who have a learn-
ing behavior not considered when building the system. In
addition to the previous two types of students, we assume a
third type of learner (BKT med) with the following param-
eters: p(Ls0) = 0.0, p(Ss) = 0.2, p(Gs) = 0.2, p(T s) = 0.18.
We considered Threshold(0.95) policies based on BKT
models of slow and fast learners and the B2KT model with
a uniform prior over slow and fast learners. Our results are
presented in Table 2. We observe that the performance of
the policies derived from the B2KT model have comparable
performance to those derived from the true model (although
the true model has zero posterior probability) whereas other
models yield policies worse in terms of stopping at the right
time or teaching the right amount of skills. This property
of B2KT can be helpful for promoting inclusion, e.g., when
interacting with students who were underrepresented in the
data used for building an intelligent tutoring system.

Fair next step predictions do not necessarily imply equitable
tutoring. We show empirically that models which might
appear to be fair when looking at their AUCs for different
groups of students do not necessarily yield equitable tutoring
policies. In particular, we again focus on a student popula-
tion consisting of two groups of students:

p(Ls0) p(Ss) p(Gs) p(T s)
Group 1 0.0 0.1 0.4 0.1
Group 2 0.0 0.1 0.2 0.3

We generated data of 400 students (50% from group 1 and
group 2, respectively) in a setting with 20 skills and 1000
random exercises from a BKT model. The true model of
group 1’s students achieved an AUC of 0.7393 for group 1’s
students, while the true model of group 2’s students achieved
an AUC of 0.6710 for group 2’s students.

Looking only at the AUC, the two models appear rather in-
equitable (there is no group parity). Thus it might appear

sensible to aim to use a BKT model for tutoring which has
comparable AUCs for both groups in order to promote eq-
uity. For instance, a BKT model using parameters p(L0) =
0, p(S) = 0.4, p(G) = 0.1, p(T ) = 0.65 achieves an AUC of
0.6719 on group 1’s students and of 0.6733 on group 2’s stu-
dents, respectively. That is, the AUCs on the two groups are
approximately equal. However, when looking at the differ-
ent models with respect to their tutoring performance using
a Threshold(0.95)-policy, we observe a very different pic-
ture, cf. Table 3. In particular, the fraction of skills taught
differs significantly between the two groups: In group 1 only
28.68% of the skills are acquired by the students on aver-
age while in group 2 74.70% of the skills are acquired. This
finding is closely related to the observation that models with
greatly different characteristics can have similar AUCs [13].

Table 2: Out-of-distribution generalization.

1 skill 5 skills 20 skills

BKT med BKT med BKT med

Threshold(0.95) % skills Tstop % skills Tstop % skills Tstop

BKT slow 99.50 11.28 99.55 56.45 99.59 225.25

BKT fast 90.75 7.61 91.55 37.59 91.70 151.36

BKT mixed 99.50 10.46 99.00 51.71 99.21 211.29

BKT med 98.25 8.82 97.35 45.59 97.84 184.20

B2KT 98.75 10.33 97.50 48.80 94.19 168.36

Table 3: Fairness in terms of similar AUCs on different groups
does not imply fairness in terms of the derived curricula.

group fair wrt AUC true model wrt group

group AUC % skills Tstop AUC % skills Tstop

group 1 0.6719 28.68 61 0.7393 96.13 308

group 2 0.6733 74.70 64 0.6710 96.35 105

7. CONCLUSION
We considered the equity and fairness of curricula derived
from knowledge tracing models, and provided a unifying def-
inition of equitable tutoring systems. Our definition is, in
many practical settings, not realizable but suggests that the
individualization of tutoring policies to students is key for
realizing equity. We proposed the B2KT model, a Bayesian
variant of the classical BKT model, and demonstrated in
various experiments that it can be beneficial for realizing eq-
uitable tutoring systems and promoting IDEA more gener-
ally. Furthermore, we highlighted that improving and eval-
uating models with the main focus on next-step predictions
can be insufficient to develop equitable tutoring systems.
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ABSTRACT
Several studies adopt different approaches to examining how
economic, racial, and gender circumstances influence stu-
dent performance in large-scale entrance exams, such as the
National High School Exam (ENEM). Using a methodology
based on Item Response Theory, ENEM’s exam attempts
to assess, for each item (question), the curve (function)
that relates the participants’ abilities to their probabilities
of correctly answering the item, which is assumed to hold
whichever subgroup, a fundamental premise of IRT called
invariance. This work analyzes whether the ENEM 2019
test presented similar curves for subpopulations defined by
gender, race, and income, regardless of the participant’s ac-
tual abilities. Our approach is to analyze the properties of
the observed curve for each group and then perform a non-
parametric ranking test to compare the equity of each item
(question) for each analyzed characteristic. We found that
the ”Languages and Codes” questions consistently favored
male, white, and high-income participants. At the same
time, the other three sets of questions (Mathematics, Natu-
ral Sciences, and Human Sciences) were considerably more
egalitarian.

Keywords
Higher education entrance exams, Grading equity, Item Re-
sponse Theory, Educational Data Mining

1. INTRODUCTION
The Brazilian National High School Exam (ENEM, for its
initials in Portuguese) is one of the most extensive entrance
exams globally, having over 5 million participants registered
in 2019 [11]. The exam has several functions; on an in-
dividual scale, it serves as an admission test to access the
federal universities (through the Unified Selection System or
SISU) and access to the federal scholarship programs (Uni-
versity for All Program or ProUni). On a collective scale,
this exam allows a comparison between schools and munici-
palities, and it also serves as an indicator for national public

educational policies at the national level [10]. Several stud-
ies investigated how sensible characteristics such as income,
race, gender, and locality, affect the participants’ score [13,
20, 19]. However, most studies use the grade obtained as
a direct indicator of the participants’ ability without inves-
tigating whether exams’ grading methodologies are unfairly
favoring or disfavoring specific subpopulations.

Since 2009, ENEM’s participants’ grades have been assigned
using Item Response Theory (IRT) methods, which consider
the difficulty of each participant’s correct questions [7] to
assign the grades, in contrast to the Classical Test Theory,
where only the number of correct answers matter [4]. IRT
creates a probability function that gives, for each question,
the probability of a correct answer given the participant’s
ability. Moreover, the primary assumption of IRT theory
is that such function does not vary independently of sub-
groups of students [7, 16]. This assumption means that,
given two groups based on a specific characteristic (e.g., men
and women), we expect the proportion of correct answers
for a particular question and grade to be similar in both
groups. If that is not the case for several questions in a test,
the method will end up a sub or super estimating a group’s
grade, causing inequality between the groups.

We investigate ENEM’s 2019 edition to evaluate whether
the invariant assumption holds for gender, race, and income
level characteristics. For such, we use the assigned grades
and participant’s answers given by ENEM’s IRT evaluation
to approximate the Item Characteristic Curves (ICCs) —
which are functions of the probability of correct answer given
the participant score. We compare the standard deviation
of the observed Area Under Curve (AUC) for each group
based on a characteristic (such as men and women for the
gender). If a group has a bigger AUC than another group,
their participants have a more significant overall probability
of correctly answering the question, independently of their
true abilities. Therefore, questions showing a high AUC
standard deviation for a particular characteristic may favor
a group. Following the first analysis, we perform a non-
parametric ranking test to check if the behavior found in
the questions is statistically consistent in the whole test.

Thus, this paper uses statistical analysis to evaluate whether
or not the ICC’s estimation of IRT theory might favor par-
ticular groups. The contributions of our analysis reside in
these aspects: (1) Analyzing whether the question estima-
tions per se discriminate towards certain groups instead of

V. Guardieiro, M. M. Raimundo, and J. Poco. Analyzing the equity
of the Brazilian national high school exam by validating the item
response theory’s invariance. In A. Mitrovic and N. Bosch, editors,
Proceedings of the 15th International Conference on Educational
Data Mining, pages 583–587, Durham, United Kingdom, July 2022.
International Educational Data Mining Society.
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evaluating the grades themselves. (2) Using robust non-
parametric statistical tests to determine if these differences
are consistently privileging a specific group.

2. DATA
We used ENEM’s most recent microdata from 2019, com-
posed of four objective tests, each containing 45 multiple
choice questions and an essay. The tests evaluate the knowl-
edge areas: Mathematics, Languages and Codes, Human
Sciences, and Natural Sciences. The Languages and Codes
test consists of five foreign language questions, where the
participant chooses whether to be evaluated in English or
Spanish, and the remaining 40 questions are in Portuguese.
Each participant must take all of the tests.

The National Institute of Educational Studies and Research
Ańısio Teixeira (INEP), responsible for the ENEM, made
available the microdata per participant. These data are
anonymized and contain the scores obtained, each partic-
ipant’s answers, registration data (such as city, age, and
school), and a non-mandatory socioeconomic questionnaire
about (self-declared) race, family income, and parent’s edu-
cation and profession. We analyze three group characteris-
tics obtained from the questionnaire:

Race: There are five options in addition to “undeclared”:
white, black, brown, yellow (Asian), and indigenous. We
analyzed only the first three (white, black, and brown), as
the others have few participants.

Income: Family income is defined as monthly minimum
wages (MW), and the possible range goes from zero to twenty
or more MW. Based on Neri et al. (2020) [14], we separate
the participants into low (less than 1/2 MW per capita),
middle (between 1/2 and 2 MW per capita), and high-income
(more than two MW per capita) classes.

Gender: The exam’s registration only allowed for “Female”
and “Male” to be mandatory in its selection. Therefore, we
do not have information about other gender minorities.

Foreign Language

Group Exam English Spanish

White 463, 431 307, 657 174, 199
Black 125, 489 65, 503 66, 069
Pardo 502, 996 244, 485 281, 473

Low Income 660, 222 305, 442 389, 535
Medium Income 390, 670 259, 454 144, 957
High Income 97, 881 83, 409 16, 223

Women 666, 905 350, 375 347, 461
Men 481, 868 297, 930 203, 254

Total 1, 148, 773 648, 305 550, 715

Table 1: Number of participants in each group which were
regular graduates in 2019 and answered the questions about
Race, Gender, and Income Level. Each participant can
choose to take the Foreign Language questions in English
or Spanish.

As the parameters of the grading methodology used by ENEM
are estimated using only the responses of students who are
regular graduates in that particular year, our analysis will

use data from such students who answered the questions of
gender, race, and income. Table 1 summarizes the number
of analyzed participants in each subgroup divided by the
different characteristics.

3. ENEM SCORE ESTIMATION
The method used to obtain the ENEM participants’ score is
from the Item Response Theory (IRT) [8], which models the
probability of a participant responding correctly to an item
(or question) as a function of its parameters and the partici-
pant’s ability (or proficiency). Several increasing monotonic
functions are used to model such a relationship such as the
Rasch model [15], and the one and two-parameter logistic
models [12, 2]. We employed ENEM’s three-parameter lo-
gistic function [2], that is the probability of a correct answer
by participant j to item i (event Uij = 1) given the profi-
ciency parameter θj and item parameters ai, bi, and ci:

P (Uij = 1|θj , ai, bi, ci) = ci + (1− ci) 1

1 + e−ai(θj−bi)
, (1)

The relationship between P (Uij = 1|θj) and the parameters
a, b, and c is called the Item Characteristic Curve (ICC).
Figure 1 illustrates an example of this curve.
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Figure 1: Example of an Item Characteristic Curve (ICC).

Both the item parameters and the participants scores are es-
timated simultaneously using the participants answers. The
scores are estimated, given the item parameters, using the
Expected a Posteriori (EAP) method with an a priori prob-
ability function, which is the same for all participants. The
a priori distribution has mean and variance corresponding
to the mean and variance of regular graduating participants
in 2009, defined as 500 and 100 points, respectively. More
information is available in the participant guides [8, 9] and
their bibliographic references [1, 3, 7].

Invariance: Item Response Theory starts from the premise
that, for a given question, a single function maps an ex-
aminee’s ability to his probability of answering it correctly.
Therefore, if the model is well specified, all populations’ pa-
rameters are the same. This premise implies the property
called invariance of item and ability parameters, which is
the primary distinction between IRT and classical test the-
ory [7]. Under invariance, we have that the parameters that
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characterize an item do not depend on the participants’ abil-
ity distribution and that the participant ability parameter
does not depend on the set of test items.

In practice, invariance does not occur in the strict sense,
even when the model is correctly specified [7]. Nevertheless,
it is essential to determine the “degree” to which invariance
holds. Next, we present how we examine the invariance of
the items concerning the subpopulations defined by gender,
race, and income.

4. METHODOLOGY
We use the concept of Item Characteristic Curves to com-
pare the performance of each analyzed group in each ques-
tion. The advantage of such comparison is that it allows
us to disregard distinct distributions of scores as we analyze
the probability of a correct answer given the participant
score. For such, we analyze the observed ICCs, which were
constructed considering the proportion of participants who
answered the item correctly for different score ranges.

4.1 AUICC Inspection
Under invariance, we expect the relationship between the
participants’ scores and the probability of correctly answer-
ing a specific question (i.e., the item characteristic curve)
to be similar to all groups. Therefore, the area under the
item characteristic curve of a specific question should be
near equal to all groups. We calculated how different the
observed AUICC is for each group of a specific characteris-
tic with the following steps:

1. Observed ICC: For each question and subpopulation, the
observed ICC was the proportion of participants who an-
swered correctly given their score range.

2. Item AUICC: To compare the difficulties of each question,
we calculated the area under the item characteristic curve for
each subpopulation and the total population. The AUICC
can be interpreted as: if a group has a higher AUICC for
a question, then it has a higher probability of answering it
correctly regardless of possible abilities; therefore, the item
is less difficult for that group. Figure 2 shows the Item
AUICC calculation.

3. AUICC discrepancy: Lastly, we estimated the discrepancy
of difficulty for each item and each analyzed characteristic
(gender, race, and income) by taking the standard deviation
of AUICC for the groups and normalized this value by di-
viding by the AUICC found for the total population. This
normalized value indicates whether inequality seems to hold
for this item (small values) or not (bigger values).

4.2 Invariance Checking
The item-by-item AUICC comparison indicates potentially
troubling questions. However, to show if there is a consistent
difference among the social/gender groups, we performed
a non-parametric Friedman ranking test [6, 18] (as imple-
mented in [17]). We performed this test for each exam to
see if there are statistical differences among the groups con-
sidering a set of items’ AUICCs for each social/gender group.
For a fixed exam and characteristic, the test procedure in-
volves ranking the groups’ AUICC for each question and

Figure 2: Illustration of the Observed ICC for a given ques-
tion. The light blue bars represent the proportion of correct
answers given by the participants given a grade range. The
AUICC is the sum of the area of the bars.

then comparing the ranks obtained for each group. There-
fore, if we have n questions and k groups, the Friedman test
determines if any of the k groups ranked consistently higher
or lower than the others.

For the combination of tests and features whose null hypoth-
esis was rejected by the Friedman test, we determine the one-
by-one comparisons through a Finner post-hoc test [5] using
the pivot quantities obtained by the previous test. Friedman
test checks the hypothesis all groups are equal. If rejected
Finner post-hoc test distinguish how each group performs
compared to the others.

5. RESULTS
5.1 AUICC Inspection
We performed the Observed ICC analysis to all selected
characteristics and the Mathematics (MT), Languages and
Codes (LC), Human Sciences (HS), and Natural Sciences
(NS) tests. The proportion of corrected answers was cal-
culated for sets of participants’ scores with a bin size of
15. For the Languages and Codes test (LC), we separated
the questions based on the idiom (Portuguese, English, and
Spanish). Every participant takes the Portuguese questions
but can choose whether to take English or Spanish as the
foreign language questions.

The results are summarized in Figure 3, where for each
exam, we have a heatmap where each row of squares in-
dicates which characteristic was analyzed, and the squares
in the same columns correspond to the same question. The
color of the squares denotes the value of Area discrepancy for
that question in the given characteristic, where the darker
tons are equivalent to the greater discrepancy, and the sym-
bol indicates which group had the highest area. The color
scale is the same for all exams. Therefore, if a particular
row contains several dark squares, it indicates that the cor-
responding exam may be unequal for that given characteris-
tic. If the symbols on the squares are mainly the same, such
a given group is more frequently favored in such an exam.

Visually, we can see that a few questions have high diffi-

585



Figure 3: Heatmap of the Area discrepancy based on the Observed ICC. The color of each square indicates the value of Area
discrepancy and the symbol indicates the group with the highest area. As the importance of the indicated grows with the
discrepancy, the symbols’ visibility also grows with the color.

culty discrepancy for the HS, NS, and MT tests. However,
the group with the highest area in such questions varies
significantly. For instance, in MT and NS, the most dis-
crepant questions are almost equally divided between man
and woman, being the group with the highest area. However,
the LC test behaved quite differently. For the race charac-
teristic, almost all of the questions presented high difficulty
discrepancy, with the white group being dominant as the
race with the highest area. Meanwhile, the income groups
did not show a consistent dominance of a specific group for
the question in Portuguese. However, they did show a strong
dominance of the high income group in the foreign language
questions, mainly in English. This result indicates that the
first three tests are egalitarian for gender, race, and income,
while the LC test, principally the foreign language questions,
is not.

5.2 Invariance Checking
To assess whether the behavior observed in the visual com-
parison is consistent, we performed the Friedman and Finner
tests with the AUICCs. Agreeing with the first experi-
ment, the Human Sciences (HS) and Mathematics (MT)
tests did not show a consistent favoring or disfavoring for
any group, having a p-value greater than 0.05 in the Fried-
man test. Meanwhile, the Languages and Codes questions
in Portuguese and in English showed a relevant difference
among men and women, with women having a lower AUICC
rank.

Regarding the Race characteristic, the Natural Sciences (NS)
test showed lower AUICC for black participants than white
and pardo participants. The Portuguese questions in the
LC exam showed similar behavior to the NS test, with the
only difference being that the pardo participants had a lower
AUICC rank than the white ones. In both foreign lan-
guages questions (English and Spanish), the black partic-
ipants showed a lower AUICC rank than white. Lastly,
for the Income characteristic, the low-income group ranked
lower than the high-income for NS and also LC in all lan-
guages. For the NS test, the low-income also ranked lower
in AUICC than the medium-income participants.

6. CONCLUSIONS
This paper investigated whether the 2019 edition of the
Brazilian National High School Exam (ENEM) presented
any consistent favor or disfavor for groups based on Gen-
der, Race, and Income Level. Our methodology assessed
if the invariance property of Item Response Theory (IRT)
holds for Item Characteristic Curves (ICC) estimated for
each group given its participants’ assigned grades and an-
swers. In our first analysis, we visually compared the overall
difficulty of each question and for each group. Then, in our
second analysis, we tested if any of the exams were consis-
tently unequal for any group. We found that the Human
Sciences and Mathematics questions did not favor or disfa-
vor any group. Meanwhile, the Natural Sciences test was
consistently easier for white and pardo participants in detri-
ment of black ones and easier for high- and medium-income
in detriment of low-income.

The “Languages and Codes” exam was consistently unequal,
with different ICC’s (that assigns questions difficulty) be-
havior for native and foreign language questions. Portuguese
questions were overall harder for women than men, primar-
ily due to the first group having a higher chance of correctly
guessing the questions. They were also harder for black and
pardo participants than white ones and harder for lower-
income than medium- and high-income. Foreign language
questions also showed inequality, with the English questions
favoring men in detriment to women and both English and
Spanish questions favoring white participants in detriment
of black and high-income in detriment of low-income.

This research also cataloged means of improving IRT: (1)
using the analysis of this work to evaluate and possibly re-
formulate the exam; (2) using data mining methods called
multi-task learning to create particular models for each group;
(3) using imbalance-robust data mining methods to avoid
ICC’s bias towards favored groups; and (4) using multi-
objective optimization to take into consideration multiple
goals (fit the data and keep the model fair). We believe this
research contributes to reaching fairer IRT-based tests with
the analysis and those future directions.
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ABSTRACT
Classroom environments are challenging for artificially in-
telligent agents primarily because classroom noise dilutes
the interpretability and usefulness of gathered data. This
problem is exacerbated when groups of students participate
in collaborative problem solving (CPS). Here, we examine
how well six popular microphones capture audio from indi-
vidual groups. A primary usage of audio data is automatic
speech recognition (ASR), therefore we evaluate our record-
ings by examining the accuracy of downstream ASR using
the Google Cloud Platform. We simultaneously captured
the audio of all microphones for 11 unique groups of three
participants first reading a prepared script, and then partic-
ipating in a collaborative problem solving exercise. We vary
participants, noise conditions, and speech contexts. Tran-
scribed speech was evaluated using word error rate (WER).
We find that scripted speech is transcribed with a surpris-
ingly high degree of accuracy across groups (average WER =
0.114, SD = 0.044). However, the CPS task was much more
difficult (average WER = 0.570, SD = 0.143). We found
most microphones were robust to background noise below
a certain threshold, but the AT-Cardioid and ProCon mi-
crophones were more robust to higher noise levels. Finally,
an analysis of errors revealed that most errors were due to
the ASR missing words/phrases, rather than mistranscrib-
ing them. We conclude with recommendations based on our
observations.

Keywords
Group work, speech recognition, collaborative, spontaneous
speech, microphones

1. INTRODUCTION
The ubiquity of technology and computers in the classroom
has provided unparalleled opportunities to uncover new in-
sights about how people learn in an increasingly digital en-
vironment. Successful analysis of learning settings and out-
comes — whether through traditional data mining and infor-
mation extraction, general machine learning, or targeted ap-
plications of artificial intelligence (such as intelligent agents
in the classroom) — must be able to handle multiple human
inputs like structured questions and answers, free-form text,
and, importantly, naturalistic human speech that grounds
so much of education.

Over the years, various works have assessed the feasibility of
utilizing automatic speech recognition (ASR) systems in var-
ious environments [1, 4, 6, 7, 8] — of particular note, in 2015,
Blanchard et al. [4] evaluated state-of-the-art speech recog-
nition technology on teachers wearing high-quality headset
microphones in classrooms, reporting an average word error
rate (WER) of 0.44. While [4] found a wide range of ASR
performance across major platforms, modern ASR perfor-
mance is now largely consistent [6]; thus, the primary fo-
cus of our work is on which hardware should be used to
collect the data to be processed, from real classroom en-
vironments. This work highlights budget and performance
trade-offs for researchers and practitioners to consider when
deploying hardware for studying group work or collaborative
problem solving (CPS) [10].

For our evaluation, we simultaneously recorded group audio
from multiple microphones. Groups participated in discus-
sion under various conditions that simulate a classroom envi-
ronment. We then used automatic speech recognition (ASR)
to generate separate transcripts from the audio streams of
each microphone and used word error rate as our primary
metric for evaluating hardware performance. Finally, we
took a deep dive into specific errors in the automatic tran-
scription under various conditions to better anticipate how
a downstream system might be influenced by said errors.
The result is, to our knowledge, a novel assessment of audio
sensor hardware for recording collaborative problem solving
in a classroom-based data mining system.

M. Bradford, P. Hansen, J. R. Beveridge, N. Krishnaswamy, and
N. Blanchard. A deep dive into microphone hardware for record-
ing collaborative group work. In A. Mitrovic and N. Bosch, editors,
Proceedings of the 15th International Conference on Educational
Data Mining, pages 588–593, Durham, United Kingdom, July 2022.
International Educational Data Mining Society.
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2. METHODOLOGY
2.1 Recording setup
We evaluated six microphones: an Audio-Technica ATR2100x-
USB (AT-ATR), an Audio-Technica U891Rb Cardioid Con-
denser Boundary Microphone (AT-Cardioid), an Audio-Technica
U891RbO Omnidirectional Condenser Boundary Microphone
(AT-Omni), a Blue-Yeti, an MXL AC-404 ProCon (Pro-
Con), and a Saramonic SmartMic. Microphones were se-
lected to represent a range of technologies and price points.
We assumed that, in a real-world context, one microphone
would be used for a single group.

The Blue-Yeti was set to medium-low gain and omnidirec-
tional recording, which are empirically-derived settings mo-
tivated by the manufacturer guidelines to maximize the vol-
ume of the recording while minimizing clipping. The AT-
Cardioid, AT-Omni, and AT-ATR were plugged into a mixer,
with the gain set following the same procedure as the Blue-
Yeti. The Saramonic was plugged into an auxiliary port
(AUX). All other microphones were plugged in with USB.
Microphones were all placed on one table five feet from
participants. Participant and microphone locations were
marked to ensure consistency across groups. Using Adobe
Audition, all microphones were synchronously recorded on
separate tracks.

Table 1 breaks down our participant demographics. Partici-
pants were all students in the Computer Science Department
at Colorado State University, all over the age of 18. 26 par-
ticipants considered English as their first language. Other
first languages in the participant pool included Gujarati, Ko-
rean, Spanish, Turkish, and Urdu. Providing demographic
information was optional and recorded anonymously. Par-
ticipant groups were recruited by request and all personal
information was de-identified.

Table 1: Demographics

Gender Male 20
Female 12
Nonbinary 1

Native Language English 26
Non-English 5
Bilingual 2

Age 18-24 28
25-31 5

Data was gathered in two types of tests: 1) a prespecified,
scripted recording, and 2) a collaborative problem solving
task, which are described in Section 2.2 and Section 2.3. In
each session, participants sat facing toward the microphone
array, and performed both tasks (script first, followed by
collaborative task). Each test contained variant noise con-
ditions and was run with 11 (N = 33) collaborative triads.
Groups were split into two conditions: a “noise” condition
where generic “classroom noise” was played at 50% volume
from a speaker 10 feet away from the microphone array,
and a condition without background noise. The “classroom
noise” was pre-recorded classroom sounds including indeter-
minate chatter. The speaker used was a JBL Bluetooth
Flip4 with two 8W amplifiers, corresponding to a maximum
12 dB amplification of the source audio, which was intended

to simulate ambient background noise of an average class-
room.

Across all microphones, 7:50:34 total hours of audio were
recorded. Specifically, the noise condition constituted 3:40:05
hours of audio, with the remaining 4:10:29 comprising the
non-noise condition. Additionally, the scripted task com-
prised 2:22:38 hours of recording, while the collaborative
task constituted 5:27:56 hours of recording.

Each recording from each microphone was separately pro-
cessed through Google Cloud Automatic Speech Recogni-
tion (ASR). Word error rate (WER) was calculated for the
full session. The prewritten script served as the ground truth
transcript for the scripted portion of the experiment. For the
collaborative tasks, transcripts were manually transcribed
by researchers, with a lead researcher subsequently verify-
ing the correctness of all the transcripts.

2.2 Group Script Reading Task
In this condition, the participants read a specified script
where each participant played a distinct “role” (teacher, stu-
dent 1, or student 2). The script was a transcription of a real
classroom interaction involving two students and a teacher
with no overlapping speech.

2.3 Fibonacci Weights Collaborative Problem
Solving Task

The Fibonacci Weights exercise is a collaborative problem
solving (CPS) group activity where the participants work
together to determine the relative weights of five differently
colored cubes. The masses of each cube correspond to the
Fibonacci sequence. The participants are given a scale, a 10g
calibration weight, the cubes, and a worksheet on which to
log the weight of each cube when it is determined. The task
invites CPS, leading to explicit and implicit coordination,
free-form utterances, and overlapping speech.

2.4 Evaluation Metric
We evaluate microphone performance based on ASR perfor-
mance for word error rate (WER), given by:

WER =
S +D + I

N
=

S +D + I

H + S +D

where S = the number of substitutions, D = the number of
deletions, I = the number of insertions, N = the number of
words in the ground truth transcript, and H = the number
of successes.

3. RESULTS
3.1 Cross-Task Performance
Figure 1 shows the word error rate (WER) distribution for
each microphone across both tasks. A high-level analysis
shows that results were relatively consistent across all mi-
crophones, with the average WER for every microphone all
within 1 standard deviation. The AT-Cardioid showed the
best performance, with an average WER of 0.319 (σ =
0.235). The worst-performing microphone was the Blue-
Yeti, with an average WER of 0.365 (σ = 0.278).

Table 2 provides statistics describing the performance of
each microphone across all groups in the script reading task.
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Figure 1: Box-and-whisker plot showing word error rate for
each microphone across all groups in the collaborative prob-
lem solving task.

Table 2: Descriptive statistics of WER across microphones in
the script reading task.

Microphone µ WER σ
AT-ATR 0.115 0.051
AT-Cardioid 0.112 0.050
AT-Omni 0.112 0.042
Blue-Yeti 0.117 0.040
ProCon 0.120 0.051
Saramonic 0.107 0.035
All 0.114 0.044

Table 3 provides the same in the collaborative problem solv-
ing (Fibonacci Weights) exercise.

In the script reading task, all recordings resulted in a low
WER within a very small numerical window of each other,
with a low standard deviation across groups. The scripted
nature of the task allow for clean turn taking, and a review
of the recordings confirm there is little to no overlapping
speech during the reading of the script. However, this is
not how speech in group work typically manifests. Rather,
there are overlaps, incomplete sentences, interruptions, etc.
Speakers mumble, speak fast, and rely on implicit commu-
nication strategies that are not captured in audio record-
ings, and therefore on information that is not captured in
an automatic speech recognition (ASR) platform’s underly-
ing language model. Put simply, if a typical speech recogni-
tion algorithm encounters actual audio as captured in group
work, we can expect the WER to be much higher.

Table 3: Descriptive statistics of WER across microphones in
the Fibonacci Weights Task.

Microphone µ WER σ
AT-ATR 0.577 0.151
AT-Cardioid 0.527 0.137
AT-Omni 0.530 0.128
Blue-Yeti 0.613 0.157
ProCon 0.602 0.150
Saramonic 0.581 0.151
All 0.570 0.143

In the collaborative problem solving task, which contains
free-form speech with many overlapping utterances and some
disfluencies, we also find that all microphones performed
comparably. The clear difference in performance between

the scripted condition and collaborative problem solving con-
dition implies free-form speech (e.g., contains natural in-
terruptions, overlaps, sentence fragments, disfluencies, etc.)
was the primary difference in ASR performance. In Sec-
tion 3.2 we quantify these effects. While the Saramonic was
(marginally) the best-performing microphone in the scripted
condition, but the AT-Cardioid and AT-Omni produced the
lowest mean WER for the Fibonacci Weights recordings.

3.2 Word-Level Analysis
Increased word error rates can be due to three primary fac-
tors: deletions, where a word in the ground truth transcript
is omitted; insertions, where an additional word not in the
ground truth transcript is added; and substitutions, where
one word in the ground truth transcript is swapped for a
different word.

The majority of errors from the ASR were deletions, while
substitution and insertion rates stay relatively stable across
both tasks. The most commonly deleted words were rela-
tively constant across microphones. This likely means that
the deletions were not due to the quality of the recording,
but rather the ASR model itself.

A qualitative analysis of the most frequently deleted words
exposes the commonality of such terms in the collabora-
tive problem solving task. For instance, the most commonly
deleted word weighted by frequency is the demonstrative
pronoun “this”. “This” was dropped 41% of the time and
correctly transcribed 53% of the time. In the collabora-
tive problem solving activity we can expect this word to
be used frequently, which contributes to the high weighted
deletion rate. Likewise, other most commonly deleted words,
weighted by frequency, include common particles like “so” or
“oh,”, and acknowledgments like “yeah” or “okay.” However,
some words that in context are important and contentful,
such as “10” or “20” (referring to the masses of the weights),
are also frequently deleted. See supplemental material for
the complete analysis of these commonly missed words.

3.3 Ablation of noise
Classroom environments are by nature noisy [5, 9]. Thus,
we ran additional experiments where we increase the noise
testing, we had four groups of two participants read the
preprepared script from Section 2.2 multiple times. With
each trial we increased the level of the background noise
played by the speaker (a 10% increase was equivalent to a
1.6W increase in speaker power). The net effect of this trial
was to control for participants (vocal profile) and ground
truth transcript (speech content), while varying background
noise level.

Figure 2 shows the results of the noise ablation test. The
effect of background noise up to 50% (9 dB) was negligi-
ble across all microphones, confirming the results in Sec-
tion 3.1. When the background noise level is greater than
50% (9 dB), we see the word error rate start to increase sig-
nificantly with each 10% increase in background noise. With
the background noise played at maximum speaker volume,
with certain microphones (e.g., Blue-Yeti, Saramonic), we
see word error rates start to approach the word error rates
demonstrated in the free-from Fibonacci Weight collabora-
tive task, even though the participants in this experiment

590



0

0.1

0.2

0.3

0.4

0.5

0.6

0 10 20 30 40 50 60 70 80 90 100

W
E

R

Volume (%)

Chromebook

AT-Omni

ProCon

Blue-Yeti

AT-Cardioid

Saramonic

Figure 2: WER vs. background noise volume.

Table 4: Cost of microphones

Microphone Cost
Chromebook* $0.00
Saramonic $25.00
AT-ATR $99.00
ProCon $99.95
Blue-Yeti $129.99
AT-Cardioid $319.00
AT-Omni $319.00

*Baseline microphone

were reading the “well-behaved” prepared script. When the
speaker is at maximum volume, this condition should better
approximate the noise conditions of a real classroom [5, 9].

3.3.1 Correlation with price

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 50 100 150 200 250 300 350

W
E

R

Cost ($)

Noise (100%) Script FW

Figure 3: Microphone cost plotted against group mean WER
in scripted, Fibonacci weights, and 100% noise ablation con-
ditions.

Finally, Figure 3 shows the mean word error rates across
groups in three of the conditions: the script reading, the
collaborative task and the noise ablation test session where
noise was set to 100%. Together, these three plots show that
there is no clear relationship between the cost of the micro-
phone hardware and the ASR performance over associated
recordings. Note, the Chromebook served as a “zero dollar”
baseline because all other microphones required a laptop to
connect to; the microphone integrated with a laptop that
students already have access to would entail zero dollars in
additional purchases for an in-class recording system.

4. LIMITATIONS AND DISCUSSION
We assessed the quality of a number of microphones by con-
sidering how downstream tasks like automatic speech recog-
nition (ASR) performed. At a high level, we found micro-
phones were largely comparable; however, diving deeper,
even when the speech is canonically well-behaved the influ-
ence of background noise causes dramatic differences in word
error rate across microphones at different rates. We found
that in the most extreme noise cases, the AT-Cardioid and
the ProCon were the most robust to noise, with word error
rates (WER) below 0.2 (the no-noise baseline performance
was about 0.1). Our overall pick is the ProCon, because
it too is highly robust to noise, the price is a third of the
AT-Cardioid, and WER is arguably comparable.

Independent of the microphone hardware, off-the-shelf au-
tomatic speech recognition performs well (WER less than
0.2) when the recorded speech is canonically well-behaved
(e.g., few overlaps, disfluencies, simultaneous speech). How-
ever, when participating in group work, there are explicit
overlaps, disfluencies, and simultaneous speech. Indeed, the
presence of these may indicate healthy, productive, educa-
tional group dynamics. Still, when recorded speech contains
these artifacts, word error rate soars to surprising levels, not
dissimilar to the word error rates reported by Blanchard
et al. [4] in their study of live teacher speech. Interest-
ingly, they also evaluated scripted and unscripted speech,
and found scripted speech error rates were similar to un-
scripted. Our results showcase that the technology driving
automatic speech recognition has improved substantially,
since scripted speech is now transcribed with a far lower
WER — just not for the kind of naturalistic speech used in
collaborative group-work.

There are several limitations of our study. First, we did not
verify our conclusions with alternative ASRs (e.g., solutions
from Microsoft or Amazon). Several microphones have set-
tings like gain which we hand-tuned, but could be further
experimented with. There are, of course, a plethora of mi-
crophones we did not include in our test. Finally, we have
done our best to replicate classroom environments in a lab
setting, but, for now, our evaluation is limited to the lab.

Since most of the word error rate is due to deleted words, a
future analysis should consider if it matters if those words
are dropped. Taking the transcribed text and evaluating
the performance of a further downstream task such as ab-
stract meaning representation (AMR) parsing [2, 3, 11] on
it, and on the ground truth transcript, would demonstrate
if the dropped words are resulting in significant lost infor-
mation. However, downstream tasks are likely much more
context/project dependent, and being able to predict possi-
ble errors in the transcription by understanding limitations
of the data gathering process can aid in appropriately de-
signing the downstream tasks by, for example, accounting
for the likelihood of missing stop words.
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APPENDIX
A. WORD-LEVEL ANALYSIS OF ERRORS
Table 5: Top 20 deletions weighted by rate of occurrence

AT-ATR AT-C AT-O Blue-Yeti ProCon Saram.
this this this this this this
so so so so the so
the the the the so the
is is is is is is
yeah yeah yeah yeah yeah yeah
we i we we we we
i we i i i 10
10 one one one 10 i
one 10 10 10 one one
that that that that that that
it it it it it it
to okay okay to okay to
okay to to okay to okay
20 a 20 and and and
it’s and a a 20 a
a oh and 20 a 20
and 20 think oh be be
be think it’s think think like
oh be oh be it’s it’s
think it’s be like oh oh

Since substitution and insertion rates stay relatively stable
across both tasks, it seems clear that in the free-from col-
laborative problem solving task, the nature of the speech
captured in the recordings leads to more deletions. There-
fore it becomes more important to understand the nature
of the high deletion rates in the collaborative problem solv-
ing task. Are there differences in the precise words that are
deleted from the recordings made by each microphone? Are
these words, when deleted, ones that are likely to have a
negative effect on the performance of downstream analysis
tasks using the transcription, e.g., parsing or classification?

Table 5 shows the top 20 most frequently deleted words
for each microphone, weighted by the overall occurrence of
that word in the ground truth, human-generated transcript.
Data here was taken from recordings of the collaborative
problem solving task only, to analyze the nature of the words
being dropped in a group work environment.

Words w are ranked according to
∑
t∈T Dt(w)×

∑
t∈T Ct(w)∑

t∈T Nt
,

where t is a transcript ∈ T the set of all transcripts, Dt(w) is
the number of times w was deleted in transcript t, Ct(w) is
the total count of w in the ground truth transcript t, and Nt
is the total number of words in the ground truth transcript
t. Since this was the free-form activity and each ground
truth transcript was different for each group performing the
activity, we sum counts over all transcripts.

The most commonly deleted words were relatively constant
across microphones. This likely means that the deletions
were not due to the quality of the recording, but rather the
ASR model itself. In fact, the only words that appear in the
top 20 most deleted words that do not appear in the top-20
list for every microphone are “it’s,” which did not appear in
the top 20 of the Blue-Yeti, “think,” which did not appear in
the top 20 of the Saramonic, and “like,” which only appeared

in the top 20 of the Saramonic and Blue-Yeti.

A qualitative analysis of the most frequently deleted words
exposes the commonality of such terms in the collabora-
tive problem solving task. For instance, the most commonly
deleted word weighted by frequency is the demonstrative
pronoun “this”. “This” was dropped 41% of the time and
correctly transcribed 53% of the time. In the collaborative
problem solving activity we can expect this word to be used
frequently, which contributes to the high weighted deletion
rate. Another commonly deleted word is “one,” a common
continuation of “this” as in the bigram “this one,” as might
be used to refer to an object in a situated context. Likewise,
other most commonly deleted words, weighted by frequency,
include common particles like “so” or “oh,”, and acknowledg-
ments like “yeah” or “okay.” However, some words that in
context are important and contentful, such as “10” or “20”
(referring to the masses of the weights), are also frequently
deleted.

In reality, most of the deleted words are stop words, indicat-
ing that downstream processes should be robust. However,
there are some task specific content words that may impede
downstream tasks.
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ABSTRACT 
Conversation-based assessment systems allow for students to dis-

play evidence of their knowledge during natural language 

conversations with artificial agents. In the current study, 235 mid-

dle-school students from diverse backgrounds interacted with a 

conversation-based assessment system designed to measure scien-

tific inquiry. There were two versions of the conversations where 

the initial question was manipulated to examine the relationship be-

tween question-framing and conversational discourse. We analyzed 

the human input during these conversations post-hoc using LIWC 

to discover linguistic profiles of students that may be related to the 

type of question asked as well as overall task performance. Further-

more, we compared these linguistic profiles to human ratings as a 

validity check and to inform our interpretation. Results indicated 

four separate profiles determined by linguistic features that indeed 

align to human scores and performance in directions consistent 

with the effects of question framing. These results offer important 

implications for improved detection of types of student learners 

based on linguistic features that do not differ by diverse student 

characteristics and for designing conversation-based assessments. 

Keywords 
Conversation-based Assessment, Computational Linguistics, Arti-

ficial Agents, Question-Framing 

1. INTRODUCTION 

1.1 Conversation-Based Assessment 
Conversation-based assessments (CBAs) are interactive formative 

assessment systems with natural language conversations between 

humans and two or more artificial agents designed to capture evi-

dence of a student’s knowledge, skills, and abilities (KSAs) [36]. 

CBAs leverage previous research on digital learning environments 

with similar artificial agents or “talking heads” [5, 10, 19, 20, 

23,35], artificial intelligence and technology enhanced assessments 

[4, 6, 26] to create environments where students take actions, an-

swer questions, and participate in conversations to display their 

KSAs. CBAs include other components of simulated, scenario-

based, and game-based environments [30, 31, 35] in addition to 

conversations.  

Learning environments with natural language conversations have 

aided increasing student motivation and deep learning as students 

converse with artificial agents [1, 2, 21]. Several types of adaptive 

conversations have been created to accomplish this goal [17, 18] 

but we will focus on AutoTutor [13] as it greatly influenced the 

creation of CBAs. AutoTutor is an Intelligent Tutoring System 

where students have natural language tutorial conversations with an 

artificial agent; this system shows learning gains comparable to ex-

pert tutors in dozens of experiments across multiple domains [13]. 

Perhaps the “secret sauce” is the adaptive scaffolding moves, which 

are based on extensive analysis of expert tutor and student interac-

tions [13,15] which include providing hints or broad clues, prompts 

requiring single word or phrase answers, and assertions as part of 

the scaffolding framework with associated natural language pro-

cessing (NLP), which is beyond this paper to discuss [see 13].   

CBAs augment the original conversational framework while utiliz-

ing the associated NLP of AutoTutor to create more constrained 

conversations for gathering evidence of KSAs which is necessary 

for assessment, where less information can be given to the student 

than in a tutorial dialogue. CBA conversations are designed to elicit 

information from students that may be difficult to elicit via other 

means such as multiple-choice or open-ended items. An important 

issue for CBA design is the impact of question framing in eliciting 

information from students.  

1.2 Question Framing 
The need to capture evidence of student knowledge has spurred re-

search in question-asking for decades [3, 8, 15, 22]. This research 

has yielded multiple taxonomies of questions that seek to elicit stu-

dent knowledge with respect to both mental representations and 

cognitive processes [12, 14, 27, 28, 29]. For example, Bloom’s tax-

onomy [3] is well-known for capturing depth of understanding [7]. 

Specifically, multiple-choice questions provide evidence of shal-

low or factual understanding while open-ended questions require a 

deeper conceptual understanding to provide sufficient answers. 

Formulating main questions to initiate a conversation with an arti-

ficial agent that may require multiple turns to elicit evidence from 

students is quite different from formulating a single question asked 

with a constructed response item. Therefore, we drew from a de-

tailed taxonomy [15] to consider specific types of questions that 

may help elicit information and inform cognitive processing [14, 
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15]. This taxonomy includes 16 question types at varying levels of 

depth. Within a CBA task, however, constraints including the target 

constructs, context, and scenario narrow the possibilities of ques-

tions that are appropriate for assessment (e.g., comparison and 

justification questions). Notably, research shows that tasks requir-

ing students to generate justifications for their responses, such as 

constructing arguments, can sometimes lead to better learning than 

comprehension tasks [11]. Therefore, we investigated student re-

sponses to two separate types of question framing in a CBA task 

for science inquiry that prompted students to make a comparison 

between two artifacts (i.e., observation notes collected from simu-

lated data), contrasting an approach where students were asked to 

make a selection and explain their choice (comparison-framing) 

with one in which students are asked to justify whether or not they 

agree with a choice made by a virtual agent (argumentation-fram-

ing) [34]. Previous research suggests that this manipulation had an 

impact on CBA conversation performance with the argumentation-

framing condition making better selections but showing poorer ex-

planations than the comparison-framing condition [33]. 

Previous research on CBAs suggests that additional computational 

linguistic analysis beyond the NLP algorithms needed to operate 

the system can provide fine-grained insights on how students re-

spond [9]. Furthermore, CBAs offer an opportunity to explore 

methods for inferring information about students’ experiences from 

their responses in ways that may have implications for equity issues 

in assessment, given the wide range of responses that can be ac-

cepted and awarded credit. Thus, in this study we analyzed 

responses from a diverse sample with a bottom-up approach using 

linguistic features and associated profiles, contextualized them 

within question framing conditions, and compared these profiles 

based on human scoring and on task performance. 

2. METHODS 

2.1 Participants 
In total, 235 middle school students were recruited from one rural 

(35%) and one urban (65%) school, yielding quite a diverse sample. 

Specifically, the sample was 48% female and 52% male, 34% 

free/reduced price lunch eligible, and 79% White, 9% Black/Afri-

can American, 4% Hispanic/Latino, and 8% other. The experiment 

was approved by an IRB and all personally identifiable information 

was removed from the data.  

2.2 Tasks and Measures 

2.2.1 Conversation-Based Assessment Weather Task 
The Weather CBA task [32, 34] is an innovative, computer-based 

task that engages students in simulated science inquiry around the 

topic of thunderstorms, including data collection, analysis and pre-

diction, and justification of reasoning in the context of 

conversations with two virtual agents: Art, a virtual peer working 

on the task alongside the student, and Dr. Garcia, a scientist and 

authority figure guiding the students. Students place weather sta-

tions to collect simulated data on an impending thunderstorm, take 

notes from the data, and in a conversation-based item are presented 

with two of the notes (one of their notes, and one “created” by the 

virtual peer). Students are asked to explain which note should be 

kept for making predictions about the likelihood of a thunderstorm. 

Students should choose the note summarizing data across multiple 

weather stations (i.e., more data yields a better prediction). 

Students were randomly assigned to one of two question framing 

conditions, which included different main questions posed to the 

student [34]. In both conditions, students were presented with the 

two notes and were asked to indicate which note should be kept for 

making predictions later. In the comparison-framing condition, the 

main question is posed as “Please look carefully at and com-

pare these two notes. Which one do you think we should keep for 

making predictions later and why?” whereas in the alternate argu-

mentation-framing condition, the question is posed as “Please look 

carefully at and compare these two notes. I think we should 

keep [your note/my note] for making predictions later. Do you 

agree with me? Why or why not?” In this argumentation-framing 

condition, the peer always pointed students to the “better” note 

summarizing data from multiple stations. Thus, the conversations 

included adaptivity based on the student’s responses to the simula-

tion components and their linguistic input. 

2.2.2 Overall Task Performance 
The Weather CBA task includes a combination of more traditional 

item types (multiple choice, constructed response) and technology-

enhanced items (drag-and-drop, simulation items), in addition to 

simulated conversations characteristic of CBAs, with a maximum 

total score of 29 points.   

2.2.3 Human Scores for Conversations 
Responses were dichotomously scored by human raters along mul-

tiple dimensions (see Table 1), with a maximum of five possible 

points per conversation. Responses were scored both for the cor-

rectness of students’ conclusions and the quality of the supporting 

reasoning, summed to create a single score for the entire response 

to the conversation (across all conversational turns). Raters were 

trained by a scoring leader to score these responses using a well-

defined rubric. After two raters independently rated each category 

as 0 or 1, inter-rater reliability was examined. Initial inspection of 

the data revealed that there was an unequal cell distribution which 

can skew kappa results, so we only report percent agreement by 

dimension: Note Choice (93%); Immediate (90%); Relevant 

(82%); Sufficient (84%); and Aligned with Note Choice (88%). 

Table 1. Dimensions of Human Scores and Definitions 

Dimension  Definition 

Note Choice 

Students choose the note with more complete 

data represented (observations from multiple 

weather stations). 

Reasoning: 

Immediate 

Students provide reasoning immediately, 

within the first turn of the conversation. 

Reasoning: 

Relevant 

Students mention features related to the notes 

and the data they contain (e.g., weather sta-

tions, water vapor, instability). 

Reasoning: 

Sufficient 

Students mention that one note has more data 

than the other note. 

Reasoning: 

Aligned with 

Note Choice 

Students provide reasoning that is consistent 

with their choice of note. 

 

2.2.4 LIWC 
Linguistic Inquiry and Word Count (LIWC) is a computational lin-

guistic tool that primarily uses a bag of words approach which 

identifies words in a given text and compares it to categories of 

words corresponding to parts of speech or at times broader con-

structs such as affect [24]. Overall, there are currently over 90 

features that have shown to predict outcomes such as college GPA 

[25] to relationship longevity [16]. The system is available for re-

search or for real time use, with an available API 

(https://www.receptiviti.com/liwc). In this study, we used a li-

censed desktop version of LIWC2015 [24] for post-hoc analysis of 
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the student contributions to the conversations with the artificial 

agents in the CBA task. 

3. ANALYSES AND RESULTS 
We began by analyzing all text with LIWC2015. Next, we in-

spected the data by question framing condition for sparseness (i.e., 

more than 95% of features with 0’s), such that sparse features were 

removed. We also removed two outliers with an over-abundance of 

exclamation marks which were unique to these two students only 

(<1% of data lost). Next, we conducted a k-means cluster analysis 

on the remaining 34 features for 233 students. The results yielded 

four unique profiles discovered with a bottom-up approach. We in-

terpreted the clusters via several methods including inspecting final 

cluster center means across features, qualitative analysis, and rela-

tionships to external variables including student demographics, 

question framing condition, human scoring of the conversations, 

and overall task performance. 

3.1 Profiles  
In total, 34 features were entered into a k-means clustering algo-

rithm, which converged after 9 iterations. The results yielded 26 

features with significant cluster centers (see Appendix A). The four 

clusters were titled Shallow Performers, One-Turn Wonders, Low 

Performers, and High Performers, with each described below. 

3.1.1 Shallow Performers 
The first profile was entitled “shallow performers” as these students 

were likely to give the correct answer to the question in terms of 

note choice (i.e., were above chance at picking the note that in-

cluded more data) but did not provide good reasoning for their 

answers. The linguistic profile of these students as indicated in Ap-

pendix A included relatively higher levels of emotional tone 

(M=67, SD=38), positive emotions (M=8, SD=9), affect (M=9, 

SD=9) and the highest amount of dictionary words (M=90, SD=8), 

which is reverse coded indicating more words that are not in the 

dictionary, as well as a low word count (M=14, SD=8) compared to 

the other profiles. Qualitative analysis indicated that this group pro-

duced several responses in which students appeared to be implying 

that the peer agent is “smart” (e.g., argumentation-framing: “i do 

[agree] because you have good ideas._ I do, because you have good 

ideas and you sound smart.”; comparison-framing: “We should 

keep Art’s. Art’s notes have more vocabulary and are more descrip-

tive_ I don’t know. Maybe because you are smarter.”). This 

illustrates positive emotional tone with words such as “good” and 

“smart/smarter”. The argumentation-framing responses earned 

credit for agreeing with peer’s note choice but little credit for their 

explanations; comparison-framing responses were just above 

chance (60%) in note choice and also had quite poor reasoning. 

3.1.2 One-Turn Wonders 
Overall, these students provided “immediate” reasoning on the first 

turn of the conversation, but the likelihood of this reasoning being 

relevant was around chance levels; the reasoning was only rarely 

sufficient and aligned to note choice, although comparison-framing 

condition students scored slightly higher. Argumentation-framing 

condition responses were overwhelmingly likely to make the cor-

rect note choice, while comparison-framing responses were at 

chance levels. As seen in Appendix A, these students had the high-

est mean level of affect (M=10, SD=8), positive emotions (M=10, 

SD=8) and words per sentence (M=17, SD=11). From qualitative 

analysis, we saw that the first response included apparently longer 

sentences, consistent with providing immediate reasoning on turn 

one, and often used the word “better” (positive affect). An example 

argumentation-framing response is “Yes, you have a very good 

note. (I guess) _ It has a bunch of good information on it.”. The 

student includes reasoning in the first turn (i.e., yes followed by 

attempted justification); with prompting, they provide additional 

detail (“good information”) but no relevant reasoning. An example 

comparison-framing response is: “I personaly think my notes are 

better because i did notes for each seperate weather station. _ I had 

more hours to predict what happen and i wrote seperate notes for 

each weather station.” This illustrates higher words per sentence 

and an attempt to provide immediate reasoning, but the note choice 

and reasoning are entirely incorrect. It appears these students un-

derstand the need to provide reasoning to support their note choice, 

but this reasoning was not relevant or sufficient. 

3.1.3 Low Performers 
These students performed poorly on all aspects of the task and hu-

man scores, with note choice at chance levels. Their linguistic 

profile as seen in Appendix A, showed a relatively low level of 

words per sentence (M=12, SD=8) which could indicate minimal 

attempts to provide a viable answer. These responses had high lev-

els of personal pronouns (M=18, SD=10), perhaps an artifact of 

requiring students to say “my note” when choosing their own note. 

Qualitative analysis indicated that comparison-framing students of-

ten incorrectly chose “my note”, and argumentation-framing 

students sometimes disagreed with Art. Their reasoning was more 

relevant than the shallow performers, but it was similarly insuffi-

cient and misaligned to note choice (although somewhat better for 

comparison-framing). This group also had more off-task responses, 

perhaps indicating disengagement. An example argumentation-

framing response is “No because i did not give a water vaper per-

cent _ no because i did not give a vaper number _ i did not give an 

exact answere”, showing relevant but insufficient reasoning and in-

correct note choice. A comparison-framing response with incorrect 

note choice and poor reasoning is “mine because im an actual per-

son _ because im an actual person and not a computer program”.  

3.1.4 High Performers 
These students performed relatively well on all human scores. As 

seen in Appendix A, these students had relatively high levels of 

words per sentence (M=15, SD=12) and analytical thinking (M=43, 

SD=30) which makes sense given the science inquiry task context. 

An example response is “yes because my note shows that there are 

no cold fronts _ There are no cold fronts” which includes the correct 

note choice, immediate reasoning on the first turn, and relevant (but 

not sufficient) reasoning (i.e., mentioning cold fronts) aligned with 

the note choice. Therefore, these students appear more likely to 

draw on relevant evidence within the task (above chance levels), 

with comparison-framing students especially likely to provide cor-

rect responses with more relevant reasoning. 

3.2 Relationships to External Variables 
Profiles were compared to external variables Specifically, we ex-

amine how features correlate with question-framing conditions and 

overall performance (see Appendix B), followed by analyses of the 

relationship between profiles to demographics. Relationships be-

tween profiles and question-framing conditions, human scores, and 

overall performance, were examined using a Kruskal-Wallis 

method with Monte Carlo simulation across 10,000 samples. 

3.2.1. Profiles and Demographics  
We conducted chi-square analyses between demographic variables 

and the four profiles.  We discovered no significant differences 

leading us to interpret that profile membership was indeed diverse.  
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3.2.2 Profiles and Question-Framing Condition 
There was a significant difference between profile membership and 

question-framing condition, (X2 (3,233) = 8.07, p =.04, partial η2 = 

.035). The Monte Carlo simulation for significance with 10,000 

samples revealed a significance level of p = .04 (lower bound p 

=.038, upper bound p = .049). Mean ranks indicate that the Shallow 

Performers had the highest number of cases in the argumentation-

framing condition (130.34) and the High Performers had the lowest 

(101.60). Although this may simply be an artifact of random as-

signment, it makes sense as students in the comparison-framing 

condition performed better overall. The other two profiles of One-

Turn Wonders and Low Performers were in the middle with slightly 

higher mean ranks for the former over the latter (123.91 and 116.36, 

respectively). 

3.2.3 Profiles and Human Scores 

3.2.2.1. Note Selection 

A significant relationship was discovered between the profiles and 

human scores for note selection (X2 (3,233) = 10.106, p =.02, par-

tial η2 = .046). The Monte Carlo simulation for significance with 

10,000 samples revealed a significance level of p = .02 (lower 

bound p =.014, upper bound p = .020). The mean ranks suggest the 

highest scores for the Shallow Performers (129.38) and the lowest 

for the Low Performers (98.51) with the One-Turn Wonders and 

High Performers having virtually equivalent mean ranks (121.59 

and 121.98, respectively). These results are consistent with the fact 

that argumentation-framing students were overwhelmingly likely 

(~90%) to make correct note selections in both the Shallow and 

Low Performing profiles, vs. 50-70% for comparison-framing. 

3.2.2.2. Immediate Reasoning 

A non- significant relationship was not discovered between the four 

profiles and Immediate (X2 (3,233) = 4.267, p = .234, partial η2 = 

.018). Patterns revealed that One-Turn Wonders had the highest 

overall mean (126.64) though essentially similar to that for High 

Performers (122.21), but substantively different from both Shallow 

Performers (111.73) and Low Performers (108.51). 

3.2.2.3. Relevant Reasoning  

A significant relationship was discovered between the four profiles 

and relevant reasoning (X2 (3,233) = 20.896, p <.001, partial η2 = 

.089)). The Monte Carlo simulation for significance with 10,000 

samples revealed a significance level of p <.001, (lower bound p 

=.000, upper bound p = .001). Mean ranks indicate that High Per-

formers performed the best (142.19), whereas the Shallow 

Performers performed the worst (92.48). Not surprisingly, the One-

Turn Wonders and Low Performers fell in the middle, with One-

Turn Wonders showing higher scores (122.00 and 107.19, respec-

tively). Relevant reasoning was most likely for High Performers 

and One-Turn Wonders in the comparison-framing condition. 

3.2.2.4. Sufficient Reasoning 

A significant relationship was discovered for the four profiles and 

sufficient reasoning (X2 (3,233) = 13.974, p = .003, partial η2 = 

.061). The Monte Carlo simulation for significance with 10,000 

samples revealed a significance level of p =.003, (lower bound p 

=.001, upper bound p = .004). Mean ranks were highest for the High 

Performers (133.71) and lowest for the Shallow Performers (98.63) 

with One-Turn Wonders having higher scores than the Low Per-

formers (124.38 and 109.05, respectively). 

 

 

3.2.2.5. Supports Note Choice 

A significant relationship was discovered for the four profiles and 

supporting note choice (X2 (3,233) = 18.304, p = .001, partial η2 = 

.084). The Monte Carlo simulation for significance with 10,000 

samples revealed a significance level of p <.001, (lower bound p 

=.000, upper bound p = .001). Once again, mean ranks revealed 

High Performers had the highest score (139.99) and Shallow Per-

formers had the lowest score (103.99). The One-Turn Wonders and 

Low Performers fell in the middle with higher scores for the One-

Turn Wonders (115.21 and 105.44, respectively). 

3.2.4 Profiles and Overall Task Performance 
A significant relationship was discovered for the four profiles and 

overall CBA task performance (X2 (3,233) = 11.332, p = .010, par-

tial η2 = .048). The Monte Carlo simulation for significance with 

10,000 samples revealed a significance level of p <.001, (lower 

bound p =.007, upper bound p = .012). Mean ranks indicate the 

highest score for the High Performers (134.79) and the lowest for 

the Shallow Performers (98.41) with One-Turn Wonders still out 

performing Low Performers (126.94, 106.16, respectively).  

3.3 Results and Conclusions 
We discovered four profiles of students based on linguistic features 

identified with the computational linguistic tool LIWC. The result-

ing profiles consisted of Shallow Performers, One-Turn Wonders, 

Low Performers, and High Performers. The Shallow Performers 

had higher levels of emotional tone, especially positive affect 

words, but fewer dictionary words. The One-Turn Wonders were 

characterized by high positive affect words and high words per sen-

tence, reflected in their longer attempted justifications for their 

choices. The Low Performers showed low words per sentence and 

high levels of personal pronouns, in part reflecting the design of the 

task, but also reflecting generally shorter responses with poorer 

quality of reasoning. Finally, the High Performers had relatively 

high levels of words per sentence and analytical thinking which has 

predicted GPA in previous studies [25]. These four profiles were 

then validated by external measures that revealed patterns in ex-

pected directions. 

Given the IDEA conference theme and our diverse sample, we 

compared key demographic measures including school location, 

race/ethnicity, free/reduced price lunch status, and other factors to 

the four profiles and found no significant differences. This indicates 

that these linguistic profiles did not show different demographic 

composition even though these factors did relate to overall task per-

formance in prior research [32]. The implications are that linguistic 

profiles may be a manner of detection and intervention that trans-

cend demographics and therefore may enable greater inclusion 

during the learning experience. That said, we do acknowledge that 

our sample was predominantly White (about 80%) despite the large 

variation in other key variables. We also acknowledge the relatively 

small sample size and plan to attempt to replicate these findings on 

a larger data set from this same CBA task in future work. 

In sum, these findings can guide the creation and augmentation of 

novel CBAs to support personalized learning based on students’ in-

teractions with the system, transcending demographic differences. 

The methodology employed may also inform other researchers’ at-

tempts to discover ways to adapt and personalize other learning and 

assessment environments based on students’ use of language. 
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APPENDIX A 

Table 2. Final Cluster Center Means and Standard Deviations 

Feature 
Clus1 

(n=52) 

Clus2 

(n=50) 

Clus3 

(n=65) 

Clus4 

(n=66) 
F 

Word 

Count 

14 (8) 23 (14) 19 (13) 21 (15) 4.6 

Analytic 

Think 

5 (6) 39 (28) 14 (22) 43 (30) 34.5 

Emotional-

Tone 

67 (38) 95 (7) 35 (28) 24 (6) 104.

2 

Word per 

Sentence 

11 (6) 17 (11) 12 (8) 15 (12) 4.3 

Dictionary 90 (8) 86 (10) 88 (10) 77 (18) 14.2 

function 58 (12) 49 (14) 60 (14) 47 (15) 14.1 

personal-

pronoun 

20 (9) 10 (7) 18 (10) 7 (8) 30.9 

“you” 10 (10) 3 (4) 3 (5) 1 (4) 23.0 

“She/he” 1 (3) 1 (2) 0 (1) 2 (4) 4.4 

article 2 (4) 5 (5) 3 (4) 5 (6) 7.0 

preposi-

tions 

3 (5) 7 (6) 5 (5) 7 (7) 6.9 

auxiliary 

verb 

15 (8) 10 (6) 12 (9) 9 (6) 7.0 

negations 1 (3) 1 (3) 11 (19) 2 (5) 12.9 

verb 19 (10) 16 (7) 20 (12) 15 (9) 4.1 

adjective 12 (9) 10 (9) 6 (7) 8 (8) 5.9 

compare 9 (8) 8 (9) 4 (6) 7 (7) 5.3 

number 0 (3) 2 (4) 1 (3) 2 (4) 2.9 

affect 9 (9) 10 (8) 4 (7) 1 (3) 20.8 

Positive 

emotion 

8 (9) 10 (8) 2 (5) 0 (1) 32.6 

male 1 (3) 1 (2) 0 (1) 2 (4) 4.2 

insight 3 (6) 4 (6) 6 (6) 3 (4) 4.0 

drives 10 (9) 9 (7) 4 (6) 2 (4) 19.5 

achieve 3 (6) 4 (6) 0 (1) 0 (1) 9.8 

reward 3 (6) 5 (7) 1 (2) 0 (1) 17.1 

Focus past 1 (3) 1 (3) 3 (5) 1 (3) 4.8 

Focus fu-

ture 

3 (5) 2 (3) 1 (2) 1 (3) 3.3 

For a complete explanation of each variable, please see the LIWC 

manual 2015 [30]. The final resulting profiles mentioned above 

were titled Shallow Performers (Cluster 1), One-Turn Wonders 

(Cluster 2), Low Performers (Cluster 3) and High Performers 

(Cluster 4). 

 

 

 

 

 

 

 

 

 

APPENDIX B 

Table 3. Final Features Correlations to Total Score and Con-

ditions 

Feature 
Total CBA 

Score 

Question Fram-

ing  

Word Count .448** -.117 

Analytic Think .159* -.061 

EmotionalTone -.108 .184** 

Word per Sentence .327** -.067 

Dictionary .033 .278** 

function .022 .160* 

personal pronoun -.122 .144* 

“you” -.225** .146* 

“She/he” .034 -.251** 

article .148* -.069 

prepositions .281** .059 

auxiliary verb .155* .011 

negations -.177** .101 

verb .167* -.010 

adjective .094 -.174** 

compare .097 -.278** 

number .085 -.187** 

affect -.275** .249** 

Positive emotion -.263** .217** 

male .040 -.253** 

insight .071 -.132* 

drives -.076 .142* 

achieve -.131* -.086 

reward -.170** .025 

Focus past .132* .042 

Focus future .017 .177** 

**p>.01, *p>.05 
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ABSTRACT
Deep learning architectures such as RNN and pure-attention
based models have shown state-of-the-art performance in
modeling student performance, yet the sources of the pre-
dictive power of such models remain an open question. In
this paper, we investigate the predictive power of aspects
of LSTM and pure attention-based architectures that model
sequentiality. We design a knowledge tracing model based
on a general transformer encoder architecture to explore the
predictive power of sequentiality for attention-based mod-
els. For the LSTM-based Deep Knowledge Tracing model,
we manipulate the state transition coefficient matrix to turn
sequential modeling on and off. All models are evaluated on
four public tutoring datasets from ASSISTments and Cogni-
tive Tutor. Experimental results show that DKT and pure-
attention based models are overall insensitive towards re-
moving major sequential signals by disabling their sequential
modeling parts but with the attention-based model about
four times more sensitive. Lastly, we shed light on bene-
fits and challenges of sequential modeling in student perfor-
mance prediction.

Keywords
Knowledge tracing, DKT, BKT, Cognitive Tutor, ASSIST-
ments, KDD Cup, Contextual embedding, Self-attention

1. INTRODUCTION
Bayesian and Deep Knowledge Tracing models use machine
learning architectures with explicit representation of time
slices that capture sequentiality. A new generation of mod-
els have emerged based on self-attention that have outper-
formed both BKT and DKT on the knowledge tracing task
[9, 11, 19, 17, 7]. Interestingly, the transformer-based archi-
tecture that these models rely on has relatively weak mod-
eling of the concept of a time-slice and subsequently of se-
quence. This prompts us to ask the question of what role
sequentiality plays in the predictive performance of the lat-
est generations of neural knowledge tracing models. Some

of the better performing self-attention models adopt a com-
bination of transformer and LSTM architectures, raising the
question of if the LSTM is superior for capturing sequence-
based signals. To investigate the role of sequentiality in the
predictive power of the RNN-based DKT and transformer-
based self-attention, or ”contextual” models, we design ex-
periments that compare two variants of each model; the orig-
inal, a version in which time-components of the architecture
are systematically disabled. Using four public datasets, we
report each model’s sensitivity to removing signals of se-
quence. Our major contributions in this work are:

1. A simple, yet theoretically effective way of disabling
attention-based models’ sequential modeling compo-
nents.

2. A novel way of insulating DKT’s sequential modeling
components to study it’s sequential modeling ability.

3. We find that DKT and BertKT are exceptionally ro-
bust to losing sequential modeling components in terms
of performance.

2. RELATED WORK
For studying sequence effects for student performance pre-
diction, Ding and Larson [4] showed that relative ordering of
skills have negative effects on the performance of DKT. Kim
et al. [10] studied DKT’s behavior by conducting a series
of perturbation experiments on Monotonicity, Robustness
and Convergence etc. Work prior to DKT has also studied
sequencing effects, Pardos and Heffernan [13] used a modifi-
cation of the BKT model to capture learning rates of ordered
item pairs, finding that while statistically separable learn-
ing rates could be fit, this extra modeling of order did not
significantly improve performance prediction accuracy.

Pure-attention based models such as Transformer [18] and
Bidirectional Encoder Representations from Transformers
(BERT) [3] were first introduced in the NLP field and achieved
state of the art performance on major NLP tasks. These
models, compared to LSTM predecessors, have the added
advantage of enabling parallel training for computational
efficiency [18] [2] and being better able to capture long term
dependencies. Adapting these strengths to the knowledge
tracing task, Self Attentive Knowledge Tracing (SAKT) [12]
introduces the earlier attention-based models to solve stu-
dent performance prediction. SAINT+ [14], which leverages
various input features embeddings to assist tutoring on mas-
sive online learning platforms, and AKT [7] further improves

Y. Wang and Z. Pardos. Does chronology matter? Sequential vs
contextual approaches to knowledge tracing. In A. Mitrovic and
N. Bosch, editors, Proceedings of the 15th International Conference
on Educational Data Mining, pages 601–605, Durham, United King-
dom, July 2022. International Educational Data Mining Society.
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the attention-based architecture by introducing monotonic
attention and context-aware distance measure.

Hybrid sequential-contextual models have shown success.
Last Query transformer RNN model [9] LSTM-SAKT [11]
and MUSE [19] utilize the combination of transformer en-
coder and LSTM/GRU and achieved top-5 performance in
a Kaggle AIEd Prediction Challenge 20201.

3. METHODOLOGY
3.1 Problem Restatement
Our study on sequential effects is based on the task of stu-
dent performance prediction. We define this task as follows.

Definition 1. Given a student s’s past interactive sequence
from time step 1 to t− 1 that contains problem marked by

required skill ids X
(s)
t−1 and their correctness of responses

Y
(s)
t−1, performance prediction of problem x of student s at

time step t is defined as:

ŷ
(s)
t = f(X

(s)
t−1, Y

(s)
t−1, x

(s)
t )

where X
(s)
t−1 = {x(s)i ∈ Z+|1 ⩽ i ⩽ t − 1, i ∈ Z+} and

Y
(s)
t−1 = {y(s)i ∈ Z+|1 ⩽ i ⩽ t− 1, i ∈ Z+}

3.2 The BertKT Architecture
To study the positional effect of transformer family of mod-
els, we design a simple, general architecture named
Bidirectional encoder representations from transformers for
Knowledge Tracing, or BertKT. We design this model in-
stead of utilizing previously proposed models for several rea-
sons:

1. It does not contain redundant structures other than
transformer encoder layers and an output layer for our
downstream task. This helps us isolate the impact of
sequential effects for attention-based models.

2. It adopts the most widely used sine-cosine positional
encoding with easy enabling/disabling, which facili-
tates generalization of our results.

3. This architecture is flexible due to its simplicity to ac-
commodate additional settings for future research.

In this work, we conduct student performance prediction in
an auto-regressive fashion supported by an upper-triangular
attention masks. We do not utilize the bi-directionality here,
but such functionality could be enabled for future use such
as for bi-directional pre-training tasks. Thus, we keep here
the naming convention ”bi-directional” as is.

3.2.1 Knowledge and Positional Encoding
In transformer models, scaled-dot-product self-attention which
runs in O(n2) [18]. Thus we adopt word embedding [1] in
stead of one-hot encoding in the field of NLP to obtain a

1https://www.kaggle.com/c/
riiid-test-answer-prediction

Figure 1: BertKT Architecture Visualization. The shaded
part is the self-attention based encoding method.

learnable knowledge encoding with higher computational ef-
ficiency. In this work, we only use skill and responses as in-
put features. Embeddings of such features are element-wise-
summed together to form a unified representation named
combined embedding.

The transformer model is permutation-invariant [18, 5] with-
out positional encoding, making it suffer from not being able
to capture original sequence order. A wide varieties of po-
sitional encodings are introduced for better performance or
interpretability[8, 7]. To study the effect of positionality in
this type of model, we completely remove the sine-cosine po-
sitional encoding of our model introduced in section 3.2 and
compare the model’s performance with the baseline model
(positional encoding on).

3.2.2 BertKT encoder
In section 3.2.1, we have introduced our element-wise-summed
embedding. On top of that, we add a canonical transformer
encoder to form the integrated BertKT Architecture. For
computation flow, the skill embedding layer and the re-
sponse embedding layer first take in skill ids and responses
to compute their raw embeddings. These two embeddings
together with positional encoding are summed element-wise
to form a combined embedding. Secondly, the combined
embedding goes through BertKT encoder to learn rich con-
textualized representations. Such contextualized embedding
is further processed by linear output layers followed by sig-
moid/softmax activation to output response predictions. The
entire BertKT architecture can be viewed in Figure 1.

3.3 Manipulations of Sequential Factors
We manipulate the model structures to control the intensity
of sequential signals learned in the hidden space. In terms
of naming, we add the prefix static- to the resulting models
with sequential signals modeling disabled.

3.3.1 Static BertKT
In this section, we describe a modification to BertKT’s po-
sitional encoding to explore sequential influences of the pro-
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duced hidden space on the models’ performance. Specifi-
cally, we remove completely the sine-cosine positional encod-
ing of BertKT and name it static-BertKT. For any position i
in a sequence ranging from 1, ..., n attending to other items,
the model can not distinguish the order of those items even
if they are manually arranged in the correct order. This is
because all other items are treated the same when comput-
ing attention regardless of their position. In such a sense,
disabling the positional encoding is equivalent to disabling
the exclusive indication for the model to capture explicit
positionality. We compare the performance of BertKT and
static BertKT in section 6.1.

3.3.2 Static DKT
In this section, we describe our modification to the sequen-
tial LSTM structures in DKT to observe performance changes
due to effectively disabling weights associated with sequen-
tiality modeling.

Static DKT Experiment
For DKT and all its variants we utilize in this work we em-
ploy an LSTM as the core computational structure. The
formula for a canonical LSTM structure is as follows.

ft = σ(Wfxt + Ufht−1 + bf ) (1)

it = σ(Wixt + Uiht−1 + bi) (2)

ot = σ(Woxt + Uoht−1 + bo) (3)

c̃t = tanh(Wcxt + Ucht−1 + bc) (4)

ct = ft ◦ ct−1 + it ◦ c̃t (5)

ht = ot ◦ tanh(ct) (6)

where
xt ∈ Rd: input vector of time step t
ft ∈ (0, 1)h: forget gate

it ∈ (0, 1)h: input gate

ot ∈ (0, 1)h: output gate

ht ∈ (−1, 1)h: hidden state vector of time step t

c̃t ∈ (−1, 1)h: cell input
ct ∈ Rh: cell state
W ∈ Rh×d, U ∈ Rh×h and b ∈ Rh: learnable weight and
bias; d and h are the dimension of input features and that
of hidden states.

Concretely, the hidden state of time step t+ 1 is dependent
on that of t, the current input item at t+ 1, but not on any
future time step ranging from [t + 2, ..., T ], where T is the
ending time step. Here we would like to disable the sequen-
tial, hidden-state transitioning dynamics to compare results
with the original DKT model. Concretely, we set each of
Uf , Ui, Uo, Uc ∈ Rh×h to an identity matrix I ∈ Rh×h. Ob-
viously for any hidden state h, an identity matrix multipli-
cation equal to no transformation exerted at all. Also the h
could be combined with the bias term b. However, we still
keep matrix U here for 2 reasons:

1. For the completeness of math formulation as this is a
special case of the dynamic LSTM with learnable U .

2. In terms of implementation, U could be changed easily
from a placeholder to other values for future research
experiments.

Table 1: Model names and the corresponding explanations

Model/Setting -
BertKT baseline BertKT

static-BertKT BertKT with positional encoding removed
DKT baseline DKT

static-DKT DKT with static hidden state update matrix

In the end, we have the following static-LSTM as the new
component of the corresponding DKT model we refer to as
static-DKT.

ft = σ(Wfxt + Iht−1 + bf ) (7)

it = σ(Wixt + Iht−1 + bi) (8)

ot = σ(Woxt + Iht−1 + bo) (9)

c̃t = tanh(Wcxt + Iht−1 + bc) (10)

ct = ft ◦ ct−1 + it ◦ c̃t (11)

ht = ot ◦ tanh(ct) (12)

where each gate update function remains the same but the
explicit hidden state update is disabled.

Note that we do not hamper the sequential update format
of cell state c and hidden state h, as they are part of the
nature of a classic LSTM model. The hidden state is still
sequentially updated but only implicitly through Wf , Wt,
Wc and Wo. In summary, this experiment is to explore to
what extent that sequential modeling factor of DKT con-
tributes to its total predictive power in terms of evaluations
metrics we introduce in section 5.2.

4. COMPARISON MODELS
In this section, we provide a reference table 1 to summarize
the name of each model and their corresponding settings.

5. EXPERIMENTAL SETUP
5.1 Datasets
We evaluate the performance of BertKT and other compar-
ison models based on four benchmark datasets: ASSIST-
ments 2009-20102 [6], ASSISTments 2012-20133, Cognitive
Tutor Bridge to Algebra 2006-20074 and Cognitive Tutor
Bridge to Algebra 2008-20095 [15]. Among these bench-
marks, ASSISTments datasets are collected from ASSIST-
ments online tutoring system primarily for secondary school
mathematics. Cognitive Tutor (now MATHia) is an intelli-
gent tutoring system and the datasets we used are from its
Algebra curricula. The two Cognitive Tutor datasets we use
were used as the official development/competition dataset
for the KDD Cup 2010 Challenge [16].

For all the above datasets, we follow a series of conventional
pre-processing procedures such as removing all problems not

2https://drive.google.com/file/d/
1NNXHFRxcArrU0ZJSb9BIL56vmUt5FhlE/view?usp=sharing
3https://drive.google.com/file/d/
1cU6Ft4R3hLqA7G1rIGArVfelSZvc6RxY/view?usp=sharing
4http://pslcdatashop.web.cmu.edu/KDDCup/downloads.
jsp
5http://pslcdatashop.web.cmu.edu/KDDCup/downloads.
jsp
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Table 2: Comparison between default BertKT and static-
BertKT. Best metrics are in bold.

Model BertKT static-BertKT
Dataset/Metrics BCE AUC ACC RMSE BCE AUC ACC RMSE

ASSISTments 2009 0.4948 0.8149 0.7562 0.4055 0.4932 0.8166 0.7560 0.4051
ASSISTments 2012 0.5457 0.7209 0.7309 0.4274 0.5453 0.7203 0.7322 0.4272
Cog Tutor 2006 0.3724 0.7872 0.8462 0.3380 0.3741 0.7842 0.8456 0.3387
Cog Tutor 2008 0.2698 0.9055 0.8881 0.2869 0.2765 0.9010 0.8864 0.2895

Table 3: Comparison between default DKT and static-DKT.
Best metrics are in bold.

Model DKT static-DKT
Dataset/Metrics BCE AUC ACC RMSE BCE AUC ACC RMSE

ASSISTments 2009 0.4981 0.8109 0.7542 0.4070 0.4975 0.8108 0.7548 0.4066
ASSISTments 2012 0.5402 0.7253 0.7350 0.4249 0.5400 0.7256 0.7354 0.4247
Cog Tutor 2006 0.3721 0.7870 0.8461 0.3378 0.3712 0.7881 0.8471 0.3372
Cog Tutor 2008 0.2679 0.9063 0.8881 0.2864 0.2675 0.9064 0.8883 0.2862

associated with a concept/skill and using correct on first
attempt responses only.

5.2 Models and Evaluation Metrics
We compare BertKT and DKT with their sequentiality-
weakened counterparts. Differences and features of these
model have been discussed in section 4; We evaluate each
model across four metrics: BCE (Binary cross entropy loss),
AUC (Area under the receiver operating characteristic curve),
ACC (Accuracy as the proportion of correct classification
with threshold 0.5) and RMSE (Root-mean-square error).

5.3 Training and Testing
We take out 20% of the entire data as the development set
to conduct hyper-parameter tuning. For training and test-
ing, We perform student-level k-fold cross validation (with
k = 5) on each model, meaning each student will appear ex-
clusively in training, validation or test set. In each phase of
the cross validation, 60% of the dataset is used as the train-
ing set, 20% as the validation set to perform early stopping,
and the rest 20% as the test set.

We fix a sequence length of 100 for computational efficiency
with longer sequences split to subsequences of length 100
and trailing subsequence padded. We use Adam optimizer
to update parameters for all models trained on two NVIDIA
GeForce RTX 2080 Ti (11 GB) or TITAN Xp GPU (12
GB). All models are implemented using PyTorch with fixed
random seeds for reproducibility.

6. EXPERIMENTAL RESULTS
In this section, we compare evaluations results of BertKT
and DKT with their variants introduced in section 3. We
report evaluation metrics per each model per metrics defined
in section 5.2 as well as the relative percentage increase of
these metrics between comparison models. Models with the
best metrics are in bold. Specifically, we report the percent-
age increase by the ”performance increase/decrease”, mean-
ing that increase in {BCE, RMSE} is marked by ”-”and that
increase in {AUC, ACC} is marked by ”+”. Decrease means
the opposite way.

6.1 BertKT Model Results
Table 2 shows the evaluations metrics for BertKT and static-
BertKT. The best performances by metric are in bold. We

have explained the meanings of these variant models in ta-
ble 1. Overall, the baseline BertKT performs better, with 10
bolded cells, than its sequentially disrupted variants. How-
ever, the percentage performance differences averaged over
the four dataset benchmarks of static-BertKT from BertKT
are -0.64%, -0.19%, -0.02%, -0.24% for BCE, AUC, ACC
and RMSE, respectively (’+’ indicates a performance im-
provement for the metric, while ’-’ represents a performance
decrease). This suggests that BertKT is insensitive towards
sequential permutation even without positional encoding.

6.2 DKT Model Results
In this section, we compare in table 3 DKT with its sequen-
tially weakened counterpart, namely, DKT and static-DKT.
Naming conventions have been introduced in table 1 in sec-
tion 4.

Surprisingly, the static-DKT model was the best performing
model on all datasets for all but one metric of one dataset
(ASSISTments 2009-AUC). The average percentage perfor-
mance differences averaged over the four dataset benchmarks
of static-DKT from DKT are +0.13%, +0.04%, +0.07%,
+0.09% for BCE, AUC, ACC and RMSE, respectively (’+’
indicates a performance improvement for the metric, while
’-’ represents a performance decrease). Even after disabling
weights associated with time-slice transitions, the model per-
forms closely to the baseline model and even with a slight
increase. This suggests that the embedding weights for in-
put X Wf , Wi, Wo and Wc are still sufficient to capture
signals that support the model’s original performance.

Across the four metrics and four datasets, DKT improves
0.08% due to a static hidden state transition, while the per-
formance of BertKT decreases by 0.27% due to no positional
encoding (static). The average percentage performance loss
of BertKT due to being static is -4.3340x larger than that of
DKT. This suggests BertKT’s positional encoding is more
sensitive in modeling the sequence order than DKT in terms
of performance.

7. CONCLUSIONS AND DISCUSSION
While our motivating observation was that transformer-based
models have weaker explicit modeling of time than LSTM-
based models, we find that BertKT is more dependent on its
positional encoding than DKT is on its time-slice transition
weights. Such sensitivity may be an indication that there
is room for improvement for positional encodings to better
leverage input sequence order. This improvement is perhaps
seen in the performance of AKT [7], which outperforms DKT
and employs additional modeling of sequentiality in the form
of imposed monotonicity of attention weights with respect
to time.

Our results raise the question of why DKT is not negatively
affected by disabling its transition weights. Potentially, the
temporal signal is being pushed down into the embedding
W . Is student growth better captured in the interactions be-
tween input embeddings than it is by a generalized recurrent
hidden state transition? This may speak to the powerful but
simple assumption of the original knowledge tracing model,
that learning is a function of opportunity count, growth rate,
and prior.
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ABSTRACT
Systematically unfair education systems lead to different
levels of learning for students from different demographic
groups, which, in the context of AI-driven education, has
inspired work on mitigating unfairness in machine learning
methods. However, unfairness mitigation methods may lead
to unintended consequences for classrooms and students.
We examined preprocessing and postprocessing unfairness
mitigation algorithms in the context of a large dataset, the
State of Texas Assessments of Academic Readiness (STAAR)
outcome data, to investigate these issues. We evaluated
each unfairness mitigation algorithm across multiple ma-
chine learning models using different definitions of fairness.
We then evaluated how unfairness mitigation impacts clas-
sifications of students across different combinations of ma-
chine learning models, unfairness mitigation methods, and
definitions of fairness. On average, unfairness mitigation
methods led to a 22% improvement in fairness. When ex-
amining the impacts of unfairness mitigation methods on
predictions, we found that these methods led to models that
can and did overgeneralize groups. Consequently, predic-
tions made by such models may not reach the intended au-
diences. We discuss the implications for AI-driven interven-
tions and student support.

Keywords
Machine learning, Unfairness mitigation, Fairness, Data sci-
ence applications in education

1. INTRODUCTION
Student assessment has been plagued with biases against
students from different demographic groups [2]. Various fair-
ness metrics have been designed to evaluate the severity of
biases [27], including biases in automatic assessments pow-
ered by machine learning [13]. Researchers have explored
methods for mitigating such biases [3, 16, 21], including for
assessment-related tasks such as student grade prediction
[18]. However, the implications of applying unfairness mit-

igation methods to educational datasets are currently not
well understood. In this paper, we explore unfairness mitiga-
tion on the State of Texas Assessments of Academic Readi-
ness (STAAR) dataset [25], including examples of what im-
pacts might be felt by students when models are optimized
for different definitions of fairness.

The influx of data stemming from education contexts has
allowed computational methods to be used for understand-
ing education [4]. Alongside the creation of computer-based
assessment methods, researchers have also analyzed current
assessment data with machine learning and other compu-
tational methods [17]. These forms of analysis allowed re-
searchers to uncover new biases towards different demographic
groups in education and assessment methods [3]. Moreover,
newer methods do not necessarily fix the biases present in
traditional assessments [21]. However, the newer methods
are needed when dealing with complex (e.g., nonlinear, mul-
timodal) educational datasets—as are new methods to ad-
dress biases present in computational analyses [7, 8].

Biases in the field of education have differing definitions,
differing impacts, and can come from different places within
educational and social systems [3]. In the study presented
in this paper we are unable to disentangle the systemic bi-
ases present in assessment systems, as is often the case with
educational data that concerns specific contexts, learning
environments, or topics. Instead, we focused on biases in
statistical measurements and biases present in the machine
learning models. In particular, we investigate how unfair-
ness mitigation methods and machine learning models im-
pact student representations in data (and predictions), and
if the biases found in these methods are analogous to bi-
ases in assessments—which may come from the assessments
themselves or from systemic biases. In this paper, we ex-
plore these issues by addressing two research questions:

Research Question 1 (RQ1): Do demographic differences in
standardized assessment scores correspond to biases in ma-
chine learning models? Standardized tests often contain bi-
ases [21]. Machine learning models have been shown to ex-
acerbate biases that are present in training data [5]. RQ1
therefore examines the link between test score differences
(including biases) and the biases that are found in machine
learning models trained on closely related data from the
same students. By comparing the biases that machine learn-
ing models elicit and the biases present in standardized test
data, we are able to disentangle some of the sources of bias

F. Stinar and N. Bosch. Algorithmic unfairness mitigation in student
models: When fairer methods lead to unintended results. In A. Mitro-
vic and N. Bosch, editors, Proceedings of the 15th International
Conference on Educational Data Mining, pages 606–611, Durham,
United Kingdom, July 2022. International Educational Data Mining
Society.
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that occur in data-driven assessment, and thereby inform fu-
ture work on mitigating such biases. In alignment with pre-
vious work [3], we expect that biases present in standardized
assessments and machine learning models will not perfectly
align. If the biases do not align, differences between them in-
dicate that new biases may be introduced—or, ideally, that
there are opportunities for reducing such biases.

Research Question 2 (RQ2): What are the implications of ma-
chine learning unfairness mitigation methods when applied to
student test score prediction? Researching this provides in-
sight into the real-world implications for applying fairness
metric optimization to human-based datasets. These impli-
cations can provide insight into the types of interventions
that could take place in learning environments, because ap-
plying machine learning (or even expert-created) models to
the real world without substantively examining the possible
impacts can lead to dire consequences [1, 5].

By answering these two RQs, we tie test score biases and
machine learning biases together through unfairness miti-
gation strategies and examine the implications of applying
these strategies in education. By comparing the outputs
of unfairness-mitigated machine learning models with the
actual biases present in standardized tests we found a rela-
tionship between the two. Then, we showed how learning
environments and students are impacted from applying fair-
ness processes. Next, we address related research to position
our work in the space of educational data mining and AI
fairness research.

2. RELATED WORK
We focus on work related to fair AI methods and fair AI
used within educational data mining. For a more general
overview, see Fischer et al. [12]; we discuss fair AI, specifi-
cally, in the remainder of this section.

We first discuss fairness research being done in AI, regardless
of domain. Many different research approaches have differ-
ing definitions of fairness and what fair AI looks like. For
example, Hu et al. increased fairness in part through com-
paring differing groups positive predictive rates [16]; others
have examined several different statistical definitions of fair-
ness [6], which can even be contradictory with each other
[11]. Work has also been done to explain many of the def-
initions of fairness that are used in fair AI research [26],
independent of domain.

There is an increasing body of work in the field of educa-
tional data mining that uses fair AI, including the impact
caused by algorithmic bias in education systems [3, 20]. This
research being done in educational data mining with fair AI
methods shows the growing use of machine learning in ed-
ucation research, complementing existing work in related
topics like fair assessment (e.g., [21, 2]). These publications
represent how biases are seen within different data mining
avenues.

Using similar connections made in previous work between
fair AI methods and educational data mining, we harness
machine learning models and unfairness mitigation methods
to examine performance differences between demographic
groups in standardized tests.

Table 1: Breakdown of Demographic Groups

Demographic Identifier # Occurrences % Sample

Female 672,545 17.7%

Male 670,664 17.6%

Economic disadvantage 648,716 17.1%

Hispanic 554,697 14.6%

White 440,972 11.6%

Special education 315,072 8.3%

African American 240,901 6.3%

Asian 125,308 3.3%

Two or more races 80,817 2.1%

Pacific Islander 1,273 0.03%

American Indian 1,050 0.02%

3. METHODS
We used the assessment database from the STAAR Texas
Education Agency dataset. These data were collected from
the Teaching Trust (a now defunct leadership development
group with the goal of eliminating opportunity gaps for stu-
dents) between 2012 and 2019 [25]. This dataset has in-
formation from over 5 million students, which is approx-
imately 10% of the public school students in the United
States. The data include at most one demographic iden-
tifier per student—e.g., a student’s race or gender might be
included, but not both. Table 1 contains the breakdown of
demographic-related information in the dataset.

3.1 Machine Learning Models
The three machine learning models we used were the logistic
regression, random forest, and extremely randomized trees
models. We used 5-fold cross validation and tuned hyper-
parameters via grid search. We trained all models using
scikit-learn [22]. The logistic regression used the default
hyperparameters from scikit-learn (i.e., a small L2 regu-
larization penalty). The random forest and extremely ran-
domized trees models underwent hyperparameter tuning for
the maximum depth of trees and the proportion of features
samples for each tree.

3.2 Model Evaluation
For each of the machine learning models we used four un-
fairness mitigation methods (described in more detail be-
low): disparate impact preprocessing, reweighing, equalized
odds postprocessing, and calibrated equalized odds postpro-
cessing. We evaluated each of these model/method combi-
nations in terms of accuracy measured via area under the
receiver operating characteristic curve (AUC) and four un-
fairness metrics: statistical parity difference, disparate im-
pact ratio, average odds difference, and equal opportunity
difference (described in the Appendix).

3.3 Unfairness Mitigation Algorithms
We implemented unfairness mitigation algorithms with the
AIF360 Python library [7].

3.3.1 Disparate Impact Preprocessing
Disparate impact preprocessing compares the label (passing
the STAAR test) base rate across groups. The algorithm
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takes this rate and edits features of the original data so that
it is impossible to tell which group an individual belongs to.

3.3.2 Reweighing
The reweighing algorithm adds weight to each example dur-
ing model training based upon the proportion of students
students in different demographic groups and outcome (e.g.,
positive vs. negative class) groups. The equation for the
weight is given in Equation 1.

wpositive/group1 =
(Ngroup1)(Npositive)

(Nall)(Npositive/group1)
(1)

3.3.3 Equalized Odds Postprocessing
Equalized odds postprocessing works to optimize the equal-
ized odds fairness metric by changing predicted labels as
needed to satisfy the metric. Specifically, the algorithm
solves a linear program for probabilities. From these prob-
abilities, classification labels are given [15]. An equalized
odds predictor is made for this program from predicting on
equalized odds incentive measurements for all classes.

3.3.4 Calibrated Equalized Odds Postprocessing
Calibrated equalized odds postprocessing follows a similar
process to equalized odds postprocessing; however, it op-
timizes for equalized odds over a calibrated model output.
Calibrated output is found when probability predictions align
with the actual probability of observing the predicted out-
comes [23].

4. RESULTS
We describe our results with respect to the two research
questions outlined in the Introduction.

4.1 RQ1: Machine Learning Bias compared
to Assessment Bias

RQ1 asks if biases found in machine learning models are
analogous to the biases present in the STAAR assessment.
Table 2 contains the values of accuracy and fairness metrics
found after applying unfairness mitigation algorithms.

On average we observed a 22% improvement in fairness met-
ric evaluation. However, different unfairness mitigation meth-
ods led to different trends in results. We found the dis-
parate impact preprocessing method had the smallest im-
pact, on average, across all fairness metrics. However, dis-
parate impact preprocessing yielded the highest accuracy
for each model, perhaps because it impacted the models the
least. For both the random forest and extremely random-
ized trees models, reweighing unfairness mitigation led to the
fairest predictions across all fairness metrics. We found that
for some unfairness mitigation methods, especially equalized
odds and calibrated equalized odds, the predictions were so
influenced that the accuracy was no better than chance level
(i.e., AUC ≤ .500).

4.2 RQ2: Unfairness Mitigation Implications
We answered RQ2 by analyzing each unfairness mitigation
algorithm’s impact on the STAAR data or models being
used. The disparate impact preprocessing algorithm re-
moved distinctions between groups in the dataset itself. The

disparate impact removal process preserves within-group rank-
ing of singular data points; however, group membership of
singular data points are changed so it is not possible to dis-
cern what groups individuals belong to. The reweighing
algorithm adds weights to different data points based on
frequency of group membership to remove bias. Equalized
odds postprocessing and calibrated equalized odds postpro-
cessing do not edit the original dataset. Instead, they change
output labels of singular data points with the objective of
maximizing the equalized odds of the classifications. Each
algorithm thus impacts either the student data itself or the
process used to classify students as passing or failing the as-
sessment, the implications of which need to be understood
to determine whether such methods are procedurally fair—
that is, whether the process by which decisions are made is
fair, not just the fairness of the decisions themselves [9, 6,
14].

We found that using these unfairness mitigation algorithms
resulted in unintended consequences for how students were
computationally represented. For example, after disparate
impact preprocessing, students who originally belonged to
one group were now considered part of a different group for
training. In the case of STAAR data, if the data were bi-
modal, with each group having their own pattern of demo-
graphic identifiers, students would be represented in data
with different demographic identifiers than they actually
have.

The impacts of each unfairness mitigation method are seen
in the manipulation of the STAAR data. For example, some
individuals in the “Female” demographic group were now in
the “Asian” demographic group after disparate impact pre-
processing; the algorithm preserved the within-group rank-
ing of individuals, but changed group membership in un-
intended ways. This may have created a more fair model
in terms of predictions, but while ignoring or confusing the
systemic education problem present in the data.

In contrast, the two equalized odds based algorithms effec-
tively changed whether or not students in the training data
passed or failed the assessment. This may be less drastic
than shifting students’ demographic identifiers; however, de-
cisions made upon this unfairness mitigation are imperfect
if they obfuscate the problem of unequal learning.

Finally, the reweighing algorithm introduces weights to stu-
dents for fairer classification. This method does not change
the students’ features, and thus might be considered a more
faithful representation of students. However, weighting stu-
dents may cause unintended effects as demographic group
and assessment score combinations become more impactful
to classification of others. This is especially true for students
from smaller groups, who may find their characteristics or
behaviors become far more important to a model’s decisions
than is desirable.

5. DISCUSSION
Our first research question predicted that demographic dif-
ferences in test scores do correspond to biases seen in ma-
chine learning models trained on those data. Our results
show that there were similarities between the biases present;
however, models can further propagate biases present in the
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Table 2: Fairness metric calculations. The No Model row represents the metrics calculated on the original dataset (for metrics
that could be calculated from outcome labels in the dataset) for comparison to the rest of the algorithms.

Model Unfairness Mitigation AUC Stat Parity Diff Disp Imp Ratio Avg Odds Diff EqOpp Diff

No Model None – -.172 .766 – –

LogReg None .579 .113 1.419 .124 .162

RandFor None .623 -.621 0.379 -.639 -.529

Extra-Trees None .623 -.692 0.373 -.614 -.517

LogReg Disparate Impact .524 .112 1.427 .122 .161

LogReg Reweighing .474 .286 2.071 .293 .348

LogReg Equalized Odds .384 .306 1.875 .323 .333

LogReg Calibrated Equalized Odds .483 .483 2.391 .503 .486

RandFor Disparate Impact .512 -.675 0.325 -.692 -.586

RandFor Reweighing .522 .114 1.226 .123 .176

RandFor Equalized Odds .471 -.760 0.208 -.769 -.687

RandFor Calibrated Equalized Odds .472 -.438 0.232 -.425 -.398

Extra-Trees Disparate Impact .528 -.686 0.258 -.698 -.606

Extra-Trees Reweighing .518 .081 1.176 .089 .145

Extra-Trees Equalized Odds .436 -.605 0.291 0.605 -.539

Extra-Trees Calibrated Equalized Odds .445 -.665 0.235 -.668 -.597

data when trained on unfairness-mitigated data. This aligns
with other research on biases present in education [24].

Different types of biases can be measured in our machine
learning models that can not be measured within STAAR.
Models might include biases that are separate from biases
present in the test scores, indicating that machine learn-
ing models may exacerbate biases already present in data
or even introduce new biases. Additionally, putting assess-
ment data into a machine learning pipeline with unfairness
mitigation can lead to negative implications as theorized by
RQ2.

Our expectation for RQ2 was that applying unfairness miti-
gation strategies would lead to unintended real-world conse-
quences for students. Indeed, unfairness mitigation strate-
gies manipulated data in ways that could be perceived as
unfair, especially with respect to procedural fairness. We
investigated this by examining how unfairness mitigation im-
pacted the STAAR data and the classifications made. RQ2
results show if one is planning to administer data-driven
interventions in education, applying unfairness mitigation
will likely overgeneralize groups. Thus, students who re-
quire intervention may not receive it and students who do
not need intervention may receive one, not because of model
inaccuracies necessarily but because of unfairness mitigation
strategies. For example, if students with differing amount
of background knowledge are misrepresented, learning out-
comes could be negatively impacted [19]. This imprecision
of groups that comes with unfairness mitigation can lead
to unintended consequences when applied to real-world ap-
plications. Thus, unfairness mitigation methods must be
applied with caution.

5.1 Limitations and Future Work
The study in this paper explored one prediction task, which—
though representative of a large proportion of U.S. students—

is not representative of all assessments nor any of the other
educational outcomes and constructs of possible interest.
Similarly, we examined a few machine learning models with
a selection of preprocessing and postprocessing unfairness
mitigation algorithms. We focused on methods that are
common in (or well suited to) education data contexts, but
the space of possible models and unfairness mitigation algo-
rithms is far larger. Thus, future work would benefit from
working with other educational datasets, machine learning
models, and unfairness mitigation algorithms to further ex-
amine how these methods can impact the representations of
students in data analysis. Finally, a nearly insurmountable
limitation of this work is that we are unable to disentangle
the systemic biases that lead to different amounts of learning
(e.g., structural racism and classism) versus the assessment
biases (e.g., lack of cultural responsiveness) and algorith-
mic biases that contribute to biased measurement. We are
unable to resolve this problem, but we do evaluate the align-
ment of these biases in this paper, and suggest that future
work with quasi-experimental analyses may be one possible
route to address this limitation.

5.2 Conclusion
Education is plagued with unfairness for differing demo-
graphic groups [10]. Unfairness mitigation methods have
potential to reduce unfairness in data-driven assessment and
student support, but when applied to educational datasets
these methods may lead to unintended negative consequences.
We explored machine learning pipelines with unfairness mit-
igation methods applied, and examined how these methods
would affect the representations of individual students. We
expect that these findings will guide the selection of unfair-
ness mitigation methods in future work, and hope that with
our findings in mind, when decisions are made from mod-
els based on educational data, less harm is done to students
from a lack of caution when choosing models and algorithm.
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APPENDIX
A. FAIRNESS METRICS
We measured fairness according to four quantitative defi-
nitions, detailed below. The combination of these metrics
allowed us to holistically judge the impact of the unfairness
mitigation algorithms on the machine learning models.

A.1 Statistical Parity Difference
The statistical parity difference metric compares the differ-
ence between the groups’ probability of being predicted to
pass the assessment. A value of 0 indicates both groups were
predicted to pass the assessment with equal probability. A
positive value means one group is predicted to pass the as-
sessment more, a negative value means the other group is
predicted to pass the assessment more.

SP = P (Ŷ = 1|D = group2)− P (Ŷ = 1|D = group1) (2)

A.2 Disparate Impact Ratio
Disparate impact ratio is the ratio of the differing groups
being predicted to pass the assessment. A value of 1 indi-
cates that both groups are predicted to pass the assessment
with equal probability. A value greater than 1 indicates that
one group is predicted to pass the assessment more than the
other group, while a value less than 1 indicates the opposite.

DI =
P (Ŷ = 1|D = group2)

P (Ŷ = 1|D = group1)
(3)

A.3 Average Odds Difference
Average odds difference measures the average of the differ-
ence in the false positive rate and the true positive rate for
the differing groups. A value of 0 indicates an equality of
odds. A value of -1 or 1 indicates maximum possible in-
equality.

AO =

(FPRgroup2 − FPRgroup1)+

(TPRgroup2 − TPRgroup1)

2
(4)

A.4 Equal Opportunity Difference
The equal opportunity difference metric compares the differ-
ence in true positive rates between the two groups. A value
of 0 indicates equality between groups. A value of -1 or 1
indicates high inequality.

EO = TPRgroup2 − TPRgroup1 (5)
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ABSTRACT 
College students have great flexibility in choosing when they take 
specific courses. These choices sometimes are constrained by pre-
requisite requirements, which determines the order in which pairs 
of courses may be taken. However, even in these cases the student 
can choose the number of semesters, or gap, between the pairs of 

courses. In this paper we study the impact that this gap has on stu-
dent learning, as measured by course grades. Our methodology 
accounts for differences in instructor grading policies and in stu-
dent ability as measured by overall grade point average. Our results 
can be used to inform course selection and advising strategies. Our 
study is applied to eight years of undergraduate course data that 
spans all departments in a large university. Due to space limitations, 
in this paper we focus our analysis on the semester gaps in Com-

puter Science courses and in Spanish courses. Our results do not 
show a consistent negative impact on increasing semester gaps be-
tween all pairs of courses in a department; however, a negative 
impact is shown when the gap increases between courses that have 
a particularly strong relationship and overlapping content.  

Keywords 
Course sequencing, Student performance, Educational Data Mining 

1. INTRODUCTION  
Undergraduate college students have considerable flexibility in 
when they can take specific courses. Course sequencing is typically 
determined by certain courses being deemed as prerequisites for 
others. However, even in such cases, there is no requirement that 
the prerequisite must be taken in the prior semester. Thus there may 
be a “gap” between when the two courses are taken. A gap may also 
exist between courses that have no prerequisite relationship. In this 
study we compute, for all possible course pairs, the impact that this 

gap has on the course that is taken second. We ignore course pairs 
with an insufficient number of students in common and focus our 
analysis on course pairs with a clear connection and overlapping 
topics. 

Our study is based on course grade data from Fordham University, 
a large university [2] with approximately 15,000 undergraduate and 
graduate students. As discussed in detail in Section 2, we account 
for some important factors that could distort our results, such as 

whether a particular instructor is an easy or hard grader, and 
whether a course section happens to have a stronger or weaker set 
of students, based on student overall grade point average (GPA). 
We introduce a general set of metrics that can be used to assess the 

impact of semester gaps. Our findings indicate that when courses 

are very strongly related and cover overlapping topics, that an in-
creasing semester gap degrades student performance. However, our 
results do not show this pattern over the broader set of courses, even 
if the courses are offered by the same department. The information 
that we compute can be used to inform the course selection process 
and to improve departmental advising strategies. 

Our study is a special case of the more general work on course se-
quencing, especially the work on course sequencing as it impacts 

student grades. Work on the more general area of course sequenc-
ing is quite limited and has often been restricted to a single 
discipline, such as communications [5] or psychology [1]. A prior 
study of ours did span all academic disciplines in a university, and 
compared student grades between pairs of courses when the courses 
are taken in the two possible orderings [3]. Our current study is 
similar in that we also study only course pairs, but rather than com-
paring the two sequential orderings, we evaluate the impact of the 

number of semesters between the courses. 

2. COURSE-GRADE DATA SET 
The initial data set includes course enrollment and grade data for 

each undergraduate student in the university. Each individual rec-
ord corresponds to a specific student taking a specific course 
(identified by the course department, course number and title, sec-
tion number, and semester and year) and also has the earned student 
grade in the course. Grades are represented using a 4-point scale, 
where a 0 represents an “F” and 4.0 represents an “A.” Our ability 
to identify individual course sections is important because, as dis-
cussed in Section 3.2, student grades are normalized at the section 

level to account for differences in instructor grading schemes. The 
data set contains 473,527 records that cover 24,969 students. Due 
to strict privacy laws, we are unable to share our data set even 
though the student identifiers have been anonymized.  

Our study is focused on student grades as well as the timing be-
tween courses. Before proceeding, we need to acknowledge that the 
course gaps have additional implications. For example, if a large 
gap exists, then the student will be more advanced in their educa-

tion (and age) when taking the second course. This by itself can 
impact student learning. Similarly, the courses that tend to have 
larger gaps are more likely to have a higher course level, designated 
by the first digit of the course number (where 1000 represents a first 
year freshman course and 4000 represents a fourth year senior 
class). However, this numbering is only a rough guideline and there 
are even cases where a freshman takes a 4000 level course.  

Table 1 shows how “Student Year” and “Course Level” impact a 

grade, as these factors can influence grade patterns tied to semester 
gaps. Table 1 shows the average grade by student year (freshman 
to senior) for each course level and then averaged over all course 
levels. The final column shows that the average grade increases 
monotonically with student year; the final row shows that the aver-
age grade also increases monotonically with course level. The 
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number of students in each student year that take courses at a par-
ticular course level varies greatly. We track these numbers, 
although they are not included in Table 1, and use them to compute 
the displayed averages, which are weighted by the number of stu-
dents corresponding to each entry. If our results show that an 

increasing gap degrades student performance, this effect would run 
counter to the general trend of higher grades as one advances in 
one’s college career. 

Table 1. Average grade by year and course level 

 Course Level  

Student Year 1000 2000 3000 4000 Average 

Freshman 3.108 3.271 3.034 3.209   3.120 

Sophomore 3.189 3.281 3.215 3.244   3.222 

Junior 3.167 3.310 3.278 3.305   3.261 

Senior 3.182 3.342 3.327 3.385   3.320 

Average 3.136 3.301 3.271 3.364  

3. CALCULATING GAP PERFORMANCE 
In this section we describe how gap performance is measured. Our 
methodology and the associated metrics incorporate two types of 
grade normalization, discussed below. 

3.1 Basic Methodology 
We measure gap performance for potentially every pair of under-

graduate courses. For each pair (Course A, Course B), we consider 
both orderings (i.e., placing Course A first and then placing Course 
B first). For each ordering, we further partition the students based 
on the number of semesters between the pair of courses. If the num-
ber of students in a partition associated with a particular gap size is 
at least gap-threshold, we calculate the average grade of the stu-
dents in the second course.  If the number of students is below this 
threshold, the partition is omitted since any average grade may not 
be reliable. We then compare average grades for different gap 

lengths to detect the relative impact of larger semester gaps.  

For this study we omit summer courses and consider only fall and 
spring semester courses – we consider the gap between a fall 2014 
and spring 2015 course to be the same as the gap between a spring 
2015 and fall 2015 course. We do this because summer courses are 
taken with relative infrequency, and because summer courses com-
press the material from a fifteen week fall or spring semester into a 
five week summer session. This compressed schedule, even though 

it may maintain the number of lecture hours, is likely to have a del-
eterious impact on student learning.  We consider courses taken in 
consecutive semesters to have a gap of 1 (i.e., one semester differ-
ence), although we recognize it might be more natural to consider 
this as a gap of 0. However, using our scheme courses taken in the 
same semester can be represented with a gap of 0; we ignore such 
cases from our present analysis but may consider them in the future. 
Taking courses simultaneously is very different from taking 

courses sequentially, and merits a separate analysis.   

3.2 Normalizations 
We normalize our student grades to account for two confounding 

factors. We first normalize grades at the course section level to ac-
count for instructors that are easy versus harsh graders; we then 
normalize for student ability, as measured by the student’s grades 
across all of their courses (i.e., their GPA). We apply these sequen-
tially, so we never normalize only for student ability. We refer to 
the resulting normalized student grades as instructor normalized 
and compound (instructor and student ability) normalized grades. 
In order to provide more succinct names and table headings, and to 

reflect that these normalizations are applied sequentially, we refer 

to these as Level 1 and Level 2 normalizations. These two levels of 
normalization have been used in several of our labs other studies, 
including the previously discussed study on the impact of course 
pair orderings on student grades [3].  

The Level 1 instructor normalization takes the raw student grades 

in an individual course section and applies z-score normalization. 
This will account for instructors who assign grades with higher, or 
lower, overall means, so that these factors do not obscure the se-
mester gap effects. Equation 1 describes the normalization process. 
In this equation, L1i represents the L1 instructor normalized grade 
of student i in the course section, xi represents the initial grade of 
the student, µ represents the mean grade of the course section, and 
σ represents the standard deviation of the course section grades. 

𝐿1𝑖 = (𝑥𝑖 −  μ) / σ        (1) 

The next normalization accounts for student ability. That is, a par-
ticular section may contain students who are stronger-than-usual 
overall. While such affects may be expected to average out, they 
nonetheless could distort our results. We measure student ability by 

the student’s grades in all of their courses. We could try to do better 
by using a student’s major GPA for major courses, humanities GPA 
for humanities courses, and so on, but we do not want to overly 
complicate the calculations. This step takes the normalized scores 
produced by Equation 1 and then applies another round of z-score 
normalization, as described by Equation 2. In this equation, L2i rep-
resents the Level 2 compound normalized grade of student i in the 
course section, L1i represents the L1 instructor normalized grade of 
student i, µi represents the mean instructor normalized grade across 

all courses taken by student i (i.e., instructor normalized GPA), and 
σi represents the standard deviation of this student’s instructor nor-
malized grades. 

𝐿2𝑖 = (𝐿1𝑖 − 𝜇𝑖) / 𝜎𝑖         (2) 

These steps are done at the course section level. These values are 

then aggregated over all course sections for each course. These are 
the values that we report in our results as long as there are a suffi-
cient number of values (i.e., students). As mentioned in Section 3.1, 
our metrics are based on the students who take the second course a 
specific number of semesters after the first course. We refer to the 
metrics computed over these partitions of student grades as the 
L1 gap and L2 gap metrics, where each of these metrics in turn is 
associated with a specific gap length (e.g., we can talk about the 

L1 gap=1 value versus the L1 gap=2 value). In our discussion we 
prioritize the L2 gap metric over the L1 gap metric.  

3.3 Example Gap Performance Entry 
An example is provided in Table 2 to provide a better understand-
ing of the metrics that were just introduced. The table includes just 
a single entry, which corresponds to “Introductory Biology I” fol-
lowed by “General Chemistry 1.” In our dataset there are a total of 
1301 students who took these two courses in this sequence. The 
number of students who took it with a gap of 1 and a gap of 2 is not 
provided in the table but is above gap-thresh (the results in Sec-
tion 4 use gap-thresh=40 unless otherwise specified). Table 2 only 

includes the Level 2 results. The value for students taking “Gen 
Chem 1” in the semester right after taking “Intro Bio 1” is 0.519, 
while the value for those waiting an extra semester (so they take it 
the same semester in the following year) is -0.362. Since the value 
decreases, the delay hurts student performance. The difference be-
tween these values (gap 1 minus gap 2) is 0.881 and is denoted as 
the L2 difference (L2 Diff). We generally do not show the gap val-
ues past a gap of 2 because there are often insufficient numbers of 

students to satisfy gap-thresh. For this reason we focus on the 
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difference between a gap of 1 and 2, although we provide one ex-
ample with a larger gap in Table 3. As we accumulate additional 
student data, we may be able to extend our analyses to look at larger 
gap lengths.  

Table 2. Sample course gap table entry 

    Level 2 Gap L2 Diff 

Course 1 Course 2 Corr. Students 1 2 (gap 1-2) 

Intro Bio1 Gen Chem1 0.64 1301 0.519 -0.362 0.881 

We tend to focus our analyses on courses that are normally taken 
closely together—if this is not the case then the courses are most 

likely not highly linked, and a delay is less likely to matter. Table 2 
specifies the Pearson correlation (Corr.) between the student grades 
in the two courses. This correlation, which is computed independ-
ent of order, tends to identify courses that are highly related/linked. 
The link may not be causal—it could just be that the courses utilize 
similar skills so that students who perform well in one perform well 
in another. But we do feel that a high grade correlation is a neces-
sary, but not sufficient, condition for two courses to have their 

grades causally linked—and hence have the possibility of a semes-
ter gap having a substantial influence on student performance. Thus 
we can use grade correlation to help guide our search for courses to 
focus our attention on. This use of grade correlation was studied in 
one of our prior studies [4], which suggested that a grade correla-
tion of 0.5 or higher suggests that courses are linked. 

Table 3 includes the only entry in this paper with a gap length 
greater than 2. The example involves “General Chemistry 1” fol-

lowed by “General Chemistry 2.”  This example was selected by 
sorting all of our results by decreasing levels of grade correlation 
and then selecting the first entry. Note that the performance de-
grades when the gap transitions from 1 to 2. This trend does not 
continue to a gap length of 3, but student performance at gap length 
of 3 is still below that of gap length of 1. The entries for gap length 
of 3 may be less reliable since they involve fewer students, although 
they still exceed the gap-threshold of 40.  

Table 3. Course gap entry for GenChem1 → GenChem2 

   Gap Length 

Metric Corr. Students 1 2 3 

L1 0.730 1328 -0.040 -0.753 -0.615 

L2 0.730 1328 -0.337 -1.012 -0.689 

4. MAIN RESULTS 
This section covers our main results. Section 4.1 take a detailed 
look at Computer Science courses and then Section 4.2 looks at 
Spanish courses. We study Computer Science courses because all 
of the authors of this study are affiliated with a Computer Science 
department. Foreign language courses were selected since our intu-
ition is that courses in a foreign language will be heavily sequenced 
and the performance in one course will impact the performance of 
subsequent courses; Spanish courses were selected because Span-
ish is the most popular foreign language studied in our university. 

4.1 Computer Science Results 
In this section we take a detailed look at the course gap results for 
Computer Science (CS) courses. In order to provide a fair analysis, 
all course pairs that satisfy a gap-threshold of 40 are displayed in 
Table 4. 

Before analyzing the results, it is important to understand the rela-
tionship between CS courses, since the gap values are not as likely 
to be meaningful for courses that are not highly related. Thus we 

first highlight the course pairs where the courses cover the same 
topic(s), although perhaps at different levels. In these cases the first 
course will be an essential prerequisite for the second course. Our 
introductory programming sequence is CS1→CS2→Data Struc-
tures, and each course builds on the prior ones and utilizes the same 

programming language. While other courses may be related by a 
prerequisite, the prerequisite may not be as essential. For example, 
Databases has CS1 as a prerequisite, but mainly just to ensure that 
the student has had a general exposure to programming. The only 
other course pair in Table 4 that may share an “essential” relation-
ship is “Data Structures” and “Algorithms,” although there are 
substantial differences, as the first course has a heavy programming 
component, while the second course generally does not.  

Table 4. Computer Science course gap table 

  L1 L2   L1 gap L2 gap 

Course 1 Course 2 Diff Diff Corr. Stdnts    1    2    1   2 

CS1 CS2 .250 .808 .568 582 .052 -.198 .078 -.730 

CS2 DataStruct .301 .357 .549 351 .072 -.229 .063 -.293 

Databases DataComm .044 .346 .526 170 .000 -.044 .452 .107 

Databases OS -.017 .069 .520 187 .146 .163 .188 .118 

CS1 Databases .116 .024 .443 274 -.193 -.309 -.087 -.111 

CS2 Databases -.029 -.009 .469 238 .069 .098 .304 .313 

DiscMath CS1 -.196 -.137 .382 300 -.320 -.125 -.160 -.024 

DataStruct Algrthms -.163 -.346 .526 232 .011 .174 -.131 .215 

DataStruct OS -.168 -.353 .550 226 -.114 .054 -.284 .069 

DataStruct TOC -.143 -.412 .460 251 -.149 -.006 -.402 .010 

CS1 CompOrg -.292 -.446 .410 268 -.238 .053 -.151 .296 

CS2 CompOrg -.239 -.533 .463 256 .101 .340 .166 .699 

CS2 DataMining -.129 -.821 .492 212 -.070 .059 -.176 .646 

The key observation from Table 4 is that the gap between CS1 and 
CS2, and the gap between CS2 and Data Structures, has a large L2 
difference—and in fact they have the two largest positive differ-

ences. The same pattern is also observed with the L1 normalized 
differences. The grade correlation between students who take CS1 
and CS2 (0.568), and CS2 and Data Structures (0.549), is quite 
high, and in fact are higher than for just about all other course pairs. 
This further supports the strong relationship between these pairs of 
courses. In other cases, when the grade correlation is high it could 
just be that the courses rely on similar student abilities and there is 
no causal link. Nonetheless, we generally would expect a relation-
ship between grade correlation and L2 Difference, even if some of 

the relationships are not causal. The scatter plot and associated 
trendline in Figure 1 demonstrates that there is such a relationship, 
and the Pearson correlation coefficient between these two measures 
of 0.459 confirms this (this is considered to be a moderate positive 
correlation). 

 
Figure 1. Grade correlation versus L2 diff (Computer Science) 
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The remaining entries in Table 4 do not support the hypothesis that 
a larger gap will yield poorer performance, since in many cases the 
L1 and L2 differences are negative. This suggests that the gap has 
no substantive negative impact on student learning in those cases. 
Often negative differences are associated with first-courses in-

tended to be taken early in the major (CS1, CS2, and Data 
Structures) and second-courses intended to be taken in the middle 
years of the major with relatively few official prerequisites. Perhaps 
the gap poses a benefit in these cases by allowing the students time 
to reflect and grow through partially-tangential academic experi-
ences before joining the second course. It should be noted that we 
already advise students to take our introductory programming se-
quence CS1→CS2 → Data Structures as quickly as possible, but 

our universities’ large liberal-arts core curriculum, which includes 
well over a dozen courses, sometimes interferes with this advice.  

4.2 Spanish Results 
The next discipline/department that we look at is Spanish, for the 
reasons provided earlier. Students who do not major in a science 
are all required to take a substantial amount of a foreign language—
beyond the placement credits that most students receive.  Our uni-
versity catalog reveals the following prerequisite structure for the 
Spanish courses that appear in Table 5:  

Spanish 1 → Spanish 2 → Language and Literature → Approaches 
to Literature → Latin America:  Literature and Culture 

The first two courses in the sequence are standard intermediate-
level courses that focus on language fundamentals such as reading, 
writing, listening, and speaking. They do require two introductory 
Spanish courses, but most students receive placement credit for 
those based on their high school foreign language requirement. The 
Spanish Language and Literature course introduces Spanish litera-
ture, but a key focus in the course is using these topics to review 
the language fundamentals. The last two courses assume language 

competence and the focus goes beyond language fundamentals. 
Based on this background, one would expect that “Spanish 1” and 
“Spanish 2” would have the strongest relationship, followed by 
“Spanish 2” and “Language & Literature.”  

Table 5. Spanish course gap table 

   L1  L2    L1 gap   L2 gap 

Course 1 Course 2  Diff  Diff  Corr. Stdnts    1    2    1   2 

Spanish1 Spanish2 .686 .420 .663 2348 .001 -.685 -.036 -.456 

Spanish2 Lang&Lit .471 .232 .640 2472 -.023 -.494 -.236 -.468 

ApprToLit LatinAmerica -.111 .151 .592 166 -.092 .019 -.451 -.602 

Spanish1 Lang&Lit -.317 -.246 .583 2020 -.395 -.078 -.580 -.334 

Lang&Lit ApprToLit -.113 -.397 .390 496 .009 .122 -.747 -.350 

The data in Table 5 agrees with the expectation that the courses that 
are most related will most negatively impacted by an extra semester 
gap. Those courses also have the highest grade correlation, which 
further suggests a close relationship.  

5. CONCLUSION 
This paper introduced a methodology for evaluating the impact of 
semester gaps between courses on student performance. Perfor-
mance is measured based on student grades and two levels of 

normalization are used to account for differences in instructor grad-
ing policies and in student ability. This methodology was applied 
to eight years of undergraduate course data. This initial study fo-
cused on the impact of semester gaps on Computer Science courses 
and on Spanish courses; the former was selected to utilize the 

domain knowledge of the authors while the latter was selected due 
to the expected strong impact between introductory foreign lan-
guage courses. In both cases a longer gap did not consistently 
degrade student performance. This may be explained by the fact 
that even within a given discipline, the knowledge gained in one 

course may not necessarily have a strong impact on the perfor-
mance in the other course. However, for both Computer Science 
and Spanish, the courses with the clearest direct connections did 
show a degradation in performance with a longer gap. In these two 
cases the courses with the largest such degradation were introduc-
tory courses where both pairs of courses share the same name, but 
with a different suffix (i.e., “Computer Science 1” and “Computer 
Science 2” and “Intermediate Spanish 1” and “Intermediate Span-

ish 2”). We believe that this connection is not accidental and that 
performance in highly related courses suffer from degradation in 
retained knowledge over time, as measured in the present work. We 
further note that if two courses have no meaningful link in grades, 
a larger gap should lead to improved performance in the second 
course based on our results in Table 1, which show that students 
earn higher grades the further along they are in their academic ca-
reer. Our work has the potential to improve academic advising in 

that an advisor, or an automated tool, could warn students when a 
delay is most likely to lead to degraded performance.  

This study has several limitations that will be addressed in future 
work. Although our university is considered a large university by 
the Carnegie classification [2] since it has more than 10,000 degree 
seeking students across all levels, we often found that the number 
of students taking pairs of related courses was often quite modest, 
and the number quickly diminished with the number of intervening 

semesters. Our immediate plan is to obtain several years of addi-
tional data, since our data is currently three years old. Longer term, 
we hope to obtain data from another university, or to lend our anal-
ysis tool to other researchers, who can apply it to their university 
data. We also plan to form higher level hypotheses about the role 
of time between courses, and combine it with domain knowledge 
across many disciplines, so that we can generate more reliable con-
clusions. For example, if we had a list of the two most highly related 
courses in each academic major, we could compare the impact of 

gap length on these collective pairs of courses.  
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ABSTRACT 
Educational institutions rely on instructor assessment to determine 
course assignments, which instructors to retain or promote, and 
whom to provide with additional assistance or training. Instructor 
assessment is most commonly based on student surveys or peer 
evaluation—which are both subject to the evaluator’s personal 
biases. This study describes an assessment method based on future 
student grade performance, which has the potential to avoid these 

biases. This study is based on eight years of undergraduate course-
grade data from over 24,000 students in a large metropolitan 
university. The methodology introduced in this paper accounts for 
confounding factors, such as diverse instructor grading policies and 
varying student abilities. Top and bottom performing instructors 
are identified for each course.  

Keywords 
Instructor effectiveness, instructor evaluation, data mining, 
educational data mining, grade analysis, data analysis. 

1. INTRODUCTION 
Assessing instructor effectiveness is important for determining 
which instructors to retain or promote, optimal assignment of 
courses, and providing additional mentorship or training to weak 
instructors [3, 8]. It is also often a key factor in tenure decisions. In 
a university, these assessments are typically done through student 
surveys or peer evaluations based on classroom observations [8]. 
Both of these methods are subject to the biases of the evaluators, 

which may be impacted by instructor gender and race, and may not 
measure student learning [1, 2, 5, 7]. The justification for using 
student surveys is derived from several studies in which positive 
correlations are found between student evaluations and instructor 
effectiveness as measured through exams at the end of each course. 
However, a recent meta-analysis conducted on thirty-two of these 
studies shows that there is no such positive correlation for the 
studies containing the most course sections, indicating earlier 

conclusions were due to a lack of data and providing argument 
against the use of student evaluations to measure instructor 
effectiveness [7]. These studies also measure instructor 
effectiveness using the grades for the course being taught. Given 
that the exams and grades are usually designed by the instructor, 
this yields another potential source of bias; our methods avoid this 
bias by relying on students’ performance in future courses. Peer 
evaluations are most likely subject to similar biases.  

The method introduced in this paper assesses instructors by 
quantifying their impact on future student grade performance. If 
students with a given instructor perform better (worse) in future 

courses than students who have a different instructor, then the 
instructor is ranked favorably (unfavorably). Our study only 
assumes basic course-grade data is available, and does not account 
for all potential confounding factors, such as the time of day of the 
class or class size [9]. However, we do account for grade-related 
factors such as instructor grading leniency and student ability as 
measured by grade-point average. We have developed a publicly 
available Python-based software tool that implements our 

methodology and generates the instructor effectiveness metrics [6]. 

Our study identifies instructors who appear to be much more or less 
effective than other instructors based on their student’s future 

performance. Our analysis first focuses on two case studies, 
assessing instructors of “Spanish 1” and “Computer Science 2” 
based on future performance in “Spanish 2” and “Data Structures,” 
respectively. We then identify the best instructors in the university 
based on the teaching of a single course, and then identify the 
top-10 and bottom-10 instructors based on the performance over all 
courses each instructor teaches, with future student performance 
measured on all future courses taken within a single department. 

We discuss several interesting patterns across these results. 

2. STUDENT COURSE-GRADE DATA SET 
The work presented in this paper is based on eight years of 
undergraduate course-grade data from Fordham University. Each 
record in the dataset represents a student earning a grade in a 
specific course section and includes the following fields: 
student identifier, instructor ID, course name, course number, 
course department, course term (semester and year), and student 
grade using a 0.0 (F) - 4.0 (A) scale. Table 1 provides key dataset 

statistics. In order to enhance privacy, student identifiers were 
remapped and data for course sections with fewer than five students 
were omitted. Even with such measures, due to federal regulations 
we are not permitted to publicly share the dataset. 

Table 1. Summary Dataset Statistics 

Feature Unique Values 

Record Number 442,230 

Student ID (SID) 24,654 

Instructor ID (IID) 2,195 

Course Name & Number 2,505 

Course Section 21,504 

Demographic information was not included in the data set as it 
could facilitate de-anonymization. We therefore characterize the 
population using university statistics for the middle year of the data: 
gender distribution is 60% female and 40% male, and the 
racial/ethnic breakdown is 55% White, 14% Hispanic, 11% Asian, 
7% International, 4% Black, and 9% other. The majority of students 
are between the ages of 17 and 22. 
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3. MEASURING INSTRUCTOR BENEFIT 
This section describes the methodology used to calculate instructor 

benefit and introduces our three instructor benefit metrics. This 
methodology is implemented in a publicly available Python-based 
software tool developed by our research group [6], which enables 
other researchers to apply our research to other student grade 
datasets. The steps used to generate our results are summarized in 
Figure 1 and described in subsequent subsections. 

 
Figure 1. Overview of Data Processing Steps 

3.1 Remove Sections with Too Similar Grades 
Differences in instructor effectiveness can only be measured if 
there is reasonable variance in the grades assigned to students. Thus 
we remove the data associated with course sections with very low 
grade variance. Step 1 computes the standard deviation of the 
grades in every course section and eliminates sections where the 
standard deviation is below MinSD. The distribution of grade 
standard-deviation values at the section level is provided in the 
Appendix, and Section 4 specifies the MinSD value of 0.2 that is 

used throughout this study. 

3.2 Normalize Grades in each Section 
To account for different instructor grading schemes, we employ 
z-score normalization for each course section. The Level-1 
normalized score, defined below, tells us how many standard 

deviations away from the course section mean a student scores. 

𝐿1𝑆𝐼𝐷
𝐶𝑟𝑠𝑆𝑒𝑐 =

𝐺𝑆𝐼𝐷
𝐶𝑟𝑠𝑆𝑒𝑐 − 𝜇𝐶𝑟𝑠𝑆𝑒𝑐

𝜎𝐶𝑟𝑠𝑆𝑒𝑐
 

In this formula, 𝐿1𝑆𝐼𝐷
𝐶𝑟𝑠𝑆𝑒𝑐 is the normalized course grade for student 

SID in the specified course section CrsSec, 𝐺𝑆𝐼𝐷
𝐶𝑟𝑠𝑆𝑒𝑐 is the original 

grade for student SID in CrsSec, and 𝜇𝐶𝑟𝑠𝑆𝑒𝑐 and 𝜎𝐶𝑟𝑠𝑆𝑒𝑐 are the 
mean and standard deviation of the grades in CrsSec. Instructor 
benefits calculated using this Level-1 normalized grade are referred 
to as L1 Instructor Benefits. Instructor benefits calculated using the 
unnormalized grades are referred to as Grade Benefits (although 
they can be viewed as Level-0 Instructor Benefits). 

3.3 Normalize Grades by Overall Performance 
Student performance is not just dependent on the effectiveness of 
the instructor but also depends on a student’s abilities. We therefore 
employ a second level of grade normalization that is based on the 
student’s overall performance in all of their courses (i.e., GPA). 
Without this normalization, an instructor that coincidentally is 
assigned high-performing students will appear to perform better 
than an instructor that is assigned weaker students. This Level-2 

normalization is defined by the formula below and L2 Instructor 
Benefits are calculated using these values. 

𝐿2𝑆𝐼𝐷
𝐶𝑟𝑠𝑆𝑒𝑐 =

𝐿1𝑆𝐼𝐷
𝐶𝑟𝑠𝑆𝑒𝑐−𝜇𝑆𝐼𝐷

𝑛𝑜𝑟𝑚

𝜎𝑆𝐼𝐷
𝑛𝑜𝑟𝑚   

In this formula, 𝐿2𝑆𝐼𝐷
𝐶𝑟𝑠𝑆𝑒𝑐 is the Level-2 normalized grade of student 

SID in course section CrsSec, 𝐿1𝑆𝐼𝐷
𝐶𝑟𝑠𝑆𝑒𝑐 is the Level-1 normalized 

score from the prior step, and  𝜇𝑆𝐼𝐷
𝑛𝑜𝑟𝑚 and 𝜎𝑆𝐼𝐷

𝑛𝑜𝑟𝑚 are the mean and 

standard deviation of student SID’s L1-normalized grades across 
all courses. 

3.4 Find Instructor Benefit by Course Pair 
We next consider every ordered course pair, C1 → C2, where 
course C1 is taken prior to course C2. Assume that the instructor 
for C1 has an instructor ID, IID. The instructor benefit associated 
with instructor IID teaching C1 based on C2 performance is 
computed using the C2 grades for those students who previously 
had instructor IID for C1. The type of C2 grade (unnormalized, L1-
normalized, L2-normalized) determines the type of Instructor 

Benefit (Grade, L1, L2). The calculations just described are 
aggregated over all sections for a given course. More formally, 

𝐼𝐵𝐼𝐼𝐷
𝐶1→𝐶2 is the instructor benefit (IB) for students taking C2 after 

taking C1 with instructor IID. 

𝐼𝐵𝐼𝐼𝐷
𝐶1→𝐶2 = 〈𝐺𝑅𝐴𝐷𝐸𝑆𝐼𝐷∈(𝐶1,𝐼𝐼𝐷)

𝐶𝑟𝑠𝑆𝑒𝑐∈(𝐶2)〉 

In this formula, 𝐶𝑟𝑠𝑆𝑒𝑐 ∈ (𝐶2) is any course section of course C2, 

SID ∈ (𝐶1, 𝐼𝐼𝐷) is every student who took course C1 with 

instructor IID, and 〈𝒙〉 is the average of all values in x.  

𝐼𝐵𝐼𝐼𝐷
𝐶1→𝐶2 is computed for all ordered course pairs <C1, C2> and 

for every C1 instructor, as long as at least 80% of the students who 
complete both courses take C1 first. This restriction ensures that we 
only evaluate instructor effectiveness between courses that are 
taken in the expected order.  In Section 3.6, we discuss aggregating 

the instructor effectiveness metrics for each instructor teaching C1 
over all C2 courses, and then again over all C1 courses for each 
instructor. However, we believe that these higher level metrics are 
less meaningful, since each C1 course is often best evaluated on a 
single C2 course (e.g., Spanish 1 is best evaluated using 
performance in Spanish 2). For this reason most of the results in 
Section 5 are at course-pair level. When the most appropriate future 
course is not clear based on domain knowledge, the choice can be 

guided by looking at the course pairs with the highest pairwise 
grade correlation, as described in one of our recent studies [4].  

3.5 Remove Course Pairs with Few Students 
Instructor effectiveness is computed for pairs C1 → C2. For the 
resulting instructor effectiveness metrics to be reliable, the 
instructor will need to have taught at least MinStudents in C1 who 
subsequently completed C2. However, since this is a comparative 
statistic, we also require that there are MinStudents who completed 
C1 with other instructors and then completed C2 (hence if 
MinStudents = 50 there must be at least 100 students that took C1 

and then completed C2). Section 4 explores how the MinStudents 
threshold impacts the number of available course pairs.  

3.6 Aggregate Average Instructor Benefits 
Course-pair level instructor benefit metrics are aggregated to yield 
higher level views of instructor performance.  The instructor benefit 
values for each <C1, C2> course pair are first aggregated over the 
set of C2; restrictions on C1 and C2 may be applied. The results in 
Section 5.3 are at the instructor level but are aggregated over all C1 

courses taught by instructor IID in a single department and 
measured on future performance over classes in another department 

(i.e., 𝐴𝐼𝐵𝐼𝐼𝐷
𝐷1→𝐷2). This aggregation formula, which is provided 

below, also weights the courses by the number of students.  

𝐴𝐼𝐵𝐼𝐼𝐷
𝐷1→𝐷2 =

1

∑ |{𝑆 ∈ 𝐶𝑋𝐼𝐼𝐷}|𝐶𝑋𝐼𝐼𝐷

∑ 𝐼𝐵𝐼𝐼𝐷
𝐶1→𝐶2

(
𝐶1∈𝐷1,
𝐶2∈𝐷2

)

|{𝑆 ∈ 𝐼𝐵𝐼𝐼𝐷
𝐶1→𝐶2}| 
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The computation is performed across all  relevant course pairs in 

the department 𝐶1 → 𝐶2, where 𝐼𝐵𝐼𝐼𝐷
𝐶1→𝐶2 is an instructor benefit 

from C1 to C2, |{𝑆 ∈ 𝐼𝐵𝐼𝐼𝐷
𝐶1→𝐶2}| is the number of students who took 

the instructor in that particular course pairing, and ∑ |{𝑆 ∈𝐶𝑋𝐼𝐼𝐷

𝐶𝑋𝐼𝐼𝐷}| is the number of students who took a course with instructor 
IID (summed over all possible courses CX). The formula above can 
be used to find, amongst other things, the instructor effectiveness 
scores for a Computer Science instructor when evaluated on future 
Math classes, as well as when evaluated on future Computer 
Science classes (i.e., when D1 = D2).  

4. Threshold Sensitivity Analysis 
We selected appropriate thresholds for MinSD, the minimum 
standard deviation of section grades, and MinStudents, the 
minimum number of students in each course pair. The Appendix 
provides additional relevant information related to the selection of 
these thresholds. We select MinSD=0.2, retaining most (20,904 of 

21,504) course sections while ensuring some variability in student 
grades, and MinStudents=50, to keep a large number of course pairs 
while maintaining reliability of the instructor benefit metrics. 

5. RESULTS 
This section provides our instructor benefit results. Section 5.1 and 

Section 5.2 provide results at the course-pair level, while Section 
5.3 identifies the top and bottom performing instructors based on 
their performance across all courses in a department. Grade Benefit, 
Level-1 Benefit, and Level-2 Benefit metrics are all provided, with 
a focus on Level-2 Instructor Benefits. 

5.1 Section Level Course-Pair Results 
This section provides results at the course-pair level. Due to space 
limitations we can only provide instructor benefit results for 
instructors teaching Spanish 1 based on future student performance 
in Spanish 2 and for instructors teaching Computer Science 2 (CS2) 
based on future performance in Data Structures. We include the 
Spanish courses because they are popular and Computer Science 
courses because they are offered by our home department and there 

is great interest in Computer Science education. In both cases, the 
course pairs are part of a common introductory sequence, and the 
second course directly follows the first course. 

Table 2. Instructor Benefit for Spanish 1 → Spanish 2 

Instructor Sections Total # Students Instructor Benefit 

ID Taught Spanish 1 Spanish 2 Grade Level 1 Level 2 

F980 22 381 325 -0.024  0.016  0.050 

F494 17 367 295 -0.189 -0.091 -0.090 

F787 12 217 166 -0.154 -0.079 -0.210 

F424 11 231 191 -0.278 -0.259 -0.146 

F425 11 213 171  0.034 -0.076 -0.097 

F819 10 201 176  0.050  0.124  0.233 

F883 9 154 129  0.030 -0.039  0.065 

F719 8 179 134  0.090  0.076  0.147 

F890 7 172 138 -0.097 -0.009 -0.282 

F541 7 86 67  0.061  0.045 -0.219 

All 189 3485 2644 -0.088 -0.092 -0.073 

The results for the Spanish classes are summarized in Table 2.  
Sections where fewer than five students continue to Spanish 2 are 

excluded to allow section-level instructor benefit values to be 
reliable for statistical analyses. Due to space limitations, instructors 
with fewer than seven sections are not listed but are included in the 
summary statistics in the last row.  

Our analysis focuses on Level 2 instructor benefit because it 
accounts for the two confounding factors discussed earlier, but 
Figure 2 shows that the three metrics are generally correlated, and 

the Pearson correlation coefficient () using the 189 section level 

values confirms this with =0.74 between the Grade and Level-1 

metric and =0.76 between the Level-1 and Level-2 metric. 

 
Figure 2. Instructor Benefit Metrics for Spanish 1 Instructors 

Table 2 and Figure 2 show that there are substantial differences in 
the Level-2 values since they vary from +0.233 to -0.282. Small 
differences in instructor ability may be hard to distinguish, so in 
this initial study, we focus on cases with the largest differences and 

where the values are based on many students. Given this, we 
conclude that instructor F819 is highly effective, while F890, F541, 
and F787 are least effective.  A two-sample unequal variance t-test 
at the section level for Instructor F819 (+0.283) and F787 (-0.210) 
yields p=0.0156 for the one-tailed distribution and p=0.0312 for the 
two-tailed distribution. These p-values suggest that the differences 
are statistically significant, although this is partially due to 
comparing instructors at the two extremes. More students would 

make more refined assessments possible.  

Table 3 provides analogous results for the <CS2, Data Structures> 
course pair. Instructor data is limited because the CS major was not 
heavily populated in the timeframe considered (2010 to 2018). The 
table includes all instructors that taught three or more sections of 
CS2 (the bottom two instructors did not meet our preferred 
MinStudents threshold of 50). Based on the level 2 instructor 
benefit, two instructors are strongly positive and two moderately 

negative. A t-test on the first two instructors in Table 3 yields 
p-values of 0.00030 (1-tail) and 0.0003 (2-tail). 

Table 3. Instructor Benefit for CS2 → Data Structures 

Instructor Sections Total # Students Instructor Benefit 

ID Taught CS2 DataStr. Grade Level 1 Level 2 

F212 12 293 158 -0.304 -0.226 -0.189 

F177 4 92 62 0.237 0.151 0.396 

F589 3 56 36 -0.329 -0.177 -0.228 

F653 3 35 33 -0.385 -0.042 0.400 

All 32 697 410 -0.227 -0.145 -0.054 

The section level results suggest that it is possible to distinguish 
between high and low-performing instructors when using future 
student performance in a single highly related course. It may be 
difficult to reliably assess less extreme differences, but universities 
with larger classes or higher teaching loads should be better able to 
perform more refined assessments. 

5.2 Global Course-Pair Instructor Results 
Table 4 provides the best Level 2 Instructor Benefit results at the 
course-pair level. The course pairs are restricted to the same 
department or between departments that share major requirements, 
since it is best to measure instructor effectiveness using related 

courses. The results are based on MinSD=0.2 and MinStudents=50. 
Each entry in Table 4 corresponds to a single instructor. Course 
names are abbreviated using department codes and course numbers, 
but the full names are provided in our discussion. 
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Table 4. Top 6 Instructor Course Pairs by Level 2 Benefit 

Course1 Course2 
Grade 

Benefit 

Level 1 

Benefit 

Level 2 

Benefit 

Chem 211 Bio 342 0.11 0.09 1.50 

Econ 220 Econ 332 0.53 0.50 1.12 

Phys 140 Chem 121 0.24 0.43 0.79 

Chem 121 Chem 212 0.14 0.22 0.76 

NatSci 304 NatSci 321 0.44 0.48 0.75 

Comm 112 Comm 242 0.41 0.38 0.72 

The courses pairs that appear in Table 4 exhibit a strong 
relationship between Course 1 and Course 2. For example, the first 
row involves “Organic Chemistry Lab” and “Biochemistry,” while 
the two Natural Science courses correspond to “Organic Chemistry 

I Lab” and “Organic Chemistry II.” Our belief is that the instructor 
associated with each entry is a very effective instructor, although, 
as discussed in Section 6, we cannot validate this. The Grade and 
L1 Benefit values are rarely as high as the L2 Benefit values, which 
indicates that the second round of normalization has a substantial 
impact. Note that students who take Econ 220, with the instructor 
represented by that entry, obtain a grade that is, on average, 0.53 
higher than otherwise expected; this corresponds to a difference of 

more than a half letter grade. 

5.3 Department Level Instructor Results 
This section describes the aggregate effectiveness of an instructor 
(𝐴𝐼𝐵𝐼𝐼𝐷

𝐷1→𝐷2, as defined in Section 3.6.) based on all courses that 
instructor teaches in one department, measured by student success 

in future courses in one (potentially different) department. We 
consider these results to be less meaningful than results on course-
pairs selected for mutual relevance. Nonetheless, some interesting 
high level observations arise. The results in Table 5 include the top 
and bottom performing instructors using MinStudents=50 and 
MinSD=0.2. Each entry corresponds to a single instructor.  

Table 5. Top and Bottom 10 Instructors by Level 2 Benefit 

Course 1 Course 2 Instructor Benefit 

Department Department Grade Level 1 Level 2 

Top 10 Instructors    

Political Sci. Natural Science 0.317(8) 0.340(3) 0.588 

Mathematics Mathematics 0.033    0.242(8) 0.570 

Economics Theology 0.140    0.136    0.546 

Economics Theology -0.127    -0.035     0.525 

Italian Physics 0.131    0.225    0.510 

Art History Spanish 0.314(9) 0.260(6) 0.503 

Philosophy Communications 0.296    0.350(2) 0.502 

Mathematics Chemistry 0.063    0.103    0.497 

Natural Science English 0.267    0.237(9) 0.488 

Physics Political Science 0.233    0.009    0.465 

Bottom 10 Instructors    

Mathematics Mathematics 0.163    -0.033    -0.585 

Mathematics Mathematics -0.182    -0.131    -0.563 

Physics Physics 0.154    -0.075    -0.511 

Sociology Physics 0.107    -0.066    -0.476 

Natural Science English -0.228    -0.203    -0.463 

Visual Arts Anthropology -0.209    -0.072    -0.422 

Natural Science Natural Science -0.475(1) -0.372(3) -0.416 

Chemistry Biology -0.342(8) -0.443(1) -0.415 

Comp. Science Physics 0.304    -0.185    -0.411 

Mathematics Natural Science 0.085    -0.042    -0.406 

The instructor benefits in Table 5 indicate that there is a substantial 
difference between the top and bottom performing instructors. 
Many unnormalized grade differences are about 0.3, representing 
one-third of a letter grade difference. The values for the three 
effectiveness metrics appear correlated. To verify this we computed 

the Pearson correlation  between all three pairs of metrics, with 

the following results: (Grade, Level 1) = 0.977, (Grade, Level 2) = 

0.990,  (Level 1, Level 2) = 0.989. These correlations are higher than 
in the prior section, showing a difference through aggregation over 
many sections and courses. For comparison, when the Grade or 
Level 1 benefit metric appears in the top-10 or bottom-10 for the 
listed instructor entry, we provide the rank in parentheses as a 
superscript (e.g., the instructor in the first row of data has the third 
highest Level-1 Benefit). The ranks are not needed for Level 2 

Benefits since they are already in rank order.  

We generally would expect that instructor effectiveness in a course 
will have the biggest impact on other courses in the same discipline. 

Many of the entries do involve the same department or related 
departments, but quite a few do not. There is much more agreement 
between the departments for the bottom 10 instructors, seeming to 
indicate weak instructors fail to convey field-specific concepts for 
future use, while strong instructors may convey broader skills 
useful across disciplines. We note that STEM (Science, 
Technology, Engineering, and Math) instructors account for 80% 
of the bottom performing instructors but only 40% of the top 

performing instructors, which is plausible given that STEM 
graduate programs generally provide little pedagogy instruction.  

6. CONCLUSION 
Bias in student and peer evaluations of instructor effectiveness have 
been widely observed [1, 2, 5, 7], supporting the need for more 

objective assessment methods. This study presents an alternative 
method for instructor evaluation based on student performance in 
future courses. Our study accounts for instructor grading leniency 
and overall student ability; these factors impact assessment, but all 
three metrics are nonetheless highly correlated. 

Instructor assessment appears most appropriate at the course level 
and provides most insight when considering future performance in 
a single, highly related course. We focused on instructor 
performance for Spanish 1 and CS2, based on future student 
performance in Spanish 2 and Data Structures, respectively. In both 

cases, instructor benefit varied substantially and the Level 2 
instructor benefit for instructors at these two extremes differed with 
reasonable levels of statistical confidence. Our methodology 
distinguishes between instructors and identifies high and low 
performing instructors. Evaluation of single instructors across 
courses was less clear, but revealed patterns, such as the weakest 
instructors often being associated with STEM disciplines. 

The methodology and metrics described in this paper are calculated 
from traditional student course-grade data using a publicly 

available Python-based tool developed by our research group [6]. 
This tool can be used by other researchers and practitioners to 
extend our analysis to other educational institutions. We plan to 
improve the tool’s documentation and usability in the near future. 

There are numerous areas for further work. Increasing the size of 
our data set would substantially strengthen future analysis, 
especially within our Computer Science department. Effects of 
instructor rank, title, years of experience, gender, and race also 
would be valuable to study. Furthermore, we aim to identify further 
discipline-based patterns, such as differences in instructor 

effectiveness distributions across departments.  

The most fundamental limitation of this work relates to validation. 
Currently we only perform limited validation across course 

sections. Additional validation will inherently be limited since 
there is no way to assess the “ground truth.” Still, we aim to 
measure the relationship with weaker metrics like student survey 
results. 
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APPENDIX 
This appendix provides additional information related to the two 
thresholds that were discussed in Section 4. The relevant 
underlying data distributions are shown, which inform the choice 
of specific threshold values. 

Figure 3 shows the distribution of the standard deviation values for 
grades at the course section level. There are quite a few sections 

with grade standard deviation near zero, most likely due to small 
project-based courses, where instructors often assign grades of “A”. 
As discussed in Section 3.1, sections with grade standard deviations 
below MinSD are removed since student performance cannot be 
effectively measured in such cases. Threshold values of 0.1, 0.2, 

0.3, 0.4, and 0.5, were evaluated before a MinSD value of 0.2 was 
selected; that value was selected because it ensures a reasonable 
level of variance in the course grades while retaining most of the 
course sections. 

 

Figure 3. Distribution of Section Grade Standard Deviations 

Figure 4 shows how the number of course pairs vary, in log scale, 
based on the number of students in the course pair. This number is 
based on the students in the first course in the pair taught by a 
particular instructor. The figure is used to help select the 
MinStudents threshold defined in Section 3.5, which removes 
course pairs with too few students.  Most pairings have less than 

100 students, even though course pairs are aggregated over all 
relevant course sections; this occurs because many course pairs 
involve disparate courses in different disciplines. Our results are 
based on MinStudents=50. A larger threshold would increase the 
reliability of our instructor benefit scores but eliminate too many 
course pairs. 

 
Figure 4. Number of Students in Course Pairs by Instructor 
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ABSTRACT
Students are self-determined to choose degree programs and
courses at their own pace. However, this variety of choices
can lead to a long duration of study, especially in part-time
distance learning. Hence, this paper aims to explore data
on course enrollments of students pursuing bachelor’s and
master’s degrees in Computer Science and Mathematics at a
European distance-based German university to uncover pre-
dictors for study duration. Distance students have highly di-
verse backgrounds, which might also be represented in their
enrollment behavior and duration of study. Thus, it is vital
to analyze this behavior to identify bottlenecks and adjust
instructions. We employed a Multiple Regression Analysis
with a Genetic Algorithm for model selection to uncover
predictors that lengthen or shorten the study duration. For
model selection, we considered demographic data, modes of
study, enrollment behaviors, and individual courses. We
used the method to find predictors within the data of 1898
students who graduated in at least one of the five study pro-
grams offered by the Faculty of Mathematics and Computer
Science between 1999 and 2019. The enrollment behavior
strongly predicts the duration of study compared to demo-
graphic and study-behavior predictors. Individual courses
are good predictors for specific study programs.

Keywords
course enrollment, study duration, multiple linear regression

1. INTRODUCTION
In accordance with the Humboldtian model of higher edu-
cation, students are self-determined to choose degree pro-
grams and courses at their own pace. However, this variety
of choices can lead to a long duration of study, especially in
part-time distance learning. At many universities, a long du-
ration of study was not seen as a problem as long as sufficient
capacity was available. In the OECD countries, the propor-
tion of young people between 25 and 34 years of age with
a university degree rose by a total of 14 percentage points

between 2000 and 2013 [27]. In Germany for instance, the
number of students increased by 1,146,262 (63 %) between
1998/99 and 2021/221. At the same time, the capacities for
teaching did not increase at the same level. In this paper,
we take a look at the duration of study as a driver for high
student number.

Study programs are designed so that students graduate within
a defined amount of time. If students exceed this regular
period of study, it has consequences for the students, the
teachers, and the respective faculty. Additional semesters
cost a student time and effort to repeat courses and exams.
This can also be accompanied by financial costs for tuition
fees and a late entry into professional life or a higher career
level. In addition, there are psychological burdens. For in-
structors, longer study durations mean an increase in the
amount of supervision required due to the need to retake
courses and exams. This is apparent in the supervision ra-
tio which is defined as the number of students per teacher.
From a faculty perspective, long-term students need to be
considered for capacity planning. Just like the number of
new program enrollments, the number of graduations is part
of the target agreements or key performance indicators con-
sidered by the university management and ultimately the
federal or state ministries of education. Today, higher educa-
tional organizations are placed in a very highly competitive
environment. The analysis, presentation, and data mining
is one approach to tackle challenges in the organization of
study programs.

The causes of protracted studies are not necessarily due to
a lack of motivation, performance, or effort on the part of
students. Behavioral factors in the choice of one or more
courses of study, as well as the distribution of the workload
over the semesters, can have a major influence on the time
to degree. Past studies have shown that differences in en-
rollment behavior are related to student diversity factors [2].
The manifestations of these factors vary by country/culture,
university type, institution, and program respective subject
domain. Further factors for a long study duration are under
the influence of teachers. Repetition of courses and exams
can be an indicator of high difficulty, but also of inadequate
instructional design or exams with low pass rates. Thus, it is
vital to analyze enrollment behavior to identify bottlenecks
and adjust instructions. Other reasons for a slowed down
study progress result from organizational bottlenecks, such

1See https://www.datenportal.bmbf.de/portal/de/
K254.html (accessed 2022/05/08).

N. Seidel. Modeling study duration considering course enrollments
and student diversity. In A. Mitrovic and N. Bosch, editors, Pro-
ceedings of the 15th International Conference on Educational Data
Mining, pages 621–628, Durham, United Kingdom, July 2022. Inter-
national Educational Data Mining Society.

© 2022 Copyright is held by the author(s). This work is distributed
under the Creative Commons Attribution NonCommercial NoDeriva-
tives 4.0 International (CC BY-NC-ND 4.0) license.
https://doi.org/10.5281/zenodo.6852956

621



as overfilled courses, missing or too late reexaminations, an-
nual instead of semesterly course offers and examinations.

Hence, this paper aims to explore data on course enrollments
of students pursuing bachelor’s and master’s degrees in Com-
puter Science and Mathematics at a German distance-based
university to uncover predictors for study duration. Our
study aims at providing initial insights into enrollment pro-
cesses of German distance learning students. In particular,
we are going to focus on one research question (RQ): (RQ1)
What predictors significantly influence the duration of study?
To answer this question we employed a Multiple Linear Re-
gression Analysis with a Genetic Algorithm for model selec-
tion to uncover predictors that lengthen or shorten the study
duration. For model selection, we considered demographic
data, modes of study, enrollment behaviors, and individual
courses. We used the method to find predictors within the
data of 1898 students who graduated in at least one of the
five study programs offered by the Faculty of Mathematics
and Computer Science between 1999 and 2019.

Identifying predictors associated with time to graduation
can help educators design better degree plans, and students
make informed decisions about future enrollments. Distance
students have highly diverse backgrounds, which might also
be represented in their enrollment behavior and duration of
study. Thus, it is vital to analyze this behavior to identify
bottlenecks and adjust instructions.

2. RELATED WORKS
There exist various studies focusing on enrollment data. In
this section, we provide an overview of the background and
intent for the analysis of these data and shed a light on the
data and methods used.
Most of the research on enrollment data relates to educa-
tional institutions in the Anglo-American world. Among
the cited literature in this paper, only two papers refer to
African [34, 13] and three to European institutions of higher
education [7, 33, 3]. The majority of the works come from
traditional universities compared to distance learning uni-
versities as referred by [33] or MOOCs [31].
The intentions for analyzing enrollment data range from de-
scriptive analysis, prediction to the preparation of interven-
tions. [33] identify factors contributing to students con-
tinuing for the duration of their distance learning studies
and completing their degree. The motivation for enrollment
to computer science degree programs has been explored by
Duncan et al. [15]. Age, gender, and demographic trends
in motivation (goals, opportunities, and assurance of goal
achievement) for enrollment have been analyzed and signif-
icant motivation differences regarding gender and age have
been reported. Sahami et al. [30] explored the phenomena
of performance decline using the computer science enroll-
ments data from Stanford University and found that despite
increased enrollments, student performance remains stable.
Analysis is conducted on different scales such as courses [7],
study programs [35, 34] and faculties [35, 34]. [24] and [9]
for instance, analyzed changes in the enrollment and study
progress before and after policy changes. [35] focuses on
students’ experiences of guidance in relation to their study
progress and perceptions of their learning outcomes. The
impact of co-enrollment was studied by [8] and [37]. The
prediction of dropout (e.g. [10, 22, 7]), study performance

(e.g. [11, 14, 17, 25, 29, 38, 39]), and future enrollments
(e.g. [20, 23, 36]) gained a lot of attention in the last years.
Prediction of time to degree were employed by [18] and [21].
[6] identify potential predictors of academic success includ-
ing the time to graduation for Ph.D. students. Age, sex,
employment institution, mentor experience, and tuition sub-
sidy had no influence on the time to graduation and comple-
tion rate. [35] predicted slow study progress from self-report
data using Binary Logistic Regression. [24] identified factors
affecting time to bachelor’s degree attainment. Dahdouh et
al. used association rules mining over course enrollments for
recommendations of further study paths [12]. The rules are
used for recommending suitable courses to students based
on their behavior and preferences. [7] investigated bottle-
necks of learning progress in order to support the student
advisory services, while [28] make use of enrollment data to
prepare re-enrollment campaigns.
Data collected from university information systems has been
proved to be the source of helpful information (e.g. [24, 9, 4])
for improving study processes and educational decisions.
However, due to a strong data protection culture, some Eu-
ropean universities tend to interpret the European data pro-
tection regulations (GDPR) very strictly. Even within insti-
tutions researchers do not get access to personal data and
are also not allowed to link anonymized data. Student per-
formance data such as grades are considered particularly
sensitive. Another common source for investigating enroll-
ment behavior comes various forms of self-reports including
surveys (e.g. [26, 29, 13, 13, 31, 19]). The used variables
cover a broad range that reflects cultural and institutional
conditions. For example, the housing situation was studied
in countries where campus universities are found [5].
Subgroups including their intersections have been rarely con-
sidered [35, 3, 2]. [3] for instance, identified differences in
study success and early dropout between minority and ma-
jority students in economics which can be attributed to dif-
ferences in high school education, but not on academic and
social integration. [2] considered dimensions underpinning
students’ study philosophy towards teaching, learning, and
study for different groupings and subgroup interactions (e.g.
age, sex, ethnicity, study discipline, academic performance).
The definition of student profiles [7, 13] is an approach com-
ing from social science which can be helpful to distinguish
and explain patterns of subgroups.
The analytical methods used for enrollment analyses include
frequent item mining [1, 12], sequence mining [1, 9], Cluster-
ing [34], Social Network Analysis [37], Latent Profile Anal-
ysis [13], and Linear/Logistic Regression [24, 35, 34, 6]. For
example, Elbadrawy et al. [16] used sequence mining via the
so-called Universal discriminating Pattern Mining frame-
work capable of mining enrollment patterns from groups of
low and high-performing students to enable educators for
better degree planning. [26] applied an investment theory
to predict the degree of commitment. The application of a
Multiple Linear Regression by [5] and [24] underlines its ad-
vantages with regard to traceability, explainability, and the
possibility of deriving interventions.

3. METHODS
3.1 Data
The data set contains 1489 bachelor students and 1014 mas-
ter’s students who enrolled in 1999 to 2016 and finished the
degree until 2019. The collected data include student en-
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rollments to courses during their studies, information about
completion of the degree, and a list of courses required to
complete the degree. In addition, the enrollment data do not
contain information on whether a student finished a course
successfully since different departments carry out the oral
and written examinations at the Faculty. University data
protection rules restrict the use and analysis of the exam
results. By enrolling in the program, students gave their
consent to the processing of the data used in this analysis.
To further ensure data privacy the unique identifiers of the
students have been pseudonymized in order to prevent link-
ing with other datasets and to prohibit the identification of
individual students. However, the identification of individ-
uals cannot be ruled out, the data set will only be provided
on request instead of being published.

The available data includes demographic data as well as in-
formation on the enrolled programs and courses. From this
information, four diversity dimensions will be categorized
with regard to (i) demographics, (ii) study behavior, (iii)
enrollment behavior, and (iv) course impact. While the first
three categories are related to the students, the latter refers
to organizational and didactical aspects mainly influenced
by the responsible teachers.
The demographic data available contains the age at program
admission, gender, and the completion of previous bachelor’s
or master’s degrees. The age ranges between 14 and 69 in
all study programs. Detailed demographic information per
program are listed in Tab. 1.
From the program enrollment data, we derive study behav-
ior information. Students at the Faculty of Mathematics
and Computer Science can enroll in up to three programs
at the same time. These programs are prioritized by the
student (cf. Program priority). For each program, students
can decide whether to study full-time or part-time which
has an effect on the expected study duration. The duration
of study in part-time study is half as long as the full-time
duration. Furthermore, Master’s programs distinguish con-
secutive study after completing a related bachelor’s degree
and non-consecutive study. A second degree is stated if a
student already achieved a degree on the same level (e.g. a
second bachelor’s degree). Listener status describes the op-
portunity to join a program as a guest or listener without
the obligation to achieve a degree.
The enrollment behavior is described by the number and
variety of course enrollments per semester and in total. For
the first three semesters first-time and re-enrollments are
counted separately (e.g. Enrollments 1st semester, Repeti-
tions 2nd semester). For the number of unique courses, we
distinguish between courses offered at the Faculty (Different
Faculty courses) and those offered at another faculty (Dif-
ferent other courses). Semesters without any enrollments
are described as semesters off.
Furthermore, 25 % of the most frequently enrolled course
have been dummy-coded for each student representing the
fourth diversity dimension.

3.2 Multiple Linear Regression
For each study program, the student data was represented in
a Learner Profile including the before mentioned data about
the demographics, study behavior, and enrollment behavior
as well the binary information about the most frequently
enrolled courses.

Outliers regarding the total number of different enrolled
courses, the total course repetitions, and the repeating en-
rollments have been removed. Values above the mean plus
three times the standard deviation have been considered as
outliers. Finally, 884 B.Sc. and 1014 M.Sc students re-
mained in the dataset.
The mentioned variables have been selected from the Learner
Profile and used to produce model formulas. These formulas
are passed to a fitting function. The variables in the formula
correspond to the data in the Learner Profile. The duration
of study was defined as the dependent variable. The re-
maining variables were used as independent variables in the
formulas. By default, an intercept is included in all models.
Due to the initial use of a large number of variables, it is
necessary to find a simpler model based on fewer variables.
Instead of trying all candidates for a suitable model with
an unapplicable brute force approach, the candidate set is
explored by a Genetic Algorithm (GA). A GA can readily
find the best models without fitting all possible models. For
the GA the formula is encoded as a sequence of binary val-
ues. This sequence forms a population that will undergo an
evolution by adapting certain bits to form a new generation.
The genetic algorithm keeps track of a population of models
and their size. Asexual reproduction, sexual reproduction
from parental generations, and immigration are the three
methods used to create the next generation of models.
As decision criterion the Akaike Information Criterion (AIC)
is used. It is defined by

AIC = −2l(β̂M , σ
2) + 2|M + 1| (1)

with l(β̂M , σ
2) as the maximum value of the log-likelihood

and M as the number of variables present in the current
model. On the one hand, one can see that the AIC value is
negatively directed, which is why the goal of model selection
is to minimize this value. On the other hand, a high number
of variables is penalized. Thus, a too complex model is pre-
vented. The models are fitted to every generation by using
the AIC values to calculate each model’s fitness, w. The ith
model’s fitness is calculated as follows:

wi = exp(−(AICi −AICbest)) (2)

where AICbest is the best AIC in the current population
of models. Lower AIC means higher fitness. Inference was
aided by point and interval (95 % CI) estimates, the good-
ness of fit measures, AIC, and p values.
In order to measure and compare the goodness of a fitted
model we compute the Cragg-Uhler Pseudo−R2. Pseudo−
R2 is defined as one minus the ratio of the residual deviance
and the intercept (null deviance):

R2 = 1− ResidualDeviance

NullDeviance
(3)

R2 describes the deviation of the current model between 0
and 1, whereas 0 means total deviation and 1 a complete
congruence.

4. RESULTS AND DISCUSSION
Appendix A.1 provides an overview of the fitted models and
the number of predictors with regard to the four categories
of diversity dimensions. Except for the B.Sc. CS the values
for R indicate a good model fit. For the smaller number
of graduates in the M.Sc. in Mathematics a very good was
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Table 1: Demographic information about the students who graduated in the Computer Science (CS) and Mathematics programs

Program name B.Sc. CS M.Sc. Practical CS M.Sc. CS B.Sc. Mathematics M.Sc. Mathematics
Time range 1999-2019 2003-2019 2003-2019 2000-2018 2003-2018

N (mean ± sd)
Women 454 16 120 130 9
Men 634 153 690 180 33
Total 686 169 803 198 42

Age at admission (years mean ± sd)
Women 31.77 ± 6.14 31.56 ± 5.39 32.53 ± 7.84 28.39 ± 7.88 31.78 ± 10.44
Men 30.44 ± 6.24 29.86 ± 5.42 31.61 ± 6.82 30.79 ± 7.88 30.45 ± 7.93
Total 30.69 ± 6.23 30.02 ± 5.42 31.74 ± 6.98 30.29 ± 7.89 30.74 ± 8.41

Time to degree (semesters mean ± sd)
Women 14.15 ± 6.19 10.19 ± 4.81 5.58 ± 3.31 11.06 ± 3.7 5.89 ± 1.05
Men 11.89 ± 6.18 8.5 ± 3.82 5.89 ± 3.56 10.22 ± 4.83 7.91 ± 3.74
Total 12.31 ± 6.24 8.66 ± 3.94 5.85 ± 3.52 10.4 ± 4.61 7.48 ± 3.44

achieved. The AIC and BIC measures are not suitable to
make comparisions between the programs but relate to the
model complexity. The model of the bachelor of CS appears
to be the most complex with 29 predictors. Here again, the
M.Sc. in Mathematics stands out with simpler model of 8
predictors.
The four diversity dimensions have a different influence on
the models. In general, it can be said that demographic
factors and study behavior predicting the study duration
less than the enrollment behavior. The effect of individual
courses depend on the study program.
The fitted linear regression models for predicting variables
influencing the duration of study in each of the five study
programs are presented in the Appendx A.2. The size of
the coefficients expresses the number of semesters by which
the study is extended or, if negative, shortened. For exam-
ple, if a student takes 3 courses in the Bachelor CS in the
3rd semester, the duration of study is shortened by 3 times
-0.38, i.e. by 1.14 semesters. Binary represented values like
gender or taking a certain course correspond to factor 1. As
stated before, age has no significant impact on study dura-
tion. Note, that the coefficient for the age is multiplied by
the number of years. As a result, this apparently small co-
efficient may predict the study duration of elderly students.
Also the gender impact is compratively small, but recogniz-
able with opposit direction in the CS bachelors and Practical
CS masters’ programs. For the same two programs the exis-
tence of a past degree predicts the time to degree. While the
length of study for students in the Bachelor CS is shortened
by the experience gained in another program, the length of
study is lengthened for students in the Master Practical CS.
Studing in multiple programs at the same time can be ben-
eficial for the overall study duration. This can be explained
by the fact that examination credits from one study program
can be credited in the thematically related study programs
of the faculty. Thus, a successfully completed examination
can be used in several study programs. However, for the
M.Sc. CS additional activities on other programs is at the
expense of the duration of study. The enrollment to courses
of other faculties extends the time needed for completion.
As expected, the total course repetition and the variety of
chosen Mathematics-related or CS-related course strongly
predict study duration. A single semester off lengthens the
study duration by more than one semester.

5. SUMMARY AND OUTLOOK
In this paper, we explored data on course enrollments of stu-
dents pursuing bachelor’s and master’s degrees in Computer
Science and Mathematics at a European distance-based Ger-
man university to uncover predictors for study duration. We
tried to consider the highly diverse backgrounds of distance-
learning students that are represented in a restricted and
pseudonymized dataset consisting only of information on
current and past study programs and enrolled courses. From
this information, Learner Profiles have been created. These
profiles contained measures that are potentially suitable for
describing influencing factors for the duration of study. In-
stead of predicting the time of study completion for future
cohorts, we used them to describe and analyze the past stu-
dent (and teacher) behavior. We find it is vital to analyze
this behavior to identify bottlenecks and adjust instructions
as wells the organization of study programs.
We employed a Multiple Regression Analysis with a Ge-
netic Algorithm for model selection to uncover predictors
that lengthen or shorten the study duration. For the mod-
els, we considered demographic data, study behavior, en-
rollment behaviors, and individual courses. We used the
method to find predictors within the data of 1898 students
who graduated in at least one of the five study programs of-
fered by the Faculty of Mathematics and Computer Science
between 1999 and 2019. With regard to RQ1 the enrollment
behavior strongly predicts the duration of study compared
to demographic and study-behavior predictors. Individual
courses are good predictors for specific study programs.
As a next step, we want to identify changes in the fitted
models over time. The considered time range of almost 20
years included many changes of regulations, tuition fees, and
teaching staff. Similar to the work of [24] and [9] we want
to trace predictors over time in order to recognize relevant
trends for teachers and faculty managers. With this regard,
we also would like to continue our past research about stu-
dent course recommenders [32].
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APPENDIX
A. LINEAR REGRESSION MODELS
A.1 Overview of Linear Regression Models

Table 2: Overview of the fitted Linear Regression Models of students’ time to degree

Program B.Sc. CS M.Sc. CS M.Sc. Practical CS B.Sc. Mathe M.Sc. Mathe
Model goodness
R² 0.67 0.81 0.88 0.82 0.92
AIC 1380.39 611.59 2306.13 324.20 115.11
BIC 1433.69 656.85 2388.48 353.61 129.11
Number of predictors
Demographic-
related

3 0 3 0 0

Study-
related

3 2 1 2 2

Enrollment-
related

11 10 11 5 6

Course-
related

13 2 4 8 1

Total 29 13 17 14 8
* p<.1, ** p<.01, *** p<.001
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A.2 Coefficients of the best fit Linear Regression Models

Table 3: Coefficients of the best fit Linear Regression Models of students’ time to degree

Coefficient B.Sc. CS M.Sc. CS M.Sc. Pract.
CS

B.Sc. Mathe M.Sc. Mathe

(Intercept) 10.90*** 4.11** 1.93*** 9.49*** 3.27***
Age 0.04 - 0.01* - -
Male -1.02* - 0.19 - -
previousDegreesMaster -1.61* - 0.81* - -
Fulltime study -1.06* - -0.25* - -
Programme priority -0.79 1.67 - -3.04* 3.27***
Second degree 0.68 1.28* - 1.73** -
Semesters off 0.95*** 1.44* 1.13*** 1.48*** 3.27***
Total course repetitions 0.23*** 0.49*** 0.46*** 0.30*** 0.49***
Different CS courses -0.05 0.2*** 0.18*** 0.10** -
Different other courses 0.04 - 0.26*** - 0.20***
Enrollemnts 1st semester -0.17* -0.19* -0.61*** - -0.23*
Enrollments 2nd semester -0.05 -0.28* -0.46*** - -
Enrollments 3rd semester -0.38** -0.38*** -0.34*** - -
Repetitions 1st semester -0.37 -0.89*** -0.71*** -1.00** -
Repetitions 2nd semester -0.35 -0.75*** -0.57*** - -1.03***
Repetitions 3rd semester -0.12 -0.8** -0.17* -1.72*** -0.62*
Course 1144 - - - -5.22*** -
Course 1145 - - - 4.64*** -
Course 1202 - - - -1.45* -
Course 1358 - - - - -1.81*
Course 1359 - - - - 2.38*
Course 1361 - - - -1.54* -
Course 1584 1.49** - - - -
Course 1613 -0.07 - - - -
Course 1618 0.49 - - - -
Course 1657 -1.43 - - - -
Course 1658 0.34 - - - -
Course 1661 0.63 - - - -
Course 1666 - - 0.27** - -
Course 1671 0.14 - - - -
Course 1678 -0.46 - - - -
Course 1793 0.21 - - - -
Course 1801 0.06 - - - -
Course 1814 - - 0.33*** - -
Course 1853 - 0.54* - - -
Course 1866 0 - - - -
Course 1895 0.01 - - - -
Course 1896 1.21* - - - -
* p<.1, ** p<.01, *** p<.001
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ABSTRACT 
University students have a great deal of freedom in deciding the 

order in which to take their courses. In this paper we apply the Apri-
ori-based Generalized Sequential Pattern (GSP) algorithm to 
undergraduate course data from a large university in order to iden-
tify frequent course sequences. Course sequencing results are 
primarily generated at the department level, with a special focus on 
Computer Science courses. This paper also introduces the course 
sequence flow diagram, which compactly represents a large amount 
of course sequencing information in an intuitive visual form. Our 
results and associated flow diagrams can help to answer a variety 

of important questions, such as: what course sequences are most 
common, how are courses between different departments ordered, 
and when are courses taken in an order that may contradict the ad-
vice given by academic advisors? In this paper we show that this 
form of descriptive data mining can identify standard core curricu-
lum and pre-health sequences of study, as well as computer science 
courses that are either artificially pushed to the end of a student’s 
program of study or taken earlier than would be recommended. 

Keywords 
Sequence mining, association analysis, course sequencing, educa-
tional data mining. 

1. INTRODUCTION 
The order in which university students take their courses is only 
partially constrained by course prerequisites and university poli-
cies. However, course sequencing is important since it impacts 
student learning and can impact student grades. This was demon-

strated by one of our research group’s recent studies that looked at 
pairs of courses taken in both possible orderings and showed that 
the different orderings produced different grade performance [4].  
Other work has looked at the sequences that courses in specific dis-
ciplines, such as communications [7] and psychology [2], are taken 
in, and assessed how these impact student learning. Some work 
looks more generally at course selection and how it impacts student 
grades [5] or time to graduation [6]. 

Prior work focuses mainly on assessing the impact of specific 
course sequences rather than on identifying or characterizing 
course sequences. This paper focuses on the descriptive data min-
ing task of identifying common course sequences and how to best 
represent this information. These sequences are of intrinsic value, 
providing insight into how our curricula operate in practice. They 

can identify course prerequisite structures and interrelationships 
between departments. They can also expose courses taken in an un-
expected, and perhaps inadvisable, order. These insights can be 
used to modify and improve academic advising and inform curric-
ular changes, such as by modifying course prerequisites.   

In this paper we use the Apriori-based Generalized Sequential Pat-
tern (GSP) algorithm [9] to identify frequent k-sequences, where a 

k-sequence contains k courses taken in a specific sequential order. 
We apply this method to courses at the department level and in 
some cases across departments. We show how these frequent k-se-
quences can be used to form a course sequence flow diagram that 
encapsulates the knowledge of many sequential patterns in a simple 
and useful visual form. We then show how the flow diagrams and 
associated results can be used to gain useful academic insights, 
which can inform academic advising and perhaps even changes to 

the curricula (e.g., modifications to prerequisites or course number-
ing). Our most detailed analysis focuses on the Computer Science 
department, building off our familiarity with our home department.  

In Section 2 we describe the Apriori and GSP algorithms. Section 3 
describes the course-enrollment data set provided by our university 
and the steps necessary to transform this data into the student-level 
course sequences suitable for mining by the GSP algorithm. In Sec-
tion 4 we present our results in the form of frequent k-sequences, 
introduce the course sequence flow diagram, and extract insights 
from these results by utilizing our curricular domain knowledge. 

Section 5 provides our broader conclusions, study limitations, and 
plans for future work. 

2. SEQUENCE MINING 
This paper extracts common course sequences from undergraduate 
course enrollment data. It relies on the generalized sequential pat-
tern mining framework [9], which is an extension to the Apriori 
association rule mining algorithm that takes ordering into account. 
Whereas Apriori generates a set of frequent itemsets, GSP gener-
ates a set of frequent sequences, and, in the context of this study, a 
set of frequent course sequences. Minimum support is used analo-

gously to its use in Apriori, so a specific sequence is considered 
frequent if it occurs in more than minsup sequences. We briefly in-
troduce the well-known Apriori algorithm and then describe the 
GSP algorithm as an extension to Apriori.   

The Apriori association rule mining algorithm [1] was developed 
to provide retailers with information about what items are usually 
purchased in the same transaction.  Formally, let I = {I1, I2, I3, …, 
Id} be the distinct items and let T = {T1, T2, T3, …, Tn} be the set 
of customer transactions, where each Ti contains a subset of items 
in I. A k-itemset X is a collection of exactly k items: 

X = {X1, X2, X3, …, Xk}, where Xi  I  i, and |X| < d. 

Given a set of transactions T, the support of a k-itemset is the frac-
tion of the transactions T that contain all of the k items in the 

k-itemset (e.g., if k=2 and the items are milk and cereal, then 
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support is the fraction of transactions that contain milk and cereal). 
Association rule algorithms like Apriori [1] and FP-growth [3] 
identify all frequent k-itemsets. These algorithms also include a 
second step that generates association rules from the itemsets, but 
our study does not need to generate rules, only frequent sequences, 

so we focus only on the first step.   

The GSP algorithm [9] is a modest extension of the Apriori algo-
rithm. The extension involves making the Apriori algorithm 
sensitive to the order of items (i.e., courses) in each transaction. 
There are two extensions that need to be made to the Apriori algo-
rithm. The first is to extend the candidate generation phase to 
generate ordered itemsets and the second is to account for item or-
dering when computing the support for an itemset (i.e., sequence).  

3. METHODOLOGY 
This section describes our initial data set, how we transform this 
data into a form suitable for the GSP algorithm, and the impact of 
the minsup threshold on the resulting course sequences. 

3.1 Initial Course-Enrollment Data Set 
This study is based on eight years of undergraduate course enroll-
ment data from Fordham University. Each entry in the initial data 
set represents the enrollment of a specific student in a course sec-
tion, along with their grade in the course and the semester and year 

that they took the course. To preserve privacy the student identifiers 
were mapped to new, but consistent, values and course sections 
with fewer than five students were dropped. The data set contains 
473,527 records that collectively cover 24,969 distinct students. 
For the purpose of this study all sections of the same course are 
considered equivalent. Even with these privacy protections we can-
not share the course-enrollment data, due to strict privacy laws. 

3.2 Student Course-Sequence Data Set 
The initial data is not in the format expected by the GSP algorithm 
since it expects each entry to include an ordered sequence of 
courses. Thus we transform the initial data set into a student course-
sequence data set by separating the courses for each student and 
then ordering these courses chronologically. Courses that are taken 

during the same semester are ordered lexicographically using the 
course identifier. Below is a sample course sequence record, which 
starts with the student-ID and is followed by five courses: 

   S245632: CS1000, CS2000, HIST1200, CS3462, CS2250 

3.3 Applying GSP to Course-Sequence Data 
When we run the GSP algorithm on course-sequence data at the 
departmental level, we restrict the data to only include sequences 
that contain students who take one or more courses from that de-
partment. This improves the algorithm’s running time without 
impacting the generated frequent k-sequences; however, it impacts 
minsup, if expressed as a fraction, since the denominator used to 

calculate support is reduced. To address this, and also account for 
the fact that different departments have different numbers of stu-
dents (i.e., sequences), we express minsup as a minimum support 
count (an integer) rather than a minimum support (a fraction).   

The GSP algorithm can be applied directly to the student course-
sequence data set, where each entry corresponds to the ordered 
courses taken by one student.  If minsup is set too low, the number 
of frequent sequences will explode exponentially, which will 
radically impact the running time of the algorithm and lead to an 
unwieldy number of frequent sequences. Experiments in Section 4 
vary minsup to assess its impact on running time and on the number 

of frequent sequences.  

4. RESULTS 
This section includes our main results. Section 4.1 provides depart-

ment level information about the number of frequent k-sequences 
generated by the GSP algorithm, while Section 4.2 provides infor-
mation on the running time of the algorithm. Section 4.3 examines 
the frequent sequences for the Computer Science (CS) department, 
introduces our course sequence flow diagram, and uses this dia-
gram to provide insights into the sequencing of CS courses. The 
section concludes by analyzing some non-CS course sequences. 

4.1 Summary Department Level Results 
This section provides summary results of running the GSP algo-
rithm on courses from individual STEM departments, combined 
Biology and Chemistry courses, and all undergraduate courses. By 
varying the number of courses considered we demonstrate its im-
pact on the number of frequent sequences and running time. Table 1 

shows the number of k-sequences generated for these groupings, 
for various values of k and minsup. Two entries are provided for 
each minsup value: one without pruning and one with pruning. The 
pruned results remove any frequent k-sequence contained (i.e., with 
the courses in the same relative order) within a larger frequent se-
quence, since this information can be considered redundant. Pruned 
entries have a “*” next to the minsup value. When generating fre-
quent sequences from all undergraduate courses, much larger 

minsup values are employed to keep the running time manageable 
and to avoid generating more sequences than could be analyzed.  

Table 1. Department-level results for the GSP algorithm 

  Number of k-sequences (k from 2 to 9) 

Department minsup 2 3 4 5 6 7 8 9 

CompSci 50    151 223 132 23 1    

 50* 56 111 97 21 1    

 100   61 61 18 1     

 100* 61 61 18 1     

Chemistry 50   101 289 408 224 48 4   

 50* 9 44 178 152 40 4   

 100   20 7 1      

 100* 12 4 1      

Physics 50   51 48 37 21 7 1   

 50* 17 14 12 10 5 1   

 100   14 2       

 100* 10 2       

Biology 50   91 148 96 25 1    

 50* 22 61 59 23 1    

 100   47 54 26 6     

 100* 14 24 16 5     

NatSci 50   121 315 580 736 704 490 225 60 

 50* 24 53 136 189 230 232 147 50 

 100   70 124 131 86 34 4   

 100* 15 31 44 43 27 4   

Math 50   111 177 79 6     

 50* 40 98 68 6     

 100   68 34 1      

 100* 35 32 1      

Psychology 50   241 250 48      

 50* 110 193 48      

 100   114 53 8      

 100* 72 41 8      

Bio+Chem 50   278 899 1455 1272 694 235 38  

 50* 38 179 512 592 395 170 38  

 100   122 296 414 344 162 37 3  

 100* 48 115 202 248 174 64 3  

All 500   919 1853 1792 1096 532 197 47 5 

 500* 322 819 902 599 328 141 40  

 1000   292 416 160 6     

 1000* 105 238 148 6     

* frequent k-sequences that appear in frequent k+1 sequences are pruned 
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Table 1 shows that the number of k-sequences varies greatly by de-
partment. This variation is due in part to the varying number of 
students, and student majors, in each department, as well as the 
amount of sequencing in the curriculum. The largest k-sequence for 
each department varies from 4 to 10 (Natural Science has one 

10-sequence for minsup=25 that did not fit in the table). The num-
ber of k-sequences is also dramatically impacted by the minsup 
value, which indicates that care must be chosen in selecting this 
value. Adding additional courses can also have a large impact, as 
can be seen by comparing the individual Biology and Chemistry 
department entries with the combined Bio+Chem entry. The num-
ber of entries when using all courses would be enormous if we did 
not increase the minsup threshold by a factor of 10. The number of 

sequences that are pruned is more substantial for smaller se-
quences—a pruned itemset has a cascading effect as it trickles 
down to the lower levels (i.e., lower k values).  

4.2 Run-time Complexity 
The running time of the GSP algorithm is affected by the number 

of items (distinct courses), the number of sequences to mine, and 
the number of items (i.e., courses) in each sequence. While worst 
case performance is exponential in the number of items/courses, the 
performance is generally much better, depending on the minsup 
value. If minsup is sufficiently low, the complexity can even be lin-
ear in the number of sequences. The time to generate the frequent 
course sequences for the same nine department groups appearing in 
Table 1, when run on a MacBook Air laptop with an 8-core 3.2GHz 

processor, is displayed in Figure 1. To make the figure easy to read 
the legend is ordered to match the running times associated with 
each department. Since the y-axis uses a log-scale, the running time 
is not actually linear. In order to keep the running time manageable, 
minsup starts at 500 when mining all courses— but as shown in 
Table 1, this still yields a much longer running time.  

 
Figure 1. Impact of minimum support on running time 

4.3 Detailed Analysis of Computer Science 
This section looks into the detailed results for the CS department. 

In Section 4.3.1 we introduce our course sequence flow diagrams, 
which are capable of representing the information from a large 
number of frequent sequences in compact visual form. In Section 
4.3.2 we then then use this diagram to better understand how stu-
dents sequence their CS courses. 

4.3.1 Course Sequence Flow Diagram 
Many of the results for the department are summarized in Figure 2, 
which embodies the information within all twenty-three Computer 
Science 5-sequences (the 5-sequences are listed in Appendix Ta-
ble 2). We focus on these since there is only one 6-sequence and no 
larger sequences (see Table 1). Our course sequence flow diagram 
constitutes a substantial improvement upon previously existing se-
quencing visualization methods, such as Sankey diagrams [8]. We 

believe that our course sequence flow diagram is a significant con-
tribution, preserving information across multiple sequences while 
conveying this information clearly and compactly. 

Figure 2 contains all eleven courses that are represented in the 23 
5-sequences in Table 2. Each sequence in Table 2 has an index, and 
each node in the Figure 2 is labeled with the matching index, so the 

23 5-sequences can be reconstructed from the diagram. For exam-
ple, if you follow the flow of all nodes in Figure 2 that contain 
index 1, you will reconstruct the first sequence in Table 2 (DISC, 
CS1, CS2, DS, TOC). The diagram actually goes much further, 
however, presenting support information for each sequence. Each 
of the 23 sequences has its own support; when sequences overlap, 
the corresponding supports are added together in the current flow 
diagram. Thus, we can determine the combined support associated 

with any edge in the diagram based on the summed supports as-
signed to that edge. Appendix Table 3 provides the underlying 
information about each pair of courses across the extracted se-
quences. To avoid overcrowding the diagram with information, we 
encode the support sum from each edge through varying thick-
nesses. The thickness level listed in Table 3 and utilized in Figure 
2 is computed as follows: 

Thickness =  ⌊2 ∗ log10 𝛴 𝑆𝑢𝑝𝑝𝑜𝑟𝑡⌋ 

4.3.2 Specific Insights into CS Based on Results  
Figure 2 provides a succinct high level view of the flow of courses, 

which enables us to learn about how students sequence their 
courses. Given our experience with the undergraduate CS curricu-
lum, we are able to verify known patterns in course sequences (first 
three bullet items) and glean new and potentially useful insights 
(last three bullet items). We summarize some of these as follows:  

• The diagram recognizes the key prerequisite relationships in-
cluding our introductory programming sequences of CS1 → 
CS2 → Data Structures (DS). These courses are connected 
with the thickest edges.  

• Computer Organization is often taken after CS2 and Data 
Structures, which is what we recommend, but it is not required 

(it can be taken after CS1). 

• The nodes in Figure 2 are arranged into 6 vertical columns 
based on the edges and relative position of the courses within 
the frequent sequences. These reflect the general structure and 
course levels quite well. For example, Discrete Structures and 
CS1 are 1000 level courses, CS2 and Data Structures are 2000 
level courses, the courses in the next column are all 3000 level 

courses, etc. A few notable exceptions are discussed next. 

• The position of Data Mining (DM) is surprising. Its only pre-
requisite is CS1, while Theory of Computation (TOC) has 
many prerequisites—yet Data Mining is generally taken after 
Theory of Computation. This may be an artifact of our assign-
ing Data Mining as a 4000 level course even though our 

faculty believe that level is not appropriate.  

• Theory of Computation is almost always taken after Algo-
rithms (ALG), even though both are 4000-level courses with 
no prerequisite relationship. The observed sequencing could 
be an artifact of scheduling but may be related to student belief 
that the algorithms course is essential for obtaining employ-
ment, including internships. Relevant 2-tuples show that 

ALG→TOC occurs 2.4 times as often as the reverse ordering.   

• Database Systems (DB) is taken a bit later in the sequence than 
we would expect and perhaps recommend. It only requires 
CS1 but is taken after CS2 and Data Structures. 
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Figure 2. Course sequence flow diagram for Computer Science frequent 5-sequences (nodes labeled with indices from Table 2)

4.4 Analysis of Non-CS Departments 
The dataset contains courses from dozens of departments. We lack 
the space and domain knowledge to analyze all of them, but we 
mine course sequences from several groupings of departments and 
provide a few observations. We start with the longest frequent se-
quences, which occur when courses from all departments are 
considered. With minsup = 500 we obtain five 9-sequences, all of 

which include only biology and chemistry courses, and four of the 
five sequences begin with the following eight courses: 

      IntroBio1+lab, GenChem1+lab, IntroBio2+lab, GenChem2+lab 

Half of the courses above are lab courses which count as separate 
courses but probably should be excluded from the data set in order 
to find more meaningful sequences (we removed all lab courses for 
Computer Science only). Nonetheless the algorithm was able to 

identify a very common science sequence that is taken by students 
planning to go on to medical school. If we start to look at smaller 
k-sequences, such as when k=5, the sequences with the highest lev-
els of support are dominated by courses that satisfy core 
requirements. In general we see that science courses are more 
tightly sequenced than other courses, although for shorter se-
quences the more popular core courses play a central role. 

Due to their role in our university, we next present the results asso-
ciated with core curriculum courses, which must be taken by all 
students, and span many departments. Below are the five 6-se-

quences that appear with minsup =1000. These provide insight into 
the most common ways in which the core courses are taken: 

IntroBio1+lab, GenChem1+lab, IntroBio2+lab 

MacroEcon, BusinessMath, MicroEcon, EnglComp2, Business Calculus 

EnglComp2, Philosophy1, Theology1, EnglLit, Philosophy2 

EnglComp2, Theology1, EnglLit, Philosophy1, Philosophy2 

Phil1, EngComp2, Philosophy1, EnglLit, Philosophy2 

Theology1, EnglComp2, Philosophy1, EnglLit, Philosophy2 

The first two sequences are associated with science and business 
majors, respectively, who are directed to take those courses to ful-
fill their science, math, and social science core requirements; the 
last four are humanities courses taken by a wide range of students. 

Given the Computer Science discipline has a close relationship 
with Mathematics, we also looked at the frequent sequences for the 

Math department. We were surprised to note that the last course in 
the sequence is very often Statistics, which we thought would be 
taken earlier, especially since courses with a higher number were 
sometimes taken first. But the department has the following long 
prerequisite sequence, which explains the observed behavior: 

     Calc1 → Calc 2 → Multivariable Calc → Probability → Statistics  

5. CONCLUSION 
This paper introduces GSP-based sequence mining for analyzing 
university course sequences. The method was applied to eight years 
of undergraduate course enrollment data and produced a large num-
ber of frequent k-sequences. Course sequences were generated for 
individual departments, several related departments, and across all 
departments. Our results show that it is possible to mine course se-
quences on a standard laptop given reasonable minsup values. 

We also developed a new course sequence flow diagram that visu-

ally captures many different common course sequences, while 
maintaining almost all of the low level information. We view the 
development of this diagram as a significant contribution since it is 
far superior to our prior efforts, and the Sankey diagrams [8] we 
generated using existing libraries. The course sequence flow dia-
gram generated for Computer Science accurately represented well 
known course relationships and uncovered subtle sequencing is-
sues. These insights can lead to improved advising and changes to 

our curriculum—for example, we can update course numbers to 
better reflect the role of the course, or to modify student behavior 
to better align with our sequencing intentions. Our analysis also 
provided insights into other course sequences and identified a long 
sequence taken by students in the pre-medical education track.  

We believe that course sequencing mining can be a useful tool for 
academic advising and for better understanding how students se-
quence their courses. This work is an example of descriptive data 
mining and additional applications for this work will likely be dis-
covered in time. 
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APPENDIX 

Table 2. Computer Science course sequence table

Index Computer Science Frequent 5-Sequence Support Index Computer Science Frequent 5-Sequence Support 

1 Discrete Struct, CS1, CS2, Data Struct, Theory of Comp 50 13 CS1, CS2, Data Struct, Theory of Comp, Data Mining 63 

2 CS1, CS2, Data Struct, Databases, Operating Sys 67 14 CS1, CS2, Data Struct, Data Comm and Net, Theory of Comp 55 

3 CS1, CS2, Data Struct, Databases, Comp Alg 60 15 CS1, CS2, Databases, Operating Sys, Theory of Comp 80 

4 CS1, CS2, Data Struct, Databases, Theory of Comp 73 16 CS1, CS2, Databases, Comp Alg, Theory of Comp 58 

5 CS1, CS2, Data Struct, Comp Org, Operating Sys 52 17 CS1, CS2, Comp Org, Data Struct, Operating Sys 54 

6 CS1, CS2, Data Struct, Comp Org, Comp Alg 60 18 CS1, CS2, Comp Org, Data Struct, Theory of Comp 52 

7 CS1, CS2, Data Struct, Comp Org, Theory of Comp 52 19 CS1, CS2, Comp Org, Operating Sys, Theory of Comp 73 

8 CS1, CS2, Data Struct, Operating Sys, Comp Alg 70 20 CS1, CS2, Comp Org, Comp Alg, Theory of Comp 59 

9 CS1, CS2, Data Struct, Operating Sys, Theory of Comp 110 21 CS1, CS2, Operating Sys, Theory of Comp, Data Mining 50 

10 CS1, CS2, Data Struct, Operating Sys, Data Mining 61 22 CS1, Data Struct, Databases, Operating Sys, Theory of Comp 56 

11 CS1, CS2, Data Struct, Comp Alg, Theory of Comp 84 23 CS2, Data Struct, Databases, Operating Sys, Theory of Comp 56 

12 CS1, CS2, Data Struct, Comp Alg, Data Comm and Net 55    

Table 3. Computer Science sequence edge table

C1→ C2 Indices Σ Support Thickness C1→ C2 Indices Σ Support Thickness 

CS1→ CS2 1-21 1338 6 DB→ALG 3,16 118 3 

CS2→ DS 1-14, 23 968 6 TOC→DM 13,21 113 3 

OS→ TOC 9,15,19, 21-23 425 5 ORG→DS 17,18 106 3 

DS→ DB 2,3,4,22,23 312 5 ALG→NET 12 84 2 

DS→ OS 8-10,17 295 5 DB→TOC 4 73 2 

DB→ OS 2,15,22,23 259 4 OS→ALG 8 70 2 

CS2→ ORG 17-20 238 4 OS→DM 10 61 1 

ALG→TOC 11,16,20 201 4 CS1→DS 22 56 1 

DS→TOC 1,13,18 165 4 DS→NET 14 55 1 

DS→ORG 5--7 164 4 NET→TOC 14 55 1 

CS2→DB 15,16 138 3 ORG→TOC 7 52 1 

DS→ALG 11,12 139 3 DISC→CS1 1 50 1 

ORG→OS 5,19 125 3 CS2→OS 21 50 1 

ORG→ALG 6,20 119 3     

Table 3 shows CS1→ CS2 and CS2→ Data Structures have the two highest support sums; this is reflected in the edge-widths in Figure 2.  
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ABSTRACT 
Self-efficacy is a critical psychological construct that has a substan-

tial impact on students’ learning experience and global well-being. 

Thus, the early identification of low self-efficacious learners is an 
important task for educators and researchers. This study uses ma-

chine learning (ML) approaches to model the self-efficacy of over 

520,000 students based on their test performance and responses to 
survey questions in the Programme for International Student As-

sessment (PISA) 2018. Two tree-based ensemble learning models 

(random forest and XGBoost) were built using 64 predictors and 

evaluated using nested cross-validation with a grid search method. 
The results showed that, although both algorithms predicted self-

efficacy accurately, XGBoost slightly outperformed Random For-

est (RF). The findings also revealed that students’ non-cognitive 
constructs such as meaning in life and the motivation for mastering 

tasks were the most important predictors. Theoretical contributions 

include the expansion of the body of literature on ML applications 
that predict students’ self-efficacy and the potential advancement 

of theoretical models of self-efficacy. Practical contributions in-

clude the applications of tree-based algorithms to identify low self-

efficacious individuals at scale, in a large international assessment. 
Implications include the development of systems that use ML algo-

rithms to detect low self-efficacious learners and provide support 

for early interventions. 

Keywords 
Self-efficacy, large-scale assessment, PISA 2018, students’ traits 

1. INTRODUCTION 
Self-efficacy represents individuals’ general beliefs about their 

competencies of performing specific tasks or achieving goals [4]. 

Students’ self-efficacy has been consistently associated with their 
learning achievement [3, 11, 14]. Students with higher self-effi-

cacy, at all levels of competency, are more successful in school 

activities and use more effective learning strategies [21]. In addi-
tion, various empirical findings showed that self-efficacy is 

associated with academic engagement [25]. High self-efficacious 

students tend to report a higher level of academic aspirations, spend 

more time on homework, and gain more positive learning experi-
ences [6]. Those students are more gratified and satisfied with their 

accomplishments [27]. Moreover, self-efficacy is highly linked to 

students’ global well-being and life outcomes [11]. It has been 

found that students with low self-efficacy are more likely to drop 
out of school, which jeopardizes their future employment prospects 

[5]. In addition, low self-efficacious students tend to suffer from 

many mental and behavioral problems such as depression [2], sui-
cidal ideation and attempts [25], social avoidance [24], and 

addictive behaviors [23]. Thus, students’ self-efficacy is an im-

portant topic for psychological and educational research. If 

students’ self-efficacy can be screened and predicted, practitioners 
may be able to deliver early intervention to help low self-effica-

cious students improve their learning experience, global well-

being, and life outcomes.  

In this present study, two decision tree-based algorithms (RF and 

XGboost) were trained based on over 520,000 students’ test perfor-

mance and responses to survey questions in PISA 2018. The 

proposed research questions (RQ) were: 

(1) Is it possible to use the RF and XGBoost algorithms to predict 

students’ self-efficacy with a small error rate? 

(2) What are the most important predictors of self-efficacy in these 

models? 

2. RELATED WORK 
Self-efficacy has been increasingly used as a predictor in ML mod-
els. However, to date, despite the significance of self-efficacy for 

students’ learning and life, there are very few studies that treated 

self-efficacy as the focal variable to be predicted. The first such 
study [17] used Naive Bayes and decision tree algorithms to gener-

ate two sets of classification models of self-efficacy (high vs. low). 

The first set of models were built based on the demographic factors 
of the students, whereas the other set of models added additional 

predictors that were obtained when students were exposed to an in-

telligent problem-solving tutoring system including biofeedback 

signals and recorded log data. The classification accuracy of the 

models ranged from 82.1% to 87.3%.  

Later, a K-medoids clustering algorithm was employed to group 

similar students based on their gender, survey-reported self-effi-
cacy, and collected natural language utterances during dialogue in 

an intelligent tutorial dialogue system [9]. Results revealed differ-

ences in the use of utterances between students with high and low 
self-efficacy. For example, students with high self-efficacy tend to 

use more confident utterances to express their understanding of the 

knowledge, compared to students with low self-efficacy who usu-

ally make less confident utterances. 

Recent efforts have examined domain-specific self-efficacy. A 

study trained a K-nearest neighbor algorithm to classify 127 stu-

dents’ responses as low, middle, or high using a 21-item self-
efficacy survey [1]. The optimal results of the model performance 

based on validation-set approach reached 92.3%. Another study ap-

plied a decision tree classifier to a dataset containing 1894 
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undergraduate students’ survey data, obtaining the highest accuracy 

score of 82.58% [26].  

3. METHODS 

3.1 Data Source 
The international large-scale dataset used in this study contained 

students’ self-reported survey data and their test results of the 

OECD’s PISA 2018. The dataset was publicly accessible at [20]. 
All students participating in PISA 2018 were included in this study 

regardless of their country of citizenship or origin. This constituted 

the original sample of 612,004 students from 74 countries and re-

gions. 

3.2 Tree-based Algorithms 
We employed two tree-based algorithms to predict students’ self-
efficacy. Tree-based algorithms use a series of if-then rules to gen-

erate predictions. In each step of the series, the if-then rules separate 

data points into subsets according to a node where the prediction 

has the lowest error rate. By repeating the step, the split will even-
tually terminate when reaching the stopping criterion. Although 

singular tree models can be interpreted straightforwardly and work 

well with nonlinear relationships between predictors and the target 
variable, they usually have weaker predictive performance given 

that they are prone to overfitting, a situation where the supervised 

learning model fits too close to the training data to be able to gen-

eralize well and predict future data. 

Tree-based ensemble learning methods are alternatives to singular 

decision trees by combining decision trees. The algorithms used in 

this study are RF and XGboost. RF is an ensemble learning algo-
rithm developed based on two algorithms: decision tree and 

bootstrapping. Bootstrapping resamples data with replacement and 

it is used to repeatedly split the same dataset into bootstrapped sam-
ples based on which multiple decision trees can be built. Each of 

the trees built can generate a result. Then the algorithm makes the 

final decision by aggregating the results of all singular trees. In pre-
dicting the numerical values, the final result is calculated by 

averaging the results of all individual trees. The advantage of RF is 

that it is less prone to overfitting, which lifts the accuracy and sta-

bility of prediction to a much higher level.  

XGBoost is another ensemble learning algorithm based on decision 

trees [7]. In contrast to RF, XGBoost employs boosting, a technique 

of correcting the errors of existing models by adding new models 
sequentially to predict the residuals of the existing model and, then, 

along with the existing model make another prediction. Through 

sequential iterations, each execution is completed on the same da-
taset and later models are improvements of prior models. 

Eventually, the errors will be gradually minimized; the algorithm 

stops when the model performance converges to a stable state. 

3.3 Focal Variables 
In this study, self-efficacy is the response or target variable (i.e., the 

variable to be predicted in the current supervised learning task). In 

the survey of PISA 2018, students’ self-efficacy was measured by 
five items, namely, "I usually manage one way or another", "I feel 

proud that I have accomplished things", "I feel that I can handle 

many things at a time", "My belief in myself gets me through hard 
times", and “When I’m in a difficult situation, I can usually find my 

way out of it". Available responses were “Strongly disagree”, “Dis-

agree”, “Agree”, and “Strongly agree”. 

The predictors in the current study are the variables collected in the 

mandatory parts of students’ self-reported questionnaire and their 

test results in PISA 2018, classified as home factors, students’ well-
being, motivational factors, other non-cognitive constructs, school 

climate, teacher-related variables, personal experiences, as well as 

the PISA 2018 test performance [19]. Table 1 lists the predictors 
included and their dimensions. The reliability of students’ self-re-

ported scale scores was available in PISA technical reports [18]. 

All scales achieved at least an acceptable reliability.  

Table 1: Predictors used in the tree-based models 

Dimension Variable name 

Home factors 

 

Home possessions 

Parents’ professions and qualifications 

Parents’ education backgrounds 

Parental support 

School climate Cooperation climate 

Disciplinary climate 

Competition climate 

Teachers Teacher support 

Teacher understanding 

Adaptive instruction 

Teacher feedback 

Teacher enthusiasm 

Teacher directed instruction 

Well-being Meaning in life 

Life satisfaction 

Positive affective states 

Lively 

Miserable 

Proud 

Afraid 

Sad 

Fear 

Sacred 

Motivational factors Learning interests 

Learning aspiration 

Value of school 

Motivation for mastering tasks 

Motivation for competition 

Other non-cognitive constructs Reading self-concept 

Fixed mindset 

Empathy 

Attitude toward bullying 

Sense of belonging 

Personal experiences Exposure to bullying 

Skipped class or being late 

The age of early childhood education 

The age of pre-primary education 

Grade repetition 

PISA 2018 test performance Reading performance 

Math performance 

Science performance 

Other Gender 

 

3.4 Data Preprocessing 
A two-stage method was adopted to deal with missing values. In 

the first step, the entire row of the data entry was excluded if there 
were missing data on any of the five items measuring self-efficacy. 

Listwise deletion was used because it does not introduce new errors 

to the outcome variable as replacing the missing data with other 
values. This step excluded 84,179 instances, so 527,825 instances 

remained. In the second step, the missing values of the predictors 

were replaced with their column medians.  

First, the responses of reverse worded items were reverse coded. 
Second, if the predictor is a categorical variable and is not grouped 
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with other predictors (single-item scale), k-1 dummy variables (k is 
the number of categories) were created to replace the original cate-

gorical variable. Third, for multi-item scale response data (e.g., 

self-efficacy, measured by five items), a polytomous item response 
theory (IRT) model, the generalized partial credit model (GPCM) 

was used to transform the data to IRT scores ranging from negative 

to positive. In this way, self-efficacy scores became truly continu-

ous data. This is a similar method that was adopted in the PISA 
2018 Technical Report [18]. In order to facilitate meaningful inter-

pretations, the IRT scores were linearly transformed using a 

formula: 𝑋′ = 𝑋 × 15 + 100. The choice of multipliers for mean 

and standard deviation was arbitrary, just for the ease of interpreta-
tion (i.e., no negative self-efficacy scores). Such transformation 

does not alter the true comparative values of the measured con-

structs.  

Upon the completion of data preprocessing, the dataset contained 
64 individual predictors (including coded categorical variables) and 

one target variable (self-efficacy). 

3.5 Model Training, Validating, and Testing 
The xgboost and scikit-learn libraries in Python 3.7 were used to 

build the XGBoost and RF regressors. Model training, validating, 

and testing were conducted using the scikit-learn library. A nested 
cross-validation with grid search algorithm was used to obtain a 

robust and trustworthy estimation of the model tuning and perfor-

mance [16]. As shown in Figure 1, the nested cross-validation 
algorithm has two layers: an outer three-fold cross-validation and 

an inner three-fold cross-validation. There was a total of nine dis-

tinct folds of inner cross-validation and three folds of outer cross-

validation. The goal of the inner cross-validation was to find the 
hyperparameters yielding the best model performance, while the 

outer cross-validation was to test the generalizability of the tuned 

model performance to a new dataset.  

 

Figure 1: Nested cross-validation 

Hyperparameters tuned for both RF and XGBoost regressors in-

cluded the number of trees (n_estimators) and the maximum depth 

of the trees (max_depth). The maximum depth was selected in a 
range of 5 to 25, with a step of 5, whereas the number of trees could 

be 100, 150, or 200. Mean absolute error (MAE), Root mean square 

error (RMSE), and R2 were used as evaluation metrics for both 

model validation and testing.  

4. RESULTS 

4.1 Descriptive Statistics of Self-Efficacy 
The mean self-efficacy score of this sample was 99.99, ranging 

from 57.60 to 128.32, with a standard deviation of 13.28. Figure 2 

shows the histogram of self-efficacy scores that indicates a 

leptokurtic distribution. Thus, more students scored extremely high 

or low compared to a normal distribution.  

 
Figure 2: The distribution of self-efficacy IRT scores  

4.2 Evaluation Results  
Table 2 shows the training, validation, and test accuracy, for each 

set of the RF and XGBoost models, respectively. On the test set, R2 

of both prediction models was at least 0.447, suggesting that the 
two tree-based learning models could explain nearly half of the var-

iability in students’ self-efficacy. With reference to the range and 

standard deviation of self-efficacy scores, the MAEs and RMSEs 

indicated that both trained models achieved reliable prediction re-

sults.  

Table 2: Results of model performance in training 

Model Data RMSE MAE R2 

RF 

 

Training set 4.240 3.279 0.898 

Validation set 9.898 7.373 0.444 

Test set 9.878 7.354 0.447 

XGBoost Training set <.001 <.001 1 

Validation set 10.760 8.030 0.344 

Test set 9.776 7.271 0.458 
 

4.3 Relative Importance of Predictors 
The importance of the 64 predictors of students’ self-efficacy was 

ranked. Figure 3 and Figure 4 present the top ten predictors and 

their weight contribution to the predictive power for the two mod-
els. In the RF model, the motivation for mastering tasks appeared 

to be the most powerful predictor with a relative importance of 

19.5%, followed by meaning of life (10.8%), reading self-concept 
(5.1%), learning aspiration (4.4%), motivation for competition 

(3.2%), positive emotions (3%), empathy (2.9%), always feel proud 

(2.5%), and fear (2.5%).  

 
Figure 3: Relative predictor importance of the RF model 
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The ten most important predictors of the XGBoost model were the 
motivation for mastering tasks (14.5%), meaning in life (11.1%), 

proud (sometimes, always, rarely, and never; a total of 26.5%), mo-

tivation for competition (4%), learning aspiration (3.9%), positive 
emotions (3.2%), and reading self-concept (3.1%). These predic-

tors contributed a total of 66.3% of the model prediction power. 

Notably, numerous variables were ranked in the top ten in both RF 

and XGBoost models, with motivation for task mastery and pur-
pose in life maintaining the top two positions in both models. 

However, all the highly ranked predictors in both models appeared 

to be students’ non-cognitive constructs including well-being and 
motivational factors. There were no variables of home factors, 

school climate, teachers, experience, and PISA 2018 test perfor-

mance in the top 10 list. 

 
Figure 4: Relative predictor importance of the XGBoost model 

5. DISCUSSION 
The present study employed the RF and XGBoost algorithms to 

predict students’ self-efficacy. The results suggest that the two tree-

based algorithms could predict students’ self-efficacy with small 
error sizes based on their self-reported survey data and test data. 

The XGBoost model seems to slightly outperform the RF model 

with respect to all chosen evaluation metrics on the test data.  

The results also revealed the most salient predictors of both ML 
models. According to the rank of the relative importance, the best 

predictors for both models appeared to be students’ non-cognitive 

factors including well-being and motivation. This is consistent with 
theories and empirical evidence [2, 13, 22, 27] supporting the close 

relationships between one’s self-efficacy and their other non-cog-

nitive constructs. On the other hand, gender was not a very 
important predictor. This is in line with a previous meta-analysis 

which reveals only a slight difference in self-efficacy between gen-

ders [13]. A surprising finding, however, is that students’ test 

performances in PISA 2018 did not strongly predict self-efficacy. 
In a number of previous studies, researchers often consider self-

efficacy as one of the strongest predictors for academic achieve-

ment [10]. However, this study revealed that predicting self-
efficacy based on academic achievement seemed to be less unsuc-

cessful. Another finding that is beyond our expectation is that home 

factors including parents’ education and qualifications and home 
possessions contribute poorly to the predictive power in both mod-

els. This contradicts other studies which suggest the strong 

associations between self-efficacy and socioeconomic status [12, 

15]. In addition, teachers-related variables and factors of school cli-
mate were not highly ranked predictors. We attribute the relatively 

weak predictive power of these predictors to their indirect relation-

ship with students' self-efficacy. Home factors, academic 
achievement, as well as school and teacher factors, usually shape 

students’ self-efficacy through other non-cognitive constructs. This 
also explains why the non-cognitive constructs are better predictors 

in the current models. 

The present study has three major implications. First, it provides a 
successful example of predicting students’ self-efficacy, expanding 

the body of literature on self-efficacy modeling. Second, it ranks 

the relative importance of predictors for students’ self-efficacy, 

paving the way for future studies to further examine the relation-
ships between self-efficacy and its best predictors. This may 

advance theories of self-efficacy as such expanding the model of 

how one’s self-efficacy is formed. Third, it predicts and models stu-
dents’ self-efficacy at scale, using data from an international 

assessment. Because high self-efficacy is beneficial to students’ 

motivation and learning experience [8], while low self-efficacy is 
associated with many mental and behavioral problems [24], early 

identification of low efficacious students is critical to students’ ed-

ucational careers and global well-being. This study suggests that it 

is feasible for education systems to use ML approaches to identify 

low self-efficacious students at scale.  

A limitation of this study is that the family-level, school-level, and 

country-level factors used to predict students’ self-efficacy are not 
exhaustive in the current ML models. Although our findings indi-

cate that factors such as students’ home factors and learning 

environment have a negligible effect on the model’s performance, 
the current study was not able to examine a number of other poten-

tially significant features. For example, parenting styles may be 

predictive of students’ self-efficacy at the family level; at the school 

level, the predictive effect of geography, socioeconomic position, 
and school resources remains unknown. Another limitation is that 

the dataset mainly relied on students’ self-reported questionnaires. 

Due to the subjective nature of self-reported data, the quality of stu-
dents’ responses may be subjectively biased. Finally, more tuning 

is needed for these models to address the overfitting issue inherent 

with tree-based models. 

6. CONCLUSION AND FUTURE WORK 
Noting that very limited ML research has been conducted to model 

students’ self-efficacy, this study is the first to establish tree-based 
models that successfully predict students’ self-efficacy at a large 

scale. This study also identified important predictors of students’ 

self-efficacy, which helps to identify students with low self-effi-

cacy and develop targeted programs to potentially improve self-
efficacy. In responding to the limitations of the current studies, fu-

ture studies can seek to use a more comprehensive feature set that 

includes more family level, school level, and country-level varia-
bles. In addition, for objective and real-time monitoring of self-

efficacy, future studies may use other methods to gather objective, 

real-time indicators for predicting students’ self-efficacy. In the fu-
ture, other ML algorithms (e.g., lasso, deep learning) will be 

employed to tackle this task. Thus, applying ML approaches to pre-

dicting students’ self-efficacy is feasible and constitutes an 

important undertaking. 
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ABSTRACT 
Attendance reflects students' study motivation, and serves as an 

important indicator in educational management. A strong correla-

tion has been found between attendance and academic 

performance. Due to the time varying nature of attendance and the 

challenge of collecting data automatically, few studies explored 

the longitudinal attendance of student subpopulations. In this pa-

per, we introduce a new method combining Exponential Moving 

Average (EMA) and Kullback-Leibler Divergence (KLD) to iden-

tify longitudinal attendance patterns. We justify that KLD best 

preserves the structural difference between attendance distribu-

tions in student subpopulations. Using real-life data from a 

university, our result identifies the critical period when high and 

low academic performance students diverge in attendance, which 

calls for the attention of educators. 

Keywords 
longitude attendance data, exponential moving average, Kullback-

Leibler divergence, behavior pattern 

1. INTRODUCTION
Attendance is an important indicator in education. It interplays 

with many other factors, such as instructional quality, psychologi-

cal status, and academic performance which lies in the essence of 

education. Many studies confirmed the correlation between atten-

dance and attainment, using methods including hypothesis test 

[20], correlation analysis [1] and prediction [32, 33]. Furthermore, 

many studies identified positive relation between drop out and 

low attendance [12, 30]. These studies suggest that attention data 

provides valuable information in the early detection and assistance 

of students with low attendance. However, few studies considered 

associating longitudinal attendance data with academic perfor-

mance. 

Longitudinal attendance data reveals the dynamics between at-

tendance and academic success, but is still under-researched. 

Though many educators are aware of the importance of atten-

dance and have carried out certain attendance policy, the lack of 

deep understanding of the interaction between attendance and 

academic success hinders the design and implementation of effec-

tive attendance policy. This is especially true for universities, 

where a mandatory attendance policy on every course at all time 

is usually not pervasive.  

With the popularity of smart devices and the arrival of Internet of 

Things (IoT), longitudinal attendance data can be collected auto-

matically and in a large scale. Techniques such as 

Bluetooth/Beacon [2, 31], face recognition [13] and Wi-Fi tracing 

[23, 34] have been applied to detect attendance automatically. [7] 

collected attendance data in an institution-wide fashion. The 

abundance of data makes it easier to study longitudinal attendance, 

and calls for new methods and in-depth analysis. 

Traditionally longitudinal attendance data is assessed by simple 

statistics and line charts. The average attendance rate over a peri-

od of time (e.g., a week or a semester) is a widely adopted 

indicator of students’ attendance. While being effective in many 

educational applications, a single average value is subject to noise 

in the period. For example, in attendance data collected using Wi-

Fi tracing [7, 23, 34], the mal-function of some access points on 

campus can lead to inaccurate weekly attendance data for students. 

When studying the weekly attendance data in a time series, the 

fluctuation of data points can lead to wrong interpretation of the 

trend in attendance.  

The comparison of the attendance for two student populations is 

another challenge. For example, it is interesting to compare the 

trends of attendance for students with top 25% and last 25% aca-

demic performance. However, the handy line chart of weekly 

average attendance rates does not fully reflect the structure inside 

each population. 

Below we list the research questions of this study. 

1) How to measure attendance dissimilarity from the fluc-

tuating attendance time series between student

subpopulations with different academic performance?

2) What can we learn from the divergence of attendance

patterns for students with different academic perfor-

mance?

For Question 1, when measuring the dissimilarity between two 

populations, in order to preserve as much information in the stu-

dent populations as we can, we apply Kullback-Leibler 

divergence (KLD) on attendance data. KLD was first introduced 

in 1951 by Kullback and Leibler [18]. It was proposed as a meas-

ure of dissimilarity between statistical populations in terms of 

information. We will show below that comparing with other 

commonly used methods, KLD emphasizes more on inner struc-
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tural divergence between the attendance data of student popula-

tions with different academic performance.  

To deal with fluctuation, we propose to apply Exponential Mov-

ing Average (EMA) to smooth the time series in order to obtain 

trend and regional information. Moving average is a simple but 

widely adopted technique in time series analysis, and has been 

applied to process longitudinal data in many areas. Learning from 

the successful application of exponential moving average methods 

on implementing weekly stock index [9], we apply it on weekly 

attendance index calculation.  

For Question 2, we propose the combination of Exponential Mov-

ing Average and KLD to detect critical periods when attendance 

patterns of students with top 25% and last 25% academic perfor-

mance diverge dramatically.  

In summary, the contributions of this study are as follows. We 

propose to apply the combination of Exponential Moving Average 

(EMA) and Kullback-Leibler divergence (KLD) to study longitu-

dinal attendance data. So far as we know, there is no previous 

study that apply EMA or KLD on attendance data. We derive 

random subsamples to study moving average indexes and dissimi-

larity functions of student populations. Experiment results on 

attendance data shows that our method out-performs traditional 

methods. The application of our method on first year university 

students shows that the attendance of the top 25% and last 25% 

students on academic performance diverges during mid-term peri-

ods and holidays, which calls for the attention of university 

managements. 

The rest of this paper is organized as follows. Section 2 describes 

the related studies. Section 3 introduces our method. Section 4 

presents the results. Section 5 describes the limitations. Section 6 

draws the conclusions.  

2. RELATED STUDIES
The time variant nature of attendance contains rich details for 

student behaviors changes; however, before attendance data can 

be collected automatically, attendance is usually collected by 

signup sheets which have to be process manually and hinder the 

study of longitudinal attendance data. [6, 21] observed declines in 

student attendance over the duration of academic years. [12, 27] 

treated students’ attendance as time series data and performed 

clustering. [32] studied the life-cycles of 48 students using multi-

ple dimensions of data, including raw attendance data from GPS 

tracing and Wi-Fi tracing. Valuable information was collected 

from these results.  

Critical period detection is often associated with time series anal-

ysis. [11] divided students into several bands according to their 

academic performance, plotted the cumulative credit time series 

of each student subpopulation and detected divergent critical 

points using unpaired t-test. [29] identified students’ withdrawal 

routes by showing the proportion of students not submitting their 

assignments and found that only very few of them returning to 

submit the next ones. [4] researched into MOOC data, plotted 

students’ activity time series and found activity peaks before each 

assessment due. None of these researches considered attendance 

time series. Using attendance records from high schools in New 

York, [16, 17] found weekly cycles and detected abnormal data 

points. The authors [15] then utilized the results to identify prob-

lems and provide suggestion for high school educators. These 

researches considered attendance, but did not associate it with 

academic performance. 

Kullback-Leibler Divergence (KLD) is a popular method to calcu-

late the difference between two populations. It has been justified 

as a sensitive dissimilarity measurement for probability distribu-

tion [35]. In the context of education, KLD is widely applied to 

detect test collusion by comparing unusual distribution of individ-

ual testing behavior to that of the whole test taker population [3, 

19]. Besides, KLD was applied in [8, 26, 28] to classify students 

into groups by maximizing the divergence of certain quality be-

tween distributions of different subpopulations. [24] observed 

student’s learning trajectory by calculating the difference between 

quizzes data collected before and after instructions. So far as we 

know, there is no previous study that applied KLD to attendance 

data of student populations. 

Moving Average (MA) method is one of the most popular tech-

niques in time series analysis. It’s often used for the purpose to 

smooth and track the trend in longitudinal data [9]. Exponential 

Moving Average, as a variation of Moving Average, is widely 

used in many area, including finance [9, 10], sales analysis[14], 

weather forecasting[5] and education [25] (to predict enthusiasts 

in mathematics programs). So far as we know, no previous study 

has applied exponential moving average on attendance data. 

3. METHOD

3.1 Data and Setup
Anonymous data of students’ cumulative GPA (denoted as CGPA) 

and attendance data were retrieved from a university in China 

with approval from the university management. The data was 

collected from undergraduate students spanning over 3 semesters 

in 2018 and 2019, namely, Fall 2018, Spring 2019 and Fall 2019 

(noted that academic year starts in a Fall semester). To protect 

privacy, student IDs were converted into hash code beforehand.  

For most courses, students received letter grades from A to F. As 

an example, only 15 out of 426 courses taught in academic year 

2018 are courses with P/F grades. These courses were mostly for 

internship or research methodology/seminar, which were seldom 

taken by undergraduates in their first two years of study. All 

courses with P/F grades were excluded in calculation. 

Attendance data was collected using a Wi-Fi based method and 

was handled using method proposed in [23, 34]. Students’ weekly 

attendance rate was calculated by taking the average of attendance 

within a week. For most courses, no mandatory attendance policy 

was established. The rest of courses that declared mandatory at-

tendance policy were mostly university core courses which should 

be taken by all undergraduates. 

3.2 Moving Average Index 
In this subsection, we introduce exponential moving average 

methods to smooth the attendance curve.  

Let   be the attendance rate at time   for student  , then we have 

   . Let       be the corresponding index for student   at 

time  . Exponential moving average can be calculated using the 

formulas below. 

Definition 1 Exponential Moving Average (EMA): 

  stands for the weighting decay factor taken between 0 and 1. 

Commonly it’s set to be           with     in our exper-

iment (see the appendix for details). 
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EMA assigns the highest weight for the most recent data. The 

weight for the earlier data points decay with time via recursive 

process. Therefore, the earliest data would never vanish in the 

process of gaining successive values. 

3.3 Dissimilarity Measurement 
In this subsection, we study the dissimilarity measurements be-

tween attendance data of two student populations. Ideally, we 

want to find a dissimilarity measurement that can best reflect in-

ner structure divergence between the two concerned populations. 

Definition 2 Mean Difference (MDF): Let      be the attendance 

rate at time   for student  . Let P and Q be two distributions of      

at time   of two populations of students. The mean difference 

(MDF) of P and Q is calculated as below. 

                    

MDF is the simplest way to measure difference between two pop-

ulation. However, this measurement ignores the inner structure of 

distributions. 

Definition 3 Absolute Distance (AD) & Definition 4 Kullback-

Leibler Divergence (KLD): We divide the domain of distribu-

tions P and Q into several attendance intervals and name these 

intervals 1, 2, …,  . Then the probability of a student from distri-

bution        falling in a given interval is 

                        . We calculate the absolute distance 

(AD) and KLD as follows. 

                

 

   

 

                 
  

  
 

 

   

 

Both AD and KLD consider the inner structures of the distribu-

tions [35]. However, KLD is more sensitive when detecting inner 

structure differences than absolute distance. 

The difference between AD and KLD can be illustrated by an 

example as follows. Let         be three student populations. 

Divide the domain evenly into 4 intervals based on the attendance 

rates of the students: last 25% quantile, 25% - 50%, 50% - 75%, 

top 25% quantile. Probability of the three populations fall into the 

above-mentioned intervals are listed below. For example, 0.25 

represent 25% of the population. 

A: [0.25, 0.25, 0.25, 0.25] 

B1: [0.30, 0.30, 0.30, 0.10] 

B2: [0.40, 0.25, 0.25, 0.10] 

For A, the attendance rates of students are evenly distributed in 

the 4 intervals. B1 differs from A by moving 15% of the popula-

tion from the top quarter to the other 3 intervals evenly. B2 differs 

from A by moving 15% of the population from the top quarter to 

the last quarter only. Therefore, A overall should be considered to 

have higher attendance than B1 and B1 higher than B2. 

Calculate the dissimilarity between A and B1, A and B2 using AD 

and KLD respectively, we have 

                      

                                 

                    

In this example, AD cannot distinguish the difference between B1 

and B2 in terms of the dissimilarity to A, while KLD correctly 

measures the dissimilarity order. It illustrates that KLD is more 

sensitive to inner structure differences than AD. MDF is not cal-

culated in this example because we do not have the detailed 

distribution. In the result section, we will demonstrate the ad-

vantage of KLD over MDF and AD using random subsamples 

derived from real-life data.  

4. RESULTS 

4.1 Dissimilarity Measurement Selection 
We make comparisons of dissimilarity measurements using large 

samples of random groups synthesized from our dataset. Though 

this experiment, we want to show that KLD can best illustrate the 

difference in attendance data between top students and other 

students. 

Attendance data used is collected from students from Cohort 2018 

in Fall 2018 and Spring 2019 semesters. We consider students’ 

overall attendance rates in the academic year 2018-19. We use 

their first year CGPA as the measurement of academic 

performance.  

There are 120 students whose academic performance are in top 

10%. Therefore, we set the top 120 students as top 10% group and 

randomly generate 10000 groups, each of 120 randomly selected 

students from the whole student population. 

We divide the whole student population evenly into 4 levels based 

on their overall attendance rates. In each level there are 25% of 

students from the whole population. we then calculate for each 

group, the portion of students in each level. For example, for top 

10% group, its attendance rate distribution in the 4 levels (from 

low to high) is:  [0.125, 0.242, 0.3, 0.333] 

We perform the three candidate dissimilarity measurements 

between the 10000 groups and the top 10% group. Noted that for 

KL-divergence, the direction is from the top 10% group to the 

generated group. We then find out the 3 groups (named as KLD, 

AD, MDF) having the largest attendance dissimilarity via the 3 

different measurements and rank the 3 groups’ academic 

performance among the 10000 groups. Intuitively, the group with 

the largest difference from the top 10% group have the poorest 

academic performance. 

Table 1. The rankings of different dissimilarity measurements 

 Mean 

GPA 

Mean 

GPA 

Rank 

Last 

10% 

Ratio 

Last 10% 

Ratio 

Rank  

Top 10% 3.77 10000 0 10000 

KLD 3.02 1 14.17% 328 

AD 3.14 2157 10.83% 2670 

MDF 3.14 1714 10.00% 3759 

 

The results are shown in Table 1. The rankings of mean GPA and 

the last 10% ratio indicate the academic performance of the 

chosen group among the 10000 groups (the higher the ranking the 

poorer the academic performance). We can see that the group 

detected by KLD has the highest mean GPA rank (last 1) among 

10000 groups and the highest last 10% ratio rank (last 328) among 

the three dissimilarity measurements. Therefore, KLD is a good 
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dissimilarity measurement and we apply it for distribution 

comparison on attendance difference. 

For more experiment of dissimilarity measuerment selection, 

please see the appendix. 

4.2 Exponential Moving Average and KLD 
In this subsection, we compare the performance of two methods, 

KLD combined with EMA (denoted as EMA+KLD) and KLD 

combined with the raw attendance rates (denoted as RAW+KLD). 

The partition of data and the experiment setup are similar to those 

in section 4.1. 

The results are shown in Table 2. The group detected by EMA 

combined with KLD has a higher mean GPA rank (last 24) and a 

higher last 10% ratio rank (last 276) than the group detected by 

Raw+KLD. Therefore, combining exponential moving average 

and KLD improves our ability to detect attendance divergence 

betweem student subpopulations of different academic 

performance.  

Table 2. The rankings of two methods 

 Mean 

GPA 

Mean 

GPA 

Rank  

Last 

10% 

Ratio 

Last 10% 

Ratio 

Rank  

Top 10% 3.743 10000 0 10000 

Raw+KLD 3.144 2085 9.65% 4801 

EMA+KLD 3.063 24 14.91% 276 

 

For more information of EMA, please see the appendix. 

4.3 Critical Periods in Attendance Divergence 
In this subsection, we discuss the longitudinal attendance diver-

gence between top and last 25% students on CGPA. The data is 

collected from first year undergraduate students in Fall 2018 and 

Spring 2019. 

Figure 1 shows the KLD time series calculated between attend-

ance of top and last 25% students using weekly attendance 

indexes processed with EMA. Noted that for KLD, we calculated 

the distance in the direction from the top population to the last 

population. The top and last quarter students first diverge after the 

3-days national holiday (Fall 2018 Week 4, the Mid-autumn festi-

val). In the mid-term period, the difference enlarges again and the 

difference stays at about the same level till the end of the semester. 

At the beginning of Spring 2019 semester, the attendance differ-

ence is reduced but is restored to the level of the last term quickly. 

During the mid-term of Spring 2019, the difference is enlarged 

and stays at the same level till the end of the semester.  

We conjecture several reasons behind the divergence of attend-

ance rates. In the local culture, the 3-days national holiday (Mid-

autumn festival) is the time when people travel to meet their love 

ones. Since the holiday is close in time to another national holiday, 

some students may leave the university and do not return to the 

university till the end of the second holiday. This behavior could 

lead to low attendance rates among the last quarter students during 

the week after the Mid-autumn festival. The mid-term period sig-

nificantly enlarges the difference and multiple factors can be 

behind the phenomenon. The last quarter students could be frus-

trated by the mid-term exams and give up their studies; Preparing 

the mid-term exams is stressful and some students did not relax 

properly after the exams and start skipping classes; Some students 

might be addicted to video games and persistently reduce their 

class attendance.  

5. LIMITATIONS 
Raw attendance rate data used in our research was collected using 

a Wi-Fi based method proposed in [23, 34]. The data can be bi-

ased because some students would close their Wi-Fi connections 

or even close their digital devices all together, leading to a false 

label of absence. To avoid the possible bias, students whose data 

having less than 50 Wi-Fi connection records in a week were 

excluded. Previous studies [7, 22, 33] show that attendance col-

lected from Wi-Fi tracing has usable accuracy. EMA can help 

reducing the noise and fluctuations in the attendance data. 

Privacy is an importance issue in research related to Wi-Fi tracing. 

In our study, we removed personal information from the data and 

encrypted the student ID with a hash code. Attendance data and 

CGPA data were connected using this hash code. The Wi-Fi data 

collection had a clear location boundary and data was collected 

only when the students are on campus. We did not collect website 

URLs or communication content. Given that the research can 

potentially improve the existing attendance policy, this study has 

been approved by the university management. 

6. CONCLUSIONS 
In this study, we identified the divergence of longitudinal atten-

dance patterns between student subpopulations of different 

academic performance using the combination of Exponential 

Moving Average (EMA) and Kullback-Leibler Divergence (KLD).  

We designed several experiments to prove the efficacy of EMA 

and KLD to process raw attendance data and measure dissimilar-

ity between top and last student populations. We then combined 

EMA and KLD to analyse real-life attendance data from two stu-

dent subpopulations of top and last academic performance. The 

resulting curves are intuitive and imply rapidly increasing atten-

dance divergence during the mid-term periods and right after 

public holidays.   

Through the visualized results generated using our proposed 

method, we address the importance of longitudinal attendance 

patterns on academic performance. Our result gave educator an 

example on how to measure longitudinal attendance and can po-

tentially help institutes to optimize attendance policy. 
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APPENDIX 

Attendance Index Comparison 
Let      denoted the index used (raw attendance data      or EMA 

index       ). In order to illustrate the advantage of EMA over 

raw data, we predict the attendance rate      using the index 

              from previous 2 weeks. We construct a model for 

each week, with the prediction model of each week reflects the 

properties of the week.  

Definition 5 Weekly Prediction Model (WPM): For every 

week   , the attendance rate of   is predicted as: 

                                

where     ,      are parameters to be estimated. 

As we consider attendance rate could be a vibrate behavior in-

fluenced by the attendance rates of the previous 2 weeks (two 

points determine a line), we use the attendance rates of the 2 

weeks before time   to predict attendance in week   . The decay 

factor   for EMA is therefore set to be 
 

 
. Model used is linear 

regression and mean square error (MSE) are calculated for every 

week (every model) as the evaluation. 

Fall terms in both 2018 and 2019 have 14 weeks. Because we 

used the indexes of previous 2 weeks as predictor, we start to 

train prediction models beginning from week 3. We then have in 

total 12 separate models for WPM in a semester. 

We use attendance data of students from Cohort 2018 in Fall 

2018 semester training set and attendance data of students from 

Cohort 2019 in Fall 2019 semester as test set.  

 

Figure 2. Comparison of test set MSE between raw data and 

EMA for weekly prediction models. 

Figure 2 shows the performance of weekly prediction models for 

test set data. The difference between original data and EMA 

(RAW-EMA) is plotted in the figure. A value above zero indi-

cates that RAW has a larger error (worse) than EMA on that 

point. EMA performs equal to or better than raw data in all 12 

models. We can then confirm that EMA can smooth the fluctuat-

ing time series and better reveal trend information. 

Dissimilarity Selection on Real Data 
In this subsection, we compare the performance of KLD over 

mean difference (MDF) and absolute distance (AD) using real-

life attendance data.  

To confirm the performance of dissimilarity measurements on 

real-life data, we apply the three methods on attendance data of 

students from Cohort 2018 in week 8 and week 9 in the Fall 

2018 semester. We compare the weekly attendance rate between 

students whose CGPA (measured after Fall 2018) are in the top 

25% quantile (297 students) and last 25% quantile (298 stu-

dents). Weekly attendance rates in a subpopulation are divided 

into 5 levels, as is illustrated in Figure 3. Larger inner structure 

difference is detected in week 9 than in week 8, especially for 

the lowest attendance category (<0.6). 

 

 

Figure 3. Attendance distribution in Fall 2018 Week 8 & 9 

The dissimilarity values between top and last 25% students cal-

culated from the three measurements are shown in Table 3. KLD 

derives significantly more divergent result for the two weeks 

(Week 8 and 9), which is consistent with Figure 3. AD cannot 

detect the divergence order. As KLD could put more emphasis 

on their most different part, it is more suitable for attendance 

group comparison.  

Table 3. Dissimilarity calculated for the two weeks. 

Dissimilarity  

Measurement 

Fall 2018 

Week8 

Fall 2018 

Week9 

MDF 0.073 0.083 

AD 0.365 0.336 

KLD 0.177 0.274 
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ABSTRACT
Automated Essay Scoring (AES) research efforts primar-
ily focus on feature engineering and the building of ma-
chine learning models to attain higher consensus with hu-
man graders. In academic grading such as essay scoring,
the scores will naturally result in a normal distribution,
more commonly referred to as the bell curve. However,
the datasets used do not always have such distribution and
are often overlooked in most machine learning environments.
This paper proposes a Gaussian Multi-Class Synthetic Mi-
nority Over-sampling Technique (GMC-SMOTE) for imbal-
anced datasets. The proposed GMC-SMOTE generates new
synthetic data to complement the existing datasets to pro-
duce scores that are in a normal distribution. Using several
labeled essay sets, some of which already have a substantial
agreement between the machine learning model and human
graders, learning from normal distribution datasets yields
significant improvements. Improvements of 0.038 QWK score
(5.8%) over the imbalanced dataset were observed. The ex-
perimental result has also shown that naturally occurring
distribution in the automated essay scoring domain con-
tributes to the most appropriate training dataset for ma-
chine learning purposes.

Keywords
Boosting, Data Sampling, Gaussian Distribution, Data Pre-
Processing, Automated Essay Scoring

1. INTRODUCTION
In an educational setting, essay compositions are commonly
used to evaluate students’ competence in articulation. The
task to grade is labourious and is highly biased to the grader,

which causes the scoring to lack consistency in the essay
scoring process [20]. For this reason, Automated Essay Scor-
ing (AES) systems have been proposed and implemented to
solve the traditional human scoring approach problem or
act as a complementary mechanism. Research projects in
AES have focused on feature engineering, and in the design
of the scoring machine learning models to achieve higher
agreement with human graders [19, 22]. In building the ma-
chine learning models, the quality of the dataset is of utmost
importance. In the earlier research projects on AES, the dis-
tribution of the scoring in the datasets was not taken into
consideration. The datasets for building the AES models are
often imbalanced, as the scores assigned by human graders
may not be appropriately distributed. A significant level
of imbalance in multi-class datasets such as essay scoring
datasets is a profound problem [21].

1.1 Dataset Distribution
To visualise the imbalanced dataset issue in essay scoring,
the score distribution of a commonly used dataset for AES
research is used. The dataset is from the Automated Stu-
dent Assessment Prize (ASAP) competition1. There are 8
datasets, where sets 1, 2, 7 and 8 are essays of the same
genres were chosen and their score distribution is shown in
Figure 1, the other sets are not selected as they are of the
short letters genre.

Figure 1a and 1b have fewer classes compared to 1c and
1d. The agreement (accuracy) between the model and the
ground truth in a multi-class classifier would generally be
better with smaller classes. However, for Essay Set 7 (Fig-
ure 1c), the model built for it outperforms that of the smaller
number of classes Essay Set 2 (Figure 1b) as shown in Table
1b and 1c. Also, it is observed that Figure 1c has a typical
academic scoring distribution that has a Gaussian distribu-
tion with a median around the 60% mark. It can also be
observed that for Figure 1d, the distribution of the scores
does not reflect a Gaussian-like distribution with a trough
around the 66% mark. As the scoring range for Figure 1d
is larger (0 to 60), this would mean that the dataset quality

1https://www.kaggle.com/c/asap-aes
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(a) Essay Set 1 (b) Essay Set 2

(c) Essay Set 7 (d) Essay Set 8

Figure 1: Histogram for ASAP essay sets 1, 2, 7 and 8.

is poor as there are insufficient data that will result in poor
performance of the model by comparing the QWK score of
Table 1d with 1a, 1b and 1c. Hence, an appropriate dataset
distribution is important for training a model to have better
performance.

In automated essay scoring, it is well known that the scor-
ing of academic work such as essays normally falls within a
Gaussian distribution curve with the median hovering around
the 60 - 70 percentile. Motivated by the understanding that
quality training dataset will improve the learned model [10,
3], we propose Gaussian distribution Multi-Class Synthetic
Minority Oversampling Technique (GMC-SMOTE) to over-
come the issues of imbalanced multi-class data for AES mod-
elling. Instead of implementing SMOTE to provide a uni-
form distribution of the sampling, GMC-SMOTE is used
to oversample the multi-class dataset into a Gaussian dis-
tribution. With the improved quality of the training set,
the inherent bias of the dataset is kept in the training of the
models. To evaluate GMC-SMOTE effectiveness, three type
of train sets were generated. In addition, the evaluation was
conducted using the same features and modelling algorithm,
namely the Bayesian Linear Ridge Regression as proposed
by Phandi et al. [19].

2. IMBALANCED DATASET HANDLING
2.1 Imbalanced Data Problem Trends
Researchers worked on the imbalanced data problem from
two distinctive approaches; modifications on the attributes
at the algorithmic level for the training model to fit the
imbalanced data, or augmentation at the data level. These
two approaches are summarised as follows.

2.1.1 Algorithmic level
Most of the imbalanced data solutions are targeted on the
minority class due to the common high cost of misclassi-
fications on a minority class [18]. Hence, numerous cost-
sensitive learning approaches are introduced to balance the
classes based on the ratio to each classes’ costs [17]. The
most popular approach of cost-sensitive learning is to assign
different weights for each class in the training models that
are based on the costs of misclassifications [8]. Other than

assigning weights, cost-sensitive learning can be done differ-
ently, such as changing the models’ threshold based on its
own misclassification costs [8]. However, in most real-world
cases, the cost matrix is not easily identified.

2.1.2 Data level
Random undersampling (RU) and oversampling (RO) are
the first few methods introduced to deal with imbalanced
data. Both of the methods replicate random samples to re-
duce the imbalance ratio. However, the RU might eliminate
some significant samples, and RO might cause the model to
overfit. There are several extensions based on random un-
dersampling and oversampling such as one-sided selection
[15] and Edited Nearest Neighbour rule (ENN) [25]. Syn-
thetic Minority Oversampling Technique (SMOTE) was in-
troduced by Chawla et al. [6] to address the problem in
random oversampling. Instead of randomly replicating the
minority samples, SMOTE creates new minority class sam-
ples by using the interpolation between minority class sam-
ples’ neighbourhood. Several extension and hybrid meth-
ods based on SMOTE were introduced such as Borderline-
SMOTE, SMOTE with Tomek-links and SMOTE with ENN.
Eventually, many extensions of SMOTE are proposed such
as Borderline-SMOTE [11], ADASYN [13] and MWMOTE
[2].

2.2 SMOTE and Multi-Class SMOTE varia-
tions

2.2.1 SMOTE
The SMOTE algorithm [6] records the interpolations be-
tween minority class instances within a defined neighbour-
hood to create new synthetic samples. To do so, SMOTE
measures the difference between the selected feature vector
and its nearest neighbour. SMOTE multiplies the calculated
difference by a random number between 0 and 1, then adds
it to the selected feature vector. For this reason, the syn-
thetic sample will be at a random point between two specific
feature vectors. This method effectively forces the decision
making areas for minority class instances to become more
generic. However, SMOTE cannot be applied to multi-class
problems (such as for AES modeling) directly as SMOTE
works on dataset with two classes, the minority, and the
majority only. For multi-class problems, there are a few
notable multi-class oversampling approaches.

2.2.2 One-versus-All with SMOTE
As multi-class classification implies additional complexity to
data mining algorithms, due to the overlapping boundaries,
it will lead to a drop in the resulting performance [5]. One of
the approaches to tackle this problem is through implemen-
tation of class binarization techniques [1]. One-versus-All
(OvA), also known as One-versus-Rest (OvR), is a binary
classification algorithm for multi-class datasets. The com-
bination of OvA and SMOTE is one of the most popular
methods to implement SMOTE for multi-class datasets [10,
3]. OvA is implemented to split the multi-class dataset into
multiple binary classification problems. Next, each binary
classification problem are trained on a binary classifier based
on the samples of selected class as positive and the rest of
samples as negative [4]. After obtaining the binary class
problems sets from OvA/OvR, SMOTE is implemented for
each set to oversample the minority class instances. The
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output of SMOTE will be merged back into the multi-class
dataset for the training of the selected model.

2.2.3 One-versus-One + SMOTE
One-versus-one (OvO) [12] is another approach of binary
classification algorithms for multi-class datasets. Similar to
OvA/OvR, OvO binarizes multi-class datasets by splitting
a multi-class dataset into binary classification problems [9].
However, OvO deals with the datasets differs in that it splits
them into single datasets for each class against every other
class.

3. PROPOSED GMC-SMOTE
We propose Gaussian Multi-Class Synthetic Minority Over-
sampling Technique (GMC-SMOTE) to enhance the quality
of the dataset in AES by introducing new synthetic samples
for improved performance of the models. Instead of creating
synthetic new samples uniformly, GMC-SMOTE individu-
ally processes each class to form a Gaussian-like distribution.
The implementation of SMOTE in a multi-class dataset is
not directly applicable. To implement SMOTE in a multi-
class dataset, we selected OvA with SMOTE to perform the
SMOTE for each class in the multi-class dataset as it has
the superior performance over oversampling for multi-class
dataset [10, 3]. It is one of the techniques suggested for
multi-class oversampling by the author of SMOTE [9].

The default SMOTE algorithm requires six samples for each
class, which can be reduced to two. In our proposed GMC-
SMOTE algorithm, we propose to replicate classes with fewer
than six samples to at least six samples. This ensures SMOTE
has sufficient samples to generate synthetic samples and in-
herit the bias from the original dataset. Also, six samples
per class are the minimum requirement to train a model [14].

3.1 GMC-SMOTE Algorithm
Algorithm 1 GMC-SMOTE algorithm’s pseudo-code

1: Inputs:
2: D = Dataset classes and its counts
3: Dataset = Dataset
4: Algorithms:
5: C ← getUniqueClass(D)
6: M ← calculateMode(D)
7: for class in C do
8: if class = M then
9: FDclass ← DM

10: else
11: posAway ← |M − class|
12: if Dclass

posAway
> 2.5 then

13: FDclass ← Dclass × 2.5
14: else
15: FDclass ← Dclass

posAway
16: end if
17: end if
18: end for
19: newData← SMOTE(Dataset, FD)
20: return newData

GMC-SMOTE is implemented based on the bell curve sym-
metric theory [24] for Gaussian distribution. The bell curves
symmetric theory means the distribution is symmetric com-
paring the left distribution and right distribution from the

value at the peak of the curve. Algorithm 1 describes our
implementation of the GMC-SMOTE. In line 4-7, C repre-
sents unique classes and M represents the mode class in D.
Then, each unique class C in D is iterated through. The
mode class of the dataset DM is kept constant. The mode
class will be the class with the most occurrences.

FN =
Dclass

posAway
(1)

The Equation 1 is to calculate the new frequency, FN for
the rest of the classes where posAway represents position
away from the mode, and is stored in Frequency Dictionary
FDclass. This equation is motivated by how the distribution
is scaled away from the mode in the bell-curved symmetric.
The author of SMOTE, Chawla et al. [6] have proven that
between 200% and 300% oversampling rate is proven to be
the most robust oversample ratio in SMOTE. Hence, we
limit the amount to be oversample at 250% of the original
frequency. With this, we can keep the naturally occurring
distribution of the datasets and inherit the bias for training
the models.

4. METHODOLOGY
4.1 Experimental Datasets
We use the same dataset from Figure 1. The selected datasets
metadata can refer to [19]. To extract features for learning
algorithms, we implement the Enhanced AI Scoring Engine
(EASE) 2. We selected EASE as it is a robust feature en-
gineering method for AES that several researchers have im-
plemented in recent years [19, 16]. The EASE system will
generate 14 features refer to [19]. Five-fold cross-validation
is implemented to generate the train and test set due to
unreleased test data from the ASAP competition. We re-
distributed the data into five-fold, where four-fold will be
the train set and one-fold will be the test set in each round.
Three different types of train set will be generated for the
learning algorithms to train the models:

(a) Default. The train set with original distribution.

(b) Uniform Distribution. The train set is oversampled by
SMOTE that makes the frequencies all classes to be uni-
formly same as the frequency of the mode class.

(c) GMC-SMOTE. The train set is oversampled by GMC-
SMOTE to generate Gaussian-like distribution of the
classes.

4.2 Learning Algorithm
The Bayesian Linear Ridge Regression (BLRR) algorithm is
chosen among the other prospective methods such as Naive
Bayes (NB) and Support Vector Machines (SVM) based on
the results from Phandi et al. [19]. It allows a natural lan-
guage processing tasks to deal with insufficient data by cre-
ate linear regression through probability distributors instead
of point estimate. Also, it is robust and has often delivers
good results in natural language processing projects.

2https://github.com/edx/ease
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(a) GMC-SMOTE Essay 1 (b) GMC-SMOTE Essay 2

(c) GMC-SMOTE Essay 7 (d) GMC-SMOTE Essay 8

Figure 2: Histogram of GMC-SMOTE generated distribu-
tions.

4.3 Evaluation Metric
We implement Quadratic Weighted Kappa (QWK) to cal-
culate the rate of agreement among two graders; the human
graders, and the scoring by the trained model. It varies
from 0 to 1, where 0 represents no agreement, 0.01-0.20 as
slight, 0.21-0.40 as fair, 0.41-0.60 as moderate, 0.61-0.80 as
substantial, and 0.81-1.00 as almost perfect agreement [7].
QWK is proven to be robust since it takes into consideration
the odds of accidental agreement [23]. Also, it is a common
evaluation metric for AES models [19, 16].

5. RESULT AND DISCUSSION
New samples for each essay set using the proposed GMC-
SMOTE are generated. A sample of the GMC-SMOTE dis-
tribution histograms are plotted in Figure 2. From the ob-
servation on the Figure 2a and 2b, the new distributions are
closer to a Gaussian distribution symmetrical on the left and
right of the mode value. For the Figure 2c, the histogram is
much flatter than the default distribution. As for Figure 2d,
the data quality remains of concern due to missing data for
many classes and low data samples. From all these observa-
tions, the nature of default distribution is inherited into the
new distribution, which brings the inherent bias of default
distribution to the new distribution.

Train Set QWK
(a) 0.808
(b) 0.810
(c) 0.823

(a) Essay Set 1

Train Set QWK
(a) 0.650
(b) 0.672
(c) 0.688

(b) Essay Set 2

Train Set QWK
(a) 0.688
(b) 0.707
(c) 0.704

(c) Essay Set 7

Train Set QWK
(a) 0.644
(b) 0.656
(c) 0.676

(d) Essay Set 8

Table 1: Experiments result

We calculate the mean QWK scores for each trained model
using the one-fold of test in five rounds. The results are

shown in Table 1. The best result is bold-faced and the sec-
ond best is underlined. Overall, the BLRR scores for GMC-
SMOTE datasets are better than all the default datasets
and GMC-SMOTE performs the best in essay sets 1, 2, and
8.

• Essay Set 1: An increase in QWK by 0.015 even though
it has an almost perfect agreement using the default
dataset.

• Essay Set 2: A more modest increase in QWK by 0.038,
which is expected as the dataset distribution is similar
and the number of classes are few.

• Essay Set 7: The GMC-SMOTE’s QWK is better than
the default dataset but slight poorer than Uniform dis-
tribution dataset produced by the default SMOTE al-
gorithm.

• Essay Set 8: A significant increase in QWK by 0.032
even though it has many missing classes and several
classes with one to five frequency counts.

With the exception of essay set 7, the uniformly distributed
datasets have poor results. This shows that simply applying
SMOTE to the datasets has probably removed the inher-
ent bias in an essay scoring situation. The proposed GMC-
SMOTE has shown that with proper oversampling, main-
taining the inherent scoring biasness in an academic setting
can improve the automatic essay scoring agreement with the
human graders. For essay set 7, although the GMC-SMOTE
improved the QWK scores over the default dataset, the uni-
form distributed dataset has the best result. This can be
attributed to the fact that the default dataset is relatively
platykurtic with negative skewness. This encompasses the
majority of the samples (scores of 15 or greater from Fig-
ure 1). Hence, applying a uniform distribution will enhance
the sample and does not significantly impact the human
scoring biasness. It will also mean that if there are suffi-
cient sampling sizes, the naturally occurring distribution is
the optimal distribution. This can be observed in Figure 2,
for essay set 7, where the histogram is plotted for the new
data distribution generated by GMC-SMOTE. Comparing
the GMC-SMOTE distribution (Figure 2) with the default
distribution (Figure 1), the naturally occurring distribution
is kept in the new distribution while new samples are gen-
erated.

6. CONCLUSION
The results show that the GMC-SMOTE is an effective over-
sampling method for situations with some imbalance in the
dataset. The proposed GMC-SMOTE method can be ap-
plied for training datasets for other classifications domains
where the naturally occurring distribution is Gaussian (nor-
mal). Kurtosis and skewness can be used to assess the type
of naturally occurring distribution of the respective dataset
distribution. As observed in our evaluation (essay set 7), it
is also important to first assess whether the kurtosis is much
lesser than the normal distribution (platykurtic), which may
require a uniformly distributed dataset. The assessment
can be conducted prior to deciding whether to use Multi-
Class SMOTE or the proposed GMC-SMOTE for imbal-
anced datasets.
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ABSTRACT
In the academic process, comprehension and analysis of liter-
ature is essential, however, time-consuming. Reviewers may
encounter difficulties in identifying relevant literature, given
the considerable volume of available texts. It is arduous not
only for starting PhD students, but also for any researcher
learning about a new field (called here ”domain learners”).
To address this issue, we present an automated framework to
assist in the literature review process. Through the applica-
tion of topic modelling of academic articles, our framework
encourages senior researchers within a specific field to act
as experts to contribute to the labelling of topics. Further
to this, domain learners can benefit from visualisation tools
intended to assist in the comprehension of vast amounts of
academic texts. Our approach allows reviewers to identify
the topics, trends as well as relations between topics in a
given research field. We also accompany this method with
a tool that we provide open source. For illustration, we
apply here our method to a case-study of biological texts,
specifically texts related to human protein kinases. To fur-
ther enhance the educational capabilities of our approach,
we perform triangulation of external biomedical databases,
to illustrate how our multi-pronged approach can provide a
comprehensive understanding of the research domain.

Keywords
Automated Literature Review, Topic Modelling, Crowdsourc-
ing, Bioinformatics

1. INTRODUCTION
The process of understanding academic literature is a time-
consuming process for both students and professionals. Thus,
there is a necessity to enable the process of quickly com-
prehending such literature. Furthermore, limitations to the

amount of work which can be analysed by an individual or
team may be encountered, due to the time it takes to under-
stand each item of literature. This is of particular relevancy
to the biomedical field, where estimates in 2016 proposed
that the field observes 3 new publications per minute up-
loaded to the PubMed database alone [1]. Moreover, the
identification and recognition of evidence and named enti-
ties within full-text biological literature - the Curator Assis-
tance Problem [1], is limited by the requirement for manual
analysis of text by experts within the field, using their own
knowledge and intuition.

To address these issues, we propose an automated approach
to assist in the literature review process in biomedical liter-
ature. By leveraging recent advancements in topic models,
we seek to provide novel benefit to the academic and re-
search process when learning about a certain new research
area. Further to this, to address the Curator Assistance
Problem [1], we perform rule-based identification of human-
related protein kinases within the literature, for automatic
triangulation of multiple external data sources, to assist in
comprehension of research. We provide access to the case-
study for reproducibility 1. Our research aims to address the
following research questions: 1. How may topic modelling
algorithms be applied to assist in the comprehension of large
volumes of academic data? 2. How may semantic similarity
measures be leveraged to identify inter-topic relationships of
identified literature? 3. Can rule-based extraction of named
biomedical resources contribute to the comprehension of au-
tomatically generated literature topics? 4. Can scientific
language-oriented embedding models provide improvements
to the perceived accuracy of topic-modelling, when analysed
by biological domain-experts?

The main contributions of this paper are thus: (1) Provision
of a novel framework for the analysis of literature topics by
accounting for semantic relationships and temporal trends
of identified topics. (2) A capability for the crowdsourcing
[2] of domain experts for the labelling and filtering of topics
within the literature. Experts such as educational tutors or
senior researchers may contribute to the labeling of identified
topics based upon their own knowledge. Subsequently, do-
main learners may then benefit from the visualisation tools

1https://github.com/ryanon4/topic labelling tool
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national Educational Data Mining Society.
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provided to assist in their learning on the subject. (3) Trian-
gulation of multiple external data sources for the extraction
and linking of named kinases present within literature, to
assist in the expert labelling and comprehension of topics
within the literature. Although this is a case-study based
upon literature related to protein kinases, in a collaboration
with bioscientists, this robust approach allows for further
generalisation, and could be applied to the analysis of lit-
erature from any domain. (4) An unsupervised evaluation
of the performance of scientific-domain transformer embed-
dings, compared to document embedding approaches when
applied to document clustering for the identification of top-
ics within scientific literature.

2. RELATED WORKS
As a data-intensive field, there has been an emergence of nu-
merous biological data-sources of various quality and prove-
nance. However, due to a lack of a standard ontology with
fine granularity, it is difficult to conduct data mining on
those heterogeneous biology data. Despite efforts to nor-
malise data formats and collect observations in databases, a
large amount of information relevant to biology research is
still recorded as free text in journal articles and in com-
ment fields of databases [3]. Therefore, retrieving infor-
mation from papers and merging it with existing biological
databases can provide a crucial foundation for data-mining
in bioinformatics [1]. To address this, works have been pro-
posed for the extraction of entities within biological texts,
including RegulonDb [4], which applied rule-based identi-
fication of regulatory interactions in Escherichia coli, with
the results demonstrating a rule-based approach sufficient in
identifying 45% of all named entities when compared with a
manual extraction approach. Extraction of genetic and pro-
tein interactions was performed by BioC-BioGRID, which
released a corpus of 120 full-text articles with biological and
molecular entity annotations [5]. Based upon these prob-
lems and subsequent approaches, [1] proposed the Curator
Assistance Problem. This problem proposes four objectives,
which were defined given a full-text biological research pa-
per: 1. The recognition of evidence described in an article,
compared to information in other articles. 2. The recogni-
tion of evidence which is supported by experimental data,
compared to hypothetical of vague statements. 3. The dis-
tinction between statements on layout, compared to state-
ments of results. 4. The recognition of negative statements.

No research was identified relative to the automated litera-
ture review process for biomedical data. However, in the
wider domain, one framework has been demonstrated to
identify relevant papers for a literature review based upon
an input of seed papers [6]. This approach applied super-
vised learning classifiers, which were trained upon reference
lists of existing papers. From an unsupervised perspective,
[7] applied topic modelling to the task of conducting an ex-
ploratory literature review through the use of Latent Dirich-
let Allocation (LDA). The approach required application of
the elbow curve methodology within an exhaustive search,
to determine the optimum number of topics within the lit-
erature. In contrast, a recent topic modelling approach,
Top2Vec [8], has presented advantages over the application
of LDA, through the elimination of the need to manually or
exhaustively define the optimal topic number. Applications
of Top2Vec to assist in literature analysis were presented in

Figure 1: An automated framework based on topic modelling
and crowdsourcing

[9], through a case-study review of research in Intelligent Tu-
toring Systems. However, the approach required the manual
analysis of resulting topics prior to the generation of visuali-
sation and topic labels. Our study is based on this, but is ex-
panding it in several ways. Importantly, we propose a frame-
work for the e-learning domain, and illustrate it through an
interface, to permit the crowdsourcing [2] of topic labelling
on a large scale, as well as provide an expanded suite of tools
to assist with learning. By creation of this framework, we
are able to demonstrate the generalisable characteristics of
the approach, such that it may be applied to any domain
of literature, and may be subsequently enhanced through
the implementation of domain-relevant features, such as the
protein databases applied for our case-study. The resulting
implementation of domain-relevant data triangulation may
enhance the information available to researchers by provid-
ing supplementary information to aid in filtering and iden-
tification of relevant literature to a domain-user.

3. METHODOLOGY
The proposed framework (as summarised in Figure 1) en-
tails three components. Firstly, topic modelling is performed
on the academic literature that is identified as relevant to
the case-study domain through the use of the API resource.
Following this, senior researchers are presented with a inter-
active topic labelling and visualisation analysis tool, which
allows them to determine whether a topic is relevant to their
literature search, as well as assign a title for that topic. Fi-
nally, this visualisation analysis tool can facilitate the com-
prehension of relevant literature of the domain learners. To
illustrate the framework, here, based on the full-text of doc-
uments assigned to a topic, extraction of human-protein-
kinase terms (the topic of the literature review) is performed
by rule-based extraction of kinase names. Also, in terms of
the actual implementation, an internal relational database
provides external links to the external resources – here, those
coming from UniProt Knowledgebase (UniProtKB) [10] and
InterPro [11], well-known protein databases. The resulting
interface may be applied as a framework for learning through
the crowdsourcing of domain experts within a field for the
labelling and filtering of literature topics. Expertly anno-
tated topics may then be provided to learners or experts,
who may apply the visualisation tools provided to assist in
their learning and comprehension of the literature.
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Figure 2: Labelling Interface for Topic ”Genetic Disorders”

3.1 Data Sources
A full-text representation of publications is provided through
the PubMed API, which ensures to capture the full seman-
tic context of a text if it is analysed by a compatible lan-
guage model for variable length document-embeddings. Two
additional sources were selected for the triangulation of ki-
nases identified within the literature, with these being the
UniProtKB [10] and Interpro [11] databases. UniProtKB
is a database of protein sequences and functional informa-
tion, which includes information relevant to specific proteins,
their function, organism, presence in biological processes,
and relevant literature. InterPro serves as a similar plat-
form, however includes hierarchical family classifications of
protein entries as well as domains and functional sites found
in proteins.

For the case-study, a list of 624 human protein kinases was
firstly obtained from a kinase database [12, 13]. A compre-
hensive list of human proteins with links to their respec-
tive InterPro IDs was obtained from UniProtKB (Swiss-
Prot, Jan 2014 version) [10]. Matching of protein kinase
names to gene names including synonyms for proteins from
UniProtKB was performed. The resulting 357 protein ki-
nases that successfully matched to UniProtKB entries were
used in this study. This entailed the names of relevant genes,
kinase names and kinase families. Further to specific kinase
names (e.g. AATK1 ), the data included full-named entities
relevant to a kinase. Relevant to the given example, this
would be Apoptosis-associated tyrosine kinase 1. This list of
shortened and full terms was applied in an automated lit-
erature search via the PubMed API [14]. A total of 19,258
records were returned in this manner. Following this, filter-
ing was performed, to ensure the elimination of any noise
introduced into the dataset during the search stage. This
was performed via filtering out publications that failed to
contain Medical Subject Heading (MeSH) terms related to
Humans. Following elimination of non-human-related sub-
jects, 14,631 documents remained.

3.2 Topic Modelling
For the identification of topics within our literature, the
Top2Vec [8] algorithm, which leverages the HDBSCAN [15]
algorithm, is applied to identify dense clusters of document
embeddings, and determine these to be topics. The algo-
rithm automatically generates human-readable labels, based
upon the top-scoring topic-words for each topic. In addi-
tion, a domain-expert may manually assign a title for each

topic on the topic labelling screen. The use of HDBSCAN
presents a unique opportunity when clustering, given that
HDBSCAN may label documents determined to be noise
[15]. This provides the benefit of eliminating documents
which do not directly fall within a topic.

3.3 Literature Analysis Toolkit
The main contribution of our approach centers around the
development of a simple user interface for evaluating the
results of literature topic analysis, and subsequent deeper
analysis. Researchers may find difficulty in the application
of algorithmic analysis approaches, as these require a degree
of knowledge of programming and an understanding of the
underlying algorithms applied. Therefore, through provid-
ing an interactive user interface, we ensure that researchers
from the biomedical domain may analyse literature without
the need to spend time learning the underlying system. Re-
sults from the topic modelling of the literature are presented
to the domain-expert in a simple landing page, which pro-
vides a table format of top-scoring words for each topic, the
manually assigned label, and relevancy classification which
can be manually defined. By clicking on the Edit Label but-
ton, domain-experts may view a detail page (as shown in
Figure 2), featuring top-scoring publications assigned to a
topic, the top-scoring words for the topic, and a bar graph vi-
sualisation, detailing the total frequency of MeSH terms for
publications assigned to that topic. Providing these features
presents domain-expert with an opportunity to decide the
title of the topic through a number of means. For example,
MeSH subject headings can provide the frequency in which
certain diseases are mentioned within documents in a topic.
Further to this, by extracting mentions of human protein ki-
nases within full-text articles, we facilitate the triangulation
of the InterPro [11] and UniProtKB [10] databases, any may
provide domain-expert with external links (as shown in the
highlighted box in Figure 2) to related resources relative to
a given publication. Domain-expert may also view the full
publication at the place of publishing through a hyperlink,
so that individual publications they find useful through the
above analysis methods may then be read further.

Further academic features are provided to users (both do-
main experts and learners) through an analysis of the seman-
tic relationships within topics, following the same method-
ology presented by [9]. Semantic relationships are generated
through the calculation of the cosine similarity between all
combinations of topic vectors, where a topic vector is de-
fined as the average of all document embeddings belonging
to that topic. We define each topic as a node, with the top
three highest scoring topic similarity pairs (edges) for each
topic being presented in the graph visualisation. Nodes are
presented with at least three edge relationships. However,
some nodes may have more than three edges. For instance,as
shown in Figure 3, the node ”DNA repair” displays the top
3 scoring edge relationships with ”Genetic disorders,” ”Can-
cer genetics” and ”Phosphorylation profiling”. However, For
the ”Radiation effects” and ”Alternative splicing” nodes, the
”DNA repair” edge relationship is within the top-3 ranking
for the nodes respectively, hence ”DNA repair” demonstrat-
ing 5 edge relationships.

The topic-relationship graph is computed when initialising
the system, and store this in a serialised format. Edge thick-
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Figure 3: Relationships of Topics Identified by the Bioscien-
tist Team and Expanded Link View

ness is a reflection of the cosine-similarity score between two
nodes, for easy understanding of the strength of the rela-
tionship between those topics, with a tooltip presenting the
similarity score when the user hovers their mouse over an
edge. From this view, users may also further expand a topic,
navigating to a view of the top-scoring academic texts that
have been assigned to that topic based upon the distance
of the publication to the topic centroid, by right-clicking
on a node. For example, the pink panel on the bottom of
Figure 3 is displayed when right-clicking the node ”Medical
care”. This panel provides links of the paper directly to the
external resources. Users may choose to view all identified
topic-relationships from the topic modelling process, or only
those that have been manually labelled as relevant.

4. CASE STUDY IN BIOLOGY - HUMAN
PROTEIN KINASES

As a case study, the toolkit generated 279 topics from texts
of publications related to the 357 human protein kinases. A
representative list of associations, for each topic, is provided
and contains the top twenty highest scoring topic-words, top
ten individual publications, and MeSH category frequencies
of publications assigned to the topic. For example, the 10th

topic (shown in Figure 2) is provided with the following in-
formation: relevant topic words such as ”recessive,” ”het-
erozygous,” ”inheritance,” ”missense,” ”homozygous,” ”syn-
dromic,” ”autosomal,” ”disability,” and ”variants”; titles of
individual publications with phrases such as ”neurodevel-
opmental disease caused by a homozygous TLK2 variant,”
”variants in disorders with intellectual disability,” and ”phe-
notype associated with DYRK1A variants”; and MeSH cat-
egories such as ”Humans” and ”Genetics” with the highest
frequency in the assigned publications. Based on this in-
formation, the topic can be labeled as “Genetic disorders”
associated with human protein kinases. Moreover, links to
UniProtKB and InterPro databases are listed for specific ki-
nases included in each individual publication. For example,
the publication titled ”Pathogenesis of CDK8-associated dis-
order: two patients with novel CDK8 variants and in vitro

and in vivo functional analyses of the variants” is provided
with the following links: the entry of the kinase CDK8 in
UniProtKB; and the entries of domains, binding-sites, etc.
found in CDK8 such as “Protein kinase domain,” ”Protein
kinase, ATP binding site,” and ”Serine/Threonine protein
kinases active-site” in InterPro. Such external databases
provide detailed information such as biological functions,
disease association, sequences, and domain architectures of
protein kinases along with links to further explore other
databases, should such a need arise for the user.

The toolkit also easily visualises relationships among topics
based on their semantic similarity. To demonstrate its effi-
cacy, the bio-experts in our team selected 12 topics that have
at least six out of ten individual publications with links to
protein kinases in UniProtKB, and then manually labeled
the topics as shown in the previous paragraph. The re-
sulting graph network (shown in Figure 3) generated from
these topics has 12 nodes with the assigned labels and edges
with different thickness that reflects the similarity between
the linked topics . The node ”Genetic disorders” is strongly
connected to the nodes of ”Cancer genetics” and ”DNA re-
pair.” This is consistent with the idea that both genetic dis-
orders and cancer genetics involve genetic changes and ge-
nomic technologies. Similarly, DNA repair defects are asso-
ciated with certain genetic disorders. For example, ATM
and ATR are DNA repair-associated serine/threonine ki-
nases and their genetic mutations can cause hereditary dis-
orders, ataxia telangiectasia and Seckel syndrome, respec-
tively. Thus, it is reasonable to include both ATM and ATR
in topic-words for the topic ”DNA repair.” Another strong
connection visualised by the network is between ”Medical
care” and ”Prediction in medicine,” which aligns with the
clinical aspect of treatment. The visualisation enables the
users to easily explore major topics and their relationships.
Collectively, the toolkit allows users to navigate a new field
through vast amounts of literature in an efficient way.

5. CONCLUSIONS
In this work, an automated literature review framework is
proposed for the analysis of large volumes of literature. The
resulting topics from topic modelling of academic literature
within specific domain, are provided via an interactive UI
tool, which may allow the manual analysis and filtering of re-
sulting topics, and exploration of entailing literature. Based
on a case study on the biomedical domain of human protein
kinases, we provide a further contribution to the comprehen-
sion of literature through the triangulation of biological rela-
tions present in identified publications. From an educational
data mining perspective, our tool achieves the goal of group-
ing large amounts of academic text into understandable top-
ics, and allows for crowdsourcing of expert-knowledge for the
labelling of topics identified in the literature. The resulting
framework achieves two objectives by serving as a base lit-
erature review assistance tool, or as an e-learning utility to
allow expert analysis of topics, before providing the results
to learners. By the inclusion of external databases UniPro-
tKB and InterPro, we provide assistance in the extraction
of named kinases within individual items of literature, al-
lowing users to easily read further into the identified kinases
present. Overall, this framework incorporates topic mod-
elling with a crowd-sourcing approach, achieving the goal of
expediting the task of analysing large volumes of literature.
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ABSTRACT 
This paper presents a course recommender system designed to sup-

port students who are struggling in their first semesters of 

university and who are at risk of dropping out. Considering the 

needs expressed by our students, we recommend a set of courses 

that have been passed by the majority of their nearest neighbors 

who have successfully graduated. We describe this recommender 

system, which is based on the explainable k-Nearest Neighbors al-

gorithm, and evaluate the 2nd and 3rd semester recommendations 

using historical data. The evaluation reveals that the recommenda-

tions correspond to the actual courses passed by students who 

graduated, whereas the recommendations and actually passed 

courses differ for students who dropped out. The recommendations 

show to struggling students a different, ambitious, but hopefully 

feasible way through the study program. Furthermore, a dropout 

prediction confirms that students are less likely to drop out when 

they pass the courses recommended to them. 

Keywords 
Course recommender system, nearest neighbors, explainability, 

user-centered design, dropout prediction. 

1. INTRODUCTION 
In the last decades, universities worldwide have changed a lot. They 

offer a wider range of degree programs and courses and welcome 

more students from diverse cultural backgrounds. Further, teaching 

and learning in high schools differ from teaching and learning in 

universities. Some students cope well and keep the same level of 

academic performance at university as they had in high school. Oth-

ers struggle, perform worse, and might become at risk of dropping 

out. The preliminary exploration of our data has shown, that most 

of the students drop out during the first three semesters of their 

studies. Therefore, the course recommendations proposed in this 

work focused on supporting struggling students after their 1st and 

2nd semester. The final goal in developing such a system is to have 

it integrated in novel facilities that universities could put in place to 

support their diverse students better. 

At the beginning of each semester in Germany, students need to 

decide which courses they enroll in. When entering university di-

rectly after high school for their 1st semester, most of them decide 

to enroll in exactly the courses planned in the study handbook. The 

decision becomes more difficult when they fail courses in their 1st 

semester and should choose the courses to enroll in their 2nd semes-

ter: should they repeat right away the courses they failed? Which 

courses planned in the 2nd semester in the study book should they 

take? Should they reduce the number of courses they enroll in to 

have a better chance of passing them all? Should they take more 

courses to compensate for the courses they failed?  The study hand-

book does not help in finding answers to those questions.  

In our previous work [18], most of the students mentioned that they 

rely on friends and acquaintances as one source of information 

when deciding which courses to enroll in. Further, any system as-

sisting in enrollment should have explainable recommendations. 

In this work, we propose a recommendation system to support stu-

dents choosing which courses to take before the semester begins. 

We recommend students the set of courses that the majority of their 

nearest neighbors, who successfully graduated, have passed. Near-

est neighbors are students who, at the same stage in their studies, 

have failed or passed almost the same courses with the same or very 

similar grades. The system proposed in the present work does not 

recommend top N courses as other systems do, e.g. [10, 14]. Rather, 

it recommends an optimal set of courses, and we assume that a stu-

dent should be able to pass all the courses of that set. Because the 

recommendations are driven by past records of students who grad-

uated, we also pose the hypothesis that students following the 

recommended set should have a lower risk of dropping out.  

We describe a recommender system based on the explainable algo-

rithm k-Nearest Neighbors (k-NN) and evaluate the 

recommendations given after the 1st and the 2nd semester using his-

torical data. Although the recommendations are designed to support 

struggling students, every student should have access to them. By 

contrast, the recommendations should show a different, more aca-

demically successful way of studying to struggling students and 

therefore differ from the courses that they pass. More precisely, this 

paper tackles the following research questions: 

RQ1. How large is the intersection between the set of recom-

mended courses and the set of courses a student has passed? Are 

there differences between struggling and well-performing students? 

RQ2. Do the recommendations lower the risk of dropping out, and 

if so, how much? 
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2. RELATED WORK 
Course recommendations. Supporting students in choosing 

courses at the start of the semester has been studied in many works. 

The aims of the proposed recommender systems are diverse. For 

example, Parameswaran et al. [13] sought to provide students with 

courses that meet their constraints like availability and schedule, 

but also being favored and chosen by other students. Their goal was 

to recommend interesting courses that will also help students grad-

uate and conduct evaluations using the academic performance data 

of students who have graduated. The goal of Pardos and Jiang [14] 

was to recommend courses “that are novel or unexpected to the stu-

dent but still relevant to their interests”. The authors recommended 

courses based on a chosen favored course and evaluated the results 

using both historical data and student feedback as part of a user 

study. Backenköhler et al. [1] optimized recommendations by com-

bining three aspects: a student’s preparedness for a course, the 

benefit of a course towards other courses, and the predicted perfor-

mance in the course. The authors used historical data to evaluate 

how the recommendations match the student's actual course 

choices. Nearer to our aim, Elbadrawy and Karypis [4] and Morsy 

and Karypis [10] recommended courses for which students can ex-

pect a good grade or an increase in their GPA. In both papers, the 

authors evaluated recommendations based on historical data, as we 

do. 

User-centered design. Our work follows a user-centered approach 

as has been proposed for example by Martinez-Maldonado et al. 

[9]. The design of our recommendations has been developed with 

respect to insights obtained from a semi-structured group discus-

sion conducted with 25 students [18]. The authors of several studies 

described their user-centered approach to involve stakeholders in 

the development of tools. De Quincey et al. [16] included students 

in the development of a dashboard that integrates study motivation 

to track engagement and predicted scores at Keele University (UK). 

To inform the development of a dashboard with relevant indicators 

to help students choose what courses to take in an upcoming aca-

demic period, Hilliger et al. [7] identified student information needs 

regarding course enrollment at Pontifical Catholic University 

(Chile) using a mixed-methods approach. Sarmiento et al. [17] de-

scribed their approach as a series of co-design workshops for 

learning analytics tools with and for students at New York Univer-

sity.  

Explainability. Not all machine learning algorithms used in edu-

cational data mining are explainable, such as neural networks, 

which are increasingly used as stated by Barredo Arritea et al. [2]. 

Pardos and Jiang as well as Morsy and Karypis used them in their 

respective works, [10, 14] for instance. According to Ning et al. 

[11], neighbor-based approaches are simple, justifiable, efficient, 

and stable. The number of neighbors, the features, and the distance 

function all influence the explainability of k-NN [2]. The nearest 

neighbors can be visualized as a table and students understand why 

the recommendations are given to them. As argued by Williamson 

and Kizilcec in [19], “educators and learners will not trust a model 

that cannot easily be explained to them”. Indeed, it was a concern 

of our students: recommendations should be explainable [18]. 

Our contribution. Using student-centered design, we have devel-

oped an approach to course recommendations that is explainable to 

students and aims to help students who are at risk of dropping out. 

Our evaluation, based on historical data, distinguishes two groups: 

students who have dropped out and students who have graduated. 

First, we compare the recommendations to the set of courses that 

students passed; this is similar to other evaluations like [4, 10]. 

Second, we investigate whether our recommendations decrease the 

dropout-risk. This is a novelty of our work. 

3. DATA AND METHODOLOGY 
Data and preprocessing. For the development of the course rec-

ommendation system, data from a six-semester bachelor program 

of a medium-sized German university was used. The initial dataset 

contains 1,484 students who started their study program between 

winter semester 2012 and summer semester 2019. We removed 

three types of students: A) outliers regarding the number of passed 

courses based on the interquartile range (IQR) since students can 

receive credit for courses completed in previous study programs 

and thus may pass more courses in a semester than foreseen in the 

study handbook [12], B) students who were still studying at the 

time of data collection since they can not be used to predict the risk 

of dropping out, and C) students without at least one record in each 

of the first three semesters. The final dataset contains 578 students 

who either graduated (status G) or dropped out (status D) and 9,500 

records. The grading scale for passing a course is from best to worst 

[1.0, 1.3, 1.7, 2.0, 2.3, 2.7, 3.0, 3.3, 3.7, 4.0]. The grade for failing 

an exam is 5.0. Students must pass all mandatory courses and four 

elective courses to graduate. The study handbook includes a sug-

gested courses schedule for the six semesters and students may 

follow this schedule or not. At any time in their studies, they are 

allowed to choose courses from all offered courses. It is worth not-

ing that electives courses are scheduled in the 5th and 6th semester 

of the program. Table 1 shows the final number of students by stu-

dent status and per semester the number of different courses, the 

number of academic performance records, the average number of 

courses passed per student, and the average grade. 134 students 

have the status dropout (D) and 444 the status graduate (G); in the 

3rd semester (bottom line) there were 686 records concerning 20 

different courses for students with the status D and 2,622 records 

concerning 26 courses for students with the status G. One notices 

that students with the status D pass fewer courses per semester and 

receive lower grades. 

Table 1. Dataset overview by semester S (1, 2, 3) and student 

status (D, G). Number of courses C, Number or records R, 

mean number of passed courses MPC, and mean grade MG. 

      C R MPC MG 

D G S D G D G D G D G 

134 444 

1 14 16 657 2,199 3.6 4.7 2.8 2.1 

2 15 19 740 2,596 3.4 5.1 3.0 2.3 

3 20 26 686 2,622 3.0 5.4 3.2 2.2 

Data representation. We use only data about academic perfor-

mance: each student is represented by a vector of grades. It is 

possible for a student to, for example, enroll in a course in the 1st 

semester and not take the exam, then enroll and fail the exam in the 

next semester and enroll again and pass the exam in the following 

semester. In this case, a student has three different records for the 

same course in three different semesters. In our opinion, not only 

the final grade with which a course was passed is relevant, so we 

include the entire history of a student's academic performance in 

the vector. 

Missing values. To compute the nearest neighbors, we have to deal 

with missing values. If a student was enrolled in a course but did 

not take the exam, a 6.0 was imputed, if s/he was not enrolled at all, 

a 7.0 was imputed. This means that we rate enrolling but not taking 

the exam (6.0) more similar to failing (5.0) than not enrolling (7.0).  
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5. COURSE RECOMMENDATIONS 
For our course recommendation system, we use the idea of a k-NN 

classifier: given a student 𝑆𝑥 represented by the vector 𝑥𝑛 of length 

n at the end of semester t, we use the majority votes of his/her al-

ready graduated neighbors to obtain a set of courses for the 

following semester t+1 that are classified as “passed” and accord-

ingly recommended; any course not in that set is not recommended. 

We recommend courses for the 578 students in the dataset and then 

evaluate the recommendations. 

Procedure. Let 𝑌 be the data of a program after semester t consist-

ing only of graduated students 𝑆𝐺𝑅, i.e. their vectors of grades with 

length n, let 𝑆𝑥 be a student who needs a course recommendation, 

let C be the set of all courses of the program and let k be the number 

of nearest neighbors. Given C, the expected output is 𝐶𝑅 the set of 

recommended courses and all courses that are in C but not in 𝐶𝑅 are 

not recommended. First, we determine the k nearest neighbors of 

an observed student: the similarity of students is calculated using 

the Euclidean Distance between x and y where 𝑆𝑥 and 𝑆𝑦 are two 

students and 𝑥 and 𝑦 are the vectors of all their grades at the end of 

semester t where the length of the vectors n corresponds to the num-

ber of features that we use. The students are sorted by increasing 

distance and the top k vectors are selected as the neighborhood 𝑆𝑘 

of student 𝑆𝑥. Instead of considering each course in C, we preselect 

only courses that at least one of the students in 𝑆𝑘 has passed in 

semester t+1, i.e. the grade is lower or equal to 4.0, and assign them 

to the set 𝐶𝑃 of courses passed by the neighborhood. To classify 

each course in 𝐶𝑃 to be recommended or not, we use the majority 

vote of the k neighbors: if a neighbor passed a course, it is labeled 

with 1 and otherwise 0. We calculate the probability P for student 

𝑆𝑥 to pass that course c as the mean of class labels, e.g. if k=3 and 

2 out of 3 neighbors have passed the course, P is 0.66̅. If the mean 

is higher than 0.5, the course is recommended and assigned to 𝐶𝑅. 

To avoid a tie in majority voting, we use only uneven k and test our 

approach with 𝑘 = 1, 3, 5, 9, 19. We check if 𝑆𝑥 has already passed 

a recommended course and remove this course from the recommen-

dation if necessary.  

Baseline. We use the same approach not only with neighbors who 

graduated but also with all neighbors, i.e. students who dropped out 

and students who graduated. We expect that the recommendations 

differ between the two approaches and that the recommendations 

based on graduated students, but not necessarily the recommenda-

tions generated with all students, reduce the risk of dropping out. 

In the following, we distinguish the two recommendation types 

with AN (all neighbors) and GN (graduated neighbors). 

6. COURSES’ INTERSECTION (RQ1) 
To compare the recommended courses with those actually passed, 

we consider the recommendations as a binary classification prob-

lem and build a confusion matrix to evaluate the recommendation 

for each student and each semester as follows: a course recom-

mended and actually passed in semester t+1 will be a true positive 

(TP), a course recommended and actually not passed will be a false 

positive (FP), a course not recommended but passed will be a false 

negative (FN), and a course not recommended and not passed will 

be a true negative (TN). The choice of metric is critical due to the 

relatively large number of courses and the resulting imbalance of 

recommendations or non-recommendations. Further, because we 

recommend a set of courses and not top N courses, it is crucial to 

measure not only that the recommendations contain all passed 

courses (recall) but also that they do not contain courses that stu-

dents did not pass (precision). We chose the F1 score to evaluate 

courses’ intersections since the F1 score ignores true negatives, 

which is in our context always a high value, and thus serves our 

needs. The score ranges from 0 to 1 with 1 indicating perfect clas-

sification (recall=1 and precision=1) and 0 indicating perfect 

misclassification (recall=0 or precision=0). The calculation is as 

follows: 𝐹1 = 2 ∙ 𝑇𝑃/(2 ∙ 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁) . 

Results. To evaluate the quality of the recommendation, we look at 

the intersection and evaluate the recommendations by F1 score. We 

expect a high score for students with the status G in both semesters 

as the recommendations for them should match closely the courses 

that they passed. We do not expect a high score for students with 

the status D; the recommendations are meant to show them another 

way of studying that should bring more academic success and 

therefore should not match closely the courses that they passed. Ta-

ble 2 provides the results as mean F1 scores of all students. To better 

distinguish for which student groups the recommendations are 

more appropriate, the results are grouped by the following factors: 

semester (2, 3), student status (D/G), and type of neighbors 

(AN/GN). In addition, we provide the difference in each row be-

tween the mean score of the baseline AN and the mean score of 

GN. The differences in the number of neighbors k are not shown 

because no large differences emerged when k varied. 

Findings. There is a difference between students who struggle and 

students who perform well. More precisely: A) AN-based and GN-

based recommendations: The mean F1 score for dropouts and grad-

uates is higher for GN than for AN. B) Semester: The mean F1 score 

is higher after the 1st for the 2nd semester than after the 2nd for 3rd 

semester. C) Graduates and dropouts: The mean F1 score is higher 

for graduates than for dropouts. The mean F1 score is high for grad-

uates: this confirms our expectation that recommendations closely 

match the courses passed by graduates. For students with status D, 

the mean F1 score tends to be low: the recommendations show an-

other way of studying. 

Table 2. Courses’ intersection based on mean F1 score of all 

students for semester S and recommendation types AN and GN 

as well as their differences (Diff) by student status (D, G).  

 D G 

S AN GN Diff AN GN Diff 

2 0.471 0.509 0.038 0.843 0.861 0.017 

3 0.282 0.302 0.020 0.809 0.836 0.027 

7. CHANGES IN DROPOUT RISK (RQ2) 
A dropout prediction was performed using the following two steps: 

1) based on the actual enrollment and exam information, a model 

has been trained to predict the two classes dropout or graduate; 

2) the model of step 1 is used again to predict dropout or graduate 

after replacing the actual enrollment and exam information by the 

calculated recommendations. We call dropout risk the proportion 

of students who are predicted “dropout” by a model. To determine 

whether or not the recommendation approach helps to lower the 

dropout risk, we analyze the difference of these two dropout pre-

dictions.  

Feature set. As investigated by Manrique et al. [8], there are sev-

eral ways to select a feature set for dropout prediction and no way 

works better than the others in all contexts. Because we want to 

measure the impact of our recommendations on dropout prediction, 

and the individual courses are relevant accordingly, we use the 

courses taken by students as features and the grades obtained by 

students as their values. 

Model training. To detect a change in the dropout risk in step 2, 

the models should be as accurate as possible which we aimed to 
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achieve through two approaches: A) train different types of algo-

rithms including hyperparameter optimization (Logistic 

Regression, LASSO Regression, Decision Tree, k-Nearest Neigh-

bors, Support Vector Classifier with different kernels (radial basis 

function, linear, polynomial), Random Forest), and B) use algo-

rithm-independent parameters for optimization since we realized 

that hyperparameter optimization alone was insufficient. B1) Fea-

ture selection: we removed features with a low number of actual 

grades and tried different thresholds as a minimum number of ac-

tual grades for a course: (1, 5, 9, 19). B2) Training data balancing: 

we used two common techniques: Synthetic Minority Over-sam-

pling Technique (SMOTE) [3] and RandomOverSampler (ROS). 

Both implementations are from the Python library imbalanced-

learn. B3) Decision threshold moving: Usually, a classifier decides 

for the positive class at a probability greater or equal to 0.5, but in 

case of imbalanced data, it may be helpful to adjust this threshold, 

so we checked additionally to 0.5 the values: 0.1, 0.3, 0.7, 0.9.  

Models selection. To emphasize that both correct dropouts and cor-

rect graduates are important for dropout risk prediction, we 

evaluated our models based on the test data with Balanced Accu-

racy (BACC) as the mean of the recall for class 1 (dropout) and 

recall for class 0 (graduate). The data sets sorted by the start of 

study were split into 80% training data and 20% test data, so that 

risk prediction is done for students who started their studies last. 

We trained models for both semesters t=2 and t=3 with actual 

grades and used the best models to evaluate a change in dropout 

risk in step 2. In both cases, RF achieved the highest BACC for 

step 1 (2nd semester: 0.859, 3rd semester: 0.935). The algorithm-in-

dependent parameters belonging to the models are: features 

selection (2nd: 0, i.e. no features were removed, 3rd: 1), decision 

threshold (2nd: 0.3, 3rd: 0.5), and balancing the training data (2nd: 

SMOTE, 3rd: ROS). Regarding hyperparameter optimization, we 

did not observe any improvements in BACC, which we relate to the 

small size of the training sets. 

Step 2 dropout prediction. We used the selected models to predict 

dropout based on the recommendations. Since we assume the stu-

dent will pass the recommended courses, we need a grade between 

1.0 and 4.0 for step 2. If we had a grade in the records for that stu-

dent and a recommended course, we used it. If the student had 

dropped the course or failed it, we imputed the average of two me-

dians: the median of all the grades that the student has earned so far 

and the median of the historical grades for that course. We evalu-

ated this imputation with the data we use in this work and obtained 

an Root Mean Square Error (RMSE) of 0.634, which is comparable 

with the RMSE from 0.63 to 0.73 in [4, 15]. 

Results. Table 3 shows three proportions of students who are pre-

dicted as dropout (P1, P2_AN, P2_GN) and the differences 

between these proportions. P1 is the prediction based on actual en-

rollment and exam data. P2_AN corresponds to step 2; the dropout 

prediction uses the courses recommendations calculated with all 

neighbors while P2_GN uses the recommendations calculated with 

graduate neighbors. The differences in the number of neighbors k 

are not considered because no large differences emerged when k 

varied: P2_AN and P2_GN are the average values from the risk 

predictions, based on the test data set. The three columns on the 

right provide the differences in the predictions: P2_AN vs P1, 

P2_GN vs P1, P2_GN vs P2_AN. For example, 81.4% of the actual 

dropout students for semester 2 are predicted as dropout in the first 

prediction, 75.8% using AN-based recommendations, and 70.2% 

using GN-based recommendations. The dropout risk based on the 

GN recommendation is 5.6% lower than the prediction based on the 

AN recommendation. 

Findings. It turns out that, with our strong assumption that students 

will pass the recommended courses, the risk of dropping out can be 

reduced. More precisely: The proportion of students predicted as 

dropout are lower when the predictions are AN- and GN-based in 

step 2 than using the actual enrollment and exam data in step 1. The 

GN-based recommendations provide a lower dropout risk com-

pared to the AN-based recommendations. The proportion of 

students predicted as dropout are lower for the 3rd than for the 2nd 

semester using AN- and GN-based recommendation. The dropout 

risk reduction in step 2 is higher for dropouts than for graduates. 

Table 3. Mean predicted risk in step 2 dropout prediction (P2) 

for recommendation types AN and GN compared to step 1 (P1) 

by student status ST (D, G) and semester (S). 

ST S P1 P2_AN P2_GN 
P2_AN 

vs P1 

P2_GN 

vs P1 

P2_GN vs 

P2_AN 

D 
2 0.814 0.758 0.702 -0.056 -0.112 -0.056 

3 0.884 0.665 0.293 -0.219 -0.591 -0.372 

G 
2 0.096 0.074 0.060 -0.022 -0.036 -0.014 

3 0.014 0.047 0.005 0.033 -0.008 -0.041 

8. DISCUSSION AND CONCLUSION 
In this paper, we have presented an explainable course recom-

mender system designed primarily to support students who are 

struggling after their 1st or 2nd semester at university. The recom-

mendations are based on the explainable k-NN algorithm and are 

built by selecting the courses that most of the nearest neighbors who 

graduated have passed. We have evaluated our approach on histor-

ical data in two ways. First, we have compared the 

recommendations with the set of the courses that students have 

passed using the F1 score. Second, we have investigated whether 

students are less likely of dropping out when following the recom-

mendations. Further, we also have evaluated the impact of choosing 

nearest neighbors from the set of students who dropped out and 

graduated, our baseline, instead of choosing them only from the set 

of students who graduated. 

The F1 score evaluating the recommended courses is higher when 

the neighbors are chosen from the set of students who graduated, as 

can be seen in Table 2. It is particularly high, mainly over 80%, for 

students with the status graduate, which confirms that, for them, the 

recommendations match closely the courses that they pass. Con-

sistent with this finding, the number of students who are predicted 

with the status dropout is smaller when the recommendations are 

used in the prediction rather than the actual data. Preliminary work 

shows that these findings generalize to other degree programs. 

The results suggest that the provided recommendations would help 

more students to graduate if the recommendations are both ambi-

tious and realistic: students indeed do pass the courses 

recommended to them. A closer look at the recommendations re-

veals that a small number of students receive an empty set, which 

should be examined in detail. Further, it still needs evaluations with 

students in their 1st or 2nd semester on how ready and willing they 

are to use such recommendations, and which extra support they 

need to pass all courses recommended to them. As stated by Falk et 

al. [6] in the German context, most of the time a combination of 

well-orchestrated interventions brings academic success. 

In terms of k-NN, it would be worth testing multilabel learning as 

shown by Zhang and Zhou [20] and if the same approach could be 

used for planning over several semesters, as proposed by Erzhuo et 

al. [5]. Finally, we would like to investigate which other approaches 

are equally visualizable and explainable to students. 
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ABSTRACT
Receiving formative feedback about open-ended responses
can facilitate the progression of learning. However, educa-
tors cannot often provide immediate feedback and thus for
students, learning may be slowed. In this paper, we will ex-
plore how an automatic grading model can be coupled with
deep Reinforcement Learning (RL) to create a system of
automatic formative feedback on students’ open-ended re-
sponses. We use batch (offline) learning with a double Deep
Q Network (DQN) to simulate a learning environment, such
as an open-source, online tutoring system, where students
are prompted to answer open-ended questions. An auto-
grader is used to provide a rating of the student’s response,
and until the response is scored at the highest category, an
RL agent iteratively provides suggestions to the student to
revise the previous version of their answer. The automated
suggestion can include either a key idea to consider adding
to the response, or a recommendation to delete a specific
part of the response. Our experiments are based on a simu-
lated environment, within which we anticipate a how a real
student might revise their answer based on the agent’s cho-
sen hint. Preliminary results show that in such environment,
the agent is able to learn the best suggestions to provide a
student in order to improve the student’s response in the
least number of revisions.

Keywords
Formative Feedback, Deep Reinforcement Learning, Auto-
matic Short Answer Grading

1. INTRODUCTION
It has been shown that the use of open-ended (OE) items is
beneficial for student learning by self-explanation [2], or in-
formation recall [1]. Additionally, receiving formative feed-
back – information communicated to the learner intended
to modify his or her thinking/behavior to improve learning
- about OE responses may also contribute to the progression
of learning for students [16]. However, assessing OE items

and subsequently providing formative feedback is time con-
suming for teachers [6] and consequently, feedback to stu-
dents can be delayed.

We suggest the use of educational technology to help miti-
gate this issue. Technologies like online learning platforms
or intelligent tutoring systems can enable students to take
a proactive role in assessing their own abilities. In addi-
tion, they can help promote equitable learning for students
who do not have the resources to receive quick and indi-
vidualized feedback from a human tutor, parent, or private
educator. Such platforms have the capability to provide in-
stant feedback, allowing for students, of all types, to take
control of their own learning through real-time formative
self-assessment [11]. However, items that elicit instant feed-
back necessitate a structure for automatic grading, and the
creation of useful feedback. While implementing automatic
grading and producing related feedback for multiple choice
items is seamless, as a student’s response is limited to a
small number of choices, it is not so simple for OE questions
that elicit an infinite number of potential student responses.

In this paper, we explore how an Automatic Short Answer
Grading (ASAG) model can be coupled with deep Reinforce-
ment Learning (RL) to create a system that provides auto-
matic formative feedback for students’ OE responses. We
will use batch (offline) learning to simulate an environment,
such as an open source tutoring system, where students are
prompted to answer OE questions. Once the ASAG model
provides a rating of the response, the RL agent will give a
hint to the user by suggesting either a key phrase that the
user might consider adding to the response, or a portion of
the response that the user might want to delete when revis-
ing their answer. The student’s revision will be simulated
by either the key phrase being added to the previous re-
sponse at the agent’s chosen index within the response, or
the portion to consider removing deleted completely. The
new response will be once again sent to the auto grader to
be classified. This process will continue until the automated
rating has reached some defined threshold (as a function of
the reward), or a maximum number of hints has been pro-
vided.

The key idea of our work is to train an RL agent to choose
the best sequence of revisions for an OE response, in or-
der to arrive at an exemplary response in the least number
of revisions. Although the space of student responses to a
given question is infinite, we hypothesize that the agent can

A. Condor and Z. Pardos. A deep reinforcement learning approach to
automatic formative feedback. In A. Mitrovic and N. Bosch, editors,
Proceedings of the 15th International Conference on Educational
Data Mining, pages 662–666, Durham, United Kingdom, July 2022.
International Educational Data Mining Society.
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learn which of a finite set of revisions will be most useful to
improve a student’s answer.

The main contribution of this work is to explore a real-world
application of deep RL. There has been little work so far
studying the use of deep RL in educational contexts, and in
addition, coupling deep RL with language models (the auto
grader) has not been extensively investigated. In this paper,
we will briefly describe the ASAG, but will mainly focus on
the implementation of the deep RL algorithm.

2. RELATED WORK
Several works have focused on the use of RL for applica-
tions in education. Reddy et. al (2017) created a model-
free review scheduling algorithm to learn a policy that op-
erates on raw observations of a student’s study history, as
opposed to explicitly modeling the student as employed by
other scheduling algorithms [13]. Iglesias et. al (2009) used
RL within a pedagogical module of an education system
such that the system would automatically learn which ped-
agogical policy was best for a particular student [7]. Dorça
et. al (2013) presented an automatic probabilistic approach
for modeling student’s learning styles based on reinforce-
ment learning [5]. They show that because of the dynamic
aspects of detecting learning styles, the RL agent is able
to constantly adjust to a student’s performance. Park et.
al (2019) introduced an RL “social robot” for personalized
and adaptive education [12]. They illustrate how the agent
can utilize children’s verbal and nonverbal affective cues to
exert influence over the student’s engagement, in order to
maximize long-term learning gains. Rowe et. al (2015)
employ modular RL, a multi-goal extension of classic RL,
to dynamically tailor narrative-centered learning to partic-
ular students’ needs [14]. They show that including a data-
driven, planning approach can enhance student learning. Fi-
nally, Shawky & Badawi (2018) use RL to build an intelli-
gent environment that provides a method to account for the
continuously-changing states of student learners [15].

3. BACKGROUND
In this section we will provide a brief overview of the meth-
ods used in our work necessary to understand the results, in-
cluding the ASAG model, offline (batch) learning, Q-learning
and Epsilon-greedy sampling.

3.1 Deep Reinforcement Learning
Reinforcement learning (RL) employs learning to control a
dynamical system by providing feedback to an agent, via
a reward system, in order to choose an action to take in a
given state. The action consists of what the agent can do in
the state, where the state represents the current condition
of the agent. When the agent takes an action, it receives
a reward (either positive or negative) as feedback from the
environment. Thus, the agent learns a policy to maximize its
total expected sum of rewards. The system can be defined as
a fully or partially-observed Markov decision process (MDP)
[17].

Deep RL utilizes high-capacity function approximators - deep
neural networks - as the policy, in conjunction with RL. The
incorporation of deep networks has improved performance
for applications of RL in many domains [8]. With deep RL,

the agent can make decisions from unstructured data with-
out any manual engineering of the state space and the algo-
rithms can handle very large amounts of data for learning
an optimal policy.

3.2 The ASAG model
The Automatic Short Answer Grading (ASAG) model that
we use to provide an initial rating of student responses, as
well as feedback to the agent through a reward function
about the chosen action (response revision), is a BERT-base
multi-class classification model. The BERT transformer lan-
guage model, introduced in [4], is pre-trained on large amounts
of natural language text from Wikipedia and BooksCorpus,
and can be fine-tuned for downstream tasks such as classi-
fication. We use a compressed version of the model called
BERT-base, and fine-tune the model as a supervised classi-
fier using human ratings of the OE question(s) as ground-
truth ratings.

3.3 Offline (batch) learning
Traditionally, RL algorithms employ online learning by it-
eratively collecting experiences, i.e. data, while actively in-
teracting with the environment. The collected experiences
are used by the model to improve the policy [17]. For some
applications, however, using online data collection can be
resource heavy or dangerous or impractical for settings that
necessitate a large dataset [8]. In contrast, offline RL algo-
rithms utilize previously collected data. Data is stored in a
replay buffer and is not altered during training, allowing for
the incorporation of very large, or pre-existing datasets. Is-
sues posed by fully offline-learning algorithms include, most
prominently, a vulnerability to distributional shift.

3.4 Deep Q Learning
Q-learning is categorized as a model-free reinforcement learn-
ing algorithm - i.e. it does not use the transition probabil-
ity distribution or the reward function associated with the
MDP. Essentially, the model-free algorithm is based on trial-
and-error. For any finite MDP, the Q-learning algorithm will
find an optimal policy that maximizes the expected total re-
ward over all steps in the sequence, starting from the current
state [9]. The Q-function determines the value of a state-
action pair through the given reward. Deep Q-learning is
a variant of Q-learning where a nonlinear function approxi-
mator - a neural network - represents Q.

4. TRAINING THE RL AGENT
In this section, we describe the dataset used for initial results
as well as the RL formulation consisting of the state, reward,
and action set.

4.1 The Dataset
To evaluate our proposed methods, we take the most sim-
ple approach and use only one OE science question from an
open-source data set called the Automatic Student Assess-
ment Prize, Short Answer Scoring data (ASAP-SAS). The
data was used in a 2012 Kaggle competition1 sponsored by
the Hewlett Foundation, and consists of almost 13,000 short
answer responses to 10 science and English questions. The
questions were scored from 0 (most incorrect) to 3 (most

1https://www.kaggle.com/c/asap-sas
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correct), and each question includes a scoring rubric. We
chose the question that achieved the highest validation ac-
curacy, evaluated with a Cohen’s Kappa Metric, with the
automatic grading model. We did so such that the reward
signal, as it is a function of the autograder, would be strong
and consistent, rather than using a question that the au-
tograder has a difficult time scoring and may subsequently
provide inconsistent reward feedback to the agent.

The question prompt asks students to ”List and describe
three processes used by cells to control the movement of sub-
stances across the cell membrane.” And the rubric states
that an answer rated at the highest level will include three
correct processes, down to the lowest level which will in-
clude zero correct processes. Examples of key statements
that can/should be included in an answer, according to the
rubric, include: ”Selective permeability is used by the cell
membrane to allow certain substances to move across”, or
”Osmosis is the diffusion of water across the cell membrane”.
The list of key statements include in the rubric drove the ac-
tion space selection of phrases that the RL agent can add to
a response (to simulate suggesting that a student consider
the information in their revision).

4.2 The Algorithm
An overview of the proposed algorithm is as follows. For
each episode, we will first initialize by randomly sampling
one of the student’s short answers. The student answer text
will be vectorized and fed to the agent. Based on this state
input, the agent will choose an action to take, i.e., either
adding a key phrase or deleting a portion of the response.
This simulates the student taking the hint into account when
revising their answer. Next, we send the new student re-
sponse to our language model classifier, and receive a prob-
ability distribution of rating categories as output. Then we
will calculate our reward as a function of the difference in
class probabilities from the previous response, to the newly
revised response, such that an increased probability of the
highest rating category for the revised response would corre-
spond to a higher reward. If the response has reached a high
rating, the episode will terminate. Otherwise, the process is
repeated with the revised student response (the original re-
sponse plus the hint phrase, or minus the deleted portion) as
the new state, and the agent will choose another action un-
til the highest rating is achieved, or we reach a pre-defined
maximum number of revisions. Details of the process are
described below.

4.2.1 The State
The state is primarily represented by a student’s response.
As our RL agent will not take in words as input, we vec-
torize the student responses using a Word2Vec [10] model,
with embeddings of size 8, and a vocabulary specific to our
dataset. Word2Vec produces an embedding for each word
in the vocabulary, so in order to create one embedding for
the entire response, we concatenate the individual word em-
beddings. W2V mbeddings of size 8 are particularly small,
but we chose to sacrifice some information within the word
embeddings in order to keep our state space at a reasonable
size. Additionally, we concatenate each word embedding in-
stead of averaging them, which is a common method for
producing sentence embeddings because we want the agent

to have a capacity to interpret the response at the word
level, and not only as an aggregate response.

4.2.2 The Reward
The reward is a function of the difference in the ASAG
model’s classification probability distribution of ratings be-
tween the old response and the revised response, with a
penalty for each revision the agent makes. We include the
penalty (subtracting 1) because we want the agent to learn
how to revise the student’s response in the least number of
revision steps. Additionally, we more heavily weighted the
higher rating category probability changes because we care
more about a change in the highest rating probabilities, as
it is the ultimate goal to achieve the highest level rating.
Finally, we multiply the weighted difference in probabilities
by three, because the overall difference tended to be small,
and we needed to send a stronger signal to the agent. The
Reward formula is as such, where ∆p0 represents the dif-
ference in probability of the 0 rating category between the
new and old response:

3 · (0 ·∆p0 + 1 ·∆p1 + 2 ·∆p2 + 3 ·∆p3)− 1

4.2.3 The Action Space
The action space consists of both adding key phrases to the
response or deleting a portion of the response. The agent
can choose only one revision (one addition, or one deletion)
in each step. The key phrases the agent can add must be pre-
defined by either a subject-matter-expert or created based
on a detailed scoring rubric, in order to determine what is
necessary for a student to include in their explanation to
achieve a high rating. For the question in our initial experi-
ment, ”List and describe three processes used by cells to con-
trol the movement of substances across the cell membrane.”,
the list of 10 key phrases that the agent can choose from are
shown below.

[’energy to move’], [’across cell membrane’], [’diffusion sub-
stance across’], [’active transport requires’], [’osmosis water
across’], [’passive transport requires’], [’no energy move’],
[’from high concentration’], [’to low concentration’], [’with
concentration gradient’]

The phrases are vectorized with Word2Vec the same way the
response is for the state space. The phrase can be added to
the response at any index in increments of 3 (i.e., the phrase
can be added to the very beginning of the response at index
0, or three words in at index 3, etc.). We hypothesized
that it is necessary that the agent chooses where, within
the response, the phrase will be added. Additionally, the
action space includes removing any one trigram within the
response. We limited the flexibility of the agent removing
text to trigrams to keep the action space at a reasonable
size. With a larger action space, it is reasonable to assume
that the agent will take much longer to learn.

4.2.4 The Q Network
The Q-Network consists of a fully connected neural network
with two hidden layers of size 300 and 200. The final layer
corresponds to the dimension of the action space. In addi-
tion, both hidden layers use an Rectified Linear Unit (ReLU)
activation function. As input, the network takes in the state
space (vectorized student response) and outputs an estimate
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Figure 1: Sum of rewards over 80K training episodes.

of the expected future sum of rewards of each action in the
action space. Thus, the agent chooses the action that has
the maximum Q Network output. Our algorithm is opti-
mized using Adam stochastic optimization [3]. The size of
the replay buffer for the Q-Network is 10,000. In addition,
the Q-Network is trained with a batch size of 32, a discount
factor of 0.99, and a learning rate of 5e-4. We update the
target network every 4 episodes.

5. RESULTS
Preliminary results shown in Figure 1 imply that the agent
is indeed able to learn which revisions to make to a response
in order to achieve a higher rating from the autograding
model. Figure 1 shows the sum of rewards in an episode on
the y-axis, and the episode number along the x-axis. The
scale or number of the y-axis is not necessarily meaningful,
as our reward function is only created as a means to give
signal to the agent about the goodness of its sequence of de-
cisions. Rather, the overall pattern of the reward becoming
less negative, i.e. greater, as the training episodes increase
shows us that the agent can learn, over many episodes of
trial and error, an optimal policy to choose which actions
to take, in order to maximize its future sum of rewards. It
is worth noting that with limited computational resources,
training the agent over 80,000 episodes is not quick, so fu-
ture work will indeed include training over a greater number
of episodes, to see if the agent can achieve a somewhat con-
vergence to a higher total episodic reward than is shown in
Figure 1.

6. DISCUSSION
We emphasize that this project is a work in progress and
acknowledge that there is much more effort needed to ex-
plore the agent’s capacity to revise a students response. We
believe that it is an important and successful first step to
observe that the RL agent is indeed able to learn the task
that we proposed, as there exist many sequential tasks that
may not be appropriate for the RL formulation, or are too
complicated for an RL agent to learn. Using a reward that
is a function of a language model poses a unique challenge
as we adopt the limitations of the autograding model itself

into our reward formulation. Additionally, using concate-
nated word vectors as a state space adds an additional layer
of complexity because the variability in the state space is
infinite, as any student may use an infinite combination of
words in their response.

More importantly, we note that there are several practical
application of an RL agent revising a student’s response.
Our results are from a simulated environment that is meant
to represent a real-life student interaction, but does not do
so perfectly. When thinking forward to the real-life appli-
cation of implementing the algorithm in the context of a
real student revising their answer, many unanswered ques-
tions arise. Firstly, we assume that a student will take into
account the RL agent’s revision suggestion directly in our
simulation (the agent automatically adds the key phrase or
deletes the segment), but a real student will have the choice
to consider the suggestion or ignore it and make a different
revision. This may pose confusing signals to the agent about
whether or not the suggestion was the best one. Further, we
must investigate how exactly to provide the hints, as for-
mative feedback, such that the student actively learns from
their revision.
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ABSTRACT
Domain modeling is a central component in education tech-
nologies as it represents the target domain students are sup-
posed to train on and eventually master. Automatically
generating domain models can lead to substantial cost and
scalability benefits. Automatically extracting key concepts
or knowledge components from, for instance, textbooks can
enable the development of automatic or semi-automatic pro-
cesses for creating domain models. We explore in this work
the use of transformer based pre-trained models for the task
of keyphrase extraction. Specifically, we investigate and
evaluate four different variants of BERT, a pre-trained trans-
former based architecture, that vary in terms of training
data, training objective, or training strategy to extract knowl-
edge components from textbooks for the domain of intro-to-
programming. We report results obtained using the follow-
ing BERT-based models: BERT, CodeBERT, SciBERT and
RoBERTa.

Keywords
Domain modeling, knowledge component extraction, key phrase
extraction, transformer based models, Intelligent Tutoring
System

1. INTRODUCTION
Computer-based adaptive instructional technologies, our fo-
cus, must have a representation of the target domain, i.e., a
domain model. Hence, there is a need for domain modeling,
which specifies the key knowledge components or units of
knowledge that students have to master in a target domain,
such as physics, biology, or computer programming. Fur-
thermore, a domain model should include a structure that
specifies the relationship among the knowledge components,
typically in the form of a prerequisite knowledge structure
suggesting which basic concepts must be mastered before

more complex concepts that rely on the basic concepts, e.g.,
addition should be mastered before multiplication [14, 17,
8]. The prerequisite knowledge structure of a domain model
implies a specific trajectory or trajectories towards mastery
that students must follow. According to some, a domain
model should also include links to related learning objects,
i.e., instructional tasks, which help students practice to mas-
ter the targeted concepts. More recently, A broader view of
the domain model has been argued, which should include
all the key concepts, skills, ideas, principles, and the values,
identity, and epistemology of the community of experts or
professionals active in the target domain [1].

Domain models can be developed from different information
sources: experts, textbooks (written by domain and ped-
agogical experts), and learner performance data. Expert-
driven approaches to domain modeling are expensive, time-
consuming, and not very scalable within and across domains.
To overcome these challenges, automated or semi-automated
approaches are much needed. This work explores such novel
automated methods for domain model discovery from text-
books, specifically for the target domain of intro to com-
puter programming. In particular, we explore to what extent
the process can be automated. While the proposed meth-
ods are fully automated, their output is not perfect, which
means a human expert must be involved to curate the out-
put before being used in an existing adaptive instructional
system. Nevertheless, this semi-automated process is much
more cost-effective and scalable than the manual approach
to building domain models. It should be noted that another
source of information for domain modeling for programming
that has been explored in the past is code itself, e.g., using
a Java parser [18, 38, 15].

There are two advantages of using textbooks to extract do-
main models for programming compared to using code only.
First, textbooks contain both code examples and textual ex-
planations of the concepts, which is advantageous for higher-
level concepts such as sorting, which is challenging to infer
from a block of code that implements it. Second, concepts
extracted directly from code are difficult to interpret and are
often programming language-specific constructs. A textual
description can accompany the grammar of a programming
language in the form of comments or descriptions, but this
requires substantial additional expert involvement. Build-
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ing more interpretable automated ways to extract domain
models from source code is an interesting research topic be-
yond this paper’s scope. In this work, we experiment with a
pretrained transformer-based model to extract key concepts
or knowledge components from computer science (intro to
programming) textbooks. We use the code examples in text-
books, but we do not parse them to extract candidate key
concepts but to rank the concepts extracted from the textual
explanations.

Transformer-based pretrained models, which are trained on
massive unlabelled text collections, have been successful in
various NLP tasks such as keyphrase extraction [3, 33] which
is relevant to this work. However, with the rise of many pre-
trained models for various specific tasks, there is a need to
explore which of these pretrained models are helpful for what
tasks. In this work on domain model discovery for computer
programming, we explore an overgeneration-and-ranking ap-
proach for keyphrase extraction using four pretrained trans-
former models: BERT[11], CodeBERT[13], RoBERTa [25],
and SciBERT [2]. These pretrained models vary in different
aspects, such as training data and training mechanisms. For
instance, BERT is trained on general domain corpora such as
news articles and Wikipedia, RoBERTa is trained on a larger
dataset of English language corpora consisting of books,
news, web text; SciBERT is trained on papers on com-
puter science and biomedical domain whereas CodeBERT is
pretrained in NL-PL (Natural language-Programming lan-
guage) pairs for multiple programming languages. In this
study, we experiment with embeddings obtained from each
of these methods to evaluate and compare domain-specific
models such as CodeBERT and SciBERT versus models such
as Roberta and BERT trained on general corpora for the
tasks of keyphrase extraction and subsequently domain mod-
eling.

The paper is organized as follows. Section 2 discusses rel-
evant works to domain modeling. In section 3, we detail
the methodology followed to generate domain models from
textbooks. Section 4 presents the evaluation dataset and the
metrics used to evaluate the performance of the pretrained
models. A conclusion section follows the results.

2. RELATED WORK
Our work focuses on extracting key knowledge components
from textbooks using embeddings obtained from transformer
based pretrained models in an unsupervised manner. This
section presents most relevant prior works to concept ex-
traction, unsupervised keyphrase extraction, and pretrained
models in NLP.

Concept extraction or identifying important concepts that a
learner should master has been studied for various applica-
tions in the educational domain, such as concept-based text-
book indexing (adaptive hyperbook for constructive teach-
ing, Elm-art [5]), concept prediction [19], and concept hier-
archy creation [36]. Concept extraction is related to keyphrase
extraction, which is extracting the most important concepts
in a given document. Keyphrase extraction has been ex-
plored using different approaches: rule-based, supervised,
and unsupervised including deep-learning [30]. Typically,
keyphrase extraction consists of two steps: candidate gen-
eration and ranking. The first step extracts key concepts

based on heuristics, such as all noun phrases, while the sec-
ond step ranks the extracted candidate phrases based on
scoring rubric that indicates the importance of the candi-
date phrase for the document and/or goal. In our work,
we use unsupervised embedding-based ranking methods for
candidate concepts generated from sections or subtopics in
chapters in intro-to-programming textbooks. We consider a
subtopic as a reference document when assessing the impor-
tance of each candidate key concept.

Existing unsupervised keyphrase extraction methods can be
broadly categorized as statistics based such as TF-IDF, e.g.,
KP-Miner [12], graph-based such as TextRank [27], Sin-
gleRank [35] and topic-based methods such as TopicRank [4]
even though many of the works use a combination rather
than a single approach. Recent advances in representational
methods of words, phrases and documents like Word2Vec [28],
Doc2vec [20], and Sent2vec [29] led to novel ranking meth-
ods for keyphrase extraction [3, 23, 33]. For instance, Em-
bedRank [3] uses sentence embeddings based on Doc2vec or
Sent2vec to represent candidate phrases and the document
in the same high dimensional vector space based on which
a ranking of the candidate key concepts is obtained using
the cosine similarity score between the embedding vectors
of the candidate phrases and the documents. Our work is
similar in the sense that we use pretrained embeddings for
keyphrase extraction in the context of domain modeling.

Embeddings obtained using transformer [34] based pretrained
models [31, 32, 37] have shown dramatic improvements in
various tasks in different domains such as software engineer-
ing, computer vision, and education. The reason behind
this improvement is the high-quality semantic representa-
tions. Models such as BERT have been trained on different
domain-specific data, some examples being BioBERT [21]
in biology, legalBERT [7] in legal documents, SciBERT in
scientific articles, and CodeBERT on code and natural lan-
guage text pairs. To the best of our knowledge, experi-
ments on how these embeddings affect the downstream task
of knowledge component extraction and consequently on do-
main modeling have not been done before. In this work, we
experimented with embeddings obtained from four BERT
models, BERT, CodeBERT, SciBERT, and RoBERTa, for
knowledge component extraction and the larger task of do-
main modelling.

3. METHODOLOGY
Our method to extract knowledge components from intro-to-
programming textbooks is based on pretrained embeddings
inferred from various BERT-based models. To evaluate the
automated methods, we annotated a dataset by selecting key
concepts for each section in five randomly selected chapters
in two textbooks. As noted, we rely on an overgeneration-
and-ranking approach for key concept extraction. The em-
beddings are mainly used to rank the key candidate phrases.
Since textbooks for intro-to-programming contain both code
examples and related explanatory text, we can use bimodal
pretrained models such as CodeBERT trained on both text
and code. Even though we provide code to the CodeBERT
model as input, the model is used only for ranking candi-
date keyphrases, i.e., our approach and evaluation is based
on candidate concepts generated from the textual parts of
the textbooks. We could consider statements, code blocks,
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and code comments as sources of candidate concepts. How-
ever, we limit the scope of this work to candidate concepts
from the textual part of intro to computer programming
textbooks.

In this section, we explain the preprocessing steps, such as
candidate concept extraction, phrase and document embed-
ding generation, and candidate concept ranking. We also
discuss the performance metrics of specificity and relevancy.
Before applying methods related to candidate concept ex-
traction, we resolve pronouns in the text to boost our knowl-
edge component extraction methodology by resolving pro-
nouns such as ’it’,’ this’, and ’their’ using a pretrained deep
learning model [22] based on span ranking architecture.

3.1 Candidate Concept extraction
The step of candidate concept extraction consists of noun
phrase extraction and filtering. We used Stanford CoreNLP
Tools 1 for tokenizing, part-of-speech tagging, and noun
phrase chunking. We only considered noun phrases which
are unigrams (one token), bigrams (two consecutive tokens),
trigrams (three consecutive tokens), and quadigrams (four
consecutive tokens), for candidate generation.

3.2 Phrase and Document Embedding
From the prior step of generating 3.1 candidate phrases we
obtain a tokenized form of a documentD represented as D =
t1, t2, t3...., tN where tn represent tokens. We also obtain
a list of candidate phrases C0, C1, ..., CN . Based on this,
we then obtain contextualized embeddings for each of the
tokens as shown by the Equation 1.

E1, E2, E3....EN = Model(t1, t2, t3...tN ) (1)

where En represents embeddings of each token, and the
model refers to any of the four pretrained models we chose:
BERT, CodeBERT, SciBERT or RoBERTa.

Each document embedding is obtained using average pool-
ing across all the tokens of the document. Similarly, to ob-
tain embedding for each candidate phrase from a document,
we average across embeddings of tokens. Although the best
pooling strategy is still an area of active research, we opted
for the average pooling strategy as it has shown better per-
formance than using the output of the first token [CLS] for
different tasks[9].

3.3 Ranking
We have experimented with a number of ranking and per-
formance metrics as presented in this section.

3.3.1 Cosine Similarity
Once the embeddings for each document and phrase are ob-
tained, we compute the cosine similarity (normalized dot
product) between the phrase and document embedding vec-
tors. The cosine similarity scores for candidate phrases cap-
ture the semantic ‘relatedness’ or ‘closeness’ of a phrase to
the underlying document. Those scores are used to rank
candidate phrases.

1https://nlp.stanford.edu/software/tagger.shtml

3.3.2 Adjusted Maximal Marginal Relevance To Bal-
ance General and Specific Concept Ranking

Our goal is to extract all important knowledge components
of a target domain. A challenge to this coverage problem
is that key concepts can have different granularity levels,
making it more challenging to design a single metric that
ranks more general and more specific concepts highly.

For instance, in the context of a chapter focusing on the
concept of ‘loop’, some of the important key concepts are
‘for loop’ or ‘while loop’, which are broad, high-level types
of loops. Nonetheless, a more specific concept such as a
nested loop or loop continuation condition is important too.

In order to extract both the general and specific concepts,
candidate key phrases must be similar to the current doc-
ument and less relevant to other documents. Furthermore,
in order to rank higher topic-specific concepts so that top k
candidates consist of more topic-specific concepts, we mod-
ified the Maximal Marginal Relevance(MMR) [6] metric,
which was used initially in information retrieval and text
summarization to control relevancy and diversity of retrieved
documents. The embedding-based keyphrase extraction method
proposed by Bennani-Smires et al.[3] used a modified version
of MMR to tackle redundant key phrases from a document.
In our case, we modify MMR to balance through the control
parameter λ general and specific key candidate phrases.

As indicated in the equation 2, we balance the similarity of
a candidate phrase Ci to the current document doc, which
is captured by the first term on the right-hand side of the
equation, with its similarity with other documents which is
indicated by the second term that represents the similar-
ity between the candidate phrase Ci from all the other N
documents in the corpus.

If a candidate phrase is highly relevant to a document other
than the current document, the similarity measure with the
current document is penalized, indicating the term is not
specific enough to the current document.

MMRadjusted :=arg max
Ci∈K

[λ · sim1 (Ci, doc)

− (1− λ) max
docj∈N\doc

sim2 (Ci, docj)

] (2)

4. EXPERIMENT AND RESULTS
As already noted, we experimented with four pretrained
models and evaluated their performance on a dataset that
we built.

4.1 Dataset
The evaluation dataset was built based on sections from two
intro-to-programming textbooks,“Introduction to JAVA pro-
gramming” [24] and “JAVA How to program” [10]. From
each of the two textbooks, we randomly selected 20 sections
that focus on some specific concepts such as ‘while-loop,’
‘sorting arrays,’ and ‘exception handling overview.’

For each of the 20 sections, two computer science gradu-
ate students manually extracted the key concepts using a
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two-phase annotation scheme. In the first phase, each anno-
tator selected key concepts. The inter-annotator agreement
in this phase was 0.7 as measured by Cohen’s Kappa [26].
Then, annotators discussed iteratively and extensively until
a final agreement was reached. The resulting key concepts
form our gold standard for evaluating the proposed meth-
ods. We have also asked each annotator to rank the gold
standard concepts. This ranking is used for another perfor-
mance metric that compares the automated ranking to the
human ranking.

4.2 Evaluation Metrics
We evaluated the four pretrained models using two approaches.
First, we evaluated the key concept extraction using preci-
sion, recall, and the F-score at rank k for k = 5, 10, 15. This
evaluation approach is widely used in key-phrase extraction
systems[30]. The other evaluation approach is based on the
Normalized Discounted Cumulative Gain at p (NDCGp) [16].
NDCGp compares the target ranking to the positions that
key concepts occupy in the gold standard ranking and pe-
nalizes any mismatches. We opt for this evaluation to eval-
uate the extracted concepts based on MMRadjusted ranking
method described earlier.

4.3 Results
First, we report results based on precision, recall, and F-
score for top k ranks where k = 5, 10, 15 using cosine similarity-
based ranking. We also report results for NDCGp where p=
10 using adjusted MMR metric with λ = 0.5 and λ = 1. The
NDCGp ranking results obtained using λ = 1 for adjusted
MMR metric is same as ranking using cosine similarity only.
Since the average number of key concepts per section in the
gold standard is 11, we chose p = 10 for normalized dis-
counted cumulative gain (NDCG) reporting.

Table 1: Precision, recall and Fscore at 5,10,15 for knowledge
component extraction

K Model P R F
5 BERT 0.66 0.423 0.499

CodeBERT 0.54 0.342 0.405
RoBERTa 0.5 0.288 0.354
SciBERT 0.58 0.41 0.480

10 BERT 0.578 0.659 0.597
CodeBERT 0.456 0.521 0.473
RoBERTa 0.522 0.589 0.538
SciBERT 0.533 0.608 0.55

15 BERT 0.516 0.801 0.615
CodeBERT 0.367 0.578 0.442
RoBERTa 0.434 0.673 0.516
SciBERT 0.483 0.745 0.576

Table 1 shows Precision, recall and F-scores for different
pretrained embeddings for k = 5, 10, 15. We can see that
BERT has the highest precision, recall, and F-score for all
the values of k. Similarly, SciBERT yields better perfor-
mance compared to RoBERTa and CodeBERT. We can ob-
serve that even though CodeBERT is trained in NL-PL pairs
for different programming languages, it does not provide any
advantage over BERT. This might be because the training
data for CodeBERT, which is specific to the code in Github,
relates to higher-level software engineering concepts than
intro-to-programming concepts. Also, the natural language

Table 2: Normalized Discounted Cumulative Gain(NDCG10)
using MMRadjusted for λ = 1 and λ = 0.5.

Model
NDCG@10

λ = 1 λ = 0.5
BERT 0.83 0.87

CodeBERT 0.75 0.73
SciBERT 0.81 0.80
RoBERTa 0.76 0.77

texts used for training CodeBERT is mainly code documen-
tation which might not be directly relevant to basic pro-
gramming concepts. RoBERTa, even though trained with a
different strategy and more data, does not show any better
performance than BERT and SciBERT.

Also, it is evident from the results that SciBERT, trained in
scholarly documents from computer science and biomedical
domain, performs on par with BERT. The results show that
even though BERT is not trained on any domain-specific
data, it performs better than other models trained with more
domain-specific or more data.

Table 2 shows the NDCG score using MMR adjusted in equa-
tion 2. The results are obtained using λ = 1 which is equiv-
alent to using cosine similarity only and λ = 0.5 which gives
equal importance to the general and specific components in
the adjusted MMR metric. As shown in the results, BERT
outperforms other embedding methods similar to the eval-
uation results shown in Table 1 based on precisioin, recall,
and F-measure. The value of NDCG of all the models ex-
cept for CodeBERT was higher when ranking was done using
λ = 0.5 for MMRadjusted compared to value of λ set to 1.

5. DISCUSSION AND CONCLUSION
Our results indicate that we can use pretrained models for
domain model extraction. We also noticed that even though
models like CodeBERT and SciBERT are trained on domain-
specific data, they did not provide any advantage mainly due
to the nature of their training data. Our experiments also
evaluated ranking based on Maximal Marginal Relevance to
balance general and specific concepts. The main idea behind
the evaluation was to check if adjusted MMR as we propose,
ranks topic-specific concepts higher. Even though control
parameter λ can be trained across different documents to
get a more precise value based on cumulative gain we used
0.5 for key concept extraction using a relevance score based
on Mean Marginal Relevance to provide equal importance
to general and specific concepts. Evaluation based on Table
2 shows that MMRadjusted ranking obtained when λ = 0.5
is closer to gold-standard ranking or preferred ranking by
human annotators.
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ABSTRACT 
E-learning preparedness in higher education is an important aspect 
that determines students’ interaction behaviors within online 
learning environments. This study is primarily motivated by the 
growing evidence pointing to the importance of constructing fair 
and unbiased learning analytics in higher education. The primary 
goal of this study was to examine the impact of potentially bias-
driven variables in predictive learning analytics models. We used 
an empirical data set collected from 123 undergraduate students 
who participated in a remote asynchronous course in Fall 2021. Our 
study adopted various statistical and machine learning techniques 
to remedy the biased prediction behaviors in learning analytics. 
First, we conducted a path analysis to evaluate the connection 
between students’ e-learning preparedness and their interaction 
within the e-learning system. We simulated a large synthetic dataset 
from the empirical dataset and adopted two fair artificial 
intelligence algorithms—Seldonian and Adversarial Networks 
algorithms. Our findings indicated that e-learning preparedness is 
significantly related to the commonly adopted temporal features in 
learning analytics, such as time-use entropy (b=.449, p<.001) and 
assignment submission time (b=-.587, p<.001), and indirectly 
associated with students’ course performance (b=.219, p<.001). 
Both algorithms indicated that bias-reduced algorithms performed 
comparably worse than the naive algorithms in predicting students’ 
performance (f1-score=0.72); however, they produced less biased 
predictions after taking students’ e-learning preparedness into 
account. A significant shift in model weights were observed, where 
the models tended to emphasize the importance on the variety of 
activity sequence than the temporal information. 

Keywords 
Fairness in AI, Learning Analytics, E-learning preparedness, 
Seldonian Algorithm, Adversarial Networks 

1. INTRODUCTION 
The sudden instructional and pedagogical changes that the COVID-
19 pandemic has brought in higher education have been 
tremendous. The recent U.S. statistics indicated that more than 52% 
of college students had to participate in remote learning during the 
year 2019-2020. Many universities and college-level courses that 
are designed for face-to-face in-person learning, transitioned 
online. Instructors prepared asynchronous or synchronous remote 
learning courses with lecture videos and learning materials to 

accommodate the changes. Learning analytics systems were 
introduced to support managing distance learning for higher 
education institutions. Learning analytics frameworks adopt 
various statistical and machine learning techniques to enrich 
evidence-based instructions [1]. Many of the previously introduced 
learning analytics systems in higher education focused on detecting 
at-risk students [5, 16] and predicting student success [17]. Higher 
education institutions gained the capacity to gather, manage, and 
access student learning information more closely with the wide 
adoption of distance learning. The adoption of various learning 
analytics systems opened opportunities for an in-depth 
understanding of students’ learning progress. 

Despite the interesting benefits that learning analytics systems 
brought to higher education institutions, a growing concern evolved 
in the fairness and equitable uses of learning analytics [8, 10, 23]. 
One of the many underlying fairness and bias-related issues in 
learning analytics concerns the incomplete consideration and 
critical evaluation of the nature of the data and data collection [25]. 
For instance, with the sudden shift to remote learning, a 
considerable number of students faced significant challenges that 
arise from a lack of preparedness for distance learning [2, 6, 19, 21, 
22] Faculties and instructors indicated some of the challenges they 
faced during this period, such as students' lack of basic resources 
and equipment to participate in e-learning, and disruptions to 
learning time due to poor internet connections [29].  

Likewise, students may require a more reliable setup for learning at 
home with the appropriate gears and equipment to participate in 
remote learning. The varying level of physical and psychological 
preparedness for e-learning showcases the important underlying 
nature of data and data collection in learning analytics, especially 
during the rapid transition to online learning in higher education 
institutions. For instance, reaction-time or temporal features are 
commonly adopted for student success prediction [14, 15]. They 
evaluate time-related students’ interaction attributes, such as how 
rapidly students react to the uploaded learning resources. The 
reaction-time features are often positively associated with students’ 
self-regulated learning behaviors and improved learning outcomes 
in many learning analytics algorithms [20, 27]. This study takes a 
different view on how “fairness” could be acquired in learning 
analytics for higher education. Fairness in learning analytics was 
often discussed in the previous studies with the light on students’ 
unique personal and demographic backgrounds (e.g., gender). 
Instead, we focus on how the learning analytics could potentially 
make biased decisions or predictions for the students with the lack 
of preparedness in e-learning. The following research questions 
were addressed in this study: (1) Does students’ level of e-learning 
preparedness relate to their interaction behaviors in an online 
course platform? (2) Does students’ level of e-learning 
preparedness relate to their course performance in an online 
course? and (3) Does the bias-reduced prediction model, which 
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takes students’ e-learning preparedness into account, achieve 
significantly lower accuracy?  

2 RELATED WORK  
2.2 E-learning Preparedness  
An exhaustive review of the past 20 years of the literature revealed 
interesting underlying dimensions of students’ e-learning 
preparedness in higher education, although there is no consensus 
on what exactly preparedness or readiness is. Earlier studies 
focused on students’ “readiness” in online learning. For instance, 
Smith et al. [24] identified students’ psychological factors and 
personal attributes, such as their comfort with e-learning and self-
management of learning, as two primary underlying factors which 
define students’ readiness in e-learning environments. Their 
findings were replicated and confirmed by other researchers (e.g., 
[3]). Watkins et al. [28] expanded the definition of e-learning 
readiness with six dimensions, including the two unique physical 
environmental attributes, such as the “Access to Technology” and 
“Online Audio/Video”, as well as psychological aspects as “Online 
Skills and Relationships”, “Motivation”, “Internet Discussions”, 
and “Importance to their Success”. Similarly, Holsapple and Lee-
Post [12] suggested that e-learning preparedness should be 
measured in the primary three dimensions of students’ technical 
competencies, lifestyle aptitudes, and learning preferences. Parkes 
et al. [21] proposed a shift in focus between readiness and 
preparedness. They focused on the “necessary” skills and 
competencies students need to be prepared for e-learning. For 
instance, students’ competencies in “managing learning in the 
online environment”, “interacting with the e-learning content”, and 
the “e-learning communities”, were identified as important 
dimensions to define one’s preparedness for e-learning.  

2.3 Fair Prediction in AI 
The following two frameworks are introduced and adopted in our 
study to demonstrate the potential bias that presents in algorithm. 

2.3.2 Seldonian Algorithm 
The Seldonian algorithm [26] introduces a three-stage framework 
to prevent machine learning algorithms from making biased 
outcomes. The algorithm takes the data (D) and partitions it into 
two sets of  𝐷!	and 𝐷". Using the first part of the dataset, the 
algorithm selects a solution candidate,	𝜃#, which is likely to pass 
the algorithm bias safety test. Then, the second part of the data, 𝐷" 
is used as a safety set. The Seldonian algorithm allows safety 
constraints to be represented as (𝑔$ , 𝛿$)∀$∈ 𝑚. 𝑔:𝛩 → 𝑅 is a 
function that quantifies the safety of the solution and is the 
permissive probability of returning an unsafe solution. The safety 
constraint ensures that the algorithm could achieve 𝑔$(𝜃, 𝐷) ≤ 0 to 
ensure a safe choice of solution candidate.  When only one 
constraint is given, this constraint can be understood as an 
equalized odds constraint [11]. The equalized odds constraint is 
defined based on the true positive rate (or TPR) across groups that 
are designed to evaluate and compare the degree of bias in model 
performance. Assume that A is the sensitivity feature to create two 
groups (0 = unprepared, 1 = prepared in e-learning) and Y is a 
predicted outcome variable (1 = success in the course). The 
equalized odds are satisfied when both the true-positive and the 
false-positive rates are equal across the two groups (equation 2).  

𝑃𝑟(𝑌6 = 1|𝐴 = 0, 𝑌 = 1) 	= 𝑃𝑟(𝑌6 = 1|𝐴 = 1, 𝑌 = 1)	

𝑃𝑟(𝑌6 = 0|𝐴 = 0, 𝑌 = 0) 	= 𝑃𝑟(𝑌6 = 0|𝐴 = 1, 𝑌 = 0)	 (2) 

Using the equalized odds constraint, the constraint, 𝑔(𝜃), can be 
expressed when we decide to create an equalized odds score that is 
smaller than 0.05. In other words, this constraint has the upper 
bound of 0.05 to account for the absolute differences between the 
accuracy in predictions between the two groups.  

2.3.3 Adversarial Neural Networks 
Adversarial networks are supervised learning techniques that 
systematically associates the uncertainties in the data generation 
process to represent the real-world setting more accurately. Given 
a set of probabilities, 𝑃𝑟(𝑋, 𝑌, 𝑍), which consists of the data	𝑋 
target, 𝑌, and the contextual sensitive parameter, 𝑍,	in fair AI 
prediction, we aimed to develop a solution that maps 𝑓(𝑋) =
𝑌,	with the classifier 𝑓 that is robust to the value of Z. This process 
can be learned efficiently using the adversarial networks [9]. For 
fair AI models, we could constrain the predictive classifier  𝑓 to 
satisfy a certain constraint which has to do with the sensitive 
parameter Z. The goal of our classifier is to learn the parameters 
𝜃%	which map 𝑓: 𝜒 → 𝑆.	Hence, we minimize the cross-entropy loss 
function, 𝐿&(𝜃%)	to obtain the parameters, 𝜃%. In the case of student 
performance prediction, 𝑠 ∈ 𝑆 represents students’ performance 
outcome. The initial inference of the classifier will be defined based 
on	𝑓(𝑋;	𝜃%) and the value of 𝑧 ∈ 𝑍	will be unknown to the model 
now. This indicates that the model outputs the equal conditional 
probability for any 𝑧, 𝑧′ ∈ 𝑍	and 𝑠 ∈ 𝑆 (equation 3).  

𝑃𝑟(𝑓(𝑋; 	𝜃%) 	= 	𝑠|𝑧) 	= 	𝑃𝑟(𝑓(𝑋; 	𝜃%) = 𝑠|𝑧′) (3). 

3 METHODS 
3.2 Data 
Our dataset was collected from a total of 123 undergraduate 
students who are enrolled in an educational assessment course in a 
western Canadian university in Fall 2020. This course was 
traditionally delivered as an in-person course but transitioned to an 
asynchronous online course in Fall 2020. At the beginning of the 
semester, the students were provided with a “welcome survey” 
questionnaire. The questionnaire included four items evaluating 
students’ physical and psychological readiness and preparedness 
for an online course (see Appendix). We recoded the responses to 
define a variable representing “e-learning preparedness” in an 
online learning environment. We hypothesized that the students 
who are physically well-prepared for the online course would 
currently be located at the same time-zone, have devices that are 
equipped with the required functionality to participate and interact 
with the course materials, and have reliable devices that are 
portable.  This was based on the course outline and the 
requirements related to the course materials and assignments. Once 
the physical/environmental preparedness score is computed, it is 
combined with the psychological preparedness score. Final 
preparedness is represented as a binary score of those who are 
above (1) or below (0) average in environmental and psychological 
preparedness for online learning (see Tables 1 and 2). 

3.3  Interaction Log Data  
To understand students’ learning behaviors within the online course 
module, we extracted a comprehensive list of students’ behaviors 
and selected the deterministic features to construct a prediction 
model. To replicate commonly extracted features in prediction-
focused learning analytics systems, we used a commonly adopted 
open-source automated feature engineering tool called 
Featuretools. It performs Deep Feature Synthesis to extract 
aggregative and transformative features from the interaction log 
data. The extracted features represent descriptive instances (e.g., 
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absolute, count, mean, mode), as well as the advanced interactions 
(e.g., entropy, time since previous). This feature analysis 
framework was selected as they are frequently adopted in learning 
analytics [4]. In addition, we extracted a list of n-gram-based log 
activity features. The features represent a sequence of instructional 
activities that students frequently perform. A total of 132 unique 
activities are captured and classified into 14 overall categories. The 
n-gram-based features represented a frequent sequence of actions 
that students partake among these 14 activity categories. The 
feature and the values were extracted using a TF-IDF vectorization. 

3.4 Path Analysis Model  
We aimed to understand the association of students’ e-learning 
preparedness with their interaction activities which are represented 
by the log features. We constructed a path analysis model using the 
empirical data collected from the undergraduate participants 
(n=123). The hypothesized model path model first controlled for 
the effect of students’ familiarity with the course content 
(Familiarity) on the students’ course outcome (Summative). This 
allowed us to evaluate the relationship between e-learning 
preparedness with other variables while controlling for the effect of 
familiarity. The path model evaluated the associations between the 
preparedness and interaction log activities. Two interaction log 
variables were selected from the final feature sets extracted in the 
previous stage. Last, the two interaction log features were related 
to the students’ formative and summative course performance. Our 
hypothesized model evaluated the importance of preparedness in 
understanding students’ interaction in an online course as well as 
the relationship with the course outcomes.  

3.5 Simulation Setting  
We used the distributional characteristics of the variables and the 
correlations among the variables in our empirical dataset to 
simulate a larger-size dataset (N = 10,000). The data simulation 
process consisted of several steps. First, we obtained the 
distribution parameters for the variables included in the path 
analysis model. Second, we calculated the target correlation matrix 
based on the observed correlations in the empirical dataset. Third, 
we checked the lower and upper bounds of the pairwise correlations 
for the given distribution parameters to ensure that the target 
correlation matrix is within the bounds. Next, we simulated the 
dataset using the SimMultiCorrData package [7] in R. Last, we 
reviewed the generated variables and the maximum error between 
the final and target correlation matrices. 

4 RESULTS 
4.2 Features 
The survey results with the empirical dataset indicated that close to 
32.5% of the students scored below the average in the total 
preparedness score. The rest of the students (67.5%) scored above 
the average. The e-learning preparedness score had a mean of 4.46 
and a standard deviation of 1.61. The familiarity with the content 
with the total of 9 key concepts indicated the mean of 16.54 and the 
standard deviation of 6.55. The interaction log feature engineering 
using the Featuretools extracted a total of 137 variables. The n-
gram tf-idf features extracted a total of 102 features to represent the 
frequency and the sequence of students’ log actions. The feature 
dimension reduction process resulted in a total of 13 features. 
 

4.3 Path Analysis Results  
Figure 1 provides a diagram of the final path analysis model which 
is hypothesized and evaluated in our study. The path analysis 
results showed a good model-fit (CFI > 0.90, TLI >0.90, RMSEA 

<0.06, SRMR <0.09; [13]). The two variables representing 
students’ interaction with the online course platform (Interaction 
Features 1 and 2) were also significantly associated with students’ 
preparedness (b=0.433, s.e.=0.073, p<0.001; b=-0.421, s.e. =0.074, 
p<0.001). This was evaluated while controlling for the effect of 
students’ familiarity with the course content. Interestingly, the 
familiarity of course content was significantly related to only one 
of the interaction log activities (interaction feature 1: b=-0.022, 
s.e.=0.115, p=0.851; interaction feature2: b=0.231, s.e.=0.114, 
p=0.042). This shows that the students’ level of preparedness for e-
learning is significantly related to their activities in online learning 
platforms when controlling for their familiarity with the material. 

The level of interaction with the learning platforms were also 
significantly related to students’ formative (b=0.376, s.e.=0.080, 
p<.001; b=-0.181, s.e=0.085, p=.033) and summative course 
performance (b=0.160, s.e.=0.071, p=.025; b=-0.223, s.e.=0.069, 
p=.001), respectively. The findings also showed that the interaction 
log activities which were highly associated with students’ “E-
learning preparedness'' were also highly related to students’ 
formative and summative performance. In summary, we observed 
a significant total indirect effect of e-learning preparedness on 
summative performance score (b=0.219, s.e.=0.048, p<0.001) with 
the direct effect that is statistically not significant (b=0.107, 
s.e.=0.060, p=0.073). This shows that students’ preparedness in e-
learning may not be directly associated with their online learning 
performance when controlling for the students’ familiarity with the 
course content. However, e-learning preparedness was highly 
associated with students’ interaction activities in online learning, 
which were highly associated with the performance outcomes. In 
summary, the path analysis model demonstrated the importance of 
acknowledging the presence of varying levels of “e-learning 
preparedness" 

 

Model-fit: CFI (0.987), TLI (0.938), RMSEA (0.081), SRMR (0.042). 

Figure 1. Path Analysis Model Results with Significant Paths.  

4.4 Fair AI Prediction Results 
4.4.2 Logistic Regression Performance  
Table 3 (see Appendix) provides a comparison of Seldonian model 
performance results. The classification performance results were 
provided based on the binary target of students’ summative 
performance that is created using the quantile cut-offs (0.10 - 0.90). 
The findings showed that the bias-reduced logistic regression (LR) 
models based on students’ “E-learning preparedness” may not 
perform as well as the unconstrained LR model. It showed that our 
logistic regression algorithm could achieve the highest accuracy 
and f1-scores in classifying the target variable across all quantile 
cut-offs. The best classification performance of the unconstrained 
LR model achieved the f1-score of 0.95. Seldonian models with the 
bigger equalized odds values performed better (acc=0.72, f1-
score=0.76 vs. LR acc=0.76, f1-score=0.80).  
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4.4.3 Adversarial Networks Performance Results  
Figure 2 provides diagrams that represent the distribution of the 
prediction of unprepared (yellow) and prepared (red) students when 
using the adversarial networks. The evaluation results were based 
on classifying students’ summative performance with the 0.40 
quantile as a cut-off. The initial performance of the biased classifier 
achieved an accuracy of 0.74, f1-score of 0.78, and the AUC-ROC 
score of 0.81. The classification distribution indicated that students 
from the unprepared category showed a noticeably higher 
probability to be less successful in the summative assessment (see 
Figure 2 - Unconstrained). By contrast, the well-prepared students 
showed a higher probability to be successful. Likewise, the 
classifier showed relatively biased classification results with the 
AUC-ROC score of 0.66 to classify students based on their 
preparedness. After a total of 100 epochs, we noticed that the 
adversarial algorithm with a constraint (or bias-reduced model) 
achieved an accuracy of 0.63, f1-score of 0.72, and AUC-ROC of 
0.63 in classifying students based on their summative performance 
outcome. The final algorithm could no longer differentiate the 
students based on their e-learning preparedness (AUC-ROC 0.51). 
This indicates the final model was well-trained to remove the 
potential influence from the bias classification. The last figure in 
Figure 2 provides a visual representation of the final model 
classification distribution comparisons. It showcases how the two 
distributions converged. We noticed that the final bias-removed 
model could acquire a relatively good classification performance.  

 

  
Figure 2. Unconstrained & Adversarial networks model results 

We compared the final model weights of the biased model and the 
bias-reduced model. The relative impact of a total of 13 interaction 
log features (see Figure 3; Appendix) on classification was 
investigated using Shap [18]. The feature values (high or low, red, 
or blue) indicated the impact of the feature in producing higher or 
lower values in classification. Each dot (red or blue) represents the 
location of feature values in each sample. The x-axis represents the 
correlation between the final classification outcome and the feature 
values. The interaction log features were ranked in descending 
order based on their importance in classification. For instance, a 
high value in Feature 6 (red dots) was associated with the final 
classification (1=success) with a negative correlation (Shap values 
<0) in the biased classification model. Instead, the lower values 

(blue dots) in Feature 6 were positively associated with the outcome 
classification in the biased model. By contrast, the lower values in 
Feature 10 were negatively correlated with the student success in 
the unconstrained model. Features 6 followed by the Features 10, 
12, 4, 3, and 9 were identified as important and contributing 
features in the biased model to classify students based on their 
performance. Interestingly, the importance of features and direction 
of relationships with the outcome shifted quite drastically in the 
bias-reduced model. In the biased-constrained model, feature 2 was 
considered the most important, with its higher values (red) 
associated negatively with student success. Features 2 followed by 
the Features 10, 5, 4, and 6 were identified as important and 
contributing features in the bias-reduced model to classify students 
based on their performance. The direction of the relationship and 
the relative importance of Feature 10 remained the same for both 
models. Feature 10 represents the frequency of engaging in an 
activity related to learning resources (e.g., downloading). 

5 DISCUSSION AND CONCLUSION  
The primary goal of this study was to investigate the presence of 
the potentially biased behaviors of learning analytics models in 
higher education. We introduced empirical (N=123) and simulated 
(N=10,000) datasets of students’ course logs to understand the 
biased-prediction behaviors of learning analytics models based on 
students’ e-learning preparedness. Our study was conducted in two 
stages. First, we evaluated the association between students’ e-
learning preparedness and their online course performance 
outcomes. We specifically investigated the indirect (via the 
interaction log features) and direct relationship between the 
preparedness and summative performance outcomes (i.e., course 
exams). Students’ interaction behaviors in the course were 
represented by the commonly adopted learning analytics features, 
such as their activity sequence and temporal information. Second, 
we investigated how the fair artificial intelligence (AI) models— 
Seldonian Algorithm and Adversarial Networks— could perform 
when attempting to reduce the bias in predicting students’ 
performance outcomes. The two models were designed and 
implemented so that they could acknowledge students' varying 
levels of preparedness in participating in remote learning.  

Our analytic framework using the path analysis model and two fair 
AI algorithms -- the Seldonian algorithm and the adversarial 
networks -- demonstrated efficient and effective means to evaluate 
the “e-learning preparedness” as a potential source of bias in 
learning analytics in higher education. We also visually 
demonstrated how the bias-reduced model shifted its model 
weights to emphasize the features that are potentially more robust 
to the (physically and psychologically) unprepared groups of 
students in remote learning. For future work, we aimed to 
generalize the findings with more empirical datasets in higher 
education settings, such as the e-learning interaction log datasets 
from different audiences and domains. We would like to examine 
how such dynamics differ as remote learning matures and students’ 
preparedness (especially physical preparedness) changes with the 
consistent support from higher education institutions. Namely, our 
ultimate objective is to provide and promote less biased and more 
informative learning analytics in higher education, which could 
provide timely interventions to at-risk students. The findings from 
our study delineate the importance of careful consideration of the 
potentially biased source of information when constructing 
learning analytics models in a higher education environment. Our 
findings suggest that students’ e-learning preparedness should be 
carefully considered to provide effective and diagnostic evaluation 
using learning analytics systems.  
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APPENDIX		

Table 1. E-learning preparedness survey questionnaire	

Questions Response 

(Q1) Does your device have a webcam 
and/or a microphone that will work with 
Zoom for virtual office hours and Q&A 
sessions?” 

1 - Both webcam and 
microphone 
2 - Only microphone 

(Q2) What type of device will you 
mainly use to access 
[online learning module]  
for [course name]?” 

1 - Desktop while on 
campus, plugin-bound 
laptop at home 
2 - Laptop 
3 - Desktop computer 
4 - Tablet 
5 - Chromebook 

(Q3) “Are you currently living in [city] 
with the same time zone?” 

1 - Yes 
2 - No  

(Q4) “How prepared do you feel for 
online learning this semester?” 

1 (Not prepared at all) to 
6 (Very prepared) 

 

Table 2. Course content familiarity survey questionnaire  

Questions Response 

(Q5.1) Please rate your level of confidence in the 
following assessment-related tasks: 
Creating new exam questions 1- Not  

confident at all 
 
2- Slightly 
confidence 
 
3- Fairly confident 
 
4-Completely 
confident 

(Q5.2) Creating authentic assessments 

(Q5.3) Creating scoring tools (e.g., rubrics) 

(Q5.4) Creating digital assessments 

(Q5.6) Using a variety of assessment methods 

(Q5.7) Fairness of your marking and grading 

(Q5.8) Consistency of your marking/grading 

(Q5.9) Speed of your marking and grading 

(Q6) Which of the assessment-related concepts are you familiar with? 

 

Table 3. Seldonian Algorithm and Logistic Regression Model 
Performance 

 

Unconstrained Model Features (Biased) 

 
Constrained Model Features (Bias-reduced) 

 
Feature 0 
Feature 1 
Feature 2 
Feature 3 
Feature 4 
Feature 5 
Feature 6 
Feature 7 
Feature 8 
Feature 9 
Feature 10 
Feature 11 
Feature 12 

Sequence frequency: [Assignment activities]  
Skewness of cumulative counts of the number of logs 
Cumulative mean of number of unique activities participated  
Percentile of number of unique activities  
Assignment 1 Submission Rank  
Quiz 2 Submission Rank  
Quiz submission average time difference 
Week 2 learning activities completion time difference 
Week 4 learning activities completion time difference 
Sequence frequency: [Lecture ⇒	Watch	Video]  
Sequence frequency: [Learning Resources]  
Cumulative max of the number of unique events  
Entropy of overall learning activity participation 

Figure 3. Final model weights comparison 

 
 
 
 
 

Performance 
score quantile 

Odd(0.015) Odd(0.025) Odd(0.05) LR 
ACC. F1 ACC. F1 ACC. F1 ACC. F1 

y>quantile(.10) 0.43 0.57 0.59 0.74 0.58 0.71 0.91 0.95 
y>quantile(.20) 0.56 0.68 0.62 0.73 0.62 0.73 0.84 0.91 
y>quantile(.30) 0.42 0.50 0.42 0.49 0.33 0.54 0.78 0.86 
y>quantile(.40) 0.32 0.33 0.39 0.46 0.72 0.76 0.76 0.80 
y>quantile(.50) 0.36 ]0.34 0.36 0.32 0.37 0.34 0.73 0.73 
y>quantile(.60) 0.44 0.29 0.52 0.52 0.42 0.22 0.75 0.67 
y>quantile(.70) 0.54 0.43 0.47 0.18 0.49 0.16 0.79 0.60 
y>quantile(.80) 0.57 0.09 0.42 0.35 0.44 0.27 0.84 0.49 
y>quantile(.90) 0.57 0.16 0.36 0.20 0.35 0.17 0.90 0.30 
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ABSTRACT
As computer-based learning platforms have become ubiq-
uitous, there is a growing need to better support teachers.
Particularly in mathematics, teachers often rely on open-
ended questions to assess students’ understanding. While
prior works focusing on the development of automated open-
ended work assessments have demonstrated their potential,
many of those methods require large amounts of student
data to make reliable estimates. We explore whether a prob-
lem specific automated scoring model could benefit from
auxiliary data collected from similar problems to address
this “cold start” problem. We examine factors such as sam-
ple size and the magnitude of similarity of utilized problem
data. We find the use of data from similar problems not only
provides benefits to improve predictive performance by in-
creasing sample size, but also leads to greater overall model
performance than using data solely from the original prob-
lem when sample size is held constant.

Keywords
Auto-scoring, Open-ended questions, Mathematics, Natural
Language Processing, Machine Learning

1. INTRODUCTION
The development of online learning platforms [12, 10] have
transformed the instructional practices and learning expe-
riences in traditional and expanded learning environments.
These online-based learning platforms offer automated sup-
ports for assessing students’ work as well as providing feed-
back. While in the past these supports were generally re-
stricted to closed-ended problems with a finite number of
accepted correct responses, advancements in machine learn-
ing and natural language processing methods have led to the
development of tools that support open-ended work [15, 4,
2]. As open-ended questions in mathematics are widely used
by teachers to understand the students’ knowledge state and

their understanding of a topic, these types of tools have great
utility for both teachers and students using these systems.

Automatically scoring mathematical expressions and expla-
nations has several distinctive challenges due to the inter-
leaving of linguistic and non-linguistic terms (e.g. such as
numbers and mathematical expressions). For example, [13]
provides automatic grading and feedback for math open
response questions using clustering techniques, but it ig-
nores all text explanations to focus solely on numerical ex-
pressions. In the past few years, there have been several
works focused on the development and improvement of auto-
mated methods for assessing student open-ended responses
in mathematics [6, 18, 17, 8]. These methods are mostly
based on evaluating given student answers based on histori-
cal student answers and the scores given by teachers to such
data. [6] compared the performance of different models for
scoring math open-ended responses and attempted to estab-
lish a benchmark evaluation procedure to evaluate future
models. Building on that work, [2] improved performance
by using Sentence-BERT (SBERT) [14] embeddings on the
same dataset to score student responses. SBERT modifies
the pre-trained BERT (Bidirectional Encoder Representa-
tions from Transformers) [5] model to generate sentence-
level embeddings. Similar approaches are utilized in recom-
mending feedback messages for teachers to give to students.

As is prevalent in several machine learning applications,
many of these approaches are susceptible to the cold start
problem, where implementations of such methods may lack
sufficient data to make informed estimates. While the im-
pact will vary depending on the model and the context, most
assessment models require non-trivial amounts of data to
make accurate predictions (c.f. [1]) which may take time
and effort to acquire. In cases when there is a newer student
response that has not been encountered in the past, these
types of methods often fall behind in suggesting an accurate
score/feedback message posing this as the cold start prob-
lem. In light of this, mitigating the impact of this cold start
problem would provide support for teachers across a wider
range of problems. Transfer learning [16] is commonly used
as a means of addressing the cold start problem. Within the
field of mathematics education, we may be able to leverage
data from similar content to improve performance in cases
where there would otherwise be insufficient data to train an
automated assessment model.
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We seek to explore the effectiveness of leveraging auxiliary
data (student responses) to similar open-ended problems in
the auto-scoring of a new problem with limited labeled data.
With the goal of addressing the cold start problem, we in-
tend to answer the following research questions: 1. Does the
addition of new labeled data from a similar open-response
problem, improve the predictive performance of single prob-
lem based auto-scoring models? 2. Does leveraging data
from a similar problem lead to better model performance in
comparison to using data from a randomly selected prob-
lem? 3. What is the effect of incorporating auxiliary data
into the training of an auto-scoring model and are there any
benefits beyond that of increasing sample size?

2. METHODOLOGY
2.1 Dataset
For this study, data1 consists of all student answers that
have ever been submitted to open-ended problems within
ASSISTments. For this study, we arbitrarily selected an
open response problem within this dataset that contained
at least 40 student responses (n=45) to act as a representa-
tive problem. For consistency of terminology, this represen-
tative problem will be referred to as the “original problem”
throughout this paper, and will represent the problem for
which we would like to train an auto-scoring model (e.g. we
will treat it as the problem with insufficient data).

The selected problem pertains to logarithms, and presents
the students with the following equation: “5log(x+4) = 10”;
students are asked to either solve for x and explain their
steps to solve or to type “no solution” if no viable solu-
tion exists. We then collaborated with a content expert
to select a similar open-ended problem with a comparable
number of existing labeled student answers (n=43) to train
a model. This second problem, referred to as the “similar
problem” throughout the remainder of this paper, had the
same prompt as the original problem but with the follow-
ing equation: “log2(1−x) = 4”. While we acknowledge that
the selected problems border on the threshold of what might
be considered open-ended, much of the content of open cur-
ricula pair close-ended and open-ended components within
many of their questions (e.g. solve and explain). In this way,
the selected problems result in sufficient variation in stu-
dent answers to examine auto-scoring models, and allow us
to easily identify a problem with undeniable similarity both
in terms of content and structure. As part of our analyses,
we removed any problem from the remaining dataset con-
taining fewer than 10 labeled student responses to mimic a
practical application where such problems would not be con-
sidered sufficient in providing auxiliary data since we will be
sampling from random problems.

Minor preprocessing was performed on the data to match
the format of [2] which introduced the SBERT-Canberra
model. These steps included the removal of HTML tags,
other special characters, and references to images. Like in
[6, 2], teacher-provided scores follow a 5-point integer scale

1The data and code used in this work cannot be publicly
posted due to the potential existence of personally identi-
fiable information contained within student open response
answers. In support of open science, this may be shareable
through an IRB approval process. Inquiries should be di-
rected to the trailing author of this work.

ranging from 0, indicating poor performance, through 4, in-
dicating high performance. While we acknowledge that or-
dinal relationships are lost by representing the labels in this
way, the scale is converted to a 5-valued categorical one-hot
encoded vector and modeled as a multi-class prediction task
(i.e. the model treats each score as a mutually-exclusive
label) to keep consistent with [2].

2.2 Model
The ’‘SBERT-Canberra”model [2] follows a similarity-ranking
procedure to generate its predictions. When producing a
prediction for a given student response, it applies SBERT
to generate an embedding that captures semantic and syn-
tactic meaning, such that similar responses are mapped to
closer points within the embedding space. The SBERT em-
bedding for this student response is compared to SBERT
embeddings of historic labeled student responses. Using
the Canberra distance measure [11], the score for the his-
toric response corresponding to the smallest distance (i.e.
the most similar response) is used as the score prediction.
We chose to use this model as 1) it outperformed existing
benchmarks in assessing student responses in mathematics
[2], 2) no“training” involved in the traditional machine learn-
ing sense so we do not need to optimize hyperparameters,
and 3) the model performance is directly linked to the scale
and diversity of the historic responses.

2.3 Model Evaluation
To examine the use of auxiliary data, we conduct 2 analy-
ses that each compare the SBERT-Canberra model with 3
different training sets. The analyses follow a bootstrapping
procedure which samples with-replacement from the avail-
able data at increasing intervals. At each interval, student
responses are randomly sampled to train and evaluate the
model using 10-fold cross validation, where sampling is con-
ducted within the training folds. This entire process is re-
peated 25 times, with the model performance being averaged
across these iterations (to reduce noise caused by unlucky
sampling). To evaluate the scoring results, the area under
the curve, AUC, (calculated using the simplified multi-class
calculation of ROC AUC from [9]) is used as the primary
metric to compare the model’s predicted score of a student
response to the actual score that was provided by a teacher.

The models are distinguished by their training data. The
Baseline Model uses only student responses from the origi-
nal problem. The Similar Problem Model uses a combina-
tion of student responses from the original problem as well
as auxiliary responses sampled from the similar problem.
Finally, the Random Problem Model uses a combination of
student responses from the original problem as well as stu-
dent responses sampled from 5 randomly-selected problems
from the remaining dataset; per design and due to the scale
of the data used, it is very unlikely for these problems to be
similar to the original problem, allowing for comparisons to
be made in regard to differing magnitudes of similarity.

We randomly sample 40 scored responses from the similar
problem and from the 5 random problems to create a compa-
rable set. Due to the large variations in sample sizes across
problems within the dataset, we sample student responses
for the Random Problem Model using a stratified selection
method. From the 5 randomly-selected problems per inter-
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Figure 1: Average AUC varying original problem sample size.

val, 8 scored student responses are randomly selected per
iteration in the interval and they compose the 40 samples to
supplement the training data from the original problem.

The first analysis replicates a real-world scenario where we
may have a small number of labeled samples for the original
problem, but a larger number of samples that may be lever-
aged from other problems. For each bootstrapping interval,
we randomly sample data from the original problem rang-
ing from 0 to 40. The average performance of each model is
then plotted with 95% confidence intervals calculated over
the 25 repeated runs per interval. While the Baseline model
is limited to only the 0 to 40 original problem samples, both
the Similar Problem Model and Random Problem Model are
able to use 40-80 samples over the set of intervals.

As it is hypothesized that the largest benefit of using aux-
iliary data is the added sample size, we conduct a second
bootstrapping analysis that observes a constant sample size
while varying the proportion of data used from the origi-
nal problem. All models (except for the baseline) utilize 40
samples allowing us to see how the source of content affects
model performance independent of data scale. The percent-
age intervals range from 0% to 100% of the training samples
are from the original problem in 10% increments. So, at the
first interval, all samples are responses from other problems,
while at the end, all 40 samples are from the original prob-
lem. As the Baseline Model only utilizes data from the orig-
inal problem, we are unable to maintain a consistent sample
size across intervals. For comparative purposes, we increase
the training sample size with the increasing percentage (i.e.
using 0 samples, then 4 corresponding with 10%, etc.).

3. RESULTS AND DISCUSSION
For intervals 0 and 0%, no training data was provided for
the baseline model so the average AUC of the baseline model
is assigned to be 0.5 which is equivalent to chance.

Observing the Similar Problem Model in Figure 1, the model
outperforms the average AUC of the baseline model across
every increment of training samples from the original prob-
lem by approximately 0.073 in terms of average AUC per
interval. This difference is also statistically reliable across a
majority of intervals by comparing the confidence intervals.

Regarding the Random Problem Model, the model outper-

Figure 2: Average AUC varying sample proportion.

forms the average AUC of the baseline model across 43% of
the increments tested. At an average difference of just 0.007
in terms of average AUC per interval, very little difference is
observed between the Random Problem Model and the Base-
line Model. It is worth noting that the performance of the
Random Problem Model does outperform the Baseline over
the initial intervals when sample size is the smallest, sug-
gesting that even randomly-selected problems may provide
benefit. However, this model also exhibited large variations
in performance, leading us to omit the error bars to improve
the readability of the figure; this variation is presumably at-
tributable to the random selection of problems with varying
magnitudes of similarity to the original problem.

An interesting trend emerged in regard to the Similar Prob-
lem Model as seen in Figure 2. When using 40 total train-
ing samples (and keeping this constant) with some percent-
age of samples from the original problem and the remaining
samples from the similar problem, the modified model out-
performs or equals the average AUC of the baseline model
across every increment of training samples from the original
problem by around 0.053 in terms of average AUC per inter-
val. After the peak performance in terms of average AUC,
the model’s performance lessens as the percentage of train-
ing samples coming from the original problem increases.

The Random Problem Model follows closely with the perfor-
mance of the baseline. When using 40 total training samples
with some percentage of samples from the original problem
and the remaining samples from 5 random problems, the
modified model outperforms or equals the average AUC of
the baseline model across 54% of the increments tested and
by around 0.005 in terms of average AUC per interval.

The Baseline Model across both analyses provide insights
into the current implementation of auto-scoring models. While
the performance of the SBERT-Canberra model will likely
vary across problems, we observe here that the model con-
verges within a relatively small set of samples. After train-
ing from 12 samples from the original problem, the baseline
model converges in terms of average AUC performance. It
does seem to matter, however, which samples are used to
train the model. We can see in both analyses that the Base-
line Model’s confidence intervals decrease with more sam-
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ples. The relatively wide bounds over low sample sizes sug-
gests that there are subsets of training samples that are bet-
ter than others. This is not surprising as the diversity of data
is often considered just as important as the scale in many
machine learning applications [7].

There is a similar trend in regard to the scale of confidence
bounds for the Similar Problem Model. Although the aver-
age AUC performance stabilized after 10 samples, the confi-
dence intervals continued to shrink in the first analysis, but
remained relatively constant in the second analysis. In both
analyses, however, we see consistent, if not statistically re-
liable differences in comparison to the Baseline Model. In
addressing our first research question, this finding suggests
that the use of auxiliary data can lead to notable benefits
to model performance. We see in the first analysis that the
added sample size leads to notable performance through all
intervals. While our initial hypothesis was that this benefit
would likely be attributable to increased sample sizes, the
trend of this Similar Problem Model in the second analy-
sis contradicts that hypothesis. While this model still out-
performs the baseline, as sample size is held constant, this
cannot be the contributing factor to the differences we ob-
serve. We expected the final interval of Figure 2 to be an
upper bound for model performance as this is when the data
is most closely related to the test set, but we found that
the inclusion of data from a similar problem added benefits
that extend beyond the impact of sample size. This find-
ing addresses our third research question, but still remains
inconclusive as to what benefit is provided. It is possible,
for example, that the auxiliary data acts as a regulariza-
tion method (c.f. [3]), but the analyses conducted here are
only able to rule out sample size being the contributing fac-
tor. These findings further confirm that scoring models can
be improved upon when provided with more varied training
samples from both the problem it is trying to score and sim-
ilar problems rather than only being trained from samples
of the original problem. Even when trained with the same
number of samples, the Similar Problem model’s average
AUC decreases after a peak training percentage composition
which supports the theory that the quality of the training
samples from the original problem are less than the quality
of the combined samples.

What is perhaps most surprising about this comparison in
the second analysis is that the model trained from 100%
of data from the similar problem seems to outperform the
model trained from 100% of the original problem. We be-
lieve that this is an artifact of the selected problems and the
level of similarity that they exhibit. As such, we would not
expect this finding to extend to every open-ended problem,
but rather could extend to a subset where there is strong
similarity between problems both in terms of content and
the structure of student responses; this is the scenario where
we believe this method would provide the most benefit.

This is particularly the case considering that the same level
of benefit was not observed in regard to the Random Prob-
lem Model across the two analyses. Our hypothesis, as pre-
viously introduced, is that the added benefit is likely corre-
lated with the magnitude of problem similarity. Even if this
hypothesis is flawed, we are seeing that certain subsets of
problems lead to better performance than others, emphasiz-

ing the importance in selecting suitable problems from which
to draw auxiliary data. In light of this, we can address our
second research question in that problem similarity, loosely
defined, does seem to impact performance.

4. CONCLUSIONS AND FUTURE WORK
In this paper, we explore a possible solution to the cold-
start problem in automating the assessment of student open-
ended work. We have shown that our SBERT-Canberra
method using similar auxiliary problem data consistently
and significantly outperformed the model using data solely
from the original problem. When there are few training
samples, even the modified SBERT-Canberra method using
random problems’ data to supplement helped improve the
performance. Throughout the exploration of both analyses,
there is a noticeable benefit to supplementing the training
samples with data from other problems. By supplementing
the original training samples with multiple similar problems,
we hypothesize that it will lead to even larger performance
improvements to automatic scoring regardless of the number
of original training samples. This would be particularly the
case if our hypothesis is correct where some of this benefit
is derived from regularizing factors.

The largest limitation is that this paper focuses on predict-
ing the scores of only one specific problem. While we argue
that the analyses conducted here were sufficient to address
our research questions, there is a larger uncertainty that re-
mains in regard to how representative these results are. This
work should be tested across a variety of problems to ensure
that the results generalize well to other problems. When de-
ciding what constitutes a similar problem, future work could
explore other methods that consider a wide range of com-
parison characteristics. Descriptives including the problem
text, knowledge component, grade level, average difficulty,
etc may be utilized in comparing problems to determine sim-
ilarity. Defining such attributes would also provide oppor-
tunities to build models to better understand how matching
characteristics correlate with model performance gains.

Future work should use transfer learning to use the SBERT-
Canberra model of a similar problem as a starting point to
score a new problem’s open-ended response. As more data
from problems are collected, we found that there may still be
benefits to using auxiliary data even beyond addressing the
cold start problem. Furthermore, teachers often need sup-
ports in providing more meaningful feedback beyond that
of a numeric score. ASSISTments is already able to recom-
mend feedback for trained problem models, but it requires
a lot of data in order to do so (more than for the automated
scoring task). The use of auxiliary data as explored in this
work may prove useful in other such contexts.
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ABSTRACT
Previous studies suggest that Deep Knowledge Tracing (or
DKT) has fundamental limitations that prevent it from sup-
porting mastery learning on multi-step problems [15, 17].
Although DKT is quite accurate at predicting observed cor-
rectness in offline knowledge tracing settings, it often gen-
erates inconsistent predictions for knowledge components
when used online. We believe this issue arises because DKT’s
loss function does not evaluate predictions for skills and
steps that do not have an observed ground truth value. To
address this problem and enable DKT to better support on-
line knowledge tracing, we propose the use of a novel loss
function for training DKT. In addition to evaluating pre-
dictions that have ground truth observations, our new loss
function also evaluates predictions for skills that do not have
observations by using the ground truth label from the next
observation of correctness for that skill. This approach en-
sures the model makes more consistent predictions for steps
without observations, which are exactly the predictions that
are needed to support mastery learning. We evaluated a
DKT model that was trained using this updated loss by
visualizing its predictions for a sample student learning se-
quence. Our analysis shows that the modified loss function
produced improvements in the consistency of DKT model’s
predictions.

Keywords
Deep knowledge tracing, loss function, online learning

1. INTRODUCTION
Intelligent tutoring systems are widely used in K-12 edu-
cation and online learning platforms to enhance learning.
Knowledge tracing algorithms are embedded in such intelli-
gent tutoring systems to support automatic selection of the

problems a learner should work on next based on their mas-
tery of different skills. There are multiple popular knowl-
edge tracing algorithms that are frequently used to predict
students’ performance in offline settings. While these ap-
proaches have all achieved satisfactory performance in these
settings, there is only limited work investigating the use of
knowledge tracing algorithms in online settings [11, 17].

Deep Knowledge Tracing (DKT) is a knowledge tracing ap-
proach that has gained in popularity in recent years. It em-
ploys a recurrent neural netwok (RNN) [16] to predict stu-
dent’s correctness on problem-solving steps that use particu-
lar skills. Though some studies demonstrated that DKT out-
performs other knowledge tracing models such as Bayesian
Knowledge Tracing [1] and Performance Factors Analysis
(PFA) [10], it has some fundamental limitations and draw-
backs. For example, DKT’s neural network representation
is not easily interpretable, making it difficult for people to
understand DKT’s predictions. Additionally, Yeung and Ye-
ung [15] identified two problems with DKT—the model fails
to reconstruct the observed input, and the DKT predictions
are inconsistent and fluctuate over time.

In this paper, we investigate the issue of inconsistent pre-
dictions. Our work explores the hypothesis that DKT’s in-
consistent behavior is primarily due to its loss function. We
propose a novel modification to the DKT loss functions de-
signed to produce more consistent behavior. Multiple au-
thors have proposed ways of modifying the loss function by
adding regularization terms [7, 8, 15]. However, our research
explores a novel modification that evaluates predictions for
each skill that does not have an observed ground truth value
by using the next observed correctness for that skill.

We use the “Fraction Addition and Multiplication, Blocked
vs. Interleaved” dataset accessed via DataShop [5] to evalu-
ate a DKT model generated through training with this new
loss function by visualizing its predicted correctness for each
skill at each time step in a heatmap. We then compare
these results with the predictions generated by a DKT model
trained using the original loss function. Our results indicate
that training with the revised loss function produces a DKT
model that generates more consistent predictions than one
produced by training with the original loss function.

Q. Zhang, Z. Chen, N. Lalwani, and C. MacLellan. Modifying
deep knowledge tracing for multi-step problems. In A. Mitrovic and
N. Bosch, editors, Proceedings of the 15th International Conference
on Educational Data Mining, pages 684–688, Durham, United King-
dom, July 2022. International Educational Data Mining Society.

© 2022 Copyright is held by the author(s). This work is distributed
under the Creative Commons Attribution NonCommercial NoDeriva-
tives 4.0 International (CC BY-NC-ND 4.0) license.
https://doi.org/10.5281/zenodo.6853145
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2. BACKGROUND
2.1 Knowledge Tracing
Knowledge tracing approaches model a student’s knowledge
over time and predict their performance on future problem-
solving steps. Knowledge tracing algorithms are embedded
in Intelligent Tutoring Systems to support automatic selec-
tion of the next problem a student will practice [13]. Much
of the research on knowledge tracing has explored its use
in offline settings; however, little work has explored the
use of knowledge tracing in online settings. In offline set-
tings, knowledge tracing models are fit to existing data sets,
typically to evaluate different knowledge component mod-
els to identify those that better fit the data. In contrast,
the objective of online knowledge tracing is to keep track
of the student’s level of mastery for each skill (or knowledge
component) and/or predict the student’s future performance
based on their past activity. In a nutshell, knowledge tracing
seeks to observe, depict, and quantify a student’s knowledge
state, such as the level of mastery of skills underlying the
educational materials [6]. The outputs of knowledge tracing
support mastery learning and intelligent selection of which
problems a student should work on next.

2.2 Deep Knowledge Tracing
Pieche et al. [12] proposed the Deep Knowledge Tracing
(DKT) approach, makes use of a Long Short-Term Memory
(LSTM) [4] architecture (complex variant of Recurrent Neu-
ral Network, or RNN) to represent latent knowledge. The
use of an LSTM has become increasingly popular because
it reduces the effect of vanishing gradients. It employs cell
states and three gates to determine how much information to
remember from previous time-steps and also how to combine
that memory with information from the current time-step.

The DKT model accept an input matrix X, which is con-
structed by one-hot encoding two pieces of information for
each step: qt, which represents the knowledge components,
and at, which represents whether the question was answered
correctly. The information at each time step is packed into
a tuple denoted as ht = {qt, at}. h0 represent the initial
state at time 0 (where t = 0). The network outputs the
prediction Y based on the input and previous state. Y is
a matrix that represents the probability of each KC being
correctly answered at each step by a given student. yt is the
predicted probability at time t.

The objective of DKT is to predict performance at the next
iteration (given the data from time 0 to t, predict t+ 1). To
optimize next iteration results, a dot product of the output
vector yt and the one-hot encoded vector of the next prac-
ticed KC δ(qt+1) is calculated. We take the cross entropy
(denoted as l) of the dot product, average over number of
steps and number of students. All together, the original loss
function of DKT LOriginal can be expressed as:

LOriginal =
1∑n

i=1(Ti − 1)

n∑

i=1

Ti−1∑

t=1

l(yt · δ(qit+1), ait+1) (1)

where n is the number of students, and Ti is the length of
the interaction sequence for student i.

When the size of a dataset increases, deep knowledge trac-
ing generally has an edge over the classical statistical mod-
els, such as Bayesian Knowledge Tracing, Streak Model or
Performance Factor Analysis, when it comes to predicting
learner performance. The original DKT work [12] demon-
strated that it can produce tremendous gains in AUC (e.g.,
25%) when compared to prior results obtained from other
knowledge tracing models. However, subsequent work sug-
gests that the gains are not as large as originally anticipated
[14]. One of the key advantages of DKT over classical knowl-
edge tracing methods, such as BKT, is that it has access to
more precise information about the temporal order of inter-
actions as well as information about KCs not involved in the
current step [2]. We intend to leverage these advantages of
DKT to support online knowledge tracing [17] and explore
whether it is possible to get better mastery learning behav-
ior when using DKT rather than classical knowledge tracing
approaches, such as BKT.

2.3 Challenges with DKT
Even though DKT has many advantages over other knowl-
edge tracing models like Bayesian Knowledge Tracing (BKT)
[1], Streak Model [3] and Performance Factor Analysis (PFA)
[10], the model still has several limitations. Specifically,
DKT models are difficult to interpret [14], make inconsis-
tent predictions [15], and only consider the correctness of
skills that are observed on each time step [7].

Figure 1: This example, drawn from Zhang and MacLellan
(2021) [17], shows DKT model predictions on a single knowl-
edge component given one student correctness sequence.

Yeung and Yeung [15] identified that the DKT predictions
are not consistent and fluctuate over time. They also showed
that the DKT model fails to reconstruct the input infor-
mation in its predictions. For example, DKT may predict
lower correctness on steps tagged with a particular skill even
when the student correctly performs steps that contain the
skill. Figure 1 is an example of this effect. From the first to
the third steps, the student did not answer the problem cor-
rectly, but DKT predicted the third step would have a 100%
chance of being correct. From the fourth to the sixth steps,
the student correctly answered the question while DKT’s
predictions dropped. Upon closer investigation of the DKT
model, we believe that this unexpected behavior is due to
the way that the loss is computed.

Our previous work [17] highlighted DKT’s shortcoming with
respect of giving reliable predictions of correctness on steps
tagged with each skill during online knowledge tracing. We
want to further investigate the issues that prevent DKT from
giving consistent predictions in the scenario of multi-step
problem solving and online knowledge tracing. In this paper,
we propose a novel revision of DKT’s loss function. We will
discuss our approach in Section 3.1.
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3. METHODOLOGY
We propose a novel approach to make the DKT model pre-
dictions more consistent by modifying the loss function used
during training. We trained and tested on the “Fraction Ad-
dition and Multiplication, Blocked vs. Interleaved” dataset
accessed via DataShop [5] with 80% training data and 20%
testing data. This data was collected from a study presented
in [9], the students solved problems by interacting with a
fraction arithmetic tutor and solved three different types
of problems. The three problem types are: Add Different
(AD), add fractions with different denominators; Add Same
(AS), add fractions with same denominators; Multiplication
(M), multiply two fractions.

We created two DKT models: one trained using the original
DKT loss function and another trained using the modified
loss function. We then used the two models to make predic-
tions on the same student sequence. Lastly, we visualized
the predictions for each knowledge component (KC) as heat
maps and evaluated the prediction consistency by comparing
the heat maps generated using the different DKT models.

All DKT models in this paper consists of a input layer, a
hidden layer, and a output layer with size 28, 200, and 14,
respectively. The number of knowledge components deter-
mines the size of the input and output layers. The LSTM
(long short-term memory) contained 200 hidden units. We
trained the model over 1000 epochs, with a learning rate of
0.0025, a dropout rate of 0.4, and a batch size of 5. The
only difference between the original DKT approach and our
approach is the loss function used during training.

3.1 Revision of DKT Loss Function
As outlined in Section 2.3, DKT’s original loss function only
evaluates the DKT predictions that have observed ground
truth values. To overcome this challenge, we propose a re-
vision to the loss function. Rather than using the original
ground truth values typically provided to DKT’s loss func-
tion, our revised approach uses modified ground truth data
that fills in steps without any observations by taking the
next observation of that skill (see Figure 2).

Figure 2: Graphical depiction of â. Colored cells denote
observed student performance (0/red equals incorrect and
1/green equals correct). Cells with white backgrounds are
extrapolated from the next observation of each skill.

Mathematically, we use â to represent the updated ground
truth values that populate missing cells using the value from
the next observation of each skill, see Figure 2. For example,
for a specific knowledge component, if there is no ground
truth at ti and the next ground truth is at ti+n, then the â
contains an entry at ti that has the same value as the entry
at ti+n. As a result, the entries from ti to ti+n−1 would
share the same ground truth with ti+n.

Next, we updated the loss function so that it evaluates the

model’s predictions for all entries that have a value in the
updated ground truth values (â). Here is the mathematical
representation of this new loss function:

LNext =
1∑n

i=1

∑K
k=1(Ti,k − 1)

n∑

i=1

K∑

k=1

Ti,k−1∑

t=1

l(yt,k, â
i
t+1,k)

(2)

This updated loss function will evaluate most of the DKT
predictions that did not originally have observed ground
truth values. Note, some predictions are still not evaluated
(those that occur near the end and do not have a next obser-
vation to use for evaluation). Because this new loss function
evaluates more of DKT’s predictions in between observa-
tions, we believe it will result in more stable predictions.

4. MODEL EVALUATION
To evaluate the performance of DKT model after revising
the loss function, we took a complete student sequence and
generated correctness predictions for each skill using the
DKT model. We have 14 skills (knowledge components) and
three types of problems as introduced in Section 3. There
are 8 steps for an Add Different (AD) problem, 3 steps for
an Add Same (AS) problem, and 3 steps for a Multiplica-
tion (M) problem. Figure 3 is a comparison of the student’s
predicted mastery of each KC at each step when solving a
problem (problem type shown on the x-axis). We use the
color to represent DKT’s prediction, with green indicating
the student mastering a skill and red indicating not mas-
tering a skill. We use the numbers to represent the ground
truth where 1 equals correct and 0 equals incorrect. Figure
3b shows a substantial improvement in prediction consis-
tency over Figure 3a.

In Figure 3a, the DKT predictions fluctuate over time. There
is also a pattern of inconsistent predictions on the “AD
Right Convert Numerator”, “AD Answer Numerator” and
“AD Done” skill even though the ground truth values for
these skills are 1 during the series of problems practiced.
Initially, the DKT model trained using the original loss pre-
dicts that the student masters this skill after a few practices.
However, we see that for certain repeating periods over the
remainder of the sequence, the model predicts the student
will get steps with these skills wrong. The student mastered
these three skills initially. As the student starts solving ad-
ditional steps, however, the DKT model alternates between
correct and incorrect predictions over the remainder of the
sequence. These behaviors are unexpected and contrary to
the typical assumption that students will not forget skills
once they obtain mastery.

In Figure 3b, the problem of wavy DKT predictions (alter-
nating correct and incorrect predictions for different skills)
is largely addressed. The DKT model with the revised loss
predicts that the student obtains mastery on all the AD
skills and retains this mastery through the end of training.
The DKT predictions are consistent with the ground truth
in this case.

These results suggest that our revised loss function pro-
duces more consistent DKT model predictions. Besides the
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(a) DKT predictions for each KC using model trained with original loss function.

(b) DKT predictions for each KC using model trained with updated loss function.

Figure 3: A comparison model performance between DKT models trained using the original and revised loss functions.

improvement, we noticed a common issue that occurred in
both the original and the revised DKT model. The student
started with 10 AS problems but both DKT models predict
improvement of mastery in M and AD skills even before M
and AD problems were given to the student. We believe
that more work is needed to better understand how DKT
relates the corresponding skills in a multi-step problem.

5. RELATED WORKS
Multiple authors have discussed the limitations of DKT in
handling multi-skill sequences and possible modifications to
the loss function to improve model behavior. Yeung and
Yeung [15] proposed regularization terms to address the re-
construction problem (where model predictions move oppo-
site to student performance) and the wavy prediction tran-
sition problem (where skill predictions cycle between high
and low). Inspired by their study, we believe that revising
the loss function is the key to enhancing the consistency
of DKT model predictions. Rather than addressing these
two problems separately using regularization terms, our ap-
proach modifies the loss function so that it evaluates predic-
tions that lack ground truth observations.

Beyond modifying the loss function, Pan and Tezuka [8] pro-
posed pre-training regularization, which incorporates prior
knowledge by including synthetic sequences to the neural
network before training DKT with real student data. Their
motivation is similar to ours—their goal is also to solve the
inverted prediction problem (referred to as the reconstruc-
tion problem by Yeung and Yeung). They added synthetic
data to a baseline model trained with student data and
then introduced two regularization measures to measure the
severity of the inverted prediction problem. This approach
is different from ours as we are using the ground truth value
of each skill to populate skills and steps that do not have
observations.

6. CONCLUSIONS AND FUTURE WORK
We revised DKT’s loss function to improve prediction con-
sistency across all KCs over time. Our main contribution
is that we propose a novel way of modifying the DKT loss
function by evaluating skill predictions at the time steps that
lack ground truth observations. Instead of only addressing
DKT’s consistency issues, our ultimate goal is to use DKT as
an approach to keep track of student performance in online
learning environments and recommend problems to support
personalized learning.

Through our heat map analysis, we demonstrated that a
DKT model trained with our improved loss function gener-
ates more consistent predictions than a DKT model trained
with the original loss. Our analysis showed that predictions
for certain skills would cycle between high and low for a
DKT model trained with the original loss function; i.e., gen-
erated inconsistent predictions over time. In contrast, the
DKT model trained with the revised loss function showed
much smoother, more consistent predictions that started
lower and improved steadily over the course of training.

Moving forward, we have a number of additional future di-
rections that we would like to explore to improve DKT’s
stability and accuracy. In our current work, we propose an
updated loss function that evaluates the DKT predictions
for each skill in terms of the next observation of that skill.
In future work, we instead want to evaluate each prediction
in terms of all future predictions. Further, we plan to weight
each evaluation by a decay factor γ as Yeung & Yeung [15]
proposed in their future direction. Finally, we should move
online and evaluate how well the revised DKT operates in
an online mastery learning context.
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ABSTRACT
Student behaviour should correlate to the course perfor-
mance. This paper explored different types of clustering
algorithms using the pre-midterm student behaviour data.
We found meaningful and interpretive results when clus-
tering algorithms generate three clusters. The clusters can
be briefly summarized as potential top performance (PTP)
students, potential poor performance (PPP) students, and
mixed performance (MP) students. We found that PTP
students usually submit early and gain a high score, PPP
students usually submit late and gain a low score, and MP
students usually make most submissions. MP students are
hard to cluster. However, we found a good connection be-
tween other students’ behaviour and performance if we leave
out MP students.

Keywords
Computer Education, Clustering, Student Behaviour, Auto-
grading System, Student Performance

1. INTRODUCTION
Students expose different learning behaviours in program-
ming courses. Several studies focused on analysing the stu-
dents’ data in order to understand student behaviours [5,
1, 14, 11]. The clustering technique was one of the com-
mon methodologies used in such studies. There are several
benefits to identifying students’ behaviours. First, groups
of students with similar academic and behaviour character-
istics would benefit from the same intervention, which can
reduce the time for instructors to identify and implement
the right intervention for individual students [12]. Second,
a better understanding of students’ misconceptions can lead
to a better support system for novice programmers and pro-
vide adaptive feedback for students [4]. Last but not least,
it is also a common technique used to predict student per-
formance [6, 20, 17].

Although clustering techniques can be a valuable tool for re-

searchers to categorize different student behaviours, several
studies only applied a single type of clustering algorithm
in their experiments [4, 15, 3, 8]. However, clustering re-
sults can be affected by the wrong choice of the clustering
algorithm, which can cause the result under the threat of va-
lidity. To address this issue, people should experiment with
multiple clustering algorithms to confirm that different clus-
tering algorithms produce similar results where the essential
characteristics of the resulting clusters are identical. Our
experiment confirms that clusters’ essential characteristics
are the same across multiple clustering algorithms, forming
further discussion foundations.

Many studies applied clustering techniques to predict stu-
dent performances [10, 7, 16]. However, the data used in
these studies generally include both the pre-midterm data
and the post-midterm data. Because of a strong correla-
tion between the midterm exam grades and the final exam
grades [2, 6, 9], which is also true for our data (Pearson
correlation of 0.81), it suggests that students who failed
the midterm are likely to fail the final exam. Therefore,
it is critical to identify at-risk students before the midterm.
Our study merged multiple clustering algorithms into a pre-
dictive model to predict students’ performance using pre-
midterm data.

This study applied the clustering techniques to students’
behaviours exposed in their pre-midterm submissions in an
auto-grading system, Marmoset [18], to categorize them into
different clusters. We applied multiple clustering techniques
and compared their results to remove any effects caused by
the wrong choice of the clustering algorithm. Then we tried
to predict students’ performance using these clustering tech-
niques. The research questions we want to ask are:

• RQ1: Are different clustering algorithms producing
different results?

• RQ2: What are the characteristics of students in dif-
ferent clusters?

• RQ3: What were the exam grades of students in dif-
ferent clusters?

We want to clarify that we want to separate RQ1 and RQ2
because RQ1 is closely related to the predictive power of the
clustering techniques, while RQ2 mainly focuses on provid-
ing better insights into the clusters.
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2. COURSE BACKGROUND
The data we used in the study is collected from an introduction-
level programming course in an R1 university in Canada.
Students were supposed to learn how to carry out opera-
tional tasks using the C and C++ languages, perform pro-
cedural and object-oriented programming, and other rele-
vant programming knowledge. The preliminary experiments
were based on the data of 130 students who attended both
the midterm and final exams in the course. Programming
knowledge was not required.

In the course, an auto-grading system, Marmoset [18], was
used. We refer to a coding/programming question in Mar-
moset as a task. A task may contain multiple tests. For
any task, a student can make multiple submissions against
it. Marmoset will automatically test it for each submission
and reveal some test results to the student. Students can
thus learn some feedback from those test results and then
improve or fix their code accordingly.

In the course, there were different types of coding questions.
i) Coding Labs: coding labs took place in the lab room.
There was exactly one assigned task for each coding lab,
which was to be completed and submitted during the lab
period (2 hours in the morning). Before the midterm exam,
the coding lab was scheduled weekly. After the midterm
exam, the coding lab was scheduled biweekly. There was
a corresponding extended deadline (the same date but in
the evening). Some students may rely on that deadline
rather than finish during the lab. ii) Homework Assign-
ments: homework assignments were assigned for students to
do at home. They were assigned during lab time. Before the
midterm, homework problems were due the following week.
After the midterm, homework problems were due approx-
imately two weeks later. In every homework assignment,
there were multiple tasks, all of which had the same dead-
line. iii) Coding Examination: there was an in-lab coding
examination during the course. It was similar to a coding
lab. However, its grade comprised a portion of the midterm
grade. An extended deadline was also allowed for the coding
examination.

3. EXPERIMENT AND RESULTS
3.1 Features
The auto-grading system Marmoset stored every student’s
submission during the course. In our study, we extracted
three features.

• passrate: for every Marmoset task, we calculated the
best score (the best number of tests passed among the
submissions) a student made before the task deadline.
Then we divide the total number of tests of that task to
form the passrate feature. Because every assignment
had multiple tasks, so for assignments, we need to sum
the tasks’ best scores to form the best score for an
assignment, and we sum tasks’ total number of tests
to form the total number of tests for an assignment.
For example, assignment 1 had 4 tasks and a total
number of 54 tests. If a student’s best submissions
of that 4 tasks passed 6, 6, 7, and 8 tests separately,
then the passrate of that student for assignment 1 will
be (6 + 6 + 7 + 8)/54 = 0.5. This process was not

Table 1: Total number of tests for different assignments and
coding labs pre-midterm, “a” stands for homework assign-
ment, “l” stands for coding lab

assignment # total tests coding lab # total tests

a1 54 l1 8
a2 85 l2 19
a3 73 l3 19
a4 87 l4 19

needed for coding labs since there was only one task in
a coding lab. Table 1 shows the total number of tests
for different assignments and coding labs.

• lastsub: we extracted the lastsub feature as how many
minutes between the last submission a student made
and the task deadline. If a student made any submis-
sion before the deadline, this feature would contain a
non-zero value. Only if a student did not submit before
the deadline can the value be zero. Note that this fea-
ture will be zero for students whose submissions met
the extended deadline but did not meet the original
deadline for coding labs.

• nsub: the nsub feature represents how many submis-
sions a student made before the task deadline for a
given task. For assignments, we summed the numbers
of submissions of tasks to form the nsub of an assign-
ment.

The features used in clustering algorithms is summarized in
Table 2.

Table 2: Features, ∗ ∈ {1, 2, 3, 4}, “a” stands for homework
assignment, “l” stands for coding lab. Only pre-midterm data
were used

feature name

a∗ passrate
a∗ lastsub
a∗ nsub
l∗ passrate
l∗ lastsub
l∗ nsub

3.2 RQ1: What are the clustering results from
different clustering algorithms given the
pre-midterm data?

For research question 1, we explored all types of the clus-
tering algorithms provided in the scikit-learn python pack-
age [13]. It includes: K-Means (KM), Affinity Propaga-
tion (AP), Spectral Clustering (SC), Hierarchical Cluster-
ing (HC), and Density-based Spatial Clustering (DBSC). We
standardize every feature by removing the mean and scal-
ing to unit variance before clustering. For a sample x, the
standard score is calculated as:

z =
x− u

s

where u is the mean of the samples and s is the standard
deviation of the samples.
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We tested different options for setting the number of clusters
in different algorithms. We found that setting the number
to 3 will give us good interpretive results. In this section,
we will only compare the labelling. For the characteristics
of different clusters, we will discuss them in RQ2.

Table 3 presents the size of different clusters using differ-
ent clustering algorithms. To compare the cluster results
across different clustering algorithms, we used adjusted rand
index [19] for evaluation. Random labelling samples will
make the adjusted rand index close to 0.0, and the value
will be exactly 1.0 when the clustering results are identical.
Table 4 presents the results. Note that a cluster may be
given different labels in different clustering algorithms. We
re-numbered them according to the findings in the discussion
of RQ2.

Table 3: The size of different clusters in different clustering
algorithms

KM AP HC SC DBSC

cluster 1 62 56 48 58 32
cluster 2 59 65 75 63 89
cluster 3 9 9 7 9 9

Table 4: The adjusted rand index results (high to low)

first algorithm second algorithm adjusted rand index

KM AP 0.780665
AP SC 0.730717
KM SC 0.682500
KM HC 0.557372
HC DBSC 0.521486
HC SC 0.515544
AP HC 0.475727
AP DBSC 0.414938
SC DBSC 0.382402
KM DBSC 0.322811

From Table 3 and Table 4, we can tell the clustering results
from KM, AP, and SC are similar to each other (similar clus-
ter sizes and high adjusted rand index value). In contrast,
HC and DBSC produced different clustering results. Com-
bining KM, HC and DBSC should help reduce the effect of
an improper pick of the clustering algorithms.

3.3 RQ2: What are the characteristics of stu-
dents in different clusters?

We carefully examined students in different clusters. In-
terestingly, although the cluster results differed in the clus-
ter size and the adjusted rand index metric, we found that
students in different clusters share similar characteristics
across different clustering algorithms. We name the students
in the three clusters as: Potential-Top-Performance (PTP)
students, Potential-Poor-Performance (PPP) students, and
Mixed-Performance (MP) students.

Table 5 summarizes the characteristics of different students.

We also examined the students that were put into different
clusters from different algorithms. In general, those stu-

dents put into different clusters from different algorithms
were those whose behaviour was in the middle of PTP stu-
dents and MP students or the middle of PPP and MP stu-
dents. However, we found there were no students put into
the PTP cluster in one algorithm while being put into the
PPP cluster in another algorithm. We can tell that students
from these two clusters share no typical behaviour from any
aspect.

3.4 RQ3: What were the exam grades of stu-
dents in different clusters?

Because some students were put into different clusters from
different clustering algorithms, we consider students in the
PTP cluster only if they were put into the PTP cluster by
all clustering algorithms. Similarly, students in the PPP
cluster were only put into the PPP cluster by all clustering
algorithms. The remaining students will be MP students.

In addition to the midterm grades and final exam grades,
there was a coding examination grade, which will comprise
a portion of the midterm grade. Figure 1 shows us the re-
lation between the coding examination grades and different
clusters. Figure 2 shows us the relation between midterm
grades and final grades of different clusters.

Figure 1: The box-plot of coding examination grades. PPP
students all got zero while PTP students mostly got 100%.

From Figure 1, we can see PTP students achieved a very
high score on the coding examination, while PPP students
achieved 0% on the coding examination. The result is ex-
pected since PTP students mostly performed well on as-
signments and labs, which were programming questions. It
is reasonable that they achieved a high score on the coding
examination. In contrast, for PPP students, since they per-
formed poorly on those questions, it is not surprising that
they got a significantly low score.

From Figure 2, we can see the performances of MP students
messed up with other clusters of students. However, if we
exclude them, as shown in Figure 3, we can see the perfor-
mances of PTP students and PPP students were completely
different. The reason we set a cut off point as 50% for the
exam grades is that it is the required grades for passing a
course in the university.

It is essential to consider how many students genuinely need
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Table 5: Characteristics of different clusters. Because there are multiple clustering algorithms, we calculated the medians of
students of different clustering algorithms and then combined them into ranges. The lastsub feature of the coding lab 1 was
treated separately from other labs because it was due on the second day rather than the 2-hour lab time, while lab 4 was due
to the significant time differences observed.

PTP students MP students PPP students

assignment passrate 96%− 98% 85%− 95% 34%− 66%
assignment lastsub 2− 3 days early 16− 27 hours early 2− 6 hours
assignment nsub 25− 29 26− 42 8− 21
lab 1-4 passrate 95%− 100% lab 1,4: 100%, lab 2: 52% − 74%, lab 3: 0%− 53% 0%
lab 1 lastsub 14− 16 hours early 3− 4 hours early 7− 14 minutes early
lab 2,3 lastsub 30− 58 minutes early 0− 15 minutes early 0− 2 minutes early
lab 4 lastsub 70− 77 minutes early 42− 54 minutes early 0− 2 minutes early
lab 1-4 nsub 3− 6 lab 1,2,4: 4− 6, lab 3: 1− 2 0− 4

Figure 2: Midterm Grades and Final Exam Grades (as per-
centage). The total grade for midterm was 120% because
there were bonus questions.

help from the identified PPP students. In other words, pre-
cision is important [2]. It is the higher, the better. Then
we can calculate the precision of the PPP students, which is
4/7 = 0.57 (4 students out of the total 7 PPP students were
below 50% in the midterm). Similarly, the precision of the
final grades is 1.0, since no PPP students had a final grade
above 50%. These results are promising, implying that the
clustering technique can predict student performance.

4. LIMITATIONS
The limitation of this study was that the data used in the
study was of a limited amount. We appreciate any replicate
studies to help validate the results in our study.

5. DISCUSSION
This study applied clustering techniques to pre-midterm stu-
dents’ behaviour data by using an auto-grading system, namely
how early students make their last submissions, how many
submissions they make, and the best score. We found that
different clustering algorithms label students differently and
put them into different clusters, thus providing different pre-
dictive power. However, combining k-means, hierarchical
clustering, and density-based spatial clustering algorithms

Figure 3: Midterm Grades and Final Exam Grades (as a per-
centage). The total grade for the midterm was 120% because
there were bonus questions.

should help reduce the negative effect of an improper pick.

We found that the clusters share the same characteristics
regardless of the labelling. We can summarize those clusters
as Potential Top Performance (PTP) cluster, Potential Poor
Performance (PPP) cluster, and Mixed Performance (MP)
cluster (in which students might be put into different clus-
ters from different clustering algorithms). We found that
students in PTP/PPP are generally exposing behaviours at
the extreme, and they perform well/poorly on the exams.

Better understanding the MP students is one of the future
works. For example, whether there are sub-groups within
this cluster, how to understand their learning behaviours,
and what factors might prevent them from being successful
in the course?

Although we are still at the preliminary stage, we believe
our finding allows a fair evaluation of the participation of
students in a course. Also, because our finding shows that
predicting at-risk students in advance is possible, thus cor-
rective actions to improve the final results might be imple-
mented to help people achieve a learning environment with
fairness and equity.
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ABSTRACT 
Vocabulary proficiency testing plays a vital role in identifying the 
learner's level of vocabulary knowledge, which can be used to 
provide personalized materials and feedback in language-learning 
applications. Item Response Theory (IRT) is a classical method 
that can provide interpretable parameters, such as the learner's 
ability, question discrimination, and question difficulty in many 
language-proficiency testing environments. Many vocabulary 
proficiency tests include more than one type of question format. 
However, traditional IRT lacks the capability to tap into the in-
formation present within question texts and question formats, 
which can be ideally used to gauge a learner's underlying skills in 
more detail. In addressing this, we propose a model to reinforce 
traditional IRT with deep learning to exploit the information hid-
den within question content and format. Experimental results on 
a sample real-world dataset demonstrate the effectiveness of the 
proposed model, highlighting that question-related information 
can be utilized to predict a learner's performance more accurately. 

Keywords 
Item response theory, Deep learning, Item difficulty, English vo-
cabulary. 

1. INTRODUCTION 
Vocabulary proficiency assessment plays an important part in lan-
guage education and has lately gained increased popularity in 
online language learning. It is crucial to identify the learners’ 
English vocabulary proficiency to higher accuracy in providing 
personalized materials and adaptive feedback in language-learn-
ing applications [1]. With the estimated learners' vocabulary 
knowledge state, systems can better gauge the attainment levels 
of learners and tailor the learning materials accordingly. Moreo-
ver, learners may also develop better learning plans to deal with 
their specific weaknesses and maximize their learning efficacy 
depending on the results. Most importantly, it can help place a 
second-language learner quickly in the ideal content space when 
returning to the application after a long break during which he or 
she may have forgotten a lot or, conversely, have progressed in 
the target language outside the realm of the application [2].  

Computerized adaptive testing (CAT) is a mode of testing that has 
gained popularity because of its unparalleled ability to measure 
latent abilities in large-scale testing environments [3]. In CAT, 

estimating the difficulty level, also called item calibration, is es-
sential for maintaining, updating, and developing new items for 
an item bank. Item Response Theory (IRT) [4] is a classical 
method widely used to determine item difficulties. IRT can pre-
dict student performance using the logistic-like item response 
function and provide interpretable parameters. For this reason, 
different IRT models have been widely applied in CAT applica-
tions [5]. 

Although IRT has made a great deal of success and is widely ap-
plied, some problems still limit its usefulness. The critical 
drawback of traditional IRT is that it can only exploit the response 
results and ignore the actual contents and formats of the items [6]. 
Thus, IRT cannot capture the rich information hidden within 
question texts and underlying formats. This problem leaves no 
possibility of generalizing item parameters to unseen items and 
understanding the format’s impact on the difficulty of items [2]. 
In addition, IRT only provides an overall latent trait for learners, 
while each question usually assesses different knowledge con-
cepts or skills [7]. Thus, enhancing IRT to provide detailed results 
on each knowledge concept or skill in a reliable way is still an 
open issue. 

Many researchers are beginning to focus on new approaches for 
estimating the difficulty of questions or items to improve tradi-
tional IRT. Studies have already shown that the representational 
information of questions is significantly related to the difficulty 
level. For English vocabulary questions, word length and corpus 
frequency prove to be essential factors for predicting vocabulary 
difficulty [8], while the average word and sentence lengths have 
been used as key features to predict English text difficulty [9]. 
Along these lines, many works have begun to estimate difficulty 
parameters based on items' textual content using deep neural net-
works [2].  

In vocabulary proficiency assessment, some studies have indi-
cated that even for the same vocabulary item, different question 
formats impact the difficulty level and explanatory power in pre-
dicting receptive skills [10]. The ability of learners to fully 
comprehend a specific word can be divided into different compo-
nents. The best-known and most widely used framework is 
Nation's division of vocabulary knowledge into nine components 
of 'word knowledge' (e.g., spelling, word parts, meaning, gram-
matical functions, and collocation) [11]. The framework has been 
instrumental in describing the totality of what learners need to 
know. However, no single question format can adequately de-
scribe vocabulary comprehension. Usually, different question 
formats are used to assess different skills, such as learners' read-
ing, writing, listening, and speaking skills collectively. However, 
IRT only provides an overall latent trait on the question level and 
cannot provide more detailed results on the underlying skills.  
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2. RELATED WORK 
IRT is one of the most time-tested theories for estimating latent 
abilities and has been used in educational testing environments 
since the 1950s [12]. There are several IRT models widely in use, 
such as the 1-parameter, 2-parameter, and 3-parameter models 
[13,14,15]. Extended from IRT, Multidimensional Item Response 
Theory (MIRT) [17] tries to meet multidimensional data demands 
by including an individual's multidimensional latent abilities	for 
each skill. Although MIRT goes a step further to include the 
knowledge-concept proficiencies of individuals, it is sensitive to 
the knowledge concepts on which they have high latent abilities 
[17]. In addition, since the process of estimating the parameters 
for MIRT is the same as IRT, these two models share the same 
shortcomings. 

With the recent surge in interest in deep learning, many works 
have begun to incorporate deep learning models into IRT to ad-
dress the shortcomings of traditional IRT models. For example, 
the synthesis of Bayesian knowledge tracing (BKT) and IRT [18, 
19] empowers the individualization of questions and learners. Re-
cently, Deep-IRT [20] was proposed by combining a dynamic 
key-value memory network (DKVMN) [21] with an IRT module 
to improve the explanatory capabilities of the parameters. Fur-
thermore, Emiko et al. [22] improved Deep-IRT with two 
independent neural networks for students and items.  

Other IRT-based works have focused on improving the estimation 
accuracy of parameters by exploiting the semantic representations 
from question texts. Cheng and Liu [23] proposed a general Deep 
Item Response Theory (DIRT) framework that uses deep learning 
to estimate item discrimination and difficulty parameters by ex-
tracting information from item texts. Benedetto et al. [24] adopted 
transfer learning on Transformer language models [25] and per-
formed the estimation of the difficulty parameter. Hsu et al. [26] 
proposed a method for automated estimation of multiple-choice 
items’ difficulty for social studies tests. Their findings suggest 
that the semantic similarity between a stem and the options 
strongly impacts item difficulty. Susanti et al. [27] proposed a 
system for automatically generating questions for vocabulary 
tests. Factors such as the reading passage difficulty, semantic sim-
ilarity between the correct answer and distractors, and distractor 
word difficulty level are all considered for controlling generated 
items' difficulty in this system.  

Studies looking into language tests also tried to predict the item 
difficulty and automatically generate items of various difficulty 
levels. Many of these studies have investigated the relationship 
between test item difficulty and linguistic features such as pas-
sage length, word length, and word frequency. Hoshino and 
Nakagawa [28] used a support vector machine to estimate the dif-
ficulty of cloze items for a CAT. Beinborn et al. [29] used Natural 
Language Processing (NLP) to predict c-test difficulty at the 
word-gap level, using a combination of factors such as phonetic 
difficulty and text complexity. Loukina et al. [30] conducted a 
study to investigate which textual properties of a question affect 
the difficulty of listening items in an English language test. Settles 
et al. [31] used Machine Learning and NLP to induce proficiency 
scales and then used linguistic models to estimate item difficulty 
directly for CAT. However, these studies did not consider a vari-
ety of item formats that would typically appear in a test, and failed 
to consider linguistic skills in vocabulary learning. Recently, 
Brian and Andrew [48] have incorporated rich linguistic features 
(lexical, morphological, and syntactic features) as skills in skill-
based models for learners’ vocabulary learning performance pre-
diction. It highlighted that the use of linguistic skills is quite 

helpful in this regard. However, their work also failed to consider 
question formats’ influence on the difficulty level and different 
receptive skills. In addressing this, here we incorporate item-for-
mat information and associated skill requirements to improve the 
estimations of IRT parameters, and in effect, the prediction accu-
racy of a learners' performance. 

3. PROPOSED METHOD 

 
Figure 1. Overview of the proposed framework. 

3.1 Framework 
Inspired by previous studies [6, 23], we propose a framework to 
enhance traditional IRT with deep learning, which aims to obtain 
the learner parameter (ability) and item parameters (discrimina-
tion and difficulty) to predict learner performance in vocabulary 
questions. In achieving this, as shown in Figure 1, our framework 
comes with three parts: the leaner ability network, item network, 
and prediction module. 

3.1.1 Item Network 
The items’ characteristics, i.e., the difficulty and discrimination 
parameters, are calculated in the item network. 

For a vocabulary question presented in a specific format, two el-
ements influence the item’s characteristics: the target vocabulary 
and the required skills to respond correctly. For the target vocab-
ulary, the semantic features are embedded into a d-dimensional 
vector 𝑣  using pre-trained Word2Vec [32] vector 𝑣!  and 
Speech2Vec [33] vector 𝑣" , where	 𝑣 = 𝑣!⊕𝑣" 	and	 d	 =
50. And the required skills for this question are represented by 
one-hot vectors 𝑆 = (𝑆#, 𝑆$, … , 𝑆%), 𝑆& 	 ∈ {0,1}% , where 𝑛 is the 
number of required skills. Then, we utilize a d-dimensional dense 
layer to acquire the dense embedding for each skill 𝑆& for training, 
the dense embedding of 𝑆& as 𝑠& , and  𝑠& 	 ∈ 	ℝ' : 

𝑠& =	𝑆&𝑊" ,                                      (1) 

where 𝑊" 	 ∈ 	ℝ(×' are the parameters of the dense layer. Then 
we use the target vocabulary embedding and the skill embedding 
to obtain the item parameters (discrimination and difficulty).  

Discrimination. Question discrimination 𝑎 can be used to ana-
lyze learner performance distribution on the question. Inspired by 
previous works [17, 23], we learn 𝑎 from required skills that cor-
respond to the question. A deep neural network (DNN) is trained 
to estimate 𝑎. Specifically, we sum the dense embedding of re-
quired skills to get a d-dimensional vector 𝐴 ∈ ℝ' . Then, we 
input 𝐴 into the DNN to estimate 𝑎. Finally, we normalize 𝑎 so 
that it is in the range [−4, 4] [16]. The definition of 𝑎 is as follows:  

𝑎	 = 	8	 ×	(𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝐷𝑁𝑁*(𝐴)) − 	0.5), 𝐴	 = 	𝑠 ⊕ 𝑠 .     (2) 
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Difficulty. Question difficulty 𝑏 determines how hard the ques-
tion is. Adopting from previous works [8, 9], we predict 𝑏 based 
on the semantic features of the target word.  In addition, the depth 
and width of the required skills examined by the question also 
significantly impact the difficulty. The deeper and broader the re-
quired skills being examined, the more difficult the question is 
[23]. Therefore, we adopt a DNN to model 𝑏 based on the target 
vocabulary embedding 𝑣 and the required skills 𝑠 depending on 
the corresponding question format. Like the discrimination, we 
normalize 𝑏 so that it is in the range [−4, 4] [16]. The definition 
of 𝑏 is as follows:  

𝑏	 = 	8	 ×	(𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝐷𝑁𝑁+(𝐵)) 	− 	0.5),   𝐵	 = 	𝑠 ⊙ 𝑣 .    (3) 

3.1.2 Learner Ability Network 
In the learner network, the proposed method calculates a learner’s 
ability. For a learner, we initialize a proficiency vector 𝛼	 =
(𝛼#, 𝛼$, … , 𝛼%) randomly, where 𝛼& 	 ∈ 	 [0, 1] represents the de-
gree of proficiency of a learner on a specific skill 𝑖.  

Ability. Learners’ ability 𝜃 has strong interpretability for their 
performance on questions. It is closely related to the proficiency 
of various skills tested in the questions [23]. Therefore, we mul-
tiply the corresponding proficiency 𝛼  with the skill dense 
embedding of the questions 𝑠 and get a d-dimensional vector 𝛩 ∈
	ℝ'. Then we input 𝛩 into a DNN to learn the ability parameter, 
which is defined as follows:  

𝜃	 = 	𝐷𝑁𝑁𝜃	(𝛩), 𝛩	 = 	𝛼 ⊙ 𝑠 .                  (4)  

3.1.3 Prediction of Learner Response  
Like previous works [20, 22, 23], the proposed method predicts a 
learner’s response performance to a question as a probability. We 
input the trained parameters, namely, 𝜃, 𝑎, and 𝑏 into the item re-
sponse function (Eq.5) to predict	𝑃(𝜃), the learner’s probability 
of answering the specific question correctly. 

𝑃(𝜃) = 		 #
#,-!"($	!	&)

.                                 (5) 

3.1.4 Model Learning 
The parameters to be updated in the proposed framework mainly 
exist in two parts: learner ability network and item network. The 
updating parameters include the proficiency vector 𝛼 and skill 
dense embedding weights	𝑊". In addition, the weights of the three 
DNNs {𝑊.//"	,𝑊.//&	,𝑊.//$	} are updated as well. 

The loss function of the proposed method is the negative log-like-
lihood function. The learner’s response is recorded as 1 when 
he/she answers the item correctly and 0 otherwise. For learner 𝑖 
and question 𝑗, let 𝑟&1 be the actual score for learner 𝑖 on question 
𝑗, and �̃�&1 be the predicted score. Thus, the loss for learner 𝑖 on 
question 𝑗 is defined as: 

ℒ	 = 	 𝑟&1𝑙𝑜𝑔�̃�&1 	+	(1	 −	𝑟&1 	)𝑙𝑜𝑔(1	 −	 �̃�&1 	).            (6) 

Using Adam optimization [34], all parameters are learned simul-
taneously by directly minimizing the objective function. 

4. EVALUATION  
4.1 Dataset  
Our real-world dataset came from one of Japan's most popular 
English-language learning applications. We tentatively used a 
sample dataset from 129 application users who newly registered 
in 2021, and most of them are Japanese students learning English. 
This dataset included 1,900 English words labeled by the 

Common European Framework of Reference for Languages 
(CEFR), mainly in the B1/B2 range. Each word in the dataset had 
six different question types collectively assessing reading, writing, 
listening, and speaking skills. The dataset included the initial re-
sponses (when encountering for the first time) of the users to such 
questions.   

4.1.1 Item Formats 
The knowledge pertaining to English words is not all-or-none as 
with the case with any other language. Rather, there are different 
aspects, such as knowledge of the reading, writing, listening, 
speaking, grammatical behavior, collocation behavior, word fre-
quency, stylistic register constraints, conceptual meaning, the 
associations a word has with other related words, and so on [11, 
35]. Hence, as summarized in Table 1, there are six different ques-
tion formats to collectively assess reading, writing, listening, and 
speaking skills of vocabulary learning in our dataset. For each 
format, we indicate the linguistic skill(s) required to tackle the 
question (L = listening, R = reading, S = speaking, W = writing) 
and some of the evidence from the literature supporting this as-
signment. Below are the descriptions of the six question formats. 
Multiple-choice definition: choose the Japanese description of the 
English word. Multiple-choice recall: choose the corresponding 
English word given the Japanese description. Spelling: type the 
spelling of the English word given the Japanese description. 
Cloze test with spelling: type in the blank with the appropriate 
English word. Multiple-choice listening: choose the correspond-
ing English word given the pronunciation. Multiple-choice cloze 
test: choose the appropriate English word to fill the blank. 

Table 1. Summary of question formats and required skill(s). 

Label Question Format Skills Refer-
ences 

Format 1 Multiple-choice defini-
tion R [40,41,44] 

Format 2 Multiple-choice recall R  [40,41] 
Format 3  Spelling R S W [39] 
Format 4  Cloze test with spelling R S W [39,42] 
Format 5 Multiple-choice listening L R [38,43] 
Format 6 Multiple-choice cloze test R W [31,39,42] 

 
4.2 Experimental Settings  
We conducted extensive experiments to evaluate the accuracy of 
our model in predicting the performance of learners and com-
pared it with several existing models. To set up the experiments, 
we partitioned the dataset, where the question-user interactions 
were divided into the training and testing sets at different ratios: 
60%, 70%, 80%, and 90%.  

We name our method Format-Aware IRT(FIRT). FIRT-S is a var-
iant of FIRT, which only uses speech embedding based on the 
Speech2Vec, and FIRT-W is a variant that only uses word em-
bedding based on the Word2Vec. We compared our method's 
performance with IRT, MIRT, and Probabilistic matrix factoriza-
tion (PMF) [36].  

Following previous works [23, 37], we chose four widely used 
metrics for the evaluation: Prediction Accuracy (ACC), Area Un-
der Curve (AUC), Mean Absolute Error (MAE), and Root Mean 
Square Error (RMSE). The smaller the values of RMSE and MAE, 
and the larger the values of AUC and ACC, the better the results. 
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Figure 2. Comparison of learner performance prediction among different methods. 

 
Figure 3. Comparison among different question formats.

4.3 Results 
4.3.1 Performance Prediction 
The overall results on all four metrics are shown in Figure 2 for 
six different models predicting learners’ performance. We ob-
serve that our proposed models (FIRT, FIRT-S, and FIRT-W) 
perform better than other traditional baseline models, such as IRT, 
MIRT, and PMF. It is clear that our deep learning-based models 
can effectively make use of the vocabulary content and format 
information to improve the performance. 

4.3.2 Impact of Different Formats 
Many studies predicting vocabulary knowledge use only a single 
question format. However, results based on a single format can 
be misleading because it might be gauging a limited skill space 
pertaining to vocabulary knowledge. Understanding the differ-
ences among various formats may provide insight for developing 
tests and tools that can measure proficiency on a much-balanced 
scale [47]. Along this line, we conducted experiments to evaluate 
our model's ability to predict performance on different question 
formats, and to illustrate the variability of performance depending 
on the format. 

The results in Figure 3 show that our models perform better in all 
question formats. This indicates that the vocabulary content and 
format information, together with the underlying skill proficiency, 
help predict learners’ performance better, which are typically ig-
nored in the traditional methods. Also, we observe that the 
prediction performance is strongly affected by the question for-
mat. As we mentioned earlier, different question formats assess 
different linguistic skills like reading, writing, listening, and 
speaking. The results show that all models have considerably sat-
isfactory performance for multiple-choice items, which assess 
only one or two underlying skills and are easy to understand and 

answer [45, 46]. However, the prediction performance for Format 
3 (Spelling) and Format 4 (Cloze test with spelling) are deficient 
compared with others, which intuitively suggests that responses 
to question formats that necessitate multiple underlying skills are 
more difficult to predict accurately. In addition, we noticed that 
FIRT-S (using speech embedding) performs slightly better than 
other models for Format 5 (Multiple-choice listening). This im-
plies that using other features besides semantic features may 
improve the performance. Moreover, the findings implies that 
testers should consider the effect of different formats when as-
sessing vocabulary knowledge and strive to use a combination of 
formats in vocabulary assessment to gauge a broader skill space. 

5. CONCLUSION  
In this work, we proposed a framework that reinforces IRT with 
deep learning routines that take full advantage of the questions' 
representational information, such as the question contents, for-
mats, and the required linguistic skill(s) to tackle the question. 
Experiments were conducted to confirm the effectiveness of the 
proposed approach, and the results showed that our method per-
forms better than other methods. We highlight that vocabulary 
content and format information together with the required skill set 
is useful in accurately predicting learners’ vocabulary proficiency.  

However, there are some limitations in this work. The dataset is 
relatively small, and the learner base is limited to learners of the 
same language background. For future work, we plan to collect 
more data on learners of various backgrounds, which may be use-
ful when generalizing the method to a broader audience. Also, it 
is likely that the six item formats explored in this work over-index 
on language reception skills rather than production skills (i.e., 
writing and speaking). In going forward, we need to test more 
writing and speaking questions, and include additional linguistic 
skills to expand the capabilities of our model. 

698



6. REFERENCES  
[1] Avdiu, D. and Bui, V. 2019. Predicting learner knowledge 

of ind dividual words using machine learning. In Proceed-
ings of the 8th Workshop on NLP for Computer Assisted 
Language Learning, pages 1-9. 

[2] Robertson, F. 2021. Word Discriminations for Vocabulary 
Inventory Prediction. In Proceedings of the International 
Conference on Recent Advances in Natural Language Pro-
cessing (RANLP 2021), pages 1188-1195. 

[3] Wainer, H., Dorans, N. J., Flaugher, R., Green, B. F., & 
Mislevy, R. J. 2000. Computerized adaptive testing: A pri-
mer. Routledge. 

[4] Embretson, Susan E., and Steven P. 2013. Reise. Item re-
sponse theory. Psychology Press. 

[5] Hambleton, R. K. 1989. Principles and selected applica-
tions of item response theory. 

[6] Liu, Q., Huang, Z., Yin, Y., Chen, E., Xiong, H., Su, Y., 
and Hu, G. 2019. Ekt: Exercise-aware knowledge tracing 
for student performance prediction. IEEE Transactions on 
Knowledge and Data Engineering, 33(1), 100-115. 

[7] Huang, Z., Liu, Q., Chen, E., Zhao, H., Gao, M., Wei, S., ... 
and Hu, G. 2017. Question Difficulty Prediction for READ-
ING Problems in Standard Tests. In Thirty-First AAAI 
Conference on Artificial Intelligence, pages 1352-1359. 

[8] Culligan, B. 2015. A comparison of three test formats to as-
sess word difficulty. Language Testing, 32(4), 503-520. 

[9] Beinborn, L., Zesch, T., and Gurevych, I. 2014. Predicting 
the difficulty of language proficiency tests. Transactions of 
the Association for Computational Linguistics, 2, 517-530. 

[10] Kremmel, B., and Schmitt, N. 2016. Interpreting vocabu-
lary test scores: What do various item formats tell us about 
learners’ ability to employ words?. Language Assessment 
Quarterly, 13(4), 377-392. 

[11] Nation, I. S. 2001. Learning vocabulary in another lan-
guage. Cambridge university press. 

[12] Embretson, S. E., and Reise, S. P. 2013. Item response the-
ory. Psychology Press. 

[13] Baker, F. B., & Kim, S. H. 2004. Item Response Theory: 
Parameter Estimation Techniques, Second Edition. Statis-
tics: A Series of Textbooks and Monographs. Taylor & 
Francis. 

[14] Lord, F. M., and Novick, M. R.1968. Statistical Theories of 
Mental Test Scores. Addison-Wesley. 

[15] Ueno, M., and Miyasawa, Y. 2015. Probability based scaf-
folding system with fading. Artificial Intelligence in 
Education. 17th International Conference, AIED, pages 
237–246. 

[16] Van der Linden, W. J., and Hambleton, R. K. (1997). 
Handbook of item response theory. Taylor & Francis 
Group. Citado na pág, 1(7), 8. 

[17] Yao, L., & Schwarz, R. D. 2006. A multidimensional par-
tial credit model with associated item and test statistics: An 
application to mixed-format tests. Applied psychological 
measurement, 30(6), 469-492. 

[18] Mohammad M. Khajah, Yun Huang, Jos´e P. Gonz´alez- 
Brenes, Michael C. Mozer, and Peter Brusilovsky. 2014. 
Integrating knowledge tracing and item response theory: A 

tale of two frameworks. In Proceedings of the 4th Inter- 
national Workshop on Personalization Approaches in 
Learning Environment, pages 7–15. 

[19] Kevin H. Wilson, Yan Karklin, Bojian Han, and Chaitanya 
Ekanadham. 2016. Back to the basics: Bayesian ex- ten-
sions of IRT outperform neural networks for proficiency 
estimation. In Proceedings of the 9th International Confer-
ence on Educational Data Mining, pages 539–544. 

[20] C. Yeung. 2019. Deep-irt: Make deep learning based 
knowledge tracing explainable using item response theory. 
In Proceedings of the 12th International Conference on Ed-
ucational Data Mining, pages 683-686.  

[21] Zhang, J., Shi, X., King, I., and Yeung, D. Y. 2017. Dy-
namic key-value memory networks for knowledge tracing. 
In Proceedings of the 26th international conference on 
World Wide Web. pages 765-774. 

[22] Tsutsumi, E., Kinoshita, R., and Ueno, M. 2021. Deep-IRT 
with Independent Student and Item Networks. In Proceed-
ings of the 14th International Conference on Educational 
Data Mining, pages 510-517. 

[23] Cheng, S., Liu, Q., Chen, E., Huang, Z., Huang, Z., Chen, 
Y., and Hu, G. 2019. DIRT: Deep learning enhanced item 
response theory for cognitive diagnosis. In Proceedings of 
the 28th ACM International Conference on Information 
and Knowledge Management. pages 2397-2400. 

[24] Benedetto, L., Aradelli, G., Cremonesi, P., Cappelli, A., 
Giussani, A., and Turrin, R. 2021. On the application of 
Transformers for estimating the difficulty of Multiple-
Choice Questions from text. In Proceedings of the 16th 
Workshop on Innovative Use of NLP for Building Educa-
tional Applications. pages 147-157. 

[25] Dai, Z., Yang, Z., Yang, Y., Carbonell, J. G., Le, Q., and 
Salakhutdinov, R. 2019. Transformer-XL: Attentive Lan-
guage Models beyond a Fixed-Length Context. 
In Proceedings of the 57th Annual Meeting of the Associa-
tion for Computational Linguistics. pages 2978-2988. 

[26] Hsu, F. Y., Lee, H. M., Chang, T. H., and Sung, Y. T. 
2018. Automated estimation of item difficulty for multiple-
choice tests: An application of word embedding tech-
niques. Information Processing & Management, 54(6), 
969-984. 

[27] Susanti, Y., Nishikawa, H., Tokunaga, T., and Hiroyuki, O. 
2016. Item Difficulty Analysis of English Vocabulary 
Questions. In International Conference on Computer Sup-
ported Education. Vol. 2, pages. 267-274. 

[28] Hoshino, A., and Nakagawa, H. 2010. Predicting the diffi-
culty of multiple-choice close questions for computer-
adaptive testing. Natural Language Processing and its Ap-
plications, 46, pages 279-292. 

[29] Beinborn, L., Zesch, T., and Gurevych, I. 2014. Predicting 
the difficulty of language proficiency tests. Transactions of 
the Association for Computational Linguistics, 2, 517-530. 

[30] Loukina, A., Yoon, S. Y., Sakano, J., Wei, Y., and 
Sheehan, K. 2016. Textual complexity as a predictor of dif-
ficulty of listening items in language proficiency tests. 
In Proceedings of COLING 2016, the 26th International 
Conference on Computational Linguistics: Technical Pa-
pers. pages 3245-3253. 

699



[31] Settles, B., T LaFlair, G., and Hagiwara, M. 2020. Machine 
learning–driven language assessment. Transactions of the 
Association for computational Linguistics, 8, 247-263. 

[32] Mikolov, T., Chen, K., Corrado, G., and Dean, J. 2013. Ef-
ficient Estimation of Word Representations in Vector 
Space. arXiv preprint arXiv:1301.3781. 

[33] Chung, Y. A., and Glass, J. 2018. Speech2vec: A sequence- 
to-sequence framework for learning word embeddings from 
speech. arXiv preprint arXiv:1803.08976. 

[34] Kingma, D. P., and Ba, J. 2014. Adam: A method for sto-
chastic optimization. arXiv preprint arXiv:1412.6980.  

[35] Dale, E. 1965. Vocabulary measurement: Techniques and 
major findings. Elementary english, 42(8), 895-948. 

[36] Mnih, A., and Salakhutdinov, R. R. 2007. Probabilistic ma-
trix factorization. Advances in neural information 
processing systems, 20. 

[37] Wu, R., Xu, G., Chen, E., Liu, Q., and Ng, W. 2017. 
Knowledge or gaming? Cognitive modelling based on mul-
tiple-attempt response. In Proceedings of the 26th 
International Conference on World Wide Web Companion. 
pages 321-329. 

[38] Bradlow, A. R., and Bent, T. 2002. The clear speech effect 
for non-native listeners. The Journal of the Acoustical Soci-
ety of America, 112(1), 272-284. 

[39] Khodadady, E. 2014. Construct validity of C-Tests: A fac-
torial approach. Journal of Language Teaching and 
Research, 5(6), 1353. 

[40] Staehr, L. S. 2008. Vocabulary size and the skills of listen-
ing, reading and writing. Language Learning 
Journal, 36(2), 139-152. 

[41] Milton, J. 2010. The development of vocabulary breadth 
across the CEFR levels. Communicative proficiency and 
linguistic development: Intersections between SLA and lan-
guage testing research, 211-232. 

[42] Klein-Braley, C. 1997. C-Tests in the context of reduced 
redundancy testing: An appraisal. Language testing, 14(1), 
pages 47-84. 

[43] Milton, J., Wade, J., and Hopkins, N. 2010. Aural word 
recognition and oral competence in English as a foreign 
language. Insights into non-native vocabulary teaching and 
learning, 83-98. 

[44] Brown, J., Frishkoff, G., and Eskenazi, M. 2005. Automatic 
question generation for vocabulary assessment. In Proceed-
ings of Human Language Technology Conference and 
Conference on Empirical Methods in Natural Language 
Processing. pages 819-826. 

[45] Kremmel, B., and Schmitt, N. 2016. Interpreting vocabu-
lary test scores: What do various item formats tell us about 
learners’ ability to employ words?. Language Assessment 
Quarterly, 13(4), 377-392. 

[46] Kilickaya, F. (2019). Assessing L2 vocabulary through 
multiple-choice, matching, gap-fill, and word formation 
items. Lublin Studies in Modern Languages and Litera-
ture, 43(3), 155-166. 

[47] Bowles, R. P., and Salthouse, T. A. 2008. Vocabulary test 
format and differential relations to age. Psychology and Ag-
ing, 23(2), 366. 

[48] Zylich, B., and Lan, A. 2021. Linguistic Skill Modeling for 
Second Language Acquisition. In LAK21: 11th Interna-
tional Learning Analytics and Knowledge 
Conference. pages 141-150. 

 

700



Towards Automated Generation and Evaluation of
Questions in Educational Domains

Shravya Bhat
Carnegie Mellon University

shravyab@andrew.cmu.edu

Huy A. Nguyen
Carnegie Mellon University

hn1@cs.cmu.edu

Steven Moore
Carnegie Mellon University

stevenmo@andrew.cmu.edu

John Stamper
Carnegie Mellon University
jstamper@cs.cmu.edu

Majd Sakr
Carnegie Mellon University

msakr@cs.cmu.edu

Eric Nyberg
Carnegie Mellon University

ehn@cs.cmu.edu

ABSTRACT
Students learn more from doing activities and practicing
their skills on assessments, yet it can be challenging and
time consuming to generate such practice opportunities. In
this work, we present a pipeline for generating and eval-
uating questions from text-based learning materials in an
introductory data science course. The pipeline includes ap-
plying a T5 question generation model and a concept hi-
erarchy extraction model on the text content, then scoring
the generated questions based on their relevance to the ex-
tracted key concepts. We further classified the generated
questions as either useful to learning or not with two dif-
ferent approaches: automated labeling by a trained GPT-3
model and manual review by expert human judges. Our
results showed that the generated questions were rated fa-
vorably by all three evaluation methods. We conclude with
a discussion of the strengths and weaknesses of the gener-
ated questions and outline the next steps towards refining
the pipeline and promoting NLP research in educational do-
mains.

1. INTRODUCTION
As education across grade levels continues to transition to-
wards online platforms in response to the COVID-19 pan-
demic, the need for effective and scalable assessment tools
emerges as a pressing issue for instructors and educators.
Amid many other logistical issues that arise from emergency
online education [5], instructors often find themselves hav-
ing to generate a large question bank to accommodate this
new learning format. In turn, this challenge motivates the
need for supporting instructor efforts via methods that au-
tomatically generate usable assessment questions based on
the learning materials, in a way that requires minimal inputs
from instructors and domain experts.

Recent advances in natural language processing (NLP), ques-
tion answering and question generation (QG) offer a promis-
ing path to accomplishing this goal. Most theories of learn-
ing emphasize repeated practice as an important mechanism
for mastering low-level knowledge components, which alto-
gether contribute to the high-level learning objectives [7].
We therefore envision that having the ability to generate
questions on-demand would accommodate students’ varying
levels of learning needs, while allowing instructors to allo-
cate resources to other components of the course. Our work
presents an initial step towards realizing this capability. We
applied Text-To-Text Transfer Transformer (T5) models [15]
on conceptual reading materials from a graduate-level data
science course to generate potential questions that may be
used for assessment. We then evaluated these questions in
three different ways. First, we conducted a separate con-
cept hierarchy extraction process on the reading materials
to extract the important concept keywords and scored each
generated question based on how many such keywords it
contains. Second, we applied a fine-tuned GPT-3 model to
classify the questions as either useful to learning or not. Fi-
nally, we had two data science instructors perform this same
classification task manually. Our results contribute insights
into the feasibility of applying state-of-the-art NLP mod-
els in generating meaningful questions, with a pipeline that
generalizes well across learning domains.

2. METHODS
2.1 Dataset
We used the learning materials from a graduate-level in-
troductory data science course at an R1 university in the
northeastern United States. The course has been offered
every semester since Summer 2020, with class sizes rang-
ing from 30-90 in general. The course content is divided
into the conceptual components and the hands-on projects.
Students learn from six conceptual units, further broken
down into sixteen modules, each corresponding to a data sci-
ence topic such as Feature Engineering and Bias-Variance
Trade-off. Each module consists of reading assignments, un-
graded formative assessments and weekly quizzes serving as
graded summative assessments. Students also get to practice
with the learned concepts through seven hands-on coding
projects, which are evaluated by an automatic grading sys-
tem. In the scope of this work, we will focus on generating
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questions from the textual content of the sixteen modules in
the course, using the following pipeline.

2.2 Question Generation Pipeline
First, we extracted the learning materials from an online
learning platform which hosts the course. This extracted
data is in XML format, which preserves not only the text
content but also its hierarchy within the course structure
(i.e., which module and unit each paragraph belongs to).
We scraped the text content from the XML files using the
BeautifulSoup1 library and cleaned the content to remove
leading questions, such as “What does this accomplish” and
“Why would this make sense?”. These questions were in-
cluded to help students navigate the reading more effectively
but do not contain meaningful information on their own.
From this point, the resulting text data was input to two
separate processes as follows.

Concept Hierarchy Extraction. This process was carried out
by the MOOCCubeX pipeline [16], which performs weakly
supervised fine-grained concept extraction on a given cor-
pus without relying on expert input. As an example, given
a paragraph that explains Regression, some of the extracted
concepts include least-squared error, regularization, and con-
ditional expectation; these could be viewed as the key con-
cepts which students are expected to understand after read-
ing the materials. A researcher in the team reviewed the
generated concepts and manually removed those which were
deemed invalid, including prepositions (e.g., ‘around’), generic
verbs (e.g., ‘classifying’) and numbers (e.g., ‘45’ – this is part
of a numeric example in the text, rather than an important
constant to memorize).

Question Generation. For this process, we applied Google’s
T5 [15], a transformer-based encoder-decoder model. Since
its pre-training involves a multi-task structure of supervised
and unsupervised learning, T5 works well on a variety of
natural language tasks by merely changing the structure of
the input passed to it. For our use case, the input data is the
cleaned text content prepended by a header of the text. Our
rationale for including the header is to inform the model of
the high level concept which the generated questions should
center around. We had previously tried extracting answers
from the text content using a custom rule-based approach
with a dependency parse tree, but found that this resulted
in the creation of more nonsensical than sensible questions;
in comparison, incorporating the headers led to higher qual-
ity questions. There were three hierarchical levels of header
that were used in our input: Unit, Module and Title, where
the former encompasses the latters. For example, the unit
Exploratory Data Analysis includes the module Feature En-
gineering, which has a section titled Principal Component
Analysis, among others. Before applying the model to our
dataset, we also fine-tuned it on SQuAD 1.1, a well known
reading comprehension dataset and a common benchmark
for question-answering models [11].

2.3 Evaluation
We evaluated the generated questions with three different
methods as follows.

1https://www.crummy.com/software/BeautifulSoup/
bs4/doc/

Information Score. This is a custom metric that denotes
how relevant each question is to the key concepts identified
in the Concept Hierarchy Extraction step. We denote this
set of key concepts as C. For every generated question q, we
further denote T (q) as the set of tokens in it and compute
the information score as the number of tokens in q that
coincide with an extracted concept,

IS(q) =
1

|T (q)|
∑

t∈T (q)

1(t ∈ C), (1)

where the division by |T (q)| is for normalization. With
this formulation, higher scores indicate better questions that
touch on more of the key learning concepts.

GPT-3 Classification. We used a GPT-3 model as it has been
a popular choice for text classification tasks such as detecting
hate speech [3] and text sentiment [17]. Our classification
task involves rating each generated question as either useful
for learning or not useful. A useful-for-learning question is
one that pertains to the course content and is intended to
assess the domain knowledge of the student. On the other
hand, a question is classified as not useful if it is vague,
unclear, or not about assessing domain knowledge. For ex-
ample, the question “What programming language do I need
to learn before I start learning algorithms?” is a valid ques-
tion, but it is classified as not useful for learning because it
pertains to a course prerequisite rather than domain knowl-
edge assessment. To perform this classification, we first
fine-tuned the GPT-3 model with default hyperparameters
on the LearningQ dataset [2], which contains 5600 student-
generated questions from Khan Academy. Each question
contains a label to indicate if it is useful for learning or not,
as annotated by two expert instructors. Next, we passed
in the T5-generated questions as the GPT-3 model’s input,
obtaining the output as a set of binary labels indicating if it
rated each question as useful for learning or not.

Expert Evaluation. To further validate the question qual-
ity, we had two expert raters with 5+ years of teaching ex-
perience in the domain of data science rate each question.
Following the same classification process as in [2], the two
raters indicated if each question was useful for learning or
not. We measured the Inter-Rater Reliability (IRR) between
the two raters and found they achieved a Cohen’s kappa of
κ = 0.425, with similarity in 75.59% of the question ratings,
indicating a moderate level of agreement [9]. The remaining
discordant questions were discussed between the two raters
until they reached a consensus on their classification, result-
ing in all of the generated questions being classified by both
human judges and the GPT-3 model.

3. RESULTS
Following the above pipeline, we generated a total of 203
questions across the three header levels - Module, Unit, and
Title. The Appendix shows a number of example generated
questions, along with their information scores and GPT-3
model evaluation. Among the 203 questions, 151 (74.38%)
were classified as useful for learning by the GPT-3 model. To
compare this classification with the human raters’ consensus,
we constructed a confusion matrix as shown in Table 1. We
observed that the model agreed with human raters in 135
(66.50%) instances; in cases where they disagreed, most of
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the mismatches (52 out of 68) were due to the GPT-3 model
overestimating the questions’ usefulness.

Expert: 0 Expert: 1
GPT-3: 0 36 16
GPT-3: 1 52 99

Table 1: Confusion matrix for comparing GPT-3 and expert
ratings on the generated questions. 0 denotes Not Useful and
1 denotes Useful rating.

We followed up with a qualitative review of the questions
rated as not useful by human experts to better understand
(1) what separated them from the questions rated as use-
ful, and (2) why the GPT-3 model might still rate them as
useful. For (1), we identified two important requirements
that a question generally needs to meet to be rated as use-
ful by human experts. First, it has to thoroughly set up
the context (e.g., what is the scenario, how many responses
are expected) from which an answer could be reasonably
derived. An example question that satisfies this category is
“What are two types of visions that a data science team will
work with a client to develop?,” where the bolded terms
are important contextual factors which make the question
useful. We further note that useful questions with thorough
contexts tend to be longer, because they necessarily include
more information to describe such contexts. At the same
time, short questions may still be considered useful by ex-
pert raters if they target a sufficiently specific concept. For
example, “what is a way to improve a decision tree’s per-
formance?” is considered useful because the bolded term is
very specific. On the other hand, a similar-looking question
such as“what is a way to analyze business data” is not useful,
due to “analyze business data” being too broad. The GPT-3
model typically fails to recognize this specificity criterion –
many of the questions rated as useful by GPT-3, but not
by human raters, are similar to ones such as “What are two
types of data science tasks?,” which could be useful if “data
science tasks” was replaced with a more targeted concept.

Next, we examined whether our score metric, which calcu-
lates the normalized number of important concepts that a
question encapsulates, aligns with the expert classification
of question usefulness for learning. We observed from Fig-
ure 1 that, across the three header levels, questions rated as
useful tended to have similar or higher information scores
than their counterparts.

4. DISCUSSION AND CONCLUSION
In this work, we propose and evaluate a domain-independent
pipeline for generating assessment questions based on read-
ing materials in a data science course. Our results showed
that the GPT-3 model, fine tuned on the LearningQ dataset
[2], was able to reach an acceptable level of agreement (on
66.50% of the questions) with the consensus of two expert
raters. The model appeared to learn that long questions are
likely useful, which is a reasonable assumption as these ques-
tions might contain more relevant contextual information.
However, it also classified some short questions as useful,
despite the lack of specificity which human evaluators could
easily recognize. As the LearningQ dataset did not con-
tain data science questions, it is no surprise that our model
was not particularly good at differentiating between specific

Figure 1: Distribution of information score, partitioned by
expert raters’ evaluation, at each header level.

data science concepts (e.g., “decision tree’s performance”)
and ambiguous ones (e.g., “business data”). Additional fine-
tuning of the GPT-3 model on a labeled dataset closer to
our learning domain would therefore be a promising next
step.

When treating the expert rating of question usefulness as
the ground truth, we found that the useful questions gen-
erally had higher information scores than those not rated
as useful, suggesting that our rationale for the formulation
of these metrics (i.e., that higher scores reflect more con-
cepts captured and therefore higher quality) was justified.
At the same time, several questions had relatively low infor-
mation scores but were still rated as useful by experts (e.g.,
”What are two types of decision trees?”) because they target
a sufficiently specific concept. To detect these questions, it
would be beneficial to incorporate measures of the generated
questions’ level of specificity [6] into the existing information
score metric.

The above results have been obtained without the need for
any human-labeled domain encoding, which makes our ques-
tion generation pipeline highly domain-agnostic and gener-
alizable. At the same time, there are ample opportunities
to further promote its adoption across different learning do-
mains. First, more research is needed to investigate ques-
tion generation when the learning contents are not entirely
textual, but may include multimedia components. Recent
advances in the area of document intelligence [1,4], combin-
ing NLP techniques with computer vision, could be helpful
in this direction. Second, there remains the need to di-
versify the generated questions to meet a wider range of
assessment goals. In particular, most of our current ques-
tions start with “what” (e.g., those in Table ??), which are
primarily geared towards recalling information. Incorporat-
ing other question types in the generation pipeline could
elicit more cognitive processes in Bloom’s taxonomy [8] –
for example, “how” questions can promote understanding
and “why” questions are designed for analyzing – which in
turn contribute to better learning overall. This diversifying
direction is also an area of active research in the NLP and
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QG community [13,14].

We further note that the proposed pipeline is also customiz-
able to individual domains, so as to enable higher quality
questions. First, hyperparameter tuning on a dataset rele-
vant to the learning domain would likely improve the perfor-
mance of the T5 and GPT-3 models. Second, the concept
extraction process could be enhanced with a combination
of machine-generated and human-evaluated skill mappings,
which have been shown to result in more accurate knowledge
models [10,12]. Finally, the question evaluation criteria may
also benefit from subject matter experts’ inputs to closely
reflect the distinct nature of the learning domain; for exam-
ple, chemistry assessments could potentially include both
conceptual questions (e.g., “what is the chemical formula of
phenol?”) and scenario-based questions (e.g., “describe the
phenomenon that results from mixing sodium metal and chlo-
rine gas?”).
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ABSTRACT
In this work, we address the information overload issue that
learners in Massive Open Online Courses (MOOCs) face
when attempting to close their knowledge gaps via the use
of MOOC discussion forums. To this end, we investigate the
recommendation of one-minute-resolution video clips given
the textual similarity between the clips’ transcripts and MOOC
discussion forum entries. We first create a large-scale dataset
from Khan Academy video transcripts and their forum dis-
cussions. We then investigate the effectiveness of apply-
ing pre-trained transformers-based neural retrieval models
to rank video clips in response to a forum discussion. The re-
trieval models are trained with supervised learning and dis-
tant supervision to effectively leverage the unlabeled data—
which accounts for more than 80% of all available data. Our
experimental results demonstrate that the proposed method
is effective for this task, by outperforming a standard base-
line by 0.208 on the absolute change in terms of precision.

Keywords
MOOC, Discussion Forum, Video Clip Transcripts, Clip Rec-
ommendation

1. INTRODUCTION
Massive Open Online Courses (MOOCs) provide open access
to world class courses for the public, which greatly improves
the opportunities in online learning. The discussion forum is
a major component of a MOOC as it is the primary commu-
nication tool among learners and instructors [1] to moderate
the lack of physical access in MOOCs. It can help learners
build a sense of belonging and learn from peers, or help in-
structors monitor learner affect and academic progress [2].
However, since questions targeting the same video content
are scattered among discussion threads, without supporting

∗The first author has been supported by the China Schol-
arships Council (CSC). The last author has been supported
by NWO project SearchX (639.022.722) and NWO Aspasia
(015.013.027).

navigation facilities, learners cannot effectively retrieve valu-
able discussions for a particular piece of content. In addi-
tion, learners’ posts seeking help may be drowned out by the
many other competing posts, making it hard for learners to
get attention from instructors and peers. The unstructured,
unorganized forums with a large amount of discussions (that
can lead to information overload [19]) are hindering instruc-
tors and learners to benefit from them, decrease community
interaction, reduce responsiveness in forums and in the end
lead to low MOOC retention rates [20, 13].
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Figure 1: Overview of MOOC-Rec.

Existing works directed at addressing the information over-
load issue in MOOC forums have proposed more effective
navigation tools to identify instructional video contents and
make recommendations of a ranked list of video clips. For
example, [2] classify posts that need help and employ bag-
of-words based retrieval techniques to map those posts to
minute-resolution course video clips. The clip recommen-
dation algorithm is evaluated on posts from one course.
[17] built a recommender system to generate a ranked list
of video clips giving a student’s question with a deep neural
network; they evaluate the system with 50 questions. De-
spite these attempts, we argue that prior works on video clip
recommendation suffer from a lack of training data, and as
a consequence report evaluations only on small-scale data.
It remains a challenge to develop and evaluate a system that
can scale to thousands of MOOCs, across different domains.

In our work, we first address the lack of training data is-
sue by creating MOOC-CLIP, a novel large-scale dataset from
Khan Academy 1, that includes video transcripts and forum
posts (both questions and answers) using raw data available
from LearningQ [3], an open source tool and dataset for edu-
cational question generation. Second, we propose MOOC-Rec,

1https://www.khanacademy.org/
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a dense retrieval based instructional video clip recommenda-
tion system for MOOC forum questions. For each content-
related thread, MOOC-Rec recommends a ranked list of video
clips that are likely relevant and helpful for answering the
question. Although dense retrievers have been applied in
various retrieval tasks such as DPR [6] and ColBERT [7],
it is unknown whether they are an effective approach for
MOOC video clip recommendation. Lastly we point out
that only 11.57% of all discussions in our dataset are la-
beled with a target video clip, which poses challenges for
training MOOC-Rec with limited labeled data and abundant
unlabeled resources.

We here first investigate the effectiveness of MOOC-Rec and
then we address the scarcity of labeled data by using distant
supervision and in-batch negatives to train the ranker. The
comprehensive experiments on our large-scale dataset which
consists of about 274K discussions show that our systems
significantly improve the clip recommendation performance
by outperforming a standard baseline by 0.208 in terms of
precision.

2. THE MOOC-CLIP DATASET
To address the lack of research data, we create a large-scale
dataset using raw data crawled with LearningQ2 from Khan
Academy, a MOOC platform which allows learners to ask
and answer questions about the learning materials during
learning. We keep video transcripts, forum questions and
answers of MOOCs which have both transcripts and discus-
sions available.

Learners use discussion forums in different ways. Besides
asking questions related to the course materials, they may
also discuss irrelevant topics [14] for the purposes of social-
izing, spamming, or expressing their appreciation for the
course materials. Some questions posted by learners also
suffer from a lack of proper context, or are too generic.
Therefore, it is necessary to remove these relatively—for our
purposes—low-quality questions. In line with LearningQ, we
consider a user-generated question to be useful for learning
when all of the following conditions hold: (i) the question
is concept-relevant, i.e., it seeks for information on knowl-
edge concepts taught in lecture videos; (ii) the question is
context-complete, containing sufficient context information
to enable other learners to answer the question; and (iii) the
question is not generic. Besides labeled questions in Learn-

ingQ, we manually labeled 2K questions among other topics.
We also labeled 5K questions based on their lexical relevance
to video transcripts (2.5K with highest BM25 scores as use-
ful, 2.5K with lowest BM25 scores as negative) in order to
exclude non-relevant questions. In total, there are 13,290
labeled questions over 8 topics. We found 60.9% of them
to be useful and 39.1% of them to not be useful. We keep
all items belonging to 3 topics (2,344 in total ) as unknown
set for our cross-topics evaluation, 8,766 questions on the re-
maining 5 topics for training, and 2,186 questions as known
topic test set. We train a BERT-based text sequence clas-
sifier for useful question classification. Table 1 summarizes
its performance.

During preprocessing, we first remove noisy discussions which

2https://github.com/AngusGLChen/LearningQ

Same Topic Cross-Topics
Method Acc Rc F1 Acc Rc F1

Q 89.40 96.68 92.90 77.20 74.49 75.82
Q+C 89.75 96.54 93.02 73.30 82.68 77.71

Table 1: Useful question classifier results.

contain only meaningless tokens, as well as videos which
have no discussions. Then we apply the useful question
classifier on all items(522K) and retrain only items are clas-
sified as useful. In the end, we retain 273,887 discussions
from 7,349 videos of 6 topics.We use regular expressions
to retrieve discussions where learners label posts with ex-
act timestamps in questions or answers. We split the video
transcripts into snippets with a one minute length. The dis-
cussions and the snippets which cover the timestamp are la-
beled as positive items. The other discussions are treated as
unlabeled. Table 2 and Figure 2 summarize the data statis-
tics. In summary, there are 31,680 positive labeled items
and 240,551 unlabeled items, i.e. 11.57% of all discussions
are labeled.

Split #V #S/V #W/S #W/Q #W/A

Train 4590 7.91 198.51 39.96 80.89
Dev 895 8.37 199.04 40.02 79.26
Test 1126 8.14 198.64 39.67 81.92
Unlabeled 7283 7.70 197.96 38.46 78.58

Table 2: Dataset overview, in terms of videos (#V), snippets
(#S) per video, discussions (#D) per video, clip (#W), the
number of words per question (Q) and the number of words
per answer (A)
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Figure 2: Dataset overview regarding the number of labeled
and unlabeled questions in each topic. We can see the unbal-
anced distribution questions in each topic.

This dataset also covers a series of educational topics in-
cluding math, science, careers, humanties, etc. We conduct
an exploratory analysis along each topic dimension which
is shown in Fig 2. We observe a topic imbalance, e.g. dis-
cussions under math and science topics account for 78.88%
of labeled items and 76.82% of all items. The labeled data
is then split into 80% and 20% for training and test sets
respectively based on the number of discussions in each set.

3. METHODOLOGY
The problem of MOOC video clip recommendation studied
in this paper can be described as follows. Given a forum
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discussion question, the system retrieves a ranked list of the
most relevant video clips as represented by their transcripts.
We assume the questions filtered by the useful question clas-
sifier are relevant to the course materials, and the most rele-
vant video clips should be instructional for learners. Assume
a MOOC video V lasts for T seconds, then we split it into
s t = 60 seconds clips, where s = ⌈T

t
⌉. Then the video

C contains clips c1, c2, · · · , cs. Each clip ci is represented
with its transcripts, which can be viewed as a sequence of
tokens wi1, w

i
2, · · · , wi|ci|. We also formally define a discus-

sion as di = [qi, {ai}], where {ai} are the answers to the
question qi. Note that in some cases the question has not
been answered yet, which is common in MOOC forums. The
task is retrieve a ranked list of clips ci,1, ci,2, · · · , ci,s given
each discussion di. Notice that the video clip recommender
needs to work effectively for MOOCs in different domains
that the corpus covers. Formally speaking, the recommender
R : (d,C)→ CR is a function that takes a discussion d and
video clip list C as the input and returns a ranked list of
clips CR. We can also choose to only return the top-K
most relevant clips.

3.1 Dual-Encoder
We employ a standard neural IR architecture [6] for the
ranker. It uses a dense encoder EC(·) which encodes the
video clip transcripts into m-dimensional real-valued vec-
tors. At run-time, MOOC-Rec maps the input discussion d =
[q, a] to another m-dimensional vector using the query en-
coder EQ(·), and retrieves the top-k most closest video clip
vectors from the same video. We use cosine similarity to
model the similarity between the discussion and the clip vec-
tors by the following function:

sim(d, c) = cos(EQ(d), EC(c)). (1)

The goal of training is to learn a better embedding function
for both the clips and discussions which can map relevant
pairs of discussions and clips to vectors with smaller dis-
tance, i.e. higher similarity, so that the similarity function
sim(d, c) becomes a good ranking function for the task of
MOOC video clip recommendation. This is essentially a
metric learning problem [9, 11, 6].

Let M = {⟨di, c+i , c−i,1, · · · , c−i,n⟩}mi=1 be the training MOOC
discussion corpus that contains m instances. Each example
has one discussion di = [qi, ai], one relevant (positive) video
clip transcript c+i , and n irrelevant (negative) clips c−i,j . We
train the retrieval model by optimizing the negative log like-
lihood of the positive clip:

L(di, c
+
i , c

−
i,1, · · · , c−i,n) = − log

esim(di,c
+
i )

esim(di,c
+
i ) +

∑n
j=1 e

sim(di,c
−
i,j)

Positive and Negative Video Clips. For labeled discus-
sions, positive and negative video examples are explicit. We
use the video clip whose time duration contains the times-
tamp of the discussion as the positive example. All other
video clips from the same video can be treated as negatives.
As MOOC videos vary in the number of clips and to boost
the model training and balance the number of positive and
negative examples, we selected n of them as the training

negative examples. We apply in-batch negatives [5, 6] for
training. In this case, the positive clips for other questions
are also treated as the negatives for the current question.

Distant Supervision with Unlabeled Data. As we show
in Table 2, over 80% of all discussions are unlabeled (i.e.
there is no video timestamp available). It would be labor-
intensive and expensive to create human annotations. Thus,
we adopt distant supervision [10] to effectively utilize the
rich unlabeled data and train a better model with them.
This process involves training the model with noisy weakly
labeled data. MOOC-Rec is able to achieve over 50% precision
in top-1 prediction and over 70% in top-3 with a Recall@3
of over 80%. Therefore, we use the ranker trained on the
labeled training set as the scorer and clips with the highest
sim(d, c) are selected as positives while the clips with the
lowest sim(d, c) (besides top-3) as negatives. The weakly
labeled data are then used to train the ranker.

Inference. During inference time, we pre-compute all clip
embedding vc by applying the clip encoder EC to all MOOC
video clips offline. Given a discussion d = [q, a] at run-time,
we concatenate the question and answers if a is available and
compute the discussion embedding vd = EQ(d). The clips
are then ranked by sim(d, c) and the top-k are retrieved.

Although encoders can be implemented in many different
ways [10], in this work, we use two independent BERT [4]
variant models as encoders and the mean value of all to-
ken embeddings is used as the final representation. We to-
kenize clip transcripts and truncate the token list to max-
imum length of 512 (starting with [CLS] and ending with
the [SEP] token). The discussion encoder works as a query
encoder in typical neural IR systems. Instead of using sep-
arate encoders for questions and answers of the discussion,
in our design both of them share the same encoder. In this
way, we train a better query encoder for questions by taking
advantage of important answer information.

3.2 Cross-Encoder
Both the cross-encoder and dual-encoder are two common
approaches for matching sentence pairs. While the dual-
encoder produces sentence embedding vectors for clips and
discussions independently, the cross-encoder treats the clip
recommendation for discussions as a sequence classification
task and performs full self-attention over the entire sequence.
We concatenate the video clip transcripts and the discus-
sions (question and answers) with the [SEP] token as the
input to the transformer network. The [CLS] token em-
bedding is then passed to a binary classifier to predict the
binary relevance between them.

4. EXPERIMENTS AND RESULTS
4.1 Experimental Settings

Implementation. Two BERT variants: MPNet [16] (abbrv.
MP, embedding size: 768) and MiniLM [18] (abbrv. MP, em-
bedding size: 384) are used as text encoders. We imple-
ment dual-encoders using pre-trained weights provided by
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Sentence-Transformers library 3 [15]. Both models are pre-
trained on a large and diverse dataset of over 1 billion train-
ing query-paragraphs pairs for the semantic search task. The
Adam optimizer [8] with warming-up and cosine schedule
is used for training; we set the maximum learning rate to
lr = 2e−5, ϵ = 1e−8 and the warmup steps to 1000. For the
cross-encoder baseline, we follow previous research [10, 12].
The BM25 baseline is based on the Okapi BM25 implemen-
tation of the rank_bm25 library 4. We train our models using
8 GTX-1080 GPUs for 10 iterations with a batch size of 32.
As Figure 3 shows, after one iteration, both clip recommen-
dation systems outperform the BM25 baseline.

Table 3: Performance of the proposed MOOC-Rec ranker and
baselines on the test set in terms of rank-aware metrics.
MLM/MPdual represents the MiniLM or MPNet based dual-
encoder and MLM/MPcross represents the MiniLM or MPNet

based cross-encoder. “PT” represents ranker performance
using pre-trained encoders without fine-tuning. “FT” means
fine-tuned model performance. “WL” means the model per-
formance after training with weakly labeled data.

Method P@1 MRR MRR@3nDCG nDCG@3

BM25 0.417 0.600 0.550 0.696 0.593

PT

MLMcross 0.132 0.346 0.254 0.497 0.297
MLMdual 0.422 0.614 0.568 0.707 0.617
MPcross 0.135 0.344 0.248 0.495 0.288
MPdual 0.386 0.583 0.529 0.683 0.576

FT

MLMcross 0.511 0.677 0.641 0.755 0.683
MLMdual 0.529 0.692 0.658 0.767 0.700
MPcross 0.613 0.745 0.716 0.807 0.750
MPdual 0.570 0.720 0.690 0.788 0.730

WL

MLMcross 0.540 0.696 0.661 0.770 0.700
MLMdual 0.520 0.683 0.646 0.760 0.687
MPcross 0.625 0.751 0.722 0.812 0.754
MPdual 0.557 0.711 0.680 0.782 0.720

4.2 Effectiveness of Dense Retrieval

Performance Comparison with Baseline. After several
iterations, the models’ performance first improves gradually
and then becomes steady as illustrated in Figure 3, which
shows the effectiveness of the training system and the effec-
tiveness of the proposed models. Table 3 summarizes the
models’ effectiveness on the test set. We use BM25 as our
baseline. Sparse vector-space models and the probabilis-
tic BM25 model have been widely used in instructional clip
recommendation systems. BM25’s effectiveness in terms of
Precision@1 (P@1) and MRR is 0.417 and 0.60 respectively,
which shows queries possess more lexical similarity to related
MOOC clips than other clips in the course video and BM25
is an effective and strong baseline for this task. First, we find
that without fine-tuning, the pre-trained dual-encoder can
achieve similar (MPNet), or even better (MiniLM-L6) per-
formance than the BM25 baseline, while the cross-encoders
cannot make clip recommendation for discussions without

3https://github.com/UKPLab/sentence-transformers
4https://github.com/dorianbrown/rank_bm25

training. Second, we observe significant gains (p = 1.95e−7)
when using the MOOC-Rec neural ranker after it has been
trained on the data, with gains of over 0.15 in P@1 and
over 0.19 in nDCG scores compared to the BM25 baseline.
Thus, dense retrieval is an effective instructional MOOC clip
recommendation approach for forum discussions which can
model the relevance between discussions and clip transcripts.

Impact of Model Size. To compare the impacts of model
size, we use one distilled transformer model MiniLM which
contains 22M parameters and one BERT size model MP-

Net which contains 109M parameters. As Table 3 shows,
in both cross-encoder and dual-encoder settings, the larger
model (i.e. MPNet) achieves better effectiveness after train-
ing, which shows that the transformer model with more pa-
rameters may have a better potential to model the relevance
between clips and discussions.

Comparison of Cross-Encoder and Dual-Encoder. Both
cross-encoder and dual-encoder are commonly used for sen-
tence pair matching problems. In Table 3, we observe that
with the distilled transformer model the dual-encoder out-
performs the cross-encoder by 0.018 in terms P@1. How-
ever, with large model, the cross-encoder outperforms dual-
encoder by 0.043 on P@1, and around 0.02 on other metrics.
Despite the performance advantage of the cross-encoder with
a large model, as outlined in Section 3.2, we observe a mas-
sive computational overhead with the cross-encoder as illus-
trated in Figure 5.

Effect of Distant Supervision. In the weakly-labeled data
(WL) section of Table 3, we summarize the different models’
performance after distant training with weakly labeled data.
Compared with model trained with labeled data only, cross-
encoders benefit from WL (+0.029 for MiniLM and +0.012
for MPNet in terms P@1), while dual-encoders perform gets
worse (-0.009 for MiniLM and -0.013 for MPNet in terms P@1).
Our hypothesis is that although MOOC-Rec achieves a good
effectiveness after the initial training, the weakly labeled
data created with it still contains considerable noisy content.

5. CONCLUSIONS
We studied the task of video clip recommendation in the con-
text of MOOC forums which has the eventual goal to reduce
learners’ information overload. We created a novel dataset
MOOC-Clip which includes video transcripts and discussions.
We systematically investigated how well the state-of-art pre-
trained neural IR models work for the task of MOOC clip
recommendation, and proposed a framework including data
preparation, useful question classification, clip ranker and
weak supervision training for this task. We conducted the
experiments with both cross-encoders and dual-encoders.
The results on our dataset show that neural IR approaches
are indeed effective—at the same time, a P@1 value of less
than 0.63 (at best) shows that we are still far away from
solving this task. In future work, we plan to further investi-
gate the factors that affect MOOC-Rec’s effectiveness such as
the clip duration and methods of creating weak labels.
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ABSTRACT
Knowledge tracing (KT) is an essential task in online ed-
ucation, which dynamically assesses students’ mastery of
concepts by predicting the probability that they correctly
answer questions. One of the most effective solutions for
knowledge tracing is graph-based methods. They main-
tain multiple vectors to represent students’ mastery of con-
cepts, and use these vectors to predict the probability of
students correctly answering questions. To give more accu-
rate predictions, the graph-based methods require concept
relations to update these vectors once students answer ques-
tions. However, the concept relations usually require manual
annotation in a real-world scenario, limiting the application
of the graph-based method. In this paper, we proposed a
method called Automatical Graph-based Knowledge Trac-
ing (AGKT), which is a graph-based method that updates
these vectors without requiring manually annotated concept
relations. We evaluate our method on four public datasets
and compare it with ten advanced methods. The experi-
ment results demonstrate that AGKT yields superior per-
formance.

Keywords
online learning, knowledge tracing, graph-based method

1. INTRODUCTION
Knowledge tracing is a task that estimates students’ mas-
tery of knowledge by predicting the probability that they
correctly answer questions. It plays a significantly impor-
tant role in the online educational application, like exer-
cise recommendation and knowledge diagnosis. The input
of knowledge tracing is the question-answering history of a
student and a new question, and the output is the proba-
bility of the student correctly answering the question. For
instance, in step 4, the knowledge tracing aims to use the
student’s performance on q1, q2, q3 to predict the probability
of the student correctly answering q4 in Figure 1.

...
: 5 + 8 = 13 : 2    6 = 12 : 2kg = 200g : 5 + 3    2 = ?

: addition
: multiplication

: unit conversion
: order of operations

: question answer at step i
: concept

knowledge states (mastery of concepts) change 

m
as

te
r l

ev
el

question-answering history to predict question

concept relations

Figure 1: An example of a student’s question-answering se-
quence and the change of her (his) knowledge states. The
darkness of a circle’s color represents the level of the student
masters the corresponding concept, and more darkness de-
notes a better mastery.

To address the knowledge tracing problem, many outstand-
ing methods [11, 17, 8, 19, 7, 1, 5, 3, 10, 18, 12, 9, 14]
have been proposed, which could be grouped into graph-
free methods [11, 17, 8, 19, 7, 1, 5, 3, 10, 18, 12] and graph-
based methods [9, 14]. Graph-free methods are directly built
based on the sequential models, like auto-regressive methods
[13, 6, 2], Transformer [15]. They maintain one or multiple
vectors to represent students’ mastery of knowledge con-
cepts, which denotes as knowledge states, and they predict
students’ performance based on vectors. As students’ knowl-
edge states change with time, to maintain the latest knowl-
edge states for prediction, they update the vectors which
represent knowledge states according to the questions and
question-concept relation immediately after students answer
questions. However, according to the previous research, con-
cepts in one specific domain are correlative with each other
[7, 19]. Thus, when a student has a deeper understanding of
one concept, her(his) mastery of the correlative concepts also
changes. For instance, answering q1 enhances the student’s
mastery of addition in Figure 1. Since addition is correla-
tive with multiplication in the concept relation graph, the
deeper understanding of addition enhances her (his) mas-
tery of multiplication. Hence, the knowledge states are not
only influenced by questions and question-concept relations,
but also influenced by the relations among concepts.

Due to this reason, the graph-based methods introduce the
concept-relation graph when they update students’ knowl-
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edge states. Though the graph-based methods gain many
achievements in performance and interpretability, the concept-
relation graph usually relies on manual annotation, which
is almost impossible for cases with thousands of concepts.
To address this issue and keep the superiority of graph-
based methods, we proposed a method called Automatical
Graph-based Knowledge Tracing (AGKT), which is indepen-
dent on the manual-annotated concept relation, but could
update students’ knowledge states like graph-based meth-
ods by considering question, question-concept relation and
concept-concept relation. We perform experiments on four
real-world datasets, and compare our method with ten excel-
lent models. The experiment results reveal that our method
has superior performance to the other methods.

2. PROBLEM FORMULATION
Suppose the learning history of a student is Xt−1 = {(q1, r1),
(q2, r2), ..., (qt−1, rt−1)}. Here, qi denotes the question the
student answers at step i. ri denotes the correctness of the
student’s response on qi, and

ri =

{
1, if the student’s answer is right;

0, otherwise.
(1)

Each question is related to one or multiple concepts. We

denote the set of concepts as C = {cj}|C|
j=1, and the set of

the concepts which are related to qi as Ci, and the set of
the concepts which are unrelated to qi is denoted as Di.
Obviously, Ci ∪Di = C.

The task of knowledge tracing is formulated as estimat-
ing the probability that the student correctly answer a new
question qt given the question-answering history Xt−1, i.e.,
P (rt = 1|qt,Xt−1). We approach that by learning a function
to estimate the probability:

r̄t = fΘ(·), (2)

where r̄t = P (rt = 1|qt,Xt−1) and the input of fΘ(·) rep-
resent the features used to predict the correctness of the
student.

3. METHOD
As we discussed previously, students’ latest knowledge states
are necessary to predict the probability of students cor-
rectly answering questions. Moreover, considering the ques-
tion, the question-concept relation and concept-concept re-
lation in knowledge state update benefits for the perfor-
mance. Nevertheless, annotating the concept-concept re-
lation is almost impossible. To reserve the superiority of the
graph-based methods in the condition of manual annotated
concept-concept relation absent, we proposed a method called
Automatical Graph-based Knowledge Tracing (AGKT). It is
composed of three components, as Figure 2 (a) illustrates:
Automatical Graph (AG), state update module and predic-
tion module. AG is obtained according to question-concept
relation, which replaces the concept relation graph to assist
the state update module in updating students’ knowledge
states. The prediction module predicts the probability of
students correctly answering questions by students’ knowl-
edge states and the question information. In the following,
we will discuss the AG first. Then, we will present how
to update students’ knowledge states based on AG in the

prediction

state update

: question : actual correctness : automatical graph 
: knowledge states: predicted probability

s

question-related 

question-unrelated 

: concept
S : super node

(a) The framework (b) An example of AG

prediction

state update

Figure 2: (a) The framework of Automatical Graph-based
Knowledge Tracing (AGKT). (b) An example of the Auto-
matical Graph (AG) for the q1 in Figure 1.

state update module. Finally, we will discuss the prediction
module.

3.1 Automatical Graph (AG)
Each question corresponds to an Automatical Graph (AG).
Figure 2(b) illustrates the corresponding AG for q1 in Fig-
ure 1. We denote the graph corresponds to qt as Gt, and
Gt = {Vt, Et}. Vt is the node set, and Vt = {V ct , V dt , s}.
Here, each node in V ct represents a concept in Ct. That
is, each node in V ct represents one question-related concept.
Each node in V dt represents a question-unrelated concept
(Dt). For the ease of presentation, we call these nodes by
concepts when there is no ambiguity. s is the supernode,
which connects the question-related concepts and question-
unrelated concepts. Et represents the edges on Gt, and Et =
{Ec, Ed}, Ec represents the edges between V ct and s, and
Ed represents the edges between V dt and s.

3.2 The state update module
Since the questions require students to utilize their knowl-
edge of question-related concepts to answer, which increases
their comprehension of the question-related concepts, and
causes their knowledge states on these concepts to change
once they answer questions. As concepts are correlative,
these changes will also influence the knowledge states of
some question-unrelated concepts. Based on this, we main-
tain a vector for each concept to represent a student’s knowl-
edge state on it. When a student answer a question, we
update the knowledge states of question-related concepts
first, and then we update the knowledge states of question-
unrelated concepts according to the AG.

3.2.1 The state update of question-related concepts
Suppose a student interacts with question qt at step t. After
the student answer qt, we update the knowledge states of
question-related concepts by concepts’ attributes and the
student’s response on qt. Specifically, for a concept ci ∈ Ct,
we integrate its embedding and the student’s correctness by:

zit =

{
eci ⊕ 0, rt = 1,

0 ⊕ eci , rt = 0,
(3)

where 0 = (0, 0, ..., 0), is a d dimension zero vector. eci ∈ Rd

denotes the embedding of ci. ⊕ denotes the concatenation.
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Then, we feed the concatenation into the cell of recurrent
neural network (RNN) to update the knowledge state of ci:

hit+1 = GRU(zit, h
i
t), (4)

where hit denotes the knwoledge states on concept ci at step
t, it is the i-th row of the knowledge states matrix Ht. GRU
denotes the gated recurrent unit [2].

3.2.2 The state update of question-unrelated concepts.
The knowledge states of one concept will influence the con-
cepts that correlate to it, e.g., the knowledge state of mul-
tiplication is influenced by the knowledge state of addition
after the student answer q1 in Figure 1. Thus, the update of
question-unrelated concepts should be based on the relation
of concepts. Since the concept relation is unknown in many
cases, we update the knowledge states of question-unrelated
concepts based on AG (Figure 2 (b)). Since the question-
related concepts connect to the supernode, and the supern-
ode connects the question-unrelated concepts in AG, the su-
pernode integrates the message about the knowledge states
of all the question-related concepts first. Then it transmits
the integrated message to question-unrelated concepts. Fi-
nally, the question-unrelated concepts update their knowl-
edge states according to the message transmitted from su-
pernode. Specifically, we take the following steps to update
the knowledge states of the question-unrelated concepts:

First, we represent the original message that a question-
related concept ci sent to the supernode by:

mi
t = hit+1 ⊕ oi, (5)

where oi is the one-hot encoding of concept ci to denote the
identity of the message source. The supernode aggregates
the messages from the question-related concepts by:

hs =
1

|Ct|
∑

ci∈Ct

fs(m
i
t), (6)

where fs denotes multi-layer perceptrons (MLP). hs denotes
the states of the supernode.

Then, the supernode transmits the message it receives to
the question-unrelated concepts. We represent the message
obtained by the question-unrelated concept cj (cj ∈ Dt) as

mj
t = fd,j(hs), (7)

fd,j denotes the mapping function, which is implemented
by MLP, to extract the message which is interested by cj ,
e.g., the knowledge states of its correlative concepts. Note,
for different question-unrelated concepts, the mapping func-
tions in Eq. 7 are different. However, for the same question-
unrelated concept in different time steps, the mapping func-
tion is shared to guarantee the pattern are compatible in all
steps.

Finally, we update the knowledge state on question-unrelated
concept cj by:

hjt+1 = GRU(mj
t , h

j
t). (8)

3.3 The prediction module
To predict the probability of students correctly answering
questions, we consider the attributes of question qt, the level

Table 1: Dataset statistics.
Dataset ASSIST09 ASSIST12 EdNet Junyi Math

Students 2,968 22,422 50,000 1,146

Records 185,110 1,839,429 3,266,010 101,854

Questions 15,003 45,543 12,077 1,145

Concepts 121 99 189 39

Questions Per Concept 150.76 460.03 144.01 36.28

Concepts Per Question 1.22 1.0 2.67 1.0

Attempts Per Question 12.34 40.39 270.43 71.98

Attempts Per Concept 1,914.21 18,580.10 39,959.14 2,611.64

Positive Label Rates 63.80% 69.60% 59.54% 66.78%

of the student master question-related concepts, and her(his)
knowledge background. We represent the attributes of ques-
tion qt by the question embedding eqt , and eqt ∈ Rd. We rep-
resent the level of the student master the question-related
concepts by the mean knowledge state:

hm =
1

|Ct|
∑

ci∈Ct

hit. (9)

We represent students’ knowledge background as

hc =
1

|C|
∑

ci∈C
hit, (10)

and then we predict the probability of the student correctly
answering qt by

r̄t = δ(fr(hc ⊕ eqt ⊕ hm), (11)

where fr denotes MLP, and δ denotes the Sigmoid function.

3.4 Model Learning
The objective function of our model is to minimize the neg-
ative log-likelihood of the observed sequence. The sequence
is the question-answering history of the student from step
1 to T . The learning parameters of our method are the
embedding of concepts and questions, the weights in GRU,
the parameters of all the MLPs. The parameters are jointly
learned by minimizing the cross-entropy between the pre-
dicted probability r̄t and the students’ actual correctness rt
as

L = −
T∑

i=1

(ri log r̄i + (1− ri) log(1− r̄i)). (12)

4. EXPERIMENT
4.1 Dataset
We evaluate our method on four public datasets: ASSIST09,
ASSIST12, EdNet, and Junyi Math. These datasets record
the question-answering history of students. We take the
questions, the concepts related to the questions, and the stu-
dents correctness of responses from the records. The maxi-
mum length of students’ question-answering history is set to
200. We split 80% data for training and validation, and 20%
for testing. The statistics of the four datasets are shown in
Table 1. Note, the statistics are the actual samples we use
in our experiments after preprocessing, which are different
from the statistics of raw data.

4.2 Baselines
To evaluate the effectiveness of our model, we compare our
method with graph-free methods, and graph-based meth-
ods. The graph-free methods trace students’ knowledge
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Table 2: The AUC on four public datasets.

Model ASSIST09 ASSIST12 EdNet Junyi Math

BKT 0.6815 0.6142 0.5729 0.6293

KTM 0.6734 0.6881 0.7071 0.7207

SAKT 0.6884 0.6914 0.7313 0.7422

SAINT 0.6901 0.6917 0.7336 0.8079

AKT-NR 0.6940 0.7098 0.7450 0.7705

DKT 0.6769 0.6884 0.7496 0.8397

DHKT 0.7499 0.6966 0.7547 0.8594

EERNNA 0.7244 0.7000 0.7437 0.8196

DKVMN 0.7235 0.6664 0.7009 0.8426

GKT 0.7488 0.6857 0.7039 0.8257

AGKT 0.7765 0.7232 0.7589 0.8656

states without considering concept-relation, and they could
be grouped into four groups. The first group are tradi-
tional methods, i.e., BKT [4], KTM [16], which trace the
students’ knowledge states according to the factors that af-
fect students’ learning. The second group are single-state
methods, i.e., DKT [11], DHKT [17], EERNNA [7], which
use one vector to represent students’ knowledge states on
all concepts. The third group is multi-state methods, i.e.,
DKVMN [19], which maintain a vector for each concept to
represent students’ knowledge states on them. The fourth
group are state-free methods, i.e., SAKT [10], SAINT [3],
AKT-NR [5], which maintain no explicit vector to represent
students’ knowledge states. The graph-based methods ap-
ply a concept-relation graph in the knowledge state update.
Here we choose the GKT [9].

4.3 Student Response Prediction
We measure the AUC to evaluate the performance of mod-
els. A higher AUC indicates a better performance. Table 2
shows the converged ACC, AUC. According to Table 2, on
the ASSIST09, our method is better than the best baseline
DHKT by 2.66% in AUC. On ASSIST12, our model outper-
forms the best baseline AKT-NR 1.34% in AUC. On EdNet,
our model is better than the best baseline DHKT by 0.42%
in AUC. On Junyi, our method is better than the best base-
line DHKT 0.64% in AUC. Thus, the performance presented
in Table 2 demonstrates that our method is effective.

4.4 Ablation Study
To further verify the contribution of AG, we conduct exper-
iments on ASSIST09 with three comparative settings:

• MovGraph removes the AG from AGKT. Thus, this set-
ting removes the concept-concept relation.

• DenGraph replaces the AG in AGKT with the dense graph
in GKT [9]

• TransGraph replaces AG with the transition graph in GKT.

The experimental results are shown in Figure 3. We can
find that: (1) AGKT, DenGraph and TransGraph have bet-
ter performance than MovGraph. That means the consider-
ation of concept-concept relation is beneficial; (2) Replacing
AG in AGKT with other graphs (DenGraph, TransGraph)
decreases the performance. That means the AG is more
effective in the framework of AGKT.

4.5 Case Study

(a) ACC. (b) AUC.

Figure 3: The contribution of AG.

Figure 4: The state of supernode and the message received
by the question-unrelated concepts.

To investigate whether the states update of question-unrelated
concepts is interpretable, we randomly pick two question-
answering records, and visualize the state of supernode and
the message obtained by question-unrelated concepts. We
expect the knowledge states of question-unrelated concepts
could be automatically updated according to the actual re-
lationship with the question-related concepts when AGKT
converges. Thus, for the correlative concepts of the question-
related concepts, the message they receive from supernode
should be correlated with the state of the supernode.

The results is presented in Figure 4. We can observe the mes-
sage obtained by triangle properties (No.21) is highly close to
supernode when the student answer the question related to
congruent triangles (No.9), and message obtained by rates
and ratios is highly close to the state of supernode when
the student answer the question related to ratio-percentage
(No.29). Thus, the state update of question-unrelated con-
cepts is interpretable in our method. which demonstrates
our method has good interpretability.

5. CONCLUSION
In this paper, we proposed a method called Automatical
Graph-based Knowledge Tracing (AGKT). Different from
the previous graph-based methods, it adopts the Automat-
ical Graph (AG) to automatically update students’ knowl-
edge state without requiring the manually annotated con-
cept relation. We evaluate the performance of our method
on four public real-world datasets, and compare it with ten
methods. The experiment result reveals that our method is
effective in tracing student’s knowledge states.
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[2] K. Cho, B. Van Merriënboer, D. Bahdanau, and Y. Ben-
gio. On the properties of neural machine transla-
tion: Encoder-decoder approaches. arXiv preprint
arXiv:1409.1259, 2014.

[3] Y. Choi, Y. Lee, J. Cho, J. Baek, B. Kim, Y. Cha,
D. Shin, C. Bae, and J. Heo. Towards an appropriate
query, key, and value computation for knowledge trac-
ing. In Proceedings of the Seventh ACM Conference on
Learning@ Scale, pages 341–344, 2020.

[4] A. T. Corbett and J. R. Anderson. Knowledge trac-
ing: Modeling the acquisition of procedural knowledge.
User modeling and user-adapted interaction, 4(4):253–
278, 1994.

[5] A. Ghosh, N. Heffernan, and A. S. Lan. Context-aware
attentive knowledge tracing. In Proceedings of the 26th
ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pages 2330–2339, 2020.

[6] S. Hochreiter and J. Schmidhuber. Long short-term
memory. Neural computation, 9(8):1735–1780, 1997.

[7] Q. Liu, Z. Huang, Y. Yin, E. Chen, H. Xiong, Y. Su,
and G. Hu. Ekt: Exercise-aware knowledge tracing for
student performance prediction. IEEE Transactions on
Knowledge and Data Engineering, 33(1):100–115, 2019.

[8] K. Nagatani, Q. Zhang, M. Sato, Y.-Y. Chen, F. Chen,
and T. Ohkuma. Augmenting knowledge tracing by
considering forgetting behavior. In The World Wide
Web Conference, pages 3101–3107, 2019.

[9] H. Nakagawa, Y. Iwasawa, and Y. Matsuo. Graph-
based knowledge tracing: Modeling student proficiency
using graph neural network. In 2019 IEEE/WIC/ACM
International Conference on Web Intelligence (WI),
pages 156–163. IEEE, 2019.

[10] S. Pandey and G. Karypis. A self-attentive model for
knowledge tracing. arXiv preprint arXiv:1907.06837,
2019.

[11] C. Piech, J. Bassen, J. Huang, S. Ganguli, M. Sahami,
L. J. Guibas, and J. Sohl-Dickstein. Deep knowledge
tracing. volume 28, pages 505–513, 2015.

[12] S. Shen, Q. Liu, E. Chen, H. Wu, Z. Huang, W. Zhao,
Y. Su, H. Ma, and S. Wang. Convolutional knowledge
tracing: Modeling individualization in student learning
process. In Proceedings of the 43rd International ACM
SIGIR Conference on Research and Development in In-
formation Retrieval, pages 1857–1860, 2020.

[13] S. Sukhbaatar, A. Szlam, J. Weston, and R. Fer-
gus. End-to-end memory networks. arXiv preprint
arXiv:1503.08895, 2015.

[14] S. Tong, Q. Liu, W. Huang, Z. Huang, E. Chen, C. Liu,
H. Ma, and S. Wang. Structure-based knowledge trac-
ing: An influence propagation view. In 2020 IEEE In-
ternational Conference on Data Mining (ICDM), pages
541–550. IEEE, 2020.

[15] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit,
L. Jones, A. N. Gomez, L. Kaiser, and I. Polo-
sukhin. Attention is all you need. arXiv preprint
arXiv:1706.03762, 2017.

[16] J.-J. Vie and H. Kashima. Knowledge tracing machines:
Factorization machines for knowledge tracing. In Pro-
ceedings of the AAAI Conference on Artificial Intelli-
gence, volume 33, pages 750–757, 2019.

[17] T. Wang, F. Ma, and J. Gao. Deep hierarchical knowl-
edge tracing. In 12th International Conference on Ed-
ucational Data Mining, EDM 2019, pages 671–674. In-
ternational Educational Data Mining Society, 2019.

[18] S. Yang, M. Zhu, J. Hou, and X. Lu. Deep
knowledge tracing with convolutions. arXiv preprint
arXiv:2008.01169, 2020.

[19] J. Zhang, X. Shi, I. King, and D.-Y. Yeung. Dy-
namic key-value memory networks for knowledge trac-
ing. In Proceedings of the 26th international conference
on World Wide Web, pages 765–774, 2017.

714



Process-BERT: A Framework for Representation Learning
on Educational Process Data

Alexander Scarlatos1, Christopher Brinton2, and Andrew Lan1

University of Massachusetts Amherst1, Purdue University2

ajscarlatos@cs.umass.edu,cgb@purdue.edu,andrewlan@cs.umass.edu

ABSTRACT
Educational process data, i.e., logs of detailed student ac-
tivities in computerized or online learning platforms, has
the potential to offer deep insights into how students learn.
One can use process data for many downstream tasks such
as learning outcome prediction and automatically delivering
personalized intervention. In this paper, we propose a frame-
work for learning representations of educational process data
that is applicable across different learning scenarios. Our
framework consists of a pre-training step that uses BERT-
type objectives to learn representations from sequential pro-
cess data and a fine-tuning step that further adjusts these
representations on downstream prediction tasks. We apply
our framework to the 2019 nation’s report card data mining
competition dataset that consists of student problem-solving
process data and detail the specific models we use in this sce-
nario. We conduct both quantitative and qualitative exper-
iments to show that our framework results in process data
representations that are both predictive and informative.1

Keywords
Process data, representation learning, transfer learning

1. INTRODUCTION
Student modeling [14] is a key research area in educational
data mining since it produces estimates of individual fac-
tors that affect learning outcomes, including knowledge fac-
tors and psychosocial factors such as affect and interest, and
informs personalization. There exist a wide range of stu-
dent models, from those that analyze student responses to
questions, such as item response theory [12] and models for
knowledge tracing [3], to those that analyze student activity
within digital learning platforms [1, 15, 16].

Educational process data, i.e., data that logs detailed stu-
dent activity in digitized learning/testing environments, of-
fers us an opportunity to look deeper into the process of
learning for each individual student. One can use this pro-
cess data in many ways: First, standalone process data,
especially data from intelligent tutoring systems, learn-
ing management systems, or massive open online courses

1A long version of this paper with additional details and
a code reference can be found at https://arxiv.org/abs/
2204.13607

(MOOCs), can help us capture student behavioral patterns
and predict future learning outcomes [9] or help prevent
early dropout [6]. Second, process data during assessments,
such as the dataset used in the 2019 nation’s report card
(NAEP) data mining competition [11], can help us recon-
struct the exact process behind how students construct their
response to a question. This reconstructed process can po-
tentially help us improve our estimate of student knowledge
levels more than using only observed response [2].

One key challenge in educational process data analysis is
how to represent process data. Creating good representa-
tions is key to improving performance in downstream tasks,
as evident in recent advances in other fields, such as pre-
trained language models like BERT [4] in natural language
processing. The idea is simple: since we often lack a large
amount of labels on the variable of interest in the predic-
tion task, e.g., student learning outcomes, using these labels
to learn representations of student process data in a super-
vised learning setup is insufficient and can lead to overfit-
ting. Instead, we start with using the rich process data itself
in a pre-training step to learn representations through self-
supervised learning before fine-tuning these representations
in the actual downstream prediction task.

1.1 Contributions
In this paper, we propose a generic framework for repre-
sentation learning from educational process data and apply
it to the NAEP Competition dataset [11]. First, we detail
how to learn process data representations in a pre-training
setup using objectives similar to those used in BERT. We
then detail how to fine-tune these representations and use
them in a downstream supervised learning task, e.g., pre-
dicting learning outcomes. Second, we apply our frame-
work to problem-solving clickstreams as students take an
online NAEP assessment and detail our modeling designs.
Third, we conduct quantitative experiments to show that
our framework is competitive with existing methods in mul-
tiple learning outcome prediction tasks. We also conduct
qualitative experiments to show that our framework is able
to learn meaningful process data representations.

2. METHODOLOGY
In this section we describe our framework, as well as apply it
to several learning outcome prediction tasks using the NAEP
2019 competition dataset [11]. The basic ideas behind our
framework follow from those in natural language processing
(NLP) research but are adapted for student learning process

A. Scarlatos, C. Brinton, and A. Lan. Process-BERT: A framework
for representation learning on educational process data. In A. Mitro-
vic and N. Bosch, editors, Proceedings of the 15th International
Conference on Educational Data Mining, pages 715–719, Durham,
United Kingdom, July 2022. International Educational Data Mining
Society.
© 2022 Copyright is held by the author(s). This work is distributed
under the Creative Commons Attribution NonCommercial NoDeriva-
tives 4.0 International (CC BY-NC-ND 4.0) license.
https://doi.org/10.5281/zenodo.6853006
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Figure 1: The process model is pre-trained by predicting the
properties of each event given surrounding context.

data. There are three main technical components in our
framework: 1) the process model, which takes a student’s
process data as input and produces its latent representation
vectors as output, 2) the pre-training objectives, which are
a series of prediction tasks that we use in a self-supervised
pre-training phase on the process data to learn its represen-
tations via the process model, and 3) the transfer function,
which adapts the output of the process model, i.e., the la-
tent representations of process data, for use in a downstream
learning outcome prediction task.

2.1 Dataset
The dataset contains clickstream logs from students work-
ing on two blocks of online NAEP assessments, referred to
as blocks A and B. Students are given a time limit of 30
minutes per block, in which they can complete questions in
any order. The questions vary in type, including multiple
choice, matching, fill in the blank, and “mixed” types. Each
event in the log represents a single student action, such as
selecting an option in a multiple choice question, typing a
character into an answer field, opening the calculator tool,
etc. Each raw event in the log contains the student ID, ques-
tion ID, question type, event type, timestamp, and possibly
additional event-specific information such as the target of a
click event or the field and character of a key press event. To
apply our framework to the NAEP assessment scenario, we
process each event so that it has the form et = (at,mt, qt, ct),
where at is the event type, mt is the number of seconds since
the student started the test, qt is an identifier for the current
question, and ct is a response status, which is either correct,
incorrect, or incomplete. We additionally define a visit as a
contiguous sequence of events that are part of the same ques-
tion, as students may return to previously visited questions
within a block. The sequences we provide to the process
model each comprise all events of a single student working
on a single question across all visits to that question.

2.2 Process Model and Pre-training
We now detail our process model, as well as the objectives
used to pre-train it before it can be used on downstream
tasks. Our process model is a Bi-LSTM [7], which contains
two LSTM’s that run in parallel; one processes the sequence

in order, and the other processes it in reverse. The hidden

state of the forward LSTM at time step t,
−→
h t, contextualizes

e0, . . . , et. Similarly, the hidden state of the backward LSTM

at time step t,
←−
h t, contextualizes et, . . . , eT , for sequences

of length T . As input to the model, we use a vectorized form
of each event, et, which contains the concatenation of mt,
learnable embeddings of at and qt, and a one-hot encoding
of ct.

To pre-train the model, we design separate objectives to
predict the event type, timestamp, and response status of
each event in a student’s process data for a question. By
learning to predict these features of the input using context,
as we will show, the model becomes able to make inferences
about the data, which will be useful for making predictions
in downstream tasks. Note that we don’t include a pre-
training objective for qt because it is the same for every
event in a question. The flow of data from input sequence
to prediction is shown in Figure 1.

We predict the properties of event et at each time step
by leveraging its full context, which includes all preced-
ing and following events, i.e., {e1, . . . , et−1, et+1, . . . , eT }.
Since

−→
h t−1 uses on information from {e1, . . . , et−1} and←−

h t+1 uses on information from {et+1, . . . , eT }, we use zt =

(
−→
h t−1,

←−
h t+1) as the encoded context that will be used for

prediction. We predict at by passing zt through a linear
prediction head, Pa, using the softmax function [5] to get
a probability distribution over possible event types, and use
cross-entropy to calculate the loss. We predict ct in the same
way. We design a similar objective for mt, except that we
predict an alternate target, rt =

mt−mt−1

mt+1−mt−1
, which repre-

sents the portion of time between the prior and following
events when mt occurs. This value is bounded by 0 and
1, which allows us to use binary cross-entropy as the loss
function. The advantage to this method over mean-squared
error is that because time lapses between student events can
vary greatly, the loss for each event is treated more equally.
The final pre-training loss for the sequence, LPT , is the sum
of the prediction loss for at, mt, and ct for each event in the
sequence. My minimizing LPT , the process model learns to
reconstruct events based on surrounding context in a self-
supervised setup, thus encoding relevant information in its
latent states as a result.

2.3 Transfer Learning
We now detail a transfer function, Qϕ, that produces a
fixed-size output for a downstream prediction task, given
the latent states of the process model as input. For the pur-
pose of transfer learning, we define the outputs of the pro-

cess model to be z1, . . . , zT = ((
−→
h 1,
←−
h 1), . . . , (

−→
h T ,
←−
h T )).

This setup results in each zt containing contextualized in-
formation that is relevant to the input at time step t,
as was ensured by the pre-training process. We combine
these outputs using a learnable attention module [5], which
assigns a weight to each output latent state of the pro-
cess model, and then uses the weights to combine all out-
puts into a single vector. We define the weight vector as
w = softmax(ϕw(z1), . . . , ϕw(zT )), where ϕw is a learnable
linear projection. We then generate a single vector to rep-
resent the entire sequence: b =

∑
t∈{1,...,T} wt · zt.
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We can now use this representative vector in a several ways
to solve downstream tasks. In the simple case, where we
predict the learning outcome at the level of a single ques-
tion, e.g., the correctness of the student’s response to the
question, we can generate the prediction ŷ = ϕq(b), where
ϕq is a learnable linear projection. Additionally, we may
want to predict the learning outcome at the level of a stu-
dent, e.g., the student’s score on a future test, which requires
us to combine the representative vectors for each question
in the student’s process data. To achieve this, we define a
feed-forward neural network ϕs, and generate predictions us-
ing the concatenation of the representative vectors for each
question: ŷ = ϕs([b1, . . . ,bQ]), where bj corresponds to the
representation of the student’s activity on question j and Q
is the total number of questions. In either case, each ϕ in
the transfer function can be trained by using an appropriate
loss function on the predicted label. In the next section, we
show an example of how the transfer function can be used
to enhance a separate prediction task.

2.4 Item Response Theory
A popular framework for making predictions at the ques-
tion level is item response theory (IRT) [8]; we now detail
how to enhance it with behavioral data. The 1PL version
of IRT learns an ability value for each student and a diffi-
culty value for each question, which are used to predict the
probability that a student will answer a question correctly.
We introduce a new behavior term, which will adjust the
model’s prediction based on the student’s process data for
the question. We derive the term using the transfer func-
tion: Bij = ϕq(b

i
j), where bij is the representative vector

for student i’s process data on question j, as generated by
the process model and the attention module. The predicted
probability of a student getting a question correct is defined
as P (Yij = 1) = σ(ki − dj + Bij), where Yij is an indicator
of the correctness of the student’s response, ki is the learned
student ability, dj is the learned question difficulty, and σ
is the sigmoid function. By minimizing the binary cross-
entropy loss of the prediction with the actual correctness
label, the model can jointly learn k, d, and Qϕ. Note that
for this task, we must remove all indications of response
status from the data and not perform the response status
pre-training objective, since including them would leak in-
formation that could infer the label directly.

3. EXPERIMENTS
In this section, we present the experimental results of our
framework applied to the NAEP competition data on two
learning outcome prediction tasks. We compare our frame-
work to existing baselines for both the NAEP process data
and other process datasets. We finally investigate the in-
terpretability of the process model’s latent representations
using visualizations and qualitative analysis.

3.1 Baselines
We use two baselines to compare our framework against.
The first is Feature Engineering (FE), for which we used the
method of the 2nd place submission from the NAEP 2019
competition [10]. Their technique calculates a large number
of features for each student activity sequence, uses a genetic
algorithm (GA) to select the best set of features for a tar-
get prediction label, and then trains a model ensemble to

Table 1: We report the AUC of predictions on the score label,
as well as the AUC when response status is removed.

Model Test AUC Test AUC without ct
FE 0.828 –
CKT 0.854± 0.005 0.797± 0.010
Ours 0.868± 0.008 0.792± 0.004

produce a final prediction for the task. We re-ran their GA
and ensemble algorithms to obtain predictions for our per-
student prediction label. The second baseline is Clickstream
Knowledge Tracing (CKT), for which we adapted the tech-
nique developed in [2], which uses student problem solving
process data for the downstream task of knowledge trac-
ing (KT). Their technique uses an autoencoder pre-training
setup where question-level process data is encoded, passed
through a bottleneck vector, and reconstructed. We use the
bottleneck vector as input to downstream prediction tasks.

3.2 Per-Student Label
We first evaluate our method on a per-student label, referred
to as the score label, which is a binary indicator of if a stu-
dent scored above or below average in the second block (B)
of the exam. We predict this label by observing process data
exclusively from the first block (A).

Experimental Setup. For our model and the CKT baseline,
we perform a multi-phase cross-validation experiment. For
each fold, using the questions in the training split, we pre-
train the process model, and then train the transfer function
on the score label. For both of these, we use the validation
split for early stopping. Finally, we evaluate the model on
the test set, which is fixed across folds. We measure area
under the receiver operating characteristic curve (AUC), and
report the average and standard deviation of the AUC on
the test set over all folds. Note that the FE baseline only
returns a single set of predictions for the ensemble.

Results and Discussion. As shown in the second column
of Table 1, both CKT and our model outperformed the FE
baseline. This observation fits our expectation: since se-
quential neural models have direct access to the raw process
data, they are able to pick up on subtleties that may not
be captured by human-engineered features. Our method
slightly outperforms CKT on this label, indicating that our
process model and transfer function are able to capture more
information that is indicative of student performance than
CKT. We also examine the ability of the models to predict
performance strictly using behavioral information, without
any indication of correctness. To do this, we repeat the ex-
periments but remove the response status ct from the input
and do not perform the associated pre-training objective.
We see from the third column of Table 1 that the AUC
drops, as expected, but is still considerably high, indicating
that these models can infer student performance from their
behavior.

3.3 Item Response Theory
We now evaluate our model in the IRT setting in order to ex-
amine if our methodology can improve performance predic-
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Table 2: We report the AUC of predictions on the IRT task,
as well as the AUC when incomplete questions are not con-
sidered.

Model All Questions Completed Questions
Base 0.824± 0.001 0.823± 0.001
CKT 0.836± 0.000 0.830± 0.001
Ours 0.836± 0.002 0.828± 0.001

tion on questions using additional data on student behavior
within a question.

Experimental Setup. For the IRT experiments, we use all
student activity sequences across blocks A and B. We split
the questions into train/test sets using multi-label stratifi-
cation to ensure all ability and difficulty parameters are suf-
ficiently trained. We then perform a similar cross-validation
experiment to the score label, where for each fold, the pro-
cess model is pre-trained, and then the transfer function and
IRT-specific parameters are trained on the question correct-
ness label. The AUC on the test set is recorded after each
fold, and the average and standard deviation are reported.

Results and Discussion. We see from Table 2 that the
behavioral data leveraged by both our model and CKT re-
sult in a small improvement in test AUC over the base IRT
model. We also observe that questions that were left incom-
plete by students were very easy to predict as incorrect with
process data since certain event types missing in a student
activity sequence clearly indicate incomplete status. To ac-
count for this observation, we also report the AUC after
removing incomplete questions from the test set. We see
that the performance drops for all models, although more
significantly for the behavior-enhanced models, leaving our
method’s performance slightly below CKT. However, the
fact that the behavior-enhanced models still improve over
the base IRT model suggests that student behavior provides
important additional information on student performance
beyond the original student ability and question difficulty
parameters in IRT.

3.4 Qualitative Analysis
We now examine the interpretability of the latent behav-
ioral vectors that our methodology produces. We will ex-
amine student-level latent vectors extracted from a version
of the student-level model, which was modified to capture
task-switching behavior. We also performed an analysis of
question-level latent vectors extracted from the behavior-
enhanced IRT model, where we saw strong behavior-based
clustering patterns. However, because question-level behav-
ior representation is similar to the capabilities of CKT, we
omit this analysis from this paper, and its details can be
found in the long version. For the following figure, we use t-
SNE [13] to visualize the latent vectors in 2D and investigate
characteristic behavioral patterns in the visible clusters.

To investigate if our model can capture high-level task-
switching and test-taking behaviors, we investigate student-
level representations, which combine all question visits of a
student into a single latent vector. We train a model on

Figure 2: The vectors extracted from the final hidden state of
an RNN that processes all visit-level vectors from a student’s
process data in block A, colored by the score label.

the score label task with the following modifications to our
original setup: 1) we provide the process model with se-
quences of events in a single visit to a question, rather than
across all visits to a question, 2) we add a new pre-training
objective to predict the question ID of each event to encode
task-switching information in the latent representations, and
3) we replace the fully-connected neural network with an
RNN, since the visits are sequential in nature. We use the
final hidden state of the RNN for both label prediction and
representation visualization.

In Figure 2, we visualize the student-level vectors generated
from block A data, colored according to the score label. We
identify 4 distinct clusters, while the rest of the vectors have
no obvious pattern: a) Rapid testing: most students in this
group finished all questions in block A with a significant
amount of time remaining. b) Checked their work: students
in this group made multiple visits to most questions, often
not making changes in the second visit. c and d) Ran out
of time: both of these clusters represent students that took
the whole time but did not answer all the questions.

4. CONCLUSIONS
In this paper, we developed a BERT-style framework for pre-
training and transfer learning on educational process data.
We applied our framework to several downstream learning
outcome prediction tasks on NAEP assessment process data
used in the NAEP 2019 data mining competition. Through
quantitative and qualitative experiments, we demonstrated
that models developed with our framework can 1) leverage
process data to make accurate learning outcome predictions,
and 2) generate meaningful representations of student be-
havior from process data. There are several potential areas
for future research. First, our process model currently only
represents single questions, which results in student-level
representations that are less meaningful than the question-
level representations. Future work should aim to develop
a process model that can simultaneously represent events
across all questions in a student’s process data. Second, fu-
ture work should aim to implement this framework on com-
plementary datasets, such as video clickstreams, to validate
its ability to capture behavioral data across settings.
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ABSTRACT 
In this study, we proposed an Online Item Response Theory Model 

(OIRT) by combining the Item Response Theory and Performance 

Factor Analysis (PFA) models. We fitted the proposed model with 

modified Variational Inference (VI) to perform real-time student 

and item parameter estimation using both simulated data and real 

time series data collected from an online adaptive learning 

environment. Results showed that modified VI parameter 

estimation method outperformed other Bayesian parameter 

estimation methods in efficiency and accuracy. We also 

demonstrated that OIRT tracked students’ ability growth 

dynamically and efficiently, it also predicted students' future 

performance with reasonable AUC given limited input features. 

Keywords 
Item Response Theory, Performance Factor Analysis, Online 

Learning, Bayesian Parameter Estimation, Variational Inference 

1. INTRODUCTION 
As time series data become increasingly prevalent in online 

learning system, tracking students' ability changes during their 

learning processes is important for the analysis of teaching and 

learning activity. There have been three commonly used models for 

estimating students' cognitive mastery: Item Response Theory 

(IRT) model is a general tool to provide a quantitative description 

of students' ability in academic testing. Knowledge Tracing (KT) 

model tries to predict a students' future performance through their 

historical interaction logs [5]. Performance Factor Analysis (PFA) 

[15] analyzes learning rates of  students by considering multiple 

Knowledge Components (KCs) of each exercise item.  

None of the above approaches are perfectly applicable to monitor 

students' ability changes in online learning. IRT roots on the 

assumption that students’ true abilities are fixed [18], which may 

not be true in online learning environment, because student abilities 

are dynamic. Bayesian KT only estimates binary hidden states 

(either mastery or non-mastery) and models each KC separately. 

Standard IRT and PFA models are not able to perform real-time 

parameter estimation due to model format or estimation methods. 

In this study, we propose an Online Item Response Theory Model 

(OIRT) to track students' ability changes in real-time fashion using 

both simulation and real data. 

In summary, the contribution of the work is three-fold: (1) propose 

OIRT model by estimating students' initial abilities, item 

difficulties as well as ability changes for different KCs; (2) modify 

Variational Inference (VI) [24] under OIRT model to track 

students’ ability changes; (3) compare the computational time and 

accuracy of the modified VI with other parameter estimation 

approaches, and demonstrate answer accuracy prediction by OIRT. 

2. BACKGROUND 
In this part, IRT and PFA models as well as common real-time 

parameter estimation approaches are briefly reviewed. 

2.1 Item Response Theory Model 
IRT is widely used in assessing student abilities and item 

difficulties due to its high interpretability. The one-parameter 

logistic (1PL) model [16] is given in Eq.1, 

𝑝(𝑦𝑖𝑗|𝜃𝑖, 𝑏𝑗) =
1

1 + 𝑒−(𝜃𝑖−𝑏𝑗)
 

(1) 

where 𝑦
𝑖𝑗
 is the 𝑖-th student's response to the 𝑗-th item. 𝑦

𝑖𝑗
= 1 

indicates a correct answer and 0 otherwise. 𝜃𝑖 denotes the ability 

of the 𝑖-th student and 𝑏𝑗 denotes the difficulty of the 𝑗-th item. 

We developed our OIRT model based on 1PL model in Eq.1, but 

OIRT can be extended to 2 or 3PL IRT models [7,8] easily. 

2.2 Performance Factor Analysis 
IRT model only estimates a constant ability for each student and 

cannot model the changes of student abilities as learning proceeds 

[18]. To address this problem, especially in the adaptive online 

learning environment, Learning Factor Analysis (LFA) model [4] 

and PFA model [15] are proposed to further include the prior 

practice counts for each KC. Specifically, PFA model, an extension 

of LFA model, is given in Eq.2, 

𝑝(𝑦𝑖 = 1|𝛽𝑘 , 𝛾𝑖,𝑘 , 𝜌𝑖,𝑘) =
1

1 + 𝑒−∑𝑘=1
𝐾 (−𝛽𝑘+𝛾𝑖,𝑘∗𝑠𝑖,𝑘+𝜌𝑖,𝑘∗𝑓𝑖,𝑘)

 
(2) 

Here, 𝛽
𝑘
 is the difficulty of the 𝑘-th KC, 𝑠𝑖,𝑘 and 𝑓𝑖,𝑘 are the prior 

successes and failures of the 𝑖-th student on the 𝑘-th KC, 𝛾𝑖,𝑘 and 

𝜌𝑖,𝑘 are the learning rates of these observation counts, implying 

the effects of accumulated successes and failures (𝑠𝑖,𝑘 and 𝑓𝑖,𝑘) on 

answer accuracy in the processes of learning. 

Some other models also try to track the changes of student 

abilities in a short period [10, 13, 23]. The main principle here is 
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to estimate the ability change, 𝛥𝜃𝑡, based on students' responses to 

items. We also follow this principle by modeling 𝛥𝜃𝑡 using 

learning rate parameters and their corresponding practice counts, 

which will be introduced in Section 3. 

3. ONLINE ITEM RESPONSE MODEL 
Online Item Response Theory (OIRT) model is an extension of the 

existing PFA model. Suppose there are 𝑁 students, 𝑀 items 

covering a total of 𝐾 KCs, the OIRT model is given in Eq.3, 

𝑝(𝑦𝑖𝑗|𝜃𝑖 , 𝛾𝑖
𝑠⃑⃑⃑⃑ , 𝛾𝑖

𝑓⃑⃑ ⃑⃑  
, 𝑏𝑗) =

1

1 + 𝑒−(𝜃𝑖−𝑏𝑗+(𝛾𝑖
𝑠⃑⃑⃑⃑  ⊙𝑠𝑖⃑⃑⃑  +𝛾𝑖

𝑓⃑⃑ ⃑⃑  
⊙𝑓𝑖⃑⃑  )𝑇 𝑇𝑗⃑⃑  ⃑)

 
(3) 

where 𝜃𝑖 and 𝑏𝑗  denote the 𝑖-th student's general ability and the 𝑗-

th item's difficulty, respectively. Let 𝐾 be the total number of  KCs 

covered by all the items, �⃑⃑� 𝑖 and �⃑⃑� 𝑖  are 𝐾 ∗ 1 vectors containing 

successful and unsuccessful practice counts for the 𝑖-th student. �⃑⃑⃑⃑�  
𝑖
𝑠 

and 𝛾𝑖
⃑⃑ ⃑⃑  𝑓

 are the 𝐾 ∗ 1 learning rate vectors for �⃑⃑� 𝑖 and �⃑⃑� 𝑖, respectively. 

�⃑⃑� 𝑗 is a pre-specified 𝐾 ∗ 1 distributional vector of KCs for item 𝑗. 

The ⊙ and ∙ are element-wise product and dot product, 

respectively. 

OIRT contains four extensions compared to PFA model in Eq.2. (1) 

An initial ability 𝜃𝑖 for each student is added in OIRT due to the 

prior knowledge of students. (2) Note that modeling item difficulty 

as ∑ 𝛽𝑘𝑘  in PFA is unreasonable in that the item with the same KCs 

will have same difficulty. To solve the problem, we added a unique 

difficulty 𝑏 for each item in OIRT. (3) Instead of using a binary 

vector indicating which item covers which KC, we used a 

distributional vector �⃑⃑� 𝑗 to avoid a bias (working on items with more 

KCs will lead to higher ability gain when adding up the learning 

effects of all KCs covered by an item) towards the items with many 

KCs. To construct �⃑⃑� 𝑗 , suppose we have a total of 𝐾 = 3 KCs, if 

item 𝑗 covers KC 1 and 3, instead of representing the item-KC 

vector as [1,0,1], we represent it as 𝑇⃑⃑⃑⃑ 𝑗 = [1/2,0, 1/2], whose sum 

is always equal to 1. (4) The parameters in OIRT will be updated 

in a real-time mode: once a student receive the feedback after 

answering an item, we update �⃑⃑� 𝑖 and �⃑⃑� 𝑖 and hence the corresponding 

learning rate vectors, this is a major difference between OIRT 

model and other IRT and PFA models, because of the dynamic 

updates of  �⃑⃑� 𝑖 and �⃑⃑� 𝑖  , we can update the learning rate parameters, 

and hence track ability changes.  

In online learning system, �⃑⃑� 𝑖 and �⃑⃑� 𝑖  are initialized to 0, which will 

then be accumulated once an item is completed by the student. 

Therefore, the general ability 𝜃𝑖 and item difficulty 𝑏𝑗 will be 

estimated in the beginning, learning rates �⃑⃑⃑⃑�  
𝑖
𝑠 and 𝛾𝑖

⃑⃑ ⃑⃑  𝑓
will then be 

estimated as more practice data being collected. 

4. PARAMETER INFERENCES OF OIRT  
We applied and compared four parameter estimation methods in 

OIRT model: Maximum Likelihood Estimation (MLE) in Logistic 

Regression (LR), MCMC, EP and VI. We consider LR as a baseline 

and mainly introduce the other three methods under OIRT. 

 

 

 

4.1 Markove Chain Monte Carlo  
Markov Chain Monte Carlo (MCMC) [2, 3] can be directly used to 

perform real-time parameter estimation, because the prior of the 

interested parameter 𝜂 at time 𝑡 can be updated using the posterior 

based on the data at time 𝑡 − 1, specifically, 𝑝(𝜂|𝐷𝑎𝑡𝑎𝑡) ∝
𝑝(𝐷𝑎𝑡𝑎𝑡|𝜂) ∗ 𝑝(𝜂|𝐷𝑎𝑡𝑎𝑡−1) given the conditional independence 

of data. It draws samples from the approximated posterior 

distributions from which the expectations and variances of the 

parameters are constructed. Researchers successfully applied 

MCMC to IRT parameter estimation [1, 14, 19, 20]. 

4.2 Expectation Propagation 
Recall the parameters we need to estimate are 𝜂 = {𝜃 , 𝛾𝑠 , 𝛾𝑓 , �⃑� }. 

Here 𝛾𝑠 and 𝛾𝑓 are 𝑁 ∗ 𝐾 matrices, 𝜃  is an 𝑁 ∗ 1 ability vector 

and �⃑�  is an 𝑀 ∗ 1 item difficulty vector. We can reformulate the 

parameters as a long vector 𝜏 = [𝛾1
⃑⃑⃑⃑ 𝑠 , 𝛾2

⃑⃑⃑⃑ 𝑠 , . . . , 𝛾1
⃑⃑ ⃑⃑  𝑓

, 𝛾2
⃑⃑ ⃑⃑  𝑓

, . . . , 𝜃𝑇⃑⃑ ⃑⃑  , 𝑏𝑇⃑⃑⃑⃑  ]. If 

the complete data is given, we can easily solve 𝜏 by a LR. 

However, data comes batch by batch, therefore, we can use 

Expectation Propagation (EP) [11, 12, 21]. 

Given 𝑁 responses 𝑦1, 𝑦2, … , 𝑦𝑁, the posterior of 𝜂 can be written 

as 𝑝(𝜂|𝑦) ∝ 𝑝(𝜂) ∗ 𝑝(𝑦1|𝜂) ∗ 𝑝(𝑦2|𝜂) ∗ … ∗ 𝑝(𝑦𝑁|𝜂) if responses 

are conditionally independent. In EP, 𝑝(𝑦𝑖|𝜂) is usually 

complicated function and approximated by 𝑝𝑖 , 𝑖 ∈ 0,1,2. . . . 𝑁 

(often chosen to be normal distribution). Here, 𝑝0෦,≈ 𝑝(𝜂) and 

𝑝𝑖 , ≈ 𝑝(𝑦𝑖|𝜂). Generally, we compute the following steps: 

(1) Initialize all 𝑝𝑖 , 

(2) Calculate the approximating posterior 𝑞(𝜂) =
ς 𝑝𝑖 ,𝑖

∫𝜃ς𝑖𝑝𝑖 ,𝑑𝜂
 

(3) Until all 𝑝𝑖 ’s converge for 𝑖 = 1,2,3…𝑁: 

i.       Calculate cavity distribution 𝑞\𝑖(𝜂) ≈
𝑞(𝜂)

𝑝𝑖 ,
 

ii. Update 𝑞 by 𝑎𝑟𝑔𝑚𝑖𝑛
𝑞

𝐾𝐿(𝑞(𝜂)||𝑞\𝑖(𝜂) ∗ 𝑝(𝑦𝑖|𝜂)) 

iii. Update 𝑝𝑖 ≈
𝑞(𝜂)

𝑞\𝑖(𝜂)
 

In the KL divergence step for the IRT models, 𝑞\𝑖(𝜂) is a normal 

density function but 𝑝(𝑦𝑖|𝜂) is a logistic function, it is difficult to 

get a normal distribution approximation of this product. 

Therefore, some other approximation forms are proposed [6, 22] 

and we applied the approximation in [9] as well as its update rule 

in the KL step for logistic function, see [9] for details. 

4.3 Variational Inference 
Inspired from [24], we derived an ELBO function for our OIRT in 

Eq.4 by assuming the joint posterior distribution factors as 

𝑞(𝜂|𝑦) = 𝑞(𝜃 |�⃑� , 𝑦)𝑞(𝛾𝑠|�⃑� , 𝑦)𝑞(�⃑� |𝑦)𝑞(𝛾𝑓|�⃑� , 𝑦),  

𝐸𝐿𝐵𝑂 = 𝐸𝑞(𝜂)[𝑙𝑜𝑔𝑝(𝑦 ∣ 𝜃 , �⃑� , 𝛾𝑠 , 𝛾𝑓) 

−𝐸𝑏[𝐾𝐿(𝑞(𝜃 ∣ �⃑� )||𝑝(𝜃 ∣ �⃑� )) + 𝐾𝐿(𝑞(𝛾𝑠 ∣ �⃑� )||𝑝(𝛾𝑠 ∣ �⃑� )) 

+ 𝐾𝐿(𝑞(𝛾𝑓 ∣ �⃑� )||𝑝(𝛾𝑓 ∣ �⃑� ))] − 𝐾𝐿(𝑞(�⃑� )||𝑝(�⃑� )) 

(4) 

For simplicity, we simplified Eq.4 as 𝐸𝐿𝐵𝑂 = 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 −

𝐾𝐿𝜃 − 𝐾𝐿𝑏 − 𝐾𝐿𝛾
𝑠 − 𝐾𝐿𝛾

𝑓
. Then, the following algorithm is used 

to estimate parameters: 

(1) At time 𝑡 = 0, initialize the priors of the parameters 

𝑝0(𝜃 ), 𝑝0(�⃑� ), 𝑝0(𝛾
𝑠), 𝑝0(𝛾

𝑓) 
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(2) Set shrink, enhance, decay hyperparameters. 1 Loop over 

iterations on loss optimization at each time 𝑡: 

i. Update priors 𝑝𝑡(𝜂) at time 𝑡 based on the 

combination of the approximated posterior 𝑞𝑡−1(𝜂) 

and the original prior 𝑝0(𝜂) for each parameter in 

𝜂: 𝑝𝑡(𝜂) = (1 − 𝑑𝑒𝑐𝑎𝑦) ∗ 𝑞𝑡−1(𝜂) + 𝑑𝑒𝑐𝑎𝑦 ∗
𝑝0(𝜂) 

ii. Optimize 𝑙𝑜𝑠𝑠 = 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 − 𝑠ℎ𝑟𝑖𝑛𝑘𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 ∗

[(1 + 𝑒𝑛ℎ𝑎𝑛𝑐𝑒 ∗
𝑔

𝑚𝑎𝑥
) ∗ (𝐾𝐿𝜃 + 𝐾𝐿𝑏) + 𝐾𝐿𝛾

𝑠 +

𝐾𝐿𝛾
𝑓
] to obtain current posterior 𝑞𝑡(𝜂) to be used in 

each 𝐾𝐿 , 𝑔/𝑚𝑎𝑥 is the number of student-item 

pairs up to time 𝑡 over the total number of pairs. 

There are three differences compared to the standard VI: (1) We 

set the shrink factor to 0.95 after the first time point because the 

prior distributions now keep the information from the previous 

data and should not be shrunk. (2) We used a weighted average 

instead of directly replacing the prior at time 𝑡 with the posterior 

at 𝑡 − 1 so that the prior gets updated gradually and the previous 

information play in role smoothly. (3) We enhanced the 𝐾𝐿𝜃 and 

𝐾𝐿𝑏 gradually. At the first several sessions of student data, 𝑠 ,𝑓  
are close to zero, therefore, student abilities and item difficulties 

are the only parameters being estimated in OIRT. As 𝑠 ,𝑓  increase, 

and since student abilities and learning rates are not identifiable 

(both are parameters of individual student), we gradually fixed 

student abilities and item difficulties so that the algorithm can 

focus on the estimation of those learning rates only. Our 

experience showed that shrink = 0.95, decay = [0.3, 0.5] and 

enhance = 7 is reasonable. 

5. EXPERIMENTS AND RESULTS 
We compared the performances of modified VI with MCMC, EP 

and LR in parameter estimation on two simulated datasets. We also 

demonstrated the online ability tracking of OIRT using a real data, 

and compared OIRT with XGBoost on answer prediction task on 

the real data. The software environment in these experiments is 

under Python 3.7, Pytorch-1.7.1, the hardware is Intel(R) Xeon(R) 

Gold 6130 CPU @ 2.10GHz, Tesla P4 GPU.   

5.1 Simulation Studies 

5.1.1 Standard Normal Distribution for Learning 
Rates 

In the first experiment, we examined two conditions: 100 students 

and 500 students, both with 4 KCs and 100 items. The data 

simulations are as following: 

(1) We simulate student abilities, learning rates for 𝑠𝑖 and 𝑓𝑖  for 

each KCs, item difficulties from standard normal distributions 

independently. Generate and normalize the KC distribution 

vector for each item. Initialized 𝑠  and 𝑓  to be 0 

(2) Since the person-item pairs in each condition is 100*100 and 

500*100, respectively, at each time point, we sample a random 

number of pairs from the remaining unused person-item pairs 

(in this case, person-item pairs could be generated sequentially) 

 

1 Shrink controls the contribution of the KL terms in optimizing the loss function. 

Enhance gives more importance to KL terms as more data flows in, because the 

prior in KL at time 𝑡 contains the information from the previous data that we want 

to keep. Decay controls the weight given to the posterior at time 𝑡 − 1 in 

contributing to the prior at time 𝑡. 

as the current data, and extract the corresponding parameters 

sampled in step (1) for each chosen person and item 

(3) Construct responses based on OIRT model in Eq.3  

(4) Update the 𝑠  and 𝑓  for each student at each session based on the 

responses in (3) and apply them in step (3) of next session 

(5) Repeat step (2) (3) (4) until all pairs are chosen 

Table 1 shows the results for the 500 students condition. Under the 

standard normal distributions for the learning rates, LR (default 

setting in sklearn) has the highest accuracy in parameter estimation. 

MCMC is the second best, but it is more time-consuming. Even 

though the estimation accuracy of the modified VI is worse than 

MCMC and LR, its computational time is comparable to that of LR. 

EP has the worst parameter estimation performance due to its 

approximation issue discussed in Section 4.2. Similar results were 

obtained for the simulation with 100 students. 

Table 1. Correlations with real values under standard normal 

parameter distribution: with 100 items and 4 KCs 

Student

s 

Method

s 
ABI DIFF LS LF Time 

500 

LR 0.806 0.968 0.778 0.771 35.4s 

MCMC 0.656 0.977 0.702 0.725 5d 

EP 0.7 0.905 0.658 0.669 650m 

VI 0.706 0.789 0.532 0.491 84.5s 

 

5.1.2 Non-standard Normal Distribution for 

Learning Rates 
In the second experiment, student abilities and item difficulties 

were sampled independently from standard normal distribution, 

while learning rates for success and failure were sampled 

independently from non-standard normal distributions, 

𝑁(0.01,0.03). Other simulation procedures remained the same. 

In this case, the true distributions of the learning rates are no longer 

standard normal distributions, which may be more realistic because 

learning rates are usually small and positive. Since MCMC is time-

consuming, we only compared VI, EP and LR. Results about the 

estimation accuracy with respect to abilities, difficulties and two 

learning rates are shown in Table 2.  

It is clear form Table 2 that VI is still robust in estimating the 

learning rates when their true distributions are non-standard 

normal, it is also comparative to LR in ability and item difficulty 

estimations. VI is also more computationally efficient in dealing 

with more students and more KCs (500 items and 5KCs in Table 

2). Similar results were obtained for 100 students. 

Results about computational speed are shown in Figure 1 with 

varying students, KCs and item numbers. The computational time 

is the time each method spent on estimating all parameters 

throughout all generated sessions. The lines for EP and LR are 

incomplete because LR fails when it needs more than 256G 

memory and EP fails when it takes more than 5 days.  
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Table 2. Correlations with real values under non-standard 

Normal parameter distribution: with 500 items and 5 KCs 

Students Methods ABI DIFF LS LF Time 

500 

LR 0.939 0.992 0.778 0.303 573s 

VI 0.936 0.969 0.658 0.661 145s 

EP 0.827 0.731 0.532 0.153 100h 

LR 0.939 0.992 0.778 0.303 573s 

 

Figure 1. Computational time comparison 

It is obvious to note that the results of the modified VI are better 

compared with that of the other methods in three aspects: (1) the 

computational speed of VI is faster as number of persons and items 

increase; (2) the modified VI gives better parameter estimation 

when the prior distributions disagree with the true distributions of 

the learning rates; (3) the modified VI supports real-time parameter 

estimations and requires less memories. 

5.2 Real Data Study 
In the third experiment, we used a real dataset, Riiid public dataset2 

from Kaggle competition, to demonstrate the ability change 

tracking and answer prediction by OIRT.  

We selected the event for a question being answered by the user 

(content_type_id=0) with prior question having explanation. We 

also removed the items and users with response frequencies fewer 

than 50. The data contained 6800 students, 1983 items and 146 KCs 

after preprocessing. We sorted the data by time the question was 

completed by the user, for ability tracking task, we used the whole 

data to estimate parameters; for answer prediction task, the first 

90% was used train models, and the remaining 10% was used as 

testing set. We partition the data into 50 sessions with person-item 

pairs and feed one session into the model at a time. 

We compared OIRT with XGBoost technique in answer prediction 

task. The reason for comparing with XGBoost is that both methods 

are single-layered and explainable models, which by nature are 

different and incomparable with the models based on deep neural 

networks. We only used ‘Timestamp’, ‘Tags’, ‘User ID’, and ‘Item 

ID’ as the input features for both OIRT and XGBoost. The 

‘answered correctly’ was the label for the models. OIRT 

outperformed XGBoost in accuracy prediction of future question 

responses with limited input features: AUC=0.702 vs 0.689, 

ACC=0.733 vs 0.717 (since the XGBoost in the competition uses 

complex feature engineering, its AUCs reported in the competition 

are much higher). OIRT also provides reasonable estimates for user 

ability and item difficulty due to its high correlation with the 

observed accuracy proportion for students and items (0.751, 0.696, 

respectively). 

We randomly selected 2 users and plotted Figure 2 to show the 

ability change tracking of OIRT by comparing with the observed 

differences of the accuracy proportion between two adjacent time 

points, averaging all KCs at each session. The estimations are equal 

to (𝛾𝑖
𝑠⃑⃑⃑⃑ ⊙ 𝑠𝑖⃑⃑ + 𝛾𝑖

𝑓⃑⃑ ⃑⃑  
⊙ 𝑓𝑖⃑⃑ )

𝑇 𝑇𝑗⃑⃑   in Eq.3 at each time 𝑡 (below). The 

observed changes in accuracy proportion is equal to 
(# 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝐾𝐶𝑠1:𝑡 − # 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝐾𝐶𝑠1:𝑡−1)

# 𝐾𝐶𝑠⁄  for each user 

(above), indicating how many more accurate KCs completed by a 

user at time 𝑡 relative to that at time 𝑡 − 1. 

 

Figure 2. Students’ ability tracking by OIRT 

It can be seen when the observed increase in accuracy proportion 

are high between two adjacent time points, the estimated ability 

growth is more abrupt, such as sessions in the blue and orange 

windows for student 8 and student 55, respectively. 

6. CONCLUSIONS 
In this study, we developed OIRT model and modified VI 

parameter estimation method to track student abilities in real-time 

and predict answer correctness for online learning system. Results 

show that the modified VI can estimate the parameters fast and 

effectively despite of the difference between the priors and the true 

distribution of the learning rate parameters. 

Although OIRT performs relatively well in different tasks 

introduced above, it takes the form of generalized linear model, 

which has parameter identification issue and limits its performance 

in the accuracy prediction for future questions. We only predict 

answer accuracy based on historical data for individuals, and didn’t 

examine the prediction accuracy for new students, which will be 

explored more in future study.  

 

2 https://www.kaggle.com/c/riiid-test-answer-prediction/data 
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ABSTRACT 
This paper proposes to discover which data fusion approach and 

classification algorithm produced the best results from smart 

classrooms data, and how useful would be the prediction models 

for detecting University students at risk of failing or dropout. The 

results showed that the best predictions were produced using 

ensembles and selecting the best attributes approach with 

discretized data; the REPTree algorithm demonstrated the highest 

prediction values. The best predictions also show the teacher what 

set of attributes and values are the most important for predicting 

student performance, such as the level of attention in theory 

classes, scores in Moodle quizzes and the level of activity in 

Moodle forums. 

 

Keywords 

Data fusion, student prediction models, smart classroom. 

1. INTRODUCTION 
Nowadays, new learning models are used in Higher Education 

such as Blended learning, Smart Learning and Multimodal 

learning.  

Blended learning (b-learning) is an approach to learning and 

instruction that combines online educational materials and 

opportunities for interaction online with traditional place-based 

classroom methods, although the terms "blended learning", 

"hybrid learning", "technology-mediated instruction", "web-

enhanced instruction", and "mixed-mode instruction" are often 

used interchangeably in research literature [5][6]. Its rise is due to 

the fact that there are some disadvantages to current e-learning 

environments such as inhibiting socialization resulting in a lack of 

face-to-face communication [7]. Otherwise, EDM has been 

widely used to improve and enhance learning quality, as well as in 

the pursuit of pure research objectives, which tend to improve our 

understanding of the learning process [8]. In this context, it is still 

a challenge to predict student learning achievement in blended 

learning environments combining online and offline learning [1, 

6], making data fusion techniques necessary.  

Smart learning environments (SLEs) have been recently defined 

[9] as learning ecologies wherein students perform learning tasks 

and/or teachers define them with the support provided by tools 

and technology. SLEs can encompass physical or virtual spaces in 

which a system senses the learning context and process by 

collecting data, analyzes the data, and consequently reacts with 

customized interventions that aim at improving learning [9]. 

In Multimodal Learning Analytics (MLA), learning traces are 

extracted not only from log-files but also from digital documents, 

recorded video and audio, pen strokes, position tracking devices, 

biosensors, and any other data source that could be useful for 

understanding or measuring the learning process. One important 

question in MLA is how to combine, or fuse, the data extracted 

from different modalities in order to provide a more 

comprehensive view of learners’ outer and inner processes [1].  

In this study we propose applying different data fusion approaches 

and classification algorithms to data gathered from several sources 

(theory classes, practical sessions, online sessions, and final 

exams) in a blended, smart, multimodal course in order to predict 

the students’ final academic performance [11]. Data fusion, or 

information fusion, is the study of efficient methods for 

automatically or semi-automatically transforming information 

from different sources and different timepoints into a 

representation that provides effective support for human or 

automated decision making. Specifically, data fusion can reduce 

the size and dimensions of data, optimize the amount of data and 

extract useful information [10]. There are different types of 

multimodal fusion approaches such as: feature-level or early 

fusion, decision-level or later fusion and Hybrid fusion. 

2. EXPERIMENTS 
We used information from 57 first-year electrical engineering 

students at the University of Cordoba (Spain) in the Introduction 

to Computer Science course during the first semester of academic 

year 2017-2018. We have gathered all the information from four 

data sources: theory classes, practical classes, on-line sessions and 

final exam. The first three data sources gave us the input attributes 

and the final exam, the output attribute or class to predict. The 

students all gave their written consent to being recorded, after 

being informed about the study, and to have their data from 

practical and online sessions in Moodle collected for the study. 

We have used four different data fusion approaches (merging all 

attributes; selecting the best attributes; using ensembles; and using 

ensembles and selecting the best attributes) and several white-box 

classification algorithms with the datasets. Then, we compare the 

predictions produced by the models (%Accuracy and ROC Area) 

to discover the best approach and classification model so that it is 

used for predicting students’ final performance. 
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Figure 1. Proposed data fusion and mining methodology for 

predicting students’ performance from multiple data sources. 

2.1 Experiment 1: Merging all attributes 
In experiment 1 we applied the classification algorithms to a 

single file with all the attributes merged. Firstly, we fused the 

different values of the 6 attributes collected in the theory and 

practical sessions in order to have just one single value for each 

attribute. In our case, we had 15 values (15 lectures) for each one 

of the 4 attributes collected in the face-to-face theory classes and 

10 (10 sessions) and 5 (5 practicals) values respectively for each 

of the 2 attributes for face-to-face practice sessions. Fusing the 4 

values about the on-line sessions was not necessary because the 

specific tool that we used for preprocessing the Moodle logs gave 

a single value for each attribute directly. 

Table 1. Results produced by merging all attributes 

 NUMERICAL 

DATA 

DISCRETIZED 

DATA 

 % Accuracy AUC %Accuracy AUC 

Jrip 77.1930 0.8440 78.9474 0.8880 

Nnge 80.4561 0.8760 75.4386 0.8630 

PART 78.9474 0.8640 80.4561 0.9170 

J48 75.4386 0.8640 78.9474 0.8780 

REPTree 75.4386 0.8630 76.6667 0.8480 

Randomtree 70.1754 0.7820 73.6842 0.8180 

Avg. 76.2749 0.8488 77.3567 0.8687 

 

Table 1 shows that the best results (highest values) were produced 

by Nnge (80.45 %Acc) and Part (80.45%Acc and 0.91 AUC) 

algorithms. On average, most of the algorithms exhibited slightly 

improved performance in both measures when using discretized 

data. 

Table 2.PART decision list when merging all attributes 

 

IF Moodle.Quiz = Medium AND Theory.Attention = Medium 

THEN Pass  

IF Moodle.Quiz = High THEN Pass  

IF Theory.Attention = Low AND Moodle.Forum = Low THEN 

Dropout  

IF Moodle.Quiz = Low THEN Fail  

ELSE Pass 

Number of Rules :  5 

 

This prediction model (see Table 2) consists of 5 rules that show 

that the students who pass the course are students who have 

medium scores in Moodle quizzes and also pay attention in theory 

classes, or students who simply have high scores in Moodle 

quizzes. The students who drop out from the course are students 

who pay little attention in theory classes and also show low 

activity in the Moodle forum. The students who fail the course are 

the students who get low scores in the Moodle quizzes. The 

remaining students are classified as passing. 

2.2 Experiment 2: Selecting the best 

attributes 
The selection of characteristics is important in the classification 

process by reducing not only the dimensions of the characteristic 

set but also the additional calculation time required for the 

classification algorithms. We used the well-known CfsSubsetEval 

(Correlation-based Featured Selection) method [11] provided by 

the WEKA tool [36]. It evaluates the worth of a subset of 

attributes by considering the individual predictive ability of each 

feature along with the degree of redundancy between them. 

Starting from our initial 10 input attributes, we produced two sets 

of 3 different optimal attributes for the numerical and discretized 

datasets (see Table 3). 

Table 3. Results obtained when selecting the best attributes 

 NUMERICAL 

DATA 

DISCRETIZED 

DATA 

 % Accuracy AUC %Accuracy AUC 

Jrip 80.7018 0.8490 82.4561 0.9140 

Nnge 82.4561 0.9140 78.9474 0.8430 

PART 77.1930 0.8750 80.7018 0.9140 

J48 80.7018 0.8680 82.4561 0.9230 

REPTree 77.1930 0.8940 78.9474 0.8880 

Randomtree 75.4386 0.8320 82.4561 0.9170 

Avg. 78.9474 0.8720 80.9942 0.8998 

 

Table 3 shows that the best results (highest values) were produced 

by Jrip (82.45%Acc), Nnge (80.45 %Acc), and J48 (82.45 %Acc 

and 0.92 AUC) algorithms. Again, on average most of the 

algorithms exhibited slightly improved performance in both 

measures when using discretized data. 

Table 4. J48 pruned tree when selecting the best attributes 

IF Moodle.Quiz = Low 

|   Moodle.Forum = Low 

|   |   Theory.Attention = Low THEN Dropout 

|   |   Theory.Attention = Medium THEN Fail 

|   |   Theory.Attention = High THEN Fail 

|   Moodle.Forum = Medium THEN Fail 

|   Moodle.Forum = High THEN Fail  

ELSE IF Moodle.Quiz = Medium 

|   Theory.Attention = Low THEN Fail 

|   Theory.Attention = Medium THEN Pass  

|   Theory.Attention = High THEN Pass  

ELSE IF Moodle.Quiz = High THEN Pass  

Number of Leaves:  9 

Size of the tree:  13 

 

This prediction model (see Table 4) is a decision tree with 9 

leaves that can be transformed into 9 prediction rules. These rules 

show that the students who pass the course are students who have 

medium scores in Moodle quizzes and also pay medium to high 

attention in theory classes, or students who simply have high 

scores in Moodle quizzes. The students who drop out from the 

course are students who have low scores in Moodle quizzes, show 

low activity in the Moodle forum, and also pay little attention in 

theory classes. In addition, students who fail are the students that 
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have low scores in Moodle quizzes, show low activity in the 

Moodle forum and pay medium to high attention in theory classes. 

There are also other failing student profiles: students who have 

medium scores in Moodle quizzes and also pay little attention in 

theory classes; students who have low scores in Moodle quizzes, 

show low activity in the Moodle forum, and pay medium to high 

attention in theory classes. 

2.3 Experiment 3: Using ensembles 
In experiment 3 we applied an ensemble of classification 

algorithms to each different source of data. However, instead of 

merging all of the attributes from the 4 data sources into a single 

file, we added the students’ final academic performance to each 

dataset. This produced three sets of datasets (6 files in total): two 

files (numerical and discrete version) for the theory classes with 4 

input attributes and 1 output attribute or class; two files 

(numerical and discrete version) for the practical session with 2 

input attributes and 1 output attribute or class; and two files 

(numerical and discrete version) for the online Moodle sessions 

with 4 input attributes and 1 output attribute or class.  

A classifier is accurate if it works better than a random prediction 

of the data; sets perform better when base models are unstable 

with output undergoing significant changes in response to small 

changes in training data. We used the well-known Vote [4] 

automatic combining machine learning algorithm provided by 

WEKA. It produces better results than individual classification 

models, if the classifiers of the sets are accurate and diverse. Vote 

adaptively resamples and combines so that resampling weights are 

increased for those cases more often misclassified and the 

combination is done by weighted vote. 

Table 5.Results obtained when using ensembles. 

 NUMERICAL 

DATA 

DISCRETIZED 

DATA 

 % Accuracy AUC %Accuracy AUC 

Jrip 82.4561 0.9230 85.9649 0.9380 

Nnge 77.1930 0.8770 77.1930 0. 8770 

PART 80.7018 0.9040 82.4561 0.9130 

J48 82.4561 0.9110 82.4561 0.9220 

REPTree 82.4561 0.9230 82.4561 0.9220 

Randomtree 77.1930 0.8360 79.9474 0.9170 

Avg. 80.4094 0.8957 81.7456 0.9185 

 

Table 5 shows that the best results (highest values) were produced 

by Jrip (85.96 %Acc and 0.93 AUC). Once again, on average 

most of the algorithms exhibited slightly improved performance in 

both measures when using discretized data 

Table 6.JRIP when using ensembles. 

JRIP rules (Theory): 

=========== 

IF (Theory.Attendance = High) THEN Pass 

IF (Theory.Attention = Low) THEN Dropout 

ELSE Dropout  

Number of Rules : 3 

JRIP rules (Practice): 

=========== 

IF (Practice.Attendance = High) and (Practice.Score = High) 

THEN Pass 

IF (Practice.Attendance = Low) and (Practice.Score = Low) 

THEN Fail 

ELSE Dropout 

Number of Rules : 3 

JRIP rules (Moodle): 

=========== 

IF (Moodle.Task = Low) and (Moodle.Quiz = Low) THEN Fail 

IF (Moodle.Quiz = Medium) and (Moodle.Forum = Low) THEN 

Fail  

IF (Moodle.Task = Medium) THEN Pass 

IF (Moodle.Quiz = High) THEN Pass  

ELSE Dropout  

Number of Rules : 5 

This prediction model (see Table 6) the students who regularly 

attend theory classes pass the course; the students who exhibit low 

attendance finally drop out. The students who regularly attend 

practical classes and exhibit high performance in those practical 

classes then pass the entire course. In contrast, the students who 

rarely attend practical classes and have low performance in 

practicals then fail the entire course. The students who upload a 

moderate number of activities to the Moodle platform or get high 

scores in Moodle quizzes are students who pass the course; and 

logically, the students who upload a low number of activities to 

the Moodle platform and get low scores in Moodle quizzes are 

students who fail the course, but the students with medium 

performance in quizzes and low contributions to the forum also 

fail. 

2.4 Experiment 4: Using ensembles and 

selecting the best attributes 
In experiment 4 we applied an ensemble of classification 

algorithms to the best attributes from each different source of 

data. Firstly, we selected the best attributes for each of the three 

different sets of datasets (6 files in total) generated in experiment 

3. For that, we again used the well-known CfsSubsetEval attribute 

selection algorithm. The best result with our data was obtained 

when combining a weight of 1 for Theory and Practical with a 

weight of 2 for Moodle by using the average as combination rule 

for weights. We executed the six classification algorithms as base 

or individual classification models of our Voting method for the 6 

previously generated summary datasets (see Table 7). 

Table 7.Results obtained when using ensembles and selection 

of the best attributes. 

 NUMERICAL 

DATA 

DISCRETIZED 

DATA 

 % Accuracy AUC %Accuracy AUC 

Jrip 82.4561 0.9170 84.2105 0.9310 

Nnge 80.7018 0.9020 78.9474 0.8900 

PART 80.7018 0.9010 82.4561 0.9350 

J48 82.4561 0.8990 84.2105 0.9350 

REPTree 84.2105 0.9130 87.4737 0.9420 

Randomtree 77.1930 0.9160 82.4561 0.9330 

Avg. 81.2866 0.9080 83.2924 0.9277 

 

Table 7 shows that the best results (highest values) were produced 

by REPTree (87.47 %Acc and 0.94 AUC). Again, on average, 

most of the algorithms exhibited slightly improved performance in 

both measures when using discretized data. 

Table 8.RepTree when using ensembles with selecting the best 

attributes. 

REPTree (Theory) 

============ 

IF Theory.Attention = Low THEN Dropout 

IF Theory.Attention = Medium THEN Fail 

IF Theory.Attention = High THEN Fail 
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Size of the tree : 4 

REPTree (Practice) 

============ 

IF Practice.Attendance = Low THEN Dropout 

IF Practice.Attendance = Medium THEN Fail 

IF Practice.Attendance = High 

|   AND Practice.Score = Low THEN Fail 

|   OR Practice.Score = Medium THEN Fail 

|   OR Practice.Score = High THEN Pass 

Size of the tree : 7 

REPTree (Moodle) 

============ 

IF Moodle.Quiz = Low 

|   AND Moodle.Forum = Low THEN Dropout  

|   OR Moodle.Forum = Medium THEN Fail  

|   OR Moodle.Forum = High THEN Fail 

ELSE IF Moodle.Quiz = Medium THEN Pass 

ELSE IF Moodle.Quiz = High THEN Pass 

Size of the tree : 7 

This prediction model (see Table 8) is also a combination of three 

models that show differential student behavior related to theory, at 

the same time, students exhibiting medium or high attention, or 

medium to high Moodle forum participation fail; those 

demonstrating medium practical attendance or high practical 

attendance plus low or medium practice score also fail. The 

students that demonstrate high practical attendance and 

performance pass, as do the students with medium to high scores 

in Moodle quizzes.  

In general, we can see that these white-box models are very useful 

for explaining to the teacher how the predictions of pass, fail or 

dropout are arrived at. The teacher can discover what the main 

predictive attributes and values are directly from the background 

of the IF-THEN rules. 

3. CONCLUSIONS  
This paper proposes to use four different data fusion approaches 

and six white-box classification algorithms to predict university 

students’ academic performance, from multiple-source and 

multimodal data in smart learning environments. We carried out 4 

experiments to answer two research questions as conclusion:  

• Which data fusion approach and classification algorithm 

produce the best results from our data? The REPTree 

classification algorithm produced the best results in this 

approach from discretized summary data. 

• How useful are the prediction models we produce to help 

teachers detect students at risk of failing courses or dropping 

out? The white-box models we produced give teachers very 

understandable explanations (IF-THEN rules) of how they 

classified the students’ final performance or classification.  

In the future, we intend to carry out more experiments in order to 

improve our process and to overcome some limitations: 

• Analyzing the video automatically rather than manually or 

semi-automatically. Processing the video recordings 

automatically would gather information more efficiently 

compared to manual coding with the multiple modalities 

that characterize the classroom[1].  

• Using raw data and other specific data fusion techniques. 

We used a basic Naïve and knowledge-based fusion method 

that uses summary data. However, there are many 

mathematical theories for fusing data [2]  such as 

Probability-based methods (PBM) and Evidence reasoning 

methods (EBM) that we can use with raw data.  

• Using more sources of information, including videos of 

practicals and on-line session interaction with Moodle; 

audio from theory classes and practicals, text analytics or 

text mining of what students write during theory classes, 

practicals or in Moodle. 
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ABSTRACT 
We propose a distance measure between instructor-recommended 

and learners’ learning pathways and discuss how it may be used. 

The context of this study is a 15-week undergraduate course. The 
digital learning activities consisted in reading materials, interactive 

videos, quizzes and worksheets. They allowed the collection of 

many time-stamped digital traces. The course instructor recom-

mended to engage in the activities regularly and prior to attending 
weekly synchronous tutorials. However, learning was largely self-

regulated. This led to different learning strategies, which were cap-

tured and visualised in the form of learning pathways. Several 

patterns emerged: “regular learners” followed the recommenda-
tions; “irregular/selective learners” tended to engage in some 

activities only and irrespectively of the timing of the tutorials; and 

“late learners” waited until the end of the course to start engaging. 

We have formulated a distance measure (D) between the students’ 
and the instructor-recommended learning pathways and found D to 

be a good indicator of a learner’s time management and self-regu-

lation skills. D was also found to have a moderate negative 

correlation (r = -0.6087) with exam marks, implying that the visu-
alisation of learning pathways combined with a distance measure 

could be useful to raise students’ awareness of their lack of self-

regulation skills. 

Keywords 
Self-regulated learning, digital traces, learning pathways, distance 

measure. 

1. INTRODUCTION 
In Self-Directed Learning (SDL), the responsibility to learn shifts 

from an external source (typically a teacher) to the individual 

learner. In its broadest meaning, SDL describes a process by which 
individuals take the initiative in identifying their learning needs, 

formulating goals, identifying resources for learning, choosing and 

implementing appropriate strategies, and evaluating learning out-

comes [15]. Many consider self-direction to be a fundamental 
difference between children and adults in a learning situation; and 

many argue that higher education is where and when learners 

should be given the tools to become independent self-directed 

learners, and educators should move away from an authoritative 

position to take a role of facilitator of learning.  

The goal of SDL is not necessarily to become a fully autonomous 

learner. In a formal learning situation such as a university course, it 

should be seen as a collaborative process between the instructor and 

the learner [11]. SDL is multidimensional and can be perceived 

through the notions of control [7] and personal responsibility [6] 
along a continuous scale. When the learning tasks are generated by 

the instructor, it may be more appropriate to talk about self-regula-

tion [24], a notion that is close to self-direction and encompassed 

by it [16][18]. Self-Regulated Learning (SRL) strategies include re-
hearsal, elaboration, organisation, critical thinking, time 

management, effort regulation, peer learning and seeking help [4].  

The design of learning materials and activities in a Learning Man-

agement System (LMS) can affect learners’ self-regulation 
strategies [12]. There is convincing evidence that people who are 

given some initiative in their learning learn more and learn better 

than people who are passively being taught [10][14]. In online 

learning settings characterised with autonomy, such as Massively 
Open Online Courses (MOOCs), self-regulation becomes a critical 

factor for success [1][2][8]. When comparing online and blended 

learner’s SRL strategies, Broadbent [5] has found that they differed 

in their use, but that overall predictors of grade were equivalent: 
time management, elaboration and rehearsal strategies were found 

to be key predictors. There seems to be general agreement among 

researchers that effective time management especially is an essen-

tial element of SRL [22]. 

Time management can be short-range and focus on the day-to-day 

planning and organisation of time or be long-range and used to reg-

ulate effort [3][17]. Studies exploring the academic procrastination 

(i.e., the intentional delay of an intended course of action) of under-
graduate students have highlighted the relationships between 

procrastination tendencies and poor self-efficacy for self-regulation 

and low academic achievements, e.g., [19] [13]. In [9], procrastina-

tion is described as “self-regulation failure of performance”. 
Negative relationships between procrastination, self-control and 

self-esteem [21], as well as health, wealth and happiness [23] have 

also been demonstrated.  

Poor SRL and time management (such as procrastination) typically 
result in a learning pathway that is significantly different from the 

optimal or instructor-recommended pathway [20], where a learning 

pathway is defined as the route taken by a learner through a range 

of learning activities, which allows them to build knowledge pro-
gressively. In this paper, we present a study to understand if 

students’ chosen learning pathways can be indicators of poor SRL 

skills and be predictors of course performance when they differ sig-

nificantly from the instructor-recommended pathway. With this 
objective in mind, we have formulated a distance measure (D) be-

tween the students-generated and the instructor-recommended 

learning pathways.  
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2. METHOD 

2.1 Participants and Context 
The context of the study is a 15-week course on Multimedia Fun-
damentals, delivered online during the Autumn 2021 to a rather 

large class of 234 3rd year undergraduate students on a Telecommu-

nication Engineering programme. The learning objectives for this 

course are: (1) to be able to discuss and compare multimedia data 
representations; (2) to relate data properties, representation, and 

size; (3) to apply digital signal processing techniques for the com-

pression of multimedia data; and (4) to describe modern 

multimedia standards and formats. It covers the following nine 
topics: digitisation, colour models, image, sound and video repre-

sentations, lossless compression techniques, JPEG, MPEG, 

perceptual encoding (MP3), and digital broadcasting. 

The students were all Chinese nationals, between 20- and 21-year-
old, enrolled on a 4-year UK-China transnational programme de-

livered in China. About 40% of the students are female. For the 

duration of the course, the students were physically on campus in 

Beijing, while the instructor was in another country.  

The digital learning activities made available on the LMS consisted 

in reading materials, short interactive videos (H5P technology), 

quizzes and exercise worksheets. In each interactive video, various 

exercises were embedded, which encouraged active learning and 
served as formative assessment: multiple choice questions, drag 

and drop exercises, fill in the blank exercises, select the right words 

exercises, etc. For each topic, further formative assessment was 

provided in the form of a 5-question quiz. The questions were ran-

domly taken from a question bank, and each attempt could retrieve 

a different set of questions from the bank. Students were encour-

aged to attempt the quizzes several times to be exposed to a greater 

variety of questions. In addition, exercise worksheets could be 
downloaded, completed, and submitted again to the LMS. These 

worksheets could not be automatically marked, so no marks were 

allocated to them, but marks gained from the video embedded ex-

ercises and the quizzes were visible to the students and used for 
formative assessment only. At the end of the course, students would 

get 2 marks for completing at least 66% of the online learning ac-

tivities (which included accessing the reading materials, interacting 

with the videos, answering the quizzes and uploading the com-
pleted worksheets), 1 mark for completing between 33% and 65% 

of these activities, and 0 mark if 32% or less had been completed. 

A total of 65 digital learning activities were proposed for which 

time-stamped digital traces could be collected, as summarised in 

Table 1. 

In addition, weekly online synchronous tutorials were scheduled to 

answer students’ questions, give live demonstrations, explain some 

of the topics in more detail, and discuss the quiz questions and 
worksheet exercises. Each week, an open-ended question was 

posted in a discussion forum for students to debate between them-

selves. Two mandatory labs were also scheduled, in week 4 and 10 

respectively, for which reports had to be submitted as part of the 
summative assessment. In the first lab, students used Matlab to cre-

ate audio spectrograms and observe various sound signals; in the 

second lab, they programmed a simple JPEG encoder and decoder. 

By the end of the course, the summative assessment was made of 
80% final closed-book examination; 13% lab reports; 5% in-class 

test (a 20-question quiz generated from the same question bank as 

the weekly quizzes); and 2% for completion of the online activities. 

The learning activities (reading material, interactive videos, quiz 

and worksheet) were released on a weekly basis, the week before 

the corresponding tutorial. For example, the introduction material 

was released in week 0 and covered in the week 1 tutorial; the dig-
itisation topic activities were released in week 1 and covered in the 

week 2 tutorial, etc. An activity released on the LMS would then 

remain available until the end of the course and could be attempted 

as many times as desired, including during the revision period 
(weeks 12 to 14) and until the final examination, scheduled in week 

15.  

The lecturer recommended to engage in learning activities weekly, 

prior to attending the tutorials. However, the learning was mostly 

self-regulated as students could choose when to engage in the learn-

ing activities, or even not to engage at all. Two hours a week was 

the recommended time to engage in the learning activities, and time 

and space were scheduled in the students’ timetable for self-study-
ing, but attendance at these sessions was not mandatory nor 

recorded. Most students chose to engage at different times and in 

their private space. The responsibility given to the students for their 

learning led to various strategies, which, thanks to the digital traces 

could be captured in the form of various learning pathways.  

Table 1. Number of digital learning activities with digital traces 

per type (reading material, video, quiz, worksheet) and per 

course topic:  65 activities in total. 

 

2.2 Data Collection and Analysis 
Each week and for each student the following data were collected: 

(1) date of latest engagement or attempt in each available learning 
activity on the LMS; and (2) updated video and quiz marks (stu-

dents could improve their marks by re-engaging in the activities). 

The data were then anonymised: students names and email ad-

dresses were removed from the records, only student enrollment 
numbers were preserved to be able to track a student’s activity 

across the duration of the course. 

Data collection was constrained by the fact that, at any point in 

time, only one time-stamped digital trace would remain on the LMS 
for each activity: a new attempt at the same activity would over-

write the previous trace. It was thus important to carefully plan the 

timing of the data collection and to collect data repeatedly and reg-

ularly. We collected data the day before each weekly tutorial, when 
the material related to that tutorial had already been available on 

the LMS for a week. That way, we could capture whether a student 

had engaged in the learning activities before (as recommended) or 

after the corresponding tutorial. Data were collected weekly until 

the date of the final examination in week 15. 
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3. RESULTS 

3.1 Learning Pathways 
Figure 1 shows several examples of learning pathways. On the hor-
izontal axis, the 65 learning activities are plotted in chronological 

order. The vertical axis shows all the teaching weeks of the semes-

ter. The gaps between weeks 3 and 4 and between weeks 5 and 6 

correspond to weeks with no scheduled tutorial. The graphs indi-
cate when a learning activity has been completed for the first time. 

The recommended pathway represents the lecturer’s intent, where 

each learning activity has been completed by the time of the corre-

sponding tutorial. 

Several patterns emerged as illustrated in the examples of Figure 1. 

Regular learners are students who followed the lecturer’s recom-

mendations. Their pathway is typically just below the 

recommended pathway, showing that they have engaged in the 
learning activities within the week preceding the tutorial. Irregular 

or selective learners tended to choose the type of activities they en-

gaged in (e.g., some students used only the videos, others only the 

quizzes) and often did this irregularly and irrespectively of the tim-
ing of the tutorials. Finally, the late learners are students who 

seldom engaged during the semester and typically used the learning 

activities at the end of the course to prepare for the final examina-

tion (i.e., combining massing and procrastination).  

 

Figure 1. Recommended pathway and examples of regular, ir-

regular/selective, and late learners’ pathways. 

3.2 Distance Measure 
We have formulated a distance measure (D) between a student’s 
and the lecturer-recommended learning pathways. It is calculated 

by adding together all the differences (in number of days) between 

when an activity was due and when it has been completed for the 

first time (see equation below). When an activity has not been com-

pleted, the maximum distance between the expected day and the 

end of the course (date of the examination in week 15), plus one 

day, is added to the sum. The sum is then normalised, dividing it by 

the maximum distance value (corresponding to a student who has 
not completed any of the activities) and multiplying by 100. D 

ranges from 2.38 (minimum distance found) to 96.9 (maximum dis-

tance found). The mean value of D is 31.61 (std = 25.95). Using K-

means clustering (k = 3), the pathways were then grouped into three 

clusters. 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = ∑|𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝑑𝑎𝑦 − 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑𝑑𝑎𝑦|

65

𝑘=1

 

𝐷 =
𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝑀𝑎𝑥 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒
𝑥 100 

The first (low distance) cluster contains 47 pathways (20% of the 
students). These students can be classified as regular learners (see 

Figure 2). The maximum value of D in this cluster is 25.5, which 

can be used as a threshold value to “qualify” as a regular learner. 

All the pathway examples of Figure 2 follow the recommended 
pathway fairly closely, but each present a few “glitches”. The path-

way with distance D = 8.30 shows that one of the latest activities 

has been missed, while another activity has been a bit delayed: until 

week 11 (final topic of the course) this student had been a very reg-

ular learner. The pathway with distance D = 12.81 shows that one 

of the early activities has been completed with a significant delay, 

while a few other activities were slightly delayed. It is possible that 

this student joined the course a bit late, did not understand what was 
demanded of them at first, or that it took them a bit of time to adopt 

the correct strategy (some “catch up” seems to have been done 

around week 9). The pathway with distance D = 17.37 is character-

ised by three undone activities, and one significantly delayed 
activity. The distance measure in this cluster seems to be a good 

indicator of the number and gravity of the “glitches”.  

 

Figure 2. Examples of low distance (D=8.30; D=12.81; D=17.37) 

learning pathways (including the recommended pathway). 

The second (middle distance) and largest cluster contains 128 path-

ways (55% of the students). The value of D in this cluster ranges 

between 25.5 and 56.8 (see examples in Figure 3). The examples of 

Figure 3 show that the students started as regular learners, but they 
shifted to selective or late learner profiles after some time (around 

week 5). Although the three values of D are close (28.61, 31.64 and 

31.96 respectively), the pathways look quite different. The distance 

measure does not allow us to precisely discriminate between the 
selective and the late learners, so more work is needed in this re-

spect. However, a student in this cluster may be described as an 

“irregular learner”.  
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Figure 3. Examples of middle distance (D=28.61; D=31.64; 

D=31.96) learning pathways (for reference, the recommended 

pathway is also shown). 

Finally, the third (high distance) cluster contains 59 pathways (25% 

of the students) (see Figure 4). In this cluster, the students adopted 

either a selective or a late learning strategy from the start of the 

course. Some of these students concentrated on one type of activity 
only, others did all the activities, but very late in the semester, i.e., 

when they started revising for the final examination. The pathway 

with distance D = 60.30 is characteristic of a late learner: all the 

activities have been completed but were all seriously delayed. The 
pathway with the highest distance (D = 96.87) is characteristic of a 

learner who almost never engaged in any of the activities. The path-

way with a slightly lower distance (D = 91.22) shows a learner who 

is both selective and late. A high distance measure seems to be a 

good indicator of poor time management and lack of engagement. 

 

Figure 4. Examples of high distance (D=60.30; D=91.22; 

D=96.87) learning pathways (for reference, the recommended 

pathway is also shown). 

Finally, we found D to have a moderate but significant negative 

correlation (r = -0.6087) with the students’ final examination 

marks. 

4. DISCUSSION 
The negative correlation (r = -0.6087) between exam performance 

and the distance to the recommended learning pathway confirms 

that regular learning is conducive to deeper learning. There could 

be several reasons for this: (1) having studied the learning material 
before attending a tutorial allows students to make the best of the 

time they have with the lecturer as they can prepare questions and 
better understand the additional content provided in the tutorial; (2) 

students have more time to assimilate and reflect on their learning 

before sitting the final examination; (3) it shows better time man-

agement skills, which are likely to have been effective also when 

preparing for the final examination.  

As future work, we plan to test if, at the level of each student, the 

visualisation of their learning pathway combined with the distance 

measure D, may effectively raise their awareness of their lack of 

time management and self-regulation skills. Another possible ap-

plication may be to use this information to nudge students who do 

not follow the recommended pathway and provide them with regu-

lar, timely, and personalised feedback.  

At course level, a dashboard providing weekly information about 

the mean distance between the students’ pathways and the recom-

mended pathway, could be useful to alert the instructor about a 

worrying students’ disengagement trend. A constantly high dis-
tance value could be indicative of a flaw in the course design, for 

example with respect to the amount of effort required from the stu-

dents. A sudden increase of the distance measure could be 

indicative of a particularly challenging topic which causes disen-
gagement from the students. It could also indicate that the students 

have a busy schedule forcing them to make undesirable choices 

concerning their time and effort allocations. 

Our study suffers from several limitations. First, the data was col-
lected on a weekly basis, where daily collection would have 

provided more accurate time stamps. This is easy to correct, and 

more data will be collected for the future cohorts of students. Sec-

ond, in its current formulation, the distance measure does not allow 
us to precisely discriminate between the different learner profiles 

(selective, late, irregular, etc.). One possibility, which is under in-

vestigation, would be to use different weightings for different types 

of activity and to vary the weightings as the semester advances. 
Another possibility would be to formulate different distance 

measures, each measure being designed to capture a particular 

learner profile. Better discrimination between the different types of 

learners will enable the formulation of more accurate and pertinent 

nudging.  

We have a lot of data that we have not yet exploited. Future work 

includes calculating correlations between different types of activity 

(completion and scores) and course performance. We have also 
started to work on the design of different dashboards for students 

and for instructors. 
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ABSTRACT
Studies have shown that on-demand assistance, additional in-
struction given on a problem per student request, improves
student learning in online learning environments. Students
may have opinions on whether an assistance was effective
at improving student learning. As students are the driv-
ing force behind the effectiveness of assistance, there could
exist a correlation between students’ perceptions of effec-
tiveness and the computed effectiveness of the assistance.
This work conducts a survey asking secondary education
students on whether a given assistance is effective in solving
a problem in an online learning platform. It then provides
a cursory glance at the data to view whether a correlation
exists between student perception and the measured effec-
tiveness of an assistance. Over a three year period, approxi-
mately twenty-two thousand responses were collected across
nearly four thousand, four hundred students. Initial analy-
ses of the survey suggest no significance in the relationship
between student perception and computed effectiveness of
an assistance, regardless of if the student participated in the
survey. All data and analysis conducted can be found on
the Open Science Foundation website1.

Keywords
Online Education, On-Demand Assistance, Student Percep-
tion

1. INTRODUCTION
Collecting student perceptions on educators’ performances,
practices, and generated content has been well established
in higher education, along with its ability to potentially im-
prove student instruction [3, 10]. However, very few have
been conducted on student perception in secondary educa-
tion settings [11]. Additionally, surveys conducted on stu-
dent perception rarely consider individual pieces of content
and their effectiveness in context.

1https://osf.io/f8w9p/

On-demand assistance generally improves student leaning [8,
12, 17, 20] in online learning platforms. Educators and their
assistance are evaluated through computations to maintain
or improve the level of quality and effectiveness [13, 16].
As such, student perceptions on assistance effectiveness are
rarely polled, leaving a gap in their evaluation.

In 2017, ASSISTments, an online learning platform [9], de-
ployed the Special Content System, formerly known as TeacherAS-
SIST. The Special Content System allows educators to cre-
ate and provide on-demand assistance for problems assigned
to their students. On-demand assistance was known as student-
supports within the application, with most as either hints
or explanations. Additionally, educators marked as star-
educators had their student-supports provided to any stu-
dent, regardless of their class, for any problem a class’s ed-
ucator did not generate a student-support for. The effec-
tiveness of a student-support was evaluated using whether
the student answered the next problem in the problem set
correctly on their first try [13, 16].

In the Fall semester of 2018, the Special Content System, on
providing student-supports to the students, would prompt
the student to provide feedback on the helpfulness of the
student-supports as shown in Figure 1. The student may
have chosen to evaluate the student-support by clicking the
”Yes” or ”No” button or not responded by completing and
moving to the next problem. The feature was disabled in
2020 within the new, redesigned ASSISTments platform;
however, educators who have not migrated from the orig-
inal platform will still be provided this feature: prompting
students on the helpfulness of a given student-support.

The first part of this work will analyze the students’ percep-
tions of helpfulness and compare them to the overall effec-
tiveness of the student-support. If correlated, students could
be effective in filtering student-supports. In online learning
environments which crowdsource their on-demand assistance
[13, 12, 17], it may improve automation and independence
from moderating bodies. The second part of this work will
analyze the students’ perceptions of helpfulness and compare
them to the responding students’ effectiveness of the student-
support. This may give stronger claims towards a student’s
ability to predict the effectiveness of assistance provided to
themselves.

In summary, this work aims to answer the following research

A. Haim and N. Heffernan. Student perception on the effectiveness
of on-demand assistance in online learning platforms. In A. Mitrovic
and N. Bosch, editors, Proceedings of the 15th International Confer-
ence on Educational Data Mining, pages 734–737, Durham, United
Kingdom, July 2022. International Educational Data Mining Society.

© 2022 Copyright is held by the author(s). This work is distributed
under the Creative Commons Attribution NonCommercial NoDeriva-
tives 4.0 International (CC BY-NC-ND 4.0) license.
https://doi.org/10.5281/zenodo.6853053
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Figure 1: A student-support provided to the student (left)
prompting the student for their perception on its helpfulness
(right).

questions:

1. Can student perceptions accurately predict the overall
effectiveness of student-supports?

2. Can student perceptions accurately predict the effec-
tiveness of student-supports for students who partici-
pated in the survey?

2. BACKGROUND
In this work, ASSISTments will be used to conduct the stud-
ies. ASSISTments2 is a free, online learning platform pro-
viding feedback to inform educators on classroom instruc-
tion [9]. ASSISTments provides open source curricula, the
majority of which is K-12 mathematics, containing problems
and assignments that teachers can assign to their students.
Students complete assigned problems in the ASSISTments
Tutor. For nearly all problem types, students receive im-
mediate feedback on response submission, which tells the
student the correctness of the answer [6]. When a student-
support has been written for a problem, a student can re-
quest to receive a student-support during the span of prob-
lem completion. Student-supports may come in the form of
hints which explain how to solve parts of the problems [8,
17], similar problem examples [12], erroneous examples[17,
1], and full solutions to the problems [18, 19].

ASSISTments runs an application known as the Special Con-
tent System in which student-supports, usually as hints or
explanations, are crowdsourced from educators. Student-
supports are created by educators and then provided to stu-
dents when solving. In this work, data from the ASSIST-
ments Dataset generated by the Special Content System [14,
15] alongside the student perception on student-support ef-
fectiveness is used to analyze whether student perceptions
accurately predict the effectiveness of student-supports.

3. METHODOLOGY
Data was collected within the original ASSISTments plat-
form over the course of three years. During this time period,

2https://assistments.org/

when a student-support was provided to a student, a prompt
may appear asking about the effectiveness of the student-
support, as shown in Figure 1. The student additionally had
an equally likely chance that a prompt may not be shown.
46,620 responses across 13,509 students were recorded on
the effectiveness of a student-support. Preprocessing on the
responses removed any where the effectiveness of a student-
support could not be determined. Additionally, any students
who only answered one of the available choices across many
problems were discarded as the provided answers may not be
in full consideration of the question or without major bias.
After processing, 21,736 responses across 4,374 students re-
mained. The responses consisted of 5,861 student-supports
across 4,120 problems.

After the response were processed, they were grouped by
problem and sub-grouped further by student-support. Each
sub-group of student-supports contained the data for the stu-
dent perception of effectiveness and the effectiveness data as
specified by the research questions: overall effectiveness and
the effectiveness across the students who responded respec-
tively. For every pair of student-supports with a problem
group, a Sign Test[5] was performed between the student
perception of effectiveness and measured effectiveness of the
student-supports. As A Sign Tests measures whether the dif-
ferences between pair of data is consistent, the results are
expected to follow a binomial distribution. As such, a two-
sided Binomial Test[4] was performed to measure whether
the student perception of effectiveness and the measured ef-
fectiveness is consistent. If there was less than two student-
supports available for a problem or the difference between
the perception or measured effectiveness was zero, then no
useful comparison could be made and was thus discarded[5].
The results of the pairwise comparisons between all student-
supports are reported using the Pair prefix within Table 1.
To make claims on the effectiveness of student-supports on
a given problem, another two-sided Binomial Test was per-
formed only on the two supports with the largest combined
sample size. The results of the pairwise comparison between
the two student-supports with the largest sample size per
problem are reported using the Problem prefix within Ta-
ble 1. As multiple analyses were being performed on the
dataset, the Benjamini-Hochberg Procedure[2] was applied
to the corresponding p-values to reduce the false discovery
rate.

To measure the effectiveness across only those who partic-
ipated in the survey, a Chi-squared Test[7] was performed
comparing the relationship between the student perception
of effectiveness and the measured effectiveness across stu-
dents who responded for a student-support in addition to
the Sign Test. In comparison to the Sign Test which mea-
sures consistent differences, a Chi-Squared Test measures
the difference in frequencies between two relationships. A
Chi-squared Test was not conducted on the overall effec-
tiveness as the sample size considers all students who were
provided the associated student-support which violates the
equality of sample sizes across observation. As the results of
all the Chi-Squared Tests performed is infeasible to report,
only those which found significant results are shown in Table
2.

4. RESULTS
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Table 1: Binomial Test of the Sign Tests on student perception of effectiveness and the measured effectiveness of student-
supports.

Test Performed Sample Size Number of Successful Sign Tests P-Value Corrected P-Value

Pair: Overall 1,699 876 0.2071 0.379

Problem: Overall 1,182 607 0.3672 0.379

Pair: Responding Students 1,320 695 0.0575 0.23

Problem: Responding Students 942 485 0.379 0.379

4.1 Overall Effectiveness
As shown in Table 1, across the 5,861 available student-
supports with responses, 1,699 pairs of student-supports were
created with 876 pairs (proportion estimate of 0.5156) re-
turning a correlated difference on the Sign Test for overall ef-
fectiveness. Across the 1,699 pairs of student-supports, there
were 1,182 problems, of which 607 (proportion estimate of
0.5135) had a correlated difference on the Sign Test. Both
results were not significant (α < 0.05) before Benjamini-
Hochberg correction.

4.2 Effectiveness Across Responding Students
Also in Table 1, 1,320 pairs of student-supports were cre-
ated with 695 pairs (proportion estimate of 0.5265) return-
ing a correlated difference on the Sign Test for effective-
ness across responding students. Across the 1,320 pairs of
student-supports there were 942 problems, of which 485 (pro-
portion estimate of 0.5149) had a correlated difference on
the Sign Test. Both results were not significant (α < 0.05)
before Benjamini-Hochberg correction.

The Chi-squared Test (z0.05 >= 3.8415) revealed only six
out of the 5,861 responded student-supports with a relation-
ship between the student perception of effectiveness and the
measured effectiveness across the responding students. The
results of the significant Chi-squared Tests are shown in Ta-
ble 2. The significance of the results can be attributed to
randomness due to sample size (6/5861 = 0.001 < 0.05).
The corrected p-values using the Benjamini-Hochberg Pro-
cedure[2] also conveys the non-significance of the results at
p = 1.

5. CONCLUSION
In this work, initial findings show no significant relationship
between student perception of effectiveness and the mea-
sured effectiveness of a student-support. Only 5% of stu-
dents who used the original system were considered in the
performed analysis. Additionally, less than 1% of the re-
sponses collected showed any significance in the relation-
ship. As such, the significance of any current results can be
attributed to randomness. The response set is unlikely to
be generalizable to other online learning platforms or across
students and problems.

Potential improvements to further analysis could view the
features of the participating students or problems, such as
prior knowledge or problem accuracy. The prompts could
also be subdivided further to determine if phrasing has a
desired effect on student perception. Accurate markers of
student response times could also be recorded to differentiate
responses before and after completing the given problem.
Additionally, the location of when the prompt was delivered

could be moved to better reflect the measure of effectiveness
used for an on-demand assistance.

Although no evidence of the relationship between student
perception of effectiveness and the measured effectiveness
of a student-support was found in this work, other qualities
could attempt to better provide understanding of student
perceptions on effectiveness in more granular surveys. Fu-
ture work can explore better opportunities in student per-
ceptions on effectiveness of student-supports for themselves.
Afterwards, further steps can be taken to gradually gen-
eralize effectiveness overall and eventually to other online
learning platforms.
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ABSTRACT 
This study applied a problem-based learning framework to visual-
ize students’ problem-solving patterns using sequential log data. 
Comparing the theory-informed visualization with a graph without 
theoretical guidance proved that problem-solving visualizations 
with a theoretical foundation were more interpretable for research-
ers and educators. The presentation of the graph was more explicit, 
and the outcomes can be generalizable to other related PBL studies. 
Besides, the theory-informed visualization can also be used by 
teachers to provide differentiated scaffoldings to support different 
groups of students when facilitating problem-based learning activ-
ities.  

Keywords 
Learning analytics, problem-based learning, theory-informed, data 
visualization. 

1. BACKGROUND & INTRODUCTION 
Problem-based learning (PBL) is an instructional method in which 
students learn through facilitated problem solving that centers on 
an ill-structured problem [8]. It is a constructivist educational strat-
egy and should be performed via a student-centered pedagogical 
approach [6]. In other words, when engaging in a PBL activity, 
learners should take a more active role in obtaining knowledge and 
skills [9]. Instructors need to serve as facilitators who provide indi-
vidualized instructions to accommodate students’ diverse progress 
[17]. 

In a constructivist activity like PBL, students would be at different 
paces and engage in various tasks. Thus, to better facilitate stu-
dents’ problem-solving, it is vital to monitor their progress [6]. 
Only after educators or researchers tracked students’ different pro-
gress successfully and precisely, then they could provide 
individualized instructions to facilitate students [13].  

The recent advancement of virtual PBL environments provided re-
searchers opportunities to track students’ problem-solving progress 
[3]. When students were engaging with virtual PBL environments, 
a large number of usage clickstream log data would be generated. 
The clickstream log data is time-stamped and captures students’ 
fine-grained behaviors [18]. Researchers and educators can employ 
these data to monitor students’ real-time progress or to provide just-
in-time interventions.  

The collected log data is often large amounts and consists of multi-
ple features including student ID, timestamp including start time, 
end time, the name of accessed tool, tool use actions such as tool 
open or close, and so on. Collecting the clickstream log is just the 
first step, a more crucial step is how researchers and educators pro-
cess the log data to make it interpretable for further educational 
practices. In this case, educational theories are needed in guiding 
researchers to process the collected log data and make it interpret-
able and relevant to educators.  

2. PURPOSE OF STUDY 
The research involving collecting, analyzing, and reporting learn-
ers’ usage log data is considered learning analytics studies (LA). 
Researchers have been exploring and refining the approaches of in-
corporating educational theories when conducting LA studies [2]. 
For instance, a study [7] incorporated the framework of engage-
ment in processing student-generated log data on MOOCs. 
Researchers applied exploratory and confirmative factor analysis 
upon collected log data, and related the outcome factors to three 
engagement constructs: affective, cognitive, and behavioral en-
gagement. This theory-informed data processing allowed 
researchers better to interpret the association between usage logs 
and learner performance. For example, learners’ video watching 
duration is associated with final scores because they were posi-
tively correlated with the behavioral and cognitive engagements. In 
another study [15], researchers mapped usage logs on learning 
management systems to self-regulated learning (SRL) phases. For 
instance, students’ actions of accessing objectives or lesson over-
views were associated with the Forethought phase of SRL. These 
actions reveal the traces of learners’ goal-setting behaviors, an im-
portant component of the forethought phase. Following the SRL 
framework, researchers could draw a clear path between nuanced 
learning analytics features and the nuances of learning theories. In 
return, the framework provided a solid theoretical foundation for 
further instructional practices and the future designs of the learning 
platforms. Although researchers have taken initiatives of involving 
theories to process log data generated from various educational 
platforms. However, selfdom studies have focused on incorporat-
ing theories to process problem-solving behavioral logs. Although 
previous studies applied LA techniques to analyze problem-solving 
logs [3, 12], however, to produce inferable and generalizable re-
search findings for future PBL research, more theory-based log 
processing approaches are needed.  

In addition, data visualization was widely applied in representing 
log data outcomes, especially when the amount of data is large [11]. 
LA studies can be benefited from data visualization techniques is 
because the visualizations can represent the large amount of data in 
a compact format without losing essential information [1]. For ex-
ample, a study [4] extracted student log data from a virtual 
geometry game to visualize their problem-solving patterns. These 
graphs helped researchers to examine students’ problem-solving 
patterns explicitly, they were able to see whether students were on 
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the expected path during the activity. In another study [14], re-
searchers used area graphs to represent students’ different tool 
usage frequencies in a virtual PBL environment. These graphs al-
lowed researchers to efficiently identify the different usage patterns 
between different groups of students. Using log data to create data 
visualizations brings researchers larger flexibility to examine user 
behavior patterns from different aspects. The outcomes of the vis-
ualizations could also be used in the classroom to inform teachers 
about providing just-in-time supports [16]. 

Considering the advantage of data visualization and the need to in-
corporate educational theories in processing log data, especially in 
the PBL context. The purpose of this study is to merge the gap by 
providing a theory-informed LA method to process sequential be-
haviors generated in a PBL activity. Then, by visualizing the 
sequential outcomes, the ultimate goal of proposing this approach 
is to (1) generate theory-based interpretable sequential patterns for 
researchers and (2) assist teachers in being better informed about 
students’ progress to support their PBL facilitation. 

3. METHOD 
3.1 Research Context 
The PBL environment applied in this study is called Alien Rescue 
(AR). In this environment, students play the role of scientists to 
help six alien species to relocate to our solar system. By solving the 
problem of which species can survive on which planet or moons in 
our solar system, students would gain related scientific knowledge 
aligned with 6th-grade science standards. 

Figure 1 presents the screenshots of the AR environment. It is a 3D 
immersive problem-solving platform, and there are ten different 
cognitive tools embedded for students to use. These tools, like the 
Solar system database or Notebook, can provide students with 
needed information and scaffoldings to find the solutions. 

 
Figure 1. Alien Rescue PBL environment  

3.2 Participants and Data Source 
A total of 114  six grade students engaged with the AR PBL envi-
ronment through 15 class sessions. More specifically, 61 students 
conducted this activity virtually at home, and 53 students conducted 
this activity in-person at school. 

In all, 45554 lines of behavioral log data generated by participants 
were collected for data processing and analysis. The features of the 
collected log data include: 

• Student ID. 
• Activity start time (by second). 
• Activity end time (by second). 
• The name of the accessed tool. 
• Tool usage actions such as tool open or close. 

3.3 Theory-Informed Data Processing 
To track and analyze students’ problem-solving behaviors and pre-
sent generalizable outcomes, the framework of PBL process was 
applied [8]. Based on the framework, problem-solving usually con-
sists of multiple phases, including identifying facts (IF) and 
Knowledge deficiency (IKD), generating hypotheses (GH), and 

Solutions (GS). Learners perform the phases iteratively or in differ-
ent order until solutions are produced. To better interpret students’ 
problem-solving patterns using log data and related to the frame-
work, 28 different kinds of behavioral log actions in AR were 
connected with several problem-solving phases based on the con-
cept of each phase [8]. Table 1 presents an example of the 
alignment. The first phase in the framework is the activities for stu-
dents to understand the problem scenario. AR environment 
provides several tools such as Alien or Concept Databases for stu-
dents to collect the information they need for solving the problem. 
Thus, the access to these tools aligns with the idea of Identify Facts 
(IF) phase. Plus, students needed to generate possible hypotheses 
as they gathered more information. The probe sending feature in 
AR is a critical component that students can actively obtain infor-
mation to generate hypotheses. Thus, the actions related to sending 
probes were aligned with Generate Hypothesis (GH) phase. More-
over, AR provided students with a Notebook tool to organize 
collected information and identify missing pieces, which resonates 
with the phase Identify Knowledge Deficiency (IKD). Plus, Note-
book also allows students to generate possible solutions via a 
Comparing Notes feature. This feature lets students conveniently 
compare the information they obtained in the environment to de-
cide which place is suitable for which alien. In this case, actions 
relevant to comparing notes were aligned with Generate Solution 
(GS) phase.  

Table 1. Examples for alignment process 

Log Activities 
in AR 

Phases in PBL 
Cycle 

Definition 

Alien Data-
base: Click 
Concept Data-
base: Click 

Identify Facts  
(IF, index = 1) 

Students identify the 
relevant facts from the 
environment, which 
helps them represent the 
problem. 

Probe Design: 
Change Probe 
Name; Click 
Back Button 

Generate Hy-
pothesis  
(GH, index = 
2) 

Students take the initia-
tive to generate possible 
hypotheses as they un-
derstand the problem 
better. 

Notebook: 
Click; Create; 
Delete; Edit 

Identify 
Knowledge 
Deficiency  
(IKD, index = 
3) 

Students identify the 
knowledge that is gath-
ered against knowledge 
that is still needed. 

Notebook: 
Compare; Edit 

Generate Solu-
tions  
(GS, index = 4) 

Students use the ob-
tained knowledge to 
produce solutions. 

Ultimately, all log data were transformed into 1789 sequences that 
reflect students’ problem-solving sequential patterns. Table 2 pre-
sents an example of processed outcomes. For instance, the first row 
indicates the sequence performed by student 1 in May. 25th is IF, 
IKD, GH, IF, IKD, and GS, which is different from the sequence 
the student conducted in May. 26th. These sequences were then 
used for sequential analysis and creating visualizations to examine 
student problem-solving patterns. 

Table 2. Example of processed sequences 

Student Date Activity Sequence 

Student 1 May.25th [1, 3, 2, 1, 3, 4] 

Student 1 May.26th [1, 3, 1, 3, 1, 4, 1, 4, 1] 

Student 2 May.25th [1, 2, 1, 3, 2, 1, 3, 1, 2, 3] 
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Note. 1 = Identify Facts (IF), 2 = Generate Hypothesis (GH), 3 = 
Identify Knowledge Deficiency (IDF), 4 = Generate Solutions (GS) 

3.4 Data Visualization Techniques 
Problem-solving is a sequential activity that consists of multiple 
phases such as Identify Facts or Generate Hypothesis. The paths 
students go through during these phases are not always linear. In 
fact, during a PBL activity, students usually go iteratively or circle 
among different problem-solving phases [8]. The Sankey graph is 
a type of graph that symbolizes sequential activities. It can mimic 
users’ iterative sequential behaviors. More importantly, the graph 
can also present the strength of each sequential path: the wider the 
path between two phases, the larger proportion of the sequential 
activity between two phases among all sequences in the graph. 
Thus, Sankey graphs were used to visualize the iterative manner of 
students’ problem-solving efforts. 

4. RESULTS & DISCUSSION 
4.1 Theory-informed visualization 
Figure 2 was created to represent students’ problem-solving behav-
ioral patterns. For instance, the label 20% on the top of the figure 
means, among all the paths performed by students, 20% of the se-
quential actions were from Identify Knowledge Deficiency (IKD) 
to Identify Facts (IF) phase.  

 
Figure 2. Theory-informed problem-solving patterns 

Based on Figure 2, following highlights can be extracted: 

• Relatively large proportions of the sequential behaviors were 
conducted between IKD and IF phases (20%, 22%). It means 
students were inclined to keep seeking information until they 
figured out what information was obtained and what was miss-
ing, and they would find out the ones they needed.  

• The paths involving Generate Solutions (GS) were relatively 
smaller among all the paths (e.g., IF to GS is 3%; GH to GS is 
2%). These outcomes indicate GS is more of an end of prob-
lem-solving activity instead of a mean. It is aligned with the 
PBL environment setting. In the GS phase, students just 
needed to submit their solutions to a console in the environ-
ment, the action itself does not enhance or intervene in their 
problem-solving progress. In total, students are required to 
compose six solutions; that’s why the GS phase paths are 
smaller. To be noted, there were some paths coming out from 
GS phase; it means students were reconfirming their solutions 
either by going back to IF (2%) to examine some information, 
or to GH phase (2%) to refine their hypothesis. 

• The paths among IF, GH, and IKD occupy medium propor-
tions compared to the above two findings. For instance, 16% 
of the actions were from IKD to GH. GH phases involve the 
actions that students were sending probes to narrow down 
their hypothesized solutions. Students may or may not have a 

solution ready after the GH phase, which explains why the 
proportion of paths from GH to GS is relatively small (2%).  

In all, figure 2 presents the problem-solving sequential patterns per-
formed by students during a PBL activity. This graph provided an 
overview of how students conducted problem-solving in an itera-
tive manner across multiple PBL phases. More importantly, this 
graph provided a theory-informed representation of the sequential 
problem-solving patterns generated by a group of middle school 
6th-graders in a science PBL activity. Because the paths presented 
the actions transiting across different PBL phases, this outcome 
would be informative for other PBL research that is either in a sim-
ilar or a different educational context. 

In fact, to examine the benefits of theory-informed visualizations, 
Figure 3 was created by the authors for providing a contrast to fig-
ure 2. Figure 3 is also a Sankey graph but without aligning the 
problem-solving actions and the PBL phases. All nodes presented 
were different tools provided in the PBL environment, and all paths 
were students’ sequential paths across each tool. For instance, from 
this figure, we can find out relatively large proportions of sequen-
tial actions were performed among Notebook, Solar System 
Database, and Alien Database. These three tools are all essential 
features provided in the environment for students to solve the prob-
lem. Indeed, it provided a fine-grained visualization of how 
students transited across different tools in the environment. How-
ever, figure 3 could be less interpretable than figure 2 in the 
following two aspects.  

 
Figure 3. Patterns without PBL framework alignment 

The first aspect is information presentation. In the AR PBL envi-
ronment, there are a total of 10 different tools. A graph that presents 
students' problem-solving patterns in such an environment should 
incorporate all the actions among these ten tools. Compared to fig-
ure 2, which only contains four nodes, figure 3 brings a larger 
amount of information or cognitive load for readers to process [1]. 
Plus, the presentation of this graph is already congested even with-
out the authors inputting direction and percentage for each path. In 
fact, many current PBL environments, such as River City [10] or 
Crystal Island [5], involve more than ten tools or features that stu-
dents need to access. Even though a fine-grained graph that 
includes all tools can reveal detailed sequential behaviors and is in-
formative to readers familiar with the environment, it might be 
challenging for both researchers and readers to interpret those less 
acquainted.  

The second aspect is generalizability. A fine-grained graph like fig-
ure 3 can indeed reveal exact sequential action performance by 
students. For example, after accessing Probe Design, the figure 
shows students would engage with a series of tools such as Alien 
Database or Spectra. However, what do these actions mean in terms 
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of problem-solving patterns in general? It may be more informative 
for developers of this environment than researchers conducting 
PBL studies in different contexts. Whereas for figure 2, since the 
Probe Design is aligned with the GH phase (see Table 1), the figure 
shows 13% of actions afterward were to IDF, and 13% were to IF. 
These outcomes provide a more explicit picture of how students 
performed their PBL paths and strategies, since it is aligned with 
the PBL framework [8]. Other studies that also applied this frame-
work could compare and contrast the outcomes with this study and 
draw inferences. In addition, researchers or educators who are con-
templating conducting PBL studies or activities could pick up the 
information that depicts students’ problem-solving patterns easily 
from the theory-informed graphs to apply to their future PBL de-
sign or activities.  

4.2 Uses of the theory-informed visualization 
Expect for interpretation, the theory-informed visualizations also 
present in-depth outcomes for researchers and educators about stu-
dents’ problem-solving patterns based on conditions. Since 
participants engaged in the AR PBL environment under virtual or 
in-person modes, the theory-informed visualizations can also pro-
vide a comparison between these two groups.  

 
Figure 4. Problem-solving patterns grouped by learning modes 

A Sankey graph was made with light blue representing the paths 
conducted by students in the virtual mode and dark blue represent-
ing the paths by students in the in-person mode (see Figure 4). The 
statistical results showed that students in the virtual mode (M = 106, 
M = 97) performed significantly more paths from Identify Facts 
(IF) to Identify Knowledge Deficiency (IKD) phase (U = 901. 00, 
z = 3.86, p < .01), and from Identify Knowledge Deficiency (IKD) 
back to Identify Facts (IF) phase (U = 829. 00, z = 4.28, p < .01) 
than their in-person mode peers (M = 82, M = 72), these statistical 
outcomes are resonated with the Sankey graph that light blue path 
is wider than dark blue paths. Moreover, as indicated in Figure 4, 
students in the virtual mode (M = 8) were more inclined to use the 
generated hypothesis to assist their knowledge deficiency identifi-
cation process (U = 879. 50, z = 2.16, p < .05) than students in the 
in-person mode (M = 12). Based on these results, the students in the 
virtual mode appeared to be more careful when identifying 
knowledge deficiency by organizing their collected information on 
Notebook. They were more likely to collect information from dif-
ferent databases (ID) or draw results from the probes they sent (GH) 
first, then input the information on Notebook for further uses. In 
fact, carefully identifying sufficient information from different da-
tabases and collecting returned data from probes are expected 
problem-solving sequential paths that would provide students with 
better solution outcomes [8].  

IIn addition, the graph also showed that students in the in-person 
mode did not perform the paths from Generate Solutions (GS) to 
Identify Facts (IF), the dark blue path is missed between these two 

phases. To conceptualize and finalize robust solutions, it would be 
helpful for students to check with different databases to ensure the 
correct information supported the solution. Therefore, the above 
outcomes indicate that students in the virtual mode would perform 
the problem-solving actions close to the expected path, leading to 
better problem-solving outcomes. These results presented that stu-
dents under different learning modes performed distinctive 
problem-solving strategies. It indicates that when teachers facilitate 
PBL activities, different scaffoldings instructions should be pro-
vided based on students’ learning mode. For example, teachers can 
encourage in-person students to identify what information they still 
need before generating hypothesis, or remind them to examine the 
facts before submitting their final solutions.  

In addition, the gender variable can also be incorporated by the the-
ory-informed visualization. Figure 5 was made to visualize the 
different problem-solving sequential patterns between genders. The 
light blue color represents the paths conducted by male students, 
and the dark blue color represents female students. It is noticeable 
that from Identify Facts (IF) to Generate Hypothesis (GH) phase, 
the light blue path is wider than the dark blue path. A similar pattern 
could be observed from Generate Hypothesis (GH) back to Identify 
Facts (IF) phase as well. Statistical results showed that under con-
dition A, male students (M = 13, M = 17) performed significantly 
more paths from Identify Facts to Generate Hypothesis (GH) phase 
(U = 1027. 00, z = 3.14, p < .01), and from Generate Hypothesis 
back to Identify Facts (IF) phase (U = 1137. 00, z = 2.50, p < .05) 
than their female peers (M = 8, M = 12). These results indicate that 
male students dedicated more efforts to generating hypotheses di-
rectly after collecting information from different databases (see 
Table 1), and these actions were presented in a repeated manner. 
On the other hand, female students might be more cautious when 
generating hypotheses, as indicated on the graph, female students 
(dark blue) were more likely to generate hypotheses after identify-
ing knowledge deficiency than male students (light blue). Although 
this path is not significantly different by gender, it still reveals nu-
anced sequential differences between genders. Therefore, teachers 
can provide scaffoldings to different students based on gender ac-
cordingly. For instance, teachers can remind male students not to 
make prompt hypotheses right after identifying facts from data-
bases. But instead, they can check what information is missing and 
what they already have to draw better hypotheses. 

 
Figure 5. Problem-solving patterns grouped by genders 

5. CONCLUSION 
In conclusion, this study's findings revealed that theory-informed 
visualizations could provide more interpretable outcomes when ex-
amining students' sequential activities during problem-solving 
activities. The overall presentation of the visualization would be 
more explicit and generalizable to other relevant studies. 
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Moreover, the theory-informed visualizations can also demonstrate 
students' patterns based on different conditions such as learning 
modes or genders. These nuanced outcomes can inform teachers' 
differentiated scaffoldings when facilitating PBL activities.   
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ABSTRACT
The modern educational ecosystem is not one-size fits all.
Students are accustomed to personalization in their every-
day life and expect the same from education systems. Ad-
ditionally, the COVID-19 pandemic placed us all in an acute
teaching and learning laboratory experimentation which now
creates expectations of self-paced learning and interactions
with focused educational materials. Consequently, we ex-
amine how learning objectives can be achieved through a
learning platform that offers content choices and multiple
modalities of engagement to support self-paced learning and
propose an approach to personalized education based on
network science and data mining. This framework brings
attention to learning experiences, rather than teaching ex-
periences, by providing the learner engagement and content
choices supported by a network of knowledge based on and
driven by individual skills and goals. We further discuss
the proposed prototype of such a learning platform, called
CHUNK Learning. In this work, we present this tool, its
benefits for students, challenges in personalized education,
and future plans.

Keywords
CHUNK Learning Prototype, Personalized Education, Net-
work of Knowledge, Network Data Mining.

1. INTRODUCTION
Education must meet the changing needs of a complex en-
vironment where learners are expected to contribute as cre-
ative problem-solvers. Education solutions must satisfy the
specific educational needs of each learner while meeting the
rapidly changing learning objectives for each degree or job
in a resource-efficient way. Consequently, the educational
ecosystem must also provide a flexible and rich cognitive

environment, supported by adaptable high-quality content
for academic performance and complemented by effective
learning analytics, as well as social networking for strong
emotional support of students.

We identify the current shortcomings of learning platforms
and propose solutions to improve personalized learning us-
ing data mining and network science techniques. At the
content level, we focus on exploring the relevance of content
by anchoring it to each learner’s existing knowledge and how
content connects to the skills of each learner. Additionally,
we discuss how interconnecting people, content, goals, and
skills support student learning outcomes and collaborative
learning and what is the impact of these interactions on ed-
ucational experiences.

Our goal is to facilitate a learning culture that cultivates
curiosity and inquiry. While learners interact with different
content to show the same proficiency, learning differentiation
is based on branching off the main knowledge thread driven
by each student’s unique attributes, such as experience, ex-
isting skills, and learning goals. In this work, we propose
a personalized education model driven by data science and
network science, and present a solution, a prototype called
CHUNK Learning [12]. We create this agile system by inter-
connecting the content, skills, and learners that creatively
address learning theory while supporting an ecosystem that
motivates students and improves learning outcomes. Our
focus is on creating a network of knowledge, individualized
education pathways, and a social network of users to im-
prove personalized education.

2. OUR VISION AND STATE-OF-THE-ART
We present our vision for personalized education and the
synthesis of state-of-the-art research in support of personal-
ized education using network science and data mining.

2.1 The Design of a Network of Knowledge
Traditional education is linear, one chapter after another
through a whole course or course after the course through
a degree. An interconnected model of education brings an
interconnected (non-linear) view of the knowledge, where
a user can navigate through a network of knowledge built

R. Gera, D. Bartolf, S. Tick, and A. Saxena. CHUNK Learning:
A tool that supports personalized education. In A. Mitrovic and
N. Bosch, editors, Proceedings of the 15th International Conference
on Educational Data Mining, pages 743–747, Durham, United King-
dom, July 2022. International Educational Data Mining Society.

© 2022 Copyright is held by the author(s). This work is distributed
under the Creative Commons Attribution NonCommercial NoDeriva-
tives 4.0 International (CC BY-NC-ND 4.0) license.
https://doi.org/10.5281/zenodo.6853115

743



based on an ontology, pre-requisites, or dependency. Re-
cent research identifies the benefit of interconnecting the
knowledge for the learners, seeking models for a network of
knowledge. For example, one way to model it is by “quanti-
fying and analyzing the structure of students’ knowledge of
a given discipline as a knowledge network of interconnected
concepts”. Once this network is created, we can capture the
learning pattern and retrieve the information of learners’
interactions over time [7, 17].

We propose a model that supports the interconnected world
of 21st-century education, where subject matter experts co-
create a network of knowledge as a curated collection of
networked learning modules [1, 10]. A successful prototype
was built and used since 2018, namely the Curated Heuris-
tic Using a Network of Knowledge for Continuum of Learn-
ing (CHUNK Learning), i.e., a real-time, adaptive teaching-
learning modular method for enhanced and personalized ed-
ucation.

2.2 The Education Pathways for Personalized
Learning

Education is improving, but not as fast as our aspirations.
Learners bring distinct backgrounds, learning style prefer-
ences, and different motivations for engaging with the con-
tent. This surfaces the need for personalized learning that
assesses each learner’s gaps, skills, and prior experience be-
fore bringing in new information, thus preventing more gaps
creation or repeat of lessons already learned.

It also requires that a variety of learning styles be available
for learners when engaging with an instructor or the asyn-
chronous content. Content and applications of the newly
learned content must differ based on each learner’s expe-
rience and background; for example, learning and using a
mathematical concept for an economist versus a mathemati-
cian is different. Content must have applications that are
relevant to the learner’s background to anchor it to the
learner’s experience since they will be applying it in the
future. Besides this, some learners are directed to learn
specific content for certification as needed by a job or de-
gree, while some learners explore the network of knowledge
for personal indulgence to up-skill their existing expertise.
With the goal of providing a personalized experience to each
student, choices of learning paths for each student need to
be dynamically created. A method to create these learning
paths can utilize network science and data mining techniques
on the annotated network of content and users [7].

Cognitive flexibility theory discusses learning within com-
plex and ill-structured knowledge domains through the in-
ability of linear educational structures to support meaning-
ful learning experiences [6]. In these environments, the net-
work of knowledge demonstrates complex concepts’ inter-
connections and supports semantic memory. Additionally,
the use of nodes and edges creates visual learning pathways
that provide an avenue for supporting and tracking learners’
knowledge acquisition [17].

The use of network science to create a structural represen-
tation of learning paths supporting knowledge acquisition
allows educators to determine if there is an optimal path.
Networked education pathways provide the necessary envi-

ronment to examine the average length of paths between two
nodes in the network and the relationship to students’ under-
standing of material [16]. This also presents an opportunity
to examine the use of bridging concepts within a complex
knowledge structure [17]. This will also provide a feedback
mechanism to inform educators about how to improve ed-
ucational experiences for learners, filling in gaps within the
knowledge structure as needed in order to support desired
learning outcomes. Once users have navigated even a por-
tion of the network of knowledge, their experiences create
a database of learning paths, which can be analyzed to un-
derstand the learning patterns based on gender, age, back-
ground, learner type (directed versus exploratory learner),
or other attributes of the learners [13]. These findings can be
used to further improve the personalized learning platform
by suggesting what content should be added and designing
a better recommendation system for learners.

2.3 Incorporating Online Social Networking
in Learning Platforms

Online learning platforms complement or replace classroom
learning for students; however, they usually lack students’
engagement. One way to support students’ engagement in
such educational platforms is by incorporating social net-
working into the learning platform. Researchers have stud-
ied the benefits of networking the learners in learning and
professional development [15]. Various existing platforms,
such as Coursera [3], Moocs [4] provide the ability for stu-
dents and instructors to communicate with each other. While
this supports modern students’ learning, they lack social net-
working among students for content recommendation or live
collaboration.

A learning platform can provide a service to maintain social
connections for increasing users’ engagement in the follow-
ing ways. First, users can follow or be friends with people
they know or want to connect with for personal interest. Sec-
ondly, the platform should suggest new users to connect with
based on similar backgrounds and same learning interests.
Additionally, to incorporate group learning, the platform
should suggest the teams either for instant collaboration or
group projects based on users’ current learning paths. The
recommendation system must be adaptive in recommending
such teaming patterns based on the past performance of the
students and their interests.

CHUNK Learning includes the vision for such a platform
that is empowered by social networking to support meaning-
ful learning timely and respectful of each learner’s time in a
cost-effective manner [1]. Research on the CHUNK Learn-
ing platform considered the social network to recommend
similar content to similar learners, as well as connecting sim-
ilar learners based on their learning paths, background, and
mentor-mentee type relationships [11].

3. A WORKING EXAMPLE: CHUNK
LEARNING PLATFORM

We have designed a prototype of personalized education us-
ing the network of knowledge, learning pathways, and net-
work of students, called CHUNK (Curated Heuristic Using
a Network of Knowledge) Learning platform [1, 10, 12]. We
now point out how CHUNK Learning fulfills some of the
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Figure 1: The network explorer and a chunk’s content in CHUNK Learning [1]

identified needs for personalized education. Since the exist-
ing CHUNK Learning system is in its infancy stage, we will
conclude this section with ideas that can extend the current
version based on the discussion in Section 2.

The CHUNK Learning prototype offers several features iden-
tified in this work: (i) a personalized learning journey by us-
ing the information provided in the learner’s profile to auto-
matically recommend the most relevant-to-you content, (ii)
content mapping that illustrates how a learner can progress
through the network of knowledge by including the choices of
learning paths through the network, and (iii) a framework
to support social network of learners based on their pro-
file and content they are engaging with at each time they
log into CHUNK Learning. CHUNK Learning platform fo-
cuses on empowering students by ensuring that the learning
journey is cohesive, flexible, and respectful of learners’ time
and interests. This personalized education is accomplished
through the use of the following components.

• Content is chunked into intense, short, and focused
educational modules (chunks) that are interconnected
in the network of knowledge to provide (a) learner’s
choices and platform’s recommendation to build per-
sonalized learning paths, (b) view of the learning path
choices through the content, and (c) a big picture of
cohesive learning.

• Choices of interchangeable and reusable content stim-
ulate each learner’s interest and provide relevance of
each topic to each learner [10].

• Learners’ are placed into a social network to support
each other, such as pairing senior learners as mentors

for junior ones, based on their automatically updated
profiles [14].

• Personalized content driven by implicit recommenda-
tions from a user’s social network based on tie strength
between learners [8].

Based on the learner’s profile, CHUNK Learning optimizes
both the content and the methodology delivery to meet the
needs of each learner. It is intended to fit typical aca-
demic needs, much like curriculum mapping, while person-
alizing the content within the chunk of knowledge. There-
fore, the content is organized hierarchically using Topics,
Units, Chunks, and Chunklets to index content in a way
that meets and improves the overall coherence of a course
of study (more information on CHUNK Learning Wiki [2]).

Figure 1 shows the personalized adaptive learning frame-
work by displaying a portion of the network of knowledge
on the right and the personalized content of a chunk of
knowledge on the bottom left of the figure. Within a chunk,
the top row of content reveals the system’s recommenda-
tions based on the learner’s profile, and the other tiles are
the choices of the ranked alternatives. The system displays
content in a manner that can be viewed in a network for-
mat through the CHUNK Learning explorer at the topic,
unit, and chunk levels. The explorer view at the topic-unit-
chunk level is a concept mapping that follows a logical or-
der to provide each learner a well-rounded and comprehen-
sive educational experience, with choices for deeper dives
and connections to other topics-unit-chunk. At the chun-
klet level, a learner can see the choices for all the building
blocks needed to attain any specific academic competency
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Figure 2: A view of personalized learning pathway in CHUNK Learning [1]

while being recommended the most relevant one based on
that learner’s profile. Each column of a chunk provides the
recommended chunklet at the top, followed by rank-ordered
choices to complete that part of the chunk before heading
to the assessment.

Figure 2 shows an example of personalization in CHUNK
Learning achieved through (i) interchangeable chunklets that
personalize the application of the content (on the left side of
the figure) and (ii) personalized interchangeable activities
for different styles of learning, such as video, PDF, code,
demo, interactive activity (on the right side of the figure).

CHUNK Learning is a prototype used for hybrid teaching
at our university. For these classes, students learn part of
the content asynchronously using CHUNK Learning, com-
plemented by synchronous practice and discussions. The
assessment of students’ experience in these classes shows
promising benefits in using CHUNK Learning for hybrid
teaching. Besides the self-paced environment, students val-
ued the mix of modalities of engagement with the content
available on CHUNK Learning, supporting meaningful and
engaging interactions with the class while enhancing their
learning experience.

3.1 Extending the CHUNK Learning Platform
How can this prototype be further extended using network
data mining? We see four primary areas of extension, and
some progress has already been made in each of the areas:
(i) the network of knowledge’s explorer view, (ii) the content
within a chunk, (iii) the social network of users, and (iv) cre-
ate a network-driven recommendation system and learning
analytics. Below we expand on the existing work on each of
these extensions.

CHUNK Learning’s explorer view of the Network of Knowl-
edge in CHUNK Learning is static and identical for all users
(except the color coding based on the enrolled and completed
chunks). To focus and place the learner on a meaningful
learning path, we propose a personalized display of the net-
work of knowledge based on assessment and relevancy to
the user’s learning objectives. Complementing the person-
alizing of the explorer view, we can personalize each chunk’s
content. Currently, it is performed using the content’s tags
compared to a learner profile’s tags, in addition to the rank-
ing of the content based on the user’s rating of each chun-
klet. The two existing rankings are based on the quality of
the content and relevance to the learner.

Currently, the recommender system updates the learning
plan based on each learner’s activities (learned, viewed, tested),
keyword searches, and content ratings [5, 9, 11]. We aim to
update further the recommendation system using the social
network of learners and their learning history.

4. CONCLUSION
In this paper, we introduced a prototype named CHUNK
Learning to improve personalized education at scale using
network data mining. The proposed prototype is based on
the network of knowledge, education pathways, the network
of learners, and the content recommendation system. We
presented this tool, its existing features, and further plans.
We also discussed some challenges to consider in creating
and using such a personalized learning ecosystem. We aim
to extend the tool further by including a social network of
users to support personalized and collaborative learning. We
share this work to promote conversations and research to-
wards a new field of personalized education driven by net-
work data mining.
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ABSTRACT 
A widely used minimum criterion for intelligent tutoring system 
(ITS) status is that the system provides within-problem support. 
The ITS literature abounds with comparisons of supports, but in-
vestigations on the transferability of findings, particularly between 
education levels, are scant. There are, however, significant impe-
tuses to investigating the transferability of these findings. First, 
ITSs are used throughout K-16, and findings from past studies nat-
urally serve as guideposts for subsequent ITS developments and 
research. If findings do not transfer, these guideposts may be illu-
sory. Furthermore, learners change over time, and the efficacy of 
ITS supports that do not adapt to these changes may vary. This 
study conceptually replicates investigations conducted at the mid-
dle school level by assigning 330 college students in introductory 
mathematics courses homework that have the same within-problem 
support formats. The support formats are either text hints, text ex-
planations, or video explanations. We compare the efficacy of these 
support formats within the college student sample and between col-
lege student and middle school student samples. Our findings at the 
college level indicate that on-demand within-problem explanations 
displayed as text rather than videos lead to higher next problem cor-
rectness and that both outperform text hints. Our results differ from 
those in the literature using middle school student samples and 
therefore buttress the assertion that studies investigating the trans-
ferability of findings between education levels are necessary. 

Keywords 
Educational Data Mining, ASSISTments, Within-Problem Sup-
ports, Replication, Intelligent Tutoring Systems 

1. INTRODUCTION 
A widely used criterion for intelligent tutoring system (ITS) status 
is that the system has an inner loop [1], i.e., provides within-prob-
lem support and not just end-of-problem feedback. The ITS 
literature abounds with comparisons of supports, including scaf-
folding versus hints [2], worked examples versus erroneous 
examples [3], and the supports that will be compared in this study, 
namely video hints versus text hints [4] and explanations versus 
hints [5]. Many ITS studies that evaluate the efficacy of these sup-
ports commonly involve a single segment of the student population, 

e.g., middle school students. Investigations on the transferability of 
findings, particularly to college students, are scant.    

There are, however, significant impetuses to investigating the 
transferability of findings to other segments of the student popula-
tion. First, ITSs are used throughout K-16, and findings from past 
studies naturally serve as guideposts for subsequent ITS develop-
ments and research. If findings do not transfer, these guideposts 
may be illusory. There is evidence to believe this is the case since 
[6] considered if the findings in [2] transferred to adult learners in 
a MOOC and found that the findings between hints and scaffolds 
did not transfer. Therefore, learners change over time, and the effi-
cacy of ITS supports that do not adapt to these changes may vary.  

For example, when describing what can be considered a good 
hint in an ITS, [7] in part states “Hints should abstractly (but suc-
cinctly) characterize the problem-solving knowledge (Anderson et 
al., 1995), by stating in general terms both the action to be taken, 
the conditions under which this particular action is appropriate, and 
the domain principle (e.g., geometry theorem) that justifies the ac-
tion.” However, [8] asserted that young adolescents between the 
ages of 10-15 are in a transition period from concrete thinking to 
abstract thinking. Findings in [9] support this assertion and showed 
that middle school students benefited more from concepts with 
which they could directly relate, whereas college students benefited 
more from abstract concepts. This is relevant to within-problem 
supports while solving a mathematics problem. Hints which ab-
stractly characterize the problem-solving knowledge, state in 
general terms the action to be taken and the conditions under which 
it is appropriate as [7] suggests may better serve college students 
who have the cognitive ability to assimilate and apply theorems and 
abstract definitions, whereas middle school students may be better 
served by an exposition through relatable or worked examples.   

Similarly, a significant consideration in any instructional set-
ting is Cognitive Load Theory (CLT) which stipulates that some 
difficulties in learning are due to unnecessary and extraneous work-
ing memory load. Here again, research has grappled with worked 
examples [10], including in comparison to tutored problem solving 
[11] and in ITSs [12, 13]. For example, the redundancy principle 
builds on the idea that learners utilize distinct information pro-
cessing channels to internalize information, and hence stipulates 
that information should not be conveyed through multiple channels 
simultaneously to avoid depressing the intake from both channels 
and hampering learning. Research rooted in CLT at the middle 
school level compared the delivery medium of feedback messages 
within an ITS and stated that information is better internalized and 
learning gains are greater when feedback is presented as a video 
instead of text [4]. However, recent research suggests that execu-
tive function skills, which include monitoring and manipulating 
information in mind (working memory), suppressing distracting in-
formation and unwanted responses (inhibition), and flexible 
thinking (shifting), play a critical role in the development of 
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mathematics proficiency [14]. Although the literature is limited in 
terms of disentangling the neurodevelopmental aspects of specific 
cognitive processes in relation to their impact on arithmetic skill 
development, the research by [15] shows that with development 
there is a shift from prefrontal cortex-mediated information pro-
cessing to more specialized mechanisms in the posterior parietal 
cortex. Freeing the prefrontal cortex from computational load and 
thus making available valuable processing resources for more com-
plex problem solving and reasoning is a key factor in mathematical 
learning and skill acquisition [16]. According to [17], some of these 
processes, especially decision making and working memory, have 
protracted developmental timelines, but large changes can be de-
tected in relatively small timeframes including from the beginning 
of middle school to the end of middle school [18, 19]. Therefore, 
when devising pedagogical supports, it is important to consider the 
differential effects on cognitive load depending on the student’s at-
tainment of neurodevelopmental milestones and subject matter 
fluency. 

In this study, we break ground on investigating the transferabil-
ity of findings from the middle school level to the college level 
regarding the efficacy of within-problem supports for mathematics 
ITSs. Specifically, this study conceptually replicates investigations 
conducted at the middle school level by assigning college students 
homework problems that have the same within-problem support 
formats. The support formats are either text hints, text explanations, 
or video explanations. We compare the efficacy of these support 
formats within the college student sample, and between college stu-
dent and middle school student samples. For the within college 
sample investigation, we hypothesize that the findings from the rep-
licated studies will transfer. For the between educational level 
investigation, we hypothesize that on average college student per-
formance on the subsequent similar question will be similar given 
the support format (i.e., the relative frequency that the initial action 
is the correct solution will be equal).  

Thus, we pose the following research questions: 
1. Does the format of within-problem support impact learning out-

comes for college students? 
2. Are learning outcomes the same for college students and mid-

dle school students, given the within-problem support format? 

2. BACKGROUND 
For this study, we used ASSISTments which is a free web-based 
platform that allows teachers to choose from thousands of prob-
lems, each of which can provide immediate feedback and support. 
This support can be customized, e.g., it can be hint messages con-
veyed as either text or videos, explanations of step-by-step 
solutions, correctness feedback, etc. One facet of the ASSISTments 
ecosystem is E-TRIALS, which allows teachers and external re-
searchers to create randomized control trials (RCTs) that run in 
ASSISTments to test the efficacy of supports.  

The literature contains numerous RCTs using E-TRIALS which 
compare the efficacy of supports. To investigate the transferability 
of findings from the middle school level to the college level regard-
ing the efficacy of supports, we will next briefly discuss the studies 
which we conceptually replicate.  

2.1 Explanations Versus Hints 
Cognitive scientists have investigated the role of worked examples 
and explanations in reducing cognitive load, and there have been 
several studies on their effectiveness [10, 12]. On the other hand, 
several studies in the literature have found evidence of the benefit 
of greater interaction in tutored problem-solving in ITSs [12, 13], 
including for less proficient students [11].  

[5] investigated whether students in a classroom setting benefit 
more from interactive tutored problem solving than from worked 

examples given as a 
feedback mechanism. 
For the experiment, re-
searchers created nine 
problem sets, each con-
sisting of four to five 
ASSISTments. The 
ASSISTments ques-
tions were taken from 
6th Grade MCAS tests 
for Mathematics (2001 
– 2007) focusing on the 
Patterns, Relations and 
Algebra section, which 
concentrates on popu-
lating a table from a 
relation, finding a miss-
ing value in a table, 
using fact families, de-
termining equations for 
relations, substituting 
values into variables, 
interpreting relations 
from number patterns, 
and finding values from 
a graph. 

In their study, 186 
8th grade students from 
three middle schools 
participated. Over 80% 
of students who partici-
pated were from a 
school that had state 
test scores in the bottom 
5% of that state. Results 
from this study show 
that there was a signifi-
cant effect for the 

condition with tutored problem solving receiving higher gain scores 
than worked examples (35% versus 13% average gain), t(67) = 
2.38, p = 0.02.  

2.2 Video Versus Text 
Prior research has found that dynamic graphics are more effective 

than static graphics in 
mathematics realms 
[20], and videos and 
web-based homework 
support have grown in-
creasingly popular in 
educational settings 
[21]. Some research 
suggests that video is 
not universally success-
ful in promoting 
learning gains [22]. [4] 
assess the effects of 
feedback medium 
within a problem set de-

rived from 
preexisting ASSIST-
ments certified 

Figure 1. Example of Text Explanation 

Figure 2. Example of Text Hints 

Figure 3. Example of Video Explanation 
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material. The structure of the problem set relied on three questions 
with text feedback and three isomorphic questions with video feed-
back and was presented to students in fixed question patterns to 
allow all students an equivalent opportunity to experience both 
feedback styles. Video content mirrored textual feedback to pro-
vide identical assistance through both mediums.   

139 8th grade students from four classes comprised of four 
classes that spanned four suburban middle schools participated in 
this study. After exclusion criteria, 89 remained for analysis. The 
study’s primary analysis assessed student performance on the sec-
ond question as a function of the feedback medium they 
experienced after incorrectly answering the first question. As will 
be again addressed in the discussion section, learning outcomes 
were not enhanced for students who received video feedback rather 
than text feedback. There was also no significant difference in the 
overall number of feedback levels experienced by students. 

  

3. METHODOLOGY 
3.1 Procedure 
330 college students in 6 sections of introductory mathematics 
courses at two institutions participated in this study. Demographic 
information of this group is as follows: 9% transfer students, 56% 
female, 44% male, 52% White, 19% Black, 16% Hispanic, 7 % 
Asian, 4% two or more races, 1% International, and 1% Unknown.    

Students were assigned up to 5 problems sets (PS) as homework 
during the last three weeks of the Fall 2021 semester in a manner 
that was consistent with regular educational practices. Each prob-
lem set covered one topic, namely rational exponents (PS 1), 
multiplying and dividing monomials (PS 2), scientific notation (PS 
3), writing linear equations given ordered pairs (PS 4), and systems 
of linear equations (PS 5). A problem set was only assigned to a 
class if it fell within the course’s curriculum.  

Students were free to work at their own pace and were not re-
quired to complete the assignments in one sitting. Log data was 
recorded for each student’s actions, including first action, correct-
ness, response time, attempts, hint requests, and feedback type, and 
this data was received from The ASSISTments Foundation.  

3.2 Design 
The five problem sets were made using preexisting ASSISTments 
certified material. Problem sets 1-3 consisted of 30 problems each, 
and problem sets 4 and 5 consisted of 20 problems each. Problems 
had between 1 and 9 parts, for a combined total of 196 parts in all 
problem sets. Each part had exactly one input field which required 
a free-response answer usually consisting of a number or mathe-
matical expression. Questions within a problem set were assigned 
in random order to eliminate potential ordering effects. 

Students could attempt any part an unlimited number of times 
until they entered the correct answer. Each part had on-demand 
within-problem supports consisting entirely of either text hints, text 
explanations, or video explanations. Students were aware that there 
were different kinds of support types but did not know which types 
of support any particular question had. If a student requested 
within-problem support, we relied on ASSISTments to randomly 
assign the student one of the available supports.  

Our analysis assesses student performance on the question part 
immediately after the question part for which support was 
requested, which we will refer to as the next question and previous 
question, respectively. As such, one of our exclusion criteria is that 
any problem for which a student did not complete the next question 
is omitted. We assess student performance based on the next 
problem’s correctness which we refer to as learning outcomes. To 

that end, we consider the next question to be incorrect if a student’s 
first action is to either submit a wrong solution or request support. 

4. RESULTS 
4.1 Next Question Performance Analysis 

Within College Student Sample 
To address our first research question, we assessed the next ques-
tion performance of students who received feedback on the 
previous question. In total, 40126 solution steps were completed by 
students included in our analysis, and on 4820 solution steps 
(4820/40126 = 0.120) supports were provided, as Table 1 shows.  

Learning outcomes were more enhanced for students who re-
ceived text explanations (�̂�𝑝 = 0.493, SD = 0.009) rather than video 
explanations (�̂�𝑝 = 0.390, SD = 0.018), and the difference in propor-
tions of 0.103 was statistically significant (p << 0.01). This 
indicates that students answered the next question correctly over 26 
percent more often (0.493/0.390 = 1.264) after receiving on-de-
mand within-problem text explanations than video explanations.  

Table 1. Summary of Next Question Performance Analysis 

Support  
Format 1 

Support   
Format 2 

Difference 
in Propor-

tions 

95% Confi-
dence Interval 

for  
Difference in  
Proportions 

Text              
Explanation 
(N = 3161) 

Video         
Explanation 
(N = 757) 

  

0.493 
(0.009) 

0.390 
(0.018) 

0.103* [0.064, 0.142] 

Text              
Explanation 
(N = 3161) 

Text 
Hints 

(N = 902) 

  

0.493 
(0.009) 

0.135 
(0.011) 

0.358* [0.329, 0.386] 

Video         
Explanation 
(N = 757) 

Text 
Hints 

(N = 902) 

  

0.390 
(0.018) 

0.135 
(0.011) 

0.254* [0.213, 0.296] 

Note: Performance metrics are depicted as mean (standard devia-
tion). *p << 0.01.       

Learning outcomes were enhanced for students who received text 
explanations rather than text hints (�̂�𝑝 = 0.135, SD = 0.011). The 
difference in proportions of 0.358 was statistically significant (p << 
0.01) indicating that students were over 3.5 times more likely 
(0.493/0.135 = 3.652) to answer the next question correctly after 
receiving ext explanations than text hints. 

Learning outcomes were enhanced for students who received 
video explanations rather than text hints, and the difference in pro-
portions of 0.254 was statistically significant (p << 0.01). This 
indicates that students were nearly 3 times more likely (0.390/0.135 
= 2.889) to answer the next question correctly after receiving on-
demand within-problem video explanations than text hints. 

5. DISCUSSION 
5.1 Comparison of Next Question Perfor-

mance Between Education Levels 
To address our second research question, we compare the enhance-
ments of learning outcomes for middle school students to those 
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from our college student sample using the combinations of support 
formats in [4] and [5].  

Before drawing comparisons to our results, it should first be 
noted that the statistical analysis in [4] has apparent flaws based on 
the data provided in that paper, and these flaws affect the conclu-
sion of that study. After correcting those analysis errors using the 
data the authors provided in [4], the correct conclusion of [4] should 
be that the modality of the support in that study did not have a sta-
tistically significant effect on learning outcomes. Nevertheless, the 
corrected results of [4] are only partially reflected in our results. 
That is, college students were nearly 3 times more likely to answer 
the next question correctly after receiving video explanations rather 
than text hints, but over 26 percent more likely to answer the next 
question correctly after receiving text explanations rather than 
video explanations. As previously indicated, both results are also 
statistically significant. 

Another important difference to note is the magnitudes of the 
efficacies of the different forms of support. At the middle school 
level, [4] found that students who received video support answered 
the next question correctly 76% of the time on average, whereas in 
our study students who received video support answered the next 
question correctly only 39% of the time on average, with a 95% 
confidence interval of [0.354, 0.426]. Furthermore, [4] found that 
middle school students who received text hints answered the next 
question correctly 52% of the time on average, whereas in our study 
students who received text hints answered the next question cor-
rectly only 13.5% of the time on average, with a 95% confidence 
interval of [0.113, 0.157]. Therefore, the results in [4] fall well out-
side of our expected range.  

[5] found that learning outcomes were greater for middle school 
students who received tutored problem solving rather than worked 
examples and that this difference was statistically significant. This 
is not reflected in our results since college students were over 3.5 
times more likely to answer the next question correctly after receiv-
ing on-demand within-problem text explanations than text hints. As 
previously indicated, the results from our sample are also statisti-
cally significant. 

Since the results in [5] are presented as average learning gains 
from a pre- to a post-test, and our results are given as next problem 
correctness, we cannot draw similar point estimate comparisons to 
that study. 

5.2 Contributions, Limitations, and Future 
Research 

We make a significant contribution by breaking ground on investi-
gating the transferability of findings from the middle school level 
to the college level regarding the efficacy of on-demand within-
problem supports for mathematics ITSs. The ITS literature abounds 
with investigations using on-demand within-problem supports, par-
ticularly for middle school and high school students. Some studies 
have compared the efficacy of these supports and have led to what 
has been coined “Best So Far” supports – those supports which 
have led to the highest measures of learning outcomes for compa-
rable studies [23, 24]. Our conceptual replication of these studies 
with college students did not support the same hierarchy of supports 
nor magnitude of efficacy at the college level.  

This beckons the question, “Best So Far” for whom? To that 
end, our study identifies a rich area of research since there are abun-
dant ITS studies that often include only one segment of the student 
population. While it is understandably hard to include students 
from several education levels in a study, particularly for mathemat-
ics ITSs, our results buttress the assertion that studies investigating 
the transferability of findings between education levels are 

necessary. Our study also lends credence to the importance of con-
sidering who is or is not included in a study, and disaggregating 
results when possible to ensure inclusion, diversity, equity, and ac-
cessibility in research and practice.  

Another rich area of research is to data-mine the results from 
such transferability studies to supplement the limited literature on 
neurodevelopmental aspects of specific cognitive processes in rela-
tion to their impact on learning and best practices for instruction. 

Future iterations in this line of research should consider a closer 
replication of the literature. While our study investigated the mo-
dality effects of on-demand within-problem supports, we compared 
video explanations to text explanations, while [4] compared video 
hints to text hints. Similarly, while our study compared the impact 
of interactive forms of tutored problem solving to static forms of 
support, our study used text explanations and text hints, whereas 
[5] used worked examples and text hints.  

Future research should also consider that while in this study 
problem sets were only assigned to a class if they fell within the 
course’s curriculum, a potential concern is that likely exposure to 
these topics in prior courses may lead to a college student being 
more familiar with the topics in the problem sets than middle school 
students, resulting in a confound that could influence results. Pos-
sible indicators of this would be fewer support requests from 
college students, or higher measures of next problem correctness. 
Our results indicate the opposite. As was previously shown, college 
students requested support on 12 percent of solution steps 
(4820/40126 = 0.120), but in [4] middle school students requested 
support on approximately 8 percent of solution steps (60/720 = 
0.083). Furthermore, as was also previously shown, next problem 
correctness was consistently lower for college students than for 
middle school students when comparing similar supports.  

On the other hand, since the assignment topics in the original 
studies differ from each other and from those used in this study, it 
can be argued that the difficulty of these topics may also differ, 
again leading to a confound. This too may be indicated by different 
levels of support requests or different levels of next problem cor-
rectness. Based on the just presented discussion, one conclusion 
which could be drawn from our results may indicate that the topics 
covered in the problem set by the college students were more diffi-
cult than those completed by middle school students. Another 
conclusion could be that the problems in assignments completed by 
college students were equally difficult to those completed by mid-
dle school students and that the overall relative mathematics skill 
levels of the two groups differed.  

  Disentangling these results further is not possible using the re-
sults of our study or the available information from the replicated 
studies. While challenging to implement, something that could mit-
igate this ambiguity is for future research to include a measure 
comparing mathematics abilities across education levels, e.g., a 
pretest, and assign identical problem sets to all study participants 
across education levels. Furthermore, by including a posttest, future 
research should also further analyze other learning outcomes, such 
as that of [5].  

Finally, an exclusion criterium in this study is that any problem 
for which the student did not complete the next question is omitted, 
and therefore attrition may not have been entirely random. While 
we do not believe this had any substantial impact on our results, 
future research should definitively ensure this is true by establish-
ing a more controlled experimental environment.      
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ABSTRACT
In this study, we compare e-Book log data from onsite face-
to-face courses in 2019 and synchronized online courses in
2020 to elucidate the difference in students’ learning behav-
iors. We focus on short periods before and after class time
by considering locational and temporal constraints in onsite
courses, i.e., students should be physically presented in a
classroom and leave the room after each class. As online
courses are free from such constraints, we show that learn-
ers’ behavior in 2020 has characteristic patterns before and
after class time and that the activity of students in those
periods relates to their final grades.

Keywords
Learning analytics, onsite vs. online, e-book system

1. INTRODUCTION
The learning environment has changed drastically due to
the COVID-19 pandemic. In particular, online classes have
been widely used when the number of infections is large.
There are several styles of online classes, such as synchro-
nized and asynchronized [3]. While asynchronized courses
make students watch prerecorded videos in an on-demand
fashion, synchronized online courses often require students
to connect to a video-conferencing system and attend the
class online from their homes at a specified class time. In
addition, the media transmitted by the video-conferencing
system is not limited to video of a lecturer captured by a
camera, but a variety of other styles are used; for example,
if class materials (e.g., slides) are shared in another way, it
is enough to transmit only audio of lecturers’ speech.

How have learning styles changed with the introduction of
such synchronized online classes? This study aims to clar-
ify changes in learning behaviors and their relationship to
final grades (e.g., A, B, and C) by analyzing browsing log
data from 2019 onsite face-to-face classes and 2020 synchro-
nized online classes in university lectures where the e-Book

system has been introduced. We focus on the fact that the
face-to-face format has locational and temporal constraints
that require students to go to the classroom at a specific
time and leave the room just after class, whereas the online
format frees students from such constraints. From these con-
siderations, in this study, we particularly analyze students’
activity in short periods just before and after class time to
understand the difference in learning styles between 2019
and 2020. The contributions of this study are twofold:

1. We show that onsite face-to-face and online teaching
formats cause different patterns of students’ activity
during short periods of time (e.g., 15 minutes) before
and after class time.

2. We also show that the activity patterns before and
after class time relate to students’ final grades.

2. RELATED WORK
Clickstreams from e-Book systems are often used in the field
of learning analytics to provide detailed analysis of how stu-
dents are viewing course materials [16, 14]. Such log data
is used for a wide range of applications, including feedback
to instructors during classes [13], grade prediction [10, 2,
8], and summarization of teaching materials [15]. For final
grade or score prediction, methods for identifying important
features [5] and predicting final grades using various machine
learning methods have been proposed [10, 2, 8]. This can
also be used for early dropout prediction [2].

Comparisons between onsite (face-to-face) and online classes
have been studied in the education of various fields. Aggar-
wal et al. [1] conducted a randomized study to test the dif-
ference in learning effects between onsite and online courses
on Biostatistics and Research Ethics and found no signif-
icant differences. Jones and Long [6] compared onsite and
online students in the same mathematics course from 2005 to
2011 and showed that onsite students performed better for
overall ten semesters but were comparable when limited to
the last seven semesters. Paul and Jefferson [12] conducted
a comparative analysis in an environmental science course
from 2009 to 2016 and reported no difference in academic
performance between onsite and online formats.

There are some later studies conducted after the onset of
the COVID-19 pandemic. For example, Yang et al. [17]
examined the viewing time and completion rates of online
dental education courses and found that the completion rate
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Table 1: Basic information of the courses in the dataset.

Course ID Weeks # of students Class time

A-2019 8 50 8:40-12:00 (Mon.)

A-2020 7 62 8:40-12:00 (Mon.)

B-2019 8 164 14:50-16:20 (Tue.)

B-2020 7 93 14:50-16:20 (Tue.)

was related to the time the content was first visited (within
60 minutes before, further before, or after the start of the
class). Amin et al. [3] analyzed the end-of-course surveys
in electronic circuit courses from 2007 to 2021 and reported
that online classes provided as good as or better learning
experiences than onsite classes.

Many of the existing studies mentioned above mainly com-
pared onsite and online courses based on grades/questionnaires
or analyzed students’ learning behaviors such as viewing du-
ration of contents and first accessed time. On the other
hand, this study aims at finding a new perspective to com-
pare onsite and online students’ behaviors by defining the
amount of activity using detailed operation logs of an e-Book
system in short periods of time before and after classes.

3. LECTURE COURSES AND DATASET
3.1 Courses and Teaching Formats
The dataset used in this study was open for the Data Chal-
lenge at the International Conference on Learning Analytics
& Knowledge 2022 [9, 4, 7] and provided on a request ba-
sis. It consists of four courses whose course IDs are A-2019,
A-2020, B-2019, and B-2020, where ”A” and ”B” denote the
subjects of the courses, and the numbers 2019 and 2020 de-
note the offered year. For simplicity, we denote the pair
of courses X-2019 and X-2020 as ”course X” in the follow-
ing. Each of course A and course B covers the same topics
for both years (e.g., B-2019 and B-2020 delt with the same
topics).

In 2019, the teaching format was onsite face-to-face, and
each student operated the e-Book system in a classroom
using his or her own laptop computer while listening to a
slide presentation by a lecturer on the podium. In 2020,
on the other hand, the teaching format was synchronized
online. Lecturers gave audio-only lectures during each class
time, and students used their own PCs to operate the e-Book
system at home or from other locations.

3.2 Class Weeks and Materials
While the topics are essentially the same within each of
courses A and B, the number of weeks and materials dif-
fers over the two years. First, both courses A and B were
offered for eight weeks in 2019 and seven weeks in 2020. In
course A, the content of Weeks 5 and 6 in 2019 was taught
in Week 5 in 2020, and in course B, the content of Weeks 2
and 3 in 2019 was taught in Week 2 in 2020. In addition, the
course materials were updated in 2020 to some extent. In
course A-2019, a summarized version of the materials was
also distributed on the e-Book system. Basic information
about each course is shown in Table 1.
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Figure 1: Visualization of activity in each day of the week
(0: Monday, 6: Sunday). Active periods correspond to the
class time of each course. See also Table 1.

3.3 e-Book Log Data
The data used in this study are students’ operation logs ob-
tained through an e-Book system [9, 4]. Students browse
provided class materials (e.g., slides) by performing, for ex-
ample, page forwarding and marking operations. Each line
of the log data records what operation is performed by which
student on which page of which course material, along with
a timestamp consisting of date, hour, minute, and second.
Types of operations include page transitions, adding notes
and markers, and bookmarking. However, as described later,
this paper focuses on the number of operations, which we
also refer to as operation count or frequency, as the amount
of activity. All data are anonymized, and timestamps are
slightly blurred on a scale of seconds while maintaining or-
der from the original.

Each student’s final grade is recorded as A, B, C, D, or F
in every course, where A is the highest grade, and F is the
lowest grade. The records are also included in the dataset.

4. ANALYSIS
4.1 Visualization of Activity by Time of Day
To examine the overall trend of students’ activity for each
course, we first visualize the total activity at each hour of
each day of the week. We here define ”activity” as the fre-
quency of operations without distinguishing operation types,
where page transition operations (moving to the previous or
next page) comprise the majority of activities.

Figure 1 shows the visualization of total activity in each
hour. The color in each time slot shows the total frequency
of operations through the course period. Note that the fre-
quency is normalized by dividing by the number of students
in the course. As for the colormap range, we set 300 as
the highest value to be covered (colored by yellow). The
figure shows that the time slots with the highest activity
correspond to the class time of each course.

When the value on a particular grid is significantly high,
the other grids are buried in this kind of heatmap visualiza-
tion. Therefore, we visualize the same data with different
colormap that ranges from 0 to 40 in Fig 2, i.e., each time
slot with yellow color has an average of 40 operations or
more per student. We can see in this figure that the amount
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Figure 2: Visualization of activity in each day of the week
(0: Monday, 6: Sunday) with colormap ranges from 0 to 40.
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Figure 3: Activity patterns around the class time in courses
A and B. Vertical lines show the start and end of class.

of activity on Sundays is relatively high in both 2019 and
2020 for course A. This may be due to the deadline setting
of assignments. In addition, both course A and course B
have more activity outside of class time on the day of the
class in 2020 compared to 2019.

To detail the activity patterns around the class time, we
aggregated activity with 10-minute intervals during the class
time with a margin of two hours before and after the class,
which is shown in Fig. 3. Compared to 2019, the patterns in
2020 are characterized by before and after the class time. In
A-2020 and B-2020, activity continues after the class for a
certain period, which we refer to as ”post-class activity.” In
addition, in course B-2020, activity increases before the class
starts, namely ”pre-class activity”exists. On the other hand,
A-2020 has no significant pre-class activity, which may be
because course A was scheduled in the early morning while
course B was taught in the afternoon.

4.2 Relationship to Final Grades
To further investigate the pre-/post-class activity, we di-
vided students into groups based on their final grades and
examined the differences in the amount of pre-/post-class
activity. Figure 4 shows the average pre-/post-class activity
in each grade level. Specifically, we first calculated the pre-
/post-class activity of each student based on the total opera-
tion frequency during a specific period (i.e., 15min before or
after class) on all class days. We then calculated the average
students’ pre-/post-class activity in each grade level. Error
bars indicate 90% confidence intervals using t-distributions.
We can find that, in 2020, the amount of post-class activity
tends to be higher the better the final grade.
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Figure 4: Average pre-/post-class activity (the number of
operations) in each grade level. Blue bars: pre-class activ-
ity; orange bars: post-class activity. Error bars show 90%
confidence intervals.

Table 2: Results of the Kruskal-Wallis tests for post-class
activity. The rightmost column shows the sample size of
each grade.

Course ID p-value n (A, B, C, D, F)

A-2019 0.7023 (24, 6, 4, 6, 10)

A-2020 0.0067 (22, 24, 6, 3, 7)

B-2019 0.4088 (26, 104, 30, 2, 2)

B-2020 0.0078 (37, 38, 12, 2, 4)

For each course, we conducted a statistical test for the differ-
ence in the amount of post-class activity among grade levels.
The results (p-values) of the Kruskal-Wallis tests are shown
in Table 2, indicating significant differences among grade
levels in 2020 for both courses A and B. While the compu-
tation of the confidence intervals in Fig. 4 assumes that each
population is normally distributed, the actual activity dis-
tribution tends to be biased toward lower values and often
contains outliers. We, therefore, used nonparametric tests
here and in the following.

In order to examine in detail which grade groups have the
gap of activity, we conducted the Mann-Whitney U-test sep-
arately for divided two-group pairs: grade group {A} vs. {B,
C, D, F}, {A, B} vs. {C, D, F}, and {A, B, C} vs. {D, F}.
The reason for grouping the grade levels in this way is that
the criteria for grading may differ from course to course; for
example, two grade levels in one course may correspond to
a single grade level in another course. We did not include
only grade F as a group because of the small sample size.

The results are shown in Table 3. We can find from the
table that some grade groups have significant gaps in the
post-class activity. For example, in course A-2020, there are
significant differences between grade group {A} and {B, C,
D, F}, which corresponds to the gap in orange-bar heights
in Fig. 4. In course B-2020, between {A, B} and {C, D, F}.
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Table 3: Results (p-values) of the Mann-Whitney U-tests for
the post-class activity. Vertical lines in the column names
show how the grade levels were divided into two groups.

Course ID A |BCDF AB |CDF ABC |DF

A-2019 0.6221 0.2676 0.5449

A-2020 0.0005 0.0139 0.0317

B-2019 0.8662 0.0786 0.3716

B-2020 0.4232 0.0020 0.0023

5. DISCUSSION
The results of the analyses in the previous section suggest
that the change of teaching format from onsite face-to-face
classes in 2019 to synchronized online classes in 2020 frees
students from constraints of class time and locations. As
a result, some students continue to examine class materi-
als even after class time, observed as the post-class activity.
Such students’ behavior on a relatively short time scale (e.g.,
15 minutes after class) may provide important clues for un-
derstanding students’ learning in online environments.

The pre-/post-class activity might be an indicator of stu-
dents’ self-regulation [11] in some sense. However, it should
be examined with further study combining other clues, such
as learning behaviors (e.g., the frequency of reviewing class
materials), learning strategies, and motivations.

Some limitations exist in our analyses in the previous sec-
tion. One is the effect of class attendance. As we computed
the amount of activity from the total frequency of opera-
tions in a specific time period, it also contains information
on attendance or absences. For example, if a student is ab-
sent from a class, post-class activity may also become close
to zero on that day. While we decided to include such effects
in the present study, in order to investigate pre-/post-class
activity conditioned on ”attended” students, we need further
analysis by estimating whether each student attended or not
on each class day.

Another limitation is that the objective of this study is not
on the utilization of features, e.g., improvement of prediction
accuracy of grade levels. Therefore, it is unclear whether
features extracted from the pre-/post-class activity are use-
ful, and other activities (e.g., in-class activity) can be more
critical, for example, for final-grade prediction. To directly
compare the importance of pre-class, post-class, and in-class
activity, we trained gradient boosting classifiers, widely used
for various data challenges including educational data.

Figure 5 shows the feature importance obtained through the
model training. Here, we used the LightGBM implementa-
tion. Note that our objective here is not the evaluation of
prediction accuracy itself but a brief comparison of feature
importances. We, therefore, trained a model from all data
in each course. We also constrained model complexity to
a certain degree with the hyperparameters (the maximum
tree depth: 3, the minimum number of data in a leaf: 10,
and the number of iterations: 20) to avoid too much over-
fitting. As for the in-class activity feature, we computed
operation frequency during class time in the same manner
as pre-/post-class activation.

pre
-cla

ss

po
st-

cla
ss

in-
cla

ss
0

50

100

150

200

Fe
at

ur
e 

im
po

rta
nc

e 
(g

ai
n) A-2019

pre
-cla

ss

po
st-

cla
ss

in-
cla

ss
0

50

100

150

200
A-2020

pre
-cla

ss

po
st-

cla
ss

in-
cla

ss
0

100

200

300

Fe
at

ur
e 

im
po

rta
nc

e 
(g

ai
n) B-2019

pre
-cla

ss

po
st-

cla
ss

in-
cla

ss
0

50

100

150
B-2020

Figure 5: Feature importances computed by the gain of gra-
dient boosting models.

From the figure, in-class activity seems to be the most cru-
cial feature for the grade prediction task throughout 2019
and 2020. Meanwhile, it is worth noting that the impor-
tance of pre-/post-class activity substantially increased in
2020 compared to 2019.

While appropriate evaluation of the grade-prediction task
requires appropriate cross-validation with a larger amount
of data, the results of this study show some potential to
design and combine various detailed features in out-class
time periods in the context of online courses.

6. CONCLUSION
This study analyzed student behavior in 2019 and 2020 be-
fore and during the COVID-19 pandemic, based on opera-
tion logs obtained through an e-Book system, for two courses
whose teaching format changed from face-to-face to online
in the two years. Because online classes do not have the
restriction of leaving the lecture room after class, activity
after class, which was not seen in 2019, was often observed
in 2020. In addition, our study suggested that the activity
has some relation to students’ final grades.
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ABSTRACT 
Recognizing the potential of the preference-inconsistent recom-

mendation systems (RS) for learning, this paper aims to examine 

two recommendation algorithms for mobile language learning ap-

plications: RS with similarity and RS with diversity. Diversity was 

measured through learning styles (how learners learn) and achieve-

ment goals (why learners learn). A total of 160 learners participated 

in the study for building learner profiles and the recommendation 

algorithm. Overall, our results with RSME indicate that both RS 

with similarity and RS with diversity performed better than the ran-

dom recommendation.  

Keywords 
Recommendation system, Mobile language learning applications, 

Diversity 

1. INTRODUCTION 
Recommendation systems (RS) that suggest preferable items intend 

to help people make proper decisions in a flood of information and 

choices. In the field of education, researchers have developed RS 

to recommend learning resources based on ontology [22], learning 

styles [4], ranked lists of learning objectives [6], and learner pref-

erence [5]. Thus far, most educational RS have been based on the 

algorithm of learners’ preferences, recommending items that learn-

ers are likely to prefer based on their previous data or learners with 

similar profiles. Cognitive dissonance theory [10] explains the pop-

ularity of this preference-consistent recommendation. When 

humans process information that does not conform to their existing 

thoughts and beliefs, they are in a state of cognitive dissonance and 

experience an uncomfortable psychological state. Hence, for psy-

chological comfort, people tend to only pursue information and 

items that they prefer to avoid cognitive dissonance.  

However, some scholars have started questioning the efficacy of 

preference-consistent recommendations, arguing that such recom-

mendation methods may reinforce learners’ confirmation bias and 

narrow the opportunity to discover new information and 

experiences [3]. Researchers have proposed ‘preference-incon-

sistent’ recommendations that induce discovery learning and 

higher-order thinking by intentionally providing information that 

does not match learners’ preferences or recommending information 

that contradicts learners’ beliefs [19]. While the preference-incon-

sistent mechanism has been widely researched in political science 

and media study to minimize confirmation or information bias, its 

application in the educational RS is still in its infancy and lacks 

empirical data to support its efficacy. 

Recognizing the potential of the preference-inconsistent recom-

mendation for learning, this paper presents our work-in-progress 

research that aims to examine two recommendation algorithms for 

mobile language learning applications (apps): RS with similarity 

and RS with diversity. Here, ‘RS with similarity’ refers to the pref-

erence-consistent method that recommends the list of apps 

compatible with learners’ learning styles and achievement goals. In 

contrast, ‘RS with diversity’ refers to the method that recommends 

the list of apps that do not match learners’ current preferences but 

have the potential to help learners exposed to new learning styles 

and achievement goals. It should be noted that RS with diversity 

does not mean that the system recommends items that learners do 

not like. Instead, the method is intended to lead learners to discover 

new items that are likely to have learning efficacy in the future by 

extending learning experiences beyond a preferred comfort zone.   

 

2. LITERATURE REVIEW 

2.1 Recommendation Systems in Education 
Recommendation systems have been widely used in the e-com-

merce area to suggest information and items for potential customers 

[18]. Recently, RS has been studied in the education sector for var-

ious purposes such as suggesting learning activities and courses 

based on learners’ knowledge levels and preferences [16]. 

From a technical view, there are two main methods of RS: content-

based filtering and collaborative filtering. Content-based filtering 

recommends items that are similar to what users already selected 

and liked in the past [15]. However, when there is a lack of data on 

previous behaviors by users, it is hard to recommend appropriate 

items that match users’ preferences. Also, the attributes of items 

should be well-structured for the accuracy of content-based filter-

ing. In contrast, collaborative filtering recommends items based on 

similar users’ preferences [15]. It is possible to predict items that 

new users are likely to prefer even if there is a lack of available data 
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for the target user. Collaborative filtering, however, has a scalabil-

ity issue. As the number of users or items increases, the complexity 

of computation becomes higher [11]. Moreover, user-based collab-

orative filtering systems tend to provide a low number of available 

items, making final recommendations biased toward popular items.   

In the field of technology-enhanced learning (TEL), it has been sug-

gested that there are two perspectives of enhancing filtering 

techniques: top-down and bottom-up [7]. The top-down perspective 

focuses on well-defined educational metadata whereas the bottom-

up perspective collects user-generated data such as likes, tags, and 

ratings from learners. In this study, we focus on language learning 

with mobile applications, which are often used in informal learning 

contexts. As informal learning is self-directed and less structured 

with learning goals and time [7], it is difficult to divide applications 

into specific categories for educational metadata. Hence, this study 

focuses on the RS from the bottom-up perspective such as learner 

ratings of respective mobile apps.  

2.2 Diversity in Learning Styles and Achieve-

ment Goals 
Recently, there have been attempts to develop methods for recom-

mend diverse and novel items beyond similarity measures. 

Described as a ‘long-tail recommendation’, this method recom-

mends diverse and unpopular items in the non-mainstream area to 

mitigate confirmation bias and to enhance diversity in user experi-

ences [23]. As for movie recommendations, it has been reported 

that the list of diverse movies positively affects viewers’ satisfac-

tion [14]. However, a long-tail recommendation also suffers from a 

low accuracy in the recommendation, which necessitates some 

tradeoff between diversity and accuracy [23]. 

For learning purposes, there are numerous ways to operationally 

define diversity. In this study, we focus on diversity in terms of 

learning styles (how learners learn) and achievement goals (why 

learners learn). These two constructs have been well researched 

and established as a theoretical framework to define learner char-

acteristics in educational research.  

First, learning styles refer to the ways learners prefer to receive and 

process information. According to Felder and Silverman [9], learn-

ing styles are divided into four categories: (a) processing 

(active/reflective), (b) perception (sensing/ intuitive), (c) input (vis-

ual/verbal), and (d) understanding (sequential/global). Many 

studies have been conducted on which learning styles are the basis 

for presenting effective learning methods. However, some scholars 

suggested two limitations about learning styles [13]. The first lim-

itation is that the preferable way to learn and the actual effective 

and efficient learning method can be different. The second limita-

tion is that the learning styles instrument showed low reliability 

[21]. While we are aware of such limitations, this study adopts 

learning styles as one of the learner-related variables for learner 

profiles based on the following studies. As for recommender sys-

tems, the Felder-Silverman Learning Style Model (FSLSM) has 

been widely used for two reasons [2, 17]. First, FSLSM can be im-

plemented in a simple way to design personalized e-learning 

systems [2]. Second, the FSLSM model is appropriate to apply to 

mobile learning because the learning materials in mobile learning 

are composed of various formats such as video, text, audio, etc. [17]. 

Second, achievement goals refer to the aim and focus of one’s ac-

tions concerning achievement. Elliot and McGregor proposed the 

2X2 achievement goal framework in terms of definition (mastery 

vs. performance) and valence (approach focus vs. avoidance focus). 

The framework includes (a) mastery-approach goal, (b) 

performance-approach goal, (c) mastery-avoidance goal, and (d) 

performance-avoidance goal [8]. When learners have the mastery-

approach goal, they strive to master learning tasks with the empha-

sis on learning itself and self-improvement. In contrast, learners 

with the mastery-avoidance goal tend to avoid misunderstanding or 

the failure to master a task. Regarding performance, learners with 

the performance-approach goal concentrate on proving their ability 

relative to others. They may not be interested in mastering tasks, 

but doing better than others is more important. On the other, learn-

ers with the performance-avoidance goal tend to avoid performing 

more poorly than others do.  

 

3. RECOMMENDATION SYSTEM  
To construct our RS architecture (see Figure 1), three steps were 

performed: Step 1: constructing the database of RS, Step 2: data 

analysis, and Step 3: RS evaluation (Experiment). The whole pro-

cess of the research was conducted with the IRB approval from the 

researchers’ university.  

 

Figure 1. Proposed architecture and process 

3.1 Step 1: Constructing the Database of RS   

3.1.1 Database of Mobile Language Learning apps 
In this study, we focused on recommending mobile language learn-

ing apps with artificial intelligence (AI) functions, which have been 

increasingly developed in the app market. For constructing the da-

tabase of learner profiles, we chose 18 mobile apps that met five 

criteria: (1) an application for language learning, (2) an application 

with AI functions (e.g., voice recognition, adaptive learning sys-

tem), (3) an application that the developer indicates the use of AI 

technologies, (4) an application used with no errors, and (5) an ap-

plication locally available in Korea. Table 1 presents the final list 

of mobile language learning apps used in this study.  

Table 1. List of mobile language learning apps with AI 

ID Application ID Application 

app 1 Riid Tutor app 10 Cake 

app 2 Super Chinese app 11 
Youbot English 

Speaking 
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ID Application ID Application 

app 3 Plang app 12 
ELSA Speak: Ac-

cent Coach 

app 4 Opic up app 13 Bigple 

app 5 Lingo Champ app 14 Memrise 

app 6 Easy Voca app 15 Mondly 

app 7 Say Voca app 16 AI Tutor 

app 8 Youbot Chinese app 17 Rosetta Stone 

app 9 Duolingo app 18 Busuu 

3.1.2 Preference and Satisfaction Survey 
To construct the database of learner profiles, we recruited 100 adult 

learners. Among them, 82 learners fully completed the preference 

survey that include items about demographic information (e.g., 

gender, age, education, etc.), learning styles, and achievement goals. 

For learning styles, we used the ILS (Index of Learning style) in-

strument with 44 items [9]. For achievement goals, we used the 2X2 

Achievement Goal Questionnaire-Revised with 24 items [20]. Then, 

the participants used four to six mobile language learning apps ran-

domly assigned to them. Finally, they completed the satisfaction 

survey with 20 items on a 5-point Likert scale to evaluate each app 

they used. The satisfaction survey includes seven categories: (1) 

convenience, (2) personalization, (3) professionalism, (4) reliabil-

ity, (5) appropriateness, (6) satisfaction, and (7) overall satisfaction. 

We refer to [1] to develop the items related to convenience, person-

alization, professionalism, and reliability and [12] for the items 

related to appropriateness of app use and satisfaction. We modified 

the items according to the context and purpose of this study. 

3.1.3 Database of Learner Profiles 
To construct the database of learner profiles, data from 82 learners 

who fully answered the surveys were analyzed based on their learn-

ing styles and achievement goals. We generated attribute values as 

shown in Figure 2. LS1, LS2, LS3, and LS4 refer to four dimen-

sions of learning styles respectively: processing, perception, input, 

and understanding. LG1, LG2, LG3, and LG4 mean four achieve-

ment goals respectively: mastery-approach goal, mastery-

avoidance goal, performance-approach goal, and performance-

avoidance goal. Since each learner used 4 to 6 apps, the total data 

of learner profiles is 82*415 (the number of learners * the total 

number of applications used). 

 

Figure 2. Example of attribute values 

3.2 Step 2: Data Analysis 
Based on the survey results, we calculated the similarity score for 

RS with similarity and the diversity score for RS with diversity. 

The formula for calculating similarity and diversity scores for 

learner profiles is shown below. We measured the diversity score 

with Euclidean distance between two learners for learning styles 

and goals. For example, if the learning styles of learner A and 

Learner B are [1, 0, 1, 0] and [1, 1, 1, 0] respectively, the diversity 

score is 1. After calculation, we chose the best similarity measure 

and the number of K-neighbors.  

𝑠𝑖𝑚(𝑡, 𝑡′) 

= ∑ 𝜆𝑗 · 𝑠𝑖𝑚𝑗(𝑡, 𝑡′)

2

𝑗

 

= 𝜆1 · 𝑠𝑖𝑚1(𝑡, 𝑡′) + 𝜆2 · 𝑠𝑖𝑚2(𝑡, 𝑡′) 

𝑠𝑖𝑚𝑖(𝑡, 𝑡′) = 𝑑𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 𝑠𝑐𝑜𝑟𝑒 ∗ −1 

𝑑𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 𝑠𝑐𝑜𝑟𝑒 = 𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑡, 𝑡′)

=  √∑(𝑡𝑖 − 𝑡𝑖
′)

2
𝑛

𝑖=1

 

To evaluate the performance of RS, this research used Root Mean 

Squared Error (RMSE), which is widely used to evaluate collabo-

rative filtering systems. From the postulation that users are satisfied 

with items recommended by diverse users, not just similar ones, RS 

with diversity returns the top N items sorted by the ascending order 

of the average scores of K dissimilar users. The diversity score is a 

negative value of the similarity score, which is the weighted sum of 

the learning styles similarity and the achievement goals similarity. 

In the following experiment in Step 3, we set K = 9 and the weights 

to each similarity {λ1, λ2} = {1.0, 1.5} because the settings of K 

and λ show the lowest RMSE between diversity-based prediction 

and ground truths in training data (see Figure 3). 

 

Figure 3. RMSE 

3.3 Step 3: RS Evaluation 

3.3.1 Experiment  
For the experiment to compare the performance of RS with simi-

larity and RS with diversity, we recruited 60 participants aged from 

19 to 39 years old. They used the visualized RS (see Figure 4) to 

complete the same survey administered in Step 1. We analyzed the 

preference survey data to gauge their learning styles and achieve-

ment goals, and then made the recommendations of apps for each 

participant. We divided 60 participants into two groups with the 

consideration of their age, job, and gender. The first group was rec-

ommended with three apps based on the algorithm of RS with 

similarity. The second group was recommended with three apps 

based on the algorithm of RS with diversity. After using the recom-

mended apps, the participants completed the satisfaction survey to 

evaluate each app they used. 

3.3.2 Experimental Setup 
For the experiment, we developed the mobile web-based system 

(see Figure 4) to simulate the real situation of using a RS for learn-

ing. The interface shows three buttons to guide learners to access 
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each page. In the first button ‘What is my preference?’, learners 

complete the preference survey about demographic information, 

learning styles, and achievement goals. Clicking the second button 

‘Checking recommended apps’, learners see the list of recom-

mended mobile apps for language learning. After using the 

recommended apps, learners move to the third button ‘What is my 

satisfaction?’ to complete the survey to indicate their satisfaction 

with the recommended apps.  

 

Figure 4. RS Visualization 

3.3.3 Data Results 
We evaluated our recommendation systems with RMSE represent-

ing the difference between the predicted and actual levels of 

learners’ satisfaction. We chose this approach since an accuracy 

metric only covers the exactly matched values. We observed that 

RMSE values of similarity-based recommendation and diversity-

based recommendation are 0.91 and 1.26 respectively. They are 

significantly smaller than 1.86 from the random prediction. With 

this, we interpret that the recommended method that considers how 

and why learners learn are likely to lead to higher learner satisfac-

tion than the random recommendation. Further, RS with similarity 

showed a better performance than RS with diversity.  

4. LIMITATIONS AND FUTURE WORK 
The limitations of this research are as follows. First, the recommen-

dation system was only evaluated by accuracy. Although it is 

important to predict items accurately, qualitative data such as inter-

views and proxy indicators (e.g., usage behaviors) should be used 

additionally to further test and improve the proposed RS. Second, 

since the data sample is rather small to build a robust model, the 

research findings have limited generalizability. The small sample 

size was due to the time and effort required for the participants to 

use the assigned apps and to provide valid evaluation data. In the 

future, we plan to recruit more users and expand the database of the 

apps to build a more robust model. Lastly, while this research com-

pares two RS algorithms, developing a hybrid RS that considers the 

optimal level of both similarity and diversity is certainly a promis-

ing area for future research.  

Despite these limitations, we believe that this research makes 

meaningful contributions to the existing body of literature on RS 

by providing empirical data that examine similarity versus diversity 

approaches.  
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ABSTRACT 
Many models of categorization focus on how people form and use 

knowledge of categories and make predictions about human cate-

gorization behaviors [19]. However, few (if any) of them 

implement these theories into item selection algorithms for cate-

gory training. The performance Factors Analysis (PFA) model is an 

alternative to the Bayesian Knowledge Tracing model that tracks 

students’ learning of knowledge components and can be imple-

mented into adaptive practice algorithms [17]. PFA-Difficulty 

model has been built to select items based on their difficulty level 

adaptively [4]. This paper describes how we are working to incor-

porate categorization theories into the PFA model so that it can be 

used for item selection. We used experiment data of Mandarin tone 

categorization training to test the model and suggest the implica-

tions of the results for item selection. 

Keywords 
Performance factors analysis, Categorization, Similarity, Item se-

lection. 

1. INTRODUCTION 
Formal models of categorization make assumptions about human 

psychological processes during categorization [8,19]. They specify 

three things in general: (1) the internal representation of the content 

and format of categorical knowledge, (2) the retrieval process that 

collects the exact information needed to make a response, (3) the 

response selection process about how to select a response based on 

the information collected [2,13]. However, categorization models 

do not consider individual differences in learning categories and do 

not track learners’ learning process. Therefore, they cannot help in-

structional design about item selection for training because most 

processes of learning (other than categorization) are not character-

ized in the models, e.g., the benefit of active quizzing. 

For example, exemplar theory assumes that subjects store each dis-

tinct stimulus and its category label in prior memory. To classify a 

stimulus, subjects compute the similarities between the stimulus 

representation and all the stored representations of exemplars, ag-

gregate the similarities, and then make a categorical selection 

[13,19]. But such a strict exemplar theory is not accurate based on 

what we know about how the brain encodes memories [3]. Analo-

gously, a prototype model operates by computing the similarities 

between the instances and a summary representation in memory. 

The difference is that the prototype model assumes that subjects 

store a “prototype”, which could be a central tendency of that cate-

gory instead of every exemplar [13,19]. Importantly, neither of the 

above models care about training sequence. More recently, Sequen-

tial Attention Theory Model (SAT-M) was developed using local 

context, which considers the influence of the properties of tempo-

rally neighboring items during training [5]. However, the model is 

built based on the Generalized Context Model (GCM) [16], a spe-

cial case of exemplar models, so it still implausibly supposes a 

person memorizes all prior instances. Even though it captures the 

influence of training sequence on the stimuli representation and im-

proves the model fit for data with different training sequences, the 

model does not intend to give specific suggestions about item se-

lection. The goal of this study is to implement the categorization 

theories into a learner model so that it can track learners’ learning 

of categories and provide suggestions on item selections for future 

training.  

The Performance Factors Analysis (PFA) model is a student model 

that predicts individual students on knowledge components (KCs) 

[1] which are acquired units of cognitive function or structure (e.g., 

concept, fact, or skill) using counts of successes and failures on 

prior training trials [17,18]. The PFA model could help us develop 

adaptive training algorithms. Below are the formulas of the original 

Performance Factors Analysis model. 

𝑚(𝑖, 𝑗 ∈ 𝐾𝐶𝑠, 𝑠, 𝑓) = ∑ (𝛽𝑗 + 𝛾𝑗𝑠𝑖,𝑗 + 𝜌𝑗𝑓𝑖,𝑗)𝑗∈𝐾𝐶𝑠                (1) 

𝑝(𝑚) =
1

1+𝑒−𝑚
                                                                     (2) 

In Equation 1, i represents a student and j represents a KC. m is a 

logit value representing the accumulated learning of the students on 

KCs. βj represents the easiness of the specific KC. s and f count the 

sum of cases/trials of prior successes and failures. γ and ρ are pa-

rameters scaling the effect of the observation counts. In Equation 

2, the accumulated learning is converted to probability prediction. 

Even though, from the results of the PFA model, we can know 

whether correct or incorrect responses lead to more learning gains 

on each KC, the result can’t be used for item selection. The reason 

is that if the success coefficient γ is higher than the failure coeffi-

cient ρ, it implies us to select easier items that could achieve 

immediate success and then maximize the learning gains (the in-

crease of m value) [4]. However, this is in opposition to some 

pedagogical theories, which suggest that medium-range difficulty 

of items promotes better learning. For example, the Goldilocks 

principle in cognitive science [11] and the zone of proximal devel-

opment [21] suggest that the practices should be neither too simple 

nor too complex relative to learners’ current knowledge. Kelley [12] 

also stated that keeping an appropriate difficulty level can make 

training effective. If a task is too easy, it will result in low levels of 

mental effort, whereas if the task is too difficult, it will be difficult 

to encode the experience. Both cases lead to low learning gains. 
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Therefore, we hypothesized that the relationship between difficulty 

and learning gains could be expressed as an inverted-U function 

(see equation 3) and incorporate it into the PFA model to build a 

new model called PFA-Difficulty (see equation 4) [4].  

𝑦 = 𝑎𝑥2 + 𝑏𝑥                                                                      (3) 

In equation 3, x represents the difficulty of the item. y represents 

the effect of difficulty on learning gains. In Equation 4. instead of 

tracking counts of prior successes and failures, we track the effects 

of prior difficulty levels of successes and failures using quadratic 

equations.    

𝑚(𝑖, 𝑗 ∈ 𝐾𝐶𝑠, 𝑠, 𝑓) = 

∑ (𝛽𝑗 + 𝛾2𝑥𝑠𝑖,𝑗
2 + 𝛾1𝑥𝑠𝑖,𝑗 + 𝜌2𝑥𝑓𝑖,𝑗

2 + 𝜌1𝑥𝑓𝑖,𝑗)𝑗∈𝐾𝐶𝑠               (4) 

We have tried to use the PFA-Difficulty model to select the item 

with optimal difficulty level for practice. However, the model is not 

the most appropriate model for categorization. It does not involve 

learners’ categorization process like the prototype and exemplar 

models do. Furthermore, even though we can treat categories as 

knowledge components and find the optimal difficulty to learn for 

each category, there is no suggestion about how to select items be-

tween categories. Therefore, this study intended to build a PFA 

model variant that implements a categorization theory while re-

maining simple enough to implement for adaptive practice. 

2. METHOD 

2.1 Dataset 
We used a dataset from a Mandarin tone training experiment [4] as 

a test case for the new model. Two hundred and five participants 

(Female = 89, Male =116) who were Amazon Mechanical Turk 

workers reside in Canada or the US. Age ranged across the lifespan: 

10.2% were between 18-25 years old, 34.6% were 26-34, 45.4% 

were 35-54, and 7.8% were 55-64 years old. Only 2.0% were more 

than 65 years old. The survey question for education level showed 

that 12.7% had a high school diploma or GED, 42.0% had some 

college, 38.5% had a 4-year college degree or bachelor’s, and 6.8% 

had a graduate degree. They finished 216 trials of training in Man-

darin tones in the experiment. There are four Mandarin tones (Tone 

1, a high-level tone; Tone 2, a rising tone; Tone 3, a low falling-

rising tone, and Tone 4, a falling tone). In each trial, participants 

listened to a tone sound and selected from the four options which 

tone it was.  

2.2 Stimulus representation 
The representation of stimuli could be derived from multidimen-

sional scaling (MDS), additive clustering, and factor analysis. 

Based on the results of previous MDS studies of Mandarin tones 

[7,10] and the experiment design, we encoded the tone stimuli in 7 

features. Three of them are about the F0 (fundamental frequency) 

direction (level, rising, and down). The other four are about the ex-

periment variables (duration, expansion, and speaker gender). 

2.3 PFA-Categorization 
Based on exemplar and prototype theories, learners learn through 

comparing the similarity between the new instance with previous 

exemplars and prototypes. Here for simplification, we used a pro-

totype mechanism where learners compare the new instance with 

the prototype of that category. The prototype is calculated by the 

average feature values of previous examples of the belonging cate-

gory. According to the SAT-M model, local context is also 

important. Learners should also learn from comparing the 

similarity between the new instance and its previous neighboring 

item. Therefore, the model should track two types of comparisons: 

the comparisons with the prototype and the local prior trial.  

For the relationship between learning gains and similarity, we have 

a similar hypothesis to the relationship between learning gains and 

the difficulty level, which can also be expressed using the simple 

quadratic function. If the two compared objects are too similar, it 

will be either too difficult if they belong to different categories or 

too easy if they are from the same category, and vice versa. There-

fore, the medium-range similarity might be optimal for practice. 

Then the equation of the new PFA-Categorization model can be 

shown as follows (see equation 5).  

 
𝑚(𝑖, 𝑗 ∈ 𝐾𝐶𝑠, 𝑠, 𝑓) =

∑
(𝛽𝑗 + 𝛾2𝐿𝑠𝑖,𝑗

2 + 𝛾1𝐿𝑠𝑖,𝑗 + 𝜌2𝐿𝑓𝑖,𝑗
2 + 𝜌1𝐿𝑓𝑖,𝑗

+𝛾4𝑃𝑠𝑖,𝑗
2 + 𝛾3𝑃𝑠𝑖,𝑗 + 𝜌4𝑃𝑓𝑖,𝑗

2 + 𝜌3𝑃𝑓𝑖,𝑗)
𝑗∈𝐾𝐶𝑠         (5) 

L represents the local comparisons between the current trial and its 

previous trial by calculating the similarities between the two items 

for each KC). P indicates the comparisons to the prototype by cal-

culating the similarities between the current trial and its prototype 

for each KC). γ1 and γ2 are scaling the effects of local comparisons 

of prior successes. ρ1 and ρ2 are parameters scaling the effects of 

local comparisons of prior failures. Similarly, γ3 and γ4 and ρ3 and 

ρ4 are parameters scaling the comparisons with prototypes. In this 

study, for simplification, we used the Euclidean distance as an in-

dex of similarity between two items (see equation 6). Parameters p 

and q represent the to be compared two objects. r is the dimension 

of the features that range from 1 to n. pr and qr are the feature values 

of objects p and q on dimension r. 

𝑑(𝑝, 𝑞) = [∑ (𝑝𝑟 − 𝑞𝑟)
2]𝑛

𝑟=1
1/2

                                            (6) 

2.4 Statistical Analysis 
The knowledge components in the Mandarin tone training data are 

four Mandarin tones. Figure 1 shows an example of the local com-

parisons and the prototypes’ comparisons using four trials of 

experiment data. The bold solid arrows represent the comparisons, 

and the dashed arrow indicates the formation of the prototype. The 

thin solid arrows show the direction of the training sequence. We 

used the category of previous trials as covariates for the local com-

parisons when tracking the similarities between the current trial and 

the previous neighboring trial. The prototype is calculated by aver-

aging the features of previous learned examples of that category. 

We then used the new PFA-Categorization model to analyze the 

data and computed the logit function increase or decrease as a func-

tion of similarity on each tone. All analyses were completed in R, 

with source code available from the corresponding author. 

 
Figure 1. Schematic diagram of the local and prototype com-

parisons. 
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3. RESULTS 
We did 5-fold cross-validations for the PFA, PFA-Difficulty, and 

PFA-Categorization models and calculated the mean test fold R2 

(see Table 1). An R package “LKT” (Logistic Knowledge Tracing) 

[18] was used to do the analysis. In all the models, we used the 

stimuli (Problem.Name) as the intercept. Tone represents the 

knowledge components (KCs) in the dataset. In the PFA model, 

linesuc$ and linefail$ track the counts of prior successes and fail-

ures of each KC. While in the PFA-Difficulty model, diffcor1$ and 

diffcor2$ are used to track the effects of difficulty levels of prior 

successes, and diffincor1$ and diffincor2$ are used to track the ef-

fects of difficulty levels of prior failures. Similarly, in the PFA-

Categorization model, we used those parameters to track the effects 

of local similarities and similarities to the prototype. From the R2 

values of the three models, there are minor differences among them, 

which means they fit the data equally well. 

Table 1.Results of logistic regression 

Model Predictors 
Mean test 

fold R2 

PFA Problem.Name: intercept, 

Tone: linesuc$, 

Tone: linefail$ 

0.1663 

PFA-Diffi-

culty 

Problem.Name: intercept, 

Tone: diffcor1$: difficulty, 

Tone: diffcor2$: difficulty, 

Tone: diffincor1$: difficulty, 

Tone: diffincor2$: difficulty 

0.1699 

PFA-Catego-

rization 

Problem.Name: intercept, 

Tone: diffcor1$: local, 

Tone: diffcor2$: local, 

Tone: diffincor1$: local, 

Tone: diffincor2$: local, 

Tone: diffcor1$: prototype, 

Tone: diffcor2$: prototype, 

Tone: diffincor1$: prototype, 

Tone: diffincor2$: prototype 

0.1648 

The local comparisons are more closely related to the training se-

quence than the prototype comparisons. Since the training sequence 

of the experiment was in random order, there are 16 pairs of local 

comparisons (4 tones * 4 tones). We used the coefficients of the 

local comparisons in the PFA-Categorization model to compute the 

learning efficiency (learning gains divided by the time cost) [9] as 

a function of the distance levels. The learning gain means the in-

crease or decrease of the m value in equation 5. Table 2 shows an 

example of the learning gains calculation when Tone 1 is the pre-

vious trial and Tone 1, Tone 2, Tone 3, or Tone 4 is the current trial. 

The distance value was normalized to be in a range of 0 and 1, 

which was initially between 0 and 5.76. 

Table 2. The function logit change (learning gains) of distance 

Local comparisons The function logit change 

Tone 1-Tone 1 
x*(0.30*x-0.30*(x)2) + 

(1-x) *(-0.33*x+0.30*(x)2) 

Tone 1-Tone 2 
x*(-0.12*x+0.20*(x)2) + 

(1-x) *(-.03*x+0.12*(x)2) 

Tone 1-Tone 3 
x*(0.19*x-0.08*(x)2) + 

(1-x) *(-0.17*x+0.18*(x)2) 

Tone 1-Tone 4 
x*(0.21*x+0.00*(x)2) + 

(1-x) *(-0.29*x+0.22*(x)2) 

Then we plotted the learning efficiency of the local comparison 

pairs and found the maximum values of logit change per second 

given the distance between two tones. For example, Figure 2 shows 

the learning efficiency curves of local comparisons when Tone 1 is 

the previous tone, and the adjacent current tone could be Tone 1, 

Tone 2, Tone 3, or Tone 4. For the Tone 1-Tone 1 pair, the logit 

gain from trial per second is the largest when the distance between 

them is 0.83, and the maximal learning gain per second is 0.003. 

For Tone 1-Tone 2 pair, Tone 1-Tone 3, and Tone 1-Tone 4, the 

optimal distance values are 1, 1, and 1, and the maximal learning 

gain is 0.014, 0.019, 0.037, respectively. Therefore, to achieve the 

maximal learning gain when practicing Tone 1, we should select 

Tone 4 as the next learned item. Similarly, after analyzing Tone 2, 

Tone 3, and Tone 4 as the previous trial separately, the findings 

suggest that we select Tone 4, Tone 1, and Tone 3, respectively, to 

achieve maximal learning gain. Above findings are just the first 

step to build an adaptive training system since we only have a static 

prediction about which tone category to select. The predictions are 

not sensitive to learners’ performance changes due to learning. 

Adaptive training not only needs to consider individual differences 

(learning rate) but also needs to adjust the similarity between prac-

tice trials accordingly to achieve the maximal learning gain for 

individuals. That is the direction for future work which is out of the 

scope of this preliminary report. 

 

Figure 2. Plots of logit change given the distance between two 

tones when Tone 1 is the previous trial.  

4. DISCUSSION 
In this study, we are combining categorization theories with the 

PFA model to track learners’ learning of categories. Instead of 

tracking counts of prior successes and failures as the PFA model 

does or effects of difficulty levels of prior successes and failures as 

the PFA-Difficulty model does, the new PFA-Categorization model 

tracks the similarities between the adjacent trials and the similarity 

between each trial and its prototype of the belonging category. The 

R2 values showed that the performance of the PFA-Categorization 

model was better than the original PFA model. Even though the 

quantitative comparison did not reveal differences, it has useful im-

plications for later item selection for category training. After 

learning a specific tone category, it may be possible to make deci-

sions about what category and item are to be practiced next. 
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Many studies have examined the influence of presentation order of 

examples on category learning [6,14,20]. For example, Carvalho 

and Goldstone [6] suggest that if stimuli have high within- and be-

tween-category similarity interleaved study could result in better 

generalization, whereas if categories have low within- and be-

tween-category similarity, blocked presentation can lead to better 

generalization. However, their study used extreme examples of 

similarities that are either too similar or too dissimilar, which is not 

so often seen in regular category learning. They also have no sys-

tematic suggestion about how we should sequence the categories 

based on their similarity levels and learning gains. Prior studies 

have simple manipulations about similarity either maximize or 

minimize the similarity between adjacent training trials [14,15]. 

These methods are too general and may not fit all the category 

learning cases. The benefit of the PFA-Categorization model is that 

it could give us suggestions about what we should select next based 

on the analysis of the training data to achieve maximal learning ef-

ficiency.  

5. CONCLUSION 
This paper implemented a categorization mechanism into the PFA 

model to track category learning that suggests what category we 

should select next based on the learning efficiency curve as a func-

tion of the similarity between the two adjacent items. We plan to 

use a developed version of the model in an adaptive training system 

to select the item with optimal similarity levels for learners to 

achieve maximal learning efficiency.  

Future work will improve the model by adding weights of features 

into the distance calculation since different features may have dif-

ferent importance for categorization. We will also test the model 

with more datasets since the data used in the present study did not 

have any manipulation of practice schedules so it may not work 

well for the data. For example, interleaved practice and blocked 

practice may have different types of local comparisons that the for-

mer is mainly between-category comparisons, and the latter is 

within-category comparisons. However, since the practice data we 

used mixed between and within category comparisons randomly it 

is difficult to see the cumulative effects of scheduling strategy in 

the data.  
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ABSTRACT
In second language acquisition, incidental vocabulary learn-
ing refers to the process by which one’s vocabulary increases
through activities in which increasing vocabulary is not the
main goal. A typical example is extensive reading, where
learners naturally expand their vocabulary by reading many
texts and guessing the meanings of unfamiliar words. Select-
ing texts suitable for incidental learning requires a person-
alized and fine-grained estimation of each language learner’s
vocabulary. If a learner does not know sufficient words in
a text, then the learner cannot read through the text to
guess the meanings of unfamiliar terms, so incidental learn-
ing does not occur. In contrast, if a learner knows all the
words in a text, then incidental learning cannot occur be-
cause the learner has no new words to learn. Therefore, if
a learner attempts to select a text that can significantly in-
crease their vocabulary, the risk of reading failure increases
along with the possibility that no words can be guessed and
learned. Therefore, learners should be presented with both
the amount of vocabulary they can add and risk of failure in
reading, and be allowed to select the text they wish to read.
To this end, we require an algorithm that can simultaneously
calculate the amount of vocabulary that can be learned and
relevant risk when a text is read. This paper presents an
algorithm for this purpose with preliminary experimental
results. Specifically, we use findings from applied linguistics
that indicate that the condition for incidental learning to
occur is that the percentage of words that a learner knows
in a text is above a certain threshold. By modeling the
estimated size of the increase in vocabulary as a random
variable, our method uses the variance of the estimated size
as a measure of the risk of reading failure. This allows a
learner to select the text with the lowest risk among texts
that have the same estimated size of increase in vocabulary.
Experimental results demonstrate that our method can sig-
nificantly aid learners in selecting “efficient” texts to read
by identifying a handful of such texts among a library of
500 texts. The results also demonstrate that some texts are
stable and efficient for many learners.

Keywords
Second Language Vocabulary, Extensive Reading, Natural
Language Processing

1. INTRODUCTION
In second language acquisition, the “incidental learning” of
second language vocabulary is the incidental acquisition of
vocabulary through activities in which vocabulary acquisi-
tion is not the main objective. It is a concept that is widely
used in applied linguistics studies [20, 28, 11]. An exam-
ple of such an activity is extensive reading, where readers
learn vocabulary by guessing the meanings of unfamiliar
words when reading various texts. In contrast to incidental
learning, learning vocabulary in the context of an activity
whose main goal is vocabulary acquisition is called “inten-
tional learning” [28, 11]. An example is acquiring second lan-
guage vocabulary by memorizing lists of words. Although
incidental learning is less efficient than intentional learning
at increasing learner vocabulary in a second language, it is
believed to have many merits. It promotes a deeper under-
standing of how words are used in different contexts and
leads to improved learner writing skills [21].

Being able to select texts of interest to each learner also
improves motivation for language learning. These merits
are summarized in [21] and a combination of intentional and
incidental learning is desirable [21].

Incidental learning has many advantages and is used in var-
ious scenarios. In most scenarios, for successful incidental
learning, it is important to select and use texts that suit the
learner [21] and various technologies that support incidental
learning have been studied [9, 10, 12]. New vocabulary ac-
quisition does not occur if a text consists only of words that
have already been learned. In contrast, if a learner cannot
understand sufficient words in a text, then there is a high
risk of failure in reading the text, making incidental learn-
ing difficult because the learner cannot guess the meanings
of words appearing in the text. In this case, even if we allow
learners to use dictionaries, they are not motivated to con-
tinue learning if there are too many words that they need to
look up [27, 18]. In applied linguistics, it has been reported
that if a learner knows 95% to 98% of the words (tokens) in a
text, then they can learn new vocabulary through incidental
learning by guessing the meanings of unfamiliar words based
on their context [13]. In other words, this finding from ap-
plied linguistics suggests that unlearned words in a text can
be efficiently learned incidentally if a learner knows 95% to
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98% of the text’s tokens [21].

This result from applied linguistics implies that text selec-
tion for efficient incidental learning should consider the risk
of failure when reading the selected text. Selecting a text
with a small ratio of known words (i.e., a large ratio of un-
known words) may increase the size of the vocabulary ac-
quired through incidental learning, but if the ratio of known
words is below a certain threshold, then learners will not be
able to continue reading the text and guess the meanings
of unfamiliar words. Therefore, incidental learning will not
occur and the size of vocabulary acquired will not increase.
Therefore, it is desirable to select texts that appear to have
the largest number of unknown words while keeping the risk
of learner reading failure within an acceptable range.

In this study, we mathematically formulated a strategy for
increasing vocabulary through incidental learning using ma-
chine learning. Specifically, we propose a method for deter-
mining the probability distribution of the estimated size of
the vocabulary acquired through incidental learning when a
learner reads a text. We modelled the variance of the esti-
mated size as a measure of the risk of reading failure. By
using our method, among many texts, learners can select a
text for incidental learning by considering both the number
of words to be learned (i.e., estimated size of the increase in
vocabulary) and risk of failure in reading the text.

2. RELATED WORK
In educational data mining and intelligent tutoring system
studies, technologies for supporting incidental learning have
been studied in lifelogs [9] and dictionaries [10, 12]. How-
ever, previous studies have not focused on methods that can
consider both the estimated size of the increase in vocabu-
lary and risk of reading failure. Several researchers have also
proposed methods to assess second language learner vocab-
ularies [19, 23] and tutoring systems [26]. However, to the
best of our knowledge, no study has extensively addressed
text selection algorithms based on the estimated increase in
second language vocabulary through incidental learning.

This study focused on the task of personalized prediction
of second language vocabulary [16, 4, 15, 29, 8, 14, 6, 7],
which has been studied in natural language processing. In
this task, each learner takes a vocabulary test that can be
completed in approximately half an hour. Then, for a word
not on the test, this task aims to predict whether each test
taker knows the word based on their vocabulary test re-
sults. Some previous studies have used rich information
other than vocabulary tests to improve accuracy, such as
individual learner characteristics and word meanings [7, 4],
as well as human memory lengths [25, 24].

In particular, several studies have modeled the degree of
forgetting over time considering that forgetting curves are
closely related to vocabulary learning [25, 24]. However,
such meticulous modeling requires time-stamped records of
vocabulary learning processes, which are only provided in a
few datasets. We used a vocabulary test result dataset to
test the applicability of our method.

3. TASK SETTING

Here, we present a motivating example for the problem con-
sidered in this study. Consider a text consisting of 4 words
[a,b,c,d]. Let the frequency of the words be [93, 3, 3, 1]. As-
sume that the probability of knowing each word [a,b,c,d] is
[0.9,0.6,0.5,0.2], respectively. In reality, these probabilities
are estimated using probabilistic classifiers trained on a vo-
cabulary test that includes none of a, b, c, or d. Therefore,
we assume that we cannot directly test whether a learner
knows these words.

According to findings from applied linguistics, if a learner
knows more than 95% of the words in a text, they can learn
unfamiliar words by reading the text. This percentage is
called text coverage. Here, we enumerate the cases in an
example where text coverage exceeds 95%. In this example,
“a” occurs the most frequently, but knowing “a” alone does
not ensure that the text coverage exceeds 95%. However,
if the learner knows {a,b} and does not know {c,d}, then
the coverage of the learner for the target text exceeds the
threshold. If we focus only on the words that the learner
knows and writes specifically, then the cases that exceed the
threshold are {a,b}, {a,c}, {a,b,d}, {a,c,d}, and {a,b,c,d}.

Now, consider a case in which the learner knows words {a,b}.
Because we assume that the learner does not know {c,d}, the
probability of case {a,b} can be calculated as 0.9×0.6×(1−
0.5) × (1 − 0.2). At this time, the aforementioned applied
linguistics finding [20, 22] indicates that this learner can
naturally acquire the unfamiliar words {c, d} by reading the
text. If we focus only on unfamiliar words, we can consider
this probability as the probability that the learner can learn
the words {c,d} by reading the text (0.9×0.6×(1−0.5)×(1−
0.2)) through incidental learning. Similarly, the probability
that the learner knows only {a,c} can also be considered as
the probability that new words {b,d} can be acquired by
reading the text through incidental learning.

Therefore, when considering all cases, the probability that
the learner can incidentally learn each word [a,b,c,d] by read-
ing the text is [0, 0.18, 0.27, 0.576]. If the learner does
not know “a,” then they cannot read the text and incidental
learning cannot occur. Therefore the probability for “a” is 0.
The expected number of words that can be acquired by read-
ing this text is 1×0+1×0.18+1×0.27+1×0.576 = 1.026. In
the next section, we propose a method for not only obtaining
the expectation of learning (i.e., mean of the distribution),
but also the entire distribution.

4. PROPOSED FORMULATION
We formulated a motivating example in the previous section.
Consider a vocabulary {v1, . . . , vI}, where I is the vocabu-
lary size. Let ni be the number of occurrences of vi (i.e.,
frequency of vi in the text).

Assume that we focus on a specific learner among all J learn-
ers. We denote the probability that the learner knows vi as
pi. Let the threshold value of text coverage be τ . In the mo-
tivating example presented in the previous section, τ = 0.95.
The probability of the text coverage exceeding this thresh-
old can be expressed as follows. First, the total number of
words in a text can be expressed as N =

∑I
i=1 ni. Next,

consider the following random variable Zi, which is equal
to 1 if the learner knows the word vi and equal to zero 0
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otherwise. {Z1, . . . , ZI} are assumed to be independent of
each other.

Zi ∼ Bernoulli(pi) (1)

Because the number of occurrences of words known to the
learner in the text is

∑I
i=1 Zini, then text coverage can be

expressed as
∑I

i=1 Zini

N
. Therefore, the probability that the

text coverage exceeds the threshold is P (
∑I
i=1 Zini ≥ Nτ).

The probability that the learner acquires a new word vi
through incidental learning by reading the text can be for-
mulated as follows. For incidental learning to occur, the
text must be readable, so text coverage must be above the
threshold. Furthermore, for a word vi to be learned, the
learner must not already know the word vi. Therefore, this
probability can be expressed as P (Zi = 0,

∑I
i=1 Zini ≥ Nτ),

which is hereafter denoted as qi.

We wished to obtain the distribution of the number of words
acquired through incidental learning from a text. Therefore,
we define Ai as

Ai ∼ Bernoulli(qi). (2)

Here, {A1, . . . , AI} are assumed to be independent of each
other. The number of acquired words, which is denoted as
A, can be expressed as A =

∑I
i=1Ai. Because each Ai is a

random variable, A is also distributional.

5. SOLVING THE PROBLEM
To obtain the probability desired P (

∑I
i=1 Zini ≥ Nτ), or

the probability that the text coverage exceeds the threshold,
and to obtain the distribution of the number of acquired
words A =

∑I
i=1Ai, we must find the probability of a ran-

dom variable consisting of a sum of independent binomial
distributions with different success probabilities. If the suc-
cess probabilities of the distributions are equal, then their
sum is also a binomial distribution based on the reproduc-
ing property of the binomial distribution. However, in this
case, because the success probabilities are different, the sum
does not follow a binomial distribution. This distribution is
called a Poisson binomial distribution.

Regarding the second language vocabulary, in order to cal-
culate P (

∑I
i=1 Zini ≥ Nτ), [5] proposed a method for ob-

taining this type of probability using dynamic programming.
Based on space limitations, we do not present their algo-
rithm in detail in this paper. Instead, we present only an
outline of their algorithm. Because

∑I
i=1 Zini is an inte-

ger, the condition that Nτ or more can be attributed to the
subset-sum problem. Given a target integer, the goal of the
subset-sum problem is to determine if there is a subset of
{n1, . . . , nI} that adds up to the target integer. The subset-
sum problem can be solved using dynamic programming
(DP). Specifically, we can use a DP table consisting of inte-
gers that can be created using subsets of {n1, . . . , ni}. Ad-

ditionally, we must determine P (Zi = 0,
∑I
i=1 Zini ≥ Nτ).

This is computed by applying an extension to each cell of the
DP table to record the probability value of {Z1, . . . , ZI}. In

the Poisson binomial distribution,
∑I
i=1 pi is the mean and∑I

i=1 pi(1− pi) is the variance. We used this fact to obtain
the mean and variance values in our experiments.

6. EXPERIMENTS

For learner vocabulary test results, [4] published a dataset
based on crowdsourcing. We adopted this dataset for our
experiments. According to [4], in this dataset, the vocab-
ulary size test (VST) [1], which consists of 100 vocabulary
questions, was completed by 100 learners who had taken the
TOEIC test (https://www.ets.org/toeic) using a Japan-
based crowdsourcing service called Lancers. The VST is a
multiple-choice test in which the test taker selects the ap-
propriate paraphrase of a word within an English sentence
from four options. To avoid questions being solved based
on grammatical clues that are irrelevant to knowledge of
the word such as the difference between singular and plural
words, all options are designed to be grammatically correct
if they are replaced with the word in question.

Using this dataset, we trained a probabilistic classifier to
classify whether each learner knows a given word and used
the resulting probability values as pi in Eq. (1). Because
this is a binary classification problem, a neural classifier
can be used. However, because improving classification per-
formance was not the goal of this study, simple logistic
regression was used to train the classifier. For the fea-
tures of the classifier, we used the frequencies from the Cor-
pus of Contemporary American English [3] and the British
National Corpus [2]. The frequencies were converted into
− log(frequency) values and used as features. To make per-
sonalized predictions in which the prediction results differ
from learner to learner, we simply added a J-dimensional
one-hot vector as a feature, where J is the number of learn-
ers considered in the model. For this purpose, we followed
the method presented by [5].

The Brown corpus was used as the set of texts for selection.
To ensure that the lengths of the texts did not affect the
experimental results, for each of the 500 texts in the Brown
corpus, the first 300 tokens of the text were used in our
experiments. From these 500 texts, our goal was to select
one suitable for a learner’s incidental learning.

In this setting, incidental learning is likely to occur in high-
performing learners because low-performing learners can read
few texts from the Brown corpus. Therefore, we conducted
our experiments based on the highest-performing learner,
who correctly answered 96 of the 100 questions in the VST.
We randomly selected a text from the Brown corpus and es-
timated the distribution of the vocabulary size acquired by
this learner through incidental learning when reading the
text shown in Fig. 1. This distribution is more informative
compared to when only the mean is available.

The value and variance of the expected acquired vocabu-
lary when reading each text are considered simultaneously
in Fig. 2. Each point represents a text in the Brown corpus.
For a given expected size of the acquired vocabulary, it is
better for the learner to select the text with the lowest pos-
sible variance in the acquired vocabulary. This allows learn-
ers to increase their vocabulary with a lower risk of reading
failure. The upper-left portion of Fig. 2 presents the most
efficient set of texts that promotes incidental learning for
this learner. Therefore, the vertical axis in Fig. 2 can be
considered as the gain and the variance of the acquired vo-
cabulary in the horizontal axis can be considered as the risk.
Fig. 2 can be considered as a risk–return plot, which is often
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Figure 1: Example of the distribution of the estimated size of
the acquired vocabulary. The horizontal axis represents the
number of words that the learner is expected to acquire by
reading the text and the vertical axis represents the proba-
bility.

used in finance [17].

In a risk–return plot such as in Fig. 2, selecting the upper-left
points yields the lowest risk and highest gain. Therefore, the
green dashed line created by connecting the upper-left points
is called the efficient frontier. In Fig. 2, among the 500 texts,
5 texts on the efficient frontier were selected. In other words,
we were able to narrow down the number of texts suitable
for the learner’s incidental learning by a factor of 1/100.
The choice of which of these 5 texts to select depends on
the degree of risk that is acceptable for learners to increase
their vocabulary. Although selecting one text among 500 is
difficult for a human, selecting one text among 5 is relatively
easy.

An interesting question is whether there texts that are ef-
ficient for most learners. An experiment was conducted to
answer this question. Fig. 2 presents the efficient frontier
for the learner with the highest score in the vocabulary
test dataset. Similarly, we identified the top 30 highest-
performing learners in a dataset consisting of 100 learners.

Tab. A.1 presents the results. One can see that 7 texts were
selected from the efficient frontiers of more than 10 learners,
with the most common text being included in the efficient
frontiers of 14 learners. These results indicate that the texts
included in the efficient frontiers of learners are relatively
stable, even though efficient frontiers vary by learner.

Although we leave the quantitative analysis of the texts in
Tab. A.1 for future work, the following qualitative trends can
be observed. The top text (first line in Tab. A.1) exhibits
clear “contrasts.” In other words, difficult words such as
“contrarieties,” which many English learners presumably do
not know, occur with words that they are likely to know

Figure 2: The mean (vertical) and variance (horizontal) of the
estimated size of the vocabulary acquired for each text (i.e.,
each dot). Because our method is personalized, this figure is
tailored to each learner. In this figure, we present the case of
the top learner in the vocabulary test dataset as an example.

such as“belief”and“imagination.” However, because proper
nouns are treated as out-of-vocabulary words, regardless of
the learner, texts with many proper nouns are also likely to
be listed as efficient texts by most learners in Tab. A.1, as
shown in the second row of Tab. A.1. Addressing this factor
is a topic for future study.

7. CONCLUSION
To select texts suitable for vocabulary acquisition through
incidental learning, we proposed a method for calculating es-
timates of the vocabulary acquired through incidental learn-
ing for each pair of learners and texts based on the findings
of applied linguistics. By considering the size of the vocab-
ulary acquired as a type of gain for a learner, we introduced
the concept of the efficient frontiers used in financial engi-
neering for vocabulary learning. We experimentally showed
that there are“efficient”texts suitable for incidental learning
that are included in the efficient frontiers of many learners.

The introduction of the concept of efficient frontiers to lan-
guage learning will enable vast future work in this field,
including evaluation experiments over time using learning
application logs, handling the aforementioned proper noun
issue, and multi-text selection when reading multiple texts
simultaneously. Our approach can also be used with modern
portfolio theory [17] to identify the most efficient texts.
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Table A.1: Texts that are frequently on the efficient frontiers of the top 30 learners.

The number of times
that the text appeared
on the efficient frontiers

The first 30 words of the text. (All texts were taken from the Brown corpus.)

14 In the imagination of the nineteenth century the Greek tragedians and Shakespeare stand side
by side , their affinity transcending all the immense contrarieties of historical circumstance
, religious belief

13 The Theatre-by-the-Sea , Matunuck , presents “ King Of Hearts ” by Jean Kerr and Eleanor
Brooke . Directed by Michael Murray ; ; settings by William David Roberts .

12 She describes , first , the imaginary reaction of a foreigner puzzled by this “ unseasonable
exultation ” ; ; he is answered by a confused , honest Englishman .

11 Into Washington on President-elect John F. Kennedy’s Convair , the Caroline , winged
Actor-Crooner Frank Sinatra and his close Hollywood pal , Cinemactor Peter Lawford , Jack
Kennedy’s brother-in-law .

10 On the fringe of the amused throng of white onlookers stood a young woman of remarkable
beauty and poise . She munched little ginger cakes called mulatto’s belly and kept

10 As autumn starts its annual sweep , few Americans and Canadians realize how fortunate
they are in having the world’s finest fall coloring . Spectacular displays of this sort are

10 Broadway the unoriginals To write a play , the dramatist once needed an idea plus the
imagination , the knowledge of life and the craft to develop it . Nowadays

APPENDIX
A. EXAMPLES OF EFFICIENT TEXTS
Tab. A.1 lists the texts that are frequently on the efficient
frontiers of the top 30 learners. The example texts were
taken from the Brown corpus, which is available in the Nat-
ural Language Toolkit (NLTK, https://www.nltk.org/).

B. DATASET AND CODE
The dataset used in this study was published in [4]. We plan
to release our code at http://yoehara.com/ or
http://readability.jp/. The dataset by [4] is also avail-
able for download by following the links of these websites.
Further information about this paper may be found in the
following website: https://rebrand.ly/edm223info.

C. DISCUSSION
The fact that the top 30 learners were chosen in Tab. A.1
does not mean that, in general, our method cannot sup-
port less-skilled learners. In this case, our experiments as-
sume a situation where the test-takers in the dataset by [4]
were to conduct extensive reading on the texts taken from
the Brown corpus. What matters is this combination: the
Brown corpus is simply too difficult for less-skilled learners
on [4], and incidental learning does not occur for them. If we
use a text set easier than Brown corpus, incidental learning
is more likely to occur even for low-ability learners, and the
proposed method may be effective.
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ABSTRACT
To improve student learning outcomes within online learn-
ing platforms, struggling students are often provided with
on-demand supplemental instructional content. Recently,
services like Yup (yup.com) and UPcheive (upchieve.org)
have begun to offer on-demand live tutoring sessions with
qualified educators, but the availability of tutors and the
cost associated with hiring them prevents many students
from having access to live support. To help struggling stu-
dents and offset the inequities intrinsic to high-cost services,
we are attempting to develop a process that uses large lan-
guage representation models to algorithmically identify rel-
evant support messages from these chat logs, and distribute
them to all students struggling with the same content. In
an empirical evaluation of our methodology we were able
to identify messages from tutors to students struggling with
middle school mathematics problems that qualified as ex-
planations of the content. However, when we distributed
these explanations to students outside of the tutoring ses-
sions, they had an overall negative effect on the students’
learning. Moving forward, we want to be able to identify
messages that will promote equity and have a positive im-
pact on students.

Keywords
Large Language Representation Models, On-Demand Tutor-
ing, Online Learning Platforms

1. INTRODUCTION
Middle school mathematics students have been shown to
benefit from on-demand support when struggling within on-
line learning platforms [8]. These supports require time and
expertise to create, which can impede the platform’s ability
to provide support at scale. Additionally, when attempting
to personalize students’ online educational experience, it is
essential to have multiple supports available for the same
content. There has been notable success when crowdsourc-
ing these supports from the teachers that use the platform

[5, 6], but there are other opportunities to collect supports,
including from live chat logs between students and tutors,
which are an intuitive resource for generating support mes-
sages because they contain messages from a tutor explaining
how to solve a problem to a student. Therefore, we propose
the utilization of large language representation models to
algorithmically identify support messages from live tutors
that can be distributed to students at scale. At this point,
we have created and evaluated a method for identifying rel-
evant tutor messages from chat logs. However, while our
method was able to identify messages that seemed equiva-
lent to explanations already used in ASSISTments, the re-
sults of an empirical evaluation of these messages’ ability
to help students found that they negatively impacted learn-
ing. We are looking for critiques of our existing method and
ways in which we can expand our method to account for
more than just the semantic similarity between tutor mes-
sages and existing explanations in order to improve student
learning outcomes.

2. METHODOLOGY
2.1 Data Collection
The student-tutor chat log data comes from the ASSIST-
ments online learning platform [4] and UPchieve [2]. From
June 9th, 2021 to November 5th, 2021, 82 students from 5
different classes had the opportunity to request help from a
live UPchieve tutor within the ASSISTments learning plat-
form. Over this time, students requested help 208 times
and 8,817 messages were exchanged between students and
tutors. In this work, we attempted to extract generalizable
support from the live tutors’ messages. Our approach re-
lies on comparing large language model embeddings of the
messages written by live tutors to the explanations already
used as on-demand support within ASSISTments. There-
fore, we also collected 16,130 existing explanations from the
ASSISTments platform.

2.2 Identifying Generalizable Support
To identify generalizable support, we employ a four-step ap-
proach. The first step of our approach is to embed each tutor
message and ASSISTments explanation using a large lan-
guage representation model. We experimented with embed-
dings using three different pretrained large language mod-
els: BERT [3], SBERT [7], and MathBERT [9]. Due to
the large number of features in these embeddings, the sec-
ond step of our approach was to transform the embeddings
using PCA [1] to mitigate over-fitting our subsequent super-
vised model. The third step was to train a logistic regression
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to classify whether the embedded sample represented a tu-
tor message or an ASSISTments explanation. The fourth
step was to manually inspect the misclassified tutor mes-
sages and evaluate their generalizability and relevance. If
they were deemed relevant, than they were included in the
empirical study within ASSISTments. To select the number
of PCA components to use for each logistic regression, a sep-
arate logistic regression was fit on 1 through n components,
in order of decreasing significance, where n is the total num-
ber of components. After each logistic regression was fit, the
total number of tutor messages classified as ASSISTments
explanations was calculated and plotted. The plot revealed
an ”elbow”, at which point additional PCA components had
diminished effects on the accuracy of the logistic regression.
Therefore, the number of components at the elbow of the
graph was selected as the correct number of components to
mitigate over-fitting.

2.3 Empirical Study
After candidate tutor messages were identified using the
process described in Section 2.2, a randomized controlled
experiment was performed within ASSISTments, in which
an assignment consisting of six mathematics problems was
given to middle school students. Only teachers that felt the
problems were appropriate for their class allowed their stu-
dents to participate in the experiment. For the 1st, 3rd, and
5th problems, students were randomized between receiving
the identified tutor messages, or just the answer, as support
upon their request. For the 2nd, 4th, and 6th problems, stu-
dents were given a nearly identical problem with the same
format and knowledge prerequisites as the previous prob-
lem. Within the assignment, the order that the students
received the three pairs of problems was also randomized to
eliminate bias from completing the problems in a particular
order. The students’ success on the 2nd, 4th, and 6th prob-
lems was used to evaluate the quality of the tutoring for
each of the previous problems respectively. To determine
the effectiveness of the tutor messages, an intent to treat
analysis was performed in which Welch’s t-tests [10] were
used to compare the next-problem correctness of students
that could have received the tutor messages and students
that could have received the answer when requesting sup-
port, and Cohen’s d was used to determine the effect size of
the treatment compared to the control.

3. RESULTS
3.1 Identifying Generalizable Supports
Applying the elbow sample selection method described in
Section 2.2 for each of the three different BERT models re-
sulted in the plots shown in Figure 1. Only the first 20 PCA
components are plotted because the elbow is always in the
first 20 components. Based on Figure 1, MathBERT was
the most accurate model and only misclassified eight tutor
messages as explanations at the elbow, which is about 0.16%
of all the tutor messages. To further illustrate the difference
in the effectiveness of each BERT model, Figure 2 shows a
two-dimensional projection of the regression boundary when
fit using n PCA components, where n is determined by the
elbow plots in Figure 1. Again, MathBERT has the least
misclassifications. For this reason, the misclassified tutor
messages from the logistic regression fit using the first eight
PCA components of the MathBERT embedding were used

as candidate tutor messages for the empirical study. Of the
eight messages, six were relevant enough to be used as on-
demand support for the problems for which they were writ-
ten. The other two messages were written about an example
problem devised by the tutor, and not the original problem
the student was trying to solve.

3.2 Empirical Study
The six selected tutor messages were written during discus-
sion with students requesting support on three problems in
ASSISTments. Therefore, the messages for each problem
were combined into one set of on-demand support for the
problem. Figure 3 shows each of the problems and the on-
demand support created for them. In total, 163 students
participated in the experiment. 106, 97, and 111 students
were used to evaluate the supports for Problems 1, 2, and
3 respectively. Overall, there was a small, statistically in-
significant negative effect from offering students tutor mes-
sages for support (d = -0.145, p = 0.068). When evaluating
the effectiveness of the tutor message based supports for
each individual problem, it was revealed that for the first
and third problem, there was an insignificant negative effect
from receiving on demand tutoring (d = -0.094 and -0.069
respectively, p = 0.489 and 0.627 respectively), but for the
second problem, there was a medium-sized significant nega-
tive effect (d = 0.406, p = 0.005).

4. CONCLUSION
Although we were able to identify tutor messages that of-
fered explanations to students on how to solve the problem
they were struggling with, only 75% of the messages selected
by our methodology were deemed relevant by human selec-
tion, and in an empirical study, these messages had a nega-
tive effect on real students’ learning. This implies that there
is more nuance to how helpful a message will be aside from
how similar it is semantically to existing support messages.
While this seems obvious, it is difficult to approach algorith-
mically filtering the tutor messages in a way that takes into
account their relevance to the problem and how likely they
are to benefit student learning outcomes. Moving forward,
research efforts may compare tutor messages to the relevant
problem, either in an embedding space or simply through
phrase matching. This could help exclude tutor messages
which were not relevant to the original problem but did get
misclassified as supports in the embedding space. To address
the negative impact that the selected tutor messages had on
students’ learning, we could attempt to use the students’
responses in the student-tutor chat logs to identify only the
tutor messages followed by student messages with positive
sentiment, for example, ”Thank you! I understand now”.
Ideally, by filtering the tutor messages this way, we would
only include tutor messages that the student was happy to
receive, which implies these messages would be more likely
to help other students. Additionally, a metric to quantify
the benefit to student learning outcomes given a problem
and support would benefit our analyses of relevant tutoring
logs. There are many factors to consider when improving
student learning outcomes and we look forward to investi-
gating these potential directions.
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Figure 1: The elbow plot of the number of tutoring log mes-
sages misclassified as ASSISTments supports as a function
of PCA components using embeddings from BERT (top),
SBERT (middle), and MathBERT(bottom).

Figure 2: The data and regression boundary, projected to two
dimensions, when using n PCA components, where n is de-
termined by the elbow plots in Figure 1, to predict whether
or not a message is from a live tutor or an ASSISTments
explanation using BERT (top), SBERT (middle), and Math-
BERT(bottom) embeddings.
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Figure 3: The three problems related to the selected tutor messages and the messages themselves as they would be seen by the
student using ASSISTments.
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ABSTRACT
Over the last few years, computer science class sizes have in-
creased, resulting in tutors providing more support to strug-
gling students, and instructors having less time per-student
in larger classes. Universities typically assign multiple tu-
tors to lab sessions, especially introductory programming
courses, to maximise the help available to students during
their sessions. However, using multiple tutors does not help
struggling students outside of official sessions. The lack of
support outside official settings is especially the case for on-
line courses and remote learning. To help resolve student
frustration from not being able to get support when they
need it, we propose a tool that can detect when a student
is struggling with their programming task and give them a
hint that gets them closer to their goal.

Keywords
computer science education, computer programs, sequence
mining, learning behaviours, feedback

1. INTRODUCTION
Over the last few years, the number of students enrolled in
computer science courses has increased [12] and self-directed
learning is becoming more prevalent. As class sizes grow,
it becomes more difficult for course leaders and assistants
to assist in programming labs. This difficulty is because it
takes time to solve and explain various programming issues,
and instructors have less time per-student in larger classes.
Multiple tutors are frequently assigned to a single lab to
maximise the availability of expert assistance. However, not
all students will receive assistance during their scheduled
lab sessions in some circumstances, particularly approaching
deadlines, when multiple requests for help occur in a single
lab session. Even if a tutor is available, many students do
not seek assistance when struggling to solve a problem [15].
However, if a tutor offers a student support, they will usually
accept it.

Students have limited access to expert support outside of
regular classes and office hours. The limited access is espe-
cially true for online courses, distance learning and students
undertaking self-directed learning. The limited expert help
in and outside official settings may lead to prolonged frus-
tration, one of the leading causes of students dropping out
[20].

A student could seek help for numerous programming areas,
including compiler errors, logical errors, code style and best
practice. Detecting code style issues and best practices are
solved using various static code analysis tools, such as Find-
Bugs and CheckStyle. FindBugs detects bad practices, per-
formance, correctness, and “dodgy code” using pre-defined
bug patterns, including common issues for novice program-
mers. Examples of which includes the comparison of String
objects using “== or !=” and issues that cause IndexOutOf-

BoundsException [2]. CheckStyle detects various code style
issues, including incorrect naming conventions and code de-
sign [7].

Some of the most challenging errors to solve are compiler er-
rors, examples of which include “missing return statement”,
“method call: parameter type mismatch”, and “method call
targeting the wrong type” [16]. Understanding compiler
error messages and correcting them is difficult and time-
consuming for programmers of any degree of experience, es-
pecially novices [22]. Poorly written error messages could
lead to a student not solving a problem for hours or days
without help. Even with skilled help, an error could take
several minutes to correct [13]. While compiler errors can
be challenging to solve, logical errors are considerably more
challenging to correct because they usually necessitate un-
derstanding the problem’s context and the student’s written
work.

The proposed research will focus on detecting when a stu-
dent requires assistance with compiler, logic and style errors
and providing a meaningful hint on how to solve the error.

2. BACKGROUND & RELATED WORK
Previous work on detecting a struggling student has focused
on other aspects than the source code. Spacco et al. used
measures based on time and number of submissions to de-
tect flailing students [21]. Rodrigo and Baker investigated
detecting the aggregate frustration over many labs, using
compilation based measures [20].
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The compilation measures that Rodrigo and Baker imple-
mented were the average time between compilations, the to-
tal number of compilations, the total number of errors, and
Jadud’s Error Quotient (EQ) [20]. The EQ indicates how
well a student can handle syntax errors while programming.
It looks at successive pairs of compile events to see if both
result in an error and if the error type is the same [9] (refined
in [10]).

Recent research has investigated how EQ could be improved.
Watson and Godwin created the Watwin algorithm, using
consecutive compiler events to calculate a score; however,
they also included checks for whether the error is on the same
line and penalties for the time taken to solve each compila-
tion pairing [23]. In addition, Becker developed the repeated
error density (RED), which calculates a score based on re-
peated error strings, accounting for the lengths of repeated
error strings in a sequence and assigning higher penalties for
higher repeated error density [4].

While programming, students are given different types of
feedback, the most common of which is next-step hints. Af-
ter a student is stuck in a state and requires help to progress,
a next-step hint will guide them to a more complete and cor-
rect version of the code [1].

There have been many implementations of next-step hints
in different programming environments. Obermüller et al.
have recently implemented next-step hints into Scratch. They
first select a set of suitable candidate solutions using an au-
tomated test suite, then find the best matching candidate
solution as the target solution. After they have the stu-
dents and the target solution, they determine differences
in the Abstract Syntax Tree (AST) to synthesise the hints
[17]. However, this solution requires abundant candidate
solutions.

There have been multiple attempts to provide hints in vast
and sparsely populated spaces. Paaßen et al. produced the
Continous Hint Factory (CHF), which uses a supervised ma-
chine learning approach to provide a hint to the student.
CHF uses the edit distance of the student’s current state
and traces data of past students who have visited the same
state in similar states to choose the edit with the lowest error
as the hint [18].

While Paaßsen et al.’s approach still require some trace data,
Rivers and Koedinger use at least one reference solution and
a test method to produce a solution space to find the next-
step hint. They use a path construction algorithm to find
the edit path from the current state to the solution, then
finds the closest correct state within the space to find the
edit that will be the basis of the next-step hint [19].

The previous approaches to next-step hint generation re-
quire trace data or a reference solution, but what if the
student is the first to attempt such a task? Efremov et
al. have used a reinforcement learning-based neural network
hint policy to enable next-step hints for students attempting
a programing task for the very first time [8].

3. PROBLEM STATEMENT

As Computer Science courses grow, the need for expert help
increases; this is especially the case for online courses, re-
mote learning and approaching coursework deadlines. Al-
though having more tutors in regular sessions allows for
more help, increasing the support offered in and out of the
classroom would be beneficial.

Our research will investigate the following research ques-
tions:

RQ1 How can traces of student code changes be used to
detect struggling students?

RQ2 After detecting a struggling student, when is the most
effective time to give them a hint?

RQ3 Can we generate next-step hints that focus on syntac-
tic and logical errors comparable to the support offered
by human tutors in these areas?

4. PROPOSED METHOD
The first phase of this project will determine whether or
not a student is struggling. We will use Blackbox, a large
dataset of novice programming data collected over the last
eight years [6], to look for trends that could signal a strug-
gling student. Blackbox is a large scale repository of novice
programmers’ activity, including the length of programming
sessions, compilation event history, and editing behaviour
[6]. The editing behaviour includes a history of source code
changes, allowing researchers to step through each change of
a student’s code iteratively. We will explore patterns that
could identify struggling students using the source code and
compiler histories.

We will use existing research to detect at-risk students using
compiled histories and invocations, such as the “Watwin” al-
gorithm [23] and Repeated Error Density [5]. In conjunction
with the compiler history, we will investigate the source code
patterns that indicate that a student is struggling. We will
use data mining approaches to derive developers’ behaviour
patterns, similar to Kinnewbrew’s research into learners’ be-
haviour. Kinnebrew et al. used interaction trace data from
Betty’s Brain, which introduced students to a science topic
(climate change). They abstracted and labelled different ac-
tivities into different categories to analyse the data using dif-
ferential sequence mining, identifying differentially frequent
patterns across two groups of sequences [11].

We will investigate using interaction traces of source code
to detect struggling students. Source code traces will allow
us to examine how the student develops and any patterns
in their programming and debugging practices that could
indicate that they are struggling. Using source code traces
could detect more struggling students than just compiler
histories, as source code traces enable us to analyse more
than just compiler related issues. An example pattern of a
struggling student could be commenting out large chunks of
code, potentially followed by uncommenting small portions
to figure out which part of the code is causing their problem,
which could signify that the student has trouble debugging
and locating the problem. Another example may be the
number of revisions made to a single code block in a given
timeframe, suggesting that they are having trouble solving
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a logical or syntactic mistake, depending on the compilation
result.

We will use the patterns we found to detect when a student
is struggling and give them a hint.

In order to give students a next-step hint, we will integrate
the ideas of the Continuous Hint Factory (CHF) [18] and
Evremov et al.’s research on using reinforcement learning to
generate next-step hints [8]. We will use CHF as our primary
method of producing hints, using Blackbox as the basis of
potential candidate solutions. Blackbox contains data from
opted-in users of BlueJ [14]. BlueJ is an educational IDE
used worldwide by many different institutions at many dif-
ferent education levels. Accompanying BlueJ is a widely
used textbook [3] that provides example projects and tasks,
of which there are multiple solutions within Blackbox. How-
ever, there will be cases where a student is programming a
task for the first time, such as new coursework. These cases
are where Evremov et al.’s approach comes into effect, the
ability to still provide next-step hints for the very first at-
tempts of new programming tasks without the requirement
of producing candidate or model solutions.

We will use Blackbox to learn patterns of struggling students
and for elements of hint generation, as Blackbox contains
both compile history and source code changes. To imple-
ment the ideas discussed in this section, we will create a
plugin for BlueJ, which will run continuously in the back-
ground analysing the students’ compile history and source
code traces, comparing them to any patterns we have learnt
from Blackbox. The plugin will include a “human-in-the-
loop” process, enabling the user to give feedback to the sys-
tem if the detection of their struggle was correct or if the
hint helped solve their issue.

The following are the proposed steps that the system will
follow:

1. While the student develops and compiles, the system
will analyse the source code and compile histories for
defined patterns.

2. If a pattern is detected, ask the user if they would like
a hint.

(a) If yes, give the student a hint and ask them to
rate the quality and usefulness of the hint.

(b) If no, log that they did not want a hint. If enough
students give feedback that they do not want a
hint for this specific pattern, flag it for investiga-
tion.

3. If the same pattern on the same part of the code is de-
tected, repeat steps 2a and 2b, but with a more specific
hint.

4. Repeat the steps above while the student develops.

We will conduct a series of trials to evaluate our proposed
tool to determine if our system correctly detects struggling
students and if the hints delivered are meaningful. Our tri-
als could include asking students of various skills levels to

complete a set of programming tasks of increasing difficulty,
with and without our proposed tool. After they complete
the programming tasks, we could interview the students to
determine if they thought they were offered a hint at the cor-
rect time and if the hint given was helpful. In addition to
interviewing students, we may ask tutors for their feedback
on whether the suggested method provided timely assistance
and whether the hints assisted students in learning.

5. RISKS OF NEXT-STEP HINTS
This project aims to generate hints that will trigger a learn-
ing effect. We will have to hypothesise what area of the
programming task the student is struggling with in order to
generate a hint that will increase the students’ understand-
ing in that area. Using patterns of student development be-
haviour with next-step hint techniques could indicate which
area the student is struggling with and give them a hint that
increases their understanding and help them continue with
their programming task.

While employing next-step hints might help students learn,
there is a risk that using incrementally more specific hints
can harm learning by giving students answers without teach-
ing them how to improve. Students who abuse the hint sys-
tem in this way exacerbate the risk of them not learning
how to improve. We will investigate different methods to
decrease the possibility of abuse in traditional hint systems,
including providing a hint only when the system recognises
that the student is having difficulty. However, this may not
eliminate the risk, as some students will learn how to ma-
nipulate erroneous detections in order to obtain consecutive
suggestions that will lead to the correct answer.

These risks lead to the pedagogical question: Should the
system give the student the answer if they have fundamen-
tal misunderstandings? While undertaking this project, we
will aim to minimise the risks discussed in this section and
maximise the learning effect of the generated hints.

6. PROPOSED CONTRIBUTIONS
The proposed contributions of the above research will in-
clude:

• A method that can detect a struggling student using
compiler error history and source code changes.

• Investigate when is the optimal time to hint after de-
tecting a struggling student.

• A tool for detecting struggling students and giving
them an appropriate next-step hint at the right time.

These contributions will benefit the Computer Science Ed-
ucation community by offering a tool to support students
inside and outside formal education settings and alleviate
some growing pressure on tutors of large classes.

7. CONCLUSION
We proposed the development of a tool that can detect when
a programmer, mainly a novice programmer, is struggling
and provide them with a next-step hint. We will look into
how various pattern recognition techniques and past work on
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metrics can be used to identify a struggling student based
on compiler and code change histories.
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ABSTRACT 
How to measure the semantic similarity of natural language is a 
fundamental issue in many tasks, such as paraphrase identification 
(PI) and plagiarism detection (PD) which are intended to solve ma-
jor issues in education. There are many approaches that have been 
suggested, such as machine learning (ML) and deep learning (DL) 
methods. Unlike in prior research, where detecting paraphrases in 
short and sentence-level texts has been done, we focus on the not 
yet explored area of paraphrase detection in paragraphs. We con-
sider that the meaning of a piece of text can be broken into more 
than one sentence, this is over and above the sentences as extracted 
from two benchmark datasets (Webis-CPC-11 and MSRP). TF-
IDF, Bleu metric, N-gram overlap, and Word2vec are used as fea-
tures, then SVM is invoked as a classifier. The contribution of this 
paper clearly indicates that, on a commonly used evaluation set, 
text at the length of a paragraph is more appropriate to consider 
than short or long text for ML and DL approaches. Additionally, 
our method outperforms the existing work done on the Webis-CPC-
11 dataset. 
Keywords 
Natural Language Processing, Machine Learning, Deep Learning, 
Paraphrase Identification, Paragraph Length 

1. INTRODUCTION 
When students submit their work, institutions have to verify if the 
work is free of plagiarism. To overcome the limit of human abilities 
in terms of scalability (e.g. time to check and consistency) machine 
and deep learning techniques are applied for plagiarism and para-
phrase detection tasks. Plagiarism is defined as using someone’s 
written work without giving reference to the original source, or 
claiming the ideas taken from the work of others [22]. In some in-
stances, the copying of many words from the original source, 
regardless of the provision of a reference, is also considered an act 
of plagiarism [4]. The modification of sentences in such a way that 
the original structure of the sentences, without acknowledgment, is 
used by the author, also falls in the category of plagiarism. Accord-
ing to Ehsan et al. [14], plagiarism detection methods are divided 
into two main categories, which are intrinsic plagiarism detection 
and external plagiarism detection methods. Intrinsic methods are 
implemented to detect the parts of the text that are inconsistent, 
while external methods can match suspicious passages in a text to 

the source(s), detecting exact verbatim copying and paraphrased 
text [23]. 

Bhagat and Hovy [6] define paraphrasing as a means of conveying 
the same meaning, but with different sentence structure and word-
ing. This definition clearly does not include exact verbatim 
reproduction as a case of paraphrasing. For our purposes, let us 
have two different texts, A and B. If the information, 𝜙, which can 
be derived from A, can also be inferred from B, and vice versa, then 
A is a paraphrase of B (Equation 1): α represents a given domain or 
background knowledge [8]. 

(𝚨	⋀	𝜶| = 	𝝋) ⟺ (𝚩⋀𝜶| = 	𝝋) , where 𝑨 ≠ 𝑩 ( 1 ) 

From this definition, it is obvious that paraphrase identification (PI) 
is implicitly part of plagiarism detection. (PD) Both PI and plagia-
rism detection have assumed a tremendous importance for 
academic institutions, researchers, and publishers concerned for the 
preservation of academic integrity [3]. PI is a method that aims to 
measure the degree of similarity between two given texts [11, 15]. 
PI also helps determine whether the two texts share the same mean-
ing, which plays a vital role in natural language applications, such 
as plagiarism detection, summarisation of textual material, and ma-
chine translation. Semantic similarity is also used in several other 
activities, such as to retrieve information [21], answer questions [5] 
[31,1] and clustering [7]. 

Attempts to solve the problem of paraphrase identification in past 
studies were mainly focused on comparing words in sentences 
[28,29], phrases in sentences [2], or sentence to a sentence [12, 24]. 
These studies achieved robust results. However, comparing each 
sentence in the suspicious document (i.e., a students' assignment), 
to all sentences in the source documents, is not an efficient ap-
proach for long texts. Additionally, existing studies are ignoring the 
fact that sentence semantics could be distributed in a paragraph as 
a passage–level paraphrase type, which is more complex to recog-
nise. Thus, we aim to develop a method for recognizing 
paraphrasing in paragraphs, henceforth called passage-level para-
phrasing. This approach considers a paragraph as a basic unit, 
avoiding comparing all sentences of the documents as separate en-
tities.  

Existing work investigated paraphrasing that is accrued at sentence 
level [16, 30]. Additionally, prior works count exact and quasi-ex-
act sentences as a paraphrased text [2, 25]. To the best of our 
knowledge, this study is the first to allow for passage-level para-
phrasing (beyond sentence-only) text length. We have chosen to 
focus on passage-level paraphrasing, as we argue that it is a com-
mon and naturally occurring way to consider paraphrasing, more so 
than the previously studied sentence-level paraphrasing. In addi-
tion, we analyse how the text length affects machine learning (ML) 
model accuracy. For this purpose, we compare ML approaches that 
are mainly based on handcrafted features, as well as state-of-the-art 
deep learning sentence representation models, such as word2vec. 
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For further research, constricting a new dataset is required to con-
sider the text length and paraphrasing type. For purpose of this 
research, we provide the following definitions: 

a. Sentence level paraphrasing: the meaning of one sen-
tence is paraphrased into exactly one other sentence 
(example: data in the MSRP dataset); 

b. Passage level paraphrasing: the semantics of a piece of 
text of multiple sentences are paraphrased into a poten-
tially different number of sentences without a one-to-one 
mapping between sentence semantics (example: data in 
the Webis-CPC-11 dataset); 

c. Sentence-length level: represents a short text length, 
which is less than 50 words; 

d. Paragraph-length level: represents a mid-text length, 
which consists of about 100 words, this is the average 
length of a paragraph [20]. 

e. Passage-length level: long text which consists from 
more than a paragraph (containing 150+ words). 

Hence, our main research questions (RQ) are:  

RQ1: How does the length of a piece of text affect the efficiency of 
the paraphrase identification approach used? 

RQ2: What type of features are more effective for the problem of 
paraphrase identification on sentence - and passage level of para-
phrasing, respectively? 

RQ3: How effective are current state-of-the-art paraphrase identi-
fication methods for the problem of paraphrase identification in 
long text (paragraph) and (passage-level paraphrase)? 

2. RELATED WORK 
Machine learning (ML) and deep neural networks (DNN) attract 
the PI researchers and a lot of efforts have been devoted in this 
area.In these works, features are extracted by considering N-gram 
overlap features, metrics like Bleu, syntactic features, and semantic 
features from external knowledge such as WordNet or pretrained 
word embedding. 

Cordeiro et al. [9, 10] implemented experiments that extract fea-
tures from text, by applying a variety of metrics such as Bleu, edit 
distance which calculates how many character or word insertions, 
deletions, and replacements are required to change one string into 
the other, and Sim, Word Simple N-gram Overlap. They evaluated 
the experiments on the MSRP and the Knight and Marcu Corpus 
(KMC), where the paraphrased sentence is a shortened or summa-
rized version of the original one. The Sim metric present the highest 
accuracy after removing the equal and quasi-equal samples from 
the dataset. For more investigations on the metrics’ efficiency, they 
defined two types of paraphrasing, which are symmetrical para-
phrasing (SP) and asymmetrical paraphrasing (AS). Symmetrical 
sentence pairs contain the same information, while in the asymmet-
rical paraphrasing, at least one sentence has more information. The 
result shows that the Sim metric is efficient for AS, while the Lo-
gisim metrics, based on the theory of exclusive lexical links 
between pairs of short text,  is better for SP. Rather than implement-
ing a specific threshold value to do binary classification, these 
metrics also were fed as text features extracted from the Webis-
CPC-11 dataset, which has longer text samples, to a classifier such 
as SVM and k-nearest neighbours [8]. Regardless of the accuracy 
of these models, the Sim metric is suitable only for short texts, be-
cause of its demands on computing time. 

Ferreira et al. [16] evaluated different ML algorithms, namely 
RBFNetwork, BayesNet , C4.5, and SMO on short text. They meas-
ured the lexical features from a Bag of Words (BOW), which 
breaks a text into all of its unique words and counts the number of 
times each word appears, syntactic and semantic features from the 
Resource Description Framework (RDF) based on dependence tree 
graphs. It mainly tackled two specific issues: sequences with the 
same meaning, but different terms, and the word-order problem. 
The results of the RBFNetwork and BayesNet algorithms outper-
form others, with accuracies of 75.13 and 74.08, respectively, both 
of which are measures of performance discussed in more detail in 
Section 3.3. Despite the fact that it did not improve overall out-
comes, it significantly recognized the meaning of sentences that 
shared the same words but in a different order. 

Wan et al. [29] designed an approach that considered 17 syntactic 
dependency features, to examine their effects on the accuracy of 
different machine learning algorithms, namely Naive Bayes 
learner, C4.5 decision tree, support vector machine, and K-nearest 
neighbour, to indicate dissimilarity between a pair of sentences. 
They claimed that dependency and N-gram features enhanced the 
classifier to recognise falsely paraphrased cases. In addition, avoid-
ing lemmatisation was shown to keep the signs of differences in 
meaning and focus between sentences. However, more of the cor-
rectly paraphrased cases were identified as a negative, decreasing 
the overall accuracy of the approach. Moreover, they evaluated 
their experiment on a partial MSPC, because some cases led to 
stopping the parsing script. To leverage the limitations of this study, 
Ji and Eisenstein [18] considered the same features of Wan et al. 
[29] and implemented them on the whole MSRP corpus. Addition-
ally, they developed a metric that computed the discriminability of 
features between sentences, called Term Frequency Kullback 
Leibler Divergence (TF-KLD). It counted the probabilities that ap-
peared on paraphrased and non-paraphrased sentences, to re-weight 
features before factorisation, to obtain latent representations of the 
text. It clearly outperformed TF-IDF by 4% in accuracy and 1% in 
F1 score on MSRP. Moreover, they combined other features, such 
as unigram and bigram, overlapping fine-grained features, which 
raised the accuracy from 72.75 to 80.41. TF-KLD improved dis-
criminatively distributional features while reducing others. 

From another perspective, Vrublevskyi and Marchenko [28] ex-
tracted dependency tree, IDF and Bleu features from natural 
language. They concatenated word embedding with dependency 
tree features, to show that this combination can be useful to detect-
ing paraphrase. However, this model did not outperform the state-
of-the-art in that area [18]. 

Ji and Eisenstein [18] and Wan et al. [29] noted the need for more 
investigating on another dataset, also considering long text, such as 
a paragraph, where these studies examined only the MSPC corpus, 
where the maximum length of a sentence is 36 words [13]. In addi-
tion, using parse trees to solve problems restricted an approach to 
single sentences [19]. Also, BOW was unable to consider word or-
der which is a vital textual feature in PI [30]. 

Nguyen et al. [24] developed an algorithm based on external 
knowledge and word embedding. It takes name entities (e.g., US) 
and rewrites them in words (e.g., United States). Additionally, they 
have applied the continuous bag of words CBOW and Skip-Gram 
models to extract interdependent features based on pre-trained 
word embedding. CBOW predicts a target word based on its con-
text and Skip-Gram does the opposite, predicting context words 
according to the target word. As a part of the methodology, more 
features were also included that help to measure semantic related-
ness based on external knowledge resources such as WordNet. 
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Features extracted from sentences with and without pre-processing. 
Then Support Vector Machine SVM is involved for classification 
task. It examined on MSRP, SemEval and P4PIN datasets achiev-
ing high accuracy 84.17, 83,73, and 95,22 respectively by 
considering features based on the external-knowledge resource. 
Unfortunately, they didn't report other evaluation metrics like F1 
score, precision, and recall. 

The above-mentioned work considered words or sentences as a 
mean unit of calculating semantic similarity in text segments. In 
addition, methods like SVM and BOW fall short of delivering a 
high-quality solution for extracting the semantics meaning of natu-
ral language. Particularly, SVM works better when integrated with 
deep learning models for recognizing paraphrased sentences [32]. 

Several academics have recently used deep neural networks to 
model sentence pairs to leverage the shortness of non-deep learning 
methods. Vrbanec and Meštrović [26, 27] conducted two studies on 
different models of sentence semantic representation such as 
word2vec, Glove and Fast-Text. The experiments were done on 
three datasets namely MSRP, Webic-CPC-11 and C&S. Because of 
the pairs of sentences that are semantically unrelated and very sim-
ilar lexically, no specific model outperforms others on all datasets, 
however, USE provides high accuracy and F1 score. They also 
compare similarity metrics with two types of word embedding deep 
learning models: word2vec and Fast-Text [27]. 

Kenter and De Rijke [19] focused on word2vec and Glove semantic 
sentence representation. They extract word level and short sentence 
level features by word alignment and word embedding beside the 
saliency weighted semantic graph. This approach is corpus-based 
hence no use of external knowledge source is needed. It measures 
the semantic similarity on sentence level ignoring the importance 
of the word order in PI downstream task. Although applying word 
alignment to extract syntactic and semantic relations between 
words of the sentence and feeding them into SVM model as features 
showed the significance result on PI task, it needs to be examined 
on paragraph level. The authors show that classifiers which trained 
to predict semantic similarities between short texts can benefit from 
saliency-weighted semantic networks. In addition, concatenating of 
pre-trained word embedding models obtain better scoring than 
WordNet-based approaches. 

Although these studies were done on more than one of public par-
aphrase dataset, they did not take into account the verity of numbers 
of words on each sample, nor the type of paraphrase have been done 
on different datasets. More importantly, they consider typical sam-
ples as paraphrased cases that do not state the paraphrase definition. 

To overcome the limitation with sentence representation models 
that are based on a unidirectional encoder, Devlin et al. [12] pro-
poseed Bidirectional Encoder Representation from Transformers 
(BERT), which uses a masked language model and next sentence 
prediction, and is fine-tuned with one additional output layer. 
BERT has been demonstrated to achieve state-of-the-art outcomes 
on a wider array of sentence-level and token-level NLP tasks. Spe-
cifically in the PI task, it evaluated on MSRP with 89.30 percent of 
accuracy. This high accuracy raises the machine prediction accu-
racy to be closer to human performance. 

As we see, BERT as a transformer learning model outperforms 
other sentence representation models because it generates a context 
vector representation that can discriminate word meaning in differ-
ent contexts rather than giving the same weight for each word 
wherever it occurs [12]. 

Deep learning techniques have attracted a lot of attention in differ-
ent research fields regarding to its impressive performance. In the 
PI field, researchers employ deep learning models to detect seman-
tic similarity mainly in short text. In a way to show the efficiency 
of deep learning models over machine learning on PI task. Hunt et 
al. [17] compared the accuracy of two machine learning models 
with three different deep neural network models. Results illustrate 
that all DL models' accuracy outperforms LR and SVM models. 
The lowest accuracy is obtained by Siamese NN (~62) while the 
best accuracy is (~82) from LSTM RNN on the PI task. 

3. MOTHODOLOGY 
Prior research has investigated the efficiency of pre-processing 
techniques such as removing stop words and word lemmatizing 
[29], similarity metrics such as cosine, soft cosine and Euclidean 
[27] and using pre-trained word embedding models [26] on the PI 
downstream task. Here we examine how the length of text affects 
the model’s accuracy in determining the appropriate number of 
words that could provide enough semantic information for machine 
models. Specifically, do short texts (sentences), mid length texts 
(paragraphs), or long texts (passages and paragraphs), provide suf-
ficient semantic detail for the models? What type of features are 
most appropriate to use when attempting to identify paraphrases in 
sentence or paragraph texts? More importantly goal is that how to 
measure semantic meaning in paragraph length level to enhance 
other fields such as plagiarism detection, summarization, and text 
matching. Additionally, how the state-of-the-art autoregressive 
method advance the PI task? 

3.1 Dataset 
3.1.1 Microsoft Paraphrase Corpus (MSRP) 
Dolan et.al. [13] presented separated sets of sentence pairs for train-
ing and evaluation. MSRP contains 4076 pairs of short text for train 
and 1725 for evaluation, taken from news sources on the internet. 
Human reviewers have then determined if each pair has a semantic 
equivalence. Each sentence pair is then labelled by 0 or 1, which 
represent negative and positive labels respectively. 

3.1.2 Webis Crowd Paraphrase Corpus 2011 
(Webis-CPC-11) 

Burrows et.al. [8] provided 7859 possible text paraphrases pairs by 
Mechanical Turk crowdsourcing. The corpus consists of 4067 ac-
ceptable paraphrased pairs (meaning that one piece of text is a 
paraphrase of the other) and 3792 non-paraphrased pairs. 

Most of the existing PI experiments are done on MSRP, which con-
tains sentence-level paraphrases, so the existing results measure 
sentence similarity, whereas the most common and natural para-
phrase is at the passage-level as seen in Webis-CPC-11. Another 
point of comparison between these corpora is the length of text 
which is vital for our study. The maximum sentence length in 
MSRP is 36 words while in the Webis-CPC-11 it is about a thou-
sand words. This variety of document lengths in the Webis-CPC-
11 dataset enables us to study how the text length can affect the ML 
model's results and to determine the best length of text that could 
be applied for ML and DL models.  

3.2 Features Extracted 
Based on the purpose of this study, we select the most important 
features in the PI task that represent text into numeric values. Each 
work discussed in Section 2 has implemented at least one feature 
of TF-IDF, Bleu, dependency tree, N-gram overlap or Word2vec 
[9, 10, 17, 18, 19, 24, 26, 27, 29]. However, most of these works 
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are done on the MSRP dataset which represents sentence level par-
aphrase, whereas we present a study on passage level paraphrase as 
seen in the Webis-CPC- 11 dataset.  

4. EXPERIMENT 
As we aim to study how the length of a text can affect the accuracy 
of using a specific or a combination of features in ML and DL mod-
els, we use MSRP as it focuses on short text length and Webis-
CPC-11 as it contains a variety of text length samples. Therefore, 
we clean, then divide the samples from Webis-CPC-11 into three 
subsets based on the text length after removing the empty samples 
containing no text. Firstly, we remove identical sample texts from 
the Webis-CPC-11 dataset to satisfy the requirements of the para-
phrase definition mentioned in the introduction, see equation (1). 
So, given a text pair (text 1, text 2), text 1 must be different from 
text 2 but carrying the same meaning. We call the resulting new 
dataset Webis-CPC-21, following the trend of the original dataset 
naming where 11 refers to 2011, the year of creation. However, we 
perform our experiments on the Webis corpus both with and with-
out these identical samples to compare our results to state-of-the-
art literature where possible. Secondly, we split the Webis-CPC-21 
into three sub corpora: short text, where the maximum length of 
samples is 50 words; mid text represents the paragraph length (51-
150 words) as the average length of a paragraph in English consists 
of 100 words [20]; long text containing samples of 151-500 words. 
We keep MSRP in its original form, as its samples consist of short 
text length (less than 40 words). Each dataset has numbers of neg-
ative and positive labelled samples. Positive and negative label 
refer to pair of text that are paraphrased and non-paraphrased re-
spectively. 

4.1 Pre-Processing 
The data cleaning process includes removing irrelevant punctuation 
and stop words, which are commonly used words such as 'a', 'in' 
and 'the'. There isn't a single list of stop words that applies to every 
NLP task; we use the stop words list constructed by NLTK (Natural 
Language Toolkit) in python. Additionally, the process involves 
converting all letters to a lower case, then lemmatizing each word.  

4.2 Feature sets 
Since we're interested in how different features perform on differ-
ent categories of text length, we carry out experiments per feature 
(TF_IDF, Bleu metric, sen2vec and N-gram overlap) and with com-
binations on the original dataset, modified dataset, and the sub-
datasets that consist of different text sample lengths. 

4.3 Baselines 
The ground truth on Webis-CPC-11 dataset is determined by [8], 
where the Precision (P) is 81, Accuracy (Acc) is 84, and Recall (R) 
is 90. Although F1 is not reported, we calculate it by equation (2), 
which results in a value of 85 for F1. These results are obtained in 
[8] by feeding 10 different metrics as features to the k-nearest 
neighbour machine learning algorithm. 

𝑭𝟏 =	 𝟐𝑷𝑹
𝑷$𝑹

  (2 ) 

 

Table 1. The experiment's result, bold font represents the highest accuracy and f1 in each feature 

Dataset Bleu TF-IDF Sen2vec Ngram_overlap All Features 

evaluation Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 
Webis-CPC-11 57 72 87 82 64 63 56 68 66 65 
Webis-CPC-21 77 87 78 87 80 88 83 90 79 88 

Short text 77 82 78 87 79 88 77 82 79 88 
Mid length 81 89 83 90 84 91 85 91 85 91 
Long text 73 84 73 84 75 89 78 86 75 85 

MSRP 67 80 71 80 72 82 69 81 71 81 

 

4.4 Result and Discussion 
Our result in table 1 outperforms the baseline system of Webis-
CPC-11 dataset which is the main dataset for this study, thanks to 
its variety of text length and the paraphrase type that is applied on 
its samples. Our accuracy and F1 are 80 and 88, respectively, 
which outperform baseline results by 3% in terms of F1 score on 
Webis-CPC-21 for Sen2Vec feature set. While the result on 
WebisCPC-11 is more by 3% for accuracy and less by 3% F1 with 
implementing one feature which is TF-IDF, rather than using 10 
different metrics as the baseline system did.In addition, the effi-
ciency of the ML and DL models could be improved when the 
length of the text is neither short nor long. Thus, the features en-
gineers have to consider also must include the text length when 
extracting these features from text segments. 

Our results on each feature on MSRP are worse than the ones 
achieved on the short text category, which potentially indicates 
that the good results we have achieved on Webis-CPC-21 are be-
cause the length of the samples in MSRP is even shorter than the 
short text category of Webis-CPC-21. Various previous studies 

applied a pre-trained word2vec with cosine similarity or soft co-
sine on MSRP [27]. In this work, we convert each piece of text 
into one vector by summing up all word vectors in the text. This 
means we consider the semantic substance of the text to represent 
the overall text meaning. This clearly brings high accuracy and 
F1 results on Webis-CPC-21. In general, the Sen2vec yields the 
highest F1 score on most of the categories and surprisingly N-
gram overlap performs much better than expected. 

5. CONCLUSION 
In this study, we answered RQ1 and RQ2 by investigating how 
the length of a text effects the model results in terms of measuring 
the semantic similarity of two different texts and which features 
work better with sentence, paragraph, and passage length levels. 
From the present experiment's results, we show that paragraph 
length level can convey the semantic meaning of natural language 
text better than sentence or passage length levels.  

Based on the results, we plan to build a new passage-level- para-
phrasing dataset that consist of a paragraph-length level to 
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achieve our contribution. Then involve the state-of-the-art trans-
former models to detect paraphrasing.  
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ABSTRACT
Advancements in online learning platforms have revolution-
ized education in multiple different ways, transforming the
learning experiences and instructional practices. The devel-
opment of natural language processing and machine learn-
ing methods have helped understand and process student
languages, comprehend their learning state, and build au-
tomated supports for teachers. With this, there has been
a growing body of research in developing automated meth-
ods to assess students’ work both in mathematical and non-
mathematical domains. These automated methods address
questions of two categories; closed-ended (with limited cor-
rect answers) and open-ended (are often subjective and have
multiple correct answers), where open-ended questions are
mostly used by teachers to learn about their student’s un-
derstanding of a particular concept. Manually assessing and
providing feedback to these open-ended questions is often
arduous and time-consuming for teachers. For this rea-
son, there have been several works to understand student
responses to these open-ended questions to automate the
assessment and provide constructive feedback to students.
In this research, we seek to improve such a prior method for
assessment and feedback suggestions for student open-ended
works in mathematics. For this, we present an error analy-
sis of the prior method ”SBERT-Canberra” for auto-scoring,
explore various factors that contribute to the error of the
method, and propose solutions to improve upon the method
by addressing these error factors. We further intend to ex-
pand this approach by improving feedback suggestions for
teachers to give to their students’ open-ended work.

Keywords
Online Learning Platforms, Open-responses, Natural Lan-
guage Processing, Machine Learning, Automated assessment,
Mathematics

1. INTRODUCTION

In the past decade, development in artificial intelligence
and machine learning methods have led to advancements
in online learning platforms, transforming learning experi-
ences and teaching practices. From personalized learning
to augmenting teaching processes through automated as-
sessment methods [8, 2, 4, 14, 11, 1], the benefits of these
platforms have been significant. With this, several prior
works have leveraged machine learning methods and natu-
ral language processing-based techniques to automate the
assessment of students’ work, both in mathematical [10, 6]
and non-mathematical domains [13, 15]. As these methods
and models of student learning become deeply integrated
into normal instructional and educational practices, it be-
comes increasingly important to understand the strengths
and weaknesses in their application. Within this, it is im-
portant to not only identify areas where existing methods
under-perform, but it is also important to develop methods
to improve such models to alleviate risks to fairness.

In the domain of mathematics there have been several works
to automate assessment and provide constructive feedback
to students, to further increase the efficiency of teaching and
help teachers guide their focus to students in need. These
works address problems of two categories: close-ended and
open-ended problems. For close-ended problems, that have
a finite number of correct answers, these auto-scoring meth-
ods can apply simple matching techniques to compare the
student answer with the list of correct answers and consis-
tently achieve near-perfect accuracy. However, open-ended
problems are subjective with multiple accepted correct an-
swers and are mostly given in the form of natural language.
For these types of responses teachers commonly assess stu-
dents based on an explicit or implicit rubric that pinpoints
key aspects that must be included in a student response to
sufficiently demonstrate their understanding. In addition,
these types of student responses in mathematics often are a
combination of language, images, tables, or other mathemat-
ical expressions, equations, and terminologies, which poses
a challenge in developing automated methods of assessment
for these problems. Due to the numerous challenges that
this poses to automated assessment, existing methods com-
monly apply natural language processing (NLP) to build a
high-dimensional representation of student responses that
is then combined with various machine learning approaches
(e.g. [13, 15, 3, 5]).

In this paper, we observe one such prior works on automated
assessment model of student open responses in mathemat-

S. Baral. Improving automated assessment and feedback for student
open-responses in mathematics. In A. Mitrovic and N. Bosch, editors,
Proceedings of the 15th International Conference on Educational
Data Mining, pages 795–798, Durham, United Kingdom, July 2022.
International Educational Data Mining Society.

© 2022 Copyright is held by the author(s). This work is distributed
under the Creative Commons Attribution NonCommercial NoDeriva-
tives 4.0 International (CC BY-NC-ND 4.0) license.
https://doi.org/10.5281/zenodo.6853036
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ics based on sentence-level semantic representation of the
student open responses: ”SBERT-Canberra” method. With
the goal of exploring the limitations and further improving
the method for assessment, we discuss our prior study that
applies an exploratory error analysis to identify the areas
of improvement that may be addressed by future iterations
of these methods. We further propose a simple solution to
improve upon the SBERT-Canberra method for automated
assessment by addressing one of these error factors, that
is the presence of mathematical terms and expressions in
student answers. Additionally we seek to explore and ad-
dress other factors of error to further improve the SBERT-
Canberra method for auto-scoring. Finally we also intend
to improve and expand this work towards feedback recom-
mendations for student open-responses in mathematics.

2. PRIOR WORK
For this research, we observe one of the prior works on auto-
mated assessment of student open-responses in mathemat-
ics: the ”SBERT-Canberra” model . This method follows
a simple similarity-ranking procedure to generate the score
predictions based on Sentence-BERT (SBERT) [12]. When
suggesting a score for a given student response, it first ap-
plies SBERT to generate a high-dimensional feature embed-
ding that describes the response as a whole. The intuition
behind this is to capture semantic and syntactic meaning
within this embedding, such that similar responses would
be mapped closer within the embedding space. The SBERT
embedding for this new student response is then compared
to SBERT embeddings corresponding to a pool of historic la-
beled student responses utilizing the canberra distance mea-
sure [9]. In the final step the score for the historic response
corresponding to the smallest distance (i.e. the most simi-
lar response) is used as the score prediction. The intuition
behind this method is that similar answers to the a problem
would have the same score.

3. CURRENT WORKS
3.1 Error Analysis of Auto-Scoring Method
With the goal of exploring the limitations of the SBERT-
Canberra approach in order to identify the areas where the
model does well and where it may yet improve through fu-
ture iteration, we conducted an exploratory error analysis of
the method. The dataset for the analysis was collected dur-
ing the pilot testing of a teacher-augmentation tool designed
to aid the assessment of open-responses within the ASSIST-
ments[7] online learning platform. This tool, called QUICK-
Comments used the SBERT-Canberra model to predict the
scores for student open-responses in mathematics. Toward
the error analysis, we observe two regression models that
observe absolute model error as a dependent variable. The
absolute model error here is the absolute difference between
the score predicted by the SBERT-Canberra model and the
teacher assigned grade for a particular student answer.

3.1.1 Uni-level linear model
For the uni-level model we explore characteristics of stu-
dent answers in the context of this modeling error. These
answer-level features are composed of length of answer, aver-
age character per word in the answer, total nos. of numbers,
and operators in the answer text, percentage of mathemat-
ical expression in the answer text, and presence of images.

The results of the error analysis are presented in Table 1. It
is found that the uni-level linear model with student answer
level features explains 38.6% of the variance of the outcome
as given by r-squared. Out of the six student answer-level
features, nearly all were found to be statistically reliable
predictors of model error. However, only two of these vari-
ables: Equation Percent and Presence of Images were found
to have more meaningful coefficient as compared to other
features. This suggested that the presence of mathematical
expressions and images(unsurprisingly) both correlate with
higher prediction error.

3.1.2 Multi-level linear model
Similarly, we then apply a multi-level model to observe which
of student-, problem-, and teacher-level identifiers most ex-
plains any observed modeling error. In regard to this, ac-
counting for student, problem, and teacher identifiers each
as random effects, we see that the inclusion of these level-2
factors explains some of the impact of the fixed effects (Ta-
ble 1). It is worth noting that the level-2 variables account
for 55.5% of the variance of the outcome. This suggests
that a majority of the modeling error can be explained by
the factors external to the student answers. Looking at the
variance of the random effects, it can be seen that the prob-
lem level identifiers contribute most in terms of explaining
the variance of the outcome.

3.2 Improving the Auto-Scoring method
With the results from the error analysis of the SBERT-
Canberra method for auto-scoring, next we seek to improve
this approach addressing for the factors that contributed
to the modeling error. We know from the error analysis
that one of the limitations of the SBERT-Canberra method
in predicting the scores is in the presence of mathematical
terms and equations in the student answer. To address this
limitation, we propose the “Math Term Frequency” (MTF)
model, drawing inspiration from assessment methods ap-
plied for close-ended problems. The goal of this method
is to learn about the mathematical terms present in student
answers and supplement this method to the previously devel-
oped SBERT-Canberra model through ensembling. For this,
first we identify non-linguistic terms in students answers,
and then identify the most frequently-occurring terms for
each possible integer score to learn a kind of rubric. These
most frequently occurring non-linguistic terms are then used
to develop the features for this method. These features in-
dicate whether a newly-observed student response contains
any of the most frequent terms most commonly associated
with each given score. They are finally used in a multino-
mial logistic regression (treating each score as an indepen-
dent category), trained separately for each problem.

The score predictions from the MTF model are then ensem-
bled with the SBERT-Canberra predictions using another
logistic regression model, referred to as the SBERT-MTF
model; to clarify, this ensemble regression model observes
ten features corresponding to the probability estimates pro-
duced for each of the five possible scores for each of the two
observed models. The goal of this is to combine the seman-
tic representation captured by the SBERT method, while
taking advantage of the non-linguistic term matching from
the MTF method.
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Table 1: The resulting model coefficients for the uni-level linear regression model and random and fixed effects of the multi-level
linear model of absolute error for auto-scoring method.

Uni-level Linear Multi-level Linear

Variance Std. Dev. Variance Std. Dev.

Random Effects

Student — — 0.034 0.185

Problem — — 0.313 0.559

Teacher — — 0.048 0.851

B Std. Error B Std. Error

Fixed Effects

Intercept 0.581*** 0.017 0.772*** 0.070

Answer Length -0.008*** 0.001 -0.009*** 0.001

Avg. Word Length -0.014*** 0.003 -0.013** 0.003

Numbers Count <0.001 <0.001 <0.001 <0.001

Operators Count -0.006*** 0.001 0.002 0.001

Equation Percent 0.443*** 0.018 0.080*** 0.022

Presence of Images 2.248*** 0.021 1.858*** 0.028

Answer Length X Images -0.081*** 0.004 — —

*p <0.05 **p<0.01 ***p<0.001

4. FUTURE WORKS
In this research, we have identified areas where more ad-
vanced methods of image processing and natural language
processing (or math language processing), may lead to fur-
ther improvements in the existing methods for automated
assessment. We have proposed a simple solution to address
the limitations of current scoring method in presence of non-
linguistic terms in student answers. While this proposed
solution is an initial step towards addressing mathematical
terms in these NLP based methods, we intend to explore
more advanced methods based on Mathematical language
processing and MathBERT to address such issues in future.

Further, we believe this method can be extended to recom-
mend feedback messages in addition to suggesting numeric
scores. With this, the next steps in our research is to expand
the existing methods in suggesting and generating directed
feedback to these student answers. We believe that the pro-
posed MTF method combined with SBERT-Canberra can
be extended as a prediction task in predicting whether given
student responses are similar or not. This could be further
beneficial in finding similar answers to math open-ended
questions and thus utilizing this in improving the feedback
recommendation task.

While the current works are based on textual open-ended
responses, there are other forms of open-ended responses in
mathematics including drawn diagrams and graphs, hand
written formulas and expression uploaded as images, and
other forms of audio and video responses. We seek to expand
this research to these other forms of student open-ended re-
sponses, and further study the feasibility in deploying these
automated methods in a computer-based learning environ-
ment.
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ABSTRACT 
Online learning has been spreading with the increasing availability 

and diversity of digital resources. Understanding how students’ 

cognitive load and affect changes when using learning technologies 

will help us decipher the learning process and understand student 

needs. In this research, we focus on modeling learner’s cognitive 

load and affect using real-time physiological reactions. We explore 

what affect modeling contributes to the modeling of cognitive load, 

and how real-time cognitive load changes alongside learning activ-

ities. We want to further investigate if cognitive load modeling 

helps diagnose learner knowledge and facilitates improvement. We 

have designed two case studies: one where students are learning 

python with an e-learning system and another where they are prac-

ticing literacy skills with a web-based learning game. To collect 

learner data, we have implemented a sensing prototype consisting 

of an eye tracker and a wireless wristband. 

Keywords 
Student modeling, Cognitive load, Affect, Online learning. 

1. INTRODUCTION 
The cognitive processes that underpin information processing and 

knowledge construction in learning have gained increasing atten-

tion from educational researchers. Prior studies have found 

cognitive load has a complex relationship with learning perfor-

mance [22]. Models like cognitive load theory (CLT) [24, 33] have 

been used to explain the learner's cognitive process. How student 

cognitive load reacts when dealing with an abundance of infor-

mation is a key component of learning performance. While 

previous research has shown the impact of cognitive load on learn-

ing outcomes, the exploration of its real-time changes when 

learners use online educational technologies has not yet been fully 

conducted.  Moreover, the diversification of how learning materials 

are presented and changes in the corresponding learning methods 

suggest a need to explore their impact on learner cognitive load.  

Although CLT effectively represents learner processing, some have 

argued that it fails to fully explain learning performance [21, 24].  

Recent research has suggested people’s affective reactions might 

contribute to changes in their cognitive load during learning given 

the role that affective states seem to play in learning [10]. Neuro-

science research has suggested that the brain mechanisms 

underlying affect and cognition are not fundamentally different 

[18]. The potential interactivity between affect and cognitive load  

[9, 11, 16] suggests that there may be value in jointly modelling 

these constructs. 

Previous learner modeling studies using cognitive load mostly fo-

cused on supporting adaptation (e.g., feedback [6], problem 

selection [17]) to improve student performance. We argue that by 

including learner affect alongside their cognitive load, learner mod-

eling has the potential to help improve learner’s experiences while 

supporting effective learning. 

In this thesis project, we explore the potential of modeling students’ 

real-time cognitive load when using online educational tools to sup-

port adaptive learning experiences. We highlight a learner’s 

affective reactions and their contributions to cognitive load, as one 

of the areas that has not been sufficiently considered in previous 

student modeling studies. Based on recent research in cognitive 

processes in learning, we believe a learner’s cognitive load is af-

fected by the difficulty of tasks and the sequence of learning units 

so it can change alongside the learning process.  

To achieve our goal, user studies across different educational do-

mains will be conducted. The online learning environments include 

one that supports learning to program in python and an edu-game 

for supporting literacy development. A sensing platform has been 

built to collect and synchronize different types of learner physio-

logical data. Multimodal analysis will be conducted to detect 

learner cognitive load and affect. The modeling of cognitive load 

will be used for predicting the learner’s knowledge in each domain. 

2. RELATED WORK 

2.1 Cognitive Load and Affect 
CLT is widely used. Its application in educational design to en-

hance instruction has supported the learning of children, teens [35], 

and older adults [23, 38] in a wide variety of domains. CLT is 

grounded in an understanding of the human cognitive architecture 

that is supported by previous research on working memory models 

[2] and mental effort [31].  

There are three types of cognitive load. Intrinsic load (IL) is the 

inherent difficulty of what needs to be learned and should be man-

aged so it does not exceed the capacity of working memory. 

Extraneous load (EL) is unnecessary load that does not support 

learning [20, 34]. It is usually caused by specific learning activity 

or system designs. The third kind is germane load (GL) which re-

fers to the mental resources devoted to acquiring and automating 

schemata. 

CLT can help understand student’s learning patterns and provide 

guidance for adaptive learning design. However, we expect that it 

will not be enough to model the cognitive load of students since 

recent neuroscience research has shown the interconnectedness of 
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affect and cognition despite earlier theories that posited the pro-

cesses were separate [26]. Studies suggest that cognitive and 

affective behaviors have rich interactions and some argue that emo-

tions arise from the same general cortical system that processes 

cognition [18]. These findings support the joint inclusion of affect 

and cognitive load within learner models. 

While research on the connection of affect and learning has been 

performed for a long time [37], many studies have explored affect 

without considering its implication on cognitive load. For example, 

previous research on negative emotions argued students experienc-

ing longer periods of boredom tended to have lower scores than 

those experiencing positive emotions [7]. However, the type of 

negative affect is important; students might have better learning 

performance when given erroneous examples even though those 

examples produced confusion and frustration [5].  

While some argue the interrelatedness of affect and cognition, there 

is no consensus on how to incorporate affect into cognitive load 

modeling. Some argue affect could increase extraneous cognitive 

load because emotion regulation may add non-task-related pro-

cessing that consumes extra cognitive resources [12]. Others have 

suggested that affect could be considered beneficial as it can foster 

motivation so that learners invest more cognitive effort [14]. Even 

negative emotions could motivate learners to turn to learning for 

shifting their attention away from their negative emotional states 

[4]. In this thesis project, we would like to recognize a student’s 

affective reactions in the context of computer-supported online 

learning and seek to investigate how affect contributes to learner 

cognitive load in these settings. 

2.2 Measurement of Cognitive Load & Affect 
To achieve our goal, appropriate data collection and modeling ap-

proaches must be selected. Commonly used methods include 

subjective rating scales as well as task- and performance-based 

methods. According to Paas and van Merriënboer’s work, cognitive 

load can be assessed using aspects of mental load, mental effort, 

and performance [25]. Subjective rating scales have been widely 

used and are grounded in a belief that people can reflect on their 

cognitive processes and report the amount of mental effort ex-

pended. The NASA task load index (NASA-TLX) is one 

instrument that attempts to capture this type of information [13]. 

However, it might not be able to measure unconscious and auto-

matic processes. Task-based and performance-based methods have 

also been commonly used to measure cognitive load by measuring 

reaction time or accuracy on a secondary task. Although monitoring 

such tasks itself requires few cognitive resources, their use may in-

terfere with the primary task when a reaction is necessary [8].  

As the nature of questionnaires and performance evaluation im-

plies, the above two methods rely on data collection after an 

experiment, which fails to support continuous monitoring. Brain-

activity-based methods such as electroencephalography (EEG) 

have been used for identifying changes in cognitive load [1]. This 

measurement approach requires wearing complex instruments that 

are obtrusive to users. More recently, with advances in sensing 

technologies, physiological-data-based methods have presented the 

potential to address this issue. Eye-tracking technology is one of 

these sensors that can now be worn like a pair of glasses. This sen-

sor provides information about pupillary response, which is 

considered a reliable source that enables the investigation of cogni-

tive processes. One project found that pupil diameter changes 

indicated visual presentations that induced lower cognitive load in 

a math-education context [15], More generally, increased cognitive 

load has been associated with increases in pupil diameter due to 

decreasing parasympathetic activity in the peripheral nervous sys-

tem [3].   

In addition to estimating cognitive load through dynamic pupillary 

information, research has shown that user’s gaze trajectory data can 

be reliable for quantitatively measuring reading behavior. For ex-

ample, eye-gaze data has been used to infer user cognitive style in 

reading activities [28] and the impact of distractions on surgeons’ 

intraoperative performance [32]. Such visual information is the key 

to investigating learner attention patterns and strategic processes. 

In the context of affect measurement, three groups of tools are com-

monly used: psychological (i.e., self-reported), physiological, and 

behavioral [39]. While psychological methods often depend on re-

spondents’ ability to consciously process their affective responses, 

physiological methods allow researchers to capture non-conscious 

aspects. Physiological arousal data, such as Electrodermal activity 

(EDA) and skin temperature, are considered to provide robust sig-

nals for measuring affect [29].  

In this thesis project, we incorporate questionnaires and physiolog-

ical tracking including eye-tracking data, cardiovascular responses, 

and EDA data for cognitive load and affect measurement.  

3. RESEARCH QUESTION & APPROACH 
Considering the research problem mentioned above, the overall 

goal of this thesis is to model students’ cognitive load and affect 

across instructional domains. To address this goal, case studies will 

be conducted to collect learner data, including their performance 

and reactions to learning activities. Models will then be developed 

using the collected data. Across this work we will answer the fol-

lowing questions.  

Q1 What does affect modeling contribute to the modeling of cog-

nitive load in online learning settings? 

Q2 How does learner affect and cognitive load change alongside 

their learning when interacting with educational systems?  

Q3 Can affect and cognitive load help in identifying a learner's 

knowledge state and trajectories? 

To answer these questions, we have designed and will conduct lab-

based case studies. Two case studies will be performed with differ-

ent educational technologies: one is used to teach undergraduate 

students how to program and the other helps students improve their 

reading comprehension.  

3.1 What does affect modeling contribute to 

the modeling of cognitive load in online 

learning settings? 
We would like to investigate the added benefit, if any, of jointly 

modeling affect and cognitive load so we can determine what affect 

contributes to learner cognitive load modeling.   

Considering the dynamic, sequential nature of cognitive load, we 

will use hidden Markov models (HMM) to model learner’s cogni-

tive load. An HMM approach demands that the system has 

observable evidence that suggests the value of a hidden state. We 

will use the physiological reactions as observable signals to esti-

mate the hidden cognitive load state. 

We will compare the performance of estimating intrinsic and extra-

neous cognitive load using physiological features, i.e., pupil 

dilation (PD) and heart rate against the performance of estimating 

800



these loads when also including EDA data. Participant responses to 

affect and cognitive load scales will be used as a reference.  

For the pupil data, we will use changes in PD instead of its absolute 

value as a feature to eliminate the influence of individual differ-

ences on model training. In a preprocessing step, we will calculate 

PD values as proportion change, by dividing pupil size by the grand 

mean PD size during the baseline period averaged across all at-

tempts. 

3.2 How does learner affect and cognitive 

load change alongside their learning when 

interacting with educational systems? 
We will investigate the dynamics of cognitive load and affect 

across learning activities with a focus on what contributes to 

changes in cognitive load and affect. We are especially interested 

in understanding how the learning activity sequence and user inter-

face design contribute to these latent states.  

We would like to compare the continuous reactions of cognitive 

load and affect with information from learner behaviors and perfor-

mance with educational technologies. Learner's interaction and 

learning performance information (i.e., score, task completion) will 

be extracted from the learning systems. Learner behavior data will 

come from two sources: the learning system’s logs (i.e., keyboard 

input, buttons clicked, questions answered) and eye tracking (i.e., 

gaze point and trajectory).  

We will investigate what kinds of information contributes to in-

creasing cognitive load or changes in affect by comparing the eye 

information actions obtained by students at critical moments (the 

moment when cognitive load or affect change).  

Ideally, we will compare the cognitive load and affect levels of stu-

dents who had similar achievements. This analysis will be done 

across their learning session(s) to explore whether there is a specific 

pattern among them. 

3.3 Can affect and cognitive load help in iden-

tifying a learner's knowledge state and 

trajectories? 
We will use the models developed under section 3.1 and 3.2 to help 

predict a learner’s knowledge and how it changes during learning. 

To answer this question, initial experiments will be conducted to 

predict a learner’s knowledge level. The prediction of this infor-

mation can be important for providing suitable learning materials 

and learning sequences. As an initial step, we will evaluate two ap-

proaches: one heuristic with collaborative filtering (CF) and the 

other machine learning (ML) using engineered features. Based on 

the initial results, further experiments will be performed to identify 

changes in learner knowledge or mastery.  

4. PROGRESS TO DATE & PLAN 
So far, we have implemented our sensing platform and designed 

two case studies. The proposed case studies have been approved by 

our institutional Research Ethics Board (REB), and we have begun 

piloting the first. 

4.1 Sensing System 
In our literature search, we noticed there is no integrated sensing 

system to allow us to easily collect multiple types of learner physi-

ological data. In this project, we choose multimodal analysis to 

support the recognition of cognitive load and affect. Thus, we need 

a sensing platform that enables us to collect and synchronize a 

learner’s physiological features automatically. This generates data-

bases of learners’ physiological reactions that can be used to extract 

their cognitive load and affect characteristics. Our approach fo-

cuses on modeling with two dimensions of real-time physiological 

information: pupil dynamics collected by an eye tracker and cardi-

ovascular and EDA data from non-invasive wearable sensors. As 

mentioned in Section 2, previous studies have shown the possibility 

of using pupil dynamics and electrodermal activity to investigate 

the continuous monitoring of cognitive load. These types of data 

have also been used to recognize state-based affect. 

We developed our sensing platform that allows subjects to remain 

relatively comfortable (Figure 1-a). The platform consists of two 

non-invasive sensors and a software system that facilitates the syn-

chronization of data from different channels. The first sensor is an 

open-source eye tracker (Pupil Core, Pupil Labs), which records 

dual eye movements at 200 Hz and includes gaze tracking and pu-

pillometry. It is worn like normal glasses and consists of a scene 

camera that records what the user sees. The second sensor is a wire-

less wristband (E4, Empatica Inc.), which is worn as a wristwatch 

and connected via Bluetooth. The wristband includes photoplethys-

mography (PPG), electrodermal activity (EDA), skin temperature, 

and accelerometer sensors. The PPG sensor is used to measure 

blood volume pulse (BVP) which can then be used to calculate 

heart rate.  

As these time series data come from different sources, they need to 

be synchronized to enable analysis. For this purpose, we have de-

veloped a system based on an open multi-model recording 

framework – Lab Streaming Layer (LSL). This system will be used 

to support real-time data streaming, synchronization, and recording 

with a laptop.  

4.2 Case Studies 
According to what we discussed in Section 3, our case studies will 

collect three types of learner data (Figure 1-b): (a) physiological 

Figure 1. Study Overview: (a) shows the device set up and (b) shows the overall process 
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data from the sensing system, (b) self-report measures, and demo-

graphic information from questionnaires, and (c) learner interaction 

and performance from the learning system.  

4.2.1 Experiment procedure 
The experiment will take approximately 90 minutes. Sensor cali-

bration will follow consent. Participants will interact with a specific 

e-learning system for approximately 60 minutes. Sensors will be 

used to collect learner data as they perform learning tasks in the 

system. Self-report instruments for measuring affect and cognitive 

load will be administered every 5-10 minutes. Demographics will 

be collected at the end.  

4.2.2 Learning environments (LE) 
The first study (S1) will be conducted when students are learning 

programming using the Mastery Grids e-learning system within our 

lab (Figure 2). This system visualizes learner progress and provides 

multiple types of interactive learning activities. An explicit, visu-

ally rich representation with social comparison helps students track 

their activities alongside those of their peers. Interactive learning 

content with feedback helps students practice and makes them 

aware of the knowledge they are expected to learn.  

 

 

Figure 3 In the strengthening of their role in the virtual game 

world, learners are motivated to solve reading tasks with ap-

propriate difficulty levels: (a) game interface, (b) a passage, and 

(c) an English-language arts question. 

The second study (S2) will be conducted when learners are using a 

web-based online learning game (Figure 3). It engages players to 

enhance literacy skills for English learning using a popular base-

building game design. Players pretend to be in the realm of dreams 

and are tasked with defending their virtual home from invading 

“reveries” (in-game creatures). The game combines the strategy 

and engagement of the game factors with passage reading and com-

prehension tasks to create an interactive learning experience.  

4.2.3 Participants 
Different people will be recruited for each case study. The target 

participants in S1 will be 35 undergraduate students registered in 

an introductory computer science course that teaches how to pro-

gram in python. The target participants in S2 (n = 35) will be 

students registered in an English as an additional language course.  

4.2.4 Self-reported measures 
In this project, self-report information will be used as verification 

of our sensor-based measurement. We follow the definition of CLT 

[33], dividing cognitive load into three types: intrinsic, extraneous, 

and germane. Based on prior work [19], we developed Likert-scale 

items to measure all three types of cognitive load.  

Affect has been defined in many different ways, and no generally 

agreed upon definition has emerged [26, 27]. We follow Russell’s 

model [30] that describes affect in two dimensions – arousal and 

valence. We adopt an established scale – the international positive 

and negative affect schedule short-form (I-PANAS-SF) [36] to 

measure both the positive and negative affect of learners.  

We will collect participants’ demographic information using a 

questionnaire at the end of the study session. In addition to basic 

information (e.g., age, gender) we will collect information about 

participants’ programming background for S1 and language-learn-

ing background (e.g., mother tongue, IELTS/TOEFL scores) for 

S2.   

4.3 Future Work 
In conclusion, we have implemented the sensing prototype and de-

signed the case studies that will collect learner data for student 

modeling. We will conduct the case studies and perform the mod-

eling work. 

If modelling cognitive load and affect better explains student learn-

ing trajectories, we will incorporate these models so that they 

inform system adaptation, thus optimizing student learning experi-

ence and performance. 
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ABSTRACT 
We present a new dataset which captures the sentiment and 

thoughts of applicants to an industrial IT training course in 

relation to technology careers and in relation to technology 

usage. The dataset is live and capturing over 2,000 new 

applicants’ data each week, from 12 countries, and contains a 

wide range of diversity information such as gender, ethnicity, 

and sexuality. The applicants are almost all a similar age, career 

status and education status, thereby limiting the demographic 

variables in the dataset. 

This dataset has been created in collaboration with a technology 

consulting firm for use in this PhD research into increasing 

diversity and equity in technology careers and training. Research 

into how people from different demographics think about 

technology careers and technology usage and these topics side-

by-side will be facilitated by this dataset. It is intended that 

relevant findings from the research will be applied at the 

technology consulting firm to increase equity and diversity. 

The data are anonymised during the upload to the dataset and 

the data provenance is achieved through each upload being 

controlled, audited and fully repeatable. 

It is the intention that a version of this dataset will be made 

public. 

Keywords 

Diversity, technology careers, public dataset. 

1. INTRODUCTION 
The substantial research into the low uptake of technology 

careers amongst underrepresented groups agrees that the 

representation of these groups in technology careers remains too 

low and has changed little despite considerable effort to try to 

affect change[6, 20, 25]. Use of technology such as internet and 

smartphones is now widespread across all demographics in 

society[27]. Research has shown that the diversity of users of 

technology has evolved, and, in the USA and Europe, we are in 

the third phase of the Digital Divide[27]. 

We have observed from working with the graduates who join the 

technology consultancy’s training programme that they show 

confidence with and ownership of their technology, whether 

mobile phone or Personal Computer (PC). This is often at odds 

with the lack of confidence with which they speak about the 

prospect and challenge of being active in creating and building 

technology. 

This research will use ML/AI, sentiment analysis and Natural 

Language Processing (NLP) to understand patterns in the 

sentiment of different groups in society, including 

underrepresented demographic groups, to technology use and to 

technology careers and investigate whether this contributes to 

the continued absence of diversity in people in technology 

careers. Our focus will be an application of these ML/AI, 

sentiment analysis and NLP techniques and tools to the dataset 

gathered from the recruitment process of a global technology 

consultancy and enhanced with free text responses. The dataset 

will be extended by ~100,000 rows each year through the 

normal volume of applications for the training programme. 

Alongside analysing data patterns in sentiment across different 

groups in relation to both technology usage and technology 

careers, we will also examine the evolution of sentiment 

amongst graduates who are undertaking the consultancy’s 

training for a career in technology. 

This paper describes the Graduate Technology Applicant 

Dataset (GTAD) which contains the applicants’ diversity data 

as well their free text responses to questions related to their 

thoughts on technology usage and technology careers. The 

diversity data includes, but is not limited to, gender, ethnicity, 

age, school type, sexual orientation, and whether the applicant 

was the first in their family to go to university. The questions 

have been designed to allow the respondent to write freely about 

their thoughts at the time of application. Growing at around 

2,000 records per week and covering applicants from 12 

countries, GTAD also receives around 2,000 responses to the 

free text questions each week. 

This paper describes how the data provenance is maintained and 

gives some preliminary research findings using statistical 

methods, sentiment analysis and text analysis tools. The paper 

outlines a version of GTAD which could be made publicly 

available in the future. 

RQ: Are there differences in perception of technology careers 

and technology usage for different demographic groups (e.g., 

women compared to men, ‘pale and male’ respondents 

compared to everyone else) which can be modelled? 

To be able to address this question, the following objectives 

(Ox) have been defined: 

O1: Create GTAD, collecting long text perceptions on 

technology careers and usage. As the related research shows, 

there is an absence of such datasets in the literature. In this 

paper, we mostly focus on objective O1 and how we create this 

dataset. 
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O2: Design experiments related to the demographics targeted, 

using the dataset created in O1. Preliminary results of some 

initial experiments are also outlined in this paper. 

2. RELATED RESEARCH and WORK 
The lack of gender diversity in technology careers has been an 

active area of research for many years[17, 21, 24], wherein it is 

agreed that the composition of the technology workforce does 

not reflect the diversity in society[6, 20]. The findings of Spertus 

[17] in 1991 in relation to women in IT, such as lack of role 

models, male-dominated work culture, and lack of workplace 

flexibility, were repeated in many of the 213 entries in Trauth’s 

Encyclopedia of Gender and IT[22] in 2006 and are found in 

Vainionpää’s work [23] in 2021, with much of the literature 

reporting findings from interviews and surveys of modest sized 

groups of people from specific, common demographics. Our 

research adopts a new approach of researching technology 

career perceptions using analysis of a large, tailored dataset of 

long text responses from multiple demographic groups. 

Van Dijk notes that research into the digital divide doesn’t agree 

on a model but does agree that the digital divide is changing and 

his research agrees with Marler and the Office for National 

Statistics that the uptake and use of technology has diversified 

considerably and is more widespread [10, 19, 27]. This suggests 

that perceptions of technology usage have evolved, unlike 

perceptions of technology careers, which is why we are 

collecting perceptions on both topics for side-by-side research. 

In terms of methodology useful for researching demographic 

perception diversity in technology careers, there is substantial 

research into NLP and sentiment analysis to analyse large bodies 

of data as described in the comprehensive survey by Pang and 

Lee in 2008[11] and in the scholars’ introduction to the subject 

by Liu in 2010[8]. Recent relevant research by Yu[4] has 

included sentiment analysis of attendees of a technology training 

course. Another recent research used statistics and tools such as 

Linguistic Inquiry and Word Count (LIWC)[14] to analyse 

emotional, structural, and cognitive components of long text 

datasets to comparing gender differences in the way people 

worry about COVID-19[26]. This research contains results of 

experiments on data in the Real-World Worry Dataset (RWWD) 

gathered from 2,500 respondents who wrote their thoughts on 

COVID-19. They demonstrated differences in the way men and 

women thought about COVID-19 at that time. The paper 

concluded that longer statements were more relevant and 

accurate than short tweets and called for more publicly available 

high-quality datasets rather than relying on social media 

datasets. Therefore, our research has created a new, long text 

dataset, specifically designed for capturing diverse perceptions 

in relation technology careers and usage and we propose to 

apply these techniques and tools to that dataset to look for 

patterns and themes. 

3. CREATION OF THE DATASET 

3.1 The Need for GTAD 
As shown in section 2, a new dataset is necessary, with as many 

responses as possible, from a wide diversity of applicants 

commenting on their thoughts about technology careers and 

technology usage. 

Creating a dataset using similar ‘long text’ responses as used in 

the RWWD but containing questions on technology usage and 

technology careers could replicate some of this methodology to 

examine whether there are statistically significant differences in 

responses – women compared to men, white respondents in 

relation to people of colour, pale and male respondents 

compared to everyone else. A dataset with as many diversity 

data points as possible could lead to multiple options for 

comparison in the future and can be made publicly available. 

3.2 GTAD Methodology 
Digital Divide research is the main area focus of our literature 

review in relation to IT usage. More than half the research into 

the Digital Divide comes from USA and most of the research 

originates in English-speaking developed and (relatively) rich 

counties[27]. This correlates with the origination of the majority 

of the work in relation to diversity in tech careers and, for these 

reasons the focus of our research is on the UK and USA[15]. 

There is not, to the best of our knowledge, a publicly available 

database containing data such as the data in GTAD. 

GTAD’s main purpose is to capture free text responses on how 

the applicants feel about technology usage and technology 

careers. The data is collected from the technology consultancy’s 

Applicant Tracking System (ATS) and contains diversity related 

data such as gender, ethnicity, sexuality, first to go to university, 

disability. GTAD also contains data related to the application 

process and the outcomes of that process such as whether the 

candidate was rejected or withdrew and at what stage of the 

process. 

Data collection started on May 22nd, 2018, from USA, Canada, 

UK, Germany, Poland, China, Hong Kong, Singapore, Australia, 

Ireland, South Africa, Luxemburg, Netherlands. Although the 

focus of this PhD research is UK and USA, the data for all other 

geographies will also continue to be captured to make GTAD as 

rich as possible for future research. 

The free text questions were added to the system on August 1st, 

2021, replicating the long word format from the RWWD 

paper[26], and replacing “the Corona situation” with our 

research topics of technology careers and technology usage as 

shown below: 

Question 1 (careers):  

“Write in a few sentences how you feel about starting a career 

in technology/IT at this very moment. This text should express 

your feelings at this moment.” 

Question 2 (usage):  

“Write in a few sentences how you feel about using 

technology/IT (e.g., smartphone/PC/Wi-Fi) at this very 

moment. This text should express your feelings at this moment.” 

On the same ATS screen, alongside the questions, it is made 

clear that the data is to be used for research into diversity in 

technology careers, will be anonymised and has no bearing on 

the candidate’s application. 

GTAD is populated with secondary data and is anonymised 

from the original dataset so has limited relevance in terms of 

data privacy. Nonetheless, approval was sought and gained from 

the Executive of the consultancy for the data to be used for 

research. Approval from the Ethics review board of Durham 

University for the use of GTAD for research was sought on 

February 15th, 2022. 

It is the intention that a subset of this dataset, less any 

commercially sensitive information, will be made public for 

other researchers to use. An early instance of this proposed 

public dataset has been used for MSc level experiments at 

Durham University. 
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3.3 GTAD Population 
For the GTAD dataset defined below, at least 91% of UK 

applications are from university graduates. All are at a similar 

stage in their career and considering a career and training in 

technology, with 91.1% of the current population who provided 

their age are aged 18-30. This limited variation in the dataset 

population could be classified as bias. At the same time, the 

similarities could ensure that the effect of different diversity 

characteristics are more pronounced. Combined with the various 

diversity data fields, GTAD could be a useful research asset 

when made public. 

For the period up to January 1st, 2022, GTAD comprised: 

• 565,937 applications from candidates, over 44,000 of 

which were received since the questions were added to 

the application form. 

• 25,243 long text questions answers, spread 12,242 and 

13,001 across usage and careers respectively. 

• A corpus of 1,243,578 words. 

The growth of GTAD has been constant throughout the period 

with an average of 2,000 applications per week, of which around 

1,000 applicants are currently answering the free text questions, 

giving 2,000 answers and 100,000 words each week. 

This growth rate trajectory to the end of this research (January 

2027) suggests that the GTAD population could be substantial 

with over a million applications, over half a million free text 

questions answers and a corpus of over 27 million words. 

3.4 Data Provenance 
Via a series of initial data uploads from September 16th, 2021, to 

December 22nd, 2021, the upload process was tested and refined 

incrementally. The process is now controlled and repeatable and 

the scripts and code used to perform the uploads, as well as data 

manipulation and enrichment scripts, are stored and controlled 

using source code control tools and processes as prescribed by 

the technology consultancy’s ISO-27001 compliant[3] IT 

policies and practices. 

It is important that any information related to the status of the 

application is a final status i.e., at the end of the recruitment 

process as this relates to outcomes of the process. For example, 

Did the candidate withdraw? Were they successful in their 

application? If they were rejected, at what stage was this? The 

recruitment process lasts a maximum of 4 weeks and so, only 

data older than 5 weeks was included an initial GTAD upload of 

February 24th, 2022, covering the period, May 1st, 2018, to 

January 1st, 2022. Incremental uploads and will be repeated 

monthly, five weeks in arrears, following the subsequent upload 

of March 15th, 2022. 

3.5 Data Enrichment and Optimisation 
Some applicants to the training programme apply more than 

once and so the ATS contains multiple applications from some 

applicants. Where this is the case, the applicant may answer the 

questions in different ways for different applications. They may 

also elect to complete different elements of the diversity data in 

different applications. So, for example, they might enter no data 

in their first application. They then provide gender and ethnicity 

in the second application. In their third and final application they 

may choose to provide their sexuality and their education 

information. The uploads of the dataset include logic to ensure 

that the superset of all diversity related data for that applicant is 

captured for each application. By capturing every individual 

application for every applicant, GTAD contains all responses to 

the technology questions at different times. 

3.5.1 Future Enrichment 

3.5.1.1 Predicting Gender and Ethnicity 
The primary database (ATS) contains the names of applicants. It 

is intended to use the first name to enrich the data during the 

process of the upload and create derived attributes of ethnicity 

and gender, initial research into which is described later in this 

paper. 

3.5.1.2 Anonymisation 
Although the data is anonymised en route to GTAD by the 

removal of the identifying fields which are used in the ATS such 

as surname and date of birth, identifying data does appear in the 

dataset occasionally. One of the main ways in which this 

happens is when a contributor uses their name in their free text 

response. It is intended to use automated tools to anonymise the 

data during the upload to GTAD. 

4. RESEARCH 

4.1 Initial Research 
Initial experiments were conducted on the data, some of which 

are summarised here. 

4.1.1 Recruitment Process Outcomes Analysis 
A comparison of the 10 of the most relevant recruitment process 

outcomes (from a total of 48 outcomes) such as ‘Rejected After 

Assessment Day’, ‘Rejected After Video/Phone Interview’ and 

‘Invited to Video/Phone Interview’, in the UK revealed 

statistically significant patterns in the outcomes for different 

diversity groups. The recruitment process is reviewed and 

certified annually as fair by a ‘Big Four’ consultancy firm and 

so these differences in outcomes for specific demographic 

groups was an unexpected outcome. 

4.1.2 Gender Prediction 
A dataset was created according to the method described here 

with the added step that the applications’ first name was 

retained. For the non-NULL values, the genderizeR[28] and 

Nltk[9] libraries were used to predict gender and the former was 

found to be most effective. Globally, genderizeR was 86% 

accurate and for the USA and UK, 89% and 88% respectively 

(see Table 1. Gender Prediction Performance). Figures 1,2 show 

the respective confusion matrices for these countries. 

Table 1. Gender Prediction Performance 

Methodology Accuracy Precision Recall F_1 

Score 

GenderizeR 

(USA) 

89% 0.88 0.94 0.91 

GenderizeR 

(UK) 

88% 0.86 0.93 0.90 

GenderizeR 

(Global) 

86% 0.85 0.79 0.88 

Nltk (Global) 67% 0.75 0.69 0.70 
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Figure 1. GenderizeR Performance UK  

 

Figure 2. GenderizeR Performance USA 

4.1.3 Sentiment Analysis 
Sentiment analysis was conducted using the Flair Python 

library[7, 18], returning a sentiment category (positive, negative, 

neutral) and a score. This analysis revealed mostly positive 

sentiment (career:  96.63% and usage: 89.69% positive). There 

was no neutral sentiment and entries from ‘not disclosed’ 

applications made up 30% of career and 68.4% of usage 

responses classed as negative. 

4.1.4 K-means Clustering 
K-means clustering was performed using the scikit-learn 

library[13]. The optimal number of clusters was found by the 

elbow method to be 3. Features resulted in the highest score of 

0.878 were location, ethnicity, and stream (i.e., technical 

training course) chosen by the applicant.  

4.1.5 LIWC Analysis 
LIWC 2015[14] analysis was performed on the applicants’ long 

text responses, comparing the results for different groups to the 

results from the most dominant group in technology careers, 

white males. Non-parametric Kruskal-Wallis was used to 

determine differences which were statistically significant, and 

Cohen’s d was used to determine the magnitude of the 

differences. 

There were differences between other groups and white males 

for usage, but these were not as pronounced as the differences in 

the responses related to careers. In the latter, white men focus 

more on professional aspects, by being more analytical and 

touching on subjects such as time, money, numbers, power, and 

work. Whereas other groups tend to share more personal 

thoughts speaking about feelings, drives, family and showing an 

emotional tone. White men also use more words per sentence 

when speaking about careers and are more authentic, speaking 

about certainty whereas the other groups seem to share personal 

experience, speaking about affect, affiliation, and rewards. 

4.1.6 Top2Vec Analysis 
Topic modelling of questionnaire responses was performed, 

facilitated through Top2Vec[2]. This approach seeks to identify 

dense clusters of document vectors using hierarchical clustering 

techniques[5]. Based on an analysis of all responses to question 

1 of the questionnaire, 16 distinct topics were identified from the 

topic modelling approach, shown with the first 5 words in each 

in Figure 3. These require a manual qualitative analysis when 

defining a topic label, with the topics demonstrating responses 

relevant to fast-paced work environments; educational 

background; and career growth when manually analysed and 

labelled (topic ids 0, 1, 6 respectively). This demonstrates the 

initial feasibility of the approach, which may be subsequently 

investigated further with the aims of identifying more coherent 

topics from the data.  

 

Figure 3. Top2Vec Topic Clustering 

4.2 Future Research 
The immediate focus of the research is on the enhancement and 

enrichment of GTAD as the baseline for the analysis and 

experimentation. Further analysis of the enhanced dataset plus 

qualitative analysis, through interview and workshops with the 

consultancy’s recruiters, will be used to research the clustering 

of outcomes for different groups in the technology consultancy’s 

recruitment process. Derived ethnicity attribute via ethnicolr[16] 

will be further researched as well as anonymization of data using 

tools such as AnonyMate[1]. 

Sentiment analysis and textual analysis tools will then be tested 

against the data for patterns in the text across diverse groups and 

the LIWC analysis could be tuned and improved using the latest 

version of the tool. Improvements in the Top2Vec topic 

modelling performance could researched and analysis of the 

frequencies of demographic groups within specific topics may 

help in the identification of attitudes towards questionnaire 

responses and may aid in future works. 

Since the researcher’s relationship with both the dataset and the 

recruitment processes is not passive, we intend to experiment 

with causal inference[12] and interventions in the process and 

data.  

5. CONCLUSION AND OUTLOOK 
There was a consistent rate of response to the questions on 

technology usage and technology careers from applicants to the 

technology consultancy’s training course, both in terms of 

numbers of applicants responding and length of responses. This 
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suggests that GTAD will continue to grow, both in size and 

richness, and could be used for research including research into 

the PhD hypotheses of the author. 

This work is at an early stage and any feedback or ideas on the 

paper would be highly welcomed. Particularly of interest would 

be comments on what research and analysis could be performed 

using the data, and thoughts on the wider distribution of the non-

commercially sensitive dataset. 
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ABSTRACT
Deep generative models with a specific variational autoen-
coding structure are capable of estimating parameters for
the multidimensional logistic 2-parameter (ML2P) model
in item response theory. In this work, we incorporated Q-
matrix and variational autoencoder (VAE) to estimate item
parameters with correlated and independent latent abilities,
and we validate Q-matrix via the root mean square error
(RMSE), bias, correlation, and AIC and BIC test score.
The incorporation of a non-identity covariance matrix in a
VAE requires a novel VAE architecture, which can be uti-
lized in applications outside of education such as players
performance evaluation, clinical trials assessment. More-
over, results show that the ML2P-VAE method is capable
of estimating parameters and validating Q-matrix for models
with a large number of latent variables with low computa-
tional cost, whereas traditional methods are infeasible for
data with high-dimensional latent traits.

Keywords
Item Response Theory, Deep Generative Model, Interpretable
Neural Network, Cognitive Diagnostic Model, Educational
Assessment

1. INTRODUCTION
Item Response Theory (IRT) is a popular model for the
understanding of human learning and problem-solving skill
and to predict human behavior and performance. Since the
1950s [21], thousands of researchers have used IRT in fields,
e.g., education, medicine, and psychology, and this includes
many critical contexts such as survey analysis, popular ques-
tionnaires, medical diagnosis, and school system assessment.

More recently, computer-assisted open-access learning has
gotten more popular worldwide, e.g., Khan Academy, Cours-
era, and EdX have developed a new challenge to handle
large-scale student and trace performance [15].

In the deep learning domain, a revolution in deep generative
models via variational autoencoders [12] [14], has demon-
strated an impressive ability to perform fast inference for
complex MIRT models. In this research, we present a novel
application of variational autoencoders to MIRT, explore in-
dependent and correlated latent traits in the MIRT model
via simulated data, and apply them to real-world examples.
We then show the impact of Q-miss (wrong Q-matrix) when
mixed compared with the original Q-matrix (Q-true).

Specifically, in this paper, we have explored two research
questions as follows: first, how to use variational autoen-
coder in the estimation of MIRT models with large numbers
of correlated and independent latent traits? Second, how are
the effects of various factors such as the percentage of misfit
items in the test and item quality (e.g., discrimination) on
item and model fit in case of misspecification of Q-matrix?

Most closely related to the present work, Converse [2] uti-
lized variational autoencoders(VAE) to estimate item pa-
rameters with correlated latent abilities and directly com-
pared ML2P-VAE with traditional methods. Curi [1] intro-
duces novel variational autoencoders to estimate item pa-
rameters with independent latent traits. Guo [16] explored
the neural network approach and compared the outcome
with the DINA model. Converse [3] compared outcomes
between autoencoders (AE) and variational autoencoders
(VAE). Wu [21] investigated the novel application of varia-
tional inference and incorporated IRT in the model via sim-
ulated and real data. Different from Converse [2], and Curri
[1], we use both independent and latent traits in the VAE
model. Moreover, we have explored the effect of Q-matrix
misspecification in MIRT parameter estimation via different
fit statistics, e.g., RMSE, BIAS, AIC, & BIC score measures.

The Multidimensional Logistic 2-Parameter (ML2P) model
gives the probability of students answering a particular ques-
tion as a continuous function of student ability [14]. There
are two types of parameters associated with each item: a
difficulty parameter bi for the item i, and a discrimination
parameter aik ≥ 0 for each latent trait, k quantifying the
hierarchy of ability k required to answer the item i correctly.
The ML2P model gives the probability of a student j with
latent abilities answering an item i correctly as

P (uij = 1 | Θj ; ai, bi) =
1

1 + exp[−∑K
k=1 aikθjk + bi]

(1)
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2. VARIATIONAL AUTOENCODERS
The variational autoencoder (VAE) is a directed model that
uses learned approximate inference and can be trained purely
with gradient-based methods[12]. It is similar to auto-encoders
but with a probabilistic twist. VAE makes the additional
assumption that the low-dimensional representation of data
follows some probability distribution N(0, I), and fits the
encoded data to this distribution.

The main use of a VAE as a generative model, VAE gen-
erates X to X̂ after training and feed-forward through the
decoder. By Bayes’ rule, we can write the unknown posterior
distribution. In our case, we generalized VAE as N(µ,Σ). In
order to keep both P and Q distribution similar, Kullback-
Liebler divergence DKL(P ∥ Q) plays a key role in the neural
network loss function. The KL-Divergence is given by as fol-
lows:

KL[q(Θ | x) || [f(Θ | x)] = Eθ∼ q(Θ | x)[logq(Θ|x)−logf(Θ|x)

(2)

As shown by Kingma and Welling [12] that minimizing Eq.
2 while still reconstructing input data is equivalent to max-
imizing.

Eθ ∼ q(θ | x)[logP (X=x|Θ)−KL[q(Θ|x)||f(Θ)] (3)

Next, the VAE is trained by a gradient descent algorithm
to minimize the loss function. In this case, L0 is the cross-
entropy loss function and λ is a regularization hyperparam-
eter.

L(W ) = L0(W ) + λKL[q(Θ | x) || f(Θ)] (4)

Root mean squared error (RMSE): RMSE criterion reflects
the average magnitude of the bias between the true item pa-
rameters and their associated estimates. A smaller RMSE
suggests higher estimation accuracy. Moreover, we also looked
into Akaike information criterion (AIC), and Bayesian infor-
mation criterion (BIC) score to explore MIRT model estima-
tion when using Q-Miss.

First, we have incorporated the independent and correlated
latent traits via the ML2P-VAE model proposed by Curi [1],
and Converse [2]. We have extended this work by validating
Q-matrix based on root, mean, square, error (RMSE), BIAS,
and Correlation score.

We made modifications to the architecture of the neural net-
work to allow for the interpretation of weights and biases
in the decoder as item parameter estimates, and activation
values in the encoded hidden layer as ability parameter esti-
mates. As we know, sometimes researchers call neural net-
works are usually uninterpretable and function as a black-
box model. However, following the addition of Q-matrix in
the second from the last layer will make NN more inter-
pretable.

The required modifications are as follows. The decoder of
the variational autoencoder has no hidden layers. The non-
zero weights in the decoder, connecting the encoded dis-
tribution to the output layer, are determined by a given

Q-matrix [19]. Thus, these two layers are not densely con-
nected. The output layer must use the sigmoid activation
function as follows:

σ(zi) =
1

1 + e−zi
(5)

When latent traits are assumed to be correlated, a full corre-
lation matrix must be provided for the ML2P-VAE model.
However, a correlation matrix is not required when latent
traits are assumed to be independent. This corresponds to
the fixed covariance matrix Σ1. ML2P-VAE can estimate
ability, discrimination, and difficulty parameters, but it does
not estimate correlations between latent traits.

Also, the input to our neural network consists of n nodes,
representing items on an assessment. After a sufficient num-
ber of hidden layers of sufficient size, the encoder outputs K
+ K(K + 1)/2 nodes. The architecture for correlated latent
traits is more complex than we think (See Visualization of
Deep-VAE architecture for two correlated latent traits and
ten input items model via this link[tinyurl.com/aied22].

2.1 Q-Matrix and Misspecification of Q-matrix
Specification of Q-matrix is mainly criticized because of its
subjective nature [17]. Misspecification in the cognitive di-
agnostic model (CDM) mostly occurs because of the types
of the attributes, construct of the attribute, Q-matrix, or se-
lected cognitive diagnostic model [6]. In this experiment, we
utilized only a misfit source because Q-matrix misspecifica-
tion was examined, and no changes were made in students’
responses. In the study, the Q-matrix was misspecified by
a mixed approach, and misfit items used in this study are
presented in Table 1 (See misfit items table in Appendix
2:tinyurl.com/aied22). When the Q-matrix was misspeci-
fied, one attribute was translated from 1 to 0, and another
attribute was translated from 0 to 1, but the number of
measured attributes didn’t change, which is referred to as
mixed.

In the architecture of the model ML2P-VAE, we train the
neural network with the ADAM optimizer (pure stochastic
gradient descent). A simulated assessment with six latent
abilities used two hidden layers of sizes 50 and 25. The
largest network we used was for an assessment of 20 latent
abilities, which utilized two hidden layers of sizes 100 and
50.

3. THE DEEP-Q ALGORITHM
For convenience, we are calling this algorithm the Deep-Q
algorithm. The steps of the Deep-Q algorithm are as follows-

Step 1: Use the variational autoencoder and multidimen-
sional item response theory (Ml2P-VAE) model [2] to
estimate students’ ability and item parameters based
on Q-True and the response data.

Step 2: Compute all items’ via RMSE, BIAS, and Correla-
tion test score values based on Q-True and the stu-
dent’s ability and item parameters estimated at Step
1. We also use AIC and BIC scores to compare Q-true
and Q-miss.

Step 3: Randomly misspecify Q-true by 10% and 20% to
change Q-True.
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Table 1: Q-matrix validation measures via RMSE, BIAS and Correlation score for discrimination (a), difficulty (b), and ability
θ parameters with correlated latent traits

Data Miss Method a.RMSE a.BIAS a.Corr b.RMSE b.BIAS b.Corr θ.RMSE θ.BIAS θ.Corr

QTrue 0.1465 0.0100 0.9427 0.0750 0.0100 0.9988 0.8120 0.0476 0.5815

N=18000 10%Miss QMiss 0.2297 0.0195 0.8562 0.0993 0.0083 0.9986 0.8398 0.0637 0.5486

20%Miss QMiss 0.2621 0.0466 0.7984 0.1684 0.0268 0.9962 0.8684 0.1660 0.5351

QTrue 0.1007 0.0259 0.9094 0.2098 -0.0186 0.9984 0.5614 -0.0013 0.8686

N=60000 10%Miss QMiss 0.2525 0.0654 0.8430 0.2881 0.0129 0.9926 0.7288 0.0037 0.6859

20%Miss QMiss 0.2200 0.0367 0.8777 0.2191 0.0243 0.9952 0.6561 0.0166 0.7551

Step 4: Repeat step-1 with Q-miss (Q-miss, Step 3).

Step 5: Compare Q-True(top row, boldface) with Q-miss.
Q-true should yield a small RMSE/BIAS and a strong
correlation score, AIC, and BIC score for difficulty,
discrimination, and ability parameters.

4. METHODOLOGY
We ran experiments on two data sets: (i) 6 traits, 35 items,
and 18000 students, and (ii) 20 traits, 200 items, and 60,000
students. It is also important to mention here that true pa-
rameter values, for both students and items, are only avail-
able for simulated data. When simulating data, we used the
Pythons SciPy package to generate a symmetric positive def-
inite matrix with 1s on the diagonal (correlation matrix) and
all matrix entries non-negative. All latent traits had correla-
tion values between 0,1. We assumed that each latent trait
was mean-centered at 0. Then, we sampled ability vectors
to create simulated students. We generated a random Q-
matrix where each entry qij ∼ Bern(0.2). If a column for
each element after sampling from this Bernoulli distribution,
one random element was changed to a 1. Discrimination pa-
rameters were sampled from a range so from 0.25 to 1.75
for each item i, and difficulty parameters were sampled uni-
formly from - 3 to 3. Finally, response sets for each student
were sampled from the ML2P model using these parameters.

5. RESULTS
All experiments were conducted using TensorFlow for R
and the ML2Pvae package [4] on an iMac computer with
a 3.1 GHz Intel Core i5 via Google Colab Premium, 12 GB
NVIDIA Tesla K80 GPU.

Table 1 presents the estimation accuracy of Q under Q-True
and Q-miss. The range of values for each criterion is pro-
vided in the second and third row of Table 1, and the num-
bers in bold denote better performance in the associated
criterion for the corresponding method, e.g., Q-Miss.

Overall, Table-1 indicates that the Deep-Q method yields
a better fit statistic score and strong correlation score than
the Q-miss situation when using a wrong Q-matrices. This
result is corroborated by the correlation plots between the

true discrimination parameters and the weights of the de-
coder, displayed in Fig. 1 and 2 (see Appendix for larger
view).

In addition, Q-matrix validation measures via AIC, BIC
score for discrimination (a), difficulty (b), and ability θ pa-
rameters with correlated latent traits remain consistent with
Table-1 outcome (see AIC and BIC scores in the Appendix).

In Fig 1(A and B), the correlation plots of discrimination pa-
rameter estimate for data with items and latent traits. Each
color represents discrimination parameters relating to one of
each latent skill. In the ability parameter, each color in the
plot represents discrimination and ability parameters associ-
ated with each latent trait. Difficulty parameters are on the
item level, not the latent trait level. So in each item, I have
exactly one difficulty parameter bi, regardless of the number
of latent skills. The interpretation is similar for independent
latent traits, as described in figure 1(A). Plots show corre-
lated latent traits and show better outcomes compared to
independent latent traits.

6. DISCUSSION AND CONCLUSION
An incorrect Q-matrix can lead to a significant change in the
assessment outcomes when applied to CDMs. As a result,
a Q-matrix validation strategy to reduce assessment error
is becoming increasingly important. Several approaches, in-
cluding EM-based and non-parametric methods, have shown
the ability to identify and create an acceptable Q-matrix.
However, to the best of the authors’ knowledge, their exper-
iment utilizes traditional IRT parameter estimation where
they utilize low-dimensional latent traits and students’ re-
sponses. However, the Deep-Q algorithm is most useful with
high and low-dimensional data.

Moreover, Converse’s [2] study shows that MIRT parameter
estimation results via the Ml2P-VAE model are competitive
compared to traditional IRT parameter estimation methods.
Our study used a Deep-Q algorithm, a deep learning-based
algorithm, to identify and validate a Q-matrix for small and
large-scale latent traits. Deep-Q could be useful for large-
scale assessments, e.g., PISA and TIMSS.

ML2P-VAE is a novel technique that allows IRT parame-
ter estimation of independent and correlated low and high-
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Figure 1: (A)Discrimination, Difficulty, and Ability Parameter Estimates with Independent Latent Traits (B) Discrimination,
Difficulty, and Ability Parameter Estimates with Correlated Latent Traits.

dimensional latent traits. Ultimately, it can be said that
the Deep-Q algorithm succeeds in detecting misfit items in
both large and small sample cases. ML2P-VAE methods
and Deep-Q are most useful on high-dimensional data, but
even when applied to smaller data sets where traditional
techniques are feasible, the results from current methods
are competitive.

7. ACKNOWLEDGMENTS
This research was sponsored by the National Science Foun-
dation under the award The Learner Data Institute (bit.
ly/36Bi93m) (award #1934745). The opinions, findings, and
results are solely the authors’ and do not reflect those of the
funding agencies. Thanks to Geoff Converse, Andrew Ott,
and LDI team for their suggestions and comments.

8. REFERENCES
[1] Curi, M., Converse, G. A., Hajewski, J., Oliveira, S.:

Interpretable variational autoencoders for cognitive
models. 2019 International Joint Conference on Neural
Networks (IJCNN) 1-8. IEEE.(2019).DOI:
10.1109/IJCNN.2019.8852333

[2] Converse, G., Curi, M., Oliveira, S., Templin, J.:
Estimation of multidimensional item response theory
models with correlated latent variables using
variational autoencoders. Machine Learning,
1-18.(2021). DOI:10.1007/s10994-021-06005-7

[3] Converse, G., Curi, M., Oliveira, S.: Autoencoders for
educational assessment. International Conference on
Artificial Intelligence in Education.41-

45.Springer.(2019).https://doi.org/10.1007/978-3-030-
23207-8-8

[4] Converse, G.: ML2Pvae: VAE models for IRT
parameter estimation.(2020)
https://CRAN.R-project.org/package=ML2Pvae, r
package version1.0.0.

[5] Liu, C. W., Chalmers, R. P.: Fitting item response
unfolding models to likert scale data using mirt in R.
PloS one. 13(5).(2018).
https://doi.org/10.1371/journal.pone.0196292

[6] Chen, J., de la Torre, J., Zhang, Z.: Relative and
absolute fit evaluation in cognitive diagnosis modeling.
Journal of Educational Measurement,
50(2),123-140.(2013).https://doi.org/10.1111/j.1745-
3984.2012.00185.

[7] Kingma, D. P., Welling., M.: Auto-encoding variational
bayes. (2013).
https://doi.org/10.48550/arXiv.1312.6114

[8] Rezende, D. J., Mohamed, S. and Wierstra, D.:
Stochastic backpropagation and approximate inference
in deep generative models.
(2014).https://doi.org/10.48550/arXiv.1401.4082

[9] Harris, D.: Comparison of 1-, 2-, and 3-parameter IRT
models. Educational Measurement: Issues and
Practice,8(1), 35-41.
(1989).https://doi.org/10.1111/j.1745-
3992.1989.tb00313.x

[10] Leighton, J. P., Gierl, M. J., Hunka,S. M.: The
attribute hierarchy method for cognitive assessment: A
variation on Tatsuoka’s rule-space approach. J. Educ.

814



Meas., vol. 41, 205–237,(2004).
https://doi.org/10.1111/j.1745-3984.2004.tb01163.x

[11] Torre, J. de la. and Chiu,C. Y.,:A General Method of
Empirical Q-matrix Validation,” Psychometrika, vol. 81,
no. 2, 253–273.(2016). DOI: 10.1007/s11336-015-9467-8

[12] Kingma, D. P., & Welling, M.: Auto-encoding
variational bayes. arXiv preprint
arXiv:1312.6114.(2013).
https://doi.org/10.48550/arXiv.1312.6114

[13] DeCarlo, L. T.: On the analysis of fraction
subtraction data: The DINA model, classification,
latent class sizes, and the q-matrix. Appl. Psychol.
Meas., vol. 35, no. 1,8–26
,(2011).https://doi.org/10.1177/0146621610377081

[14] McKinley, R., Reckase, M.: The use of the general
Rasch model with multidimensional item response data.
American College Testing. (1980)

[15] Piech C., Bassen J., Huang J., Ganguli S., Sahami M.,
Guibas LJ., Sohl-Dickstein J.: Deep knowledge tracing.
Advances in neural information processing systems.
28.(2015)

[16] Guo, Q. Cutumisu, M., Cui, Y.: A neural network
approach to estimate student skill mastery in cognitive
diagnostic assessments.
(2017).https://doi.org/10.7939/R35H7C71D

[17] Rupp, A. A., Templin, J.: The effects of Q-matrix
misspecification on parameter estimates and
classification accuracy in the DINA model. Educational
and Psychological Measurement, 68(1), 78-
96.(2008).https://doi.org/10.1177/0013164407301545

[18] Rezende, D. J., Mohamed, S., Wierstra, D.: Stochastic
backpropagation and approximate inference in deep
generative models. In International conference on
machine learning 1278-1286. PMLR.
(2014).https://doi.org/10.48550/arXiv.1401.4082

[19] Tatsuoka, K.K.: Rule space: an approach for dealing
with misconceptions based on item response theory. J.
Educ. Meas. 20(4), 345–354 (1983)

[20] Ma, W., Torre,J. de la.: An empirical Q-matrix
validation method for the sequential generalized DINA
model. Br. J. Math. Stat. Psychol., (2019).
https://doi.org/10.1111/bmsp.12156

[21] Wu, M., Davis, R. L., Domingue, B. W., Piech, C.,
Goodman, N.: Variational item response theory: Fast,
accurate, and expressive. arXiv preprint
arXiv:2002.00276.(2020).https://doi.org/10.48550/
arXiv.2002.00276

[22] Zhang, J., Shi, X., King, I., Yeung, D. Y.: Dynamic
key-value memory networks for knowledge tracing. In:
26th International world wide web conference (WWW
2017) 765–774.(2017).
https://doi.org/10.1145/3038912.3052580

9. APPENDIX
Please follow this link for Appendixes: tinyurl.com/aied22

815



Towards Personalised Learning of Psychomotor Skills with
Data Mining

Miguel Portaz
∗

Computer Science School, UNED
mportaz1@alumo.uned.es

Olga C. Santos
†

Computer Science School, UNED
ocsantos@dia.uned.es

ABSTRACT
Data Mining (DM) currently represents a key element for
improving the acquisition of knowledge and for providing
proper feedback in educational environments. In this field,
as well as in others, psychomotor skills represent a unique
way to advance in the knowledge of human behaviours. Our
research apply in two equally promising, but different do-
mains. On one hand, we would be able to improve the learn-
ing of psychomotor skills at educational level with the use of
different DM techniques. This may includes learning martial
arts or supporting the acquisition of locomotor abilities. On
the other hand, we would like to expand our DM research
far beyond the basis of the aforementioned educational field.
Thus, we can evaluate other users, such patients, with the
aim of improving the re-learning of motor capabilities during
recovery processes on rehabilitation, or even to detect cogni-
tive impairments, analysing slight psychomotor alterations
at early stages using DM. The latter includes gait analy-
sis, which are currently used for screening, but not so much
for predicting purposes. Although our research is still at
early stages, we are following the principles set on previous
researches, such those included in our intelligent Expertise
Level Assessment (iELA) method.

Keywords
Educational Data Mining, Personalised Learning, Psychomo-
tor Skills, Active Ageing and Education

1. INTRODUCTION
In order to properly apply state-of-the-art DM techniques
for personalised learning, we have developed the following
taxonomy, distinguishing between mutually-exclusive and non-
mutually-exclusive movements [31]. This differentiation is
particularly relevant for psychomotor activity analysis, since
learners should be modelled according subtle details, which

∗1st year PhD Candidate.
†aDeNu Research group

are not often obvious. In the first mutually-exclusive group
we can find most of the Human Activity Recognition (HAR)
systems, which basically use DM and Machine Learning
(ML) techniques to analyse human movements, that can-
not be executed at the same time (running, walking, sleep-
ing, etc). In our case, it is extremely pertinent to be able
to analyse non-mutually-exclusive movements, meaning dis-
tinguish different behaviours which are similar. This is the
case of analysing distinct personal gait registries or match-
ing several gaits gathered from different users or patients.
For recognising the specific non-mutually-exclusive human
movements, we can use inertial sensors, where the informa-
tion is often collected in form of Time-Series (TS), like the
ones depicted in Fig. 1.
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Figure 1: Inertial data recorded representing human activity.
On the left side we have the three axis (x, y, z) gathered using
an accelerometer. On the right side we have the three axis
(x, y, z) gathered using a gyroscope [31].

Fig. 2 depicts another method suitable for breaking down
non-mutually-exclusive human movements, in this case util-
ising AI-based video analytics.

Many other different controllers may be used for the purpose
of gathering information related to mutually-exclusive and
non-mutually-exclusive human movements, such Microsoft
Kinect sensor [29] or LIDAR1 sensor [20]. Whether the
method and sensors used, the aim of the research disclosed
on this paper is to analyse, with different DM techniques,
several data sets gathered from the execution of human
movements, to anticipate psychomotor learning behaviours
supporting appropriate feedback or analysis.

This research may also have a specific impact on achieving
well-being through active ageing, since the correct execution
of certain movements at certain ages allows us to take care

1Acronym of LIght Detection And Ranging.
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Figure 2: Multi-person Pose Estimation with OpenPose [30].

of ourselves properly. Therefore, the use of DM techniques,
which allow us to automatically assess whether we perform
certain motor movements correctly or if we preserve certain
psychomotor skills, is essential for our comfort and well-
being.

2. RELATED RESEARCH
The first steps for our research relies on the iELA method
disclosed in [31], which uses quaternions, a specific group
of hyper-complex numbers, to fuse the transformed inertial
data, gathered during the practice of different martial arts.
iELA uses DM to provide an innovative method to infer per-
formance level, showing its relevance assisting psychomotor
learning and educational systems. iELA follows the princi-
ples set in [34], which details how the use of different sensors,
together with a specific methodology, to support psychomo-
tor learning processes in educational environments. These
foundations are also used in [35, 12, 9, 18] since motor tasks
can be consolidated into memory through repetitions, cre-
ating a long-term neuromuscular memory for specific tasks.

Other intelligent tutoring system related with psychomotor
skills can be found in [24], although in this case the authors
use physiological sensors. Regarding video analysis, [28] in-
troduce the design, development, deployment and evaluation
of video games to support locomotor acquisition in a class-
room setting. Other examples are related with the learning
of playing piano [8], practising martial arts [33], performing
dance step movements [33, 16] or improving sport technique
[7], among others.

Some researches, as in [25, 37, 36, 15], use video analysis
techniques for human pose estimation, in contrast, iELA
foundations analyse inertial data gathered with the use of
IMU2 sensors, as in [22, 32, 13, 5, 21]. iELA analyses the
data collected in form of TS, as in [40] but using two differ-
ent approaches: extracting features, as in [3, 4], and using
Convolutional Neural Networks (CNNs), as in [19, 14], tak-
ing into account that TS have practically the same topology
than images, as mentioned in [6]. Other researches use an-
other DM techniques [23], machine learning methods [26] or
neural networks [39, 2, 11].

The use of various methods to estimate accurately the hu-

2Acronym of Inertial Measurement Unit

man pose is also common, as in [27, 38, 12] which use two
different types of data, the one provided by the IMU and
the one gathered from video footage.

In addition to the analysis of psychomotor activities in Ed-
ucational DM systems, the detection and analysis of the
human pose in other research areas, can also take advantage
of the different DM techniques described above. Thus, [1]
provides automated movement assessment for stroke reha-
bilitation using video analysis. At this point it is important
to denote how pre-dementia stages (motor cognitive risk syn-
drome) are characterised in some cases by slow gait, as dis-
closed in [10]. Consequently, this research has an impact on
other areas related to psychomotor aspects and, therefore,
could also provide tools to promote innovation in active and
healthy ageing, increasing healthy life expectancy3.

3. EXPECTED CONTRIBUTION
In aspects exclusively related to the detection of the human
pose in educational environments, in addition to iELA, nei-
ther of the examples described above, evaluate the level of
performance. As iELA is setting up the principles for eval-
uating the level of performance of complex movements in
martial arts, our aim is to extrapolate iELA to other do-
mains, including educational o health behavioural. The use
of quaternions to fuse inertial information, with the addition
of other sources, such as those provided by video footage,
may provide innovative mechanisms on educational and non
educational environments that require the analysis of psy-
chomotor skills.

Although one of the desired goals is to merge information
coming from different sensors, including video footage, we
carefully need to deal with one of the main drawbacks of
using a video-based approach for human activity classifica-
tion purposes, which are the issues in terms of privacy [17].
This will be particularly relevant for fulfilling IDEA (inclu-
sion, diversity, equity, and accessibility) approaches, as well
as for satisfying the guidelines for a trustworthy AI, includ-
ing transparency, explainability, fairness, robustness and the
aforementioned privacy.

On this research, we will also consider the analysis of the
affective state of the participants within data gathering and
in relation to the execution of the movements under our
study.

4. RESEARCH QUESTIONS
The affirmative answer to the iELA research question carried
out in the Master Thesis [31]:

RQ-1 Can we use these DM driven analysis (iELA) to auto-
matically classify practitioners according their exper-
tise level?

represents the starting point for defining the next research
question to be carried out in the on going Doctoral Thesis:

RQ-2 May we use DM approaches to assess the level of exper-
tise accomplished while performing motor activities on

3https://ec.europa.eu/social/main.jsp?langId=encatId=1062
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different psychomotor learning schemes (from martial
arts techniques to physical movements to benefit active
ageing) thus achieving a domain transfer?

which will be the main objective of this research.

5. PROPOSED METHODOLOGY
Our proposed methodology is based on iELA, a DM method
for an intelligent expertise level assessment which analyses
high volumes of inertial data. In this case, when breaking
down inertial data, without fusing it into quaternions, we
cannot clearly distinguish whether the representation cor-
responds to an expert user, which may be extrapolated to
a patient without a pathology, who performs certain motor
activity, as depicted in Fig. 3. When fusing this information
into quaternions, see Fig. 4, we can clearly have informa-
tion about how the motor activity was performed. On the
other hand, if we analyse the same movement executed by a
beginner user, which may be also extrapolated to a patient
with a pathology, then we can obtain a different depiction,
as in Fig. 5.

This approach is based in analysing quality datasets gath-
ered while executing human psychomotor activities. The
DM analysis of this data will follows iELA approaches, and
may include the use of CNNs and the examination of the
extracted features from TS.

6. CONCLUSIONS
Research in the analysis of psychomotor skills represents
an important challenge, overall when we are going far be-
yond the distinction of the mutually exclusive movements
disclosed alongside this article. At this stage we are look-
ing forward for feedback to support our research with the
aim of demonstrating how our iELA method provides a top-
notch approach in the treatment and analysis of different
psychomotor behaviours on educational, learning or even on
health scenarios.

The use of the DM techniques developed in this research
may have different fields of application at educational level,
but also can be useful for achieving the benefits of active
ageing.
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ABSTRACT
Knowledge space theory (KST) is a mathematical frame-
work for modeling and assessing student knowledge. While
KST has successfully served as the foundation of several
learning systems, recent advancements in machine learning
provide an opportunity to improve on purely KST-based
approaches to assessing student knowledge. As such, in this
work we compare the performance of an existing KST-based
adaptive assessment to that of a newly developed version—
with this new version combining the predictive power of a
neural network model with the strengths of existing KST-
based approaches. Using a cluster randomized experiment
containing data from approximately 140,000 assessments, we
show that the new neural network assessment engine im-
proves on the performance of the existing KST version, both
on standard classification metrics, as well as on measures
more specific to the student learning experience.

Keywords
Adaptive assessment, neural networks, knowledge space the-
ory

1. INTRODUCTION
Combining elements of probability theory and combinatorics,
knowledge space theory (KST) is a mathematical approach
to the modeling and assessing of student knowledge [12, 15].
KST-based adaptive assessments focus on identifying the set
of topics that are most likely to be known by a student, with
many such implementations having been developed over the
years [6, 7, 18, 20]. The particular system at the center of
this work is ALEKS, an adaptive learning system covering
subjects such as math, statistics, and chemistry. The foun-
dation of the system is an initial assessment that is given
to a student at the beginning of an ALEKS course, with
the information from this assessment being used to guide
their subsequent learning in the system. The current ver-
sion of the initial assessment engine uses a KST-based model
that employs many features and concepts described in the

KST literature (informative summaries of these ideas can be
found in [13] and Chapter 13 of [15]).

Several works have evaluated the validity and reliability of
KST-based assessments, with the results indicating that such
assessments are both accurate and valid [5, 6, 10, 28]. How-
ever, current innovations in machine learning and, in par-
ticular, neural network models provide an opportunity to
improve on purely KST-based approaches to adaptive as-
sessments. As such, a newer version of the ALEKS initial
assessment was recently developed and released into pro-
duction for testing. By augmenting the KST-based adap-
tive assessment approach with a neural network model that
can better leverage the years of accumulated ALEKS user
data, we hope to make improvements to the accuracy and
efficiency of the initial assessment. Thus, in the current
study we evaluate this new assessment engine by analyzing
the results from a randomized experiment—or, A/B test—
comparing the performance of the two different versions of
the ALEKS initial assessment.

2. BACKGROUND
In this section, we give a brief background of the ALEKS
system and the two versions of its initial assessment en-
gine. Within the ALEKS system, a topic is a problem type
that covers a discrete unit of an academic course—Figure 1
contains a screen capture of an example math topic titled
“Introduction to solving an equation with parentheses.” A
knowledge state is a collection of topics that, conceivably, a
student can know at any one time. The collection of knowl-
edge states is known as the knowledge space. Based on the
knowledge space, the topics in an ALEKS course contain
many prerequisite relationships. That is, topic a is a pre-
requisite for topic b if a contains certain core material that
must be mastered before learning the material in b.

In order to ensure students are learning the most appropri-
ate topics, the initial assessment is given at the start of an
ALEKS course, with the purpose of this assessment being to
measure the student’s incoming knowledge. In this assess-
ment, a student is presented topics from the course, and for
each topic they can either submit a response—which is then
graded as either correct or incorrect—or they can click on
the “I don’t know” button if they are unable to answer the
question. This assessment is adaptive, in that it selects the
current question based on the responses to the earlier ques-
tions in the assessment. At most 30 questions are asked,
which balances the need to acquire information on the stu-

1

J. Matayoshi, H. Uzun, and E. Cosyn. Using a randomized exper-
iment to compare the performance of two adaptive assessment en-
gines. In A. Mitrovic and N. Bosch, editors, Proceedings of the 15th
International Conference on Educational Data Mining, pages 821–
827, Durham, United Kingdom, July 2022. International Educational
Data Mining Society.
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dent’s knowledge state with the possibility of overwhelming
the student.1 After each question, a probability is computed
for each topic in the course, with this probability estimating
how likely it is that the student knows the topic. At the
end of the assessment, based on both these probability es-
timates and the prerequisite relationships in the knowledge
space, the ALEKS system partitions the topics in the course
into the following three categories.

• Topics that are most likely known

• Topics that are most likely unknown

• All remaining topics (uncertain)

The student’s knowledge state consists of the topics in the
known category.2 Due to the enormous numbers of possi-
ble knowledge states, KST-based assessments typically use
simplifications in order to model the relationships between
topics. Perhaps the most common approach is to focus
solely on identifying the prerequisite—or, topic to topic—
relationships when developing the knowledge space; these
are variously known as partial order or ordinal knowledge
spaces [8, 9, 11, 15]. While adaptive assessments using these
approaches have been successful [6, 7, 10, 20], there is an
inherent loss of information when mainly focusing on the
pairwise relationships between the topics. Although meth-
ods have been outlined for moving beyond pairwise relation-
ships and looking at larger groups of topics simultaneously,
the computational complexity grows substantially with each
added topic, and research has thus far been mostly limited
to small groups of at most three or four topics [11].

Motivated by this issue, the new version of the ALEKS as-
sessment engine is powered by a neural network model that,
for each topic, estimates the probability of a correct an-
swer. The advantage of a neural network is that it has
the flexibility to model more complex relationships between
the topics—that is, it can go beyond focusing on specific
relationships between pairs or very small groups of topics.
However, for both practical and theoretical reasons, it’s de-
sirable that the neural network model work within the ex-
isting KST framework of the ALEKS system. While other
attempts have been made at applying neural networks to
ALEKS data [21, 22, 24], none of these previous models took
into account the specific details of the knowledge spaces. As
such, the distinguishing feature of the neural network used
for the initial assessment is that it applies a specially de-
signed architecture to output probabilities consistent with
the knowledge space—in particular, this architecture en-
sures that the probability estimates follow the prerequisite
relationships among the topics. Thus, the neural network
can leverage the vast amounts of ALEKS data to make ac-
curate predictions, while simultaneously respecting the set
of knowledge states and thereby ensuring these predictions
are pedagogically sound. Notably, similar ideas have been
successfully applied in knowledge tracing models, where it’s
been shown that leveraging prerequisite relationships can be
done effectively through the loss function of a neural network
[2], or by utilizing dynamic Bayesian networks [19].
1See [23] for evidence of a ‘fatigue effect’ experienced by
students towards the end of an ALEKS assessment.
2The distinction between the unknown and uncertain topics
is mainly relevant for the student’s learning in the system,
with these categorizations determining the amount of work
required before a topic is considered to be mastered.

Figure 1: Screen capture of the ALEKS topic “In-
troduction to solving an equation with parentheses.”

3. EXPERIMENTAL SETUP
Neural network models were trained for eight ALEKS prod-
ucts: middle school math courses 1-3 (in the U.S., these cor-
respond to grades 6 through 8); general chemistry A and B
(the first and second semesters of college-level general chem-
istry, respectively); and three college-level math classes (pre-
calculus, college algebra, and college algebra with trigonom-
etry). Although we do not have access to specific demo-
graphic information for the students in our data, we can say
that the majority of the middle school users are from U.S.
public schools, while the higher education users come from
both community colleges and four-year institutions, again
mainly from the U.S. We began evaluating the new assess-
ment engine in mid-December of 2021, using A/B testing
to compare its performance to that of the existing version
of the assessment, with data being collected through Febru-
ary of 2022. For the aforementioned products, we used a
cluster randomized design to assign the two versions of the
assessment at the class level, an approach commonly used
for educational studies [14, 27, 29]. Specifically, each class
was randomly assigned to receive either the new assessment
or the old assessment, whereupon all the students in that
class then received the same version of the assessment.

For the middle school and chemistry products, the neural
network models were trained with the exact data sets that
were used to build the models for the existing version of
the ALEKS assessment engine; as such, our analyses on
these products are the most informative when trying to pre-
cisely estimate the differences in performance between the
two engines. In comparison, rather than being restricted to
a certain time period, the college math neural network mod-
els were trained on all the available data. Thus, from the
purely scientific perspective of measuring the differences be-
tween the assessment engines, comparing the results on the
college math courses is perhaps less useful. However, from
the more practical standpoint of understanding the (pos-
sible) gains from updating existing ALEKS products with
the new engine, we believe this analysis to be informative.
That is, there are currently many older ALEKS products
that haven’t been updated over the past several years; thus,
if these products were updated with the new neural net-
work assessment engine, they would stand to gain from both
the application of the neural network and the extra data
used to train the model. As such, we believe this analysis
gives some insight into the potential benefits from converting
these older ALEKS products to the new assessment engine.
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Table 1: Summary statistics for the three groups of ALEKS products.

Product Type
Total Average number Extra problem

Classes Assessments of topics correct rate

Middle school math
KST 5,311 19,480 433.6 0.334

NN 5,407 19,313 436.4 0.330

Chemistry
KST 360 16,315 158.0 0.264

NN 381 18,812 155.2 0.257

College math
KST 1,247 33,207 258.2 0.317

NN 1,202 30,785 253.9 0.311

4. ANALYSIS
In order to compare the performance of the two assessment
models, in what follows we make use of an extra problem that
is asked during each initial assessment. This extra prob-
lem is chosen uniformly at random from the topics in the
course and presented to the student as an assessment ques-
tion. However, the answer to the extra problem does not af-
fect the results of the assessment—instead, the information
from the extra problem is used to evaluate and improve the
ALEKS system. In Table 1 we show summary statistics after
partitioning the products into three distinct groups—middle
school math (middle school math courses 1–3), chemistry
(general chemistry A and B), and college math (precalculus,
college algebra, and college algebra with trigonometry)—
and also the two treatment arms of our analysis—the KST-
based assessment, and the neural network assessment (NN).
In addition to showing the total numbers of classes and ini-
tial assessments taken, we also show the average number of
topics used by each class, weighted by the number of assess-
ments per class.3 Finally, in the last column we display the
average correct answer rate to the extra problem.

Our first analysis compares the performance of the two as-
sessment models by treating them as binary classifiers, where
we consider a positive outcome to be a correct answer to the
extra problem, while a negative outcome is either an incor-
rect or “I don’t know” response. We compare the assessment
engines using three metrics: area under the receiver operat-
ing characteristic curve (AUROC), point biserial correlation
(rpb), and accuracy score. AUROC is frequently used to
evaluate probabilistic classifiers, and it is known to perform
well even with some class imbalance [16]. The point biserial
correlation is a special case of the Pearson correlation co-
efficient in which one variable is dichotomous (the student
response) and the other variable is continuous (the prob-
ability estimate from the assessment).4 While the actual
probabilities are used in the computations of AUROC and
the point biserial correlation, for the accuracy calculation we

3While each course has a default set of recommended topics,
the instructor is free to add or remove topics from this set.
4The Matthews correlation coefficient (MCC) [25] is a re-
lated statistic that is regarded as being an informative mea-
sure for evaluating binary classifiers [1, 3, 4, 26]. As the
MCC is mathematically equivalent to the Pearson correla-
tion coefficient of two dichotomous variables—also known
as the phi coefficient—the only difference from computing
the point biserial correlation is that the MCC requires we
dichotimize the probability estimates. However, since this
would result in some loss of information, we prefer to use
the point biserial correlation for our current evaluations.

assume any probability at or above 0.5 is a positive predic-
tion, with anything below 0.5 then being considered a nega-
tive prediction. We should clarify that while this assignment
of prediction labels is a standard procedure used to evaluate
binary classifiers, it does not necessarily correspond to the
actual classifications made by the ALEKS system—we look
at these ALEKS-specific classifications in more detail later.

As students are grouped—or, “clustered”—into classes, to
compute confidence intervals around the point estimates we
use the following bootstrap procedure, applied separately to
each product and assessment engine pair. That is, we ap-
ply this procedure a total of six times: once for the middle
school products using the KST engine, then for the mid-
dle school products using the neural network engine, then
for the chemistry products with the KST engine, etc. The
first step in the procedure is to resample our data using the
cluster bootstrap, a modified version of the standard boot-
strap that specifically works with clustered data [17]. For
our analysis, classes are randomly sampled with replacement
from our original data set, until we have a sample of classes
equal to the number in our original data set. Then, we
combine all the assessments from these selected classes to
generate one bootstrap sample—note this means that some
classes, as well as the associated assessments, appear mul-
tiple times in the sample. Next, we compute our statistics
for this bootstrap sample, and we then repeat this entire
procedure until we’ve generated 20,000 bootstrap samples
in total. Finally, since each resulting bootstrap distribution
turns out to be symmetric and centered at the original val-
ues of the statistic—i.e., the value of the statistic computed
from our original set of data—we compute each confidence
interval by simply taking the 2.5th and 97.5th percentiles.

The results are shown in Table 2. For the middle school
products, we can see that the neural network engine per-
forms better according to each of the metrics, even after tak-
ing into account the confidence intervals. Next, the results
for the chemistry products are less conclusive. Although the
point estimates are all higher for the neural network engine,
based on the confidence intervals in the third column there’s
uncertainty with the signs of these differences. Finally, for
the college math products the neural network engine again
has much stronger performance compared to the KST-based
assessment—we reiterate that this is expected, as the college
math neural network models had access to more recent data
in comparison to the corresponding KST models.

While the results for the middle school and college math
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Table 2: Comparison of the two assessment engines, using the area under the receiver operating characteristic
curve (AUROC), point biserial correlation coefficient (rpb), and accuracy score. Numbers in parentheses
represent the 95% confidence intervals computed from 20,000 cluster bootstrap samples.

Product Metric
Assessment type Difference

KST NN NN−KST

Middle school math

AUROC 0.875 (0.870, 0.881) 0.894 (0.889, 0.899) 0.019 (0.011, 0.026)

rpb 0.624 (0.612, 0.635) 0.674 (0.664, 0.684) 0.050 (0.035, 0.065)

Accuracy 0.811 (0.805, 0.817) 0.831 (0.825, 0.836) 0.020 (0.012, 0.028)

Chemistry

AUROC 0.871 (0.861, 0.881) 0.880 (0.873, 0.888) 0.009 (-0.003, 0.022)

rpb 0.610 (0.585, 0.634) 0.629 (0.613, 0.646) 0.019 (-0.010, 0.049)

Accuracy 0.837 (0.829, 0.845) 0.838 (0.827, 0.849) 0.001 (-0.013, 0.014)

College math

AUROC 0.861 (0.856, 0.867) 0.898 (0.893, 0.902) 0.036 (0.029, 0.043)

rpb 0.599 (0.589, 0.610) 0.674 (0.664, 0.684) 0.075 (0.060, 0.089)

Accuracy 0.814 (0.807, 0.821) 0.838 (0.833, 0.843) 0.024 (0.015, 0.032)

products are encouraging, the performance of the chemistry
neural network models is slightly unexpected. Based on our
previous evaluations when training the neural network mod-
els, we expected a larger performance improvement over the
KST-based assessment for the chemistry products—in com-
parison, the performance of the middle school and college
math neural network assessments are consistent with our ex-
pectations. A possible concern is that there are differences
between the chemistry student populations using the two dif-
ferent assessment engines—while not conclusive, some of the
statistics in Table 1 are suggestive of such a difference. To
start, although there are over 35,000 total assessments taken
for the chemistry products, the number of unique classes is
low in comparison to the other products—for example, the
number of chemistry classes (741) is a small fraction of the
number of middle school classes (10,718). This is impor-
tant, since in a cluster randomized experiment such as ours,
the number of clusters is typically more restrictive than the
overall sample size [29], and such designs have a higher risk
of non-equivalence between the experimental groups [14, 27].
Additionally, for the chemistry products the neural network
group has about 15% more assessments taken than the KST
group, which is possibly another sign of non-equivalence be-
tween the groups. While these differences aren’t conclusive,
they at least suggest that the student populations may dif-
fer in some respect. Thus, in the next section we analyze
the chemistry products further in order to obtain a better
understanding of the results.

5. REANALYZING THE CHEMISTRY AS-
SESSMENTS

To investigate the possibility that the student populations
are not equalized across the chemistry experimental groups,
we take advantage of the fact that an ALEKS assessment
can be “replayed” on an assessment engine different from
the one that was originally used. For example, suppose a
student takes an assessment using the KST-based engine.
Once this assessment is completed, we can feed the questions
and responses to the neural network engine—taking care
to remove the extra problem from this process—generate
probability estimates, and then evaluate the probability for
the extra problem in the original assessment. The main

drawback to this approach is that the engine used for the
replay assessment won’t be able to choose the questions that
are given to the student, which could theoretically bias the
results somewhat. However, the advantage of this approach,
and the reason we employ it here, is that it allows us to
directly compare the assessment engines on the same sets of
data, removing any concerns about the non-equivalence of
the experimental groups.

To that end, using the data from the 16,315 chemistry as-
sessments originally taken with the KST engine, we feed the
questions and responses to the neural network models and
generate probability estimates. We then take these prob-
abilities and compute our evaluation metrics on the extra
problems. Next, we repeat the same procedure in the other
direction—that is, using the data from the 18,812 chemistry
assessments that originally used the neural network engine,
we take the questions and responses from each assessment
and feed them to the KST-based engine. As before, we use
the resulting probabilities to compute our evaluation metrics
on the extra problems.

Table 3: Comparison of the replayed assessments
on the chemistry products. Numbers in parenthe-
ses represent the 95% confidence intervals computed
from 20,000 cluster bootstrap samples.

Metric
Assessment type Difference
KST NN NN - KST

AUROC
0.856 0.889 0.033

(0.847, 0.866) (0.881, 0.898) (0.020, 0.046)

rpb
0.581 0.651 0.070

(0.561, 0.602) (0.630, 0.671) (0.041, 0.099)

Accuracy
0.824 0.844 0.021

(0.812, 0.835) (0.836, 0.853) (0.007, 0.035)

The results are shown in Table 3, where we can see a large
difference in performance between the two assessment en-
gines. In contrast to the results from Table 2, on the re-
played assessments the neural network engine does much
better, while the performance of the KST assessment en-
gine has dropped noticeably. As such, the contrast in per-
formance between the assessment engines is clearer, with
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the 95% confidence intervals for the differences (third col-
umn) all bounded away from zero. So, it does appear likely
that there are underlying population differences between the
groups of students using the two assessment engines. Thus,
arguably the fairest comparison is to use both the actual as-
sessment data and the replayed assessment data, and then
compare the assessment engines based on this combined data
set. The results are shown in Table 4, where we can see a
relatively clear performance gap between the two engines,
albeit not quite as large as in Table 3.

Table 4: Combined comparison of the two assess-
ment engines on the chemistry products, including
data from both the original and replayed assess-
ments. Numbers in parentheses represent the 95%
confidence intervals computed from 20,000 cluster
bootstrap samples.

Metric
Assessment type Difference
KST NN NN - KST

AUROC
0.863 0.885 0.022

(0.856, 0.870) (0.879, 0.891) (0.012, 0.031)

rpb
0.594 0.639 0.045

(0.578, 0.610) (0.626, 0.653) (0.024, 0.067)

Accuracy
0.830 0.841 0.011

(0.823, 0.837) (0.834, 0.848) (0.001, 0.021)

6. ALEKS KNOWLEDGE STATES
While the previous analyses have compared the performance
of the assessment engines assuming they are standard binary
classifiers, in this section we compare the models based on
measures more specific to the ALEKS system. In what fol-
lows, we restrict our analyses to the middle school data, as
we believe this data set gives the most balanced and fair
comparison between the two assessment engines.

Recall that the purpose of the initial assessment is to identify
the topics in a student’s knowledge state—that is, the topics
in the known category. Since the ALEKS system uses this
information to determine what a student is ready to learn,
inaccurately measuring a knowledge state would negatively
affect the student’s learning experience. For example, giving
a student credit for many topics that aren’t justified could
cause the student to start their learning with topics for which
they aren’t prepared, possibly leading to frustration. On the
other hand, not giving a student enough credit for topics
they know has an opposite effect, as the student may start
with topics that are too easy, causing boredom.

To start, in Figure 2 we show a relative frequency histogram
of the number of topics classified as known after each assess-
ment is completed. The striped (blue) bars represent the
19,313 assessments from the neural network engine, while
the solid bars show the proportions for the 19,480 assess-
ments from the KST engine. The mean and median are
112.5 and 98, respectively, for the neural network engine; in
comparison, these values are 106.9 and 85 for the KST en-
gine. Depending on whether we use the mean or median to
describe the outcome of a “typical” assessment, the knowl-
edge states from the neural network assessment engine are
larger by either 5.2% (mean) or 15.3% (median). Further-
more, the first and third quartiles for the neural network

engine are 52 and 159, respectively, with these values being
42 and 152 for the KST engine. These differences possibly
indicate that the advantages of the neural network engine
apply to a diverse sample of students, rather than only those
in a specific part of the distribution. Moreover, it’s encour-
aging that the gains are larger for the students in the first
quartile, as the relative benefit of the additional topics is
greater for students with smaller knowledge states.

0 100 200 300 400 500
Number of topics

0.00

0.02

0.04

0.06

NN
KST

Figure 2: Relative frequency histogram of the num-
ber of known topics for the middle school products.

While the knowledge states from the neural network engine
tend to be larger, it’s important that they are also accurate;
assigning more topics to the known category is of limited use
if the topics aren’t actually known by the students. As such,
in our next analysis we look at how often students answer
correctly to the extra problem based on the classification
(or, categorization) of the ALEKS system—either known,
unknown, or uncertain. The results are shown in Table 5.
Starting with the known category, we can see that students
answer correctly more often with the neural network engine
compared to the KST engine—0.792 vs. 0.788. Addition-
ally, the neural network classifies the extra problem as being
known more often than the KST model—0.271 vs. 0.259—
which is consistent with the results in Figure 2. Next, note
that while we want a high rate of correct answers to the
topics in the known category, for topics in the unknown cat-
egory we want the opposite—that is, a low correct answer
rate to the unknown topics indicates the classifications are
accurate. We can see that the unknown topics for the neural
network engine have a lower correct answer rate in compar-
ison to those from the KST engine—at the same time, the
proportions of topics labeled as unknown are comparable.
Finally, the neural network engine has a lower proportion
of topics in the uncertain category, showing that overall it’s
more aggressive in labeling topics as known or unknown.

In this last analysis we’d like to get a different perspective on
the performance of the models. In particular, both assess-
ment engines rely on the same underlying knowledge spaces,
which means the prerequisite relationships between the top-
ics are the same. Furthermore, when a topic is answered cor-
rectly during an assessment, the ALEKS system uses these
prerequisite relationships to classify topics as being known—
specifically, if a topic is answered correctly, that topic, as
well as all of its prerequisites, are classified as known. Since
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Table 5: Statistics for the assessment engines, par-
titioned by the classification of the extra problem.

Classification
Assessment type

KST NN

Known
Proportion 0.259 0.271

Correct rate 0.788 0.792

Unknown
Proportion 0.573 0.574

Correct rate 0.106 0.088

Uncertain
Proportion 0.168 0.154

Correct rate 0.412 0.421
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Figure 3: Precision-recall curves for the extra prob-
lems that are not directly classified by the prerequi-
site relationships.

this behavior is the same for each assessment engine, we
want to remove these classifications and obtain a more nu-
anced view of the differences in performance. Additionally,
these“prerequisite”classifications tend to be the easiest ones
for the assessment engines to make, and so by removing them
we can evaluate the engines on a more challenging subset of
the data. To that end, we remove any extra problem that
(a) also appeared as a regular assessment question and was
answered correctly, or (b) is a prerequisite of a topic that
was correctly answered during the assessment—this leaves
us with 16,122 and 15,963 extra problems for the KST and
neural network engines, respectively. Since the performance
of the ALEKS system depends on the assessment’s ability to
correctly classify the topics in a student’s knowledge state
(i.e., precision), while simultaneously identifying as many
such topics as possible (i.e., recall), for these data points
we plot the precision-recall curves, as we can then compare
the performance of the assessment engines across a range
of thresholds. The results are shown in Figure 3, where we
can see that the neural network curve dominates for the vast
majority of the recall values, with the precision values being
substantially higher in many places. Overall, it’s informa-
tive to see the strong performance of the neural network
assessment engine on this specific subset of the data.

7. DISCUSSION
In this work we presented and analyzed the results of a ran-
domized experiment—or, A/B test—comparing two differ-

ent versions of the ALEKS initial assessment engine. The
purpose of this analysis was to validate the neural network
assessment engine and verify it improves upon the exist-
ing version that’s based on knowledge space theory (KST).
While an initial analysis indicated strong improvement for
the middle school and college math products, the difference
was less clear for the chemistry products. To investigate fur-
ther, we reanalyzed the chemistry assessments by“replaying”
each of them with the competing engine. This analysis sug-
gested that the student populations in the two experimen-
tal groups for the chemistry products were not completely
equivalent, confounding the comparison. Thus, we adjusted
for the non-equivalence of the student populations by com-
bining the data from both the replayed and actual assess-
ments, with the results indicating that the neural network
assessment outperformed the KST-based version. Finally,
we evaluated the assessment engines on metrics more specific
to the ALEKS system—in these analyses, we saw that the
neural network assessment gave students credit for knowing
more topics, while simultaneously being more accurate.

The chemistry results were interesting and somewhat sur-
prising. Given the large numbers of students in the two ex-
perimental groups, it was unexpected that, as suggested by
the replay results, these groups would be dissimilar. How-
ever, since many of the chemistry students are from large
universities, the class sizes also tend to be large—thus, as
seen in Table 1 the number of distinct classes is relatively
small. (In comparison, the middle school products have
a higher number of “independent” users—e.g., homeschool-
ing/home education students, or individual students seeking
extra help—resulting in smaller average class sizes.) In ex-
perimental designs with multilevel structure such as ours,
the number of clusters—represented by the student classes
in our data—is typically more important than the overall
sample size in ensuring the baseline equivalence of the ex-
perimental groups [14, 27, 29]. As such, our experience high-
lights the fact that the use of cluster randomized designs,
while desirable in education research for several reasons, can
lead to difficulties with the statistical analysis of the results,
and that this can be an issue even with seemingly large sam-
ples of data.

Overall, we found the performance of the neural network
assessment engine to be promising, in that it has the po-
tential to benefit students in multiple ways. For example,
the fact that it returns larger knowledge states in compar-
ison to the KST engine—and, importantly, without a drop
in accuracy—means that students do not have to spend
as much time working on topics they may already know.
Thus, students can learn more efficiently and spend more
time working on completely new material, hopefully allow-
ing them to progress further in the course. Yet another pos-
sible benefit pertains directly to the initial assessment itself.
User feedback from both students and teachers has informed
us that there is a desire for a shorter initial assessment, one
that asks fewer questions and takes less time to finish. Given
the gain in performance, it seems plausible that the neural
network assessment could still improve on the KST-based
assessment even if fewer questions are asked. We are cur-
rently looking at this possibility in detail, with the hope of
shortening the initial assessment and improving the student
experience within the ALEKS system.

6826



8. REFERENCES
[1] S. Boughorbel, F. Jarray, and M. El-Anbari. Optimal

classifier for imbalanced data using Matthews
correlation coefficient metric. PloS one,
12(6):e0177678, 2017.

[2] P. Chen, Y. Lu, V. W. Zheng, and Y. Pian.
Prerequisite-driven deep knowledge tracing. In 2018
IEEE International Conference on Data Mining
(ICDM), pages 39–48. IEEE, 2018.

[3] D. Chicco. Ten quick tips for machine learning in
computational biology. BioData mining, 10(1):1–17,
2017.

[4] D. Chicco and G. Jurman. The advantages of the
matthews correlation coefficient (MCC) over F1 score
and accuracy in binary classification evaluation. BMC
genomics, 21(1):1–13, 2020.

[5] E. Cosyn, C. Doble, J.-C. Falmagne, A. Lenoble,
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ABSTRACT 
The context for this paper is the Synthetic Training Environment 
Experiential Learning – Readiness (STEEL-R) project [1], which 
aims to estimate individual and team competence using data 
collected from synthetic, semi-synthetic, and live scenario-based 
training exercises. In STEEL-R, the Generalized Intelligent 
Framework for Tutoring (GIFT) orchestrates scenario sessions and 
reports data as experience API (xAPI) statements. These statements 
are translated into assertions about individual and team 
competencies by the Competency and Skills System (CaSS). 
Mathematical models use these assertions to estimate the 
competency states of trainees. This information is displayed in a 
dashboard that enables users to explore progression over time and 
informs decisions concerning advancement to the next training 
phase and which skills to address. 

To test, tune, and demo STEEL-R, more data was needed than was 
available from real-world training exercises. Since the raw data 
used to estimate competencies are captured in xAPI statements, a 
component called DATASIM was added. DATASIM simulated 
training sessions by generating xAPI statements that conformed to 
a STEEL-R xAPI Profile. This facilitated testing of STEEL-R and 
was used to create a demo that highlighted the ability to map data 
from multiple training systems to a single competency framework 
and to generate a display that team leaders can use to personalize 
and optimize training across multiple training modalities.  

This paper gives an overview of STEEL-R, its architecture, and the 
features that enabled the use of artificial data. The paper explains 
how xAPI statements are converted to assertions and how these are 
used to estimate trainee competency. This is followed by a section 
on xAPI Profiles and on the xAPI Profile used in STEEL-R. The 
paper then discusses how artificial data were generated and the 
challenges of modeling longitudinal development and team in these 
data. The paper ends with a section on future research.  

1. INTRODUCTION  
The research reported in this paper relates to the US Army Synthetic 
Training Environment (STE) initiative that “brings together live 
and virtual training environments, aiming to deliver accessible 
exercises that mimic the full complexity of the physical world” [2]. 
To support this initiative, the initiative is developing infrastructure 
and a suite of Training Management Tools (TMT) that permit 
diverse training systems – including desktop game-based, mixed 
reality, virtual reality, augmented reality, and sensor-instrumented 
live training – to be rendered and integrated in a single training 
environment and training to be optimized within this environment.  

The goal of the STE Experiential Learning – Readiness (STEEL-
R) project is to support the STE TMT with software that collects 
evidence from training scenarios and uses this to estimate team and 
individual competency and performance probabilities, recommend 
training interventions, and inform the design of training scenarios. 
Research to date has focused on US Army battle drills [3], i.e., short 
tactical team scenarios intended to train individuals and teams to an 
automated response level. These include cognitive, psychomotor, 
and affective skills and behaviors that can be trained in a series of 
training systems that progress from first-person shooter game-like 
environments such as Virtual Battle Space 3 [4] (synthetic in this 
paper), to mixed reality and augmented reality environments (semi-
synthetic), and field exercises in which trainees are instrumented 
with sensors (live). Traditionally, observer controllers / trainers 
(OC/Ts) are present and can alter conditions on the fly to change 
difficulty or add stressors. A goal of the STE TMT is to accelerate 
development and skill retention by using data-driven automation 
and the capabilities of intelligent tutoring systems to support 
assessment and facilitate personalized coaching.  

The training addressed by STEEL-R is experiential, meaning that 
learning and mastery require repeated deliberate practice under 
varied conditions. To support experiential skill acquisition, the 
underlying competency and predictive models in STEEL-R must 
take longitudinal data and progression into account. This type of 
training also heavily involves team tasks and team dimensions such 
as cohesion, communication, and backup behaviors [5]. This adds 
further complexity to the underlying models and places further 
requirements on the data that must be collected to generate and test 
these models. Since the demand for such data is too large to be met 
by small trials, and since it is important that STEEL-R demonstrate 
good results prior to deployment in high-stakes real-world training, 
we saw artificial data as the best way to proceed in the early and 
middle stages of our research. We use the term artificial rather than 
synthetic in this paper to avoid confusion with synthetic training. 

This paper focuses on the use of artificial data, on the use of xAPI 
Profiles and DATASIM to produce artificial data, on the challenges 
encountered, and on the results obtained. We start with an overview 
of the STEEL-R architecture and it critical features, which is next. 

2. STEEL-R ARCHITECTURE  
Three systems play a central role in the STEEL-R architecture, 
shown in green in Figure 1. The first is the Generalized Intelligent 
Framework for Tutoring (GIFT) [6], which orchestrates scenario 
sessions. It connects to and collects data on trainee actions from 
training systems via connectors. GIFT examines these actions and 
assesses whether specified tasks, activities, and expected behaviors 
are performed or demonstrated at, below, or above expectations.  
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Figure 1: STEEL-R Component Architecture 

The second core component is a set of two Learning Record Stores 
(LRSs). Every time an assessed performance state changes, GIFT 
reports the state and associated session data to a “noisy” LRS via 
experience API (xAPI) [7] statements. This noisy LRS captures 
everything that is happening in a session. A second “transactional” 
LRS filters noisy LRS data, retaining only the overall assessment 
of each trainee in a session. Data from the transactional LRS is 
polled by an instance of the Competency and Skills System (CaSS) 
[8], the third core component. 

CaSS stores competency objects that represent the individual and 
team tasks, skills, knowledge, attitudes, and behaviors that a given 
instance of STEEL-R is intended to train and track. These are stored 
in competency frameworks that include relations among the skills, 
competencies, and behaviors these objects represent. As STEEL-R 
runs, CaSS collects xAPI statements and formulates assertions. An 
assertion is a statement to the effect that a trainee or team has or has 
not demonstrated competency based on identified evidence under 
specified conditions [9].  

A GIFT performance assessment generated can generate multiple 
assertions about multiple competency objects. As explained in 
Section 3, CaSS computes competency states from these assertions 
using mathematic models. Competency states and other data are 
sent by CaSS to a Dashboard that can be used use to view states, 
track progress, and make informed training decisions. Throughout 
this process, the chain of evidence is preserved so an OC/T can 
review and audit it. Dashboard data can be traced back through 
CaSS, the LRS, and GIFT to trainee actions that can be replayed in 
a GIFT “gamemaster” interface. 

A crucial feature of this architecture is that the data from all training 
systems is filtered through GIFT, where it is referenced against a 
common set of competency objects. Data from desktop games, 
mixed reality simulations, and live exercises can thus be combined 
to estimate and track the state of each single skill and competency. 

2.1 STEEL-R Implementation  
STEEL-R uses a Multiple Open System Architecture (MOSA) that 
integrates GIFT and the US Advanced Distributed Learning (ADL) 
initiative’s Total Learning Architecture (TLA) [10] [11]. Most 
components (including GIFT and CaSS) are customized versions 
of open-source software. The LRSs are instances of the Yet 
Analytics SQL LRS [12], and all components are hosted on a 
hybrid container-based platform (Docker™). Since STEEL-R is 
intended to support field operation, it is designed for offline use and 
the entire system can be deployed on a mid-range rugged laptop. In 
field deployments, STEEL-R collects data in offline mode and 
forwards it to a cloud hosted instance when it comes back online. 
The mechanisms that permit offline operation enable STEEL-R to 
assemble data received from multiple sources at different times into 

a coherent sequence of events along a single timeline. This feature 
turned out to be crucial, as will be discussed in Section 5.2.  

3. ESTIMATING COMPETENCY 
The current version of STEEL-R considers three competency states 
– untrained, practiced, and trained – and three training phases – 
crawl, walk, and run. The three states are derived from US Army 
doctrine, while the training phases roughly correspond to synthetic, 
semi-synthetic, and live training The Dashboard component of 
STEEL-R informs OC/Ts how an individual or team is progressing 
from untrained to practiced to trained within each training phase 
and how ready they are for the next training phase, i.e., to move 
from crawl to walk and walk to run. In future Army versions, an 
expert state may be added, and different states and phases may be 
used for different application domains.   

3.1 The Math Model 
CaSS populates the STEEL-R Dashboard with longitudinal data 
about the competency state of each individual or team. These states 
are estimated using a mathematical model (the “math model”) that 
involves a repetition function, an evidence function, and rollup 
rules. The repetition function represents the number of times a skill 
or competency has been trained, weighted by a forgetting function 
and a function that accounts for the value of spaced repetition. 
Similar methods are used in ACT-R [13] and the work of 
Jastrzembski and others on predicting future training performance 
[14]. The evidence function assigns a score between -1 and 1 that 
is derived from the history of performance assessments, taking skill 
decay, the trustworthiness of the evidence, and performance on 
related skills and competencies into account. Rollup rules allow 
performance on related skills and competencies to contribute to an 
evidence function and allow dependencies on performance under 
varied conditions and on the states of sub-skills to be added. More 
details model can be found in [15]. 

3.2 The Role of CaSS Assertions 
The raw data used to evaluate the repetition and evidence functions 
comes from assertions. Assertions are a fundamental data type in 
CaSS that expresses conclusions drawn from evidence in a uniform 
way. An assertion can identify its source, the on which the source 
relied, the source of the evidence, the person or team  and the CaSS 
competency object about which the assertion is made, a timestamp, 
a decay function, and a parameter that indicates the confidence its 
source has in the assertion [15]. Assertions can assert that a skill or 
competency was or was not demonstrated or is or is not possessed. 
Assertions can also identify the conditions under which the 
evidence was gathered e.g., difficulty factors and stressors.   

CaSS computes the repetition and evidence functions from data in 
assertions. For example, if a competency object represents the 
ability of a team or person to perform a task, CaSS examines all 
assertions about their performance on that task and uses these to 
determine when and how often and with what results the task was 
attempted under varied conditions. This information is used to 
compute the repetition and evidence functions, which are in turn 
used to estimate whether they are untrained, practiced, or trained 
within the crawl, walk, and run phases. 

3.3 Generating Assertions from xAPI 
GIFT does not directly make CaSS assertions. Instead, it assesses 
actions, activities, and expected behaviors based on data from a 
training system and emits xAPI statements that require translation 
into CaSS assertions. CaSS does this with a decoder. The decoder 
has a lookup table that maps activities to competency objects and 
specifies how the three states reported by GIFT (at, above, and 
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below expectations) translate into positive or negative assertions 
about these objects. At present, this lookup table is hard-coded 
based on subject matter expert (SME) input.  

3.4 The Need for Data 
The math model and decoder have weights and parameters that can 
be set in a STEEL-R instance and control competency estimates. 
As STEEL-R develops, these will be used to compute performance 
probabilities and to recommend interventions and scenario designs. 
The system is designed so that its weights and parameters can be 
machine-learned, but at this stage they are manually set based on 
experimentation guided by theory. This requires significant data, 
and machine learning will require even more.  

The best data would be data from real-world training exercises. 
Unfortunately, there are limited opportunities to deploy STEEL-R 
in such exercises, and since many involve high-stakes training, 
STEEL-R must be thoroughly stress-tested and shown to produce 
reasonable results before deployment can be considered. For these 
reasons, we took the approach of generating artificial data. 

Referring to Figure 1, there is a choice as to where artificial data is 
inserted. One choice is to inject it into CaSS in the form of 
assertions. This can be used to test the math model, and early on we 
developed a small web app to do this, see Section 5. This allowed 
us to check formulas and code and to demonstrate how evidence 
affected competency estimates, but it was not sufficient to test the 
entire architecture. As a result, we decided to generate artificial 
xAPI statements that mimicked those generated by GIFT. This 
involves xAPI profiles, which are explained next.  

4. XAPI PROFILES 
The experience API (xAPI) is a mechanism for reporting and 
retrieving learner activities in an actor – verb – object – context - 
results format [7], [16].  xAPI statements in this format are sent to 
an LRS where they can be retrieved by other systems with 
appropriate permissions. xAPI statements are usually generated by 
an education or training system such as an LMS, simulation, or 
intelligent tutoring system, but statements can come from another 
LRS, as is done in the STEEL-R handoff between the noisy and 
transactional LRS. This ability enables multiple LRSs at the edge 
of a network to feed a central LRS, which improves scalability. The 
xAPI specification, which includes specifications for LRSs, was 
first developed by the ADL and is now undergoing more formal 
standardization in IEEE [16]. 

The xAPI specification is intended to be usable in any education or 
training ecosystem. To maintain flexibility, it does not specify the 
context or semantics of xAPI statements. In implementations it is 
necessary to add definitions and place restrictions on the format and 
elements in statements to ensure that data is properly reported and 
interpreted. This is done via xAPI Profiles [17]. 

xAPI Profiles define concepts, templates, patterns, and extensions 
for use in forming xAPI statements. Concepts define the vocabulary 
and attributes that may appear in xAPI statements, including verbs 
and activity types, and specify rules for how and when they can be 
used. Templates provide rules for constructing statements. Patterns 
are collections and sequences of templates that describe the actions 
associated with a task, performance, or learning path. Extensions 
enable new (externally defined) attributes to be used in statements. 
Together, these rules and definitions enable xAPI statements to be 
properly formed and interpreted. The xAPI profiles specification 
[18] establishes rules for serializing profiles in JavaScript Object 
Notation (JSON) and in JSON for Linked Data ( JSON-LD). Using 

JSON-LD, vocabulary can link to the same or similar terms in other 
profiles, creating a semantic web of xAPI statements. 

4.1 Designing the STEEL-R xAPI Profile  
A critical factor in designing any xAPI Profile is creating concepts, 
statement templates, and patterns that are flexible enough to be used 
in many different scenarios but restrictive enough to enable data to 
be reported and understood in use cases of interest. The challenge 
for STEEL-R is that STEEL-R is meant to support many types of 
experiential learning. Even in relatively narrow domains, it may be 
necessary to track and capture data on hundreds (or more) tasks, 
activities, and behaviors. Profiles could be created that specify the 
names of tasks and performance levels for each domain, but a more 
flexible approach is enabled by exploiting the capabilities of GIFT. 

4.2 The STEEL-R xAPI Profile 
As a scenario session unfolds, GIFT determines if performance on 
tasks, activities, and behaviors stored in a Domain Knowledge File 
(DKF) exceeds, meets, or is below expectations [19]. At present, 
CaSS only uses summative assessments at the session level, but 
GIFT generates a formative assessment each time a performance 
state changes and can record information about the exercise, such 
as the conditions under which performance was assessed. 

The xAPI profile designed for STEEL-R uses statement templates 
that enable tasks, activities, and behaviors to be referenced from the 
DKF and that report results on the GIFT three-step scale. This 
simplifies the form of statements, leaving the list of specific 
activities to GIFT.  The STEEL-R templates also allow scenario 
conditions to be reported and include extensions for linking a GIFT 
assessment to a recording of the session segment that produced it. 

To form a complete chain of evidence, STEEL-R xAPI statements 
can capture current performance states, changes in performance 
state, the factors that changed, and the conditions present when the 
state changed. Of particular interest to our future research is the 
ability to identify stressors and difficulty factors, both of which can 
be dynamically altered mid-session. Stress and difficulty are now 
being included in xAPI statements as discrete variables that are 
evaluated by GIFT and that CaSS can use in its math models.  

Patterns represent the lifecycle of trainee participation in a training 
session. The templates in these patterns are populated by system 
events such as starting or joining a session, interactions within the 
session that could result in changes to a trainee’s psychomotor, 
cognitive, or affective state, and GIFT’s conclusions about a 
learner’s overall performance with respect to specified tasks. Event 
data reported by GIFT is used to select the appropriate template and 
to filled in the template based template rules.  

5. GENERATING ARTIFICIAL DATA 
For testing purposes, artificial data was generated in two ways. The 
first was through a small app that was purpose-built to test and 
demonstrate the math model. This app allows users to apply hard-
coded assertions about competency objects in a framework and 
displays how the repetition and evidence functions, competency 
state, and performance probabilities change with each statement.   
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Figure 2: User applying a competency assertion  

A second screen shows how the estimated probability of successful 
performance varies over time as both positive and negative 
assertions are activated. This visualization proved useful for both 
demonstrating and validating the math model. 

 
Figure 3: Display showing how applying assertions changed the 
estimate of performance probability as evidence accumulated.  

5.1 DATASIM 
The second method used to generate artificial data used an open-
source component of the ADL’s TLA reference implementation 
[11] called the Data and Training Analytics Simulated Input 
Modeler (DATASIM) [20]. DATASIM can produce xAPI datasets 
that conform to one or more xAPI Profiles at small scale (tens to 
thousands of statements) and large scale (over a billion statements). 
DATASIM is controlled by a simulation specification that a user 
defines via a user interface.  Each simulation specification includes 
an xAPI Profile, the actors in the simulation, and parameters that 
specify the involvement of each actor in each type of activity as 
well as start and stop times, a seed value, and the maximum number 
of xAPI statements to be generated.  

Within a given simulation, DATASIM generates a pseudo-random 
autoregressive moving average (ARMA) time series (called the 

common time series) and a pseudo-random ARMA time series for 
each actor, each determined by the seed value. An actor generates 
an xAPI statement whenever their time series graph crosses the 
common time series graph [21]. When that happens, a Gaussian that 
is weighted by parameters in the simulation profile is sampled for 
each possible pattern and the pattern with the highest value is used. 
The same is then done to select templates in the pattern, statements 
in each template, and concepts in each statement. 

5.2 Applications to STEEL-R 
We used DATASIM to benchmark and stress-test STEEL-R, which 
was the original purpose of DATASIM [21]. By using the same 
actors, we could simulate multiple successive training sessions 
across each training phase and by referencing the same competency 
objects in the CaSS decoder, we could generate assertions about 
same competencies, skills, and behaviors at each stage. This let us 
validate system operation and benchmark performance at every 
point and for every component downstream of GIFT. It did not, 
however, give us the desired level of realism.  

Although xAPI profiles enable DATASIM to generate data that 
statistically reflects the right mix of training events and outcomes 
at the macro level, DATASIM has no mechanism that allows a 
given actor to develop competency as they engage in successive 
activities and no mechanism to realistically correlate individual and 
team behavior. Thus, if DATASIM is used to simulate people 
performing a series of tasks, it will produce about the right number 
of successful and unsuccessful task completions but cannot alter its 
parameters during a simulation so that a person who successfully 
completes the early tasks will be more likely to successfully 
complete later ones. Similarly, if one of the actors is a team, 
DATASIM, the probability of team events cannot be changed based 
on the activities of team members during a simulation. Since 
longitudinal data and developmental progression are fundamental 
to experiential learning, we needed a way to reflect individual 
development and team dynamics.  

We did this by running series of micro-simulations instead of one 
large one and by manually set parameters between runs. Each 
micro-simulation produced data for the same actors in a small time 
slice. This gave us greater control over the progression of outputs 
and implied team dynamics. STEEL-R treated these as offline data, 
automatically stringing them together to create a sequence of 
activities along a single timeline. This produced enough data to test 
and tune STEEL-R and to implement the use case described next. 

5.3 A Use Case and Implementation 
In November of 2021 we used DATASIM to implement and demo 
a use case in which a small team underwent three days of training. 
Our goal was to highlight how team competency improved and 
progressed from crawl to walk as interactions with multiple training 
systems activated cognitive, psychomotor, and affective skills.  

On day one, the team trained on Army battle drill 6 (BD6) [3] in a 
synthetic game-based environment. This was done in multiple 
sessions with under varied conditions and with varied difficulty 
levels. DATASIM micro-simulations were manually configured to 
show performance improvement over the course of day one. On day 
two, BD6 training continued in a mixed reality environment that 
activated psychomotor skills. The data from day one showed that 
the team knew what to do, so day two provided opportunities to 
apply that knowledge in a safe controlled environment with more 
realistic interactions. The data generated by DATASIM represented 
exposure to numerous scenarios and showed further performance 
improvement. At the start of day three the team leader looked at the 

831



Dashboard (Figure 4) and noticed that the team was progressing 
well on BD6 but there were potential skill decay issues with a 
related task trained in a previous battle drill. As a result, the team 
leader initiated training of this previous battle drill. The third day 
of training activated some of the same skills as the first two days 
and resulted in improvements in skills that seemed to have decayed.  

 
Figure 4: Part of the Dashboard, showing progress on reported 
by CaSS and derived from artificial data.  

6. CONLUSION  
The use case we implemented and demonstrated with artificial data 
showed the art of the possible. It showed a team leader using 
competency estimates derived from multiple and varied training 
environments to personalize a training plan and the potential to 
optimize training time by leveraging multiple training modalities 
within a given training cycle. The ability to mine artificial data 
enabled us to stress-test and benchmark STEEL-R and permitted us 
to visualize the effects of parameters in the formulas and models 
used to estimate competency. This served as an excellent tool for 
debugging, tuning, and demonstrating the models, and we continue 
to take this approach as we make changes and add features.  

We note that as of November of 2021, neither difficulty or stress 
levels were reported by GIFT or used by CaSS. These are critical 
factors that can be manipulated during training sessions and that 
should be used when determining whether an individual or team is 
trained and ready to advance. GIFT is now reporting difficulty and 
stress levels in xAPI statements, and we are incorporating difficulty 
and stress into the decoder, math model, and Dashboard.  

Finally, our work with DATASIM exposed the need to model the 
progress of simulated individuals and to correlate individual and 
team behaviors. We did this with manually manipulated micro-
simulations, which is labor intensive and will not scale. In this 
regard, we are exploring two further research directions. The first 
is to implement ways to dynamically alter the parameters used to 
generate artificial data during a single simulation. The second is to 
enable the parameters that control these alterations to be machine-
learned. These will create a virtuous cycle wherein artificial data 
are used to test and tune new features and models, these features 
and models are used to improve real-world training, and real-world 
training data are used to improve the generation of artificial data. 
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ABSTRACT 
Ten years after the announcement of the “rise of the super 

experiment” at Educational Data Mining 2012, challenges to 

implementing “internet scale” educational experiments often 

persist for educational technology providers, especially when they 

seek to test substantive instructional interventions. Studies that 

deploy and test interventions, when informed by data-driven 

modeling, are often described as “close the loop” studies. Studies 

that close the loop attempt to link improvements in statistical and 

machine learning models of learning to real-world learning 

outcomes. After first considering challenges to internet scale 

experiments, we review several educational data science/mining 

studies that close the loop between data-driven modeling and 

learning outcomes. Next, we describe UpGrade, an open source 

architecture that, when integrated with educational technologies, 

helps overcome challenges to large-scale field trials (or internet 

scale experiments) that close the loop between data-driven work 

and real-world learning outcomes. In addition to describing 

preliminary randomized experiments that have been conducted and 

will soon be conducted using the architecture in two educational 

technology platforms, we end with a “call for contributors and 

integrators.” UpGrade contributors and integrators will be 

researchers and developers who seek to drive continuous, data-

driven improvements in real-world settings where learning with 

technology occurs. 

Keywords 
A/B testing, closing the loop, educational technology, large-scale 

field trials, experimentation, open source software. 

1. INTRODUCTION 
At Educational Data Mining 2012, Stamper et al. [18] described 

“the rise of the super experiment” and the Super Experiment 

Framework (SEF), which conceptualizes data-driven educational 

experimentation at the lab scale, school scale, and internet scale. 

Lab scale experiments may have sample sizes in the range of 1-100; 

school scale experiments range in sample size between tens of 

learners and thousands of learners, and internet scale experiments 

may have sample sizes ranging from thousands of learners to 

millions of learners. Experiments at each scale have benefits and 

drawbacks, and there are important ways in which experiments at 

each scale can inform the design and implementation of 

experiments at the other scales. The authors’ presentation of the 

SEF concludes by laying out several key challenges for internet 

scale experiments. We briefly present their four posited challenges 

and review several (types of) educational data science/mining 

(EDS/EDM) studies that “close the loop” before describing the 

UpGrade open source architecture for conducting experiments in 

educational technologies at any of the SEF’s scales and how 

UpGrade helps educational technology developers address these 

challenges. 

2. CHALLENGES FOR INTERNET 

SCALE EXPERIMENTS 
Stamper et al. [18] lay out four key challenges for internet scale 

educational experiments. The first challenge is attracting a large 

user-base to the learning platform on which one would like to 

conduct such experiments. While an important issue, we leave the 

much broader discussion of large-scale adoption of educational 

technologies and software for learning for another day and assume 

that a researcher seeking to “close the loop” already is satisfied that 

they have a sufficiently large and diverse user-base to answer their 

research questions.  

The second challenge they suggest, in the context of an educational 

game deployed via the Brainpop.com platform, is “instrumenting 

software for generating data logs that measure player performance, 

learning, and engagement” [18]. This is another broad, general 

challenge for developing software for learning, whether an 

educational game, intelligent tutoring system (ITS), or other type 

of learning software. Well-instrumented learning software provides 

insights about learners and their learning process, behaviors, 

engagement, and related facets of their learning experience that are 

the purview of nearly all work published at Educational Data 

Mining and related venues. We assume that readers and platform 

developers already recognize the importance of generating 

meaningful data from their learning platforms if they seek to run 

studies that close the loop or similar internet scale educational 

experiments. 

Features of UpGrade target the third and fourth challenges raised 

by Stamper et al. [18]. The third challenge they pose is “the 

configuration of the software to allow for experimental designs” 

[18]. Being able to run experiments within a piece of software 

requires that different variants or instances of elements within an 

application’s design space can be instantiated and deployed in 

software, abstracted in such a way that the software can deliver 
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users to particular experiences based on their condition assignment. 

The software must also have some way of assigning users to 

particular experimental conditions. While variants within a target 

application’s design space must still be created, UpGrade serves as 

an enabling technology to make experimental management (e.g., 

handling complexities of random assignment and tracking of users’ 

condition assignments) less onerous for technology developers. 

One way of viewing UpGrade is as an enabling technology that 

makes A/B testing or experimentation a relatively simple matter of 

instrumenting target applications by implementing appropriate 

application programming interface (API) “hooks” to UpGrade 

rather than having to implement complex experimental 

management logic within the target application itself. Just as 

learning software developers increasingly understand the 

importance of instrumenting their software for high quality learning 

data collection, UpGrade may serve to further the goal that basic 

instrumentation in learning software will allow for rigorous 

learning engineering, involving experimentation and testing of new 

content, software features, instructional approaches, and other 

factors of interest to both researchers and technology developers. 

The fourth challenge is two-fold, as Stamper et al. [18] note that 

“researchers increasingly face the challenge of making use of tens 

of thousands of subjects in an efficient manner” while also pointing 

out that some experiments may create inconsistent user 

experiences. While the authors view inconsistent user experiences 

as a potential catalyst for reducing overall participation, we take 

inconsistent user experiences as a more fundamental potential 

barrier to delivering internet scale experiments. Educational 

technology providers might reasonably refuse to deploy 

experiments at all if there are potential scenarios in which 

unsatisfying, inconsistent, or disengaging user experiences are 

likely to result.  

Enabling technologies for large-scale educational experiments like 

UpGrade ought to deliver flexible options and capabilities to 

researchers and developers to deploy complex, substantive 

experiments and experimental designs in ways that still maintain 

high quality, consistent learning experiences. By illustrating 

practical examples of how studies that “close the loop” based on 

EDS/EDM insights might noticeably affect (or not) the learning 

experiences of real K-12 students and teachers, we motivate how 

UpGrade helps to meet many of the challenges raised by internet 

scale experiments. 

3. “CLOSING THE LOOP” 
We consider two kinds of potential “close the loop” studies drawn 

from literature in EDS/EDM and ITS research to provide a simple 

illustration of the types of considerations educational technology 

providers might make in delivering internet scale field trials or 

experiments to users in settings like K-12 classrooms. One case is 

intended to illustrate a situation in which a relatively simple, user-

level random assignment study is unlikely to raise any concerns 

about consistency of learner experience while the other illustrates 

some potential concerns about consistency that might arise. In the 

section that follows, we describe important features and 

affordances of the UpGrade architecture in more detail to show how 

it enables researchers and educational technology developers to 

deploy experiments that address these concerns about consistency 

as well as provide other options for delivering high quality 

experiments for learning engineering.  

The overarching goal of “closing the loop” with experiments is to 

evaluate whether observed improvements in (usually statistical) 

outcomes like prediction accuracy of particular models translate 

into improved learning outcomes for students in a target system. 

Learning outcomes of interest in target systems might include 

efficiency of practice, time to skill mastery, or gains in performance 

from a pre-test measure to a post-test measure, among others. 

Our example “close the loop” studies are related to how data-driven 

modeling of learner performance informs the specification and 

parameterization of so-called knowledge component (KC; or skill) 

[10] cognitive models frequently used within ITSs like Cognitive 

Tutor/MATHia [14] or in tutors built with tools like the Cognitive 

Tutor Authoring Tools [2].  

A bevy of research in EDS/EDM and related areas (e.g., [3, 15, 19]) 

consider different approaches to fitting the parameters of KC 

models deployed in ITSs, typically within the four-parameter 

framework of Bayesian Knowledge Tracing [6], holding the set of 

KCs that appear to a learner during the learning experience fixed. 

Contrast (1) studies that close the loop by contrasting two or more 

sets of parameter estimates for the same KC model with (2) studies 

that contrast two or more different specifications of a KC model, of 

which there are several examples in the literature (e.g., [11]). The 

second type of experiments are typically supported by semi-

automated, data-driven techniques (e.g., Learning Factors Analysis 

[5]), various types of task analysis (e.g., [4]), or more recent multi-

method approaches for “design loop adaptivity” [1, 8]. These 

techniques are used to re-evaluate the underlying KC model that 

drives the ITS’s adaptive learning and determine how the 

specification of the KCs themselves might better represent what a 

student is learning (not just the performance parameters related to 

their learning) as they practice in the ITS. 

In the first “parameter estimation” experiment in an ITS like 

MATHia, one or more experimental conditions and a control 

condition each have the same “skillometer” or dashboard display 

for students to see their progress toward KC mastery. Similarly, the 

same KCs or skills reported to teachers in their classroom analytics. 

The only difference in a parameter estimation experiment is likely 

to be exceedingly subtle, in that there are different parameters for 

subsets of KCs in each condition. In the latter “specification” 

experiment, the control condition and one or more experimental 

conditions vary in what KCs constitute the set of KCs used to drive 

adaptation for the topic as well as what is displayed to students and 

their teachers. 

In the hypothetical parameter estimation study, individual random 

assignment is likely to be a reasonable choice for the researcher 

running the experiment. If the ITS, for example, implements some 

form of mastery learning (e.g., [17]), then students will be 

accustomed to receiving different amounts of practice on KCs they 

encounter within different topics in the ITS. Different 

parameterizations for different students in the same classroom are 

not likely to lead to drastically different perceptions of the learning 

experience for students. Nevertheless, if the experiment is 

successful, one or more parameterizations may lead to more 

efficient practice or provide students with additional practice that 

they need to achieve mastery. Teachers’ experience of using 

analytics and reports are likely to be nearly indistinguishable across 

the different parameterizations. 

Though perhaps still subtle, KC model specification studies are 

more likely to create inconsistencies in K-12 learners’ and 

instructors’ experiences in an ITS if they were to be deployed 

within, for example, the same classroom, or even to all of the 

classrooms of the same teacher. Changes in the KC model 

specification may also be accompanied by design differences in the 
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tasks presented to students (e.g., as in [8, 18]), presenting further 

opportunities for noticeable differences in learner experiences to 

emerge. 

Generally, the contrast we seek to illustrate is between any type of 

relatively “stealthy” experiment with more “conspicuous” and/or 

visually salient experiments. More stealthy examples, like the 

hypothetical experiment that only manipulates parameter estimates, 

are those in which differences in the learner experiences are subtle 

and likely to be unnoticed between conditions. Experiments are 

likely to be more conspicuous when they seek to test substantive 

differences in learning experiences and may have more easily-

discernable variations, as in the “specification” experiment.  

More conspicuous differences might reasonably be evaluated 

between instructional methods, encouraging students to adopt 

different problem-solving strategies for the same topic, and contrast 

along any number of a wide variety of instructional decisions 

content designers must make [9]. Many such differences between 

experimental conditions are easily perceived by students and 

teachers. If condition assignment is not thoughtfully considered 

(e.g., by considering a group-level assignment), students may 

realize that they are receiving a different experience compared to 

other learners in their classrooms, leading to unanticipated changes 

in learning patterns. Teachers might easily become overwhelmed 

by the need to support different learning experiences for the same 

topic, keep track of differences in analytics and reporting, and other 

potential inconsistencies. In what follows, we describe how the 

UpGrade platform can help educational technology developers and 

researchers not only deploy internet scale educational experiments 

but also do so in ways that handle many of the challenges that arise 

in such deployments in real world settings in which learning takes 

place. 

4. UPGRADE  
UpGrade1 [16] is an open source software architecture (available 

via GitHub2) intended to lower barriers to learning engineering and 

enable internet scale experiments (also sometimes referred to as 

“A/B tests” or randomized field trials) that test substantive changes 

to learning experiences in settings like K-12 classrooms while 

preserving consistent, high-quality learning experiences for end-

users. 

 

 

1 https://www.upgradeplatform.org/  

Figure 1. Screenshot of the “overview” of an experiment in the 

UpGrade user interface for creating a new experiment 

We consider several of the major affordances provided by 

UpGrade, several of which are illustrated in the screenshot of 

Figure 1 that shows the preliminary “overview” of an UpGrade 

experiment as it is being specified. Group random assignment, 

consistency rules, post-experiment rules, and user segmentation are 

features of experiments that help to ensure that consistent learning 

experiences are delivered during experiments. Researchers 

determine how best to set these options as a part of designing 

experiments in UpGrade. 

4.1 Group Random Assignment 
While UpGrade has logic for assigning experimental conditions on 

an individual-student or user basis, the ability to randomly assign 

conditions by group (e.g., at the level of classrooms within a K-12 

school) enables researchers to conduct internet scale experiments 

in educational software products that are both deployed at scale and 

used in authentic classroom contexts. In educational settings, it may 

be undesirable for students within the same group (e.g., by class, 

teacher, school district, or some other grouping) to be assigned 

different conditions within the same experiment, particularly if 

such conditions involve conspicuous or salient visual changes (e.g., 

different “skillometers” displays and teacher analytics in the KC 

model specification experiment illustrated in §3) or substantively 

different models of instruction. UpGrade manages coherence of 

learning experiences by group as well as anomalies that may arise 

in group membership, enabling researchers to specify how an 

experiment should behave if a student switches classes or is in 

multiple classes simultaneously. 

4.2 Consistency Management 
The second way in which UpGrade helps deliver consistent 

experiences is via associating deployed experiments with 

consistency rules that govern how users are treated for 

inclusion/exclusion in an experiment who have already 

encountered pieces of instructional content or other design features 

that are included in experiments. This is particularly useful when 

instructional content is delivered via adaptive software in which 

self-paced progress is often a crucial feature of the learning 

experience; in such software students may reach the content of 

interest at different times. If a student in a class encounters the 

content of interest earlier (or later) than their fellow students, 

consistency management can specify whether condition assignment 

binds more strongly to group membership or individual students. 

4.3 Post-Experiment Rules 
A “post-experiment rule” is a parameter that manages delivery of 

experimental conditions once an experiment has stopped running, 

but students may still interact with the target content in the 

educational application. Researchers may wish to have a “winning” 

condition be delivered to subsequent students who encounter the 

content of interest, or may wish to maintain the condition 

assignment weighting even if the experiment has ended. For 

example, if a study using UpGrade runs from September-

November of a school year, but a student goes back to review 

content in preparation for an end-of-semester exam in December, a 

post-experiment rule can specify whether that student should 

receive the same experimental condition they were originally 

assigned, or whether they are permitted to experience a default or 

other condition. 

2 https://github.com/CarnegieLearningWeb/UpGrade  
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4.4 User Segmentation 
Another challenge when conducting internet-scale experiments in 

real-world classrooms is that researchers may not necessarily want 

or need to target all members of a population. Segmentation and the 

ability to pre-define include/exclude lists empowers researchers to 

target experimental interventions to groups of interest, at the level 

of interest: e.g., middle schools, 7th grade, specific districts, or even 

geographic regions. Similarly, districts or schools can fully “opt-

out” and join a global exclude list without impacting research at 

scale conducted by an educational technology company.  

 

While learning platforms often do not automatically collect data 

about individual learner demographics, when such data are 

available (or when such data are available at an aggregated level 

like that of particular schools), user segmentation is likely to also 

play an important role in better understanding what works for 

particular sub-populations of students, helping researchers close the 

loop in ways that promote inclusion and equity across diverse 

populations of learners. 

4.5 Monitoring Metrics 
UpGrade enables researchers running experiments to monitor their 

progress with respect to “enrolled” users (i.e., those users who have 

encountered relevant content and been assigned to a condition) as 

well as those who have been excluded. In addition, APIs are 

available for target learning applications to send specific metrics 

(e.g., time to complete a particular piece of content) of interest to 

UpGrade’s monitoring dashboards for real-time progress 

monitoring of experimental progress. The screenshot in Figure 2 

illustrates a particular case of an experiment with two conditions in 

the UpGrade platform, displaying enrollment data over time and by 

experimental condition. 

 

Figure 2. Screenshot of monitoring dashboard in UpGrade, 

showing enrollment metrics over time and by condition, for two 

experimental conditions, entitled “ddi_control” and 

“pre_ddi_variant,” where “ddi” stands for “data driven 

improvement” of particular content in Carnegie Learning’s 

MATHia platform. 

4.6 Support for Diverse Experimental Designs  
UpGrade currently supports relatively simple experimental 

designs, including weighted random assignment to two or more 

conditions (see “weight” column near the bottom of the screenshot 

in Figure 2) as well as within-subject, factorial, and partial-factorial 

designs. UpGrade developers have a roadmap for implementing 

additional designs including multi-arm bandits and stepped-wedge 

designs in the near future. More sophisticated designs and those 

 

3 https://terracotta.education/  

incorporating adaptive experimentation could be valuable 

contributions from the EDM and allied communities. This leads to 

our call for contributors and integrators. 

5. CALL FOR CONTRIBUTORS & 

INTEGRATORS 
Our goal in the present paper has been to introduce UpGrade to the 

EDM community. We hearken back to the “rise of the super 

experiment” and seek to build awareness of challenges often raised 

by internet scale, experimental “close the loop” studies and how 

UpGrade presents a solution that can be integrated within an 

existing or emerging educational technology product to help 

overcome those challenges. Efforts at the intersection of EDS/EDM 

and the emerging field of learning engineering rigorously seek to 

establish causal links between data-driven insights that inform 

improvements in educational technologies and practical learning 

outcomes resulting from the use of these technologies. We applaud 

efforts like E-TRIALS [12], MOOClets [13], and Terracotta3 that 

aim to provide similar support for rigorous experimental or A/B 

testing of learning innovations within particular contexts (e.g., E-

TRIALS within ASSISTments [7], TerraCotta within the Canvas 

Learning Management System). UpGrade can be integrated into 

existing or new learning applications and technologies to similarly 

drive rigorous data-driven improvements to learning platforms.  

Educational technology developers must still (as ever) address 

challenges to attracting large and diverse user-bases, instrumenting 

their technology to capture rich learning data, and appropriately 

abstracting features and content in their systems so that different 

learning experiences can be delivered to learners (Challenges #1-2 

and part of the third challenge described by [18]). However, 

UpGrade removes many of the barriers imposed by the challenges 

of large-scale experimental management in real-world learning 

settings. The educational technology developer need only 

implement software instrumentation that calls UpGrade’s API to 

determine which alternative learning experience (if any) ought to 

be delivered to a particular user, given characteristics of that user 

that the target system “knows” about (e.g., via communication with 

a rostering system) such as the class or school in which the user is 

learning. The target system for experimentation can also implement 

UpGrade’s API to provide metrics for monitoring experiments as 

they proceed. UpGrade handles complex logic of managing 

condition assignments and dealing with real-world complexities 

that inevitably arise in settings like K-12 schools. 

As an open source platform, developers can contribute new 

functionality and features to the codebase for the future benefit of 

all integrators and researchers using platforms that integrate with 

UpGrade. For example, code might be contributed to build 

connections to deliver A/B tests in different LMSs and implement 

appropriate APIs to have metrics for monitoring delivered to 

UpGrade. Support for new types of experimental designs and 

algorithms for adaptive experimentation are also a natural place for 

future development. We welcome such new contributions from the 

EDM community as well as from the broader educational 

technology and learning engineering communities. 

UpGrade has already been used to deliver experiments to tens of 

thousands of learners in a math game similar to that targeted in the 

paper that introduces the SEF [18]. A number of experiments are 

currently deployed in Carnegie Learning’s MATHia, and new 

experiments will be deployed in the coming months using 
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UpGrade. These experimental field trials will close the loop 

between data-driven improvements to facets of learning 

experiences like KC models as well as personalization and 

motivational features, and we look forward to presenting those 

results in the near future. We encourage educational technology 

developers to consider integrating UpGrade into their platforms to 

enable rigorous, iterative learning engineering improvements and 

platform-enabled educational research. 
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ABSTRACT
As educational technology platforms become more and more
commonplace in education, it is critical that these systems
work well across a diverse range of student sub-groups. In
this study, we estimated the effectiveness of MAP Accel-
erator; a large-scale, personalized, web-based, mathemat-
ics mastery learning platform. Our analysis placed a par-
ticular focus on students from historically under-resourced
groups. Our sample comprised 181K students in grades 3-
8 from 99 school districts across the United States, 52% of
whom attended schools where the majority of the students
are eligible for free or reduced price lunch (a proxy for high-
poverty schools). Using a combination of system logs/plat-
form telemetry data, standardized assessments, and publicly
available school/district data, we estimated the causal effect
of a year-long supplemental math intervention on students’
standardized mathematics growth outcomes via a quasi-e-
xperimental design with controls and a modification of the
difference-in-differences framework. Students who used the
platform as recommended (30+ min/wk) during the (COVID-
19 disrupted) 2020-2021 school year had math growth scores
0.26 standard deviations higher on average than similar stu-
dents who used the platform for <15 min/week. Further,
positive benefits of the platform were observed across all
genders, race/ethnic groups, and school poverty levels, but
were not as large for districts with greater than 20% En-
glish language learners. Further analysis revealed that these
students were predominantly Hispanic, and tended to make
less progress on fewer skills than their peers given the same
amount of practice time. We discuss the implications of
these findings, and potential avenues to ensure more equi-
table outcomes for these students in the future.

Keywords
equity, causal inference, mastery learning, Khan Academy,
English Language Learners

1. INTRODUCTION

Perhaps the most natural question to ask concerning any ed-
ucational intervention is “does it work?” Indeed, the What
Works Clearinghouse has reviewed over 11,000 studies eval-
uating the efficacy of various programs and technologies [26].
Overwhelmingly, these studies are concerned with establish-
ing how well the intervention works in general. Of course,
the results are inherently limited to the student popula-
tion in the study, and generalizing the results is not al-
ways straightforward. In the U.S., student populations are
becoming increasingly diverse[13], with students coming to
the classroom with differing skills, backgrounds, and needs.
Moreover, there is a growing awareness of educational in-
equities across the student population coupled with concerns
about systemic bias. Even if a study sample is representa-
tive of national norms, it is unreasonable to expect that
the expected effect would work the same for every subgroup
within the sample. Thus, it is critical that we move from
asking only “does it work?” to a more specific “for whom
does it work?”

In this study, we estimated the effectiveness of Khan Acade-
my’s MAP Accelerator, a large-scale, personalized, web-
based, mathematics mastery learning platform. Like many
other such studies, we used performance on a standardized
test, NWEA MAP GrowthTM, to measure the impact of the
intervention. We utilized statistical controls to rule out the
influence of confounding variables when possible, and ap-
plied difference-in-differences to control for unobserved con-
founding as well. Critically, we also repeated the analyses
across a variety of student sub groups (grade, gender, eth-
nicity, socioeconomic status, English language proficiency)
in order to determine whether the software worked equally
well for these groups.

2. BACKGROUND
2.1 NWEA MAP Growth
MAP Growth is a computerized, adaptive, standardized as-
sessment designed to measure and track student mathemat-
ics, reading, language usage, and science [18]. For the pur-
poses of this report, we are primarily interested in the math-
ematics assessment. MAP Growth is designed to be used
as an interim assessment, allowing educators to monitor
progress and tailor instruction in advance of a summative
assessment. The assessment is typically administered three
times per year—Fall, Winter, and Spring—with an optional
summer administration. During the Fall 2020 administra-
tion, the MAP Growth test was completed by nearly 4.4
million students in the United States [14].

P. Grimaldi, K. Weatherholtz, and K. M. Hill. Estimating the causal
effects of Khan Academy Map Accelerator across demographic sub-
groups. In A. Mitrovic and N. Bosch, editors, Proceedings of the 15th
International Conference on Educational Data Mining, pages 839–
846, Durham, United Kingdom, July 2022. International Educational
Data Mining Society.

© 2022 Copyright is held by the author(s). This work is distributed
under the Creative Commons Attribution NonCommercial NoDeriva-
tives 4.0 International (CC BY-NC-ND 4.0) license.
https://doi.org/10.5281/zenodo.6852932

839



Figure 1: Screenshot of MAP Accelerator unit page. Stu-
dents can learn, practice, quiz, and view mastery states from
this page.

MAP Growth is based on the Rasch Model [2], which mea-
sures latent student ability on the tested domain. The as-
sessment provides a “RIT” score (short for “Rasch Unit”),
which is a linear transform of the θ estimates from the Rasch
model. RIT scores typically range from 100 to 350. Given
the adaptive nature of the assessment, the RIT scale is not
grade dependent. Instead, a students RIT score improves in-
crementally across school years, affording the ability to track
progress longitudinally. RIT scores can be categorized into
different “bands”, which describe the expected range for stu-
dents at that grade level. Scores are also offered for four high
level subscales: 1) Geometry, 2) Number & Operations/The
Real & Complex Number Systems, 3) Operations & Alge-
braic Thinking, and 4) Measurement & Data/Statistics &
Probability.

2.2 MAP Accelerator
MAP Accelerator is a web-based supplemental math learn-
ing tool designed to be used in schools that are also using the
MAP Growth assessment. At the beginning of the school
year, a student’s subscores from their fall MAP Growth
assessment are sent to MAP Accelerator, which then con-
structs for them a set of supplemental instruction and prac-
tice content. For example, if a students RIT score for Ge-
ometry was in the 176-188/Grade 3 range, their lessons in
Geometry would be aligned to that level.

A full description of MAP Accelerator’s functionality is be-
yond the scope of this paper. However, the key take away
is that students can learn, practice, or quiz on content of
their choosing (see Figure 1). Learn refers to study activ-
ities such as explanatory videos, worked examples, and ar-
ticles. Practice refers to solving interactive math practice
problems on specific skills[8]. Practice opportunities typi-
cally provide hints to students, as well as immediate elabo-
rative feedback[21] after failed attempts. Quizzing is similar
to practice, except provides an opportunity for students to
self-test in a mixed skill environment.

MAP Accelerator also implements concepts from mastery

learning [15]. The idea behind mastery learning is that stu-
dents should work at their own pace to master content before
advancing on. MAP Accelerator monitors student perfor-
mance on practice blocks, quizzes, and mastery challenges
and provides feedback on their estimated level of mastery
(attempted, familiar, proficient, or mastered). While MAP
Accelerator allows students to chose their own path, the
mastery feedback allows for easy selection of topics that need
the most help.

Importantly, MAP Accelerator is intended to be used as a
supplement and not a primary source of instruction. Teach-
ers are encouraged to have their students use MAP Accel-
erator for at least 30 minutes of focused learning time per
week—a dosage level that is meant to be reachable with one
dedicated class period per week.

2.3 Impact of COVID-19 Pandemic
MAP Accelerator was first broadly released during the 2020-
2021 school year. This was the peak of the COVID-19
pandemic and prior to wide spread availability of vaccines.
Nearly two-thirds of U.S. students were enrolled in distance
learning formats during the Fall 2020 school year [13]. In
addition to academic life, home life was disrupted as well.
Many parents were losing their jobs or shifting to at home
work. Thus, many students had to complete the school
year jockeying for internet access and a quiet place to study.
Of course, the degree of disruption would obviously depend
on socioeconomic-status of the household and available re-
sources.

Given the extreme disruption to academic and home life,
it is not surprising then that student achievement measures
would drop. Lewis et al. [17] reported that overall Math
RIT scores in Fall of 2020 were considerably lower than
pre-pandemic levels. Moreover, the amount of growth from
Fall 2020 to Spring 2021 was lower than historical averages.
Thus, not only did students start the school year behind
where they should have been, they grew at a slower pace
than they would have been expected to pre-pandemic.

Lewis et al.[17] also found that the negative effects of the
pandemic were not observed equally across all ages or de-
mographic groups. First, younger students (grades 3-5) were
more negatively affected than older students (grades 6-8).
Second, pandemic related declines were more pronounced
in students that attended schools with a high proportion of
students on free or reduced lunch. Finally, students from his-
torically under-served groups (e.g., Hispanic/Latino, Black-
/African American, American Indian/Alaskan Native) were
more negatively affected than White and Asian students.
In sum, the pandemic appears to have hit vulnerable popu-
lations the hardest, and exacerbated pre-existing inequities
and achievement gaps.

3. METHODS AND RESULTS
3.1 Data and Sample Summary
In the sections below, we describe some of the data that was
available to us, as well as any feature engineering we did.
Data from Khan Academy and NWEA MAP Growth tests
were privately shared with the researchers for this study. We
also made use of publicly available government data from the
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National Center for Education Statistics (NCES). All data
and analyses are limited to U.S. Schools that adopted MAP
Accelerator for the 2020-2021 school year, and to students
who took both a Fall and Spring administration of the test.
A summary table of the data is available in Appendix A.

Several measures were taken to protect the privacy of stu-
dents and teachers in this study. All data were deidentified,
and personally identifiable information was removed and re-
placed with electronically encrypted hashed fields. Key files
to decrypt the hashed fields were not shared with the re-
searchers. Deidentified data was stored on encrypted and
password protected servers. Only researchers directly in-
volved with the project were permitted access to the data.
Finally, all data was used in accordance with MAP Acceler-
ator Supplemental Terms and Conditions, which was agreed
to by participating districts.

3.1.1 School Data
For each student, we were provided with district_name,
school_name (school the student started the year enrolled
in), and math_teacher (unique math teacher identifier).

Using this information, we were able to merge publicly avail-
able school level variables from the NCES. For each school,
we obtained the percent of students reported to be on Free
or Reduced Price Lunch (FRL), a commonly used indica-
tor of socioeconomic status[25]. From this, we created a
school_frl_level variable by binning schools into one of
four groups: High FRL (>= 75%), Med FRL (> 25%, <
75%), Low FRL (<=25%), or Unknown. We also obtained
the percent of English Language Learners at the district
level (ELL). From this we created a district_ell_level

variable by binning into four groups: High ELL (>= 20%),
Med ELL (>=5, <20%), Low ELL (<5%), and Unknown.

The key point to note about the school level data is that
52% of the sample came from High FRL schools. The overall
sample skews more towards high poverty schools than would
be expected from a random sample of US schools (24%)[24].

3.1.2 Demographic Data
For each student, we were provided with their gender (Male,
Female), grade (3 - 8), and ethnic_group (American Indian
or Alaska Native, Asian, Black or African American, His-
panic or Latino, Native Hawaiian or Other Pacific Islander,
White, Multi-ethnic, Not specified or Other).

A key point to note about the demographics of this sample
(see Appendix A) is that the ethnicity breakdown is much
different than national averages. In particular, Hispanic or
Latino students are just as prevalent in the study sample as
White students. Nationally we would expect around 47%
White and 27% Hispanic or Latino [13].

3.1.3 MAP Accelerator Usage
For each student we obtained a summary of their total min-
utes using MAP Accelerator, filtered to the time period be-
tween when they took their Fall 2020 and Spring 2021 MAP
Growth assessments. Further, only “on task” (i.e., not navi-
gation) minutes working with math content specifically was
used. Because the duration of the period between tests var-
ied across students, we then divided the total minutes by

the number of weeks between the two assessments. Lastly,
we created a categorical usage_group variable by binning
the total minutes per week into four groups: No use, < 15
min/wk, 15-30 min/wk, or 30+ min/wk.

Only 5% of students reached the recommended level of 30+
min/wk, and only 9% reached the next highest level of 15-
29 min/wk (see Appendix A for full table). We conducted
an exploratory analysis to examine how much school level
factors predicted an individual students level of usage. We
fit a multi-level regression model predicting students’ to-
tal learning minutes on MAP Accelerator based on a single
population-level intercept (global mean) and random inter-
cepts for teacher, school and district. The random effect
variance estimates are shown in Table 1. The intraclass cor-
relation coefficient (ICC) indicated that 57% of the variance
in students usage is explained by the environmental factors
of teacher, school and district [12].

Table 1: Variance estimates from a multi-level regression
model predicting users’ learning minutes on MAP Acceler-
ator.

Variance Proportion of variance

math teacher 38741.12 0.22
school name 25034.16 0.14
district name 35668.95 0.20
Residual 74729.04 0.43
a ICC = 0.57

3.1.4 MAP Growth Data
NWEA provided several measures for each student, the crit-
ical ones being: baseline_test_rit_score (Fall 2020 RIT
score), endline_test_rit_score (Spring 2021 RIT score),
subject (Math or reading), and conditional_growth_index

(population-normalized fall to spring gains).

The Conditional Growth Index (CGI) will be our primary
outcome variable of interest, thus it warrants additional ex-
planation. CGI is essentially a z-score of a students sim-
ple Fall to Spring growth relative to all other test takers.
However, unlike a standard z-score, which is based on the
population mean and standard deviation, the calculation is
conditioned on the student’s starting RIT score, grade, and
total instructional time between test events. CGI is then
interpreted as the standard deviation change in RIT, rela-
tive to all other students who also started with the same RIT
score (see [23] for more information on CGI calculation). An
interesting aspect of CGI in the context of this study is that
it utilizes pre-pandemic national norms. This means that
CGI contextualizes a students’ observed growth relative to
their expected growth prior to the pandemic. Concretely, a
CGI of 0 does not mean that the student did not grow, but
rather that they grew at a rate that would be expected for
a similar student pre-pandemic.

We use CGI over simple growth for several reasons. The
first is that it is a standardized metric that is easier to in-
terpret without knowledge of the RIT scale. The fact that
it is standardized against pre-pandemic norms also provides
added context for interpreting the results for a COVID dis-
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rupted school year. The second reason has to do with the
unique properties of the RIT scale. In particular, typical
growth rates are not consistent across grades[18]. Students
in earlier grades tend to gain more from Fall to Spring than
students in later grades. Even within a grade, students
with higher RIT score may actually be expected to grow
less than students with a lower starting RIT score – which
is not a typical or intuitive pattern[5]. Moreover, the logic
of the difference-in-difference framework hinges on the “par-
allel trends” assumption [11] which is that the treatment
group should be expected to follow the same trend as the
untreated group if no treatment had taken place. The fact
that expected growth depends on Fall 2020 starting values
means that examining only raw scores would likely violate
the parallel trends assumption. Standardization with CGI
overcomes this issue.

3.2 Design Overview
In general, this study will use a quasi-experimental, pretest-
postest nonequivalent groups design with controls. We lever-
age the natural variations in usage to infer the impact of
using MAP Accelerator on gains in CGI, while controlling
for covariates. Even with statistical controls, this design
has the potential for confounding from unobserved variables.
For example, students who received more parental support
during the pandemic may have been more likely to succeed
academically[10, 3] and more likely to use MAP Accelera-
tor[19]. We account for unobserved confounding by using
the logic of Difference-in-differences (DID)[6].

Difference-in-differences is a causal inference technique that
compares an outcome measure before and after an interven-
tion against a counterfactual. For example, the impact of
a new traffic law could be evaluated by comparing traffic
accidents before and after passing of the law both in the
state that passed the law and in a neighboring state that
did not. The logic is that the counterfactual (i.e., neighbor-
ing state) affords the ability to account for any changes in
traffic accidents that could be attributable to other factors,
such as bad weather. In our case we compare a low usage
group (<15 min/wk) to a recommended usage group (30+
min/wk) on test scores before and after the intervention. We
take the logic a step further by comparing the DID of two
outcome measures, math and reading. Because MAP Accel-
erator is designed as a math intervention, we expect effects
to be observed primarily in math outcomes. However, an
unobserved confound such as parental support should also
influence reading performance. DID provides a framework
for removing the influence of these confounds. Finally, we
add one more layer to DID by conducting a similar analysis
across demographic subgroups in order to infer the effects
within each of those groups.

3.3 Analysis 1
First we modeled conditional_growth_index for both math
and reading using mixed effect regression models. We used
the following fixed effects: usage_group, gender, ethnic_gr-
oup, and baseline_test_rit_score. We also included the
following random effects: district_name, school_name, mat-
h_teacher. Math and reading were modeled separately. The
critical results are shown on Figure 2, which shows the cor-
rected marginal means of CGI for each of the usage groups.

As we see on Figure 2, there was a positive relationship be-
tween between usage levels of MAP Accelerator and math
CGI. Students in the No use group showed the lowest CGI
scores, and CGI improved with each usage level. Interest-
ingly, we also see a similar pattern for reading. Given that
we did not expect substantive effects of a math supplement
on reading performance, this pattern is problematic as it
suggests the existence of unobserved confounding in the us-
age groups. However, we do note that the estimated ef-
fects of MAP Accelerator usage were larger for math than
for reading. Notably, students in the 30+ min/wk group
showed growth that was approximately 0.23 standard de-
viations higher than expected for math, but slightly below
expected levels for reading. Thus, while there may be a de-
gree of confounding, it does not fully explain the relationship
between MAP Accelerator usage and performance. Never-
theless, it does make it difficult to determine how much of
the true causal effect can be reasonably attributed to MAP
Accelerator.

Figure 2: Estimated Conditional Growth Index as a function
of MAP Accelerator usage group and test domain. Error bars
are 95% CI.

3.4 Analysis 2
In order to account for unobserved confounds, and to esti-
mate the effects across demographic subgroups, we applied
the DID approach as previously discussed. We fit a mixed
effect regression model using the lme4 package in R[1] and
the specifications on Listing 1. The interaction terms model
the various DID effects. The overall main effect was modeled
as a two-way usage_group * subject interaction. Similarly,
the effects for individual subgroups were modeled as three-
way interactions (e.g., usage_group * subject * grade).
The three-way interactions allow us to estimate the causal
effects of MAP Accelerator across subgroups.

After fitting the model, we conducted post-hoc contrasts
to extract the DID effects of interest, using the emmeans

package[16]. We focus on contrasting the two highest usage
groups (30+ min/wk, 15-29 min/wk) against the lowest us-
age group (<15 min/wk), and excluded the No use group
from further analysis. On the surface, the No use group
seems a natural reference point, however we noted fairly
large differences in pre-intervention measures between the
No use group and other groups, in some cases exceeding
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lmer(conditional_growth_index ~
usage_group * subject *
(grade + gender + ethnic_group +
school_frl_level +
district_ell_level +
math_baseline_test_percentile) +
(1 | math_teacher) +
(1 | school_name) +
(1 | district_name),

data = ...,
control = lmerControl(

optimizer =" bobyqa",
optCtrl=list(maxfun =2e5)),

REML = FALSE)

Listing 1: Full model specification for difference-in-differences
effects.

the maximum standardized mean difference recommended
by the What Works Clearinghouse [27]. Moreover, the total
lack of usage may signal a substantive difference in and of
itself. For example, students in the No use group may have
faced technological barriers, such as limited computer or in-
ternet access, that prevented them from using the tool in
the first place. Note that overall usage in the <15 min/wk
group was very low (Median 1.7 Hours over the entire year).
Thus, we would not expect usage at these levels to have
meaningful benefits on growth over an entire school year.

The critical results are shown on Figure 3. We will focus
first on the overall effect, as it provides a nice explanation of
how the DID are calculated. The panel A of Figure 3 shows
the marginal means of CGI for each of the usage groups on
both math and reading. Presented this way, we see a clear
interaction – CGI improves incrementally with each usage
group, but the improvement is larger for math than reading.
The main DID is shown on panel B of Figure 3. These
estimates are the less-contaminated causal effects of using
MAP Accelerator on math CGI. The effect was larger for the
30+ min/wk group than the 15-29 min/wk group (+0.26 vs.
+0.15). The direction of this difference is consistent with a
causal effect of using MAP Accelerator.

The panel C of Figure 3 shows the DID effects broken down
by various subgroups. In general, the pattern of 30+ min/wk
students showing larger effects than 15-29 min/wk students
held across most of the groups. However, while the magni-
tude of these gaps did fluctuate, so too do the confidence
intervals, ultimately preventing any firm conclusions to be
drawn regarding the relative effectiveness of 30+ min/wk vs.
15-29 min/wk within each group. Regardless, both usage
levels were consistently positive and greater than 0 across
subgroups. In particular, there were no meaningful differ-
ences across grades, gender, ethnicity1, or school FRL.

Figure 3 did reveal that students from high ELL districts
did not experience the same benefits from their use of MAP
Accelerator as their peers. We conducted some post-hoc ex-

1We did not report results from Am. Indian/ Alaska native
due to having too small a sample sizes. Not specified/other
and multi-ethnic were also excluded because these labels
were not specific enough for the results to provide practi-
cal utility.

ploratory analyses to learn more about these students. High
ELL districts were demographically distinct from the overall
sample, with a higher proportion of Hispanic or Latino stu-
dents (64%), consistent with national norms[13]. The vast
majority of MAP Accelerator usage in High ELL districts
was in English (99.7%). Using additional MAP Accelerator
data, we computed a rough estimate of learning efficiency by
estimating the proportion of skills leveled up over the school
year. Students from high ELL districts tended to level up
an average of 5.3 (SE = .06) skills per hour, compared to
7.2 (SE = .03) for mid ELL and 8.9 (SE = .07) for low ELL.

4. DISCUSSION
We applied difference-in-differences with controls to esti-
mate the causal effect of MAP Accelerator on NWEA MAP
Growth assessment across a wide range of student subgroups.
In general, we observed positive effects of MAP Accelerator,
with an overall effect size of +0.26 for students who used
at the recommended levels of usage. Effect sizes of that
magnitude are fairly common in educational technology re-
search [22, 9]. These results provide additional support for
mastery learning and the importance of tailoring instruction
to students ability levels[15]. In future analysis, we plan to
conduct more targeted analyses to determine which specific
features of MAP Accelerator resulted in the most benefits.

While the finding that use of MAP Accelerator improved
MAP Growth scores is good news, such effects would be
less welcomed if it only helped some students. Fortunately,
the benefits of MAP Accelerator appeared mostly consistent
across grade, ethnicity, and school FRL. These results are
important, especially given the context of COVID-19 and
known existing equity gaps. As noted earlier, Lewis et al.
[17] found that the pandemic more negatively affected the
change in MAP Growth scores of younger students, students
from high FRL schools, and Black and Hispanic or Latino
students. Here we see indication that the pattern was halted,
at least for students who used MAP Accelerator at recom-
mended levels. An exception was that students from high
ELL schools did not appear to benefit as much from their
use of MAP Accelerator as other students.

Why didn’t students from High ELL districts benefit from
their use of MAP Accelerator? Prior research on ELL stu-
dents has shown that learning new content in a language
other than their primary language can be a source of cog-
nitive overload [20]. The fact that these students also pro-
gressed on MAP Accelerator at a slower pace is consistent
with this explanation. Other research has found that pro-
grams that allow students to receive instruction in their
primary language is more effective relative to comparison
groups[4]. Interestingly, students had the option to switch
MAP Accelerator to their preferred language, but this was
extremely rare. Students may have not been aware of this
feature, or were instructed not to use it. Unfortunately,
ELLs have long been under-served in U.S. schools, and poli-
cies for the instruction of ELL students are not always guided
by evidence [7]. Nevertheless, these findings are relevant for
other ed tech tools planning implementation in areas with a
high concentration of ELLs.

While positive benefits of using MAP Accelerator at recom-
mended levels were observed in the majority of subgroups
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Figure 3: Difference-in-differences effects across subgroups. Error bars are 95% CIs.

that we analyzed, it is important to point out that a low
proportion of students actually met this threshold. Ex-
ploratory analysis found that usage was mostly predicted
by District/School/Teacher factors. This suggests that the
degree of class level integration was the largest determinant
of whether an individual student would reach recommended
usage levels. We can only speculate as to why so many class-
rooms seemed to not use MAP Accelerator, and the context
of the pandemic makes the question even more difficult to
address. However, low levels of ed tech usage seems to be
a common occurrence [28], suggesting that this challenge is
not specific to MAP Accelerator.

4.1 Limitations
There are several limitations of this study that must be ad-
dressed. First, although we implemented several statistical
and methodological controls, this was still an observational
study and does not provide the same quality of causal ev-

idence as a randomized control trial. Our DID approach
can only control for unobserved confounds that affect gen-
eral academic performance, not math specific ones. Second,
the study took place during a COVID-disrupted school year.
Whether these results will hold post-pandemic is uncertain
and yet to be seen. Finally, the results from FRL and ELL
analysis leveraged school and district level data, rather than
the preferred student level data. Just because a student was
in a High ELL group does not mean that they themselves
were an ELL.
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APPENDIX
A. SUMMARY OF ANALYTIC SAMPLE

MAP Accelerator usage group

No use <15

min/wk

15-29

min/wk

30+

min/wk

All

Students

n 74,328 82,393 16,051 8,587 181,359

prct 41% 45% 9% 5% 100%

Locations
Districts 95 98 91 80 99

Schools 632 563 472 404 649

Teachers 4,334 4,382 2,545 1,625 5,839
Math Classes 7,115 7,405 3,689 2,104 10,464

Gender

Male 52% 51% 48% 47% 51%
Female 48% 49% 52% 53% 49%

Ethnicity

Am. Indian / Alaska Native < 1% < 1% < 1% < 1% < 1%

Asian 4% 5% 5% 6% 5%
Black or African American 12% 12% 10% 8% 12%

Hispanic or Latino 33% 37% 35% 43% 35%

Multi-ethnic 4% 5% 5% 4% 5%
Native Hawaiian / Pac. Islander < 1% 1% < 1% < 1% < 1%

White 36% 33% 34% 29% 34%
Not specified / Other 10% 7% 10% 10% 9%

Grade

Grade 3 19% 15% 19% 21% 17%

Grade 4 19% 17% 17% 21% 18%
Grade 5 18% 19% 17% 20% 18%

Grade 6 13% 18% 21% 19% 17%

Grade 7 15% 18% 14% 11% 16%
Grade 8 16% 14% 12% 8% 14%

School FRL level

High FRL school 47% 57% 51% 56% 52%
Mid FRL school 25% 24% 31% 26% 25%

Low FRL school 11% 7% 4% 3% 8%

Unreported FRL level 17% 13% 14% 15% 15%

District ELL level
High ELL district 4% 7% 11% 24% 7%

Mid ELL district 67% 70% 62% 49% 67%

Low ELL district 24% 18% 21% 19% 21%
Unreported ELL level 6% 5% 6% 8% 5%
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1. WORKSHOP SUMMARY 
The Third Workshop of the Learner Data Institute (LDI) builds on 
the success of two previous, virtual workshops (at EDM 2020 & 
EDM 2021) and seeks to bring together researchers working across 
disciplines on data-intensive research of interest to the educational 
data science and educational data mining communities. In addition 
to welcoming work describing mature, data-intensive or “big data” 
research and emerging work-in-progress that spans traditional 
academic disciplines, the workshop organizers welcome case 
studies of interdisciplinary research programs and projects, 
including case studies of learning engineering efforts pursued by 
universities, learning technology providers, and others (both 
successful and unsuccessful), as well as position papers on 
important challenges for researchers harnessing “big data” and 
crossing disciplinary boundaries as they do so. 
We convene researchers and developers from diverse fields who 
seek to “harness the data revolution” in educational data science 
and “grow convergence research,” aligning with (at least) two of 
the U.S. National Science Foundation’s “10 Big Ideas” for 
emerging research and development opportunities. “Convergence 
builds and supports creative partnerships and the creative thinking 
needed to address complex problems” [1], and we expect that 
bringing together highly experienced researchers, as well as 
students and early-career researchers, will stimulate substantial 
growth and interest in state-of-the-art, data-intensive, 
transdisciplinary or “convergent” approaches to solving vexing 
societal problems related to education. We also seek to explore the 
big data and learning engineering frameworks that will enable 
convergent solutions. 

2. WORKSHOP AGENDA  
The half-day workshop will begin with an introductory talk 
presenting a summary report of the work of the LDI and situating 
its progress within the goals of LDI and the broader notion of 
convergence research for educational data science. Next, Richard 
Baraniuk (C. Sidney Burrus Professor of Electrical and Computer 
Engineering, Rice University & Founder and Director, OpenStax) 
will deliver a keynote talk (including a question-and-answer period 
and time for discussion). Workshop organizers aim to include four 

to six peer-reviewed contributed research papers (“short” 4-6 page 
papers, as submitted and informed by peer-review decisions) 
generally concerned with state-of-the-art big data methodology, 
applications, and research in educational data science and learning 
engineering, ideally with an emphasis on science convergence, and 
1-3 shorter position papers on similar topics, with an eye toward 
where future research should be directed and/or laying out 
compelling challenges for these areas of research. Each contributed 
paper presentations will be followed by a question-and-answer 
session. If there is time, a panel discussion will afford the 
opportunity for keynote speakers and invited guests to interact with 
workshop attendees, addressing issues related to convergence 
research and the future of big data in educational research. 

3. WORKSHOP ORGANIZERS 
• Vasile Rus, University of Memphis (Co-Chair) 

• Stephen E. Fancsali, Carnegie Learning, Inc. (Co-Chair) 

• Dale Bowman, University of Memphis 

• Jody Cockroft, University of Memphis 

• Art Graesser, University of Memphis 

• Andrew Hampton, Christian Brothers University 

• Philip I. Pavlik Jr., University of Memphis 

• Steven Ritter, Carnegie Learning, Inc. 

• Deepak Venugopal, University of Memphis  
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The Learner Data Institute is supported by the U.S. National 
Science Foundation under DRK-12/DIRSE Award #1934745. All 
opinions and findings stated or implied are solely those of the 
authors. 
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ABSTRACT
The increasing impact of machine learning and algorithmic
decision making on education has brought about growing
opportunities and concerns. Evidence has shown that these
technologies can perpetuate and even magnify existing ed-
ucational and social inequities. Research on fair machine
learning has aimed to develop algorithms that can detect
and, in some cases correct, bias, but this effort within the
educational data mining community is still limited.

FATED 2022 hopes to spur discussion around algorithmic
fairness and bias detection as specifically applied in an ed-
ucational context. Submissions and panels will be invited
to discuss: (a) collection and preparation of benchmark
datasets for bias detection and correction tasks, (b) evalua-
tion protocol definition and metric formulation appropriate
for bias and fairness in educational tasks, and (c) counter-
measure design and development for biased and unfair cir-
cumstances. These specific topics will be complemented by a
more general discussion of the education-specific challenges
for fair machine learning in education, bringing together per-
spectives from both industry and academia. This workshop
builds on the FATED workshop held at EDM 2020, and we
expect the workshop to make connections among already in-
terested researchers and provide a foundation for those who
want to engage in this area.

Part of the vision of creating adaptive educational technolo-
gies and building machine learning systems for education
is reducing inequality (e.g., [2]), and data-driven practices
are often viewed as a way to make education more equi-
table (e.g., [1]). While some interventions have been found
to decrease achievement gaps (e.g., [4]), there is increasing
concern that these systems may instead increase achieve-

ment gaps and perpetuate existing inequities [10, 12]. For
example, such systems might make targeted support more
available only to students with greater access to technology,
or be associated with lower learning gains in more disadvan-
taged schools (as seen in [11]).

In this workshop, we hope to bring an education-specific
lens on broader questions related to fair ML by spurring
discussion around:

• Data Set Collection and Preparation. By spurring dis-
cussion about what educational datasets are particularly
ripe for use as benchmarks for detecting and/or correcting
bias and what characteristics of an educational dataset
make it most useful for measuring or detecting algorith-
mic bias, this workshop aims to increase awareness about
what datasets are available and encourage future research
to include results on benchmark datasets.

• Evaluation Protocol and Metric Formulation. This work-
shop encourages discussion about what evaluation proto-
cols and metrics are most suitable for empirical research
on fairness and bias across common types of educational
machine learning and EDM tasks.

• Detection and Countermeasure Design. FATED 2022 pro-
vides a forum for discussion about what features of the
questions that we address in educational machine learning
and the datasets that we use pose particular challenges for
detecting and/or addressing algorithmic bias. Further,
the workshop will provide an opportunity for researchers
to share their work on algorithmic bias detection and cor-
rection specifically in education-related context.

Around these themes, FATED 2022 will showcase papers
that focus on datasets, evaluation protocol, research, repro-
ducibility, and recently published work (encore papers). By
stimulating these discussions, the organizers hope to build
community among researchers in this area, including inter-
ested EDM researchers who are not yet involved in these top-
ics and fair ML researchers who may wish to engage with the
field of education. Surrounding literature from the workshop
organizers focuses on educational technology [3, 20, 6, 13,
15], student behavioral patterns [7, 8], algorithmic fairness
[19, 18, 5], explainability [17], and responsible analytics for
social good [14, 9, 16].
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ABSTRACT 
Computing is an increasingly fundamental skill for students across 
disciplines. It enables them to solve complex, real and challenging 
problems and make a positive impact in the world. Yet, the field of 
computing education is still facing a range of problems from high 
failure and attrition rates, to challenges in training and recruiting 
teachers, to the under-representation of women and students of 
color. 

Advanced learning technologies, which use data and AI to improve 
student learning outcomes, have the potential to address these prob-
lems. However, the domain of CS education presents novel 
challenges for applying these techniques. CS presents domain-spe-
cific challenges, such as helping students effectively use tools like 
compilers and debuggers, and supporting complex, open-ended 
problems with many possible solutions. CS also presents unique 
opportunities for developing learning technologies, such as abun-
dant and rich log data, including code traces that capture each detail 
of how students' solutions evolved over time.  

These domain-specific challenges and opportunities suggest the 
need for a specialized community of researchers, working at the 
intersection of AI, data-mining and computing education research. 
The goal of this 6th Educational Data Mining for Computer Science 
Education (CSEDM) is to bring this community together to share 
insights for how to understand and support learning in the domain 
of CS utilizing CS educational data and AI. This field is nascent but 

growing, with researching in computing education increasingly us-
ing data analysis approaches, and researchers in the EDM 
community increasingly studying CS datasets. The objective of the 
CSEDM workshop is to facilitate a discussion among this research 
community, with a focus on how data mining can be uniquely ap-
plied in computing education research. Researchers, faculty and 
students are encouraged to share their AI- and data-driven ap-
proaches, methodologies and experiences where data is 
transforming the way students learn Computer Science (CS) skills. 

We invite researchers who are interested in further exploring, con-
tributing, collaborating and developing data- and AI-driven 
techniques for building educational tools for Computer Science to 
submit their papers on any of these topics.  

The workshop is a half day workshop. It consists of paper presen-
tations, discussions to facilitate collaboration. Interactive sessions 
include multiple parallel, short presentations, where participants 
can float around to the presentations they are interested in, similar 
to a poster session.  

Finally, the workshop celebrates the winners of the 2nd CSEDM 
Data Challenge. The Data Challenge is an IEDMS and SOLAR-
sponsored competition in which researchers compete to develop the 
best model for a student modeling problem with a CS dataset, in-
cluding snapshots of student code. Winners are invited to give 
presentations on their models, followed by discussion of where the 
challenge focuses in subsequent years. 
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ABSTRACT 
In standardized testing, the assumption is that assessing all students 
on the same content under standardized conditions would provide 
evidence of what students learned and were able to do. However, 
some facets of standardized testing pose major challenges for stu-
dents with disabilities (SWDs). We would not expect students with 
vision impairment, for example, to complete a paper-and-pencil test 
or a student with learning disabilities to complete a test within the 
same time limit as students without such disabilities. Thus, to truly 
include all students, assessment barriers that prevent SWDs, Eng-
lish language learners (ELLs), or other non-traditional students 
from achieving their best must be removed. 

In recent years, technological advances have made computer-based 
and digitally based assessments (DBAs) more mainstream, espe-
cially for large-scale evaluations like the National Assessment of 
Educational Progress (NAEP). These new DBAs implement tech-
nologies to improve accessibility for all participants with different 
learning backgrounds, especially those with disabilities, using the 
universal design (UD) framework. UD rests on the idea that in de-
signing tests the full range of students who will participate must be 
kept in mind from the beginning. By using UD, assessments are 
expected to become more accessible to and equitable for all stu-
dents. 

Inclusion, diversity, equity, and accessibility (IDEA) is a broad 
topic and can tap into various areas. Potential topics we would like 
to cover in our workshop include:  

1. Use of different data sources (e.g., large-scale assess-
ments, massive open online courses (MOOCs), games, 
collaborative chats) to address specific IDEA questions 

2. Use of different features and variables, with a special fo-
cus on process data (e.g., performance indicators, tool 
use, accommodation assignments) common and uncom-
mon within IDEA research 

3. Special focus on populations, general students with disa-
bilities (SWDs), students with specific disabilities (e.g., 
autism), English language learners (ELLs) 

4. Identification of students who may benefit from IDEA 
assistance but did not receive it (e.g., students who may 
need extra time but were not provided extra time) 

5. Dissemination and reporting of IDEA results to public 
audiences for better transparency and inclusion 

6. Application of EDM techniques and methods to explore 
IDEA data (e.g., propensity score matching, machine 
learning, process mining). 

What we hope to accomplish in this workshop is a better under-
standing of the ways in which research on inclusion, diversity, 
equity, and accessibility benefit from recent advances and improve-
ments in education and policy (e.g., consistent accommodation 
procedures), education technology (e.g., digital tests), and emerg-
ing research methodologies. Through this workshop we plan to 
highlight and discover the various approaches and methods through 
which IDEA research is conducted. Specifically, we aim to explore 
ways to support this wide research area through data-driven find-
ings. 

 
 

 

 

Do not delete, move, or resize this block. If the paper is accepted, this block will 
need to be filled in with reference information. 

 

J. Hicks, R. Circi, B. Ogut, M. Yin, and D. Yee. Rethinking accessi-
bility: Applications in educational data mining. In A. Mitrovic and
N. Bosch, editors, Proceedings of the 15th International Conference
on Educational Data Mining, pages 851–851, Durham, United King-
dom, July 2022. International Educational Data Mining Society.

© 2022 Copyright is held by the author(s). This work is distributed
under the Creative Commons Attribution NonCommercial NoDeriva-
tives 4.0 International (CC BY-NC-ND 4.0) license.
https://doi.org/10.5281/zenodo.6853065

851



Causal Inference in Educational Data Mining 
Third Annual Half-Day Workshop

Adam C. Sales, Neil T. Heffernan 
Worcester Polytechnic Institute 

asales@wpi.edu 
nth@wpi.edu 

 
ABSTRACT 
The goal in crafting intelligent tutoring systems, educational 
games, MOOCs, and other computerized learning tools, is to im-
prove student learning. To that end, EDM research typically 
focuses on methods to identify, measure, and predict learner behav-
iors or outcomes. Causal research seeks to estimate the impacts of 
different factors on these behaviors or outcomes—not only predict-
ing who will wheel-spin, experience frustration, or successfully 
learn a new skill, say, but determining causes these? Causality lies 
at the heart of both learning science, which seeks to understand how 
inputs in an educational system affect the system’s outputs, and of 
policy, which seeks to design educational systems that improve 
learning.  

The field of causal inference, which spans statistics, philosophy, 
economics, computer science, and other more traditional academic 
disciplines, has itself experienced rapid and exciting developments 
in the recent past. The new science of causality encompasses new 
ways of estimating effects under challenging circumstances, such 
as possible confounding, but also new questions—how do impacts 
vary between learners? What mechanisms drive causal effects? 
How may we construct optimal individualized policies for specific 
learners?  

This workshop is intended to raise awareness of the ubiquity and 
importance of causal questions in EDM, some of the exciting meth-
ods available to address those questions, and some of the open 
questions of causal inference in EDM. It will include invited dis-
cussions of ongoing projects addressing causal questions, and short 
talks about relevant work in progress, including work in any stage 
of development.  

Lastly, the workshop will give an opportunity for EDM researchers 
to submit open problem related to causality in EDM research. In 
five minute presentations, researchers will briefly present problems 
they have encountered in research, or that they just think are inter-
esting, but that they do not yet know how to solve. Each 
presentation will be followed by an open-ended discussion among 
the workshop participants, hopefully suggesting ways to solve, or 
at least better refine the problem. This sub-workshop will hopefully 
give the presenting researchers constructive suggestions, and spur 
collaborations. In general, the workshop will be organized to stim-
ulate discussion among participants, including, hopefully, 
constructive suggestions for open problems. 

This workshop will be the third annual EDM workshop of its 
type—now jointly hosted along with International Conference on 
Artificial Intelligence in Education. It will follow a similar structure 
to the previous two workshops, but with all new material.  
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ABSTRACT 
Within the past 10 years there has been increasing momentum of 
the open science movement to make research more open, 
transparent, and reproducible. However, the adoption of open 
science practices in education lags behind other fields. In this 
hybrid tutorial, we will begin by providing a brief overview of open 
science practices, benefits and workarounds, as well as how the 
statistical foundations of open science, including the benefits for 
inference and hypothesis testing. In the second part of the 
workshop, we will provide a hands-on tutorial of how to use the 
Open Science Framework to make projects, invite collaborators, 
preregister studies, share data, code, and materials. Participants in 
this workshop will gain a better understanding of open science 
practices, the reasons motivating their adoption, and how to use the 
Open Science Framework to make their research more open.  

Keywords 
open science, open access, preprints, preregistration 

1. BACKGROUND 
The adoption of open science practices– such as preregistration, 
open data, open code and materials, preprints, and open access– has 
become increasingly normative across various scientific 
disciplines, yet attitudes and adoption of these practices remain 
lagging in education science [1]. While some sub disciplines of 
education have begun to pioneer the open science movement in 
education (e.g. special education research, [2]; gifted education, 
[3]) remaining subfields, such as those related to educational data 
mining, have not seen widespread adoption. There are many 
reasons that education scientists may not have adopted open 
science practices, whether from a lack of training, to general 
concerns about what can and cannot be shared [4]. Despite the 
reason, there is a greater need for education about what open 
science is, how it can be leveraged, as well as guidance on how to 
use existing resources to make education research more open and 
transparent.  

In this tutorial, we will cover the basics of open science practices, 
discuss the specific challenges associated with education research 
(e.g. protecting participant anonymity), and provide a step-by-step 
tutorial of how to use the Open Science Framework to preregister a 
study, post open data, code, and materials, and post preprints.  We 
will also discuss further open science activities such as registered 
reports that might be relevant for participants, and how to use other 

tools to identify opportunities to publish open access (e.g. directory 
of open access journals, sherpa romeo, etc.).  

2. FORMAT AND TIMELINE OF 
TUTORIAL 
The proposed tutorial will be offered in a hybrid fashion, and 
focuses on open science in education research, and using the Open 
Science Framework to preregister studies, share data and code, and 
post preprints. An outline of this workshop can be found below. 

● First, we will provide a brief overview of some of the 
problems of conducting science and research, how open 
science practices are being used to overcome some of 
these issues, as well as the myths and workarounds of 
these practices.  

● Second, we will discuss the statistical foundations of 
open science, including the benefits for inference and 
hypothesis testing. This discussion will include 
information about which aspects of data analysis may 
themselves depend on the data–and hence do not need to 
be pre-registered, and which phases may not. 

● For the third part of this tutorial, we will lead a hands-on 
tutorial on how to navigate the OSF website, make an 
account, create projects,  invite contributors to join 
projects, and how to post projects for the public. 
Afterwards, the presenter will give a step-by-step guide 
on how to create a preregistration, discuss best steps for 
preregistration, and identify how to create an embargo on 
a given preregistration. Other features, such as how to 
create anonymous versions of projects for blind peer-
review will be shown.  
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