
为

Practical Surveyor

ORTHE
Art of Land-Meafuring
Made E A S Y.
Shewing by plain and familiar Rules, how to Survey any Piece of Land whatfoever, by the PlainTable, Theodolite; or Circumferentor: or, by the Chain only.

And how to Protract, Caft up, Reduce and Divide the fame.

> L I K E W I S E,

An eafy method of Protracting Obfervations made with the Meridian; and how to caft up the Content of any Plot of Land, by Reducing any Multangular Figure to one Triangle.

To which is added,

An A P P E NDI X.

Shewing how to Draw Buildings, $E^{3} c$. in Perfpective: Of Levelling; and alfo how to Meafure ftanding Timber.

By SAMUEL WYLD.
The Fourth Edition:
Corrected and Enlarged by a Careful Hand; And Illuftrated with feveral Copper-Plates.

$$
L O N D O N \text { : }
$$

Printed for W. Johnston, in Luigate-Sireet.

$$
\overline{\text { Mocclx. }}
$$

 en
$+$
.\quad.

 1 $48+2+20+2$

 $10+2-10+0.0$ \ldots

[iii]

ADVERTISEMENT.

IN this Edition the Reader will find Several Alterations and Additions which were not in the former, though in general we bad the old Plan fill in View. The fir Chapter is entirely New ; and we hope, that the Alterions which have been made in the others will be approved of. We have spared no Pains to perfect our Design, which was to render the Whole more intelligible and useful to the Practical Surveyor. The Plan of the Work will beft appear from the following Table of Contents, and therefore any Account of it here will be Superfluous. But we will venture to add, that if the young Artift will take as much Pains in reading as we have taken in writing this Treatise, be will become a complete Mafter of the Art of Surveying.

[iv]

THE

C O N T: \quad NT. S .

C H A P. I.

aEometrical Definitions and Problems.

Sect. I. Definitions : of a Circle; an Angle; of Perpendicular and Parallel Lines: Of Triangles, and Quadrilateral Figures. Page 1, to 5 .
Sect. 2. How to draw Perpendicutars and Parallels; with the Defrriptions and Ufes of the Parallel-Ruler, Protractor, and the Plotting-Scale. P. 6-I4.
Sect. 3. How to find the Area or fuperficial Content of any plain right-lined Figure. P. 14-18.

C H A P. II.

How to meafure any Piece of Land by the Cbain, and the Plain-Table.
Of a Statute Acre: Takles of Meafure. P. 19, 20, 2 I. Sect. I. The Defcriptions and UJes of the Cbain, OffsetRaff, and the Arrowes. P. $21-24$.
Sect: 2. Of the Plain-Table; bow it hould be framed: of the Index, wobat Scales upon it would be ufeful? thofe ufually put, not pertinent: Of the three-legged Staff, and hore the Inftrument is faftened thereto: The Ball and Socket ufelefs: Directions for ufing the Plain-Table; and bowe to take a Plen of one or more Fields, by placing the Table at one or more Stations, about the Middle, from whence the Angles may be feen. P. 25-33.

CONTENTS.

Sect. 3. Directions for caffing up the Content of any Piece of Land. P. 33-38.
Sect. 4. Hore to make a Plot of a Field on the PlainTable, by going round the fame, and taking Off-fets to the Bounders. How to meafure an inaccefible Difance. P. 38-45.
Sect. 5. Hore to meafure a Piece of Land by the Chain only. P. 45-5I.

C H A P. III.

Of the Theodolite and the Circumferentor.
The Plain-Table ufeful for meafuring Gardens, \&c. but not fit for furveying large I racts of Land. P. 52.
Sect. I. A Defoription of the Theodolite, and bore it Boould be made; the Theodolite contains, or fupplies the Ufe of all other Surveging Infruments. The Manner of taking an Angle with the Theodolite. P. 53-57.

Sect. 2. How with the Theodolite to meafure a Field, by taking the Quantity of the Angles which the Fences or Bounders make with each other. An Example of a Field-book. P. $57-64$.
Sect. 3. Of Protrazling Obfervations made by the Theodolite. Of different Kinds of Protrailars, and whbich is the propereft according to the different Ujes they are applied to. P. 64-69.
Sect. 4. Hore to meafure Angles by the Cbain, (by way of fiift) for want of proper Inflruments. P. 69-74.
Sect. 5. The Defcription of the Circumferentor; and how it is to be ufed in furveying Land. P. 74-80.
Sect. 6. How to protraft Obfervations made by the Circumferentor. P. 80-82.
Sect. 7. How to caft up the Content of the fmall irregular Pieces of Ground, which lie between the Sta-tion-lines and Hedges. P. 82-84.

C H A P. IV.

The Uje of the Theodolite, in Surveying Land, by the Needle and Limb together.
Sect. 1. An Example of this Metbod. P. 85-88.
Sect. 2. An eafy Metbod of Protrazting ObJervations made in the Field by the Needle. P. 88-91.
Sect. 3. An expediiious Metbod of calculating or cafing. up the Area of a Plot of Land in Acres, \&c. P. 91 -94.
Sect. 4. How to reduce the irregular Bounders of a Field to Areight Lines, in order to find the Area thercoof. P. 94, 95.
Sect. 5. How to reduce Hypotbenufal to Horizontal Lines. P. 96-100.

C HAP. V.

How to furvey and make a perfect Draught of feveral Pieces of Land, lying together as a Mannor, \&xc.
Sect. I. A well-chofen Example of a fmall Farm, containing great. Varieties. Form of a Field-book. P. 101-121.
Sect. 2. The Manner of Protracting the Obfervations contained in the preceding Field-book. P. 122-127.
Sect. 3. Obfervations on meafuring Land in common Fields. P. 128.
Sect. 4. Of reducing Plots, P. 129-1 32.
Sect. 5. DireEtions for beautifying and adorning of Plots. P. $132-135$.

C H A P. VI.

The Menner of Laying-out, or Dividing Land.
Sect. I. Horv to lay out any Number of Acres in a Square Figure; in a Parallelogram, whereof one Side is
given; in a parallelogram, 4, 5, \&c. times longer than broad; in a Triangle, being confined to a certain Baje. P. $136,137$.
Sect. 2. How to divide any Piece of Land, by a Line parallel to one of the Sides; by a Line from any Point in the Bounders; by feveral Lines pafing through a Point affigned on the Land. P. 13^{8-142}.
Ibid. How to divide a fanding Wood.
Sect. 3. How to reduce cufomiry into Statute Meafure. P. 142, 143.

C H A P. VII.

Genexal Obfervations toucbing the Surveying and Plotting of Roads, Rivers, \&zic. With jhort Hints bow to make a Drougbt of a County, or Ground-plot of a City, \& c c.
Sect. I. General Directions for making a Draught of the Roads lying through any County, \&ec. P. 144-I 5 I. Sect. 2. General Directions for making the Plot of a River or Brook. P. 151-154.
Sect. 3. General Directions for making a Map of a County, \& \& c. P. 155-1 57.
Sect. 4. General Direetions for taking the Ground-plot of a City or other Town. P. 157-161.

A \quad P \quad P $\quad E \quad N \quad D \quad I \quad X$.

C HAP I.

Of Levelling.
Sect. I. Defiription of the Spirit-Level and StationStaffs. P. 63-165.
Sect. 2. How to adjuft the Spirit-Level. Alfo a Table of the Earth's Curvature, calculated to the Thoufandth
fandth Part of a Foot, at the End of every Chain, from 1 Cbain to 40 . P. $165-167$.
Sect. 3. Rules to be observed in Levelling, in order to find the different Height of any two. Places; being ufeful for conveying Water, cutting Sluices, \&c. P. $167-171$.

Sect. 4. Howe to mike Allowance for the Curvature of the Earth, when the Station-ftaffs are planted at unequal Diftances from the Inftrument. P. 171-173.

C H A P. II.

The UJe of the Theodolite, in Drawing Buildings, \&xc. in Perppective.
Sect. I. To take a Profpect of a Building, \&c. from any Place defired. An Example. P. 176-178.
Sect. 2. The Manner of Protraiting the before-going Obfervations, in order to find the Points of the Building. P. 179-184.

C H A P. III.

To find by the Theodolite.
A Meridian Line. P. 185.
-Latitude of any Place. P. 189.
-Azimuth and Altitude of any of the fixed Stars. P. 191.

THE

Practical Surveyor.

C H A P. I.

Containing fuch Definitions and Problems, as are very necelfary for Beginners before they enter upon Surveying.

S E C T. I. Defnitions.
I. Of a CIRCLE.

CIRCLE is a plain Figure contained under one Line called the Circumference, unto which all Straight or Right Lines drawn from the Center, are equal one to the other. A Right Line drawn through the Center and contained on both Sides to the Circumference, is called a Diameter: And half the Diameter, or any Line drawn from the Center to the Circumference, is called RaB
dius.
dius. Thus, the Fig. I. CADBF is a Circle; of which the outward Line ADBF is the Circumference; the middle Point C is the Center ; the Straight Line AB is a Diameter, and either of the Lines CB, CA, CE, or CD, drawn from the Center to the Circumference, is a Radius. The Diamer as AB divides the Circle into two equal Parts, CADB, CAFB, each of which is called a: Semicircle: And the fourth Part of a Circle, as CAD, or CBD, is called a Quadrant. An Arch of a Circle is any Part or Portion of the Circumference, as AE or ED, EDB, \mathcal{E}^{2}.

The Circumferences of all Circles, whether they be large or fmall, are commonly underftood to be divided into 360 equal Parts, called Degrees: And each of thefe Degrees are again fuppofed to be fubdivided into 60 equal Parts, called Minutes. So that half the Circumference contains 180 Degrees ; a Quadrant is 90 Degrees; and the Bignefs of every Arch, or the Proportion which it bears to the whole Circle, is expreffed by the Number of Degrees and Minutes it contains. And fince all Circles are divided alike, a Degree is not to be accounted a Quantity of any determinate Length, as fo many Inches or Feet, \mathcal{E}^{3} c. but is always to be reckoned as being the 360 th Part of the Circumference of any Circle, without regarding in the leaft the Bignefs of the Diameter or Radius of that Circle: And if the Arch AE contains 50 Degrees, the little Arch a e contains juft as many ; for each of thefe Arches have exactly the fame Proportion to their refpective Circles, one with the other.

Note, Degrees and Minutes are often expreffed by placing an ${ }^{\circ}$ ' over the refpective Numbers, thus $24^{\circ} 30^{\prime}$, is 24 Degrees and 30 Minutes.

II. Of an A N GLE.

When two ftraight Lines incline to one another and meet in a Point, they form what is called an ANGLE: the Point where the Lines me et, is called the Angular Point; and the two Lines which include the Angle, are called the Legs, or the containing Sides of the faid Angle. Thus, in Fig. 2. the Lines A C, BC form an Angle at C; and the faid Point C where the Lines meet is called the $A n$ gular Point.

The Meafure of an Angle is an Arch of a Circle defcribed from the Angular Point, and which is intercepted betwixt its Legs: thus, the Arch DE or $d c$ is the Meafure of the Angle made by the two Lines C A, C B. An Angle is efteemed greater or lefs according to the Aperture of its Legs, or as the Arch intercepted between them contains more or fewer Degrees. And hence it may be obferved, that the Bignefs of an Angle doth not any ways depend upon the Length of the including Sides; for if the Lines CA, CB, one or both be produced ever fo far, or cut off ever fo fhort, the Angle C would not thereby fuffer any Change, or be made either bigger or lefs; nor is it material whether it be medfured by the Arch DE or de: for all Arches defcribed from the Point C, and intercepted between the Lines $C A, C B$, contain exactly the fame Number of Degrees and Minutes.

Note, When more than two Lines meet the fame Point; in order to fpecify particularly any one of the Angles formed thereby, it is neceffary it fould be expreffed by three Letters, whereof that at the Angular Point is ufually placed in the middle : Thus, in Fig. 3. the Angle formed by the Lines AC, EC, is expreffed by faying the Angle A CE; and the Angle formed by EC and DC, is expref-
fed ECD or DCE: (for it is not material which Letter be placed firft, fo that at the Angular Point be placed in the Middle.) But when there are-only two Lines meeting at the fame Point, the Angle may be expreffed by a fingle Letter, as the Angle C. Fig. 2.

Note, Inftead of the Word Angle, this Character \angle is often ufed. Angles are diftinguifhed into Rigbt, Acute, and Obtufe.

A Right Angle is that which contains 90 Degrees, as the $\angle \mathrm{DCA}$ or DC B in Fig. I. and-Fig. 3. An Acute \angle is that which is lefs than go Degrees, as ACE, ECD. An Obtufe Angle is greater than a right Angle, as E C B.

Note, both Acute and Obture Angles, are fometimes called in general Terms Oblique Angles without farther Diftinction.

III. Of Perpendicular and Parallel Lines.

A Line is faid to be Perpendicular to another when it,forms an \angle with it of 90 Degrees, or when it ftands uprightly upon it with out leaning more to one Side than the other; as in Fig. 1. and Fig. 3. the Line DC is perpendicular to AB ; alfo the Lines CB , CA , are each of them perpendicular to CD. A Perpendicular is the fhorteft Line that can be drawn from an affigned Point to a given Line; fo DC is the fhorteft Line that can be drawn from the Point. D to touch the Line AB.

Parallel Lines, are fuch as are every where equi.diftant one from the other; and if infinitely produced on either Side, would never meet; as the Lines A B, CD. Fig. 4.

Lines are faid to be Oblique, when they are neither Parallel nor Perpendicular to each other.

IV. Of a TRIANGLE.

A Triangle is a Figure comprehended within three Right Lines, called Sides. If a Triangle hath all its Sides equal, it is called an Equilateral Trian$g l e$; if only two Sides are equal, it is called an Ifofceles; and if all the three Sides are unequal, it is called a Scalene Triangle. Alfo a Triangle having one of its Angles right, is called Right-Angled; and all others are called Oblique-Angled Triangles. But thefe Diftinctions need not be regarded by a Practical Surveyor.

V. Of Qucdrilateral or Four-ラded Figures.

A Quadrilateral Figure having it oppofite Sides parallel (and confequently equal) is called a P_{A} rallelogram, as Fig. 5, 6, and 7 . If the Sides are all equal, and all the Angles right, as in Fig. 5. it is particularly called a Square. When the Angles are all right, and only the oppofite Sides equal, as in Fig. 6. it is called a Right-Angled Parallelogram; and when the Angles are oblique, as in Fig. 7. it is called an Oblique-Angled Parallelogram.

A right Line (as C B. Fig. 5, and 6, and A D. Fig. 7.) drawn in a Parallelogram between two oppofite Angles, is called a Diagonal; and this Diagonal divides the Parallelogram into two Triangles which are exactly equal one to the other, i.e. the Triangle A B C is equal to the Triangle B C D. Fig. 5, and 6; and the Triangle A C D is equal to A B D, Fig. 7.

All Quadrilateral Figures, which are not Parallelograms, are called Trapezia.

S E C T. II.

Shewing bow to draw Perpendiculars and Parallels; with the Defoription and Uje of the Paralle! Ruler, Protractor, and the Plot-ting-Scale.
I. From any affigned Point C in a given Line A B , to ereet a Perpendicular CD upon the Said Line A B. Fig: 8.

TAKE any convenient Diftance, and lay the fame from C on each Side, as to a and b; then having opened the Compafs a little wider, from the Points a, b, defcribe two fmall Arches interfecting one another at D, and through the Point of Interfection draw the Line D C, which is the Perpendicular required.

If the given Point A be in, or near the End of the Line B A, as in Fig. 9, and it be required to erect a Perpendicular AC;

With any Extent A a defcribe an Arch a d, then lay off the fame Extent from a to b, and from b to. d : From the Points b and d, defcribe two fmall Arches interfecting each other at C, and through the Point of Interfection draw the right Line C A, which will be the Perpendicular required.

Or if you can't go fo far as d, lay a Ruler over the Points a and b, and mark where it interfects the Arch which was defcribed from b, then through that Interfection draw the Line C A, as before.

Or take any Diftance and lay it fomewhere from A above the given Line, Fig. Io. as to b; and from the Point b as a Center, defcribe an Arch greater than a Semicircle as $a \mathrm{AC}$; then thro' the Center b, and the Point a (where the faid Arch croffes the given Line) draw a right Line a \mathbb{C} until it croffes the Arch in

C; a Line C A drawn thro' the Point of Interfection C, is the Perpendicular required. This Method may be readily put in practice by a Ruler and a Pair of Compaffes, without defcribing any Arch; for, having taken any Extent, and laid it fomewhere from A to b, keep fixed that Foot which is in b, and turn the other about until it falls upon the given Line, as at a : the Compaffes refting in this Pofition, apply a Ruler clofe to its Legs, and keep it fixed while you turn the Foot which is in a, until it touches the Ruler in C; a Line drawn from C to A, will be the Perpendicular required, as before.
II. From a Point given C , to let fall a Perpendicular upon a given Line B D. Fig. II.
From C defcribe an Arch that fhall cut the given Line in two Places, as in a and b; then from the Points a, b, defcribe two Arches interfecting each other in d; a Ruler being laid from C to d, by the Edge thereof draw the right Line CD, which will be the Perpendicular required.

Or, from the Point given C, Fig. io. draw any right Line $\mathrm{C} a$, which bifect in b, then with the Extent $b c$ or $b a$ defcribe an Arch interfecting the given Line BD as in A; then C A is the Perpendicular. required.

Note, A Perpendicular from any affigned Point, may be drawn without ufing Compaffes, by the Help of a fmall Square of Brafs, in the Form of a Carpenter's Square; or by a Scale in a Cafe of Inftruments, that hath a right Angle, \mathcal{E}^{3} c. Thus, if you apply one Side of the Square clofe to the given Line, fo as the other Side (or the Corner of it when the Point is given in the Line) may touch the given Point; a Line drawn by this Side of the Square, will be the Perpendicular required.

If the Corner of the Square be a little blunt, you muft make an Allowance when you apply it to a Point in a Line; and when you are drawing a Perpendicular, you muft ftop before you reach the given Line, and afterwards continue quite home that Part of the Perpendicular which is already drawn : but how to draw a Perpendicular by the Side of a Square, is obvious to every one.
III. Of the Parallel Ruler; and bow to draw a Line through any affigned Point, parallel to another given Line.

The Parallel Ruler may be made of either Wood, Ivory, or Brafs: It confifts of two Rulers joined together in fuch a Manner, that if while one is kept fixed, the other be opened or drawn out, it will always keep parallel to its firft Situation. Thefe Inftruments are very ufeful, and ready for what they are defigned: They are made of various Lengths, from about 5 Inches upwards; but for common Ufe a fmall one made of Ivory, or fome hard Wood is the moft handy.

Let it be required to draw through a given Point C, a rigbt Line parallel to anotber given Line A B. Fig. 4.

Lay the Edge of the Parallel Ruler clofe to the Line A B, then keeping the lower Part of it from fipping, move the upper one till it touches the Point C , and by the Edge thereof draw the Line C D, which will be the Parallel required.

If the Point C happens to be farther than the Pa rallel Ruler will reach at once opening; having opened it as far as you judge proper, keep the upper Leg faft, while you bring the lower to it ; then open the upper Leg a fecond, and of it be neceffary a third

Sect. 2. The Practical Surveyor.
time, E E_{c}. till it reaches the Point C, and draw the Line C.D as before; but great Care is neceffary in this Operation.

The Parallel Line CD may be drawn without the help of a Parallel Ruler; thus,

From the given Point C, take with a Pair of Compaffes, the neareft Diftance (as C a) to the given Line A B ; then with that Extent from fome Yoint as b, near the End of the given Line defcribe an Arch : a right Line C D drawn through the Point C, fo as to touch that Arch, will be the Parallel Line required.
IV. Of the Protractor; and bow to make or meafure an Angle of any Number of Degrees.

The Protraftor is ufually made of Brafs, and it may be either a whole Circle, or a Semicircle. The who Circle is divided into 360 Degrees, all which are numbered the fame Way; vide Frontifpiece. The Semicircular Protractor, I think, is the beft for common Ufe; and this is divided into 180 Degrees, which are numbered both Ways, as in the outer and innermoft Scale of Number, Fig. 12. the Divifions on the Limb ferving equally for both. Between there, there is another Scale of Numbers, reaching from 180° to 360° : This middlemoft Scale is placed entirely for the Sake of Surveyors, but at prefent we fhall have no Ufe for it, nor is it ufually placed upon common Protractors: alfo when this is placed, the innermoft is commonly omitted; but that the Inftrument may be fit for all Purpofes, it is beft to have all three. Protractors are made of different Sizes, but thofe for Surveyors Mould be at leaft of fix or feven Inches Diameter.

To make an Angle of any given Number of Degrees.

Lay the Center of the Protractor to the Angular Point, and bring the fiducial Edge (or the Edge paffing through the Center) clofe to the given Line; then from that End of the Protractor which cuts this Line, count the given Number of Degrees and Minutes in the Limb, and there make a Point; a Line drawn through this Point will form the \angle required.

Example, If it be required to make an \angle at the Point C, (Fig. 12.) taken in the Line C A, of 45 Degrees; lay the Center of the Protractor to the Angular Point C, fo that the Edge a C lies all the Way clofe to the given Line A C; then from this Line count 45 Degrees, and there make a Mark (with the Point of a Needle) and through this Mark draw the Line $C D$, which forms the \angle required : this Line forms, with the Line CB, an \angle of 135 Degrees, as is fhewn by the inner Scale of Numbers. In like Manner, to make an Angle at C with the Line C B, for Inftance of 34°, or 40^{\prime} : Having rectified the Protractor as before directed, count 34 Degrees (now in the innermoft Scale) and for the 40 Minutes eftimate as near as you can two thirds of a Degree more, and there make a Prick or Point; a Line C E drawn through this Point makes the Angle BCE $34^{\circ}, 40^{\prime}$; whence the $\angle \mathrm{ACE}$ is 145°, 20^{\prime}, as is fhewn by the outermont Scale.

Note, If the given Line fhould not be fo long as the Radius of the Protractor, it will be neceflary to continue it farther ; and then having placed the Center of the Inftrument exactly to the Angular Point, turn it about till the beginning of the Divifions cut the given Line. By this Means the Protractor may be adjufted more accurately than it can by trufting

Sect. 2. The Practical Surveyor
altogether to the fiducial Edge; and remember always to count the Degrees in that Scale which begins on the fame Side of the Angular Point that the given Line is of.

How to find the Number of Degrees contained in an Angle already made is felf-evident; for, having adjufted the Protractor to the Center and to one of the Legs of the given Angle, the other Leg (produced if need be) will cut the Degrees which the \angle contains. Thus, in Fig. 12. the $\angle \mathrm{ACD}$ contains 45 Degrees, BCD 135 Degrees, BCE 34 Degrees 43 Minutes, and ACE 145 Degrees 20 Minutes.

Of the Plotting-Scale.

The Sides of all right-lined plain Figures may be meafured and laid down upon Paper, according to the Proportion which they bear to one another, by the help of right Lines divided into equal Parts : Thefe Lines are called Scales of equal Parts; and a Ruler having feveral of thefe placed upon it, is ufually called a Plotting-Scale. Thefe Scales are made of different Sizes, and we ule either of them indifferentiy, according to what Dimenfions we would have our Plen or Figure be of, upon the Paper. Thefe Scales are divided firft into large Divifions, which are numbered o, 10, 20, 30, $\xi^{\circ} c$. Fig. 13. the firft of thefe between o and the End, is again fubdivided into ten equal Parts, and this ferves for a common Divifion for all the reft. The fmall Divifions may either ftand for Uniis, and then the large ones will be Tens, according to the Numbers; or the fmall ones may be Tins or Tenths, \mathcal{F}_{c}. and then the large Divifions will accordingly be Hundreds or Units, \&c. They may alfo ftand for Feet, Yards, Miles, \&cc. according to the different Purpofes they are applicd
to. A Builder would confider them as Feet; a LandSurveyor as Cbains or Percbes; and a Sailor would make them ftand for Miles or Leagues. Moft Scales are numbered at the End, which Numbers fhew how many Parts of the refpective Scales are contained in an Inch: As in the Scales A, B, and C, the Numbers $20,30,40$, fhew that fo many Parts of thefe Scales refpectively are contained in an Inch.

To take any Extent upon the Scale which may reprefent any given Number; for Example, 56.

Set one Foot of the Compaffes in 50 , and extend the other to 6, reckoning from o towards the End, and that Extent will be 56 , which may fignify 56 Feet, or 5^{6} Perches, \&c. Note, The Divifion for 5 is always drawn out a little longer than the reft, for eafe in counting. Let it be required again to take off 45^{6}; fet one Foot of the Compaffes in 40, which in this Cafe ftands for 400 , (and confequently the fmall Divifions at the End are each of them 10) and extend the other as near as you can eftimate to $\frac{6}{30}$ of the Diftance between 5 and 6 , which Point is 56, and therefore the whole Extent between the Compaffes is 456 .
$N . B$. The Manner of ufing all thefe Scales is the fame, and you may chufe either of them indifferently, as it beft fuits your Purpofe; but you muft remember always to ufe the fame Scale in laying down or meafuring the Sides of the fame Figure, and the Figures that are in the fame Plan or Draught.

When the fmall Divifions at the End are accounted fo many Tens, a Number may be taken off more accurately by fuch a Scale as D , called a

Diagonal

Diagonal Scale. Thus, for Example, to take off the Number 456.

Set one Foot of the Compaffes in 4 , on the Side of the Scale, which in this Cafe ftands for 400 , and carry it in that Line until you come to the 6th Parallel Line, reckoning upwards from c towards a; then extend the Compafies from that Point to the Point of Interfection of the forefaid Parallel 6, and the Diagonal 50, (reckoning the Divifions at the End of thefe Diagonals from d to c, each of them 10) and that Extent is 456 ; this may alfo fignify $45 \frac{6}{\pi}$, or $4 \frac{56}{100}$, or $4560, \mathcal{E}^{\circ}$.

If a Line be given, to find bow many Parts it contains, according to any afligned Scale.

Take the faid Line between the Compaffes, and apply that Extent to the Scale, fo thatrone Foot being placed in one of the large Divifions, the other may fall among the fmall ones; the Number contained between the Feet of the Compaffes, fhews the Length of the Line according to that Scale. Thus a Line which meafures 36 upon the Scale 20, will meafure 54 upon the Scale 30, and 72 upon 40 ; and fo upon any other Scale more or lefs, according to the Proportion which it bears to thore above mentioned.

If the Diagonal Scale be ufed, fet one Foot of the Compafies in fuch a one of the large Divifions, that the other may fall among the Diagonals at the End; then carry both Feet parallel to the Side of the Scale, until that which is at the Top interfects one of the Diagonals, and the Number between the Compaffes (being rightly counted according to the Directions above given) will be the Length required.

By the Scale 20, the Side A B of the Triangle A B C, Fig. 14. meafures 335, A C 276 , and B C 204: And by the Scale 40, the Sides $a b, a c, b a$
of the Triangle $a b c$, will meafure each refpectively, the fame with the Sides of the Triangle ABC: fo that each of thefe Triangles may reprefent the fame Quantity of Superficies, as fuppofe Acres of Land; though one upon the Paper is four times bigger than the other.

It may not be amifs here to fhew, how with three given right Lines to make a Triangle; for Examiple; Let there be given thefe three Numbers 335, 276, and 204. Having drawn a right Line, take 335 off fome Scale (fuppofe that of 20) and lay that Extent from A to B; then having took 276 from the fame Scale, fet one Foot of the Compaffes in A, and with the other defcribe an Arch at C ; from B_{3} with 204 between the Compaffes, defcribe another Arch interfecting the former, and to this Point of Interfection draw the Lines A C, BC.

S E C T. III.

Sherwing bow to find the Area or fuperficial Con= tent of any plain rigbt-lined Figure.

MAgnitudes are diftinguiffied into Lines, Superficies and Solids: And every Magnitude is meafurable by fome other Magnitude of the fame Kind, taken as a Standard; as a Line by a Lineal Foot, E δ^{c}. a Superficies by a Square Foot; Esc. and a Solid by a Solid Foot, Egc. But our Bufinefs here is only to neafure Superficies; and the Quantity or Conitent of any Superficies; is called its Area.

1. To find the Area of a right-angled Parallelogram:

Multiply the Length by the Breadth, and the Product will be the Area or Content. Thus, if in Fig. 15. the Side A B be five Feet, and AC 2 Feet, the Area or Content of the right-angled Parallelo-

gram ABDC is ten fquere Feet: Alfo if A B in Fig. 16. be 10 Feet, and AC 10 Feet, the Content of the Square ABDC is 100 fquare Feet. If the Dimenfions of the Sides be Inches, or Perches, $\xi^{3} c$. the Products will be accordingly fquare Inches, or fquare Perches, $\mathcal{E}^{2} c$.

The right-angled Parallelogram is the original Figure, from whence we learn to meafure all plain right-lined Figures. But before we proceed any farther, it may be proper to premife the following Lemma.

Lemma 1.

Fig 17. Parallelograms ABDC, ABFE, which are upon the fame Bafe AB , and between the fame Parallels A B, CF, are equal one to the other, Euclid. Lib. I. Prop. 35.

For the Triangle BDF, which is added to one, is equal to the Triangle ACE which is left out of the other. Wherefore, becaufe the Product of AB multiplied by BD , gives the Area of the Parallelogram A BDC; this Product will alfo give the Area of the Parallelogram A BFE. Hence we learn,

II. To find the Area of any Oblique-Angled Parallelogram.

Let fall a Perpendicular from one of the Angles upon the oppofite Side, and multiply this Side by the faid Perpendicular ; the Product will be the Area required.

Fig. 18. Let the Perpendicular E a let fall upon the Bafe A B be 27 Feet, and let the faid Bafe be 34. Feet; then the Area of the Parallelogram A B E F, will be 918 fquare Feet.

It would be the fame thing if the Perpendicular be let fall from any other of the Angles, as from F upon A B produced; but then the Perpendicular

F 6 muft be multiplied by the Bafe AB (which is equal to $a b$) and not by the whole continued Line A A.

Lemma 2.

Fig. 19. If a Parallelogram A BDE and a Triangle ABC , bave both the fame Bafe AB, and are between the fame Parallels A B, D E; the Parallelogram ball be double to the Triangle. Eucl. Lib. I. Prop. 41.

For the Triangle DCA is equal to the Triangle $\mathrm{AC} a$, and the Triangle BCE is equal to the Triangle BCa. Wherefore, becaufe the Product of AB multiplied by $\mathrm{C} a$ (which is equal to DA) gives the Area of the Parallelogram ABED; this Product will be double to the Area of the Triangle ABC. Hence,
III. To find the Area of any Triangle.

Fig. 20. Let fall a Perpendicular from one of the Angles.upon its oppofite Side, which may be called the Bafe; then half the Perpendicular multiplied by the whole Bafe, or the whole Perpendicular by half the Bafe, will be the Area; or multiply the Bafe and Perpendicular together, and half that Product will be the Area. Thus, if the Perpendicular $\mathrm{C} a$ be 15, and the Bafe AB 39, the Area of the Triangle ABC will be $292 \frac{1}{2}$.

Note, The Perpendicular may be let fall from what Angle you pleafe : thus, the Perpendicular $\mathrm{A} b$ let fall upon BC produced, being multiplied by the (now) Bafe BC; or the Perpendicular B d let fall upon AC produced, being multiplied by AC, will give the fame Product as before, viz. $292 \frac{1}{2}$. But it is beft to draw your Perpendicular from fuch in Angle, that it may fall within the Triangle;

Seet. 3 The Practical Surveyor.
Triangle, which it will always do, if it be drawn upon the longeft Side : Alfo in acute-angled Triangles, a Perpendicular drawn from either of the Angles, will always fall within the Triangle.

Note, You need not actually draw the Perpendicular, but only take with your Compaffes, the neareft Diftance from any Angle to the oppofite Side, which mult be produced, if the Angle at the End of the Bafe be obtufe. Note alfo, when the Perpendicular falls without the Triangle, as $\mathrm{B} d$ or $\mathrm{A} b$, you muft take for your Bafe only the Side of the Triangle AC or BC, and not the whole continued Lines $\mathrm{A} d$ or $\mathrm{B} b$.
IV. To find the Area of a Trapezium, as ABCD. Fig. 2 1.

Draw a Diagonal, as BC, between two of the oppofite Angles, and this will divide the Figure into two Triangles, each of which may be meafured feparately by the foregoing Article; and thefe two Areas will be the Area of the Trapezium.

Note, You fhould always draw the Diagonal between two fuch Angles, that the Perpendiculars drawn upon it from the other two Angles may fall within the Figure: And inftead of meafuring the Triangles feparately, it is beft to add the two Perpendiculars together; then half this Sum multiplied by the Diagonal, or the Sum of the two Perpendiculars by half the Diagonal, will be the Area reqquired.

The Area of the Figure 118
$A B C D$ is 1357
> V. To find the Area of any multangular rectitinea? Figure, as A BCDEFGHI. Fig. 22.

Reduce the given Figure into Tringles, by dratwing as many Diagonal Lines as are neceffary, which: Diagonals muft be drawn fo as not to interfect one another; then having firft found the Area of the Trapezium ABEI, find feverally the Areas of the Triangles CDE, EFG, and GHI; thefe four Sums being added together, will be the Area of the whole Figure. A little Practice will fuggeft the moft convenient Way of drawing the Diagonals; but which ever Way they are drawn, provided they do not interfect one another, and that the entire Figure be reduced into Triangles, the whole Area or Content will be had the fame.

C HAP:

CHAP. II.

Sherwing bow to meafure any Piece of Land by the Cbain and the PlainTable.
 N Acre of Land is appointed (by the Statute of 33 Ed. I.) to contain 160 fquare Perches or Poles; there is no matter what form it lies in, fo that it contains 160 fquarc Poles. But before the Plan of any Piece of Land can be laid down, or protracted upon Paper, in order to find the Area or Quantity of Acres it contains, we muft firft know the Length and Pofition of the feveral Lines which bound the fame. In order to find the Pofition of the Hedges, Fences, or Boundaries, which inclofe a Field, feveral kinds of Inftruments have been invented; but in this Chapter we fhall confider only the Plain-Table, as being the fimpleft and eafieft for Beginners.

For meafuring the Lengths of Lines in the Field, Surveyors make ufe of Gunter's Cbain, which is certainly the beft adapted for that Purpofe that can be. This Chain contains in Length four Yoies or 66 Feet, and is divided into a 100 equal Parts or Links, each Link being therefore $77^{\circ} 0^{2.2}$ Inches. So that one fquare Chain contains 15 fquare Perches, and ten〔quare Chains make exacty one Acre: that is, a right-angled Parallelogram, being one Chain in Breadth and ten in Length, or two in Breadth and five in Length, is exactly an Acre. See the following Tables.

$$
\mathrm{C}_{2}
$$

1. $\tau^{\circ} a-$
2. Table of long Meafure.

3. A Table of Square Meafure.

Sect. I. The Practical Surveyor.
4. A Table, Suerwing bow many Cbains, Links, and Parts, are contained in any Number of Feet, from 1 to 10000 .

Feet. Cbain. Links. Pts. of Links. Feet. Cbain. Links. Pts. of Links.

	O	$\begin{aligned} & 1 \\ & 3 \\ & 4 \\ & 4 \\ & 6 \\ & 7 \\ & \hline \end{aligned}$	$\begin{array}{r}515 \\ 30 \\ 545 \\ 060 \\ 575 \\ \hline\end{array}$	200	3 4 6 7	\|l $\begin{aligned} & 3 \\ & 54 \\ & 06 \\ & 57\end{aligned}$	(30
6 O	-	9	90	600	9	109	1090
70	-	10	506	700	Io	60	606
8 0	-	12	121	800	12	12	121
90°	-	13	536	900	13	63	636
10	-	15	151	1000	15	15	151
20	-	30	1303	2000	30	30	303
300	-	-5	454	3000	45	45	454
40	-	50	605	4000	60	60	606
50	-	75	757	5000	75	75	757
6010	-	190	1909	6000.	90	190	909
770	,	06	060	7000	106	06	060
80	I	21	212	8000	121	21	212
-90)1		3^{6}	363	9000	${ }_{1} 3^{6}$	36	360
1001		151	515	10000	151	51	515

The Ufe of the fe Tables is plain by Infpeciion, there. fore particular Directions are needlefs.

S E C T. I.

Of the Cbain, Off-fet Staff, and the Arrows.

THE Cbain is ufed in all manner of Bufinefs in the Field, and it contains in Length as aforefaid, 4 Poles or 66 Feet, divided into 100 Links, each Link being $7 \frac{92}{100}$ Inches. At the End order to count the odd Links the more readily: That which is in the Middle is a plain Piece, but the others are diftinguifhed by Holes or Notches; the firft from either End of the Chain having one Hole or Notch, the fecond two Holes or two Notches, $\xi^{\circ} c$. until they meet in the Middile, which is a plainf Piece without any Mark as aforefaid: the greateft Number of Marks being four, each of which being counted from the neareft End of the Chain fignifies io Links; thus, one Mark is 10 , two 20 , three 30 , \mathcal{J}°. But when you have got beyond the Middle or 50, then four fignifies 60 Links, three 70 , two 80 , and one 90 . Alfo you may tie a large red Rag at 50 Links, and others of a lighter Colour at 25 , from each End of the Chain, efpecially when the Grafs is long.

But becaufe of Furze, Water, Bruhhwood, $\mathcal{E s}^{\circ}$ we are generally forced to meafure the Station Lines in the Field, at fome Diftance from the Hedges or Fences; and therefore the Breadth between the ftation Line and the Fence we meafure by a Staff of the exact Length of io Links or $6 \frac{6}{10}$ Feet. This is called an Off-jet Staff, and is divided into ro equal Parts, which are called Links, becaufe their Ufe are the fame with the Links of the Chain.

You mult alfo provide two ftreight Staffs of about. ${ }_{5}$ Feet each, and 9 Arrows or fmall Sticks above a Foot long each; thefe you may mark at the Top with bits of red Cloth, and at the Bottom you may: put fmall iron Ferrils, pointed fharp at the End, that you may ftick them eanly into the Ground.

Note, Before you make ufe of the Chain, you fhould examine its Length with the Off-fet Staff, ftretching it on level Ground, after the fame Manner as when you meafure with it. Alfo a Surveyor fhould have by him fome few odd Links, fome Rings, and a Pair of Pliers, that in cafe of the Chain's breaking, he may be able readily to mend it.

Directions

Directions for meafuring quith the Cbain.

Having fet up an upright Staff at each of the Stations, betwixt which you are to meafure, let the Leader of the Chain take the nine Arrows in his Hand, and one of the five-feet Staffs; let him always draw the Chain tight, and let the Follower ftanding at the firft Station, direct him to place his Staff at the Chain's End in a right Line with the two Stations, and there let him ftick one of his Arrows, and then go on.

Let the Follower, being come to the Arrow, take it up, and put his Staff in the Place thereof, and direct the Leader to place his Staff as before; then let the Leader, ftanding at his Staff, look back towards the laft Station, and he will fee the two Staffs and the Station in one right Line; if they have directed right; but if not, the Leader muft move fideways till he brings his own Staff, the Follower's and the Station-Staff into a right Line : and fo mult each direct the other, till the two Staffs and two Stations are in one right Line. And you muft be always careful, that they who carry the Chain, deviate not from a ftreight Line; otherwife neither the Form nor Content of the Plot can be true.

Let them thus proceed till they have meafured to the Station, or till the Leader is nearer the Station than one Chain's Length; then will the Number of whole Chains meafured, be expreffed by the Number of Arrows pricked down, fuppofe 7 ; and the Leader holding the End of the Chain to the Station, the Follower will fee how many Links are contained between the Station and laft Arrow, fuppofe 60.

Now enter in the Field-Book, the Chains and Links without any Diftinction between them, and fefs two Places after the Chains, as 7 Chains 4 Links muft be written 704, and not 74 ; and 8 Chains muft be written 800: Alfo as foon as you have meafured each Length, enter it down immediately in the Field-Book, and never truft to your Memory; alfo at the End of each Length, enquire of the Leader and Follower how many Arrows each have in their Hands, and if the Sum of the Arrows are not nine, the laft meafured Length is doubtful, and muft be re-meafured before you proceed.

When the Length is above nine Chains, let the Leader go on, and fet his Staff down at the tenth, and let the Follower put his Staff in the Place of the Leader's, and give the Leader the nine Arrows, and then proceed as before; but enter thefe io Chains immediately in the Field-Book, and if the Length be ro Chains more, enter 20, \&c.

Note, It is ufual to allow 5 Links from the Stem of the Quickfet Hedge, for the Breadth of the Ditch, except the Cuftom or Agreement is otherwife; but the Cuttom of the Place generally is the Surveyor's Rule.

Note, It is ufual to have 10 Arrows, and then the two 5 feet Staffs are omitted; but when the Grafs is long, the Ground uneven, or the Diftances between the Stations pretty confiderable, the two long Staffs are very convenient for the two Men who carry the Chain to direct each other by:

S E C T. II.

Of the Plain Table: And bow by that Inftrument to take a Plan of one or Several Fields, by placing it at one or more Stations about the Middle, from whence the Angles may be feen.

THE Plain Table is a fmooth Board made in the Form, and about the Bignefs of a common Sheet of writing Paper: Sometimes they are made large enough to hold an imperial Sheet. For faftening and keeping the Paper clofe down, a wooden Frame is fitted round the Edge of the Table. This Frame ought to be fitted fo as to keep the Paper tight down, and likewife fo as it may be eafily put on and taken off; and to prevent tearing the Paper in faftening it on, the upper Edge of the Table and the lower Edge of the Frame fhould be a little obtufe, and not fquare; and if it be neceffary the Frame may be faftened underneath, by Pins or Screws going throw the Table. The Frame is ufually divided into Degrees anfwering to a certain Point in the Table, taken as a Center; but this is of little or no Ufe, and quite forcign to the Defign of the Plain Table. There is commonly annexed to this Inftrument, a Compa/s Box with a Needle in it touched with a Load-ftone; but this alfo is of no great Ufe : for the Bearing of any Line may be found (which is the only Ufe here of the Needle) fufficiently exact by a little Pocket Compafs.

The Plain Table is ufually made fo as to be taken to Pieces, I fuppofe for the Conveniency of Carriage; but laying afide that Confideration, it would be much better in one entire Board, and then alfo it would ferve as a very good Drawing-Board.

There

There is alfo belonging to the Plain Table an I_{n} dex, having a plain Sigbt fixed upright at each End: In the lower Part of one Sight is a vertical Slit, and in the correfpoinding Part of the other is a wide Opening, having in the Middle of it a vertical Hair or String, to cut the Object when you look through the Slit in the other Sight; and for the Conveniency of looking backwards without turning the Index, over the wide Opening in one Sight, is a fine Slit, and over the narrow Slit in the other is an Opening with a vertical Thread in the Middle as before defcribed of the other Sight. Note, The vertical Threads and Slits ought to ftand exactly over the fiducial Edge of the Index (which is always filed floping from above) if produced through the Bottom of both Sights.

The Index is commonly made two Feet long, but the exact Length need not be regarded, if it be but convenient according to the Bignefs of the Table. The outward Edge of the Index is commonly divided into Inches, and on the Surface betwixt the Line of Inches, and the fiducial Edge, is a diagonal Scale ; and alro fometimes Lines of artificial Numbers, Sines and Tangents: But there Lines might, with as much Propriéty, be drawn upon the Off-fet Staff. Inftead of all thefe, it would be better to have Scales of equal Parts of different Dimenfions, and then you would always have at Hand fuch a Scale as would beft fuit your Purpofe.

Underneath the Table is faftened a Brafs Socket, which fits a Brafs Pin fixed in the Head of a threclegged Staff. This Staff fupports the Table at a proper Height, and the Table is faftened to it by a Screw in the forementioned Socket.

Note, You fhould always take Care that the Table, when you ufe it, be pretty nearly horizontal or level; which you may know by applying to

Sect. 2. The Practical Surveyor.
it a little Square, having a Line and Plummet: faftened to the upright Side; then by drawing out or in, one or more of the Legs of the Staff, as you fee Occafion, you may rectify the Table fufficiently near for your Purpofe. Sometimes to the Head of the Staff is faftened a Ball and Socket; but this is rather a Detriment than of any real Ufe, for the Ball is fubject to fake or turn horizontally; and as. there is no other Way of moving it, but by the immediate Application of the Hand, the fame End will be obtained as foon and as well by moving the Legs of the Staff.

Directions for ufing the Plain Table.

Let Fig. 23. be fuppofed to reprefent two Fields or Enclofures, a Plot of which is defired; and firft of the Field almob.

Having put your Plain Table in order, and obferved the Needle to play well, (if you make Ufe of one) put a Sheet of fair Paper thereon, and prefs down the Frame, fo that the Paper lies fmooth; then you may imagine the Paper on the Table to reprefent the Surface of the Land, and the Lines you fhall draw thereon, to be the Boundaries of the refpective Fields or Enclofures in fome Proportion or other. If you make an Inch long on the Paper, to reprefent the Length of one Chain on the Land; and if 5 Chains in Length, and 2 in Breadth, contain the Quantity of one Acre on the Land; then 5 Inches in Length, and 2 in Breadth, fhall alfo contain the Quantity of one Acre on the Paper.

This being premifed, we'll proceed to lay down upon the Paper, the Lines which enclofe thefe two Fields, according to their juft Length and Pofition; which therefore fhall include the fame Quantity of Superfices as thofe on the Field, in Proportion as the Square of I Inch to the Square of I Chain.

But if we make half, or a quarter of an Inch, or half a quarter, (by which the following Dimenfions were laid down) on the Paper, to reprefent one Chain, it will be the fame Thing in Effect, only the Plot will be thereby rendered lefs.

Firft, place the Table fomewhere about the Middle of the Field, from whence, if poffible, you can fee all the Angles, as at $\odot 1$; and make a Hole in the Ground, over which by the Help of a Plummet and String, fet the Center of the Table, by applying the String to the Head of the Staff. Having fet the Inftrument horizontally, turn it about till the Needle hangs over the Flower de Luce in the Box; (or if it is more convenient, turn the length-way of the Table to the length-way of the Plot, that it may, if poffible, lie on one Sheet of Paper; and note, on a Bit of wafte Paper, the Divifion in the Box the Needle hangs over when at reft) and then fcrew the Table faft. Affign on the Paper a Point, or ftick a Pin at \odot I, (to reprefent the Hole in the Ground or prefent Station) to which Point, apply the fiducial Edge of the Index, and turn it about, keeping the Edge clofe to the Point or Pin at \odot, till through the Sights you fee the Hair cut a Staff or Mark, fet up exactly in one of the Angles, as at a; then by the Edge of the Index, draw an obfcure Line from the Point © toward the Angle a, (with the Point of the Compaffes or with a Pencil) without regarding the Length, fo it be but long enough.

Let the Mark be left at a, and caufe others to be fet up round the Field, at every Angle therein, as at l, m, o, b; to every one of which direet the Sights, and when the Hair therein cuts the Mark (keeping the Edge of the Index clofe to the Point ©) draw the feveral Lines $\odot l, \odot m, \odot o, \odot b$.

Now fee whether the Needle continues to hang over the fame Point in the Box as when you firft

Sect. 2. The Practical Surveyor.

planted the Table; alfo lay the edge of the Index to the Line $\odot a$, and if then the Hair in the Sights cuts the Mark at a, and the Needle hangs over the fame Point as at firft, you may conclude the Table hath not been moved out of its firft Pofition, which is carefully to be obferved.

In the next Place we proceed to meafure the Lines $\odot a, \odot l, \mathcal{E}^{\circ} c$. Thus, apply the Ring at the End of the Chain to the Hole under the Table, and let the Chain be ftretched at Length towards one of the Angles as at a; and when you have meafured up thereto, (obferving the Directions before laid down for meafuring with the Chain) you will find the Length of the Line $\odot a$, to contain 3 Chains 60 Links, which note in a Bit of Paper.

Having meafured the Line $\odot a$ on the Ground, take the Length thereof, viz. 360 Links from the Scale of equal Parts (which you judge is moft convenient for your Purpofe) and lay the fame (on its reprefentative upon the Paper) from \odot to a. After the fame Manner meafure with the Chain the Length of the feveral Lines $\odot l, \odot m, \odot o, \odot b$; then transfer the Length of each Line on the Ground to its reprefentative on the Paper, making Marks where the End of each Line falls, as at a, l, m, $0, b$.

Laftly, join the Points $a, l, m, 0, b$, with Ink Lines, becaufe they fhould not rub off, (and for this Purpofe a Drawing-Pen is requifite) as the Lines $a l, l m, m o$, $o b$ and $b a$, which conftitute the Boundaries of the Field, almob.

Note, It is generally the moft expeditious Way to meafure one Line from the Inftrument to an Angle, and the next from the Angle to the Inftrument; and fo backwards and forwards till all are finifhed, noting down as you meafure them, the Length of each Line on a Piece of Paper; then obferving which Line you began with, fet on its true Length on the Paper
on the Table, and the reft of the Lines in their Order. A young Beginner may take the Pains to meafure a-crofs fome Part of the Plot on the Paper, as the Diftance from a to 0 , or from a to b, with his Scale and Compafies; then meafuring the famie Diftance on the Ground with the Chain, he will find them both exactly to agree, if the Plot be truly laid down:

Having finifhed this Field, caufe a Staff to be fet up with a Paper thereon in the next, in a Place from whence you can view all the Angles; but if fuch a Station cannot be found, chufe the moft convenient, as at $\odot 2$.

The Table ftanding at $\odot 1$, in the Field $a l m \circ b$, in the fame Pofition as at firft, (which it muft do, or the Plot of the next Field cannot be truly laid down in refpect of the laft) lay the Index to the Point \odot, and turn it about thereon, till the Hair in the Sights cuts the Staff or Mark in the next Field at $\odot 2$; and holding the Index faft in that Pofition, draw a Line by the Edge thereof from \odot I, towards $\bigcirc 2$ in the next Field, and take care to continue it long enough; then remove the Table, and place a Staff with a Mark thereon, in the Hole over which the Center of the Table was placed, and meafure with the Chain the neareft Diftance between $\odot 1$, in the Field almob, and $\odot 2$ in the next Field, (drawing the Chain through the Hedge in a ftraight Line) and fet on the Diftance 621, (by the Help of the Scale and Compafies) from \odot i to $\odot 2$.

Now take away the Staff, and plant the Center of the Table over the Hole, in which the Staff ftood at $\odot 2$, and fticking two Pins, or the Points of two fmal! Needles in $\odot 1$, and © 2; apply the Edge of the Index thereto, fo that it may lie exactly on the Line $\odot 1$; © 2; and keeping it in this Pofition, turn the Table about till the Hair or Thread in the Sights cuts the Staff or Mark in the laft-Field; then ferew the Ta-

Sect. 2. Thbe Practical Surveyor.
ble faft that it ftir not out of its Poffition, till yous have finifhed the Obfervations in this Field : (But obferve to turn that Part of the Table marked with - I, towards its reprefentative in the laft Field.)

When the Needle hath fettled, and is at reft, obferve whether it hangs over the Flower-dc-luce or fame Divifion in the Box, as at O I in the laft Field; which it will do if you have made your obfervation juflly, and the Needle be good; and if you were to move the Table to never fo many Stations, the Needle will fill point to the fame Divifion in the Box, which you fhould carefully obferve; becaufe the removing the Table from one Station to another is the greatelt Difficulty in this Way of Surveying.

Having caured Marks to be fet up in fo many of the Angles in this Field, as you can conveniently fee, from the prefent Station, as at k, i, b, g; lay the Index to the Point © 2, and direct the Sights to $k, i, h ;\}$, drawing Lines by the Edge of the Index towards cvery one of them; then meaturing the Length of the feveral Lines $\odot k, \odot i, \odot b, \odot g$, with the Chain, fet on the feveral Lengths of thefie Lines on the refpective Lines on the Paper (as before directed) marking the Points k, i, b, g, where the Ends of the Lines fall from \odot; laftly, join the Points $l k, k i$, $i b$, and $b g$, with Ink Lines, and they will be the Bounders of fo much of the prefent Field, as you can conveniently fee from this Station.
But there is no occafion to meafure to the Angles lor m with the Chain, except that it may be fome Satisfaction, as aforefaid, to fee the Lines on the Paper, and thofe on the Ground to agree.

Obferving the former Directions for removing the Table, let it be placed in its true Pofition at $\odot 3$ in this Field; then direet the Sights to the Angles f, e, d, c, and when the feveral Diftances from $\odot 3$, to f, c, d and c, are fet on the Paner, join the Points

Points $g f, f e, e d, d c$, and $c b$, with Ink Lines; fó is the true Plot of thefe two Fields, $a l m o b$, and lkibgfedclom, laid down on the Paper in fuch Proportion as the Scale you made ufe of is to the Chain.

But obferve that if the Hedge $b c$, had been 10 thick, that from © 3 , you could not have feen the Angle d, or other Obftruction had hindered your Sight or Meafuring thereto, you muft have removed the Table to another Station; but when you can (as commonly you may) by holding afide the Boughs or otherwife, fee the Mark, and by drawing the Chain through the Hedge, meafure the Line from $\odot 3$, to the Angle d; it is better not to remove the Table: For the fewer Stations you make, the Work will be eafier done, and alfo more truly laid down.

It would be needlefs to give Directions how to furvey a Field from a Station taken in any Anglé thereof, from whence the reft may be feen; as if it had been more convenient in the Field almob, to have planted the Table at the Angle a, the Sights muft have been directed from thence to the reft of the Angles l, m, o, b; and the Lines meafured on the Ground, from a to l, m, o and b, whofe Length laid down on the Paper from a, would give the fame Points $l, m, 0, b$, as if the Station had been in the Middle of the Field; and the Bounders being drawn, they would be in the fame Pofition as before.

If you would draw a Meridian, or a North and South Line through the Plot; turn the Table about, till the Needle hangs over the Flower-de-luce in the Card, and laying the Index at right Angles to the long Sides of the Table, draw a Line clofe by the Edge, which fhall be a Meridian Line; and if you crofs this Line by another at right Angles, that fhall fhew the Eaft and Weft Points.

Note, Having removed the Table to a new Station, if the Index be laid clofe to the Line drawn betwixt that Station and the laft; the Table may be thereby rectified to a greater exactnefs than can be done by the Needle, which at beft is uncertain and liable to be out of order; and, as before intimated, the Needle is not properly an Appendage of the plain Table, though we have here all along fuppofed it annexed to this Inftrument, for the Sake of complying with Cuftom.

S E C T. III.

Directions for cafting up the Content of any
Piece of Land.

THE next thing that lies before us is the Manner of calculating the Quantity' of the Superficies, or the Area, enclofed by the Lines on the Paper, as they reprefent the Boundaries in the Field; that is to fay, how many Acres, and Parts of an Acre are contained therein.

The manner of finding the Area or Content of any plain right-lined Figure, hath been already laid down in Sect III. of Chap. I. It hath been alfo fhewed, that the Method of finding the Content of all plain right-lined Figures is deduced from the rightangled Parallelogram, the Area of which is found by multiplying the Length by the Breadth: Wherefore becaufe ro fquare Chains make I Acre, if the Side $A B$ of the right-angled Parallelogram $A B C D$ (Fig. 15.) be 5 Cbains, and AC 2 Chains, the Airea of ABCD is juft I Acre. Alfo if the Sides of the Square ABCD Fig. 16. be each io Chains, the Content of the faid Figure will be 100 fquare Chains, or io Acres.

But becaufe almoft all Fields to be met with in Surveying are irregular, and bounded with feveral unequal Lines, we muft firft take the Plot thereof by fome Inftrument, and lay it down on Paper; then by drawing diagonal Lines, we may reduce the Figure into Triangles, Ecc. Vide Fig. 24.

The Lengths of the feveral Lines in the Field are ufually fet down in Links, without diftinguifhing them into Chains and Links, as 6 Chains 54 Links is writ 654 , which fignifies 654 Links; for as a Link is the loweft Denomination, and the only one ufed, there is no Neceffity for writing down the Word Links. And as a Chain contains in length 100 Links, therefore in I fquare Chain there are 10,000 fquare Links, and 100,000 fquare Links in an Acre. Wherefore having the Content of a Field given in fquare Links, if we cat off 5 Figures to the right Hand, what is left on the other Side (if there be any) will be Acres. Thus, if a Field contains 1654321 fquare Links, the Area thereof will be 16 Acres and $\frac{54321}{5080} 90$ parts of an Acre, or 16.5432 . I Acres. The Chain is made 66 Feet in Length, and divided into 100 equal Parts on Purpofe, to fave the Trouble of Divifion in computing the Number of Statute Acres.

Nate, The Content of every Field is ufually fet: down in Acres, Roods and Perches. An Acre contains 4 Roods, and one Rood 40 fquare Poles or Perches. Wherefore, the Content of a Field being given in fquare Links, and having found the Number of Acres contained therein as above, multiply the 5 Figures, which were cut off by 4 , and from this Product cut off again 5 Figures, what is left will be Roods; then the Remainder fo cut off being multiplied by 40, from this laft Product alfo cut off 5 Figures, and thofe on the left Side will be Perches, which is the loweft Denomination ufually fet down of the Contents of Land.

Sect. 3. The Practical Surveyor.
To find the Number of Acres contained in 165432 I fquare Links, the Operation will ftand thus:

$$
\begin{aligned}
& \text { A. } 16.5432 \pm \\
& 4
\end{aligned}
$$

Acres Rood Percloss.
Anf. $16: 2: 6$ or rather $16: 2: 7$ be caufe the 91360 make almoft another Perch.

To find the Content of any Piece of Land, the following is a General Rule。

Firft reduce the given Figure into Triangles, then meafure the Bafes and Perpendiculars falling upon them, of each Triangle, and multiply feverally the faid Bafes by the Halt of their Perpendiculars, or the whole Perpendiculars by half the Bafes, and the Product will be the Contents of the feveral Triangles in fquare Links. Add the Content in Links of each Triangle together, and the Sum will be the Content of the whole Field in fquare Links, which you may reduce into Acres, Roods, and Perches, as before directed.

Thus. in Fig. 24. the Area of the Triangle $l \mathrm{mo}$ (whofe Bafe 10 is 660 , and Perpendicular my let fall upon it from the oppofite $\angle m$ is 252) is 83160 , which may be found either by multiplying half 660 by 252 , or 660 by half 252 .
$\frac{252}{330}$
$\frac{7560}{756}$

83160 $\frac{$| 126 |
| ---: |
| 660 |}{$\frac{7560}{83160}$}

The diagonal Line $i b$ divides the Trapezia loba into two Triangles, $l 0 b$ and $l b a$, which might be feparately caft up as the Triangle Imo; but the quicker Way is, to add the two Perpendiculars $o z$ and $a x$ together, and by that Sum multiply the Line $l b$, which is a common Bafe to both Triangles, and halye the Product for the true Content of the Trapezia. See the following Work.

$\left.\begin{array}{l}166320 \\ 449600\end{array}\right\}$ Product.
615920 double Content.
Acres- -3.07960 true Content: 4
Roods -.31840
Poles-- 12.73600

Acres Roods Poles Parts of a Pole. $3: 0: 12: \frac{12800}{400800}$

The Bafe 10 multiplied by the Perpendicular $m y$, produces 166320 , which is double the Content of the Triangle $l m$ o in fquare Links. Alfo the Perpendicular a x, added to the Perpendicular $0 z$, makes the Sum of both 562 , which multiplied by 800 , the common Bare to both Perpendiculars, produces 449600 , which is double the Content of the Trapezia $l 0 b$ a in fquare Links.

Therefore (for avoiding Fractions) the double Content of the Triangle $l_{m o 166320}$, added to the double Content of the Trapezia lob a, 449600 gives 615920 the double Content of the Field almob in Square Links, the half of which (viz.) 307960 is the true Content of the Field almob in fquare Links, which reduced into Acres, $\mathcal{E}^{\circ} \mathrm{c}$. as before directed, gives 3 Acres, 12 Poles, and a little above half a Pole, for the true Content of the Field almob; but the Parts of a Pule are feldom regarded.

In the fame Manner the Field $b c d$ efgbiklmo, Fig. 24. being divided into Trapezias and Triangles, add both the Perpendiculars of each Trapezia together, and by that Sum multiply the Diagonal or Bafe : Alfo multiply the Bafe of each Triangle by the Perpendicular, and fer the Pioduct of each Trapezia and Triangle in an orderly Manner, one under another, and add them altogether into one Sum, the half of which Sum will be the Content of the Field in fquare Links, which reduce into Acres, $\mathcal{E}^{2} c$. as aforefaid.

But remember to meafure the Baics and Perpendiculars by the fame Scale that the Flot was laid ciown by, and contrive to reduce the Field into as large Trapezias and Triangles as poffible; for the fewer you make, the exacter will the Work be caft
up; and draw the Bafe-lines neat and fmall, and exactly from Angle to Angle. You need not actually draw the Perpendiculars, but only take the neareft Diftance from the oppofite Angle to each Bafe, which may be readily done thus: Set one Foot of the Compaffes exactly in the angular Point, and extend the other till it touches the Bafe; then turning it about, if it cuts the Bafe, obferve the Middle, as near as you can guefs, between thefe two Points; the Diftance betwixt this middle Point, and that wherein the other Foot of the Compaffes ftands, will be the Length required, to as great an Exactnefs as you could meafure it, if the Perpendicular had been drawn.

Note, You fhould al ways make ufe of as large a Scale, as the Bignefs of your Plot will admit; and if you ufe a diagonal Scale, the Lengths of the feveral Lines may be laid down and meafured on the Pa per to a greater Exactnefs.

S E C T. IV.

Sbewing bow to make the Plot of any Field ar Enclofure, on the Paper fixed on the plain Table, by going round the fame, and taking OffSets to the Bounders, \&x.

THE former Method of planting the Table at one Station or more, in the Middle of the Field, and meafuring from thence the Diftance to every Angle, is eafieft for a Beginner, but is not convenient in many Cafes; becaufe he may be hindered by Furze; Water, \mathcal{E}° c. from meafuring the Lines to all the Angles; and in many Fields where the Fences are as irregular as the Side ae in the Field, Fig. 25, he will beobliged to meafure a great Number of fuch Lines.
'Tis therefore beft to plant the Inftrument at the moft remarkable Angles, and meafure round the Field ; for by this Method, all Sorts of Land may be meafured (fo the Plan be not too large for one Sheet of Paper) either within or without the Plot, as Convenience fhall determine.

Note, This mark \odot, always reprefents a Station, ${ }^{\text {, }}$ a a prick Line reprefents the Station Line, and - a black Line the Boundary.

Let Fig. 25. reprefent a Field to be plotted by the plain Table.

Firt fet up a Mark at a, and draw a Line on the Table, to reprefent $a b$, in the Field; then meafure the Diftance to the Hedge from © 20 Links, which fet from © to f; alfo meafure the Diftance from $\odot a$, to $\odot b, 840$ Links, which fet on the Line $a b$.

Having drawn the Line $a b$, place the Table at b, and lay the Edge of the Index clofe to the Line $a b$, and turn the Table about till you fee the Mark at a, and there forew it faft; then turn the Index about on b, till you fee a Mark at c, and draw $b c$, with the Point of the Compaffes, or a black-lead Pencil; alfo direct the Sights to the Barn, and draw the obfcure Line $b \cdot z$, not regarding its Length, fo it be but long enough.

When the Needle hath fettled, take Notice what Divifion in the Box it points to, for to that Divifion it will point at every Station through the Plot, if your Work be true, and the Needle good, as aforefaid; but becaufe it is not convenient to tiuft to the Needle when we can do without it, I thall here lay down a furer Way to correct an Error, before it is communicated to the following Part of the Work.

In the next Place, meafure the Diftance from $\odot b$, to the Hedge 17 Links, which fet from \odot to g, and draw the Boundary $f g$; alfo meafure the Diftance
from \odot to h, which fet on the Paper from \odot to b, and continue the Bounder $f g$, in a ftrait Line, as you fee in the Field.

Remove the Table from b, and fet up a Staff with Paper thereon in the Hole, over which the Center of the Table ftood, according to former Directions, and meafure with the Chain from b towards c; but when you come over againft the Bend in the Hedge at i, meafure the Diftance from the Chain Line $b c$, to that bend 7 Links, which fet from the Chain Line $b c$, to i; and draw the Boundary $i b$, through b, till it cuts the Boundary $f g$, conftituting that Corner of the Field. Meafure on to $c, 620$ Links, which fet from b to c.

The Reafon why we made the Station b, fo far from the Corner, is to avoid planting the inftrument too often; for if we had continued the Station Line $a b$, into the Corner, we muft have made another Station at i, otherwife we could not fee to the Angle at c; for the fewer Stations we make, the exacter will be the Work, as aforefaid.

Now in order to examine the Length of $b c$, and alfo its Pofition in refpect of $a b$, do thus: Plant the Inftrument at c, and lay the Index on the Line $b c$, and by turning the Inftrument about, direct the Sights to b, and there fcrew it faft ; then turn about the Index on the Point c, towards the Mark at the Angle a, in the Field, "and if the Edge does not cut the Point a, in the Table, the Line $b c$ is falfe, either in Pofition or Length, and therefore muft be corrected before you proceed.

The Line $b c$, being truly laid down, and the Table ftanding at c, in the fame Pofition, lay the Index to the Point c, and turn it about thereon, till the Hair in the Sights cuts the Mark at d, and draw the Line $c d$; alfo direct the Sights to the Middle of the Barn, the Index being turned about on the fame
fame Point c, and draw the obfcure line $c x$, croffing the other obfcure line $b z$; fo fhall the Point of Interfection determine the Situation of the Barn in the Middle of the Field, which you may prove by meafuring on the Ground thereto, from any Part of the Field.

Next meafure the diftance from the © at c, to the Hedge 6 Links, which fet from \odot to k, and draw the Boundary $i k$, continuing the Line through k; alfo meafure the Diftance to the other Hedge Cl , from $\odot c$, I 5 Links, which fet off to l.

Remove the Table from c, and place a Mark there, and meafure the Diftance from c to $d, 48 \mathrm{~m}$ Links, which Diftance fet on the Line $c d$; then plant the Table at d, and having laid the Index on $c d$, turn the Table about till you fee the Mark at c, and then fcrew the Inftrument faft.

Next, examine the Length and Poftion of $c d$, in refpect of $b c$, as before directed then turning the Index about on d, direct the Sights to e, and draw the Line $d e$; fet off the Diftance from $\odot d$, to the Hedge at $m, 10$ Links, and from m, draw the bounding line $m l$, continuing it ftrait through l, till it. croffes $i h$, as you fee it do in the Field.

Leave a Mark at d, and plant the Table at e, having firft meafured the L.ength of $d e, 364$ Links, which fet on its proper Line from d to e : on which Line $d e$, lay the Index, and turning the Table about till you fee the Mark at d, there fcrew it falt; and having proved the Line $d e$ to be truly laid down in refpeet of $c d$; turn the Index about on e, till you fee the Mark at a, and draw the Line e a, which will cut through the Point at a : Alfo direct the Sights to the Angle p, and draw $\odot p$; and to q, drawing $\odot q$ on the Paper.

Then meafure with the Chain the Diftances $\odot p$, and $\odot q$, fetting thofe Diftances on their proper Lines, and draw the Boundary $p o$, and $q p$.

Now meafure on the Line $e a$, and when you come againft the Bend in the Hedge at r, meafure the Diftance from the Chain Line e a, to that Bend 8 Links; which fet on the Paper to r, and draw the Boundary q r.

In the fame Manner meafuring on the Line $c a$, fet off the Diftances from the Chain Line to the Angles in the Bounder s and t, and draw the Boundaries $r s$, $s t$, and $t f$, which croffes the Line $g f$, near f; and when you have meafured the Line $e a$, on the Ground, you will find it of the fame Length as that before drawn on the Paper.

If the Diftance from the Station to the Bends in the Hedge be great ; 'tis the fafeft Way to plant the Center of the Table over the Station Line, as at w; and laying the Index on the Line $e a$, direct the Sights to e, or a, by turning the Table about, and in that Pofition forew it faft; then direct the Sights to the Bends in the Hedge, as, to s, or t, drawing Lines towards them, and fetting off the Diftances in the fame Manner as is done from $\odot e$.

In order to examine the Lengths and Pofitions of each Line before you proceed on to the next, if you don't think it convenient to leave Marks at all the Stations round the Field; if you turn about the Index on the Point, reprefenting the prefent Station, till you fee any one of the Marks before laid down, and if the Edge of the Index cuts that Point on the Paper, your Work is right; fo you might have left a Mark at the firlt Station a, and by that prove the Lengths and Pofitions of all the other Lines, as well as by the laft but one you paffed by.

Sect. 4. The Practical Surveyor.
But if you could not fee the Mark at a, at all the other Stations, you may make ufe of any other Mark, as fome Part of the Barn; or you may fet up a Mark in fome convenient Place, from whence you can fee all the Angles.

But if the Mark you laft ufed, is at too great a Diftance from you, or lies almoft in a ftrait Line with that you laft laid down; then ufe fome other Mark in its Stead, whofe Pofition you have before found at one of the foregoing Stations.

Or inftead of a Mark thus fet up, you may ufe any remarkable Tree, Steeple, $\xi^{\circ} c$. that is not at too great a Diftance from you, whether it be in the Land you are then Surveying or not.

How, to meafure an inaccelfible Difance.

Laftly, In the fame Manner as you found the Pofition of the Barn in the Middle of the Field, Fig. 25. you may meafure any other inacceffible Diftance; fo if the Barn was fo fituated that you could not come nearer thereto, by reafon of Water, or other Impediments, than the Line $b c$, yet you would know its Diftance from b, or c.

The Inftrument being planted at b, and the Sights directed to a Mark at c, and alfo to the Barn; and the Lines $b z$, and $b c$, drawn on the Paper as before directed; then the Inftrument being removed from b, and planted at c, and the Sights directed to a Mark left at b, and alfo to the Barn; and the Line $c x$, alfo drawn on the Paper, cutting the other Line $b z$: Then fhall the Point of Interfection determine the Diftance of the Barn from b or c, which you may find by meafuring from b or c, or any other Part of the Line $b c$, by the fame Scale with which you laid down the Lin $b c$.

But 'tis convenient to make the Stations b and c, at fuch a Diftance from one another, that the Angle at the Point of Interfection may not be too Acute, left you be not able to diftinguifh nicely the Point of Interfection.

If Fig. 25. was a Wood, fo that you could not meafure the Station Lines within, you may as well make them on the Outfide; for the Plot will be the fame, only the fmall Pieces of Ground between the Station Lines and Boundaries, are excluded by the Boundaries from being any Part of the Plot. Particular Directions in this Caie are needlefs ; See the Figure.

When you are about to meafure a Plot of Land, and in doubt whether it will lie on one Sheet of Paper, you may place a Line or two crofs the Plot, as you walk about to chufe the mof convenient Stations, (reckoning fo many Steps to a Chain, as you find by Experience carries youa Chain's Length) and thereby guefs what Scale to make ufe of.

It is alfo convenient to make a particular Remark at the firft Station in each Field, that you may readily find it when you come round to it again, in order to clofe the Plot.'

Alfo as foon as you have drawn the Plot of a Field, it is neceffary to write the Name fome where in the Middle thereof.

There is another Way of Plotting a Field by the Plain Table (though fcarce fit for Practice) by mea. furing one Line only, which in fhort is this:

Plant the Table at a, Fïg. 26. and direct the Sights to the feveral Angles round the Field, keeping. the Index clofe to the Point a, and by the Edge thereof draw a Line towards every Angle; then place a Staff at a, and plant the Table at the other Station b, meafuring the Diftance between the two Stations, which Diftance fet on the Line $a b$; lay the Index on the Line' $b a$, and turn the 'Table about till you fee the Mark at a, and fix there the Inftrument.

Then

Sect. 5. The Practical Surveyor.
Then lay the Index to the Point b, and turn it about thereon, directing the Sights to the feveral Angles round the Field as before at a, and towards every one of them draw a Line, which will interfect the Lines before drawn at a; fo fhall the Points of Interfection determine the Place of all the Angles round the Field, and Lines drawn from Point to Point fhall give the Boundaries of that Field.

But if you be not very exact and curious in drawing the Lines, and alfo, if the Stations are not contrived in fuch Manner as may prevent the Lines interfecting one another at very acute Angles, you may commit grofs Miftakes.

And here it may be obferved in this as well as any other Cafe of the like Nature, that all Things that are to be determined by the Interfection of right Lines, are beft determined when thofe Lines interfect each other neareft right Angles: And therefore when Triangles are laid down from one given Side, and the Length or Pofition of the other two, and thefe two make with each other a fmall Angle, it is difficult to determine the Point where they interfect, fo exactly as it ought to be.

S.E C T. V.

Shewing bow to meafure any Piece of Land, by the Cbain only.

THOSE who are not provided with other Inftruments, may make a fhift to meafure a Piece of Land by the Chain only, after the following Manner, though it be fomewhat laborious and tedious.

Let Fig. 22. reprefent a Field, woboje Content in Acres is defired without any Plot thereof.

Firf, Set up Marks (or upright Sticks) at the feveral Angles A, B, C, D, E, F, G, H, I ; and obferve as you go along, betwixt which Angles it will be moft convenient to run a diagonal or bafe Line, as the Line A E; fo that a Perpendicular from the oppofite Angles as B and I, may fall upon this Diagonal or Bafe in a convenient Manner: And Note, it is beft to make the Baje the longeft diagonal Line in a Trapezium, or the longeft Side of a Triangle; for then the Perpendiculars will be fhorter, which in this Method of Surveying is an Advantage.

Having a Sheet of Paper in Readinefs, on which to draw an Eye-draught of the whole Work, make fome Mark near the Angle at A, and lay the Chain thereto, ftretching it in a ftrait Line towards the oppofite Angle E; then draw a ftrait Line on the Paper, to reprefent the Line A E, which you are about to meafure; and proceed with the Chain towards the Arigle E.

When you have meafured 4 Chains on the Line A E, you will perceive yourfelf almoft over-againft the Angle B ; therefore having laid the Chain a fifth Time, fet down an Arrow at the End of the Chain next E, and let it lie on the Ground in the Directioti of AE; then endeavouring to find a Point in the Bafe AE from which a right Line drawn from the Angle B, may ftand at right Angles upon the-Bafe A E.

For this Purpole provide a fmall Brafs Crofs, with four plain Sights thereon, having a Socket on the backfide; which put on the Head of a fhort Staff, and fet the Staff in the Ground clofe to the Chain'; then let two of the Sights in the Direction of A E, by looking backwards and forwards through thofe

Sights till you can fee the Mark in each Angle A and E; fo fhall the Mark in the Angle B be feen through the other two Sights, if the Staff be fet in a Perpendicular from B; but if not, move the Staff backwards and forwards by the Side of the Chain, in the Line A E, till through two of the Sights you fee A and E, and through the other two the Mark at B; then will the Staff be fet in the Point a.

But if you have not fuch a Crofs, get a Bit of Board made exactly fquare, in form of a fquare Trencher, and from Corner to Corner draw ftrait Lines thereon; then ftick a Pin faft and upright in the Line near every Corner, and make an Hole in the Middle of the Board, fo that you may turn it on the Head of a Staff; this, for once, may fupply the Want of the Crofs.

Having found the Point a in the Line A E, there fet down a Staff, and take Notice how many Chains and Links it is diftant from A, viz. 418 ; therefore apply a Scale to the right Line on your Eye-draught, and near 418 make a Mark at a; but you need not regard whether it be exact or not, fo it be within 20 or 30 Links, becaufe the true Lengths of each Line are meafured on the Ground.

Then meafure on the Ground, in a ftrait Line, the neareft Diftance between a and B 600 Links, and erect a Perpendicular on the Point a on the Paper, as near as you can gueis, by applying the End of a Scale to the Line $a \mathrm{~A}$; and by the Edge thereof draw the Line a B , letting clofe thereto 600 Links, the Length of the Perpendicular ; but you need not regard whether the Line $a \mathrm{~B}$ on the Paper be made of its juft Length or not; but only that the Form of the Eye-draught may be fomething like that of the Field, a Refemblance thereof being all that is requifite in this Cafe.

Next return to the Arrow, and meafure forwards on the Line AE till you are near againft the Am- at the Diftance of 616 Links from A. Then meafure the Perpendicular e I, and fet the true Length thereof 368, clofe to its Reprefentative on the Eyedraught.

Now look towards the Fences AB and AI, and becaufe they are ftrait Lines, draw B A, AI, on the Eye-draught, fo is that Side of the Field finifhed.

Frome proceed with the Chain in a ftrait Line to E, and you will find the whole Length from A to E to be 1375 Links: Then make that right Line on the Paper nearly the Length of 1375 , and draw the right Lines EB and EI, cutting the Ends of the Perpendiculars $a \mathrm{~B}$ and $e \mathrm{I}$: fo thall the greateft Part of the Field be expreffed on the Paper, by the Trapezium ABEI.

From E meafure in a ftrait Line towards C , and when you come to b, meafure the Perpendicular bD 60 Links; then meafure out the Line F. C to C 800 Links, and draw the Sides ED, D C, on the Eye-draught, to the Extremity of the Perpendicular b D. Now number the Angles round the Field; and if you can fee the Marks at each, compare them with thofe on the Eye-draught, and thereby difcover what Part of the Field you have already meafured, and what remains to be done.

In the fame Manner as you meafured the Triangle EDC, meafure the Triangle EFG and GHI; then if there be fo many Angles expreffed on the Eye-draught, as there are Marks at each Angle round the Field, and if the true Length of each Bafe and Perpendicular, as meafured in the Field, be expreffed on thie Reprefentative of the Eyedraught, you may proceed to caft up the Work.

The fame Lines in the Field, Fig. 22. are meafured on the Land with the Chain, as we fhould have done

Sect. 5. The Practical Surveyor. 49 done on the Paper, with the Scale, if the true Plot of the fame Field had been firft made by the plain Table or other ftanding Inftrument; and therefore muft be caft up in the fame Manner, for you have the true Length of each Bafe and Perpendicular given on the Eye-draught: So the Sum of the two Perpendiculars $a \mathrm{~B}$, and $e \mathrm{I}$, multiplied by the Bafe AE; alfo the Bafes and Perpendiculars of the other three Triangles multiplied together, thefe four Products added into one Sum, the Half thereof will be the Content of the Field, Fig. 22, in fquare Links, which reduce into Acres, $\xi^{3} c$. as directed in Sect. 3.

This Method of meafuring a Field by the Chain, is only proper for plain, level Ground, and fmall Encloíures: But even then, if the Fences are very irregular, 'tis better to go round and meafure the Angles; taking Off-fets from the Station-lines to the Fences.

Indeed if the Fences be tolerably regular (but there are many Fields, whofe Sides are not fo ftrait as Fig. 22.) you may make a Plot thereof tolerabiy well, by obferving at how many Chains and Links the Perpendiculars joins the Bale of the Triangles or Trapezias, and erecting Lines on thofe Points perpendicular to the Bafe; which being made of their true Lengths, as meafured on the Ground, the Sides of the Field may be drawn from the Extremities of the Bafe, to the End of each Perpendicular. Alfo obferve, if any of thefe Bafes be more than io Chains, leave a Staff at the tenth, and take the Direction of the Line by that Staff, becaure the Station will be at too great a Diftance; and if the Length be 20 , fet up another Staff, and fo on.

Or, you may make a Plot of the Field, Fig. 22. without meafuring the Perpendiculars, after the following Manner; which I take to be a better Method (at leaft in many Cafes) than the preceding.

3o, The Practical Surveyor. Chap. If.

1. Meafure the Sides $A B, B E ; E I, I A$, and the Diagonal AE of the Trapezium ABEI, which note on a Piece of Paper ; and note alfo at how many Chains and Link, the Point C in the Line EB falls from E or B, according to which End of the Line EB you began meafuring: After the fame Manner write down where the Point G falls in the Line EI; next, meafure the Sides ED, DC; EF, F G; and GH, HI; and then theWork that was to be done, and the Field is finifhed. But becaufe the Angle ADC is very obtufe, and lies but a little Way from the Bafe CE; inftead of meafuring the Sides ED and D C, I would chufe rather to find the Point b, and meafure the Length of the Perpendicular $b \mathrm{D}$; and for the fame Reafon I would meafure the Perpendicular $c \mathrm{~F}$: Alfo for a like Reafon, inftead of meafuring the Perpendicular $\mathrm{I} d$, I would meafure the Sides GH and HI, as before directed. For this fhould be always remembered, that the more Dimenfions are taken in the Field, the truer will be the Area of the Plot. Every Surveyor therefore fhould meafure as many Lines and Perpendiculars as poffible with his Chain, and not truft more to Angles than is abfolutely neceffary, as they are very fubject to lead him into Error. If you cannot come clofe to the Fences, you muft take Off-fets, as directed in the laft Section. The Dimenfions of the forefaid Lines being thus taken, you may make a Plot of the faid Field after the following Manner. Having drawn a Line crofs the Paper, lay thereon the Length of AE taken from a Scale of equal Parts; then from the fame Scale take the Lengths of $A B, E B$, and cherewith form the Triangle ABE (by the Directions in Page 14.) After the fame Manner, with the Sides EI, A I, upon the Bafe AE, make the Triangle AIE; then will the Trapezium ABEI be compleated. Now there remains to be done, only the Triangles EDC, EFG,

Sect. 5. The Practical Surveyor. 5t
EF G, and GHI, which may be compleated after the fame Manner, or the Triangles EDC and EFG may be made by Help of the Perpendiculars $b \mathrm{D}$, and $c \mathrm{~F}$, according to which Method you took in meafuring them. The Field being thus laid down upon Paper, the Contents of it may be found by Sect 3. of this Chapter.

C H A P. III.

Of the Theodolite: And the Ufe thereof in furveying a Field, by taking the Angles which the Fences make with each other.

HE plain Table is very ufeful for taking the Ground-Plot of Buildings, and meafuring Gardens, or fmall Enclofures, where the Shortnefs of Lines, and Multiplicity of Angles would be apt to breed Gonfurion in protracting; but by no means fit for furveying large Tracts of Land; becaufe the leaft Moifture, or Dampnefs in the Air, makes the Paper not only fink, but run up when dried again, and thereby the Lines drawn thereon are difordered, making the Content lefs than it fhould be ; and in the leaft Rain or Mift, the Inftrument becomes altogether ufelefs. Alfo, when the Plot proves larger than will lie on one Sheet of Paper, there muft more be pieced thereto with Glue or Pafte, which wetting only fome Parts of the Paper, is liable to the aforefaid Inconveniencies; neither can feveral Sheets of Paper be joined together after the Plot is drawn thereon; fo as to meet exactly, and lie fo flat as it ought to do. And if to thefe Inconveniencies be added the Tedioufnefs of compleating the whole Plot in the Field, when a Surveyor has his Affif-

Sect. I. The Practical Surveyor.
tants about him, we fhall have Objections enough to induce any Perfon to make ufe of fitter Inftruments.

S E C T. I.

The Defcription of the Theodolite.

THE Ufe of furveying Inftruments, by what Name foever they are called, is to meafure horizontal Angles; and for this Purpofe the fimpler they are made the better, as being eafier managed, and lefs liable to be out of Order: Befides the plain Table (whofe Ufe is properly no more than what may be performed by a Joint-Stool having an Index to turn it upon, though may be not fo readily) feveral Kinds of Inftruments have been made for furveying; as the Semicircle, Perambulator, and fome others with hard Names which I cannot at prefent recollect; but all thefe are contained either in the Theodolite, or differ from it only in Name. Alfo the Theodolite itfelf, notwithftanding the Simplicity of that Inftrument in iss own Nature, hath undergone various Alterations, which ftill were called new Improvements : It would be needlefs to attempt enu-. merating all thefe; it will be fufficient here to defcribe fuch an Inftrument as may be moft fimple and fit for Practice.

The Theodolite is a Circle of Brafs divided into Degrees, which are all numbered one Way (and commonly from the Left to the Right, fuppoing yourfelf to ftand in the Center) to 360°. vide Fig. 27. An Angle cannot properly be fo great as 180 Deg. But the Limb of the Theodolite is numbered 1036 p , that it may readily exprefs the Arch within the Field that reaches from any two adjacent Sides one to the other; by which Means the Diftinction of
what is called in thefe Cafes external and internal Angles, is avoided. As at the ingle g Fig. 28. the Arch reaching between the two Sides forming that Angle, contains within the Field 233 Degrecs. I have feen fome of thefe Inftruments of various Sizes, from 4 Inches Diameter to 20 or 24. But about 9 or 10 Inches Diameter I take to be a good Size. This is big enough for the Purpofe of Surveying, and is likewife portable. Upon the Center of the Inftrument is a moveable Index, having on the Middle a Compass Box, with a Needle of about 4 or 5 Inches in Length, which is covered with Glafs to preferve it from being difturbed by the Air. Within this Box is a Brals Ring divided into Degrees, which are always numbered the contrary Way to the Degrees on the Limb of the Inftrument. The Index reaches as far as the Divifions on the Limb, having on the End of it a fine Line to cut the faid Divifions; alfo the End of the Index is ufually fo divided, as to point out on the Limb every Ninute of a Degree, which is near enough for the Purpofe of Surveying. Sometimes there is a Line drawn on the oppofite End of the Index, which may ferve to examine the Infirument by, and whether the Index turns exactly round the Center. Upon the Index are ufually fixed two upright plain Sights, like thofe defcribed in Sect. 2. Cbap. 2. as belonging to the Index of the plain Table; alfo underneath the Inftrument are fixed two other Sights, exactly like the former, at the Points of 360 and 180 . But thefe laft are needlefs; alfo inftead of plain Sights, I think it much better to have a Teleficpe over the Index, having in it a vertical Hair to cut the Object. The Tclefcope muft have fome Motion up and down ; and it had beft turn upon an Axis fixed at right Angles to it. Alfo in meafuring hilly Lands, it would be ufeful to have an Arch with Degrees, fhewing the Elevation or Deprefion of the Index: But this ought to
be cione in as fimple a Manner as poffible, without embaraffing the Inftrument with unneceffary Work.

The Index ought to move eafily and without fhaking : alfo the whole Inftrument fhould be firm and fteady.

The whole Inftrument is fixed upon a three-legged Staff, after the fame Manner with the plain Table : Alfo there is commonly (if not always) annexed to it a Ball and Socket. The Head of the Staff had beft be of Brafs, becaufe Wood is liable to fink and fwell, and by that Means to fhake. The Inftrument when it is ufed ought always to be pretty nearly horizontal; otherwife the Angles meafured by it, will not be true; but it is difficult to judge when it lies in this Pofition, efpecially when it ftands upon uneven Ground. Therefore fome Kind of Level ought to be annexed to the Inftrument; a fhort Plumb-line fixed properly underneath may do very well, for here no great Exactnefs is required; or there may be two fhort Bubbles fixed in the Compafs-Box at right Angles to one another; but then there muft be fome other Method for adjufting the Inftrument, than by opening the Legs. This may be done very well by what the Inftrument Makers call a Rack; but the two Plates, with a Ball and Socket between them, fixed to the Head of the Staff, is a better Way. In the upper Plate are four adjufting Screws, bearing upon the lower one, by which the Inftrument may be readily brought to its right Pofition.

The Inftrument ought to turn eafily upon the Staff, and without fhaking, and alfo there ought to be fome Contrivance to faften it readily in any Pofition, without twifting it to one Side. The common Way of a Skrew turning againft the middle Pin, is not a good Method, and by the new improved Way (as it is called)of drawing it down upon a Cone, a fmall E_{4} force
force will turn it round out of its Place, if great Care be not taken. Inftead of theje Methods, it may be eafily fattened by two crooked fimall Bars of Brafs fixed to the Socket, fo as to gralp the CenterPin in four Places or Points. This Method will not be liable either to turn che Inftrument to one Side in faftening of it ; or of letting it turn round when the faid Brafs Bars are once frrewed.

The fame Staff may alfo ferve for a Plain Table, a Spirit-Level, \&c.

If what hath been here faid concerning the Theodolite may influence the Inftrument-Makers, it may prove of an Advantage to Buyers, who are often unacquainted with the Nature of Inftruments.

The Manner of taking an Angle with the Theodolite.

Let the Circle Fig. 27. reprefent the Limb of the Theodolite, and let C A, C B, reprefent two ftation Lines in the Field. Having planted the Center of the Theodolite over the angular Point C, being the Index to 360°; then turn the Inftrument about till you fee the vertica! Hair in the Telefcope (or in the plain Sights, if you ufe thefe) cut a fation Staff placed at A; this being done, faften the Inftrument, and turn the Index till it cuts the Staff at B ; then the Degrees upon the Limb fhews the $\angle \mathrm{DCE}$ which is oppofite and equal to the $\angle B C A$, to be 70 deg. and fo of any other.

The Degrees are numbered in this Manner, for the Conveniency of having the End of the Index which is next the Obferver, always point out the Angle. If they were to be read from the Center, the Obferver muft have gone always to the oppofite End of the Index to find his Angle. This laft Method is the moft natural and inteiligible to a Beginner, but the other is moft convenient for Practice.

Sect. 2. The Practical Surveyor.
In working with the Theodolite we only meafu:e the Length of the Lines, and Quantity of the Angles in the Field, which we note in a Field-Book for that Purpofe; and by thefe Directions we may draw the exact Plan of the Land, which is called Protracting.

Provide a Field-Book ruled with three Columns, in the middle Column infert the Quantity of the Angles, and Length of the Station Lines; in the outer Columns the Off fets from the Station Lines to the Boundaries, and on each Side note the Remarks which you meet with in the Survey.

S E C T. II.

Sherving the Ufe of the Theodolite in meafuring a Ficld, by taking the Quantity of the Angles which the Fences or Boundaries make with each other.

THE Theodolite, as before mentioned, is ufually numbered on the Limb, from the left to the right, and the Box from the right to the left ; and therefore the Circuit is moft conveniently made (according to the common Phrafe) contra folem, i. e. with the Fences on the right Hand.

Let Fig. 28. reprefent a Field of which a Plot is defired: Firft, chufe fome convenient Place therein, to begin the Work, as at \odot a near the Corner of the Field ; and fet up a Stàf with a Mark chereon, as a Piece of Paper, or a white Rag, fo that you may plainly fee it at the next Station; then lay the Chain in a ftrait Line from a towards b, having firtt fet up a Staff at b.

The Chain lying in this Direction on the Ground, meafure with the Off-fet Staff from $\odot a$, the Diftance
to the Hedge 56 Links, and enter in the middle Column of the Field-Book o, and in the right Hand Column 56 , denoting an Off-iet laid off from $\odot a_{2}$ 5^{6} Links to the right Hand of the Station Line.

Meafure forwards on the Station Line $a b$, till you come againft the next Bend in the Hedge, then let the Chain lie on the Ground in a right-Line between the Stations a and b, "and with the Off-fer Staff meafure the Diftance from the Chain to that Bend in the Hedge 140 Links.

Take Notice at what Length of the Station Line each Off-fet is laid off; as here at the Length of 540 Links on the Station Line, I lay an Off-fet of 140 Links ; therefore in the middle Column of the FieldBook enter 540, and againft it in the Column on the right Hand, write 140 , denoting that at the Length of 5 Chains 40 Links, in the Station Line, you laid on Off-fet to the right of 140 Links.

Alfo take Notice that thefe Off-fets are to be meafured from the Station Line to the Hedge or Boundary, in fuch Manner that the Line reprefenting the Off-fet may ftand at right Angles with the Chain or Station Line.

Here I would advife a young Beginner, not only to enter thefe Obfervations in the Field-Book; but alfo on a Piece of wafte Paper, to draw firft a Line that Thall reprefent the prefert Station Line, and then upon that, to fet the Off-fets as he meafures them in the Field, drawing the Boundaries as he goes along, not regarding the Length of any Line; a Refemblance of each I ine being fufficient, becaufe the true Lengths are entered in the Field-Book: For laying this Sketch before him, when he protracts his Work, he will find it an ufeful Inftruction, in drawing his Angles, and laying the Corners of the Field in their true Pofition, with other little Difficulties to be met with in Practice ; but when he is accuftomed to a right Method of keeping the FieldBook, this Trouble may be fpared.

Now proceed to meafure on the Station Line to the next Bend in the Hedge, and there take an Offfet at 8 Chains 26 Links; therefore againft 826 in the middle Column of the Field-Book, write in the next Column on the Right, 36 Links the Length of the Off-fet.

The Hedge continuing ftrait to \odot_{2}, meafure up thereto, and enter the Length in the Field-Book 1120 , and meafure the Diftance to the Hedge 36 Links, which enter in the Column of Off-fets againft. 1120, and draw a Line crofs the Fịeld-Book.

Now remove the Staff from b, and caufe it to be fet up in a convenient Place, as at c; then plant the Center of the Theodolite exactly over the Hole, in which the Staff ftood at b, (by the Help of a String and Plummet, which you may faften under the Middle of the Inftrument) making the three-legged Staff which fupports the Inftrument to ftand firm on the Ground. Then bring the Index to 360 on the Limb, and turn the whole Inftrument about till the Hair in the Sights cuts the Staff at a, and there fkrew it faft, that the Motion of the Index may not caufe it to ftir from this Pofition; then turn the Index about till the Hair in the Telefcope cuts the Staff at c, fo fhall the Index on the Limb fhew the Quantity of the Angle $a b c$, viz. 102 Deg. 20 Min. which note in the Field-Book.

Now, that you may be fure you meafured this Angle right, turn the Telefcope back to the Staff at a, and if the Hair cuts it, you are right; otherwife not.

Having meafured this Angle, let the Staff be brought from a, and place it in the Hole, over which the Center of the Inftrument ftood at b; but leave fome Mark at a, that you may find it again when you come round the Field to clofe the Plot: Lay the Chain from b towards c; and at \odot meafure the Off-fet

Off-fet to the Hedge 20 Links; at 236 in the Sta; tion line, lay the Off-fet 36 ; at 428 in the Station Line, the Off-fet is 92 ; and at 796 the End of the Line, the Off-fet is 30 , to the Corner; therefore againft 30 in the Column of Off-fets, write Corner, denoting that the Off-fet laid off at right Angles from the Station Line, reached the Corner of the Hedge.

Place the Inftrument at c, and as before directed, meafure the Angle $b c d 110 \mathrm{Deg}$. 40 Min . which note in the Field-Book for the Quantity of the Angle at c.

When you have meafured the Angles, and made the neceffary Obfervations at each Station, draw a Line crofs the Field-Book, as you will fee in the Form thereof; alfo take Notice that the Minutes are eftimated by the Help of Nonus's Invention, which cannot be fo well defcribed as by the Sight of the Inftrument; only this may be faid, that we can thereby eftimate the Quantity of an Angle to I Minute, which is as exact as they can be laid down on Paper by the Protractor.

Bring the Staff from b, and fet it as upright as you can at c; alfo fend another forwards to d; then meafure on the Line $c d$, and lay the Off-fet to the Corner at 434, againft which Off-fet write Corner in the Field-Book; then meafure up to d, entering the Length 468 in the Fieid-Book.

Plant the Inftrument at d, and bring the Index to 360 on the Limb; then turn it about till the Hair in the Telefcope cuts the Stalf at c, and there fix the Inftrument; then direct the Telefcope to e, and note the Quantity of the Angle at d, which the Index cuts on the Limb, viz. 230 Deg .50 Min . which accordingly note in the Field-Book.

In the fame Manner proceed with the reft of the Lines and Angles round the Field, till you come to Station a; bur there is no Neceffity for meafuring

Sect. 2. The Practical Surveyor. 6r the laft Angle, or even the laft Line, but for the Sake of proving the Truth of the Work, which indeed is convenient.

When the Inftrument was planted at f, and you had meafured the Quantity of that Angle ; the Inftrument remaining in the fame Pofition, if you had directed the Telefcope to the Tree in the Middle of the Field, and noted the Degrees, $\mathcal{E}^{\circ} c$. which the Index cut on the Limb; and done the fame at g, and noted thefe Degr. Esc. in the Field-Book, in the Column of Remarks; you might protract the true Situation of the Tree in refpect of any other Part of the Field.

See the Form of thefe Obfervations as noted in the Field-Book.

The Field-Book

Sect. 2. The Practical Surveyor.
The Field-Book continued.

$\begin{aligned} & \text { 俞 } \\ & \text { है } \end{aligned}$	\% Angle		$\stackrel{\leftrightarrow}{\circ}$ $\begin{gathered} 40 \\ 36 \\ 33 \\ 10 \\ 12 \end{gathered}$	$\begin{aligned} & \text { ? } \\ & \text { है } \\ & \text { x } \end{aligned}$
$\begin{aligned} & \text { A Tree bears } \\ & \text { from } \odot \odot 6 \\ & 0.1 \\ & 38 . \\ & 30 . \end{aligned}$	Angle	$f \odot, 6$ 0, 84.30 40 200 706	120 24 16	Corner Corner
$\left\lvert\, \begin{array}{cc} \hline \text { Tree bears } \\ \text { from } & 97 \\ 0 & 1 \\ 57 . & 30 \end{array}\right.$	Angle	$\begin{gathered} \begin{array}{c} 5 \odot 7 \\ 0 \\ 233 \end{array} \\ \hline 380 \\ 6_{48} \end{gathered}$	8 80 40	

Scboliun.

If the Angle at a had been alfo taken, we might examine whether the Angles were all rightly meafured : thus, Multiply 180° by a Number lefs by two than the Number of the Angles in the Field; then
if this Product be equal to the Sum of all the Angles in the Field added together, it may be concluded that they have been meafured i ight, otherwife there muft have been a Miftake fomewhere. The number of Angles in this Field is 7, therefore multiply 180° by 5, the Product will be 900°. The fix Angles that are meafured make together $840^{\circ} 20^{\prime}$, and if no Error hath been committed, the $\angle a$ will meafure $59^{\circ} 40^{\prime}$, which added to $840^{\circ} 20^{\prime}$ will make the whole Sum 900°. But as there may be miftakes committed in meafuring the Station Lines, (which Miftakes do not come within this Rule, the Surveyor had beft depend upon the clofing of the laft Line with the firft Station. If this happens exactly, there is a very great Odds on his Side, that the Field had been meatured right: But if the laft Line does not foclofe, if the Error be not in the Protracting, (which may happen) the Field muft be remeafured till the Miftake be found. And it may be a ufeful Leffon for a Surveyor, to protract each Day as he goes along, what he had been doing in the Field. This will prevent his running a great Length in a Miftake, which if he lets alone, may coft him a great deal of Labour to find our.

S E C T. III.

The Manuep of Protraciing the preceding Obfervations.

AS the Lines are meafured in the Field by the Chain, and the Angles by the Limb of the Theodolite; fo the Lines are laid down upon Paper from a scale of equal Parts, and the Angles by a Protractor.

The Protrcicor fhould be 7 or 8 Inches in Diameter; and if it be a whole Circle, which is beft for

Sect. 3. The Practical Surveyor.
Beginners, it fhould be numbered into 360 Deg. the fame Way with the Limb of the Theodolite; only with this Difference, that the Numbers upon the Protractor fhould ftand fo as to be read from the Center. Sometimes in the middle Bar is a Slit about an Inch long, having one Edge a little floping; this Edge is divided into 12 Parts, each of which ftands for 5 Min. The Point denoting o Min. is in the Diameter paffing through o or 360 Deg . and 180 Deg. A Line paffing from the Center through the Point denoting 60 Min. upon the faid Edge makes an \angle with the Diameter of i Deg. fo that if the Center of the Protractor be put to a Point in a given Line, and the Inftrument be turned about its Center, until $5^{\prime}, 10^{\prime}, 15^{\prime}, 20^{\prime}, 30^{\prime}$, or $40^{\prime}, \mathcal{E} c$. cut the faid Line, the Diameter of the Protractor will accordingly form therewith the Angles $5^{\prime}, 10^{\prime}, 15^{\prime}, 20^{\prime}$ or $30^{\prime}, 8^{\circ} c$. refpectively; then the whole Degrees may be pricked off by the Limb. Thus, if I was to make an \angle of 52° 35^{\prime} : Having put the Center of the Protractor to the angular Point, I turn the Protractor about till 35 min. cuts the given Line, then I will make a Prick or Point in the Paper exactly againft 52 Deg . a Line drawn through this Peint, will form, with the given Line, the \angle required. Thefe Inftruments, I think, are called by the Makers, Diagonal Protractors; but I believe they are feldom ufed by practical Surveyors, becaufe the Operation by them is fomewhat tedious.

Inftead of the common Scales, you may have one divided all the Way at the Edge, like that in the Frontifpiece. This is ufeful and expeditious, efpecially for finding the Points in the Station Lines where the Off-fets come. If your Protractor is a Semicircle, you may have fuch a Scale cut on the outward Edge of the diametrical Bar.

Provide a Skin of Parchment, if the Plot is defired to be on Parchment, according to the Largenefs of the Work you are about to lay down; or if
on Paper, let it be large enough to hold all your Work; the ftrong Cartridge Paper for this Purpofe is accounted beft by fome Surveyors.

Having confidered which way the Plot will extend, draw an obfcure Line on the Paper to reprefent the firf Station Line, and mark the End thereof with $\odot a_{3}$ (Fig. 28): fo fhall that Point reprefent the firft Station in the Field: Lay the Edge of your. Plotting-Scale clofe to this obfcure Line, the Beginning of the Numbers coinciding with $\odot a$, and encreafing towards the next Station; then lay the Field-Book open before you, and becaufe the Offfets in the firft Length are taken at the Diftances $0,540,826,1120$; therefore againft thefe Numbers on the Scale, make Marks in the obfcure Line, clofe to the Edge of the Scale.

This done, turn the Scale perpendiculan to the obfcure Line, fo that the feveral Off-fets may. ftand thereon at right Angles as aforefaid; and apply it fucceffively to thefe feveral Points, and there prick. off the Length of the feveral Off-fets on the fame Side of the obfcure Line as noted in the Field-Book; fo at © prick off $56 ;$, at 540 , the next Length, prick off 140; at the next Point which is at the Length 826 , prick off 36 ; and at 1120 , the End of the Line, prick off $3 \sigma^{\circ}$; or thefe Off-fets may be taken. with the Compafles from a common Scale.

Now if Lines are drawn from Point to Point, they Ifall reprefent the Boundaries of this Side of theField; and becaufe the Hedges, efpecially in old Enclofures, are generally in the Form of a Curve rather than ftrait Lines; therefore if you draw the Boundaries from Point to Point with a Quill Pen with your Hand. only, they will be more naturally expreffed, than if you lay a ftrait Ruler from. Point to Point, (except the Diftances are very long, or you take a Multitude of Off-fets;) and to be exact, 'tis fometimes neceffary to exprefs the Nature of thefe. little Irregularities in

Sect. 3. The Practical Surveyor.
the Fences, by a Sketch on one Side of the FieldBook.

The Length of the firft Station Line being 1120 , mark that Diftance from $\odot a$, with $\odot b$; and let the obfcure Line be produced, each way as long as the Radius of the Protractor.

Lay the Center of the Protractor to the Point $\odot b$, and turn it about thereon, till the Diameter lies on the Line $\dot{a} b$, the Beginning of the Numbers on the Protractor being laid towards $\odot \dot{a}$, contrary to the Theodolite in the Field.

Hold the Protractor clofe down to the Paper in this Pofition, and becaufe the Angle at b, is 102 Deg. 20 Min . therefore with a protracting Pin or Needle, make a Mark againft 102 Deg. 20. Min. clofe to the Limb of the Protractor, through which Mark from b; draw the obfcure Line $b c$.

So is the Station Line bc, laid down in the fame Direction as in the Field, and the Angle $a b c$, the fame.

Lay the Plotting-Scale to the obfcure Line $b c$; the Beginning of the Numbers coinciding with the prefent Station, and the Numbers encreafing towards the next ; then clofe to the Edge thereof, againft o, ${ }_{2} 36,428,79^{6}$, the Lengths where the Off-fets were taken, make Marks with the protracting Pin; and Eurn the Scale perpendicular to the obfcure Line, and prick off the feveral Off-fets; 20,$36 ; 92 ; 30$.

And now if Lines are continued from the Fences before drawn to thefe Off-fets, they fhall reprefent the Boundaries on this Side of the Field.

The Off-fet at the End of the fecond Station Line, at c, reaches into the Corner; but thofe at b muft be continued till they meet one another, and this might be expreffed in the Field-Book or Sketch, that you may not miftake the Corner of the Field.

Lay the Center of the Protractor to c, the Diameter being held clofe to the Line $b c$; and againt I 10 Deg: 40 Min . on the Limb of the Protractor, make a Mark. through which draw the Line $c d$.

At the Length 43.4 , in this Line lay the Off. fet 30 Links, to which continue the Boundaries before drawn; fo is this Side of the Field finifhed.

Note, The next \angle at d being $230^{\circ} 50^{\prime}$, fubtract this Number from 360°, and note the Remainder $129^{\circ} 10^{\prime}$; then turn the Protractor the contrary Way, viz. fo that the Arch may be to the outfide of the Field; and counting from c, make a Point at $729^{\circ}{ }^{10}$, through which Point draw the Line d e.

Or if the Protractor be numbered to 360 , on a Circle concentric to the outward Circle, and the Numbers on both encreafe the fame Way, (as the Limb of the Theodolite) then, the Protractor being turned reverfely as above, the Angle 230 Deg .50 Min. may be pricked off from the inner Circle.

But if you ufe a circular Protractor, it may be laid always one Way, viz. the Beginning of the Numbers towards the laft Station, contrary to the Theodolite in the Field; and this in my Opinion is the beft Way.

But if you ufe a femicircular Protractor, obferve to lay the Diameter on that Line which brought you to the prefent Station; and to lay the Beginning of the Degrees of the Protractor towards the laft Station when the Angle is lefs than 180 Degrees; but the contrary Way when the Angle is more.

So at d, lay the Diameter of the Protractor on the Line $c d$, the Beginning of the Numbers being laid the contrary Way to c; and againft 230 Deg. 50 Min. on the inner Circle of the Protractor, make a Mark, through which draw the Line de.

In the fame Mianner lay down the Angle at e, and draw the Line ef, continuing the Boundaries as before directed.

Sect. 4. The Practical Surveyor.
When you have marked the Angle at f, let the Protractor lie in the fame Pofition, and make a Mark againft 38 Deg. 30 Min . as noted in the FieldBook for the Bearing of the Tree from that Station, and through that Mark draw an obfcure Line from f.

Do the fame at g, continuing the obfcure Line from thence till it croffes that drawn from f, fo fhall the Interfection of thefe two Lines determine the Situation of the Tree in the Middle of the Field.

In the fame Manner may any other inacceffible Diftance be meafured by the Theodolite.

When you have marked the Angle at g, and drawn the Line $g a$, it will cut through the Point a, and the Length of the Line $g a$, will be the fame as that noted in the Field-Book, which proves the Plot to be truly laid down. But if the laft Line had not paffed through a, or was not of the fame Length on the Paper as that noted in the Field-Book, fomeError muft have been committed in the Field, or in Protracting.

S E C T. IV.

Hore to meafure Angles by the Chain.

FOR this Purpofe provide three round StationStaffs four or five Feet long a-piece; and alfo take care that the Ring in the Middle of the Chain, and alfo thofe at each tenth Link be at their due Difrance from the Chain's End.
r. In order to meafure the Angle doe, Fig. 29. fet one of your Station-Staffs as upright as you can at 0 ; and putting the Ring at one End of the Chain pver it, let one of your Affiftants take the other End in his Hand, and ftretch out the Chain towards d; whilft you ftanding at 0 , direct him to move fideways till the Station-Staff which he has in his Hand, be brought into one right Line with $0, d$, as at a, and there let him leave the Staff.

Then let him with the End of the Chain in his Hand, move towards e; and as before, direct him to plant the third Staff upright in the Line o e, at b.

Meafure the Diftance $a b$ in Links and tenth Parts, if lefs than one Chain, and enter them in the FieldBook $88 \frac{1}{2}$.

When you plot this Angle, take with a Pair of Compaffes from a large Scale, the Diftance of one Chain; and having drawn a Right Line $d o$, fet one Foot of the Compaffes in 0 , and with the other defrribe an Arch $a c$; then from the fame Scale take $88 \frac{1}{2}$ Links; and fetting one Foot of the Compaffes at a, let the other fall in the Arch $a c$, and make a Mark at b: Laftly, through this Mark, fromo draw the Line $o e$, conftituting the Angle $d o e$.

Obferve to plot your Angles by a large Scale, as an Inch, or two Inches, and the Length of the Sides by a fmaller, as a quarter or half an Inch: Alfo obferve, that when the Length of the Chord $a b$ is longer than one Chain, then it is beft to lay out a Sextant, or two Sextants, in the following Manner.

The Manner of meafuring Angles with the Chain, by laying off Sextants, is deduced from this known Property of the Circle; viz. The Radius of every. Circle is equal to the Chord of one fixth Part (or a Sextant) of its Periphery.
2. Let it be required to meafure the Angle $b a c$, Fig. 30 : Firft, fet up a Staff at a, and lay the Chain ftrait in the Direction of $a b$ to i, and at 50 Links fet down an Arrow ato; then let your Affirtants hold the Ends of the Chain at 0 , and a, whilft

Sect. 3. The Practical Surveyor.
whilft you with the Middle in your Hand, ftretching both Halves ftrait, fet down an Arrow at c, conftituting the equilateral Triangle o.ae; fo have you laid out the Angle o a e, a Sextant.

But if you have two Chains, you may (which is better) lay out the Sextants, fo that each Side of the equilateral Triangle be one Chain.

Now the Chain's End being ftill held at a, Atretch it through the Point e to d, where alfo fet down an Arrow: Laftly, meafure the Diftance from the Arrow at d, to a Staff fet up one Chain's Length from a at u; fo fhall the Diftance $d u$ be 76 Links, and four Tenths of a Link; therefore enter in the Eield-Book I ${ }^{\text {s }} \cdot 764^{\text {p }}$. implying I Sextant and 764 Parts.

In order to plot this Angle $b a c$ thus meafured, chufe fome Line divided inte 1000 Parts, and making this Line Radius, fet one Foot of the Compaffes in a, and with the other defcribe the Arch $i z$; the Compaffes continuing at the fame Extent, fet one Foot in i, and with the other crofs the Arch at d, and there make a Mark.

Then take 764 Parts from the fame Line, divided into 1000 Par's, which you make Radius; and fetting one Foot of the Compaffes in the Mark at d, let the other crofs the Arch at u, and there make a Mark: Lafly, from a, draw a Line through the Mark at u, and you will conftruct the Angle required.

If you have net a Line (which is beft) actually diwided into 1000 Parts, ufe the largeft diagonal Scale you have; fo you may take off 76 Paute exactly; and the four Tenths you muft guefs at by moving the Compaffes near half Way in the Diagonal towards 77; alfo obferve, the roth of a Link is meafured on the Land by the Off-fet Staff, having a Link or two thereon, divided into ten Parts.
3. If the Angle be more than two Sextants, as in Fig. 31 ; then having as before, laid off the Sextant $e \circ a$, let your Affiftants hold the Ends of the Chain at a and e, while you with the Middle in your Hand, fet down an Arrow at x, conftituting another Sextant eax.

Then the Chain being held at a, lay it through x, and at the other End d, fet down an Arrow : Laftly, meafure $d u$, which fuppofe to be 42 Links and 5 Tenths; therefore enter in the Field-Books $2^{\text {s }}, 425$ P, fignifying 2 Sextants and 425 Parts.

If you would protract the Angle of Fig. 31; with the Length of the Line divided into 1000 Parts, defcribe the Arch i y, and thereon lay in, $n d$, each equal to the Radius or divided Line; and afterwards lay 425 equal Parts from d to u, and draw au; which gives the Angle required.

Obferve, if you were about to meafure the Angle, Fig. 3I. and had fet up one of your three Staffs where the Station-Lines meet in the angular Point a, another at i, and the other at u, in the Lines $a b$, $a c$; before you proceed to meafure the Angle i a u, you muft be fure that the Staffs at a, i, and b, are exactly in the fame itrait Line; and alfo the Staffs at a, u, and the Mark at c, in another ftrait Line.

So when the Staff at a, is planted as nearly perpendicular as you can, move yourfelf backwards, the farther the better, 'till you fee the Staff at a, and that at I , in one ftrait Line with the Mark at b; there ftand, and direct your Affiftant to place his. Staff, fo that the Staff at a, exactly cover that at i, from the Top to the Bottom.

Note, You muft take Care that the S.taffs are upright, fo as to lie in the fame Plane.
4. If an Angle be external, and fo contain more than three Sextants, as bae, Fig. 32. put the Ring at one End of the Chain over the Staff at a, and taking

Sect. 4. The Practical Surveyor.
the other End in your Hand, ftretch out the Chain at length towards d, and move fideways, till you perceive your felf in a Right-Line with $a b$, and there at the End of the Chain fet down an Arrow at d, fo that d, a, b, are in the fame right Line; then fee down the other Staff at c, at the End of one Chain alfo; fo that the Staffs at a, and c, be in the fame Plane with the Mark at e. Now meafure the Angle $d a c$, in the fame Manner as aforefaid, and to it add the Sextants, fo will the Sum be the Meafure of the external Angle $d a c$.

So if the Angle d a c, be 947 , then will the external Angle b a c, be 3 Sextants, 947 Parts; and if the Angle d a c, be $I^{s} .947$, then $b a c$ will be 4^{s}. 947, " $\underbrace{2}$ c.

When you protract the external Angle $b a e$, firft continue the Line $b a$; then from the Angle fubtract 3 Sextants, and make the Angle d ae, equal to the Remainder.

But if you go on the outfide of a Field or Wood, you may then work as though you were within the Wood, by meafuring the Angle vertically oppofite to thofe that are internal : So in Fig. 33. if you meafure the Angle o a u, inftead of b a e, it will do your Bufinefs when you come to protract, as well as if you had meafured $b a e$, on the Infide; for if two Right-Lines crofs one another, the contrary or vertical Angles are equal. Euclid, 15.1 .

Angles meafured by the Chain, may be laid down by a Protractor made on purpofe, having Sextants and Links divided thereon; and then to be ufed in the fame Manner as other Protractors.

The Manner of keeping the Field-Book, is in all Refpects the fame as that ufed in the 2d Sect. of this Cbap. except that when the Angles are meafured by the Theodolite, you note the Quantity of each by Degrees and.Minutes: In this Cafe, when meafured by the Chain, you note the Quantity by Sextants and Parts. Quantity of the Angle b, you muft note I Sextant 734 Parts ; and inftead of $230^{\circ} 50^{\prime}$, for the external Angle d, you muft note 3 Sextants, 886 Parts; but the Station-Lines, Off-fets, \&c. will fill be the fame.

There are other Ways of working with the Chain; but thefe before-mentioned are the beft and exactert, and contain as much Variety as any one will commonly put in Practice: You may alfo thereby meafure an inacceffible Diftance, and do feveral other Things; but there are only for a Shift, when we have no other Inftruments: And the fame may be faid of meafuring Angles.

S E C T. V. Of the Circumferentor.

THE Circumferentor is only a Compafs-Box and Needle, having two plain Sights perpendicular in the meridian Line of the Box; or inftead of the plain Sights, a Telefcope may be mounted over the Box, fo that it may be elevated or depreffed to an Object as there fhall be Occafion. This Inftrument is fupported by a three-legged Staff, like the Theodolite and the plain Table. If the Index of the Theodolite be taken off, and fitted to a threelegged Staff, it will then be a perfect Circumferentor: So that he who hath the former of thefe Inftruments, hath the other alfo containcd in it.

In furveying Harbours, Sea-coafts, Counties or large Commons, where the Lines are very long; or thick overgrown Woods, where we may be forced to make a Multitude of Angles, and the Sight of the two Lines conftructing the Angle, may be hindred

Sect 5. Tibe Practical Surveyor. 75 hindred by the Brufh or Underwood ; in thefe and fuch Cafes, where no great Exactnefs is required, the Angles may be meafured by the Needle only; and this Method, it muft be owned, is very expeditious, becaufe the Trouble of obferving the back Stations is faved. Yet in furveying Lordfhips, Enclofures, or plain pafture Land, (a fimall Piece of which got or loft is of a confiderable Value, and each particular Field ought to clofe exactly) the Angles are without Doubt more furely meafured by the Limb of the Theodolite ; becaufe the Degrees in the Box cannot be fo nearly eftimated, and the Needle is liable to be drawn afide by fome hidden magnetick Power.

The Pofition or Bearing of a Line obferved by the Needle is expreffed by fuch a Number of Degrees and Minutes as it is diftant from, or Quantity of the Angle, which that Line makes with the Meridian.

If a Perfon wholly unacquainted with the Ufe of this Inftrument, will take the Pains to try this following Method, it may be an Help to conceive the Manner of ufing it in the Field.

Upon a Sheet of Paper let there be drawn right Lines parallel one to another at any Diftance, and upon a Table let there be fixed a Pin with the Point upwards; let the Pin fo fixed, be run through one of the Lines on the Paper; upon the Point of the Pin, let there be put a magnetick Needle, and let it traverfe about till it refts of itfelf; then turn the Paper about on the Table till the Needle hangs directly over the Line, in which the Pin is placed, which is difcovered by fixing the Eye over its Center; then with fealing Wax faften the Paper to the Table by the four Corners; fo may the Paper be fuppofed to reprefent the Surface of the Earth, and the Lines the magnetick Meridian, (which mark at the Top with North, and at the Bottom with South.)
76. The Practical Surveyor. Chap. III.

If the Pin be removed into any other of the Lines, and the Needle be made to traverfe thereon; it will, when at reft, hang directly over the Line in which the Pin is placed, if the faid Line be drawn parallel to the firft Line, over which the Needle hung when the Paper was fixed.

The Needle then points always to or lies in the Direction of the Meridian, by virtue of the magnetick Power ; fo if I had faftened to the Table a Shect of blank Paper, and had laid a Ruler in the fame Direction with the Needle when at reft, and had drawn a meridian Line, and then removed the Needle to another Part of the blank Paper, and drawn another fuch a Line by the Direction of the Needle, that Line would have been parallel to the former.

When we take an Angle in the Field by the Needle, the meridian Line is always one Side of the Angle; and the Hedge, Wall or Fence along which the Telefcope is directer, is the other Side of the Angle, and they are fuppofed to meet at the Center: of the Inftrument.

Set one Foot of a Pair of Compaffes in fome one of the Meridians on the Paper, and defcribe a Circle, then the faid meridian Line is its Diameter : Divide this Circle into 360 Degrees, which is eafily done by the Protractor, and let the Numbers begin at N. or North, and encreafe to the left, towards E or Eaft.

Then this Circle reprefents the Bax of the Inftrument in the Field, and the Line N. S. reprefents the Needle.

From the Center of the Circle, draw a long Line any Way at Pleafure, and let this Line reprefent an Hedge or Station-Line in the Field; and to find its Bearing or Angle that it makes with the Meridian, look what Degree, \mathcal{E}^{c}. it cuts on the Circle ; and that will be the Quantity of the Angle or Bearing from the Meridian.

So the Needle ufed in the Field Points out the magnetick Meridian, and the Divifions in the Box moved under it meafure the Angle, that any Line in the Field makes with that Meridian.

The Box of the Circumferentor is commonly numbred from the right to the left; the Numbers beginning at N or North, which is marked alfo with a Flower-de-luce, encreafing towards E or Eaft ; and the Direction is to be taken from the North End of the Needle.

The U_{J} of the Circunferentor in Surveying Land.

Let it be required to obferve the Bearing of the feveral Station-Lines which encompafs the Wood ${ }_{3}$ Fig. 34 .

Firft plant the Circumferentor at fome convenient Station, as at a; the Flower-de-luce in the Box being from you, direct the Sights to a Mark at the next Station b, and note the Divifion which the North End of the Needle points to in the Box when at reft, which is 260 Deg . 30 . Min. therefore note this Number 260 Deg .30 Min . in the Field-Book, for the Bearing of the Line $a b$.

Obferving former Directions for removing the Theodolite from one Station to another, and meafuring the Station-Lines and Off-fets from thence to the Boundaries as you pafs along the Station-Lines, let the Inftrument be removed from a, and planted at b, the next Station; then keeping the Flower-deluce in the Box from you; turn the Inftrument about till the Hair in the Sights cuts a Mark at the next Station c; then will the North End of the Needle point to 292 Deg. 12 Min. which note in the' Field-Book for the Bearing of the Line $b c$.

The Inftrument being planted at c, and the Sights directed to d, the Bearing of that Line $c d$ will be 33. Deg. 45 Min .

In the fame Manner proceed to take the Bearing of other Lines round the Wood, obferving this general Rule, viz. Keep the Flower-de-luce in the Box from you, and take the Bearing of each Line from the Nortb-end of the Needle.

The Numbers in the Card of fome of thefe Circumferentors are made to encreafe towards the right, but that before-mentioned is beft; for when yout turn your Inftrument to the Eaftward, the Needle will hang over the Weftward Divifion on the contrary Side.
Inftead of planting the Circumferentor at every Station in the Field, the Bearings of the feveral Lines may be taken if it be planted only at every other Station.
So if the Inftrument had been planted at b, and the Flower-de-luce in the Box kept towards you when you look back to the Station a, and from you when you look forwards to the Station c, the Bearings of the Lines $a b$, and $b c$, would be the fame as before obferved: Alfo the Bearings of the Lines cd , and $d e$, might be obferved at d; and $e f$, and $f a_{j}$ at f; fo that inftead of planting the Inftrument 6 Times, you need in this Care plant it but 3 Times, which faves fome Labour.
But fince you muft go along every Station-Line, to meafure it or fee it meafured, the trouble of fetting down the Inffrument is not very great, and then alfo you may examine the Bearing of each Line as you go along; and if you fufpect an Error in the Work by the Needle's being acted upon by fome hidden magnetic Power, or from your own Miftake, in obferving the Degrees that the Needle points to, you may correct fuch Error at the next Station before you proceed.

As when the Inftrument was planted at c, and the Sights directed to b, the Flower-de-luce from obferved.

But if the Needle doth not point to the fame Number of Degrees, \mathcal{E}^{c} c. there hath been fome Error in that Obfervation, which muft be corrected before you proceed.

If you have a Sufpicion that the Needle doth not play well, when the Inftrument is planted at any Station, as at a; direct the Sights to the Mark at b, and note the Degrees, $\xi^{3} c$. pointed at by the Needle in a Piece of wafte Paper; then with a clean Knife, Key, or any Bit of polifhed Steel, move the Needle by applying it to the Box, and examine when it hath fettied again what Degrees it then points at, the Sights being ftill directed to the preceding Mark at $\cdot b$; and if the Degrees are the fame, they may be entered in the Field-Book; but if not, the Cap and Pin muft be cleanfed with fome brown Paper and a little Putty, and thereby freed from fuch Duft or Dampnefs that hath gotten to it. If after all the Needle does not play freely, place in the Box another Pin, or ufe another Needle, or do both, and thefe Neceffaries a Surveyor ought to have in his Pocket while he is in the Field.

If you would meafure the Quantity of any Angle by the Needle; place the Inftument at the angular Point, and take the Bearing of the two Lines conftructing that Angle, and fubtrafting the lefier our of the greater, the Remainder is the Quantity of that Angle, if lefs than 180 Degrees; but if the Remainder is greater than 180 Degrees, fubtract it out of 360 Degrees, and that laft Remainder is the Angle.

The Manner of entering the Off-fets in the FieldBook, is before fhewn in the Ufe of the Theodolite; it will be fufficient in this Place, to infert the Bearing of each Line or Quantity of the Angle which each makes with the Meridian, together with their Lengths, in order to protract or lay them down on the Paper Plot of the fame Length and in the fame Direction as in the Field. Vide Fig. 34.

As this Inftrument is fo very fubject to Error, the Practitioner fhould never ufe it, except Neceffity oblige him to it ; for as an Angle can hardly be taken by it to a Degree, the Errors will be remarkably large if the Lines are of any Length.

> S E C T. VI.

The Manner of Protracting the aforegoing Objervations made by the Circumferentor.

$a b 260^{\circ} \quad 30^{\prime}-1242$ Firf, draw Lines pabc $292 \quad 12$-1012 rallel to one another cd 331-45-i050 quite through the dede $5900-1428$ figned Draft, at diftan-
ef 112 I5 - 645 ces not exceeding the $f a{ }^{\prime}{ }^{\prime} 5^{1} 30-1806$ Breadth of the Diametrical Part of your Protractor, as in Fig. 34. and mark them with N, and S, for North and South; then confidering which Way the Plot will extend, affign a Point in fome one of the parallel Lines, to reprefent the firf Station in the Field, as at a; to which Point lay the Center of the Protractor, and by the Help of the Divifions continued beyond the Ends of the Diameter of the Pro-
tractor, lay the Diameter upon, or parallel to thofe North and South Lines; the Beginning of the Numbers on the Protractor towards that Part of the Line marked with N, or Notthwards; when the Degrees are fewer than 180, but Southwards when more: The Protractor being thus placed, look in the Field-Book for the Bearing of the firt Line $a b$, which is 260 Deg. 30 Min . therefore with the Beginning of the Numbers on the Protractor towards f, clofe to the Limb againft 260 Deg. 30 Min. make a Mark; and through that Mark from the affigned Point at a, draw a Line $a b$, on which Line fet 12 Chains 42 Links, as noted in the Field-Book.
So will the Lirie $a b$, on the Paper, have a Bearing like to that, which you obrerved the Line ab to have in the Field, in refpect of the Meridian : But the Protractor, to lay down thefe Obfervations, muft be numbered contrary to the Box of the Circumferentor; and if it be a Semiciccle it muft be numbered, firft to 180 , and then on the inner Circle whofe Numbers muft encreafe the fame Way as the 'outer Circle to 360 ; the Bearings greater than 180, are pricked off from this ininer Circle, and the Beginning of the Numbers mult be laid Northward or Southward as the Degrees of Bearing are lefs or more than 180 . If your Protractor be a whole Circle, the Beginning of the Numbers mray be kept always one Way, as the Numbers of the Circumferentors were in the Field; but the Diameter muft be always laid upon a Parallel to the meridian Lines, and may be marked with N. S. at the Ends as a Direction to keep it in its true Pofition.

Having made the Line $a b$ of its true Length and Pofition, the next Thing to be done is to lay the Offfets therefrom, which gives the Boundary of that Side of the Wood, Fig. 34.
Lay the Center of the Protractor to the Point b, and becaufe the Bearing of the Line $b c$, is more than G

180 ; lay the Beginning of the Numbers of the Semicircular Protractor towards S; and againft 292 . Deg. 12 Min. make a Mark, through which Mark from b, draw the Line $b c$, fetting the:Off-fets therefrom, and draw the Boundany of that Side of the Wood.

In the fame Manner lay down the other Lines $c d$, die, ef, and $f a$; fo will the Line $f a$, cut through the Point a, and be of the fame Length on the Plot as that meafured in the Field, if the Obfervations be truly made.

Then if you drew the Station-Lines, and Offfets, with a black-lead Pencil, and the Boundaries with Ink; you may with a Piece of Bread sub off thofe Lines, fo fhall the Boundaries of the Wood only remain, which gives the exact Figure thereof.

S E C T. VII.

The Manner of cafing up the fmall irregular Pieces of Ground, which lie between the Station-Lines and Hedges.

IT very farely happens that the Sides of a Field are all ftrait Lines, and therefore any Method for meafuring them from one or more Stations in the Middle, can feldom be put in Practice; the beft Way being to go round, and meafure the feveral Angles from Stations near the Boundaries, but at fuch a Diftance from thence that we may fee clearly from one Station to another, and have plain Ground to meafure the Diftances free from the Incumbrance of Brufhwood, Trees, ${ }^{\circ} \mathrm{c}$. So thall the greateft Quantity of the Land be included between the regular Station-Lines, which is caft up as before directed, by dividing the fame into the largeft Trapezias and Triangles poffible; and meafuring the Bafes and

8

$$
\begin{array}{r}
y \\
-\quad+1 \\
-\quad y \\
-1
\end{array}
$$

$$
1 \times
$$

(2)

$$
8
$$

$+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}$

Perpendiculars by the fame Scale that the Plot was laid down by.

But in order to caft up the fmall irregular Pieces comprehended between the Station-Lines and Boundaries; if you reduce them into Triangles, Eoc. as they will be a great many in Number, fo you may commit very confiderable Errors in laying of them down firf, and taking them off afterwards, efpecially if the Scale you protract by, be very fmall. For the Removal of this Inconvenience, I fhall here Thew a Way whereby you may caft up thefe fmall Quantities, however fmall the Scale may be, as exactly as any of the greater Parts of the Field.

Suppofe the fmall irregular Pieces between the Station-Lines and Boundaries, Fig. 28. were to be caft up.

Firft lay the Field-Book before you, where you will find the Length of the firft Off-fet (as meafured in the Field with your Off-fet Staff) from \odot I at a, to be 56 Links, and the fecond at 540 in the Chain-Line, 140, forming the fmall Trapezium a. Vide Fig. 35.

Now if you add the Off-fet 6^{6}, to the Next 140, the Sum will be 196, the Half of which is 98 , the equated Breadth; multiply the Length 540 by 98 , the Product is 52920 , the Content of the Trapezium a, in fquare Links.

Add 140 to 36 , the Sum is 176 , the half Sum 88; fubtract 540 from 826, the Remainder is 286 , the Length of the Trapezium b; therefore multiply 286 by 88, the Product is 25168 , the Content of the fmall Trapezium b.

Subtract 826 from 1120 , the Remainder is 294 , the Length of c; and becaufe both the Off-fets are alike, multiply 294 by 36, the Length of the perpendicular Off-fet, the Product is 10584, the Conient of the fmall Piece c.

84 The Practical Surveyor. Chap. III.
In the fame Manner deal with the reft of thefe fmall Pieces round the Field, and fet down the Product of each in an orderly Manner one under another; fo fhall the Sum give the exact Content of thefe fmall Pieces, which added to that within the Station-Lines, gives the true Content of the Field in fquare Links, which reduce into Acres, $E^{\circ} c$. as before directed.

Note, The Performance of this being tedious, in the next Chapter will be laid down a more expeditious Method for cafting up the Content of any Piece of Land.

CHAP.

Sect. I. The Practical Surveyor:

CH A P. IV.

S'berwing the UJe of the Theodolite in Surveying Land, by the Help of the Needle and Limb together.

S E CT. I.

N this Method of Surveying Land, the the Angle which every Line makes with the Meridian is meafured by the Limb of the Theodolite, and therefore much preferable to that beforementioned in the preceding Chapter by the Needle only; becaufe the Degrees and Minutes are better eftimated on the Limb of the Inftrument than 'tis poflible they fhould be in the Box of the Circumferentor; and this gives the Theodolite the Preference to any other Inftrument, becaufe we can work by the Limb only, without regarding the Needle at all: but if it be more convenient to make ule of the Needle, we may do it in the following Manner, being the ufual Method for furveying large and fpacious Tracts of Land.

The Needle being obferved to play well, when it hath fettled in the Direction of the Meridian and is at reft, the Box may be moved round the fixed Center by turning the Index on the Limb and the Point marked with 360 in the Box, brought directly againft the north End of the Needle, with greater Exactnefs than a Degree, and its Parts can be efti-
mated in any other Part of the Box; befides, we have this' Advantage, which is very confiderable, that we can make Ulie of a fhort light Needle, whofe Friction being lefs, plays better than a longer and heavier.

Let the Lines $\odot a, b c, d e$, e f_{2} in Fig. 36. reprefent the Station Lines near the Boundaries of a Field; then the Angle which each makes with the Meridian, may be obferved in the following Manner.
Firft, having fet up a Mark at \odot, meafure forwards with the Chain on the Line oc to a 600 Links.

Plant the Infrument at a, and bring the Index to 360 on the Limb, and turn the whole Inftrument about (whilft the Needle hangs in the Direction of the Meridian) till 360 in the Box is brought directly againft the north End of the Needle, and there fix the Inftrument; then is the Telefcope fet in the Direction of the Meridian alfo; and in this Pofition is the Inftrument to be planted at every Station.
Now turn about the Index till the Hair in the Telefcope cuts the Mark left at \odot, and note in the Field Book the Degrees and Minutes which the Index cuts on the Limb, viz. 207 Deg. 20 Min. being the Quantity of the Angle which the Line a \odot makes with the Meridian.

Remove the Inftrument from a, leaving a Mark at that Station, and proceed with the Chain to b, and there plant the Inftrument ; then bring the Index to 360 on the Limb, and 360 in the Box exactly to the North End of the Needle as aforefaid, and direct the Telercope to the Mark left at a, and note the Degrees and Minutes cut on the Limb by the Index, viz. 285 Deg. Io Min. which is the Bearing of $b a$ or Quantity of the Angle which that Line makes with the Meridian.

It would be needlefs to repeat the Manner of meafuring the other Lines and Angles in this Figure; but obferve that when the Inftrument is fixed in the Direction of the Meridian, we frequently oblerve the Needle by moving it from the Point at 360 with a Knife, $\mathcal{E}^{2} c$. then if it fwings backward and forward freely without jogging or ftopping, and fettles again to 3^{60} exactly; we may conclude the Inftrument is right in the Direction of the Meridian to make an Oblervation.

If you fufpect the Needle to be acted upon by fome hidden magnetick Power, as when you are Surveying in mountainous Lands, where there may poffibly be Iron Mines in the Earth, which will attract the Needle, you may obferve whether or no it be drawn afide in the following Manner.

As when the Inftrument was planted at e, the North End of the Needle pointing to 360 in the Box; after the Bearing of $e d$ was noted, direct the Telefcope forwards to f, and note the Angle which the Index cuts on the Limb, viz. $200^{\circ} 50^{\prime}$: Then the Inftrument being planted at f, becaufe the Bearing of $e f$, obferved at e, is more than 180°; fubtract 180 there-from, and to the Remainder $20^{\circ} 50^{\prime}$ fet the Index on the Limb: But if the Bearing of of had been lefs than 180, add 180 thereto, and to that Number bring the Index on the Limb. Now turn about the whole Inftrument till the Hair cuts the Staff left at e, and then, if the North End of the Needle points to 360 , as at the laft Station, the Bearing of that Line is truly obferved.

For the magnetick Power that attracts the Needle, being fuppofed at a great Diftance, the Direction on fuch a Piece of Land as is commonly furveyed by the Theodolite, will be the fame: But if the attractive Power be near the Inftrument, the Needle will incline thereto.

The Bearings, $\mathcal{E}^{\circ} c$. of the feveral Station Lines in this Field are, viz.

Lines	Links	Deg.	Min.
-	600 - a	207	20
$b a$	$500-b$,	285	10
cb	1000	190	-0
$d c$	500 - d,	91	55
ed	500	125	20
fe	1600	20	50
$\odot f$	500	289	15

SECT. II.
An eafy Method of protracting any Obfervations made in the Field by the Needle.

BY the Method here laid down, a Plan of any Field may be drawn on the Paper from one Meridian only, and all the Angles therein laid down by once applying the Protractor to that Meridian, and the Help of a parallel Ruler; being very exact and expéditious.

Provide a circular Protractor, whofe Numbers encreafe the fame Way as on the Limb of the Theodolite, and a paraliel Ruler of a convenient Length : Then draw a Right-Line NS, Fig. 36. (with ablacklead Pencil) for a Meridian, and affign a Point therein, as at \odot, to which Point apply the Center of the Protractor, and tuirn it about till the Diameter lies on the Line NSy with 180 towards N , (that Part of the Limb of the Theodolite being now kept Northward in the Field.)

The Protractor being held in this Pofition, lay the Field-Book before you, and againt 207 Deg. to Min. the Bearing of the firft Line $a \odot$, clofe to

Sect. 2. The Practical Surveyor. the protracting Pin or Needle, and clofe to that Mark write a with a black-lead Pencil.

Hold the Protractor in the fame Pofition, and againft 285 Deg. io Min. the Bearing of the next Line $b a$, make a Mark with the protracting Pin, and clofe to that Mark fet b.

In the fame Maniner, keeping the Diameter of the Protractor clofe to the Meridian as it was at. firtt laid; make a Prick with the protracting Pin, clofe to the Limb of the Protractor, againft the Bearing of each refpective Line as noted in the Field Book, and clofe to each Prick fet the Letter or Number of that Line; fo againft 190 Deg. the Bearing at c, make a Prick and write c; againft 91 D.g. 55 Min. write d; againft 125 Deg. 20 Min. write e, © c. Vide Fig. 3^{6}.

Having marked the Bearing of each Line round the Protractor, lay it afide, and apply the Edge of. your plotting Scale to \odot at the Center, and a marked by the Limb of the Prorractor; the Beginning of the Numbers coinciding with \odot, and encreafing towards a, and prick off 6 Chains the Length of the Line $\odot a$, and with Ink draw the Line $\odot a a$.

Lay the parallel Ruler to the pricked Line $p \odot b r$, fo that the Edge cuts the central Point at \odot and the Point at b, as marked by the Limb of the Protractor ; and move it parallel till the Edge cuts the Point at a in the Line $p a b r$, and with the Point of your Compaffes diaw the occult Line $p a b r$ by the Edge of the parallel Ruler; then becaufe the Length of the Line $a b$ is 5 Chains, lay the plotting Scale to a and prick off 5 Chains, and draw the Line $a b$.

When you had drawn the occult Line $p a b r$, through the Point a, you might fet $a b$ thereon towards p as well as towards r; but if you obferve in what Direction the Letter b, as marked by the

Limb of the Protractor, ftands from the central Point 0 , in the fame Direction muft the Line $a b$ be fet from the Station Point a; alfo when the Ruler is laid to the Station b, you cannot be at a Lofs whether you fhould draw the Line' b c upwards or downwards, if you obferve in what Direction thé Letter c ftands from the central Point \odot; therefore in the fame Direction draw $b c$ from b.

Lay the parallel Ruler to the central Point \odot and the Mark at $c_{\text {, and }}$ and me it parallel in that Direction, till the Edge cuts the Point b at the End of the Line $a b$; and by the Edge of the parallel Ruler, draw an occult Line, fetting thereon from b to Chains, and draw the Line b.

Again lay the Edge of the parallel Ruler to the Point at the Çenter \odot and to the Mark at d, and move it up to c, and draw $c d$.
In the fame Manner deal with the other Lines and Angles, fo fhall the laft Line $f \odot$ cut through the Point \odot, and its Length be 5 Chains, as noted in the Field Book, which proves the Plot tọ be truly laid down.
In thefe Obfervations the Station Lines only are inferted; the Off-fets from thence to the Boundaries are omitted, becaufe the Manner of plotting them hath been laid down before.
When the Boundaries of the Field are drawn, and the Name thereof entered in the Middle of the Plot, you may with a Piece of Bread rub off the Marks that were made with the Pencil round the Edge of the Protractor and meridian Liné, fo will the Plot be ready for cafting up.
But if feveral Fields are to be ploteded together, you muft draw a Line through the firft Station Point in each, parallel to the Meridian in the firft Plot, from which the Plot of each Field may be Laid down in the fame Manner as Fig. 36 .

Obfervé,

Obferve, neither the Circle nor Figures, expreffing the Angle which each Line makes with the Meridian, are ufed in Practice, though inferted in the Scheme to demonftrate the Nature of the Work. Note alfo, if you lay the Edge of the thin plotting Scale clofe to the Edge of the parallel Ruler, and move it forwards on the Paper with the parallel Ruler, till the Edge of the Scale cuits the Point at $a_{\text {s }}$ and bring the Beginning of the Numbers on the Scale to the Point a, you may draw the Line $a b$ by the Edge of the Scale held in that Pofition to 500 the Length of the Line, without drawing any other but the Station Line it felf. Or, the faid Scale may be drawn on the Edge of the parallel Ruler it felf.
S E C T: III,

An expeditious Method of calculating or caft= ing up the Area of a Plot of Land in Acres, \&c.

ACcording to the Rules before mentioned in Chap. 2. the whole Plot muft be reduced into Trapezias and Triangles, and the Length of each Bafe and Perpendicular meafured by the Scale; but fince it is often neceffary to lay down the Plot by a fmall one, as $\frac{7}{4}$ of an Inch or lefs; if you err 8 or 10 Links in taking off the Length of the Bafes and Perpendiculațs (which may eafily happen if the Lines be not drawn very neat and fmall) and there being feveral fuch Baies and Perpendiculars, the Error may be confiderable in the whole Plot: and then alfo the Bafe and Perpendicular of each of thefe Triangles muft be multiplied together feverally, and their Products added together for the whole Content.

Whereas

Whereas by this method, the whole Plot, (let it confift of many Sides or few) is caft up by applying the Scale but to one Bafe and one Perpendicular, and confequently by one Multiplication, and the Truth of the Work is demoniftrated by the Lemma, Page 15 viz. That Parallelograms (and confequently Triangles) confituted upon the fame Bafe, and betzicen the fame Parallels, are equal.

Let the four-fided Figure $a b c d$, Fig. 37. be reduced to a Triangle, whofe Area fhall be equal to that of the four-fided Figure.

Firft extend one of the Sides as $c d$, then lay the parallel Ruler to the Points a and d, and move it parallel till the Edge cuts the Point b, then by the fame Edge make a Mark in the extended Line c d at e : Laitly, lay a frait Ruler to the Points ε and a, and draw the Line $e a$, fo thall the Area of the Triangle $a c \in$, be equal to the Area of the fourfided Figure $a b c d$.

For the Triangles $a d e$, and $a d b$, having the fame Bafe $a d$, and lying between the fame Parallels, are equal ; and therefore the Triangles abodoe are equal: Wherefore if the Triangle $b o a$ is left out of the four-fided Figure $a b c d$, and the Triangle doe, taken in, and the Areas of thefe two Triangles being equal, it follows, that fuch an equal Quantity of Space is left ouit in one Part of the Figure as is taken in on the other, and the Area muft ftill be the fame.

Again, let Fig. 38. be reduced into a Triangle.
Firft extend the Line $f o$, and apply the parallel Ruler to the Points o and b, and move it parallel up to the Point a, and where the Edge cuts the extended Line $f 0$, make a Mark at g; then lay the Ruler to the Point g and c, and move it up to b, and make a Mark in the extended Line or Bafe ath

Lay the Ruler to the Points b and d, and move it to c, then make a Prick in the Bafe at i.

Lay the Ruler to the Points i and e, and move it to d, and make a Mark in the Bafe at k.

Laftly draw the Line $k e$, fo fhall this feven-fided Figure be reduced to a three-fided one whofe Areas are equal; fo may the Triangle $f e k$ be caft up by one Multiplication only.

But note, inftead of laying the Ruler to the Points i and e, if you had laid it to $d f$, and moved it up to e, and drawn the Line $z d$; the Triangle $z d i$, would have contained the fame Area as $f e k$; and this often is neceffary to prevent the Sides of the reduced Triangle being extended too long, and making the Angles thereof too acute.

Apply the fame Scale by which the Plot was laid down to the Bafe, and meafure its Length, alfo meafure the Length of the Perpendicular; multiply thefe two Numbers together, the Half of their Product will be the Content of the Plot in fquare Links, which reduce into Acres, \mathcal{E}° c. as before directed.

Alfo obferve that we commonly chufe to extend one of the fhorteft Sides of the Plot for the Bafe of the Triangle, as the Side $f 0$, which we draw with a Black-lead Pencil, as o k, as well as $k e, i d$, or $z d$, and rub them off again with a Piece of Bread, as foon as the Content of the Field is entered with its name in the Middle thereof.

If in ufing the parallel Ruler at the firt Trials you find it apt to flip on the Paper, which you may do if you be not very careful to hold it clofe down to the Surface, that Inconvenience may be prevented, if you make Ufe of three fmall Pins or Needles, thus; Stick the three Pins in the three firft Angles, as at o, a, and b, then apply one of the inner Edges of the parallel Ruler, to the firft and third o and b, and move the other inner Edges to the fecond at a; take

Line extended where the Ruler cuts it as at g; again lay the Ruler to this Pin at g, and to another at the fourth Angle at c, and move the Ruler to the fifth Angle at d; take out the Pin at d, and ftick it in the Bafe at b, and proceed in this Manner with the reft till the Plot is reduced.

SECTIV.

Shewing bow to reduce the irregular Boundaries of a Field to frait Lines, in order to find the Area thereof.

LETabcdefgbik, Fig. 39. reprefent the Boundaries of a Field, whofe Content is defired.
Firf, produce fome one of the longef Sides as $i k_{;}$ then lay the parallel Ruler from the Angle i to g, the next but one, and move it up to the Point b, and where it cuts the Line produced, make a Mark at r, and draw the ftrait Line $r g$, and it will reduce that Side of the Figure bounded by the two Lines $i . h$, and $b g$, to another bounded by $r g$ one Line only.

In like Manner $r g$ being produced, and the parallel Ruler laid from g to e, and moved up to the Angle f, the Edge cuts the extended Line $r g$, at y; 2dly, lay the Ruler from y to d, and move it up to e, and it will cut the extended Line $r g$ at z; 3 dly; lay the Ruler from z to c, and move it up to d, and where it cuts the extended Line $r g$, make a Mark at x; laftly, draw the ftrait Line $y c$, fo Thall the Side $g c$ which confifted of the four Lines $g f, f e, e d$, and $d c$, be reduced to the Side $y s$ confifting of one Line only; and in like Manner might we proceed, if the Lines were never fo many: So may the ten-fided Figure be reduced to a fourfided
fided one, and then to a Triangle which may be caft up by one Multiplication only.

This is the fame Method with that before laid down for reducing a many-fided Figure to a Triangle; but if you have not a parallel Rule, do thus:

Having produced the Side k_{i}, lay the Edge of a ftrait Ruler from i to g, then take with a Pair of Compaffes the Diftance from b to the Edge of the Ruler, and with this Diftance let one Point of the Compaffes move gently clofe to the Ruler, while the other traces out a Line parallel to it, and crofles $k ; i$ at r, and draw $r g$ as before.

In the fame Manner deal with the other Sides; ufing the Compaffes as here directed inftead of a parallel Ruler.

Or you may get a Plate of thin Brafs in Form of an Arch, near whofe Ends let there be drilled fmall Holes, through which ftring it with a very fine Hair; and then if an Hedge as gc , Fig. 39. bends in and out in feveral Places, and thofe Bends contain very fmall Spaces; lay the Hair over it lengthways, fo that the Quantities cut off from the Figure thereby, may be equal to thofe added to it, and with a protracting Pin near the Ends of the Hair, make two Marks, through which draw a ftrait Line, and fo will this irregular Side be reduced to a regular one : And here it may be obferved, that in very fmall Bends, you may judge by the Eye as near as you can come with the parallel Ruler.

But if Hedges confift of large Curvatures, chufe out fuch Points, and fo many of them that RightLines drawn from Point to Point-may vary the Area by fuch Quantities only as may be rejected, and herein the Hair will bea teady Affiftance.

S E C T. V.

The Manner of reducing bypotbenufal to borizontal Lines.

WHEN we meet with àn Hill in Surveying a Piece of Land, we can only meafure the hypothenufal or flope Lines thereof, on the Superficies of the Hill, which are confiderably longer than the bafe or level Lines on which the Hill is fituated; as the Lines $a b, b c$, Fig. 40 are longer than $a 0, o c$: Therefore when we plot this Hill (becaufe we cannot make a convex Superficies upon a Piece of plain Paper) we muft reduce the hypothenufal to horizontal Lines, that all the Lines's in the Plot may bè laid down alike in plano.

For the Lines of Level only muft be expreffed in a Plot, that every Field therein may lie in its true Situation; for if $a b$; and $b c$, were laid down on Paper as meafured in the Field, they would reach to d, and not only thruft the next. Hedge out of its true Pofition, but alfo take up a great Space in the next Field, making that too little:

Note, Before hypothenufal Lines can be reduced into horizontal, the Angle of Elevation or Depreffion muft be taken; and for this Purpofe an Arch fhould be fixed on the Index of the Inftrument, fo as to give the vertical Angles at the fame Time the Index itfelf fhews the horizontal ones on the Limb.

Let Fig. 40. reprefent an Hill; at the Foot of which the Theodolite is planted, which being fet level in order to meafure the Angle at a, elevate the Telefcope to the Mark at b, (which muft be fet the fame Diftance from the Ground as the Telefcope is) and when the Hair cuts the Mark at b, the Index fhews the horizontal Angle on the Limb, and the vertical
vertical Arch the Ang!e of Elevation ba0, 25 Deg. 50 Min . both at the fame Time; which note in the field-Book one over againft the other.

The Inftrument being removed from a, and planted level on the Top of the Hill at b, deprefs the Telefcope to the Mark at c, and the \angle of depreffion will be 21 Deg. 34 Min. The Length of $a b$, as meafured up the Hill, by the Chain is 1200 Links, and $b c 1416$.

In order therefore to plot thefe Obfervations, firft, draw the right Line ad, but do not fet the Length 1200 Links thereon, becaufe the Angle of Elevation is noted in the Field-Book againft the horizontal Angles, which fhew that this Line is to be reduced to a level ; therefore lay the Center of the Protractor to a, the Diameter coincident with $a d$, and againft 25 Deg .50 Min . the Angle of Elevation, make a Mark, and through it draw the obfcure Line ab, fetting thereon 1200 Links the Length of the Hypothenufe, at the End of which make a Mark at b.

Having drawn the Angle of Elevation ba o, take a fquare Protractor or any other Square that hath one right Angle, and two ftrait Edges, and apply one Edge thereof to the right Line $a d$, whilft the other Edge cuts the Point b in the obfcure Line $a b$, and thereby let fall a Perpendicular from the Point b, which falls on the Line ad at o; fo thall the Line a 0 , be the true horizontal Line which muft be laid down in the Plot.

In the fame Manner reduce the Hypothenufe $b c$, by firft drawing the Angle of Depreffion doe, 21° 34^{\prime} fetting the Length of the Hypothenufe $b c I 4$ Chains 16 Links on the obfcure Line oe, and where that Length 1416 Links reaches from 0, make a Mark at e. Laftly, from e let fall a Perpendicular on the Line od, which falls at c; fo thall the Line oc, be the true horizontal Line.

98 The Pracitical Surveyor. Chap. VI.
Or elfe having noted the Quantity of the Angles of Elevation, and Length of the Hypothenure in the Field-Book, you may find the horizontal Line by the Help of the following Table.

A Table Sberving horv many Links to deduct from every Chain's Length in the HypotbenufalLine.

				,				
4	3		19		6			13
5	44		21	34		30		14
7	1		23	4		$3{ }^{1}$	47	
8	6		24	30		32	52	16
	29			150		33	54	17
	16					34		

Having the Angle of Elevation 25 Deg. 50 Min . and the Length of the Hypothenufe $a b_{12}$ Chains given; thence to find the Length of the horizontal Line.

Look in the Table for 25 Deg. 50 Min. and againt it you will find to Links, and to many muft be deducted out of every Chain in the Length of the Hypothenufe; then if I Chain or 100 Links requires 10 Links to be deducted from thence, 12 Chains or 1200 Links, requires 120 Links to be deducted; therefore fuberact 120 Links from 1200, the Remainder is 1080 , the Length of the horizontal Line a o.

Again, the Angle of Depreffion at b, is 21 Deg. 34 Min. and the Length of the Hypothenufe or flope Line b c 1416 Links, you will find in the Table againft 2 I Deg. 34 Min. 7 Links, then if 100 : $7:: 1416: 99$; therefore fubtract 99 Links out of

Plate 4
Paye ge

${ }_{14} 16$ the Length of the flope Line, the Remainder is 1317 Links, the Length of the level Line oc. But if you cannot find the given Angle of Elevation in the Table, make ufe of that which approaches neareft thereto ; and Note, Surveyors in Practice feldom take notice of a gradual Afcent, if it does not make an Angle of 5 or 6 Degrees or thereabouts; the Difference between the flope and level line, being then inconfiderable, except in fome extraordinary Cafe, and then 'tis fafeft to make ufe of the firft Method here laid down, becaufe the Table is too fhort: but if you have a correct Table of Sines and Logarithms, you may make ufe thereof.

If you are working with the Chain, and would find the horizontal Line of an Hill, you may carry a fmall Quadrant in your Pocket, with which meafure the Angle of Altitude, and note it in the FieldBook againft the horizontal Angle obferved at that Station, (but let the Mark be fet the fame Diftance from the Ground with your Eye when you obferve the Angle of Altitude) and proceed to reduce the Line as aforefaid.

Alfo you may obferve an Angle of Altitude if you have only the plain Table in the Field, by turning it down into the Notch of the Ball and Socket, making it ftand perpendicular by applying the String and Plummet thereto, and then the Index and Sights fcrewed to the Center of the Table may indifferently ferve the Turn; but a Quadrant is better.

Remember to fhade over that Part of your Plot where the Lines are thus reduced with the Reprefentation of Hills, left another Perfon hould meafure them by the fame Scale with the other Lines, and find them to differ.

If a Field hath the Bottom and Top Lines level, and both Sides rifing alike, it is to be accounted but as a declining Level, and to be meafured as a level

Ground in regard of the Quantity of Superficies, through the Side Lines muft be reduced, to make a regular Plot in refpect of the adjacent Fields that are level: But if a Piece of Ground be level at one End and both Sides, and an Hill rifing up along the Middle, or if there be feveral Hills in the Middle, the Superficies thereof will be more than in a Plain bounded by the fame Limits.

Now Surveyors differ in their Opinion, in refpect of cafting up the Content of fuch a Field; fome argue on the Tenant's Behalf, that fince all Vegetables ftand in a Perpendicular Direction on the Earth; (that is, grow ftrait upwards) as much will grow on the horizontal Line as on the Hypotheneufe, and therefore the Lines ought to be all reduced to a Level, and the Content to be deduced from the Plot fo laid down.

Others fay that there ought to be Marks placed on the Top of the moft remarkable Hills, and the Chain drawn over Hill and Dale, and the flope Lines laid on the Paper of the fame Length as meafured in the Field, and the true Content in Acres, Ecc. deduced from thence; although the Slopes be reduced afterwards, that the Field may be laid in its true Situation in refpect of others adjacent in the fair Plot.
'Tis hard to determine which Way is to be practifed in all Cafes; for though by the laft Method you will have the true Quantity of Superficies more nearly given, yet the Allowance in the firft is often but reafonable, if the Soil of the Hills is not fo profitable as if the whole Field was fituated on a Plain; but the Reader may ufe which he fhall think moft proper.

C H A P. V.

Shewing bow to Survey and make a perfect Draught of feveral Pieces of Land lying together as a Manor, \&cc. Alfo bow to compare the Bearing and Angles one with another, at each Station, as obferved by the Theodolite, in order to correet any Error that may arife in meafuring the Angles in the Field as well as protracting them on Paper.

S E C T. I.

 AVING in the former Chapters laid down the beft and moft practical Methods for meafuring any Piece of Land by the moft proper Inftruments, I fhall here fubjoin the Manner of Surveying feveral Parcels lying together; an Example of which may be taken from the fmall Tenement or Farm, Fig. 41.

Firf I take a View of the Land, confidering at which Part thereof it will be moft convenient to begin, and proceed with the Work; and becaufe 'tis beft working in a Lane, as often as an Opportunity
prefents;

Then I enter in the Field-Book the Title of the Survey, and in the middle Column © 1 , and then fend a Station-Staff forwards in the Lane, as far as I can fee diftinctly, (the farther the better) as to \odot 2; (and when the Station-Lines are within the Field, I fend the Staff to the next eminent Bend in the Hedge, or even to the farther End thereof, if the Line from the Inftrument to the Staff be not at too great a Diftance from the Hedge, fo as to caufe Offfets greater than a Chain or a Chain and half, or thereabouts, for Off-fets taken too long are not fo eafily laid off at right Angles from the StationLine :) I direct the Telefcope to the Staff at ©2, and note the Degrees in the Box cut by the north End of the Needle, viz. 35^{6} Deg. Io Min. which I enter in the Field-Book, for the Bearing of this firt Station-Line.

Then I fet up a Staff in the Hole over which the Center of the Inftrument was placed, to which Staff I direct one of my Affiftants to apply the Ring at one End of the Chain, whilft the other Affiftant ftretches it out in a right Line towards \odot_{2}; letting it lie on the Ground in that Direction, till the Occurrences in this Chain's Length are entered in the Field-Book; riz. I meafure the Diftances of the Chain from the Boundaries of each Field, which I enter in the Columns of Off-fets; that on the right Hand of the Chain in the right Hand Colnmn, and that on the Left in the left Hand Column. If the Land is Part of that which I am about to furvey, I write in one of the outfide Columns by what Name it is called; but if it belongs to a Stranger, I write the Name of the Owner thereof, and in all Cafes exprefs to which Land the Hedge belongs.

So at the Length of 20 Links from $\odot I, I$ lay the Qff-fet Staff at right Angles with the Chain, and

Sect. I. The Practical Surveyor. 103 meafure the Diftance from thence to the Corner of Turfy Leafe, which I find to be 15 Links; therefore in the middle Column reprefenting the Station-Line I write 20, and againft it in the right Hand Column of Off-fets $I_{\text {fenter }} 15$: Likewife when I come to 40 Links in the Chain-Line I am againft the Corner of Corw-pafture; therefore I lay the Off-fet Staff to the Chain, and meafure the Diftance from thence to the Corner of Cowe-pafure 80 Links, which I enter in the left Hand Column of Off-fet againft 40 in the middle Column; denoting that at the Length of 40 Links from © I, the Off-fet 80 Links reached the Corner of Core-pafture on the left-Side of the StationLine.

The Hedges on each Side the Lane, running on very nearly ftrait from thefe Corners; I take no more Off-fets in this firft Chain's Length, nor at the fecond: But when I have laid the Chain a third Time, and come againft 80 Links, I there take an Off-fet on the left Hand of the Chain-Line, becaufe the Hedge varies its Direction, making a confiderable Bend; for though the Diftance from the Chain to the Hedge continually varies from the Corner to this Place; yet I only take Off-fets at each End, omitting the intermediate Parts; fince when the Extreams of a right Line are given, that right Line is alfo given. But when the Hedge runs on with a continued but irregular Curvature, then I take Offfets at every Chain or half Chain's Length, or oftner as the thing requires.

In this Manner I proceed with the Chain till I come to the Staff at © 2; oblerving as I go along the Bends in the Fences on each Side of the Lane, to every one of which I take an Off-fet, and then write the Length of each on the right or left Side of the Middle Column in the Field-Book reprefenting the Station-Line, according as they were laid off in the Field.

104 The Prastical Surveyor. Chap. V.
Note, the Mark \odot in the Field-Book denotes a Station; B a Bearing; \angle an Angle ; cu. the cutting of an Hedge by the Chain; ag, fome remar-kable Object on the fartheft Side of the Hedge, as another Fence fhooting up thereto; ret ${ }^{2}$. return to a former Station, $\mathcal{E}^{\mathcal{c}}$.

Being come to \odot_{2}, I there plant the Inftrument, and fend the Station Staff forwards in the Lane as far as I can fee it, as to $\odot 3$; and then bring the Index to 360 on the Limb, and turning the whole Inftrument about, I direct the Telefcope to the Staff left at $\odot 1$, and there fix the Inftrument. Then having turned about the Index on the Limb, till through the Telefcope I fee the Staff at $\odot 3$, I find that the North End of the Needle points at 338 Deg . and the Index cuts on the Limb 161 Deg .50 Min . therefore under \odot_{2}, in the middle Column of the Field-Book, I enter 338 Deg. and under that 161 Deg. 50 Min . denoting that at the fecond Station the Bearing of the third from thence is 338 Deg . and the Angle which the Index cuts on the Limb is 161 Deg. 50 Min.

The Rule I obferve in meafuring each Angle is this:

Firft, I bring the Index to 360, and with that Part of the Limb towards me, I direct the Telefcope to a Mark at tbe laft Station, and there fix the Infrument; then I turis about the Indew on the Limb till I See the Hair in the Telefcope cut a Mark at the next Station before me, fo Ball the Needle foew the Bearing of the wext Line, and the Index on the Limb berws the Quan= tity of the Angle at the prefent Station.

The Angles and Bearings of the Lines are taken at once fetting the Index, as eafily and expeditioully as the Angle itfelf only; therefore infert the Bearing of each Line in the Field-Book, as you fee in the Form thereof; for then you may prove the

Sect. I. The Practical Surveyor.
Truth of your Work in the Field at each Station, before you leave it, by one of the following Rules.

If to the prefent Bearing, be added 180 Degrees, and from the Sum you fubtraEl the laft Bearing, then the Remainder voill be the prefent Angle.

Or, if to the prefent Angle, you add the laft Bearing, and from the Sum fubtraCt 180 , then will the Remainder be the prefent Bearing.

But if the Degrees to be fubtraited are more than thofe from which they are to be fubtracted, the latter muft be encreafed by 360 , and then fubtract. And if the Remainder be more than 360, then abate 360 , and the Refult gives the Degrees required.

So at $\odot 2$, if to the prefent Bearing $33^{\circ} 00^{\prime}$, you add 180°, the Sum is $5^{18^{\circ}} 00$; from which Sum, if you fubtract the laft Bearing at © $1,35^{\circ}$ 10^{\prime}, the Remainder is $161^{\circ} 50^{\prime}$, equal to the prefent Angle.

Likewife, if to the Bearing at © ${ }_{3}, \mathrm{I}^{\circ} 30^{\prime}$, you add 180 Degrees, the Sum is $181^{\circ} 30^{\prime}$, which is lefs than $33^{\circ} 8^{\circ} 00^{\prime}$ the Bearing of the laft Station; therefore $181^{\circ} 3^{\prime}$ mutt be encreafed by 360 , and then the Sum is $541^{\circ} 30^{\prime}$, from which if you fubtract 33^{8}, the Bearing of the laft Station; the Remainder will be $203^{\circ} 30^{\prime}$, equal to the prefent Angle.

In like Manner may any other Angles be examined, and if found erroneous, the Error may be corrected, before tis communicated to the following Part of the Work.

Therefore when you have noted the Bearing of the prefent Station, write it in one of the outfide Columns of the Field-Book, and adding 180 thereto, fubtract the Bearing at the laft Station therefrom; and then, if the Angle thus calculated from the Bearings, agrees with that which the Index cuts on the Limb, you may conclude the Angle is

106 The Practical Surveyor. Chap. V. rightly obferved, and therefore may be entered in the Field-Book.

But obferve, tho' the Numbers thus compared wili be very nearly alike, yet fometimes they may differ fome few Minutes, becaufe the Divifions in the Box being fo much fimaller than thote on the Limb, the Degrees and Minutes cannot be eftimated alike in both; but yet you will be fure always to correct and avoid any grofs Error before you proceed with the following Work; and to this End the before-mentioned Rules are of excellent Ufe.

Thefe Directions I hall not repeat, though I make Ufe of them throughout the whole Work, unlefs any thing new occurs in meafuring of the other Lines and Angles, referring the Reader rather to the Field-Book and Plan of the Work, than tiring him with Repetitions.

Note, The chief if not the fole Ufe of taking the Bearings here by the Needle, is for the Sake of protracting from the Meridian: And becaufe the Needie is fubject to err a little, therefore whenever the Bearings and the Angle after they have been calculated one from the other (according to the preceding Rules) are found to differ, if this Difference does not exceed a Degree or thereabouts, the Bearings muft be corrected from the Angle; for in taking the \angle there can be no fenfible Error, if the Cautions given in Page 5^{8} be duly oblerved. But if the above-mentioned Difference be confiderable, and the Needie be not very faulty, you may conclude that fome Miftake hath been committed, which muft be enquired into before you procced any farther.

From © 2, I proceed with the Chain towards © 3 ; but at twency Links in the firt Length from $\odot 2$, I am againft the Hedge that parts Home-cloJe from $T u r f y$-Leafe; therefore I take an Off-let thereto perpendicular from the Chain Line, and enter in

Sect. 1. the Field-Book ag i 7 Links, and this will hereafter be of Ule in clofing the Plot.

Being come to $\odot 3$, I there obferve and prove the Bearing and Angle at that Station, and then proceed with the Chain towards $\odot 4$; but firft at \odot or the prefent Station, I meafure an Off-fet to the right Io Links, and to the left 20 Links; at 4 I in the Chäin-Line, I am againft the OrchardHedge; at 204, the Orchard Pales; at 26r, I am againft the Gate. that leads into the Yard, and alfo againft another that goes into Cow-Paffure ; therefore to each of thefe Remarks I meafure an Off-fet from the ChainLine, and enter them in the Field-Book.

In going from $\odot 4$ to $\odot 5$, the Chain touches the Brow of the Ditch at 2 Chain 20 Links from the laft Station; therefore againft 220 in the FieldBook I write o, denoting that there was o, or no Diftance from the Chain to the Ditch. By the Brow of the Ditch is meant the determined Diftance of 5 Links from the Stem of the Hedge.

Being come to $\odot 6$, I fend a Staff to the farther Side of the Field called the Stockin, and if I cannot fee the Mark through the Hedge, I caufe the Bows to be removed or held back till I can plainly fee the Mark; but if that cannot be done I make my Station a little on this Side, or elfe beyond fuch a thick Place till I can plainly fee the Mark, and draw the Chain through the Hedge in a ftrait Line, and where it cuts the Hedge I write cut, as here it does at 10 Links; but if the Fence is a Wall, I allow for the Thicknefs thereof, and always meafure the nearef Diftance between Station and Station that can poffibly be,

Being come to $\odot 9$ in the Stockin, I caufe a Staff to be fet up in the very Corner of the Field next the Iane where the Boundaries meet, to which I meafure from 09 ; fo thall the End of this Line coincide with the Off-fet which I took to this Corner from the

Station Line in the Lane, which will be a Proof that the Work is truly laid down when I come to protract it.

If upon a Piece of Paper with the Pen only you make an Eye-draught of the Lane, and that Field which you have finifhed, fetting your Station Lines with their Numbers, as you made them in the Field; you will plainly fee your Work as you go along, and be able to diftinguifh which Boundaries of the prefent Field are already meafured in the precedent; as well as be directed, with a great deal of Eafe, how to proceed with your Work, when you come to protract it.
: Having made all the neceffary Obfervations round the Stockin, I return to $\odot 9$; and with 360 on the Limb towards me, I direct the Telefcope to a Mark at the laft Station before I came to this, wiz. $\odot 8$, and fixing the Inftrument there, I next direct the Telefcope to - 10, and note the Angle and Bearing at that Station: Then I lay the Chain through the Hedge from $\odot 9$ towards $\odot 10$, and take an Off-fet to the Fence where each Partition-line joins it on the other Side; by the Help of which, together with the other Off-lets on the further Side in the Lane, moft of the inward Fences of the Orcbard, Garden, $\mathcal{E}^{2} c$. may be drawn.

From \odot Io I cannot fee into the very Corner next the Lane, therefore I take an Off-fet thereto 20 Links from the Station Line, and fo are the OutLines of the Garden, Yard, Ěc. finifhed.

Then I return to $\odot 8$ in the Stockin; and here it may be obferved, that when I defign to return to any Station, before I leave it, I cut up a Turf with a little Paddle which I fix in one End of the Off-fet-Staff, or make fome fuch Remark that I may be fure readily to find the Place in which the Station Staff before ftood; and in the Field-Book to this Mark © , I write return. Then planting the Inftru-

Sect. 1. The Practical Surveyor. ment at or, I direct the Telefoope to the Mark left at $\odot 7$.

Note, I make it a general Rule, to obferve the Angle with that Line which was meafured immediately before I came to the Station where I took the Angle the firft Time: So here I obferve the Angle made with $\odot 7, \odot 8$; and not with any other, as $\odot 8, \odot 9$; therefore according tothis conftant Rule I direct the Telefcope back to $\odot 7$ in the Stockin, and fixing the Inftrument there, I next direct the Telefcope to © II, in Home-cloje, and Note the Angle, Ėc. as in the Field-Book.

After I have meafured the Angle, \mathcal{E}_{C}. at $\odot 11$, and am going forwards towards $\odot 12$; at 76 Links of the Chain I perceive myfelf over againft the Fence that parts Out-Wood from Crab-trec-Close: I therefore afk the Follower of the Chain, how many Arrows he hath in his Hand, he anfwers 4 ; therefore I enter in the middle Column of the Field-Book 476; and againft that on the left I write 6I, the Length of the Off-fet; denoting, that at the Length of 4 Chains 76 Links from \odot I I, I laid off an Cfffet to the left, 6I Links. Then I proceed to obferve and enter in the Field-Book the reft of the Occurrences round Home-Clofe, clofing it at the End of the Line from \odot 12, next the Lane.

Then I return to $\odot 12$, and proceed to $\odot 13$, clofing Turfy-Leafe at the Corner; to which I took the firft Off-fet from \odot I, in Cbarlton-Field.

In the fame Nianner I proceed round CrabtreeClofe, entering the feveral Occurrences as you find them in the Field-Book.

Being at $\odot 17$, I caufe a Staff to be fet up clofe to the Fence where the Hedges join one another near $\odot 7$; to which Staff I meafure ftrait from $\odot 17$, clofing Out-Wood at the Extremity of the StationLine, which coincides with the Off-fet laid off from - 7, in the Stockin.

Having

Having finifhed all the Fields on this Side the Lane, I return to $\odot 6$; obferving this general Rule, niever to make a Tour greater than Neceffity requires, but always to clofe each Field as foon as poffible : So inltead of going up the Lane from $\odot 2$, if I had turned off into Turfy-Leafe, and clofed firft Turfy-Leafe, and then Crabtree-Clofe, Eic. the Work had been done as well.

Being at $\odot 6$, I caufe a Staff to be fet up in a convenient Place, on the farther Side of Garrot-Field, as at 018 , laying the Chain through the Hedge, from $\odot 6$, towards $\odot 18$; and becaufe the Hedge belongs to the next Field, I write Hedge to Will. Green, the Owner of the adjacent Land.

After I have oblerved the Angle at © 18, I direct the Telefcope to a Staff fet up by the River Side, and note the Degrees which the Index cuts on the Limb, riz. $131^{\circ} 10^{\prime}$; and then meafure from $\odot 18$, to that Staff, 300 Links, taking Off-fets on each Side the Line to the Brink of the River, as you fee in the Figure thereof; and this will be found very ufeful in all Manner of Practice, where the Boundaries are very irregular, that as much Work may be performed at once fetting down the Inftrument poffible.

Fromo18, I proceed with the Chain to $\odot 19$, and from thence I meafure along the Hedge-Side that reaches from the River to the Lane; and when I come againft the Hedge that parts Magg-meadow from Coro-Pafture, I write, ag 50 Links, being fo far diftant from the Chain-Line; and becaufe the Hedge from this Place belonged to Garrot-Field, I entered it fo in the Field-Book, but now it belongs to Cowpafture; therefore I write Hedge to Cow-pafure.

Then returning to © I 9 , I direct the Telefcope firft to $\odot 18$, and then to $\odot 20$, and I find $\odot 19$ to be in a ftrait Line with $\odot 18$ and $\odot 20$; therefore I enter in the Field-Book 180, or Station-Line continued;

Sect. I. The Practical Surveyor. tinued; then I proceed to obferve and enter down the feveral Occurrences at $\odot 20, \odot 21$, añd $\odot 22$, round Magg-meadow, and then return to $\odot 2$ I.

From $\odot 21$, I go to $\odot 23$ in Cow-pafure, clofing it on the Corner, near $\odot 1$ in Cbarlon-Field; and fo is the whole finifhed, as far as relates to the Field. work.

If there be feveral Pieces of Land belonging to the fame Manor, $\mathcal{E} c$. you are now furveying, that lie difperfed in feveral Furlongs in common Fields adjacent to the fame Manor; you may from one of your Stations on the Outfide of the Plos take the Bearings to each Piece, by caufing a Mark to be fet up thereon, and meafuring the Diftance from that Station to each Mark : So may each Piece be plotted in its true Form, and laid in the fame Situation in the Plot as on the Land it felf: And in your Table of References or Terrier, you may infert the Name of the Furlong where each Piece lies, with the Name of other Perfons Land that lies round it; as a direction to the Steward or other Perfon, to find each Piece.

112 The Practical Surveyor. Chap. V Obfervations and Dimenfions of Land lying in the Parifs of W—, in the County of L——Part of the Eftate of —— 3 1/t of March, 1724.

Sect. 1. The Practical Surveyor.

	$\begin{array}{c\|cc\|c} & \odot & 5 & \text { in } \\ \text { B the } & \text { Lane } \\ \text { B } & 130 & 50^{\prime} & \\ \text { P } & 204 & 20 & \\ 10 & 0 & 20 \\ & 64 & 12 \\ 35 & 152 & \\ 30 & 236 & 10 \end{array}$	
Corner of Stockin	06 in the Lane B 93° 30^{\prime} A 259 40 - IO int. into 6 Stockin 6 270 3 500 40 750	
Hedge to Wood	B 07 in Stockin 193° 30^{\prime} P 280 23 0 60 335 45 620 ag. 20 668 680$\|$	\cdots

${ }^{11} 4$ T'be Practical Surveyor.
Chap. V.

(3)			俞
Corner. Hedge to Stockin Hedge to	B 3 30		ckin bere ft.
	B		Cor Croft Hedge Carden Pales Corner of chard Hedge.
Out-lines of	B		ard Hedg ere xt the Lane.

Sect. 1. The Practical Surveyor.
115

Clofe Home, Clofe on Hedge to Lane, next Turfy-leafe.

I 2
Kemarks

Remarks

Sect. I. The Practical Surveyor.

Sect. 1. The Practical Surveyor.

14
Remarks.

Magg-Meadow clofes on the Corner of the Hedge next Garrot-Field.

Remarks.

Sect. I. The Practical Surveyor. 121

Core-pafure clofes on Corner next Cbarlton-Field.

S E C T. II.

The Manner of Protracting the Obfervations contained in the preceding Field-Book.

TH E Protractor for this Purpofe is beft made a whole Circle, and marked bn the Limb where the Numbers begin with N. or a Flower-deluce; for then may that Part of the Protractor be kept always one Way as the Inftrument in the Field; and therefore you will be lefs liable to Miftake, than if you ufe a Semicircle, which muft be laid upwards or downwards, as the Degrees of the Bearing are more or lefs than 180: The Dianfeter of this Protractor may be laid parallel to the Meridians, by the Help of equal Divifions graved on the inner Edge thereof; or by the Degrees on the outward Edge.

Being provided with a Sheet of Atrong CartridgePaper, or (if that is not large enough) a Skin of Parchment; or which I reckon better (efpecially for the fair Plot) if one Sheet of Paper be not big enough, to have feveral Sheets pafted on Cloth or Canvas well ftretched and dried in a frame before you ufe it; and this you may have of any Size, as the largenefs of the Work to be laid down requires.

Or a Practicioner may have Sheets of large Paper printed from a Copper-Plate, with fine MeridianLines drawn thereon at exact Diftances; and thefe will be very neat and true, and will fave much Trouble in drawing Meridian-Lines by a parallel Ruler, or otherwife.

If you have not a Paralle! Ruler, you may draw Lines parallel to one another, by fetting one Foot of apair of Compaffes at or near the End of your given right Line, and with the other defcribe the Arch of a Circle ; do the fame at the other End of the Line, and through the utmoft Convex of thefe two Arches you may draw a Line parallel to the firf.

Or if you bend the Paper doubie, fo that the two Ends coincide, and prick Holes through them both; then the Paper being opened, Lines drawn through the correfpondent Points, will be parallel one to the other.

Having drawn parallel right Lines at convenient diftances throughout the Paper marked with N. S. reprefenting Meridian, or North and South Lines; I chufe out fome Place in one of thefe Lines, to reprefent the firft Station, as at © I, Fig. 4I, and lay the Center of the Protractor on the Point © r, the Diameter being parallel to the Meridian Line, and the Beginning of the Degrees of the Protractor towards N. or upwards: And becaufe the Bearing of the firft Station Line is 356°, 10^{\prime}, I make a Mark with my protracting Pin againft that Number, clofe to the Limb of the Protractor ; to which mark I draw an obfcure Line from $\odot 1$, reprefenting the Chain Line from © \odot, to $\odot^{-} 2$.

Then the Field-Book being open before me, I lay the Edge of niy Plotting-Scale to this oblcure Line $\odot 1$ and $\odot 2$; and becaufe I find in the FieldBook that the Off-fets from this Line were laid off at $20,40,280,300$, and 563 ; therefore making the Beginning of the Numbers on the Plotting-Scale to coincide with $\odot 1$, I make a Prick againit each of thefe Numbers, clofe to the Edge of the faid Scale ; then turning the Scale perpendicular to the Line, I apply it fucceffively to thofe feveral Points, and there prick off the Length of the feveral Off-fets on the refpective Sides of the obfcure Line ; fo againft the firlt mark in the obfcure Line, I prick off 15 Links to the Right, which gives the Corner of Tur-fy-Leafe: Alfo againft the fecond Prick in the obfcure Line, I prick off 80 Links to the Left, which gives the Corner of Cow-pafture; at 280, or the third

124 The Practical Surveyor. Chap. V.
third Mark in the obfcure Line, I prick off 10 to the left; at 300, 20 to the Right; and at the End of the Line 5_{3} I prick off 18 Links to the Left; laftly, I draw Lines with Ink from Point to Point on the Outfides of this obfcure Line, thereby conftituting the Boundaries of the Lane fo far.

At the firft and fecond Diftances, I was againft the Comers of Tiuffy-Leafe, and Cow-paffure; therefore, with a Black-lead Pencil I draw two fhort Lines, cutting the Lane, to denote that the South Fences come up to the Lane at thofe Corners, and will hereafter be of Ufe in clofing thefe Plots.

Having thus finifhed my firft Length, I produce the obfcure Line, if Occafion requires, both Ways, till it is as long each Way as the Radius of the Protractor; then I place the Center of the Protractor on the Point © 2, and turn it about thereon, keeping the Beginning of the Degrees towards © 1 , the laft Station, till the Diameter coincides with the Station-Line $\odot 1, \odot 2$; then clofe to the Edge of the Protractor, right againft $16 \mathrm{I}^{\circ} 50^{\prime}$ the Degrees of the prefent Angle, I make a Mark with my Pro-tracting-Pin; and to that Mark from $\odot 2$, draw an obfcure Line, reprefenting the Station-Line, from © 2, to $\odot 3$.

And that I may be fure the Line \odot_{2}, \odot_{3}, is dirawn in its true Pofition; I turn about the Protractor, the Center ftill coinciding with $\odot 2$, till the Diameter be parallel with the Meridians; the Beginning of the Numbers of the Protractor being towards N. on the Meridian Line, and then will the Line \odot_{2}, \odot_{3}, before drawn, meet the Limb of the Protractor againft $33^{\circ}, 00^{\prime}$, the Bearing of the Line \odot_{2}, \odot_{3}, which proves the Line \odot_{2}, $\odot 3$, to be truly laid down.

And thus may the Plot be laid down by the Angles, and examined by the Bearings.

Sect. 2. The Practical Surveyor. 125
The contant Rule I obferve in drawing the Angles is this: To lay the Diameter of the Protractor on that Line which brought me to the prefent Station, where the Angle about to be laid down, was taken; and to keep the Beginning of the Numbers on the Protractor towards the laft Station. And in order to prove that each Angle is truly laid down, I turn about the Center of the Protractor on the Point, reprefenting the prefent Station, till the Diameter be parallel to the Meridians, with the Beginning of the Numbers towards N. on the Meridian-Line; then will the Line laft drawn, cut the Number expreffing its Bearing on the Limb of the Protractor, if that Line be drawn in its true Pofition.

But there will be no Need of this double Trouble in protracting, if the Bearings be carefully examined and corrected from the Angles, according to the Directions given in the laft Section; it will be beft then to lay down the Angles on the Plot from the Bearings in the Field-Book, without at all regarding the Angle obferved by the Limb of the Theodolite.

In like Manner, I lay down the Angles taken at the 3 d, $4^{\text {th, }} 5^{\text {th, }} 6$ th, 7 th, 8 th and 9 th Stations; and alfo the correfponding Lengths and Occurrences: I continue the Boundaries to the feveral Off-fets as I go along, drawing a fhort Line acrofs them with a Black-lead Pencil, where the Remarks a g, \mathcal{E}_{c}. are noted in the Field-Book, and I break off the Fences where there are Gates: So at the laft Length, from $\odot 9$, when I have drawn that Line in its true Pofition, and made it of its juft Length, as noted in the Field-Book, I find its extremity to coincide with that Point in the Fence, to which I laid off an Off-fet from 388 in the Station-Line © 3, © 4, in the Lane, which proves that the Angles and Lengths enclofing the Stockin, are truly laid down.

126 The Practical Surveyor. Chap. V.

But if the Extremity of the laft Line does not coincide with the Extremity of the laft Off-fet laid off from the Station-Line $0.3, \odot 4$, both denoting the North-weit Corner of the Stockin, the Lines and Angles defigned to enclofe the fame Stockin, are not truly laid down, and therefore muft be corrected before I proceed.

Next I lay the Protractor © 9, and having laid down the Angles $\odot 8, \odot 9$, $\odot 10 ;$ I prick off the feveral Off-fets, marking them as the Field-Book directs, where the lines of Partition within come up to the Hedge.

Having drawn the Chain-Link from $\odot 10$, and fet off the laft Off-fet therefrom 20 Links; I find the Extremity of that Off-fet to coincide with the Mark I drew crofs the Fence at the 2d Off-fet from - 3, which proves the Work to be truly laid down.

The Out-Lines round the Orchard, Garden, Yard, Ejc. being drawn, the external Angles about the Buildings, may be meafured with a Bevel; or elfe with the Chain only, (as directed in the Ufe of the Chain;) which, together with the Remarks on the Outides, will be an eafy Direction for drawing the feveral Boundaries within thofe Lines.

Having finifhed the Ground-plot about the Buildings, I find the next Station in my Field-Book, marked 08 . ret. therefore I return to $\odot 8$, in my Draught, and lay down that Angle by the Line immediat:ly preceding that Station, viz. $\odot 7, \odot 8$, and proceed to © II, laying down the feveral Occurrences as noted in the Field-Book.

The Rules I obferve in thefe Cafes, are, to number with Black-lead all the Stations I have already laid down in my Draught, and to exprefs thofe numbers fucceffively one after another, in a Piece of wafte Paper.

If the Number of the prefent Station doth not immediately fucceed that of the laft, but is greater by an Unit than any of the Numbers in the wafte Paper; then I lay down the Angle of the prefent Station with the Line I meafured immediately before I came to it, and number it as in the Field-Book.

But if the number of the prefent Station is greater than any in the wafte Paper by more than an Unit, there hath been fome Omiffion in the wafte Paper, which muft be rectified.

If I come to a Station whofe Number is already entered in the wafte Paper, then I return to that Station in my Draught, and there lay down that Angle with that Line meafured immediately before I came to this Station the firft Time.

Thus obferving thefe Directions, may the Plot be laid down without any Burden at all to the Memory; and if it was furveyed by one Man, it may be plotted by another, provided the Perfon who furveyed it obferved thefe Rules; and any method of keeping a Field-Book, that lays a Burthen on the Memory, is imperfect, and not fit for Practice.

The remaining Part of the Work is referved for the Exercife of the Reader: The plan thereof was here laid down by a Scale of $\frac{x}{4}$ of an Inch: I fometimes lay down the Plot of each Field by a Scale of half an Inch or larger, if the Plot will lie on one Sheet of Paper, and caft up the Content of each feparately by that Scale; and for this Purpofe, the Sheets with Meridians ready printed thereon, are very ferviceable. Afterwards I lay down the whole Plan together by a Scale of a Quarter of an Inch or lefs, entering the Content of each Field, as caft up by the large Scale in the Middle thereof.

S E C T. III.

Obfervations on meafuring Land in CommonFields.

WHEN ploughed Lands in Common-Fields are meafured by the Chain, 'tis ufual to meafure the Length down the Ridge of the Land, and to take the Breadth at the Top of the Land, about the Middle, and at the Bottom; and adding thefe three Numbers together, to take the third Part of the Sum for the mean Breadth : but 'tis not advifeable to take the Breadth very near the Lands Ends, becaufe the Turning of the Plough generally makes it confiderably narrower or wider ; and if in meafuring down the Land you find the Breadth is not nearly equal, 'tis beft to meafure crofs the Land oftner, as at every 3 or 4 Chains Length, and adding the feveral Breadths together, divide that Sum by the Number of Breadths, for the equated Breadth : And for this Practice, half the four Pole Chain is moft convenient, remembring either to fet them down as whole Chains, or to make them fo, when you caft up the content.

The feveral Furlongs in common arable Fields, may be accounted as fo many particular Enclofures, and meafured after the fame Manner, by fetting up Marks at the Extremities of the Furlong, and meafuring the Angles by the Theodolite, as before directed; and as you pafs along the Station-Lines, you may from thience take Off-fets to each Man's particular Lands; and againft that Off-fet write the Name of the Owner or Tenant: And when you plot that Furlong, you may, by thofe Directions in your Field-Book (if you will take the Pains, which is not a little) exprefs each particular Land in your draught Buttings and Boundings of Land in Common-Fields is neceffarily expreffed in all Cafes) : An Example of this is needlefs, only it may be added, that in the Survey of a large Common-Field, tis fafer to divide it into Parcels; as feparate Fields, keeping good Marks at the Stations, than to venture the Clofing of the Plot, by going round it all at once, and divi-. ding it into Parcels afterwards.

> S E C T. IV.
> Of Reducing Plots:

THE Plot of a Manor or Lordfhip confifting of feveral hundred Acres lying together, being laid down by a Scale of a quarter of an Inch or lefs, may yet be larger than is defired, and therefore muft be reduced into a leffer Compafs. Now for the Performance of this Work there are feveral Inftruments, as a long Scale made with a Center-hole at one third Part thereof; fo that two third Parts may be numbered one Way with equal Parts from the Center-hole to the End; and the other third Part numbered the other. Way with the fame Number of equal Parts, though lefs according to what Proportion you pleafe: But to pafs by this, and feveral others, I fhall only give an Inftance of the Parailelogram, which is commonly made of fix wooden Rulers joined together, and fupported by Brafs Feet, with Holes in the Rulers for fetting the Inftrument to certain Proportions:

But fometimes thefe Inftruments are made of Brafs, and fo as they may be fee to any given Proportion whatever, by the Help of fliding Centers, that are moved along certain Lines calculated for that Purpofe, and divided on the Sides of the Parallelogram; fo that a Plot may be reduced tio, in refpeet of the former; either in Proportion, as the Length of the Sides of the foul Plot fhall be to the fair one, or elfe as the Area of the one to the Area of the other. By this Inftrument, Curves are as well reduced as Right-Lines; which by any other Inftrument is exceeding difficult, if not impoffible to be done.

The Parallelogram being fixed upon a very fmooth and even Table, and the foul Plot, and fair Paper faftened thereon, one over-againft the other; fet the Parallelogram to what proportion you would have your reduced Plot be of, in refpeet of the former; then bring the Point of the Tracer to one of the outmort Angles of the foul Plot, and put in the Point which is to draw, in its Place, letting it reft on the fair Paper: Then move the Tracer with a gentle, equal Motion, over all the Lines of the foul Plot; fo fhall the Motion thereof occafion the DrawingPoint to draw upon the clean Paper or Parchment, the true and exact Figure of the former Plot, tho of another Bignefs, according to what Proportion you fet your Inftrument; which will better appear by feeing the Inftrument once ufed, than Words can poffibly explain.

When you have gone round the Lines that enclofe one Field, you may take out the Drawing-Point and bring the Tracer to any other Point on the foul Plot; then put the Drawing-Point in its, Place again, and proceed on with your Work.

Note, This Inftrument is ufeful, not only for this Purpofe, but alfo for Copying any fmall Print, Eic. in Miniature. But for reducing great Plots of Land, it thould be made of a larger Size than is commonly ufed for other Purpofes.

Schol. The Parallelogram is a pretty contrived Inftrument ; but whether for the Purpofe of a Surveyor, the Proportional Compafies will not do as
well or better, muft be left to the Decifion of thofe who have experienced both. The Compaffes confift of two Legs of equal Length, having a fteel Point at each End; the Center which joins the Legs together, is moveable up and down the Middle, by which Conttivance the Inftrument may be fet in any given Proportion. When the Center is exactly in the Middle, the Diftance betwixt the Points at each End will be the fame, whatever Extent they are opened to ; if the Center be moved a little higher up, the Extent betwixt the upper Points will be lefs than that betwixt the lower ones, and that always in the fame Proportion whilft the Center remains in the fame Place. There are ufualiy Divifions cut upon one of the Legs for fetting the Center acco:ding to any given Proportion; but left thefe Divifions be faulty, you may correct them thus: Let the Proportion affigned be as 2 to 1 ; having fet the Center to thie Number 2 ; open the Legs, and by the wideft End take fome Number off a Scale of equal Parts, fuppofe the Scale 20 ; then if the other End will reach to the fame Number upon the Scale 40, the Center is rightly placed, otherwife it mult be moved a little as you fee occafion.

To reduce Plots by this Injfrument.
For Example, Let it be required to reduce a Plot to a Scale of half the Bignefs. I. Draw parallel and equidiftant right Lines along the Plot to be reduced, this Diftance may be $1 \frac{1}{2}$ Inch or 2 Inches; crofs thefe again at right Angles with other Lines drawn exactly at the fame Diftance; then will the whole Plot be reduced into Squares all of equal Bignefs. After the fame Manner reduce the Paper or Parchment on which your new Plot is to be drawn into Squares, whofe Sides are exactly half the Length of the former. Then the proportional Compafies being fet in the fame Proportion with the Sides of the Squares on the two Plots, you'll be able readily and expedi-

$$
\mathrm{K}_{2} \text { tiounly }
$$ tiounly with a little Practice, to reduce one Plot into the other.

S E C T. V.

Directions for Beautifying and Adorning of Plots.

HAving reduced the Plan of the Lordfhip, Manor, $E^{\circ} c$. to the intended Bignefs; 'tis neceffary to draw imaginary Lines, both vertical and horizontal, denoted by Letters at the Top and Bottom, and alfo on the Sides; to be referred to by the Table of References, for the ready finding of any Field or Parcel of Land therein contained; fuch as you will find in the new Maps of London, Ec.

The Norib Part of the Plot is always fuppofed to be placed upwards, and the Eaft to be on the right Hand.

The Reprefentation of Hedges ought to be laid down on the fame Side of the Fences that they are in the Land, and to be broke off where there are to be Reprefentations of Gates.

The Out borders of the Plot, at leaft fuch as border next to the Demefnes, ought to be filled with the adjacent Hedges, and the Tenants or Owners Names of the Grounds.

If you defcribe all Rivers, Highways, Windmills, large fingle Trees, Gates, Stiles, ξ^{3} c. that fall within your Plot, it will add to the Beauty thereof.

The Ground-Plot of Buildings, ought in all Cafes to be expreffed by the fame Scale that the reft of the Flot was laid down by, and to be taken Notice of in the Table of References; but never go about to draw the Reprefentation of an Houle or Barn in the

Sect. 5. The Practical Surveyor. midft of the Plot, fo big as will cover an Acre or two of Land.

But if you would exprefs a Gentleman's Seat, or Manor-houfe, 'tis beft done in fome Corner of the Draught, or in a Plan by itfelf, annexed to that of the Eftate to which it belongs. And the Houfe muft be drawn in Perfpective, (as you will be fhewed hereafter) and if the Gardens, Walks and Avenues to the Houfe are expreffed, it muft be in the fame Manner; and where there are Trees, they muft be fhadowed on the light Side.

If you will take the Pains, you may, in one of the upper Corners of the Plan, draw the ManfionHoufe, $\mathcal{E}^{2} c$. in the other the Lord's Coat of Arms, with Mantle, Helm, Creft, and Supporters; or in a Compartment, blazoning the Coat in its true Colours: In one of the Corners at the Bottom, you may defcribe a Circle, with the 32 Points of the Mariners Compars, according to the Situation of the Ground; with a Flower-de-luce at the North Part thereof, always allowing for the Variation of the Needle: And in the other Corner, make a Scale equal to that by which the Plot was laid down, adorning it with Compafies, Squares, Ovals, $\mathcal{E} c$.

Having wrote the Name and Content of each Clofe about the Middle thereof, you may, about the Bounds of each Field or Enclofure, with a fmall Pencil and fome tranfparent Colour, neatly go over the black Lines; fo fhall you have a tranfparent St oke or Margin on either Side of your black Lines, which being fhadowed, will add a great Luftre and Beauty to the Plot.

If you would have your Fields all coloured, it will not be amifs to pounce over the Paper or Parchment with fome Stanifh-Grain and burnt Allom, and a double Quantity of Rofin, finely fearced and lightly pumifed, to preferve the Paper from being pierced through with the Colours; or wet it over K 3
with of the Colours.

Then lay on the Colours in Manner following, being firft ground, and bound with Gum-Water. very thin and bodilefs: Arable for Corn, you may wafh with pale Sraw-Colour, made of King's Yellow and White; for Meadows, take Pink and Verdigris in a light Green ; Pafure, in a deep Green of Pink, Azure and Smalts; Fenns, a deep Green; as alfo Heaths of Yellow and Indico; Trees, a fadder Green, of White and Verdigris; for Mud-Walls, and Ways, mix White and Ruft of Iron, or with brown Oker of Spain; for white Stone, take Umber and White; Water or Glafs may be fhewn with Indico and Azure or Indian Ink; for Seas, a greenifh Sky-Colour, of Indico, Azure, Smalts, White and Verdigris:

Having wathed your Pencil very clean, take a fmail Quantity of the Colour, and on the Infide of the bounding Line draw the Colour along, of an equal Breadth, as near as you can, broader or narrower as the Field is in Bignefs; and having gone round the Field in this Manner, fwill the Pencil in fair Water, and ftrike along the Infide of the coloured Line, bringing it down more towards the Middle of the Field; and this will foften your Colour, and make it fhew as if it loft it felf by Degrees to the very Colour of the Paper: Laftly, with a Pen take fome of that Colour which fhadoweth the Colour you laid on the Field, and go over the blacklead Line only; fo fhall your Field be finifhed.

In this Manner, you may make 100 Fields in one Plot, of divers Colours, obferving, as near as you can, not to colour two Fields adjoining to one another of the fame Colour; and therefore it will be convenient to underftand what Colours beft fet off one another; and as near as you can, lay the enclo-

Thati
Pase 137

Sect. 5: The Practical Surveyor. 335 fures adjoining to one another, of two fuch Colours, that one fhadow may ferve both.

This colouring and adorning of Plots, is rather the Painter's Work than the Surveyor's; yet if he has Time to fpare, and Patience to finifh the Work, it may prove a pretty Diverfion. But for the general Practice, I would recommend the Ufe of IndianInk, which, ground very fine upon a fmooth Tile, and the Hedges or Bounders of each Field fhadowed therewith, will look very neat, and make the Plot refemble one done from a Copper-Plate, if rightly managed.

The Water-Colours before-mentioned, you may have in Shells ready prepared (being much readier than to trouble your felf with grinding, \mathcal{E}° c.) as alfo the Indian-Ink, Pencils, \mathcal{E}_{c}. at any of the Co-lour-Shops.

K_{4}
CHAP.

C. H A P. VI.

The Manner of Laying-out, or dividing Land.

> S E C T. I.

Of Laying-out Lands.
PROBLEMI.

F any Quantity of Acres be given, to be laid out in a fquare Figure, annex to the Number of Acres given 5 cy phers, which will turn the Acres into fquare Links; then from the Number thus encreafed, extract the fquare Root, which fhall be the Side of the propofed Square.

So if you would cut out of a Corn-Field one fquare Acre, add to I five Cyphers, and then it will be rooooo, the Root of which is 3 Chains, 16 Links, and fomething more for the Side of that Acre.

Problem 2. If you would lay out a given Quantity of Acres in a Parallelogram, whereof one Side is given-Firft, turn the Acres into fquare Links, by adding 5 Cyphers; and divide that Number thus encreafed by the given Side, the Quotient will be the other Side: As if 100 Acres was to be laid out in a Parallelogram, one Side whereof fhall be 20 Chains; therefore to the :00 Acres add 5 Cyphers, which

Sum divide by 20 Chains, the Length of the given Side, the Quotient will be 50 Chains for the Length of the other Side.

Problem 3. If you would lay out a Parallelogram that fhall be $4,5,6, \mathcal{E}^{2} c$. times longer than it is broad : Firt, turn the given Quantity of Acres into Links, as before, which Sum divide by the Number given, for the Proportion between the Length and Breadth, as 4, 5, 6, \mathcal{J}°. the Root of the Quotient will fhew the fhorteft Side of fuch a Parallelogram: As if it was required to lay out 100 Acres in a Parallelogram that fhall be 5 Times as long as broad; firt, to the 100 Acres add 5 Cyphers, and it makes 10000000 ; which Sum divide by 5 , the Quotient is 2000000 , the neareft Root of which is 14 Chains, 14 Links, and that hall be the fhorteft Side of fuch a Parallelogram; and by multiplying that 14 Chains 14 Links, by 5, fhews the longeft Side thereof to be 70 Chains, 70 Links.

Problem 4. If you would make a Triangle that Thall contain any Number of Acres, being confined to a certain Bafe : Firft, double the given Number of Acres, to which annex 5 cyphers, and divide that Sum by the Bafe; the Quiotient will be the Length of the Perpendicular: As if the Bafe given, be 40 Chains, upon which you are to make a Triangle that Thall contain roo Acres; firt, double the Number of Acres, and annexing 5 Cyphers thereto, divide it by 40 Chains, the limited Bafe; fo fhall the Quotient be 50 Chains, for the Height of the Perpendicular, which fet on any Part of the Bafe; then you may from the Extremities of the Bafe, draw the other two Sides, which fhall form the Triangle required.

So if when you are laying out a new Piece of Land of any given Content, altho' you meet in your Way with ioo Lines and Angles, yet you may, by making a Triangle to the firft Station you began at, cut off any Quantity required.

S E C T. II.

Of Dividing Lands.

$E X A M P L E \mathrm{I}$.

CUppofe it was required to divide Fig. 42. whofe D Content is 10 A. 3 R. 22. P. into 2 equal Parts, by a Line drawn parallel to $a b$.

Firt, the Acres, Roods and Poles muft be reduced into fquare Links, which may be done thus: If the Roods are $\left\{\begin{array}{l}1 \\ 2 \\ 3\end{array}\right\}$ add $\left\{\begin{array}{c}40 \\ 80 \\ 120\end{array}\right\}$ to the Poles, and to the Sum annex 4 Cyphers; divide this laft by 16 , and write the Quotient Figures, if they be 5, after the Acres. But if the Quotient
Figures are but $\left\{\begin{array}{l}4 \\ 3\end{array}\right\}$ write $\left\{\begin{array}{l}1 \text { Cypher } \\ 2 \text { Cyphers }\end{array}\right\}$ after the Acres, and then the Quotient Figures; fo will you have the fquare Links required.

Therefore $10 A .3 R .22 P$. reduced into fquare Links, will ftands thus:

$$
\left\{\begin{array}{c}
22 \\
16 \frac{120}{142} \cdot 0000(88750 \\
\text { Square Links-1088750 }
\end{array}\right\}
$$

Having reduced the Acres, \mathcal{E}°. into Square Links, they make 1088750, the Half of which is 544375 ; next draw a Line by Guefs parallel to $a b$, as the Line $c d$, and then caft up the Content of the Figure $a d c b$, which fuppofe 494375 fquare Links; this is lefs than 544375 , by 50000 fquare Links, which fhews that the Partition-Line muft be fet forwarder from $b a$.

Now, in order to know how much $c d$, muft be fet forwarder, I divide the Excefs 50000 fquare Links
by the Length of the Line $c d, 953$ Links, and it quotes 5^{2} Links; therefore from c, I fet off 52 Links, and draw the Line $f e$, parallel to $b a$, and it will be fufficiently near the Partition-Line.

This is performed by the fecond Problem of the laft Section; but if thofe Parts of the Boundaries cf d e, be not nearly parallel, then 'tis beft to draw a Triangle to $c d$, inftead of the Parallelogram $c f d c$.

But if $c d$, had cut off the Quantity $a d c b$, greater than that required, then the Partition-Line had been more towards $a b$, whofe Diftance might be found as before.

Example 2. Suppofe it was required to cut off from Fig. 43, fix Acres towards $g f$, by a Line drawn from a given Point in the Boundary $g a$, at a.

Firft, reduce the given Quantity, 6 Acres, into fquare Links, and they will be 600000 ; and then draw the Line $a b$, by guefs, from the given Point ρ, and caft up the Content of g a $b f$, which amounts to 431680 fquare Links, which is too little.

Next draw the Line $a \in$, from the Point a, forming the Triangle $a b e$, whofe Content is 235600 , which added to the Part $g a b f$, amounts to 667280 , which is more than the given Quantity 600000 , by 67280 fquare Links; therefore the Partition Line paffes between e and b.

Now divide the Excefs 67280 , by 380, half the Length of the Perpendicular $a c$, in Links; the Quotient is $7 ク$ Links, which fet off from 0 towards b_{q} and draw $a d$, which is the true Line of Partition.

Example 3. Suppofe Fig. 44 was to be divided equally among three Tenants, in fuch a Manner that the dividing Lines may pafs through the Pond o? in the Middle of the Field, fo that each Teriant may have the Benefit of the Water.

Firf, Ruduce the whole Figure into fquare Links, and it will be found to contain 1477410 ; then each Tenant muft have one third part thereof, viz. 492470 fquare Links.

From 0 , to any two Angles as a, and b, draw the Lines $c a, .0 b$, forming the Triangle $a 0 b$; which being caft up, amounts to 291984 fquare Links, which is too little.:

To the next Angle f, draw of, forming the Triangle a of, which being caft up, amounts to 231000 fquare Links, which added to the Triangle $a \circ b$, gives 522984 , which exceeds the Quantity required by 30514 qquare Links.

Divide the excefs 30514, by 347, half the Length of the Perpendicular og, and lay the Quotient 87 , from f to b, and fo thall bob a, be one third Part of $a b c d e f$:

Next draw the Line oe, to the next Angle e, and caft up the Content of ocf, amounting to 25641.0 fquare Links; to which add the Triangle bof 30514 fquare Links, the Sum is 286924 , which is too little.

Therefore draw od, to the next Angle d, and caft up the Content of oed, 265500 fquare Links, to which add boef 286924, their Sum is 552424 fquare Links; which is more than the third Parr of $a b c$ def, by 59954 - fquare Links.

Divide the Exceis 59954 , by 295 half the Length of the Perpendicular o i, and lay the Quotient 203 Links from d to k, and draw ok; fo fhall Fig. 44, be divided into 3 equal Parts, by the Trapezias $b a b o, b f e i k o$, and $k d c b o$, as was required; and the Pond 0 , laid out to each Tenant apart.

Thefe three Examples exprefs all the Variety that moft commonly happens in Practice; for either the Partition-Line is required to be Parallel to fome other Line affigned; or to pafs through fome given Point in the Fence; or to pafs through a Point affigned in the Land.

Seet. 2. The Practical Surveyor.
If a Piece of Common was to be divided amongft feveral Tenants, in Proportion to the Rent which each pays for his Farm : The Numbers being reduced to the loweft Denomination (except you exprefs the Parts of Acres and Pounds by decimals, which is better) the Rule is :

As the Sum total of all the Tenants Rent, is to the whole Number of Acres in the Piece of Land contained.; So is each particular Tenant's Rent, to the Number of Acres to be laid out for bis Part. This is very plain, and needs no Example.

So if a Piece of Common was to be enclofed, and divided amongft feveral. Tenants, according to the Number of Beaft-Gates which each Tenant hath in the Common, it is to be performed by the fame Rule.

There is no need of Direction how to make the Lines on the Land in the fame Pofition as on the Pa -per-Plot, by carrying the Chain in a ftrait Line from Point to Point, on the Land itfelf, as divided on the Paper: Only take Notice, that the larger the Scale is, by which the Plot is laid down on the Paper, the exacter will the odd Links of each Line be eftimated by the Scale, in order to transfer thofe Lines to the Land.

But if you are to divide a Wood, or very hilly Ground, fo that you cannot fee the Marks from Side, to Side, do thus:

Be fure to keep good Marks at every Station, as you meafure round it, that you may find the Hole at each, in which the Staff ftood; then having plotted the Wood, and divided it on the Paper-Plot, in fuch Manner as defired; plant the Center of the Theodolite directly over that Point in the StationLine on the Land where the dividing Line cuts it on the Paper: Plor, and bring the Index to 360 ; or fet it in the fame Pofition as it was at the forward Station when you meafured that Angle, turning about the
the Inftrument, till the Hair in the, Telefcope cuts the laft Mark ; fo that the Telefcope be fet exactly in the Direction of the prefent Station-Line, where the dividing-Line cuts, and there fcrew the Inftrument faft: Then meafure with your Protractor on the Paper-Plot, the Angle which the dividing Line makes with the prefent Station-Line; and turn about the Index on the Limb to the fame Angle, fo fhall the Telefcope be fet in the Direction of the di-viding-Line; then by looking through the Telefcope, you may caufe Staffs to be fet up in the fame Direction: And thus proceed in a ftrait Line, till you are far enough in the Wood, or quite through, if it be divided by one Line; but if by two Lines, you muft continue them till they meet one another, as in the Paper-Plot.

The fame Thing may be performed by the plain: Table, or the Chain only; but thofe Inftruments are not fo convenient to meafure a Wood, or hilly Ground, as the Theodolite.

S E C T. III.

How to reduce Cufomary into Statute Meafure.

IF you would change Cuftomary into Statute Meafure, \mathcal{E} e. contra, the Rule is: As the Square of one Sort of Meafure is to the Square of the otber; fo is the Area of the one, to the Area of the other.

In fome Parts of England, they account 18, in fome 20, 22, \& c. Feet to a Pole or Perch, and 160 fuch Perches to make an Acre, which is called cuftomary Meafure; whereas our true Meafure of Land by Act of Parliament, is but r 60 Perches to an Acre, accounting 16 Feet and an half to the Ferch.

Sect. 3. The Practical Surveyor.
So if a Field meafured by a Perch of 18 Feet, accounting 160 fuch Perches to the Acre, contains 100 Acres; how many Acres fhall the fame Field contain by the Statute Perch of $16 \frac{1}{2}$ Feet? Say, As the Square of $16 \frac{1}{2}$ Feet, (viz.) 272.25 , is to 100 Acres, fo is the Square of 18 Feet, (viz. 324,) to 119 ros ${ }^{8}{ }^{5}$ of a Statute Acre. See the Operation at large.

272.25)32400.00(119.008 Acres.
5175°
$245^{25} 0$
0225

CHAP.

C H A P. VII.

General Obfervations on the Metbod of Surveying and Plotting of Roads; Rivers, \&c. With Bort Hints bow to make the Draught of a County, or Ground-Plot of a City, \&c.

ETHMNN this feventh Chapter I have added general Directions for Meafuring of Roads, \mathcal{E}^{c}. omitting particular Forms of Charts, which would take up more Room than can be fpared in this fmall Tract; and indeed if the feveral Varieties that octur in thefe large and fpacious Works were inferted, it would fwell to a large volume: But fince the Surveyor's Judgment in contriving and carrying on his Work muft be his beft guide; thefe few Obfervations may ferve as Memorandums of the moft neceffary things in Practice; which, together with other Rules before laid down in this Tract, may perhaps be a fufficient Inftruction for the Performance of any Thing of this Nature.

S E C T. I.

General Directions for making a Draugbt of the Roads lying tbrough any Country, icc.

INftruments fittef for this Purpofe, are, I. The Theodolite as before defcribed; the Angles which each Station-Line on the Road makes with the Meridian, being obferved by the Limb in the fame Manner, as before fhewed, and the Bearings of the feveral Remarks from thence by the Needle. 2. The Wheel, or Way-reifer to meafure the Length of the Lines, by driving the Wheel on the Road before you, fo fhall the Hands on the upper Part of the Inftrument fhew how many Miles, Furlongs, and Poles, you go at one Time from any Station. 3. The Protraitor, as before defcribed: A neat diagonal Scale of Brafs and a good Pair of Compafies. Or you may have a Beam Compafs, with fuch a Scale on the Beam as fhall be agreeable to the Largenefs of your Plot; and thereby you may lay down the Length of your Lines very expeditiouny, by fetting one Foot of the Compaffes at one End of the Line, and moving the Socket on the Beam to one of the equal Divifions near the other End of the Line you are about to lay down, reprefenting Chains or Furlongs; and then you may bring the Point of the Compars which ftands perpendicular on the Paper to the Parts of that equal Divifion, reprefenting Links or Poles by the Help of a fmall Screw ; there being Divifions on the Edge of the Socket niding clofe on the Beam according to Nonus's Projection; fo that the Links of a Chain or Poles of a Furlong are eftimated in the fame Manner as the Minutes of a Degree on the Limb of the Theodolite. In thefe large Plans, where the Diftances of Places are determined by the Interfection of Right-Lines from your Sta. tions, thofe ftationary Diftances ought to be laid down as accurately as may be; for where a Mile is laid down in the Compafs of an Inch, a Prick of the Compaffes is confiderable.

In order therefore to make a Draught of the principal Roads that lie through any County, δ° c. Firft, begin at fome noted Market-town, or rather at the Country-town, placing the Theodolite at fome remarkable Church, $\Xi^{\circ} c$. then having a Field-book with large Margins to enter the Remarks, and the middle Column reprefenting the Station-Lines divided into three Parts, at the Head of which write M. for Miles, F. for Furlongs, and P. for Poles.

When you begin your Journey, at the Top of the Field-book write the Name of the Place where you begin your Work, and make © i in the Field-book to reprefent the firft Station : Send fome Perfon forwards on the Road, with a white Flag in his Hand, as far as you can fee ; and then by fome known Sign caufe him to ftand; then bring the Index to 360 on the Limb, and turn the Inftrument into the Direction of the Meridian, and there fix it; then direct the Telefcope to the Perfon on the Road, and note the Degrees cut on the Limb for the Bearing of the firft Station-Line.

Put the Hands to the Beginnings of the Numbers on the Plate, and bring the Wheel to the Station; then caufe one to drive it from the Place where your Inftrument ftood, towards the Man on the Road, 'till you fee fome remarkable Object on either Side thereof; there let him ftop and direct the Telefcope to that Object, and note the Degrees which the Needle points to in the Box, and at what Diftance the Inftrument is planted from the laft Station, together with the Name of the Object to which the Telefcope was directed.

Having entered this in the Field-book, go on with the Wheel till you fee fomething elfe remarkable on
either Side of the Road; there ftop and take a Bearing; and in this Manner proceed till you come up to the Man at the fecond Station, obferving as you go along on the Road from Station to Station: Firft, what By-Lanes or Roads you meet with in your Way, whether they be to the right Hand or to the Left, and to what Places they go ; how they incline, whether forwards or backwards, or whether they be at right Angles with the Road you are meafuring, and note it down in the Field-book with two Lines thus $=$ on the right or left Side of the Sta-tion-line: That is, if the Road or Lane be on the right Hand, then place it on the right Hand; but if the Road be on the left Hand, then place it on the Left : If the Road doth incline forwards, then mark it on either Side of the Lane or Road thus K : If the Road or Lane incline backwards, then mark it thus 3 : If it be at right Angles with the Road you meafure, then mark it down thus \Rightarrow : If another Road croffes that you are upon, note it thus \neq : Likewife fet down at what Diftance from your Stations the Lanes or Roads turn out from the Road you meafure, viz. at fo many Furlongs, $\mathcal{E}^{2} c$. a Road to the Right or Left to fuch a Place.

Likewife, when you pafs over any Bridge, note it in the Field-book, with the Diftance from the latt Station; as alfo the Name of the Water that runs under it, and from whence it hath its Rife, and where it empties itfelf: The fame mult be obferved when you pafs over any Ford or Rill.

Note down alfo, when you afcend an Hill, and when you come to the Top thereof, and when you defcend the fame, and come to the Bottom thereof.

When you pafs through any Town or Village, note at how many Miles, Furlongs, and Poles, you, enter the fame; and at how many Miles, $\varepsilon^{\circ} c$. you leave it, and whether the Houfes be clofe, or fcattering, or on the right or left Side of the Road, or

$$
\text { Le } 2 \text { on }
$$

on both Sides of it; alfo write down the right Name thereof; and, if a Market-town, take notice on what Day the Fairs or Market is kept; and by what Officers the Town is governed.

Note down alfo the Mills that are on the Road, whether Water-mills, or Wind mills, and the Diftance from your laft Station. If there be any 'lone Cburcbes on the Road, note them down by their Names, and whether they be Towers or Spires, with their Diftance from your laft Station.

In your meafuring along the Road, if you fee any Cburches, Manfion-Hloujes, Beacons, Windmills, Tocons, Villages, or any other Thing remarkable, you muft take a Bearing to each, noting down in your Field-book, the Name of the Place, and how it does bear, and at what Diftance from your laft Station you took this Bearing.

Then in your meafuring forwards, at as great a Diftance as you can, take another Bearing to thofe Places you took laft, provided you may but fee them, and note the Name of the Places, and how they bear, and at what Diftance from your laft Station, as before.

Obferving thefe Directions, proceed with your Work on the Road as far as you can go the firf Day, entering the feveral Obfervations in as plain and fair a Manner as poffible in the Field-book; and then it may be convenient to protract that Days Obfervations, before you go any further.

Therefore, on the Paper or Parchment, on which you draw the foul Draught, let there be ruled Me-ridian-Lines all over, exactly parallel to one another ; and chufing a properPlace in one of the Lines, to reprefent the firft Station, draw an occult Line from thence, making fuch an Angle with the Meridian, as you obferved the firt Station-Line to do ${ }_{2}$ when you directed the Telefcope to the Man ftanding in the Middle of the Road.

When you have drawn the Station-Line in its true Pofition, fet thereon the feveral Diftances from the laft Station very exactly, at which you made any Remarks, as you find them noted in the Field-book; and make a fmall Prick at each, in the StationLine: Then having made the Station Line of its juft Length, proceed to lay down the feveral Objects you obferved on each Side the Road, in their true Situation; as, fuppofe a Steeple that ftands at a Diftance from the Road, viz. a Mile or two; lay the Center of your Protractor on the Place at which you took the Bearing, (Ex.gr. at fo many Poles, $\mathcal{E} c$. Diftance from fuch a Station, fuch a Steeple did bear from you $207^{\circ} 40^{\prime}$) and againft the Degrees of Bearing make a Mark, and draw a Line at Length.

Then at the fecond Place in the Station-Line, where you obferved this fame Steeple to bear from you, lay the Center of your Protractor, and againft the Degrees of Bearing make a Mark, and likewife draw a Line at Length; and where this laft Line of Bearing interfects the firft Line of Bearing, there place the Steeple, with the Body of the Church to the Eaft Side thereof.

All Wind-mills, eminent Houfes, or other Remarks that are diftant from the Road, you mult. protract in the fame Manner as you did the Church, by the Bearings, and likewife write down the Name of each; and if you protract a Village that flands at a Diftance from the Road, you muft fignify by Writing the fame, that it is a Village; but that you may know Market-towns from Villages, write the Name of the Market-town in a different Kind of Letter; and if you protract a Village that is in the Road, with Houfes fcattering, you muft place your Houfes fcattering on the right or left Hind of the Road, as you noted them in the Field-book.

You muft protract the Road all along with two Lines parallel one to the other. If your Road hath Hedges on boch Sides, then draw your Lines black; but if your Road be an open Way, then draw it with pricked Lines; you may aifo infert the Quality of the Ground, whether it be a Common, Nioor, or arcille Land.

If the Road pals through a Wood, then make little Trees on both Sides the Road, to fignify the fame fo far as the Wood goes.

If the Road padfes over an Hill, you mult at the Beginning where the Hill afcends, thadow very. deep, and as the Hill more and more afcends, you mult fhadow it lighter, till you come to the Top thereof: But if the Hill makes an Angle of above 5 or 6 Degrees, or thereabouts, and the Height be above a Furlong, you mult find the horizontal Line of that Hill, and piotract that; otherwife a great Error may enfue.

If there be a Village or Town on the Side of the Hill, you muft fhadow it likewife, fo that the Houfes may be feen. If the Remarks that are at a Diffance from the Road ftand on a Hill, make an Hill to reprefent the fame.

If your Road pafs by or through a Park, Foreft, or Clafe, write down on your Road protracted, where you cintered the fame, and where you left it, writing the Name the eof among the Trees.

If your Road pals over a Ford, draw the River quite crofs the Road, to fignify there is no Bridge, and write the Name of the Ford; but if there be a Bridge, then draw the River on both Sides of the Roat, till it touch the parallel Lines; and write the Name both of the Bridge and of the River; likewife write on that Side of the Road that the Stream runs from you, at what Place the River empries itfelf; and on the other Side of the Road

Sect. 2. Thbe Practical Surveyor.
Road write from whence the Water or River hath its Rife, if you can learn that of the Inhabitants.

All Rills you may fignify, by drawing a Line crofs the Road; and Brooks may be fignified by drawing two Lines crofs the Road, and Rivers by more Lines, together with the Names; for all Rivers have Names, but Rills and Brooks often have none.

It will likewife be neceffary, that you take Notice of the Quality of the Way, whether it be ftony, clayey or boggy, and write it down on the Road that you have protracted: And by this Means you will have your Road very full of Remarks, and it will fhew very neat and handfome.

S E C T. II.

Containing general Directions for making the Plot of a River or Brook, by the beforementioned inftruments.

FIrft, when you come to the Mouth of the River, caufe a Man to go and ftand at the next Bend thereof; then plant your Theodolite at the Mouth of the River, letting your Needle hang directly over the Meridian-line in the Box; there fix the Inftrument faft, and direct your Telefcope to the Man that ftands at the next Bending of the River, and note down the Angle in your Fieldbook, as you did in the Road.

Then caufe the Man that drives the Wheel, to meafure between your firft Station, and the Man at the next bending; and note that down alfo in your Field-book, under Miles, Furlongs and Poles.

Then bring your Inftument to the Man at the firft Bending of the River, and caufe that Man to go forwards, till he finds another Bending; there let

152 The Practical Surveyor. Chap. VII.

 him ftand; and placing your Inftrument where the Man laft ftood, let your Needie (as before) hang directly over the Meridian Line, and there make your Inftrument faft ; then direct the Telefcope to the Man that ftands at the next Bending of the River, and note down the Angle in your Field-book, as you did in the former: And in this manner you muft proceed all a ong the River, to the Head thereof.In order to take the Breadth of the River, it will be convenient to fend fome body on purpofe crofs the River, in a Boat, (unlefs a B idge or Ferry be near) and let him fet up a Staff by the Brink of the River, on the further Side, to which Staff take a Bearing, from the Place of your ftanding, which call the firft Station; alfo let another Staff be fet up on the fame Side where you ftand, and call that the fecond Station, to which take a Bearing alfo. Now meafure in as ftrait a Line as poffible, the neareft Difance between the ift and 2 d Stations, and that Diftance note in the Field-book with the Bearings.

Plant the Theodolite at the fecond Station, and take a Bearing to the fame Mark on the further Side of the River, and note that Bearing alfo in the Field-book.

When you protract thefe Obfervations, lay the Center of the Protractor to \odot I, and turn it about till the Diameter be parallel to the Meridians on the Paper; then againft the Degrees of Bearing from © I, to the Mark on the further Side of the River, and alfo to $\odot 2$, clofe to the Limb of the Protractor make 2 Marks, through which, ffrom - 1, draw two Lines at Length.

Set off the Diftance between the two Stations on the id Line, and make it © \odot_{2}, to which Mark lay the Protractor as before, and againft the Degrees of Bearing obferved at this $2 \mathrm{~d} \odot$, to the Mark on the further Side of the River make a Mark, through which draw a Line at Length; then will this Line interfect

Sect. 2. The Practical Surveyor. interfect the firft Line drawn at your firft Station, and the Point of Interfection will fhew the Breadth of the River.

In the fame Manner, are the Diftance of the Churches, $\Xi^{c} c$. from your Stations on the Road, determined.

If there be a Ferry over the River, you muft draw the River to its true Breadth, and make a pricked Line crofs the River, to reprefent the Paifage of the Ferry-Boat; and note on the Side of the River the Name of the Ferry.

In meafuring on by the River, obferve what Bridges you pafs by, and at what Diftance from your laft Station; alfo whether they be of Wood or Stone, and by what Name they are called; alfo take Notice of all Corn-Mills, Paper-Mills, Esc. and note them in the Field-book, in the Column of Remarks, with their Diftance from the Mouth of the River, and your laft Station.

Likewife take Notice of all the Sluices (if there be never fo many) that are on the River, and of all the Locks and Flood-gates as you pals along, with their Names, if they have any; alfo if there be any Cut or Canal from the River that you are meafuring, note where it goes out of the River, and where it comes in again, and for what End it was fo cut: Alfo where any Brook or River enters into that you are meafuring, note down the Place, and the Name of the River that comes in ; and alfo take an Account of thofe Places of the River that are fordable, and note them down in your Field-book: And in all thefe Cafes, exprefs the Diftance of each Remark from your laft Station, as alfo their Diftance from the Mouth of the River.

You muft alfo note in your Field-book all the Towns this River runs through, or by, with the Towns Names, and the Diftance from your laft Station and the Mouth of the River.

154 The Practical Surveyor. Chap. VII.
You muft alfo take an Account of all the Cburcbes that are on each Side the River within your View, by taking a Bearing to them at two feveral Places, as you did on the Road; and note them down in the Field-book, with the Diftance of the Place from your laft Station, where you took the Bearing to the Steeple both Times; by this Means you will come to know how far each Church is diftant from the River: The iame you muft do by all the Windmills, great LToufes, $\S c$. noting their Names, and Places of Stuation, in the Column of Remarks in the F:elid-book.

When you have thus meafured your main River, begin to meafure the feveral Branches thereof; for there are but few Rivers but have fmaller Rivers running into them, and all thofe fmall Rivers ought to be done with the fame Exactncfs as the great ones.

Note, Every Bending of all Rivers that are navigable, muft be taken exactly; but for other fmall Creeks there is no great Need; for you will find fuch fmall Brooks to have a Bend at every two or three Poles, nay fometimes lefs, therefore they are to be taken thus:

Take your Sights as far as you can conveniently, till you find the Brook to have a confiderable Bending; and if your Scale will permit, you may take Off-fets to reprefent the fmall Turnings and Windings thereof, as in Fig. 4I: But in meafuring a fmall Brook, if your Scale is to be a Mile or two in an Inch, then thefe fmall Turnings and Windings cannot be defcribed in the Map.

The Manner of protracting thefe Obfervations, is the fame with the Roads, except the Off-fets from the Station-line to the Brink of the River, and its Breadth, which are particulariy to be regarded.

Sect. 3. The Practical Surveyor.

S E C T. 111.

General Directions for making a Map of a County, \&cc.

FIRST, from the County-town, or other Mar-ket-town, where you began your Work, lay down the principal Roads throughout the County, and protract them truly, as you oblerved them in your Survey, inferting the Towons, Villages, great Houfes, Cro \mathfrak{s}-Ways, Esc. according to their true $\mathrm{Si}-$ tuation, taken at two Stations, as you went on the Road; fo will you (if care be taken) have the true horizontal Diftance of all thofe Places within Sight of the Roads, from the Road itfelf, or from one another.

Secondly, Lay down the cbief river that runs through the County; fo will you have the Situation of feveral more Towns, and other Remarks, as obferved in your Survey of that River; and when the main Rivers are done, all the Branches muft be protracted with the like Exactnefs ; for the main Rivers and Branches being exactly done, will be a great Ornament to a County Map.

Thirdly, If the County borders upon the Sea, firlt protract the Sea-Coaft exactly; and then take a Survey of and plot all Rocks, Sands, or other Obftacles that lie at the Entrance of any River, Harbour, Bay or Road, upon the Coaft of that County, by going out in a Boat to fuch Sands or Rocks that make the Entrance difficuit; and at every confiderable Bend of the Sands, take, with a Sea-Compafs, the Bearing thereof, to two known Marks upon the Shore : And, having fo gone round all the Sands and Rocks, you may, upon the Plot before taken of the Coaft, draw Lines, which Mall interfect each other

156 The Practical Surveyor. Chap. VII. other at every confiderable Point of the Sands; whereby you may give good Directions either for the laying of Bucys, or making . Marks upon the Shore, for the Direction of Shipping; and the beft Time to do this, is at low Water, in Spring Tides.

Fourtbly, Having truly protracted the principal Roads, Rivers, E'c. with the feveral Remarks obferved from thence, you'll find moft of the remarkable Places in the County laid down: But in order to compleat the Work, look upon fome old Map of the County, and contrive three or four Market-towns, or other Towns, to meafure through, that you have not yet Jaid down, and from thence to other Towns or Villages; and fo do, till you have meafured moft or all the Roads that lead from Market-town to Market-town, taking all the Rema:ks you can, as you go along; and if you find any thing remarkable in the old Map, that you have not yet taken Notice of, you may go and furvey it. And thus, by Degrees, you may fo finifh a County, that you need not fo much as leave out one Gentleinan's Houfe; for fcarce will any thing remarkable efcape coming into your View, either from the Roads, Rivers, or SeaCoaft.

Fiftbly, When you are in a Town, place your Inftrument, if you can, upon the Steeple, and from thence take the horizontal Angles to the mort remarkable Objects within your View; take the Bearings of thefe a 2 d Time from fome other eminent Place, and meafure the Diftance between thefe two Stations. Note, All Churches are to be laid down according to their horizontal Diftance one from the other: Therefore, if the Road between them be over IIIls of a confiderable Height, the hypothe.nufal tines on the Road muft be reduced to hori-. zontal.

Sect. 4.

The Practical Surveyor.
Sixtbly, All Parks and Forefts muft be truly laid down in the Map, as to their true Bounds and Situation; and alfo all remarkable Lakes of Water: You are likewife to defcribe the Quality of the County, whether it be hilly or woody, placing the Hills and Woods in their tive Situations.

Lafly, Take the true Latitude in three or four Places in the County; which put down on the Edge of your Map accordingly.

S E C T. IV.

General Directions for taking the Ground-Plot of a City or other Foren.

THE Performance of this Work is very laborious, and you muft be careful to keep the Field-book in a plain and regular Manner, otherwife the Multitude of Obfervations and Off-fets will be apt to breed Confufion; but if Care be taken therein, you'll find the Work not very hard to be done: One that underftands the fifth Chapter will make no Difficulty of this Section, for the feveral Streets, Lanes, \mathcal{E}^{c} c. in a City are furveyed and protracted in the fame Manner as the Lane, Fig. 4I. The feveral Off-fets to the Houfes, Churches, $\varepsilon \subsetneq c$. all along the Sides of the Street being taken from the main Station-line, running through the Middle thereof, in fuch Sort as the Off-fets are taken from the Station-line to the Hedges, Gates, $\xi^{\circ} c$. on the Sides of the Lane.

The Inftruments for this Purpofe, are, I. The Theodolite as before defcribed, to meafure the feveral Angles made by your Station-lines, as they incline out of one Street into another; and in this Cafe work with the Limb only, but never truft to the Needle, for (befides the Danger of its being attracted) you
will find it neceffary to lay down every Line by fome other, given in Pofition in the Plot itfelf, rathes than by the Bearings from the Meridian.
2. The Cboin; and becaufe the Ground-plot of the Houfes, Pavements, $\xi^{c} c$. are generally laid out by Foot-meafure; therefore let every Link thereof be a Foot long, and fifty of thefe Links will make the Chain of a fufficient Length, diftinguifhed at every ten Links by Marks, as Gunter's Chain is: But, if the Content of any Part of the Plot be defired in Acres, you may reduce the Feet in any Line to Links; and for this Purpofe the Table in Chap. II. will be a ready Affiftant.
3. The Offset-Staf?, divided alfo into Feet, five of which may make it of a convenient Length, becaufe you will have occafion to meafure many Paffages, Alleys, \mathcal{E}° c. that are not wider; alfo at one End of the Staff, you may have a Piece of about three Feet joined, like the Square of a Drawingboard; and this will be a Direction to meafure the Off-fets from the Chain at Right-Angles.
4. The Scale (or a Beam-Compafs) according to the Bignefs of the Plot; the Protractor, the Drawing-Pen, \&xc.

Firft, in one of the principal Streets, as at $\odot 1$, in the Lane, Fig. 4I. fet up a Station-ftaff, and fend another forwards in the Street as far as you can fee. Then lay the Chain on the Ground exactly in the fame Direction with the two Stations; and with the Offset-ftaff both to the Right and Left at RightAngles from the Chain, mealure the Off. fets as in the Lane; taking notice at how many Links from the laft Station each is laid off; and when any of thofe Off-fets reach any remarkable Houfe, Ejc. or the Corner of a Street, Alley, or Court, enter fuch a Remark againft the refpective Off-fet, in one of

Sect. 4. The Practical Surveyor.
the outfide Columns of the Field-book : And in this Manner proceed to the fecond Station.

Set up the Theodolite at the fecond Station, and bring the Index to 300 on the Limb, turning the whole Inftrument about till you fee through the Telefcope the Staff at © I; there fix the Inftur ment, and then turn about the Index, diiecting the Telefcope to another Staff fent forwards in the Street, to the further End thereof, if you can fee fo far; and note in the Field-book the Angle which the Index cuts on the Limb, with the utmoft Exactnefs: Then proceed with the Chain towards the next Station, as before.

Having in this Manner gone through feveral of the principal high Streets, that lead through one part of the Town; it will be convenient, as you pafs along, as often as you come againft any crofs Street, to take a Sight down it; and note the Place or Mark to which the Telefoope is directed; and alfo at how many Links Diftance from the laft Station the Inftrument is planted, when you thus look into a crofs Street: Note both thefe Places in your Fieldbook, or Eye-draught, with this Mark © ; fo that you may be fure to find the Place exactly, when you begin to take your crofs Streets.
It will be convenient, not only to enter your Obfervation in the Field-book, but alfo to form a Sketch or Eye draught of the Work, as you go along, making Lines to imitate the fame; and draw the crofs Streets, Alleys, \mathcal{E}^{3}. thereon, in fuch Manner (as near as you can guefs) as you fee thofe crofs Streets to bear from the Place of your Standing in the high Streets; and write the Name of each Street. between the Lines reprefenting the fame; and this will be ufeful when you come to protract.

Note, Before you begin your Work, it will be neceffary to walk about the Town, and chufe four or five principal Streets that lead out of one into Alleys, EJc. And contrive your firf Station in fuch a Manner, that when you come round thefe four or five Streets, the laft Station-line may clofe exactly on the firft Station-point; and obferve, that the fewer Angles you make in going round thefe Streets before you clofe, the better.

This is no more than furveying a Field; the main Difficulty will be to find your Stations, when you come to furvey the crofs Streets, By-Lanes, Thoroughfares, Egc. between the eminent Streets that you firft went round; but you may help yourfelf herein, if you lay one End of the Chain at fome Door, or other remarkable Place on the right Side of the Street; and draw it in a ftrait Line through the Station-Point, to fome Remark on the other Side of the Street; taking notice at how many Links from the Right, the Chain cut the Station: You may alfo much help yourfelf herein by your Eye-draught.

When the Station-line leads you into a Square, you may plant the Theodolite in the Middle thereof, and from that one Station direct the Telefcope to the Corners, (very often there are but four, and the Sides all ftrait) and meafure the Diftances from that Station to the Corners, as in Cbap. II. Seet. 4. But if you would take notice of particular Houfes therein, or if the Sides are very irregular, then go round it: But Lanes and Alleys are laid down by Off-fets only, from the Station-line through the Middle.

Having thus finifhed one Part of the Town or City, you may proceed to another, till the Whole be finifhed; but this is a Work that will take up a great dieal of Time.

The Manner of Protracting this Work, is the fame as in the preceding Chapters, therefore particular Directions are needlefs; but 'tis beft to protract fo much as you furvey in one Day, before you proceed with

Sect. 4. The Practical Surveyor. I6I with more; and for this Purpofe, a Skin of fine foft Parchment is better than Paper, unlefs the Paper be very fine, and pafted on Cloth or Canvas. The Ground-Plots of Churches mult be very exactly taken, and laid down in the fame Manner on the Draught, and fhadowed very deep; the fame muft be obferved of Houfes.

Alfo, if you ufe a Protractor that will lay down Minutes, your Work will be more likely to clofe; for you cannot be too curious in obferving and laying down the Angles, efpecially thofe in the principal Streets.

x
 $x+2,-2=$

$$
-1
$$

$5+12=-2+0$
\cos

A P P E N D IX TO THE

 Practical Surveyor.

 Practical Surveyor.}

> C H A P.
> Of $L E V E L L I N G$. S E C T. I. Of the Spirit-Level and Station-Staffs.
 HE Inftrument commonly ufed for $L e$ velling of Land, confifts of a Brafs Telefcope of about two Feet long, in the Focus of which is fixed an horizontal Hair, to cut the Object in Time of Obfervation: Upon the Telefcope is fixed with two Screws a fmall Bra/s Tube, within which is a Glafs Tube containing fome Spirits. This Tube is hermizically fealed at each End, to prevent the Spirits 1 unning out, and the Brafs Tube is filed away on the upper Side, fo that the Glafs Tube, and the Bubble of Air moving in it from End to End, may be feen. This Bubble is the Direction for fetting the Inftrument, and is occafioned by the Glafs not being quite filled with Spirits. The bore of the Tube, and the Length of the Bubble fhould be bigger, according to the Degree of Accuracy that is required; for the bigger thefe are, the Friction will be lefs, M_{2} and and the Motion more fenfible. Some will move fenfibly to 5 or 6 Seconds; but for the Purpofe of levelling Ground, they fhould not be made to move fo quick; for in that Cafe, the Inftrument would be fcarce manageable.

The Telefcope fhould be fixed upon a Brafs Bar of a convenient Strength, and of near the whole Length of the Telefcope: At the farther End of this Bar there fould be a fhort Axis, upon which the Telefcope may have a fmall Motion up and down; and at the hither End there fhould be a Hair Screve, by which the Telefcope may be gently raifed or depreffed, till the Bubble refts exactly in the middle of (or at fome particular Mark in) the Glais Tube, which is the Situation it muft be always in at the Time of Obfervation. Under the Middle of the Brafs Bar fhould be fixed a Socket, by which the whole Inftrument may be readily fixed to the three-legged Staff, belonging to the Theodolite. Inftruments for levelling fhould be fo contrived, that the Agreement of the Hair in the Telefcope, and the Bubble in the Glafs Tube, might be eafily examined and (if need be) adjufted at every Obfervation : But as they are not ufually fo made, the common Way of rectifying them, will be fhewed in the next Section.

Of the Station-Staffs.

Provide two Station-Staffs, each ro Feet long, that may flide one by the Side of the other to $5 \mathrm{Feet}_{2}$ for eafier Carriage; let them be divided into 1000 equal Parts, and numbered at every 10 th Divifion, $10,20,30,40, \delta^{\circ} c$. to 100 , and from 100,110 , $120, \mathcal{E}^{2} c$. to 200 , and fo on till you come to 1000 ; but every centefimal Divifion, as $100,200,300$, to 1000 , ought to be expreffed in large Figures, that the Divilions, may be more eafily counted; and

Sect. 2. The Practical Surveyor. 165 you may have another Piece 5 Feet long, divided alfo into 500 parts, to be added to the former, when there fhall be Occafion.

Upon thefe Staffs are two Vomes, made to nide up and down, which will alfo ftand againft any Divifion on the Staff, by the Help of Springs. Thefe Vanes miay be made about 3 or 4 Inches wide, and about 10 Inches long; let the Faces of them be divided into 3 equal Spaces, by two Lines drawn lengthways; let the two extreme Spaces be painted white, and let the middle Space be divided alfo into 3 fmaller equal Spaces, and let that in the Middle be painted white, the other 2 black, which will render them fit for all Diftances.

Being thus provided with a good Spirit-Level, two Station-Staffs, a Cbain, and troo Afiftants, you may proceed to your Work; but firft it will be neceffary to make a Trial whether or no your Level be well acijutted.

S E C T. II.

How to adjuft the Spirit-Level.

CHUSE fome Field or Meadow, that is nearly level, and fet down the Inftrument about the Middle thereof, and make an Hole in the Ground, under the Center of the Inftrument; from which, meafure out in a right Line, fome convenient Length, as 20 Chains, and there leave one of your Afliftants with his Station-ftaff; then return to the Inftrument, and meafure out the fame Number of Chains, viz. 20, the other way, by the Direction of the Intrument, and laft Station-ftaff; as near in a Right-line as you can guefs, and there leave your other Affifant with his Station-ftaff; fo will the Inftrument and two Station-Staffs be in the fame ftrait Line.

Then return to the Inftrument, and turn the Telefcope about to your firft Affiftant, and move the Telefcope by the Hair Screw, till the Bubble refts exactly in the Middle of the Spirit-Tube; then obferve where the Hair in the Telefcope cuts the Staff, and direct your Affiftant to move the Vane up or down, till the Hair cuts the Middle thereof, fo that you may fee as much of the Vane above'the the Hair as below it, and there give him a Sign to fix it ; then direct the Telefcope towards your fecond Affiftant, and proceed in the fame Manner; fo are the Vanes on each Staff placed horizontally, or in a level one with the other.

Remove the Inftrument to that Affiftant which is neareft the Sun, if it fhines, that you may have the Advantage of its Rays upon the other Affiftant's Vane, and there fet down the Inftrument as near the Staff as you can; then having fet the Inftrument horizontal, fo that the Bubble refts in the Middle of the Tube; obferve what Divifion on the Staff is then cut by the Hair in the Telefcope, above or below the Middle of the Vane; for fo many Divifions muft the other Affiftant's Vane be raifed or depreffed, which direct him to do accordingly.

But becaufe the Inftrument is 40 Chains diftant from the Station-Staff, you muft make an Allowance for the Earth's Curvature, which by the following Table you will find to be $16 \sigma_{T}^{\circ}$ Parts, therefore let the Vane on the Staff be raifed $16 \frac{6}{10}$ Parts.

A TA B LE of the Earth's Curvature, calculated to the Thoufandth Part of a Foot, at the End of every Cbain, from I Cbain to 40.

Cbains Dec. Foot	Cbains	D. Foot	Cbains	D. Foot	Chains	D. Foot	
1	.000	11	.013	21	.046	31	.099
2	.000	12	.015	22	.050	32	.106
3	.001	13	.017	23	.035	33	.113
4	.002	14	.020	24	.060	34	.120
5	.003	15	.023	25	.065	35	.127
6	.004	16	.026	26	.070	6	.134
7	.005	17	.030	27	.075	37	.141
8	.007	18	.033	28	.081	38	.149
9	.008	19	.037	29	.087	39	.157
10	.010	20	.041	30	.093	40	.166

Now direct the Telefcope to the Vane thus raifed, and if the Hair cuts the middle thereof, while the Bubble refts in the middle of the Tube, the Inftrument is right ; but if not, you muft raife or deprefs the Telefcope till the Hair cuts the middle of the Vane ; and then by the Help of the Screws that fix the Spirit-Tube to the Telefcope, move the Bubble till it refts in the middle of the faid Tube: So is the Level adjufted.

S E C T. III.

Rules to be obferved in Levelling, in order to find the different Heigbt of any two Places; being ufeful for conveying Water, cutting Sluices, making Soughs, \&c.

SUppore it was required to know whether Water may be conveyed in Pipes or Trenches, from a Spring-Head to any affigned Place.
r. At the Head of the Spring fet up one of your Station-ftaves as nearly perpendicular as you can, and leave with one (whom you may call your firft Affitant) proper Directions for raifing or depreffing the Vane on his Staff, according to certain Signs which you (flanding at your Inftrument) fhall give him : Alfo let him be provided with Pen, Ink, and Paper, to note down very carefully the Divifion on the Staff which the Vane fhall cut, when you make a Sign that it ftands in its right Pofition.
2. Carry your Inftrument towards the affigned Place you are going to, as far as you cań fee, fo that through the Telefcope you may but fee any Part of the Staff left behind, when the Inftrument is fet horizontal ; and from that Place fend your fecond Afiiftant forwards with his Station-ftaff with the fame Inftructions as you gave your firft Affiltant.
3. Set the Inftrument horizontal, and direct the Telefcope to your firft Affiftant's Staff; then bring the Bubble exactly to the Middle of the Tube, and when it refts there, give a Sign for your Affiftant to note the Parts of the Staff where the Vane refts.
4. Turn about the Telefcope to your fecond Affiftant's Staff, and by the adjufting Screw as before, fet the Bubble exact: Then direct your fecond Affiftant to move the Vane higher or lower till you fee the Hair in the Telefcope cut the Middle of the Vane, (but'in long Diftances the Hair will almoft cover the Vane; however, let it be in fuch Manner that as much may be above the Hair as below it, as near as you can guefs,) and then give him a Sign to note the Divifion on the Staff; and always let your Affitants note the Divifion cut by the upper Edge of the Vane.
5. Let your firft Affiftant bring his Station-ftaff from the Spring Head, and give it to the fecond Afiftant, and let your fecond Affitant carry it for-

Sect. 3. The Practical Surveyor. wards towards the affigned Place you are going to, and at a convenient Place erect it perpendicular; whilft your firft Affiftant tarries at the Staff where your fecond Affiftant ftood before.
6. Place your Inftrument between your two Affiftants, fomewhere about the Middle if you can; and firlt direct the Telefcope to your firft Affiftant's Staff, and when the Telefcope is levelled to one of the Divifions on the Staff, let him note that Divifion in an orderly Manner under the firft Obfervation; and let. your fecond Affiftant do the fame: And in this Manner proceed over Hill and Dale, as ftrait forward as the Way will permit, to the appointed Place, (by only repeating thele Directions) tho' it be 20 Miles diitant from the Spring-Head; but in your whole Paffage let this conftant Rule be obferved, otherwife great Errors will enfue, (viz.) That your firft Affiftant muft at every Station ftand between the Spring-Head and your Inftrument, and your fecond Affittant muft always ftand between the inftrument and the appointed Place to which the Water is to be conveyed.

Being come to the appointed Place, let both your Affiftants give in their Notes, which ought to ftand in Manner and Form following.

Firft Alfijant's Notes		Second Ally tant's Notes.	
Stetioins.	Parts.	Stations:	Parts.
$\bigcirc 1$	1019	\bigcirc	330
\bigcirc	512	- 2	540
$\bigcirc 3$	737	- 3	1337
- 4	40	\bigcirc	742
$\bigcirc 5$	1495	$\bigcirc 5$	30
-6 6	1475	$\bigcirc 6$	32
$\bigcirc 7$	1430	-. 7	30
$\bigcirc 8$	1149	- 8	227.
Sum.	7857	Sum.	3268

Thefe

Thefe Notes were collected from Obfervations made at feveral Stations between the Ground at the North-gate at Honover-Square, and the Surface of the fquare Pond by the New-River Head, near Iflington. The firft Affiftant's Notes, when added together, amount to 7857 ; the fecond Affiftant's 3268, the Difference 45,86 Parts; that is almof 46 feet; and fo much is the Pond higher than the Ground of that Part of the Square where the firft Station-ftaff was planted.

The following Oblervations were repeated in the Afternoon of the fame Day, at quite different Stations, from the Pond before-mentioned to the faid North-gate of Hanover-Square; and then the two Affiftant's Notes ftood in the following Manner :

Firft Afffant's Notes.		Second Alfistant's Notes.	
Stations.	Parts.	Stations.	Parts.
$\bigcirc 1$	290	\bigcirc	1278
$\bigcirc{ }^{\circ} 2$	136	$\bigcirc 2$	1515
$\bigcirc 3$	77	$\bigcirc 3$	1395
$\bigcirc 4$	68	$\odot 4$	1500
- 5	58	- 5	74
- 6	1243	- 6	38
$\odot 7$	998	$\odot 7$	468
- 8	437	- 8	774
-. 9	306	- 9	1066
Sum.	3513	Sum.	8108

Thefe Notes as obferved in the Afternoon, being added together, and the leffer fubtracted out of the greater, the Difference is 45,95 Parts, which very nearly agrees with the former Obfervations; being but $\frac{6}{60}$ of a Foot difference, which is inconfiderable.

Note, If from the firft Affiftant's Staff you meafure any Number of Chains towards the Place you Inftrument, and then meafure ten Chains forwarder, and there place the other Station-ftaff; you will have no Occafion to make any Allowance for the curvature of the Earth, becaufe the Inftrument being planted in the Middle of the Diftance between the Station-ftaffs, the Errors mutually deftroy each other.

But this meafuring of the Diftances with the Chait, or otherwife, is very tedious, and indeed impracticable in many Cafes, unlefs you make a Multitude of Stations: So if the Way between the two determined Places, whofe different Height you would know, lies over Hills and Dales, as Fig. 45, you muft in that Caie make four or five Stations (otherwife you will not be able to fee any Part of the Staff, when the Inftrument is fet horizontal,) which might as well be done at one Station (as in the foregoing Obfervations) in the following manner.

S E C T., IV.

How to make Allowance for the Curvature of the Earth, woben the Station-faffs are planted at unequal Difances from the I_{n} frument.

CUppofe the Inftrument was planted on the ED) minence between the two Valleys A and B. Fig. 45. the firft Affiftant with his Station-ftaff, ftanding at C , and the fecond at D ; and it is required to know the different Height of the Hills C , and D .

Firft fet the Inftrument horizontal; and then direct the Telefcope to the firt Amiftant's Staff at C , and by the adjufting Screw fet the Bubble exact, obferving where the Hair cuts the Staff; then
by Signs caufe your Affiftant to move the Vane higher or lower till the Hair cuts the Middle thereof: and then give him a Sign to note the Divifion cut by the upper Edge of the Vane, which fuppofe 104 Parts from the Ground, and you will find the Diftance from the Inftrument to the Staff at C, to be about ten Chains. *

Then direct the Telefcope to D , and proceeding in the fame Manner as before, you will find that the Hair cuts 849 Parts from the Ground : The Diftance to D , is about 35 Chains.

Next look into the Table of Curvature, and againft 10 Chain, you will find one Part to be deducted for the Curvature of the Earth at that Diftance, fo will the firft Affiftant's Note be made 103 Parts.

Alfo againft ${ }_{35}$ Chains, you will find $12 \frac{7^{-}}{10}$, which being deducted out of 849 , there will remain $836 \frac{3}{15}$ Parts, which muft be noted by the fecond Affiftant.

Now if 103 , as noted by the firft Affiftant, be fubtracted from $836 \frac{3}{50}$, as noted by the fecond, the Remainder will be $733 \frac{3}{10}$; and fo much the Hill C, is higher than the Hill D: But if you have not the Table of Curvature at hand, then you may find the Allowance that is to be made at any Diftance, by this Rule.

Multiply the Square of the Diftance in Chains by 31, and divide the Product by 300000.

In this Manner making Allowance for the Curvature of the Earth, you may fend a Station-ftaff forwards half a Mile, or farther, from the Inftrument ; and take a Sight over feveral Valleys at once, the horizontal Diftance in this Cafe being only regardable.

Note, when Water is to be brought to any appointed Place, there muft be an Allowance of $4 \frac{1}{2}$

* Note, The Diftance is here fuppofed to be found by the Theodolite, or fome other Infrument fitied for this Purpofe.

Sect. 4. The Practical Surveyor: 173
Inchés for every Mile, more than the ftraight Level, for the Current of the Water; but if the Springhead be much higher than the appointed Place, fo that the Water will have too violent a Current, the Pipes may be laid one up and another down; and intead of being laid in a ftraight Line, the Water may be brought in a crooked or winding Way.

CHAP.

C H A P. II.

Shewing the Ufe of the Theodolite,

 in drawing Buildings; \&cc. in PerSpective.

HEN a Building is to be drawn upon a Perfpestive Plane (or Pieture) the Reprefentation of the feveral Objects ought to be delineated thereon according to their Dimenfions and different Situations, in fuch Manner that the faid Reprefentations may produce the fame Effects on our Eyes as the Objects whereof they are the Pictures.

But without mathematical Rules this Reprefentation cannot well be found; for when Objects are drawn by only viewing or looking at them, their true Reprefentations will often be miffed; whereas by the following Method they may always be obtained.

For all Objects appear fuch as the vifual Angle under which they are feen; which Angle is taken at the Eye, where the Lines meet that comprife the Object ; that is to fay, an Object feen in a great Angle will appear great; and another feen in a little Angle, will appear little; which is the principal Thing to be obferved in Perfpective.

So the Windows 6, 7, 8, Fig. 46, muft be drawn on the Perfipective Plane of different Dimenfions (altho' on the Building one of them is really as big
as the other) according to the Angle which the Rays from their Extremities make with the Eye at z.

Objects of equal Bignefs appear greater or lefs, according to their Diftance from the Beholder's Eye; fo the Windows 6 and 8 , are really one as big as another on the geometrical Plane; but the Window 6, at the End of the Building being nearer the Eye at z, than the Window 8 on the Front, it muft be made fo much larger on the Perfpective Plane, as the Window 6 is nearer than that marked with 8.

Therefore, if the Angles, under which Objects appear, be given; thofe Objects may be drawn on the Perfpective Plane (or Paper) according to their Dimenfions and different Situations, in the fame Form as they appear to the Beholder at any Diftance.

The Figures on the Geometrical Plane (or Builing) are compofed either of ftraight Lines, or Curves: Now to find the Reprefentation of a ftraight Line, its Extremes need only be fought: And to find the Appearance of a Curve, we need only to find the Place of feveral Points therein. And hence it follows, that the whole Bufinefs of Perfpective confifts in finding only the Place of a Point.

But thefe Points cannot be determined, unlefs by the Interfection of Right Lines. And the Reafon of thefe Sections is, That one Line can determine nothing: Therefore it is neceffary, that there be two of them, which divide themfelves, (forming an Angle) for to have the Place of a Point, as will be feen in the following Example.

[^0]
S E C T. I.

Let Fig. 46 reprefent a Building as viewed from Z, being the Place from which the Proppect is defired to be taken.

THE Inftrument being planted at z, and the Staffs made to ftand firm on the Ground, I fet the Inftrument exactly level; and with the Index at 360, and the Quadrant at o Degrees, I direct the Telefcope to fome Part of the Building, as to 0 , by turning about the whole Inftrument, and there forew it faft, that it ftir not out of this Pofition, till the feveral obfervations be finifhed.

The inftrument being fet level, the Index when turned round on the Limb, carries the Telefcope in a Line parallel to the Horizon, as x, y : And the Quadrant elevated or depreffed, moves always in a Circle vertical thereto, as w, z.

Now with one hand move the Index on the Limb, and with the other elevate or deprefs the Telefcope as there fhall be Occafion, till you fee the crofs Hairs therein cut any Point on the Building; and then note down on a Piece of Paper, the Degrees and Minutes which the Index cuts on the Limb in one Column, and call thofe the horizontal Angles: Likewife note the Degrees and Minutes cut by the Quadrant in another Column, and call thofe the vertical Angles.

So the Teleicope being direited, to the Point $a_{\text {, }}$ the Index then cuts $7^{\circ} 25^{\prime}$, and the Quadrant 19° 30^{\prime}; and thofe Obfervations when protracted, will give the Point a.

Likewife I make Obfervation of the Point b; and then deprefs the Telefcope to the Bottom of the Building at c, and the Index then cuts the fame An-

Sect. 1. The Practical Surveyor.
 177

gle on the Limb as at b, and the Quadrant $8^{\circ} 30^{\prime}$: But this Angle of Depreffion mult be marked with Λ, or fome fuch mark to diftinguifh it from the Angles of Elevation, that in protracting that Point, it may be known to be under the Horizon, or the Line $x y$.

When the Inftrument is planted at a confiderable Diftance from the Building, the Ground there may be higher or lower than any Part of the Building : And then all the Points will be above or under the Horizon ; and in fuch Cafe there will be no Occafion for this Diftinction.

In the fame Manner I make Obfervation of fo many Points on the right Side of the Houfe as is convenient; but when the Telefcope is directed to the Point m on the left Side, the Index cuts $340^{\circ} 40^{\prime}$.

Now this Number $340^{\circ} 40^{\prime}$, muft not be noted for the horizontal Angle, but its Compliment to 360 (viz.) $19^{\circ} 20^{\prime}$, by fubtracting $340^{\circ} 40^{\prime}$, out of 360 ; but if the Degrees be numbered by fmall Figure sfrom 360 , the contrary Way, as $10,20,30$, $\mathcal{E}^{2} c$. to 60 , or further, as may conveniently be done, the Numbers will encreafe from 360 , both to the Right and Left ; and then the Index will always cut the Number denoting the horizontal Angle, in the fame Manner as the Quadrant.

Having obferved the Point m, the Index remaining at the fame Angle on the Limb, I deprefs the Telefcope to the Points, 4, 3, 2, 1, and note the Degrees, $\mathcal{E} c$. cut by the Quadrant; which when protracted, will give the Breadth of the Faces and their Diftance one from another.

Next I obferve the Points of the Window ei u, in the left Wing of the Building; and becaufe thefe Remarks are on the left Side of the Building, therefore I note them by fuch Names as I call the feveral Points I look at (inftead of the Letters, $a, b, \mathcal{E}^{3} c$.) on the left Side of the Column of Obfervations,

In making thefe Obfervations, I. Set the Infrument level in that Place from which the Proppeet is defired to be made; and with the Index at 360 , direet the Telefcope to fome remarkable Place about the Middle of the Building, and there fix the Inftrument.
2. The Remarks on the rigbt Side of the Building enter in the Column of Obfervations on the right Hand; and è contra.
3. If there be Angles both of Elevation and DeprefFion, mark the Angles of Depreffion with Λ.

The Oblervations of moft of the Points, that need to be taken of Fig. 46. in order to protract or draw the fame in Perfpective, are inferted in the following Table: And obferve, that if the Building be regular, there will need but few Points to be given; for, where you have the Height and Breadth of one Window given, with its Diftance from the next, the whole Row may thereby be drawn, being all of the fame Dimenfions ; but Objects more irregular muft be drawn by obferving fo many Points therein, as fhall be neceffary : But Practice in this Cafe is the beft Guide.

Sect. 2. The Practical Surveyor.

S E C T: II.

The Manner of Protracting these Observations, in order to find the Points of the Building. Fig. 46.

FIRST draw a right Line $x y$, Fig. 46. for the horizontal Line; and at right Angles therewith draw another Line $w z$, which reprefents the vertical Line.

Set off the Points of Diftance from 0 , (viz) from that Point where $x y$, and $w z$, interfect one nothen : And according to what Bigness you would have the Plan of the Building be, make the Diftance bigger or left. If you would have the Draught large, make the Diftance large : Et è contra. There-
fore
fore fet one Foot of the Compaffes at 0 , and with the fame Extent mark the Points of Diftance x, y, z.

The horizontal-Angles muft be drawn from the Point z, to the horizontal Line $x y$; and the vertial Angles from the Points x, or y, (according as the Remarks are noted on the right or left Side of the Columns) to the Vertical-line $w z$.

The Index muft be at 360 and the Quadrant at o, when the Crofs-hairs in the Telefcope cut the point 0 , on the Building: Therefore the Point O_{2} flall be the firt Point of Sight on the Profpectiveplan.

By the Table of Obfervation I find that the Index cut $7^{\circ} 27^{y}$ on the Limb, and the Quadrant 19° 30^{\prime}, when the Telefcope was directed to the Point a : Therefore lay the Center of the Protractor to z; and becaule the Letter a is noted on the right Side of the Columns, lay the Limb on the right Side of the Line wz, the Diameter being coincident therewith; and againft $7^{\circ} 25^{\prime}$, make a Mark clofe by the Limb of the Protractor.

Lay the Edge of a ftrait Ruler to the Point of Dittance z, and to that Point $7^{\circ} 25^{\prime}$; and where the Edge cuts the horizontal Line, make a Mark.

Lay the Center of the Protractor to the Point of Diftance y, (becaufe a is noted on the right Side of the Columns) the Diameter coincident with the Line $x y$; and againft $19^{\circ} 30^{\prime}$ on the Limb, make a Mark.

Lay a ftrait Ruler to that Mark, and the Point of Diftance y; and where the Edge cuts the vertical Line $w z$, make a Mark at r.

Laftly, Lay a parallel Ruler to the horizontal Line $x y$, and move it parailel thereto, till the Edge cuts the Point r, in the vertical Line; and with the Compafs Point draw the obfcure Line $\begin{aligned} \\ 5\end{aligned}$.

Then lay the parallel Ruler to the vertical Line wiz, and move it paralle! thereto till the Edge cuts

Sect. 2. The Practical Surveyor. 18 I

 the point t, in the horizontal Line $x y$, and by the fame Edge draw an obfcure Line $t 9$; fo fhall the Interfection of thefe two Parallels determine the Place of the Point a, which was fought.In the fame Manner may the Point b, or any other Point be found: And then thefe Points joined with right Lines, fhall reprefent the Lines on the Building, and bear an exact Proportion thereto, according to the Rules of Perfpective.

The Point c is found in the fame Manner as a_{2} only becaufe the horizontal Angle is the fame with the Point b, you have no more to do but continue a ftrait Line from b, through the Point x in the horizontal Line, parallel to $w z$; and then lay the Center of the Protractor to y, with the Limb downwards; becaufe c is marked with Λ (i.c.) under theHorizon; and draw the Vertical Angle $8^{\circ} 30^{\prime}$, to γ in the Vertical Line; fo fhall a Line drawn parallel to $x y$, from the Point y, cut the obfcure Line $b c$, at c, the Point fought.
The Points h, k, l, m, n, p, q, on the left Side of the Building, Fig. 46. have the fame Angles with a, b, c, d, e, f, g, on the Right, and therefore protracted in the fame Manner; excepting this Difference, that becaufe the Points b, k, l, \mathcal{E}^{c}. are on the left Side of the Building, therefore the fame Points muft be found on the left Side of the vertical Line $w z$, and the Protractor laid to the Point of Diftance x; but the horizontal Angles are all laid off from the fame Point of Diftance z.

Oblerve, that in protracting thefe Points, it is convenient, that the Numbers on the Semicircular Protractor fhould be made to encreafe from the Diameter both Ways, that the Numbers may be counted thereon, both to the Right and Left : And then: in protracting any Point on a Building, I. Draw the
horizontal: Angle from the Point of Diftance z, to the horizontal Line $x y$, as to t. 2. Draw the vertical Angle to the vertical Line $w z$, as to r. 3. Draw Lines parallel to $w z$, and $x y$, through the Points t and r; fo fhall the Interfection of the two Parallels give the Point fought.

But thefe Points are found with much greater expedition, if the Paper on which you draw the Plan of the Building, be faftened to a Drawing-Board, and the Angles laid down by the Sector in the following Manner :

For Example: Suppofe the Point a, Fig. 46 , was fought.

Firf, Draw two Lines by the Side of the Tee, croffing one another at right Angles, as $x y$, and w 2. Fig. 46 .

Take between the Points of the Compaffes the Diftance zo, and let the Sector be opened to the fame Extant, by fetting one Foot of the Compaffes at the End of the Tangent-Line at 45, on one Side of the Sector, and let the other fall at the other End of the Tangent-Line, at 45, on the other Side of the Sector.

The Sector remaining at this Extent, fet one Foot of the Compaffes in the Tangent Line on one Side of the Sector at $7^{\circ} 25^{\prime}$ the horizontal Angle, as in the Table; and let the other fall at $7^{\circ} 25^{\prime}$ on the other Side; this Diftance fet from the Point of Sight 0, in the horizontal-Jine $x y$, to t.

In the fame Manner take off from the Sector the vertical Angle $19^{\circ} 30^{\prime}$ which fet on the vertical Line $w z$, from o to r.

Laftly, lay the $\mathcal{T e e}$ on the Drawing. Board, parallel to $w z$, fo that the Edge cut through the Point 8. and draw the obfcure Line $t 9$.

Lay the Tee to the other Side of the Drawingboard parallel to $x y$: And the Edge cutting thro' the Point r, draw the obfcure Line $r 5$; fo fhall the

Page 182
That 6

Fig: 45

(2)
 20, 2 (1) $2+20$ $\frac{20}{}$

Sect. 2. The Practical Surveyor. interfection of thefe two Lines $t 9$, and $\uparrow 5$, give the Point a, which was fought.

In the fame Manner may any other Point be found in as little Time as it could be oblerved by the Theodolite; but if you have not a Drawing-board nor Parallel-ruler, you may put the Paper on the plain Table, and by the Edge of the Index laid on the equal Divifions, draw the Parallels; but a Draw-ing-board is better.

Having found the Points m and k, both denoting the upper Part of the Facies, if you lay a Ruler to thefe two Points, and continne a fraight Line till it cuts the horizontal Line $x y$, as at f, that fhall be the accidental Point, (or as the Draughts-Men fometimes call it, the vanifhing Point;) which being found, you may from thence draw right Lines to any other Points on the Draught which were viewed obliquely from z; (and therefore the Figures on that Part of the Building muft be made inclined on the Draught,) and thereby find the Abridgment of all the Lines parallel to the Horizon on the Building or geometrical Plan; (which is fuppofed parallel to the perfpective Plan or Picture.)

So when you have protracted the vertical Angles of $4,3,2,1$, and thereby found thofe Points; you may lay a Ruler to each of them, and the accidental Point \int, and thereby draw the Facies on the Wings of the building according to their Breadth and Diftance from one another on the peripective Plane or Draught.

In like manner having found the Points e, i, and u of the firft Window, you may from e anch i, draw Lines to the accidental Point f; which will give the Bottoms and Tops of all that Row: And then you have nothing to do, but find their Breadth and Diftance; ; and by thefe Directions draw all the Windows on that Wing of the Building.

If a Statue, Coat of Arms, or other Object was placed at 0 , and it was defired to place the fame (or another) a good deal higher, as at r; but fo, that the Object when placed at r fhould appear full as big , as when at 0 ; being viewed from z.

Obferve with the Theodolite, the Angles under which the Object appears at 0 ; as if it was a Statue, obferve the Height from the Feet to the Head, $\mathcal{E}^{\circ} c$. and note the Angles with proper Remarks on a Piece of Paper; and then by directing the Telefcope to r, and fetting the Quadrant and Index to the fame Angles, you may give directions how to make the $\mathrm{Ob}-$ ject at r, of fuch Dimenfions as being viewed from z, it will appear of the fame Magnitude (or natural Height) with that at $0 ; \delta$ vice verfa.

The fame may be done, if Objects are defired to be placed at a Diftance, to appear of the fame Size as thofe that are nearer; with feveral other Problems to be performed by this Inftrument, which the Ingenious will find out in the Ufe thereof: But I have already exceeded what I intended on this Head, and fhall only add two or three Aftronomical Problems, which the Surveyor perhaps may find ufeful in Practice.

CHAP。

Prob. I. The Practical Surveyor.

C H A P. III.

PROBLEMI.
How to find a True Meridian-Line, by Obferving with the Theodolite.

THE beft Time to make the Obfervations, is in a clear Day, about 3 or 4 Hours before and after Noon.
In the Morning, having fet the Inftrument exactly level, move the Index horizontally, and the Quadrant vertically, till through the Telefcope you fee the crofs Hairs in the Center of the Sun: Then obferve what Degrees and Minutes are cut by the Index, fuppofe $3^{\circ} 25^{\prime}$; which note in a Piece of Paper, as alfo the Angle of Elevation cut by the Quadrant.

About fo many Hours after Noon, obferve that the Quadrant be fet exactly to the fame Angle of Elevation as in the Morning; and then move the Index on the Limb till you fee the crofs Hairs cut the Center of the Sun, as in the Morning; and note the Degrees and Minutes which the Index then cuts on the Limb, fuppofe $64^{\circ} 37^{\prime}$.

But Note, 'T is convenient in the Morning to make 3 or 4 Obfervations 5 or 6 Minutes from one another; becaufe in the Afternoon you muft wait till the Sun falls into the fame Altitude as it had when you made the Obfervation in the Morning, (the Quadrant remaining at the fame Angle at both) and, if it fhould happen to be obfcured by Clouds at that Inftant,
your Labour will be loft for that Day, having made but one Obfervation in the Morning.

Now, if from $64^{\circ} 37^{\prime}$, the Evening Obfervation on the Limb, you fubtract $3^{\circ} 25^{\prime}$, the Morning Obfervation, the Remainder will be $6_{1^{\circ}} 1^{\prime}$, the Half of which is $30^{\circ} 36^{\prime}$; to this half Sum 30° $3^{\prime \prime}$, add the Morning Obfervation $3^{\circ} 25^{\prime}$, and the Sum will be $34^{\circ} 1^{\prime}$.

Laftly, the Inftrument remaining in the fame Pofition, bring the Index on the Limb to $34^{\circ} 1^{\prime}$, and the Quadrant and Telefcope will be exactly in the Plane of the Meridian : But if the Obfervation on the Limb in the Morning, exceed that in the Afternoon, you muft add to the Afternoon Obfervation 360 , and work in like manner; and if the Remainder fhould exceed 360 , you muft fubtract 360 therefrom.

Now obferve what Point (on fome firm Wall of a Building) is cut by the crofs Hairs in the Telefcope, there caufe a good Mark to be fixed, or caufe a Pillar with a Mark thereon to be fet up by the Direction of the Telefcope: Afo take Notice, If you could place the Mark a quarter or half a Mile diftant from the Inftrument, it is better than if it was nearer. And, in making thefe Obfervations, you nught to be very exact; becaufe when a MeridianLine is once well fixed, it is very ufeful for divers Purpofes.

Obferve, When the Sun is near the Tropics, the Meridian-Line may be found well enough by obferving as aforefaid: But when it is near the Equinox, there will be fome Variation; becaufe the Sun's Declination is greater or leís at different Times in the fame Day, and confequently, when in equal Altitudes, has different Azimuths. Therefore the MeridianLine may be more truly found, by the Pole Star.

Prob. 4. Tise Practical Surveyor.
The following Table hews the Time from Noon, when the Pole Star makes the greateft Angle from the Me-ridian-Line towards the Eaft, for any Time in the Year.

D. H. M			
$\begin{array}{ll}\text { D. H. M. } \\ \text { I } 23 & 16\end{array}$	D. H. M.	D. H. M.	27
82251	122026	$\begin{array}{llll}12 & 18 \\ 12 & 43\end{array}$	9170
152217	191959	1988	161635
$\begin{array}{lllll}22 & 21 & 48\end{array}$	$26 \quad 19 \quad 33$	2617.52	$\begin{array}{lllllllllll}23 & 16 & 7\end{array}$
292120			301540
May.	Fune	Fuly.	Augu
$7 \quad 1513$	41319	21123	696
141445	$\begin{array}{llll}11 & 12 & 49\end{array}$	91055	13840
$\begin{array}{lllllll}21 & 1416\end{array}$	181220	161026	20.814
281348	251152	23.959	$27 \quad 750$
		$30 \quad 923$	
September.	OETober.	November.	Decemb
723	i $\quad 5 \quad 42$	$\begin{array}{llll}5 & 3 & 26\end{array}$	26
10658	$8 \cdot 516$	$12 \begin{array}{lll}12 & 2 & 57\end{array}$	$10 \bigcirc 54$
17632	15450	$19 \quad 227$	$17 \quad 024$
24.6	22422	26.157	$24 \quad 2353$
	$29 \quad 3 \quad 54$		$\begin{array}{llll}31 & 23 & 23\end{array}$

And, to find the Time that the Pole-ftar will make the greateft Angle to the Weft of the Meridian ; add 1 h .58 m . on the Time found in the table: Alfo note, The Star comes to the fame Place about 4 minutes fooner every 24 Hours, than it did the Day before.

The folloreing Table Berws the greateft Angle which the Pole-Star makes with the Meridian in any of thefe Latitudes, (vtz. . :

Latitude:	Angles.
Deg. Min.	Deg. Min.
4900	$3 \quad 53$
4930	355
$50 \quad 00$	357
50.30	4 00
5 I 00	$4{ }^{4} 0$
$\begin{array}{lll}51 & 32\end{array}$	4
$\begin{array}{ll}52 & 00\end{array}$	4
5^{2} : 30	412
$53^{\prime} 00$	15
$53 \quad 30$	$4 \quad 18$
54,00	421
5430	424
55 00	$4 \quad 27$
$55 \quad 30$	430
50	4 + 34

The Time that the Pole-Star comes to the Eaft or Weft of the Meridian, and the greateft Angle which it makes therewith, being found by the preceding Table : Set the Theodolite horizontal, and bring the Index to 360 on the Limb; then turn the whole Inftrument about, and elevate or deprefs the Telefcope, till you fee the Pole-Star in the interfection of the Hairs therein, and there fcrew the In ftrument faft: Then (if the Obfervation was made in the Latitude of London, $5 \mathbf{1}^{\circ}, 32^{\prime}$) move the Index on the Limb $4^{\circ} 6^{\prime}$, (as by the Table) towards the Right-hand or Left, according as the Star is weftward or eaftward: And the Telefcope will be set exactly in the Plane of the Meridian.

PRO:

Prob. 4. The Practical Surveyor.

$$
\text { P R O B L E M. } 2 .
$$

How to find the Latitude of any Place, by Theodolite.

THE Inftrument being fet level, bring the Quadrant and Telefcope into the Plane of the Meridian, and let the Index remain at the fame Angle on the Limb; them elevate or deprefs the Telefcope towards the Sun, at fuch Time as you think it is near the Meridian, until you fee the crofs Hairs in the Center thereof, dividing it as it were into four equal Quarters ; and obferve exactly what Degrees and Minutes are then cut on the Quadrant, fuppofe $42^{\circ} 15^{\prime}$, which note for the Sun's Meridian Altitude.

By an Ephemerides, you may find the Sun's declination for the fame Day, fuppofe $3^{\circ} 47^{\prime}$, which if it be North Declination, fubtract it from $42^{\circ} 15^{\prime}$, the Meridian Altitude, and the Remainder will be $38^{\circ} 28^{\prime}$, the Co-latitude.

But if the Sun hath. South Declination, add it to the Meridian Altitude, and the Sum will be the Colatitude; which fubtracted from 90°, gives the $L a$ titude of the Place.

$$
\text { PROBLEM } 3
$$

How ta find when the Sun or any of the Stars are upon the Meridian.

HAving the Co-latitude of the Place, by the laft Problem, and the Declination of the Sun given; add the Declination, if North, to the Co-latitude; but if South, fubtract it, and

APPENDIX to Chap. III.

 der will be the Sun's Meridian Althe Day, as aforefaid, which fuppofe , 15^{\prime}.e Quadrant to $42^{\circ} 15^{\prime}$, and the Telefcope \therefore elevated to the Meridian Altitude of the then note the Inftant of Time by a Watch or dulum-Clock, when through the Telefcope (redining at the fame Angle) you fee the crofs Hairs ut the Center of the Sun; for at that Time is the Sun upon the Meridian.

And if you proceed in like Manner the next day, you will have the exact Limits of the natural Day, which mutt exceed or want fo many Seconds of 24 Hours, by your Clock or Watch, as appears by the Equation-table for the Day, if your Clock or Watch goes right.

In the fame Manner, you may obferve when any Star comes to the Meridian; and if the fame Star comes to the Meridian 3 Minutes, 56 Seconds and a half, fooner the fecond Night than it did the firtt, your Pendulum-Clock or Watch keeps true Time, छ' è contra. Alfo if you fubtract 3 Minutes, 56 Seconds and a half, for each Night after that on which you made the firft Obfervation, you will have the true Time of that Star's coming to the Meridian for each Night following.

And thus may a Pendulum-Clock or Watch be adjufted to the Mean Motion of the Sun.

Prob. 4. The Practical Surveyor
PROBLE M. 4,

How the Azimutb and Altitude of any fixed Stars are found by the Theodolite.

THE Inftrument being fet level, and exać in the Plane of the Meridian, and there fixec. if you direct the Telefcope to any Star, its Azimuth. is fhewn by the Index on the Limb; and the Alditude by the Quadrant both at the fame time.

$$
F \perp \sim I S
$$

T

SHEWINGTHE
Altitude and Diameter OFANY
OBJECT
To the Hundredth Part of a Foot,
Anfwering to every Tenth Part of a Degree, as far as fixty Degrees; obferved from a Station of ten, twenty, thirty, $\mathcal{E}^{\circ} c$. Feet Diftant.
AS ALSO

The Fourth Part of the Girt of any Timber-Tree ftanding.
$5: 0$
:01 8710:0 176615:0

The USE of thefe Tables will appear very plain from one Example.

Meafure from the Tree; ten, twenty, thirty, Ėc. Feet; and there plant the Theodolite Level.

Direct the Telefcope to the Bottom of the Tree, and oblerve the Degree and Tenth of Depreffion, and to the Top of the Tree, the Degree and Tenth of Elevation.

Then find in the Table, the Parts anfwering to each, which being added together; make the exact Height of the Tree.

But, becaufe the Fourth Part of the Girt in Inches mult be taken in the Middle of the Tree; fubtract the Parts anfiwering to the Depreffion, from half the Height of the Tree: The Remainder feek for in the Table, under Parts, againft which, in the left-hand Column, is the Degree and Tenth of Elevation; to which, if you fet the Te lefcope, and obferve the Diameter of the Tree, i.e. the Degree and Tenth on the Limb, anfwering to the Diameter, and bring them to this Table, you will have the Fourth Part of the Girt in Inches, and Tenths anfwering thereto:

	D. T.	$\frac{1}{4}$ Parts.
Depreffion.		
Elevation.	$5^{8}: 8$	1651
Height of the Tree.		21.02
Half the Height.		10.51
		451
Set the Telefcope.	21: of	600
		part of the Girt.
	D. T.	I. T.
Diameter on the Limb.	19	16:0

N.B. Thefe Tables are calculated for the Diftance of ten Feet: yet are they as perfect for twenty, thirty, Ėc. Feet, only by doubling trebling, E${ }^{\circ}$. the Length, Diameter, and Fourch Part of the Girt found thereby:-

5:0	$\frac{\cdot}{8: 2}$
1	8:4
2	8:6
3	8;8
	9:0
	9: 1
	9:3
	9:4
	$9: 6$
	9:8
6:0	10:0
1	10:2
2	10
3	10:5
4	10:7
	10:8
6	10:9
	11:0
8	11:2
9	11:4
7:0	11:6
1	II : 8
2	$12: 6$
3	12: 1
4	12:3
	12; 5
	12:6
	12:8
	$13: 0$
	$13: 1$
8.0	$13: 2$
1	13
2	$13: 6$
3	$13: 8$
4	$13: 9$
5	14 : 0
6	$14: 2$
	$14: 4$
	$14: 6$
9	$14: 8$
9:0	$14: 9$
1	$15: 0$
2	$15: 2$
3	$15: 4$
4	$15: 5$
5	$\begin{aligned} & 15: \\ & 16: \end{aligned}$
	$16 \vdots 1$
	$16: 2$
	16:3
10:0	$16: 6$

-

[^0]: The Inftrument referred to in this Chapter, is fuppofed to take horizontal and vertical Angles, both at the fame Time; and the Method here laid down may ferve for an Amufement, and to fhew what Theory alone may do: But I fancy thofe who are already acquainted with the Rules of Perfpective, would hardly be prevailed upon to make ufe of a Theodolite for this Purpofe ; and for thofe who are not, they had better make ufe of a Caniera Obscura.

