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METHODOLOGICAL STUDIES

Selecting Districts and Schools for Impact Studies in
Education: A Simulation Study of Different Strategies

Daniel Litwoka, Austin Nicholsa, Azim Shivjib�, and Robert B. Olsenc

aSocial & Economic Policy Division, Abt Associates, Rockville, MD, USA; bSan Jose, CA, USA; cGeorge
Washington Institute of Public Policy, The George Washington University, Washington, DC, USA

ABSTRACT
Experimental studies of educational interventions are rarely based on
representative samples of the target population. This simulation
study tests two formal sampling strategies for selecting districts and
schools from within strata when they may not agree to participate if
selected: (1) balanced selection of the most typical district or school
within each stratum; and (2) random selection. We compared the
generalizability of the resulting impact estimates, both to each other
and to a stylized approach to purposive selection (the typical
approach for experimental studies in education). We found that bal-
anced and random selection of schools within randomly selected dis-
tricts were the most consistent strategies in terms of generalizability,
with minimal difference between the two. Separately, for random
selection, we tested two strategies for replacing districts that refused
to participate—random and nearest neighbor replacement. Random
replacement outperformed nearest neighbor replacement in many,
but not all, scenarios. Overall, the findings suggest that formal sam-
pling strategies for selecting districts and schools for experimental
studies of educational interventions can substantially improve the
generalizability of their impact findings.
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Introduction

Randomized controlled trials (RCTs) are widely regarded as providing the most con-
vincing evidence on the impacts of interventions because of their high internal validity,
meaning they provide strong evidence of causal impacts. For this reason, evidence clear-
inghouses like the What Works Clearinghouse typically reserve their highest ratings for
RCTs.1 However, it can be difficult to conduct RCTs that have high external validity,
meaning the study results are generalizable to a target population.

Problems of generalizability often arise during site recruitment. Given limited budg-
ets, researchers can minimize recruitment costs by selecting districts and schools for
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recruitment that offer the most “bang for their buck”—i.e., those that are large and
likely to participate in an evaluation. Districts and schools also typically have weak
incentives to participate, and many of them choose to opt out if recruited. As a result,
the combination of researcher decisions about recruitment and district or school deci-
sions about whether to participate in the evaluation can yield a sample that may not
represent the target population of interest. For example, districts that participate in
large, multi-site RCTs tend to be much larger, more urban, and more disadvantaged
than the average district that could have implemented the intervention (Stuart et al.,
2017). Similarly, large schools from large school districts in urban areas tend to be over-
represented in cluster RCTs (Tipton et al., 2021).

Recruitment that favors certain types of sites can lead to “external validity bias,”
meaning the impact estimates from the study sample are biased estimates of the impact
in the population of interest (Olsen et al., 2013). Early evidence suggests that the magni-
tude of this bias can be sizable (Bell et al., 2016). The literature prescribes several pro-
spective strategies for limiting external validity bias at the design phase of an education
RCT (Olsen & Orr, 2016; Tipton, 2013b). This study assesses the performance of these
site selection strategies in a simulated environment.2

The simulated environment is a hypothetical evaluation of an educational interven-
tion targeting schools serving kindergarten through fifth grade (grades K–5). We used
publicly available data from the U.S. Department of Education (the Common Core of
Data) to define a target population of schools and generated hypothetical impacts for
that entire population. We constructed the hypothetical impacts to be consistent with
existing evidence on impact variation across schools for educational interventions. We
varied other key parameters over plausible values to make the results more broadly
informative.

Our analysis answers four research questions:

1. Which district and school selection strategies performed best in terms of produc-
ing samples with the greatest generalizability to the target population?

2. Which district and school selection strategies yielded the least recruit-
ment burden?

3. How did the relative performance of strategies change with changes to key simu-
lation parameters?

4. Limiting focus to one of the selection strategies (random selection), which
method for replacing districts that declined to participate performed best?

Regardless of selection strategy, we stratified the population in the same way using
likely impact moderators. We chose this approach to ensure our tests would capture dif-
ferences in the performance of the strategies themselves rather than different stratifica-
tion schemes. Specifically, we stratified using k-means clustering, which is an algorithm
that partitions data into a user-selected number of clusters (k).3

2Consistent with best practices for transparent research, we preregistered an analysis plan for this simulation that
described and justified decisions in advance of analysis on the Open Science Framework. We subsequently revised that
plan. See https://osf.io/fehjc for more information on both plans and the online appendix for further discussion.
3See Appendix A for more technical details on our implementation of k-means clustering.
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Within those strata, the strategies we tested included elements of three approaches:
(1) a stylized version of purposive selection—sometimes referred to as convenience sam-
pling—in which the largest districts and schools were selected; (2) random selection as
used in surveys; and (3) balanced selection proposed by Tipton (2013b), which priori-
tizes the districts and schools that are closest to the stratum means. Throughout the art-
icle we refer to these strategies as “purposive,” “random,” and “balanced,” respectively.
We tested all combinations of applying these approaches at both the district and school
levels for a total of nine selection strategies.

That all strategies include stratification implies our simulation does not cover some
strategies that may exist in practice, such as purposive selection without stratification.
Stratification is a best practice for selecting a sample that is representative of a well-
defined population (Tipton & Olsen, 2022). The strategies we tested all likely performed
better than they would have in the absence of stratification.

To compare the selection strategies, we specified an “impact generating process” for
the hypothetical intervention for each school in the population. We used the different
site selection strategies to generate rank-ordered lists of districts and schools from the
target population for recruitment; simulated decisions by districts and schools to agree
or decline to participate in the evaluation, conditional on selection; and selected replace-
ment districts and schools from the target population for those that did not agree to
participate until a study sample was identified. We simulated participation decisions by
districts and schools by taking a random draw from a Bernoulli distribution with agree-
ment probabilities that could vary depending on observed and unobserved characteris-
tics. A simple average of the impact across all schools in the target population was the
Population Average Treatment Effect (PATE)—the estimand of interest. The simple
average of the impact across all schools that agreed to participate in the study was the
Sample Average Treatment Effect (SATE).

To answer the first research question, we compared the SATE across simulated sam-
ples to the PATE under a set of baseline parameter values. Our primary measure of per-
formance—mean squared error—was the average squared difference between the SATE
and the PATE (we also calculated and reported other measures of performance includ-
ing relative mean squared error, absolute external validity bias, and standard deviation).
To answer the second research question, we tabulated the number of districts and
schools recruited by each of the selection strategies to achieve the target sample. To
answer the third research question, we explored the extent to which the findings varied
as we changed parameters from their baseline values.

Focusing specifically on random selection, the fourth research question is motivated
by large-scale educational surveys (such as the National Assessment of Educational
Progress (NAEP) or the Programme for International Student Assessment (PISA)) that
replace schools that decline to participate with their “nearest neighbor,” or another
school with similar observable characteristics. We tested this strategy for random district
selection. We hypothesized that, under certain conditions, nearest neighbor replacement
might result in a more representative sample than random replacement. By way of intu-
ition, suppose the initial set of randomly selected districts included some atypical dis-
tricts that had a low probability of initial selection. If replaced by a randomly selected
replacement district, it is unlikely that the replacement district would have those same
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atypical features. However, nearest neighbor replacement would ensure that the replace-
ment district had similar characteristics to the initially selected district. To answer this
research question, we altered the replacement algorithm to choose the nearest neighbor
of the declining district (in terms of the distance metric we use in our stratification
algorithm and balanced sampling) rather than the next randomly selected district and
compared measures of performance.

To preview the results, strategies that rank-ordered districts randomly outperformed
the other strategies for all performance measures and nearly all values of simulation
parameters. Within districts, random and balanced school selection performed similarly.
Focusing specifically on random selection of districts, random replacement of districts
that refused to participate outperformed nearest neighbor replacement in many but not
all scenarios. These findings imply that relatively simple adjustments to the process of
selecting districts and schools, such as incorporating randomness, results in a sample
that better represents the target population of interest.

Related Literature

Literature in many fields has documented theoretical concerns with external validity of
experimental impact evaluations (Banerjee & Duflo, 2009; Heckman & Smith, 1995;
Imbens & Wooldridge, 2009; Orr, 1999; Shadish et al., 2002). Nonetheless, this issue has
been largely treated as a second-order concern in applied education evaluations. With
recent growth in evidence-based policymaking and rigorous evidence standards, applied
education researchers began to explore the threat of external validity bias (Olsen et al.,
2013) and empirically test for its prevalence (Bell et al., 2016; Bell & Stuart, 2016;
Fellers, 2017; Stuart et al., 2017; Tipton et al., 2016, 2021).

With a better understanding of the problem, the literature began to propose strategies
for addressing external validity bias. Two separate classes emerged: (1) retrospective
strategies for generalizing results from completed evaluations to a target population; and
(2) prospective strategies for designing evaluations to be generalizable to a target popu-
lation. Of note, prospective and retrospective strategies need not be mutually exclu-
sive—one can also apply a retrospective strategy to an analysis that was designed to be
generalizable (Tipton & Olsen, 2018, 2022).

Retrospective strategies use information available on the study sample and the
broader population to adjust results of an experiment that is already complete. A variety
of strategies are available, including reweighting via poststratification or propensity
scores, regression modeling of impact variation, and bounding (e.g., Andrews & Oster,
2018; Chan, 2017; Kern et al., 2016; Nguyen et al., 2017; O’Muircheartaigh & Hedges,
2014; Stuart et al., 2011). Extensive work describes the properties of these strategies
(e.g., Kern et al., 2016; Tipton et al., 2017), establishes the required assumptions (e.g.,
Tipton, 2013a), and guides practitioners through applying the strategies (e.g., Stuart &
Rhodes, 2017). While retrospective strategies are useful and important, they are not the
focus of this work.

This study contributes to the literature on prospective strategies for designing RCTs
to produce generalizable findings. Several different strategies have been recommended
in the literature, including those that propose random selection of sites, such as schools
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or districts (Allcott, 2015; Olsen & Orr, 2016) and those that propose balanced selection
of sites (Tipton, 2013b; Tipton et al., 2014). As with retrospective strategies, practitioner
guides are available to facilitate implementation (Tipton & Matlen, 2019; Tipton &
Peck, 2017); yet no published study has compared the relative performance of these pro-
spective strategies—a gap in the literature that this study fills.

Simulation Methods

Our approach to conducting the simulation began with constructing the population,
defined as the collection of schools over which the hypothetical study aimed to estimate
average impacts. Recent guidance on improving the generalizability of impact studies in
education has highlighted the importance of defining the target population in terms of
the schools to which the study aims to generalize (Tipton & Olsen, 2018, 2022). This
section defines the population of schools for our simulations and describes the charac-
teristics of these schools (including both characteristics that were fixed across simula-
tions and those that we varied). Next, we describe how samples of schools were selected,
including the details of stratification, initial selection of districts and schools, and
replacement of districts and schools that declined to participate. Finally, we describe the
simulation details used to assess the performance of different strategies, including
repeated sampling, measures of performance, and the parameters we changed across
iterations of the simulation.

Fixed Population Factors

Districts, Schools, and Their Characteristics
Our simulation evaluated a hypothetical intervention targeting K–5 schools. As such, we
defined the target population for the simulated study to be all open, regular schools that
covered grades K through 5.4 We identified these 42,752 schools (situated in 11,733 dis-
tricts) in the 2018–2019 School District (LEA) universe survey, the 2018–19 School uni-
verse survey, and the 2016–2017 School District (LEA) finance data maintained by the
National Center for Education Statistics in the Common Core of Data (CCD). The fol-
lowing five school- and district-level variables were extracted and used in the analysis
(level of the data in parentheses): (1) total enrollment (school), (2) percentage of stu-
dents eligible for free or reduced-price lunch (FRPL) (school), (3) number of eligible
schools (district), (4) Census region (district), and (5) expenditures per pupil (district).5

We also synthetically generated an unobserved district-level variable that was not in the
CCD, which we labeled “district administrator leadership.” 6

Using the five observed variables from the CCD and the unobserved district adminis-
trative leadership variable, we specified an “impact generating process” that is a linear

4Specifically, we included schools that had each of the grade levels between grade K and grade 5, inclusive.
5A small share of these items was missing in the data. We addressed this using one of two strategies: (1) finding a
non-missing value from a prior year; or (2) using a single regression-based imputation. See Litwok et al. (2021) for
additional detail.
6We generated this variable using a random draw from the standard normal distribution for each district. We
conducted the random draw a single time to make this feature a fixed component of the population of schools—we
did not change the draw across iterations of the simulation.
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function of five of these variables. Because these variables include a mix of school-level
and district-level factors, the impact varies across districts and also across schools within
the same district. In addition, we specified a probabilistic process by which districts
agree or refuse to participate, and this process was a function of selected observed varia-
bles and the unobserved district administrative leadership variable. This framework was
designed to mimic a realistic scenario in which unobserved characteristics influence
both the impact of the intervention and the probability of inclusion in the sample.
Under this scenario, external validity bias cannot generally be eliminated by the sam-
pling methods tested in this article, and the question is which of the methods will yield
the smallest bias or mean squared error.

Tables 1 and 2 report summary statistics for these six variables. The average school in
the study population had 487 students, 57 percent of whom were eligible for FRPL. The
average district in the study population had four eligible K–5 schools and spent roughly
$12,500 per pupil. The median district had only one eligible school—68 percent of the
districts in the population had only one eligible school, and 83 percent had fewer than
five eligible schools. Districts and schools in the population were distributed across all
four Census regions, with the Midwest having the largest number of districts and the
South having the largest number of schools.

Variable Population Factors

Generating Impacts
We generated the impact of the hypothetical intervention for all schools in the target
population. Our goal was to generate impact variation across schools that is typical for
educational interventions, as demonstrated by recent empirical research. We also varied

Table 1. Summary statistics.

Total enrollment % FRPL eligible

Number of
eligible K–5
schools

per district
Expenditures per

Pupil ($)
Administrator
leadership

Mean 487 57 4 12,607 0
Standard deviation 283 29 11 5,070 1
Median 458 58 1 11,421 �0.01
Minimum 50 0 1 481 �3.92
Maximum 14,306 100 476 115,932 3.94
Sample Size 42,752 42,752 11,733 11,733 11,733

Note. Total Enrollment and % FRPL Eligible reported at the school level. Number of Eligible K-5 Schools per District,
Expenditures per Pupil, and Administrator Leadership reported at the district level.
Source. Author tabulations of Common Core of Data (Administrator Leadership generated by authors—see footnote 6).

Table 2. Regional distribution of study population.

Region
Share

(District-Level)
Share

(School-Level)

Northeast 18% 14%
Midwest 33% 22%
South 24% 36%
West 25% 29%

Note. N¼ 42,752 schools; 11,733 districts.
Source. Author tabulations of Common Core of Data.
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the share of that variation that could be explained by observed covariates, since that
share could differ considerably across interventions and studies.

To generate a distribution with these properties, we expressed the school-specific
impact (Dsd) for school s in district d as in Equation (1):

Dsd ¼ lsd þ
X3

i¼1
biXid þ

X5

i¼4
biXisd (1)

where lsd is a normally distributed school-specific random effect (with a mean and vari-
ance to be determined and assumed to be uncorrelated with the other covariates), Xid

and Xisd denote each of five covariates—standardized to each have a standard deviation
of 1—and bi denotes each of five fixed coefficients that capture the conditional relation-
ship between the impact and the standardized covariates. Three of the five covariates
are at the district level: number of schools per district, expenditures per pupil, and
administrator leadership; the other two are at the school level: total enrollment, and per-
cent FRPL eligible. For simplicity, we set the five bi coefficients equal to each other.
This is a strong assumption, as the relative importance of different covariates in deter-
mining the magnitude of the impact could vary across interventions. We relaxed this
assumption as a robustness check.

To simplify algebra, it is useful to convert the two summations in Equation (1) to
matrix notation:

Dsd ¼ lsd þ Xb (2)

where the matrix X contains the five covariates and the vector b has five coefficients.
Taking the variance of both sides and rearranging terms yields Equation (3):

Var lsdð Þ ¼ Var Dsdð Þ � b0Gb (3)

where G is the variance-covariance matrix for X: Defining W as the share of impact
variance not explained by covariates (W � Var lsdð Þ

Var Dsdð Þ):

b0Gb ¼ 1�Wð ÞVar Dsdð Þ (4)

We generated the impact for each school in the population by: (1) varying the pro-
portion of variation not explained by covariates, W, by setting it to the following values:
0.1, 0.25, 0.5, 0.75, 0.9, or 1; and (2) varying the unconditional variation of impact
across schools,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Dsdð Þp

, by setting it to the following values: 0.05, 0.1, and 0.2. We
centered the values for this parameter around 0.1 standard deviations because this is the
median variation in impacts for relevant studies reported in Weiss et al. (2017).7

Plugging these values into Equation (4) allowed us to derive values for b that could be
used to generate impacts for the population of schools (see Equation (1)). For each
combination of Var Dsdð Þ and W, Table 3 reports the resulting value of b:8

7Although Weiss et al. (2017) document the variation in impacts for 16 multisite RCTs, we focus on the five RCTs for
which they report estimates that are relevant to our hypothetical intervention because they are based on achievement
outcomes in elementary or middle school: (1) After School Reading, (2) After School Math, (3) Teach for America, (4)
Charter Middle Schools, and (5) Enhanced Reading Opportunity.
8There are slight deviations in Table 3 from the version of this table that appeared in Litwok et al. (2021). These
deviations are due to (1) standardizing district administrator leadership; and (2) updating the covariate imputation
model to correctly treat region as a factor variable.
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Agreement to Participate
We designed the simulations to test the performance of different selection strategies
when districts and schools are not required to participate. Therefore, we also generated
district and school participation decisions. A district was only included in the sample if
it was selected and agreed to participate in the study. A school was only included in the
sample if it was selected, its district agreed to participate in the study, and the school
itself agreed to participate in the study. This conforms with our experience in conduct-
ing RCTs, where schools need district permission to participate, but they also have the
latitude to opt out of the study if they do not want to participate.

We used the following model to generate district participation decisions:

Rd ¼ log
T

1� T

� �
þ x Dd � PATEð Þ (5)

Pd ¼ eRd

1þ eRd
(6)

To determine if the district would agree to participate, we drew a random variable
from the Bernoulli distribution with probability Pd, where a value of 1 indicated that
the district agreed to participate.

In Equation (5), Rd is a latent variable that consists of a nonrandom intercept shift
that is determined by the target share of districts that agree to participate (T), the dis-
trict-level impact (Dd) relative to the PATE, and a parameter that captures the relation-
ship between the district-level impact and the latent variable (x).9 Equation (6) uses an
inverse logistic function to transform this latent variable into a probability that the dis-
trict agrees to participate bounded by zero and one. Equations (5) and (6) together
imply that districts with impact equal to the PATE had a probability of participation
equal to T; the scaling parameter x and district-level variation in impacts around the

Table 3. Parameter values for impact model.
Var Dsdð Þ W b0Gb Var lsð Þ b

0.0025 0.1 0.00225 0.00025 0.0207
0.0025 0.25 0.001875 0.000625 0.0189
0.0025 0.5 0.00125 0.00125 0.0154
0.0025 0.75 0.000625 0.001875 0.0109
0.0025 0.9 0.00025 0.00225 0.0069
0.0025 1 0 0.0025 0
0.01 0.1 0.009 0.001 0.0414
0.01 0.25 0.0075 0.0025 0.0378
0.01 0.5 0.005 0.005 0.0308
0.01 0.75 0.0025 0.0075 0.0218
0.01 0.9 0.001 0.009 0.0138
0.01 1 0 0.01 0
0.04 0.1 0.036 0.004 0.0828
0.04 0.25 0.03 0.01 0.0756
0.04 0.5 0.02 0.02 0.0617
0.04 0.75 0.01 0.03 0.0436
0.04 0.9 0.004 0.036 0.0276
0.04 1 0 0.04 0

Note. Var Dsdð Þ based on distribution from Weiss et al. (2017).
Source. Author calculations.

9The district-level impact is the simple average of school impacts (with each school weighted equally).
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PATE generated variation in agreement to participate around T: Districts with larger
impacts were more likely to participate.

This model made the probability of agreeing to participate a function of the interven-
tion’s average impact in the district. Given the model used to generate impacts,
Equations (5) and (6) implies self-selection led large districts, well-resourced districts,
and districts with larger and higher-poverty schools to be overrepresented in the sample.
These relationships are consistent with prior work that reported the characteristics of
districts that participated in large RCTs (Stuart et al., 2017). However, that study did
not separately identify whether these were characteristics associated with selection or
agreement to participate.

Because districts’ willingness to participate and the bias introduced by these decisions
varies across studies, we varied the district-level target probability and the strength of
the relationship between impacts and agreement to participate. We varied the target
probability (T) from 0.1 to 0.4 in increments of 0.1.10 We also varied the strength of
the relationship between participation and impact (x) across simulations from 0 to 4.11

This parameter depends in part on the correlation between impacts and inclusion prob-
abilities, which Olsen et al. (2013) demonstrated is directly related to external valid-
ity bias.

To determine whether a school would agree to participate, we set a constant agree-
ment probability of 85 percent. This simplification mimics studies where obtaining dis-
trict approval is the major hurdle, and schools generally agree to participate if the
district approves. Given the relationship between school characteristics and district-level
average impacts, this framework implied that larger and higher poverty schools were
more likely to be in the sample in our simulations because districts with those schools
were more likely to agree to participate.

Sample Selection

The algorithm we used to select districts and schools for the evaluation combines strati-
fication with several different sampling approaches. We begin by describing the stratifi-
cation and sampling approaches before turning to the detailed procedure for
sample selection.

Stratification
To ensure adequate representation of different types of schools, we first stratified the
population of schools into 18 strata. This stratification used district- and school-level
factors that a researcher might hypothesize would moderate impacts. For consistency

10Most impact studies do not report statistics for the number of districts recruited and that agree to participate. Limited
recent evidence suggests a probability of roughly 0.1 at the district level (Gleason et al., 2019; Herrmann et al., 2019).
11Given no empirical evidence on the size of the relationship, we tested various values and explored the resulting
variation in district-level probability of participation (Pd) around the target probability. We determined that 0 to 4 was a
reasonable range for this parameter (e.g., variability for a scenario with target probability of 0.2 and strength of
relationship set to 4—the largest among the values we test—ranged from a minimum probability of 0.07 to a
maximum probability of 0.99 with 10th and 90th percentiles of 0.14 and 0.29, respectively).
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across strategies, we always stratified the population using the k-means clustering algo-
rithm proposed in Tipton (2013b). Specifically, we:

� Divided districts into six clusters.12 To identify these clusters, we applied k-
means clustering as proposed in Tipton (2013b), using district-level averages of
two school-level variables (see next bullet) and two district-level variables: (1)
Census region and (2) expenditures per pupil. District size and the simulated
measure of district leadership, which moderated the impact of the intervention,
were omitted to mimic real-world scenarios where important moderators are
unobserved or excluded.

� Divided schools into three clusters. To identify these clusters, we applied k-
means clustering to two school-level variables: (1) the number of students
enrolled in the school; and (2) the percentage of students who are FRPL-eligible.

� Crossed the six district clusters with the three school clusters to form 18 sam-
pling strata. The total number of schools targeted for the study was apportioned
across these 18 strata, with each having its own target number of schools for
inclusion in the study.

Sampling Approaches
To select districts and schools for the study, we implemented the following approaches:

1. Purposive selection. To select a purposive sample of districts, we rank-ordered
districts by their size—the number of eligible schools in the district—and
recruited the largest districts first. To select a purposive sample of schools, we
rank-ordered schools within participating districts by their size—the number of
students enrolled in the school—and recruited the largest schools first. This styl-
ized approach to purposive selection was designed to minimize the time and cost
required to recruit a sample of adequate size. While this stylized approach likely
ignores other characteristics that evaluators consider in their selection for recruit-
ment, we found that this approach generated samples with districts of similar
size as those that Stuart et al. (2017) document as having participated in several
large RCTs in education.13 These findings suggests that the approach to purpos-
ive sampling tested in our study is realistic in the extent to which it favors
large districts.

2. Balanced selection. To select a balanced sample of districts, we rank-ordered dis-
tricts based on their multivariate distance from the district cluster mean and
recruited the most typical districts first (those with the shortest distance from the
cluster mean).14 To select a balanced sample of schools, we rank-ordered schools

12We determined the preferred number of clusters by comparing the “pseudo-F” statistic for different numbers of
district- and school-level clusters. See Appendix A for further detail.
13Specifically, purposive selection of schools within purposively selected districts resulted in sampled districts with 103
total schools (not limited to K–5 schools), on average, across our simulated samples. For reference, the average for the
total number of schools in our population of districts was 7. Stuart et al. (2017) report that, across 11 large RCTs, the
average size of participating districts was 127 schools. See online appendix Table O.1 for additional detail.
14Our distance metric is based on Gower (1971), which allows us to combine both continuous moderators (number of
eligible K–5 schools in the district, expenditures per pupil, district-level average of number of students enrolled in the
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based on their multivariate distance from the stratum mean and recruited the
most typical schools first. This approach, which extends the balanced sampling
method described in Tipton (2013b) to two-stage sampling of districts and
schools, is designed to favor typical districts and schools in the selection process.

3. Random selection. To randomly select districts, we rank-ordered them using an
approach that we developed to mimic sampling with probability proportional to
size (PPS)—see Appendix B for more details. We preferred larger districts (those
with a greater number of eligible K–5 schools), giving them a greater probability
of appearing higher in the rank-ordered list for recruitment, to reflect practical
and cost considerations typically encountered by evaluators. However, to prevent
schools in large districts from being heavily overrepresented in the sample, we
capped the number of schools per districts at five. To select a random sample of
schools, we rank-ordered schools in participating districts purely randomly, inde-
pendent of size or any other characteristic.

We tested nine different core sample selection strategies—all three approaches to dis-
trict selection crossed with all three approaches to school selection—to identify the com-
binations that performed best.

Sample Selection Procedure
For each of the nine core sample selection strategies, we selected a sample by imple-
menting the following steps:

1. Set sample size targets for each of the 18 sampling strata. The target number
of schools for a particular stratum was set equal to the product of the overall tar-
get school sample size and the share of eligible schools in the population that
belonged to this stratum.

2. Rank-order districts and schools within their appropriate groups. Districts
were grouped into the six district clusters and rank-ordered within each cluster.
Schools were rank-ordered within groups formed by the combination of district
and school cluster (i.e., all eligible schools within a given district were grouped
separately by the three school clusters). Each rank order depended on the par-
ticular selection strategy implemented.

3. In any given district cluster, recruit the first district on the rank-ordered list
and simulate its participation decision. To simulate this decision, we generated
a random variable using a Bernoulli distribution with the probability from
Equation (6), where a value of 1 indicated that the district agreed to participate.

4. If the district agreed to participate, recruit schools from that district within
each school cluster, one at a time, in order. We skipped a school cluster either
if the sample size target for the associated stratum had already been reached or if
the district had no eligible schools in the cluster. Otherwise, we simulated school
participation by generating a random variable using a Bernoulli distribution with

school, and district-level average of proportion of students eligible for FRPL across schools) and categorical ones
(Census region). See Appendix A for further detail.
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a probability of 0.85, where a value of 1 indicated that the school agreed to par-
ticipate. We continued recruiting schools in the sampling stratum and district
until we either (a) exhausted the list of eligible schools in that sampling stratum
and district; (b) achieved the target sample of participating schools in that sam-
pling stratum; or (c) five schools in the district agreed to participate.15 We
capped the number of participating schools in a district at five with the goal of
ensuring that our simulations included enough participating districts to mimic
actual RCTs in education.16

5. Repeat steps 3-4 for the remaining districts in the district cluster until the target
number of participating schools in each of the three strata for this district cluster,
as defined by three school clusters, was reached.

6. Repeat steps 3-5 for the other five district clusters until the target number of par-
ticipating schools in each of the 18 sampling strata was reached.

Testing Replacement Strategies
Our last research question focused on approaches to replacing districts that refused to
participate. In general, replacement for the nine core strategies occurred naturally by
moving down to the next district or school on the rank-ordered list. However, large-
scale assessments in education, such as the NAEP or PISA, use a nearest neighbor
approach to replace refusing schools, where the replacement school is selected using the
characteristics of the refusing school. Therefore, we also examined the performance of
random district selection with nearest neighbor replacement. We implemented this
replacement strategy by creating a rank-ordered list of replacement districts using the
same distance measure that we used in our approach to balanced selection. However,
instead of ranking districts by their distance from the cluster mean, we ranked them by
their distance from the vector of characteristics for the refusing district.

Simulation Details

Repeated Sampling
Purposive and balanced district and school selection approaches used a nonrandom,
deterministic process to rank-order districts and schools. If all districts and schools
agreed to participate, repeated sampling would not be necessary for calculating the
SATE for these approaches. However, random selection placed districts and schools in a
different random order each time the sampling approach was applied. For any given

15Because most districts (86%) had fewer than six K–5 schools, the order in which we recruited schools was often
immaterial. All schools were typically recruited if the district had fewer than six K–5 schools. See Table O.7 in the online
appendix for an assessment of the extent to which school samples varied by strategy.
16For districts that had more than five K–5 schools and that had schools in multiple sampling strata, we had to decide
how to allocate the five-school cap among the sampling strata. In other words, we had to decide from which strata to
recruit first. We chose to allocate the five-school cap based on the percentage of eligible schools by stratum in the
district. For example, if a district had 10 schools, 6 in sampling stratum A, 4 in stratum B, and none in stratum C, we
would initially target 3 schools for selection in stratum A and 2 in stratum B (by multiplying 5 schools by 60% and
40% for the respective stratum targets). After simulating schools’ decisions to participate, we adjusted the allocation if
we were unable to meet the targets and if there were additional schools available for recruitment in the district. For
instance, if we attempted to recruit all 6 schools in stratum A and only 2 agreed to participate, we would try to recruit
an additional school in stratum B.
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application of random selection, then, the relative performance of the strategy for that
sample was not necessarily reflective of what one should expect on average. Instead, a
better assessment of the average performance of random selection comes from taking an
average over a large number of iterations—each of which sorted districts and schools
differently.

Across iterations of the simulation, we also allowed district and school agreement to
participate to vary. This decision implies the SATE varied across iterations for all selec-
tion strategies. We allowed agreement to participate to vary to reflect uncertainty about
whether districts or schools agreed to participate, conditional on their characteristics,
and to account for that uncertainty when we estimated the performance of different
selection strategies.

We simulated 1,000 samples for each set of parameter values.17 Across simulated
samples (for a given strategy), all that changed was the draw of the random parameters:
the school-specific random effect on impact (lsd) in Equation (1) (and the correspond-
ing effect on the probability the district agreed to participate), the draws from the
Bernoulli distribution that determined agreement to participate, and a random variable
we used for rank-ordering districts and schools for random selection and breaking ties
in any of the selection strategies.

Measures of Performance
Our approach generated an impact for all schools in the target population. The simple
average impact across these schools was the PATE. For any of the strategies, the SATE
was the average impact for the selected schools that agreed to participate in the evalu-
ation.18 We assessed generalizability by comparing the expected SATE to the PATE
using the following measures of performance:

� Mean squared error (MSE) summarized the bias and variance across R replica-
tions together:

MSE ¼ 1
R

XR

k¼1

SATEk � PATEð Þ2

¼ 1
R

XR

k¼1

ðSATEk � PATEÞ
2
4

3
5
2

þ 1
R
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k¼1

ðSATEk� 1
R

XR

k¼1

SATEkÞ2

where the first term equals the bias squared and the second term equals the variance
across samples. We preferred this measure of performance to either bias or variance alone
because it incorporated both of these components in one measure, and because the source
of errors in estimating the PATE (or the relative contributions of bias or variance) is not
the focus of our analysis. We answered the first and fourth research questions by

17We began by conducting 10,000 simulations at baseline parameter values and calculating simulation error for
progressively smaller sample sizes. We found that conducting 1,000 simulations reduced simulation error below 0.001
(in fact, 500 or even fewer generated sufficiently small simulation error—see Litwok et al. (2021)). As a result, we report
summaries of 1,000 simulations for each set of parameter values throughout the paper. Results using 500 simulations,
which appeared in earlier drafts, are available in the online appendix (and are very similar).
18We weighted all schools equally for calculating the PATE and the SATE, for simplicity. Reasonable alternatives would
have weighted schools by the number of students enrolled in the school or participating in the study.
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comparing MSE across different strategies. We separately assessed the absolute value of
the bias as well as the standard deviation (square root of variance) to explore the relative
contributions of these factors as MSE changed.19

� Relative mean squared error (RelMSE) summarized the MSE relative to some
benchmark:

RelMSEs ¼ MSEs
MSE�

where MSEs was the mean squared error for strategy s and MSE� was a benchmark MSE.
This measure was useful for exploring the relative performance of strategies as parameters
changed, which was the focus of the third research question. Changes to parameters
caused the magnitude of MSE to change; however, our interest was in relative perform-
ance of different strategies rather than magnitude of MSE. We used random district selec-
tion and random school selection as our benchmark and calculated relative MSE to
summarize strategy performance over a broad set of parameter values.

In addition to assessing performance in terms of generalizability, we also assessed
the recruiting burden associated with each strategy, using the following measures:

� Average number of districts recruited summarized the total number of districts
recruited before the target school sample size was reached. The number of dis-
tricts recruited includes both districts that agreed to participate and districts that
declined. This total was averaged over 1,000 simulations for each strategy.

� Average number of schools recruited summarized the total number of schools
recruited, in districts that agreed to participate, before the target school sample
size was reached. The number of schools recruited in participating districts
includes both schools that agreed to participate and schools that declined. This
number does not include schools in districts that declined to participate. The
number of schools recruited was averaged over 1,000 simulations for
each strategy.

Varying Parameters
As best we could, we aimed to simulate an evaluation that matched published RCTs tar-
geting the K-5 population. Varying parameter values provided the opportunity to test
our findings for robustness to assumed values and/or to generate evidence that might be
applicable to other environments. The parameters we varied, and the values over which
we varied them, were as follows:

� Proportion of variation explained by covariates: 0, 0.1, 0.25, 0.5, 0.75, 0.9.
� Variance of impacts across schools: 0.0025, 0.01, 0.04.
� Target school sample size20: 50, 100, 150, 200.

19Readers interested in the magnitude of all measures of performance for all parameter values can find the output in
the online appendix.
20We explored samples that ranged from 50 schools, as we would expect for typical RCTs, to 200 schools, which was at
the very high end of what a large RCT conducted by the federal government would include. For points of comparison,
two recent RCTs conducted for IES’s National Center for Education Evaluation and Regional Assistance—which sponsors
some of the largest RCTs in education—included 146 schools (Balu et al., 2015) and 82 schools (Clark et al., 2013).
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� Relationship between latent variable determining participation and impacts: 0, 1,
2, 4.

� Probability of district agreement to participate: 0.1, 0.2, 0.3, 0.4.

Our primary findings summarize the simulations under “baseline conditions” (indi-
cated with bold font above). We set baseline conditions to the value most closely aligned
with empirical evidence where it was available; in the absence of empirical evidence, we
set the baseline condition to be around the midpoint of the range of parameter values
we tested. We answered the third research question by varying simulations across all
combinations of these parameter values.

Results

Research Question 1: Relative Performance of Strategies

To test our intuition about the relative performance of different selection strategies in
the simplest setting, we first imposed that all selected districts and schools would agree
to participate if selected (see online appendix Table O.4 for results of these simulations).
Simulation results under these conditions were consistent with our expectations. For
instance, purposive district selection had the largest MSE due to substantially greater
bias than other strategies. The source of this bias was that the largest districts were those
with the greatest impact, and the strategies with purposive district selection used only
those districts. Absolute bias was near zero for all strategies that used balanced or ran-
dom district selection. However, as should be expected with random district selection,
the variance associated with these strategies was larger than for other strategies.

Next, we repeated the simulation and allowed districts and schools to make participa-
tion decisions. Further exploration into the districts and schools selected by the strat-
egies revealed valuable insights about the samples selected by the strategies. Balanced
district selection favored schools in smaller districts. This may seem surprising because
districts were selected without regard to size in balanced district selection—as opposed
to purposive and random district selection, which both explicitly favored larger districts,
to different degrees, in the first stage of sampling. One might expect there to be rela-
tively little to no bias around district size for balanced district selection, and that would
be mostly correct—at the district level. The average district size in samples formed
through balanced district selection (7 eligible schools per district) was closer to the aver-
age in the national population of districts (4 eligible schools per district) than was the
average for samples formed through random district selection (25 eligible schools
per district).

However, while balanced district selection showed less bias than random district
selection for district size at the district level, it showed greater bias at the school level.
At the school level, the average school in the population was located in a district with
37 eligible schools. In contrast, schools in districts selected via balanced sampling were
in much smaller districts (9 eligible schools on average). And schools in districts
selected via random sampling were located in districts with 32 eligible schools on aver-
age, much closer to the average in the national population.
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Table 4 reports the measures of performance in this environment for 1,000 simulated
samples. In describing the findings, we refer to “approach A/approach B” for the strat-
egy that used approach A to select districts and approach B to select schools. Under
baseline conditions, in which only 10% of recruited districts agreed to participate, MSE
was smallest for random/random and random/balanced.

Across all nine core strategies, random/balanced and random/random also had the
smallest absolute bias. The magnitude of bias in Table 4 was generally small (less than
0.05 standard deviations) for all strategies. The limited available evidence on the magni-
tude of external validity bias in the literature suggest bias may be larger than these esti-
mates in practice (Bell et al., 2016).

The findings in Table 4 also demonstrate two important results pertaining to school
selection approaches. First, random and balanced school selection performed similarly
within districts selected through random or balanced selection. Relative MSE was
slightly smaller for random school selection with some district selection approaches
(e.g., balanced district selection) and slightly larger for others (e.g., purposive district
selection). Second, the performance of purposive school selection was erratic—it per-
formed moderately well for some district selection approaches and poorly for others.
For example, it yielded relatively low MSE with balanced district selection; but it yielded
relatively high MSE for other district selection approaches.21

Robustness Checks
We explored the robustness of the findings to changing some of the simplifying
assumptions in the impact model specifications under baseline conditions: (a) we
relaxed the linearity of the impact model by making Equation (1) a function of the nat-
ural logarithm of total school enrollment (rather than its level); (b) we relaxed the
assumption of equal magnitudes of the coefficients in Equation (1) by doubling the
coefficients on the number of eligible K–5 schools per district and total school enroll-
ment; and (c) we relaxed the assumption of equal magnitudes of the coefficients in

Table 4. Mean squared error, relative mean squared error, absolute bias, and standard deviation.

Strategy (District/school) MSE
Relative
MSE

Absolute
Bias Standard deviation

Purposive/purposive 0.00119 10.37 0.03222 0.01247
Purposive/balanced 0.00021 1.84 0.00954 0.01101
Purposive/random 0.00025 2.14 0.01141 0.01080
Balanced/purposive 0.00016 1.40 0.00870 0.00926
Balanced/balanced 0.00024 2.11 0.01238 0.00949
Balanced/random 0.00023 2.00 0.01204 0.00926
Random/purposive 0.00029 2.49 0.01215 0.01181
Random/balanced 0.00012 1.01 0.00034 0.01075
Random/random 0.00012 1.00 0.00020 0.01073

Notes. “MSE” ¼ mean squared error. Relative MSE relative to “Random/random.” Parameters set to baseline conditions.
Results summarize findings across 1,000 simulations for each strategy.
Source. Author calculations using simulation results.

21This was likely due to offsetting biases—balanced district selection systematically chose smaller districts for the
evaluation, which were likely to have smaller impacts, while purposive school selection systematically chose larger
schools for the evaluation, which were likely to have larger impacts. If the magnitude of the negative bias from
balanced district selection was larger than the positive bias from purposive school selection, the resulting absolute bias
was smaller than that from the other strategies.
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Equation (1) by halving these two coefficients. Detailed output appears in the
online appendix.

Our main findings were robust to all three checks—the relative ranking of the strat-
egies was nearly unchanged. Relaxing the linearity assumption had little effect on the
MSE for any of the selection methods. Doubling and halving the coefficients on district
and school size influenced the performance of purposive district selection, which delib-
erately favored large districts, purposive school selection, which deliberately favored
large schools, and balanced district selection, which in practice favored schools in small
districts. For each, doubling the coefficients increased absolute bias and MSE by increas-
ing the differences in impacts between selected and unselected districts and schools;
halving these two coefficients had the opposite effect. Changing the magnitude of the
coefficients did not influence the performance of random district and school selection.

Research Question 2: Recruiting Burden

Separately from external validity outcome measures, the recruiting effort required to
implement each of the strategies is critical to researchers who are constrained by a
budget. The analysis in Table 5 summarizes, under baseline conditions, the average
number of districts and schools recruited to meet the evaluation’s goal of 100 schools
participating in the evaluation. All the strategies recruited roughly 115 schools on aver-
age to meet the goal of 100 participating schools, which was consistent with the school
participation rate of 85 percent. However, there were substantial differences in the num-
ber of districts recruited across strategies. Purposive district selection required recruit-
ment of 293.9 districts, on average, to successfully recruit 100 schools into the study.
This method yielded the smallest recruitment burden by recruiting the largest districts,
which had the largest numbers of eligible schools that could participate. The recruiting
burden increased to 354.3 districts for random district selection, which favored large
districts, given how the probabilities were set, but to a lesser extent than purposive dis-
trict selection. Finally, the recruiting burden increased substantially to 613.1 districts for
balanced district selection, which did not favor larger districts at all.22

Table 5. Number of districts and schools recruited by strategy.
Strategy (District/school) Districts Recruited Districts Agreed Schools Recruited Schools Agreed

Purposive/purposive 293.9 29.3 117.4 100.0
Purposive/balanced 293.9 29.3 117.7 100.0
Purposive/random 293.9 29.3 117.5 100.0
Balanced/purposive 613.1 54.7 112.6 100.0
Balanced/balanced 613.1 54.7 112.6 100.0
Balanced/random 613.1 54.7 112.5 100.0
Random/purposive 354.3 33.5 116.5 100.0
Random/balanced 354.3 33.5 116.8 100.0
Random/random 354.3 33.5 116.6 100.0

Notes. Parameters set to baseline conditions. Results summarize findings across 1,000 simulations for each strategy.
Source. Author calculations using simulation results.

22The burden estimates in Table 5 suggested a district agreement rate that was slightly smaller than 10 percent,
particularly for balanced and random district selection. The actual rate was lower than the target under baseline
conditions because, although some districts might have agreed to participate, those districts were not included in the
sample if no schools within the district agreed to participate. Balanced and random selection of districts increased the
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Research Question 3: Changes to Baseline Conditions

To explore the extent to which deviations from baseline conditions change the perform-
ance of different strategies, we conducted simulations for different values of the parame-
ters. We graphed the changes in performance due to varying a single parameter at
a time.

This analysis differed from the preceding analyses under baseline conditions in four
ways. First, since Table 4 showed that the different performance measures tended to
rank the different methods similarly, this analysis focused exclusively on MSE relative to
random/random.23 This implies that the relative MSE of random/random is always
equal to 1. Focusing on relative MSE as opposed to absolute MSE meant that trends in
each strategy’s performance were influenced by both changes in the MSE of that strategy
and changes in the MSE of the benchmark, random/random. This feature is critical to
proper interpretation. For instance, the MSE of a particular strategy may have declined
monotonically as a parameter changed, yet still produced an increase in relative MSE
because of changes in the performance of the benchmark strategy. Second, we elimi-
nated purposive/purposive from the figures in this section. This strategy always per-
formed worst, and the relative MSE for purposive/purposive in Table 4 (10.37) is
indicative of the magnitude of the relative performance of this strategy. Such large rela-
tive differences required much larger scales in the figures and obscured the differences
among the other strategies. Last, we allowed the scales of the figures to vary across
parameters. Changes to parameters led to different degrees of variation in relative MSE.
Since our focus was on the relative performance of each of the strategies as a single par-
ameter changed rather than the magnitude of relative MSE or comparing across figures,
we allowed the scales to change across figures to clarify that relative performance.

The figures that follow change parameters associated with two dimensions of the simula-
tion environment: parameters reflecting impact and parameters reflecting recruitment.
Figures 1 and 2 focus on parameters reflecting impact—the cross-school impact variance
and the share of impact variation explained by covariates—and Figures 3, 4, and 5 focus on
parameters reflecting recruitment—the number of schools, the district participation rate,
and the strength of the relationship between impact and district participation decisions.

Figure 1 summarizes how estimates of relative MSE change with changes to the vari-
ance of impact across schools. The baseline condition for cross-school impact variance
was 0.01 (obtained by squaring a standard deviation of 0.1). Figure 1 demonstrates that
the relative MSE for random/random and random/balanced were consistently small and
often the smallest across all values of cross-school impact variance. With a smaller value
of cross-school impact variance (0.0025) the relative performance of all other strategies
was similar. As cross-school impact variance grew (0.04), the relative performance of all
strategies with balanced district selection improved. This relationship is explained by
changes to the absolute MSE for random/random. As cross-school impact variance
increased, so did the absolute MSE for random/random (largely due to increases in vari-
ance). The relative performance for strategies that used balanced district selection

likelihood of selecting smaller districts, in which a single school choosing not to participate might have resulted in the
district not participating in the study.
23Results for other measures of performance appear in the online appendix.
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improved because, while the absolute MSE also increased for these strategies, it
increased at a smaller rate.

Figure 2 summarizes how relative MSE changed with the proportion of impact variation
explained by covariates. Relative MSE was close to 1 for all strategies when covariates did
not explain any variation in impacts. As the proportion of variation explained by covariates
grew, the relative MSE grew for all strategies other than random/balanced and random/ran-
dom. That relative MSE grew in this way—and fairly consistently across strategies—implies
the findings under baseline conditions (where 25 percent of impact variation was explained
by covariates) were robust to changes in this parameter. This growth in MSE was due pri-
marily to growth in bias, rather than variance (see online appendix Tables O.10a and O.10b).
This was consistent with our expectations—because balanced and purposive strategies inten-
tionally excluded characteristics that determined impacts (balanced excluded administrator
leadership and district size while purposive excluded everything other than district/school
size, see Sampling Approaches”), we expected bias to grow as those omitted variables
explained a larger and larger share of cross-school impact variation.

Next, we examined the importance of factors related to selecting an adequate sam-
ple—specifically, the target school sample size, the district participation rate, and the
strength of the relationship between district-level impacts and agreement to
participate.

Figure 3 varies the number of schools targeted for selection. As with Figures 1 and 2,
the strong performance of random/random and random/balanced was robust to the

Figure 1. Changes to relative MSE with cross-school impact variance. Note. Figure reports changes to
relative MSE as cross-school impact variance changed. All other parameters fixed at baseline condi-
tions. Solid gray line at relative MSE of 1 reflects performance of random/random. Figures exclude
purposive/purposive because the relative MSE for this strategy is much larger than all other strategies
and would distort the figure. See online appendix for full output for all strategies. Source. Author cal-
culations using simulation results.
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total number of schools included in the evaluation. At the smallest number of schools
(50), Figure 3 shows similar relative MSE for all strategies other than purposive/bal-
anced, purposive/random, and random/purposive. As the number of schools grew, the
MSE of the three balanced district selection strategies increased relative to the MSE of
the benchmark selection method, random district selection with random selection of
schools. This is because the variance of the impact estimates declined by more for ran-
dom district selection than for balanced district selection as the number of districts in
the sample increased to recruit additional schools (online appendix, Table O.9b).
Meanwhile, the relative performance of random/purposive did not change substantially,
and the relative MSE of purposive/balanced and purposive/random declined as the tar-
get number of schools increased—presumably because the average size of participating
districts declined as the algorithms worked further down the recruitment list to smaller
districts, in order to meet the demands of a greater sample size.24

Figure 4 varies the district participation rate. Unlike other parameters, the relative
performance for most strategies was largely unaffected by changes to the district par-
ticipation rate (meaning the overall findings were also robust to changes in this par-
ameter). There were two clear exceptions: purposive/balanced and purposive/random.

Figure 2. Changes to relative MSE with proportion of variation explained by covariates. Note. Figure
reports changes to relative MSE as proportion of variation explained by covariates changed. All other
parameters fixed at baseline conditions. Solid gray line at relative MSE of 1 reflects performance of
random/random. Figures exclude purposive/purposive because the relative MSE for this strategy is
much larger than all other strategies and would distort the figure. See online appendix for full output
for all strategies. Source. Author calculations using simulation results.

24Average district size declines sharply with the target number of schools. On average, participating districts recruited
through purposive district selection had 61 eligible schools for a target of 50 schools, 47 eligible schools for a target of
100 schools, 40 eligible schools for a target of 150 schools, and 35 eligible schools for a target of 200 schools.
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For these strategies relative MSE grew as the district participation rate grew. This
finding can be attributed to the fact that as the district participation rate increases,
the study needs to recruit fewer districts to reach the target number of schools. And
recruiting fewer districts purposively means recruiting larger districts—districts higher
on the list ranked in descending order of size—which are less typical of dis-
tricts nationwide.

Figure 5 shows how relative MSE varied with changes to the final parameter—the
strength of the relationship between district participation and average district impact.
The behavior of random/random and random/balanced remained among the strongest
across all values of the parameter. However, the relative performance of balanced district
selection improved as the relationship between participation and impact strengthened
(and not just in relative terms—balanced selection was the only district selection strategy
where the MSE consistently decreased in absolute terms as the relationship between par-
ticipation and impact strengthened). Indeed, for the largest value of this relationship
(4), the performance of the balanced strategies was stronger than random/random and
random/balanced. Increasing the value of this parameter implies districts with larger
average impacts are more likely to agree to participate; the results in Figure 5 imply bal-
anced district selection counterbalanced this bias by favoring smaller districts (which
tended to have smaller impacts).

In summary, the primary findings from our analysis—that random/random and ran-
dom/balanced strategies performed best in terms of relative MSE—were robust to

Figure 3. Changes to relative MSE with number of schools. Note. Figure reports changes to relative
MSE as number of schools changed. All other parameters fixed at baseline conditions. Solid gray line
at relative MSE of 1 reflects performance of random/random. Figures exclude purposive/purposive
because the relative MSE for this strategy is much larger than all other strategies and would distort
the figure. See online appendix for full output for all strategies. Source. Author calculations using
simulation results.
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changes in baseline conditions. Under certain conditions (such as a small sample size
or a strong relationship between impact and participation), other strategies had simi-
lar or slightly better performance, but the relative MSE for those strategies did not
drop much below 1. These findings indicate that random/random and random/bal-
anced were the most consistent performers across the combinations of parameters
we tested.

Research Question 4: District Replacement

To explore the performance of methods for replacing districts that declined to partici-
pate, we limited the focus to the strategies that used random district selection, modified
the algorithm for replacing declining districts, and produced the same evidence we used
to answer the first research question.

Table 6 reports performance measures across 1,000 simulated samples for random dis-
trict selection with random replacement and with nearest neighbor replacement (analo-
gous to Table 4). When paired with balanced or random school selection, Table 6
shows that nearest neighbor replacement of nonparticipating districts did not improve
performance relative to random replacement. Comparing these rows in Table 6 demon-
strates that nearest neighbor replacement reduced the variance across samples; however,
it increased the magnitude of bias such that it increased the relative MSE. The increase
in bias may be explained by selection of nearest neighbor districts without regard for

Figure 4. Changes to relative MSE with district participation rate. Note. Figure reports changes to rela-
tive MSE as district participation rate changed. All other parameters fixed at baseline conditions. Solid
gray line at relative MSE of 1 reflects performance of random/random. Figures exclude purposive/pur-
posive because the relative MSE for this strategy is much larger than all other strategies and would
distort the figure. See online appendix for full output for all strategies. Source. Author calculations
using simulation results.
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their size—a characteristic that mediated impact by construction.25 This result differed
from pairing nearest neighbor replacement of nonparticipating districts with purposive
school selection, which reduced both the magnitude of bias and variance relative to ran-
dom replacement leading to a large reduction in relative MSE.26

Table 6. Mean squared error, relative mean squared error, absolute bias, and standard deviation by
replacement strategy.
Strategy (District/school) MSE Relative MSE Absolute Bias Standard deviation

Random (random replacement)/purposive 0.00029 2.49 0.01215 0.01181
Random (random replacement)/balanced 0.00012 1.01 0.00034 0.01075
Random (random replacement)/random 0.00012 1.00 0.00020 0.01073
Random (nearest neighbor replacement)/purposive 0.00012 1.08 0.00113 0.01108
Random (nearest neighbor replacement)/balanced 0.00016 1.36 0.00681 0.01048
Random (nearest neighbor replacement)/random 0.00015 1.32 0.00658 0.01041

Notes. “MSE” ¼ mean squared error. Relative MSE relative to “Random (random replacement)/random.” Parameters set
to baseline conditions. Results summarize findings across 1,000 simulations for each method.
Source. Author calculations using simulation results.

Figure 5. Changes to relative MSE with Relationship between District Participation and Impacts. Note.
Figure reports changes to relative MSE as relationship between district participation and impact
changed. All other parameters fixed at baseline conditions. Solid gray line at relative MSE of 1 reflects
performance of random/random. Figures exclude purposive/purposive because the relative MSE for
this strategy is much larger than all other strategies and would distort the figure. See online appendix
for full output for all strategies. Source. Author calculations using simulation results.

25Nearest neighbor replacement of nonparticipating districts used the same distance metric as balanced district
selection. Therefore, since balanced district selection performed somewhat worse than random district selection, it is
perhaps not surprising that nearest neighbor district replacement performed somewhat worse than random district
replacement.
26The surprisingly strong performance of purposive school selection—when paired with random district selection with
nearest neighbor replacement—can likely be attributed to offsetting biases from a sampling process that favored large
schools, generating a positive bias, in small districts, generating a negative bias. Purposive school selection favored
large schools by design. Nearest neighbor replacement favored small districts for the same reason as balanced district
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Recruiting burden was also relevant for nearest neighbor replacement. When ran-
domly selected districts that refuse to participate were replaced with their nearest neigh-
bor, the number of districts recruited to meet the same school target (i.e., the analog to
Table 5) was considerably larger than the number for random selection with random
replacement—an evaluation would need to recruit 598 districts with nearest neighbor
replacement rather than 354 with random replacement. This could be because nearest
neighbor districts were selected without regard for their size, while random replace-
ments were selected with probabilities proportional to their size, like the districts they
replaced. Alternatively, it could be the case that nearest neighbors for districts unlikely
to agree to participate are also unlikely to agree to participate (whereas a randomly
selected replacement district may be more likely to agree to participate).

Last, we also explored the extent to which the findings in Table 6 were robust to
changes in baseline conditions. As with the earlier analysis of the third research ques-
tion, we found that the stronger performance of random replacement over nearest
neighbor replacement was robust to most changes in baseline conditions. The exceptions
were for the highest level of cross-school impact variance (0.04) and the strongest rela-
tionship between impact and district agreement to participate (4). In these cases, nearest
neighbor replacement had lower MSE. Detailed results for these analyses appear in the
online appendix.

Discussion and Conclusion

This article generated empirical evidence on the performance of prospective strategies
for selecting a sample of schools to participate in an impact study—with performance
measured in terms of generalizability to a target population of schools. We tested these
strategies in an environment where researchers first selected districts and then selected
schools to participate. The strategies consisted of a variety of approaches, both those
recommended in the literature—random and balanced selection—and a stylized
approach that matched the characteristics of districts that typically participate in large
RCTs—purposive selection. Importantly, random selection of districts was not a simple
random sample within strata from the target population (which evaluators may not be
comfortable with). Our approach favored larger school districts by imposing that their
probability of selection was proportional to district size.

In an environment where districts chose whether to participate in the evaluation, the
results of our analysis were nearly unequivocal. Strategies that combined random district
selection with either random or balanced school selection fared better than other strat-
egies for all external validity outcome measures we explored (mean squared error, rela-
tive mean squared error, absolute bias, and standard deviation). Among those other
strategies purposive/purposive clearly had the worst performance, and balanced district
selection required so many more districts than random district selection (without mean-
ingfully improving external validity outcomes) as to be impractical for any evaluation
with a budget constraint. The findings held among nearly all combinations of parameter

selection: neither approach deliberately favored small districts, but the cap of five schools per district constrained the
representation of large districts in the sample.
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values we tested and a wide range of possible values. These parameters captured charac-
teristics of impact—cross-school variance in impacts and share of impact variation
explained by covariates—as well as characteristics of the evaluation—target number of
schools, district participation rate, and relationship between impact and participation.

We also tested whether replacing districts that refused to participate in the evaluation
with their nearest neighbors performed better than random replacement. While nearest
neighbor replacement sharply reduced the variance of the SATE across samples, the cor-
responding increase in bias resulted in worse performance in terms of relative MSE.
Similar to the overall findings comparing selection strategies, this finding held among
many combinations of parameter values we tested.

These results have important implications for the common practice of favoring large
districts (and large schools within those districts) in the design of RCTs in education.
Favoring large districts may be appealing for cost reasons because the study can achieve
its target number of schools or students by recruiting only a few districts. But our simu-
lations demonstrate that favoring the largest districts can lead to impact estimates with
a high degree of external validity bias, consistent with Bell et al. (2016; though bias is of
a smaller magnitude in our simulations than in Bell et al. (2016)). Our findings suggest
this bias can be reduced by favoring large districts to a lesser degree (by selecting dis-
tricts with probabilities proportional to size) or not at all (by selecting a balanced sam-
ple of districts to match the population, which may include a lot of small districts).
Reducing external validity bias results in evaluation evidence that is more relevant to
policymakers because the findings generalize to a well-defined target population.

At present, the two-stage sampling approaches tested in our simulations—first select-
ing districts, and then selecting an uncertain number of schools within those districts—
may be challenging for education researchers to implement. The practical challenges to
implementing the strategies that were found to improve generalizability in our simula-
tions imply that the field would benefit from additional training and resources, includ-
ing computer code, to help implement these strategies. In that regard, we have made
our statistical code available in our repository on the Open Science Framework.27

The questions addressed in our simulations warrant additional research to determine
the extent to which our findings generalize to scenarios not covered in our simulations.
For example, we defined the target population as the full national population of schools,
but we recognize that many impact studies may have a different target population in
mind (such as rural elementary schools). A researcher may even prefer to define the tar-
get population in terms of students rather than schools. Our simulation explored biases
relative to one plausible target population, and the performance of different strategies
for generalizing to other populations is unknown.

We also made a variety of other choices in designing our simulation that were plaus-
ible, but where alternative choices would also be plausible. Our simulation focused on
scenarios where the main threat to the generalizability of the study findings stemmed
from district decisions about whether to participate in the study. However, scenarios
exist in which the main threat stems from schools. We also chose to associate larger
schools with larger impacts for the hypothetical intervention we studied—a choice that

27See https://osf.io/fehjc.
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aimed to create external validity bias consistent with what has been observed in prior
studies, but one that could have led our simulations to overestimate the negative conse-
quences of purposive sampling in practice. For example, the surprisingly strong per-
formance of balanced district selection (and random district selection with nearest
neighbor replacement) with purposive school selection may also be overstated by the
choices we made. This selection strategy appeared to benefit from directionally opposed
biases since balanced district selection favored smaller districts (which, by design, were
associated with smaller impacts), and purposive school selection favored larger schools
(which, by design, were associated with larger impacts). Additional testing of the sensi-
tivity of these choices as well as deeper analysis of the simulation results (e.g., of the
interaction between changes in multiple parameters at once) are areas for future
research. Furthermore, future research might combine the prospective strategies we
tested with the retrospective strategies that are gaining prominence in the literature to
see whether differences in the performance of different strategies can be addressed at
the analysis stage.

In closing, the field of applied educational research has moved toward incorporating
experimental methods that minimize bias for internal validity. Our findings demon-
strated that researchers’ decisions about how to select and recruit districts and schools
can reduce the amount of external validity bias in the study’s impact estimate. Our find-
ings also showed that relatively simple adjustments to the process of selecting schools
and districts, such as incorporating randomness, resulted in a sample that better repre-
sented the target population of interest.
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Appendix A. Balanced site selection details

This appendix describes two components of how we implemented balanced site selection: the dis-
tance metric and the number of strata.

Distance Metric

The variables we used in balanced selection of districts were both continuous (expenditures per
pupil, district-level average of number of students enrolled in the school, and district-level aver-
age of proportion of students eligible for FRPL across schools) and categorical (Census region).
The variables we used in balanced selection of schools were continuous (number of students
enrolled in the school and proportion of students eligible for FRPL).

When the desired set of characteristics includes both continuous and categorical measures,
Tipton (2013b) recommends a distance measure based on Gower (1971). We used this measure
as our distance metric at both the district and school levels.

Selecting Number of Strata

Tipton (2013b) recommends using k-means clustering to generate the strata for balanced site
selection. Implementing k-means clustering requires the researcher to select a number of strata
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(or the value of k). One option for determining the value of k is to test several different values,
generate results under each of the values, and compare the findings.

The “pseudo-F” statistic is one measure Tipton (2013b) recommends for determining the
optimal number of clusters. This approach, attributed to Cali�nski and Harabasz (1974),
reports the “variance ratio criterion” for each value of k. The variance ratio criterion com-
pares the sum of squared distances within the partitions to that in the unpartitioned data,
taking account of the number of clusters and cases (Halpin, 2016). Values of k with large
variance ratio criterion, which is analogous to the pseudo-F statistic, have the most distinct
cluster structure (StataCorp, 2019).

To determine the optimal number of district clusters, we computed the pseudo-F statistic
for values of k ranging from 2 to 10 for district-level clustering based on Census region,
expenditures per pupil, district-level average of number of students enrolled in the school,
and district-level average of proportion of students eligible for FRPL across schools. We
repeated the analysis for school-level clustering based on number of students enrolled in the
school and proportion eligible for FRPL. Results from those analyses appear in Tables O.2
and O.3 in the online appendix.

At the district level, the evidence indicated the most distinct cluster structure when k was set
to 2 or 6. Although it was not the largest value of the pseudo-F statistic, we chose to set k equal
to 6. We felt that two strata were too few to adequately balance these variables. Furthermore,
Tipton and Olsen (2018, 2022) argue that in education experiments defining between four and
six strata is often a good compromise. At the school level, we set k equal to 3. We chose this
value because it both maximized the pseudo-F statistic and we felt it was a sufficient number of
strata for our school-level analysis.

Appendix B. Operationalizing random district selection

This appendix describes our approach to random district selection. We based this approach on
random sampling of districts with probability of selection proportional to district size
(PPS sampling).

Traditional PPS sampling is designed to select a fixed number of districts at random. Because
the target number of districts is unknown (it is a function of the rates of agreement to participate
at the district and school levels), traditional PPS sampling was not feasible for our analysis.
Instead, we aimed to develop an approach that similarly selects districts randomly with a prob-
ability proportional to district size and generates a rank-ordered list of districts for recruitment
(so the evaluators could work down the list until the target number of schools is reached).

Our approach used a district-level lottery. Within each district cluster, we determined the total
number of eligible schools for each district (Nd), calculated the total number of eligible schools
across all districts (N ¼ PD

d¼1 Nd), randomly ordered districts, and assigned a range of integers to
each district based on the number of eligible schools in the district (e.g., (1, 2, . . . , N1) for the
first district, (N1 þ 1, N1 þ 2, . . . , N1 þ N2) for the second district, and so on). For example, if
a district cluster consisted of two districts—district A with 4 schools and district B with 12
schools, then we would create a unique list of numbers from 1 to 16, and district A would be
assigned the range of 1–4 and district B would be assigned the range of 5–16.

Next, we generated a rank-ordering for districts by randomly selecting from the range of inte-
gers (without replacement) and matching the integer to its district. This random sorting resulted
in the same district appearing on the list more than once. If we reached a district that had
already been selected as we proceeded down the list, we moved on to the next district in the list.
Returning to the example from the prior paragraph, if the first random draw was 15, district 2
would be the first district selected. If the second draw was 7, we would proceed down the list
because we already selected district 2. If the third draw was 2, district 1 would be the second dis-
trict selected.

We tested this approach using a small simulation in which we sampled 50 districts from a
population of 998. We imposed that each district had a different preset selection probability—in
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one case using PPS sampling and in a second case using the lottery approach described above.28

We repeated both algorithms for 1,000 samples and calculated actual selection rates for each
method as the number of times selected divided by the number of samples. Figure O.1 in the
online appendix graphs these selection rates for the two approaches. In addition to the graphical
similarity, we calculated the correlation between the selection rates and the predetermined selec-
tion probability to be 0.95 for both approaches. Given these results, we felt comfortable proceed-
ing with the lottery approach as a method to produce an ordered list akin to PPS sampling.

28We created this population by splitting the range from 0 to 1 into 1,000 unique values (inclusive of 0 and 1). The
preset selection probability for each district corresponded to one of the values from this range (though we omitted 0
and 1, resulting in a total population of 998.
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