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This paper reports on the potential for engaging students in an activity that considers the 

interconnectedness of the five Big Ideas of Statistics in the context of conducting random trials. 

In the study, two classes of Year 6 students (aged 11-12 years) used TinkerPlots to determine 

the sample space of a “Mystery Spinner.” Analysed for this paper were data collected from 

entries made in completed workbooks while engaged in the learning activity and responses to 

relevant questions in an end-of-year questionnaire from 27 students. The results indicated using 

an activity that included a probability model contributed to students working mathematically 

with percentages and frequencies and supported the development of intuitions about randomness 

and informal inference. This was promoted by students analysing the variation in the distribution 

of data and describing their expectations about an unknown sample space.  

It has been common for primary students to use hands-on spinners when investigating 

probability in the primary years of schooling (e.g., Chick & Baker, 2005; Torok, 2000). In most 

situations the frequency and relative frequency of events occurring, the confirmation of the 

outcomes according to the known sample space (actually seen on the spinner), and 

fairness/randomness of the devices are the focal points of such investigations. These 

investigations tend to emphasise that many trials will ensure the experimental results reflect 

the known sample space (theoretical expectations). In this case, variation and expectation are 

fundamental concepts associated with randomness. Developed from early experiences of 

probability that usually involve tossing dice or coins, the students appreciate that the 

experimental results can vary from the theoretical expectations when only a few trials have 

been undertaken but tend to be confident that conducting more trials will ensure “success” in 

getting the outcomes expected, with little acknowledgement of the variation that can still occur. 

There are benefits of using hands-on materials to develop and extend mathematical knowledge 

and problem-solving strategies (Chick, 2018) but the scope for artefacts such as dice, coins and 

spinners is limited. Traditionally, success in these situations is measured by getting what would 

be considered “the correct answer.” Taking the traditional approach in the classroom constrains 

students’ opportunities to engage in the productive struggle required to develop higher order 

thinking, such as critical thinking and reasoning skills. 

Probability and statistics are often taught as two discrete subjects within the mathematics 

curriculum. This does not assist in connecting the areas of probability and statistics, which is 

required when questioning data and making inferences from statistical information (Batanero 

et al., 2016; Watson et al., 2018). With the goal of probability activities to compare 

experimental results to theoretical outcomes determined by the known sample space (Lee et 

al., 2010), the opportunity of developing understanding of probability concepts encountered in 

statistics later in students’ studies and future working situations (e.g., p-values) is scant.  

Probability activities in the early years of schooling are essentially devoid of the 

exploratory nature of statistical enquiries that meet goals of student development of higher-

order thinking. There is, however, scope to deepen students’ learning about probability 

concepts by introducing elements of cognitive conflict into learning opportunities. Cognitive 

conflict is the disagreement between cognitive structures, such as knowledge and mental 

representations, and experience (Waxer & Morton, 2012). The challenge is to develop activities 

that build on established knowledge and take advantage of what students would consider 

familiar in order to promote engagement in deeper and more complex problem solving and 
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reasoning. Learning activities need to be not only cognitively accessible for students but also 

cognitively challenging to ensure opportunities for growth in learning are maximised. 

Therefore, it is important to develop learning sequences that establish prior knowledge, 

consolidate learning, and extend that initial learning in anticipation of targeting long-term goals 

of critical thinking. Important research problems in this regard are: 

(a) clarifying the way in which probabilistic thinking could contribute to improving mathematical 

competencies of students, (b) analysing how different probability models and their applications can be 

presented to the students, (c) finding ways in which it is possible to engage students in questions related 

to how to obtain knowledge from data and why a probability model is suitable, and (d) how to help 

students develop valid intuitions in this field. (Batanero et al., 2016, p. 25)  

Hence, the research question for the study reported in this paper is: 

In terms of the Big Ideas of Statistics, what is the learning potential of an activity that 

requires students to use randomly generated data to make conjectures (hypotheses) about 

the sample space of a hidden spinner? 

Related Literature 

Five Big Ideas underpin statistics education at school and beyond (Watson et al., 2018). In 

relation to probability, carrying out Random trials, students experience Variation, which is 

viewed through a summary Distribution, resulting in an Expectation about the underlying 

sample space. As trials increase, more Variation occurs and Expectation about the ultimate 

outcome is likely to change. The goal is to make an Informal Inference about the underlying 

probability of the elements of the sample space. The interconnectedness of the five 

underpinning concepts is shown in Figure 1. 

 

Figure 1. The Big Ideas of Statistics (Watson et al., 2018, p. 126). 

Randomness and informal inference are the more complex of the Big Ideas, as each requires 

two components for understanding. For randomness, there is more than the individual outcome 

of being uncertain; there also needs to be a progression towards a fixed outcome with many 

trials (Lee et al., 2010). For informal inference, there needs to be both the expression of an 

expectation and a level of confidence expressed in the expectation because the result is not 

known for certain (Watson et al., 2018). Classroom experiences demonstrate that “random” is 

not an easy principle for students to understand fully (Chick, 2018; Lee et al., 2010; Watson & 

Fitzallen, 2019). Part of this may be associated with the activities employed. Chick discussed 

the pros and cons of many of the main activities that were used in linking probability and 

randomness, including one based on two spinners, and pointed out the importance of 

recognising the learning opportunities afforded by activities used to foster intuitions about 

randomness. This imperative concurred with suggestions made by Batanero et al. (2016) and 

Lee et al. (2010). 
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Probability, as taught in school, is basically the endpoint of random phenomena, based on 

the “sample spaces” that are observable on the sides of a die or coin that is tossed. In this case, 

activities do not produce challenges for two of the big ideas: the expectation is seen on the 

device and there is no informal inference to be made because the answer is known at the 

beginning. Specific approaches to the learning and teaching of probability are needed to 

enhance the learning outcomes of traditional probability activities (Batanero et al., 2016; Chick, 

2018; Chick & Baker, 2005). As suggested in the Australian: Mathematics Curriculum 

(Australian Curriculum, Assessment and Reporting Authority [ACARA], 2021), frequency and 

sample space tend to focus on the Proficiency Strands of understanding and fluency. It is 

interesting that although ‘random number’ and ‘random sample’ were defined in the Australian 

Curriculum Glossary for Mathematics (ACARA, 2021), the term ‘random’ itself was not 

defined. Random is associated directly with the relationship between expectation and variation.  

Research Approach 

The methodology employed was exploratory, which warranted using qualitative research 

and data analysis strategies to look for possibilities and opportunities in a pragmatic fashion 

(Mackenzie & Knipe, 2006). The learning sequence in the classroom included establishing 

prior knowledge, consolidating foundational learning, recognising issues arising, and carrying 

out the main investigation of random trials with a mystery spinner to extend learning. Data 

were collected from student workbooks and, as part of measuring adoption of the intended 

outcomes, responses to questions in the end-of-year questionnaire. 

Context of the Study 

As part of a classroom intervention with Year 6 students (aged 11-12 years) near the end 

of a 4-year project (Fitzallen & Watson, 2020), 56 students in two classes took part in two 

extended lessons, taught by the classroom teacher, addressing the Chance curriculum for Year 

6 (ACARA, 2021):  

Conduct chance experiments with both small and large numbers of trials using appropriate digital 

technologies (ACMSP145) 

Compare observed frequencies across experiments with expected frequencies (ACMSP146) 

The students had been involved in data handling activities to answer statistical questions, but 

the activity reported in this paper was their first encounter as part of the project with the Chance 

part of the curriculum. The activity was hence planned to establish students’ previous 

knowledge and explore an extension encompassing an unknown sample space, allowing for an 

informal inference to be made (Batanero et al., 2016). The activity reported in this paper was 

designed to allow for the focus to be on the random nature of trials, the variation encountered, 

the expectation created, the distribution of results to assist with the expectation, and the 

inference made about the underlying sample space being examined with spinners (cf. Figure 

1). Although advances in technology have made it possible for students to complete many trials 

of a spinner (e.g., Chick, 2018; Lee et al., 2010), often these activities still display the final 

goal of the trials as trials are taking place. The TinkerPlots software (Konold & Miller, 2015), 

however, offered the option of a Mystery Spinner, where the proportions of the spinner were 

not visible as trials were performed. The purpose of the blank spinner was to introduce 

cognitive conflict into the learning experience to provide a situation where students were 

required to determine the sample space from the data generated. As Batanero et al. (2016) 

suggested,  

These “black-box” types of simulations may assist students in thinking about probability from a 

subjective or frequentist perspective where they can only use data generated from a simulation to make 

estimates of probabilities that they can use in inference or decision-making situations. (p. 19) 
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Learning Sequence  

Establishing prior knowledge in terms of Expectation. The goal was to establish that 

students could relate to the term expectation and appreciate what it meant in relation to their 

learning and real-life contexts. Could they make reasonable predictions and be creative and 

imaginative in describing what would be considered realistic expectations? The lessons began 

with a review of likelihood in terms of expectation, with students in groups of four, writing 

down on an A3 sheet of paper divided into quarters, and discussing: 

1. Something I expect will definitely happen this weekend … 

2. Something I expect might happen this weekend … 

3. Something I expect may happen this weekend but I do not think it is very likely … 

4. Something I definitely do not expect to happen this weekend … 

Figure 2 illustrates the typical responses of students in these categories. The responses 

established that the students could relate to the term expectation and could appreciate what it 

meant in relation to their school and real-life contexts. The students made reasonable 

predictions and were creative and imaginative in describing what would be considered 

impossible expectations. A few of the apparently less appropriate responses were discussed 

within the groups and with the class. This was then combined with a review of the general 

language of likelihood with a clothesline labelled from 0 to 1. Students drew words/phrases out 

of a bag and attached them to the clothesline with discussion about their placement in terms of 

the probability represented. 

  
1. The sun will come up … Won’t go to school … 

Humans will exist … Baby will be born (every 19 

secs) … Eat food … Speak to my family. 

2. Someone might watch a Marvel movie … People 

will be on their phones … Going to church … 

Homework … Go rock climbing. 

3. I will clean my room … WW3 … MacDonald’s 

will shut down … Donald Trump gets killed … Go 

to the park … Might have a 4-day weekend. 

4. The sun to fall out of the sky… The moon will 

rain water … Go to Mars … Meet an alien … To 

play tag around the park … Go to school. 

 

Figure 2. Examples of students’ expressions of expectation. 

Consolidating foundational learning. The initial data collection activity included using 

conventional spinners. The aim was to establish mathematical expectations in terms of the 

outcomes of spinners according to the sample space with the benefit of many, many trials. After 

the teacher reviewed the expression of probabilities as fractions and did trials of a 50-50 black 

and white spinner, students conducted trials with hands-on spinners as seen in Figure 3, 

recognising Pr(red) = Pr(yellow) = Pr(green) = Pr(blue) = ¼. A four-colour spinner was 

chosen as a hands-on beginning of the data collection because of the possible extensions using 

the technology, TinkerPlots, to extend the number of trails as implied in the curriculum 

statement. 

The students worked in groups of four, individually conducting 20 spins of the spinner, 

recording the results in their workbooks, and commenting on how close they were to each other 

and to the probabilities built into the spinner. They then combined their results in pairs, 

reporting whether their results were closer to the probabilities than before or further away. 

Finally, they combined results for the four students in the group, again commenting on their 

results and the expected probability for 80 spins. Figure 3 shows the outcomes for the four-part 

spinner from two students in different groups. Obvious from this, and many cases, the results 

of the approximations for some groups got worse over the trials but most got closer. For some 

students it took until the data from the whole class were combined before they were convinced 

that the desired percentages for the probabilities were approached.  
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Figure 3. Results from four-part spinner trials. 

Recognising issues arising. There are two issues, however, that arise here: after an 

introduction to these devices, assuming they are fair, (1) students know the answer they are 

trying to approach: it is just a matter of how long it takes to get there! Also, (2) it can get tedious 

doing many trials by hand and mistakes can creep in using a calculator to make calculations. 

For Issue (2), the technology employed was TinkerPlots (Konold & Miller, 2015) to save 

the tedium of performing hundreds of trials. Students had used TinkerPlots in other activities 

as part of the project (e.g., Watson et al., 2022) and were keen to use the program for performing 

the spins of the spinner. TinkerPlots had a “Sampler”, which could repeat the trials (pseudo-

randomly) for a model of the spinner, producing increasingly large numbers of trials quickly 

and displaying the results in a table or plot. Once using the technology, it was not necessary 

for the spinner to be separated into four equal parts. The classroom teacher then did a 

demonstration to show the possibility of using other divisions of the spinner, as seen in Figure 

4. As well TinkerPlots displayed the distribution of the results in a format different from the 

tables that the students had used in their workbooks with the hands-on spinners (see Figure 3). 

The teacher then increased the number of trials, eventually reaching several hundred, with 

discussion of how close the percentages in the Results of Sampler 1 distribution were getting 

to the values that could be seen on the spinner. 

   

Figure 4. Teacher demonstration with 20 spins and then with 500 spins. 

Extending learning. In relation to Issue (1) of knowing the makeup (sample space) of the 

spinner at the beginning, a blank spinner was introduced. TinkerPlots had the option of being 

able to hide the proportions of each colour. The aim was to introduce cognitive conflict as 

variation and expectation were juxtaposed in inferring the construction of the spinner. Students 

were given a “Mystery Spinner” with unequal sections, with the goal to work out the proportion 

of each colour. Six different Mystery Spinners (appearing in TinkerPlots as Figure 5, left) were 

prepared for the students to explore individually. The spinners were divided into three 

segments, labelled Apple, Banana, and Cherry and the Sampler was labelled “Fruit_Spinner”. 
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In their workbooks, students started by recording the outcomes for 20 spins, then drawing a 

spinner with their estimates of the percentage of each fruit as their expectations of its 

construction (Figure 5, centre). They were then asked to mark their level of confidence on the 

arrow (Figure 5, right) and explain their reasoning. The number of trials was then increased to 

50, 100, and 500, with similar data recorded and diagrams drawn. Student also answered the 

question, “Has your prediction or level of confidence changed? Why/why not?” This activity 

exhibited the five Big Ideas of Statistics (Figure 1). It was a (pseudo)random process taking 

place with the technology; there was variation as the trials progressed; after each trial students 

expressed their expectations by sketching in the divisions of the spinner in Figure 5; this was 

based on the distribution of TinkerPlots results similar to that seen in Figure 4; and each time 

an informal inference (prediction) was made, the students marked their level of confidence on 

the accompanying arrow image. The level of confidence was an indicator of the degree the 

students expected the results at each set of spins reflected what they expected to be the makeup 

of the actual spinner. The students’ confidence for one set of spins was influenced by how 

much the result varied from the previous set. 

 

  

 

  

Figure 5. Trials with an unknown spinner. 

Table 1. 

Student confidence levels and comments 

ID Confidence: 50 spins Confidence: 100 spins Confidence: 500 spins 

ID143 MC: There’s more spins. LC: Because they are 

changing a lot. So I’m not as 

confident. 

MC: I’m confident because 

the spinners in the last 2 

examples have been very 

close. 

ID129 LC: Yes and no, I’m not 

very sure. 

MC: Yes, because I have 

really thought about them and 

I’m a bit more confident. 

LC: Cherry has done better. 

We are confident that Cherry 

is really low but we are not 

confident what % to give it! 

ID122 NC: It’s gone down a bit 

but my results were quite 

similar still. 

NC: It hasn’t changed 

because I think that my 

prediction is correct or very 

close because the results are 

all similar. 

NC: It still hasn’t changed 

because I think I’m close. 

ID175 NC: Because I think there 

is more fruit [only two 

different fruits appeared 

on the first 20 spins] 

MC: Yes, because I think 

there might only be 3 fruits. 

MC: Yes, I think there is 

definitely only 3 fruits. 

 

The results reported here are from a subset of the workbook data. The data were included 

if students had completed and reported all spins and written responses (n = 27). Based on their 

marked confidence arrows and/or their comments, after 50 spins eight students had no change 
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(NC) in confidence in their expected result from the first 20 spins, seven had less confidence 

(LC), and 12 had more confidence (MC). After 100 spins there were four with no change in 

confidence, 18 with more confidence, and five with less confidence than before. After 500 

spins results were similar with three students indicating no change in confidence, 19 more 

confident, and five less confident. The reasons for these judgments varied across the trials. 

Typical responses are presented in Table 1. 

Students could then choose as many trials as they liked and record their results making a 

final prediction of the percentage of each fruit, answering the question, “What makes you 

confident that your final prediction is correct? Not many students took up this option but all 

who did recognised that the often-huge number of trials produced the required percentages. 

Measuring adoption of intended outcomes. On the end-of-year questionnaire, 

approximately eight weeks later, students were presented with the distribution of outcomes for 

two Mystery Spinners of the type they had investigated in the classroom, one from 30 spins 

and the other from 600 spins (Figure 6), asked to make a conjecture—hypothesis about the 

theoretical probability—about the sizes of the three parts of the spinner each time, and to 

explain why they made the decision each time.  

 

 

 
 

Figure 6. Distribution of data for a mystery spinner used in the end-of-year questionnaire. 

For the 30 spins trial, 30% of responses reflected the type of rounding to multiples of 5% 

or 10%, with 20% of reasons being less precise rounding or “adding to 100%”, and 52% saying 

“that’s what the plot tells me.” Similar results occurred for 600 spins, with 20% of responses 

reflecting appropriate approximations and 46% remaining exact values from the figure or 

suggesting more extreme values. When then asked in which results they had more confidence, 

61% said 600 spins and 39% said 30 spins. For the reasons for the choice of the number of 

spins, 43% specifically noted “more data”, “more spins” or “more chance” for choosing the 

600 spins. The other 57% either chose 30, with reasons like, “cause it’s quicker” or “because 

it’s hardly any spins”, or chose 600, with nebulous reasons like, “I just feel more confident”. 

Hence, although 61% of students chose the appropriate number of spins only 70% of them also 

justified the choice based on the sample size. 

Discussion and Conclusion 

The learning potential embedded within the Mystery Spinner activity was associated with 

all five Big Ideas of Statistics (Figure 1). This allowed for students to express expectations 

during trialling and to revise them as variation was seen in successive random trials, which 
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increased in size progressively throughout the activity. An informal inference was then made, 

accompanied by a degree of confidence. In this case the confidence level expressed was an 

indicator of student expectation. The opportunity to shift learning to a technological 

environment demonstrated the potential of using technology to expose students to extended 

learning opportunities not possible within the constraints of using physical manipulates 

(Batanero et al., 2016; Lee et al., 2010). The Mystery Spinner activity provided a rich learning 

opportunity that included outcomes in terms of frequency and percentage through attempting 

to balance variation and expectation to make judgments about the sample space of the mystery 

spinner. From a research perspective, this study illustrated that the students were able to make 

connections between the relative frequency of data and the theoretical probability, but some 

students only reiterated the raw data—expressed as counts or percentages—when making 

conjectures about the makeup of the spinner. This suggested that the learning potential of the 

activity was not totally realised for these students, who, in many cases, had unstable ideas about 

making inferences from data and did not yet appreciate that the theoretical model embedded in 

their mystery spinner could potentially vary from the results of the trials. More research is 

needed that focuses on student understanding of the relationships among the Big Ideas of 

Statistics to inform effective learning and teaching of statistical concepts, thereby addressing 

outcomes for the Proficiency Strands: problem solving and reasoning (ACARA, 2021). 
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