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Problem solving and reasoning are two key components of becoming numerate. Reports 

obtained from international assessments show that Australian students’ problem solving ability 

is in a long-term decline. There is little evidence that teachers are embracing problem solving 

as part of the classroom routine. In this study, we analyse 598 Year 7 to 10 students’ responses 

to a measurement task using Sfard’s commognition framework. Four implications lead to 

recommendations on how to support curriculum, assessment and pedagogical alignment. 

Problem solving has always been a key feature of mathematics learning. With the advent 

of STEM education, globalisation, and the continuing uncertainty caused by the pandemic, it 

has become central to many educational reform agendas. Weber and Leikin (2016) distinguish 

four broad traditions of problem solving based research: (i) problem solving as a research tool 

to investigate other constructs such as understanding of a concept; (ii) as an object of study in 

terms of the resources (knowledge and processes), heuristics (strategies), metacognition, and 

beliefs (about mathematics); (iii) the activity of problem posing; and (iv) as a didactical tool to 

teach conceptual understanding. Over the past two decades, problem solving research in 

Australasia evolved from being hidden by other research, to classroom practice in curricular 

reform and in the development of more general theoretical conceptions of problem solving as 

an activity, which is commonly termed as working mathematically (Clarke et al., 2007). It was 

hoped that subsuming problem solving to a general proficiency domain may help emphasise 

curricular, assessment and pedagogical alignment. The result of taking such a stand may 

explain the absence of a focus publication on problem solving as an object of study in 

Australasia since 2008 (Makar et al., 2020). Instead, problem solving appears peripherally in 

other studies such as STEM education, rich tasks, and learning progression research. Makar et 

al. also reported a 16-year absence of domain focus research in Algebra and Geometry and 

Measurement albeit a renewed interest in the latter appeared recently in the form of spatial 

reasoning.  

The scarcity of focus research has dire consequences as there is little evidence that teachers 

are embracing problem solving effectively as part of their classroom routine. International 

assessments alert us about Australian students’ weakness in geometry and algebra and that their 

problem solving ability is in a long-term decline (Thomson et al., 2016, 2017). It is estimated 

that 53% of young Australians did not possess the numeracy skills essential to work effectively 

in a modern economy (Lamb et al., 2020). Sfard (2021) rightly pointed out, the devil is in the 

detail. If problem solving is to be nurtured within a general label, attention must be placed in 

the inter-discursive gaps in the teaching-learning process.  

In this paper, we analyse data collected from the Reframing Mathematical Futures II (RMF 

II) project (Siemon et al., 2018). Our purpose is to elicit evidence of students’ problem solving 

and reasoning to highlight gaps when working mathematically. This leads to practical 

implications on how to support curriculum, assessment, and pedagogical alignment.  

Theoretical Framework 

The Australian Curriculum: Mathematics defines problem solving as the ability to make 

choices, interpret, formulate, model and investigate problem situations, and communicate 

solutions effectively (Australian Curriculum Assessment and Reporting Authority (ACARA), 
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n.d). Together with understanding, fluency, and reasoning, problem solving is seen as an 

integral part of becoming proficient in mathematics across the three content strands.  

The teaching of problem solving can be traced back to Polya’s (1945) How to solve it, 

where students are taught to: 1) understand the problem; 2) make a plan; 3) carry out the plan; 

and 4) evaluate its effectiveness. Jonassen (2011) cautions on the fallacy of treating problem 

solving as a reproducible, algorithmic process, assuming that all problems are solved in pretty 

much the same way, and that generalisable processes can be applied in different contexts with 

different types of problems in order to yield similar results. He maintains that such views 

underestimate the role of domain knowledge and pattern recognition (analogical reasoning), 

resulting in the misrepresentation of knowledge and inhibiting transfer of skills learned. 

Successful problem solving needs two critical attributes, mental representation of the problem 

and manipulation and testing of the mental model of the problem to generate a solution. 

For Polya, a problem worth solving is one where the solution is unknown to the solver. 

Consider the Drink Bottles task (coded as GSODA to mean Geometry Soda) in Figure 1 where 

the context should be familiar to most students. The solution for Part a is fairly straightforward, 

involving the application of decimal fraction knowledge and proportional reasoning. We 

acknowledge the difficulties students face when learning fraction and decimal arithmetic 

(Lortie-Forgues et al., 2015). Part b has several possible solutions and requires an 

understanding of array, dimensionality, units, and multiplication. In Part c, while the 

conversion between capacity and mass is given, understandings of magnitudes of measures, 

that 1L is equivalent to 1000g, and the processes needed to obtain a correct result are needed. 

To effectively address this task, a solver needs a robust understanding of mathematical 

concepts and the ability to carry out the processes flexibly, accurately, efficiently, and 

appropriately. Further, since it is possible to solve the problem by stating the answer without 

explanation, the task requires students to explain their reasoning. Reasoning is observed when:  

… students explain their thinking, when they deduce and justify strategies used and conclusions reached, 

when they adapt the known to the unknown, when they transfer learning from one context to another, 

and when they compare and contrast related ideas and explain their choices (Australian Curriculum 

Assessment and Reporting Authority [ACARA], n.d). 

Drink bottles 

A 1.25-liter bottle of soda water is 285 millimeters high and has a diameter of 85 

millimeters. 

a. [SODA1]  

How many bottles would be needed to fill a 10-liter container with soda water?  

Explain your reasoning. 

b. [SODA2]  

What are the dimensions of a carton that would firmly hold 12 bottles of soda 

water? Explain your reasoning.  

c. [SODA3]  

One milliliter of water weighs 1 gram and each empty bottle weighs 80 grams. 

The cardboard in the box weighs 750 grams. How heavy would the full carton of 

12 bottles of soda water be? 

Figure 1. Drink bottles task. 

Following Sfard’s (2021) commognition, reasoning about the process of solving a problem 

is a form of discourse that requires an understanding of the syntactic and sematic structure of 

its schemas and is characterised by four components. First, a mathematics discourse is endorsed 

narratives accepted by its participants as faithful accounts of the situation using 
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communicational tools that make the discourse distinguishable from others. In the drink bottles 

task, the endorsed narratives are about measurement concepts, units, and dimensionality. The 

communication tools that distinguish the endorsed narratives from other stories hinge on the 

keywords (e.g., litre, millimetres, gram, dimensions) used to explain the focal objects and 

actions of the discourse. By nature of its abstraction, the third characteristics of a mathematical 

discourse is the use of visual mediators (e.g., symbols, diagrams, and words) to support 

effective communications. In this instant, a student may use a combination of linguistic, 

symbolic/algebraic, and diagrammatic tools to explain their reasoning. Indeed, while not 

necessary, a drawing may help the student to comprehend and clarify their solution for the 

GSODA task. Lastly, mathematics discourse is made distinct by the routines, the recurrent 

ways of performing different kinds of tasks in obtaining solutions. Routines guide our response 

to an expectation. They are task specific and depend on their interpreters. As learning is a 

process of routinisation of our actions, exposing the discursive gaps that threaten the process 

of learning is a critical step in turning obstacles into opportunities for learning. Since it is not 

possible to conduct large-scale observations of students’ problem solving abilities, the GSODA 

task served to provide a practical context to help students see the mathematical relevance, and 

to determine how student coordinate and connect various information that is the hallmark of 

solving real-life problems faced by the world today. Analysing students’ solutions can further 

help to infer the discursive routines enacted in problem solving situations.  

Methodology 

The data analysed here are taken from the RMF II project. Using a design-based research 

method, we applied an iterative cycle of designing, testing, and re-designing assessment tasks 

and scoring rubrics. Tasks were compiled into multiple assessment forms, both to validate the 

forms and to test the Learning Progressions, which was the aim of the project. Figure 2 shows 

the marking rubric for the GSODA task. Note that GSODA3 was included on some forms and 

not others, thus accounting for the difference in the total sample collected (see Table 1).  

 

SCORE DESCRIPTION for GSODA1 

0 No response or irrelevant response 

1 incorrect with no clear reasoning or working 

2 Incorrect but with clear attempt to calculate, may use addition and make an error 

3 Correct (8 or 8 bottles) but no reasoning or calculations shown  

4 Correct, reasoning or working to justify (e.g., 8 × 1.25 = 10 litres) 

SCORE DESCRIPTION for GSODA2 

0 No response or irrelevant response 

1 All dimensions incorrect 

2 Height dimensions correct, others not correct 

3 Dimensions recognised for array chosen (e.g., 3 × 4; 2 × 6; or 1 × 12) but calculation 

error in one dimension (e.g., for a 3 × 4 array correctly calculates 4 × 85 mm but 

incorrectly calculates 3 by 85 mm 

4 Correct for array chosen (e.g., 340 mm by 255 mm by 285 mm for a 3 by 4 array).  

Also correct if a small amount added for width of cardboard  

SCORE DESCRIPTION for GSODA3 

0 No response or irrelevant response 

1 Partially correct working with at least one correct component 

2 Error in calculating liquid mass or one component missing 

3 Correct (16.71 kg or 16710 g), that is 12 × 1250 g + 12 × 80 g + 750 g = 16710 g or 

16.71 kg 

Figure 2. GSODA task marking rubric. 
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The participants were Year 7 to 10 students from across Australia States and Territories. 

Two groups of cohorts were involved. The first set of data – the trial data, was taken from 214 

students from five high schools across social strata in New South Wales, Queensland, and 

Western Australia. The teachers were asked to administer the assessment tasks and return the 

student work. Some teachers used the rubrics to mark the responses. All the results were further 

marked by two markers and validated by a team of researchers to ascertain the usefulness of 

the scoring rubric and the accuracy of the data entry. The second set of data – the project data, 

was taken from 377 students from seven high schools situated in lower socioeconomic regions 

with diverse populations across New South Wales, South Australia, Victoria, and Western 

Australia. The project schoolteachers were asked to mark and return the raw score instead of 

individual forms to the researchers. The project schools received two 3-day face-to-face 

professional learning sessions on developing mathematical reasoning. They also had access to 

a bank of teaching resources and four on-site visits to support their teaching effort. 

Findings 

Table 1 shows the overall percentage breakdown of student responses for GSODA. Similar 

to the data obtained for other tasks (e.g., see Seah & Horne, 2020), there were many no 

responses especially for GSODA2 and GSODA3. GSODA2 appears to be slightly more 

difficult to solve than the other two items. Students in Year 8 and 10 project schools performed 

slightly better than those in trial schools. The Year 7 project students’ performance was weaker 

for all three items in comparison to their counterparts. Unlike the project school data, which 

show a gradual improvement for each item across the year levels, the trial school cohort’s 

performance was erratic, with the Year 7 outperforming the other year levels in GSODA1 and 

GSODA2. Note that the Year 9 and 10 trial data were collected from three different States. 

Small samples may have influenced these results, but other factors may be at play. Furthermore, 

only four students (2%) from the trial schools, one in Year 7 and 8, and two in Year 9, answered 

all items correctly, while in the project schools this was 5.6% (4.2% Year 8 and 1.3% Year 10). 

Table 1  

Breakdown of Student Responses for GSODA 

Score Trial Data  Project Data  

 Year 7  Year 8  Year 9  Year 10  Total  Year 7 Year 8 Year 10 Total 

GSODA1 n = 82 n = 69 n = 50 n = 20 n = 221 n = 171 n = 204 n = 37 n = 377 

0 40.2 37.7 34 45 38.6 28.6 37.4 47.1 36.3 

1 4.9 21.7 22 15 15 27.7 10.5 0 14.1 

2 9.8 1.5 8 0 5.9 8.4 7.9 4.4 7.4 

3 4.9 5.8 6 0 5 5.9 5.3 4.4 5.3 

4 40.2 33.3 30 40 35.9 29.4 39 44.1 36.9 

GSODA2          

0 62.2 84.1 56 75 69.1 83.2 63.7 54.4 68.1 

1 9.8 4.4 10 10 8.2 11.8 9 13.2 10.6 

2 14.6 7.3 24 5 13.6 1.7 6.3 4.4 4.5 

3 4.9 2.9 6 10 5 3.4 5.3 10.3 5.6 

4 8.5 1.5 4 0 4.6 0 15.8 17.7 11.1 

GSODA3     n=161     

0 46.2 87 65 60 49.6 77.3 63.2 63.2 67.6 

1 30.8 5.8 5 15 10.9 13.5 12.6 4.4 11.4 

2 17.3 0 20 20 7.7 7.6 11.1 7.4 9.3 

3 5.8 7.3 10 5 5 1.7 13.2 25 11.7 
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Choice of Strategy for GSODA1 

In the trial schools, 143 out of 221 students wrote a response. The most frequent solution 

was multiplying 1.25 by 8, followed by repeated addition (23.8%) and writing ‘8’ with no 

reason given (22.4%) (Table 2). Seven of the eight students who divided 10 by 1.25 answered 

correctly.  

Table 2  

Types and Percentages of Responses for GSODA1 

1.25  8 Repeated 

addition 
No reason Grouping Use all 

numbers 
10  1.25 1.25  10 Combination 

24.5 23.8 22.4 9.1 6.3 5.6 4.2 3.5 

 

Depending on the reasonableness of the answer, different scores were assigned to students 

who wrote a response without reason. A “0” was scored for 600 ml, 12.5 L or 637, and “1” if 

students wrote: 4, 6, 9 or 11 bottles. Seven students said 8 bottles with no reasoning and were 

scored 3. One student altered the capacity to a whole number and stated that “each bottle of 

coke [sic] is 500 ml, 500 + 500 = 1 L so 20 × 500 ml bottles are needed.” As the response did 

not address the question concerned, it is scored as 0.  

Of the 34 students who used a repeated addition strategy, ten were not successful. Their 

errors included incorrect addition (see student A in Figure 3), change of increment (student B), 

or correct answer but incorrect calculation (student C). Twelve students were able to use a 

grouping strategy (combine addition and multiplication) in their solution (student D). 

Conversely, seven students chose to multiply 1.25 by 10 (Student E) and produced an incorrect 

answer. Nine students failed to ignore the irrelevant information. This combined with a lack of 

understanding of unit, led student F to generate an answer that could match 10,000 and student 

G to use all the numbers in some sort of procedures.  

Student solutions Interpretation of responses 

 

Student A: *7ML29112003 (score 2) 

Added four 1.25 incorrectly, combined this with two 

lots of 1.25 and then added another 1.25 to get 9.75. 

Since 0.25 is 1fifth of 1.25L, concluded that 71/5 

bottles of soda must be needed. 

 

Student B: 7KK1922004 (score 2) 

Use repeated addition strategy. However, lost track 

of the increment and instead of increasing by 1.25, 

increased by 0.25 from the third lot instead. 

 

Student C: 8BM2112003 (score 3) 

Listed 7 lots of 1.25. worked out that two lots of 1.25 

is 2.5, two lots of 2.5 is 5. Incorrectly added 3.75 and 

5 to produce 7.75. Since an extra 2.15 is needed to 

make 10L, it must need 8 bottles.  

 

Student D: 7KR852003 (score 4) 

8. because every 4 bottles the 0.25Lx4=1L so by the 

time I am 4 bottles I am halfway there so I time 4 by 

2=8L. 

 

 

 

Student E: 7RD1972003 (score 2) 

You would need 9 bottles because even though my 

working out says 11 litres. I first multiplied 1.25 (one 

bottle) by 10 (what I thought was close to the answer 

but I could take a bottle out without it falling under. 

10 could take a bottle and that took it to 11 times, if I 

took out another bottle it would be under 10 litres. 
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Student F: 7XK17112003 (score 2) 

Added 285 and 85 to get 370. Assumed that 10L = 

10,000. Proceeded to double 370 and one more gave 

1100, 6 lots of 370 gave 2200. Double that gave 

4400, which is 12 lots of 370. Double that gave 

8800. Attempted to repeat doubling but realised the 

answer exceeded 10,000, so settle for 24 bottles. 

 

Student G: 10ST632001 (score 0) 

Multiplied 1.25 by the height and added the diameter. 

Multiplied the total by 10 to obtain 441.25.  

Figure 3. Analysis of student solutions for GSODA1 (* The first number indicates the year level). 

Solving Problem Requiring Multiplication 

As shown in Table 1, GSODA2 received the least correct responses when compared with 

GSODA1and GSODA3. Of the 96 students who wrote a response, 28 gave an irrelevant 

response such as ‘a big rectangle’, ‘12.5L’ or ‘15L’. On average, 38.5% of the trial school 

cohort produced some form of drawing (43.6% Year 7, 37.5% Year 9, and 33.3% Year 8 and 

10). Some drew an array with no explanation while others drew what they would see from the 

top and side view but did not give the dimensions (Student H in Figure 4). Around 14.6% of 

the students multiplied each dimension by 12 (Student I). Often, their efforts were hindered by 

poor computational skills (Student J) and lack of checking the reasonableness of their answer.  

 

Student H: 7JL13102003 (scored 0) 

 

 Student J: 7SM3172003 (scored 3) 

 

Student I: 7JD1072003 (scored 2) 

 

Figure 4. Analysis of student solutions for GSODA2. 

Solving GSODA3 involves coordinating three components: 1) recognising the unit 

conversion, 2) working out the number of litres and hence the number of grams of liquid in 12 

bottles, plus adding the mass of the bottles themselves, and 3) adding the weight of the box in 

the final calculation. Of the 59 students who wrote a response, seven gave an irrelevant 

response. Of the 52 students who scored at least a “1”, a quarter assumed that 1.25 L is 125 

grams, 125 kg, or 1025 ml (see Student K and L in Figure 5). Another 9.6% multiplied 750 

grams by 12 or used the height dimension as part of the calculation respectively. The most 

common error was neglecting to multiply either the soda water or empty bottles by 12 (Student 

M). These students appeared to have difficulty coordinating all the different aspects of the tasks 

in a clear plan to find the solution. 
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Student K: 7MH1152004 (scored 1) 

 

Student L: 10TK1692000 (scored 1) 

 

Student M: 9ZB4122001 (scored 2) 

 

Student N: 8JH2572002 (scored 3) 

 

Figure 5. Analysis of student solutions for GSODA3. 

Discussion 

A problem is only a problem when the solution is not straightforward, as in the GSODA 

task. Most students did not already know the solution or how to obtain a solution. To 

successfully solve this problem, the students needed to coordinate several information and 

communicate their solution. We can see evidence of Sfard’s (2021) four components (endorsed 

narratives, keywords, visual mediators, and routines) or the lack of them at play. To begin, the 

students’ solutions reported here show a narrative that, while understood by the researchers, 

were in many instances not endorsed. For example, we found student G in Figure 3 who did 

not use any keywords in their working but added all the numbers, thus showing a lack of 

understanding of measurement concepts and dimensionality. Conversely, student I in Figure 4 

used the measurement terms but multiplied 85 mm by 12 obtaining an answer of 1 m and 2 cm 

with the drawing of the final solution showing over 3 m height, thus demonstrating a lack of 

understanding of the relationship between these terms.  

In an endorsed narrative, linguistic, symbolic/algebraic, and diagrammatic tools serve as 

visual mediators to facilitate and support effective communication. We observed a convoluted 

explanation of why 9 bottles are needed by student E and a succinct linguistic explanation of 

why it should be 8 bottles instead by student D in Figure 3. Others such as student B, who 

relied on a symbolic tool were often unable to multiply decimal numbers. Some students, such 

as student J in Figure 4 used a diagram to effectively show the final solution. While student 

H’s diagrams clearly demonstrated how the bottles were visualised in the real situation, they 

did not help to obtain a correct solution.  

The large numbers of no responses and low numbers of correct responses for all three items 

clearly show that many students did not have an established routines upon which they could 

call when trying to solve such problems. The drawing of diagrams, representing the information 

from the question on those diagrams and identifying the actual nature of the question are 

routines in problem solving that would have assisted many. Even routines of simple 

calculations were lacking as seen in many of the solutions in Figure 3. These combined with a 

lack of understanding of measurement concepts and dimensionality resulted in students unable 

to determine the dimensions of a desired carton or to assume that 1.25 L equal 125 kg or to 

multiply 1.25ml by 1 g (see student K and student L in Figure 5). 

The implications of this for curriculum, assessment and pedagogy are fourfold. First, the 

teaching of measurement concepts needs to emphasise conceptual understanding and the 

connection between the concepts. Rather than memorising the conversion of units and 

arithmetic processes, greater emphasis must be placed on the concept of volume (which 
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requires understanding and visualisation of three-dimensional objects) and its relationship to 

capacity and mass. Second, these concepts need to be presented in problems set in the real 

contexts where students are encouraged to visualise the problem mentally and on paper, and to 

manipulate and test the mental model of the problem to generate a solution. Third, routines 

need to be established, which encouraged the use of a range of communication tools such as 

diagram, symbols and language associated with the context. The language of explanation, 

argument and justification needs to be taught specifically and used regularly in classrooms to 

help students learn to explain their reasoning and justify their solutions (Seah & Horne, 2021). 

In this, assessment tasks should focus on the reasoning process rather than finding the right 

answer as shown in many multiple-choice questions. Finally, there should be frequent 

opportunities for students to solve multi-step problems. Students should be encouraged to 

discuss in pairs and in groups to fully comprehend the problems, develop all types of 

communication tools and deciding which type of communication tools work best for different 

situations. Only by the inculturation of problem solving as part of a socio-mathematical norm 

and mathematical classroom practices (Cobb & Yackel, 1996) can true change be realised.  
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