0

William OD oorne bay $A 1$ of ti B. Balah fo. Lown. bost 2 i 'Dvecarss

$$
20 \cdot 10101
$$

B It athomatical spoculation, will inuse us T_{0} athons closely 1 any subjoct, to sovit anit cain cloar isuras, To disturqust trueth from facso hor oc; to judige juitly, añ to arquie sliroujly; an ò fhese Sta diós do more dinectly furnish. ze, anth an the various ualos of Phore urofule Th of bifer Yìy measuring, wietirg, saiking to H. Aralfs.
(2)

ELEMENS

 - Fi
EUCLID VIZ.

THE FIRSTSIX BOOK S,

together with the

ELEVENTH AND TWELFTH.

The Errors, by which Theon, or others, have long ago vitiated thefe Books, are corrected;

And fome of Euclid's Demonftrations are reftored.

A L s o
 тHE BOOK OI
 EUCLID'S DA'TA,

In like manner corrected.
By
R OBERTSIMSON, M. D.
Emeritus Profeffor of Mathematics in the Univerfity of Glafgow.
To this Ninth Edition are alfo annezed
Elements of plain and spherical trigonometry.

EDINBURGH:
2RINTED FOR E. WINGROVE, LONDON,
and J. balfour, edinburge.
$\mathrm{M}, \mathrm{DCC}, \mathrm{XCIII}$.
1793
at $48-1+3$ $4.15198 \cdot 17$

$1-\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+$

$0-2+2841+0$

TOTHE

$$
\begin{array}{llll}
\mathrm{K} & \mathrm{I} & \mathrm{~N}
\end{array}
$$

THIS EDITION

OFTHE

PRINGIPAL BOOKS
OFTHE

ELEMENTS of EUCLID,

AND OFTHE

BOOK OFHIS DATA

IS MOSTHUMBLYDEDICATED,

$$
B X
$$

HIS MAJESTY's

MOSTDUTIFUL, AND
MOSTDEVOTED

SUBJEGTANDSERVANTg
ROBERTSIMSON。

P R E F A C E.

THE Opinions of the Moderns concerning the Anthor of the Elements of Geometry, which go under Euclid's name, are very different and contrary to one another. Peter Ramus afcribes the Propofitions, as well their Demonftrations, to Theon; others think the Propofitions to be Euclid's, but that the Demonftrations are Theon's; and others maintain that all the Propofitions and their Demonftrations are Euclid's own. John Buteo and Sir Henry Savile are the Authors of greateft Note who affert this laft; and the greater part of Geometers have ever fince been of this Opinion, as they thought it the moft probable. Sir Henry Savile after the feveral Arguments he brings to prove it, makes this Conclufion, (Page 13. Praelect.) "That, excepting a very few " Interpolations, Explications, and Additions, Theon altered " nothing in Euclid." But, by cften confidering and comparing together the Definitions and Demonftrations as they are in the Greek Editions we now have, I found that Theon, or whoever was the Editor of the prefent Greek Text, by adding fome things, fuppreffing others, and mixing his own with Euclid's Demonftrátions, had changed more things to the worfe than is commonly fuppofed, and thofe not of fmall moment, efpecially in the Fifth and Eleventh Books of the Elements, which this Editor has greatly vitiated; for inftance, by fubftituting a fhorter, but infufficient Demonftration of the 18th Prop. of the 5 th Book, in place of the legitimate one which Euclid had given; and by taking out of this Book, befides other things, the good Definition which Eudoxus or Euclid had given of Compound Ratio, and given an abfurd one in place of it in the 5 th Definition of the 6th Book, which neither Euclid, Archimedes, Appolonius, nor any Geometer before Theon's time, ever made ufe of, and of which there is not to be found the leaft appearance in any of their Writings ; and, as this Definition did much embarrafs Beginners, and is quite ufelefs, it is now thrown out of the Elements, and another, which, without doubt, Euclid had given, is put in its proper place among the Definitions of the $5{ }^{\text {th }}$

5 th Book, by which the doctrine of compound Ratios is ren. dered plain and eafy. Befides, among the Definitions of the IIth Book, there is this, which is the roth, viz. "Equal and " fimilar folid Figures are thofe which are contained by fimilar "Planes of the fame Number and Magnitude." Now this Propofition is a Theorem, not a Definition ; becaufe the equality of Figures of any kind muft be demonftrated, and not affumed ; and, therefore, though this were a true Propofition, it ought to have been demonftrated. But, indeed, this Propofition, which makes the roth Definition of the IIth Book, is not true univerfally, except in the cafe in which each of the folid angles of the Figures is contained by no more than three plane Angles; for in other cafes, two folid Figures may be contained by fimilar Planes of the fame Number and Magnitude, and yet be unequal to one another, as fhall be made evident in the Notes fubjoined to thefe elements. In like manner, in the Demonfration of the 26th prop. of the IIth Book, it is taken for granted, that thofe folid Angles are equal to one another which are contained by plain Angles of the fame Number, and Magnitude, placed in the fame order; but neither is this univerfally true, except in the cafe in which the folid Angles are contained by no more than three plain Angles; nor of this Cafe is there any Demonftration in the Elements we now have, though it be quite neceffary there fhould be one, Now, upon the 10th Definition of this Book depend the 25 th and 28th Propofitions of it; and, upon the 25 th and 26 th depend other eight, viz. the 27 th, 3 Ift, $3^{2 \mathrm{~d}}, 33^{\mathrm{d}}, 34^{\text {th }}, 3^{6 \text { th }}$, 37 th, and 40 th of the fame Book; and the 12th of the 12 th Book depends upon the eighth of the fame; and this eighth, and the Corollary of Propofition 17. and Prop. 18th of the 12 th Book, depend upon the 9th Definition of the rith Book, which is not a right Definition; becaufe there may be Solids contained by the fame number of fimilar plane Figures, which are not fimilar to one another, in the true Senfe of Similarity received by Geometers; and all thefe Propofitions have, for thefe Reafons, been infufficiently demontrated fince Theon's time hitherto. Befides, there are feveral other things, which have nothing of Euclid's accuracy, and which plainly fhew, that his Elements have been much corrupted by unikilful Geometers; and, though thefe are not fo grofs as the others now mentioned, they ought by no means to remain uncorrected.

Upon thefe Accounts it appeared neceffary, and I hope will prove acceptable to all Lovers of accurate Reafoning, and of Mathematical Learning, to remove fuch Blemifhes, and reftore

XV.

A circle is a plane figure contained by one line, which is called the circumference, and is fuch that all fraight lines drawn from a certain point within the figure to the circumference, are equal to one another.

XVI.

And this point is called the centre of the circle. XVII.

A diameter of a circle is a fraight line drawn through the centre, and terminated both ways by the circumference. XVIII.

A femicircle is the figure contained by a diameter and the part of the circumference cut off by the diameter.
XIX.
"A fegment of a circle is the figure contained by a ftraight line, and the circumference it cuts off."
XX.

Rectilineal figures are thofe which are contained by furaight lines.
XXI.

Trilateral figures, or triangles, by three ftraight lines. XXII.

Quadrilateral, by four ftraight lines.
XXIII.

Multilateral figures, or polygons, by more than four ftraight lines.
XXIV.

Of three fided figures, an equilateral triangle is that which has three equal fides.
XXV.

An ifofceles triangle is that which has only two fides equal.

Book I.

XXVI.

A fcalene triangle, is that which has three unequal fides: XXVII.

A right angled triangle, is that which has a right angle.
XXVIII.

An obtufe angled triangle, is that which has an obtufe angle,

XXIX.

An acute angled triangle, is that which has three acute angles,
XXX.

Of four fided figures, a fquare is that which has all its fides equal, and all its angles right angles.

An oblong, is that which has all its angles right angles, but has not all its fides equal.

> XXXII.

A rhombus, is that which has all its fides equal, but-its angles are not right angles.

XXXill.
A rhomboid, is that which has its oppofite fides equaton another, but all its fides are not equal, nor its anyes. inght angles.

XXXIV.

All other four fided figures befides thefe, are called Trapeziums. XXXV.

Parallel ftraight lines, are fuch as are in the fame plane, and which, being produced ever fo far both ways, do not meet.

Book I.

 IX.The whole is greater than its part.
X.

Two ftraight lines cannot inclofe a fpace. XI.

All right angles are equal to one another. XII.
" If a fraight line meets two ftraight lines, fo as to make the " two interior angles on the fame fide of it taken together " lefs than two right angles, thefe ftraight lines being con" tinually produced, fhall at length meet upon that fide on " which are the angles which are lefs than two right angles. "See the notes on Prop. 29. of Book I."

PROPOSITION I. PROBLEM.

$T O$ defcribe an equilateral triangle upon a given finite ftraight line.

Let $A B$ be the given ftraight line; it is required to defcribe an equilateral triangle upon it.

From the centre A , at the diftance AB , defcribe a the circle BCD , and from the centre, B , at the diftance BA, defcribe the circle ACE ; and from the point \mathbf{C}, in which the circles cut one another, draw the ftraight lines ${ }^{b}$ CA, CB to the points $\mathrm{A}, \mathrm{B} ; \mathrm{ABC}$ fhall be an equilateral triangle.

Becaufe the point A is the centre of the circle $B C D, A C$ is equal c to $A B$; and becaufe the point B is the centre of the c. 15. Defio circle $A C E, B C$ is equal to $B A$: But it has been proved that $C A{ }^{\text {nition. }}$ is equal to AB ; therefore CA, CB are each of them equal to AB ; but things which are equal to the fame are equal to one another d; therefore $C A$ is equal to $C B$; wherefore $C A, A B, B C$ d. in Axiare equal to one another; and the triangle $A B C$ is therefore om. equilateral, and it is defcribed upon the given ftraight line $A B$. Which was required to be done.

PROP. II. PROB.

FROM a given point to draw a ftraight line equal to a given ftraight line.
Let A be the given point, and BC the given ftraight line; it is required to draw from the point A a ftraight line equal to BC .

From the point A to $B d_{r a w}{ }^{\text {a }}$ the ftraight line AB ; and upon it defcribe b the equilateral triangle DAB , and produce c the ftraight lines DA, DB, to E and F ; from the centre B , at the diffance BC , defcribe d the circle CGH, and from the centre D , at the diftance DG, defcribe the circle GKL. A.L thall be equal to BC .

Becaufe

Book I. Becaufe the point B is the centre of the circle $\mathrm{CGF}, \mathrm{BC}$ is equal e to BG ; and becaufe D is the centre of the circle GKL , e. 15. Def. DL is equal to DG, and DA, DB, parts of them, are equal ; f. 3 . Ax. therefore the remainder $A L$ is equal to the remainder $f B G$: But it has been fhown, that BC is equal to BG ; wherefore AL and $B C$ are each of them equal to $B G$; and things that are equal to the fame are equal to one another; therefore the ftraight line AL is equal to BC . Wherefore from the giveri point A a ftraight line AL has been drawn equal to the given! ftraight line BC. Which was to be done.

PROP. III. PROB.

FROM the greater of two given ftraight lines to cut off a part equal to the lefs.
Let AB and C be the two given ftraight lines, whereof $A B$ is the greater. It is required to cut off from $A B$, the greater, a part equal to C , the lefs.

ส. 2. I.
b. 3. Port.

From the point A draw a the ftraight line AD equal to C; and from the centre A, and at the diftance AD , defcribe b the circle
 DEF ; and becaufe A is the centre of the circle DEF, AE fhall be equal to AD ; but the ftraight line C is likewife equal to $A D$; whence $A E$ and C are each of them equal to $A D$; wherefore the ftraight line $A E$ is equal to $c C$, and from $A B$, the greater of two ftraight lines, a part $A E$ has been cut off equal to C the le1s. Which was to be done.

PROP.IV.THEOREM.

F two triangles have two fides of the one equal to two fides of the other, each to each; and have likewife the angles contained by thofe fides equal to one another; they thall likewife have their bafes, or tbird Sides, equal; and the two triangles fhall be equal ; and their other angles thall be equal, each to each, viz, thofe to whicli the equal fides are oppofite.

Let $A B C, D E F$ be two triangles which have the two fides $A B, A C$ equal to the two fides $D E, D F$, each to each, viz.
$A B$ to $D E$, and $A C$ to $D F$; and the angle BAC equal to the angle EDF, the bafe BC fhall be equal to the bafe EF ; and the triangle ABC to the triangle DEF; and the other angles, to which the equal fides are oppofite, fhall be equal each to each, viz. the angle $A B C$ to the B
 angle DEF, and the angle
ACB to DFE.
For, if the triangle ABC be applied to DEF, fo that the point A may be on D , and the flraight line AB upon DE ; the point B fhall coincide with the point E , becaufe AB is equal to DE ; and $A B$ coinciding with DE, AC fhail coincide with DF, becaufe the angle BAC is equal to the angle EDF; wherefore alfo the point C fhall coincide with the point F , becaufe the ftraight line AG is equal to DF : But the point B coincides with the point E ; wherefore the bafe BC fhall coincide with the bafe EF ; becaufe the point B coinciding with E , and C with F , if the bafe BC does not coincide with the bafe EF, two ftraight lines would inclofe a fpace, which is impoffible a. Therefore a 10 Ax , the bafe BC fhall coincide with the bafe EF, and be equal to it. Wherefore the whole triangle ABC fhall coincide with the whole triangle DEF, and be equal to it ; and the other angles, of the one fhall coincide with the remaining angles of the other, and be equal to them, viz. the angle $A B C$ to to the angle $D E F$, and the angle ACB to DFE. Therefore, if two triangles have tivo fides of the one equal to two fides of the other, each to each, and have likewife the angles contained by thofe fides equal to one another, their bafes fhall likewife be equal, and the triangles be equal, and their other angles to which the equal fides are oppofite fhall be equal, each to each. Which was to be demonftrated.

PROP. V. THEOR.

7 HE angles at the bafe of an Ifofceles triangle are equal to one another; and, if the equal fides be produced, the angles upon the other fide of the bafe fhall be equal.

Let $A . B G$ be an Ifoficeles triangle, of which the fide $A B$ is equal

Beok Y. qual to $A C$, and let the ftraight lines $A B, A C$ be produced to D and E, the angle $A B C$ fhall be equal to the angle $A C B$, and the angle CBD to the ancle BCE.

In BD take any point F, and from AE the greater, cut off a 3. r . ACx equal a to AF , the lefs ${ }^{\frac{3}{3}}$ and join FC, GB.

Becaufe $A F$ is equal to $A G$, and $A B$ to $A C$, the two fides FA, $A C$ are equal to the two $G A, A B$, each to each; and they contain the angle FAG common to the two triangles $A F C$, AGB; therefore the bafe FC is $\mathrm{e}-$
$b_{4.1}$ qual ${ }^{b}$ to the bafe GB, and the triangle $A F C$ to the triangle $A G B$; and the remaining angles of the one are equal b to the remaining angles of the other, each to each, to which the equal fides are oppofite; viz. the angle ACF to the angle ABG , and the angle AFG to the angle AGB: And becaufe the whole AF is equal to the whole $A G$, of which
 the payts AB, AC, are equal; the
c 3. Az remainder $B F$ fhall be equal c to the remainder $C G$; and $F G$ was proved to be equal to GB ; therefore the tw o fides BF, FC are equal to the two CG, GB, each to each; and the angle $B \mathrm{BC}$ is equal to the angle CGB , and the bafe BC is common to the two triangles $3 \mathrm{~F} \mathrm{C}, \mathrm{CGB}$; wherefore the triangles are equal b, and their remaining angles, each to each, to which the equal fides are oppofite; therefore the angle $F B G$ is equal to the angle GCB, and the angle BCF to the angle CBG: And, fince it has been demonftrated, that the whole angle $A B G$ is equal to the whole ACF, the parts of which, the angles CBG, BCF are alfo equal ; the remaining angle $A B C$ is therefore equal to the remaining angle $A C B$, which are the angles at the bafe of the triangle ABC : And it has alfo been proved that the anlge FBC is equal to the angle GCB, which are the angles upon the other fide of the bafe. Therefore the angles at the bafe, \&ic. Q. E. D.

Corollary. Hence every equilateral triangle is alfo equiangular.

> PROP. VI. THEOR.

耳F two angles of a triangle be equal to one another, 1 the fides alfo which fubtend, or are oppofite to, the equal angles, thall be equal to one another.
let ABC be a triangle having the angle ABC equal to the Book I. angle $A C B$; the fide $A B$ is alfo equal to the fide $A C$.

For, if $A B$ be not equal to $A C$, one of them is greater than the other: Let AB be the greater, and from it cut a off DB e-az. r. qual to AC , the lefs, and join DC ; therefore, becaufe in the triangles $\mathrm{DBC}, \mathrm{ACB}$, $D B$ is equal to $A C$, and $B C$ common to both, the two fides DB, BC are equal to the two AC, CB, each to each; and the angle DBC is equal to the angle ACB ; therefore the bafe DC is equal to the bafe $A B$, and the triangle $D B C$ is equal to the triangle b ACB, the lefs to the greater; which is abfurd. Therefore $A B$ is
 not unequal to AC , that is, it is equal to it. Wherefore, if two angles, \&c. Q. F. D.

Cor. Hence every equiangular triangle is alfo equilateral.

PROP. VII. THEOR.

UPON the fame bafe, and on the fame fide of it, See \mathbb{N}. there cannot be two triangles that have their fides which are terminated in one extremity of the bafe equal to one another, and likewife thole which are terminated in the other extremity.

If it be poffible, let there be two triangles $A C B, A D B$, upon the fame bafe $A B$, and upon the fame fide of it, which have their fides CA, DA, terminated in the extremity A of the baie equal to one another, and likewife their fides CB, DB, that are terminated in B .

Join CD ; then, in the cafe in which the vertex of each of the triangles is without the other triangle, becaufe AC is equal to AD , the angle, ACD is equal a to the angle ADC : But the angle ACD is greater than the angle BCD ; therefore the
 angle $A D C$ is greater alfo than $B C D$; much more then is the angle $B D C$ greater than the angle $B C D$. Again, becaufe $C B$ is equal to $D B$, the angle $B D C$ is equal a to the angle BCD ; but it has been demonftrated to be greater than it; which is impoffible.

Put

Book. I. But if one of the vertices, as D, be within the other triangle ACB ; produce AC, AD to E, F; therefore becaufe $A C$ is equal to $A D$ in the triangle ACD , the angles ECD, FDC upon the other fide of the bafe CD are a 5.1. equal a to one another, but the angle ECD is greater, than the angle BCD; wherefore the angle FDC is likewife greater than BGD; much more then is the angle $B D C$ greater than the angle BCD. Again, becaufe $C B$ is equal to
 DB , the angle BDC is equal a to the angle BCD ; but BDC has been proved to be greater thar the fame BCD ; which is impoffible. The cafe in which the vertex of one triangle is upon a fide of the other, needs no demonftration.

Therefore, upon the fame bafe, and on the fame fide of it, there cannot be two triangles that have their fides which are terminated in one extremity of the bafe equal to one another, and likewife thofe which are terminated in the other extremity. Q.E.D.

PROP. VIII. THEOR.

W two triangles have two fides of the one equal to two fides of the other, each to each, and have likewife their bafes equal ; the angle which is contained by the two fides of the one fhall be equal to the angle contained by the two fides equal to them, of the other.

Let $A B C$, DEF be two triangles having the two fides $A B$, $A C$, equal to the two fides $D E, D F$, each to each; viz. $A B$ to $D E$, and $A C$ to DF; and alfo the bafe BG equal to the bafe EF. The angle BAC is equal to the angle EDF.

For, if the triangle, ABC be applied to DEF, fo
 that the point B be on E, and the ftraight line $B C$ upon $E F$; the point C fhall alfo coincide with the point F. Becaufe
$B C$ is equal to $E F$; therefore $B C$ coinciding with $E F, B A$ and AC fhall coincide with ED and DF; for, if the bafe BC coincides with the bafe EF, but the fides BA, CA do not coincide with the fides ED, FD, but have a different fituation as EG, FG; then, upon the fame bafe EF, and upon the fame fide of it, there can be two triangles that have their fides which are terminated in one extremity of the bafe equal to one another, and likewife their fides terminated in the other extremity: But this is impoffible a ; therefore, if the bafe BC coincides with the a 7 . I_{i} bafe EF, the fides BA, AC cannot but coincide with the fides ED, DF ; wherefore likewife the angle BAC coincides with the angle $E D F$, and is equal b to it. Therefore if two triangles, b. Aะ. \&c. Q.E.D.

PROP. IX. PROB.

TO bifect a given rectilineal angle, that is, to divide it into two equal angles.
Let BAC be the given rectilineal angle, it is required to bifect it.
Take any point D in $A B$, and from $A C$ cut a off $A E$ equal to a 3. I. AD ; join DE , and upon it defribe b an equilateral triangle DEF; ther join AF ; the ftraight line AF bifects the angle BAC.

Becaufe AD is equal to AE , and AF is common to the two triangles DAF, EAF ; the two fides DA, AF, are equal to the two fides EA, AF, each to each; and the baie DF is equal to the bafe EF; therefore the angle DAF is equal c to the angle
 EAF; wherefore the given rectilineal angle BAC is bifectod by the ftraight line AF. "Which was to be done.

PROP. X. PROB.

$T O$ bifect a given finite ftraight line, that is, to divide it into two equal parts.
Let $A B$ be the given flraight line; it is required to divide it into two equal parts.
Defrribe a upon it an equilateral triangle $A B C$, and bifect a . . . b the angle $A C B$ by the fraight line $C D$. AB is cut into two b, at equal parts in the point D .

Book I. Becaufe $A C$ is equal to $C B$, and $C D$ common to the two triangles ACD , BCD ; the two fides AC, CD are equal to $B G, C D$, each to each; and the angle ACD is equal to the angle BCD ; therefore the bafe $A D$ is equal to the c4. r. bafe c $D B$, and the ftraight line $A B$ is divided into two equal parts in the point D. Which was to be done.

PROP. XI. PROB.

TO draw a fraight line at right angles to a given ftraight line, from a given point in the fame.

Sce N. Let AB be a given ftraight line, and C a point given in it ; - it is required to draw a flraight line from the point C at right angles to AB .
a 3. 1. Take any point D in AC , ${ }^{\gamma}$ and a make CE equal to CD , and b I. I. upon DE defcribe b the equilateral triangle DFE, and join FC; the ftraight line FC drawn from the given point C is at right angles to the given ftraight line $A B$.

Becaufe DC is equal to CE and FC common to the two triangles DCF, ECF; the two
$\xrightarrow[A]{\text { C }}$ fides $D C, C F$, are equal to the two EC, CF, each to each ; and the bafe DF is equal to the bafe EF ; therefore the angle DCF
cs. I . is equal c to the angle ECF; and they are adjacent angles. But, when the adjacent angles which one ftraight line makes with another ftraight line are equal to one another, each of them $d \mathrm{ro}$. Def. is called a right ${ }^{d}$ angle; therefore each of the angles DCF,
I. ECF, is a right angle. Wherefore, from the given point C , in the given ftraight line AB, FC lias been drawn at right angles to AB. Which was to be done.

Cor. By help of this problem, it may be demonftrated, that two ftraight lines cannot have a common fegment.

If it be poffible, let the two ftraight lines $A B C, A B D$ have the fegment AB common to both of them. From the point B draw $B E$ at right angles to $A B$; and becaufe $A B C$ is a ftraight
line, the angle CBE is equala to the angle EBA; in the fame manner, becaufe $A B D$ is a ftraight line, the angle DBE is equal to the angle EBA; wherefore the angle DBE is equal to the angle CBE, the lefs to the greater; which is impoffible; therefore two fraight lines can-

Book I. a 10. Def. ?. not have a common fegment.

PROP. XII. PROB.

T draw a fraight line perpendicular to a given ftraight line of an unlimited length, from a given point without it.
Let AB be the given ftraight line, which may be produced any length both ways, and let C be a point without it. It is required to draw a f raight line perpendicular to $A B$ from the point C.

Take any point D upon the other fide of $A B$, and from the centre C , at the diffance CD , defcribe b the circle EGF meeting $A B$ in F G ; and bifect, c FG in H ,
 and join $\mathrm{CF}, \mathrm{CH}, \mathrm{CG}$; the ftraight line CH , drawn from the given point C, is perpendicular to the given ftraight line $A B$.

Becaufe FH is equal to HG , and HC common to the two triangles FHC, GHC, the two fides FH, HC are equai to the two GH, HC, each to each; and the bafe CF is equal d to the bafe CG; therefore the angle CHF is equal e to the angle CHG;

```
d 15. Def.
``` I. and they are adjacent angles; but when a ftraight line ftaiding on a ftraight line makes the adjacent angles equal to one another, each of them is a right angle; and the ftraight line which flands upon the other is called a perpendicular to it ; therefore from the given point C a perpendicular CH has been drawn to the given ftraight line \(A B\). Which was to be done.
PROP. XIII. THEOR.

THE angles which one ftraight line makes with another upon the one fide of it, are either two right angles, or are together egual to tivo right angles.

Gook !. Let the ftraight line \(A B\) make with \(C D\), upon ane fide of工 it, the angles \(\mathrm{CBA}, \mathrm{ABD}\); thefe are either two right angles; or are together equal to two right angles.
For if the angle-GBA be equal to \(A B D\), each of them is 2

a Def. ro. right a angle ; but, if not, from the point B draw BE at right bir. i. angles \(b\) to CD ; therefore the angles CBE, EBD are two right angles a ; and becaufe CBE is equal to the two angles CBA; \(A B E\) together, add the angle EBD to each of thefe equals; there-
c. . Ax. fore the angles CBE EBD are equal c to the three angles CBA, \(\mathrm{ABE}, \mathrm{EBD}\). Again, becaufe the angle DBA is equal to the two angles \(\mathrm{DBE}, \mathrm{EBA}\), add to thefe equals the angle ABC , therefore the angles \(D B A, A B C\) are equal to the three angles \(\mathrm{DBE}, \mathrm{EBA}, \mathrm{ABC}\); but the angles \(\mathrm{CBE}, \mathrm{EBD}\) have been demonftrated to be equal to the fame three angles; and things
d I. Ax. that are equal to the fame are equal d to one another; therefore the angles \(\mathrm{CBE}, \mathrm{EBD}\) are equal to the angles \(\mathrm{DBA}, \mathrm{ABC}\); but CBE; EBD are two right angles; therefore \(\mathrm{DBA}, \mathrm{ABC}\) are together equal to two right angles. Wherefore, when a fraight line, \&xc. (.). E. D.

> PROP. XIV. THEOR.

IF , at a point in a ftraight line, two other ftraight lines, upon the oppofite fides of it, make the adjacent angles together equal to two right angles, thefe two fraight lines fhall be in one and the fame ftraight line.

in the fame fraight line with it ; therefore, becaufe the ftraight Book r . line \(A B\) makes angles with the ftraight line CBE , upon one fide of it, the angles \(A B C, A B E\) are together equal a to two right \({ }^{1} 13.1\). angles; but the angles \(\mathrm{ABC}, \mathrm{ABD}\) are likewife together equal to two right angles; therefore the argles \(\mathrm{CBA}, \mathrm{ABE}\) are equal to the angles CBA, ABD : Take away the common angle ABC , the remaining angle \(A B E\) is equal \(b\) to the remaining angle \(b\) 3. \(A z\) o \(A B D\), the lefs to the greater, which is impoffible; therefore BE is not in the fame ftraight line with BC . And, in like manner, it may be demonftrated, that no other can be in the fame ftraight line with it but BD , which therefore is in the fame Atraight line with CB. Wherefore, if at a point, \&c. Q. E. D.

\section*{PROP. XV. THEOR.}

IF two ftraight lines cut one another, the vertical, or oppofite, angles fhail be equal.

Let the two ftraight lines \(A B, C D\) cut one another in the point \(E\); the angle \(A E G\) fhall be equal to the angle \(D E B\), and CEB to AED.

Becaufe the ftraight line AE makes with CD the angles CEA , \(A E D\), the fe angless are together \(C\) equal a to two right angles. Again, becaufe the ftraight line \(D E\) makes with \(A B\) the angles \(A\) AED, DEB, thefe alfo are together equal a to two right angles; and CEA, AED have been demonftrated to be equal to two right angles; wherefore the an gles CEA, AED are equal to the angles AED, DEB. Take away the common angle AED, and the remaining angle CEA is equal \(b\) to the remaining angle DEB. In the fame manner \({ }^{b}\). \(A x_{0}\) it can be demonftrated that the angles \(C E B, A E D\) are equal. Therefore, if two ftraight lines, \&c. Q. E. D.

Cor. 1. From this it is manifeft, that, if two ftraight lines cut one another, the angles they make at the point where they cut, are together equal to four right angles.

Cor. 2. And confequently that all the angles made by any number of lines meeting in one point, are together equal to four right angles.

Book 1.
PROP. XVI. THEOR.

FF one fide of a triangle be produced, the exterior angle is greater than either of the interior oppofite angles.

Let ABC be a triangle, and let its fide BC be produced to D , the exterior angle \(A C D\) is greater than either of the interior oppofite angles CBA, BAC.
: 30. \(\mathbf{x}\). Bifect a AGin E, joinBE and produce it to F , and make EF equal to BE ; join ailo FC , and produce AC to G.

Becaufe \(A E\) is equal to EC , and BE to EH ; AF , EB are equal to \(\mathrm{CE}, \mathrm{EF}\), each to each; and the angle
bis. 2. AEB is equal b to the angle CEF, becaufe they are oppofite vertical angles; there-
c 4. I. fore the bate \(A B\) is equal c
 to the bafe CF, and the triangle AEB to the triangle CEF, and the remaining angles to the remaining angles, each to each, to which the equal fides are oppofite; wherefore the angle BAE is equal to the angle ECF; but the angle ECD is greater than the angle ECF; therefore the angle \(A C D\) is greater than BAE: In the fame manner, if the fide \(B C\) be bifected, it may be demonftrated that dis. I the angle BCG, that is d, the angle ACD, is greater than the angle ABC. Therefore, if one fide, \&c. Q.E.D.

\section*{PROP. XVII. THEOR.}

LNY two angles of a triangle are together lefs than two right angles.
Let \(A B C\) be any triangle; any two of its angles together are lefs than two right angles.

Produce BC to D ; and becaufe ACD is the exterior angle of the triangle \(A B C, A C D\) is
2 16. 1. greater \({ }^{2}\) than the interior and oppofite angle \(A B C\); to each of

there
thefe add the angle ACB ; therefore the angles \(\mathrm{ACD}, \mathrm{ACB}\) are Book. i. greater than the angles \(\mathrm{ABC}, \mathrm{ACB}\); but \(\mathrm{ACD}, \mathrm{ACB}\) are together equal \(b\) to two right angles; therefore the angles \(A B C\), bi3.1. BCA are leifs than two right angles. In like manner, it may be demonftrated, that \(\mathrm{BAC}, \mathrm{ACB}\), as alfo \(\mathrm{CAB}, \mathrm{ABC}\), are lefs than two right angles. Therefore any two angles, \&c. Q. E. D.

\section*{PROP. XVIII. THEOR.}

THE greater fide of every triangle is oppofite to the greater angle.

Let \(A B C\) be a triangle, of which the fide \(A C\) is greater than the fide \(A B\); the angle ABC is alfo greater than the angle BCA.

Becaufe AC is greater than \(A B\), make a \(A D\) equal to \(A B\), and join \(B D\); and becaufe \(A D B\) is the exterior angle of the triangle \(B D C\), it is greater \({ }^{b}\) than
 the interior and oppofite angle DCB ; but ADB is equal c to \(\mathrm{c} 5 . \mathrm{I}\). \(A B D\), becaufe the fide \(A B\) is equal to the fide \(A D\); therefore the angle \(A B D\) is likewife greater than the angle \(A C B\); wherefore much more is the angle ABC greater than ACB . Therefore the greater fide, \&c. Q.E.D.

\section*{PROP. XIX. THF,OR.}

THE greater angle of every triangle is fubtended by the greater ficle, or bas the greater fide oppofite to it.
Let \(A B C\) be a triangle, of which the angle \(A B C\) is greater than the angle BCA; the fide AC is likewife greater than the fide \(A B\).

For, if it be not greater, AC mutt either be equal to \(A B\), or lefs than it ; it is not equal, becaufe then the angle \(A B C\) would be equal a to the angle ACB ; but it is not; therefore AC is not equal to AB ; weither is it lefs'; becaufe then the angle

Book 1. ABC would be lefs b than the angle ACB; but it is not; there
fore the fide \(A C\) is not lefs than \(A B\); and it has been hewn
b 18. r. that it is not equal to \(A B\); therefore \(A C\) is greater than \(A B\).; Wherefore the greater angle, \&c. Q. E. D.

\section*{PROP. XX. THEOR.}

Seen.NY two fides of a triangle are together greater than the third fide.
Let \(A B C\) be a triangle; any two fides of it together are greater than the third fide, viz. the fides \(\mathrm{BA}, \mathrm{AC}\) greater than the fide \(B C\); and \(A B, B C\) greater than \(A C\); and \(B C, C A\). greater than \(A B\).

Produce BA to the point D ,
a 3. r. and make a \(A D\) equal to \(A C\); and join \(D C\).

Becaufe DA is equal to \(A C\), the angle \(A D C i s\) likewife equal
bs. 1. \({ }^{\text {b }}\) to \(A C D\); but the angle \(B C D\) is greater than the angle ACD ;
 therefore the angle BCDisgreater than the angle ADC; and becaufe the angle BCD of the triangle DCB is greater than ita angle BDC , and that the greater c fide is oppofite to the greater angle ; therefore the fide DB is greater than the fide BC ; but \(D B\) is equal to \(B A\) and \(A C\); therefore the fides \(B A, A C\) are greater than BC . In the fame manner it may be demonftrated, that the fides \(\mathrm{AB}, \mathrm{BC}\) are greater than CA , and \(\mathrm{BC}, \mathrm{CA}\) greator than \(A B\). Therefore any two fides, \&c. Q.E.D.

\section*{PROP. XXI. THEOR.}

See N. Fr from the ends of the fide of a triangle, there be angle, thefe fhall be lefs than the other two fides of the triangle, but fhall contain a greater angle.

Let the two ftraight lines \(\mathrm{BD}, \mathrm{CD}\) be drawn from \(\mathrm{B}, \mathrm{C}\), the ends of the fide \(B C\) of the triangle \(A B C\), to the point \(D\) within it; \(B D\) and \(D C\) are lefs than the other two fides \(B A, A C\) of the triangle, but contain an angle BDC greater than the - gle BAC.

Produce BD to E; and becaufe two fides of a triangle are greater than the third fide, the two fides \(B A, A E\) of the tri-
angle ABE are greater than BE. To each of thefe add EC; therefore the fides \(B A, A C\) are greater than \(\mathrm{BE}, \mathrm{EC}\) : A gain, becaufe the two fides CE, ED of the triangle CED are greater than CD , add DB to each of thefe; therefore the fides CE, EB are greater than \(\mathrm{CD}, \mathrm{DB}\); but it has been the wn that \(B A, A C\) are great-
 er than BE, EC ; much more then are \(\mathrm{BA}, \mathrm{AC}\) greater than \(\mathrm{BD}, \mathrm{DC}\).

Again, becaufe the exterior angle of a triangle is greater than the interior and oppofite angle, the exterior angle BDC of the triangle CDE is greater than CED ; for the fame reafon, the exterior angle CEB of the triangle ABE is greater than BAC ; and it has been demonftrated that the angle BDC is greater than the angle CEB ; much more then is the angle BDC greater than the angle BAC. Therefore, if from the ends of, \&c. Q. E. D.

\section*{PROP. XXII. PROB.}

TO make a triangle of which the fides fhall be equal see no. to three given ftraight lines, but any two whatever of thefe muft be greater than the third \({ }^{2}\).

Let \(A, B, C\) be the three given ftraight lines, of which any two whatever are greater than the third, viz. A and \(B\) greater than \(C ; A\) and \(C\) greater than \(B\); and \(B\) and \(C\) than \(A\). It is required to make a triangle of which the fides fhall be equal to \(\mathrm{A}, \mathrm{B}, \mathrm{C}\), each to each.

Take a fraight line \(D E\) terminated at the point \(D\), but unlimited towards \(\mathbf{E}\), and make a \(D F\) equal to \(A\), FG to \(B\), and \(G H\) equal to \(C\); and from the centre \(F\), at the diftance FD, defcribe b the circle \(D\) DKL ; and from the centre \(G\), at the diftance GH, defcribe \(b\) another circle HLK; and joinKF, \(K G\); the triangle KFG

Book 1. equal c to FK; but FD is equal to the ftraight line A ; there (oma) 6. I5. Def. fore FK is equal to A : Again, becaufe G is the centre of the circle LKH, GH is equal c to GK ; but GH is equal to C ; therefore alfo \(G K\) is equal to \(C\); and \(F G\) is equal to \(B\); therefore the three ftraight lines KF, FG, GK, are equal to the three A, \(\mathrm{B}, \mathrm{C}\) : And therefore the triangle \(K F G\) has its three fides KF, FG, GK equal to the three given ftraight lines, A, B, C. Which was to be done.

\section*{PROP. XXIII. PROB .}

AT a given point in a given ftraight line, to make a rectilineal angle equal to a given rectilineal angle.

Let \(A B\) be the given fraight line, and \(A\) the given point in it, and DCE the given rectilineal angle; it is required to make an angle at the given point \(A\) in the given ftraight line AB , that fhall be equal to the given rectilineal angle DCE.

Take in CD, CE any points \(D, E\), and a 22. 1. join DE ; and make a the triangle AFG the fides of which flall be
 equal to the three ftraight lines \(\mathrm{CD}, \mathrm{DE}, \mathrm{CE}\), fo that CD be equal to \(\mathrm{AF}, \mathrm{CE}\) to \(A G\), and \(D E\) to \(F G\); and becaufe \(D C, C E\) are equal to \(F A\), AG , each to each, and the bafe DE to the bafe FG ; the angle
b 8. I. DCE is equal b to the angle FAG. Therefore, at the given point \(A\) in the given ftraight line \(A B\), the angle FAG is made equal to the given rectilineal angle DCE. Which was to be done.

\section*{PROP. XXIV. THEOR.}

See N . F two triangles have two fides of the one equal to two fides of the other, each to each, but the angle contained by the two fides of one of them greater than the angle contained by the two fides equal to them, of the other ; the bafe of that which has the greater angle fhall be greater than the bafe of the other.

Let \(\mathrm{ABC}, \mathrm{DEF}\) be two triangles which have the two fides \(A B, A C\) equal to the two \(D E, D F\), each to each, viz. \(A B\) equal Book I. to DE , and AC to DF ; but the angle BAG greater than the angle EDF ; the bafe BC is alfo greater than the bafe EF .

Of the two fides DE, DF, let DE be the fide which is not greater than the other, and at the point D , in the ftraight line DE , make a the angle EDG equal to the angle BAC ; and \({ }_{b}^{\text {a }}\) 2.3. r. make DG equal b to AC or DF, and join EG, GF.

Becaufe \(A B\) is equal to \(D E\), and \(A C\) to \(D G\), the two fides \(\mathrm{BA}, \mathrm{AC}\) are equal to the two \(\mathrm{ED}, \mathrm{DG}\), each to each, and the angle BAC is equal to the angle \(\mathrm{EDG} ; \mathrm{A}\) therefore the bafeBC is equal c to the bafe EG; and becaufe DG is equal to DF , the angle DFG isequal i to the angle DGF; but the angle DGFis greater than theangle 8
 EGF ; therefore the angle \(D F G\) is greater than EGF; and much more is the angle EFG greater than the angle EGF ; and becaufe the angle EFG of the triangle EFG is greater than its angle EGF, and that the greater e fide is oppofite to the greater angle; the fide EG \({ }^{\mathrm{e}}{ }^{\mathrm{I}} \mathrm{g} . \mathbf{I}\). is therefore greater than the fide EF; but EG is cqual to BC ; and therefore alfo BC is greater tisan Er. Thercfore, if two triangles, \& \& . Q. E. D.

> PROP. XXV. THEOR.

F two triangles have two fides of the one equal to two fides of the other, each to each, but the bafe of the one greater than the bafe of the other; the angle alfo contained by the fides of that which has the greater bafe, fhall be greater than the angle contained by the fides equal to them, of the other.

Let \(\mathrm{ABC}, \mathrm{DEF}\) be two triangles which have the two fides \(\mathrm{AB}, \mathrm{AG}\) equal to the twe fides \(\mathrm{DE}, \mathrm{DF}\), each to each, viz. AB equal to \(D E\), and \(A C\) to \(D F\); but the bafe CB is greater than the bafe EF; the angle BAC is likewife greater than the angle EDF。

Book 1. For, if it be not greater, it muft either be equal to it, or lefs; but the angle BAC is not equal to the angle EDF, becaufe then the bafe BC would 2 4. 1. be equal a to EF ; but it is not ; therefore the angle BAC is not equal to the angle EIDF; neither is it lefs; becaufe then the bafe BC would be lefs
*24. I. B than the bafe EF; but it is not ; there-

 fore the a gle BAC is not lefs than the angle EDF; and it was fhewn that it is not equal to it ; therefore the angle BAC is greater than the angle EDF. Wherefore'; if two triangles, \&c. Q.E.D.

\section*{PROP. XXVI. THEOR.}

直F two triangles have two angles of one equal to two angles of the other, each to each; and one fide \(e\). qual to one fide, viz. either the fides adjacent to the equal angles, or the fides oppofite to equal angles in each; then fhall the other fides be equal, each to each; and alfo the third angle of the one to the third angle of the other.

Let \(A B C, D E F\) be two triangles which have the angles \(A B C\), BGA equal to the angles DEF, EFD, viz. ABC to DEF, and BCA to EFD ; alfo one fide equal to one fide; and firft let thofe fides be equal which are adjacent to the angles that are eo qual in the two triangles; viz. BC to EF; the other fides fhall be equal; each to each, viz. AB to \(D E\), and \(A C\) to \(D F\); and the third angle BAC to the third angle EDF.

For, if AB be not

 equal to \(D E\), one of them muft be the greater. Let \(A B\) be the greater of the two, and make \(B G\) equal to \(D E\), and join \(G C\); thercfore, becaufe BG is equal to DE, and BC to EF, the two
fides \(G B, B C\) are equal to the two \(D E, E F\), each to each ; and the angle GBC is equal to the angle DEF; therefore the bafe GG is equal a to the bafe DF, and the triangle GBC to the tri- \({ }^{\text {a }}\) 4. I. angle DEF , and the other angles to the other angles, each toeach, to which the equal fides are oppofite; therefore the angle GCB is equal to the angle DFE; but DFE is, by the hypothefis, equal to the angle \(B C A\); wherefore alfo the angle \(B C T\) is equal to the angle BCA, the lefs to the greater, which is impoffible ; therefore AB is not unequal to DE , that is, it is equal to it ; and BC is equal to EF ; therefore the two \(\mathrm{AB}, \mathrm{BC}\) are equal to the two DE, EF, each to each; and the angle \(A B C\) is equal to the angle \(D E F\); the bafe therefore \(A C\) is equal a to the bare \(D F\), and the third angle \(B A C\) to the third angle \(E D F\).

Next, let the fides which are oppofite to equal angles in each triangle be equal to one another, viz. AB to DE ; likewife in this cafe, the other fides fhall be equal, AC to DF , and BC to EF ; and alfo the

 third angle \(B A C\) to the third EDF.

For, if BC be not equal to EF , let BC be the greater of them, and make BH equal to EF , and join AH ; and becaufe BH is equal to EF , and AB to DE ; the two \(\mathrm{AB}, \mathrm{BH}\) are equal to the tivo DE, EF, each to each ; and they contain equal ane. gles; therefore the bafe AH is equal to the bafe DF , and the triangle ABH to the triangle DEF, and the other angles fhall be equal, each to each, to which the equal fides are oppofite; therefore the angle BHA is equal to the angle EFD ; bit EFD is equal to the angle BCA; therefore alfo the angle BHA is equal to the angle BCA, that is, the exterior angle BHA of the triangle \(A H C\) is equal to its interior and oppofite angle BCA; which is impoffible \(b\); wherefore \(B C\) is not unequal to \(E F, b 16\). \(x_{0}\) that is, it is equal to it ; and \(A B\) is equal to \(D E\); therefore the two \(\mathrm{AB}, \mathrm{BC}\) are equal to the two \(\mathrm{DE}, \mathrm{EF}\), each to each ; and they contain equal angles; wherefore the bafe AC is equal to the bafe DF, and the third angle BAC to the third angle EDE. Therefose, if two triangles, \&\&c. Q. E.D.

PROP. XXVII. THEOR.

IF a firaight line falling upon two other ftraight lines makes the alternate angles equal to one another, thele two Atraight lines fhall be parailel.

Let the ftraight line EF, which falls upon the two Atraight lines \(\mathrm{AB}, \mathrm{CD}\) make the alternate angles \(\mathrm{AEF}, \mathrm{EFD}\) equal to one another; \(A B\) is parallel to \(C D\).

For, if it be not parallel, AB and CD being produced flall meet either towards \(\mathrm{B}, \mathrm{D}\), or towards \(\mathrm{A}, \mathrm{C}\); let them be produced and meet towards \(B, D\) in the point \(G\); therefore \(G E F\) is a triangle, and its exterior angle AEF is greater a than the interior and oppofite angle EfG; but it is alfo equal to it, which is impoffible ; therefore \(A B\) and \(C D\) being produced do not meet towards \(\mathrm{B}, \mathrm{D}\). In like manner it may be demonftrated that they do not meet towards A,
 C ; but thofe itraight lines whicin meet neither way, though produced ever fo far, are pab 35 . Def. rallel b to one another. AB therefure is parallel to CD. Wherefore, if a ftraight line, \&xc. Q. E. D.
PROP. XXVIII. THEOR,

F a fraight line falling upon two other ftraight lines makes the exterior angle equal to the interior and oppofite upon the fame fide of the line; or makes the interior angles upon the fame fide together equal to two right angles ; the two ftraight lines fhall be parallel to one another.

Let the ftraight line EF, which falls upen the two ftraight lines \(\mathrm{AB}, \mathrm{CD}\), make the extcrior angle LGB equal to the jnterior and \(A\) oppofite angle GHiD upon the fame fide; or mike the interior a: gles on the tume fide \(\mathrm{BGH}, \mathrm{C}\) GHD togethe equal to two right a: gles; AF is parallel to CD.

Becaufe re angle EGB is e-
 quai to the angic GHD, and the
angle EGB equal a to the angle AGH, the angle AGH is equal to the angle GHD ; and they are the alternate angles ; therefore AB is parallel \({ }^{\mathrm{b}}\) to CD . Again, becaufe the angles \(\mathrm{BGH}, \mathrm{GHD}\) are equal c to two right angles; and that AGH, BGH, are alfo \({ }^{27}\). r. equald to two right angles; the angles AGH, BGH are equal d \(\mathbf{x} 3 . \mathrm{r}\). to the angles BGH, GHD : Take away the common angle BGH ; therefore the remaining angle AGH is equal to the remaining angle GHD; and they are alternate angles ; therefore AB is parallel to CD . Wherefore, if a ftraight line, \&c. Q . E. D.

\section*{PROP. XXIX. THEOR.}

FF a ftraight line fall upon two parallel ftraight lines, it See the makes the alternate angles equal to one another; and Book I. the exterior angle equal to the interior and oppofite upon fition. the fame fide; and likewife the two interior angles upon the fame fide together equal to two right angles.

Let the ftraight line EF fall upon the parallel ftraight liness \(\mathrm{AB}, \mathrm{CD}\); the alternate angles \(\mathrm{AGH}, \mathrm{GHD}\) are equal to one another; and the exterior angle EGB is equal to the interior and oppofite, upon the fame fide, \(\mathbf{E}\) GHD; and the two.interior angles BGH, GHD upon the fame fide are together equal to two right \(\overline{\mathrm{A}}\) G
angles.

For, if AGH be not equal to GHD, one of them muft be greater \(\overline{\mathbf{C}}\) than the other; let AGH be the greater; and becaufe the angle AGH
 is greater than the angle GHD, add to each of them the angle BGH; therefore the angles AGH, BGH are greater than the angles \(\mathrm{BGH}, \mathrm{GHD}\); but the angles \(A G H, B G H\) are equal 2 to two right angles; therefore the \(213 . x\). angles \(\mathrm{BGH}, \mathrm{GHD}\) are lefs than two right angles; but thofe ftraight lines which, with another ftraight line falling upon them, make the interior angles on the fame fide lefs than two right angles, do meét * together if continually produced ; therefore the ftraight lines \(\mathrm{AB}, \mathrm{CD}\), if produced far enough, fhall meet; See the but they never meet, fince they are parallel by the hypothefis ; this propotherefore the angle AGH is not unequal to the angle GHD, that fition. is, it is equal to it; but the angle AGH is equal b to the angle b 15.1 . LGB; therefore likewife EGB is equal to GHD ; add to each

Book I. of thefe the angle EGH ; therefore the angles \(\mathrm{EGB}, \mathrm{BGH}\) are equal to the angles \(E G H, G H D\); but \(E G B, B G H\) are equal c to two right angles; therefore alfo \(\mathrm{BGH}, \mathrm{GHD}\) are equal to two right angles. Wherefore, if a ftraight, \&c. Q. E. D.

\section*{PROP. XXX. THEOR.}

STraighit lines which are parallel to the fame ftraight line are parallel to one another.

Let \(A B, C D\) be each of them parallel to EF; \(A B\) is alfo parallel to CD.

Let the ftraight line GHK cut \(\mathrm{AB}, \mathrm{EF}, \mathrm{CD}\); and becaufe GHK cuts the parallel ftraight lines \(A \cdot B, E F\), the angle \(A G H\) is
229. I. equal a to the angle GHF. Again, becaufe the ftraight line GK cuts the parallel ftraightlines EF, CD, the angle GHF, is equal a to the angle GKD ; and it was Thewn that the angle AGK is equal to the angle GHF ; therefore alfo AGK is equal to GKD ; and they are alternate angles;
b 2\% I. therefore \(A B\) is parallel bto CD. Wherefore ftraight lines, \&c. Q.E. D.

\section*{PROP. XXXI. PROB.}

TO draw a ftraight line through a given point parallel to a given ftraight line.

Let \(A\) be the given point, and BC the given ftraight line; it is requited to draw a fraight line \(\mathbf{E}\) A F through the point \(A\), parallel to the ftraight line BC.

In BC take any point \(D\), and join \(A D\); and at the point \(A\), in the a 23. I. Atraight line \(A D\) make a the angle
 DAE equal to the angle \(A D C\); and produce the fraight line EA to \(F\).

Becaufe the ftraight line \(A D\), which meets the two ftraight lines \(\mathrm{BC}, \mathrm{EF}\), makes the alternate angles \(\mathrm{EAD}, \mathrm{ADC}\) equal to b \(2 \%\) I. one another, EF is parallel b to BC. Therefose the ftraight line

EAF is drawn through the given point A parallel to the given ftraight line BC. Which was to be done.

Book I.

\section*{PROP. XXXII. THEOR.}

IF a fide of any triangle be produced, the exterior angle is equal to the two interior and oppofite angles ; and the three interior angles of every triangle are equal to two right angles:

Let \(A B C\) be a triangle, and let one of its fides \(B C\) be produced to \(D\); the exterior angle \(A C D\) is equal to the two interior and oppofite angles \(\mathrm{CAB}, \mathrm{ABC}\) and the three interior angles of the triangle, viz. \(A B C, B C A, C A B\) are together equal to two right angles.

Through the point \(C\) draw CE parallel a to the ftraight \(231 . \pi\) line \(A B\); and becaufe \(A B\) is paiallel to CE and AC meets them, the alternate angles BAC, ACE are equal \({ }^{b}\). Again, becaufe \(A B\) is parallel to CE , and BD falls upon them, the exterior angle ECD
 is equal to the interior and oppofite a gle \(A B C\); but the angle \(A C E\) was fhewn to be equal to the angle BAC; therefore the whole exterior angle ACD is equal to the two interior and oppofite angles \(\mathrm{CAB}, \mathrm{ABC}\); to thefe equals add the angle \(A C B\), and the angles \(A C D, A C B\) are equal to the three angles \(\mathrm{CBA}, \mathrm{BAC}, \mathrm{ACB}\); but the angles \(\mathrm{ACD}, \mathrm{ACB}\) are equal c to two right angles; therefore alfo the \(\mathrm{c} \mathrm{I}_{3} . \mathrm{r}_{0}\) angles \(\mathrm{CBA}, \mathrm{BAC}, \mathrm{ACB}\) are equal to two right angles. Where fore if a fide of a triangle, \&c. \(\quad\) Q. E. D.

Cor. i. All the interior angles
of any rectilineal figure, together with four right angles, are equal to twice as many right angles as the figure has fides.

For any rectilineal figure ABCDE can be divided into as many triangles as the figure has fides, by drawing ftraight lines from a point F within the figure
 to each of its angles. And, by
the

Book I. the preceding propofition, all the angles of thefe triangles are e-
 qual to twice as many right angles as there are triangles, that is, as there are fides of the figure; and the fame angles are equal to the angles of the figure, together with the angles at the point
2 2. Cor. F, which is the common vertex of the triangles: that is a, to-
15. I. gether with four right angles. Therefore all the angles of the figure, together with four right angles, are equal to twice as many right angles as the figure has fides.

Cor.2. All the exterior angles of any rectilineal figure, are together equal to four right angles.

Becaufe every interior angle ABC , with its adjacent exterior
 \(A B D\), is equal \(b\) to two right angles; therefore all the interior, together with all the exterior angles of the figure, are equal to twice as many right angles as there are fides of the figure; that is, by the foregoing corol- D
 lary, they are equal to all the interior angles of the figure, together with four right angles; therefore all the exterior angles are equal to four right angles.

\section*{PR OP. XXXIII, THEOR.}

THE ftraight lines which join the extremities of two equal and parallel ftraight lines, towards the fame parts, are alfo themfelves equal and parallel.

Let \(A B, C D\) be equal and parallel ftraight lines, and joined towards the fame parts by the ftraight lines \(\mathrm{AC}, \mathrm{BD} ; \mathrm{AC}, \mathrm{BD}\) are alfo equal and parallel.

Join \(B C\); and becaufe \(A B\) is parallel to \(C D\), and \(B C\) meets

29. r. Them, the alternate angles \(\mathrm{ABC}, \mathrm{BCD}\) are equal a and becaufe \(A B\) is equal to \(C D\), and \(B C\) common to the two triangles \(A B C\), DCB , the two fides \(\mathrm{AB}, \mathrm{BC}\) are equal to the two \(\mathrm{DC}, \mathrm{CB}\); and the angle ABC is equal to the angle BCD ; therefore the
64. 18 bafe AC is equal \({ }^{\mathrm{b}}\) to the bafe BD , and the triangle ABC to the triangle BCD , and the other angles to the other angles \({ }^{\mathrm{b}}\), each to each, to which the equal fides are oppofite ; therefore the angle
angle \(A C B\) is equal to the angle CBD ; and becaufe the ftraight line \(B C\) meets the two ftraight lines \(A C, B D\), and makes the alternate angles \(\mathrm{ACB}, \mathrm{CBD}\) equal to one another, AC . is parallel c to BD ; and it was fhewn to be equal to it. Therefore, c 27 . r. Atraight lines, \&cc. Q.E. D.

\section*{PROP, XXXIV. THEOR.}

THE oppofite fides and angles of parallelograms are equal to one another, and the diameter bifects them, that is, divides them into two equal parts.
N. B. A parallelogram is a four-fided figure, of which. the oppofite fides are parallcl; and the diameter is the Araight line joining two of its oppofite angles.

Let ACDB be a parallelogram, of which BC is a diameter; the oppofite fides and angles of the figure are equal to one another; and the diameter BC bifects it.

Becaufe AB is parallel to CD , \(A\) and \(B C\) meets them, the alternate angles \(A B C, B C D\) are equal a to one another; and becaufe AC is parallel to BD , and BC meets them, the alternate angles \(\mathrm{ACB}, \mathrm{CBD}\) are equal a to one
 another; wherefore the two triangles \(\mathrm{ABC}, \mathrm{CBD}\) have two angles \(\mathrm{ABC}, \mathrm{BCA}\) in one, equal to two angles \(\mathrm{BCD}, \mathrm{CBD}\) in the other, each to each, and one fide BC common to the two triangles, which is adjacent to their equal angles; therefore. their other fides fhall be equal, each to each, and the third angle of the one to the third angle of the other \({ }^{6}\), viz the fide b 26. x. \(A B\) to the fide \(C D\), and \(A C\) to \(B D\), and the angle \(B A C\) equal to the angle BDC : And becaufe the angle ABC is equal to the angle \(B C D\), and the angle \(C B D\) to the angle \(A C B\), the whole angle \(A B D\) is equal to the whole angle \(A C D\) : And the angle BAC has been fhewn to be equal to the angle BDC ; therefore the oppofite fides and angles of parallelograms are equal to one another; alfo, their diameter bifects them; for \(A B\) being equal to CD , and BC common, the two \(\mathrm{AB}, \mathrm{BC}\) are equal to the two \(D C, C B\), each to each; and the angle \(A B C\) is

Book t. equal to the angle BCD ; therefore the triangle ABC is equal cond the triangle \(B C D\), and the diameter \(B C\) divides the paralC4. 1.

See N.

PAralellograms upon the fame bafe and between the fame parallels, are equal to one another.

See the 2 d and 3 d figures.
a 34.7.
b I. Ax.
c 2. or 3. Ax.
e4. I .
f 3. Ax.

> dif.

Let the parallelograms \(A B C D, E B C F\) be upon the fame bafe BC , and between the fame parallels \(\mathrm{AF}, \mathrm{BC}\); the parallelogram \(A B C D\) fhall be equal to the parallelogram EBCF.

If the fides \(A D, D F\) of the parallelograms \(A B G D, D B G F\) oppofite to the bafe BC be terminated in the fame point \(D\); it is plain that each of the parallelerrams is double a of the triangle BDC ; and they are therefore equal to one another.

But, if the fides \(A D, E F\), oppofite \(B\)
 to the bafe BC of the parallelograms \(\mathrm{ABCD}, \mathrm{EBCF}\), be not terminated in the fame point ; then, be caufe \(A B C D\) is a parallelogram, \(A D\) is equal a to \(B C\); for the fame reafon EF is equal to BC ; wherefore AD is equal \(b\) to \(E F\); and \(D E\) is common; therefore the whole, or the remainder, \(A E\) is equal \(c\) to the whole, or the remainder \(D F ; A B\) al. fo is equal to \(D C\); and the two \(E A, A B\) are therefore equal to

the two FD, DC, each to each ; and the exterior angle FDC is equal do the interior \(E A B\), therefore the bafe \(E B\) is equal to the bafe \(F C\), and the triangle \(E A B\) equal e to the triangle \(F D C\); take the triangie FDC from the trapezium \(A B C E\), and from the fame trapezium take the triangle EAB ; the remainders therefore are equal f , that is, the parallelogram \(A B C D\) is equal to the parallelogram EBCF. Therefore parallelograms upon the fame bafe, \&c. Q.E. D.

> PROP

PArallelograms upon equal bales, and between the fame parallels, are equal to one another.
 FG, and FG to a \(\mathrm{EH}, \mathrm{BC}\) is equal to EH ; and they are paral- a 34. ғ. leks, and joined towards the fame parts by the ftraight lines BE , CH : But ftraight lines which join equal and parallel ftraight lines towards the fame parts, are themfelves equal and parallel \(b\); b 33 fro therefore EB, CH are both equal and parallel, and EBCH is a parallelogram; and it is equal c to ABCD , becaufe it is upon c \(35 . \mathrm{r}_{\text {: }}\) the fame bale BC , and between the fame parallels \(\mathrm{BC}, \mathrm{AD}\) : For the like reafon, the parallelogram EFGH is equal to the fame EBCH : Thereforealfo the parallelogram ABCD is equal to EFGH. Wherefore parallelograms, \&c. Q. E. D.

\section*{PROP. XXXVII. THEOR.}

TRiangles upon the fame bare, and between the fame parallels, are equal to one another.

Let the triangles \(\mathrm{ABC}, \mathrm{DBC}\) be upon the fame bare BC and between the fame parallels AD, BC: The triangle ABC is equal to the triangle \(D B C\).

Produce ADboth ways to the points \(E, F\), and through Bdraw a BE parallel to CA ; and tho' \(\mathbf{C}\) draw CF arallei to BD : Therefore each of the figures EBCA, DBCF
 is a parallelogram ; and EBCA is equal \(b\) to DBCF, becaufe \(b 35 . x_{0}\) they are upon the fame bare BC, and between the fame parallels \(B \mathrm{C}, \mathrm{EF}\); and the triangle ABC is the half of the parallels-

\section*{Book I.}
c 34. 1.
d 7. Ax.
gram EBCA, becaufe the diameter AB befects cit; and the tris angle DBC is the half of the parallelogram DBCF, becaufe the diameter DC bifects it: But the halves of equal things are equal d ; therefore the triangle \(A B C\) is equal to the, triangle DBC. Wherefore triangles, \&c. Q. E. D.

\section*{PROP. XXXVIII. THEOR.}

TRiangles upon equal bafes, and between the fame paralleis, are equal to one another.

Let the triangles \(A B C, D E F\) be upon equal bafes \(B C, E F\), and between the fame parallels \(\mathrm{BF}, \mathrm{AD}\) : The triangle ABC is equal to the triangle DEF.

Produce AD both ways to the points \(G, H\), and through \(B\) are equal to \({ }^{b}\) one a. nother, becaufe they are upon equal bafes BC, EF, and between the fame pa-
 rallels \(\mathrm{BF}, \mathrm{CH}\); and the triangle ABC is the half c of the parallelogram GBCA, becaufe the diameter AB bifects it; and the triangle DEF is the half cof the parallelogram DEFH, becaufe the diameter DF bifects it : But the halves of equal things are
d 7. Ax. equal d ; therefore the triangle ABC , is equal to the triangle DEF. Wherefore triangles, \&c. Q. E. D.

\section*{PROP. XXXIX. THEOR.}

EQUAL triangles upon the fame bafe, and upon the fame fide of it, are between the fame parallels.

Let the equal triangles \(\mathrm{ABC}, \mathrm{DBC}\) be upon the fame bafe \(B C\), and upon the fame fide of it; they are between the farne parallels.

Join AD ; AD is parallel to BC ; for, if it is not, through the
a3r. I. point \(A\) draw a \(A E\) parallel to \(B C\), and join \(E C\) : The triangle
\(A B C\) is equal b to the triangle \(E B C\), becaufe it is upon the fame bafe BC , and between the fame parallels \(\mathrm{BC}, \mathrm{AE}\) : But the triangle ABC is equal to the triangle BDC ; therefore alfo the triangle BDC is equal to the triangle EBC , the greater to the lefs, which is impoffible: Therefore AE is not parallel to BC. In the fame manner, it can be demonftrated that no o-

Book I.
 ther line but AD is parallel to BC ; AD is therefore parallel to it. Wherefore equal triangles upon, \&c. Q. E. D.

\section*{PROP. XL. THEOR.}

EQUAL triangles upon equal bafes, in the fame ftraight line, and towards the fame parts, are between the fame parallels.

Let the equal triangles \(\mathrm{ABC}, \mathrm{DEF}\) be upon equal bafes BC , EF , in the fame ftraight line \(B F\), and towards the fame parts; they are between the fame parallels.

Join AD ; AD is parallel to BC : For, if it is not, through A draw a AG parallel to BF , and join GF : The triangle \(A B C\) isequal \(b\)

a 3 I .1.
b 38 . \(\mathbf{I}\) : to the triangle GEF, becaufe they are upon equal bales \(B C, E F\), and between the fame parallels \(\mathrm{BF}, \mathrm{AG}\) : But the triangle ABC is equal to the triangle DEF; therefore alfo the triangle DEF is equal to the triangle GEF, the greater to the lefs, which is impoffible: Therefore AG is not parallel to BF : And in the fame manner it can be demonftrated that there is no other parallel to it but AD ; AD is therefore parallel to BF . Wherefore equal triangles, \&c. Q. E. D. .

> PROP. XLI. THEOR.

\(I^{\mathrm{F}}\)a parallelogram and triangle be upon the fame bafe, and between the fame parallels; the paral. lelogram fhall be double of the triangle.

Book I. Let the parallelogram ABCD and the triangle EBC be upon the fame bafe BC , and between the fame parallels \(\mathrm{BC}, \mathrm{AE}\); the parallelogram \(A B C D\) is double of the triangle EBC.

Join AC; then the triangle ABC 237. I. i is equal a to the triangle EBC, becaufe they are upon the fame bafe BC , and between the fame parallels \(\mathrm{BC}, \mathrm{AE}\).
b34. I. But the parallelogram \(A B C D\) is double \(b\) of the triangle \(A B C\), becaufe the diameter AC divides it into two equal parts; wherefore \(A B C D\) is
 alfo double of the triangle EBC. Therefore, if a parallelogram, \&c. Q.E.D.

\section*{PROP. XLII. PROB.}

Tdefcribe a parallelogram that fhall be equal to a given triangle, and have one of its angles equal to a given rectilineal angle.

Let \(A B C\) be the given triangle, and \(D\) the given rectilineal angle. It is required to defcribe a parallelogram that fhall be equal to the given triangle \(A B C\), and have one of its angles equal to \(D\).
a 10.1 .
b 23 . I.
c 31. 5 .

Bifect a BC in E , join AE , and at the point E in the ftraight line \(E C\) make \(b\) the angle CEF equal to \(D\); and through \(A\) draw c AG parallel to EC, and thro' C draw CG c parallel to EF: Therefore FECG is a parallelogram \(\vdots\) Ard becaufe BE is equal to EC , the triangle ABE is liked 38. I. wife equald to the triangle AEC, fince they are upon equal bafes \(\mathrm{BE}, \mathrm{EC}\), and between the fame parallels \(\mathrm{BC}, \mathrm{AG}\); therefore the triangle \(A B C\) is double of the \(B\)
 triangle AEC. And the paral-
941. I. lelogram FECG is likewife double e of the triangle AEC, becaufe it is upon the fame bafe, and between the fame parallels: Therefore the parallelogiam FECG is equal to the triangle \(A B C\), and it has one of its angles CEF equal to the given angle \(D\); wherefore there has been defcribed a parallelogram

FECG

FEGG equal to a given triangle \(A B C\), having one of its anglés CEF equal to the given angle \(D\). Which was to be done.

\section*{PROP. XLIII. THEOR.}

THE complements of the parallelograms which are about the diameter of any parallelogram, are equal to one another.

Let ABCD be a parallelogram, of which the diameter is AC , and EH, FG the parallelograms about AC, that is, thro' which AC paffes, and BK, KD the other parallelograms which make up the whole figure \(A B C D\), which are therefore called the complements: The complement BK is equal to the complement KD.

Becaufe ABCD is a paral-
 lelogram, and AC its diameter, the triangle \(A B C\) is equal a to the triangle \(A D C\) : And, a 34. . . becaufe EKHA is a parallelogram, the diameter of which is AK , the triangle AEK is equal to the triangle AHK: By the fame reafon, the triangle KGC is equal to the triangle KFC : Then, becaufe the triangle AEK is equal to the triangle AHK, and the triangle KGC to KFC; the triangle AEK, together with the triangle KGC is equal to the triangle AHK together with the triangle KFC : But the whole triangle ABC is equal to the whole ADC; therefore the remaining complement BK is equal to the remaining complement KD. Wherefore th: complements, \&c. Q. E. D.

\section*{PROP. XLIV. PROB.}

rO a given ftraight line to apply a parallelogram, which fhall be equal to a given triangle, and have one of its angles equal to a given rectilineal angle.

Let \(A B\) be the given ftraight line, and \(C\) the given triangle, and D the given rectilineal angle. It is required to apply to the ftraight line \(A B\) a parallelogram equal to the triangle \(C\), and having an angle equal to \(D\).

Make a the parallelogram BEFG equal to the triangle C , and having the angle EBG equal to the argle D , fo that BE be in the fame ftraight line
 with AB, and produce FG to H; and thro' A draw b AH parallel to BG or EF, and join HB. Then becaufe the Atraight line HF falls upon the parallels AH,LF, the angles AHF, HFE , are together equal c to two right angles; wherefore the angles BHF , HFE are lefs than two rigit angles: But ftraight lines which with another itraight line make the interior angles upon the
d 12. Ax. fame fide lefs than two right angles, do meet \({ }^{d}\) if produced far enough : Therefore HB, FE fhall meet, if produced; let them meet in K , and through K draw KL parallel to EA or FH, and produce HA, GB to the points L, M: Then HLKF is a parailelogram, of which the diameter is HK , and \(\mathrm{AG}, \mathrm{ME}\) are the parallelograms about HK; and L3, BF are the complements; therefore \(L B\) is equal e to \(B F\) : But \(C F\) is equal to the triangle C ; wherefore \(L B\) is equal to the triangle C ; and becaufe the angle GBE is equal \(f\) to the angle \(A B M\), and likewife to the angle \(D\); the angle \(A B M\) is equal to the angle \(D\) : Therefore the parallelogram \(L B\) is applied to the ftraight line \(A B\), is equal to the triangle C , and has the angle \(A B M\) equal to the angle D: Which was to be done.

\section*{PROP. XLV. PROB.}

See N. OU defcribe a parallelogram equal to a given rectilineal figure, and naving an angle equal to a given rectilineal angle.

Let ABCD be the given rectilineal figure, and E the given rectilineal angle. It is requited to defcribe a p rallelogram equal to \(A B C D\), and having an angle equal to \(E\).
2 \(42 . \mathrm{Y}\).
Join DB, and defcribe a the parallelogram FH equal to the triangle ADB , and having the angle HKF equal to the angle E ; and to the fraight line GH apply b the parallelogram GM equal
to the triangle DBC , having the angle GHM equal to the angle E : and becaufe the angle \(E\) is equal to each of the angles FKH, Book I. GHM, the angle FKH is equal to GHM ; add to each of thefe the angle KHG ; therefore the angles FKH, KHG are equal to theangles KHG, GHM; butFKH, KHG are equal c to two right angles: Therefore alfo KHG, GHM are equal to two right angles; and becaufe at the point

H in the ftraight
line GH, the two ftraight lines KH, HM, upon the oppofite fides of it make the adjacent angles equal to two right angles, KH is in the fame ftraight line d with HM ; and becaufe the d \(44 . \mathrm{x}\). ftraight line HG meets the parallels KM, FG, the alternate angles MHG, HGF are equal c: Add to each of thefe the angle HGL: Therefore the angles MHG, HGL, are equal to the angles HGF, HGL: But the angles MHG, HGL are equal c to two right angles; wherefore alfo the angles HGF, HGL are equal to two right angles, and FG is therefore in the fame ftraight line with GL: and becaufe KF is parallel to HG, and HG to ML ; KF is parallel e to ML : and KM, FL e 30 . r. are parallels; wherefore KFLM is a parallelogram; and becaufe the triangle \(A B D\) is equal to the parallelogram HF , and the triangle DBC to the parallelogram GM; the whole rectilineal figure ABCD is equal to the whole parallelogram KFLM; therefore the parallelogram KFLM has been defcribed equal to the given rectilineal figure ABCD, having the angle FKM cqual to the given angle E . Which was to be done.

Cor. From this it is manifeft how to a given ftraight line to apply a parallelogram, which fhall have an angle equal to a given rectilineal angle, and fhall be equal to a given rectilineal figure, viz. by applying b to the given ftraight line a parallelogram e-b 44 . r. qual to the firft triangle ABD, and having an angle equal to the given angle.

> PROP.

\section*{PROP. XLVI. PROB.}

\section*{T} \(O\) defcribe a fquare upon a given ftraight line.

Let \(A B\) be the given ftraight line; it is required to defrribe a fquare upon AB .

From the point \(A\) draw a \(A C\) at right angles to \(A B\); and
a II. I.
b 3.1 .
c 3 I. 1 .
d 34 . I .
c 29. I. make \(b A D\) equal to \(A B\), and through the point \(D\) draw \(D E\) para!lel c to AB , and through B draw BE parallel to AD ; therefor \(A D E B\) is a parallelogiam : whence \(A B\) is equal d to \(D E\), and AD to BE : But BA is equal to AD ; therefore the four ftraight lines \(\mathrm{BA}, \mathrm{AD}, \mathrm{DE}, \mathrm{EB}\) are equal to one another, and the parallelogram ADEE D is equilateral, likewife all its angies are right angles; becaufe the ftraight line AD meeting the parallels AB, \(D E\), the angles \(B A D, A D E\) are equal \({ }^{c}\) to two right angles; but BAD is a right angle; therefore alfo ADE is a right angle; but the oppofite angles A C of parallelograms are equal o; therefore each of the oppofite angles \(A B E, B E D\) is a right angle; wherefore the figure \(A D E B\) is rectanguiar, and it has been demonftrated that it is equilateral ; it is therefore a fquare, and it is defcribed upon the given ftraight line \(A B\) : Winch was to be done.

Cor. Hence every parallelogram that has one right angle has all its angles right angles.

> PROP. XLVII. THEOR.

IN any right angled triangle, the fquare which is de. fcribed upon the fide fubtending the right angle, is equal to the fquares defcribed upon the fides which contain the right angle.

Let \(A B C\) be a right angled triangle having the right angle \(B A C\); the fquare defcribed upon the fide \(B C\) is equal to the fquares defcribed upon \(\mathrm{BA}, \mathrm{AC}\).
346. 1 On BC defcribe a the fquare \(B D E C\), and on \(B A, A C\) the fquares

Iquares \(\mathrm{GB}, \mathrm{HC}\); and through A draw \({ }^{\mathrm{b}} \mathrm{AL}\) parallel to BD , or CE , and join \(\mathrm{AD}, \mathrm{FC}\); then; becaufe each of the angles BAC, BAG is aright angle \(c\), the

Book 1. two ftraight lines AC, AG upon the oppofite fides of \(A B\), make with it at the point \(A\) the adjacent angles equal to two right angles; therefore CA is in the fame ftraight line d with \(A G\); for the fame reafon, AB and AH are in the fame ftraight line; and becaufe the angle DBC is equal to the angle FBA , each of them being a right angle, add to each the angle \(A B C\), and the whole angle DBA is equal e to the whole FBC; and becauife the two fides \(\mathrm{AB}, \mathrm{BD}\) e \(2 . \mathrm{Ax}\). are equal to the two \(F B, B C\), each to each, and the angle DBA equal to the angle \(F B C\); therefore the bale \(A D\) is equal \(f\) to \(f 4\). r. the bafe FC, and the triangle ABD to the triangle FBC: Now the parallelogram \(B L\) is double \(g\) of the triangle \(A B D\), becaufe \(g 4\) r. r. they are upon the fame bafe BD , and between the fame parallels, \(\mathrm{BD}, \mathrm{AL}\); and the fquare GB is double of the triangle FBC, becaufe thefe alfo are upon the fame bafe FB, and between the fame parallels FB, GC. But the doubles of equals are equal \(h\) to one another: Therefore the parallelogram \(B L h 6 . A_{0}\) is equal to the fquare GB: And, in the fame manner, by joining \(A E, B K\), it is demonftrated that the parallelogram CL is equal to the fquare HC : Therefure the whole fquare BDEC is equal to the two fquares \(\mathrm{GB}, \mathrm{HC}\); and the fquare BDEC is defcribed upon the itraight line \(B C\), avd the fquares \(G B, H C\) upoin \(B A, A C\) : Wherefore the fquare upon the fide \(B C\) is \(e^{-}-\) qual to the fquares upon the fides BA, AC. Therefore; inany right angled triangle, \&cc. Q. E.D.

\section*{PROP. XLVIII. THEOR.}

IF the fquare defcribed upon one of the fides of a triangle, be equal to the fquares defcribed upon the other two fides of it; the angle contained by thele two fides is a right angle.

Book I. If the fquare defcribed upon \(B C\), one of the fides of the triangle ABC , be equal to the fquares upon the other fides BA , AC, the angle \(B A C\) is a right angle.

2 II. I.
From the point \(A\) draw a \(A D\) at right angles to \(A C\), and make \(A D\) equal to \(B A\), and join \(D C\) : Then, becaufe DA is equal to \(A B\), the fquare of \(D A\) is equal to the fquare of \(A B\) : To each of thefe add the fquare of \(A C\); therefore the fquares of \(D A, A B\), are equal to the fquares of
b 47. r. BA, AG: But the 〔quare of \(D C\) is equal \({ }^{b}\) to the fquares of DA, AG, becaufe DAC is a right angle; and the fquare of BC , by hypothefis, is equal to the fquares of BA , \(A C\); therefore the fquare of \(D C\) is equal to the fquare of \(B C\); and therefore alfo \(B\)
 the fide \(D C\) is equal to the frde \(B C\). And becaufe the fide \(D A\) is equal to \(A B\), and \(A C\) common to the two triangles DAC, BAC, the two DA, AC are equal to the \(\tau\) two \(B A, A C\); and the bafe \(D C\) is equal to the bafe \(B C\); there-
©8. I. fore the angle DAG is equal c to the angle BAC : But DAC is a right angle; therefore alfo BAC is a right angle. There* fore, if the fquare, \&x. D.E.D.

\title{
E L E M E N T S \\ OF \\ \\ E U C L I D.
} \\ \\ E U C L I D.
}
\[
\text { B } \quad \mathrm{O} \quad \mathrm{O} \quad \mathrm{~K} \quad \text { II. }
\]

\section*{DEFINITIONS.}

\section*{I.}

EVERY right angled parallelogram is faid to be contained by any two of the ftraight lines which contain one of the right angles.
II.

In every parallelogtam, any of the parallelograms about a diai meter, together with the two complements, is called a Gnomon. ' Thus the - parallelogram HG,toge-
- there with the comple' ments AF, FC, is the - gnomon, which is more
- briefly expreffed by the
- letters AGK, or EHC,

- which are at the oppofite
- angles of the parallelograms which make the gnomon. \({ }^{\text {. }}\)

> PROP. I. . THEOR.

F there be two ftraight lines, one of which is divid. ed into any number of parts; the rectangle contained by the two ftraight. lines, is equal to the rectangles contained by the undivided line, and the feveral parts of the divided line.

BookII. Let A and BC be two ftraight lines; and let BC be divided into any parts in the points \(\mathrm{D}, \mathrm{E}\); the rectangle contained by the ftraight lines \(\mathrm{A}, \mathrm{BC}\) is equal to the rectangle contared by \(\mathrm{A}, \mathrm{BD}\), together with that contained by \(\mathrm{A}, \mathrm{DE}\), and that contained by A, EC.
a II.I.
b 3. r.
c.31. \(x\).

From the point \(B\) draw \({ }^{a} B F G\) at right angles to BC , and make \(B G\) equal b to \(A\); and through G draw c GH parallel to \(\mathrm{BC} ;\)
and through \(\mathrm{D}, \mathrm{E}, \mathrm{C}\), draw \(\mathrm{DK}, \mathbf{F}\)
 EL, CH parallel to BG ; then the rectangle BH is equal to the rectangles \(\mathrm{BK}, \mathrm{DL}, \mathrm{EH}\); and BH is contained by \(\mathrm{A}, \mathrm{BC}\), for it is contained by \(\mathrm{GB}, \mathrm{BC}\), and \(G B\) is equal to \(A\); and \(B K\) is contained by \(A, B D\), for it is contained by \(G B, B D\), of which \(G B\) is equal to \(A\); and \(D L\) is contained by \(A, D E\), becaufe \(D K\), that is \(d B G\), is equal to \(A\); and in like manner the rectangle EH is contained by A, EC: Therefore the rectangle contained by \(\mathrm{A}, \mathrm{BC}\) is equal to the feveral rectangles contained by \(\mathrm{A}, \mathrm{BD}\), and by \(\mathrm{A}, \mathrm{DE}\); and alfo by A, EC. Wherefore, if there be two ftraight lines, \&c. Q.E. D.

\section*{PROP. II. THEOR.}

I\(\dot{\mathrm{F}}\) a ftraight line be divided into any two parts, the rectangles contained by the whole and each of the parts, are together equal to the fquare of the whole line.

Let the ftraight line \(A B\) be divided into any two parts in the point \(C\); the rectangle contained by \(\mathrm{AB}, \mathrm{BC}\), tngether with the rectangle * \(\mathrm{AB}, \mathrm{AC}\), fhall be equal to the fquare of \(A B\).
a 46.1 .
Upon \(A B\) defcribe a the fquare \(A D E B\),
b35.I. and through C draw \({ }^{\mathrm{b}} \mathrm{CF}\), parallel to AD or BE ; then AE is equal to the rectangles \(\mathrm{AF}, \mathrm{CE}\); and AE is the fquare of AB ; and \(A F\) is the rectangle contained by \(B A, D\)

\footnotetext{
* N. B. To a void repeating the word contained too frequently, the rectangle enntained by two fraight lines \(A B, A C\) is fometimes fimply called the rectangle \(A B_{2} A C\).
}

AC ; for it is contained by \(\mathrm{DA}, \mathrm{AC}\), of which AD is equal to \(A B\); and \(C E\) is contained by \(A B, B C\), for \(B E\) is equal to \(A B\); therefore the rectangle contained by \(\mathrm{AB}, \mathrm{AC}\) together with the rectangle \(A B, B C\), is equal to the fquare of \(A B\). If therefore a ftraight line, \&c. Q. E. D.

\section*{PROP. III. THEOR.}

\(I^{\text {F }}\)F a ftraight line be divided into any two parts, the rectangle contained by the whole and one of the parts, is equal to the rectangle contained by the two parts, together with the fquare of the forefaid part.

Let the ftraight line \(A B\) be divided into two parts in the point \(C\); the rectangle \(A B, B C\) is equal to the rectangle \(A C\), CB, together with the fquare of BC .

Upon BG defcribe a the fquare \(\mathrm{C} \quad \mathrm{B}\) a \({ }_{4} 6\).. CDEB, and produce ED to \(F\), and through A draw b AF parallel to CD or BE ; then the rectangle AE is equal to the rectarigles \(\mathrm{AD}, \mathrm{CE}\); and AE is the rectangle contained by AB , BC , for it is contained by \(\mathrm{AB}, \mathrm{BE}\), of which \(B E\) is equal to \(B C\); and
 of BC ; therefore the rectangle AB , \(B C\) is equal to the rectangle \(A C, C B\) together with the fquare. of BC. If therefore a ftraight, \&c: Q. E. D.

\section*{PROP. IV. THEOR.}

\(I^{\text {P }}\)F a ftraight line be divided into any two parts, the fquare of the whole line is equal to the fquares of the two parts, together with twice the rectangle contained by the parts.

Let the ftraight line \(A B\) be divided into any two parts in \(C\); the fquare of \(A B\) is equal to the fquares of \(A C, C B\) and to, twice the rectangle contained by \(\mathrm{AC}, \mathrm{CB}\).

Bookrr. Upon \(A B\) defcribe a the fquare \(A D E B\), and join \(B D\), and
(2y)
a 46 . 1 .
b 3 I. 1.
c 29. 1.
d5.I.
e6.I.
§ 34 . ․ through C draw b CGF paraliel to AD or BE , and through G draw HK parallel to \(A B\) or \(D E\) : And becaufe \(C F\) is parallel to AD , and BD falls upon them, the exterior angle BGC is equal c to the interior and oppofite angle ADB ; but ADB is equal d to the angle ABD , becaufe BA is equal to AD , being fides of a fquare; wherefore the angle CGB is equal to the angle GBC; and therefore the fide \(B C\) is equal \(e\) to the fide \(C G\) : But \(C B\) is equal \(f\) alfo to \(G K\), and CG to BK ; wherefore the fi- F gure CGKB is equilateral : It is likewife rectangular; for CG is parallel to BK , and CB meets them ; the angles \(\mathrm{KBC}, \mathrm{GCB}\) are therefore equal to two right angles ; and KBC
 is a right angle; wherefore GCB is a right angle ; and therefore alfo the angles \(f\) GGK, GKB oppofite to thefe, are right angles, and CGKB is rectangular: But it is alfo equilateral, as was demonftrated; wherefore it is a fquare, and it is upon the fide CB : For the fame reafon HF alfo is a fquare, and it is upon the fide HG, which is equal to AC: Therefore HF, CK are the fquares of \(A \mathrm{C}, \mathrm{CB}\); and becaufe the complement AG is equal g to the complement GE , and that AG is the rectangle contained by \(\mathrm{AC}, \mathrm{CB}\), for GC is equal to CB ; therefore GE is alfo equal to the rectangle \(\mathrm{AC}, \mathrm{CB}\); wherefore \(\mathrm{AG}, \mathrm{GE}\) are equal to twice the rectangle \(\mathrm{AC}, \mathrm{CB}\) : And \(\mathrm{HF}, \mathrm{CK}\) are the fquares of \(\mathrm{AC}, \mathrm{CB}\); wherefore the four figures \(\mathrm{HF}, \mathrm{CK}, \mathrm{AG}, \mathrm{GE}\) are equal to the fquares of \(\mathrm{AC}, \mathrm{CB}\), and to twice the rectangle \(A C, C B\) : But HF, CK, \(A G, G E\) make up the whole figure \(A D E B\), which is the fquare of \(A B\) : Therefore the fquare of \(A B\) is equal to the fquares of \(\mathrm{AC}, \mathrm{CB}\) and twice the rectangle \(\mathrm{AC}_{2}\) CB. Wherefore if a ftraight line, \& c. Q.E.D.

Cor. From the demonfration, it is manifeft that the parallelograms about the diameter of a fquare are likewife fquares.

\section*{PROP. V. THEOR.}

IF a ftraight line be divided into two equal parts, and alfo into two unequal parts; the rectangle contained by the unequal parts, together with the fquare of the line between the points of fection, is equal to the fquare of half the line.

Let the ftraight line \(A B\) be divided into two equal parts in the point \(C\), and into two unequal parts at the point \(D\); the rectangle \(\mathrm{AD}, \mathrm{DB}\), together with the fquare of CD , is equal to the fquare of CB .

Upon CB defcribe a the fquare CEFB , join BE , and through a 46 . r . D draw b DHG parallel to CE or BF ; and through H draw b 3 r. x. KLM parallel to CB or EF ; and alfo through A draw AK parallel to CL or BM: And becaufe the complement CH is equal \(c\) to the complement HF , to each of thefe add DMI; c43. r. therefore the whole CM is equal to the whole DF; but CM is equal d to AL, becaufe \(A \mathrm{C}\) is equal to CB ; therefore alfo AL is equal to DF. To each of thefe add CH , and the whole AH is equal to DF and CH : But AH is the
 rectangle contained by \(\mathrm{AD}, \mathrm{DB}\), for DH , is equal e to DB; and DF together with CH is the gnomon CMG ; e Coi. 4. \% therefore the gnomon CMG is equal to the rectangle \(\mathrm{AD}, \mathrm{DB}\) :
To each of thefe add LG, which is equal e to the fquare of \(C D\); therefore the gnomon CMG, together with LG, is equal to the rectangle \(\mathrm{AD}, \mathrm{DB}\). together with the \{quare of CD : But the gnomon CMG and LG make up the whole figure CEFB, which is the fquare of CB : Therefore the reclangle \(\mathrm{AD}, \mathrm{DB}\), together with the fquare of \(C D\), is equal to the fquare of \(C B\). Wherefore, if a ftraight line, \&c. Q.E. D.

From this propofition it is manifert, that the difierence of the fquares of two unequal lines \(A C, C D\), is equal to the rectangle contained by their fum and difference.

\section*{PROP. VI. THEOR.}

Fi a ftraight line be bifected, and produced to any point; the redangle contained by the whole line thus prodiuced, and the part of it produced, together with the fauare of half the line bifected, is equal to the fquare of the flraight line which is made up of the half and the part produced.

Let the fraight line \(A B\) be bifected in \(C\), and produced to the point \(D\); the rectangle \(A D, D B\), together with the fquare of \(C B\), is cqual to the fquare of \(C D\).
246. 1.
b3I.f.
c 36. ㅍ.
d 43 . I .

Upon CD defcribe a the fquare CEFD, join DE, and through B draw b BHG parallel to CE or DF, and through H draw KiLM parallel to AD or EF , and alfo through A draw AK paralcl to CL or DMI : and becaufe \(A C\) is equal to \(C B\), the rectangle AL is equal c to CH ; but CH is equal d to HF ; therefore alfo AL K is equal to HF : To each of thefe add CM ; therefore the whole \(A M\) is equal to the gnomon CMC: And \(A M\) is the rectangle con-

e Cor. 4. 2. tained by \(A D, D B\), for \(D M\) is equal e to \(D B\) : Therefore the gnomon. CMG is equal to the the rectangle \(\mathrm{AD}, \mathrm{DB}\) : Add to each of thefe LG, which is equal to the fquare of CB , therefore the rectangle \(A D, D B\), together with the fquare of \(C B\) is equal to the gnomon CMG and the figure LG: But the gnomon CMG and LG make up the whole figure CEFD, which is the fquare of CD ; therefore the rectangle \(\mathrm{AD}, \mathrm{DB}\) together with the fquare of CB , is equal to the fquare of CD . Where: fore, if a ftraight line, \&cc. Q. E. D.

\section*{PROP. VII. PROB.}

IF a ftraight line be divided into any two parts, the fquares of the whole line, and of one of the parts, are equal to twice the rectangle contained by the whole and that part, tegether with the fquare of the other part.

Iet the ftraight line AB he divided into any two parts in
the point \(C\); the fquares of \(A B, B C\) are equal to twice the Bookif. rectangle \(\mathrm{AB}, \mathrm{BC}\) together with the fquare of AC .

Upon \(A B\) defcribe a the fquare \(A D E B\), and conftruct the a 46 . m . figure as in the preceding propofitions: and becaufe \(A G\) is equal \(b\) to GE, add to each of them CK; the whole AK is b 43 . 1 . therefore equal to the whole CE; therefore AK, CE, are double of AK: But AK, CE are the gnomon AKF together with the fquare CK ; therefore the giomon AKF, together with the fquare CK, is double of AK : But twice the rectangle AB \(B G\) is double of \(A K\), for \(B K\) is \(\mathrm{e}-\) qual \(c\) to \(B C\) : Therefore the gnomon AKF, together with the fquare \(\mathbf{C K}\), is equal to twice the rectangle \(\mathbf{D}\) \(\mathrm{AB}, \mathrm{BC}\) : To each of thefe equals add HF , which is equal to the fquare of AC ; therefore the gnomon AKF , together with the fquares \(\mathrm{CK}, \mathrm{HF}\), is equal to twice the rectangle \(A B, B C\) and the fquare of \(A C\) : But the gnomon AKF, together with the fquares CK, HF, make up the whole figure \(A D E B\) and \(C K\), which are the fquares of \(A B\) and \(B C\) : therefore the fquares of \(A B\) and \(B C\) are equal to twice the rectangle \(A B, B C\), together with the fquare of \(A C\). Wherefore if a itraight line \&c. Q.E.D,

\section*{PROP. VIII. THEOR.}

HF a ftraight line be divided into any two parts, four times the rectangle contained by the whole line, and one of the parts, together with the fquare of the other part, is equal to the fquare of the ftraight line which is made up of the whole and that part.

Let the ftraight line \(A B\) be divided into any two parts in the point \(C\); four times the rectangle \(A B, B C\), together with the fquare of \(A C\), is equal to the fquare of the ftraight line made up of \(A B\) and \(B C\) together.

Produce \(A B\) to \(D\), fo that \(B D\) be equal to \(C B\), and upon \(A D\) defcribe the fquare \(A E E D\); and conftruct two figures fuch as in the preceding. Becaufe CB is equal to BD , and that CB is equal a to \(G K\), and \(B D\) to \(K N\); therefore \(G K\) is a \(34 \cdot x\) :

Book II. equal to KN : For the fame reafon, PR is equal to RO ; and because CB is equal to BD , and GK to KN , the rectangle CK is equal b to BN , and GR to RN : But CK is equal c to RN, becaufe they are the complements of the parallelogram CO ; therefore alto BN is equal to GR ; and the four rectangles \(B N, C K, G R, R N\) are therefore equal to one another, and fo are quadruple of one of them CK : Again, becaufe CB is equal to BD , and that BD is
d Cor.4.2: equal d to BK, that is, to CG; and CB equal to GK, that \({ }^{d}\) is, to GP ; therefore CG is equal to GP: And because CG is equal to GP, and PR to RO, the rectangle \(A G\) is equal to MP, and PL to RF: But MP is equal e to PL, because they are the complements of the parallelogram ML; wherefore AG is equal alpo to RF: Therefore the four rectangles
 AG, MP, PL, RF. are equal to one another and fo are quadruple of one of them AG. And it was demonfrated, that the four CK, BN, GR, and RN are quadruple of CK: Therefore the eight rectangles which contain the gnomon AOH , are quadruple of AK : and because AK is the rectangle contained by \(\mathrm{AB}, \mathrm{BC}\), for BK is equal to BC , four times the rectangle \(A B, B C\) is quadruple of \(A K\) : But the gnomon \(A O H\) was demonftrated to be quadruple of AK ; therefore four times the rectangle \(A B, B C\), is equal to the gnomon \(A O H\). To each of thee add \(X H\), which is equal \(f\) to the fquare of \(A C\) : Therefore four times the rectangle \(\mathrm{AB}, \mathrm{BC}\) together with the fquare of AC , is equal to the gnomon AOH and the fquare XH: But the gnomon AOH and XH make up the figure AEFD which is the fquare of AD: Therefore four times the rectangle \(A B, B C\), together with the fquare of \(A G\), is equal to the fquare of \(A D\), that is, of \(A B\) and \(B C\) added togethen in one ftraight line. Wherefore, if a ftraight line, \&cc Q.E.D.

IF a ftraight line be divided into two equal, and alfo into two unequal parts; the fquares of the two unequal parts are together double of the fquare of half the. line, and of the fquare of the line between the points of fection.

Let the ftraight line \(A B\) be divided at the point \(C\) into two equal, and at \(D\) into two unequal parts: The fquares of \(A D\), DB are together double of the fquares of \(\mathrm{AC}, \mathrm{CD}\).
From the point C draw a CE at right angles to AB , and a ir. r. make it equal to \(A C\) or \(C B\), and join \(E A, E B\); through \(D\) draw \({ }^{\text {b }}\) DF parallel to CE , and through \(F\) draw \(F\) g parallel to \(A B\); 1 3 3 r. x. and join AF : Then, becaufe AC is equal to CE , the angle EAC is equal c to the angle AEC ; and becaufe the angle c 5 . r . ACE is a right angle, the two others AEC, EAC together make one right angle d; and they are equal to one another; d 32 . I . each of them therefore is half of a right angle. For the fame reafon each of the angles CEB, EBC is half a right angle; and therefore the whole AEB is a right angle : And becaufe the angle GEF is half a right angle, and EGF a right angle, for it is
 equal c to the interior and oppofite angle ECB , the re- \(\mathrm{c} 2 \mathrm{~g} . \mathrm{r}\). maning angle EFG is half a right angle; therefore the angle GEF is equal to the arigle EFG, and the fide EG equal \(f\) to the fide GF: Again, becaure the angle at \(B\) is \(f 6\). r. half a right angle and FDB a right angle, for it is equal \(\epsilon\) to the interior and oppofite angle ECB, the remaining angle BFD is half a right angle ; the refore the angle at \(B\) is equal to the angle BFD, and the fide DF to f the fide DB: And becaufe \(A C\) is equal to \(C E\), the fquare of \(A C\) is equal to the fquare of CE ; theiefore the fquares of \(\mathrm{AC}, \mathrm{CE}\) are double of the fquare of AC : But the fquare of EA is equal \(g\) to the g 47 . r fquares of AC. CE, becaufe ACE is a right angle ; therefore the fquare of EA is double of the fquare of AC : Again, becaufe \(E G\) is equal to GF , the fquare of EG is equal to the fquare of GF; therefore the fquares of \(\mathrm{FG}, \mathrm{GF}\) are dor:ble of

Book II.
tren) h 34 .I.
the fquare of GF; but the fquare of EF is equal to the fquares of \(E G, G F\); therefore the fquare of \(E F\) is double of the fquare GF; and GF is equal h to CD ; therefore the fquare of EF is double of the fquare of CD : But the fquare of AE is likewife double of the fquare of AC ; therefore the fquares of \(\mathrm{AE}, \mathrm{EF}\) are double of the fquares of \(A C, C D\) : And the fquare of \(A F\) is equal ' to the fquares of \(A E, E F\), becaufe \(A E F\) is a right angle ; therefore the fquare of \(A F\) is double of the fquares of \(A C\), CD : But the fquares of \(\mathrm{AD}, \mathrm{DF}\) are equal to the fquare of \(A F\), becaufe the angle \(A D F\) is a right angle ; therefore the fquares of \(\mathrm{AD}, \mathrm{DF}\) are double of the fquares of \(\mathrm{AC}, \mathrm{CD}\) : And \(D F\) is equal to DB ; therefore the fquares of \(\mathrm{AD}, \mathrm{DB}\) are double of the fquares of \(A C, C D\). If therefore a ftraight line, \&v. Q.E. D.

\section*{PROP. X. THEOR.}

IF a ftraiglit line be bifeeted, and produced to any point, the fquare of the whole line thus porduced, and the fquare of the part of it produced, are together double of the fquare of half the line bifected, and of the fquare of the line made up of the half and the part produced.

Let the flraight line \(A B\) be bifected in \(C\), and produced to the point \(D\); the fquares of \(A D, D B\) are double of the fquares of \(\mathrm{AC}, \mathrm{CD}\).
From the point C draw a CE at right angles to AB : And make it equal to \(A C\) or \(C B\), and join \(A E, E B\); through \(E\) draw And becaufe the ftraight line EF meets the parallels EC, FD, the angles \(C E F, E F D\) are equal c to two right angles; and therefore the angles \(B E F, E F D\) are lefs than two right angles: but ftraight lines which with another ftraight line make the interior angles upon the fame fide lefs than two right angles, do meet \(d\) if produced far enough: Therefore EB, FD fhall meet, if produced rowards \(B, D\) : Let them meet in \(G\), and join \(A G\) : Then, becaufe \(A C\) is equal to \(C E\), the angle \(C E A\) is equal \(e\) to the angle EAC; and the angle ACE is a right angle; therefore each of the angles CEA, EAG is half a right angle \(f:\) For the fame reafon, each
each of the angles CEB, EBC is half a right angle ; therefore Book II. \(A E B\) is a right angle: And becaufe EBC is half a right angle, \(\qquad\) DBG is alfo f half a right angle, for they are vertically oppo-f 15 . r. fite; but BDG is a right angle, becaufe it is equal c to the al- c 29 . I. ternate angle DCE; therefore the remaining angle DGB is half a right angle, and is therefore equal to the angle DBG; wherefore alfo the fide \(B D\) is equal \(g\) to the fide \(D G\) : Again, \(g\) 6. \(\mathbf{r}\). becaufe EGF is half a right angle, and that the angle at \(F\) is a right angle, becaufe it is equal \(h\) to the oppofite angle ECD, the remaining angle FEG is half a right angle, and equal to the angle EGF;

h 34. I wherefore alfo the fide GF is equalg to the fide FE. And becaufe EC is equal to CA , the fquare of EC is equal to the fquare of CA ; therefore the fquares of EC, CA are double of the fquare of CA: But the fquare of EA is equal \(i\) to the fquares EG, CA ; there- i 47. x. fore the fquare of EA is double of the fquare of AC: Again, becaufe GF is equal to \(F E\), the fquare of \(G F\) is equal to the fquare of FE ; and therefore the fquares of GF, FE are double of the fquare of \(E F\) : But the fquare of \(E G\) is equal \(i\) to the fquares of GF, FE; therefore the fquare of \(E G\) is double of the fquare of EF : And EF is equal to CD; wherefore the fquare of \(E G\) is double of the fquare of \(C D\) : But it was demonftrated, that the fquare of \(E A\) is double of the fquare of \(A C\); therefore the fquares of \(A E, E G\) are double of the fquares of \(\mathrm{AC}, \mathrm{CD}:\) And the fquare of AG is equal to the fquares of \(A E, E G\); therefore the fquare of \(A G\) is double of the fquares of \(A C, C D\) : But the fquares of \(A D, G D\) are equal \(i\) to the qquare of \(A G\) : therefore the fquares of \(A D, D G\) are do ble of the fquares of \(A C, C D: B u t D G\) is equal to \(D B\); therefore the fquares of \(A D, D B\) are double of the fquares of \(A G, C D\) : Wherefore, if a ftraight line, \&cc. Q. E. D.

> PROP.

\author{
PROP. XI. PROB.
}

rirO divide a given ftraight line into two parts, fo that the rectangle contained by the whole, and one of the parts, fhall be equal to the fquare of the other part.

Iet AB be the given ftraight line ; it is required to divide it into two parts, fo that the rectangle contained by the whole, and one of the parts, fhall be equal to the fquare of the other part.
a 46 . r.
b го. \(\mathbf{1 .}\)
c3. 1.
d 6. 2 .
e 47. I.

Upon \(A B\) defcribe a the fquare \(A B D C\); bifect \(b \mathrm{AC}\) in E , and join BE ; produce CA to F , and make c EF equal to EB , and upon AF defcribe a the fquare FGHA; AB is divided in \(H\), fo that the rectangle \(A B, B H\) is equal to the fquare of \(A H\).

Produce GH to K : becaufe the ftraight line AC is bifected in \(E\), and produced to the point \(F\), the rectangle \(\mathrm{CF}, \mathrm{FA}\), together with the fquare of AE , is equald to the fquare of EF : But EF is equal to EB ; therefore the rectangle CF, FA, together with the fquare of \(A E\), is equal to the fquare of \(E B\) : And the qquares of \(\mathrm{BA}, \mathrm{AE}\) are equal e to the fquare of EB , becaufe the angle EAB is a right angle; therefore the rectangle \(\mathrm{CF}, \mathrm{FA}\) together with the fquare of AE , is equal to the fquares of BA , \(\mathrm{AE}:\) Take away the fquare of \(\mathrm{AE}, \mathrm{A}\) which is common to both, therefore the remaining rectangle \(\mathrm{CF}, \mathrm{FA}\) is equal to the fquare of \(A B\) : and the fi- \(\mathrm{E}_{i}\) gure FK is the rectangle contained by \(\mathrm{CF}, \mathrm{FA}\), for AF is equal to FG ; and \(A D\) is the fquare of \(A B\); therefore FK is equal to \(A D\) : Take away the common part AK , and the remainder. C
 FH is equal to the remainder HD : And \(H D\) is the rectangle contained by \(A B, B H\), for \(A B\) is equal to \(B D\); and \(F H\) is the fquare of \(A H\). Therefore the rectangle \(\mathrm{AB}, \mathrm{BH}\) is equal to the fquare of AH : Wherefore the flraight line \(A B\) is divided in \(H\) fo, that the rectangle \(A B\), BH is equal to the fquare of AH . Which was to be done.

\section*{P R O P. XII. THEOR.}

N obtufe angled triangles, if a perpendicular be drawn from any of the acute angles to the oppofite fide produced, the fquare of the fide fubtending the obtufe angle is greater than the fquares of the fides containing the obtufe angle, by twice the recangle contained by the fide upon which, when produced, the perpendicular falls, and the ftraight line intercepted without the triangle between the perpendicular and the obtufe angle.

Let \(A B C\) be an obtufe angled triangle, having the obtufe angle ACB , and from the point A let AD be drawn a perpen- a 2 . 1 . dicular to \(B C\) produced: The fquare of \(A B\) is greater than the fquares of \(\mathrm{AC}, \mathrm{CB}\) by twice the rectangle \(\mathrm{BC}, \mathrm{CD}\).

Becaufe the fraight line BD is divided into two parts in the point \(C\), the fquare of \(B D\) is equal b to the fquares of \(\mathrm{BC}, \mathrm{CD}\), and twice the rectangle \(\mathrm{BC}, \mathrm{CD}\) : To each of thefe equals add the fquare of DA; and the fquares of \(\mathrm{DB}, \mathrm{DA}\) are equal to the fquares of \(\mathrm{BC}, \mathrm{CD}\), DA , and twice the rectangle BC , CD : But the fquare of BA is equal c to the fquares of \(\mathrm{BD}, \mathrm{DA}\), becaufe the angle at \(D\) is a righ: \(B\)
 angle; and the fquare of CA is equal c to the fquares of \(\mathrm{CD}, \mathrm{DA}\) : Therefore the fquare of BA is equal to the fquares of \(\mathrm{BC}, \mathrm{CA}\), and twice the the rectangle \(P \mathrm{C}, \mathrm{CD}\); that is, the fquare of BA is greaterthan the fquares of \(B G, C A\), by twice the rectangle \(B C, C D\). Therefore, in obtufe angled triangles, \&c. Q. E. D.
\[
P \mathrm{RO}
\]
c 47. I. \(\quad\) to the fquares \(\mathrm{BD}, \mathrm{DA}\), becaufe the angle BDA is a righe

Book II.

\section*{PROP. XIII. THEOR.}

See N.
N every triangle, the fquare of the fide fubtending any of the acute angles, is lefs than the fquares of the fides containing that angle, by twice the rectangle contained by either of thefe fides, and the fraight line intercepted between the perpendicular let fall upon it from the oppofite angle, and the acute angle.

Let \(A B C\) be any triangle, and the angle at \(B\) one of its acute angles, and upon BC, one of the fides containing it, let fall the perpendicular a AD from the oppofite angle: The fquare of \(A C\), oppofite to the angle \(B\), is lefs than the fquares of \(\mathrm{CB}, \mathrm{BA}\) by twice the rectangle \(\mathrm{CB}, \mathrm{BD}\).

Firf, Let \(A D\) fall within the triangle \(A B C\); and becaufe the ftraight line CB is divided into two parts in the point \(D\); the fquares of \(\mathrm{CB}, \mathrm{BD}\) are aqual \(b\) to twice the rectangle contained by \(\mathrm{CB}, \mathrm{BD}\), and the fquare of DC : To each of thefe equals add the fquare of AD ; therefore the fquares of \(\mathrm{CB}, \mathrm{BD}, \mathrm{DA}\), are equal to twice the rectangle \(C R\), BD , and the fquares of \(\mathrm{AD}, \mathrm{DC}\) : But the fquare of \(A B\) is equal angle; and the fquare of \(A C\) is equal to the fquares of \(A D\), \(D \mathrm{C}\) : Therefore the fetares of \(\mathrm{CB}, \mathrm{BA}\) are equal to the fquare of AC , and twice the rectangle \(\mathrm{CB}, \mathrm{BD}\), that is, the fquare
of AC alone is lefs than the fquares of \(\mathrm{CD}, \mathrm{BA}\) by twice the of \(A C\), and twice the rectangle \(\mathrm{CB}, \mathrm{BD}\), that is, the fquare
of AC alone is lefs than the fquares of \(\mathrm{CB}, \mathrm{BA}\). by twice the rectangle \(\mathrm{CB}, \mathrm{BD}\).

Secondly, Let AD fall without the triangle ABC : Then, becaufe the angle at \(D\) is a right angle, the angle ACB is greater

fquates
fquares of \(A B, B C\) are equal to the fquare of \(A C\), and twice \(B\) oik \(I\) I \(_{\text {. }}\) the fquare of BC , and twice the rectangle \(\mathrm{BC}, \mathrm{CD}\) : But be-

い cause \(B D\) is divided into two parts in \(C\), the rectangle \(D B, B C\) is equal \(f\) to the rectangle \(B C, C D\) and the fquare of \(B C\) : And \(f 3.2\). the doubles of there are equal : Therefore the fquares of AB , BC are equal to the fquare of AC , and twice the rectangle \(D B, B C\) : Therefore the fquare of \(A C\) alone is left than the fquares of \(A B, B C\) by twice the rectangle \(D B, B C\).

Laftly, let the fide AC be perpendicular to BC ; then is BC the ftraight line between the perpendicular and the acute angle at B ; and it is manifest that the fquares of \(\mathrm{AB}, \mathrm{BC}\) are equale \(g\) to the fquare of \(A C\) and twice the fquare of BC : Therefore, in every triangle, \&cc. Q . E. D.

g 47. 1.

\section*{PROP. XIV. PROB.}

TOO defcribe a square that fall be equal to a given \({ }^{\text {See } \mathrm{N}}\). rectilinear figure.

Let A be the given rectilineal figure; it is, required to defcribe a quatre that hall be equal to \(A\).

Defcribe a the rectangular parallelogram BCDE equal to the 245 . F . rectilineal figure A . If then the fides of it \(\mathrm{BE}, \mathrm{ED}\) are equal to one another, it is a fquare, and what was required is now done: But if they are not equale, produce one of them BE to F , and make EF equa to \(E D\) and bi-
 feet BF in G: and from the centre \(\mathbf{G}\), at the distance GB , or GF , defribe the fermicircle BHF, and produce DE to H , and join GH : Therefore because the ftraight line BF is divided into two equal parts in the point \(G\), and into two unequal at \(E\), the rectangle \(B E\). \(E F\), together with the fquare of EG, is equal \(h\) to the square of \(b ; 2\). GF: But GF is equal to GH ; therefore the rectangle \(\mathrm{BE}, \mathrm{EF}\),

Book II, together with the fquare of EG, is equal to the fquare of GH: Lo But the fquares of \(\mathrm{HE}, \mathrm{EG}\) are equal c to the fquare of GH : c 47. 1. Therefore the rectangle BE, EF, together with the fquare of \(E G\), is equal to the fquares of \(H E, E G\) : Take away the fquare of EG, which is common to both; and the remaining rectangle \(\mathrm{BE}, \mathrm{EF}\) is equal to the fquare of EH : But the rectangle contained by BE, EF is the paralielogram BD , becaufe EF is equal to ED ; therefore BD is equal to the fquare of EH; but BD is equal to the rectilineal figure \(A\); therefore the rectiiineal figure A is equal to the fquare of EH : Wherefore a fquare has been made equal to the given rectilineal figure A, viz. the fquare deefribed upon EH. Which was to be done

\section*{E L E M E N T S}

0 E
E U C L I D.
\[
\mathrm{B}: \mathrm{O} \quad \mathrm{O}=\mathrm{K} \quad \mathrm{III} .
\]

\section*{DEFINITIONS.}

\section*{I.}

EQUAL circles are thofe of which the diameters are equal, Book im. or from the centres of which the ftraight lines to the circuinferences are equal.
- This is not a definition but a theorem, the truth of which ' is evident ; for, if the circles be applied to one another, fo that 6 their centres coincide, the circles muft likewife coincide, fince 'the ftraight lines from the centres are equal.'
II.

A fraight line is faid to touch , a circle, when it meets the circle, and being produced does not cut it.
III.

Circles are faid to touch one another, which meet -but do not cut one another.
IV.

Straight lines are faid to be equally diftant from the centre of a circle, when the perpendiculars drawn to shem from the centre are equal. V.

And the ftraight line on which the greater perpendicular falls, is faid to be farther from the centre.
E. 2

VI。
VI.

Book III. A fegment of a circle is the figure contained by a ftraight line and the circumference it cuts off.
VII.
"The angle of a fegment is that which is contained by the " flraight line and the circumference."
VIII.

An angle in a fegment is the angle contained by two ftraight lines drawn from any point in the circumference of the fegment, to the extremities of the ftraight line which is the bafe of the fegment.

> IX.

And an angle is faid to infift or ftand
 upon the circumference intercepted between the ftraight lines that contain the angle.
X.

The fector of a circle is the figure contained by two ftraight lines drawn from the centre, and the circumference between them.

\section*{XI.}

Similar fegments of a circle, are thofe in which the angles are equal, or which contain equal angles.

> PROP. I: PROB.

See \(\mathbb{N}^{\circ}\)
a ro. 1 . Draw within it any ftraight line \(A B\), and bifect a it in \(D\); bir. f. from the point \(D\) draw b \(D C\) at right angles to \(A B\), and produce it to \(E\), and bifect \(C E\) in \(F\) : The point \(F\) is the centre of the circle ABC .

\section*{OFEUCLID.}

For, if it be not, let, if poffible, G be the centre, and join Bonk III. GA, GD, GB: Then, becaufe DA is equal to DB, and DG common to the two triangles ADG, BDG , the two fides \(\mathrm{AD}, \mathrm{DG}\) are equal to the two \(B D, D G\), each to each; and the bafe GA is equal to the bafe GB, becaufe they are drawn from the centre \(G^{*}\) : Therefore the angle \(A D G\) is equal \(c\) to the angle GDB: But when a ftraight line ftanding upon another ftraight line makes \(\mathbf{A}\) the adjacent angles equal to one another, each of the angles is a right an-
 gle d : Therefore the angle GDB is a right angle : But FDB is likewife a right angle ; wherefore the angle FDB is equal to the angle GDB, the greater to the lefs, which is impoffible: Therefore \(G\) is not the centre of the circle \(A B C\) : In the fame manner it can be fhown, that no other point but F is the centre; that is, F is the centre of the circle ABC : Which was to be found.

Cor. From this it is manifeft, that if in a circle a ftraight line bifect another at right angles, the centre of the circle is in the line which bifects another.

\section*{PROP. II. THEOR.}

IF any two points be taken in the circumference of a circle, the ftraight line which juins them thall fall within the circle.

Let ABC be a circle, and \(\mathrm{A}, \mathrm{B}\) any two points in the circumference; the ftraight line drawn from A to B fhall fall within the circle.

For, if it do not, let it fail, if poffible, without, as AEB; find a \(D\) the centre of the circle \(A B C\), and join \(A D\), DB , and produce DF , any ft raight line meeting the circumference \(A B\) to \(E\) : Then becaufe DA is equal to DB , the angle DAB is equal \(b\) to the angle DBA; and becaufe \(A E\), a fide of the triangle
\[
\mathrm{E}_{3}
\]

DAE,

\footnotetext{
* N. B. Whenever the expreffinn "ftraight lines from the centre," or "drawn "from the centre," occurs, it is to be underftood that chey are drawn to the cirkumference.
}

Book. III. DAE, is protuced to \(B\), the angle DEB is greater \(c\) than the angle DAE; but DAE is equal to the angle DBE ; therefore c 16: 1 . the angle DLP is greater than the angle DBE: But to the greatd19. I. er angle the greater fide is oppofited; DB is therefore greater than \(D E\) : But \(D B\) is equal to \(D F\); whérefore \(D F\) is greater than DE, the lefs than the greater, which is impoffible:: Therefore the flaight line drawn from \(A\) to \(B\) does not fall without the circle. In the fame manner, it may be demonftrated that it does not fall upon the circumference; it falls therefore within it. Wherefore, if any two points, \& c. Q. E. D.

\section*{PROP. TII. THEOR.}

1\(F\) a ftraight line drawn through the centre of \(a\) circle bifect a ftraight line in it which does not pafs through the centre, it fliall cut it at right angles; and, if it cuts it at right angles, it fhall bifect it.

Let ABC be a circle; and let CD , a ftraight line drawn through the centre, bifect any ftraight line \(A B\), which does not pafs through the centre, in the point F: It cuts it alfo at right angles.
1. 3. Take a E the centre of the circle, and join EA, EB. Then, becaufe AF is equal to FB , and FE common to the two triangles \(\mathrm{AFE}, \mathrm{BFE}\), there are two fides in the one equal to two fides in the other, and the bafe EA is equal to the bafe IB ; therefore the angle AFE is equal to the aingle BFE : But when a ftaight line fanding upon another makes the adjacent angles equal to one another, each of them is a right
cri. Def. r. a angle: Therefore each of the augles \(A F E, B F E\) is a right angle ; wherefore the ftraight line CD, drawn through the centre bifecting another \(A B\) that does not pars through the centre, cuts
 the fame at right angles.

But let \(C D\) cut \(A 1\) at right angles; \(C D\) alfo bifects it, that is, AF is equal to FE .

The fame conftruction being made, becaufe EA, EB from
dis. 1 the centre are equal to one another, the angle EAF is equal d to the angle EBF ; and the right angle AFE is equal to the right angle BFE: Thercfore, in the two triangles EAF, EBF,
there are two angles in one equal to two angles in the other, and the fide EF , which is oppofite to one of the equal angies

Boak.114. (axtmanne in each, is common to both; therefore the other fides are equale; AF therefore is equal to FB. Wherefore, if a fraight ez6. I, line, \&c. Q. E. D.

\section*{PROP. IV. THEOR.}

\(\mathbf{I}^{\mathrm{F}}\)\(F\) in a circle two ftraight lines cut one another which do not both pafs through the centre, they do not bifect each other.

Let ABCD be a circle, and \(\mathrm{AC}, \mathrm{BD}\) two ftraight lines in it which cut one another in the point E , and do not both pals. through the centre : AC, BD do not bifect one another.

For, if it is poffible, let \(A E\) be equal to \(E C\), and \(B E\) to \(E D\) : If one of the lines pafs through the centre, it is plain that it cannot be bifected by the other which does not pafs through the centre : But if neither of them pafs through the centre, take a \(F\) the centre of the circle, and join EF : and becaufe FE, a ftraight line through the centre, bi- A fects another AC which does not pafs through the centre, it fhall cut it at right \(b\) angles; wherefore FEA is a
 right angle: Again, becaufe the Itraight line FE bifects the ftraight line BD which does not pafs through the centre, it thall cut it at right b angles; wherefore FEB is a right angle: And FEA was fhown to be a right angle; therefore FEA is equal to the angle FEB, the lefs to the greater, which is impoffible: Therefore \(\mathrm{AC}, \mathrm{BD}\) do not bifect one another. Wherefore, if in a circle, \&c. Q. E. D.

\section*{PROP. V. THEOR.}

IF two circles cut one another, they fhall not have the fame centre.

Let the two circles \(A B C, G D G\) cut one another in the points \(B, C\); they have not the fame centre.

Fors

Book IIf. For, if it be poffible, let E be their centre: Join EC, and
draw any ftraight line EFG meeting them in \(F\) and \(G\) : and becaule \(E\) is the centre of the circle \(A B C\), CE is equal to EF : Again, becaufe \(\mathbf{E}\) is the centre of the circle CDG, CE is equal to EG: But CE was fhown to be equal to EF; therefore EF is equal to EG, the lefs to the greater, which is impoffible : Therefore \(\mathbf{E}\) is not the centre of the circles ABC, CDG.
 Wherefore, if two circles, \&c. Q. E. D.

\section*{PROP. VI. THEOR.}

IF two circles touch one another internally, they fhall not have the fame centre.

Let the two circles \(\mathrm{ABC}, \mathrm{CDE}\), touch one another internally in the point C : They have not the fame centre.

For, if they can, let it be F ; join FC and draw any ftraight line FEB meeting them in E and B; And becaufe \(F\) is the centre of the circle \(\mathrm{ABC}, \mathrm{CF}\) is equal to FB : Alfo, becaufe F is the centre of the circle \(\mathrm{CDE}, \mathrm{CF}\) is equal to FE : And CF was fhewn equal to FB ; therefore FE is equal to FB , the lefs to the greater, which is impoffible; Wherefore F is not the centre of
 the circles ABC, CDE. Therefore, if two circles, \&\&. Q.E. D.

PROP. VII. THEOR.

1F any point be taken in the diameter of a circle which is not the centre, of all the firaight lines which can be drawn from it to the circumference, the greateft is that in which the centre is, and the other part of that diameter is the leaft; and, of any others, that which is nearer to the line which paffes through the centre is always greater than one more remote : And from the fame point there can be drawn only two ftraight lines that are equal to one another, one upon each fide of the fhorteft line.

Let \(A B C D\) be a circle, and \(A D\) its diameter, in which let any point F be taken which is not the centre: Let the centre be E; of all the ftraight lines FB, FC, FG, \&c. that can be drawn from \(F\) to the circumference, \(F A\) is the greateft, and FD, the other part of the diameter BD, is the leaft: And of the others, FB is greater than FC, and FC than FG.
Join BE, CE, GE ; and becaufe two fides of a triangle are greater a than the third, \(\mathrm{BE}, \mathrm{EF}\) are greater than BF ; but AE a 20. .. is equal to EB ; therefore \(\mathrm{AE}, \mathrm{EF}\), that is AF , is greater than BF : A gain, becaufe BE is equal to CE , and FE common to the triangles BEF, CEF, the two fides BE, EF are equal to the two CE, EF; but the angle BEF is greater than the angle CEF ; therefore the bafe BF is greater \(b\) than the bafe FC: For the fame reafon, CF is greater than GF : Again, becaufe GF, HE are
 greater a than EG, and EG is equal to ED; GF, FE are greater than ED: Take away the common part FE, and the remainder GF is greater than the remainder FD: Therefore FA is the greateft, and FD the leaft of all the fraight lines from F to the circumference; and BF is greater than CF , and CF than GF .

Alfo there can be drawn only two equal ftraight lines from the point \(F\) to the circumference, one upon each fide of the

Book III: fhortef line FD: At the point E in the ftraight line EF, make c the angle FEH equal to the angle GEF, and join FH: Then c 23. x. becaufe GE is equal to EH , and EF common to the two triangles GEF, HEF ; the two fides GE, EF are equal to the two HE; EF ; and the angle GEF is equal to the angle HEF; thered. r. fore the bafe FG is equal d to the bafe FH: But, befides FH, no other ftraight line can be drawn from \(F\) to the circumference equal to FG : For, if there can, let it be FK; and becaule FK is equal to FG, and FG to \(\mathrm{FH}, \mathrm{FK}\) is equal to FH ; that is, a line nearer to that which paffes through the centre; is equal to one which is more remote; which is impoffible. Therefore, if any point be taken, \& c. Q. E. D.

\section*{PROP. VIII. THEOR.}

IF any point be taken without a circle, and ftraight lines be drawn from it to the circumference, whereof one paffes through the centre ; of thofe which fall upon the concave circumference, the greateft is that which paffes through the centre; and of the reft, that which is nearer to that through the centre is always greater than the more remote : But of thofe which fall upon the convex circumference, the leaft is that between the point without the circle, and the diameter; and of the reft, that which is nearer to the leaft is always lefs than the more remote : And only two equal ftraight lines can be drawn from the point unto the circumference, one upon each fide of the leaft.

Let \(A B C\) be a circle, and \(D\) any point without it, from which let the ftraight lines \(\mathrm{DA}, \mathrm{DE}, \mathrm{DF}, \mathrm{DC}\) be drawn to the circumference, whereof DA paffes through the centre. Of thofe which fall upon the concave part of the circumference AEFC, the greateft is AD which paffes through the centre; and the nearer to it is always \(g\) seater than the more renote, viz. DE than DF, and DF than DG: But of thofe which fall upon the convex circumference HLKG, the leaft is DG between the
point \(D\) and the diameter \(A G\); and the nearer to it is always Book 11 . lefs than the more remote, viz. DK than DL, and DL than DH.

Take a \(M\) the centre of the circlc \(A B C\), and join ME, MF, a r. 3. MC, MK, ML, MH : And becaufe AM is equal to ME, add MD to each, therefore \(A D\) is equal to \(\mathrm{EM}, \mathrm{MD}\); but \(\mathrm{EM}, \mathrm{MD}\) are greater b than ED; therefore alfo \(A D\) is greater than ED: \(b 20\). 1 . Again, becaufe ME is equal to MF , and MD common to the triangles EMD,FMD; EM,MD are equal to \(\mathrm{FM}, \mathrm{MD}\); but the angle EMD is greater than the angle FMD ; therefore the bafe ED is greater c than the bafe FD: In like manner it may be thewn that FD is greater than CD : Therefore DA is the greateft ; and DE greater than DF, and DFthan DG: And becaufe MK, KD are greater \(b\) than \(M D\), and MK is equal to MG , the remainder KD is greaterdthan the remainder GD, that is GD is lefs than KD: And becaufe MK, DK are drawn to the point K within the triangle MLD from M. D, the extremities of its fide MD, MK, KD are
 lefs e than MIL,LD, whereof MK, is equal to ML; therefore the remainder DK is lefs than the remainder DL: In like manner it may be fhewn, that DL is lefs than DH: Therefore DG is the leaft, and DK lefs than DL, and DL than DH : Alfo there can be drawn only two equal fraight lines from the point \(D\) to the circumference, one upon each fide of the leaft : At the point M, in the fraight line MD make the angle DMB equal to the angle DMK , and join DB: Ardd becaufe MK is equal to MB, and MD common to the triangles KMD, BMD , the two fides \(\mathrm{KM}, \mathrm{MD}\) are equal to the two BM , MD ; and the angle KMD is equal to the angle BMD ; therefore the bafe DK is equal \(f\) to the bafe \(D B\) : But, befides \(D B, f 4 \mathbb{I}^{\circ}\) there can be no ftraight line drawn from \(D\) to the circumference equal to DK: For, if there can, let it be DN ; and becaufe DK is equal to \(D N\), and alfo to \(D B\); therefore \(D B\) is equal to DN , that is, the nearer to the leaft equal to the more remote, which is impoftible. If therefore, any point, \&ec. Q.E.D.

PROP。

IF a point be taken within a circle, from which there fall more than two equal ftraight lines to the circumference, that point is the centre of the circle.

Let the point \(D\) be taken within the circle \(A B C\), from which to the circumference there fall more than two equal ftraight lines, viz. \(\mathrm{DA}, \mathrm{DB}, \mathrm{DC}\), the point D is the centre of the circle.

For, if not, let E be the centre, join DE and produce it to the circumference in F, G; then FG is a diameter of the circle ABC : And becaufe in \(F G\), the diameter of the circle ABC , there is taken the point D which is not the centre, LG fhall be the greateft line from it to the circumference, and DC 7 7. 3. greaterathan DB , andDBtharDA: But the yare iikewife equal, which is
 impoflible: Therefore \(E\) is not the centre of the circle ABC : In like manner, it may be demonItrated, that no other point but \(D\) is the centre; \(D\) therefore is the centre. Wherefore, if a point be taken, \&cc. Q. E. D.
PROP. X. THEOR.

ONE circumference of a circle cannot cut another in more than two points.

If it be pofible, jet the circumference \(F A B\) cut the circumference DEF in more than two points, viz. in \(B, G, F\); take the centre \(K\) of the circle \(A B C\), and join KB, KG,KF: And becaufe within the circle DEF there is taken the point \(\mathbb{K}\). from which to the circumference DEF fall more than two equal ftraight
 Jines \(\mathrm{KB}, \mathrm{KG}, \mathrm{K} F\), the point \(K\) is a
the centre of the circle DEF : But K is alfo the centre of the Book in. circle ABC ; therefore the fame point is the centre of two circles that cut one another, which is impoffible b. Therefore b \({ }^{5}\). 3. one circumference of a circle cannot cut another in more than two points. Q.E. D.

\section*{PROP. XI. THEOR.}

IF two circles touch each other internally, the ftraight line which joins their centres being produced fhall pals through the point of contact.

Let the two circles \(\mathrm{ABC}, \mathrm{ADE}\), touch each other internally in the point \(A\), and let \(F\) be the centre of the circle \(A B C\), and G the centre of the circle ADE: The ftraight line which joins the centres F, G, being produced, paffes through the point \(A\).

For, if not, let it fall otherwife, if poffible, as FGDH, and join AF, AG: And becaufe AG, GF are greater \({ }^{2}\) than FA, that is, than FH , for FA is equal to FH , both being from the fame centre; take away the com-
 mon part FG; therefore the remainder AG is greater than the remainder GH: But AG is equal to \(G D\); therefore GD is greater than GH, the lefs than the greater, which is impoffible. Therefore the ftraight line which joins the points \(F\), \(G\) cannot fall otherwife than upon the point A, that is, it muft pafs through it. Therfore, if two circles \&c. Q.E.D.

\section*{PROP. XII. THEOR.}

IF two circles touch each other externally, the ftraight line which joins their centres fhall pafs through the point of contact.

Let the two circles \(\mathrm{ABC}, \mathrm{ADE}\) touch each other externally in the point \(A\); and let \(F\) be the centre of the circle \(A B C\), and \(G\) the centre of \(A D E\) : The ftraight line which joins the points F, G fhall pafs through the point of contact A.

For, if not, let it pafs otherwife, if poflible, as FCDG, and

Book III. join FA, AG: And becaufe \(F\) is the centre of the circle \(A B C_{\text {, }}\)
AF is equal to FG : Alfo becaufe \(G\) is the centre of the circle ADE, AG is equal to GD: Therefore \(\mathrm{FA}, \mathrm{AG}\) are equal to FC , DG; wherefore the whole \(F G\) is greater than FA, AG; But it is alfo
3 20. I. lefs \({ }^{\text {a }}\); which is impoffible:
 Therefore the ftraight line which joins the points F, G fhall not pafs otherwife than through the point of contact \(A\), that is, it muft pafs through it. Therefore, if two circles, \&c. Q. E.D.
PROP. XII. THEOR.

See N .

ONE circle cannot touch another in more points than one, whether it touches it on the infide or outfide.

For, if it be poffible, let the circle EBF touch the circle \(A B C\) in more points than one, and firft on the infide, in the points a 10.1 II. I. \(B, D\); join \(B D\), and draw a \(G H\) bifecting \(B D\) at right angles: Therefore, becaufe the points \(B, D\) are in the circnmference of

b2.3. each of the circles, the ftraight line \(B D\) falls within each \(b\) of
c. Cor. I. 3. them: And their centres are c in the ftraight line GH which bifects BD at right angles: Therefore GH paffes through the
\& II. 3. point of contact d; but it does not pafs through it, becaufe the points \(B, D\) are without the ftraight line GH , which is abfurd: Therefore one circle cannot touch another on the infide in more points than one.

Nor can two circles tonch one another on the outfide in more
more than one point : For, if it be poffible, let the circle ACK Book I! touch the circle ABC - in the points \(\mathrm{A}, \mathrm{C}\), and join AC : Therefore, becaufe the two points \(\mathrm{A}, \mathrm{C}\) are in the circumference of the circle ACK , the Itraight line AC which joins them thall fall wihhin b the circle ACK: And the circle AGK is without the circle \(A B C\); and therefore the ftraight line AG is withont this laft circle; but, becaufe the points \(\mathrm{A}, \mathrm{C}\) are in the circumference of the circle \(A B C\), the ftraight line AC muft be within b the fame circle, which is abfurd: Therefore one circle cannot touch another on the outfide in more than one point: And it
 has been fliewn, that they cannot touch on the infide in more points than one : Therefore, one circle, \&c. Q.E.D.

> PROP. XIV. THEOR.

EQUAL ftraight lines in a circle are equally difant from the centre ; and thofe which are equally diitant from the centre, are equal to one another.

Let the Atraight lines \(\mathrm{AB}, \mathrm{CD}\), in the circle ABDC , be equal to one another; they are equally diftant from the centre.

Take E the centre of the circle ABDC, and from it draw EF, EG perpendiculars to \(A B, C D\) : Then, becaufe the fraight line EF , paffing through the centre, cuts the ftraight line AB , which does not pafs through the centre, at right angles, italfo bifects a it: Wherefore \(A F\) is equal to \(F B\), and \(A B\) double of \(A F\). For the fame reaion \(C D\) is double of \(C G\) : And \(A B\) is equal to \(C D\); therefore \(A F\) is equal to \(C G\) : And becaufe AE is equal to EC, the fquare of AE is equal to the fquare of \(E C\) : But the fquares of \(A F, F E\) are equal \({ }^{b}\) to the fquare of AE , becaufe
 the angle AHE is a right angle; and for the like reafon, the fquares of EG, GC are equal to the fquare of EC : Therefore the fquares of \(\mathrm{AF}, \mathrm{FE}\) are equal to the fquares of \(C G ; G E\), of which the fquare of \(A F\) is equal to

Book III. the fquare of CG, becaufe AF is equal to CG ; therefore the remaining fquare of FE is equal to the remaining fquare of EG , and the fraight line EF is therefore equal to EG : But ftraight lines in a circle are faid to be equally diftant from the centre, when the perpendiculars drawn to them from the centre
64. Def. 3. are equal c: Therefore \(A B, C D\) are equally diftant from the centre.

Next, if the ftraight lines \(A B, C D\) be equally diftant from the centre, that is, if FE be equal to \(\mathrm{EG} ; \mathrm{AB}\) is equal to CD : For, the fame conftruction being made, it may, as before, be demonftrated, that AB is double of AF , and CD double of CG , and that the fquares of \(\mathrm{EF}, \mathrm{FA}\) are equal to the fquares of \(\mathrm{EG}, \mathrm{GC}\); of which the fquare of FE is equal to the fquare of EG, becaufe FE is equal to EG ; therefore the remaining fquare of \(A F\) is equal to the remaining fquare of CG ; and the ftraight line AF is therefore equal to CG: And AB is double of \(A F\), and \(C D\) double of \(C G\); wherefore \(A B\) is equal to \(C D\). Therefore equal ftraight lines, \&c. Q. E. D.

\section*{PROP. XV. THEOR.}

TTHE diameter is the greateft ftraight line in a circle: and, of all others, that which is nearer to the centre is always greater than one more remote; and the greater is nearer to the centre than the lefs.

Let ABCD be a circle, of which the diameter is AD , and the centre E ; and let BC be nearer to the centre than \(\mathrm{FG} ; \mathrm{AD}\) is greater than any ftraight line BG which is not a diameter, and BC greater than FG.
From the centre draw EH, EK perpendiculars to \(\mathrm{BC}, \mathrm{FG}\), and join EB , EC, EF; and becaufe AE is equal to EB , and ED to \(\mathrm{EC}, \mathrm{AD}\) is equal to \(\mathrm{EB}, \mathrm{EC}:\) But \(\mathrm{EB}, \mathrm{EC}\), are greater \({ }^{2}\)
 than \(B C\); wherefore, alfo \(A D\) is greater than BC.

And, becaufe BC is nearer to the centre than \(\mathrm{FG}, \mathrm{EH}\) is

Iefis bthan EK : But, as was demonftrated in the preseding, Book ill. BC is double of BH , and FG double of FK , and the fquares of EH, HB are equal to the fquares of EK, KF, of which the \({ }^{\mathrm{b} 5 .}\) Def. 30 fquare of EH is lefs than the fquare of EK , becaufe EH is lefs than EK ; therefore the fquare of BH is greater than the fquare of FK, and the ftraight line BH greater than FK; and therefore BC is greater than FG.

Next, Let BC be greater than FG; BC is nearer to the centre than FG , that is, the fame conftruction being made, EH is lefs than EK : Becaufe BC, is greater than FG, BH likewife is greater than KF : And the fquares of \(\mathrm{BH}, \mathrm{HE}\) are equal to the fquares of \(\mathrm{FK}, \mathrm{KE}\), of which the fquare of BH is greater than the fquare of FK , becaufe BH is greater than FK; therefore the fquare of \(E H\) is lefs than the fquare of \(E K\), and the ftraight line EH lefs than EK. Wherefore the diameter, \&x. Q. E. D.

\section*{PROP. XVI, THEOR.}

THE ftraight line drawn at right angles to the dia- See N. meter of a circle, from the extremity of it, falls without the circle; and no ftraight line can be drawn between that ftraight line and the circumference from the extremity, fo as not to cut the circle; or which is the fame thing, no ftraight line can make fo great an acute angle with the diameter at its extremity, or fo fmall an angle with the ftraight line which is at right angles to it, as not to cut the circle,

Let \(A B C\) be a circle, the centre of which is \(D\), and the diae meter \(A B\) : the ftraight line drawn at right angles to \(A B\) from its extremity \(A\), fhall fall without the circle.

For, if it does not, let it fall, if poffible, within the circle, as AC , and draw \(D C\) to the point \(C\) where it meets the circumference: And becaufe DA is equal to DC, the angle DAC is equal a to the angle ACD ; but DAC is a right angle, therefore ACD is of ri it angle, and the angles DAC, ACD are
 therefore equal to two right angles; which is impoffible \(b: b: 7 . \pi\)

Book III. Therefore the ftraight line drawn from A at right angles to BA does not fall within the circle: in the fame manner, it may be denionftrated that it does not fall upon the circumference; therefore it muft fall without the circle, as AE.

And between the fraight line AE and the circumference no ftraight line can be drawn from the point \(A\) which does not cut the circle: For, if poffible, let FA be between them, and

C I2.I.

AIS. 1. from the point \(D\) draw © \(D G\) perpendicular to \(F A\), and let it meet ihe circumference in \(\mathrm{H}:\) : And becaufe AGD is a right angle, and DAS lefs \(b\) than a right angle: DA is greater \(d\) than DG: But DA is equal to DH; therefore DH is greater than DG, the lefs than the greater, which is impoflible: Therefore no ftraight line can be drawn from the point A between AE and the circumference, which does not cut the cir-' cle, or, which amounts to the fame thing, however great an acute avgle a ftraight line makes with the diameter at the point A , or however
 fmall an angle it makes with AE , the circumference paffes between that flaight line and the per. pendicular AE. 'And this is all that is to be underftood, \({ }^{6}\) when, in the Greek text and tranflations from it, the angle of - the femicircle is faid to be greater than any acute rectilineal * angle, and the remaining angle lefs than any rectilineal an' gle.'

Cor. From this it is manifeft that the ftraight line which is drawn at right angles to the diameter of a circle from the extremity of it, touches the circle; and that it touches it wily in one point, becaufe, if it did meet the circle in two, it would fall within it \(e\). 'Alfo it is evident that there can be but one - ftraight line which touches the circle in the fame point,'

\section*{PROP. XVII. PROB.}

Tdraw a fraight line from a given point, eithet without or in the circumference, which fhall touch a given circle.

Firf, let A be a given point without the given circle BCD ;
it is required to draw a ftraight line from A which fall touch Book II. the circle.

Find a the centre \(E\) of the circle, and join \(A E\); and from a r. 3. the centre E, at the diftance EA, defcribe the circle AFG; from the point D draw b DF at right angles to EA, and join br r. r . \(E B F, A B\). AB touches the circle \(B C D\).

Becaufe E is the centre of the circles \(B C D, A F G\), EA is equal to EF: And ED to EB; therefore the two fides \(\mathrm{AE}, \mathrm{EB}\) are equal to the two FE, ED, and they contain the angle at E common to the two tiangles AEB, FED ; therefore the bate DF is equal to the bare \(A B\), and the
 triangle FED to the triangie \(A E B\), and the other angles to the other angles c: There- cu. x. fore the angle EB \(A\) is equal to the angle EDF : But EDF is a right angle; wherefore EBA is a right angle: And EB is drawn from the centre : But a ftraight line drawn from the extremity of a diameter, at right angles to it, touches the circle d : There- d Cor. \(16 . \mathrm{s}^{\text {f }}\) fore AB touches the circle; and it is drawn from the given point A. Which was to be done.

But, if the given point be in the circumference of the circle, as the point D , draw DE to the centre E , and DF at right angiles to DE ; DF touches the circle d.

\section*{PROP. XVIII. THEOR.}

F a firaight line touches a circle, the ftraight line drawn from the centre to the point of contact, fall, be perpendicular to the line touching the circle.

Let the flraight line \(D E\) touch the circle \(A B C\) in the point \(G\); take the centre \(F\), and draw the ftraight line FC: FC is perpendicular to DE.

For, if it be not, from the point \(F\) draw \(F B G\) perpendicular to DE; and because FGC is a right angle, GCF is b an acute \(b \mathrm{~s} \%\). angle; and to the greater angle the greater c fide is oppofite:cis. x . \({ }^{5} 2\)

Therefore

Book III. Therefore FC is greater than FG; but FC is equal to FB ; therefore EB is greater than FG, the lefs than the greater, which is impoffible: Wherefore FG is not per. pendicular to DE : In the fame manner it may be fhewn, that no other is perpendicular to it befides FC , that is, FC is perpendicular to DE. Therefore, if a ftraight line, \&c. Q.E.D.

\section*{PROP. XIX. THEOR.}

TF a ftraight line touches a circle, and from the point of contact a ftraight line be drawn at right angles to the touching line, the centre of the circle fhall be in that line.

Let the ftraight line DE touch the circle \(A B C\) in \(C\), and from C let CA be drawn at right angles to DE ; the centre of the circle is in CA.

For, if not, let F be the centre, if poffible, and join CF : Becaufe DE touches the circle ABC, and \(F G\) is drawn from the centre to the point of contact, F C is perpendicular a to DE; therefore FCE is a right angle : But ACE is alfo a right angle; therefore the angle FCE is equal to the angle \(A C E\), the lefs to the greater, which is impoffible : Wherefore \(F\) is not the centre of the circle \(A B C\) : In the fame manner, it
 may be fhewn, that no other point which is not in CA, is the centre ; that is, the centre is in CA. Therefore, if a ftraight line, \&c. Q. E. D.

> PROP. XX. THEOR.

See N. TI HE angle at the centre of a circle is double of the angle at the circumference, upon the fame bafe, that is, upon the lame part of the circumference.

Let \(A B C\) be a circle, and BEC an angle at the centre, and Book m. \(B A C\) an angle at the circumference, which have the fame cir. cumference BC for their bale; the angle \(B E C\) is double of the angle BAC.

Firft, let E the centre of the circle be within the angle BAC, and join AE, and produce it to \(F\) : Because EA is equal to \(E B\), the angle EAB is equal a to the angle EBA ; therefore the angles EAB , EBA are double of the angle EAB; but the angle \(B E F\) is equal b to the angles \(\mathrm{EAB}, \mathrm{EBA}\); therefore alpo the angle
 BEF is double of the angle EAB : For the fame reason, the angle FEC is double of the angle EAC : Therefore the whole angle BEC is double of the whole angle BAG.

Again, let \(E\) the centre of the circle be without the angle BDC, and join DE and produce it to G. It may be demonftrated, as in the firit cafe, that the angle GEC is double of the angle GDC, and that GEB a part of the firlt is double of GDB a part of the other; therefore the remanning angle BEC is double of the remaining angle BDC . Therefore the
 angle at the centre, \&c. Q.E. D.

\section*{PROP. XXI. THEOR.}

HE angles in the fame fegment of a circle are \(\mathrm{e}_{\mathrm{w}} \mathrm{See}\). qual to one another.
Let ABCD be a circle, and BAD , BED angles in the fame fegment BAED: The angles BAD, BED are equal to one another.

Take \(F\) the centre of the circle \(\mathrm{ABCD}:\) And, firf, let the fegment BAED be greater than a semicircle, and join BF, FD: And becaufe the angle BFD is at the centre, and the angle BAD at the circumference, and that they have the fame part of

the

Book IIY. a 20.3 .
the circumference, viz. \(B C D\) for their bafe; therefore the angle BFD is double \({ }^{\text {a }}\) of the angle BAD : For the fame reafon, the angle BFD is double of the angle BED : The efore the angle \(B A D\) is equal to the angle BED.

But, if the fermment BAED be not greater than a femicircle, let \(B A D, B E D\) be angles in it; thefe alfo are equal to one another: Draw Af to the centre, and produce it to C, and join CE: Therefore the fegment BADC is greater than a femicircle ; and the angles in it BAC, BEC are equal, by the firft cafe: For the fame reafon, becaufe CBED is greater than a femicircle, the angles \(\mathrm{CAD}, \mathrm{CED}\) are equal: Therefore the whole angle BAD is equal to the whole angle BED. Whercfore the angles in the fame fegment, \&s. Q. E. D.

\section*{PROP. XXII. THEOR.}

THE oppofite angles of any quadrilateral figure defcribed in a circle, are together equal to two right angles.

Let \(A B C D\) be a quadrilateral figure in the circle \(A B C D\); any two of its oppofite angles are together equal to two right angles.

Join \(\mathrm{AC}, \mathrm{BD}\); and becaufe the three angles of every triangle are equal a to two right angles, the three angles of the triangle CAB , viz. the angles \(\mathrm{CAB}, \mathrm{ABC}, \mathrm{BCA}\) are equal to two right angles: But the angle CAB
b2I. 3 . is equal \(b\) to the angle \(C D B\), becaufe they are in the fame fegment BADC , and the angle \(A C B\) is equal to the angle \(A D B\), becauie they are in the fame fegment ADCB: Therefore the whole angle \(A D G\) is equal to the an- \(A\) gles \(\mathrm{CAB}, \mathrm{ACB}\) : To each of thefe equals add the angle \(A B C\); therefore the angles \(\mathrm{ABC}, \mathrm{CAB}, \mathrm{BCA}\) are equal to the angles \(A B C, A D C\) : But \(A B C, C A B, B C A\) are equal to two right angles; therefore alfo the angles \(A B C, A D C\) are equal to two right angles: In the fame mander, the angles BAD,

BAD, DCB may be fhewn to be equal to twa right angles. Book H . Therefore, the oppofite angles, \&cc. Q. E. D.

\section*{PROP. XXIII. THEOR.}

UPON the fame ftraight line, and upon the fame see \(\mathbb{N}_{\text {: }}\) fide of it, there cannot be two fimiar fegments of circles, not coinciding with one another.

If it be poffible, let the two fimilar fegments of circles, viz. \(\mathrm{ACB}, \mathrm{ADB}\), be upon the fame fide of the fame ftraight line \(A B\), not coinciding with one another: Then, becaufe the circle ACB cuts the circle ADB in the two points \(\mathrm{A}, \mathrm{B}\), they cannot cut one another in any other pointa: One of the fegments muft therefore fall within the other; let ACB fall within ADB, and draw the fraight line \(B C D\), and join CA, DA: And becaufe the feg-
 ment \(A C B\) is fimilar to the fegment \(A D B\), and that fimilar fegments of circles contain b equal angles ; the angle \(A C B\) is equal \(b\) rr. def. 3 : to the angle ADB, the exterior to the interior, which is impoffible \(c\). Therefore, there cannot be two fimilar fegments of a c \(\mathbf{1 6}\). I. circle upon the fame fide of the fame line, which do not coincide. Q. E. D.

\section*{PROP. XXIV. THEOR.}

C IMIL.AR fegments of circles upon equal fraight see N. lines, are equal to one another.

Let \(A E B, C F D\) be fimilar fegments of circles upon the equal ftraight lines \(A B, C D\); the fegment \(A E B\) is equal to the fegment CFD.

For, if the fegment AEB be applied to the fegment CFD, fo as the point A be on C , and
 the ftraight line
\(A B\) upon \(C D\), the point \(B\) flall coincide with the point \(D\), heF 4
cauf

Book iII. caufe \(A B\) is equal to \(C D\) : Therefore the ftraight line \(A B\) coine ciding with CD, the fegment AEB muft a coincide with the a 23.3. fegment CFD, and therefore is equal to it. Wherefore fimilar fegments, \&c. Q E. D.

\section*{PROP. XXV. PROB.}

See N .

ASegment of a circle being given, to defcribe the circle of which it is the fegment.

Let \(A B C\) be the given fegment of a circle; it is required to defcribe the circle of which it is the fegment.
a 10.1.
Bifect a AC in D , and from the point D draw b DB at right
b in. x .
c 6. I .
d 9.3 . angles to \(A C\), and join \(A B\) : Firft, let the angles \(A B D, B A D\) be equal to one another; then the fraight line BD is equal c to DA, and therefore to DC; and becaufe the three ftraight lines \(\mathrm{DA}, \mathrm{DB}, \mathrm{DC}\), are all equal ; D is the centre of the circled: From the centre \(D\), at the diffance of any of the three DA, DB, DG, defcribe a circle; this fhall pafs through the other points; and the circle of which ABC is a fegment is defcribed : And becaufe the centre \(D\) is in \(A C\), the fegment \(A B C\) is a \(f e-\)

micircle: But if the angles \(A B D, B A D\) are not equal to one
e 2.3 .1.
E. I. another, at the point \(A\), in the fraight line \(A B\) make \(e^{e}\) the angle \(B A E\) equal to the angle \(A B D\), and produce \(B D\), if neceffary, to E , and join EG: And becaufe the angle ABE is equal to the angle BAE, the ftraight line BE is equale to EA : And becaufe AD is equal to DC , and DE common to the triangles \(\mathrm{ADE}, \mathrm{CDE}\), the two fides \(\mathrm{AD}, \mathrm{DE}\) are equal to the two \(\mathrm{CD}, \mathrm{DE}\), each to each; and the angle \(A D E\) is equal to the angle CDE, for each of them is aright angle ; therefore the bafe AE is equal if to the bafe EC: Bnt \(A E\) was fhewn to be equal to \(E B\), wherefore alfo BE is equal to EC : And the three ftraight lines AE ,
\(\mathrm{EB}, \mathrm{EC}\) are therefore equal to one another; wherefore d E is Rook III. the centre of the circle. From the centre E, at the diftance of any of the three \(A E, E B, E C\), defcribe a circle, this fhall pafs d 9.3 . through the other points; and the circle of which \(A B C\) is a fegment is defcribed : And it is evident, that if the angle ABD be greater than the angle BAD , the centre E falls without the fegment \(A B C\), which therefore is lefs than a femicircle: But if the angle \(A R D\) be lefs than \(B A D\), the centre \(E\) falls within the fegment \(A B C\), which is therefore greater than a femicircle: Wherefore a fegment of a circle being given, the circle is defcribed of which it is a fegment. Which was to be done.

\section*{PROP. XXVI. THEOR.}

IN equal circles, equal angles ftand upon equal circumferences, whether they be at the centres or, circumferences.

Let ABC , DEF be equal circles, and the equal angles BGC , EHF at their centres, and BAC, EDF at their circumferences: The circumference BKC is equal to the circumference ELF.

Join BC, EF ; and becaufe the circles ABC, DEF are equal, the ftraight lines drawn from their centres are equal: Thered fore the two fides \(\mathrm{BG}, \mathrm{GC}\), are equal to the two \(\mathrm{EH}, \mathrm{HF}\);

and the angle at G is equal to the angle at H ; therefore the bafe BC is equal a to the bafe EF : And becaufe the angle at \(\mathrm{A}_{\text {a }}\). . . is equal to the angle at \(D\), the fegment BAC is fimilar \(b\) to the \(b i x . d e f .3\). fegment \(E D F\); and they are upon equal ftraight lines \(\mathrm{BC}, \mathrm{EFF}\); but fimilar fegments of circles upon equal ftraight lines are equal \(c\) to one another, therefore the fegment \(B A C\) is equal to \(c 24.3\). the fegment EDF: But the whole circle ABC is equal to the whole

Booi: III
(oy)
whole DEF ; therefore the remaining fegment BKG is equal to the remaining fegment ELF, and the circumference BKC to the circumference ELF. Wherefore, in equal circles, \&c. Q. E. D.

\section*{PROP. XXVII. THEOR.}

I\(N\) equal circles, the angles which ftand upon equal circumferences are equal to one another, whether they be at the centres or circumferences.

Let the angles BGC, EHF at the centres, and BAC, EDF at the circumferences of the equal circles ABC, DEF ftand \(4-\) pon the equal circumferences \(\mathrm{BC}, \mathrm{EF}\) : The angle BGC is equal to the angle EHF, and the angle BAC to the angle, EDF.

If the angle BGC be equal to the angle EHF, it is manifeft
ล2. 3. a that the angle BAC is alfo equal to EDF. But, if not, one

of them is the greater: Let BGC be the greater, and at the \(b_{23}\). r. point \(G\), in the ftraight line \(B G\), make the angle \(B G K\) equal to the angle EHF; but equal angles fand upon equal circuin-
c26. 3. ferences \(c\), when they are at the centre; therefore the circum- ference BK is equal to the circumference EF: But EF is equal to \(B C\); therefore allo \(B K\) is equal to \(B C\), the lefs to the greater, which is impofible: Therefore the angle BGC is not unequal to the angle EHF ; that is, it is equal to it : And the angle at \(A\) is half of the angle \(B G C\), and the angle at \(D\) half of the angle EHF : Therefore the angle at A is equal to the angle at D. Wherefore, in equal cincles, \&cc. Q. E. D.

> PROP.

TN equal circles, equal ftraight lines cut off equal circumferences, the greater equal to the greater, and the lefs to the lefs.

Let \(\mathrm{ABC}, \mathrm{DEF}\) be equal circles, and BC , EF equal ftraight lines in them, which cut off the two greater circumferences \(\mathrm{BAC}, \mathrm{EDF}\), and the two lefs BGC, EHF : the greater BAC is equal to the greater EDF, and the lefs BGC to the lefs EAF.

Take a K, L the centres of the circles', and join BK, KC, EL, a I. 3. LF : And becaufe the circles are equal, the ftraight lines from

their centres are equal ; therefore \(\mathrm{BK}, \mathrm{KC}\) are equal to EL, LF; and the bafe BC is equal to the bafe EF; therefore the angle BKC is equal \(b\) to the angle ELF : But equal angles ftand b 8 . \(\mathbf{x}\). upon equal circumferences, when they are at the centres;c26.3. therefore the circumference BGC is equal to the circumference モHF. But the whole circle ABC is equal to the whole EDF; the remaining part therefore of the circumference, viz. BAC, is equal to the remaining part EDF. Therefore, in equal circles, \&cc. Q. E. D.

PROP. XXIX. THEOR.

IN equal circles equal circumferences are fubtended by equal ftraight lines.

Let \(\mathrm{ABC}, \mathrm{DEF}\) be equal circles, and let the circumferences BGG, EHF alfo be equal ; and join BC, EF: The itraight line \(B C\) is equal to the ftraight line \(E F\).

Book iII. Take \({ }^{a} \mathrm{~K}, \mathrm{~L}\) the centres of the circles, and join BK, KC, a 1.3 .

b 27.3 .
circumference \(E H F\), the angle \(B K C\) is equal \(b\) to the angle ELF: And becaufe the circles ABC, DEF are equal, the ftraight lines from their centres are equal: Therefore BK, KC are equal to \(\mathrm{EL}, \mathrm{LF}\); and they contain equal angles: Therefore the
4. 1.

Tbifect a given circumference, that is, to divide it into trwo equal parts.

Let \(A D B\) be the given circumference; it is required to bis fect it.

2 2 . 1.
Join \(A B\), and bifect a it in \(C\); from the point \(C\) draw \(C D\) at right angles to AB , and join \(\mathrm{AD}, \mathrm{DB}\) : the circumference \(A D B\) is bifected in the point \(D\).

Becaufe \(A C\) is equal to \(C B\), and \(C D\) common to the triangles \(\mathrm{ACD}, \mathrm{BCD}\), the two fides \(\mathrm{AC}, \mathrm{CD}\) are equal to the two \(\mathrm{BC}, \mathrm{CD}\); and the angle ACD is equal to the angle \(B C D\), becaufe each of them is a right angle; therefore the bafe AD is equal
b 4. I. \(\quad b\) to the bafe BD. But equal ftraight

c28.3. lines' cut off equal c circumferences, the greater equal to the greater, and the lefs to the lefs, and \(\mathrm{AD}, \mathrm{DB}\) are each of them
 Wherefore the circumference \(A D\) is equal to the circumference DB : Therefore the given circumference is bifected in D . Which was to be done.

\section*{PROP. XXXI. THEOR.}

IN a circle, the angle in a femicircle is a right angle; but the angle in a fegment greater than a femicircle is lefs than a right angle ; and the angle in a fegment lefs than a femicircle is greater than a right angle.

Let \(A B C D\) be a circle, of which the diameter is \(B C\), and centre \(\mathbf{E}\); and draw CA dividing the circle into the fegments \(\mathrm{ABC}, \mathrm{ADC}\), and join \(\mathrm{BA}, \mathrm{AD}, \mathrm{DC}\); the angle in the femicircle BAC is a right angle; and the angle in the fegment ABC , which is greater than a femicircle, is lefs than a right angle; and tie ang'e in the fegment \(A D C\), which is lefs than a femicircle, is greater than a right angle.
Join AE , and produce BA to F ; and becaufe BE is equal to \(E A\), the angle \(E A B\) is equal a to \(E B A\); alfo, becaufe \(A E_{5}\) ₹ is equal to EC, the angle EAC is equal to ECA ; wherefore the whole angle \(B A G\) is equal to the two angles \(\mathrm{AlC}, \mathrm{ACB}\) : But FAC, the exterior angle of the triangle ABC , is equal b to the two angles \(\mathrm{ABC}, \mathrm{ACB}\); therefore the angle BAC is equal to the angle FAC, and each of them is therefore a right c angle: Wherefore the angle BAC in a femicircle is a right angle.

And becaufe the two angles \(A B C, B A C\) of the triangle \(A B C\) are together lefs \(d\) than two right angles, and that BACdix. r. is a right angle, \(A B C\) muft be lefs than a right angle ; and therefore the angle in a fegment ABC greater than a femicircle, is lefs than a right angle.

And becaufe \(A B C D\) is a quadrilateral figure in a circle, any two of its oppofite angles are equal e to two right angles; there- e 22. 3. fore the angles \(\mathrm{ABC}, \mathrm{ADC}\) are equal to two right angles; and \(A B C\) is lefs than a right angle ; wherefore the other \(A D C\) is greater than a right angle.

Befides, it is manifeft, that the circumference of the greater fegment \(A B C\) falls without the right angle \(C A B\), but the circumference of the lefs fegment \(A D C\) falls within the right angle CAF. 'And this is all that is meant, when in the
- Grect

Book III. ' Greek text, and the tranflations from it, the angle of the - greater fegment is faid to be greater, and the angle of the lefs - fegment is faid to be lefs, than a right angle.'

Cor. From this it is manifeft, that if one angle of a triangle be equal to the other two, it is a right angle, becaufe the angle adjacent to it is equal to the fame two ; and when the adjacent angles are equal, they are right arigles.

\section*{PROP. XXXII. THEOR.}

FF a ftraight line touches a circle, and from the point of contact a ftraight line be drawn cutting the circle, the angles made by this line with the line tonching the circle, fhall be equal to the angles which are in the alternate fegments of the circle.

Let the ftraight line EF touch the circle \(A B C D\) in \(B\), and from the point \(B\) let the ftraight line \(B D\) be drawn cutting the, circle: The angles which BD makes with the tnuching line EF fhall be equal to the angles in the alternate fegments of the circle: that is, the angle FBD is equal to the angle which is in the fegment DAB , and the angle DBE to the angle in the fegment BCD.
a II.I.
19.3.
c 3 I. 3 .
d 32.1 .

From the point B draw a BA at right angles to EF, and take any point C in the circumference BD , and join \(\mathrm{AD}, \mathrm{DC}, \mathrm{CB}\); and becaufe the fraight line EF touches the circle ABCD in the point \(B\), and \(B A\) is drawn at right angles to the touching line from the point of contact \(B\), the center of the circle is. b in BA ; therefore the angle \(A D B\) in a femicircle is a right cangle, and confequently the other two angles \(B A D\), ABD are equal d to a right angle: But ABF is likewife a right angle; therefore the angle \(A B F\) is equal to the angles \(B A D, A B D\) : Take from
 thefe equals the common angle ABD ; therefore the remaining angle DBF is equal to the angle BAD , which is in the alternate fegment of the circle ; and becaufe ABCD is a quadrilateral figure in a circle, the oppofite angles \(\mathrm{B} A \mathrm{D}, \mathrm{BCD}\) are equal e to two right angles; therefore
the aneles DBF, DBE, being likewife equal ' to two right an- Book rif. gles, are equal to the angles \(\mathrm{BAD}, \mathrm{BCD}\); and DBF has been proved equal to \(B A D\) : Therefore the remaining angle DBEiris. r. is equal to the angle \(B C D\) in the alternate fegment of the circle.
Wherefore, if a ftraight line, \&c. Q. E. D.

\section*{PROP. XXXIII. PROB.}

UPON a given ftraight line to defcribe a ferment of See \(\mathbb{N}\). a circle, containing an angle equal to a given rectilineal angle.

Let \(A B\) be the given ftraight line; and the angle at \(C\) the given rectilineal angle; it is required to defcribe upon the giveen freight line \(A B\) a fegment of a circle, containing an angle equal to the angle C .

Firf, let the angle at C be a right angle, and bifect a AB in F , and from the centre \(F\), at the diftance FB , defcribe the femicircle AHB ; therefore the angle AHB in a femicircle is b equal to the right angre at \(\mathbf{C}\).

But, if the angle \(C\) be not a right angle, at the point \(A\), in the ftraight line \(A B\), make \(c\) the angle \(B A D\) equal to the angle \(\dot{c} 23\). r. C , and from the point A draw d AE at right angles to \(A D\); bifect a \(A B\) in \(F\), and from \(F\) draw \(\mathrm{d} F \mathrm{G}\) at right angles to \(A B\), and join \(G B\) : And because AF is equal to FB , and FG common to the triangles AFG, BFG, the two fides \(\mathrm{AF}, \mathrm{FG}\) are equal to the two BF, FG; and the angle AFG is equal to the angle BFG ; therefore the
 bare AG is equal e to the bare GB ; and the circle defcribede 4. 1 . from the centre \(G\), at the diffance GA, hall pals through the point \(B\); let this be the circle \(A H B\) : And becaufe from the point A the extremity of the diameter \(\mathrm{AE}, \mathrm{AD}\) is drawn at

Book IIf. right angles to AE, therefore AD f touches the circle; and be\(\sim^{\sim}\) caufe AB drawn from the point fCor.16.3. of contact \(A\) cuts the circle, the angle DAB is equal to the angle in the alternate fegment
ธ32. 3. AHB g: But the angle DAB is equal to the angle \(\mathbf{C}\), therefore alfo the angle \(\mathbf{C}\) is equal to the angle in the fegment AHB: Wherefore, upon the given ftraight line \(A B\) the fegment AHB of a circle is defcribed, which contains an angle \(e_{*}\) qual to the given angle at \(\mathbf{C}\). Which was to be done.

> PROP. XXXIV. PROB.

TO cut off a fegment from a given circle which fhall contain an angle equal to a given rectilineal angle.

Let \(A B C\) be the given circle, and \(D\) the given rectilineal angle; it is required to cut off a fegment from the circle \(A B C\) that fhall contain an angle equal to the given angle D .
217.3.

Draw a the ftraight line EF touching the circle \(A B C\) in the point \(B\), and at the point \(B\), in the ftraight line \(B F\)
b 23. . . make \({ }^{\text {b the angle FBC } e-~}\) qual to the angle \(D\) : Therefore, becaufe the ftraight line EF touches the circle \(A B C\), and \(B C\) is drawn from the point of contact B, the angle FBC is equal c to the angle in
 the alternate fegment BAC of the circle: But the angle \(F B C\) is equal to the angle \(\mathrm{D}_{\text {; }}\) therefore the angle in the fegment BAC is equal to the angle \(D\) : Wherefore the fegment BAC is cut off from the given circle \(A B C\) containing an angle equal to the given angle \(D\) : Which was to be done.

PROP:

Book III.

\section*{PROP. XXXV, THEOR.}

菌F two firaight lines within a circle cut one another, \(\sec \mathrm{N}\). the rectangle contained by the fegments of one of them is equal to the rectangle contained by the fegments of the other.

Let the two ftraight lines \(A C, B D\), within the circle \(A B C D\), cut one another in the point \(E\) : the rectangle contained by \(A E\), EC is equal to the rectangle contained by BE, ED.

If AC, BD pafs each of them through the centre, fo that E is the centre; it is evident, that \(\mathrm{AE}, \mathrm{EC}, \mathrm{BE}, \mathrm{ED}\), being all equal, the rectangle AE, EC is likewile
 equal to the rectangle \(\mathrm{BE}, \mathrm{ED}\).

But let one of them BD pafs through the centre, and cut the other AC which does not pafs through the centre, at right angles, in the point E : Then, if BD be bifected in \(\mathrm{F}, \mathrm{F}\) is the centre of the circle \(A B C D\); join AF : And becaufe BD, which paffes through the centre, cuts the ftraight line AC, which does not pafs through the centre, at right angles in \(\mathrm{E}, \mathrm{AE}, \mathrm{EC}\) are equal \({ }^{\text {a }}\) to one another: And becaufe the ftraight line \(B D\) is cut into two equal parts in the point \(F\), and into two unequal in the point \(E\), the rectangle BE , ED together with the fquare of EF, is equal \(b\) to the fquare of FB ; that A is, to the fquare of FA ; but the fquares of \(\mathrm{AE}, \mathrm{EF}\) are equal c to the iquare of FA ; therefore the rectangle BE,
 ED , together with the fquare of EF , is equal to the fquares of \(\mathrm{AE}, \mathrm{EF}\) : Take away the common fquare of EF , and the remaining rectangle \(\mathrm{BE}, \mathrm{ED}\) is equal to the remaining fquare of AE ; that is, to the rectangle \(\mathrm{AE}, \mathrm{EC}\).

Next, Let BD which paffes through the centre, cut the other AC, which does not pafs through the centre, in E, but not at right angles : 'Then, as before, if BD be bifected in F, F is the centre of the circle. Join AF, and from \(F\) draw \(\mathrm{d} F \mathrm{G}\) per-

Bonk IIT.
Cory a 3. 3. b. 5. 2.
c 47. 1:
pendicular to \(A C\); therefore \(A G\) is equal a to \(G C\); wherefore the rectangle \(\mathrm{AE}, \mathrm{EC}\), together with the fquare of EG , is equal b to the fquare of \(A G\) : To each of thefe equais add the fquare of GF ; therefore the rectangle \(\mathrm{AE}, \mathrm{EC}\), together with the fquares of \(\mathrm{EG}, \mathrm{GF}\), is equal to the fquales of AG, GF: But the fquares of \(\mathrm{EG}, \mathrm{GF}\) are equal c to the fquare of EF ; and the fquares of \(A G, G F\) are equal to the fquare of AF : Therefore the rectangle AE, EC, together with the fquare of \(E F\), is equal to the fquare of AF ; that is, to the fquare of \(F B\) : But the
 fquare of \(h B\) is equal \(b\) to the rectangle \(B E, E D\), together with the fquare of EF ; therefore the rectangle AE, EC, together with the fquare of EF , is equal to the rectangle \(\mathrm{BE}, \mathrm{ED}\), together with the fquare of EF : Take away the common fquare of \(E P\), and the remaining rectangle \(A E, E C\) is therefore equal to the emaining rictangle \(\mathrm{BE}, \mathrm{ED}\).
Lafly, Let neither of the ftraight lines AC, BD pafs through the centre: Take the centre F, and through \(E\), the interfection of the ftraight lines \(\mathrm{AC}, \mathrm{DB}\), draw the dameter GEFH: And becaufe the rectangle \(\mathrm{AE}, \mathrm{EC}\) is equal, as has been fhewn, to the rectande GE, EH ; and, for the fame reafon, the rectangle BE , \(E D\) is equal to the fame rectangle \(\mathrm{GE}, \mathrm{EH}\); therefore the rectangle
 \(\mathrm{AE}, \mathrm{EC}\) is equal to the rectangle \(B E, E D\). Wherefore if two ftraght lines, \&c. Q. E. D.

\section*{PROP. XXXVI, THEOR.}

IF from any point without a circle two feraight lines be drawn, one of which cuts the circle, and the other touches it; the rectangle contained by the whole line which cuts the circle, and the part of it without the circle, fhall be equal to the fquare of the line which touch. es it.

Let D be any point without the circle ABC , and \(\mathrm{DCA}, \mathrm{DB}\) two ftraight lines drawn from it, of which DCA cuts the circle,
and DB touches the fame : The rectangle \(\mathrm{AD}, \mathrm{DC}\) is equal to Book IIT. the fquare of DB .

Either DCA paffes through the centre, or it does not; firf, let it pafs through the centre E, and join EB; therefore the angle EBD is a right \({ }^{\text {a }}\) angle: And becaufe the ftraight line AC is bifected in \(E\), and produced to the point \(D\), the rectangle \(A D, D C\), together with the fquare of EC , is equal b to the fquare of \(E D\), and \(C E\) is equal to EB: Therefore the rectangle AD,DC, together with the fquare of EB , is equal to the fquare of ED : But the fquare of \(E D\) is equal c to the fquares of \(E B, B D\), becaufe \(E B D\) is a right augle: Thercfore the rectangle \(A D\), \(D C\), together with the fquare of EB , is equal to the fquares of \(\mathrm{EB}, \mathrm{BD}\) :

Take away the common fquare of EB ; therefore the remaining rectangle \(\mathrm{AD}, \mathrm{DC}\) is equal to the fquare of the tangent DB .

But if DCA does not pafs, through the centre of the circle ABC, take dthe centre E, and draw EF perpendicular eto di. 3. AC, and join EB, EC. ED: And becaufe the ftraight line EF, e I2. To which paffes through the centre, cuts the firaight line AC, which does not pafs through the centre, at right angles, it thall likewife bifect \(£\) it; therefore \(A F\) is equal to FC : And becaufe the ftraight line AC is bifected in F , and produced to D , the rectangle \(\mathrm{AD}, \mathrm{DC}\), together with the fquare of \(F C\), is equal \(b\) to the fquare of \(F D\) : To each of thefe equals add the fquare of FE ; therefore the rectangle \(\mathrm{AD}, \mathrm{DC}\), together with the fquares of \(\mathrm{CF}, \mathrm{FE}\), is equal to the fquares of \(\mathrm{DF}, \mathrm{FE}\); But the fquare of \(E D\) is equal \(c\) to the fquares of \(\mathrm{DF}, \mathrm{FE}\), becaufe ELD is a right angle; and the fquare of EC is cqual to
 the fquares of \(\mathrm{CF}, \mathrm{FE}\); therefore the rectangle \(\mathrm{AD}, \mathrm{DC}\), together with the fquare of EC , is equal to the fquare of ED : And CE is equal to EB ; therefore the rectangle \(\mathrm{AD}, \mathrm{DC}\), together with the fquare of EB , is equal to the fquare of ED :
\[
6 \text { x } \quad \text { 旳 }
\]

Book III. But the fquares of \(\mathrm{EB}, \mathrm{BD}\) are equal to the fquare c of ED , be-
47.1. caufe EBD is a right angle ; therefore the rectangle \(\mathrm{AD}, \mathrm{DC}_{2}\) together with the fquare of EB , is equal to the fquares of EB , \(B D\) : Take away the common fquare of \(E B\); therefore the re maining rectangle \(\mathrm{AD}, \mathrm{DC}\) is equal to the fquare of DB . Wherefore, if from any point, \&cc. Q. E. D.

Cor. If from any point without a circle, there be drawn two ftraight lines cutting it, as \(A B, A C\), the rectangles contained by the whole lines and the parts of them without the circle, are equal to one another, viz. the rectangle \(\mathrm{BA}, \mathrm{AE}\) to the rectangle CA, AF: For each of them is equal to the fquare of the flraight line \(A D\) which touches the circle.

\section*{PROP. XXXVII. THEOR.}

See N.
a19. 3.
b 18.3.
c 36.3.

IF from a point without a circle there be drawn two ftraight lines, one of which cuts the circle, and the other meets it; if the rectangle contained by the whole line which cuts the circle, and the part of it without the circle be equal to the fquare of the line which meets it, the line which meets fhall touch the circle.

Let any point \(D\) be taken without the circle \(A B C\), and from it let two ftraight lines DCA and DB be drawn, of which DCA cuts the circle, and DB meets'it ; if the rectangle \(\mathrm{AD}, \mathrm{DC}\) be equal to the fquare of \(\mathrm{DB} ; \mathrm{DB}\) touches the circle.
Draw a the ftraight line DE touching the circle ABC , find its centre \(F\), and join FE, FB, FD ; then FED is a right \({ }^{b}\) angle: And becaufe DE touches the circle ABC , and DCA cuts it, the rectangle \(A D, D C\) is equal c to the fquare of \(D E\) : But the rectangle \(\mathrm{AD}, \mathrm{DC}\) is, by bypothefis, equal to the fquare of DB : Therefore the fquare of DE is equal to the fquare of DB ; and the Araight line DE equal to the ftraight line DB : And

FE is equal to FB ，wherefore \(\mathrm{DE}, \mathrm{EF}\) are equal to \(\mathrm{DB}, \mathrm{BF}\) ；Bink \(\mathrm{H}^{\text {IIt }}\)
and the bafe FD is common to the two triangles DEF，DBF ；therefore the angle DEF is equal d to the angle DBF ；but DEF is a right angle， therefore alfo DBF is a right angle ： And FB，if produced，is a diameter， and the ftraight line which is drawn at right angles to a diameter，from the extremity of it，touches \({ }^{\mathrm{e}}\) the cir－ cle－Thetefore DB touches the cir－ cle \(A B C\) ．Wherefore，if from a point， \＆c．Q．E．D．

\section*{Book IV.}

THE

\section*{ELEMENTS \\ of}

\section*{E U C L I D.}
\[
\mathrm{B} \quad \mathrm{O} \quad \mathrm{O} \quad \mathrm{~K} \quad \mathrm{IV} .
\]

DEFINITIONS.
I.

See N.

ARECTILINEAL frgure is faid to be infcribed in another rectilineal figure, when all the angles of the infribed figure are upon the fides of the figure in which it is infcribed, each upon each.
II.

In like manner, a figure is faid to be defcribed about another figure, when all the fides of the circumfcribed figure pafs through the an-
 gular points of the figure about which it is defcribed, each through each.

\section*{III.}

A rectilineal figure is faid to be infcribed in a circle, when all the angles of the infrribed figure are upon the circumference of the circle.

\section*{IV.}

A rectilineal figure is faid to be defcribed about a circle, when each fideof the circumfcribed figure touches the circumference of the circle.
V.

In like manner, a circle is faid to be infcribed in a rectilineal figure, when the circumference of the circle :ouches each fide of the figure.

VI.

\section*{VI.}

A circle is faid to be defcribed about à rectilineal figure, when the circumference of the circle paffes through al! the angular points of the figure about which it is deforibed.

\section*{VII.}

A ftraight line is faid to be placed in a cir-
 cle, when the extremities of it are in the circumference of the circle.

\section*{PROP. I. PROB.}

IN a given circle to place a fraight line, equal to a given ftraight line not greater than the diameter of the circle.

Let \(A B C\) be the given circle, and \(D\) the given ftraight line, not greater than the diameter of the circle.

Draw \(B C\) the diameter of the circle \(A B C\); then, if \(B C\) is equal to D , the thing required is done; for in the circle ABC a t itraight line BC is placed equal to \(\mathrm{D}: \mathrm{But}\), if it is not, BC is greater than D ; make CE equal a to D , and from the sentre C , at the diftance CE , defcribe the circle AEF, and join CA: Therefore, becaufe C is the centre of the circle AEF, CA is equal to CE;
 but \(D\) is equal to \(C E\); therefore \(D\) is equal to \(C A\) : Where fore, in the circle \(A B C\), a ftraight bine is placed equal to the given ftraight line \(D\), which is not greater than the diameter of the circle. Which was to be done.
PR O. II. PROB.

I
N a given circle to infcribe a triangle equiàngular to a given triangle.
\[
G_{4} \quad \operatorname{Let}
\]

Book IV. it is required to infcribe in the circle ABC a triangle equiangular to the triangle DEF.
219.3.

Draw a the ftraight line GAH touching the circle in the b 23.1 . point \(A\), and at the point \(A\), in the fraight line \(A H_{;}\)make \(b\) the angle HAC equal to the angle DEF ; and at the point \(A\), in the fraight line AG, make the angle GAB equal to the angle DFE, and join BC : Therefore, becaufe HAG touches the circle \(A B C\), and AC is drawn from the point of contact, the angle HAC is e-

c 32. 3. qual c to the angle
ABC in the alternate fegment of the circle: But HAC is equal to the angle \(D E F\); therefore alfo the angle \(A B C\) is equal to DEF: For the fame reafon, the angle \(A C B\) is equal to the angle
d 32. I. DFE; therefore the remaining angle \(B A C\) is equal do the remaining angle EDF : Wherefore the triangle \(A B C\) is equiangular to the triangle DEF, and it is infcribed in the circle ABC.: Which was to be done.

\section*{PROP. III. PROB.}

ABOUT a given circle to defcribe a triangle equiangular to a given triangle.

Let \(A B C\) be the given circle, and DEF the given triangle; it is required to defcribe a triangle about the circle \(A B C\) equiangular to the triangle DEF.

Produce EF both ways to the points \(G, H\), and find the centre \(K\) of the circle \(A B C\), and from it draw any ftraight line
a 23. 1. \(K B\); at the point \(K\), in the ftraight line \(K B\), make a the angle BKA equal to the angle DEG, and the angle BKC equal to the angle DFH ; and through the points \(\mathrm{A}, \mathrm{B}, \mathrm{C}\), draw the ftraight lines LAM, MBN, NCL, touching \(b\) the circle ABC : Therefore, becaufe LM, MN, NL touch the circle ABC in the points \(A, B, C\), to which from the centre are drawn \(K A, K B\),
c 58.3. KC , the angles at the points \(\mathrm{A}, \mathrm{B}, \mathrm{C}\), are right c angles: And becaufe the four angles of the quadrilateral figure \(A M B K\) are
equal to four right angles, for it can be divided into two triangles : and that two of them KAM, KBM are right angles, the

\section*{BookIV。} other two AKB; AMBare equal to two rightangles: But the angles DEG. DEF are likewife equal \({ }^{\text {t }}\) to two right angles; therefore the angles AKB, AMB areequaltotheangles DEG,DEF,
 of which AKB is equal to DEG; wherefore the remaining angle AMB is equal to the remaining angle DEF: In like manner, the angle LNM may be demonftrated to be equal to DFE; and therefore the remaining angle MLN is equal e to the remaining angle EDF : e 32 z. Wherefore the triangle LMN is equiangular to the triangle DEF: And it is deferibed about the circle ABC. Which was to be done.

PROP. IV. PROB.

TO infcribe a circle in a given triangle.

Let the given triangle be ABC ; it is required to infcribe a circle in ABC.

Bifect a the angles \(\mathrm{ABC}, \mathrm{BCA}\) by the ftraight lines \(\mathrm{BD}, \mathrm{CD}\) a 9 . \(\mathbf{I}\) meeting one another in the point D , from which draw \(\mathrm{D} D \mathrm{D}, \mathrm{b}\) IR. \(\mathrm{r}_{s}\) \(D F, D G\) perpendiculars to \(A B\); BC, CA : And becaufe the angle EBD is equal to the angle FBD, for the angle \(A B C\) is bifected by BD , and that the right angle \(B E D\) is equal to the right angle BFD , the two triangles EBD, FBD have two angles of the one equal to two angles of the other, and the fide BD, which is oppofite to one of the equal angles in each, is common to both; there- \(B\)
 fore their, other fides fhall be \(e\) -

Book IV. qual c; wherefore \(\overline{D E}\) is equal to DF: For the fame reafon, DG is equal to DF ; therefore tine three fraight lines \(\mathrm{DE}, \mathrm{DF}\), \(D G\) are equal to one anoth \(-r\), and the circle defcribed from the centre D , at the diftance of any of them, fhall pafs through the extremities of the other two, and touch the ftraight lines \(A B\), \(B C, C A\), becaufe the angles at the points \(E, F, G\) are right angles, and the ftraight line which is drawn from the extremity
1 16.3. of a diameter at right angles to it, touches d the circle: Therefore the Atraight lines \(\mathrm{AB}, \mathrm{BC}, \mathrm{C} A\) do each of them touch the circle, and the circle EFG is infcribed in the triangle ABC . Which was to be done.

\section*{PROP. V. PROB.}
see N . 1 O defcribe a circle about a given triangle.

Let the given triangle be \(A B C\); it is required to defcribe a circle about ABC.
a ro. r. Bifect a \(\mathrm{AB}, \mathrm{AC}\) in the points \(\mathrm{D}, \mathrm{E}\), and from thefe points biI. x . draw \(D F, E F\) at right angles \({ }^{b}\) to \(A B, A C ; D F, E F\) produced

meet one another; For, if they do not meet, they are parallel, wherefore \(A B, A C\), which are at right angles to th m, are parallel; which is abfurd: Let them meet in F, and join FA; alfo, if the point \(F\) be not in \(B C\), join \(B F, C F\) : Then, becaufe AD is equal to DB , and DF common, and at right angles to
54. 1. \(A B\), the bafe \(A F\) is equalc to the bafe \(F B\) : In like manner, it may be fhown that CF is equal to FA ; and therefore BF is equal to \(F C\); and \(F A, F B, F C\) áre equal to one another; wherefore
wherefore the circle defcribed from the centre \(F\), at the diftance of one of them, fhall pafs through the extremities of the other two, and be defcribed about the triangle ABC. Which was to be done.

Cor. And it is manifeft, that when the centre of the circle falls within the triangle, each of its angles is lefs than a right angle, each of them being in a fegment greater than a femicircle; but, when the centre is in one of the fides of the triangle, the angle oppofite to this fide, being in a femicircle, is a right angle; and, if the centre falls without the triangle, the angle oppofite to the fide beyond which it is, being in a fegment lefs than a femicircle, is greater than a right angle: Wherefore, if the given triangle be acute angled, the centre of the circle falls within it ; if it be a right angled triangle, the centre is in the fide oppofite to the right angle ; and, if it be an obtufe angled triangle, the centre falls without the triangle, beyond the fide oppofite to the obtufe angle.

\section*{PR O P. VI. PROB.}

\section*{1 O infcribe a fquare in a given circle.}

Let \(A B C D\) be the given circle; it is required to infcribe a fquare in ABCD .

Draw the diameters \(\mathrm{AC}, \mathrm{BD}\) at right angles to one another; and join \(\mathrm{AB}, \mathrm{BC}, \mathrm{CD}, \mathrm{DA}\); becaufe BE is equal to ED , for E is the centre, and that EA is common, and at right angles to BD ; the bafe BA is equal a to the bafe AD ; and, for the fame reafon, \(B C, C D\) are each of them equal to BA or \(A D\); thérefore the quadrilateral figure ABCD is equilateral. It is alfo rectangular; for the ftraight line BD , being the diameter of the circle \(\mathrm{ABCD}, \mathrm{BAD}\) is a femicircle; where-
 fore the angle BAD is a right \(b\) angle; for the fame reafon each of the angles \(\mathrm{ABC}, \mathrm{BCD}, \mathrm{CDA}\) is a right angle; therefore the quadrilateral figure \(A B C D\) is rectangular, and it has been thewn to be equilateral ; therefore it is a fquare; and it is infcribed in the circle \(A B C D\). Which was to be done,
PROP。

\author{
PROP. VII. PROB.
}

TO defcribe a fquare about a given circle.

Let \(A B C D\) be the given circle; it is required to defcribe a fquare about it.

Draw two diameters \(\mathrm{AC}, \mathrm{BD}\) of the circle ABCD , at right angles to one another, and through the points \(A, B, C, D\)
b 18. 3. F to the point of contact \(A\), the angles at \(A\) are right \(b\) angles;
a 17.3.
c 28. 1.
(34.1 :
10. 1.
b 31.1.
134.1. draw a \(\mathrm{FG}, \mathrm{GH}, \mathrm{HK}, \mathrm{KF}\) touching the circle; and becaufe FG touches the circle \(A B C D\), and EA is drawn from the centre for the fame reafon, the angles at the points \(B, C, D\) are right angles; and becaufe the angle AEB is a right angle, as likewife is EBG, GH is parallel cto AC ; for the fame reafon, AC is parallel to FK, and in like manner GF, HK may each of them be demonftrated to be parallel to BED; therefore the figures \(G K, G C, A K\), \(\mathrm{FB}, \mathrm{BK}\) are parallelograms; and GF is therefore equal to HK, and GH to FK ; and becaufe AC is equal to
 BD , and that AC is equal to each of the two \(\mathrm{GH}, \mathrm{FK}\); and BD to each of the two GF, HK : GH, FK are each of them equal to GF or HK ; therefore the quadrilateral figure FGHK is es quilateral. It is alfo rectangular; for GBEA being a parallelogram, and AEB a right angle, AGB dis likewife a right angle: In the fame manner, it may be fhown that the angles at \(\mathrm{H}, \mathrm{K}, \mathrm{F}\) are right angles; therefore the quadrilateral figure FGHK is rectangular, and it was demonftrated to be equilateral ; therefore it is a fquare; and it is deferibed about the circle ABCD. Which was to be done.

\section*{PROP. VIII. PROB.}

\section*{T \\ O infcribe a circle in a given fquare.}

Let \(A B C D\) be the given fquare; it is required to infcribe a circle in ABCD .
Bifect a each of the fides \(\mathrm{AB}, \mathrm{AD}\), in the points \(\mathrm{F}, \mathrm{E}\), and through \(E\) draw \(b\) EH parallel to \(A B\) or \(D C\), and through \(F\)
draw FK parallel to AD or BC ; therefore each of the figures AK , Bock IV, \(\mathrm{KB}, \mathrm{AH}, \mathrm{HD}, \mathrm{AG}, \mathrm{GC}, \mathrm{BG}, \mathrm{GD}\) is a parallelogram, and their crus oppofite fides are equal c ; and becaufe AD is equal to AB , and c 34 . I . that \(A E\) is the half of \(A D\), and \(A F\) the half of \(A B, A E\) is equal to \(A F\); wherefore the fides oppofite to thefe are equal, viz. FG to GE; in the fame manner, it may be cemonftrated that \(\mathrm{GH}, \mathrm{GK}\) are each of them equal to \(F G\) or \(G E\); therefore the four ftraight lines GE, GF, GH, GK, H are equal to one another ; and the circle defcribed from the centre \(\mathbf{G}\), at the diftance of one of them, fhall pafs thro' the extremities of the ot er three, and touch the ftraight lines \(\mathrm{AB}, \mathrm{BC}, \mathrm{CD}\),
 DA; becaufe the angles at the points \(\mathrm{E}, \mathrm{F}, \mathrm{H}, \mathrm{K}\) are right dd \(29 . \mathrm{x}_{0}\) angles, and that the fraight line which is drawn from the extremity of a diameter, at right angles to it, touches the circle e ; e I6. 3. therefore each of the ftraight lines \(\mathrm{AB}, \mathrm{BC}, \mathrm{CD}, \mathrm{DA}\) touches the circle, whick therefore is infcribed in the fquare \(A B C D\), Which was to be done.

\section*{PR O P. IX. PROB.}

\section*{O defcribe a circle about a given fquare,}

Let ABCD be the given fquare; it is required to defcribe a circle about it.

Join \(A C, B D\) cutting one another in \(E\); and becaufe DA is equal to \(A B\), and \(A C\) common to the triangles \(D A C, B A G\), the two fides DA, AC are equal to the two \(\mathrm{BA}, \mathrm{AC}\), and the bafe DC is equal to the bafe BC ; wherefore the angle \(D A C\) is equal a to the angle BAC, and the angle DAB is bifected by the ftraight line \(A C\) : In the fame manner, it may be demonftrated that the angles \(\mathrm{ABC}, \mathrm{BCD}\), CDA are feverally bifected by the ftraight
 lines BD, AC ; therefore, becaufe the angle \(D A B\) is equal to the angle \(A B C\), and that the angle EAB is the half of DAB , and EBA the half of \(A B C\); the angle EAB is equal to the angle EBA; wherefore the fide EA is equal b to the fide EB : In the fame manner, it may be \(b 6\). 取 demonflrated

Book IV.
lyy
demonftrated that the ftraight lines EC, ED are each of them equal to EA or EB ; therefore the four ftraight lines EA, EB, EC, ED are equal to one another ; and the circle defcribed from the centre \(E\), at the diftance of one of them, fhall pafs through the extremities of the other three, and be defcribed about the fquare \(A B C D\). Which was to be done.

\section*{PROP. X. PROB.}

TO defcribe an ifofceles triangle, having each of the angles at the bafe double of the third angle.
aII. 2.
bI.
\(55 \cdot 4\)
d 37.3.
\& 32. 3.
\& 32. 7.

Take any fraight line AB , and divide \({ }^{\text {a }}\) it in the point C , fo that the rectangle \(\mathrm{AB}, \mathrm{BC}\) be equal to the fquare of CA ; and from the centre \(A\), at the diftance \(A B\), defcribe the circle \(B D E\),
5. greater than the diameter of the circle BDE ; join \(\mathrm{DA}, \mathrm{DC}\), in which place \({ }^{b}\) the ftraight line BD equal to AC , which is not and about the triangle \(A D C\) defcribe cthe circle \(A C D\); the triangle \(A B D\) is fuch as is required, that is, each of the angles \(A B D, A D B\) is d:uble of the angle \(B A D\).

Becaufe the rectangle \(A B, B C\) is equal to the fquare of \(A C\), and that \(A C\) is equal to \(B D\), the rectangle \(A B, B C\) is equal to the fquare of BD ; and becaufe from the point \(B\) without the circle ACD two ftraight lines BCA, BD are drawn to the circumference, one of which cuts, and the other meets the circle, and that the rectangle \(\mathrm{AB}, \mathrm{BC}\) contained by the whole of the cutting line, and the part of it without the circle, is equal to the fquare of \(B D\) which meets it; the ftraight line \(B D\) touches \({ }^{d}\) the circle ACD ; and becaufe BD touches the circle, and DC
 is drawn from the point of contact D , the angle BDC is equal \(e\) to the angle DAC in the alternate fegment of the circle; to each of thefe add the angle CDA; therefore the whole angle BDA is equal to the two angles CDA, DAC ; but the exterior angle BCD is equal f to the angles \(C D A, D A G\); therefore alfo \(B D A\) is equal to \(B C D\);
but BDA is equal g to the angle CBD , becaufe the fide AD Book IV. is equal to the fide AB ; therefore CBD , or DBA is equal to BCD ; and confequently the three angles \(\mathrm{BDA}, \mathrm{DBA}, \mathrm{BCD}, \mathrm{g} 5 \cdot \mathbf{I}\) are equal to one another; and becaufe the angle DBC is equal to the angle \(B C D\), the fide \(B D\) is equal \({ }^{\text {h }}\) to the fide \(D C\); but \(h 6\). \(x_{0}\) \(B D\) was made equal to \(C A\); therefore allo \(C A\) is equal to \(C D\), and the angle CDA equalg to the angle DAC; therefore the angles CDA, DAC together, are double of the angle DAC: Bat BC) is equal to the angles CDA, DAC; therefore alfo \(B C D\) is double of \(D A C\), and \(B C D\) is equal to each of the angles BDA, DBA ; each therefore of the angles BDA, DBA is double of the ingle DAB; wherefore an ifofceles triangle ABD is defcribed, having each of the angles at the bafe double of the third angle. Which was to be done.
PROP. XI. PROB.

TO infcribe an equilateral and equiangular pentagon in a given circle.

Let \(A B C D E\) be the given circle; it is required to infcribe an equilateral and equiangular pentagon in the circle \(A B C D E\).

Defcribe a an ifofceles triangle FGH, having each of the an- \({ }^{\text {a 10. 4. }}\) gles at \(G, H\), double of the angle at \(F\); and in the circle \(A B C D E\) infcribe b the triangle \(A C D\) equiangular to the trian- b 2.4 . gle FGH, fo that the angle CAD be equal to the angle at \(F\), and each of the angles \(\mathrm{ACD}, \mathrm{CDA}\) equal to the angle at G or H ; wherefore each of the angles ACD, CDA is double of the angle CAD. Bifect cthe angles ACD, CD A by the ft raight lines \(\mathrm{CE}, \mathrm{DB}\); and join A. B , BC, DE, EA. ABCDE

c9. 8 is the pentagon required.

Becaufe each of the angles ACD, CDA is double of CAD, and are bifected by the ftraight lines \(\mathrm{CE}, \mathrm{DB}\), the five angles \(\mathrm{DAC}, \mathrm{ACE}, \mathrm{ECD}, \mathrm{CDB}, \mathrm{BDA}\) are equal to one another ; but "equal angles fand upon equal d circumferences; therefore \({ }^{\mathrm{d}} \mathrm{D}^{66}\). 3 ? the five circumferences \(A B, B C, C D, D E, E A\) are equal to one another:

BookiV. another: And equal circumferences are fubtended by equal e ftraight lines; therefore the five ftraight lines \(\mathrm{AB}, \mathrm{BC}, \mathrm{CD}_{\text {, }}\) \(\mathrm{DE}, \mathrm{EA}\) are equal to one another. Wherefore the pentagon ABCDE is equilateral. It is alfo equiangular; becaufe the circumference \(A B\) is equal to the circumference \(D E:\) If to each be added BCD , the whole ABCD is equal to the whole EDCB : And the angle AED ftands on the circumference \(A B C D\), and the angle BAE on the circumfcrence EDCB ; therefore the
§2\%.3. angle DAE is equal \(f\) to the angle \(A E D\) : For the fame reafon, each of the angles \(A B C, B C D, C D E\) is equal to the angle \(B A E\), or \(A E D\) : Therefore the pentagon \(A B C D E\) is equiangular; and it has been fhown that it is eqsilateral. Wherefore, in the given circle, an equilateral and equiangular pentay gon has been infcribed. Which was to be done.

\section*{PROP. XII, PROB.}

TO defcribe an equilateral and equiangular pentagon about a given circle.

Let \(A B C D E\) be the given circle; it is required to defcribe an equilateral and equiangular pentagon about the circle ABCDE.

Let the angles of a pentagon, infcribed in the circle, by the laft propofition, be in the points \(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}\), fo that the circumferences \(\mathrm{AB}, \mathrm{BC}, \mathrm{CD}, \mathrm{DE}, \mathrm{EA}\) are equal a; and thro \({ }^{2}\) the points A, B, C, D, E draw GH, HK, KL, LM, MG, touching b the circle; take the centre F, and join FB, FK, FC, FL, FD: And becaufe the ftraight line KL touches the circle ABCDE in the point C , to which FC is drawn from the centre \(\mathrm{F}, \mathrm{FC}\) is perpendicular c to KL ; therefors each of the angles at C is a right angle: For the fame reafon, the angles at the points \(\mathrm{B}, \mathrm{D}\) are right angles: And becaufe FCK is a right
d.47. 1. angle, the fquare of FK is equal d to the fquares of \(\mathrm{FC}, \mathrm{CK}\) : For the fame reafon, the fquare of FK is equal to the fquares of FB , BK: Therefore the fquares of FC , CK are equal to the fquares of \(\mathrm{FB}, \mathrm{BK}\), of which the fquare of FC is equal to the fquare of FB ; the remaining fquare of CK is therefore equal to the
the remaining fquare of \(B K\), and the ftraight line CK equal to BK : And because FB is equal to FC, and FK common to the

\section*{Bank IV.} triangles \(\mathrm{BFK}, \mathrm{CFK}\), the two \(\mathrm{BF}, \mathrm{FK}\) are equal to the two CF , FK ; and the bale BK is equal to the bale KC ; therefore the angle BFK is equal e to the angle KFC. and the angle BKF to es. r. FKC ; wherefore the angle BFC is double of the angle KFC , and BKC double of FKC: For the fame eafon, the angl CFD is double of the angle CFL. and CLD double of CLF : And because the circumference \(B C\) is equal to the circumference \(C D\), the angle \(B F C\) is equal \(f\) to the angle CFD; and BFC is douole of the angle \(K F G\), and CFD double of CFL ; therefore the angle KFC is equal to the angle CFL; and the right angle FCK is equal to the right angle FCL: Therefore, in the two triangles FK C, FLC, there are two angles of one equal to two angles of the other, each to each, and the fide FC, which
 is adjacent to the equal angles in each, is common to both; therefore the other fides foal be equal g to the other fides, and \(\mathrm{g} 26 . \dot{x}_{0}\) the third angle to the third angle: Therefore the ftraight line KC is equal to CL , and the angle FKC to the angle FLC: And becaufe KC is equal to \(\mathrm{CL}, \mathrm{KL}\) is double of KC : In the fame manner, it may be flown that HK is double of BK : And becaufe BK is equal to KC, as was demonftated, and that KL is double of KC , and HK double of \(\mathrm{BK}, \mathrm{HK}\) hall be equal to KL : In like manner, it may be flown that GH, GM, ML are each of them equal to HK or KL : Therefore the pentagon GHKLM is equilateral. It is alpo equiangular; for, fence the angle \(F K C\) is equal to the angle \(F L C\), and that the angle \(H K L\) is double of the angle FKC, and KLM double of FLC, as was before demonfrated, the angle HKL is equal to KLM : And in like manner it may be flown, that each of the angles KHG , HGM, GML is equal to the angle HKL or KLM : Therefore the five angles GHK, HKL, KLM, LMG, MGH being equal to one another, the pentagon GHKLM is equiangular : And it is equilateral, as was demonftrated; and it is defcribed about the circle ABCDE . Which was to bu ne.

\section*{THEELEMENTS}

\author{
PROP. XIII. PROB.
}

\(\mathrm{T}^{\circ}\)O infcribe a circle in a given equilateral and equiangular pentagon.

Let ABCDE be the given equilateral and equiangular pentagon; it is required to infcribe a circle in the pentagon \(A B C D E\).
a 9.1 . to one of the equal angles in each, is commonto both; therefore the other fides thall be equal d, each to each; wherefore the perpendicular FH is equal to the perpendicular FK : In the fame manner it may be demonftrated that FL, FM, FG are each of them equal to FH or FK : Therefore the five fraight lines FG, FH, FK, FL, FiM are equal to one another : Wherefore the circle defcribed from the centre \(F\), at the diftance of one of thefe five, fhall pals through the extremities of the other four, and
touch the ftraight lines \(\mathrm{AB}, \mathrm{BC}, \mathrm{CD}, \mathrm{DE}, \mathrm{EA}\), becaufe the Book IV. angles at the points \(\mathrm{G}, \mathrm{H}, \mathrm{K}, \mathrm{L}, \mathrm{M}\) are right angles; and that r as a freight line drawn from the extremity of the diameter of a circle at right angles to it, touches e the circle: Therefore each e 16.3 b of the ftraight lines \(\mathrm{AB}, \mathrm{BC}, \mathrm{CD}, \mathrm{DE}, \mathrm{EA}\) touches the circle; wherefore it is inferibed in the pentagon ABCDE . Which was to be done:

\section*{PROP. XIV: PROB.}

10O defcribe a circle about a given equilateral and equiangular pentagon:

Let ABCDE be the given equilateral and equiangular pentagon; it is required to defcribe a circle about it.

Bifect a the angles BCD, CDE by the ftraight lines CF, FD; a 9 . do and from the point \(F\), in which they meet, draw the ftraight lines \(\mathrm{FB}, \mathrm{FA}, \mathrm{FE}\) to the points B , A, E. It may be demonftrated, in the fame manner as in the preceding propofition, that the angles CBA, BAE, AED are bifected by the fraight lines FB, FA, FE: And because the angle BCD is equal to the angle CDE, and that FCD is the half of the angle BCD, and CDF the half of CDE ; the angle FCD is
 equal to FDC ; wherefore the fine CF is equal b to the fide FD: In like manner it may be demonfiltrated that FB, FA, FE are each of them equal to FC or FD: b. 6. Therefore the five ftraight lines FA, FB, FC, FD, FE are equal to one another ; and the circle defcribed from the centre F , at the diftance of one of them, fall pals through the extremites of the other four, and be defcribed about the equilateral and equiangular pentagon ABCDE . Which was to be done 。

Book V.

PROP. XV. PROB.

Sce \(N\).

TO infcribe an equilateral and equiangular hexagon in a given circle.

Let ABCDEF be the given circle; it is required to infcribe an equilateral and equiangular hexagon in it.

Find the centre \(G\) of the circle ABCDEF, and draw the diameter AGD; and from D as a centre, at the diftance DG , defrribe the circle EGCH, join EG, CG, and produce them to the points \(\mathrm{B}, \mathrm{F}\); and join \(\mathrm{AB}, \mathrm{BC}, \mathrm{CD}, \mathrm{DE}, \mathrm{EF}, \mathrm{FA}\) : The hexagon ABCDEF is equilateral and equiangular.

Becaufe \(G\) is the centre of the circle ABCDEF, GE is equal to GD : And becaufe D is the centre of the circle EGCH, DE is equal to DG ; wherefore \(G E\) is equal to \(E D\), and the triangle EGD is equilateral; and therefore its three angles EGD, GDE, DEG are equal to one another, becaufe the angles at
a 5 . 1 .
b 32: 1 .
cI3. 1.
d 15.
e26.3.
f 29.3 .
- 15.
 the bafe of an ifofceles triangle are equal \({ }^{2}\); and the three angles of a triangle are equal \(b\) to two right angles; therefore the angle EGD is the third part of two right angles: In the fame manner it may be demonftrated that the angle DGC is alfo the third part of two right angles : And becaufe the ftraight line GC makes with EB the adjacent angles EGG , CGi? equal c to two right angles; the remaining angle CGB is the third part of two right angles; therefore the angles EGD, DGC, CGB, are equal to one another : And to thefe are equal \(d\) the vertical oppofite angles \(\mathrm{BGA}, \mathrm{AGF}\), FGE: Therefore the fix angles EGD, DGG, CGB, BGA, AGF, FGE are equal to one another: But equal angles ftand upon equal e circumfe-
 rences; therefore the fix circumferences \(\mathrm{AB}, \mathrm{BC}, \mathrm{CD}, \mathrm{DE}, \mathrm{EF}, \mathrm{FA}\) are equal to one another; And equal circumferences are fubtended by equal fftraight lines; therefore the fix ftraight lines are equal to one another, and the hexagon \(A B C D E F\) is equilateral. It is alfo equiangular; for, fince the circumference AF is equal to ED, to each of thefe add the circumference \(A B C D\); therefore the whole circumference FABCD. thall be equal to the whole EDCBA :

And the angle FFD ftands upon the circumference FABCD, and the angle AFE upon EDCBA ; therefore the angle AEE

\section*{Bokiv.}
cored is equal to FED : In the fame manner it may be demonftrated that the other angles of the hexamon ABCDEF are each of them equal to the angle ANE or IED : Therefore the hexagon is equiangular ; and it is equilateral, as was fhown; and it is inferibed in the givencircle ABCDEF . Which was to be done.

Cor. From this it is manifeft, that the fide of the hexagon is equai to the ftraight line from the centre, that is, to the femidiameter of the circle.

And if through the points A, B, C, D, E, F there be drawn ftraight lines touching the circle, an equilateral and equiangular hexagon fhall be defcribed about it, which may be demonftrated from what has been faid of the pentagon ; and likewife a circle may be inferifed in a given equilateral and equiangular hexagon, and circamfcribed about it, by a method like to that ufed for the pentagon.

\section*{PROP. XVI. PROB.}

TO infcribe an equilateral and equiangular quinde- See \(\mathrm{N}_{0}\)
cagon in a given circle. cagon in a given circle.

Let \(A B C D\) be the given circle; it is required to infrribe an equilateral and equiangular quindecagon in the circle \(A B C D\).

Let \(A C\) be the fide of an equilateral triangle infcribed a in a 2.4. the circle, and \(A B\) the fide of an equilateral and equiangular pentagon infcribed \(b\) in the fame; therefore, of fuch equal parts \(b\) ir. 40 as the whole circumference \(A B C D F\) contains fifteen, the circumference \(A B C\), being the third part of the whole, contains five; and the circumference \(A B\), which is the fifth part of the whole, contains three ; therefore BC their difference containes two of the fame parts: Bifect c BG in E; therefore BE, EC are, each of them, the fifteenth part of the whole circumference ABCD : Therefore, if the ftraight lines BE,
 EC be drawn, and ftraight lines equal to them be placed ddy. 40 around in the whole circle, an equilateral and equiangular quindecagon Shall be inferibed in it. Which was to be done.
\[
H_{3}
\]

And

Book iv. And, in the fame manner as was done in the pentagon, if, wren through the points of divifion made by inferibing the quindecagon, ftraight lines be drawn touching the circle, an equilateral and equiangular quindecagon fhall be defcribed about it : And likewife, as in the pentagon, a circle may be infcribed in a given equilateral and equiangular quindecagon, and circumferibed about it.

OF
E U C L I D.
B O O K V.
DEFINITIONS.
I.

ALESS magnitude is faid to be a part of a greater magnitude, when the lefs meafures the greater, that is, ' when the lefs is contained a certain number of times exactly ' in the greater.'
II.

A greater magnitude is faid to be a multiple of a lefs, when the greater is meafured by the lefs, that is, ' when the greater ' contains the lefs a certain number of times exactly.' III.
- Ratio is a mutual relation of two magnitudes of the fame See No. ' kind to one another, in refpect of quantity.'

> IV.

Magnitudes are faid to have a ratio to one another, when the lefs can be multiplied fo as to exceed the other.
V.

The firft of four magnitudes is faid to have the fame ratio to the the fecond, which the third has to the fourth, when any equimultiples whatfoever of the firft and third being taken, and any equimultiples whatfoever of the fecond and fourth; if the multiple of the firft be lefs than that of the fecond, the multiple of the third is alfo lefs than that of the fourth; or, if the multiple of the firft be equal to that of the fecond, the multiple of the third is alfo equal to that of the fourth;
\[
\mathrm{H}_{4}
\]

Book V. or, it the ...-rtinle of the firft be greater than that of the fe cond, the multiple or tue usias is alfo greater than that of the fourth.

\section*{VI.}

Magnitudes which have the fame ratio are called pronortionals. N.B. 'When four magnitudes are proportionals, it is ' ufually expreffed by faying, the firft is to the fecond, as the ' third to the fourth.'

> VII.

When of the equimultiples of four magnitudes (taken as in the fifth definition) the multiple of the firft is greater than that of the fecond, but the nultiple of the third is not greater than the mult:ple of the fourth; then the finft is faid to have to the fecond a greater ratio than the third magnitude has to the fourth; and, on the contrary, the third is faid to have to the fourth a lefs ratio than the firft has to the fecond.

\section*{VIII.}
"Analogy, or proportion, is the fimilitude of ratios." IX.

Proportion confifts in three terms at leaf.
X.

See N. When three magnitudes are proportionals, the firft is faid to have to the third the duplicate ratio of that which it has to the fecond.

> XI.

When four magnitudes are continual proportionals, the firf is. faid to have to the fourth the triplicate ratio of that which it has to the fecond, and io on, quadruplicate, \&c. increafing the denomination ftill by unity, in any number of propor. tionals.

Definition A, to wit, of compound ratio.
When there are any number of magnitudes of the fame kind, the firft is faid to have to the laft of them the ratio compounded of the ratio which the firft has to the fecond, and of the ratio which the fecond has to the third, and of the ratio which the third has to the fourth, and fo on unto the laft magnitude.
For example, if \(A, B, C, D\) be four magnitudes of the fame kind, the firft \(A\) is faid to have to the laft \(D\) the ratio compounded of the ratio of \(A\) to \(B\), and of the ratio of \(B\) to \(C\), and of the ratio of \(C\) to \(D\); or, the ratio of \(A\) to \(D\) is faid to be compounded of the ratios of \(A\) to \(B, B\) to \(C\), and \(C\) to \(D\) :

And if \(A\) has to \(B\) the fame ratio which \(E\) has to \(F\); and \(B\) to C , the fame ratio that G has io H ; and C to D , the fame

Book V . that K has to L ; then, by tuis definition, A is faid to have to D the ratio componnded of ratios which are the fame with the ratios of E to \(\mathrm{F}, \mathrm{G}\) to H , and K to L : and the fame thing is to be underftood when it is mure briefly expreffed, by faying \(A\) has to \(D\) the ratio compounded of the ratios of \(E\) to \(F, G\) to \(H\), and \(K\) to \(L\).
In like manner, the fame things being fuppofed, if M has to N the fame ratio which A has to D ; thet, for thortnefs fake, \(M\) is faid to have to \(N\), the ratio compounded of the ratios of \(E\) to \(F, G\) to \(H\), and \(K\) to \(L\).

\section*{XII.}

In proportionals, the antecedent terms are called homologous to one another, as alfo the confequents to one another.
- Geometers make ufe of the following technical words to fig-- nify certain ways of changing either the order or magni' tude of proportionals, fo as that they continue ftill to be ' proportionals.'

\section*{XIII.}

Permutando, or alternando, by permutation, or alternately ; this word is ufed when there are four pioportionals, and it Sce \(\mathbb{N}_{0}\) is inferred, that the firft has the fame ratio to the thord, which the fecond has to the fuurth; or that the firft is to the third, as the fecond to the fourth: As is fhewn in the 16th prop. of this 5 th book.
XIV.

Invertendo, by inverfion: When there are four proportionals, and it is inferred, that the fecond is to the firft, as the fourth to the third. Prop. B. book 5 .
\[
X V .
\]

Componendo, by compofition ; when there are four proportionals, and it is inferred, that the firft, together with the fecond, is to the fecond, as the third, together with the fourth, is to the fourth. 18th prop. book \(5^{-}\)
XVI.

Dividendo, by divifion; when there are four proportionals, and it is inferred, that the excefs of the filft above the fecond, is to the fecond, as the excefs of the third above the fourth, is to the fourth. \({ }^{1} 7\) th prop. book 5 .
XVII.

Convertendo, by converfion; when there are four proportionals, and it is inferred, that the firft is to its excefs above the

Book V. fecond, as the third to its excefs above the fourth. Prop. E. bock 5 .

\section*{XVIII.}

Ex æquali (fc. diftantia), or ex æquo, from equality of diftance; when there is any number of magnitudes more than two, and as many others, fo that they are proportionals when taken two and two of each rank, and it is inferred, that the firft is to the laft of the firft rank of magnitudes, as the firft is to the laft of the others: ' Of this there are the two fol-- lowing kinds, which arife from the different order in which ' the magnitudes are taken two and two.'
XIX.

Ex æquali, from equality; this term is ufed fimply by itfelf, when the firlt magnitude is to the fecond of the firft rank, as the firft to the fecond of the other rank; and as the fecond is to the third of the firft rank, fo is the fecond to the third of the other; and fo on in order, and the inference is as mentioned in the peceding definition ; whence this is called ordinate proportion. It is demonftrated in 22 d prop. book 5 . XX.

Ex æquali, in proportione perturbata, feu inordinata, from equality, in perturbate or diforderly proportion*; this term is ufed when the firft magnitude is to the fecond of the firft raik, as the laft but one is to the laft of the fecond rank; and as the fecond is to the third of the firft rank, fo is the laft but two to the laft but one of the fecond rank; and as the third is to the fourth of the firft rank, fo is the third from the laft to the laft but two of the fecond rank; and fo on in a crofs order : And the inference is as in the 18 th definition. It is demonftrated in the 23 d prop. of book 5 .

\section*{AXIOMS.}

\section*{I.}

EQuimultiples of the fame, or of equal magnitudes, are equal to one another.
II. Thofe
\(\because 4\) Prop. lib. 2. Archimedis de fphara et cylindro.
II.

Thofe magnitudes of which the fame, or equal magnitudes, are equimultiples, are equal to one another. III.

A multiple of a greater magnitude is greater than the fame multiple of a lefs.

> IV:

That magnitude of which a multiple is greater than the fame multiple of another, is greater than that other magnitude.

\section*{PROP. I. THEOR.}

E\(F\) any number of magnitudes be equimultiples of as many, each of each; what multiple foever any one of them is of its part, the fame multiple fhall all the firft magnitudes be of all the other.

Let any number of magnitudes \(\mathrm{AB}, \mathrm{CD}\) be equimultiples of as many others \(E, F\), each of each; whatfoever multiple \(A B\) is of \(E\), the fame multiple fhall \(A B\) and \(C D\) together be of \(E\) and F together.

Becaufe \(A B\) is the fame multiple of \(E\) that \(C D\) is of \(F\), as many magnitudes as are in \(A B\) equal to \(E\), fo many are there in \(C D\) equal to \(F\). Divide \(A B\) into magnitudes equal to \(E\), viz. \(A G, G B\); and \(C D\) into \(\mathrm{CH}, \mathrm{HD}\) equal each of them to F : The number therefore of the magnitudes \(\mathrm{CH}, \mathrm{HD}\) fhall be equal to the number of the others AG, GB: And becaufe AG is equal to E , and CH to \(F\), therefore \(A G\) and \(C H\) together are equal
 to a E and F together: For the fame reafon, becaufe GB is equal to E , and HD to F ; GB and \(H D\) together are equal to \(E\) and \(F\) together. Wherefore, as many magnitudes as are in \(A B\) equal to \(E\), fo many are there in \(A B, C D\) together equal to \(E\) and \(F\) together. Therefore, whatfoever multiple \(A B\) is of \(E\), the fame multiple is \(A B\) and \(C D\) together of \(E\) and \(F\)

a Ax. 2. 50 together.

Therefore, if any magnitudes, how many foever, be equimultiples of as many, each of each, whatfoever multiple any one of them is of its part, the fame multiple fhall all the firft magnitudes be of all the other: 'For the fame demonftration

Book V. ' holds in any number of magnitudes, which was here applied ' to two.' Q. E. D.

\author{
PROP, II. THEOR.
}

IF the firft magnitude be the fame multiple of the fe. cond that the third is of the fourth, and the fifth the fame multiple of the fecond that the fixth is of the fourth; then fhall the firft together with the fifth be the fame multiple of the fecond, that the third together with the fixth is of the fourth.

Let \(A B\) the firft, be the fame multiple of \(C\) the fecond, that DE the third is of F the fourth; and BG the fifth, the fame
multiple of C the fecoud, that EH the fixth is of \(F\) the fourth: Then is \(A G\) the firt, together with the fifth, the fame multiple of C the fecond, that DH the third, together with the fixth, is of \(F\) the fourth.

Becaufe AB is the fame multiple of C , that DE is of F ; there are as many magnitudes in AB equal to C , as there are in DE equal to F : In like
 manner, as many as there are in BG equal to \(\mathbf{C}\), fo many are there in EH equal to F: As many, then, as are in the whole \(A G\) equal to C , fo many are there in the whole DH equal to F : therefore AG is the fame multiple of C , that DH is of F ; that is, AG the firft and fifth together, is the fame multiple of the fecond \(\mathbf{C}\), that DH the third and fixth together is of the fourth F . If therefore, the firft be the fame multiple, \&c. Q.E.D.

Cor. ' From this it is plain, that, if any 6 number of magnitudes AB. BG, GH,
- be multiples of another \(\mathbf{C}\); and as many

4 DE, EK, KL be the fame multiples of
- F, each of each; the whole of the firft,

6 viz. AH, is the fame multiple of C ,
\({ }^{6}\) that the whole of the laft, viz. DL; is
of F.?

PROP.

\section*{PROP. III. THEOR.}

F the firft be the fame multiple of the fecond, which the third is of the fourth; and if of the firf and third there be taken equimultiples, thefe fhall be equimultiples, the one of the fecond, and the other of the fourth.

Let A the firf, be the fame multiple of B the fecond, that C the third is of \(\mathbf{D}\) the fourth; and of \(\mathrm{A}, \mathrm{C}\) let the equimultiples \(\mathrm{EF}, \mathrm{GH}\) be taken : Then EF is the fame multiple of B , that GHi is of D.

Becaufe EF is the fame multiple of A , that GH is of C , there are as many magnitudes in EF equal to A , as are in GE equal to \(\mathrm{C}:\) Let EF be divided into the magnitudes EK, KF, each equal to A, and GH into GL, LH, each equal to \(C\) : The number therefore of the magnitudes EK, KF, fhall be equal to the number of the others GL, LH : And becaufe A is the fame multiple of \(B\), that \(C\) is of \(D\), and that EK is equal to \(A\), and GL to C ; therefore EK is the fame multiple
 of B , that GL is of D : For the fame reafon, KF is the fame multiple of B , that LH is of \(D\); and fo, if there be more p"rts in EF, GFI equal to A.C : Becaufe, therefore, the firft EK is the fame multiple of the fecond B , which the third GL is of the fourth D , and that the fifth KF is the fame multiple of the fecond B , which the fixth LH is of the fourth D; EF the firft, together with the fifth, is \({ }_{22} .50\) the fame multiple a of the fecond B , which GH the third, together with the fixth, is of the fourth D. If, therefore, the firft, \&c. Q. E. D.

\author{
PROP。
}

\section*{Book V.}

\section*{PROP. IV. THEOR.}

Sce \(N\).

I\(F\) the firft of four magnitudes has the fame ratio to the fecond which the third has to the fourth; then any equimultiples whatever of the firft and third fhall. have the fame ratio to any equimultiples of the fecond and fourth, viz. ' the equimultiple of the firft flall have ' the fame ratio to that of the fecond, which the equi' multiple of the third has to that of the fourth.'

Let \(A\) the firf, have to \(B\) the fecond, the fame ratio which the third C has to the fourth D ; and of \(A\) and C let there be taken any equimultiples whatever \(\mathrm{E}, \mathrm{F}\); and of B and D any equimultiples whatever \(\mathrm{G}, \mathrm{H}\) : Then E has the fame ratio to \(G\), which F has to H .

Take of \(E\) and \(F\) any equimultiples whatever \(K\), \(L\), and of \(G\), H , any equimultiples whatever M , N : Then, becaufe E is the fame multiple of \(A\), that \(F\) is of \(C\); and of E and F have been taken equimultiples \(\mathrm{K}, \mathrm{L}\); therefore K is the fame multiple of \(A\), that \(L\)
\({ }^{2}\) 3. 5. is of \(\mathrm{G}^{2}:\) For the fame reafon, M is the fame multiple of B , that N is of D : And becauife, as A is to \(b\) Hypoth. B, fo is \(C\) to \(D\) b, and of \(A\) and C have been taken certain equimultiples \(\mathrm{K}, \mathrm{L}\); and of B and D have been taken certain equimultiples \(\mathrm{M}, \mathrm{N}\); if therefore K be greater than \(M, L\) is greater than N : and if equal, equal ; if lefs,
a 5 : def. s . lefs c . And \(\mathrm{K}, \mathrm{L}\) are any equimultiples whatever of \(\mathrm{E}, \mathrm{F}\); and \(\mathrm{M}, \mathrm{N}\) any whatever of \(\mathrm{G}, \mathrm{H}\) : As therefore \(E\) is to \(G\), fo is \(c F\) to H. Therefore, if the firf, \&c. Q.E.D.

See \(\mathbb{N}\).
Cor. Likewife, if the firft has the fame ratio to the fecond, which the third has to the fourth, then alfo any equimultiptes whatever
whatèver of the firft and third have the fame ratio to the fe-Borv \(V\). cond and fourth: And in like manner, the firft and the third have the fame ratio to any equimultiples whatever of the fecond and fourth.

Let \(A\) the firf, have to \(B\) the fecond, the fame ratio which the third \(C\) has to the fourth \(D\), and of \(A\) and \(C\) let \(E\) and \(F\) be any equimultiples whatever; then \(E\) is to \(B\), as \(F\) to \(D\).

Take of \(\mathrm{E}, \mathrm{F}\) any equimultiples whatever \(\mathrm{K}, \mathrm{L}\), and of B , D any equimultiples whatever \(\mathrm{G}, \mathrm{H}\); then it may be demonftrated, as before, that K is the fame multiple of A , that L is of C : And becaufe A is to B , as C is to D , and of A and C certain equimultiples have been taken, viz. K and \(\mathrm{I}_{\mathrm{L}}\); and of \(B\) and \(D\) certain equimultiples \(G, H\); therefore, if \(K\) be greater than \(G, L\) is greater than \(H\); and if equal, equal; if lefs, lefs e c e s. Def. g: And, \(K, L\) are any equimultiples of \(E, F\), and \(G, H\) any whatever of \(B, D\); as therefore \(E\), is to \(B\), fo is \(F\) to \(D\) : And in the fame way the other cafe is demonftrated.

\section*{PROP. V. THEOR.}

\(I^{7}\)F one magnitude be the fame multiple of another, see N . which a magnitude taken from the firt is of a magnitude taken from the other ; the remainder fhall be the fame multiple of the remainder, that the whole is of the whole.

Let the magnitude AB be the fame multiple of CD, that AE taken from the firf, is of CF taken from the other; the remainder EB fhall be the fame multiple of the remainder FD, that the whole \(A B\) is of the whole \(C D\).

Take AG the fame multiple of FD, that \(A E\) is of \(C F\) : therefore \(A E\) is a the fame multiple of CF, that EG is of CD : But AE, by the hypothefis, is the fame multiple of CF , that \(A B\) is of \(C D\) : Therefore EG is the fame multiple of \(C D\) that \(A B\) is of \(C D\); wherefore \(E G\) is equal to \(A B b\). Take from them the common magnitude AE ; the remainder AG is equal to the remainder EB. Wherefore, fince AE is

B D the fame multiple of CF, that AG is of FD, and that \(A G\) is equal to EB ; therefore AE is the fame multiple of CF, that EB is of FD : But AE is the fame multiple of CF,

Book \(V\). that \(A B\) is of \(C D\); therefore \(E B\) is the fame multiple of \(F D_{\text {. }}\) that \(A B\) is of \(C D\). Therefore, if any magnitude, \&c. Q.E. D.

\section*{PROP. VI. THEOR.}

See N. F two magnitudes be equimultiples of two others, and if equimultiples of thele be taken from the firft two, the remainders are either equal to thefe others, or equimultiples of them.

Let the two magnitudes \(A B, C D\) be equimultiples of the two \(\mathrm{E}, \mathrm{F}\), and \(\mathrm{AG}, \mathrm{CH}\) taken from the firft two be equimultiples of the fame \(\mathrm{E}, \mathrm{F}\); the remainders \(\mathrm{GB}, \mathrm{HD}\) are either equal to \(E, F\), or equimultiples of them.

Firft, let GB be equal to \(\mathbf{E}\); \(\mathbf{H D}\) is e-
qual to F : Make CK equal to F ; and becaufe AG is the fame multiple of E , that CH is of F , and that GB is equal to E , and \(C K\) to \(F\); therefore \(A B\) is the fame multiple of \(E\), that KH is of F . But AB , by the hypothefis, is the fame multiple of E that CD is of F ; therefore KH is the fame multiple of \(F\), that \(C D\) is of \(F\);
2 1. Ax. 5. wherefore KH is equal to CD a : Take away the common magnitude CH , then the
 remainder KC is equal to the remainder HD : But KC is equal to F ; HD therefore is equal to F .

But let GB be a multiple of E ; then HD is the fame multiple of F: Make CK the fame multiple of \(F\), that GB is of E: And becaufe AG is the fame multiple of \(E\), that CH is of \(F\); and GB the fame multiple of \(E\), that \(C K\) is of \(F\) : therefore \(A B\) is the fame multiple of \(E\), that KH is of Fb : But AB is the fame multiple of E , that CD is of F ; therefore KH is the fame multiple of F , that CD is of it : wherefore KH is equal to CD a: Take away CH from both; therefore the remainder KC is equal to the remainder

B DEE HD : And becaufe GB is the fame multiple of E , that KC is of F , and that KC is equal to HD; therefore HD is the fame multiple of \(F\), that GB is of \(E\) : If therefore two magnitudes, suc. D. E. D.

\section*{PROP. A. THEOR.}

I\(F\) the firf of four magnitudes has to the fecond, the See N . fame ratio which the third has to the fourth; then, if the firft be greater than the fecond, the third is alfo greater than the fourth; and, if equal, equal ; if lefs, lefs.

Take any equimultiples of each of them, as the doubles of each; then, by def. \(5^{\text {th }}\) of this book, if the double of the firft be greater than the double of the fecond, the double of the third is greater than the double of the fourth; but, if the firft be greater than the fecond, the double of the firft is greater than the double of the fecond; wherefore alfo the double of the third is greater than the double of the fourth; therefore the third is greater than the fourth : In like manner, if the firft be equal to the fecond, or lefs than it, the third can be proved to be equal to the fourth, or lefs than it. Therefore, if the firf, \&c. Q. E. D.

PROP. B. THEOR。

IF four magritudes are proportionals, they are proport- See \(\mathrm{N}_{0}\) tionals alfo when taken inverfely.

If the magnitude \(A\) be to \(B\), as \(C\) is to \(D\), then alfo inverfely \(B\) is to \(A\), as \(D\) to \(C\).

Take of \(B\) and \(D\) any equimultiples whatever \(E\) and \(F\); and of \(A\) and \(C\) any es guimultiples whatever \(G\) and \(H\). Firft, Let \(E\) be greater than \(G\), then \(G\) is lefs than \(E\); and, becaufe \(A\) is to \(B\), as \(C\) is to \(D\), and of \(A\) and \(C\), the firft and third, \(G\) and \(H\) are equimultiples; and of B and D , the fecond and fourth, E and F are equimultiples; and that \(G\) is lefs than \(E, H\) is alfo a lefs than F ; that is, F is greater than H ; if therefore \(E\) be greater than \(G, F\) is greater than \(H\) : In like manner, if \(E\) be equal to \(\mathrm{G}, \mathrm{F}\) may be fhown to be equal to H ; and, if lefs, lefs; and \(\mathrm{E}, \mathrm{F}\) are any equimultiples whatever of \(B\) and \(D\), and \(G, H\) any whatever of \(A\) and \(C\); therefore, as \(B\)

is

Book \(V\). is to A , fo is D to C . If, then, four magnitudes, \&c. Q.E.D.

\section*{PROP. C. THEOR.}

See N. TF the firft be the fame multiple of the fecond, or the fame part of it, that the third is of the fourth ; the firft is to the fecond, as the third is to the fourth.

Let the firit A be the fame multiple of B the fecond, that \(C\) the third is of the fourth \(D\) : \(A\) is to \(B\) as \(C\) is to \(D\).

Take of \(A\) and \(C\) any equimultiples whatever \(E\) and \(F\); and of \(B\) and \(D\) any equimultiples whatever G and H : Then, becaufe \(A\) is the fame multiple of \(B\) that \(C\) is of \(D\); and that E is the fame multiple of A , that \(F\) is of \(C ; E\) is the fame multiple of \(B\), that
a. 3.5. \(\quad \mathrm{F}\) is of \(\mathrm{D}^{\text {a }}\); therefore E and F are the fame multiples of \(B\) and \(D\) : But \(G\) and \(H\) are equimultiples of \(B\) and \(D\); therefore, if \(E\) be a greater multiple of \(B\), than \(G\) is, \(F\) is a greater multiple of \(D\), than \(H\) is of \(D\); that is, if \(E\) be greater than \(G, F\) is greater than \(H\) : In like manner, if \(E\) be equal to \(G\), or lefs; Fis equal to \(H\), or lefs than it. But \(\mathbf{E}, \mathbf{F}\) are equimultiples, any whatever, of \(\mathrm{A}, \mathrm{C}\), and \(G, H\) any equimultiples whatever of \(B\), B s. def. 5. D. Therefore \(A\) is to \(B\), as \(C\) is to \(D\) b.

Next, Let the firf \(A\) be the fame part of the fecond \(B\), that the third \(C\) is of the fourth \(D\) : \(A\) is to \(B\), as \(C\) is to \(D\) : For \(B\) is the fame multiple of \(A\), that \(D\) is of C : wherefore, by the preceding cafe, \(B\) is to \(A\), as \(D\) is to \(C\); and incB. 5. verfely c A is to \(B\), as \(C\) is to D. Therefore, if the firft be the fame multiple, \&c. Q. E. D.

\author{
PROP. D. THEOR:
}

1F the firft be to the fecond as the third to the fourth, see N . and if the firft be a multiple, or part of the fecond; the third is the fame multiple, or the fame part of the fourth.

Let \(A\) be to \(B\), as \(C\) is to \(D\); and firt let \(A\) be a multiple of \(B ; C\) is the fame multiple of \(D\).
Take \(E\) equal to \(A\), and whatever multiple \(A\) or \(E\) is of \(B\), make \(F\) the fame multiple of D : Then, becaufe A is to B , as C is to D ; and of B the fecond, and D the fourth equimultiples have been taken E and F ; \(A\) is to \(E\), as \(C\) to \(F^{\text {a }}\) : But \(A\) is equal to \(E\), therefore \(C\) is equal to \(F b\) : And \(F\) is the fame multiple of \(D\), that \(A\) is of \(B\). Wherefore C is the fame multiple of D , that A is of B .
Next, Let the firft A be a part of the fecond \(\mathrm{B} ; \mathrm{C}\) the third is the fame part of the fourth D.
Becaufe \(A\) is to \(B\), as \(C\) is to \(D\); then; inverfely, B is c to A , as D to \(\mathrm{C}:\) But A is a part of \(B\), therefore \(B\) is a multiple of \(A\);
 and, by the preceding cafe, \(\mathbf{D}\) is the fame multiple of \(C\), that is, \(C\) is the fame part of \(D\), that \(A\) is of B : Therefore, if the firt, \&c. Q E. D.

\section*{PROP. VII. THEOR.}

EQUAL magnitudes have the fame ratio to the fame magnitude; and the fame has the fame ratio to equal magnitudes.

Let \(A\) and \(B\) be equal magnitudes, and \(C\) any other. \(A\) and B have each of them the fame ratio to \(C\), and \(C\) has the fame satio to each of the magnitudes \(A\) and \(B\).
Take of A and B any equimultiples whatever \(D\) and \(\mathbf{E}\), and I 2

Book V. of C any multiple whatever F : Then, becaufe D is the fame multiple of \(A\), that \(E\) is of \(B\), and that \(A\) is a s. Ax. 5. equal to \(B\); \(D\) is a equal to \(E\) : Therefore, if \(D\) be greater than \(F, E\) is greater than \(F\); and if equal, equal ; if lefs, lefs : And D, E are any equimultiples of \(A, B\), and \(F\) is any mulb 5. def. 5 . tiple of \(\mathbf{C}\). Therefore \(b\), as \(A\) is to \(\mathbf{C}\), fo is B to C.

Likewife C has the fame ratio to A , that it has to B: For, having made the fame conftruction, D may in like manner be fhown equal to E : Therefore, if F be greater than D , it is likewife greater than \(E\); and if equal, equal ; if lefs, lefs: And \(F\) is any multiple whatever of C , and \(\mathrm{D}, \mathrm{E}\) are any equimultiples whatever of \(A, B\). Therefore \(C\) is to A , as C is to \(\mathrm{B}^{\mathrm{b}}\). Therefore equal magnimdes, \&c. Q. E. D.

\section*{PROP. VIII. THEOR.}

See N.

\(\mathrm{O}^{\mathrm{F}}\)F unequal magnitudes, the greater has a greater ratio to the fame than the lefs has; and the fame magnitude has a greater ratio to the lefs, than it has to the greater.

Let \(A B, B C\) be unequal magnitudes, of which \(A B\) is the greater, and let \(D\) be any magnitude Fig. I. whatever: \(A B\) has a greater ratio to \(D\) than BC to \(\mathrm{D}: \mathrm{And} \mathrm{D}\) has a greater \(E_{1}\) ratio to \(B C\) than unto \(A B\).

If the magnitude which is not the greater of the two \(A C, C B\), be not lefs than \(D\), take EF, FG, the doubles of \(\mathrm{AC}, \mathrm{CB}\), as in Fig. I. But, if that which is not the greater of the two \(\mathrm{AC}, \mathrm{CB}\) be lefs than D (as in Fig. 2. and 3.) this magnitude can be multiplied, fo as to become greater than \(D\), whether it be \(A C\), or CB. Let it be multiplied, until it become greater than \(D\), and let the other be multiplied as often; and let EF be the multiple thus taken of \(A C\), and FG the fame multiple of CB : Therefore
 EF and FG are each of them greater than

D : And in every one of the cafes, take \(H\) the double of \(D, K\) its triple, and fo on, till the multiple of \(D\) be that which firft

\section*{Book \(\mathbf{V}\).} becomes greater than FG : Let L be that multiple of D which is firft greater than FG, and \(K\) the multiple of \(D\) which is next leif than \(L\).

Then, becaufe \(L\) is the multiple of \(D\), which is the firft that becomes greater than FG, the next preceding multiple K is not greater than FG ; that is, FG is not lf es than K : And fine EF is the fame multiple of AC , that FG is of CB ; FG is the fame multiple of CB , that EG is of AB a; wherefore \(E G\) and \({ }_{\text {a }}\) 1.5. FG are equimultiples of AB and CB : And it was flown, that FG was not leis than \(K\), and, by the confructon, EF is greater than D ; therefore the whole EG is greater than \(K\) and D together: But, K together with D , is equal to L ; therefore EG is greater than L; but FG is not greater than \(L\); and \(\mathrm{EG}, \mathrm{FG}\) are equimultiples of \(\mathrm{AB}, \mathrm{BC}\), and L is a multiple of \(D\); therefore \(b A B\) has to D a greater ratio than BC has to D.

Alfo D has to BC a greater ratio than it has to \(A B\) : For, Having made the fame conftruction, it may be flown, in like manner,

Fig. 2.

Fig. 3.

b. 7. Def. S. that L is greater than FG, but that it is not greater than EG: and \(L\) is a multiple of \(D\); and \(F G, E G\) are equimultiples of \(C B, A B\); therefore \(D\) has to CB a greater ratio \(b\) than it has to \(A B\). Wherefore, of unequal magnitudes, \&c. Q. E. D.

\section*{THE ELEMENTS}

\section*{Book V.}

\section*{PROP. IX. THEOR.}

See N.

N/Agnitudes which have the fame ratio to the lame magnitude are equal to one another; and thofe to which the fame magnitude has the fame ratio are equal to one another.

Let \(A, B\) have each of them the fame ratio to \(C: A\) is equal to \(B\) :- For, if they are not equal, one of them is greater than the other; let A be the greater; then, by what was hown in the preceding propofition, there are fome equimultiples of \(A\) and \(B\), and fome multiple of \(C\) fuch, that the multiple of \(A\) is greater than the multip! e of \(C\), but the multiple of \(B\) is not greater than that of \(C\). Let fuch multiples be taken, and let \(\mathrm{D}, \mathrm{E}\), be the equimultiples of \(\mathrm{A}, \mathrm{B}\), and F the multiple of C , fo that D may he greater than F , and E not greater than F : But, becaufe \(A\) is to \(C\), as \(B\) is to \(C\), and of \(\mathrm{A}, \mathrm{B}\), are taken equimultiples \(\mathrm{D}, \mathrm{E}\), and of C is taken a multiple F ; and that D is greater than F ; E fhall alfo be greata 5 . Def. 5 .er than \(\mathrm{F}^{\mathrm{a}}\); but E is not greater than F , which is impoffible; A therefore and B are not unequal ; that is, they are equal.

Next, let C have the fame ratio to each of the magnitudes A and \(\mathrm{B} ; \mathrm{A}\) is equal to \(B\) : For, if they are not, one of them is greater than the other; let \(A\) be the greater ; therefore, as was thown in Prop.
 8th, there is fonie multiple F of C, and fome equimultiples E and D , of B and A fuch, that \(F\) is greater than \(E\), and not greater than \(D\); but becaufe \(\mathbf{C}\) is to \(B\), as \(\mathbf{C}\) is to \(A\), and that \(F\), the multiple of the fit 1 t , is greater than E , the multiple of the fecond ; F the multiple of the third, is greater than D , the multiple of the fourth a : But \(F\) is not greater than D, which is impoffible. Therefore, A is equal to B. Wherefore, magnitudes which, \& C. Q.E.D.

\author{
PROP. X. THEOR.
}

THAT magnitude which has a greater ratio than an See N . other has unto the fame magnitude is the greater of the two: And that magnitude to which the fame has a greater ratio than it has unto another magnitude is the defer of the two.

Let \(A\) have to \(C\) a greater ratio than \(B\) has to \(C\); \(A\) is greater than B : For, because A has a greater ratio to \(C\), than \(B\) has to \(C\), there are a forme equimultiples of \(A\) and \(B\), and forme \({ }^{3} 7\). def. \(s\). multiple of C fuck, that the multiple of A is greater than the multiple of C , but the multiple of B is not greater than it : Let them be taken, and let D, E be equimultuples of \(\mathrm{A}, \mathrm{B}\), and F a multiple of C fuch, that D is greater than F , but E is not greater than F : Therefore D is greater than \(E\) : And, beceufe \(D\) and \(E\) are equimultiples of \(A\) and \(B\), and \(D\) is greater than E ; therefore A is \({ }^{\mathrm{b}}\) greater than B .
Next, Let \(C\) have a greater ratio to B than it has to \(\mathrm{A} ; \mathrm{B}\) is left than A : For a there is forme multiple F of C , and forme equimultiples E and D of B and A fuch, that \(F\) is greater than \(E\), but is not greater than \(\mathrm{D}: \mathrm{E}\) therefore is left than D ; and
 because E and D are equimultiples of B and A , therefore B is b lees than A . That magnitude, therefore, \&c. Q.E. D.

\section*{PROP. XI. THEOR.}

RATIOS that are the fame to the fame ratio, are the fame to one another.

Let A be to B as C is to D ; and as C to D , fo let E be to F ; A is to B , as E to F .

Take of A, C, E, any equimultiples whatever \(\mathrm{G}, \mathrm{H}, \mathrm{K}\); and of \(\mathrm{B}, \mathrm{D}, \mathrm{F}\), any equimultiples whatever \(\mathrm{L}, \mathrm{M}, \mathrm{N}\). There fore, fine \(A\) is to \(B_{t}\) as \(C\) to \(D\), and \(C\). H are taken equimultiples of 14

Book V. A, C, and L, M of B, D ; if \(G\) be greater than \(L, H\) is greate n than \(M\); and if equal, equal; and if lefs, lefs a. Again, bea s. Def. 5 caufe C is to D , as E is to F , and \(\mathrm{H}, \mathrm{K}\) are taken equimultiples of \(C, E\); and \(M, N\), of \(D, F\); if \(H\) be greater than \(M, K\) is greater than \(\mathbf{N}\); and if equal, equal ; and if lefs, lefs: But, if

G be greater than \(L\), it has been thewn that \(H\) is greater than \(\mathbf{M}\); and if equal, equal ; and if lefs, lefs; therefore, if \(G\) be greater than \(L, K\) is greater than \(N\); and if equal, equal ; and if lefs, lefs: And \(G, K\) are any equimultiples whatever of \(A\), \(E\); and \(L, N\) any whatever of \(B, F:\) Therefore, as \(A\) is to \(B\), fo is E to \(\mathrm{F}^{2}\). Wherefore, ratios that, \&c. Q. E. D.

\section*{PROP. XII. THEOR.}

IF any number of magnitudes be proportionals, as one of the antecedents is to its confequent, fo thall all the antecedents taken together be to all the confequents.

Let any number of magnitudes \(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}\), be proportionals ; that is, as \(A\) is to \(B\), fo \(C\) to \(D\), and \(E\) to \(F\) : As A is to \(E\), fo fhall A. C, \(E\) together be to \(B, D, F\) together.

Take of A, C, E any equimultiples whatever \(\mathbf{G}, \mathrm{H}, \mathrm{K}\);

and of \(B, D, F\) any equimultiples whatever \(L, M, N\) : Then \({ }_{2}\) becaufe \(A\) is to \(B\), as \(C\) is to \(D\), and as \(E\) to \(F\); and that \(G, H\),

K are equimultiples of \(\mathrm{A}, \mathrm{C}, \mathrm{E}\), and \(\mathrm{L}, \mathrm{M}, \mathrm{N}\) equimultiples of Book. V . \(\mathrm{B}, \mathrm{D}, \mathrm{F}\); ff G be greater than \(\mathrm{L}, \mathrm{H}\) is greater than M , and K , greater than N ; and if equal, equal; and if lefs, lefs a. Where- a 5 . def. 5 . fore, if G be greater than L , then \(\mathrm{G}, \mathrm{H}, \mathrm{K}\) together are greater than L, M, N together; and if equal, equal ; and if lefs, lefs. And \(G\), and \(G, H, K\) together are any equimultiples of \(A\), and \(A\), \(\mathrm{C}, \mathrm{E}\) together; becaufe, if there be any number of magnitudes equimultiples of as many, each of each, whatever multiple one of them is of its part, the fame multiple is the whole of the whole \({ }^{\text {b }}\) : For the fame reafon \(L\), and \(L, M, N\) are any equi-bi.s. multiples of \(B\), and \(B, D, F\) : As therefore \(A\) is to \(B\), fo are \(A, C, E\) together to \(B, D, F\) together. Wherefore, if any number, \&c. Q.E.D.

\section*{PROP. XIII. THEOR.}

IF the firft has to the fecond the fame ratio which the \(\sec \mathrm{N}\). third has to the fourth, but the third to the fourth a greater ratio than the fifth has to the fixth ; the firt thall alfo have to the fecond a greater ratio than the fifth has to the fixth.

Let \(A\) the firf, have the fame ratio to \(B\) the fecond, which \(C\) the third, has to. D the fourth, but C the third, to D the fourth, a greater ratio than \(E\) the fifth, to \(F\) the fixth: Alfo the firt \(A\) fhall have to the fecond B a greater ratio than the fifth E to the fixth \(F\).

Becaufe \(C\) has a greater ratio to \(D\), than \(E\) to \(F\), there are fome equimultiples of \(C\) and \(E\), and fome of \(D\) and \(F\) fuch, that the multiple of C is greater than the multiple of D , but

the multiple of E is not greater than the multiple of Fa : Let \({ }_{\mathrm{a}}^{7}\). def. \(^{\mathrm{s}}\). fuch be taken, and of \(\mathrm{C}, \mathrm{E}\) let \(\mathrm{G}, \mathrm{H}\) be equimultiples, and K , \(L\) equimultiples of \(D, F\), fo that \(G\) be greater than \(K\), but \(H\) not greater than \(L\); and whatever multiple \(G\) is of \(C\), take \(M\) the fame multiple of \(A\); and whatever multiple \(K\) is of \(D\), take N the fame multiple of \(B\) : Then, becaufe \(A\) is to \(B\), as \(C\) to

Book V. D, and of A and \(C, M\) and \(G\) are equimultiples: And of \(B\) and
\(\sim^{\sim} \mathrm{D}, \mathrm{N}\) and K are equimulticles; if M be greater than \(\mathrm{N} . \mathrm{G}\) is b 5 . def. \(5^{\text {: }}\) greater than \(K\); and if equal, equal; and if lefs, lefs \({ }^{\text {b }}\); but \(G\) is greater than \(K\), therefore \(M\) is greater than \(N\) : But \(H\) is not greater than \(L\); and \(M, H\) are equimultiples of \(A, E\); and N , L equimultiples of \(\mathrm{B}, \mathrm{F}\) : Therefore A has a greater ratio to c\%.def. 5. B, than E has to Fc. Wherefore, if the firft, \&c. Q.E. D.

Cor. And if the firft have a greater ratio to the fecond, clan the third has to the fourth, but the third the fame ratio to the fourth, which the fifth has to the fixtin ; it may be demonftrated, in like manner, that the firft has a greater ratio to the fecond, than the fifth has to the fixth.

\section*{PROP. XIV. THEOR.}

IF the firft has to the fecond, the fame ratio which the third has to the fourth; then, if the firlt be greater than the third, the fecond fhall be greater than the fourth; and if equal, equal ; and if lefs, lefs.

Let the firft \(A\), have to the fecond \(B\), the fame ratio which the third \(\mathbf{C}\), has to the fourth D ; if A be greater than \(\mathrm{C}, \mathrm{B}\) is greater than D.

Becaufe \(A\) is greater than \(C\), and \(B\) is any other magnitude,
8. 5. A has to \(B\) a greater ratio than \(C\) to \(B\) a : But, as \(A\) is to \(B\), fa

b13.5. c 10.5
d. 9. 5. is C to D ; therefore alfo C has to D a greater ratio than C to B . But of two magnitude, that to which the fame. has the greater ratio is the leffer c : Wherefore D is lefs than B ; that is, B is greater than D .

Secondly, if A be equal to C, B is equal to D: For A is to \(B\), as \(C\), that is \(A\), to \(D ; B\) therefore is equal to \(D\) d.

Thirdly, if A be lefs than C, B thall be lefs than D : For C is greater than \(A\), and becaufe \(C\) is to \(D\), as \(A\) is to \(B, D\) is greater than \(B\), by the firft cafe; wherefore \(B\) is lefs than \(D\). Therefore, if the firf, \&c. Q.E. D.

\section*{PROP. XV. THEOR.}

MAgnitudes have the fame ratio to one another which their equimultiples have.

Let \(A B\) be the fame multiple of \(C\), that \(D E\) is of \(: C\) is to \(F\), as \(A B\) to \(D E\).

Becaufe AB is the fame multiple of C , that DE is of F ; there are as many magnitudes in \(A B\) equal to \(C\), as there are in \(D E\) equal to \(F\) : Let \(A B\) be divided into magnitudes, each equal to \(\mathbf{C}\), viz. AG, GH, HB ; and DE into magnitudes, each equal to F , viz. DK, KL, LE: Then the number of the firit \(\mathrm{AG}, \mathrm{GH}, \mathrm{HB}\), fhall be equal to the nuinber of the laff DK, KL, LE: And becaufe AG, GH. HB are all equal, and that \(\mathrm{DK}, \mathrm{KL}\), LE are alfo equal to one another ; therefore AG is to DK, as GH to KL, and as HB to LE a And as one of the antecedents to its conife-
 quent, fo are all the antecedents together to all the confequents together b ; wherefore, as AG is to DK , fo is AB to DE : But b \(\mathbf{r} 2.5\). \(A G\) is equal to \(C\), and \(D K\) to \(F\) : Therefore, as \(C\) is to \(F\), fo is AB to DE . Therefore magnitudes, \&c. Q.E. D,

\section*{PROP. XVI. THEOR.}

\(I^{\text {r }}\)F four magnitudes of the fame kind be proportionals they fhall alfo be proportionals when taken alternately.

Let the four magnitudes \(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}\) be proportionals, viz. as A to B, fo C to D : They fhall alfo be proportionals when taken alternately; that is, \(A\) is to \(C\), as \(B\) to \(D\).

Take of \(A\) and \(B\) any equimultiples whatever \(E\) and \(F\); and of \(C\) and \(D\) take any equimultiples whatever \(G\) and \(H\) : and

Book V . becaufe E is the fame multiple of A , that F is of B , and that magnitudes have the fame ratio to one another which their equimultiples have \({ }^{\text {a }}\); therefore A is to B , as E is to F : But as A is to B , fo is C to D: Wherefore as C

bII. 5 . is to \(\mathrm{D}, \mathrm{fo}^{\mathrm{b}}\) is E to F: Again, becaufe \(\mathrm{G}, \mathrm{H}\) are equimul- \(\mathbf{B}\)
 tiples of \(\mathrm{C}, \mathrm{D}\), as C is to \(D, f o\) is \(G\) to

D
G

H
\(\mathrm{H}^{\text {a }}\); but as C is to \(D\), fo is \(E\) to \(F\). Wherefore, as \(E\) is to \(F\), fo is \(G\) to \(H\) b. But, when four magnitudes are proportionals, if the firf be greaterthan the third, the fecond fhall be greater than the fourth; and if equal, equal; if lefs, lefs c . Wherefore, if E be greater than \(\mathrm{G}, \mathrm{F}\) likewife is greater than H ; and if equal, equal ; if lefs, lefs: And E, F are any equimultiples whatever of \(\mathrm{A}, \mathrm{B}\); and \(\mathrm{G}, \mathrm{H}\) any whatever of \(\mathrm{C}, \mathrm{D}\). Therefore A is to C , as B to d s.def. 5. D d. If then four magnitudes, \&cc. Q.E. D.

\section*{PROP. XVII. THEOR.}

See N. FF magnitudes, taken jointly, be proportionals, they fhall allo be proportionals when taken feparately; that is, if two magnitudes together have to one of them the fame ratio which two others have to one of thefe, the remaining one of the firft two fhall have to the other the fame ratio which the remaining one of the laft two has to the other of thefe.

Let \(\mathrm{AB}, \mathrm{BE}, \mathrm{CD}, \mathrm{DF}\) be the magnitudes taken jointly which are proportionals; that is, as AB to BE , fo is CD to DF ; they flall alfo be proportionals taken feparately, viz. as AE to EB , fo CF to FD .

Take of AE, EB, CF, FD any equimultiples whatever GH, HK, LM, MN; and again, of EB, FD, take any equimultiples whatever KX, NP : And becaufe GH is the fame multiple of
3 1. 5. AE, that HK is of EB, wherefore GH is the fame multiple a of AE , that GK is of AB : But GH is the fame multiple of AE that LM is of CF ; wherefore GK is the fame multiple of \(A B_{\text {? }}\)
that LM is of CF. Again, becaufe LM is the fame multiple of Book V. CF, that MN is of FD ; therefore LM is the fame multiple a of CF, that LN is of CD ; But LM was fhown to be the fame a r. s. multiple of CF , that GK is of AB ; GK therefore is the fame multiple of \(A B\), that \(L N\) is of \(C D\); that is, \(G K, L N\) are equimultiples of \(\mathrm{AB}, \mathrm{CD}\). Next, becaufe HK is the fame multiple of \(E B\), that \(M N\) is of \(F D\); and that \(K X\) is alfo the fame multiple of \(E B\), that NP is of FD ; therefore HX is the famemultiple b of EB, that MP is of FD. And becaufe \(A B\) is to \(B E\), as \(C D\) is to \(D F\), and that of \(A B\) and \(G D, G K\) and \(L N\) are equimultiples, and of EB and FD, HX and MP are \(\mathbf{K}\) equimultiples; if GK be greater than HX , then LN is greater than MP; and if equal, equal ; and if lefs, lefs c: But if GH be \(\mathbf{H}\) greater than KX, by adding the common part HK to both, GK is greater than HX ; wherefore alfo LN is greater than MP; and by taking away MN from both, LM is greater than NP: Therefore, if GH be greater than \(\mathrm{KX}, \mathrm{LM}\) is greater than NP.
 In like manner it may be demonftrated, that if GH be equal to KX, LM likewife is equal to NP ; and if lefs, lefs: And GH, LM are any equimultiples whatever of AE, CF, and KX, NP are any whatever of EB, FD. Therefore c , as AE is to EB , fo is CF to FD . If then magnitudes, \&c. Q.E. D.

\section*{PROP. XVIII. THEOR.}

IF magnitudes, taken feparately, be proportionals, they see \(N\). fhall alfo be proportionals when taken jointly, that is, if the firft be to the fecond, as the third to the fourth, the firft and fecond together fhall be to the fecond, as the third and fourth together to the fourth.

Let AE, EB, CF, FD be proportionals; that is, as AE to EB , fo is CF to FD ; they fhall alfo be proportionals when taken jointly; that is, as AB to BE , fo CD to DF .

Take of \(\mathrm{AB}, \mathrm{BE}, \mathrm{CD}, \mathrm{DF}\) any equimultiples whatever GH , \(\mathrm{HK}, \mathrm{LM}, \mathrm{MN}\); and again, of BE, DF, take any whatever equimultiples \(\mathrm{KO}, \mathrm{NP}\) : And becaufe KO, NP are equimultiples

Book V. of BE, DF ; and that \(\mathrm{KH}, \mathrm{NM}\) are equimultiples likewife of \(\mathrm{BE}, \mathrm{DF}\), if KO , the muitiple of BE , be greater than KH , which is a multiple of the fame \(\Gamma E, N P\), likewife the multiple of \(D F_{\text {, }}\) fhall be greater than MN, the multiple of the fame DF; and if KO be equal to KH, NP fhall be equal to NM ; and if lefs, lefs.

Firft, Let KO not be greater than KH, therefore NP is not greater than NM : And becaufe GH, HK are equimultiples of \(A B, B E\), and that \(A B\) is greater than BE , therefore GH is a 3. Ax. s. greater a than HK ; but KO is not greater than KH , wherefore GH is greater than KO. In like manner it may be fhewn, that LM is greater than NP. Therefore, if KO be not greater than KH, then GH, the multiple of
 multiple of BE ; and likewife LM, the multiple of CD , greater than NP, the multiple of DF.

Next, Let KO be greater than KH: therefore, as has been hown, NP is greater than NM : And becaufe the whole GH is the fame multiple of the whole AB , that HK is of BE , the remainder GK is the fame multiple of the remainderAE that \(G H\) is of \(A B{ }^{\circ}\) : which is the fame that LM is of CD . In like manner, becaufe LM is the fame multiple of CD , that MN is of DF, the remainder LN is the fame multiple of the remainder CF, that the wholeLM is of the whole CD \({ }^{\mathrm{b}}\) : Butit was fhown that LM is the fame multiple of CD , that GK is of AE ; therefore GK is the fame multiple of AE, that LN is of CF; that is, GK, LN are equimultiples of \(\mathrm{AE}, \mathrm{CF}\) : And becaufe KO, NP are equimul-
 tiples of BE, DF, if from KO, NP there be teken \(\mathrm{K} H\), NM, which are likewife equimultiples of \(\mathrm{BE}, \mathrm{DF}\), the remainders \(\mathrm{HO}, \mathrm{MP}\) are either equal to BE ,
c6. 5. DF, or equimultiples of them c . Firf, Let \(\mathrm{HO}, \mathrm{MP}\), be e qual to \(B E, D E\); and becaule \(A E\) is to \(E B\), as \(C F\) to \(F D\), and
that GK, LN are equimultiples of \(\mathrm{AE}, \mathrm{CF}\); GK fhall be to Book V . EB, as LN to FD d: But HO is equal to EB, and MP to FD ; wherefore GK is to HO, as LN to MP. If therefore GK be \({ }^{\mathrm{dCor} .4 .50}\) greater than HO, LN is greater than MP; and if equal, equal ; and if lefs e, lefs.

But let H()\(, \mathrm{MP}\) be equimultiples of \(\mathrm{EB}, \mathrm{FD}\); and becaufe e \(\mathrm{A} .5 \%\) AE is to EB , as CF to FD , and that of \(\mathrm{AE}, \mathrm{CF}\) are taken \(\mathrm{c}_{9}\) quimultiples GK, LN ; and of EB, FD, the equimultiples HO , MP; if GK be greater than HO, LN is greater than MP; and if equal, equal; and if lefs, lefs \(f\); which was likewife fhown in the preceding cafe. If therefore GH be greater than \(\mathrm{K}^{\text {i }}\), taking KH from both, GK is greater than HO ; wherefore alfo LN is greater than MP; and confequently, adding NM to both, LM is greater than NP: Therefore, if GH be greater than KO, LM is greater than NP. In like manner it may be fhown, that if GH be equal to \(\mathrm{KO}, \mathrm{LM}\) is equal to NP; and if lefs, lefs. And in the cafe in which KO is not great-
f 5. Def. 5.

er than KH , it has been fhown that
GH is always greater than KO, aid likewife LM than NP: But GH, LM are any equimultiples of \(\mathrm{AB}, \mathrm{CD}\), and KO, NP are any whatever of \(B E, D F\); therefore \(f\), as \(A B\) is to \(B E\); fo is \(C D\) to \(D F\). If then maguitudes, \&c. \(Q . E . D\).

\section*{PROP. XIX. THEOR.}

IF a whole magnitude be to a whole, as a magnitude see \(\mathbb{N}\). taken from the firft, is to a magnitude taken from the other; the remainder fhall be to the remainder, as the whole to the whole.

Let the whole AB , be to the whole CD , as AE , a magnitude taken from AB , to CF , a magnitude taken from CD ; the remainder EB fhall be to the remainder FD, as the whole AB to the whole CD.

Becaufe AB is to CD , as AE to CF ; likewife, alternately \({ }^{2}\), a 56 . 5 。 BA

Book V. BA is to AE, as DC to CF : And becaufe, if mag-
b17.5. nitudes, taken jointly, be proportionals, they are
b 17.5 alfo proportionals b when taken feparately; theres fore, as BE is to DF , fo is EA to FC ; and alternately, as BE is to EA , fo is DF to FC : But, as AE to CF , fo by the hypothefis, is AB to CD ; therefore alfo BE , the remainder, fhall be to the remainder DF, as the whole AB to the whole CD : Wherefore, if the whole, \&c. Q. E. D.

Cor. If the whole be to the whole, as a magnitude taken from the firft, is to a magnitude taken
 from the other; the remainder likewife is to the remainder, as the magnitude taken from the firft to that taken from the other : The demonftration is contained in the preceding.

\section*{PROP. E. THEOR.}

IF four magnitudes be proportionals, they are alfo proportionals by converfion, that is, the firft is to its excefs above the fecond, as the third to its excefs above the fourth.

Let \(A B\) be to \(B E\), as \(C D\) to \(D F\); then \(B A\) is to AE , as DC to CF.

Becaufe \(A B\) is to BE , as CD to DF , by divia 17. 5. fion a, \(A E\) is to \(E B\), as \(C F\) to \(F D\); and by inverb. B. 5. fion b, BE is to EA, as DF to FC. Wherefore, by E c 18. 5. compofition c, BA is to AE, as DC is to CF: If, therefore, four, \& \& . Q. E. D.

\section*{PROP. XX. THEOR.}

See N. F there be three magnitudes, and other three, which, taken two and two, have the fame ratio; if the firft be greater than the third, the fourth fhall be greater than the fixth; and if equal, equal ; and if lefs, lefs.

Let A, B, C be three magnitudes, and D, E, F other three, Book V. which, taken two and two, have the fame ratio, viz. as \(A\) is to \(B\), fo is \(D\) to \(E\); and as \(B\) to \(C\), fo is \(E\) to F. If A be greater than \(\mathrm{C}, \mathrm{D}\) fhall be greater than \(F\); and, if equal, equal; and if lefs, lefs.

Becaufe \(A\) is greater than \(C\), and \(B\) is any other magnitude, and that the greater has to the fame magnitude a greater ratio than the lefs has to it \({ }^{2}\); therefore A has to B a greater ratio than \(C\) has to \(B: B u t\) as \(D\) is to \(E\), fo is \(A\) to B ; therefore b D has to E a greater ratio than C to B ; and becaufe B is to C , as E to F , by inverfion, C is to B , as F is to E ; and D was fhown to have to E a greater ratio than C to B ; therefore D has to E a greater ratio than F
 to Ec : But the magnitude which has a greater ratio than another to the fame magnitude, is the greater of the two d: D is therefore greater than F .

Secondly, Let A be equal to C ; D fhall be equal to F : Becaufe A and C are equal to one another, \(A\) is to \(B\), as \(C\) is to \(B e\) : But A is to B , as D to E ; and C is to \(B\), as \(F\) to \(E\); wherefore \(D\) is to E , as F to Ef ; and therefore D is equal to Fg .

Next, Let A be lefs than \(\mathrm{C} ; \mathrm{D}\) fhall be lefs than F : For C is greater than \(A\), and, as was fhown in the firft cafe, C is to B , as F to E , and in like manner \(B\) is to \(A\), as \(E\) to \(D\); therefore \(F\) is greater than D , by the firlt cafe; and therefore
 D is lefs than F. Therefore, if there be three, \&c. Q. E. D.

\section*{PROP. XXI. THEOR.}

1F there be three magnitudes, and other three, which See No. have the fame ratio taken two and two, but in a crofs order; if the firft magnitude be greater than the third, the fourth fhall be greater than the fixth; and if equal, equal ; and if lefs, lefs.

Book V. Lct A, E, C be three magnitudes, and D, E, F other three, which have the fame ratio, taken two and two, but in a crofs order, viz. as \(A\) is to \(B\), fo is \(E\) to \(F\), and as \(B\) is to C , fo is D to E . If A be greater than C , \(D\) fhall be greater than \(F\); and if equal, equal ; and if lefs, lefs.

Becaufe \(A\) is greater than \(C\), and \(B\) is any 28. 5. other magnitude, \(A\) has to \(B\) a greater ratio a than \(C\) has to \(B\) : But as \(E\) to \(F\), fo is \(A\) to \(B\) :
\(\mathrm{b}_{13.5}\). therefore \(\mathrm{b}_{\mathrm{E}} \mathrm{E}\) has to F a greater ratio than C to \(B\) : And becaufe B is to C , as D to E , by inverfion, C is to B , as E to D : And E was fliown to have to \(F\) a greater ratio than C to B ; there-
c Cor. I 3 .5. fore \(E\) has to F a greater ratio than E to D c; but the magnitude to which the fame has a greater ratio than it has to another, is the leffer
d 10.5.
e 7.5 .

1II. 5.
89.5. of the twod: \(F\) therefore is lefs than \(D\); that
 is, D is greater than. F .

Secondly, Let \(A\) be equal to \(C\); \(D\) hall be equal to \(F\). Bee to B , as E to F ; and C is to B , as E to D ; wherefore E is to F as E to \(\mathrm{D}{ }^{\mathrm{f}}\); and therefore D is equal to F g.

Next, Let A be lefs than C; \(D\) fhall be lefs than \(F\) : For C is greater than \(A\), and, as was fhown, \(C\) is to \(B\), as \(E\) to \(D\), and in like manner \(B\) is to \(A\), as F to \(\mathrm{E}^{\prime}\); therefore F is greater than \(D\), by cafe firit; and therefore D is lefs than F . Therefore, if there be three,
 \&tc. Q. E. D.

\section*{PROP. XXII. THEOR.}

See N.

IF there be any number of magnitudes, and as many others, which, taken two and two in order, have the fame ratio; the firf fhall have to the laft of the firft magnitudes the fame ratio which the firft of the others has to the laft. N. B. This is ufualy cited by the roords "ex aquali," or "ex aquo.".

Firf,

Firft, Let there be three magnitudes \(\mathrm{A}, \mathrm{B}, \mathrm{C}\), and as many Book V . others \(\mathrm{D}, \mathrm{E}, \mathrm{F}\), which taken two and two, have the fame ratio,
m that is, fuch that \(A\) is to \(B\) as \(D\) to \(E\); and as \(B\) is to \(C\), \(f \circ\) is \(E\) to \(F\); A fhall be to C , as D to F .

Take of \(A\) and \(D\) any equimultiples whatever \(G\) and \(H\); and of \(B\) and \(E\) any equimultiples whatever K and L ; and of C and F any whatever M and N : Then, becaufe A is to B , as D to E , and that \(G, H\) are equimultiples of \(A\), \(D\) and \(K\), \(L\) equimultiples of \(B\), E ; as G is to K , fo is a H to L : For the fame reafon, \(K\) is to \(M\), as L to N : and becaufe there are three magnitudes \(G, K, M\), and other three \(\mathrm{H}, \mathrm{L}, \mathrm{N}\), which, two and two, have the fame ratio; if G be greater than \(\mathrm{M}, \mathrm{H}\) is greater than N ; and if equal, equal; and if lefs, lefs b ; and \(\mathrm{G}, \mathrm{H}\) are any equimultiples whatever of \(A\), D , and \(\mathrm{M}, \mathrm{N}\) are any equimultiples whatever of \(\mathrm{C}, \mathrm{F}\) : Therefore c ; as A is to C , fo is D c 5 . Def. fo. to F .

Next, Let there be four magnitudes, A, B, C, D, and other four, \(\mathrm{E}, \mathrm{F}, \mathrm{G}, \mathrm{H}\), which two and two have the fame ratio, viz. as \(A\) is to \(B\), fo is \(E\) to \(E\); and as \(B\) to C, fo F to G ; and as G to D , fo G to
A.B. C. D. E. F. G. H. \(\mathrm{H}:\) A fhall be to D , as E to H .

Becaufe A, B, C are three magnitudes, and E, F, G other three, which, taken two and two, have the fame ratio; by the foregoing cafe, \(A\) is to \(C\), as \(E\) to \(G\) : Bit \(C\) is to \(D\), as \(G\) is to H ; wherefore again, by the firft cafe, A is to D , as \(E\) to H ; and fo on, whatever be the number of magnitudes. There fore, if there be any number, \&c. Q.E.D:

PROP. XXIII. THEOR.

Sce N. IF there be any number of magnitudes, and as many others, which, taken two and two, in a crofs order, have the fame ratio; the firf flall have to the laft of the firft magnitudes the fame ratio which the firft of the others has to the,laft. N. B. This is ufually cited by the words, "ex aquali in propoportione perturbata;" or "ex "a aquo perturbato.

Firft, Let there be three magnitudes \(\mathrm{A}, \mathrm{B}, \mathrm{C}\), and other three \(\mathrm{D}, \mathrm{E}, \mathrm{F}\), which, taken two and two, in a crofs order, have the fame ratio, that is, fuch that A is to B , as E to F ; and as \(B\) is to C , fo is D to \(\mathrm{E}: \mathrm{A}\) is to C , as D to F .

Take of \(\mathrm{A}, \mathrm{B}, \mathrm{D}\) any equimultiples whatever \(\mathrm{G}, \mathrm{H}, \mathrm{K}\); and of \(\mathrm{C}, \mathrm{E}, \mathrm{F}\) any equimultiples whatever L, M, N : And becaufe \(G, H\) are equimultiples of \(A, B\), and that magnitudes have the fame ratio which their equimul-
d22. 5. K is greater than N ; and if equal, equal; and if lefs, lefs \(d\); and \(\mathrm{G}, \mathrm{K}\) are any equimultiples whatever of \(\mathrm{A}, \mathrm{D}\); and \(\mathrm{L}, \mathrm{N}\) any whatever of \(\mathrm{C}, \mathrm{F}\); as, therefore, A is to C , fo is D to F . Next,

Next, Let there be four magnitudes, \(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}\), and other four \(E, F, G, H\), which taken two and two in a crofs order, have the fame ratio. viz. A to \(B\), as \(G\) to \(H\); \(B\) to \(C\), as \(F\) to \(G\); and C to D , as E to F : A is to D , as E to H .
A. B. C. D. E. F. G. H.

Becaufe A, B, C, are three magnitudes, and F, G, H other three, which, taken two and two in a crofs order, have the fame ratio; by the firft cafe, A is to C , as F to H : But C is to D , as E is to F ; wherefore again, by the firft cafe, A is to D , as E to H : And fo on whatever be the number of magnitudes. Therefore, if there be any number, \& c. Q.E.D.

\section*{PROP. XXIV. THEOR.}

IF the firlt has to the fecond the fame ratio which the \(\operatorname{see} \mathrm{N}\). third has to the fourth; and the fifth to the fecond, the fame ratio which the fixth has to the fourth; the firft and fifth together fhall have to the fecond, the fame ratio which the third and fixth together have to the fourth.

Let \(A B\) the firft, have to \(C\) the fecond, the fame ratio which DE the third, has to F the fourth; and let BG the fifth, have to C the fecond, the fame ratio which EH the fixth, has to \(F\) the fourth: AG, the firt and fifth together, flall have to \(C\) the fecond, the fame ratio which DH , the third and fixth together, has to \(F\) the fourth.

Becaufe BG is to C , as EH to F ; by inverfion, C is to BG , as F to EH : And becaufe, as \(A B\) is to \(C\), fo is \(D E\) to \(F\); and as C to BG , fo F to EH ; ex æquali \({ }^{\text {a }}\), AB is to BG , as DE to EH : And becaufe thefe magnitudes are proportionals, they thall likewife be proportionals when taken jointly \({ }^{b}\); as therefore \(A G\) is to \(G B\), fo is
 DH to HE ; but as GB to C, fo is HE to F. Therefore, ex æquali a, as AG is to C , fo is DH to F . Wherefore, if the firf, \&c. Q. E. D.

Cor. I. If the fame hypothefis be made as in the propofition, the excefs of the firft and fifth thall be to the fecond, as

Book V. the excefs of the third and fixth to the fourth: The demonitra. tion of this is the fame with that of the propofition, if divifion be ufed inftead of compofition.

Cor. 2. The propofition holds true of two ranks of magnitudes, whatever be their number, of which each of the firft rank has to the fecond magnitude the fame ratio that the corre, fponding one of the fecond rank has to a fourth magnitude ; as is manifert.

\section*{PROP. XXV. THEOR.}

FF four magnitudes of the fame kind are proportionals, the greateft and leaft of them together are greater than the other two together.

Let the four magnitures \(\mathrm{AB}, \mathrm{CD}, \mathrm{E}, \mathrm{F}\) be proportionals, viz. \(A B\) to \(C . D\), as \(E\) to \(F\); and let \(A B\) be the greateft of them, a \(A . \& I_{4}\), and confequently \(F\) the leaft a. \(A B\), together with \(F\), are great5. or than CD , together with E.

Take \(A G\) equal to E , and CH equal to F : Then becaufe as \(A B\) is to \(C D\), fo is \(E\) to \(F\), and that \(A G\) is equal to \(E\), and \(C H\) equal to \(\mathrm{F} ; \mathrm{AB}\) is to CD , as AG to CH . And becaufe \(A B\) the whole, is to the whole \(C D\), as \(A G\) is to CH , likewife the remainder GB fhall be to the remainder b19.5. HD, as the whole \(A B\) is to the whole \(b\) \(C D\) : But \(A B\) is greater than \(C D\), therec A. 5 . fore \({ }^{\text {c }}\) GD is greater than HD : And becaufe AG is equal to E , and CH to F ; \(A G\) and \(F\) together are equal to CH and E together. If therefore to the unequal magnitudes GB, HD, of which GB is
 the greater, there be added equal magnitudes, viz. to GB the two \(A G\) and \(F\), and \(C H\) and \(E\) to \(H D ; A B\) and \(F\) together are greater than CD and E . Therefore, if four magnitudes, \&c. Q.E. D.
PROP. F. THEOR.]

Sec N. ATIOS which are compounded of the fame ratios, are the fame with one another.

Let \(A\) be to \(B\), as D to E; and B to \(C\), as \(E\) to \(F\) : The ra. Book V. tio which is compounded of the ratios of \(A\) to \(B\), and \(B\) to \(C\), which, by the definition of compound ratio, is the ratio of \(A\) to \(C\), is the fame with the ratio of D to F , which, by
A. B. C. D. E. F. the fame definition; is compounded of the ratios of \(D\) to \(E\), and \(E\) to \(F\).

Becaufe there are three magnitudes \(A, B, C\), and three others D, E, F, which, taken two and two in order, have the fame ratio; ex æquali, \(A\) is to C , as D to F a. \(\quad{ }^{\text {a2. }} 5\).

Next, Let \(A\) be to \(B\), as \(E\) to \(F\), and \(B\) to \(\mathbb{C}\), as \(D\) to \(E\); therefore, ex aquali in proportione perturbata b, A is to \(C\), as \(D\) to \(F\); that is, the ratio of A to C, which is compounded of the ratios of A to \(B\), and \(B\) to \(C\), is the fame with the ratio of \(D\) to \(F\), which is compounded of the ratios of \(D\) \(\qquad\) to E , and E to F : And in like manner the propofition may be demonftrated whatever be the number of ratios in either cafe.

\section*{PRUP. G. THEOR.}

TF feveral ratios be the fame with feveral ratios, each \(\operatorname{scc} N\).
to each; the ratio which is compounded of ratios which are the fame with the firft ratios, each to each, is the fame with the ratio compounded of ratios which are the fame with the other ratios, each to each.

Let \(A\) be to \(B\), as \(E\) to \(F\); and \(C\) to \(D\), as \(G\) to \(H\) : And let A be to B , as K to L ; and C to D , as L to M : Then the ratio of \(K\) to \(M\), by the definition of compound ratio, is compouned of the ratios of \(K\) to \(L\), and L to M , which are the fame with A. B. C. D. K. L. M.
E. F. G.H. N. O. P. the ratios of \(A\) to \(B\), and \(C\) to \(D\) : And as \(E\) to \(F\), fo let \(N\) be to \(O\); and as \(G\) to \(H\), fo let \(O\) be to P ; then the ratio of N to P is compounded of the ratios of N to O , and O to P , which are the fame with the ratios of E to F , and G to H : And it is to be fhewu that the ratio of K to M , is the fame with the ratio of \(N\) to P , or that K is to M , as N to P .

Becaufe \(I\) is to \(L\), as (A to \(B\), that is, as \(E\) to \(T\), that is, as) N to O ; and as L to M , fo is (G to D , and fo is G to H , is 4

Book V. and fo is) O to P : Ex æqualia K is to M , as N to P . Therefore, if feveral ratios, \&c. Q. E. D.
222.5.

\section*{PROP. H. THEOR.}

See \(N\).

IF a ratio compounded of feveral ratios be the fame with a ratio compounded of any other ratios, and if one of the firlt ratios, or a ratio compounded of any of the firft, be the fame with one of the laft ratios, or with the ratio compounded of any of the laft ; then the ratio compounded of the remaining ratios of the firft, or the remaining ratio of the firft, if but one remain, is the fame with the ratio compounded of thofe remaining of the laft, or with the remaining ratio of the laft.

Let the firft ratios be thofe of A to \(\mathrm{B}, \mathrm{B}\) to \(\mathrm{C}, \mathrm{C}\) to D , \(D\) to E , and E to F ; and let the other ratios be thofe of G to \(\mathrm{H}, \mathrm{H}\) to \(\mathrm{K}, \mathrm{K}\) to L , and L to M : Alfo, let the ratio of A to
a Definition F , which is compounded of a the firft
of com. pounded ratio. ratios be the fame with the ratio of \(G\) to M , which is compounded of the other ratios: And befides, let the ratio of \(A\) to \(D\), which is compounded of the ratios of \(A\) to \(B\), \(B\) to \(C, C\) to \(D\), be the fame with the ratio of \(G\) to \(K\), which is compounded of the ratios of G to H , and H to K : Then the ratio compounded of the remaining firft ratios, to wit, of the ratios of \(D\) to \(E\) and \(E\) to \(F\), which compounded ratio is the ratio of \(D\) to \(F\), is the fame with the ratio of \(K\) to \(M\), which is compounded of the remaining ratios of \(K\) to \(L\), and \(L\) to \(M\) of the other ratios.

Becaufe, by the hypothefis, A is to D , as \(\mathbf{G}\) to K , by in-
b B. 5. verfion \(b, D\) is to \(A\), as \(K\) to \(G\); and as \(A\) is to \(F\), fo is \(G\) to
c 22. 5. M ; therefore c , ex æquali, D is to F , as K to M . If therefore a ratio which is, \&c. Q. E. D.

IF there be any number of ratios, and any number of see N . other ratios fuch, that the ratio compounded of ratios which are the fame with the firft ratios, each to each, is the fame with the ratio cumpounded of ratios which are the fame, each to each, with the laft ratios; and if one of the firft ratios, or the ratio which is compounded of ratios which are the fame with feveral of the firft ratios, each to each, be the fame with one of the laft ratios, or with the ratio compounded of ratios which are the fame, each to each, with feveral of the laft ratios: Then the ratio compounded of ratios which are the fame with the remaining ratios of the firft, each to each, or the remaining ratio of the firft, if but one remain; is the fame with the ratio compounded of ratios which are the fame with thofe remaining of the laft, each to each, or with the remaining ratio of the laft.

Let the ratios of A to \(\mathrm{B}, \mathrm{C}\) to \(\mathrm{D}, \mathrm{E}\) to F be the firft ratios; and the ratios of G to \(\mathrm{H}, \mathrm{K}\) to \(\mathrm{L}, \mathrm{M}\) to \(\mathrm{N}, \mathrm{O}\) to \(\mathrm{P}, \mathrm{Q}\) to R , be the other ratios: And let \(A\) be to \(B\), as \(S\) to \(T\); and \(C\) to D , as T to V , and E , to F , as V to X : Therefore, by the definition of compound ratio, the ratio of S to X is compounded

of the ratios of \(S\) to \(T, T\) to \(V\), and \(V\) to \(X\), which are the fame with the ratios of \(A\) to \(B, C\) to \(D, E\) to \(F\), each to each; Alfn, as \(G\) to H , fo let Y be to Z ; and K to L , as Z to a; M to \(N\), as a to \(b, O\) to \(P\), as \(b\) to \(c\); and \(Q\) to \(R\), as \(c\) to \(d\) : Therefore, by the fame definition, the ratio of \(Y\) to \(d\) is compounded of the ratios of \(Y\) to \(Z, Z\) to \(a\), a to \(b, b\) to \(c\), and c to

Book V. c to d, which are the fame, each to each, with the ratios of \(G\) to \(\mathrm{H}, \mathrm{K}\) to \(\mathrm{L}, \mathrm{M}\) to \(\mathrm{N}, \mathrm{O}\) to P , and Q to R : Therefore, by the hypothefis, \(S\) is to \(X\), as \(Y\) to \(d\) : Alfo, let the ratio of \(A\) to \(B\), that is, the ratio of \(S\) to \(T\), which is one of the firt ratios, be the fame with the ratio of \(e\) to \(g\), which is compounded of the ratios of e to \(f\), and \(f\) to \(g\), which, by the hypothefis, are the fame with the ratios of G to H , and K to L , two of the other ratios; and let the ratio of \(h\) to 1 be that which is compounded of the ratios of \(h\) to \(k\), and \(k\) to 1 , which are the fame with the remaining firf ratios, viz. of \(C\) to \(D\), and \(E\) to \(F\); alfo, let the ratio of m to p , be that which is compounded of the ratios of \(m\) to \(n, n\) to \(o\), and o to \(p\), which are the fame, each to each, with the remaining other ratios, viz. of M to \(\mathrm{N}, \mathrm{O}\) to \(P\), and \(Q\) to \(R\) : Then the ratio of \(h\) to \(l\) is the fame with the ratio of \(m\) to \(p\), or \(h\) is to \(l\), as \(m\) to \(p\).

Becaufe \(e\) is to \(f\), as (\(G\) to \(H\), that is, as) \(Y\) to \(Z\); and \(f\) is to \(g\), as (\(K\) to \(L\), that is, as) \(Z\) to a ; therefore, ex æquali, e is to g , as Y to a: And by the hypothefis, A is to \(\bar{B}\), that is, \(S\) to \(T\), as e to \(g\); wherefore \(S\) is to \(T\), as \(Y\) to \(a\); and, by inverfion, T is to S , as a to Y ; and S is to X , as Y to d; therefore, ex æquali, T is to X , as a to d : Alfo, becaufe \(h\) is to \(k\) as (C to D , that is, as) T to V ; and \(k\) is to 1 , as (E to F , that is, as) V to X ; therefore, ex æquali, h is to l , as T to X : In Jike manner, it may be demonftrated, that \(m\) is to \(p\), as a to \(d\) :
2i5. 5. And it has been hown, that T is to X , as a to \(d\); therefore a \(h\) is to \(l\), as \(m\) to p . Q. E. D.

The propofitions \(G\) and \(K\) are ufually, for the fake of brevity, expreffed in the fame terms with propofitions F and H : And therefore it was proper to fhow the true meaning of them when they are fo expreffed; efpecially fince they are very frequently made ufe of by geometers.

\section*{ELEMENTS} 0 F

\section*{E U C L I D.}

B O O K VI.

DEFINITIONS.

\section*{I.}

\(S\)IMILAR rectilineal fgures are thofe which have their feveral angles equal, each to each, and the fides about the
 equal angles proportionals.

\section*{II.}
"Reciprocal figures, viz. triangles and parallelograms, are "fuch as have their fides about two of their angles propor- \(\sec \mathbb{N}_{+}\) " tionals in fuch manner, that a fide of the firft figure is to " a fide of the other, as the remaining fide of this other is to " the remaining fide of the firft."

> III.

A ftraight line is faid to be cut in extreme and mean ratio, when the whole is to the greater fegment, as the greater fegment is to the lefs.
IV.

The altitude of any figure is the ftraight line drawn from its vertex perpendicular to the bafe.

PROP。

Book Vf.
Lol

\section*{PROP. I. THEOR.}

See N .

TRiangles and parallelograms of the fame altitude are one to another as their bafes.

Let the triangles \(\mathrm{ABC}, \mathrm{ACD}\), and the parallelograms EC , CF have the fame altitude, viz. the perpendicular drawn from the point A to BD : Then, as the bafe BC is to the bafe CD , fo is the triangle ABC to the triangle ACD , and the parallelogram EC to the parallelogram CF .

Produce BD both ways to the points \(\mathrm{H}, \mathrm{L}\), and take any number of ftraight lines \(\mathrm{BG}, \mathrm{GH}\), each equal to the bafe BC ; and DK, KL, any number of them, each equal to the bafe CD; and join AG, AH, AK, AL: Then, becaufe CB, BG, GH are all equal, the triangles \(A H G, A G B, A B C\) are all equal a: Therefore, whatever multiple the bafe HC is of the bafe BC , the fame multiple is the triangle \(A H C\) of the triangle \(A B C\) : For the fame reafon, whatever multiple the bafe LC is of the bafe CD, the fame multiple is the triangle ALC of the triangle ADC : And if the bafe HC be equal to the bafe CL, the triangle AHC is alfo equal to the triangle ALC a; and if the bafe HC be greater than the
 bafe CL, likewife the triangle AHC is greater than the triangle ALC; and if lefs, lefs : Therefore, fince there are four magnitudes, viz. the two bafes \(\mathrm{BC}, \mathrm{CD}\), and the two triangles \(\mathrm{ABC}, \mathrm{ACD}\); and of the bafe \(B C\) and the triangle \(A B C\), the firf and third, any equimultiples whatever have been taken, viz. the bafe HC and triangle AHC; and of the bafe CD and triangle ACD, the fecond and fourth, have been taken any equimultiples whatever, viz. the bafe CL and triangle ALC; and that it has been fhown, that, if elie bafe HC be greater than the bafe CL, the triangle AHC is greater than the triangle ALC; and if equal, equal ;
b 5 def. 5. and if lefs, lefs : Therefore b , as the bafe BC is to the bafe CD, fo is the triangle ABC to the triangle \(\dot{A} \mathrm{CD}\).

And becaufe the parallelogram \(\mathbf{C E}\) is double of the triangle
\(A B C ' c\), and the parallelogram CF double of the triangle ACD , and that magnitudes have the fame ratio which their equimultiples have d; as the triangle \(A B C\) is to the triangle \(A C D\), fo \({ }^{\text {c }} 4\) s. r. is the parallelogram EC to the parallelogram CF : And becaufe it has been hown, that, as the bafe BC is to the bafe CD , fo is the triangle ABC to the triangle ACD ; and as the triangle \(A B C\) is to the triangle \(A C D\), fo is the parallelogram EC to the parallelogram CF ; therefore, as the bafe BC is to the bafe CD , fo is e the parallelogram EC to the parallelogram CF. Where- eir.s. fore triangles, \&c. Q. E.D.

Cor. From this it is plain, that triangles and parallelograms that have equal altitudes, are one to another as their bafes.

Let the figures be placed fo as to have their bafes in the fame ftraight line; and having drawn perpendiculars from the vertices of the triangles to the bafes, the ftraight line which joins the vertices is parallel to that in which their bafes are f , be-f \(\mathrm{f}_{3 \mathrm{j}}\). x. caufe the perpendiculars are both equal and parallel to one another. Then, if the fame conftruction be made as in the propofition, the demonftration will be the fame.

\section*{PROP. II. THEOR.}

IF a ftraight line be drawn parallel to one of the fides See N: of a triangle, it fhall cut the other fides, or thofe produced, proportionally: And if the fides, or the fides produced, be cut proportionally, the ftraight line which joins the points of fection fhall be parallel to the remaining fide of the triangle.

Let DE be drawn paralled to BC , one of the fides of the triangle \(\mathrm{ABC}: \mathrm{BD}\) is to DA , as CE to EA.

Join \(\mathrm{BE}, \mathrm{CD}\); then the triangle BDE is equal to the triangle CDE a, becaufe they are on the fame bafe DE , and be- a 37. r. tween the fame parallels \(\mathrm{DE}, \mathrm{BC}: \mathrm{ADE}\) is another triangle, and equal magnitudes have to the fame, the fame ratio \({ }^{\text {b }}\); there- b 7.5 . fore, as the triangle BDE to the triangle ADE , fo is the triangle CDE to the triangle ADE; but as the triangle BDE to the triangle ADE , fo is c BD to DA , becaufe having the fame cr. 6 . altitude, viz. the perpendicular drawn from the point E to AB , they are to one another as their bafes; and for the fame reafon,

Book ti as the triangle CDE to the triangle ADE , fo is CE to EA. (Therefore, as BD to DA, fo is CE to EAd.
dif. 5. Next, Let the fides \(A B, A C\) of the triangle \(A B C\), or thefe

produced, be cut proportionally in the points \(\mathrm{D}, \mathrm{E}\), that is, fo that BID be. to DA , as CE to EA , and join DE ; DE is paral. lel to BC.

The fame conftruction being made, Becaufe as BD to DA, fo is CE to EA; and as BD to. DA, fo is the triangle BDE to the triangle \(A D E e\); and as CE to EA, fo is the triangle CDE to the triangle ADE ; therefore the triangle BDE is to the triangle ADE , as the triangle CDE to the triangle ADE ; that is, the triangles \(\mathrm{BDE}, \mathrm{CDE}\) have the fame ratio to the triangle ADE ; and thetefore \(f\) the triangle BDE is equal to the triangle CDE: and they are on the fame bafe DE ; but equal triangles on the fame bafe are between the fame parallels \(g\); therefore DE is parallel to BC. Wherefore, if a ftraight line, \&zc. Q. E. D.

\section*{PROP. III. THEOR.}

See \(\mathrm{N}_{6}\) F the angle of a triangle be divided into two equal angles, by a ftraight line which allo cuts the bafe ; the fegments of the bafe fhall have the fame ratio which the other fides of the triangle have to one another: And if the fegments of the bale have the fame ratio which the other fides of the triangle have to one another, the ftraight line drawn from the vertex to the point of fection, divides the vertical angle into two equal angles.

Let the angle BAC of any triangle ABC be divided into two equal angles by the ftraight line \(A D: B D\) is to \(D C\) as \(B A\) to \(A C\). Throug!

Through the point C draw CE parallel a to DA, and let BA produced meet CE in E. Becaule the ftraight line AC meets the parallels AD, EC, the angle ACE is equal to the alternate a \({ }^{31 . \mathrm{I} .}\) angle CAD b : Bat CAD, by the hypothefis, is equal to the b29. r. angle BAD ; wherefore BAD is equal to the angle ACE . Again, becaufe the ftraight line BAE meets the parallels AD, EC, the outward angle BAD is equal to the inward and oppofite angle AEC: But the angle ACE has been proved equal to the angle \(B A D\); therefore alfo \(A C E\) is equal to the angle AEC , and confequently
 the fide AE is equal to the fide \(\mathrm{c} A \mathrm{C}\) : And becaufe AD is drawn parallel to one of the c 6 . I . fides of the triangle \(B C E\), viz. to \(E C, B D\) is to \(D C\), as \(B A\) to \(A E d\); but \(A E\) is equal to \(A C\); therefore, as \(B D D C\), fo is \(d 2.6\). BA to AC e.

Let now BD be to DC , as BA to AC , and join AD ; the angle BAC is divided into two equal angles by the ftraight line AD.

The fame contruction being made; becaufe, as \(B D\) to \(D C\), fo is BA to AC ; and as BD to DC, fo is BA to AE d, becaufe \(A D\) is parallel to \(E C\); therefore \(B A\) is to \(A C\), as \(B A\) to \(A E f: f\) ir. s: Confequently \(A C\) is equal to \(A E\) g, and the angle AEC is there- g 9.5 . fore equal to the angle ACE \(h\) : But the angle AEC is equal to h \(5 . \mathrm{r}\). the outward and oppofite angle BAD ; and the angle ACE is equal to the alternate angle CAD : : Wherefore alfo the angle BAD is equal to the angle CAD : Therefore the angle BACis cut into two equal angles by the ftraight line \(A D\). Therefore, if the angle, \&c. C. E. D.

\section*{PROP. A. THEOR.}

\(I^{F}\)F the outward angle of a triangle made by producing one of its fides, be divided into two equal angles, by a firaight line which alfo cuts the bafe produced; the fegments betweeen the dividing line and the extremities of the bafe have the fame ratio which the other fides of the triangle have to one another : And if the fegments of the bafe produced, have the fame ratio which the other fides of the triangle have, the ftraight line drawn from the vertex to the point of feetion divides the outward angle of the triangle into two equal angles.

Let the outward angle CAE of any triangle \(A B C\) be divided into two equal angles by the ftraight line AD which meets the baie produced in \(D: B D\) is to \(D C\), as \(B A\) to \(A C\).

Through C draw CF parallel to \(A D\) a ; and becaufe the ftraight
line \(A C\) meets the parallels \(A D, F C\), the angle \(A C F\) is equal
a 3 I. I.
b 29. I. to the aiternate angle CAD h: But CAD is equal to the angle c Hyp. DAE c; therefore alfo DAE is equal to the angle ACF. Again, becaufe the ftraight line FAE meets the parallels AD, FC, the outward angle DAE is equal to the inward and oppofite angle CFA: But the angle ACF has been proved equal to the angle DAE; therefore alfo the angle ACF is equal to the angle CFA, and confequently the fide AF is equal to the fide

d 6. r. ACd: And becaufe AD is parallel to FC, a fide of the triangle \(\mathrm{BCF}, \mathrm{BD}\) is to DC , as BA to AFe ; but AF is equal to AC ; as therefore BD is to DC, fo is BA to AC.

Let now \(B D\) be to \(D C\), as \(B A\) to \(A C\), and join \(A D\); the angle CAD is equal to the angle DAE.

The fame conftruction being made, becaufe BD is to DC , fir. 5 . as BA to AC ; and that BD is alfo to DC , as BA to AF ;
g 9.5 .
h 5. I.
c 2.6 . thetefore \(B A\) is to \(A G\), as \(B A\) to \(A F g\); wherefore \(A C\) is equal to \(A F h\), and the angie \(A F C\) equal \({ }^{h}\) to the angle \(A C F\) : But the
the angle AFC is equal to the outward angle EAD, and the angle ACF to the alternate angle CAD ; therefore alfo EAD is equal to the angle CAD. Wherefore, if the outward, \&c. Q.E. D.

\section*{PROP. IV. THEOR.}

THE fides about the equal angles of equiangular triangles are proportionals; and thofe which are oppofite to the equal angles are homologous fides, that is, are the antecedents or confequents of the ratios.

Let \(A B G\), DCE be equiangular triangles, having the angle \(A B C\) equal to the angle \(D C E\), and the angle \(A C B\) to the angle DEC, and confequently a the angle BAG equal to the angle a 32 . \(r_{0}\) CDE. The fides about the equal angles of the triangles \(A B C\), DCE are proportionals; and thofe are the homologous fides which are oppofite to the equal angles.

Let the triangle DCE be placed, fo that its fide CE may be contiguous to BC , and in the fame fraight line with it: And becaufe the angles \(A B C, A C B\) are together lefs than two right angles \(b, A B C\), and \(D E C\), which is equal to ACB , are alfo lefs than two right angles; wherefore BA , ED produced fhall meet \({ }^{c}\); let them be produced and meet in the point \(F\) : And becaufe the angle \(A B C\) is equal to the angle \(1 \mathrm{CE}, \mathrm{BF}\) is parallel d to CD. Again, becaufe the angle \(A C B\) is equal to the angle DEC, AG is parallel to FEd:

Therefore FACD is a parallelograin \({ }^{\text {a }}\) and confequently \(A F\) is equal to \(C D\), and \(A C\) to \(F D\) e: And becaufe \(A C\) is parallel to \(c 34\). ro FE, one of the fides of the triangle FBE, BA is to AF, as BC to CE f : But AF is equal to CH ; therefore \(g\), as BA to \(\mathrm{CD}, \mathrm{f}\) 2. 6 . fo is \(B C\) to \(C E\); and alternately, as \(A B\) to \(B C\), fo is DC to 8.50 CE b: Again, becaufe CD is parallel to BF , as BC to CE , fo is FD to DE \(f\); but FD is equal to AC ; therefore, as BC to CE , fo is AC to DE : And alternately, as BC to CA, fo CE to DE : Therefore, becaufe it has been proved that \(A B\) is to \(B C\), as \(1 C\) to \(C E\), and as \(B C\) to \(C A\), fo \(C E\) to ED. ex equaii \({ }^{1}\), BA is to h 22.5 . \(A C\) as \(C D\) to DE. Therefore the fides, \& C . Q. E. D.

L PROP。

\section*{PROP. V. THEOR.}

IF the fides of two triangles, about each of their angles, be proportionals, the triangles thall be equiangular, and have their equal angles oppofite to the homologous fides.

Let the triangles \(\mathrm{ABC}, \mathrm{DEF}\) have their fides proportionals, fo that \(A B\) is to \(B C\), as \(D E\) to EF ; and \(B C\) to CA , as EF to FD ; and confequently, ex æquali, BA to AC , as ED to DF; the triangle ABC is equiangular to the triangle DEF, and their equal angles are oppofite to the homologous fides, viz. the angle ABC equal to the angle DEF, and BCA to EFD, and alfo BAC to EDF. ing angle \(B A C\) is equal to the remaining angle \(E G F b\), and the triangle ABC is therefore equiangular to the triangle GEF; and confequently they have their fides oppofite to the equal angles pro-
ca. 6. portionals \({ }^{c}\). Wherefore, as
 AB to BC , fo is GE to EF;
dir. 5. but as \(A B\) to \(B C\), fo is \(D E\) to \(E F\); therefore as DE to \(E F\), fo d GE to EF : Therefore DE and GE have the fame ratio to EF, e 9 5. and confequently are equal e: For the fame reafon, DF is equal to YG: And becaufe, in the triangles DEF, GEF, DE is equal to EG, and EF common, the two fides DE, \(E F\) are equal to the two GE, EF, and the bafe DF is equal to the bafe GF;
f 8. r. therefore the angle DEF is equal fo the angle GEF, and the other angles to the other angles which are fubtended by the e-
g4. r. qual fides \(£\). Wherefore the angle DFE is equal to the angle GFE, and EDF to EGF: And becaufe the angle DEF is equal to the angle GEF, and GEF to the angle \(A B C\); therefore the angle \(A B C\) is equal to the angle \(D E F:\) For the fame reafon, the angle \(A C B\) is equal to the angle DFE, and the angle at \(A\) to the angle at \(D\). Therefore the the triangle \(A B C\) is equiangular to the triangle DEF. Wherefore, if the fides, \&c, Q.E.D.

\section*{PROP. VI. THEOR.}

筫F two triangles have one angle of the one equal to one angle of the other, and the fides about the equal angles proportionals, the triangles fhall be equiangular, and fhall have thofe angles equal which are oppofite to the homologous fides.

Let the triangles \(A B C, D E F\) have the angle \(B A C\) in the one equal to the angle EDF in the other, and the fides about thofe angles proportionals; that is, BA to AC , as ED to DF ; the triangles \(\mathrm{ABC}, \mathrm{DEF}\) are equiangular, and have the angle ABC equal to the angle DEF, and ACB to DFE.

At the points \(\mathrm{D}, \mathrm{F}\), in the fraight line DF , make a the angle \({ }^{2} 23\). I. FDG equal to either of the angles BAC, EDF ; and the angle DFG equal to the angle ACB : Wherefore the remaining angle at \(B\) is equal to the remaining one at \(G \cdot b\), and confequently the triangle ABC is equiangular to the triangle DGF; and therefore as BA to AC, fo is CGD to DF : But, by the hy-

b 32. I.
c 4.6. pothefis, as BA to AC , fo is ED to DF ; as therefore ED to \(D F\), fo is \(d\) GD to \(D F\); wherefore ED is equal e to \(D G\); and d \(\mathbf{I r} .5\). DF is common to the two triangles EDF, GDF : Therefore the e9.5two fides \(E D, D F\) are equal to the two fides GD, DF ; and the angle EDF is equal to the angle GDF; wherefore the bafe EF is equal to the bafe \(F G\) f, and the triangle \(E D F\) to the triangle \(f_{4}\). \(\mathbf{x}\) : GDF, and the remaining angles to the remaining angles, each to each, which are fubtended by the equal fides: Therefore the angle \(D F G\) is equal to the angle \(D F E\), and the angle at \(G\) to the angle at E : But the angle DFG is equal to the angle ACB; therefore the angle ACB is equal to the angle DFE: And the angle BAC is equal to the angle EDF g ; wherefore alfo the re- g Hyp. maining angle at \(B\) is equal to the remaining angle at \(E\). Therefore the triangle \(A B C\) is equiangular to the triangle \(D E F\). Wherefore, if two triangles, \&c. Q.E.D.

PROP.

\section*{THE ELEMENTS}

\section*{PROP. VII. THEOR.}

Becing

IF two triangles have one angle of the one equal to one angie of the other, and the fides about two other angles proportonals, then, if each of the remaining aniles be ether lefs, or not lefs, than a right angle; or if one of them be a right angle: The triangles fhall be equiangular, and have thofe angles equal about which the ficies are proportionals.

Let the two triangles \(\mathrm{ABC}, \mathrm{DEF}\) have one angle in the one equal to one angle in the other, viz. the angle \(B A C\) to the angle EDF, and the fides about two other angles \(A B C, D E F\) proportionals, fo that \(A B\) is to \(B C\), as \(D E\) to \(E F\); and, in the firft cafe, let each of the remaining angles at \(\mathrm{C}, \boldsymbol{F}\) be lefs than a right angle. The triangle ABC is equiangular to the triangle DEF , viz. the angle ABC is equal to the angle DEF, and the remaining angle at \(C\) to the remainitig angle at \(F\).

For, if the angles \(A B C, D E F\) be not equal, one of them is greater than the other: let ABC be the greater,' and at the point \(B\), in the ftraight line \(A B\), make the angle \(A B G\) angle DEF ; the remaining
 angle \(A G B\) is equal \(b\) to the remaining angle DFE: Therefore the triangle ABG is equi-
c 4.6. angular to the triangle DEF; wherefore c as AB is to BG , fo is DE to EF ; but as DE to EF, fo. by hypothefis, is AB to BC ; d if. 5 .
e 9.5 .
f 5.1.

I 13.1 therefore as \(A B\) to \(B C\), fo is \(A B\) to \(B G\) d and becaufe \(A B\) has the fame ratio to each of the lines \(B C, B G ; B C\) is equal e to \(B G\), and therefore the angle \(B G C\) is equal to the angle And becaufe the angle à \(A\) is equal to the angle at \(D\), and the angle ABG to the
fore the angles \(\mathrm{ABC}, \mathrm{DEF}\) are not unequal, that is, they are Book Vr. equal : And the angle at \(A\) is equal to the angle at \(D\); wherefore the remaining angle at \(C\) is equal to the remaining angle at \(F\) : Therefore the triangle \(A B C\), is equiangular to the triangle DEF.

Next, Let each of the angles at \(\mathrm{C}, \mathrm{F}\) be not lefs than a right angle : The triangle ABC is alfo in this cafe equiangular to the triangle DEF.

The fame conftruction being made, it may be proved in like manner that BC is equal to \(B G\), and the angle at C equal to the angle BGC: But the angle at C is not lefs than a right
 angle ; therefore the angle BGC is not lefs than a right angle: Wherefore two angles of the triangle BGC are together not lefs than two right angles, which is impoffible \({ }^{h}\); and therefore the triangle \(A B C\) may be \(\mathrm{h} \% . \mathbf{I}_{\mathrm{h}}\) proved to be equiangular to the triangle DEF , as in the firft cafe.

Laftly, Let one of the angles at \(\mathrm{C}, \mathrm{F}\), viz. the angle at C , be a right angle; in this cafe likewife the triangle \(A B C\) is \(e_{-}\) quiangular to the triangle DEF.

For, if they be not equiangular, make, at the point \(B\) of the ftraight line \(A B\), the angle \(A B G\) equal to the angle DEF ; then it may be proved, as in the firft cafe, that \(B G\) is equal to \(B C\) : But the angle \(B C G\) is a right angle, therefore \({ }^{i}\) the angle \(B G C\) is alfo a right angle; whence two of the angles of the triangle \(B G C\) are together not lefs than two right angles, which is impofible h : Therefore the triangle \(A B C\) is equiangular to the triangle DEF. Wherefore, if two triangles, \&c. O. E. D.

PROP.

\section*{PROP. VIII. THEOR.}

See N. N a right angled triangle, if a perpendicular be drawn from the right angle to the bafe; the triangles on each fide of it are fimilar to the whole triangle, and to one another.

Let \(A B C\) be a right angled triangle, having the right angle BAC ; and from the point A let AD be drawn perpendicular to the bafe BC: The triangles ABD, ADC are fimilar to the whoie triangle \(A B C\), and to one another.

Becaufe the angle \(B A C\) is equal to the angle \(A D B\), each of them being a right angle, and that the angle at \(B\) is common to the two triangles \(A B C\), \(A B D\); the remaining angle \(A C B\) is equal to the remaining angle \(B A D{ }^{\text {a }}\) : Therefore the triangle \(A B C\) is equiangular to the triangle ABD , and the fides about their equal angles
b 4. 6: are proportionals b ; wherefore

c. def. 6. the triangles are fimilar \({ }^{c}\) : In the like manner it may be demonftrated, that the triangle ADC is equiangular and fimilar to the triangle ABC : And the triangles \(\mathrm{ABD}, \mathrm{ADC}\), being both equiangular and fimilar to ABC , are equiangular and fimilar to each other. Therefore, in a righ: angled, \&c. Q. E. D.

Cor. From this it is manifeft, that the perpendicular drawn from the right angle of a right angled triangle to the bafe, is a mean proportional between the fegments of the bafe: And alfo, that each of the fides is a mean proportional between the bafe, and its fegment adjacent to that fide: Becaufe in the triangles \(\mathrm{BDA}, \mathrm{ADC}, \mathrm{BD}\) is to DA , as DA to \(\mathrm{DC} \mathrm{b}^{\mathrm{b}}\); and in the triangles \(\mathrm{ABC}, \mathrm{DBA}, \mathrm{BC}\) is to BA , as BA to BD b ; and in the triangles \(\mathrm{ABC}, \mathrm{ACD}, \mathrm{BC}\) is to CA , as CA to \(\mathrm{CD}^{\mathrm{b}}\).
PROP.IX. PROB.

FROM a given ftraight line to cut off any part re- See N. quired.

Let \(A B\) be the given flraight line; it is required to cut off any part from it.

From the point A draw a fraight line AC making any angle with \(A B\); and in \(A C\) take any point \(D\), and take \(A C\) the fame multiple of \(A D\), that \(A B\) is of the part which is to be cut off from it; join BC, and draw DE parallel to it : Then AE is the part required to be cut off.

Becaufe ED is parallel to one of the fides of the triangle ABC , viz. to BC , as CD is to DA, fo is a BE to EA; and, by compofition b, CA is to AD , as BA to AE : But CA is a multiple of AD ; therefore c BA is the fame multiple of \(A E\) : Whatever part therefore \(A D\) is of \(A C, A E\) is the fame
 part of \(A B\) : Wherefore, from the ftraight line \(A B\) the part required is cut off. Which was to be done.

\section*{PROP. X. PROB.}

TOdivide a given ftraight line fimilarly to a given divided fraight line, that is, into parts that flall have the fame ratios to one another which the parts of the divided given fraight line have.

Let \(A B\) be the ftraight line given to be divided, and \(A C\) the divided line; it is required to divide \(A B\) fimilarly to \(A C\).

Let \(A C\) be divided in the points \(D, E\); and let \(A B, A C\) be placed fo as to contain any angle, and join \(B C\), and through the points \(D, E\), draw a \(D F, E G\) parallels to it; and through \(D\) a 3 r. r. draw DHK parallel to AB : Therefore each of the figures FH , HB , is a parallelogram; wherefore DH is equal \(b\) to FG , and b 34. I.

Bonk Vt. HK to GB: And becaufe HE is paraliel to KC, one of the fides of the triangle DKO, as CE to ED, to is c KH to HD : But KH is equal to BG , and HD to GF ; therefore, as CE to ED, fo is BG to GF: Again, becaufe \(F D\) is parallel to \(\mathbb{E G}\), one of the fides of the triangle AGE, as ED to DA, fo is GF to FA: But it has
 been proved that CE is to ED, as BG to GF ; and as ED to DA, fo GF to FA: Therefore the given ftraight line AB is divided fimilarly to AC . Which was to be done.

\section*{PR O P. XI. PROB.}

TO find a third proportional to two given ftraight
liñes.
Let \(A B, A C\) be the two given ftraight lines, and let them be placed fo as to contain aur angle; it is required to find a third proportional to \(A B\), AC.

Produce \(\mathrm{AB}, \mathrm{AC}\) to the points \(\mathrm{D}, \mathrm{E}\); and make \(B D\) equal to \(A C\); and having joined BC , through D , draw DE parallel to
इ3I. I. it a.
Becaufe RC is parallel to DE, a fide of
b2.6. the triangle \(A D E, A B\) is b to \(B D\), as \(A C\) to \(C E\) : But \(B D\) is equal to \(A C\); as therefore
 \(A B\) to \(A C\), fo is \(A C\) to CE. Wherefore to the two given ftraight lines \(\mathrm{AB}, \mathrm{AC}\) a third proportional CE is found. Which was to be done.
PROP. XII. PROB.

THO
find a fourth proportional to three given ftraight lines.

Let \(A, B, C\) be the three given ftraight lines; it is required to find a fourth proportional to \(A, B, C\).

Take two ftraight lines \(\mathrm{DE}, \mathrm{DF}\), containing any angle EDF; Eook Vi. and upon thefe make. DG equal to \(A, G E\) equal to \(B\), and DH equal to C ; and having joined GH, draw EF parallei a to it through the point E: And becaufe GH is paraliel to EF, one of the fides of the triangle DEF, \(D G\) is to GE, as DH to HF \({ }^{\mathrm{b}}\); but DG is equal to \(\mathrm{A}, \mathrm{GE}\) to B , and DH to C ;
 therefore, as A is to B , fo is C to HF. Wherefore to the three given fraight lines, \(\mathrm{A}, \mathrm{B}, \mathrm{C}\) a fourth proportional HH is found. Which was to be done.

\section*{PROP. XIII. PROB.}

TO find a mean proportional between two given ftraight lines.

Let \(\mathrm{AB}, \mathrm{BC}\) be the two given ftraight lines; it is required to find a mean proportional between them.

Place \(\mathrm{AB}, \mathrm{RC}\) in a ftraight line, and upon AC defcribe the femicircle ADC , and from the point B draw \({ }^{\mathrm{a}} \mathrm{BD}\) at right angles to \(\dot{A} G\), and join \(\mathrm{AD}, \mathrm{DC}\).

Becaufe the angle \(A D C\) in a femicircle is a right angle \({ }^{b}\), and becaufe in the right angled triangle \(\mathrm{ADC}, \mathrm{DB}\) is drawn from the right angle perpendicular to \(A\)
 the bafe, DB is a mean proportional between \(\mathrm{AB}, \mathrm{BC}\) the fegments of the bafe c : Therefore c Cor. 8.6. between the two given ftraight lines \(\mathrm{AB}, \mathrm{BC}\), a mean proportional DB is found. Which was to be done.

\author{
PROP.
}

\section*{Book VI.}

\section*{PROP. XIV. THEOR.}

EQUAL parallelograms which have one angle of the one equal to one angle of the other, have their fides about the equal angles reciprocally proportional: And parallelograms that have one angle of the one equal to one angle of the other, and their fides about the equal angles reciprocally proportional, are equal to one another.

Let \(A B, B C\) be equal paralielograms, which have the angles at B equal, and let the fides \(\mathrm{DB}, \mathrm{BE}\) be placed in the fame ftraight line; wherefore alfo \(\mathrm{FB}, \mathrm{BG}\) are in one ftraight line \({ }^{2}\); The fides of the parallelograms \(\mathrm{AB}, \mathrm{BC}\) about the equal angles, are reciprocally proportional ; that is, DB is to BE , as GB to BF.

Complete the parallelogram FE ; and becaufe the parallelogram \(A B\) is equal to \(B C\), and that FE is another parallelogram, AB is to FE , as BC to
b 7.5 . FE b: But as \(A B\) to \(F E\), fo is
c r. 6. the bafe DB to BE c; and, as \(B C\) to FE , fo is the bafe GB to BF ; therefore, as DB to BE ,
din. 5. fo is GB to BF d. Wherefore, the fides of the parallelograms
 \(\mathrm{AB}, \mathrm{BC}\) about their equal angles are reciprocally proportional.

But, let the fides about the equal angles be reciprocally proportional, viz. as DB to BE , fo GB to BF ; the parallelogram \(A B\) is equal to the parallelogram \(B C\).

Becaufe, as DB to BE, fo is GB to BF ; and as DB to BE , fo is the parallelogram AB to the parallelogram FE ; and as GB to BF , fo is the parallelogram BC to the parallelogram FE ; therefore as \(A B\) to \(F E\), fo \(B C\) to \(F E d\) : Wherefore the parallelogram \(A B\) is equal eto the parallelogram \(B C\). Therefore equal parallelograms, \&c. Q. E. D.

R R O P.

\author{
PROP. XV. THEOR.
}

EQUAL triangles which have one angle of the one equal to one angle of the other, have their fides about the equal angles reciprocally proportional: And triangles which have one angle in the one equal to one angle in the other, and their fides about the equal angles reciprocaily proportional, are equal to one another.

Let \(\mathrm{ABC}, \mathrm{ADE}\) be equal triangles, which have the angle BAC equal to the angle DAE ; the fides about the equal angles of the triangles are reciprocally proportional ; that is, CA is to AD , as EA to AB .

Let the triangles be placed fo that their fides \(\mathrm{CA}, \mathrm{AD}\) be in one ftraight line; wherefore alfo EA and AB are in one ftraight line \({ }^{2}\); and join \(B D\). Becaufe the triangle \(A B C\) is e- a \(\mathrm{I}_{4}\). \(\mathrm{I}_{0}\) qual to the triangle ADE , and that ABD is another triangle; therefore as the triangle CAB is to the triangle BAD , fo is triangle EAD to triangle DAB b: But as triangle CAB to triangle BAD , fo is the bafe CA to \(\mathrm{AD} c\); and as triangle EAD to triangle DAB, fo is the bafe EA to \(A B c\); as therefore \(C A\) to \(A D\), fo is \(E A\) to \(A B\) d;
 wherefore the fides of the triangles \(\mathrm{ABC}, \mathrm{ADE}\) about the equal angles are reciprocally proportional.

But let the fides of the triangles \(\mathrm{ABC}, \mathrm{ADE}\) about the equal angles be reciprocally proportional, viz. CA to AD , as EA to \(A B\); the triangle \(A B C\) is equal to the triangle \(A D E\).

Having joined BD as before; becaufe, as CA to AD , fo is EA to \(A B\); and as \(C A\) to \(A D\), fo is triangle \(A B C\) to triangle BAD ; and as EA to AB , fo is triangle EAD to triangle \(B A D c\); therefore \(d\) as triangle \(B A C\) to triangle \(B A D\), fo is triangle EAD to triangle BAD ; that is, the trangles \(\mathrm{BAC}, \mathrm{EAD}\) have the fame ratio to the triangle BAD: Wherefore the triangle \(A B C\) is equal \(e\) to the triangle \(A D E\). Therefore equal eg.5. triangles, \&c. Q.E. D.

\section*{PROP. XVI. THEOR.}

IF four ftraight lines be proportionals, the rectangle contained by the extremes is equal to the rectangle contained by the means : And if the rectangle contained by the extremes be equal to the rectangle contained by the means, the four ftraight lines are proportionals.

Let the four ftraisht lines, \(\mathrm{AB}, \mathrm{CD}, \mathrm{E}, \mathrm{F}\) be proportionals, viz. as AB to CD fo E to F ; the rectangle contained by AB , \(F\) is equal to the rectangle contained by \(\mathrm{CD}, \mathrm{E}\).
2 II. I.
From the points \(\mathrm{A}, \mathrm{C}\) draw a \(\mathrm{AG}, \mathrm{CH}\) at right angles to \(A B, C D\); and make \(A G\) equal to \(F\), and \(C H\) equal to \(E\), and complete the parallelograms \(\mathrm{BG}, \mathrm{DH}\) : Becaufe, as AB to CD , fo is \(E\) to \(F\); and that \(E\) is equal to \(C H\), and \(F\) to \(A G ; A B\) is b to CD, as CH to \(A G\) : Therefore the fides of the parallelograms \(B G, D H\) about the equal angles are reciprocally proportional ; but parallelograms which have their fides about equal angles reciprocally proportional, are equal to one another \({ }^{\mathrm{c}}\); therefore the parallelogram \(B G\) is equal to the parallelogram DH : And the parallelogram BG is contained by the ft raight lines \(\mathrm{AB}, \mathrm{F}\); becaufe \(A G\) is equal to \(F\); and the parallelog:am DH is contained by CD and E; bccaufe GH is equal to E : Therefore the rectangle contained by the ftraight lines \(A B, F\) is equal to that which is con-
 tained by CD and E.

And if the rectangle contained by the ftraight lines \(A B, F\) be equal to that which is contained by \(C D, E\); the fe four lines are proportionals, viz. \(A B\) is to \(C D\), as \(E\) to \(F\).

The fane conftruction being-made, becaufe the rectangle contained by the fraight lines \(\mathrm{AB}, \mathrm{F}\) is equal to that which is contained by \(\mathrm{CD}, \mathrm{E}\), and that the rectangle I G is contained by \(A B\), \(F\), becaufe \(A G\) is equal to \(F\); and the rectangle \(D H\) by \(C D, E\), becaufe \(\mathbf{C H}\) is equal to \(\mathbf{E}\); therefore the paral'elogram BG is equal to the parallelogram DH ; and they are equiangu-
lar: But the fides about the equal angles of equal parallelo. Book vi. grams are reciprocally proportional c : Wherefore, as \(A 13\) to \(C D\), fo is \(C H\) to \(A G\); and \(C H\) is equal to \(E\), and \(A G\) to \(F\) : As \({ }^{\text {c } 14.0}\). therefore AB is to CD , fo E to F . Wherefore, if four, \&c. Q.E.D.

\section*{PROP. XVII. THEOR.}

IF three ftraight lines be proportionals, the rectangle contained by the extremes is equal to the fquare of the mean: And if the rectangle contained by the extremes be equal to the fquare of the mean, the three ftraight lines are proportionals.

Let the three Araight lines \(\mathrm{A}, \mathrm{B}, \mathrm{C}\) be proportionals, viz. as A to \(B\), fo \(B\) to \(C\); the rectangle contained by \(A, G\) is equal to the fquare of \(B\).

Take \(D\) equal to \(B\); and becaufe as \(A\) to \(B\), fo \(B\) to \(C\), and that \(B\) is equal to \(D ; A\) is a to \(B\), as \(D\) to \(C\) : But if four 7.50 ftraight lines be proportionals, the rectangle contained by the B extremes is equal to that which is contained by the means \({ }^{\mathrm{b}}\) : Therefore the rectangle contained by \(\mathrm{A}, \mathrm{C}\) is equal to that contained by \(\mathrm{B}, \mathrm{D}:\) But the rec-
 tangle contained by B , \(D\) is the fquare of \(B\); becaufe \(B\) is equal to \(D\) : Therefore the rectangle contained by \(\mathrm{A}, \mathrm{C}\) is equal to the fquare of B .

And if the rectangle contained by \(A, C\) be equal to the fquare of \(B\); \(A\) is to \(B\), as \(B\) to \(C\).

The fame conftruction being made, becaure the rectangle contained by \(\mathrm{A}, \mathrm{C}\) is equal to the fquare of B , and the fquare of \(B\) is equal to the rectangle contained by \(B, D\), becaufe \(B\) is equal to D ; therefore the rectangle contained by \(A, C\) is equal to that contained by \(\mathrm{B}, \mathrm{D}\) : But if the rectangle contained by the extremes be equal to that contained by the means, the four fraight lines are proportionals b : Therefore A is to B , as D to

Book VI. C ; but B is equal to D ; wherefore as A to B , fo B to C : Therefore, if three ftraight lines, \&c. Q. E. D.

\section*{PROP. XVIII. PROB.}
\(\operatorname{see} \mathrm{N}\).

TPON a given ftraight Tine to defcribe a rectilineal figure fimilar, and fimilarly fituated to a given rectilineal figure.

Let AB be the given ftraight line, and CDEF the given rectilineal figure of four fides; it is required upon the given ftraight line \(A B\) to defcribe a rectlineal figure fimilar, and fimilarly fituated to CDEF.

Join DF , and at the points \(\mathrm{A}, \mathrm{B}\) in the fraight line AB ,
23. 1 .
b32. 1 . make a the angle BAG equal to the angle at C , and the angle \(A B G\) equal to the angle \(C D F\); therefore the remaining angle CFD is equal to the remaining angle \(A G B\) b: Wherefore the triangle FCD is equiangular to the triangle GAB : Again, at the points \(\mathrm{G}, \mathrm{B}\) in the ftraight line \(G B\) make a the angle BGH equal to the angle DTE, and the angle GBH e-
 qual to FDE ; therefore the remaining angle FED is equal to the remaining angle GHB, and the triangle FDE equiangular to the triangle GBH: Then, becaufe the angle \(A G B\) is equal to the angle CFD, and BGH to DHE, the whole angle AGH is equal to the whole CFE: For the fame reafon, the angle \(A B H\) is equal to the angle CDE ; alfo the angle at A is equal to the angle at C , and the angle GHB to FED: Therefore the rectilineal figure ABHG is equiangular to CDEF: But likewife thefefigures have their fides
d \(22.5^{\circ}\) about the equal angles proportionals: Becaufe the triangles \(G A B\), FCD being equiangular, BA is con AG , as DC to CF ; and becaufe AG is to GB, as CF to ID ; and as GB to GH, fo, by reafon of the equiangular triangles \(\mathrm{BGH}, \mathrm{DFE}\), is FD to FE ; therefore, ex æquali d, AG is to GH , as CF to \(\mathrm{FE}: \ln\) the fame manier it may be proved that AB is to BH , as CD to DE : And GH is to HB, as FE to ED c. Wherefore, becaufe
the rectilineal figures \(\mathrm{ABHG}, \mathrm{CDEF}\) are equiangular, and have their fides about the equal angles proportionals, they are fimilar to one another e.

Book VI.

Next, let it be required to defcribe upon a given ftraight line AB , a rectilineal figure fimilar, and fimilarly fituated to the rectilineal figure CDKEF.

Join DE, and upon the given ftraight line AB defcribe the rectilineal figure ABHG fimilar, and fimilarly fituated to the quadrilateral figure CDEF, by the former cafe; and at the points \(\mathrm{B}, \mathrm{H}\) in the ftraight line BH , make the angle HBL equal to the angle EDK, and the angle BHL equal to the angle DEK; therefore the remaining angle at \(K\) is equal to the remaining angle at L : And becaufe the figures ABHG, CDEF are fimilar, the angle \(G H B\) is equal to the angle \(F E D\), and BHL is equal to DEK ; wherefore the whole angle GHL is equal to the whole angle FEK: For the fame reafon the angle ABL is equal to the angle CDK: Therefore the five fided figures AGHLB, CFEKD are equiangular ; and becaufe the figures \(\mathrm{AGHB}, \mathrm{CFED}\) are fimilar, GH is to HB , as FE to ED ; and as HB to HL, fo is ED to EK c ; therefore, ex æquali d, c 4.6 . GHI is to HL, as FE to EK: For the fame reafon, AB is to \(\mathrm{BL}{ }^{\mathrm{d}}{ }^{22.5}\) as CD to DK : And BL is to LH, as c DK to KE, becaufe the triangles BLH, DKE are equiangular: Therefore, becaufe the five fided figures AGHLB, CFEKD are equiangular, and have their fides about the equal angles proportionals, they are fimilar to one another: And in the fame manner a rectilineal figure of fix or more fides may be deferibed upon a given fraight line fimilar to one given, and fo on. Which was to be done.

\section*{PROP. XIX. THEOR.}

SImilar triangles are to one another in the duplicate ratio of their homologous fides.

Let \(\mathrm{ABC}, \mathrm{DEF}\) be fimilar triangles, having the angle B equal to the angle E , and let AB be to BC , as DE to EF , fo that the fide \(B C\) is homologous to \(E F\) a : the triangle \(A B C\) has to the a 12 . Def. 5 . triangle DEF, the duplicate ratio of that which BC has to EF.

Take BG a third proportional to BC, EF b, fo that \(B C\) is to \(b\) ri. 6 . \(E F\), as EF to BG , and join GA : Then, becaufe as \(A B\) to BC , fo DE to EF ; alternately \(\mathrm{c}, \mathrm{AB}\) is to DE , as BC to EF : But ci6. 5 .

Book VI. as BC to EF , fo is EF to BG ; therefore das AB to DE . fo is d 11.5 . \(E F\) to \(B G\) : Wherefore the fides of the triangles \(A B G, D E F\) which are about the equal angles, are reciprocally proportional: But triangles which have the fides about two equal angles reciprocally proportional are equal to one ano-
c 35.6
ther \(e\) : Therefore the triangle \(A B G\) is equal to the tria gie DEF: And becaufe as BC is to EF , fo EF to BG ; and that if three ftraight lines be pro-
 portionals, the firlt is
§ 10. Def, 5. . \(a\) aid \(f\) to have to the third the duplicate ratio of that which it has to the fecond ; BC therefore has to BG the duplicate ratio of
gr. 6. that which \(B C\) has to \(E F: B u t\) as \(B C\) to \(B G\), fo is \(s\) the triangle \(A B C\) to the triangle \(A B G\). Therefore the triangle \(A B C\) has to the triangle \(A B G\) the duplicate ratio of that which \(B C\) has to EF : But the triangle \(A B\) is equal to the triangle DEF; wherefore alfo the triangle ABC has to the triangle DEF the duplicate ratio of that which \(B C\) has to EF . Therefore fimilar triangles, \&c. Q.E.D.

Cor. From this it is manifeft, that if three ftraight lines be proportionals, as the firft is to the third, fo is any triangle upon the firft to a fimilar, and fimilarly defcribed triangle upon the fecond.

\section*{PROP. XX. THEOR.}

81Imilar polygons may be divided into the fame number of fimilar triangles, having the far e ratio to one another that the polygons have; and the polygons have to one another the duplicate ratio of that which their homologous fides have.

Let \(A B C D E, F G H K L\) be fimilar polygons, and let \(A B\) be the homologous fide to FG: The polygons ABCDE, FGHKL may be divided into the fame number of fimilar triangles, whereof each to each has the fame ratio which the polygons have; and the polygon ABCDE has to the polygon FGHKL the duplicate ratio of that which the fide \(A B\) has to the fide \(F G\).

Join BE, EC, GL, LH: And becaufe the polygon ABCDE is fimilar
iimilar to the polygon FGHKL, the angle BAE is equal to the Book VI. angle GFL a, and BA is to AE , as GF to FL a : Wherefore, becaufe the triangles ABE, FGL have an angle in one equal a . def. 6. to an angle in the other, and their fides about thefe equal angles proportionals, the triangle ABE is equiangular b , and there- b 6.6. fore fimilar to the triangle FGL \(c\); wherefore the angle \(A B E\) c 4.6 . is cqual to the angle \(\operatorname{FGL}\) : And, becaufe the polygons are fimilar, the whole angle ABC is equal a to the whole angle FGH ; therefore the remaining angle E.BC is equal to the remaining angle LGH: And becanfe the triangles ABE, FGL are fimilar, EB is to BA , as IG to GF a ; and alfo, becaufe the polygons are fimilar. AB is to BC , as FG to \(\mathrm{CH}^{2}\); therefore, ex æquali \(\dot{d}, \mathrm{LB}\) is to BC , as LG , to GE ; that is, the fides about the cqual angles EBC, LGH are proportionals; therefore \(\mathrm{d} d 22.5\). the triangle LBC is equiangular to the oriangle LGH, and imilartuitc. For the fume reafon, the triangle
ECD likewife is fimi. lar to the tri. angle LHI : Therefore
 the fimilar polygons ABCDE, FGLKLaredividedinto the fame number of fimilar triangles.

Alfo thefe triangles have, each to each, the fame ratio which the polygons have to one another, the antecedents being ABE , GBC , ECD, and the confenuents FGL, LGH, LHK: And the polygon ABCDE has to the polygon FGHIK the dupliate ratio of that which the fide \(A B\) luas to the homologous nide Fig.

Becaufe the triangle \(A B E\) is fimilat to the triangle \(F G L\), \(A B E\) has to FGL the duplicate ratio of that which the fide e 59.6 . BE has to the fide GL: For the fame reafon, the triangle BEC has to GLH tie duplicate ratio of that which BE has to GL: Therefore, \(2 s\) the triangle \(A B E\) to the triangle FCL, fo \(f\) is the f 1 H .5 . triangle BLC to the triangle GLH. Again, becaufe the triangle EBC is fimilar to the triaugle LCHE, EBC has to LGH he duplicate ratio of that which the fide EC has to the fide 1.4.: For the fane reafon, the triangle ECD has to the triangle

Book VI. LHK, the duplicate ratio of that which EC has to LH: As therefore the triangle EBC to the triangle LGH, fo is \(f\) the triangle ECD to the triangle LHK : But it has been proved that the triangle EBC is likewife to the triangle LGH, as the triangle ABE to the triangle FGL. Therefore, as the triangle ABE is to the triangle FGL, fo is triangle EBC to triangle LGH, and triangle ECD to triangle LHK: And therefore, as one of the anteccients to one of the confequents, fo are all the antecedents
g12. 5. to all the confequents g . Wherefore, as the triangle ABE to the triangle FGL, fo is the polygon \(A B C D E\) to the polygon FGHKL : Bat the triangle ABE has to the triangle FGL, the duplicate ratio of that which the fide AB has to the homologous fide FG. Therefore alfo the polygon ABCDE has to the polygon FGHKL the duplicate ratio of that which \(A B\) has to the homologous fide FG. Wherefore fimilar polygons, \&c. Q. E. D.

Cor. I. In like manner, it may be proved, that fimilar four fided figures, or of any number of fides, are one to another in the duplicate ratio of their homologous fides, and it has already been proved in triangles. Therefore, univerfally, iimilar rectilineal figures are to one another in the duplicate ratio of their homologous fides.

Cor. 2. And if to \(\mathrm{AB}, \mathrm{FG}\), two of the homologous fides, \(h\) io. def. 5. a third proportional \(M\) be taken, \(A B\) has \(h\) to \(M\) the duplicate ratio of that which \(A B\) has to \(F G\) : But the four fided figure or polygon upon \(A B\) has to the four fided figure or polygon upon FG likewife the duplicate ratio of that which \(A B\) has to \(F G\) : Therefore, as \(A B\) is to \(M\), fo is the figure upon \(A B\) to the fii Cof.19.6. gure uponFG, which was alfo proved in triangles i. Therefore, univerfally, it is manifeft, that if three ftraight lines be proportionals, as the firf is to the third, fo is any rectilineal figure upon the firft, to a fimilar and fimilarly defcribed rectilineal figure upon the fecond.

\section*{PROP. XXI. THEOR.}

REctifineal figures which are fimilar to the fame rectilineal figure, are alfo fimilar to one another.

Let each of the rectilineal figures \(A, B\) be fimilar to the rectilineal gigure C : The figure A is fimilar to the figure B .

Becaufe A is fimilar to C, they are equiangular, and alfo have their fides about the equal angles proportionals a Again, a I. def. Go becaufe \(B\) is fimilar to C , they are equiangular, and have their fides about the equal angles proportionals ā:Therefore the figures \(\mathrm{A}, \mathrm{B}\)
 are each of them equiangular to C , and have the fides about the equal angles of each of them and of C proportionals. Wherefore the rectilineal figures \(A\) and \(B\) are equiangular \({ }^{b}\), and have their fides about the \(b r\). \(A x\). s. equal angles proportionals \({ }^{c}\). Therefore \(A\) is fimilar ato \(B\), cir. so Q.E.D.

\section*{PROP. XXII. THEOR.}
F four ftraight lines be proportionals, the fimilar rectilineal figures fimilarly defcribed upon them fhall alo fo be proportionals ; and if the fimilar rectilineal figures fimilarly defcribed tupon four ftraight lines be proportionals, thofe ftraight lines fhall be proportionals.

Let the four ftraight lines \(\dot{A} B, C D, E F, G H\) be proporm tionals, viz. AB to CD , as EF to GH , and upon \(\mathrm{AB}, \mathrm{CD}\) let the finilar rectilineal figures KAB, LCD be fimilarly defcribed; and upon EF, GH the fimilar rectilineal figures MF, NH in like manner: The rectilincal figure KAB is to LGD, as MF to NH .
To \(\mathrm{AB}, \mathrm{CD}\) take a third propurtional a X ; and to EF , GH a II .6 . a third proportional O : And becaufe AB is to CD , as EF to GH, and that CD is t to X , as GH to O ; wherefore, ex \(\mathfrak{x}\) - b in. 5 . quali \(c\), as \(A B\) to \(X\), fo \(E F\) to \(O\) : But as \(A B\) to \(X\), fo is d the \(c\) 22. \(s\). \(\mathrm{M}_{2}\) rectilineai \(\begin{aligned} & \mathrm{d} 20 . \mathrm{c} \text {. } \\ & \text { a }\end{aligned}\)

Book VI. rectilineal KAB to the rectilineal LCD, and as EF to O, fo is
d the rectilineal MF to the rectilineal NH: Therefore, as KAB
d 2. Cor.
20.6.
bir. 5 .
e 12.6 . f 18.6 .

E9.5.

See N . to LCD, fo \(b\) is MF to NH.

And if the rectilineal KAB be to LCD, as MF to NH ; the ftraight line \(A B\) is to \(C D\), as EF to GH.
Make \({ }^{\mathrm{c}}\) as \(A B\) to \(C D\), fo \(E F\) to \(P R\), and upon PR defcribe \(f\) the rectilineal figure SR fimiliar and fimilarly fituated to either

of the figures \(\mathrm{MF}, \mathrm{NH}\) : Then, becaufe as AB to CD , fo is EF to \(P R\), and that upon \(A B, C D\) are defcribed the fimilar and fimilarly fituated rectilineals \(\mathrm{KAB}, \mathrm{LCD}\), and upon \(\mathrm{EF}, \mathrm{PR}\), in like manner, the fimilar rectilineals \(\mathrm{MF}, \mathrm{SR}\); KAB is to LCD, as MF to SR ; but, by the hypothefis, KAB is to LCD, as MF to NH; and therefore the rectilineal MF haviing the fame ratio to each of the two \(\mathrm{NH}, \mathrm{SR}\), thefe are equal g to one another: They are alfo fimilar, and fimilarly fituated; therefore GH is equal to PR : And becaufe as AB to CD , fo is EF to PR , and that PR is equal to \(\mathrm{GH} ; \mathrm{AB}\) is to CD , as EF to GH. If therefore four ftraight lines, \&c, Q. E. D.

> PROP. XXIH. THEOR.

EQuiangular parallelograms have to one another the ratio which is compounded of the ratios of their fides.

Let AC, CF be equiangular parallelograms, having the angle BCD equal to the angle ECG: The ratio of the parallelogram AC to the parallelogram CF , is the fame with the ratio which is compounded of the ratios of their fides.

Let BC, CG be placed in a flraight line; therefore DC and Book VI. CE are alfo in a ftraight line \({ }^{2}\); and complete the parallelogram DG; and, taking any ftraight line \(K\), make bas BC to CG, a 14. r. fo \(K\) to \(L\); and as DCito CE, fo make bL to MI: Therefore \({ }^{b}\) 12. \(G\). the ratios of K to L , and L to M , are the fame with the ratios of the fides, viz. of BC to CG, and DC to CE. But the ratio of K to M is that which is faid to be compounded c of the c A . def. 5. ratios of K to L , and L to M : Wherefore alfo K has to M the ratio compounded of the ratios of the fides: And becaufe as BC to \(C G\), fo is the parallelogram AC to the parallelogram CH ; but as BC to CG , to is K to L ; therefore K is c to L , as the parallelogram AC to the parallelogram C El: Again, becaufe as DC to CE, fo is the parallelogram CH to the parallelogram CF; but as DC to CE, fo is L to M ;
 wherefore \(L\) is \({ }^{e}\) to \(M\), as the parallelogram CH to the parallelogram CF : Therefore, fince it has been proved, that as K to L , fo is the parallelogram AC to the parallelogram CH ; and as L to M , fo the parallelogram CH to the pa:allelogran CF ; ex æquali \(\mathrm{f}, \mathrm{K}\) is to M , as the pa- f 22.5 . rallelogram AC to the parallelogram CF : But K has to M the ratio which is compounded of the ratios of the fides; therefore alfo the parallelogram AC has to the parallelogram CF the ratio which is compounded of the ratios of the fides. Wherefore equiangular parallelograms, \&c. Q.E.D.

\section*{PROP. XXIV. THEOR.}

THE parallelograms about the diameter of any pa- see N , rallelogram, are fimilar to the whole, and to one another.

Let ABCD be a parallelogram, of which the diameter is AC; and EG, HK the parallelograms about the diameter: The parallelograms, EG, HK are fimilar both to the whole parallelogram ABCD, and to one another.

Becaufe DC, GF are parallels, the angle ADC is equal \(\mathrm{a}^{\text {to }}\) a 29 . the angle AGF: For the fame reafon, becaufe BC, EF are pa-

Book Vi. rallels, the angle \(A B G\) is equal to the angle \(A E F\) : And eachs

Cb 34. I. of the angles \(B C D\), \(E F G\) is equal to the oppofite angle \(D A B\), and therefore are equal to one another, wherefore the parallelograms \(A B C D, A E F G\) are equiangular : And becaufe the angle \(A B C\) is equal to the angle \(A E F\), and the angle \(B A C\) common to the two triangles \(\mathrm{BAC}, \mathrm{EAF}\), they are equiangu-
c 4.6.
d 7.5. lar to one another; therefore e as \(A B\) to BC, fo is AE to EF : And becaufe the oppofite fides of parallelograms are equal to one another \(b, A B\) is \(c\) to \(A D\), as \(A E\) to \(A G\); and \(D C\) to \(C B\) as GF to FE ; and alfo CD to DA as FG to GA: Therefore the fides of the parallelograms ABCD, AEFGra-
 bout the equal angles are proportion- 1) als; and they are therefore fimilar to
e I. def. 6. one another e: For the fame reafon, the parallelogram ABCD is fimilar to the parallelogram FHCK. Wherefore each of the parallelograms \(\mathrm{GE}, \mathrm{KH}\) is fimilar to DB : But rectilineal fi-
£21. 6. gures which are fimilar to the fame rectilineal figure, are alfo fimilar to one another \({ }^{f}\); therefore the parallelogram \(G E\) is fio milar to KH. Wherefore the parallelograms, \&c. Q. E. D.

\section*{PROP. XXV. PROB.}

Been. TO defcribe a rectilineal figure which flall be fimilar to one, and equal to another given rectilineal figure.

Let \(A B C\) be the given rectilineal figure, to which the figure to be deferibed is required to be fimilar, and D that to which it muft be equal. It is required to defcribe a rectilineal figure fimilar to ABC , and equal to D .
\({ }^{3}\) Cor. 45 . r. Upon the fraight line \(B C\) defcribe a the parallelogram \(B E\) equal to the figure ABC ; alfo upon CE defcribe the paralle\(\operatorname{logram} C M\) equal to \(D\), and having the angle FCE equal to the angle CBL: Therefore BC and CF are in a ftraighe line b , as alfo LE and EM : Between BC and CF find c a mean proportional GH, and upon GH defcribed the rectilineal fi-
drs.6. gure KGH fimilar and fimilarly fituated to the figure ABC: And becaufe, RC is to GH as GH to CF, and if three fraight
c.2. Cor.
20. 6.
figure upon the firf to the fimilar and fimilarly defcribed fi- Book VI, gure upon the fecond; therefore as BC to CF, fo is the rectiJineal figure \(A B C\) to KGH : But as \(B C\) to CF , fo is \(f\) the pa- f . 6 . rallelogram BE to the parallelogram EF: Therefore as the rectilineal figure ABC is to KGH, fo is the parallelogram BE to the parallelogram \(\mathrm{EF} g\) : And the rectilineal figure \(\dot{A} B C\) is equal gir .

to the parallelogram BE ; therefore the rectilineal figure KGH is equal h to the parallelogram EF: But EF is equal to the fi-h \(14 . \mathrm{s}\). gure D ; wherefore alfo KGH is equal to D ; and it is fimilar to ABC . Therefore the rectilineal figure KGH has been defcribed fimilar to the figure \(A B C\), and equal to D. Which was to be done.

\section*{PROP. XXVI. THEOR.}

IFtwo fimilar parallelograms have a common angle, and be fimilarly fituated; they are about the fame diameter.

Let the parallelograms \(A B C D, A E F G\) be fimilar and fimilarly fituated, and have the angle DAB common. ABCD and. AEFG are about the fame diameter.

For, if not, let, if poffible the parallelogram \(B D\) have its diameter AHC in a different ftraight line from AF the diameter of the parallelogram EG, and let GF meet AHC in H ; and through H draw HK parallel to AD or BC: Therefore the parallelograms \(\mathrm{ABCD}, \mathrm{AKHG}\) being about the
 fame diameter, they are fimilar to one another a : Wherefore as \(\mathrm{DA}^{\prime}\) to AB , fo is \(\mathrm{b} G\) to \(\mathrm{AK}:\) a 24.6 . But becaufe ABCD and AEFG are fimilar parallelograms, b I. def. 60

c 1 I. 5 . d 9.5 .
as DA is to \(\mathrm{AB}, \mathrm{fo}\) is GA to AE ; therefore \({ }^{\mathrm{c}}\) as GA to AE, fo GA to AK; wherefore GA has the fame ratio to each of the ffraight lines \(\mathrm{AE}, \mathrm{AK}\); and confequently AK is equal d to AE , the lel's to the greater, which is impoffible: Therefore \(A B C D\) and \(A K H G\) are not about the fame diameter ; wherefore \(A B C D\) and AEFG muft be about the fame diameter. Therefore, if two fimlar, \&c. Q. E. D.
- To underftand the three following propofitions more eafily s it is to be obferved,
- I. That a parallelogram is faid to be applied to a ftraight
' line, when it is defcribed upon it as one of its fides. Ex. gr. - the parallelogram AC is faid to be applied to the ftraightline 6 AR.

6 2. But a parallelogram AE is faid to be applied to a ftraight - line \(A B\), deficient by a parallelogram, when \(A D\) the bafe of
- AE is lefs than AB , and there-
- fore AE is lefs than the paral-- lelogram AC defcribed upon - \(A B\) in the fame angle, and be' tween the fame parallels, by - the parallelogram \(D C\); and
- DG is therefore called the de-- fect of AE. ' 3. And a parallelogram AG is faid to be applied to a f raight - line \(A B\), exceeding by a parallelogram, when \(A F\) the bafe of - \(A G\) is greater than \(A B\), and therefore \(A G\) exceeds \(A C\) the ' parallelogram defcribed upon \(A B\) in the fame angle, and be-- tween the fame parallels, by the parallelogram BG.'

\section*{PROP. XXVII, THEOR.}
see N :

0F all parallelograms applied to the fame ftraight line, and deficient by parallelograms, fimilar and fimilarly fituated to that which is defcribed upon the half of the line; that which is applied to the half, and is fimilar to its defect, is the greateft.

Let \(A B\) be a ftraight line divided into two equal parts in \(C\), and let the parallelogram \(A D\) be applied to the half \(A C\), which is therefore deficient from the parallelogram upon the whole line AB by the parallelogram CE upon the other half CB: Of all the parallelograms applied to any other parts of AB ,

AB , and deficient by parallelograms that are fimilar, and fimi- Book VI. larly fituated to \(\mathrm{CE}, \mathrm{AD}\) is the greater.

Let AF be any parallelogram applied to AK , any other part of \(A B\) than the half, fo as to be deficient from the parallelogram upon the whole line \(A B\) by the parallelogram KH fimilar, and fimilarly fituated to \(\mathrm{CE} ; \mathrm{AD}\) is greater than AF .

First, let AK the bate of AF, be greater than AC the half of AB ; and because CE is fimilar to the parallelogram KH, they are about the fame diameter a: Draw their dameter DB , and complete the fcheme: Bc caufe the par. lelogram CF is equal \(b\) to FE , add KH to both, therefore the whole Cit is equal to the whole KE: But CH is equal c to CG, because the bale AC is equal to the bare CB ; therefore CG is equal to KE : To each of there add CF; then the
 whole \(A F\) is equal to the gnomon CHL: Therefore CE , or the parallelogram AD , is greater than the parallelogram AF .

Next, let AK the bare of AF, be leis than AC, and, the fame conftruction being made, the parallelogram \(D H\) is equal to \(D G c\), for HM is equal to MG d, because BC is equal to CA ; wherefore DH is greater than LG: Butt DH is equal b to DK ; therefore DK is greater than LG: To each of thee add AL; then the whole AD is greater than the whole AF. Therefore of all paralle. lograms applied, \&cc. Q. E. D.

\author{
PROP:
}

\author{
FROP. XXVIII, PROB.
}

See \(\mathbf{N}\).

\(T^{0}\)a given fraight line to apply a parallelogram equal to a given rectilineal figure, and deficient by a parallelogram fimilar to a given parallelogram: But the given rectilmeal figure to which the parallelogram to be applied is to be equal, muft not be greater than the parallelogram applied to half of the given line, having its defect fimilar to the defect of that which is to be applied; that is, to the given parallelogran.

Let \(A B\) be the given ftraight line, and \(G\) the given rectilineal figure, to which the parallelogram to be applied is required to be equal, which figure muft not be greater than the parallelogram applied to the half of the line having its defect from that upon the whole line fimilar to the defect of that which is to be applied; and let D be the parallelogram to which this defect is required to be fimilar. It is required to apply a parallelogram to the ftraight line \(A B\), which fhall be equal to the figure C , and be deficient from the parallelogram upon the whole line by a parallelogram fimilar to D.

Divide AB into two equal parts a in the point \(E\), and upon EB defcribe the parallelogram EEFG fimilar \(b\) and fimilarly fituated to \(D\), and complete the parallelogram AG, which muft either be e-
 qual to \(C\), or greater than it, by the determination : And if \(A G\) be equal to \(C\), then what was required is already done : For, upon the ftraight line \(A B\), the parallelogram \(A G\) is applied equal to the figure \(C\), and deficient by the parallelogram E.F fimilar to \(D\) : But, if \(A G\) be not equal to \(C\), it is greater that it ; and EF is equal to AG; therefore EF alfo is greater than C. Makec the parallelogram KLMN equal to the excefs of EF above \(C\), and fimilar and fimilarly fituated to D ; but D is fimilar to EF, therefore dalfo KM is fimilar to EF : Let KL
be the homologous fide to EG, and LM to GF : And becaufe Book Vr. EF is equal to C and KM together, EF is greater than KM ; therefore the ftraight line EG is greater than KL, and GF than LM : Make GX equal to LK, and GO equal to LM, and complete the parallelogram XGOP: Therefore XO is equal and fimilar to KM ; but KM is fimilar to EF ; wherefore alfo XO is fimilar to EF, and therefore XO and EF are about the fame diametere : Let GPB be their diameter, and complete the e 26.6. fcheme: Then becaufe EF is equal to C and KM together, and XO a part of the one is equal to KM a part of the other, the remainder, viz. the gnomon ERO, is equal to the remainder \(\mathbf{C}\) : And becaufe OR is equal f to XS , by adding SR to each, the \(\mathrm{f}_{34}\). r. whole \(O B\) is equal to the whole \(\mathrm{XB}:\) But XB is equal g to \(\mathrm{TE}, \mathrm{g}{ }^{36}\). r . becaufe the bafe AE is equal to the bafe EB.; wherefore alfo TE is equal to OB : Add XS to each, then the whole TS is equal to the whole, viz. to the gnomon ERO : But it has been proved that the gnomon ERO is equal to \(C\), and therefore alfo TS is equal to \(\mathbf{C}\). Wherefore the parallelogram TS, equal to the given rectilineal figure \(\mathbf{C}\), is applied to the given ftraight line AB deficient by the parallelogram SR , fimilar to the given one D , becaufe \(\mathrm{SP}_{2}\) is fimilar to EF h . Which was to be done, h 24.6 .

\section*{PROP. XXIX. PROB.}

TO a given ftraight line to apply a parallelogram e- \(\sec \mathrm{N}\). qual to a given rectilineal figure, exceeding by a parallelogram fimilar to another given.

Let \(A B\) be the given ftraightline, and \(C\) the given rectilineal figure to which the parallelogram to be applied is required to be equal, and \(D\) the parallelogram to which the excefs of the one to be applied above that upon the given line is required to be fimilar. It is required to apply a parallelogram to the given ftraight line \(A B\) which fhall be equal to the figure \(C\), exceeding by a parallelogram fimilar to \(D\).

Divide \(A B\) into two equal parts in the point \(E\), and upon EB defcribe a the parallelogram EL fimilar, and fimilarly fitua- a 18.6 .

Boon VI, ted to D : And make \({ }^{b}\) the parallelogram GH equal to EL and 826.6. fame diameter d :
fi. I . the parallelogram NB, that is, to BM f. Add NO to each;

B25. 6.
c 21.6 .

ع 36.1 .
\$54.6.
\(\rightarrow\) C together, and fimilar, and fimilarly fituated to \(D\); wherefore GH is imilar to EL c: Let KH be the fide homologous to FL, and KG to FE: And becaufe the paraliclogram GH is greater than EL, therefore the fide KH is greater than FL, and KG than FE: Produce FL and FE, and make. FLM equal to KH, and FLN to KG, and complete the parallelogram MN. MN is therefore equal and fimilar to CiII; but GH is fimilar to EL; wherefore MN is fimilar to EL, and confequently EL and MN are about the Draw their diameter FX, and complete the fcheme. Therefore, fince GH is equal to ELand Ctogether, and that GH
 is equal to MN; MN is equal to EL and \(C\) : Take away the common part EL; then the remainder, viz. the gnomon NOL is equal to C . And therefore the whole, viz. the parallelogram AX, is equal to the gnomon NOL. But the gnomon NOL is equal to C ; therefore aifo \(A X\) is equal to \(C\). Wherefore to the traight line \(A B\) there is applied the parallelogram \(A X\) equal to the given rectilineal C , exceeding by the parallelogram PO , which is fimilar to \(D\), becaufe PO is fimilar to EL \(g\). Which was to be done.

\section*{PROP. XXX. PROB.}

TO cut a given ftraight line in extreme and mean ratio.

Let \(A \bar{B}\) be the given ftraight line ; it is required to cut it in extreme and mean ratio.

Upon \(A B\) defcribe a the fquare \(B C\), and to \(A C i\) apply the Book Vi. parallelogram \(C D\) equal to \(B C\), exceeding by the figure \(A D\) fimilar to \(\mathrm{BC} \mathrm{b}^{\mathrm{b}}\) : But BC is a fquare, therefore allo \(A D\) is a fquare; and becaufe \(B C\) is equal to \(C D\), by taking the common part CE from each, the remainder BF is equal to the remainder AD : And thefe figures are equiangular, therefore their fides about the equal angles are reciprocally proportional c: Wherefore, as FE to ED, io AE to EB: But \(F E\) is equal to \(A C\) d, that is to \(A B\); and ED is equal to AE : Therefore as \(B A\) to \(A E\), fo is \(A E\) to \(E B\) : But \(A B\) is

a 46 . r .
bag. 6. greater than \(A E\); wherefore \(A E\) is greater than EB e: Therefore the ftraight line \(A B\) is chit in ex- e 54.5 . treme and mean ratio in E f. Which was to be done. \(\mathrm{f}_{3}\). def. 6 , Otherwife,
Let \(A B\) be the given ftraight line; it is required to cut it in extreme and mean ratio.

Divide \(A B\) in the point \(C\), fo that the rectangle contained \(b y\) \(A B, B C\) be equal to the fquare of \(A C g\) : Then, becaufe the rectangle \(A B, B C\) is e- \(\bar{A}\) qual to the fquare of \(A C\), as \(B A\) to \(A C\), fo is \(A \bar{C}\) to \(C B h\) : Therefore \(A B\) is cut in extreme and mean rai- \(1 \%\). 6 . tio in Cf. Which was to be done.
EROP. XXXI. THEOR.

鿓N right angled triangles, the rectilineal figure defor:- See 2 . bed upon the fide oppofite to the right angle, is e. qual to the fimilar, and fimilarly defcribed figures upon the fides containing the right angle.

Let \(A B C\) be a right angled triangle, having the right angle BAC: The rectilineal figure defcribed upon BC is equal to the fimilar, and fimilarly defcribed figures upon \(B A, A C\).

Draw the perpendicular \(A D\); therefore, becaufe in the right angled triangle \(\mathrm{ABC}, \mathrm{AD}\) is drawn from the right angle at A . perpendicular to the bafe BC , the triangles \(\mathrm{ABD}, \mathrm{ADC}\) are fimilar to the whole triangle \(A B C\), and to one another a, and as. 6 . becauf:

Fook VI becaufe the triangle ABC is fimilar to ADB , as CB to BA , fo

b 4. 6.
c 2. Cor. 20. 6.
d B. 5 .
e 24.5.
fA. 5 .
\[
0
\] is \(B A\) to \(B D^{b}\); and becaufe thefe three ftraight lines are proportionals, as the firft to the third, fo is the figure upon the firft to the fimilar, and fimilarly defcribed figure upon the fe cond \(c\) : Therefore as CB to BD , fo is the figure upon CB to the fimilar and fimilarly defcribed figure upon BA: And, inverfely d, as \(\overline{D B}\) to \(B C\), fo is the figure upon BA to that upon BG: For the fame reafon, as DC to CB , fo is the figure upon CA
 to that upon CB. Wherefore as \(B D\) and \(D C\) together to \(B C\), fo are the figures upon \(B A, A C\) to that upon \(B C e\) : But \(B D\) and \(D C\) together are equal to \(B C\). Therefore the figure defcribed on BC is equal f to the fimilar and fimilarly defcribed figures on BA, AC. Wherefore, in right angled triangles, \&c. Q.E.D.

\section*{PROP. XXXII. THEOR.}

Sec N . F two triangles which have two fides of the one proportional to two fides of the other, be joined at one angle, fo as to have their homologous fides parallel to one another; the remaining fides fhall be in a ftraight line.

Let \(A B C, D C E\) be two triangles which have the two fides BA, AC proportional to the two CD, DE, viz. BA to AC , as \(C D\) to \(D E\); and let \(A B\) be parallel to \(D C\), and \(A C\) to \(D E\), BC and CE are in a ftraight line.

Becaufe \(A B\) is parallel to DC , and the ftraight line AC meets them, the alternate angles \(B A C, A C D\)
229.1. are equal \({ }^{2}\); for the fame reafon, the angle CDE is equal to the angle ACD ; wherefore alfo BAC is equal to CDE: And becaufe

the triangles \(A B C, D C E\) have one angle at \(A\) equal to one at Book vr. D , and the fides about thefe angles proportionals, viz. BA to \(A C\), as \(C D\) to \(D E\), the triangle \(A B C\) is equiangular b to \(D C E: b 6.6\). Therefore the angle ABC is equal to the angle DCE: And the angle \(B A C\) was proved to be equal to \(A C D\) : Therefore the whole angle ACE is equal to the two angles \(\mathrm{ABC}, \mathrm{BAC}\); add the common angle ACB , then the angles \(\mathrm{ACE}, \mathrm{ACB}\) are equal to the angles \(\mathrm{ABC}, \mathrm{BAC}, \mathrm{ACB}\) : But \(\mathrm{ABC}, \mathrm{BAC}, \mathrm{ACB}\) are equal to two right angles \(c\); therefore alfo the angles \(A C E\), c 32 . r. \(A C B\) are equal to two right angles: And fince at the point C , in the ftraight line AC , the two fraight lines \(\mathrm{BC}, \mathrm{CE}\), which are on the oppofite fides of it, make the arjacent angles ACE, \(A C B\) equal to two right angles; therefore \(d B C\) and d y.s. GE are in a ftraight line. Wherefore, if two triangles, Bx. Q.E.D.

\section*{PROP. XXXIII. THEOR.}

IN equal circles, angles, whether at the centres or cir- See N . cumferences, have the fame ratio which the circumferences on which they fand have to one another: So alfo have the fectors.

Let \(A B C, D E F\) be equal circles; and at their centres the angles \(\mathrm{BGC}, \mathrm{EHF}\), and the angles BAC, EDF at their circumferences; as the circumference BC to the circumference EF , fo is the angle BGC to the angle EHF, and the angle BAC to the angle EDF; and alfo the fector BGC to the fector EHF.

Take any number of circumferences CK, KL, each equal to BC, and any number whatever FM, MN each equal to EF: And join GK, GL, HM, HN. Becaufe the circumferences \(\mathrm{BC}, \mathrm{CK}, \mathrm{KL}\) are all equal, the angles BGC, CGK, KGL are alfo all equal a: Therefore what multiple foever the circum- a 27.3 . ference BL is of the circumference BC , the fame multiple is the angle BGL of the angle BGG: For the fame reafon, whatever multiple the circumference \(E N\) is of the circumference EF , the fame multiple is the angle EHN of the angle EHF:

BookVI．And if the circumference BL be equal to the circumference
cores a 27.3. EN，the angle BGL is alfo equal a to the angle EHV ；and if the circumference BL be greater than EN，likewife the angle BGL is greater than EHN；aud if lefs，lefs：There being then four magnitudes，the two circumferences \(B C, \mathrm{EF}\) ，and the two angles BGC，EHF ；of the circumference \(B C\) ，and of the angle BGC ，have been taken any equimultiples whatever，viz． the circumference BL，and the angle BGL；and of the circum． ference EF，and of the angle EHF，any equimultiples what－

ever，viz．the circumference EN，and the angle EHN ：Anc it has been proved，that，if the circumference BL be greate： than EN，the angle BGL is greater than EHN；and if c－ qual，equal ；and if lefs，lefs：As therefore the circumference n \(5 . \mathrm{dff} .5 . \mathrm{BC}\) to the circumference EF，fo b is the angle BGC to the angle EHF：But as the angle BGG is to the angle EAT，fo is angle \(B G G\) to the angle EHF，and the angle BAC to the angle EDF。

Alfo，as the circumference BC to EF ，fo is the fector BGC to the fector EHF．Join BC，CK，and in the circamerences \(B \mathrm{C}, \mathrm{CK}\) take any points \(\mathrm{X}, \mathrm{O}\) ，and join \(\mathrm{BX}, \mathrm{XC}, \mathrm{CO}, \mathrm{OK}\) ： Then，becaufe in the triangles \(G B C, G C K\) the two fides \(B G\) ， GC are equal to the two \(\mathrm{CG}, \mathrm{GK}\) ，and that they contain e．
©A．3．qual angles；the bafe BC is equale to the bafe CK ，and the triangle GBC to the triangle GCK ：And becaufe the circum． ference BC is equal to the circumference CK ，the remaining part of the whole circumference of the circle \(A B C\) ，is equal to the remaining part of the whole circumference of the farme circle：Wherefore the angle BXC is equal to the angle COK a； fir．def． 3 ．and the fegment BXC is therefore fimilar to the fegment COK ；
and they are upon equal ftraight lines \(\mathrm{BC}, \mathrm{CK}\) : Butdimilar feg. Book VI. ments of circles upon equal ftraight lines, are equal \(g\) to one another: Therefore the fegment BXC is equal to the fegment \(\mathrm{COK}:\) : F 2.4.3. And the triangle BGC is equal to the triangle CGK ; therefore the whole, the fector BGC, is equal to the whole, the fector CGK : For the fame reafon, the fector KGL is equal to each of the fectors BGC, CGK : In the fame manner, the fectors EHF, FHM, MHN may be proved equal to one another: Therefore, what multiple foever the circumference BL is of the circumference BC , the fame multiple is the fector BGL of the fector BGC : For the fame reafon, whatever multiple the circumference EN is of EF, the fame multiple is the fector EHN of the fector EHF : And if the circumference BL be equal to EN, the

fector BGL is equal to the fector EHN ; and if the circumference BL be greater than EN, the fector BGL is greater than the fector EHN ; and if lefs, lefs : Since, then, there are four magnitudes, the two circumferences BC, EF, and the two fectors BGC, EHF, and of the circumference BC, and fector \(B G C\), the circumference \(B L\) and fector BGL are any equal multiples whatever; and of the circumference EF, and fector EHF, the circumference EN and fector EHN, are any equimultiples whatever; and that it has been proved, if the circumference BL be greater than EN, the fector BGL is greater than the fector EHN ; and if equal, equal ; and if lefs, lefs. Therefore \(b\), as the circumference \(B C\) is to the circumference EF, fob 5 . def \(5 \cdot\) is the fector BGC to the fector EHF. Wherefore, in equal cir. cles, \&cc. Q. E. D.

\section*{Book Vif.}

\section*{PROP. B. THEOR.}

See N .
FI an angle of a triangle be bifected by a ftraight line, which likewife cuts the bafe ; the rectangle contained by the fides of the triangle is equal to the rectangle contained by the fegments of the bafe, together with the fquare of the ftraight line bifecting the angle.

Let ABC be a triangle, and let the angle BAC be bifected by the ftraight line \(A D\); the rectangle \(B A, A C\) is equal to the rectangle \(\mathrm{BD}, \mathrm{DC}\), together with the fquare of AD .
b 2 I. 3 .
Defcribe the circle a ACB about the triangle, and produce AD to the circumference in E , and join EG: Then becaufe the angle BAD is equal to the angle CAE, and the angle ABD to the angle \(b\) AEC, for they are in the fame fegment; the triangles ABD , AEC are equiangular to one another: Therefore as BA to AD,
c 4.6. fo is cEA to AC, and confequently the rectangle \(\mathrm{BA}, \mathrm{AC}\) is
d 16.6. equal do the rectangle \(\mathrm{EA}, \mathrm{AD}\),
 e 3. 2. that is \({ }^{e}\), to the rectangle ED, DA, together with the fquare of \(A D: B\) it the rectangle ED, DA
£ 35.3 . is equal to the rectangle \(\mathrm{f} \mathrm{BD}, \mathrm{DC}\). Therefore the rectangle \(\mathrm{BA}, \mathrm{AC}\) is equal to the rectangle \(\mathrm{BD}, \mathrm{DC}\), together with the fquare of AD . Wherefore, if an angle, \&c. Q. E. D.

\section*{PROP. C. THEOR.}
ace N. Trom any angle of a triangle a ftraight line be drawn perpendicular to the bafe; the rectangle contained by the fides of the triangle is equal to the rectangle contained by the perpendicular and the diameter of the circle defcribed about the triangle.

Let \(A B C\) be a triangle, and \(A D\) the perpendicular from the angle A to the bafe BC ; the rectangle \(\mathrm{BA}, \mathrm{AC}\) is equal to the rectangle contained by AD and the diameter of the circle defcribed about the triangle.

Defcribe a the circle ACB about the triangle, and draw its diameter AE, and join EC: Becaufethe right angle BDA is equal \({ }^{b}\) to the angle ECA in a femicircle, and the angle ABD to the angle AEC in the fame fegment \({ }^{\text {c }}\); thetriangles \(\mathrm{ABD}, \mathrm{AEC}\) are equiangular: Therefore as d BA to AD , fo is EA to AC ; and confequently the rectangle
 \(\mathrm{BA}, \mathrm{AC}\) is equal e to the rectan-
e 16.6. gle EA, AD. If therefore from an angle, \&c. Q. E. D.

> PROP. D. THEOR.

THE rectangle contained by the diagonals of a qua. See N. drilateral infcribed in a circle, is equal to both the rectangles contained by its oppofite fides.

Let ABCD be any quadrilateral infcribed in a circle, and join \(\mathrm{AC}, \mathrm{BD}\); the rectangle contained by \(\mathrm{AC}, \mathrm{BD}\) is equal to the two rectangles contained by \(\mathrm{AB}, \mathrm{CD}\), and by \(\mathrm{AD}, \mathrm{BC}\) *:

Make the angle ABE equal to the angle DBC ; add to each of thefe the common angle EBD, then the angle \(A B D\) is equal to the angle EBC : And the angle BDA is equal a to the a 2 r .3. angle BCE, becaufe they are in the fame fegment; therefore the triangle \(A B D\) is equiangular to the triangle BCE : Wherefore \({ }^{\mathrm{b}}\) as BC is to CE, fo is BD to DA; and confequently the rectangle \(\mathrm{BC}, \mathrm{AD}\) is equal c to the rectangle \(\mathrm{BD}, \mathrm{CE}\) : Again, becaufe the angle ABE is equal to the angle DBC, and the angle a BAE to the angle BDC , the triangle ABE is equiangular to the triangle BCD : As therefore BA to AE , fo is BD to DC ; where-
 fore the rectangle \(\mathrm{BA}, \mathrm{DC}\) is equal to the rectangle \(\mathrm{BD}, \mathrm{AE}\) : But the rectangle \(B C, A D\) has been fhewn equal to the rectangle \(\mathrm{BD}, \mathrm{CE}\); therefore the whole rectangle \(\mathrm{AC}, \mathrm{BD}\) d is equal d s .2 , to the rectangle \(\mathrm{AB}, \mathrm{DG}\), together with the rectangle AD , BC. Therefore the rectangle, \&c. Q. E. D.
\[
\mathrm{N}_{2}
\]

THE

\footnotetext{

}

\section*{E L E M E N T S \\ O F \\ E U. C L I D. \\ B O O K XI. \\ DEFINITIONS.}

ASolid is that which hath length, breadth, and thicknef \({ }^{\circ}\) II.

That which bounds a folid is a fruperficies. III.

A fraight line is perpendicular, or at right angles to a plane, when it makes right angles with every fraight line meeting it in that plane.
IV.

A plane is perpendicular to a plane, when the Atraight lines drawn in one of the planes perpendicnlarly to the common fection of the two planes, are perpendicular to the other plane.
V.

The inclination of a ftraight line to a plane is the acute angle contained by that ftraight line, and another drawn from the point in which the firf line meets the plane, to the point in which a perpendicular to the plane drawn from any point of the firft line above the plane, meets the fame plane.
Ví.

The inclination of a plane to a plane is the acute angle contained by two ftraight lines drawn from any the fame point of their common fection at right angles to it, one upon one plane, and the other upon the other plane.

\section*{VII.}

Two planes are faid to have the fame, or a like inclination to one another, which two other planes have, when the faid angles of inclination are equal to one another.
VIII.

Parallel planes are fuch which do not meet one another though produced.

\section*{IX.}

A folid angle is that which is made by the meeting of more See N . than two plane angles, which are not in the fame plane, in one point.

> x.
'The tenth definition is omitted for reafons given in the notes.' see N. XI.

Similar folid figures are fuch as have all their folid angles equal, See N . each to each, and which are contained by the fame number of fimilar planes.

\section*{XII.}

A pyramid is a folid figure contained by planes that are conftituted betwixt one plane and one point above it in which they meet.

\section*{XIII.}

A priim is a folid figure contained by plane figures of which two that are opnofite are equal, fimilar, and parallel to one another ; and the others parallelograms.
XIV.

A fphere is a folid figure defcribed by the revolution of a femicircle about its diameter, which remains unmoved.

> XV.

The axis of a fphere is the fixed ftraight line about which the femicircle revolves.
XVI.

The centre of a fphere is the fame with that of the femicircle. XVII.

The diameter of a fphere is any ftraight line which paffes thro' the centre, and is terminated both ways by the fuperficies of the fphere.

\section*{XVIII.}

A cone is a folid figure defcribed by the revolution of a right angled triangle about one of the fides containing the right angle, which fide remains fixed.
If the fixed fide be equal to the other fide containing the right angle, the cone is called a right angled cone; if it be lefs than the other fide, an obtufe angled, and if greater, an acute angled cone.
XIX.

The axis of a cone is the fixed fraight line about which the triangle revolves.
XX.

The bafe of a cone is the circle defcribed by that fide containe ng the right angle, which revolves. XXI.

A cylinder is a folid figure defcribed by the revolution of a rigit angled parallelogram about one of its fides which remains fixed.

\section*{XXII.}

The axis of a cylinder is the fixed ftraight line about which the parallelogram revolves.
XXIII.

The bafes of a cylinder are the circles defcribed by the two revolving oppofite fides of the parallelogram.
XXIV.

Similar cones and cylinders are thofe which have their axes and the diameters of their bafes proportionals.
XXV.

A cube is a folid figure contained by fix equal fquares. XXVI.

A tetrahedrom is a folid figure contained by four equal and \(e_{-}\) quilateral triangles.

\section*{XXVII。}

An octahedron is a folid figure contained by eight equal and equilateral triangles.

\section*{XXVIII.}

A dodecahedron is a folid figure contained by twelve equal pentagons which are equilateral and equiangular.
XXIX.

An icofahedron is a folid figure contained by twenty equal and equilateral triangles.

\section*{DEF. A.}

A parallelepiped is a folid figure contained by fix quadrilateral figures, whereof every oppofite tẉo are parallel.

\section*{PROP. I. THEOR.}

ONE part of a feraight line cannot be in a plane, and see N . another part above it.

If it be poffible, let \(A B\), part of the ftraight line \(A B C\), be in the plane, and the part \(B C\) above it: And fince the ftraight line AB is in the plane, it can be produced in that plane: Let it be produced to D. And let any plane pafs through the ftraight line AD, and be turned about it until it pals thro' the point C ; and becaufe the points \(\mathrm{B}, \mathrm{C}\) are in this plane, the ftraight line BC is in it a : Therefore there are two ftraight lines \(A B C, A B D\) in a 7 . def. 5. the fame plane that have a common fegment \(A B\), which is impoffible b . Therefore, one part, \&c. Q. E. D: b Cor.II. \(\mathrm{I}_{2}\)

\section*{PROP. II. THEOR.}

TWO flraight lines which cut one another are in one plane, and three ftraight lines which meet one another are in one plane.

Let two ftraight lines \(\mathrm{AB}, \mathrm{CD}\), cut one another in \(\mathrm{E} ; \mathrm{AB}_{\text {s }}\) CD are one plane: And three ftraight lines EC, \(\mathrm{CB}, \mathrm{BE}\) which meet one another, are in one plane.

Letany plane pafs thraugh the ftraight line EB, and let the plane be turned about EB, produced, if neceffary, until it pafs through the point C : Then becaufe the points \(\mathrm{E}, \mathrm{C}\) are in this plane, the ftraight line EC is in it a : For the fame reafon, the ftraight line BC is in the fame; and, by the hypothefis, EB is in it : Therefore the three ftraight lines \(E C\), \(\mathrm{CB}, \mathrm{BE}\) are in one plane: But in the plane in which EC, EB are, in the fame are b
 \(\mathrm{CD}, \mathrm{AB}\) : Therefore \(\mathrm{AB}, \mathrm{CD}\) are in one plane. Wherefore two flraight lines, \&xc. Q.E.D.
\(\mathrm{N}_{4} \quad \mathrm{PROR}\).

Book XI.

> PROP. III. THEOR.

SeeN. F two planes cut one another, their common fection is a ftraight line.

Let two planes \(\mathrm{AB}, \mathrm{BC}\), cut one another, and let the line DB be their common fection : DB is a Atraight line : If it be not, from the point \(D\) to \(B\), draw, in the plane \(A B\), the Atraight line DEB, and in the plane BC the ftraight line DFB: Then two ftraight lines \(\mathrm{DEB}, \mathrm{DFB}\) have the fame extremities, and therefore include a fpace bea ro.Ax. I. twixt them; which is impoffible a:Therefore BD the common fection of the planes \(\mathrm{AB}, \mathrm{BC}\) cannot but be a ftraight line.
 Wherefore, if two planes, \&c. Q. E. D.

\section*{PROP. IV. THEOR.}

See N.

IF a ftraight line ftand at right angles to each of two ftraight lines in the point of their interfection, it-flall alfo be at right angles to the plane which paffes through them, that is, to the plane in which they are.

Let the ftraight line EF ftand at right angles to each of the ftraight lines \(\mathrm{AB}, \mathrm{CD}\) in E , the point of their interfection: EF is alfo at right angles to the plane paffing through \(A B, C D\).

Take the ftraight lines \(\mathrm{AE}, \mathrm{EB}, \mathrm{CE}, \mathrm{ED}\) all equal to one another; and through E draw, in the plane in which are \(\mathrm{AB}, \mathrm{CD}\), any ftraight line GEH; and join \(\mathrm{AD}, \mathrm{CB}\); then, from any point F in EF, draw FA, FG, FD, FC, FH, FB: And becaufe the two ftraight lines \(\mathrm{AE}, \mathrm{ED}\) are equal to the two \(\mathrm{BE}, \mathrm{EC}\),
e26. I. and that they contain equal angles a \(\mathrm{AED}, \mathrm{BEC}\), the bafe AD is equal \(b\) to the \(b a f e B C\), and the angle \(D A E\) to the angle EBC : And the angle AEG is equal to the angle BEH \({ }^{\text {a }}\); therefore the triangles \(A E G, B E H\) have two angles of one equal to two angles of the other, each to each, and the fides AE, EB , adjacent to the equal angles, equal to one another; where-
equal to EH , and AG to BH ; And becaufe AE is equal to EB , Book Xi. and FE common and at right angles to them, the bale AF is FD : And because \(A D\) is equal to \(B C\), and \(A F\) to \(F B\), the two \({ }^{\text {b }}\). r. fides \(\mathrm{FA}, \mathrm{AD}\) are equal to the two \(\mathrm{FB}, \mathrm{BC}\), each to each; and the bale DF was proved equal to the bale FC ; therefore the angle FAD is equal do the angle FBC: Again, it was proved that GA is equal to BH , and alfo AF to FB ; FA, then, and AG, are equal to FB and BH , and the angle FAG has been proved equal to the angle FBH ; therefore the bale GF is equal b to the bare FH: Again, becaufe it was proved, that GE is equal to EH, and EF is common ; GE, EF are e-
 qual to \(\mathrm{HE}, \mathrm{EF}\); and the bare GF is equal to the bale FH ; therefore the angle GEF is equal d to the angle HEF; and confequently each of the fe angles is a right \({ }^{e}\) angle. Therefore FE makes right angles with GH, e io. def. x. that is, with any ftraight line drawn through E in the plane paffing through \(\mathrm{AB}, \mathrm{CD}\). In like manner, it may be proved, that FE makes right angles with every fraight line which meets it in that plane. But a ftraight line is at right angles to a plane when it makes right angles with every ftraight line which meets it in that plane \(\mathrm{f}^{\text {: }}\) Therefore EF is at right angles to the plane \({ }_{f}\). def. Ir. in which are \(A B, C D\). Wherefore, if a ftraight line, \&c. Q.E.D.

\section*{PROP. V. THEOR.}

IF. three freight lines meet all in one point, and a sec N. ftraight line ftands at right angles to each of them in that point ; thee three ftraight lines are in one and the fame plane.

Let the ftraight line AB ftand at right angles to each of the Atraight lines \(\mathrm{BC}, \mathrm{BD}, \mathrm{BE}\), in B the point where they meet; \(\mathrm{BC}, \mathrm{BD}, \mathrm{BE}\) are in one and the fame plane.

If not, let, if it be poffible, BD and BE be in one plane, and \(B C\) be above it; and let a plane pals through \(A B, B C\) the common lection of which with the plane, in which \(B D\) and \(B E\)

Book XI. are, fhall be aftraight a line; let this be BF: Therefore the three
 a 3. 11.
b 4. II. c 3. def. 11. It raight lines \(\mathrm{AB}, \mathrm{BE}, \mathrm{BF}\) are all in one plane, viz. that which paffes through \(A B, B C\); and becaufe \(A B\) ftands at right angles to each of the ftraight lines \(\mathrm{BD}, \mathrm{BE}\), it is alfo at right angles c. def. II. right angles c with every ftraight line meeting it in that plane; but \(\boldsymbol{A}_{\text {, }}\) BF which is in that plane meets it: Therefore the angle ABF is a right angle; but the angle ABC , by the hypothefis, is alfo a right angle; therefore the angle \(A B F\) is equal to the angle \(A B C\), and they are both in the fame plane, which is impoffible: Therefore the ftraight
 line \(B C\) is not above the plane in which are BD and BE : Wherefore the three ftraight lines \(\mathrm{BC}_{2}\), \(B D, B E\) are in one and the fame plane. Therefore, if three ftraight lines, \&c. Q.E. D.

\section*{PROP. VI. THEOR.}

IF two ftraight lines be at right angles to the fame plane, they fhall be parallel to one another.

Let the ftraight lines \(A B, C D\) be at right angles to the fame plane; \(A B\) is parallel to \(C D\).

Let them meet the plane in the points \(B, D\), and draw the ftraight line BD , to which draw DE at right angles, in the fame plane; and make DE equal to \(A B\), and join BE, AE, AD. Then, becaufe \(A B\) is perpendicular to the plane, it 43. def. In. Thall make right \({ }^{\text {a }}\) angles with every ftraight line which meets it, and is in that plane: But \(\mathrm{BD}, \mathrm{BE}\), which are in that plane, do each of them meet AB . Therefore each of the angles \(A B D\), ABE is a rightangle: For the fame reafon, each of the angles \(\mathrm{CDB}, \mathrm{CDE}\) is a right angle: And becaufe \(A B\) is equal to \(D E\), and \(B D\) common, the two
 fides \(A B, B D\) are equal to the two \(\mathrm{ED}, \mathrm{DB}\); and they contain right angles; therefore the bafe 64. F. \(A D\) is equal bto the bafe \(B E\) : Again, becaufe \(A B\) is equal
to DE , and BE to \(\mathrm{AD} ; \mathrm{AB}, \mathrm{BE}\) are equal to \(\mathrm{ED}, \mathrm{DA}\); and, Book Xr. in the triangles \(\mathrm{ABE}, \mathrm{EDA}\), the bafe AE is common; therefore the angle \(A B E\) is equal \(c\) to the angle EDA: But \(A B E\) is c8. ा. a right angle; therefore EDA is alfo a right angle, and ED perpendicular to DA: But it is alfo perpendicular to each of the two \(\mathrm{BD}, \mathrm{DC}\) : Wherefore ED is at right angles to each of the three ftraight lines \(\mathrm{BD}, \mathrm{DA}, \mathrm{DC}\) in the point in which they meet : Therefore thefe three ftraight lines are all in the fame planed: But \(A B\) is in the plane in which are \(B D, D A, d 5\). 1 . becaufe any three ftraight lines which meet one another are in one plane e : Therefore \(\mathrm{AB}, \mathrm{BD}, \mathrm{DC}\) are in one plane: And e2.11. each of the angles \(A B D, B D G\) is a right angle ; therefore \(A B\) is parallel f to CD. Wherefore, if two ftraight lines, \&c. Q. E. D. f 28 . I.

\section*{PROP. VII. THEOR.}

\(\$\)F two ftraight lines be parallel, the ftraight line drawn see \(N_{9}\) from any point in the one to any point in the other, is in the fame plane with the parallels.

Let \(A B, C D\) be parallel ftraight lines, and take any point \(E\) in the one, and the point \(F\) in the other: The ftraight line which joins E and F is in the fame plane with the parallels.

If not, let it be, if poffible, above the plane, as EGF; and in the plane \(A B C D\) in which the parallels are, draw the fraight line EHF from \(E\) to \(F\); and fince EGF alfo is a traight line, the two ftraight lines EHF, EGF include a fpace between them, which is impoffible a. Therefore the ftraight line joining the
 points \(E, F\) is not above the plane in which the parallels \(A B, C D\) are, and is therefore in that plane. Wherefore, if two ftraight lines, \&c. Q. E. D.

\section*{PROP. VIII. THEOR.}

IF two ftraight lines be parallel, and one of them is at Sce \(\mathrm{N}_{\text {: }}\) right angles to a plane; the other alfo fhall be at right angles to the fame plane.

Book xi. Let \(A B, C . D\) be two parallel ftraight lines, and let one of
\(\square\) them \(A B\) be at right angles to a plane; the other \(C D\) is at right angles to the fame plane.

Let \(A B, C D\) meft the plane in the points \(B, D\), and join
ETVI. BD : Therefores \(\mathrm{AB}, \mathrm{CD}, \mathrm{BD}\) are in one plane. In the plane to which AB is at tight angles, draw DE at right angles to \(B D\), and make \(D E\) equal to \(A B\), and join \(B E, A E, A D\). And becane \(A B\) is perpendicular to the plane, it is perpendicular in every, itraigit line wish meets it, and is in that
\(\mathbf{a}_{\mathbf{3}}\)-def. mr. plane \({ }^{\text {a }}\) : Therefore ach of the angles \(A B D, A B E\), is a right angie: And becafe the fiaigit line \(B D\) mects the parallel fraight lines \(A B, C D\), the angles \(A B D, C D B\) are together
b29. 1. equal b to two right angiles: And ABD is a right angle; therefore alfo CDB is a right angle, and CD perpendicular to BD : And becaufe AB is equal to DE , and BD common, the two \(\mathrm{AB}, \mathrm{BD}\) are equal to the two ED , \(D B\), and the angle \(A B D\) is equal to the angle EDB, becaufe each of them is a right angle ; therefore the bafe AD
c4. 3. is equal c to the bafe BE: Again, becaufe \(A B\) is equal to \(D E\), and \(B E\) to AD ; the two \(\mathrm{AB}, \mathrm{BE}\) are equal to the two ED, DA; and the bafe AE is common to the triangles ABE, EDA; wherefore the angle \(A B E\) is equal \(d\) to the angle EDA : And ABE is a right angle; and therefore EDA is a right
 angle, and ED perpendicular to DA : But it is alfo perpendicular to BD ; therefore ED is perpendican. cular e to the plane which paffes through BD, DA, and hall \(f\)
Fo.def. m. make right angles with every flraight line meeting it in that plane: But DC is in the plane pafling through BD, DA, becaufe all three are in the plane in which are the parallels \(A B\), \(C D\) : Wherefore ED is at right angles to \(D C\); and therefore CD is at right angles to DE : But CD is alfo at right angles to \(D B ; C D\) then is at right angles to the two ftraight lines \(D E\), DB in the point of their interfection D ; and therefore is at right angles eto the plane paffing through \(\mathrm{DE}, \mathrm{DB}\), which is the fame plane to which \(A B\) is at right angles. Therefore, if two ftraight lines, \&x. Q.E.D.

TWO ftraight lines which are each of them parallel to the fame ftraight line, and not in the fame plane with it, are parallel to one another.

Let \(A B, C D\) be each of then parallel to EF , and not in the fame plane with it; \(A B\) thall be parallel to CD.

In EF take any point \(G\), from which draw, in the plane paffing through \(\mathrm{EF}, \mathrm{AB}\), the ftraight line GH at right angles to EF ; and in the plane pafing through EF, CD, draw GK at right angles to the fame EF. Aad becanfe EF is perpendicular both to GH and GK, EF is perpendicular \({ }^{2}\) to the piate NGK pafing through them: And EF is parallel to \(A B\); therefore \(-A B\) is at right angles b to the plane HGK. For the fame reafon, CD is likewife at right
 angles to the plane HCK. Therefore \(A B, C D\) are each of them at right angles to the plane HGK. But if two ftraight lines are at right angles to the fame plane, they fhail be parallel c to one another. Therefore AB is c 6 . ra , parallel to C.D. Wherefore two ftaight lines, \&c. Q. E. D.

\section*{PROP. X. THEOR.}

IF two fltaight lines meeting one another be parallel to two others that meet one another, and are not in the fame plane with the firft two; the firft two and the other two fhall contain equal angles.

Let the two ftraight lines \(\mathrm{AB}, \mathrm{BC}\) which meet one another be parallel to the two ftraight lines \(\mathrm{DE}, \mathrm{EF}\) that meet one another, and are not in the fame plane with \(A B, B C\). The angle ABC is equal to the angle DEF.

Take BA, BC, ED, EF all equal to one another ; and join \(A D\).

Book XI. AD, CF, BE, AC, DF : Becaufe BA is equal and parallel to
2 \(33 ; 1\). ED , therefore AO is a both equal and parallel to BE. For the fame reafon, CF is equal and parallel to BE. Therefore AD and CF are each of them equal and parallel to BE. But ftraight lines that are parallel to the fame ftraight line, and not in the fame plane with it, B9. y . are parallel b to one another. Therefore ex. Ax. I. AD is parallel to CF; and it is equal c to it, and \(A C, D F\) join them towards the fame parts; and therefure a AC is equal and parallel to DF. And be-
 caufe \(A B, B C\) are equal to \(D E, E F\), and the bafe \(A C\) to the d8. r. bafe DF; the angle ABC is equal d to the angle DEF. Therefore, if two ftraight lines, \&c. Q. E. D.

\section*{PROP. XI. PROB.}

TO draw a ftraight line perpendicular to a plane, from a given point above it.
Let A be the given point above the plane BH ; it is required to draw from the point A a ftraight line perpendicular to the plane BH.

In the plane draw any ftraight line BC , and from the point
\& 12.1 . \(A\) draw a \(A D\) perpendicular to \(B C\). If then \(A D\) be alfo perpendicular to the plane BH , the thing required is already done; but if it be not, from the
b ir. i. point \(D\) draw \(b\), in the plane \(B H\), the ftraight line DE at right angles to \(B C\); and from the point
c 31.1. A doaw AF perpendicular to
DE ; and through \(F\) draw \({ }^{c} \mathrm{GH}\) parallel to BC : And becaufe BC is at right angles to ED and DA,
4. ir. BC is at right angles d to the plane paffing through ED, DA. And GH is parallel to BC ; but, if
 two ftraight lines be parallel, one of which is at right angles to
c 8.11. a plane, the other fhall be at right \({ }^{\mathrm{c}}\) angles to the fame plane; wherefore GH is at right angles to the plane through ED, DA,
\(\S_{3}\). def. In. and is perpendicular \({ }^{f}\) to every fraight line meeting it in that plane. But AF, which is in the plane through ED, DA, meets
it : Therefore GH is perpendicular to AF ; and confequently Book XI. AF is perpendicular to GH ; and AF is perpendicular to DE : Therefore AF is perpendicular to each of the ftraight lines GH, DE. But if a ftraight line ftands at right angles to each of two fraight lines in the point of their interfection, it fhall alfo be at right angles to the plane paffing through them. But the plane paffing through \(\mathrm{ED}, \mathrm{GH}\) is the plane BH ; therefore AF is perpendicular to the plane BH ; therefore, from the given point \(A\), above the plane \(B H\), the ftraight line \(A F\) is drawn perpendicular to that plane: Which was to be done.

\section*{PROP. XII. PROB.}

TO erect a ftraight line at right angles to a giver plane, from a point given in the plane.

Let \(A\) be the point given in the plane; it is required to crect a fraight line from the point \(A\) at right angles to the plane.

From any point B above the plane draw a BC perpendicular to it ; and from \(A\) draw \({ }^{\mathrm{b}} \mathrm{AD}\) parallel to BC . Becaufe, therefore, \(\mathrm{AD}, \mathrm{CB}\) are two parallel ftraight lines, and one of them BC is at right anglesto the given plane,

a IE. If. b 3 I . the other AD is alfo at right angles to it \(c\). Therefore a ftraight line has been erected at right angles c 8.15. to a given plane from a point given in it. Which was to be done.

\section*{PROP. XIII. THEOR:}

FROM the fame point in a given plane, there cannot be two ftraight lines at right angles to the plane, upon the fame fide of it: And there can be but one perpendicular to a plane from a point above the plane.

For, if it be poffible, let the two fraight lines \(\mathrm{AC}, \mathrm{AB}\), be at right angles to a given plane from the fame point \(A\) in the plane, and upon the fame fide of it; and let a plane pafs through BA, \(A C\); the common fection of this with the given plane is a ftraight

Book XI. ftraight a line paffing through A: Let DAE be their common
n-
23.II. fection: Therefore the ftraight lines \(A B, A C, D A E\) are in one plane: And becaufe \(\mathbf{C A}\) is at right angles to the given plane, it fhall make right angles with every Atraight line meeting it in that plane. But DAE, which is in that plane, meets CA; therefore CAE is a right angle. For the fame reafon BAE is a right angle. Wherefore the angle CAE is equal to the angle BAE; and they are in one plane, which is
 impoffible. Alfo, from a point above a plane, there can be but one perpendicular to that plane; for, if there could be two,
8 6. If. they would be parallel b to one another, which is abfurd. Therefore, from the fame point, \&c. Q. E. D.

\section*{PROP. XIV. THEOR.}

PLANES to which the fame ftraight line is perpendicular, are parallel to one another.

Let the fraight line \(A B\) be perpendicular to each of the planes \(\mathrm{CD}, \mathrm{EF}\); thefe planes are parallel to one another.

If not, they fhall meet one another when produced; let them meet; their common fection fhall be a ftraight line GH, in which take any point \(K\), and join \(A K, B K\) : Then, becaufe \(A B\) is perpendicular to the a 3. def. Ir. plane EF, it is perpendicular a to the flraight line BK which is in that plane. C Therefore ABK is a right angle. For the fame reafon, BAK is a rightangle; wherefore the two angles \(\mathrm{ABK}, \mathrm{BAK}\) of the triangle \(A B K\) are equal to two b17. I. right angles, which is impoffible \({ }^{\mathrm{b}}\) : Therefore the planes CD, EF, though produced, do not meet one another;
 ¢8. def. mr that is, they are parallel c . Therefore planes, \&c. Q. E. D.

PROP.

\section*{PROP. XV. THEOR.}

IF two ftraight lines meeting one another, be parallel see N . to two ftraight lines which meet one another, but are not in the fame plane with the firft two ; the plane which paffes through thefe is parallel to the plane pafing through the others.

Let \(A B, B C\), two ftraight lines meeting one another, be parallel to DE, EF that meet one another, but are not in the fame plane with \(A B, B C\) : The planes through \(A B, B C\), and DE, EF fhall not meet, though produced.

From the point \(B\) draw \(B G\) perpendicular a to the plane \({ }_{a}\) Ir. mo which paffes through \(\mathrm{DE}, \mathrm{EF}\), and let it meet that plane in \(G\); and through \(G\) draw GH parallel b to ED, and GK pa-b \(3^{\text {r. . fo }}\) rallel to EF : And becaufe \(B G\) is perpendicular to the plane through DE, EF, it fhall make right angles with every ftraightline meeting it in that plane c. But the ftraight lines \(\mathrm{GH}, \mathrm{GK}\) in that plane meet it : Therefore each of the angles BGH, BGK is a right angle: And becaufe BA is parallel d to GH (for each of
 them is parallel to DE , and they are not both in the fame plane with it) the angles GBA, BGH are together equal e to two right angles: And BGH is a e 29. x. right angle ; therefore alfo GBA is a right angle, and GB perpendicular to BA : For the fame reafon, GB is perpendicular to BC : Since therefore the ftraight line GB fiands at right angles to the two fraight lines BA, BC, that cut one another in H ; GB is perpendicular \(f\) to the plane through BA, BC: And it isf 4 . Ir. perpendicular to the plane through \(\mathrm{DE}, \mathrm{EF}\); therefore BG is perpendicular to each of the planes through \(A B, B C\), and \(D E\), EF: But planes to which the fame fraight line is perpendicular, are parallel gto one another: Therefore the plane through \(A B,_{r}\) I4. Iz BC is parallel to the plane through DE, EF. Wherefore, if two ftraight lines, \&̌c. Q. E. D.

Book XI.

\section*{PROP. XVI. THEOR.}

See N .

1F two parallel planes be cut by another plane, their common fections with it are parallels.

Let the parallel planes, \(\mathrm{AB}, \mathrm{CD}\) be cut by the plane EFHG, and let their common fections with it be EF, GH: EF is parallel to GH .

For, if it is not, EF, GH fhall meet, if produced, either on the fide of FH, or EG : Firft, let them be produced on the fide of HH , and meet in the point K : Therefore, fince EFK is in the plane AB , every point in EFK is in that plane; and K is a point in EFK ; therefore \(K\) is in the plane \(A B\) : For the fame reafon \(K\) is alfo in the plane \(C D\) : Wherefore the planes \(\mathrm{AB}, \mathrm{CD}\) produced meet one another; but they do not meet, fince they are parallel by the hypothefis: Therefore the ftraight lines
 EF, GH do not meet when produced on the fide of FH : In the fame manner it may be proved, that EF, GH do not meet when produced on the fide of EG: But ftraight lines which are in the fame plane and do not meet, though produced either way, are parallel : Therefore EF is parallel to GH. Wherefore, if two parallel planes, \&c. Q.E.D.

\section*{PROP. XVII. THEOR.}

1F, twoftraight lines be cut by parallel planes, they fhall be cut in the fame ratio.

Let the ftraight lines \(\mathrm{AB}, \mathrm{CD}\) be cut by the parallel planes GH, KL, MN, in the points \(\mathrm{A}, \mathrm{E}, \mathrm{B} ; \mathrm{C}, \mathrm{F}, \mathrm{D}:\) As AE is to. \(E B\), fo is CF to FD .

Join \(A C, B D, A D\), and let \(A D\) meet the plane \(K L\) in the point X; and join EX, XF : Becaufe the two parallel planes \(K L, M N\) are cut by the plane EBDX, the common fections EX

EX, BD, are parallel a. For the fame reafon, becaufe the two Book XI. parallel planes GH, KL are cut by the plane AXFC, the common fections AC, XF are parallet : And because EX is paralle to BD, a fade of the triangle ABD , as AE to EB , fo is \({ }^{\mathrm{b}} \mathrm{AX}\) to XD. Again, becaufe XF is parallel to \(A C\), a gide of the triangle ADC, as AX to XD, fo is CF to FD : And it was proved that \(A X\) is to \(X D\), as AE to EB; Therefore c , as AE to EB , fo is GF to FD .
 Wherefore, if two ftraightlines, \&c. Q. E. D.

\section*{PROP. XVIII. THE OR.}

5F a ftraight line be at right angles to a plane, every plane which paffes through it fhall be at right angles to that plane.

Let the ftraight line AB be at right angles to a plane CK ; every plane which paffes through \(A B\) fall be at right angles to. the plane CK.

Let any plane DE pass through AB , and let CE be the common lection of the planes \(\mathrm{DE}, \mathrm{CK}\); take any point F in CE , from which draw FG in the plane DE at right angles to CE : And becaufe AB is perpendicular to the plane CK, therefore it is also perpendiocular to every ftraight line in that plane meeting it a: And confequently it is perpendicular to CE: Wherefore ABF is a right angle ; but GFB is

a 3. def. 15. likewife a right angle ; therefore \(A B\) is parallel \(b\) to \(F G\). And b 28. \(x\). \(A B\) is at right angles to the plane \(C K\); therefore \(F G\) is alfo at right angles to the fame plane \(c\). Bunt one plane is at right an- c 8 . If gles to another plane when theitraight lines drawn in one of the planes, at right angles to their common fection, are alpo at right

Book XI. angles to the other planed; and any ftraight line FG in the plane DE, which is at right angles to CE the common fection of the planes, has been proved to be perpendicular to the other plane CK; therefore the plane DE is at right angles to the plane CK. In like manner, it may be proved that all the planes which pafs through \(A B\) are at right angles to the plane CK. Therefore, if a ftraight line, \&c. Q. E. D.

\section*{PROP. XIX. THEOR.}

IF two planes cutting one another be each of them perpendicular to a third plane; their common fection thall be perpendicular to the fame plane.

Let the two planes \(A B, B C\) be each of them perpendicular to a third plane, and let \(B D\) be the common fection of the firft two ; BD is perpendicular to the third plane.

If it be not, from the point \(D\) draw, in the plane \(A B\), the ftraight line DE at right angles to AD the common fection of the plane \(A B\) with the third plane; and in the plane \(B C\) draw \(D F\) at right angles to \(C D\) the common fection of the plane \(B C\) with the third plane. And becaufe the plane \(A B\) is perpendicular to the third plane, and DE is drawn in the plane \(A B\) at right angles to \(A D\) their common fection, DE is perpendicular to the
a 4 . def.in third plane \({ }^{\text {a }}\). In the fame manner it may be proved that DF is perpendicular to the third piane. Wherefore, from the point \(D\) two firaight lines ftand at right angles to the third plane, upon the fane fide of it, which is im-
bis. rr. poflible \({ }^{b}\) : Therefore, from the point \(D\) there cannot be any ftraight line at
 right angles to the third plane, except BD the common fection of the planes \(\mathrm{AB}, \mathrm{BC}\). BD therefore is perpendicular to the third plane. Wherefore, if two planes, \&ce, Q.E.D.

\section*{PROP. XX. THEOR.}

IF a folid angle be contained by three plane angles, see \(\mathbf{N}\). any two of them are greater than the third.
Let the folid angle at \(A^{\prime}\) be contained by the three plarie angles BAC, CAD, DAB. Any two of them are greater than the third.

If the angles \(\mathrm{BAC}, \mathrm{CAD}, \mathrm{DAB}\) be all equal, it is evident that any two of them are greater than the third. But if they are not, let BAC be that angle which is not lefs than either of the other two, and is greater than one of them DAB; and at the point \(A\) in the ftraight line \(A B\), make, in the plane which paffes through \(B A, A C\), the angle \(B A E\) equal a to the angle \({ }_{2} 23\). . \(^{\text {. }}\) \(D A B\); and make \(A E\) equal to \(A D\), and through \(E\) draw \(B E C\) cutting \(A B, A C\) in the points \(\mathrm{B}, \mathrm{C}\), and join \(\mathrm{DB}, \mathrm{DG}\). And becaufe DA is equal to AE , and AB is common, the two \(\mathrm{DA}, \mathrm{AB}\) are equal to the two EA, AB , and the angle \(D A B\) is equal to the angle \(E A B\) : Therefore the bafe \(D B\) is equal \(b\) to the bafe BE. And becaufe BD, DC
 b \(4 . \dot{\text { I. }}\) are greater \(c\) than \(C B\), and one of them \(B D\), has been proved equal to \(B E\) a part of \(C B\), therefore c 20 . I. the other \(D \mathrm{C}\) is greater than the remaining part EC. And becaufe DA is equal to \(A I\), and \(A C\) common, but the bafe \(\mathcal{L C}\) greater than the bafe EG; therefore the angle DAC is greater d than the angle EAC; and, by the confruction, the angle \(D A B d 25.1\). is equal to the angle \(B A E\); wherefore the angles \(\mathrm{DAB}, \mathrm{DAC}\) are together greater than \(\mathrm{BAE}, \mathrm{EAC}\), that is, than the angle BAC. But BAC is not lefs than either of the angles DAB, DAC; therefore BAG, with either of them, is greater than the other. Wherefore, if a folid angle, \&zc. Q.E. D.
PROP. XXI. THEOR.

MVERY folid angle is contained by plane angles which together are lefs than four right angles.

Firft, Let the folid angle at A be contained by three plane angles \(\mathrm{BAC}, \mathrm{CAD}, \mathrm{DAB}\). Thefe three together are lefs than four right angles.

Book XI. Take in cach of the ftraight lines \(\mathrm{AB}, \mathrm{AC}, \mathrm{AD}\) any points
\(B, C, D\), and join \(B C, C D, D B\) : Then, becaufe the folid angle at B is contained by the three plane angles \(\mathrm{CBA}, \mathrm{ABD}, \mathrm{DBC}\),
220.11. any two of them are greater a than the third; therefore the angles CBA, ABD are greater than the angle DBC : For the fame reafon, the angles \(B C A, A C D\) are greater than the angle DCB ; and the angles \(\mathrm{CDA}, \mathrm{ADB}\) greater than BDC : Wherefore the fix angles \(\mathrm{CBA}, \mathrm{ABD}, \mathrm{BCA}, \mathrm{ACD}, \mathrm{CDA}, \mathrm{ADB}\) are greater than the three angles DBC , \(\mathrm{BCD}, \mathrm{CDB}\) : But the three angles
- \(\mathrm{DBC}, \mathrm{BCD}, \mathrm{CDB}\) are equal to two B 32. I. right angles b: Therefore the fix angles \(\mathrm{CBA}, \mathrm{ABD}, \mathrm{BCA}, \mathrm{ACD}, \mathrm{CDA}\), ADB are greater than two right angles: And becaufe the three angles of each of the triangles \(A B C, A C D, B\) ADB are eqnal to two right anglect, therefore the nine angles of thefe three triangles, viz. the angles CBA, BAC, ACB, ACD, CDA. DAC, ADB, DBA, BAD are equal to fix right angles: Of thefe the fix angles CBA, \(\mathrm{ACB}, \mathrm{ACD}, \mathrm{CDA}, \mathrm{ADB}, \mathrm{DBA}\) are greater than two right argles: Therefore the remaining three angles BAC, DAC, \(B A D\), which contain the folid angle at \(A\), are lefs than four right angles.

Next, let the folid angle at \(A\) be contained by any number of plane angles \(B A C, C A D, D A E, E A F, F A B\); thefe together are lefs than four right angles.

Let the planes in which the angles are, be cut by a plane, and let the common fection of it with thofe planes be BC, CD, DE, EF , FB : And becaufe the folid angle at B is containdd by three plane angles \(\mathrm{CBA}, \mathrm{ABF}\), FBC , of which any two are greater a than the chird, the angles CBA, ABF are greater than the angle FBC : For the fame reafon, the two plane angles at cach of the points \(\mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}\), viz. the angles which are at the bafes of the triangles having the common vertex A, are greater than the third angle at the fame point, which is one of the
 angles of the polygen BCDEF: Therefore all the angles at the bafes of the triangles are together
greater than all the angles of the polygon : And becaufe all the Book xr. angles of the triangles are together equal to twice as many \(\underbrace{\text { ral }}\) right angles as there are triangles \(b\); that is, as there are fides \(b 32\). i. in the polygon BCDEF; and that all the angles of the polygon, together with four right angles, are likewife equal to twice as many right angles as there are fides in the polygon c; there- ci. Cor. fore all the angles of the triangles are equal to all the angles 32 . I. of the polygon together with four right angles. But all the angles at the bafes of the triangles are greater than all the angles of the polygon, as has been proved. Wherefore the remaining angles of the triangles, viz. thofe at the vertex, which contain the folid angle at A, are lefs than four right angles. Therefore every folid angle, \&c. Q.E.D.

\section*{PROP. XXII. THEOR.}

IF every two of three plane angles be greater than the sec N. third, and if the ftraight lines which contain them be all equal ; a triangle may be made of the ftraight lines that join the extremities of thofe equal fraight lines.

Let ABC, DEF, GHK be three plane angles, whereof every two are greater than the third, and are contained by the equal ftraight lines \(\mathrm{AB}, \mathrm{BC}, \mathrm{DE}, \mathrm{EF}, \mathrm{GH}, \mathrm{HK}\); if their extremities be joined by the ftraight lines \(\mathrm{AC}, \mathrm{DF}, \mathrm{GK}_{\text {, a triangle may be }}\) made of three ftraight lines equal to \(\mathrm{AC}, \mathrm{DF}, \mathrm{GK}\); that is, every two of them are together greater than the third.

If the angles at \(\mathrm{B}, \mathrm{E}, \mathrm{H}\) are equal: \(\mathrm{AC}, \mathrm{DF}, \mathrm{GK}\) are alfo equal a, and any two of them greater than the third: But if \(a_{4}\). . the angles are not all equal, let the angle ABC be not lefs than either of the two at \(\mathrm{E}, \mathrm{H}\); therefore the ftraight line AC is not lefs than either of the other two DF, GK b; and it is b 4. Cor. plain that AC, together with either of the other two, mult be 24 I . greater than the third: Alfo DF with GK are greater than \(A C\) : For, at the point \(B\) in the fraight line \(A B\) make \({ }^{c}\) the \(c^{2}\). x.

Book XI. angle \(A B L\) equal to the angle GHK, and make BL equal to one of the ftraight linés \(\mathrm{AB}, \mathrm{BC}, \mathrm{DE}, \mathrm{EF}, \mathrm{GH}, \mathrm{HK}\), and join \(A L, L C\) : Then becaufe \(A B, B L\) are equal to \(G H, H K\), and the angle. \(A B L\) to the angle GHK, the bafe AL is equal to the bate \(G K\) : And becaufe the angles at \(\mathrm{E}, \mathrm{H}\) are greater than the angle ABC , of which the angle at H is equal to ABL , therefore the remaining angle at E is greater than the angle LBC :

And becaufe the two fides \(\mathrm{LB}, \mathrm{BC}\) are equal to the two DE , \(E F\), and that the angle DEF is greater than the angle LBC, d24. r. the bafe DF is greater d than the bafe LC: And it has been proved that GK is equal to AL; therefore DF and GK are
e 20.1
122. I . greater than AL and LC : But AL and LC are greater \(e\) than AC ; much more then are DF and GK greater than AC. Wherefore every two of thefe ftraight lines AC, DF, GK are greater than the third; and, therefore, a triangle may be made \(f\), the fides of which fhall be equal to AC, DF, GK. Q. E. D.

\section*{PROP. XXIII. PROB.}

See \(N\).
FO make a folid angle which fhall be contained by three given plane angles, any two of them being greater than the third, and all three together lefs than four right angles.

Let the three given plane angles be \(\mathrm{ABC}, \mathrm{DEF}, \mathrm{GHK}\), any two of which are greater than the third, and all of them together lefs than four right angles. It is required to make a folid angle contained by three plane angles equal to \(\mathrm{ABC}, \mathrm{DEF}\), GHK, each to each.

From the fraight lines containing the angles, cut off \(A B\), \(\mathrm{BC}, \mathrm{DE}, \mathrm{EF}, \mathrm{GH}, \mathrm{HK}\), all equal to one another ; and join \(\mathrm{AC}, \mathrm{DF}, \mathrm{GK}\) : Then a triangle may be made a of three ftraight a \(22 . \mathrm{yr}\).

lines equal to \(\mathrm{AC}, \mathrm{DF}, \mathrm{GK}\). Let this be the triangle LMN \(\mathrm{b}, \mathrm{b} 22 \mathrm{r}\). fo that AC be equal to LM, DF to MN, and GK to LN ; and about the triangle LMN defcribe c a circle, and find its centres c 5.4. X , which will either be within the triangle, or in one of its fides, or without it.

Firft, Let the centre \(X\) be within the triangle, and join LX, MX, NX: AB is greater than LX: If not, \(A B\) muft either be equal to, or lefs than LX; firf, let it be equal: Then becaufe \(A B\) is equal to \(L X\), and that \(A B\) is alfo equal to \(B C\), and LX. to XM, AB and BG are equal to \(L X\) and \(X M\), each to each; and the bafe AC is, by conftruction, equal to the bafe LM ; wherefore the angle ABC is equal to the angle LXM d. For the fame reafon, the angle DEF is equal to the d 8 . I. angle MXN, and the angle GHK to the angle NXL: Therefore the three angles \(\mathrm{ABC}, \mathrm{DEF}, \mathrm{GHK}\) are equal to the three angles LXM, MXN, NXL: But the three angles LXM, MXN, NXL are equal to four right angles \({ }^{e}\) : therefore alfo the three angles ABC, DEF, GHK are equal to four right angles: But, by the hypothefis, they are lefs than four right angles, which is abfurd ; therefore \(A B\) is not equal
 to LX: But neither can \(A B\) be lefs than LX: For, if poffible, let it be lefs, and upon the ftraight line \(\mathrm{LM}_{2}\) on the fide of it on which is the centre X , defcribe the triangle LOM, the fides LO, OM of which are equal to \(\mathrm{AB}, \mathrm{BC}\); and becaufe the bafe LM is equal to the bafe

Book XI. bafe AC, the angle LOM is equal to the angle ABCd : And \(\underbrace{A B}\), that is, \(L O\); by the hypothefis, is lefs than \(L X\); whered8. I. fore LO, OM fall within the triangle LXM; for, if they fell upon its fides, or without it, they would be equal to, or greater than LX, XM f: Therefore the angle \(L O M\), that is, the angle \(A B C\), is greater than the angle LXM \(\mathrm{f}:\) In the fame manner it may be proved that the angle DEF is greater than the angle MXN, and the angle GHK greater than the angle NXL. Therefore the three angles ABC, DEF, GHK are greater than the three angles LXM, MXN, NXL;
 that is, than four right angles: But the fame angles \(\mathrm{ABC}, \mathrm{DEF}, \mathrm{GHK}\) are lefs than four right angles; which is abfurd: Therefore AB is not lefs than LX, and it has been proved that it is not equal to LX; wherefore \(A B\) is greater than \(L X\).

Next, Let the centre \(X\) of the circle fall in one of the fides of the triangle, viz. in MN, and join XL: In this cafe alfo \(A B\) is greater than LX. If not, \(A B\) is either equal to LX , or lefs than it: Firf, let it be equal to XL : Therefore \(A B\) and \(B C\), that is, \(D E\), and EF, are equal to \(M X\) and \(X L\), that is, to MN: But, by the conftruction, MN is equal to DF ; therefore DE , EF are equal to DF, which is impoffible + : Wherefore \(A B\) is not equal to LX; nor is itlefs; for then,
 much more, an abfurdity would, follow: Therefore \(A B\) is greater than LX.

But, let the centre \(X\) of the circle fall without the triangle LINN, and join LX, MX, NX. In this cafe likewife AB is greater than LX : If not, it is either equal to, or lefs than LX: Firf, let it be equal; it may be proved in the fame manner, as in the firft cafe, that the angle ABC is equal to the angle MXL, and GHK to LXN ; therefore the whole angle MXN is equal to the two angles, \(\mathrm{ABC}, \mathrm{GHK}: \mathrm{But} \mathrm{ABC}\) and GHK are together greater than the angle DEF; therefore allo the angle MXN is greater than DEF. And becaufe DE,

EF are equal to MX, XN, and the bafe DF to the bafe Book XI. MN, the angle MXN is equal do the angle DEF : And it has been proved, that it is greater than DEF, which is abfurd. Therefore AB is not equal to LX. Nor yet is it lefs; for then, as has been proved in the firft cafe, the angle ABC is greater than the angle MXL, and the angle GHK greater than the angle LXN. At the point B in the fraight line CB make the angle CBP equal to the angle \(G H K\), and make \(B P\) equal to

HK , and join CP, AP. And becaufe CB is equal to GH; \(\mathrm{CB}, \mathrm{BP}\) are equal to \(\mathrm{GH}, \mathrm{HK}\), each to each, and they contain equal angles; wherefore the bafe CP is equal to the bafe GK, that is, to LN. And in the ifofceles triangles ABC, MXL, becaufe the angle \(A B C\) is greater than the angle \(M X L\), therefore the angle MLX at the bafe is greaterg than the angle \(\mathrm{g}_{\mathrm{g} 2}\), , ACB at the bafe. For the fame reafon, becaufe the angle GHK, or CBP, is greater than the angle LXN, the angle XLN is greater than the angle CBP. Therefore the whole angle MLX is greater than the whole angle ACP. And becaufe \(\mathrm{ML}, \mathrm{LN}\) are equal to \(\mathrm{AC}, \mathrm{CP}\), each to each, but the angle MLN is greater than the angle ACP, the bafe MN is greater h than the bafe AP. And MN is equal to DF; therefore alfo \(D F\) is greater than AP. Again, becaule DE, EF are equal to \(\mathrm{AB}, \mathrm{BP}\), but the bafe DF greater than the bafe AP , the an-
 gle DEF is greater \(k\) than the angle \(A B P\). And \(A B P\) is equal to the two digles \(A B C, C B P\), that is, to the two angles ABC, GHK ; therefore the angle DEF is greater than the two angles \(A B C\), GHK; but it is alfo lefs than thefe which is impolible. Therefore \(A B\) is not lefs than

Boork. XI. LX ; and it has been proved that it is not equal to it ; thered

a 12.1 . fore \(A B\) is greater than \(L X\).

From the point X erect a XR at right angles to the plane of the circle LMN. And becaufe it has been proved in all the cafes, that \(A B\) is greater than \(L X\), find a fquare equal to the excefs of the fquare of \(A B\) above the fquare of LX, and make RX equal to its fide, and join RL, RM, RN. Becaufe RX is perpendicular to the plane of the circle LMN, it \(b_{3}\). def.II , is \({ }^{\text {b }}\) perpendicular to each of the it raight lines LX, MX, NX. And becaufe LX is equal to MX, and XR common, and at right angles \(M\) to each of them, the bafe RL is equal to the bafe RM. For the fame reafon, RN is equal to each of the two RL, RM. Therefore the three ftraight lines RL, RM, RN are all
 equal. And becaufe the fquare of XR is equal to the excefs of the fquare of AB above the fquare of \(L X\); therefore the fquare of \(A B\) is equal to the fquares of \(L X, X R\). But the fquare of \(R L\) is equal \(c\) to the fame fquares, becaufe LXR is a right angle. Therefore the fquare of \(A B\) is equal to the fquare of RL, and the ftraight line \(A B\) to RL. But each of the fraight lines BC, DE, EF, GH, HK is equal to \(A B\), and each of the two RM, RN is equal to RL. Wherefore \(\mathrm{AB}, \mathrm{BC}, \mathrm{DE}, \mathrm{EF}, \mathrm{GH}\), HK are each of them equal to each of the ftraight lines RL, RM, RN. And becaufe RL, \(R M\), are equal to \(A B, B C\), and the bafe LM to the bafe \(A C\);
d8. 1 the angle LRM is equal d to the angle \(A B C\). For the fame reafon, the angle MRN is equal to the angle DEF, and NRL to GHK. Therefore there is made a folid angle at R, which is contained by three plane angles LRM, MRN, NRL, which are equal to the three given plane angles \(\mathrm{ABC}, \mathrm{DEF}, \mathrm{GHK}\), each to each. Which was to be done.
\[
\underset{\sim}{P R O P}
\]

F each of two folid angles be contained by three plane See N . angles equal to one another, each to each; the planes in which the equal angles are, have the fame inclination to one another.

Let there be two folid angles at the points \(\mathrm{A}, \mathrm{B}\); and let the angle at \(A\) be contained by the three plane angles CAD , CAE, EAD; and the angle at B by the three plane angles FBG, FBH, HBG; of which the angle CAD is equal to the angle FBG, and CAE to FBH, and EAD to HBG: The planes in which the equal angles are, have the fame inclination to one another.

In the ftraight line AC take any point K , and in the plane CAD from \(K\) draw the ftraight line \(K D\) at right angles to \(A C\), and in the plane CAE the ftraight line KL at right angles to the fame AC: Therefore the angle DKL is the inclination \(a\) of the plane CAD to the plane CAE: Jn BF take \(B M\) equal to \(A K\),
 a 6.def. rr . and from the point \(M\) draw, in the planes FBG, FBH, the ftraight lines MG, MN at right angles to BF ; therefore the angle GMN is the inclination 2 of the plane FBG to the plane FBH: Join \(\mathrm{LD}_{\text {a }}\) NG; and becaufe in the triangles KAD, MBG, the angles KAD, MBG are equal, as alfo the right angles AKD, BMG, and that the fides \(\mathrm{AK}, \mathrm{BM}\), adjacent to the equal angles, are equal to one another; therefore \(K D\) is equal \(b\) to \(M G\), and \(b 26\). \(x\). AD to BG : For the fame reafon, in the triangles \(K A L\), \(\mathrm{MBN}, \mathrm{KL}\) is equal to MN , and AL to BN : And in the triangles \(\mathrm{LAD}, \mathrm{NBG}, \mathrm{LA}, \mathrm{AD}\) are equal to \(\mathrm{NB}, \mathrm{BG}\), and they contain equal angles; therefore the bafe \(L D\) is equal \({ }^{\text {c }}\) c 4 . r. to the bafe NG. Laftly, in the triangles KLD, MNG, the fides \(\mathrm{DK}, \mathrm{KL}\) are equal to GM, MN, and the bafe LD to the bafe NG ; therefore the angle DKL is equal d to the angle \(\mathrm{d} 8 . \mathrm{x}\). GMN : But the angle DKL is the inclination of the plane CAD to the plane CAE, and the angle GMN is the inclina-

Book XI. (2) 2 7. def. II.
tion of the plane FBG to the plane FBH, which planes have therefore the fame inclination a to one another: And in the fame manner it may be demonftrated, thet the other planes in which the equal angles are, have the fame inclinat:on to one another. Therefore, if two folid angles, \& c. Q. E. D.

> PROP. B. THEOR.

See N. F two folid angles be contained, each by three plane angles which are equal to one another, each to each, and alike fituated; thefe folid angles are equal to one another.

Let there be two folid angles at \(A\) and \(B\), of which the folid angle at A is contained by the three plane angles \(\mathrm{CAD}, \mathrm{CAE}\), EAD ; and that at B , by the three plane angles \(\mathrm{FBG}, \mathrm{FBH}\), HBG; of which CAD is equal to FBG; CAE to FBH ; and EAD to HBG: The folid angle at A is equal to the folid a:gle at B.

Let the folid angle at \(A\) be applied to the folid angle at \(B\); and, firt, the plane angle CAD being applied to the plane angle FBG, fo as the point A may coincide with the point B, and the ftraight line AC with BF ; then AD coincides with \(B G\), becaufe the angle \(C A D\). is equal to the angle FBG: And becaufe the inclination of the plane CAE to the plane
a A. If, CAD is equal a to theinclination of the plane FBH to the plane FBG, the plane CAE
 coincides with the plane FBH, becaufe the planes CAD, FBG coincide with one another : And becaufe the ftraight lines AC, BF coincide, and that the angle CAE is equal to the angle FBH ; therefore AE coincides with BH , and AD coincides with BG; wherefore the plane EAD coincides with the plane HBG: Therefore the folid angle A coincides with the folid angle B, and confeqently they are b 8, A. I. qual b to one another. C. E. D.

COLID figures contained by the fame number of \(\mathrm{e}-\mathrm{sec} \mathrm{N}\). qual and fimilar planes alike fituated, and having none of their folid angles contained by more than three plane angles; are equal and fimilar to one another.

Let AG, KQ be two folid figures contained by the fame number of fimilar and equal planes, alike fituated, viz. let the plane, AC be fimilar and equal to the plane KM, the plane AF to KP; BG to LQ; GD to QN ; DE to NO ; and laftly, FH fimilar and equal to PR : The folid figure AG is equal and fimilar to the folid figure KQ .

Becaufe the folid angle at A is contained by the three plane angles BAD, BAE, EAD, which, by the hypothefis, are equal to the plane anglés LKN, LKO, OKN, which contain the folid angle at K , each to each ; therefore the folid angle at \(A\) is equal a to the folid angle at \(K\) : In the fame manner, a \(B\). \(\mathbf{r r}\) the other folid angles of the figures are equal to one another. If, then, the folid figure AG be applied to the folid figure KQ, firft, the plane figure AC being applied to the plane figure KM ; the ftraight line AB coinciding with KL, the figure AC muft
 coincide with the figure KM, becaufe they are equal and fimilar: Therefore the ftraight lines \(\mathrm{AD}, \mathrm{DC}, \mathrm{CB}\) coincide with KN, NM, ML, each with each ; and the points \(A, D, C, B\), with the points K, N, M, L: And the folid angle at A coincides with a the folid angle at K ; wherefore the plane AF coincides with the plame KP, and the figure AF with the figure KP, becaufe they are equal and fimilar to one another: Therefore the ftraight lines \(\mathrm{AE}, \mathrm{EF}, \mathrm{FB}\), coincide with \(\mathrm{KO}, \mathrm{OP}, \mathrm{PL}\); and the points \(\mathrm{E}, \mathrm{F}\), with the points \(\mathrm{O}, \mathrm{P}\). In the fame manner, the figure AH coincides with the figure KR , and the ftraight line DH with NR, and the point \(H\) with the point \(R\) : And becaufe the folid angle at B is equal to the folid angle at L , it may be pro\(\mathrm{ved}_{2}\) in the fame manner, that the figure BG coincides with the

Book XI. the figure LQ, and the ftraight line CG with MQ, and the

~~point \(G\) with the point \(Q\) : Since, therefore all the planes and fides of the folid figure AG coincide with the planes and fides of the folid figure \(K Q, A G\) is equal and fimilar to \(K Q\) : And, in the fame manner, any other folid figures whatever contaiued by the fame number of equal and fimilar planes, alike fituated, and having none of their folid angles contained by more than three plane angles, may be proved to be equal and fimilar to one another. Q.E.D.

\section*{PR O P. XXIV. THEOR.}

Sec N .

IF a folid be contained by fix planes, two and two of which are parallel ; the oppofite planes are fimilar and equal parallelograms.

Let the folid CDGH be contained \(b_{y y}\) the parallei planes AC, \(\mathrm{GF} ; \mathrm{BG}, \mathrm{CE} ; \mathrm{FB}, \mathrm{AE}\) : Its oppofite planes are fimilar and equal parallelograms.

Becaufe the two parallel planes BG, CE, are cut by the plane AC , their common fections \(\mathrm{AB}, \mathrm{CD}\), are parallel a. Again, becaufe the two parallel planes BF, AE, are cut by the plane AC , their common fections \(\mathrm{AD}, \mathrm{BC}\), are parallel a: And \(A B\) is parallel to \(C D\); therefore \(A C\) is a parallelogram. In like manner, it may be proved that each of the figures \(\mathrm{CE}, \mathrm{FG}, \mathrm{GB}, \mathrm{BF}\), AE is a parallelogram : Join AH, DF; and becaufe AB is parallel to DG , and BH to CF ; the two ftraight lines \(\mathrm{AB}, \mathrm{BH}\), which meet one another, are parallel to DC and CF which meet one another, and are not in the fame plane with
 the other two; wherefore they con-
bio. ir. tain equal angles \(b\); the angle \(A B H\) is therefore equal to the angle DCF : And becaufe \(\mathrm{AB}, \mathrm{BH}\), are equal to \(\mathrm{DC}, \mathrm{CF}\), and the angle \(A B H\) equal to the angle \(D C F\); therefore the bafe
\& 4. \(\mathbf{I}\). AH is equal c to the bafe DF , and the triangle ABH to the tri-
d 34. I. angle DCF : And the parallelogram BG is double d of the triangle ABH , and the parallelogram CE double of the triangle \(D C F\); thercfore the paralellogram \(B G\) is equal and fimilar to the parallelogram CE. In the fame manner it may be proved, that the parallelogram \(A C\) is equal and fimilar
milar to the parallelogram GF , and the parallelogram AE to Book xi. BF. Therefore, if a folid, \&zc. Q. E. D.

\section*{PROP. XXV. THEOR.}

IF a folid parallelefiped be cut by a plane parallel to sce M . two of its oppofite planes; it divides the whole into two folids, the bafe of one of which fhall be to the bafe of the other, as the one folid is to the other.

Let the folid parallelepiped ABCD be cut by the plane EV, which is parallel to the oppofite planes AR, HD, and divides the whole into the two folids ABFV, EGCD; as the bafe AEFY of the firt is to the bafe EHCF of the other, fo is the folid ABFV to the folid EGCD.

Produce AH both ways, and take any number of fraight lines \(\mathrm{HM}, \mathrm{MN}\), each equal to EH , and any number \(\mathrm{AK}, \mathrm{KL}_{\Delta}\) each equal to EA, and complete the parallelograms LO, KY, HQ, MS, and the folids LF, KR, HU, MT : Then, becaufe the itraight lines \(\mathrm{LK}, \mathrm{KA}, \mathrm{AE}\) are all equal, the parallelograms

LO, \(\mathrm{KY}, \mathrm{AF}\) are equal \(a\) : And likewife the parallelograms KX , a a 5. I. \(\mathrm{KB}, \mathrm{AG}^{\mathrm{a}}\); as alfo b the parallelograms LZ, KP, AR, becaufe b 24. ris they are oppointe planes: For the fame reafon, the parallelograms EC, HQ, MS, are equal a ; and the parallelograms HG, HI, IN, as alfo bHD, MU, NT: Therefore three planes of the folid LP, are equal and fimilar to three planes of the folid KR , as alfo to three planes of the folid AV: But the three planes oppofite to thefe three are equal and fimilar \({ }^{b}\) to them in the feveral folids, and none of their folid angles are contained by more than three plane angles: Therefore the three folids T.P, KR, AV are equal c to one another: For the fame reafon, c C. \(x\). the three folids \(\mathrm{ED}, \mathrm{HU}, \mathrm{MT}\) are equal to one another: There-

Book XI; fore what multiple foever the bafe LF is of the bafe AF, the fame multiple is the folid LV of the folid AV: For the fame reafon whatever multiple the bafe NF is of the bafe HF , the fame multiple is the folid NV of the folid ED: And if the bafe
cC. 11 . LF be equal to the bafe NF, the folid LV is equal c to the folid NV; and if the bafe LF be greater than the bafe NF, the folid LV is greater than the folid NV ; and if lefs, lefs: Since then there are four magnitudes, viz. the two bafes \(\mathrm{AF}, \mathrm{FH}\),

and the two folids \(A V, E D\), and of the bafe AF and folid AV, the bafe LF and folid LV are any equimultiples whatever; and of the bafe FH and folid ED, the bafe FN and folid NV are any equimultiples whatever; and it has been proved, that if the bafe LF is greater than the bafe FN; the folid LV is greater than the folid NV ; and if equal, equal; and if lefs, lefs.
d 5. def. 5. Therefore d as the bafe AF is to the bafe FH, fo is the folid AV to the folid ED. Wherefore, if a folid, \&c. O. E. D.

\section*{PROP. XXVI. PROB.}

See N .

AT a given point in a given ftraight line, to make a folid angle equal to a given folid angle containa ed by three plane angles.

Let \(A B\) be a given ftraight line, \(A\) a given point in it, and D a given folid angle contained by the three plane angles EDC, EDF, FDC: It is required to make at the point \(A\) in the fraight line AB a folid angle equal to the folid angle D .

In the ftraight line DF take any point \(F\), from which draw
aII.II.
b 23.1 .
© I4. II
a FG perpendicular to the plane EDC, meeting that plane in \(G\); join \(D G\), and at the point \(A\) in the flraight line \(A B\) make bthe angle BAL equal to the angle EDC, and in the \(\mathrm{p}^{\text {lane }} \mathrm{BAL}\) make the angle BAK equal to the angle EDG; pane BAL make the angle BAK equal to the angle EDG;
at right angles to the plane BAL; and make KH equal to \(G F\), and join AH: Then the folid angle at A, which is contained by the three plane angles BAL, BAH, HAL, is equal to the folid angle at D contained by the three plane angles EDC, EDF, FDC.

Take the equal ftraight lines \(\mathrm{AB}, \mathrm{DE}\), and join \(\mathrm{HB}, \mathrm{KB}\), FE, GE: And becaufe FG is perpendicular to the plane EDC, it makes right angles \(d\) with every ftraight line meering it in \(d_{3}\). def. Im that plane : Therefore each of the angles FGD, FGE, is a right angle: For the fame reafon, HKA, HKB are right angles: And becaufe \(K A, A B\) are equal to \(G D, D E\), each to each, and contain equal angles, therefore the bafe BK is equal \(e\) to the \(e\) 4. \(\begin{aligned} \\ \text { on }\end{aligned}\) bare EG : And KH is equal to GF, and HKB, FGE, are right angles, therefore HB is equal to FE : Again, becaufe \(A K\), KH are equal to \(\mathrm{DG}, \mathrm{GF}\), and contain right angles, the bafe \(A H\) is equal to the bafe \(D F\); and \(A B\) is equal to \(D E\) : therefore \(\mathrm{HA}, \mathrm{AB}\) are equal to \(\mathrm{FD}, \mathrm{DE}\), and the bafe HB is equal to the bafe FE, therefore the angle BAH is equal \(f\) to the angle EDF: For the fame reafon; the angle HAL is equal to the angle FDC. Becaufe if AL and DC be made equal, and KL, HL, GC,

f8. I。 \(=\)

FC be joined, fince the whole angle \(B A I_{i}\) is equal to the whole EDC, and the parts of them BAK, EDG are, by the conftruction; equal; therefore the remaining angle \(\mathrm{KAL}_{1}\) is equal to the remaining angle GDC: And becaufe \(\mathrm{KA}_{\text {, }}\) AL are equal to \(\mathrm{GD}, \mathrm{DC}\), and contain equal angles, the bafe KL is equal e to the bafe GC: And KH is equal to GF, fo that \(\mathrm{LK}, \mathrm{KH}\) are equal to CG, GF, and they contain right angles; therefore the bafe HL is equal to the bafe FC: Again, becaufe \(\mathrm{HA}, \mathrm{AL}\) are equal to \(\mathrm{FD}, \mathrm{DC}\), and the bafe HL to the bafe FC, the angle HAL is equal \(f\) to the angle FDC: Therefore, becaufe the three plane angles BAL, BAH, HAL, which contain the folid angle at A , are equal to the three plane angles EDC, EDF, FDC, which contain the folid angle at D, each to each, and are fituated in the fame order, the folid angle at A is equal \(g\) to the folid angle at D . Therefore, at a given point in a given ftraight line, a folid angle has been made equal to a given folid angle contained by three plain angles. Which was to be done.

Book XT.

\section*{PROP. XXVI. PROB.}

Let AB be the given ftraight line, and CD the given folid parallelepiped. It is required from \(A B\) to defcribe a folid parallelepiped fimilar and fimilarly fituated to \(C D\).

\section*{a 26.1 .}

At the point \(A\) of the given fraight line \(A B\), make a a folid angle equal to the folid angle at C , and let \(\mathrm{BAK}, \mathrm{KAH}, \mathrm{HAB}\) be the three plane angles which contain it, fo that BAK be e-
b 12.6:
c 22.5. qual to the angle ECG, and KAH to GCF, and HAB to FCE: And as EC to CG, fo make b BA to AK; and as GC to CF , fo make b KA to AH; wherefore, ex æquali \(c\), as EC to CF , fo is BA to AH : Complete the parallelogram BH , and the folid AL; And becaufe, as EC to CG , fo BA to AK, the fides about the equal angles ECG, BAK are proportionals; therefore the parallelogram BK is fimilar to EG. For the fame rea-
 fon, the parallelogram KH is fimilar to GF, and HB to FE. Wherefore three parallelograms of the folid \(A L\) are fimilar to three of the folid

\section*{d 24.11 .}
e B. II.
fri.def.if. CD; and the three oppofite ones in each folid are equal d and fimilar to thefe, each to each. Alfo, becaufe the plane angles which contain the folid angles of the figures are equal, each to each, and fituated in the fame order, the folid angles are equal e each to each. Therefore the folid AL is fimilar \(\mathrm{f}^{\text {f }}\) to the folid CD. Wherefore from a given ftraight line \(A B\) a folid parallelepiped AL has been defcribed fimilar, and fimilarly fituated to the given one CD. Which was to be done.

F a folid parallelepiped be cut by a plane paffing see No through the diagonals of two of the oppofite planes; it hall be cut in two equal parts.

Let AB be a folid parallelepiped, and \(\mathrm{DE}, \mathrm{CF}\) the diagonals of the oppofite parallelograms AH, GB, viz. thofe which are drawn betwixt the equal angles in each: And becaufe CD, FE are each of them parallel to GA, and not in the fame plane with it, \(\mathrm{CD}, \mathrm{FE}\) are parallel a ; wherefore the diagonals CF , a \(9 . \mathbf{I I}_{\text {a }}\) DE are in the plane in which the parallels are, and are themfelves parallels b: And the plane CDEF fhall cut the folid AB into two equal parts.

Becaufe the triangle GGF is equal c to the triangle CBF , and the triangle DAE to DHE; and that the parallelogram CA is equal \(d\) and fimilar to the oppofite one BE; and the parallelogram GE to CH: Therefore the
 prifm contained by the two triangles CGF, DAE, and the three parallelograms CA, GE, EC, is equal e to the prifm contained by the two triangles \(\mathrm{CBF}, \mathrm{DHE}, \mathrm{e}\) C. IIs and the three parallelograms BE, \(\mathrm{CH}, \mathrm{EC}\); becaufe they are contained by the fame number of equal and fimilar planes, alike fituated, and none of their folid angles are contained by more than three plane angles. Therefore the folid \(A B\) is cut into two equal parts by the plane CDEF. Q.E.D.
' N. B. The infifting ftraight lines of a parallelepiped, men' tioned in the next and fome following propofitions, are the - fides of the parallelograms betwixt the bafe and the oppofite ' plane parallel to it.'

\section*{PROP. XXIX. THEOR.}

OLID parallelepipeds upon the fame bafe, and of See \(_{N_{*}}\) the fame altitude, the infifing fraight lines of which are terminated in the fame ftraight lines of the plane oppofite to the bafe, are equal to one another.

Book XI.
See the figures below.
a 28.1 r .
, AG, CHO cut into two equal parts a by the plane \(A G H C\) : Therefore the folid \(A H\) is double of the prifm which is contained betwixt the triangles ALG, CBH: For the farme reafon, becaufe the folid \(A K\) is cut by the plane LGHB through the diagonals LG, BH of the oppofite planes \(A L N G_{8}\)
 CBKIF, the folid AK is double of the fame prifm which is contained betwixt the triangles ALG, CBH . Therefore the folid AH is equal to the folid AK.

But, let the parallelograms DM, EN oppofite to the bafe, have no common fide : Then, becaufe \(\mathrm{CH}, \mathrm{CK}\) are parallelob34. 1. grams, CB is equal b to each of the oppofite fides DH, EK; wherefore DH is equal to EK: Add, or take away the common part HE ; then DE is equal to HK : Wherefore alfo the tric 38. . angle CDE is equal c to the triangle BHK : And the parallelod 36. gram DG is equal cto the parallelogram HN : For the fame reaion, the triangle AFG is equal to the triangle LMN, and e 24. rr. the parallelogram CF is equal e to the parallelogram BM , and

CG to BN ; for they are oppofite. Therefore the prifm which is contained by the two triangles \(\mathrm{AFG}, \mathrm{CDE}\), and the three

\footnotetext{
1C.II.
} parallelegrams AD, DG, GC is equal \(f\) to the prifm, contained by the two triangles LMN, BHK, and the three parallelograms \(\mathrm{BM}_{3} \mathrm{MK}, \mathrm{KL}\). If therefore the prifm LMNBHK be taken
taken from the folid of which the bafe is the parallelogram Book XI:\(A B\), and in which FDKN is the one oppofite to it; and if
 from this fame folid there be taken the prifm AFGCDE; the remaining folid, viz. the parallelepiped AH , is equal to the remaining parallelepiped AK. Therefore folid parallelepipeds, \&c. Q. E. D.

\section*{PROP. XXX. THEOR.}

sOLID parallelepipeds upon the fame bafe, and of \(\sec \mathrm{N}\). 1 the fame altitude, the infifting ftraight lines of which are not terminated in the fame ftraight lines in the plane oppofite to the bafe, are equal to one another.

Let the parallelepipeds \(\mathrm{CM}, \mathrm{CN}\), be upon the fame bafe AB , and of the fame altitude, but their infifting ftraight lines \(A F\), \(\mathrm{AG}, \mathrm{LM}, \mathrm{LN}, \mathrm{CD}, \mathrm{CE}, \mathrm{BH}, \mathrm{BK}\), not terminated in the fame ftraight lines : The folids CM, CN are equal to one another.

Produce FD, MH, and NG, KE, and let them meet one another in the points \(\mathrm{O}, \mathrm{P}, \mathrm{Q}, \mathrm{R}\); and join \(\mathrm{AO}, \mathrm{LP}, \mathrm{BQ}\), CR : And becaufe the plane LBHM is parallel to the oppofite

plane ACDF, and that the plane LBHM is that in which are the parallels LB, MHPQ, in which alfo is the figure BLPQ; and the plane ACDF is that in which are the parallels AC, FDOR, in which alfo is the figure CAOR ; therefore the figures BLPQ, GAOR are in parallel planes: In like manner, becaufe the plane ALNG is parallel to the oppofite plane CBKE, and tha \(t\) the plane ALNG is that in which are the parallels

Book XI. AL, OPGN, in which alfo is the figure ALPO; and the plane CEKE is that in which are the parallels CB, ROEK, in which alfo is the figure \(C B Q R\); therefore the figures \(A L P O, C B Q R\) are in parallel planes: and the planes ACBL, ORQP are parallel; therefore the folid CP is a parallelepiped: But the foIid CM, of which the bafe is ACBL, to which FDHM is the oppofite parallelogram, is equal a to the folid CP, of which the

bafe is the parallelogram ACBL, to which ORQP is the one oppofite; becaufe they are upon the fame bafe, and their infifting ftraight lines \(\mathrm{AF}, \mathrm{AO}, \mathrm{CD}, \mathrm{CR} ; \mathrm{LN}, \mathrm{LP}, \mathrm{BH}, \mathrm{BQ}\) are in the fame ftraight lines FR, MQ: And the folid CP is equal a to the folid CN ; for they are upon the fame bafe ACBL, and their inffting ftraight lines \(A O, A G, L P, L N ; C R, C E\); \(B Q, B K\) are in the fame flaight lines \(O N, R K\) : Therefore the folid CMI is equal to the folid CN. Wherefore fulid paral. lelepipeds, \&xc. Q.E.D.

\section*{PROP. XXXI. THEOR.}

Sce N. OLID parallelepipeds which are upon equal bafes, and of the fame altitude, are equal to one another.

Let the folid parallelepipeds AE, CF, be upon equal bafes \(A B, C D\); and be of the fame altitude; the folid \(A E\) is equal to the folid CF.

Firf, Let the infifing firaight lines be at right angles to the bafes \(\mathrm{AB}, \mathrm{CD}\), and let the bafes be placed in the fame plane,
and fo as that the fides CL, LB be in a ftraight line; there- Book XI. fore the ftraight line LM, which is at right angles to the plane in which the bafes are, in the point \(L\), is common a to the two a 1 . ir . folids AE, CF ; let the other infifting lines of the folids be \(\mathrm{AG}, \mathrm{HK}, \mathrm{BE} ; \mathrm{DF}, \mathrm{OP}, \mathrm{CN}:\) And firt, let the angle ALB be cqual to the angle CLD ; then AL, LD are in a ftraight line b. b \(14 . \mathrm{x}\). Produce OD, HB, and let them meet in \(Q\), and complete the folid parallelepiped LR, the bafe of which is the parallelogram \(L Q\), and of which LM is one of its infifting ftraight lines: Therefore, becaufe the parallelogram AB is equal to CD , as the bafe \(A B\) is to the bafe \(L Q\), fo is cthe bafe \(C D\) to the fame c\%.s. LQ: And becaufe the folid parallelepiped \(A R\) is cut by the plane LMEB, which is parallel to the oppofite planes AK, DR; as the bafe \(A B\) is to the bafe \(L Q\), fo is dthe folid \(A E\) to the \(d 25 . \mathrm{mr}\). folid LR: For the fame reafon, becaufe the folid parallelepiped CR is cut by the plane LMFD, which is parallel to the oppofite planes CP, BR ; as the bafe CD to the bafe LQ, fo is the folid CF to the folid LR : But as the bafe \(A B\) to the bafe LQ , fo the bafe CD to the bafe LQ, as before was proved: Therefore as the fo-
 lid AE to the folid
\(\mathrm{LR}, \mathrm{fo}\) is the folid CF to the folid LR ; and therefore the folid \(A E\) is equal e to the folid CF .

But let the folid parallelepipeds SE, CF be upon equal bafes \(S B, C D\), and be of the fame altitude, and let their infifting ftraight lines be at right angles to the bafes; and place the bafes \(S B, C D\) in the fame plane, fo that \(\mathrm{CL}, \mathrm{LB}\) be in a ftraight line; and let the angles SLB, CLD be unequal; the folid SE is alfo in this cafe equal to the folid CF : Produce DL, TS until they meet in A, and from B draw BH parallel to DA; and let \(\mathrm{HB}, \mathrm{OD}\) produced meet in Q , and complete the folids AE , IR: Therefore the folid AE, of which the bafe is the parallelogram LE, and AK the one oppofite to it, is equal \(f\) to the fo- \(f 2 g .1\). lid SE, of which the bafe is LE, and to which SX is oppofite; for they are upon the fame bafe LE, and of the fame altitude, and their infifting ftraight lines, viz. LA, LS, BH, BT; MG, WV, EK, EX are in the fame firaight lines AT, GX: And be-

Book XI. caufe the parallelogram \(A B\) is equal \(g\) to \(S B\), for they are upon the fame bafe LB, and between the fame parallels LB, AT; and that the bafe SB is equal to the bafe CD; therefore the bafe \(A B\) is equal to the bafe CD, and the angle \(A L B\) is equal to the angle CLD : Therefore, by the firft cafe, the folid AE is e-
 qual to the folid CF ; but the folid AE is equal to the folid SE , as was demonftrated; therefore the folid SE is equal to the folid CF.

But, if the infifting ftraight lines AG, HK, BE, LM; CN, RS, DF, OP, be not at right angles to the bafes AB, CD ; in this cafe likewife the folid AE is equal to the folid CF : From the points \(G, K, E, M ; N, S, F, P\), draw the ftraight lines
h II. II. GQ, KT, EV, MX ; NY, SZ, FI, PU, perpendicular \(h\) to the plane in which are the bafes \(A B, C D\); and let them meet it in the points \(\mathrm{Q}, \mathrm{T}, \mathrm{V}, \mathrm{X} ; \mathrm{Y}, \mathrm{Z}, \mathrm{I}, \mathrm{U}\), and join QT, TV, VX, XQ; YZ, ZI, IU, UY: Then, becaufe GQ, KT, are at right

i6.1r. angles to the fame plane, they are parallel \(i\) to one another: And MG, EK are parallels; therefore the plane MQ, ET, of which one paffes through MG, GQ, and the other through EK, KT which are parallel to MG, GQ, and not in the fame
Kis. 1 I: plane with them, are parallel \(k\) to one another: For the fame reafon, the planes MV, GT are parallel to one another: Therefore the folid QE is a parallelepiped: In like manner, it may be proved, that the folid YF is a parallelepiped: But, from what has been demonftrated, the folid EQ is equal to the folid FY, becaufe they are upon equal bafes MK, PS, and of the fame altitude, and have their infifting fraight lines at right angles
to the bafes: And the folid EQ is equal \({ }^{1}\) to the folid AE; and Book X. the folid FY to the folid CF ; becaufe they are upon the fame bafes and of the fame altitude: Therefore the folid AEis equai \({ }^{1}\) 29. or 3 c . to the folid CF : Wherefore folid parallelepipeds, \&c. Q. E. D.

\section*{PROP. XXXII. THEOR.}

SOLID parallelepipeds which have the fame altitude, See N. are to one another as their bales.

Let \(A B, C D\) be folid parallelepipeds of the fame altitude : They are to one another as their bafes; that is, as the bafe AE to the bafe CF, fo is the folid AB to the folid CD.
 to AE , fo that the angle FGH be equal to the angle LCG; and complete the folid parallelepiped GK upon the bafe FH , one of whofe infifting lines is FD, whereby the folids \(\mathrm{CD}, \mathrm{GK}\) muft be of the fame altitude : Therefore the folid \(A B\) is equal \(b\) b 3 . 11. to the folid GK, becaufe they are upon equal bafes \(\mathrm{AE}, \mathrm{FH}\), and are of the fame alti tude: And becaufe the folid parallelepi-
 ped CK is cut by the plane I \(G\) which is parallel to its oppofite planes, the bafe c 25 . 15 , HF is c to the bafe FC, as the folid HD to the folid DC: But the bafe HF is equal to the bafe AE, and the folid GK to the folid AB: Therefore, as the bafe AE to the bafe CF, fo is the folid \(A B\) to the folid \(C D\). Wherefore folid parallelepipeds, \(\mathbb{Q} c\). Q.E.D.

Cor. From this it is manifeft that prifms upon triangular bafes, of the fame altitude, are to one another as their bafes.

Let the prifms, the bafes of which are the triangles AEM, CFG , and NBO, PDQ the triangles oppofite to them, have the fame altitude; and coniplete the parallelograms AE, CF, and the folid parallelepipeds \(\mathrm{AB}, \mathrm{CD}\), in the firft of which let MO, and in the other let GQ be one of the infifting lines. And becaufe the folid parallelepipeds \(\mathrm{AB}, \mathrm{CD}\) have the fame altitude, they are to one another as the bafe AE is to the bafe

Book XI. CF ; wherefore the prisms, which are their halves \({ }^{d}\) are to one C28.11. another, as the bafe AE to the bale CF ; that is, as the triangle AEM to the triangle CFG.

\section*{PROP. XXXIII. THEOR.}

SIMILAR fold parallelepipeds are one to another in the triplicate ratio of their homologous fides.

Let \(A B, C D\) be fimilar fold parallelepipeds, and the fade \(A E\) homologous to the fine \(C F\) : The fold \(A B\) has to the fold \(C D\), the triplicate ratio of that which AE has to CF.

Produce AE, GE, HE, and in the fe produced take EK edual to CF, E equal to FN , and EM equal to FR ; and complate the parallelogram KL, and the olid KO: Becaufe KE, EL are equal to \(\mathrm{CF}, \mathrm{FN}\), and the angle KEL equal to the angle CFN, becaufe it is equal to the angle AEG which is equal to CFN, by reason that the folids \(\mathrm{AB}, \mathrm{CD}\) are fimilar ; therefore the paralIclogram KL is fimilar and equal to the parallelogram CN : For the fame reason, the parallelogram MK is fimilar and equal to CR, and alpo OE to FD. Therefore three parallelograms of the folid KO are equal and fimilar to three parallelograms of the olid CD: And the three oppofite ones in each fold are equal a and similar to there:

bC.1r. lid KO is equal b and fimilar to the folid CD: Complete the parallelogram GK, and complete the folds EX, LP upon the bates GK, KL, fo that EH be an infifting ftraight line in each of them, whereby they mut be of the fame altitude with the folid \(A B\) : And because the folds \(A B, C D\) are fimilar, and, by permutation, as AE is to CF, fo is EG to FN, and fo is EH to \(F R\); and \(F C\) is equal to EK, and FN to EL, and FR to EM : Therefore, as AE to EK, fo is EG to EL, and fo is HE to EM: But, as AE to EK, fo c is the parallelogram AG to the parallelogram GK ; and as GE to EL, fo is \({ }^{\circ} \mathrm{GK}\) to KL
and as HE to EM, fo \(c\) is PE to KM: Therefore as the paral- Book XI. lelogram AG to the parallogram GK, fo is GK to KL, and PE to KM : But as AG , to GK , fo \(d\) is the folid AB to the folid EX ; and as GK to KL, fo d is the folid EX to the folid PL; d 25 . rs. and as PE to KM, fo d is the folid PL to the folid KO: And therefore as the folid AB to the folid EX, fo is EX to PL, and PL to KO: But if four magnitudes be continual proportionals, the firft is faid to have to the fourth the triplicate ratio of that which it has to the fecond: Therefore the folid AB has to the folid \(K O\), the triplicate ratio of that which \(A B\) has to EX: But as AB is to EX , fo is the parallelogram AG to the parallelogram \(G K\), and the ftraight line \(A E\) to the ftraight line EK. Wherefore the folid AB has to the folid KO, the triplicate ratio of that which AE has to EK. And the folid KO is equal to the folid CD, and the ftraight line EK is equal to the ftraight line CF. Therefore the folid AB has to the folid CD , the triplicate ratio of that which the fide AE has to the homologous fide CF, \&c. Q.E.D.

Cor. From this it is manifeft, that, if four ftraight lines be continual proportionals, as the firft is to the fourth, fo is the folid parallelepiped deforibed from the firft to the fimilar folid fimilarly defcribed from the fecond; becaufe the firft fraight line has to the fourth the triplicate ratio of that which it has to the fecond.

\section*{PROP. D. THEOR.}

1OLID parallelepipeds contained by parallelograms see \(N_{*}\) equiangular to one another, each to each, that is, of which the folid angles are equal, each to each, have to one another the ratio which is the fame with the ratio compounded of the ratios of their fides.

Let \(\mathrm{AB}, \mathrm{CD}\) be folid parallelepipeds, of which AB is contained by the parallelograms \(\mathrm{AE}, \mathrm{AF}, \mathrm{AG}\) equiangular, each to each, to the parallelograms CH, CK, CL, which contain the folid \(C D\). The ratio which the folid \(A B\) has to the folid \(C D\) is the fame with that which is compounded of the ratios of the fides \(A M\) to \(D L, A N\) to \(D K\), and \(A O\) to \(D H\),

Produce

Book XI. Produce MA, NA, OA to \(\mathrm{P}, \mathrm{Q}, \mathrm{R}\), fo that \(A P\) be equal to DL, AQ to DK, and AR to DH; and complete the folid parallelepiped AX contained by the parallelograms AS, AT, AV fimilar and equal to CH, CK, CL, each to each. There-
a C. II. fore the foiid AX is equal a to the folid CD. Complete likewife the folid AY, the bafe of which is AS, and of which AO is one of its infifting ftraight lines. Take any ftraight line a, and as MA to AP, fo make a to b ; and as NA to AQ , fo make \(b\) to c ; and as AO to \(A R\), fo c to d : Then, becaule the parallelograin AE is equiangular to \(\mathrm{AS}, \mathrm{AE}\) is to AS , as the ftraight line a to c , as is demonftrated in the 23. Prop. Book 6 . and the folids \(\mathrm{AB}, \mathrm{AY}\), being betwixt the parallel planes BOY, EAS, are of the fame altitude. Therefore the folid AB is to the folid AY, as \(t\) the bafe AE to the bafe iS; that is, as the ftraight line a is to c . And the folid AY is to the folid

625. 11. AX, as c the bafe \(O Q\) is to the bafe \(Q R\); that is, as the ftraight line \(O A\) to \(A R\); that is, as the ftraight line \(c\) to the ftraight line \(d\). And becaufe the folid \(A B\) is to the folid \(A Y\), as a is to c , and the folid AY to the folid AX , as c is to d ; ex æquali, the folid \(A B\) is to the folid \(A X\), or \(C D\) which is equal to it,
d def. A. 5 . as the ftraight line a is to \(d\). But the ratio of a to \(d\) is faid to be compounded d of the ratios of \(a\) to \(b, b\) to \(c\), and \(c\) to \(d\); which are the fame with the ratios of the fides MA to AP, NA to \(A Q\), and \(O A\) to \(A R\), each to each. And the fides AP, AQ, AR are eqtal to the fides DL, DK , DH, each to each. Therefore the folid \(A B\) has to the folid \(C D\) the ratio which is the fame with that which is compounded of the ratios of the files AM to DL, AN to DK, and AO to DH. Q.E.D.

THE bafes and altitudes of equal folid parallelepi- See N . peds, are reciprocally proportional; and if the bafes and altitudes be reciprocally proportional; the folid parallelepipeds are equal.

Let \(\mathrm{AB}, \mathrm{CD}\) be equal folid parallelepipeds; their bafes are reciprocally proportional to their altitudes; that is, as the bafe EH is to the bafe NP, fo is the altitude of the folid CD to the altitude of the folid AB.

Firft, Let the infifting fraight lines AG, EF, LB, HK; CM, NX, OD, PR be at right angles to the bafes. As the bafe EH to the bafe NP, fo is CM to AG. If the bafe EH be equal to the bafe NP, then becaufe the folid AB is likewife equal to the folid CD, CM flall be equal to AG. Becaufe if the bafes EH, NP be equal, but the altitudes
 \(\mathrm{AG}, \mathrm{CM}\) be not equal, neither fhall the folid \(A B\) be equal to the folid \(C D\). But the folids are equal. by the hypothefis. Therefore the altitude CM is not unequal to the altitude AG ; that is, they are equal. Wherefore as the bafe EH to the bafe NP, fo is CM to AG.

Next, Let the bafes EH, NP not be equal, but EH greater than the other : Since then the folid AB is equal to the folid CD, CM is therefore greater than AG: For, if it be not, neither alfo in this cafe, would the folids \(\mathrm{AB}, \mathrm{CD}\) be equal, which, by the hypothefis, are equal. Make then CT equal to AG, and complete the folid parallelepipedCV of which the bafe is NP, and altitude CT.
 Becaufe the folid AB is equal to the folid \(C D\), therefore the folid \(A B\) is to the folid,

Book XI. folid CV, as a the folid CD to the folid CV. But as the fo.
a 7.5 .
b 32. II.
c 25.11 . d I. 6. lid AB to the folid CV , fo b is the bafe EH to the bafe NP : for the folids \(\mathrm{AB}, \mathrm{CV}\) are of the fame altitude; and as the folid CD to CV , fo \(\mathrm{c}^{\mathrm{c}}\) is the bafe MP to the bafe PT, and fo is the ftraight line MC to CT ; and CT is equal to AG. Therefore, as the bafe EH to the bafe NP, fo is MC to AG. Wherefore, the bafes of the folid parallelepipeds \(\mathrm{AB}, \mathrm{CD}\) are reciprocally proportional to their altitudes.

Let now the bafes of the folid parallelepipeds \(\mathrm{AB}, \mathrm{CD}\) be reciprocally proportional to their altitudes; viz. as the bafe EH to the bafe NP, fo the altitude of the folid CD to the altitude of the folid \(A B\); the folid \(A B\) is equal to the folid CD. Let the infifing lines be, as before, at right angles to the bafes. Then, if the bafe EH be equal to the
 bafe NP, fince EH is to NP, as the altitude of the folid \(C D\) is to the altitude of the fo-
e A. 5. lid \(A B\), therefore the altitude of \(C D\) is equal e to the altitude of \(A B\). But folid parallelepipeds upon equal bafes, and of the
f 3 r. II. fame altitude, are equal \(f\) to one another; therefore the folid \(A B\) is equal to the folid CD.

But let the bafes EH, NP be unequal, and let EH be thic greater of the two. Therefore, fince as the bafe EH to the bafe NP, fo is CM the altitude of the folid CD to AGthe altitude of \(A B\), CM is greater ethan AG. Again, TakeCT equal to \(A G\), and complete, as before, the folid CV. Auc, becaufe the bafe EH is to the bafe NP, as CMto AG, and that AG is equal to
 CT, therefore the bafe EH is to the bafe NP, as MC to CT. But as the bafe EH is to NP, fo \(b\) is the folid \(A B\) to the folid GV ; for the Yolids \(\mathrm{AB}, \mathrm{CV}\) are of the famealtitude; andas MC to CT , fo is the bafe MP to the bafe

PT, and the folid CD to the folid c CV : And therefore as the Bonk XT. folid \(A B\) to the fold CV . fo is the fold CD to the fold \(\mathrm{CV} ; \underbrace{}_{25.11 \text {. }}\) that is, each of the folids \(\mathrm{AB}, \mathrm{CD}\) has the fame ratio to the fold CV ; and therefore the folid AB is equal to the folid CD .

Second general cafe. Let the infifting ftraight lines FE , \(\mathrm{BL}, \mathrm{GA}, \mathrm{KH}\); XN, DO, MC, RP not be at right angles to the bales of the folids; and from the points \(\mathrm{F}, \mathrm{B}, \mathrm{K}, \mathrm{G} ; \mathrm{X}\), \(D, R, M\) draw perpendiculars to the planes in which are the bales \(\mathrm{EH}, \mathrm{NP}\) meeting thole planes in the points \(\mathrm{S}, \mathrm{Y}, \mathrm{V}, \mathrm{T}\); \(\mathrm{Q}, \mathrm{I}, \mathrm{U}, \mathrm{Z}\); and complete the folids \(\mathrm{FV}, \mathrm{XU}\), which are parallelepipeds, as was proved in the lat part of prop. 3x. of this book. In this cafe, likewife, if the folids \(\mathrm{AB}, \mathrm{CD}\) be equal, their bares are reciprocally proportional to their altitudes, viz. the bare EH to the bare NP, as the altitude of the fold \(C D\) to the altitude of the fold \(A B\). Because the folid \(A B\) is equal to the fold CD , and that the folid BT is equal g to the \(\mathrm{g} \cdot 29\). or 30 . folid BA , for they are upon the fame bare FK ; and of the

fame altitude; and that the fold DC is equal g to the fold DZ , being upon the fame bate XR ; and of the fame altitude; therefore the folid BT is equal to the folid DZ: But the bates are reciprocally proportional to the altitudes of equal fold parallelepipeds of which the infifting fraight lines are at right angles to their bales, as before was proved: Therefore as the bate FK to the bare XR , fo is the altitude of the folid DZ to the altitude of the folio BT: And the bare FK is equal to the bale EH, and the bale XR to the bale NP: Wherefore, as the bate EH to the bare NP, fo is the altitude of the fold DZ to the altitude of the folid BT : But the altitudes of the folids \(\mathrm{DZ}, \mathrm{DC}\), as alfo of the folids BT, BA are the fame. Therefore as the bale E.H to the bate NP, fo is the altitude of the
\(\underbrace{\text { Book XI. folid } C D}\) to the altitude of the folid \(A B\); that is, the bafes of the folid parallelepipeds \(A B, C D\) are reciprocally proportional to their altitudes.

Next, Let the bafes of the folids \(\mathrm{AB}, \mathrm{CD}\) be reciprocally proportional to their altitudes, viz. the bafe EH to the bafe NP , as the altitude of the folid CD to the altitude of the folid \(A B\); the folid \(A B\) is equal to the folid \(C D\) : The fame conftruction being made; becaufe, as the bafe EH to the bafe NP, fo is the altitude of the folid CD to the altitude of the folid AB ; and that the bafe EH is equal to the bafe FK ; and NP to XR; therefore the bafe FK is to the bafe XR, as the altitude of the folid CD to the altitude of AB : But the alti-

tudes of the folids \(\mathrm{AB}, \mathrm{BT}\) are the fame, as alfo of CD and DZ. therefore as the bafe, FK to the bafe XR, fo is the altitude of the folid DZ to the altitude of the folid BT : Wherefore the bafes of the folids \(\mathrm{BT}, \mathrm{DZ}\) are reciprocally proportional to their altitudes; and their infifting ftraight lines are at right angles to the bafes; wherefore, as was before proved, the folid Br is equal to the folid DZ : But BT is equalg to the fo-
15. \(\operatorname{lid} \mathrm{BA}\), and DZ to the folid DC, becaufe they are upon the fame bafes, and of the fame altitude. Therefore the folid \(A B\) is equal to the folid CD. Q. E. D.

IF, from the vertices of two equal plane angles, there be drawn two ftraight lines elevated above the planes in which the angles are, and containing equal angles with the fides of thofe angles, each to each; and if in the lines above the planes there be taken any points, and from them perpendiculars be drawn to the planes in which the firft named angles are: And from the points in which they meet the planes, ftraight lines be drawn to the vertices of the angles firft named; thefe ftraight lines fhall contain equal angles with the ftraight lines which are above the planes of the angles.

Let \(\mathrm{BAC}, \mathrm{EDF}\) be two equal plane angles; and from the points \(A, D\) let the ftraight lines \(A G, D M\) be ele vated above the planes of the angles, making equal angles with their fides each to each, viz. the angle GAB equal to the angle MDE, and GAC to MDF; and in AG, DM let any points \(G\), M be ta. ken, and from them let perpendiculars GL, MN be drawn to the planes BAC, EDF meeting thefe planes in the points \(L, N\);

and join LA, ND: The angle GAL is equal to the angle MDN.

Make AH equal to DM, and through \(H\) draw \(H K\) parallel to GL: But GL is perpendicular to the plane BAC; wherefore HK is perpendicular \({ }^{2}\) to the fame plane : From the points a \(8.1 \hbar\) \(\mathrm{K}, \mathrm{N}\), to the ftraight lines \(\mathrm{AB}, \mathrm{AC}, \mathrm{DE}, \mathrm{DF}\), draw perpendiculars \(\mathrm{KB}, \mathrm{KC}\); NE, NF; and join HB, BC, ME, EF:
Q2 Becaufe

Book XI. Because HK is perpendicular to the plane BAC, the plane b 18. If. HBK which páffes through HK is at right angles \(b\) to the plane \(B A C\); and \(A B\) is drawn in the plane \(B A C\) at right angles to the common fection BK of the two planes; therefore \(A B\) is c 4. def. ir. perpendicular \({ }^{c}\) to the plane HBK, and makes right angles d d 3. def. II. with every ftraight line meeting it in that plane: But BH meets it in that plane; therefore ABH is a right angle : For the fame reafon, DEM is a right angle, and is therefore equal to the angle \(A B H\) : And the angle \(H A B\) is equal to the angle MDE. Therefore in the two triangles HAB, MDE there are two angles in one equal to two angles in the other, each to each, and one fide equal to one fide, oppofite to one of the equal angles in each, viz. HA equal to DM ; therefore the remaining fides
26. I. are equal e, each to each : Wherefore AB is equal to DE . In the fame manner, if HC and MF be joined, it may be demonAtrated that \(A C\) is equal to \(D F\) : Therefore, fence \(A B\) is equal to \(\mathrm{DE}, \mathrm{BA}\) and AC are equal to ED and DF ; and the angle

BAC is equal to the angle EDF; wherefore the bare BC is c -
f. 4.1 . quale \(f\) to the bare EF, and the remaining angles to the remaining angles: The angle \(A B C\) is therefore equal to the angle DEF: And the right angle \(A B K\) is equal to the right angle DEN, whence the remaining angle CBK is equal to the remanning angle FEN : For the fame reafon, the angle BCK is equal to the angle EFN : Therefore in the two triangles BCK , EFN, there are two angles in one equal to two angles in the other, each to each, and one file equal to one fide adjacent to the equal angles in each, viz. BC equal to EF; the other fides, therefore, are equal to the other fides; BK then is equal to EN : And AB is equal to DE ; wherefore \(\mathrm{AB}, \mathrm{BK}\) are equal to \(\mathrm{DE}, \mathrm{EN}\); and they contain right angles; wherefore the bare AK is equal to the bare DN : And fence AH is equal to

DM , the fquare of AH is equal to the fquare of DM : But the fquares of \(\mathrm{AK}, \mathrm{KH}\) are equal to the fquare \(g\) of AH , becaufe AKH is a right angle : And the fquares of DN, NM are equal to the fquare of DM, for DNM is a right angle : Wherefore the fquares of \(\mathrm{AK}, \mathrm{KH}\) are equal to the fquares of \(\mathrm{DN}, \mathrm{NM}\); and of thofe the fquare of AK is equal to the fquare of DN : Therefore the remaining fquare of KH is equal to the remaining fquare of NM ; and the ftraight line KH to the ftraight line NM : And becaufe HA, AK are equal to MD, DN each to each, and the bafe HK to the bafe MN as has been proved; therefore the angle HAK is equal \(h\) to the angle MDN. Q. E. D.

Cor. From this it is manifeft, that if, from the vertices of two equal plane angles, there be elevated two equal ftraight lines containing equal angles with the fides of the angles, each to each; the perpendiculars drawn from the extremities of the equal ftraight lines to the planes of the firft angles are equal to one another.

\section*{Another Demonflration of the Corollary.}

Let the plane angles \(B A C, E D F\) be equal to one another, and let \(A H\), DM be two equal ftraight lines above the planes of the angles, containing equal angles with \(\mathrm{BA}, \mathrm{AC} ; \mathrm{ED}, \mathrm{DF}\); each to each, viz. the angle HAB equal to MDE, and HAC equal to the angle MDF; and from H, M let HK, MN be perpendiculars to the planes BAC, EDF: HK is equal to MN.

Becaufe the folid angle at \(A\) is contained by the three plane angles BAC, BAH, HAC, which are, each to each, equal to the three plane angles EDF, EDM, MDF containing the folid angle at D ; the folid angles at A and D are equal : And therefore coincide with one another; to wit, if the plane angle BAC be applied to the plane angle EDF, the ftraight line AH coincides with DM, as was fhown in prop. B of this book: And becaufe AH is equal to DM , the point H coincides with the point M: Wherefore HK which is perpendicular to the plane BAC coincides with MN i which. is perpendicular to the plane i 13.11. EDF, becaufe thefe planes coincide with one another : Therefore HK is equal to MN. \({ }^{\circ}\) Q. E. D.

\author{
PROP. XXXVI. THEOR.
}

See N. TF three ftraight lines be proportionals, the folid parallelepiped defcribed from all three as its fides, is equal to the equilateral parallelepiped defcribed from the mean proportional, one of the folid angles of which is contained by three plane angles equal, each to each, to the three plane angles containing one of the folid angles of the other figure.

Let \(A, B, C\) be three proportionals, viz. \(A\) to \(B\), as \(B\) to C. The folid defcribed from \(A, B, C\) is equal to the equilateral folid defcribed from \(B\), equiangular to the other.

Take a folid angle D contained by three plane angles EDF , FDG, GDE; and make each of the ftraight lines ED, DF, DG equal to B , and complete the folid parallelepiped DH : Make LK equal to A , and at the point K in the ftraight line
2.26. II. LK make a a folid angle contained by the three plane angles LKM, MKN, NKL equal to the angles EDF, FDG, GDE,

each to each; and make \(K N\) equal to \(B\), and \(K M\), equal to C ; and complete the folid parallelepiped KO : And becaufe, as \(A\) is to \(B\), fo is \(B\) to \(C\), and that \(A\) is equal to \(L K\), and \(B\) to each of the fraight lines \(\mathrm{DE}, \mathrm{DF}\), and C to KM ; therefore LK is to ED, as DF to KM ; that is, the fides about the equal angles are reciprocally proportional ; therefore the paralelogram LMT is equal'b to EF: And becaufe EDF, LKM are two equal plane angles, and the two equal ftraight lines \(D G\), KNi are drawn from their vertices above their planes, and contain equal angles with their fides; therefore the perpendiculars from the points \(G, N\), to the planes EDF, LKM are e-
qual c to one another: Therefore the folids \(\mathrm{KO}, \mathrm{DH}\) are of Book XI. the fame altitude; and they are upon equal bafes LM, EF, cror. 35. and therefore they are equald to one another: But the folid ir. KO is defcribed from the three ftraight lines \(A, B, C\), and the \({ }^{\mathrm{d}} 3 \mathrm{I}\). II. folid DH from the ftraight line B. If therefore three ftraight I lines, \&c. Q. E. D.

PROP. XXXVII. THEOR.

IF four ftraight lines be proportionals, the fimilar See \(N\). folid parallelepipeds fimilarly defcribed from them fhall alfo be proportionals. And if the fimilar parallelepipeds fimilarly defcribed from four ftraight lines be proportionals, the ftraight lines fhall be proportionals.

Let the four ftraight lines AB. CD, EF, GH be proportionals, viz. as AB to CD , fo EF to GH ; and let the fimilar parallelepipeds AK, CL, EM, GN be fimilarly defcribed from them. AK is to CL, as EM to GN.

Make a \(\mathrm{AB}, \mathrm{CD}, \mathrm{O}, \mathrm{P}\) continual proportionals, as alfo EF, a ır. 6. \(\mathrm{GH}, \mathrm{Q}, \mathrm{R}:\) And becaufe as AB is to CD, fo EF to GH; and

that \(C D\) is \(b\) to \(O\), as \(G H\) to \(Q\) and \(O\) to \(P\), as \(Q\) to \(R\); there- bir. 5 . fore, ex æquali \(\mathrm{c}, \mathrm{AB}\) is to P , as EF to R : But as \(A B\) to \(P\), \(\mathrm{c}^{22.5}\). fo d is the folid AK to the folid CL ; and as EE to R , \(\mathrm{fo}_{\mathrm{d}}\) is d Cor. 3 j . the folid EM to the folid GN : Therefore bas the folid AK to the folid CL, fo is the folid EM to the folid GN.

Book XI. But let the folid AK be to the folid CL, as the folid EMto
\(\xrightarrow{\sim}\) e. 27.11. the folid GN : The ftraight line AB is to GD , as EF to GH. Take AB to CD , as \(\mathrm{EF} \mathrm{to}_{4} \mathrm{ST}\), and from ST detcribe e a folid parallelepiped SV fimilar and fimilarly finated to either of the folids EM, GN : And becaufe AB is to CD, as EF to S C, and that from \(\mathrm{AB}, \mathrm{CD}\) the folid parallelepipeds \(\mathrm{AK}, \mathrm{CL}\) are fimilarly deicribed; and in like nanner the folids EM, SV from the ftraight lines EF, ST ; therefore AK is to CL, as

EM to SV : But, by the hypothefis, \(A K\) is to CL, as EM to
f9. 5. GN: Therefore GN is equal \(f\) to \(S V\) : But it is likewife fimilar and fimilarly fituated to SV ; therefore the planes which contain the folids GN, SV are fimilar and equal, and their homologous fides \(G H, S T\) equal to one another: And becaufe as \(A B\) to \(C D\), fo EF to ST, and that ST is equal to GH; AB is to CD , as EF to GH. Therefore if four ftraight lines, \&c. Q.E.D.

\section*{PROP. XXXVIII. THEOR.}

See N. " F a plane be perpendicular to another plane, and " I a ftraight line be drawn from a point in one of " the planes perpendicular to the other plane, this " ftraight line fhall fall on the common fection of the "planes."

\footnotetext{
"Let the plane \(C D\) be perpendicular to the plane \(A B\), and " let AD be their common fection; if any point \(E\) be taken in "the plane CD, the perpendicular drawn from \(E\) to the plane © AB fhall fall on AD .
}
"For, if it does not, let it, if pofible, fall elfewhere, as EF; \(\underbrace{\text { Book XI. }}\) " and let it meet the plane \(A B\) in the point \(F\); and from \(F\) "draw a, in the plane \(A B\) a perpendicular FG to \(D A\), which " is alfo perpendicular b to the plane CD ; and join EG : Then
a 12.1.
b 4. def. 11.
" becaufe FG is perpendicular
" to the plane CD, and the " ftraight line EG, which is in " that plane, meetsit; there" fore FGE is a right angle \({ }^{c}\) :
"But EF is alfo at right angles " to the plane AB ; and there" fore EFG is a right angle : "Wherefore two of the angles

c 3. def.
II.
" of the triangle EFG are equal together to two right angles; "which is abfurd: Therefore the perpendicular from the point "E to the plane AB, does not fall clfewhere than upon the "fraight line AD : It therefore falls upon it. If therefore a "plane," \&c. C.E.D.

PROP. XXXIX. THEOR.

IN a folid parallelepiped, if the fides of two of the opSee N. pofite planes be divided each into two equal parts, the common fection of the planes paffing through the points of divifion, and the diameter of the folid parallelepiped cut each other into two equal parts.

Let the fides of the oppofite planes \(\mathrm{CF}, \mathrm{AH}\) of the folid parallelepiped AF, be divided each into two equal parts in the points K, L, M, \(\mathrm{N} ; \mathrm{X}, \mathrm{O}, \mathrm{P}, \mathrm{R}\); and join-KL, MN, XO, PR: And becaule DK, CL are equal and parallel, KL is parallel a to DC: For the fame reaton, MN is pafallel to BA: And

\section*{THE ELEMENTS}

Book XI. BA is parallel to DC; therefore, becaufe \(\mathrm{KL}, \mathrm{BA}\) are each of them parallel to DC, and not in the fame plane with it, KL is \({ }^{3}\) 9. 11. parallel \({ }^{\text {b }}\) to BA : And becaufe KL, MN are each of them parallel to BA , and not in the fame plane with it, KL is parallel b to MN ; wherefore \(\mathrm{KL}, \mathrm{MN}\) are in one plane. In like manner, it may be proved, that XO, PR are in one plane. Let YS be the common fection of the planes \(\mathrm{KN}, \mathrm{XR}\); and DG the diameter of the folid parallelepiped AF : YS and DG do meet, and cut one another into two equal parts.

Join DY, YE, BS, SG. Becaufe DX is parallel to OE, the
c 29. I.' alternate angles DXY, YOE are equal c to one another : And becaufe DX is equal to OE , and XY to YO , and contain equal angles, the bafe DY
d. 4. I. is equal d to the bafe YE, and the other angles are equal ; therefore the angle XYD is equal to the angle OYE, and DYE is a thraight
e14. r. e line: For the fame reafon BSG is a ftraight line, and BS equal to
 SG: And becaufe CA is equal and parallel to DB, and alfo equal and parallel to EC ; therefore DB is equal and parallel is to \(\mathrm{EG}: \mathrm{A}\) nd \(\mathrm{DE}, \mathrm{BG}\) join their extremities; therefore DE is equal and parallel a to BG : And DG, YS are drawn from points in the one, to points in the other; and are therefore in one plane: Whence it is m nifeft, that \(D G, Y, S\) muft meet one another; let them meet in T : And becaufe DE is parallel to BG , the alternate angles \(\mathrm{EDT}, \mathrm{BGT}\) are equal \({ }^{\text {c }}\);
\&15.1. and the angle DTY is equal \(f\) to the angle GTS: Therefore in the triangles.DTY, GTS there are two angles in the one equal to two angles in the other, and one fide equal to one fide, oppofite to two of the equal angles, viz. DY to GS; for they are the halves of DE, BG: Therefore the remaining fides are
g 2 2б. r. equal \(g\), each to each. Wherefore DT is equal to TG, and YT equal to TS. Wherefore, if in a folid, \&cc. Q.E.D.

PROP. XL. THEOR.

IF there be two triangular prifms of the fame altitude, the bafe of one of which is a parallelogram, and the bafe of the other a triangle; if the parallelo. gram be double of the triangle, the prifms fhall be equal to one another.

Let the prifms ABCDEF , GHKLMN be of the fame altitude, the firt whereof is contained by the two triangles ABE , CDF , and the three parallelograms AD, DE, EC; and the other by the two triangles GHK, LMN and the three parallelograms LH, HN, NG; and let one of them have a parallelogram AF, and the other a triangle GHK for its bafe; if the parallelogram AF be double of the triangle GHK, the prifm \(A B C D E F\) is equal to the prifm GHKLMN.

Compléte the folids AX, GO; and becaufe the parallelogram AF is double of the triangle GHK; and the parallelo-

gram HK double a of the fame triangle ; therefore the parala 34 . I. lelogram \(A \mathrm{~F}\) is equal to HK . But folid parallelepipeds upon equal bafes, and of the fame altitude, are equal \(b\) to one another. Therefore the folid \(A X\) is equal to the folid GO; and the prifm \(A B C D E F\) is haif \(s\) of the folid \(A X\); and the prifm GHKLMN half c of the folid GO. Therefore the prifm ABCDEF is equal to the prifm GHKLMN. Wherefore, if there be two, \&c. Q.E.D.
\[
\begin{aligned}
& \text { O F } \\
& \text { OF } \\
& \text { B OOK XII. }
\end{aligned}
\]

See \(N\).

\section*{THE}

\section*{LEMMA.}

Which is the firf propofition of the tenth book, and is neceffary to fome of the propofitions of this book.

IF from the greater of two unequal magnitudes, there be taken more than its half, and from the remainder more than its half; and fo on: There fhall at length remain a magnitude lefs than the leaft of the propofed magnitudes.

Let \(A B\) and \(C\) be two unequal magnitudes, of which \(A B\) is the greater. If from \(A B\) there be taken more than its half, and from the remainder more than its half, and fo on; there fhall at length remain a magnitude lefs than C .

For C may be multiplied fo as at length to become greater than \(A B\). Let it be fo multiplied, and let DE its multiple be greater than AB , and let DE be divided into \(\mathrm{DF}, \mathrm{FG}, \mathrm{GE}\), each equal to C . From AB take BH greater than its half, and from the remainder AH take HK greater than its half, and fo on, until there be as many divifions in AB as there are in DE: And let the divifions in AB be AK , \(\mathrm{KH}, \mathrm{HB}\); and the divifions in ED be \(\mathrm{DF}, \mathrm{FG}\)
 \(G E\). And becaufe \(D E\) is greater than \(A B\), and
that EG taken from DE is not greater than its half, but BH Book XII. taken from \(A B\) is greater than its half; therefore the remainder GD is greater than the remainder HA. Again, becaufe GD is greater than HA, and that GF is not greater than the half of GD, but HK is greater than the half of HA ; therefore the remainder FD is greater than the remainder AK. And FD is equal to \(C\), therefore \(C\) is greater than \(A K\); that is, \(A K\) is lefs than C. Q.E.D.

And if only the halves be taken away, the fame thing may in the fame way be demonftrated:
PROP. I. THEOR.

SImilar polygons inferibed in circles, are to one another as the fquares of their diameters.

Let ABCDE, FGHKL be two circles, and in them the fimilar polygons ABCDE, FGHKL; and let BM, GN be the diameters of the circles: As the fquare of \(B M\) is to the fquare of GN, fo is the polygon ABCDE to the polygon FGHKL.

Join BE, AM, GL, FN : And becaufe the polygon ABCDE is fimilar to the polygon FGHKL, and fimilar polygons are divided into fimilar triangles; the triangles \(\mathrm{ABE}, \mathrm{FGL}\), are fimilar

and equiangular \({ }^{\mathrm{b}}\); and therefore the angle AEB is equal to the b 6.6. angle FLG: But AEB is equal c to AMB, becaufe they ftand up- c 2 I .3 . on the fame circu:mference; and the angle FLG is for the fame reafon, equal to the angle FNG: Therefore alfo the angle AMB is equal to FNG: And the right angle BAM is equal to the right d angle GFN; wherefore the remaining angles in the tri- d 35.3 . angles \(A B M, F G N\) are equal, and they are equiangular to one another:

Book XII. \({ }^{=}\)another: Therefore as BM to GN, \(\mathrm{fo}_{\mathrm{e}} \mathrm{e}\) is BA to GF; and there\({ }_{\text {e 4. } 6 \text {. }}\) fore the duplicate ratio of BM to GN , is the fame f , with the duf io. def. plicate ratio of BA to GF: But the ratio of the fquare of BM to 5. \& 22. 5. the fquare of GN, is the duplicate \(g\) ratio of that which BM has
g 20.6. to GN ; and the ratio of the polygon ABCDE to the polygon

FGHKL is the duplicate \(g\) of that which BA has to GF: Therefore as the fquare of BM to the fquare of GN, fo is the polygon ABCDE to the polygon FGHKL. Wherefore fimilar polygons, \&c. Q. E. D.

\section*{PROP. II. THEOR.}

See N. IRCLES are to one another as the fquares of their diameters.

Let \(\mathrm{ABCD}, \mathrm{EFGH}\) be two circles, and \(\mathrm{BD}, \mathrm{FH}\) their diameters : As the fquare of BD to the fquare of FH , fo is the circle ABCD , to the circle EFGH.

For, if it be not fo, the fquare of BD fhall be to the fquare of FH , as the circle ABCD is to fome fpace either lefs than the circle EFGH, or greater than it *. Firft let it be to a fpace S.lefs than the circle EFGH; and in the circle EFGH defcribe the fquare EFGH: This fquare is greater than half of the circle EFGH; becaufe if, through the points \(\mathrm{E}, \mathrm{F}, \mathrm{G}, \mathrm{H}\), there be drawn tangents to the circle, the
fquare

\section*{I}
* For there is fome fquare equal \(t\). the circle \(A B C D\); let \(P\) be the fide of it, and to three ftraight lines BD, FH and \(P\), there can be a fourth propor tional; let this be \(Q\) : Therefore the fquares of thefe four ftraight lines are
proportionals; that is, to the fquares of \(\mathrm{BD}, \mathrm{FH}\) and the circle ABCD , it is poffible there may be a fourth proportional. Let this be S. And in like manner are to be underft od fome things in fome of the following propofitions.
fquare EFGH is half \({ }^{\text {a }}\) of the fquare defcribed about the circle; \(\underbrace{\text { Book X1F. }}\) and the circle is lefs than the fquare defcribed about it; there- a 41. Ig fore the fquare EFGH is greater than half of the circle. Divide the circumferences \(\mathrm{EF}, \mathrm{FG}, \mathrm{GH}, \mathrm{HE}\), each into two equal parts in the points \(\mathrm{K}, \mathrm{L}, \mathrm{M}, \mathrm{N}\), and join EK, KF, FL, LG, GM, MH, HN, NE: Therefore each of the triangles EKF, FLG, GMH, HNE is greater than half of the fegment of the circle it ftands in ; becaufe, if ftraight lines touching the circle be drawn through the points \(\mathrm{K}, \mathrm{L}, \mathrm{M}, \mathrm{N}\), and parallelograms upon the ftraight lines EF, FG, GH, HE, be completed; each of the triangles EKF, FLG, GMH, HNE fhall be the half a 24 I . \(\mathbb{w}_{*}\) of the parallelogram in which it is: But every fegment is lefs than the parallelogram in which it is: Wherefore each of the triangles EKF, FLG, GMH, HNE is greater than half the fegment of the circle which contains it: And if thefe circumferences before named be divided each into two equal parts, and their extremities be joined by ftraight lines, by continuing

to do this, there will at length remain fegments of the circle which, together, fhall be lefs than the excefs of the circle EFGH above the fpace \(S:\) Becaufe, by the preceding Lemma, if from the greater of two unequal magnitudes there be taken more than its half, and from the remainder more than its half, and fo on, there fhall at length remain a magnitude lefs than the leaft of the propofed magnitudes. Let then the fegments EK, KF, FL, LG, GM, MH, HN, NE be thofe that remain and are together lefs than the excefs of the circle EFGH above S: Therefore the reft of the circle, viz. the polygon EKFLGMHN, is greater than the fpace S. Defcribe likewife in the circle \(A B C D\) the poly.gon \(\triangle X B O C P D R\) fimilar to the polygon EKFLGMHN : As therefore, the quare of BD is to the fquare of FH , fo \({ }^{\mathrm{b}}\) is the polygon AXBOCPDR to the br. 12, polygon EKFLGMHN : But the fquare of BD is alfo to the

Beok XII. fquare of FH, as the circle ABCD is to the fpace \(S\) : Therefore as the circle \(A B C D\) is to the fpace \(S\), fo is \(c\) the polygori AXBOCPDR to the polygon EKFLGMHN: But the circle \(A B C D\) is greater than the polygon contained in it; wherefore
d \(4 .{ }^{\circ} 5\). the fpace \(S\) is greater d than the polygon EKFLGMHN : But it is likewife lefs, as has been demonftrated; which is impoffible. Therefore the fquare of BD is not to the fquare of FH , as the circle ABCD is to any fpace lefs than the circle EFGH. In the fame manner, it may be demonftrated, that neither is the fquare of FH to the fquare of BD , as the circle EFGH is to any fpace lefs than the circle ABCD. Nor is the fquare of
- BD to the fquare of FH , as the circle ABCD is to any fpace greater than the circle EFGH : For, if poffible, let it be fo to T, a fpace greater than the circle EFGH: Therefore inverfely as the fquare of FH to the fquare of BD , fo is the fpace T to

the circle \(A B C D\). But as the fpace \(+T\) is to the circle \(A B C D\), fo is the circle EFGH to fome fpace, which muft be lefs d than the circle ABCD, becaufe the fpace T is greater, by hypothefis, than the circle EFGH. Therefore as the fquare of FH is to the

\footnotetext{
+ For as in the foregoing note, at , it was explained how it was polfible there could be a fourth proportional to the fquares of \(3 \mathrm{D}, \mathrm{FH}\), and, the circle manner there can be a fourth proportional to this other fpace, named \(T\), and the circles ABGD. EFGFI. And the like is to be underfood in fome of ABCD, which was named S. So in like the following propofitions.
}
the iquare of BD , fo is the circle EFGH to a fpace lefs than \(\underbrace{\text { Book XII. }}\) the circle \(A B C D\), which has been demonftrated to be imporfible : Therefore the fquare of BD is not to the fquare of FH as the circle \(A B C D\) is to any fpace greater than the circle EFGH: And it has been demonftrated, that neither is the fquare of \(B D\) to the fquare of \(F H\), as the circle \(A B C D\) to any fpace lefs than the circle EFGH: Wherefore, as the fquare of BD to the fquare of FH , fo is the circle ABCD to the circle EFGH \(\dagger^{\prime}\) ' Circles therefore are, \& \& c. Q. E. D.

\section*{PROP. IIT. THEOR.}

EVERY pyramid having a triangular bafe, may be See N . divided into two equal and fimilar pyramids having triangular bafes, and which are fimilar to the whole pyramid; and into two equal prifms which together are greater than half of the whole pyramid.

Let there be a pyramid of which the bafe is the triangle \(A B C\) and its vertex the point \(D\) : The pyramid \(A B C D\) may be divided into two equal and fimilar pyramids having triangular bafes, and fimilar to the whole; and into two equal prifms which together are greater than half of the whole pyramid.

Divide \(\mathrm{AB}, \mathrm{BC}, \mathrm{CA}, \mathrm{AD}, \mathrm{DB}, \mathrm{DC}\), each into two equal parts in the points \(\mathrm{E}, \mathrm{F}, \mathrm{G}, \mathrm{H}, \mathrm{K}, \mathrm{L}\), and join \(\mathrm{EH}, \mathrm{EG}\), GH, HK, KL, LH, EK, KF, FG. Becaufe AE is equal to EB , and AH to \(\mathrm{HD}, \mathrm{HE}\) is parallel a to DB: For the fame reafon, HK is parallel to AB : Therefore HEBK is a parallelogram, and \(H K\) equal \(b\) to \(E B\) : But \(E B\) is equal to AE ; therefore alfo AE is equal to HK: And AH is equal to HD ; where-

3. 2. 6.
b 34.1. fore EA, AH are equal to \(\mathrm{KH}, \mathrm{HD}\), each to each; and the angle EAH is equal c to the angle KHD; c 29. 1. therefore the bafe EH is equal to the bafe KD , and the triangle
\[
R \quad \mathrm{AEH}
\]

\footnotetext{
+ Decaure as a fcurth proportional to the fquares of \(\mathrm{BD}, \mathrm{FH}\) and the circle ABCD is poffible, and that it can neither be lefs nor greater than the circle EFGH, it muft be equal to it.
}

Book XII. AEH equal dand fimilar to the triangle HKD: For the fame \(\overbrace{\text { 4. I. }}\) reafon, the triangle AGH is equal and fimilar to the triangle HLD : And becaufe the two ftraight lines EH, HG which meet one another are parallel to KD, DL that meet one another, and are not in the fame plane with them, they contain equal e angles; therefore the angle EHG is equal to the angle KDL. Again, becaufe EH, HG are equal to KD, DL, each to each, and the angle EHG equal to the angle KDL; therefore the bafe EG is equal to the bafe KL: And the triangle EHG equal dand fimilar to the triangle KDL: For the fame reaion, the trian le AEG is alfo equal and fimilar to the triangle HKL. Therefore the pyramid of which the bafe is the triangle AEG, and of which the vertex is the point \(H\), is e-
fc.ry. qua f and fimilar to the pyramid the bafe of which is the triangle KHL, and vertex the point D : And becaufe HK is parallel to \(A B\) a fide of the triangle ADB , the triangle ADB is equiangular to the triangle HDK, and their
g 4. 6. fides are proportionals \(g\) : Therefore the triangle ADB is fimilar to the triangle HDK : And for the fame reafon, the triangle DBC is fimilar to the triangle DKL; and the triangle ADC to the triangle HDL; and alfo the triangle \(A B C\) to the triangle \(A E G\) : But the triangle AEG is fimilar to the triangle HKL, as before was proved; there:ore the triangle \(A B C\) is fimilar to the
 triarigle HKL. And the pyramid of which the bafe is the triangle \(A B C\), and vertex the point \(D\),
i B. II.
\& II.
Def. II. is therefore fimilar \({ }^{i}\) to the pyramid of which the bafe is the triangle HKL, and vertex the lame point \(\mathrm{D}:\) But the pyramid of which the bafe is the triangle HKL, and vertex the point D , is fimilar, as has been proved, to the pyramid the bafe of which is the triangle AEG, and vertex the point H : Wherefore the pyramid the bafe of which is the triangle \(A B C\). and vertex the point \(D\), is fimilar to the pyramid of which the bafe is the triangle. AFG and vertex H : Therefore each of the pyramids AEGH, HKLD is fimilar to the whole pyramid ABCD : And
is' \(^{\prime} 4 \mathrm{I}\). r. becaufe 3 BF is equal to F C , the parallelogram EBFG is double k of the triangle GFC : But when there are two prifms of the fame
fame altitude, of which one has a parallelogram for its bafe, Book XII, and the other a triangle that is half of the parallelogram, thefe prifms are equal \({ }^{\text {a }}\) to one another; therefore the prifm having a 4 . II. the parallelogram EBFG for its bafe, and the ftraight line KH oppofite to it, is equal to the prifm having the triangle GFC for its bafe, and the triangle HKL oppofite to it; for they are of the fame altitude, becaufe they are between the parallel b bi5.1n planes ABC, HKL: And it is manifeft that each of thefe prifms is greater than either of the pyramids of which the triangles AEG, HKL are the bafes, and the vertices the points \(H, D\); becaufe, if EF be joined, the prifm having the parallelogram EBFG for its bafe, and KH the ftraight line oppofite to it, is greater than the pyramid of which the bafe is the triangle EBF, and vertex the point \(K\); but this pyramid is equal c to the py- c \(\mathrm{C}, \mathrm{rr}\), ramid the bafe of which is the triangle AEG, and vertex the point H ; becaufe they are contained by equal and fimilar planes: Wherefore the prifm having the parallelogram EBFG for its. bafe, and oppofite fide KH , is greater than the pramid of which the bafe is the triangle AEG, and vertex the point \(H\) : And the prifm of which the bafe is the parallelogram EBFG, and oppofite fide KH is equal to the prifm having the triangle GFC for its bafe, and HKL the triangle oppofite to it; and the pyramid of which the bafe is the triangle AEG, and vertex H , is equal to the pyramid of which the bafe is the triangle HKL, and vertex D : Therefore the two prifms before mentioned are greater than the two pyramids of which the bafes are the triangles AEG, HKL, and vertices the points H, D. Therefore the whole pyramid of which the bafe is the triangle \(A B C\), and vertex the point \(D\), is divided into two equal pyramids fimilar to one another, and to the whole pyramid; and into two equal prifms; and the two prifms are together greater than half of the whole pyramid. Q.E.D.

Sec N.

IF there be two pyramids of the fame altitude, upon triangular bafes, and each of them be divided into two equal pyramids fimilar to the whole pyramid, and alfo into two equal prifms; and if each of thefe pyramids be divided in the fame manner as the firft two, and fo on: As the bafe of one of the firft two pyramids is to the bafe of the other, fo fhatl all the prifms in one of them be to all the prifms in the other that are produced by the fame number of divifions.

Let there be two pyramids of the fame altitude upon the triangular bafes \(\mathrm{ABC}, \mathrm{DEF}\), and having their vertices in the points \(\mathrm{G}, \mathrm{H}\); and let each of them be divided into two equal pyramids fimilar to the whole, and into two equal prifms; and let each of the pyramids thus made be conceived to be divided in the like manner, and fo on: As the bafe \(A B C\) is to the bafe DEF, fo are all the prifins in the pyramid ABCG to all the prifms in the pyramid DEFH made by the fame number of divifions,

Make the fame conftruction as in the foregoing propofition: And becaufe BX is equal to XC , and AL to LC , therefore XL is parallel a to \(A B\), and the triangle \(A B C\) fimilar to the triangle LXC : For the fame reafon, the triangle DEF is fimilar to RVF : And becaufe BC is double of CX, and EF double of FV, therefore BC is to CX, as EF to FV : And upon BC, CX are defcribed the fimilar and fimilarly fituated rectilineal figures \(\mathrm{ABC}, \mathrm{LXC}\); and upon EF, FV, in like manner, are defcribed the fimilar figures DEF, RVF: Therefore, as the triangle \(A B C\) is to the triangle \(L X C\); \(\mathrm{fo}^{\circ}\) is the triangle DEF to the triangle RVF, and, by permutation, as the triangle ABC to the triangle DEF, fo is the triangle LXC to the triangle RVF : And becaufe the planes \(A B C\), OMN, as alfo the planes
c 5.11. DEF, STY are parallel c, the perpendiculars drawn from the points G , If to the bafes ABC, DEF, which, by the hypothefis, are equal to one another, fhall be cut each into two equal
di7. 1m. d parts by the planes OMN, STY, becaufe the ftraight lines GC, HF are cut into two equal parts in the points \(\mathrm{N}, \mathrm{Y}\) by the fame planes: Therefore the prifms LXCOMN, RVFSTY are of the fame altitude; and therefore, as the bafe LXC to
the bafe RVF; that is, as the triangle ABC to the triangle Book XII. DEF, fo is the prifm having the triangle LXC for its bafe, and OMN the triangle oppofite to it, to the prifm of which the bafe is the triangle RVF, and the oppofite triangle STY: And becaufe the two prifms in the pyramid \(A B C G\) are equal to one another, and alfo the two prifms in the 'pyramid DEFH equal to one another, as the prifm of which the bafe is the parallelogram KBXL and oppofite fide MO, to the prifm having the triangle LXC for its bafe, and OMN the triangle oppofite to it; fo is the prim of which the bafe \(b\) is the parallelogram, PEVR, and oppofite fide TS, to the prifm of which the bafe is the triangle RVF, and oppofite triangle STY. Therefore, componendo, as the prifms KBXLMO LXCOMN together

are unto the prifm LXCOMN; fo are the prifms PEVRTS, RVFSTY to the prifm RVFSTY: And permutando, as the prifms KBXLMO, LXCOMN are to the prifms PEVRTS, RVFSTY; fo is the prifm LXCOMN to the prifm RVFSTY: But as the prifm LXCOMN to the prifm RVFSTY, fo is, as has been proved, the bafe \(A B C\) to the bafe DEF: Therefore, as the bafe \(A B C\) to the bafe DEF, fo are the two prifms in the pyramid ABCG to the two prifms in the pyramid DEFH: And likewife if the pyramids now made, for example, the two OMNG, STYH be divided in the fame manner; as the bafe OMN is to the bafe STY, fo fhall the two prifms in the py-: ramid OMNG be to the two prifms in the pyramid STYH: But the bafe OMN is to the bafe STY, as the bafe ABC to the bafe DEF; therefore, as the bafe \(A B C\) to the bafe DEF, fo are
the
\(\underbrace{\text { Book XII. the two prifms in the pyramid ARGG to the two prifms in the }}\) pyramid DEFH; and fo are the two prifms in the pyramid OMNG to the two prifins in the pyramid STYH; and fo are all four to all four: And the fame thing may be fhewn of the prifms made by dividing the pytamids AKLO and DPRS, and of all made by the fame number of divifions. Q.E.D.

\section*{PROP.V. THEOR.}

See N. \(\quad\) YRAMIDS of the fame altitude which have triangular bafes, are to one another as their bafes.

Let the pyramids of which the triangles \(\mathrm{ABC}, \mathrm{DEF}\) are the bafes, and of which the vertices are the points \(G, H\), be of the fame altitude: As the bafe ABC to the bafe DEF, fo is the pyramid ABGG to the pyramid DEFH.

For, if it be not fo, the bafe ABC muft be to the bafe DEF, as the pyramid \(A B C G\) to a folid either lefs than the pyramid DEFH, or greater than it *. Firft, let it be to a folid lefs than it, viz. to the folid Q : And divide the pyramid DEFH into two equal pyramids, fimilar to the whole, and into two equal
a 3.12. prifms: Therefore thefe two prifms are greater a than the half of the whole pyramid. And again, let the pyramids made by this divifion be in like manner divided, and fo on, until the pyramids which remain undivided in the pyramid DEFH be, all of them together, lefs than the excefs of the pyramid DEFH above the folid Q: Let thefe, for example, be the pyramids DPRS, STYH: Therefore the prifms, which make the reft of the pyramid DEFH, are greater than the folid \(Q:\) Divide likewife the pyramid ABCG in the fame manner, and into as many parts, as the pyramid DEFH: Thecefore, as the bafe
14.12. ABC to the bafe DEF, fob are the prifms in the pyramid ABCG to the prifms in the pyramid DEFH: But as the bafe \(A B C\) to the bafe DEF, fo, by hypothefis, is the pyramid \(A B C G\) to the folid \(Q\); and therefore, as the pyramid \(A B C G\) to the folid \(Q\), fo are the prifms in the pyramid \(A B C G\) to the prifms in the pyramid DEFH: But the pyramid ABCG is greater
8.3.5. than the prifms contained in it; wherefore \({ }^{c}\) alfo the folid \(Q\) is greater than the prifms in the pyramid DEFH. But is it alfo lefs, which is impoffible. Therefore the bafe \(A B C\) is not to

\footnotetext{
* This may be explained the fame way as at the note \(\dagger\) in propofition 2. in the like safe.
}
the bafe DEF, as the pyramid ABCG to any folid which is Book XII. lefs than the pyramid DEFH. In the fame manner it may be demonftrated, that the bafe DEF is not to the bafe \(A B C\), as the pyramid DEFH to any folid which is lefs than the pyramid ABCG. Nor can the bafe ABC be to the bafé DEF , as the pyrami ABcG to any folid which is greater than the pyramid DEFH. For if it be poffiole, let it be fo to a greater, viz. the folid Z. And becaule the bafe \(A B C\) is to the bafe IEF as the pyramin ABCG to the folid Z ; by i verfion, as the bafe DEF to the bife \(A B C\), fo is the folid \(Z\) to t e pyramid \(A B C G\). But as the folid Z is to the pyramid ABCG , fo is the pyramid

DEFH to fome folid *, which muft be lefs a than the pyramid \(A B C G\), becaufe the folid \(Z\) is oreater than the pyramid DEFH. And therefore, as the bafe DEF to the bafe ABC, fo is the pyramid DEFH to a folid lefs than the pyramid ABCG; the con trary to which has been proved. Therefore the bafe \(A B C\) is not to the bafe DEF, as the pyramid ABCG to any folid which is greater than the pyramid DEFH. And it has been proved, that neither is the bafe ABC to the bafe DEF, as the pyramid ABCG to any folid which is lefs than the pyramid DEFH. Therefore, as the bafe ABC is to the bafe DEF, fo is th pyramid ABCG to the pyramid DEFH. Wherefore pyramids, \&c. Q. E. D.
\[
\mathrm{R}_{4} \quad \mathrm{PROP}
\]
* This may be explained the fame way as the like at the mark \(\dagger\) in prop. 2. YRAMIDS of the fanie altitude which have polygons for their bales, are to one another as their bafes.

Let the pyramids which have the polygons ABCDE, FGHKL for their bafes, and their vertices in the points \(\mathrm{M}, \mathrm{N}\), be of the fame altitude: As the bafe ABCDE to the bafe FGHKL, fo is the pyramid ABCDEM to the pyramid FGHKLN.

Divide the bafe ABCDE into the triangles \(\mathrm{ABC}, \mathrm{ACD}\), ADE ; and the bafe FGHKL into the triangles \(\mathrm{FGH}, \mathrm{FHK}\), FKL: And upon the bafes \(\mathrm{ABC}, \mathrm{ACD}, \mathrm{ADE}\) let there be as many pyramids of which the common vertex is the point \(M\), and upon the remaining bafes as many pyramids having their. common vertex in the point N : Therefore, fince the triangle ABC is to the triangle FGH, as a the pyramid \(A B C M\) to the pyramid FGHN ; and the triangle ACD to the triangle FGH, as the pyramid ACDM to the pyramid FGHN; and alfo the

triangle ADE to the triangle FGH, as the pyramid ADEM to the pyramid FGHN; as all the firf antecedents to their com-
b 2. Cor.
24. 5. mon confequent; fo \({ }^{b}\) are all the other antecedents to their common confequent; that is, as the bafe ABCDE to the bafe FGH, fo is the pyramid ABCDEM to the pyramid FGHN : And, for the fame reafon, as the bafe FGHKL to the bafe FGH, fo is the pyramid FGHKLN to the pyramid FGHN : And, by inverfion, as the bafe FGH to the bafe FGHKL, fo is the pyramid FGHN to the pyramid FGHKLN: Then, becaufe as the bafe ABCDE to the bafe FGH, fo is the pyramid ABCDEMI to the pyramid FGHN; and as the bafe FGH to the bafe FGHKL, fo is the pyramid FGHN to the pyramid FGHKLN;; therefore,
therefore, cx aqualic, as the bafe ABCDE to the bare FGHKL, Book XII. fo the pyramid ABCDEM to the pyramid FGHKLN. There- \(\underbrace{2 .}_{22.5}\) fore pyramids, \&c. Q.E. D.

\section*{PROP. VII. THEOR.}

1VERY prifm having a triangular bafe may be divided into three pyramids that have triangular bafes, and are equal to one another.

Let there be a prifm of which the bafe is the triangle \(A B C\), and let DEF be the triangle oppofite to it: The prifm ABCDEF may be divided into three equal pyramids having triangular bafes.

Join \(\mathrm{BD}, \mathrm{EC}, \mathrm{CD}\); and becaure ABED is a parallelogram of which BD is the diameter, the triangle ABD is equal a to the triangle EBD; therefore the pyramid of which the bafe is the triangle \(A B D\), and vertex the point \(C\), is equal \(b\) to the pyramid of which the bafe is the triangle EBD, and vertex the point C : But this pyramid is the fame with the pyramid the bafe of which is the triangle EBC, and vertex the point \(D\); for they are contained by the fame planes: Therefore the pyramid of which the bafe is the triangle ABD , and vertex the point C , is equal to the pyramid, the bafe of which is the triangle EBC, and vertex the point \(D:\) Again, becaufe FCBE is a parallelogram of which the diameter is CE , the triangle ECF is equal \({ }^{\text {a }}\) to the triangle ECB; therefore the pyramid of which the bafe is the triangle ECB, and vertex the point \(D\), is equal to the pyramid, the bafe of which is the triangle ECF, and vertex the point \(\mathrm{D}:\) But the pyramid of which the bafe is the triangle ECB , and vertex the point D has been proved equal to the pyramid of which the
 bafe is the triangle ABD, and vertex the point C. Therefore the prifm \(A B C D E F\) is divided into three equal pyramids having triangular bafes, viz. into the pyramids \(\mathrm{ABDC}, \mathrm{EBDC}, \mathrm{ECFD}\) : And becaufe the pyramid of which the bafe is the triangle \(A B D\), and vertex the point \(\mathbf{C}\), is the fame with the pyramid of which the bafe is the triangle \(A B C\), and vertex the point \(D\), for they are contained by the fame planes; and that the pyramid of which the bafe is the triangle \(A B D\), and vertex the point \(C\), has been
\(\underbrace{3 n o k}\) XII. demonftrated to be a third part of the prifm the bafe of which is the triangle ABG , and to which DEF is the oppofite triangle; therefore the pyramid of which the bafe is the triangle \(A B C\), and vertex the point \(D\), is the third part of the prifm which has the fame bafe, viz. the triangle \(A B C\), and \(D E F\) is the oppofite triangle. Q.E.D.

Cor. I. From this it is manifen, that every pyramid is the third part of a prifin which has the fame bafe, and is of an equal altitude with it; for if the bafe of the prifm be any other figure than a triangle, it may be divided into prifins having triangular bafes.

Cor. 2. Prifms of equal altitudes are to one another as their bafes; becaufe the pyramids upon the fame bafes, and of the c6.12. fame altitude, are \({ }^{c}\) to one another as their bafes.

\section*{PROP. VIII. THEOR.}

\(B\)IMILAR pyramids having triangular bafes are one to another in the triplicate ratio of that of their homologous fides.

Let the pyramids having the triangles \(A B C, D E F\) for their bafes, and the points \(G, H\) for their vertices, be fimilar, and fimilarly fituated; the pyramid ABGG has to the pyramid DEFH, the triplicate ratio of that which the fide BC has to the homologous fide EF.

Complete the parallelograms ABCM, GBCN, ABGK, and the folid parallelepiped BGML contained by thefe planes and

thofe oppofite to them: And, in like manner, complete the folid parallelepiped EHPO contained by the three parallelograms DEFP, HEFR, DEHX, and thofe oppofite to them: And be-
caufe the pyramid ABCG is fimilar to the pyramid DEFH, the angle \(A B C\) is equal a to the angle DEF, and the angle GBC to the angle HEF, and \(A B G\) to \(D E H\) : And \(A B\) is \({ }^{b}\) to \(B C\), as DE to EF ; that is, the fides about the equal angles are pro- bi. def. 6 . portionals; wherefore the parallelogram BM is finilar to EP: For the fame reafon, the parallelogram BN is fimilar to ER, and BK to EX: Therefore the three parallelograms BM, BN, BK are fimilar to the three EP, ER, EX: But the three BM, \(B N, B K\), are equal and fimilar \(c\) to the three which are oppo- c 24.1 . fite to them, and the three EP, ER, EX equal and fimilar to the three oppofite to them: Wherefore the folids BGML, EHPO are contained by the fame number of fimilar planes; and their folid angles are equal \({ }^{d}\); and therefore the folid dB. Ir. BGML, is fimilar a to the folid EHPO : But fimilar folid parallelepipeds have the triplicate e ratio of that which their ho- e 33 . Ir. mologous fides have: Therefore the folid BGML has to the folid EHPO the triplicate ratio of that which the fide BC has to the homologous fide EF: But as the folid BGML is to the folid EHPO, fo is f the pyramid ABCG to the pyramid DEFH; f 15.5. becaufe the pyramids are the fixth part of the folids, fince the prifm, which is the half \(g\) of the folid parallelepiped, is triple \(h \mathrm{~g}_{\mathrm{h}}^{28.11 .}\). of the pyramid. Wherefore likewife the pyramid ABGG has to the pyramid DEFH, the triplicate ratio of that which BC has to the homologous fide EF. Q.E.D.

Cior. From this it is evident, that fimilar pyramids which have multangular bafes, are likewife to one another in the triplicate ratio of their homologous fides: For they may be divided into fimilar pyramids having triangular bafes, becaufe the fimilar polygons, which are their bafes, may be divided into the fame number of fimilar triangles homologous to the whole polygons; therefore as one of the triangular pyramids in the firft multangular pyramid is to one of the triangular pyramids in the other, fo are all the triangular pyramids in the firt to all the triangular pyramids in the other; that is, fo is the firft multangular pyramid to the other: But one triangular pyramid is to its fimilar triangular pyramid, in the triplicate ratio of their homologous fides; and therefore the firft multangular pyramid has to the other, the triplicate ratio of that which one of the fides of the firft has to the homologous fide of the other.

\author{
PROP. IX. THEOR.
}

THE bafes and altitudes of equal pyramids having triangular bafes are reciprocally proportional: And triangular pyramids of which the bafes and altitudes are reciprocally proportional, are equal to one another.

Let the pyramids of which the triangles \(A B C, D E F\) are the bafes, and which have their vertices in the points \(G, H\), be equal to one another: The bafes and altitudes of the pyramids ABCG, DEFH are reciprocally proportional, viz. the bafe ABC is to the bafe DEF, as the altitude of the pyramid DEFH to the altitude of the pyramid \(A B C G\).

Complete the parallelograms AC, AG, GC, DF, DH, HF; and the folid parallelepipeds BGML, EHPO contained by

the fe planes and thofe oppofite to them: And becaufe the pysamid ABCG is equal to the pyramid DEFH, and that the folid BGML is fextuple of the pyramid ABCG, and the folid EHPO fextuple of the pyramid DEFH ; therefore the folid a 1 . As. 5.BGML is equal a to the folid EHPO: But the bafes and alti-tudes- of equal folid parallelepipeds are reciprocally propor-
b) 3. rr. tional b; therefore as the bafe BMI to the bafe EP, fo is the altitude of the folid \(\mathrm{EHP}^{2} \mathrm{O}\) to the altitude of the folid BGML :
c:5.5. But as the bafe \(B M\) to the bafe EP, fo is cthe triangle \(A B C\) to the triangle DEF ; therefore as the triangle ABC to the triangle DEF, fo is the altitude of the folid EHPO to the altitude of the folid BGML: But the altitude of the folid EHPO is the fame with the altitude of the pyramid DEFH; and the altitude of the folid BGML is the fame with the altitude of the pyramid
pyramid ABCG: Therefore, as the bafe ABC to the bafe DEF, Rooil XIL fo is the altitude of the pyramid DEFH to the altitude of the pyramid ABCG: Wherefore the bafes and altitudes of the pyramids ABCG, DEFH are reciprocally proportional.

Agaiu, let the bafes and altitudes of the pyramids \(A B C G\), DEFH be reciprocally proportional, viz. the bafe ABC to the bafe DEF, as the altitude of the pyramid DEFH to the altitude of the pyramid \(A B C G\) : The pyramid \(A B C G\) is equal to the pyramid DEFH.

The fame conftruction being made, becaufe as the bafe ABC to the bafe DEF, fo is the altitude of the pyramid DEFH to the altitude of the pyramid ABCG : And as the baie ABC to the bafe DEF, fo is the parallelogram BM to the parallelogram EP; thetefore the parallelogram BM is to EP, as the altitude of the pyramid DEFH to the altitude of the pyramid ABCG: But the altitude of the pyramid DEFH is the fame with the altitude of the folid parallelepiped EHPO; and the altitude of the pyramid ABCG is the fame with the altitude of the folid parallelepiped BGML: As, therefore, the bafe 3M to the bafe EP, fo is the altitude of the folid parallclepiped EHPO to the altitude of the folid parallelepiped BGML. But folid parallelepipeds having their bafes and altitudes reciprocally proportional, are equal b to one another. Therefore the folid bst. \(1=\) parallelepiped BGML is equal to the Colid parallelepiped EHPO. And the pyramid \(A B C G\) is the fixth part of the folid BGML, and the pyramid DEFH is the fixth part of the folid EHPO. Therefore the pyramid ABCG is equal to the pyramid DEFH. Therefore the bafes, Ec. Q.E.D.

\section*{PROP. X. THEOR.}
\(F\) VERY cone is the third part of a cylinder which has the fame bafe, and is of an equal altitude with it.

Let a cone have the fame bafe with a cylinder, viz. the circle \(A B C D\), and the fame altitude. The cone is the third pare of the cylinder; that is, the cylinder is triple of the cone.

If the cylinder be not triple of the cone, it muft either be greater than the triple, or lefs than it. Firf, Let it be greater than the triple; and defcribe the fquare ABCD in the circle; this fquare is greater than the half of the circle \(A B C D\) *.
\(\underbrace{\text { Book XII. Upon the fquare } \mathrm{ABCD} \text { erect a prifm of the fame altitude witi }}\) the cylinder; this prifm is greater than half of the cylinder; becaufe if a fquare be defcribed about the circle, and a prifm erected upon the fquare, of the fame altitude with the cylinder, the infcribed fquare is half of that circumfcribed; and upon thefe fquare bafes are erected folid parallelepipeds, viz. the prifms of the fame altitude; therefore the prifm upon the fquare \(A B C D\) is the half of the prifin upon the fquare defcribed about the circle: Becaufe they are to one another as their bafes a: And the cylinder is lefs than the prifm upon the fquare defcribed about the circle ABCD : Therefore the prifm upon the fquare ABCD of the fame altitude with the cylinder, is greater than half of the cylinder. Bifect the circumferences \(\mathrm{AB}, \mathrm{BC}, \mathrm{CD}, \mathrm{DA}\) in the points \(\mathrm{E}, \mathrm{F}, \mathrm{G}, \mathrm{H}\); and join AE , EB, BF, FC, CG, GD, DH, HA: Then, each of the triangles \(\mathrm{AEB}, \mathrm{BFC}, \mathrm{CGD}, \mathrm{DHA}\) is greater than the half of the fegment of the circle in which it ftands, as was fhewn in prop. 2. of this book. Erect prifms upon each of thefe triangles of the fame altitude with the cylinder; each of thefe prifms is greater than half of the fegment of the cylinder in which it is; becaufe if, through the points E, F, \(\mathrm{G}, \mathrm{H}\), parallels be drawn to \(\mathrm{AB}, \mathrm{BC}\), \(\mathrm{CD}, \mathrm{DA}\), and parallelograms be completed upon the fame \(\mathrm{AB}, \mathrm{BC}\),
 \(\mathrm{CD}, \mathrm{DA}\), and folid parallelepipeds be erected upon the parallelograms; the prifms upon the triangles \(\mathrm{AEB}, \mathrm{BFC}, \mathrm{CGD}, \mathrm{DHA}\) are the halves of the folid
b2. Cor. 7. 12. parallelepipeds \({ }^{\text {b }}\). And the fegments of the cylinder which are upon the fegments of the circle cut off by \(\mathrm{AB}, \mathrm{BC}, \mathrm{CD}, \mathrm{DA}\), are lefs than the folid parallelepipeds which contain them. Therefore the prifms upon the triangles AEB, BFC, CGD, DHA, are greater than half of the fegments of the cylinder in which they are ; therefore, if each of the circumferences be divided into two equal parts, and ftraight lines be drawn from the points of divifion to the extremities of the circumferences, and upon the triangles thus made, prifms be erected of the fame altitude with the cylinder, and fo on, there muft at length ree Lemma. main fome fegments of the cylinder which together are lefs \(c\) than the excefs of the cylinder above the triple of the cone. Let them be thofe upon the fegments of the circle \(A E, E B, B F\),

FC, CG, GD, DH, HA. Therefore the reft of the cylin- Book XiI. der, that is, the prim of which the bale is the polygon AEBFCGDH, and of which the altitude is the fame with that of the cylinder, is greater than the triple of the cone: But this prim is tripled of the pyramid upon the fame bafe, of which the vertex is the fame with the vertex of the cone; therefore the pyramid upon the bare AEBFCGDH, having the fame vertex with the cone, is greater than the cone, of which the bate is the circle \(\mathrm{A} B C D\) : But it is alfo lefs, for the pyramid is contained within the cone; which is impoffible. Nor can the cylinder be lets than the triple of the cone. Let it be leis, if poffible: Therefore, inverfely, the cone is greater than the third part of the cylinder. In the circle \(A B C D\) defcribe a quire; this fquare is greater than the half of the circle: And upon the fquare \(A B C D\) erect a pyramid having the fame vertex with the cone; this pyramid is greater than the half of the cone; becaufe as was before demonftrated, if a fquare be defcribed about the circle, the square ABCD is the half of it; and if, upon the fe fquares there be erected fold parallelepipens of the fame altitude with the cone, which are alto prifms, the prifm upon the fquare ABCD Shall be the half of that which is upon the fquare defcribed about the circle; for they are to one another as their bares \({ }^{\mathrm{e}}\); as are aldo the third parts of them: Therefore
 the pyramid, the bate of which i; the fquare ABCD , is half of the pyramid upon the fquare defcribed about the circle: But this haft pyramid is greater than the cone which it contains; therefore the pyramid upon the fquare ABCD , having the fame vertex with the cone, is greater than the half of the cone. Bifect the circumferences \(A B\), \(\mathrm{BC}, \mathrm{CD}, \mathrm{DA}\) in the points \(\mathrm{E}, \mathrm{F}, \mathrm{G}, \mathrm{H}\), and join \(\mathrm{AE}, \mathrm{EB}\), BF, FC, CG, GD, DH, HA: Therefore each of the triangles \(\mathrm{AEB}, \mathrm{BFC}, \mathrm{CGD}, \mathrm{DHA}\) is greater than half of the fegment of the circle in which it is: Upon each of thee triangles erect pyramids having the fame vertex with the cone. Therefore each of the fe pyramids is greater than the half of the fegment of the cone in which it is, as before was demonftrated of the prifms and fegments of the cylinder; and thus dividing each of the circumferences into two equal parts, and joining the
\(\underbrace{\text { Book XII. points of divifion and their excremities by ftraight lines, and }}\) upon the triangles erefing pyramids having their vertices the fame with that of the cone, and fo on, there muft at length remain fome fegments of the cone, which together thall be lefs than the excefs of the cone, above the third part of the cylinder. Let thefe be the fegments upon \(\mathrm{AE}, \mathrm{EB}, \mathrm{BF}, \mathrm{FC}, \mathrm{CG}, \mathrm{GD}\), DH, HA. Therefore the reft of the cone, that is, the pyramid, of which the bafe is the polygon AEBFCGDH, and of which the vertex is the fame with that of the cone, is greater than the third part of the cylinder. But this pyramid is the third part of the prifm upon the fame bafe AEBFCGDH, and of the fame altitude with the cylinder. Therefore this prifm is great-
 er than the cylinder of which the bafe is the circle ABCD . But it is alfo lefs, for it is contained within the cylinder; which is impoffible. Therefore the cylinder is not lefs than the triple of the cone. And it has been demonftrated that neither is it greater than the triple. Therefore the cylinder is triple of the cone, or, the cone is the third part of the cylinder. Wherefore every cone, \&c. Q.E.D.

\section*{PROP. XI. THEOR.}

See N. ONES and cylinders of the fame altitude, are to one another as their bafes.

Let the cones and cylinders, of which the bafes are the circles ABCD , EFGH, and the axes KL, MN, and AC, EG the diameters of their bafes, be of the fame altitude. As the circle ABCD to the circle EFGH, to is the cone AL to the cone EN.

If it be not fo, let the circle \(A B C D\) be to the circle EFGH, as the cone AL to fome folid either lefs than the cone EN, or greater than it. Firft, let it be to a folid lefs than EN, viz. to the folid X ; and let Z be the folid which is equal to the ex.cefs of the cone EN above the folid X; therefore the cone EN is equal to the folids \(\mathrm{X}, \mathrm{Z}\) together. In the circle EFGH defcribe the fquare EFGH, therefore this fquare is greater than the half of the circle: Upon the fquare EFGH erect a pyramid of the fame altitude with the cone; this pyramid is greater than half of the cone. For, if a fquare be defcribed about the circle, and a pyramid be erected upon it, ha-
ving the fame vertex with the cone \({ }^{*}\), the pyramid infcribed in the cone is half of the pyrainid circumfcribed about it, becaufe they are to one another as their bafes a : But the cone

Book XII. a 6. 12. is lefs than the circumfcribed pyramid; therefore the pyramid of which the bafe is the fquare EFGH, and its vertex the fame with that of the cone, is greater than half of the cone : Divide the circumferences \(\mathrm{EF}, \mathrm{FG}, \mathrm{GH}, \mathrm{HE}\), each into two equal parts in the points \(O, P, R, S\), and join EO, OF, FP, PG, GR, RH, HS, SE: Therefore each of the triangles EOF, FPG, GRH, HSE is greater than half of the fegment of the

circle in which it is: Upon each of thefe triangles erect a pyramid having the fame vertex with the cone; each of thefe pyramids is greater than the haif of the fegment of the cone in which it is: And thus dividing each of thefe circumferences into two equal parts, and from the points of divifion drawing ftraight lines to the extremities of the circumferences, and upon each of the triangles thus made erecting pyramids having the fame vertex with the cone, and fo on, there muit at length remain fome fegments of the cone which are together lefs b than the folid Z : Let thefe be the fegments upon \(\mathrm{EO}, \mathrm{OF}, \mathrm{FP}\),

\footnotetext{
* Vertex is put in place of alitude which is in the Greek, becaufe the pyramid, in what iollows, is fupp fed to be circumferibed about the cone, and fo muft have the fame vertex. A d the fame change is made in fome places following.
}
\(\underbrace{\text { Book XII. PG, GR, RH, HS, SE: Therefore the remainder of the cone, }}\) viz. the pyramid of which the bafe is the polygon EOFPGRHS, and its vertex the fame with that of the cone, is greater than the folid X: In the circle ABCD defcribe the polygon ATBYCVDQ fimilar to the polygon EOFPGRHS, and upon it erect a pyramid having the fame vertex with the cone AL:
a 1.12. And becaufe as the fquare of \(A C\) is to the fquare of \(E G, f_{0} a^{2}\) is the polygon ATBYCVDQ to the polygon EOFPGRHS; and
b 2. 12. as the fquare of \(A C\) to the fquare of \(E G\), fo is \({ }^{\mathrm{b}}\) the circle
11. 5. ABCD to the circle EFGH ; therefore the circle \(A B C D\) c is to the circle EFGH, as the polygon ATBYCVDQ to the poly-

gon EOFPGRHS : But as the circle ABCD to the circle EFGH,
d6. 12. fo is the cone AL to the folid X ; and as the polygon ATBYCVDQ to the polygon EOFPGRHS, fo is dhe pyramid of which the bafe is the firt of thefe polygons, and vertex \(L\), to the pyramid of which the bafe is the other polygon, and its vertex N : Therefore, as the cone AL to the folid X, fo is the pyramid of which the bafe is the polygon ATBYCVDQ, and vertex \(L\), to the pyramid the bafe of which is the polygon EOFPGRHS, and vertex N : But the cone AL is greater than the pyramid contained in it ; therefore the folid X is greater e than the pyramid in the cone EN. But it is lefs, as was fhown, which
which is abfurd : Therefore the circle ABCD is not to the circle Book XII, EFGH, as the cone AL to any folid which is lefs than the cone EN. In the fame manner it may be demonftrated that the circle EFGH is not to the circle ABCD, as the cone EN to any folid lefs than the cone AL. Nor can the circle ABCD be to the circle EFGH, as the cone AL to any folid greater than the cone EN : For, if it be poffible, let it be fo to the folid I, which is greater than the cone EN: Therefore, by inverfion, as the circle EFGH to the circle ABCD, fo is the folid I to the cone AL: But as the folid I to the cone AL, fo is the cone EN to fome folid, which muft be lefs a than the cone AL, becaufe the folid I is greater than the cone EN: Therefore, as the circle EFGH is to the circle ABCD, fo is the cone EN to a folid lefs than the cone AL, which was fhewn to be impoffible: Therefore the circle ABCD is not to the circle EFGH, as the cone AL is to any folid greater than the cone EN : And it has been demonftrated that neither is the circle ABCD to the circle EFGH, as the cone AL to any folid lefs than the cone EN : Therefore the circle ABCD is to the circle EFGH, as the cone AL to the cone EN: But as the cone is to the cone, \(\mathrm{fo}^{\mathrm{b}}\) is the cylinder to the cylinder, becaufe the cy- b15.5. linders are triple co the cone each to each. Therefore, as c 10.12. the circle ABCD to the circle EFGH, fo are the cylinders upon them of the fame altitude. Wherefore cones and cylinders of the fame altitude are to one another as their bafes. Q.E.D.

\section*{PROP. XII. THEOR.}

1IMILAR cones and cylinders have to one anSee N. meters of their bafes have.

Let the cones and cylinders of which the bafes are the circles \(\mathrm{ABCD}, \mathrm{EFGH}\), and the diameters of the bafes AC, EG, and KL, MN, the axis of the cones or cylinders, be fimilar: The cone, of which the bafe is the circle \(A B C D\), and vertex the point L , has to the cone of which the bafe is the circle EFGH , and vertex N , the triplicate ratio of that which \(A C\) has to \(E G\).

For if the cone ABCDL has not to the cone EFGHN the triplicate ratio of that which AC has to EG, the cone ABCDL fhall have the triplicate of that ratio to fome folid which is lefs
\[
\mathrm{S}_{2} \quad \text { or }
\]
\(\underbrace{\text { Book XII. or greater than the cone EFGHN. Firft, let it have it to a leis, }}\) viz. to the folid X. Make the fame construction as in the presceding propofition, and it may be demonftrated the very fame way as in that propofition, that the pyramid of which the bale is the polygon EOFPGRHS, and vertex N, is greater than the folid X. Defcribe alfo in the circle ABCD the polygon ATBYCVDQ firnilar to the polygon EOFPGRHS, upon which erect a pyramid having the fame vertex with the cone; and let LAQ be one of the triangles containing the pyramid upon the polygon ATBYCVDQ the vertex of which is \(L\); and let NES be one of the triangles containing the pyramid upon the

polygon EOFPGRHS of which the vertex is \(N\); and join \(K\). MS: Because then the cone ABCDL is fimilar to the cone 224. def. EFGHN, AC is a to EG, as the axis KL to the axis MN; and as AG to EG, \(10^{b}\) is AK to EM; therefore as AK to EM, fo is KL to MN ; and, alternately, AK to KL , as EM to MN: And the right angles AKL, EMN are equal ; therefore the fides about thefe equal angles being proportionals the triangle AKL is fimilar c to the triangle EMN. Again, because AK is to KQ, as EM to MS, and that there fides are
about equal angles AKQ, EMS, becaufe thefe angles are, Book XII. each of them, the fame part of four right angles at the centres \(\mathrm{K}, \mathrm{M}\); therefore the triangle AKQ is fimilar a to the triangle a 6.6 . EMS : And becaufe it has been fhown that as AK to KL, fo is EM to MN, and that \(A K\) is equal to \(K Q\); and EM to MS, as QK to KL, fo is SM to MN; and therefore the fides about the right angles QKL, SMN being proportionals, the triangle LKQ is fimilar to the triangle NMS : And becaufe of the fimilarity of the triangles AKL, EMN, as LA is to AK, fo is NE to EM; and by the fimilarity of the triangles AKQ, EMS, as KA to AQ, fo ME to ES; ex æquali \({ }^{\mathrm{b}}\), LA is b22.5. to AQ, as NE to ES. Again, becaufe of the fimilarity of the triangles LQK, NSM, as LQ to QK, fo NS to SM; and from the fimilarity of the triangles \(K A Q\), MES, as \(K Q\) to QA, fo MS to SE; ex æquali b, LQ is to Q4, as NS to SE: And it was proved that QA is to AL , as SE to EN ; therefore, again, ex requali, as CL to LA, fo is SN to NE: Wherefore the triangles LQA, NSE, having the fides about all their angles proportionals, are equiangular \({ }^{c}\) and fimilar to one an- c5.6. other: And therefore the pyramid of which the bafe is the triangle AKQ, and vertex L, is fimilar to the pyramid the bafe of which is the triangle EMS, and vertex N, becaufe their folid angles are equald to one another, and they are contained d B. If. by the fame number of fimilar planes: But fimilar pyramids which have triangular bafes have to one another the triplicate e ratio of that which their homologous fides have; therefore e 8. 12. the pyramid AKQL has to the pyramid EMSN the triplicate ratio of that which AK has to EM. In the fame manner, if ftraight lines be drawn from the points \(\mathrm{D}, \mathrm{V}, \mathrm{C}, \mathrm{Y}, \mathrm{B}, \mathrm{T}\), to \(K\), and from the points \(H, R, G, P, F, O\) to \(M\), and pyramids be erected upon the triangles having the fame vertices with the cones, it may be demonftrated that each pyramid in the firt cone has to each in the other, taking them in the fame order, the triplicate ratio of that which the fide AK has to the fide EM; that is, which AC has to JG: But as one antece. dent to its confequent, fo are all the antecedents to all the confequents \(f\); therefore as the pyramid AKQL to the pyramid EMSN, fo is the whole pyramid the bafe of which is the polygon DQATBYCV, and vertex L, to the whole pyramid of which the bafe is the polygon HSEOFPGR, and vertex N. Wherefore alfo the firft of thefe two laft named pyramids has to the other the triplicate ratio of that which AC has to EG. But, by the hypothefis, the cone of which the bafe is the circle \(A B C D\), and vertex \(L\), has to the folid \(X\), the triplicate ratio of that which AC has to EG; therefore, as the cone of

Book XII. which the bafe is the circle ABCD , and vertex L , is to the folid X , fo is the pyramid the bafe of which is the polygon DQATBYCV, and vertex \(L\), to the pyramid the bafe of which is the polygon HSEOFPGR and vertex N : But the faid cone is greater than the pyramid contained in it, therefore the folid
a 14.5. X is greater a than the pyramid, the bafe of which is the polygon HSEOFPGR, and vertex N; but it is alfo lefs; which is impoflible : Therefore the cone of which the bafe is the circle

\(A B C D\) and vertex \(L\), has not to any folid which is lefs than the cone of which the bafe is the circle EFGH and vertex N, the triplicate ratio of that which AC has to EG. In the fame manner it may be demonftrated that neither has the cone EFGHN to any folid which is lefs than the cone ABCDL , the triplicate ratio of that which EG has to AC. Nor can the cone ABCDL have to any folid which is greater than the cone EFGHN, the triplicate ratio of that which AC has to EG: For, if it be poffible, let it have it to a greater, viz. to the folid Z : Therefore, inverftly, the folid Z has to the cone ABCDL , the triplicate ratio of that which EG has to AC : But as the folid Z is to
the cone \(A B C D L\), fo is the cone EFGHN to fome folid, \(B\) Book XII. which muft be lefs a than the cone ABCDL, becaufe the folid Z a 14.5 . is greater than the cone EFGHN: Therefore the cone EFGHN has to a folid which is lefs than the cone ABCDL, the triplicate ratio of that which EG has to AC, which was demonftrated to be impoffible: Therefore the cone ABCDL has not to any folid greater than the cone EFGHN, the triplicate ratio of that which AC has to EG; and it was demonftrated that it could not have that ratio to any folid lefs than the cone EFGHN : Therefore the cone ABCDL has to the cone EFGHN, the triplicate ratio of that which AC has to EG: But as the cone is to the cone, fo \(b\) the cylinder to the cylinder; for every b 15.5 . cone is the third part of the cylinder upon the fame bafe, and of the fame altitude: Therefore alfo the cylinder has to the cylinder, the triplicate ratio of that which AC has to EG: Wherefore fimilar cones, \&c. Q. E. D.

\section*{PROP. XIII, THEOR.}

IF a cylinder be cut by a plane parallel to its op. See N. pofite planes, or bafes; it divides the cylinder into two cylinders, one of which is to the other as the axis. of the firft to the axis of the other.

Let the cylinder AD becut by the plane GH parallel to the oppofite planes \(\mathrm{AB}, \mathrm{CD}\), meeting the axis EF in the point \(K\), and let the line GH be the common fection of the plane GH and the furface of the cylinder AD : Let AEFC be the parallelogram in any pofition of it, by the revolution of which about the ftraight line EF the'cylinder AD is defcribed; and let GK be the common fection of the plane GH, and the plane AEFC: And becaufe the parallel planes \(\mathrm{AB}, \mathrm{GH}\) are cut by the plane AEKG, AE, KG, their common fections with it are parallel \({ }^{2}\); wherefore AK is a parallelogram, and GK equal to EA the Atraight line from the centre of the circle \(A B\) : For the fame reafon, each of the ftraight lines

drawn

Book XiI. drawn from the point K to the line GH may be proved to be equal to thofe which are drawn from the centre of the circle \(A B\) to its circumference, and: are therefore all equal to one ana 15 . def. I. other. Therefore the line GH is the circumference of a circle \({ }^{\text {a }}\) of which the centre is the point K : Therefore the plane GH divides' the cylinder AD into the cylinders \(\mathrm{AH}, \mathrm{GD}\); for they are the fame which would be defcribed by the revolution of the parallelograms AK, GF, about the ftraight lines EK, KF: And it is to be fhown that the cylinder AH is to the cylinder HC, as the axis EK to the axis KF.

Produce the axis EF both ways; and take any number of ftraight lines EN, NL, each equal to EK; and any number FX, XM, each equal to FK; and let planes parallelto \(A B, C D\) pafstirough the points \(\mathrm{L}, \mathrm{N}, \mathrm{X}, \mathrm{M}\) : Therefore the common fections of thefe planes with the cylinder produced are circles the centres of which are the points L, N, X. M, as was proved of the plane GH ; and thefe planes cut off: the cylinders, \(\mathrm{PR}, \mathrm{RB}, \mathrm{DT}, \mathrm{TQ}:\) And becaufe the axes LN, NE, EK are all equal: therefore the cylinders
bin. 12. \(\mathrm{PR}, \mathrm{RB}, \mathrm{BG}\) are \({ }^{\mathrm{b}}\) to one another as their bafes; but their bafes are equal, and therefore the cylinders \(\mathrm{PR}, \mathrm{RB}\), BG are equal: And becaufe the axes LN, NE, EK are equal to one another, as alfo the cylinders \(\mathrm{PR}, \mathrm{RB}\), \(B G\), and that there are as many axes as cylinders; therefore, whatever multiple the axis KL is of the axis
 KE , the fame multipie is the cylinder PG of the cylinder GB: For the fame reafon whatever multiple the axis MK is of the axis KF , the fame multiple is the cylinder QG of the cylinder GD: And if the axis KL be equal to the axis KM the cylinder PG is equal to the cylinder GQ; and if the axis KL be greater than the axis KM the cylinder PG is greater than the cylinder \(Q G\); and if lefs, lefs: Since therefore there are four magnitudes, viz. the axes EK, KF, and the cylinders BG, GD, and that of the axis EK and cylinder BG there has been taken any equimultiples whatever, viz. the
axis KL and cylinder PG; and of the axis KF and cylinder \(\underbrace{\text { Book XII. }}\) GD, any equimultiples whatever, viz. the axis KM and cylin\(\operatorname{der} G Q\); and it has been demonftrated, if the axis KL be greater than the axis KM, the cylinder PG is greater than the cylinder GQ; and if equal, equal ; and if lefs, lefs: Therefore \({ }^{d}\) the axis \(E K\) is to the axis \(K F\), as the cylinder BG to the cy-d 5 . def. 5 . linder GD. Whêrefore, if a cylinder, \&c. Q.E.D.

\section*{PROP. XIV. THEOR.}

CONES and cylinders upon equal bafes are to one another as their altitudes.

Let the cylinders \(E B, F D\) be upon the equal bafes \(A B, C D\) : As the cylinder EB to the cylinder FD , fo is the axis GH to the axis KL.

Produce the axis KL to the point N , and make LN equal to the axis GH, and let CM be a cylinder of which the bafe is CD, and axis LN, and becaufe the cylinders EB, CM have the fame altitude, they are to one another as their bafes a : But a 11: 12. their bafes are equal, therefore alfo the cylinders \(\mathrm{EB}, \mathrm{CM}\) are equal. And becaufe the cylinder FM is cut by the plane CD parallel to its oppofite planes, as the cylinder CM to the cylinder FD , fo is \({ }^{b}\) the axis LN to the axis KL. But the cylinder CM is equal to the cylinder EB , and the axis LN to the axis GH: Therefore as the cylinder EB to the cylinder FD, fo is the axis GH to the axis KL: And as
 the cylinder EB to the cylinder FD, fo is c the cone ABG to c 15 . 5 . the cone CDK, becaufe the cylinders are tripled of the cones: \(\mathrm{d}_{10} 12\). Therefore alfo the axis GH is to the axis KL , as the cone ABG to the cone CDK, and the cylinder EB to the cylinder FD. Wherefore cones, \&c. Q. E. D.
PROP. XV. THEOR.

See N. \(\sim\) HE bafes and altitudes of equal cones and cylinders, are reciprocally proportional; and if the bafes and altitudes be reciprocally proportional, the cones and cylinders are equal to one another.

Let the circles ABCD, EFGH, the diarneters of which are AC, EG be the bafes, and KL, MN the axis, as alfo the altitudes, of equal cones and cylinders; and let ALC, ENG be the cones, and AX, EO the cylinders: The bafes and altitudes of the cylinders AX, EO are reciprocally proportional ; that is, as the bafe ABCD to the bafe EFGH, fo is the altitude MN to the altitude KL.

Either the altitude MN is equal to the altitude KL, or thefe altitudes are not equal. Firft, let them be equal; and the cylinders AX. EO being alfo equal, and cones and cylinders
a ir. I2. of the fame altitude being to one another as their bafes a, therefore the bafe ABCD is equal b to the bafe EFGH; and as the bafe ABCD is to the bafe EFGH, fo is the altitude MN to the altitude KL.
But let the altitudes KL, MN, be inequal, and MN the greater of the two, and from MN take MP equal to KL, and through the point \(P\) cut the cylinder EO by the plane TYS parallel to the
 oppofite planes of the circles EFGH, RO ; therefore the common fection of the plane TYS and the cylinder EO is a circle, and confequently ES is a cylinder, the bafe of which is the circle EFGH, and altitude MP : And becaufe the cylinder AX is equal to the cylinder EO, as AX is to the cylinder ES, fo c is the cylinder EO to the fame ES. But as the cylinder AX to the cylinder ES, fo a is the bafe ABCD to the bafe EFGH; for the cylinders AX, ES are of the fame altitude; and as the cylinder EO to the cylinder ES, fod is the altitude MN to the altitude MP, becaufe the cylinder EO is cut by the plane

TYS parallel to: its oppofite planes. Therefore as the bafe Book XII. A BCD to the bafe EFGH, fo is the altitude MN to the altitude MP: But MP is equal to the altitude KL; wherefore as the bafe ABCD to the bafe EFGH, fo is the altitude MN to the altitude KL ; that is, the bafes and altitudes of the equal cylinders AX, EO are reciprocally proportional.

But let the bafes and altitudes of the cylinders AX, EO, be reciprocally proportional, viz. the bafe ABCD to the bafe EFGH, as the altitude MN to the altitude KL : The cylinder AX is equal to the cylinder EO.

Firf, let the bafe ABCD, be equal to the bafe EFGH; then becaufe as the bafe ABCD is to the bafe EFGH, fo is the-altitude MN to the altitude KL; MN is equalb to KL, and b A: 5 . therefore the cylinder AX is equal a to the cylinder EO .

But let the bafes ABCD, EFGH be unequal, and let ABCD be the greater ; and becaufe, as ABCD is to the bafe EFGH, fo is the altitude MN to the altitude KL ; therefore MN is greater than KL. Then, the fame conftruction being made as before, becaufe as the bafe ABCD to the bafe EFGH, fo is the altitude MN to the altitude KL ; and becaufe the altitude KL is equal to the altitude MP; therefore the bafe \(A B C D\) is a to the bafe EFGH, as the cylinder AX to the cylinder ES ; and as the altitude MN to the altitude MP or KL, fo is the cylinder EO to the cylinder ES: Therefore the cylinder AX is to the cylinder ES, as the cylinder EO is to the fame ES : Whence the cylinder AX is equal to the cylinder EO: and the fame reafoning holds in cones. Q.E.D.

\section*{PROP. XVI. PROB.}

\(T\)O defcribe in the greater of two circles that have the fame centre, a polygon of an even number of equal fides, that fhall not meet the leffer circle.

Let ABCD, EFGH be two given circles having the fame centre \(\mathrm{K}:\) It is required to infcribe in the greater circle \(A B C D\) a polygon of an even number of equal fides, that fhall not meet the leffer circle.

Through the centre \(K\) draw the ftraight line ED, and from the point \(G\), where it meets the circumferences of the leffer circle,

Book XII. circle, draw GA at right angles to BD , and produce it to C ; a 16.3 . therefore AC touches a the circle EFGH : Then, if the circumference BAD be bifected, and the half of it be again bifected, b Lemma, and fo on, there muft at length remain a circumference lefs than AD : Let this be LD : and from the point L draw LM perpendicular to BD, and produce it to N ; and join LD, DN. Therefore LD is equal to DN ; and becaufe LN is parallel to AC and that AC touches the circle EFGH; therefore LN does not meet the circle EFGH: And much lefs fhall the fraight lines
 LD, DN meet the circle EFGH:
So that if ftraight lines equal to LD be applied in the circle ABCD from the point L around to N , there fhall be defcribed in the circle a polygon of an even number of equal fides not meeting the leffer circle. Which was to be done.

\section*{LEMMA II.}

IF two trapeziums \(A B C D, E F G H\) be infcribed in the circles, the centres of which are the points \({ }^{\prime} K\), L ; and if the fides \(\mathrm{AB}, \mathrm{DC}\) be parallel, as alfo EF , \(H G\); and the other four fides \(\mathrm{AD}, \mathrm{BC}, \mathrm{EH}, \mathrm{FG}\), be all equal to one another; but the fide \(A B\) greater than EF, and DC greater than HG. The ftraight line \(K A\) from the centre of the circle in which the greater fides are, is greater than the fraight line LE drawn from the centre to the circumference of the other circle.

If it be poffible, let KA be not greater than LE; then KA molt be either equal to it, or lefs. Firft, let KA be equal to LE : Therefore, becaufe in two equal circles \(\mathrm{AD}, \mathrm{BC}\) in the one are equal to \(\mathrm{EH}, \mathrm{FG}\) in the other, the circumferences \(\mathrm{AD}, \mathrm{BC}\) are equal a to the circumferences EH, FG ; but becaufe the ftraight lines \(\mathrm{AB}, \mathrm{DC}\) are refpectively greater than \(\mathrm{EF}, \mathrm{GH}\), the circumferences \(\mathrm{AB}, \mathrm{DC}\) are greater than EF , HG: Therefore the whole circumference ABCD is greater than the whole EFGH: but it is allo equal to it, which is
impoffible: Therefore the ftraight line KA is not equal to Book XII. LE.

But let KA be lefs than LE, and make LM equal to KA, and from the centre L, and diffance LM defcribe the circle MNOP, meeting the ftraight lines LE, LF, LG, LH, in M, \(\mathrm{N}, \mathrm{O}, \mathrm{P}\); and join MN, NO, OP, PM which are refpectively parallel a to, and lefs than EF, FG, GH, HE: Then becaufe EH is greater than \(\mathrm{MP}, \mathrm{AD}\) is greater than MP ; and

the circles \(A B C D\), MNOP are equal ; therefore the circumference \(A D\) is greater than MP; for the fame reafon, the circumference BC is greater than NO; and becaufe the ftraight line AB is greater than EF which is greater than MN , much more is AB greater than MN : Therefore the circumference AB is greater than MN ; and, for the fame reafon, the circumference DC is greater than PO: Therefore the whole circumference \(A B C D\) is greater than the whole MNOP; but it is likewife equal to it, which is impoffible: Therefore KA is not lefs than LE ; nor is it equal to it ; the ftraight line KA muft therefore be greater than LE. O.E.D.

Cor. And if there be an ifofceles triangle the fides of which are equal to \(A D, B C\), but its bafe lefs than \(A B\) the greater of the two fides \(\mathrm{AB}, \mathrm{DC}\); the ftraight line KA may, in the fame manner, be demonftrated to be greater than the ftraight line drawn from the centre to the circumference of the circle defrribed about the triangle.

\section*{PROP. XVII. PROB.}

See \(\mathrm{N} . \quad \mathrm{r} \mathrm{O}\) defcribe in the greater of two fpheres which have the fame centre, a folid polyhedron, the fuperficies of which fhall not meet the leffer fphere.

Let there be two fpheres about the fame centre A ; it is required to defcribe in the greater a folid polyhedron, the fuperficies of which fhall not meet the leffer fphere.

Let the fpheres be cut by a plane paffing through the centre; the common fections of it with the fpheres fhall be circles; becaufe the fphere is defcribed by the revolution of a femicircle about the diameter remaining unmoveable; fo that in whatever pofition the femicircle be conceived, the common fection of the plane in which it is with the fuperficies of the fphere is the circumference of a circle: and this is a great circle of the fphere, becaufe the diameter of the fphere, which is likewife the diameter of the circle, is greater a than any fraight line in the circle or fphere: Let then the circle made by the fection of the plane with the greater fphere be BCDE, and with the leffer fphere be FGH; and draw the two diameters BD, CE, at right angles to one another; and in BCDE, the greater of
b 16 . 12. the two circles, defcribe \({ }^{\text {b }}\) a polygon of an even number of equal fides not meeting the leffer circle FGH; and let its fides, in BE the fourth part of the circle, be BK, KL, LM, ME; join KA and produce it to N ; and from \(\mathbf{A}\) draw \(\mathbf{A X}\) at right angles to the plane of the circle BCDE meeting the fuperficies of the fphere in the point \(X\); and let planes pafs through AX and each of the ftraight lines BD , KN , which, from what has been faid, fhall produce great circles on the fuperficies of the fphere, and let BXD, KXN be the femicircles thus made upon the diameters BD, KN : Therefore, becaufe XA is at right angles to the plane of the circle BCDE, every plane which
c 18. 11. paffes through XA is at right \({ }^{c}\) angles to the plane of the circle BCDE ; wherefore the femicircles BXD, KXN are at right angles to that plane : And becaufe the femicircles BED, BXD, KXN , upon the equal diameters \(\mathrm{BD}, \mathrm{KN}\), are equal to one another, their halves \(\mathrm{BE}, \mathrm{BX}, \mathrm{KX}\), are equal to one another: Therefore, as many fides of the polygon as are in BE, fo many there are in \(\mathrm{BX}, \mathrm{KX}\) equal to the fides BK , KL, LM, ME: Let thefe polygons be defcribed, and theit fides be BO, OP, PR, RX; KS, ST, TY, YX, and join

OS, PT, RY; and from the points O, S draw OV, SQ perpen- \(\underbrace{\text { Book XII. }}\) diculars to AB, AK : And becaufe the plane BOXD is at right angles to the plane BCDE, and in one of them BOXD, OV is drawn perpendicular to \(A B\) the common fection of the planes, therefore \(O V\) is perpendicular \({ }^{\text {a }}\) to the plane BCDE : For the a 4 . def. ir. fame reafon \(S Q\) is perpendicular to the fame plane, becaufe the plane KSXN is at right angles to the plane BCDE. Join VQ ; and becaufe in the equal femicircles \(B X D, K X N\) the

circumferences \(B O, K S\) are equal, and \(O V, S Q\) are perpendicular to their diameters, therefore \(\mathrm{d} O V\) is equal to \(S Q, \mathrm{~d}^{26}\). . and \(B V\) equal to \(K Q\). But the whole BA is equal to the whole KA, therefore the remainder VA is equal to the remainder QA: As therefore BV is to VA, fo is KQ to QA, wherefore VQ is parallel e to BK : And becaufe OV, SQ are each of e e2. 6 . them at right angles to the plane of the circle \(B C D E, O V\) is parallel \(f\) to \(S Q\); and it has been proved that it is alfo equal \(f 6\). If. to it ; therefore QV , SO are equal and parallel g: And becaufe g 33 r r. QV is parallel to SO , and alfo to KB ; OS is parallel \({ }^{\mathrm{h}}\) to BK ; h g. mr. and therefore \(\mathrm{BO}, \mathrm{KS}\) which join them are in the fame plane

Book XII. in which thefe parallels are, and the quadrilateral figure KBOS is in one plane: And if PB, TK be joined, and perpendiculars be drawn from the points \(\mathrm{P}, \mathrm{T}\) to the ftraight lines \(\mathrm{AB}, \mathrm{AK}\) it may be demonftrated that TP is parallel to \(K B\) in the very fame way that SO was fhown to be parallel to the fame KB ;
29.II. wherefore a TP is parallel to SO, and the quadrilateral figure SOPT is in one plane : For the fame reafon the quadrilateral b2.11. TPRY is in one plane: And the figure YRX is alfo in one plane \({ }^{\text {b }}\).

Therefore, if from the points, \(\mathrm{O}, \mathrm{S}, \mathrm{P}, \mathrm{T}, \mathrm{R}, \mathrm{Y}\) there be drawn ftraight lines to the point \(A\), there fhall be formed a folid polyhedron between the circumferences \(\mathrm{BX}, \mathrm{KX}\) compofed of pyramids the bafes of which are the quadrilaterals KBOS, SOPT, TPRY, and the triangle YRX, and of which the common vertex is the point \(A\) : And if the fame conftruction be made upon each of the fides KL, LM, ME, as has been done upon BK, and the like be done alfo in the other three quadrants, and in the other hemifphere; there thall be formed a folid polyhedron defcribed in the fphere, compo-
fed of pyramids, the bafes of which are the aforefaid quadri- Book XIr. lateral figures, and the triangle YRX, and thofe formed in the like manner in the reft of the fiphere, the common vertex of them all being the point A: And the fuperficies of this fo. lid polyhedron does not meet the leffer fphere in which is the circle FGH : For, from the point A draw a AZ perpendicular to the plane of the quadrilateral KBOS meeting it in \(Z\), and join BZ, ZK : And becaufe AZ is perpendicular to the plane KBOS, it makes right angles with every fraight line meeting it in that plane; therefore \(\mathrm{A} Z\) is perpendicular to BZ and ZK : And becaufe \({ }^{\circ} A B\) is equal to \(A K\), and that the fquares of \(A Z\), \(Z B\), are equal to the fquare of \(A B\); and the fquares of \(A Z\), ZK to the fquare of \(\mathrm{AK}^{b}\) : therefore the fquares of \(A Z, Z B\) are equal to the fquares of \(A Z, Z K\) : Take from thefe equals the fquare of \(A Z\), the remaining fquare of \(B Z\) is equal to the remaining fquare of \(Z \mathrm{~K}\); and therefore the flaight line BZ ; is equal to ZK : In the like manner it may be demonftrated, that the fraight lines drawn from the point \(Z\) to the points \(O\), \(S\) are equal to BZ or ZK : Therefore the circle defcribed from the centre Z , and diftance ZB fhall pafs through the points \(\mathrm{K}, \mathrm{O}\), \(S\), and KBOS fhall be a quadrilateral figure in the circle : And becaufe \(K B\) is greater than \(Q V\), and \(Q V\) equal to \(S O\), therefore KB is greater than SO : But KB is equal to each of the ftraight lines \(B O, K S\); wherefore each of the circumferences cut off by KB, BO, KS is greater than that cut off by OS; and thefe three circumferences, together with a fourth equal to one of them, are greater than the fame three together with that cut off by OS; that is, than the whole circumference of the circle; therefore the circumference fubtended by KB is greater than the fourth part of the whole circumference of the circle KBOS , and confequently the angle BZK at the centre is greater than a right angle: And becaufe the angle BZK is obtufe, the fquare of BK is greater \({ }^{\mathrm{c}}\) than the fquares of \(\mathrm{BZ}, 2 \mathrm{~K} ; \mathrm{c}_{12}\), 8 : that is, greater than twice the fquare of BZ . Join KV , and becaufe in the triangles \(\mathrm{KBV}, \mathrm{OBV}, \mathrm{KB}, \mathrm{BV}\) are equal to OB , \(B V\), and that they contain equal angles; the angle KVB is equald to the angle OVB : And OVB is a right angle; there- d. 4. . fore alfo \(K V B\) is a right angle: And becaufe \(B D\) is lefs than twice DV , the rectangle contained by \(\mathrm{DP}, \mathrm{BV}\) is lefs than twice the rectangle \(D V B\); that is \({ }^{\text {e }}\), the fquate of \(K B\) is lefs e8.6. than twice the fquare of KV : But the fquare of KB is greater than twice the fquare of \(B Z\); therefore the fquare of \(K V\) is
 AK . and that the fquares of \(\mathrm{BZ}, \mathrm{ZA}\) are equal together to the fquare of BA , and the fquares of \(\mathrm{KV}, \mathrm{VA}\) to the fquare of \(A K\); therefore the fquares of \(\mathrm{BZ}, \mathrm{ZA}\) are equal to the fquares of \(K V, V A\); and of thefe the fquare of \(K V\) is greater than the fquare of \(B Z\); therefore the fquare of VA is lefs than the fquare of \(Z \mathrm{~A}\), and the fraight line AZ greater than VA: Mach more then is \(\mathbb{A} Z\) greater than \(A G\); becaufe, in the preceding propofition, it was fhown that KV falls without the circle FGH: And AZ is perpendicular to the plane KBOS, and is therefore the fhorteft of all the ftraight linsi that can be drawn from \(A\), the centre of the fihere to that plane. Therefore the plane KBOS, does not meet the leffer fphere.

And that the other pianes between the quadrants \(\mathrm{BX}, \mathrm{KX}\) fall without the leffer fphere, is thus demonftrated: From the point A draw Al perpendicular to the plane of the quadrilateral SOPT, and join 10 ; and, as was demonftrated of the plane KBOS and the point Z , in the fame way it may be fhown that the point \(I\) is the centre of a circle defcribed about SOPT: and that OS is greater than PT; and PT was fhown to be parallel to OS : Therefore, becaufe the two trapeziums KBOS, SOPT infrribed in circles have their fides BK. CS parallel, as allo DS, PT ; and their other fides BO, KS, OP, ST all equal to one another, and that BK is greater than OS, and OS greater than PT, therefore the ftraight line ZB is greater a than 1O. Join AO which will be equal to AB ; and becaufe \(\mathrm{AlO}, \mathrm{AZB}\) are right angles, the fquares of AI, IU are equal to the iquare of \(A O\) or of \(A B\); that is, to the fquares of \(A Z\), ZB ; and the fquare of ZB is greater than the fquare of 1 O , therefore the fquare of \(A Z\) is lefs than the fquare of \(A I\); and the ftraight line AZ lefs than the fraight line AI: And it was proved that \(A Z\) is greater than \(A G\); much more then is \(A I\) greater than AG: Therefore the plane SOPT falls wholly without the leffer fphere: In the fame manner it may be demonftrated that the plane TPRY falls without the fame fphere, as alfe the triangle YRX, viz. by the Cor. of 2d Lemma. And after the fame way it may be demonftrated that all the planes which contain the folid polyhedron, fall without the leffer fphere. Therefore in the greater of two fpheres which have the fame centre, a folid polyhedron is defcribed, the fuperficies of which does not meet the leffer fphere. Which was to be done.

But the ftraight line AZ may be demonftrated to be greater Book XII. than AG otherwife, and in a fhorter manner, without the help of Prop. r6. as follows. From the point \(G\) draw \(G U\) at right angles to \(A G\) and join \(A U\). If then the circumference \(B E\) be bifected, and its half again bifected, and fo on, there will at length be left a circumference lefs than the circumference which is fubtended by a ftraight line equal to GU infcribed in the circle BCDE: Let this be the circumference KB : Therefore the ftraight line KB is lefs than GU : And becaufe the angle BZK is obtule, as was proved in the preceding, therefore BK is greater than BZ : But GU is greater than BK; much more then is GU greater than \(B Z\), and the fquare of GU than the fquare of BZ ; and AU is equal to AB ; therefore the fquare of \(A U\), that is, the fquares of \(A G, G U\) are equal to the fquare of \(A B\), that is, to the fquares of \(A Z, Z B\); but the fquare of \(B Z\) is lefs than the fquare of \(G U\); therefore the fquare of \(A Z\) is greater than the fquare of \(A G\), and the ftraight line \(A Z\) confequently greater than the firaight line AG.

Cor. And if in the leffer fphere there be defcribed a folid polyhedron by drawing ftraight lines betwixt the points in which the ftraight lines from the centre of the fphere drawn to all the angles of the folid polyhedron in the greater fphere meet the fuperficies of the leffer; in the fame order in which are joined the points in which the fame lines from the centre meet the fuperficies of the greater fphere; the folid polyhedron in the fphere BCDE has to this other folid polyhedron the triplicate ratio of that which the diameter of the fphere BCDE has to the diameter of the other íphere: For if thefe two folids be divided into the fame number of pyramids, and in the fame order; the pyramids fhall be fimilar to one another, each to each : Becaufe they have the folid angles at their common vertex, the centre of the fphere, the fame in each pyramid, and their other folid angle at the bafes equal to one another, each to each a, becaule they are contained by three plane angles equal each to each; and the pyramids are contained by the fame number of fimilar planes; and are therefore fimilar \(b\) b 11. Defs, to one another, each to each: But fimilar pyramids have to one another the triplicate \({ }^{c}\) ratio of their homologous fides.. e Cor. 8 . Therefore the pyramid of which the bafe is the quadrilateral KBOS, and vertex A, has to the pyramid in the other fphere of the fame order, the triplicate ratio of their homologous fides; that is, of that ratio, which \(A B\) from the centre of the greater fphere has to the ftraight line from the fame centre to
\(\underbrace{\text { Book XII }}\) the fuperficies of the leffer fphere. And in like manner, eacin pyramid in the greater fphere has to each of the fame order in the leffer, the triplicate ratio of that which AB has to the femidiameter of the leffer fphere. And as one antecedent is to its confequent, fo are all the antecedents to all the confequents. Wherefore the whole folid polyhedron in the greater fphere has to the whole folid polyhedron in the other, the triplicate ratio of that which AB the femidiameter of the firt has to the femidiameter of the other; that is, which the diameter BD of the greater has to the diameter of the other Sphere.

\section*{PROP. XVIII. THEOR.}

SPHERES have to one another the triplicate ratio of that which their diameters have.

Let \(\mathrm{ABC}, \mathrm{DEF}\) be two fpheres of which the diameters are \(\mathrm{BC}, \mathrm{EF}\). The fphere ABC has to the fphere DEF the triplicate ratio of that which BC has to EF.

For, if it has not, the fphere ABC fhall have to a fphere either lefs or greater than DEF, the triplicate ratio of that which BC has to EF. Firft, let it have that ratio to a lefs, viz. to the fphere CHK ; and let the fphere DEF have the fame a 17.12 . centre with GHK; and in the greater fphere DEF defcribe a

a folid polyvedron, the fuperficies of which does not meet the leffer fphere GHK; and in the fphere ABC defcribe another fimilar to that in the fphere DEF: Therefore the folid polyhedron in the Pphere ABC has to the folid polyhedron in the BCor. 1\%. Sphere DEF, the triplicate ratio b of that which BC has to EF.
82. But the fphere ABC has to the fphere GHK, the triplicate ra-
tio of that which BC has to EF; therefore, as the fphere ABC Book XII. to the fphere GHK, fo is the faid polyhedron in the fphere \(A B C\) to the folid polynedron in the fphere DEF: But the fphere \(A B C\) is greater than the folid polyhedron in it; therefore \({ }^{c}\) al- \(\mathrm{c}_{1} 4.5\). fo the fphere GHK is greater than the folid polyinedron in the fphere DEF : But it is alfo lefs, becaufe it is contained within it, which is impoffible: Therefore the fphere ABC has not to any fphere lefs than DEF, the triplicate ratio of that which BC has to EF. In the farne manner, it may be demonftrated, that the fphere DEF has not to any fphere lefs than ABC, the triplicate ratio of that which EF has to BC. Nor can the fphere ABC have to any fphere greater than DEF, the triplicate ratio of that which BC has to EF : For, if it can, let it have that ratio to a greater fphere LMN: Therefore, by inverfion, the fphere LMN has to the Phere ABC, the triplicate ratio of that which the diameter EF has to the diameter BC. But as the fphere L.MN to \(A B C\), fo is the fphere DEF to fome Sphere, which mult be lefs cthan the fphere \(A B C\), becaufe the fphere LMN is greater than the fphere DEF: Therefore the fphere DEF has to a fphere lefs than ABC the triplicate ratio of that which EF has to \(B C\); which was fhewn to be imporfibie: Therefore the fphere ABC has not to any fphere greater than DEF the triplicate ratio of that which BC has to EF: And it was demonftrated, that neither has it that ratio to any fphere lefs than DEF. Therefore the fphere ABC has to the fphere DEF, the triplicate ratio of that which BC has to EF. Q.E.D.

\section*{F I N I S.}

\section*{\(\begin{array}{lllll}\mathrm{N} & \mathrm{O} & \mathrm{T} & \mathrm{E} & \mathrm{S}\end{array}\)}

\section*{GRITICAL AND GEOMETRICAL}

\section*{CONTAINING}

An Account of thofe things in which this Edition differs from the Greek text ; and the Reafons of the Alterations which have been made. As allo Obfervations on fome of the Propafitions.

\section*{BY ROBERT SIMSON, M.D.}

Emeritus Profeffor of Mathematics in the Univerfity of Glafigow:
EDINBURGH:

Painted for F. Wingrave, London; and E. Balfour, Edinburgh. M,DCC, XCIV.

\section*{NO T ES, \&c.}

\section*{DEFINITION I. BOOK.}

IT is neceffary to confider a folid, that is, a magnitude which has length, breadth, and thicknefs, in order to underfand aright the definitions of a point, line, and fuperficies; for there all arife from a fold, and exit in it: The boundary, or boondaries which contain a folid are called fuperficies, or the boundday which is common to two folids which are contiguous, of which divides one folid into two contiguous parts, is called a fuperficies: Thus, if BCGF be one of the boundaries which contain the fold ABCDEFGH, or which is the common boundary of this folid, and the fold BKLCFNMG, and is therefore in the one as well as the other folid, is called a fuperficies, and has no thicknefs: For, if it have any, this thickness mut either be a part of the thickness of the fold \(A G\), or the folid BM, or a part of the thickness of each of them. It cannot be a part of the thickness of the folic BM; becaufe if this solid be removed from the fold AG, the fuperficies BCGF, the boundary of the olid \(A G\), remains fill the fame as it was. Nor can it be a
 part of the thickness of the folid AG; becaufe, if this be removed from the fold BM, the fuperficies BCGF, the boundary of the folid BM does neverthelefs remain, therefore the fuperficies BCGF has no thickness, but only length and breadth.

The boundary of a fuperficies is called a line, or a line is the common boundary of two fuperficies that are contiguous, or which divides one fuperficies into two contiguous parts : Thus, if BC be one of the boundaries which contain the fuperficies ABCD , or which is the common boundary of this fuperficies, and of the fuperficies KBCL which is contiguous to it, this boundary BC is called a line, and has no breadth: For if it have any, this muff be part either of the breadth of the fuperficies ABCD , or of the fuperficies KBCL or part of each of them. It is not part of the breadth of the fuperficies KBCL; for, if this superficies be removed from the fuperficies \(A B C D\),

Book I. the line BC which is the boundary of the fuperficies ABCD remains the fame as it was: Nor can the breadth that BC is fuppofed to have, be a part of the breadth of the fuperficies ABCD ; becaufe, if this be removed from the fuperficies, KBCL , the line BC which is the boundary of the fuperficies \(\mathrm{K}: \mathrm{CL}\) does nevertherlefs remain: Therefore the line \(B i\); has no breadth : And becaufe the line BC is in a fuperficies, and that a fuperficies has no thicknefs, as was fhewn; therefore a line has neither breadth nor thicknefs, but only length.

The boundary, of a line is called a point, or a point is the common boundary or extremity of two lines that are contiguous: Thus, if \(B\) be the extremity of the line \(A B\), or the common extremity of the two lines \(\mathrm{AB}, \mathrm{KB}\), this extremity is called a point, and has no length : For if it have any, this length muft either be part of the length of the line \(A B\), or of the line KB. It is not part
 of the length of \(K B\); for if the line \(K B\) be removed from \(A B\), the point \(B\) which is the extremity of the line \(A B\) remains the Xame as it was: Nor is it part of the length of the line AB; for, if \(A B\) be removed from the line \(K B\), the poinr \(B\), which is the extremity of the line \(K B\), does neverthelets remain: Therefore the point \(B\) has no length: And becaufe a point is in a line, and a line has neither breadth nor thicknefs, therefore a point has no length, breadth, nor thickneff: And in this manner the definitions of a point, line, and fuperficies, are to be underftood.

\section*{DEF. VII. B.I.}

Inftead of this definition as it is in the Greek copies, a more diftinct one is given from a property of a plane fuperficies, which is masifeftly fuppofed in the elements, viz. that a ftraight Xine drawn from any point in a plane to any other in it, is wholly in that plane.

> D EF. VIII. B. I.

It feems that he who made this definition defigned that it should comprehend not only a plane angle contained by two ftraight lines, but likewife the angle which fome conceive to be made by a ftraight line and a curve, or by two curve lines, which meet one another in a plane : But, tho' the meaning of
the words \(\varepsilon \pi^{\prime} \varepsilon \cup \mathcal{V}_{\varepsilon \varepsilon} a_{5}\), that is, in a fraight line, or in the fame direction, be plain, when two ftraight lines are faid to be in a ftraight line, it does not appear what ought to be underflood by thefe words, when a flraight line and a curve, or two curve lines, are faid to be in the fame direction; at leaft it cannot be explained in the place; which makes it probable that this definition, and that of the angle of a fegment, and what is faid of the angle of a femicircle, and the angles of fegments, in the 16. and 31. propofitions of Book 3. are the additions of fome lefs fkilful editor: On which account, efpecially fince they are quite ufelefs, thefe definitions are diftinguifhed from the reft by inverted double commas.

> D EF. XVII. B.I.

The words, " which alfo divides the circle into two equal " parts," are added at the end of this definition in all the copies, but are now left out as not belonging to the definition, being only a corollary from it. Proclus demonftrates it by conceiving one of the parts into which the diameter divides the circle, to be applied to the other; for it is plain they muft coincide, elfe the ftraight lines from the centre to the circumference would not be all equal: The fame thing is eafily deduced from the 3I. prop. of Book 3. and the 24. of the fame; from the firft of which it follows that femicircles are fimilar fegments of a circle: And from the other, that they are equal to one another.

\section*{D EF. XXXIII. B. I.}

This definition has one condition more than is neceffary; becaufe every quadrilateral figure which has its oppofite fides equal to one another, has likewife its oppofite angles equal; and on the contrary.

Let ABCD be a quadrilateral figure of which the oppofite fides \(A B, C D\) are equal to one another; as alfo \(A D\) and \(B C\) : Join BD ; the two fides \(\mathrm{AD}, \mathrm{DB}\) are equal to the two \(\mathrm{CB}, \mathrm{BD}\), and the bafe \(A B\) is equal to the bafe \(C D\); therefore by prop. 8. of Book r. the angle ADB is equal to the angle CBD ; and by prop. 4. B. r. the angle \(B A D\) is equal to the angle \(D C B\), and \(A B D\) to \(B D C\); and therefore alfo the angle \(A D C\) is equal to the angle \(A B C\).

Book I. . And if the angle \(B A D\) be equal to the oppofite angle \(B C D\), and the angle \(A B C\) to \(A D C\); the oppofite fides are equal : Becaufe, by prop. \(3^{2}\). B. I. all the angles of the quadrilateral figure \(A B C D\) are together equal to four right angles, and the two angles \(\mathrm{BAD}, \mathrm{ADC}\) are together equal to the two angles \(B C D, A B C:\) Wherefore \(\mathrm{BAD}, \mathrm{ADC}\) are the half of all the four angles; that is, \(B A D\) and
 \(A D C\) are equal to two right angles: And therefore \(A B, C D\) are parallels by prop. 28 . B. . . In the fame manner AD, BC are parallels: Therefore ABCD is a parallelogram, and its oppofite fides are equal by 34 . prop. B. I.

\section*{PROP. VII. B. I.}

There are two cafes of this propofition, one of which is not in the Greek text, but is as neceffary as the other: And that the cafe left out has been formerly in the text, appears plainly from this, that the fecond part of prop. 5. which is neceffary to the demonftration of this cafe, can be of no ufe at all in the elements, or any where elfe, but in this demonfration; becaufe the fecond part of prop. 5. clearly follows from the firft part, and prop. 13. B. I. This part muft therefore have been added to prop. 5. upon account of fome propofition betwixt the 5 . and 13. but none of thefe fland in need of it except the 7 . propofition, on account of which it has been added: Befides, the tranflation from the Arabic has this cafe explicitly demonftrated. And Proclus acknowledges that the fecond part of prop. \(5 \cdot\) was added upon account of prop. 7 . but gives a ridiculous reafon for it, "that it might afford an anfwer to objections made "againft the 7. ." as if the cafe of the 7 . which is left out, were, as he exprefsly makes it, an objection againft the propofition jtfelf. Whoever is curious may read what Proclus fays of this in his commentary on the 5 . and 7. propofitions; for it is not worth while to relate his trifles at full length.

It was thought proper to change the cnunciation of this 7. prop. fo as to preferve the very fame meaning; the literal tranflation from the Greek being extremely harfh, and difficult to be underftood by beginners.

A corollary is added to this propofition, which is neceffary to Prop. x. B. Ir. and otherwife.

\author{
PROP. XX. and XXI. B. I.
}

Proclus, in his commentary relates, that the Epicureans derided this propofition, as being manifeft even to affes, and needing no demonffration; and his anfwer is, that though the truth of it be manifeft to our fenfes, yet it is fcience which muft give the reafon why two fides of a triangle are greater than the third: But the right anfwer to this objection againft this and the 2 rft , and fome other plain propofitions, is, that the number of axioms ought not to be encreafed without neceflity, as it muft be if thefe propofitions be not demonftrated. Monf. Clairault, in the preface to his elements of geometry, publifhed in French at Paris, anno 1741, fays, That Euclid has been at the pains to prove, that the two fides of a triangle which is included within another are together lefs than the two fides of the triangle which includes it; but he has forgot to add this condition, viz. that the triangles muft be upon the fame bafe; becaufe, unlefs this be added, the fides of the included triangle may be greater than the fides of the triangle which includes it, in any ratio which is lefs than that of two to one, as Pappus Alexandrinus has demonftrated in Prop. 3. B. 3. of his mathematical collections.
PROP. XXII. B.I.

Some authors blame Euclid becaufe he does not demonifrate, that the two circles made ufe of in the conftruction of this problem muft cut one another: But this is very plain from the determination he has given, viz. that any two of the ftraight lines \(\mathrm{DF}, \mathrm{FG}, \mathrm{GH}\) muft be greater than the third: For who is fo dull, tho' only beginning to learn the elements, as not to perceive that the circle defcribed from the centre \(F\), at the difance \(F D\), muft meet FH betwixt F and H ,
 becaufe FD is lefs than FH; and that for the like reafon, the circle defcribed from the centre Gy at the diftuce GH or GM, muft meet DG betwint D

Book I. and G; ath that thefe circles mult meet one another, becaufe FD and GH are together greater than FG? And this determination is eafier to he underftood than that which Mr Thomas Simpfon derives from it, and puts inftead of Euclid's, in the 49th page of his elements of geometry, that DM
 his elements of geometry, that blames Euclid for, which determination is, that any of the three ftraight lines muft be lefs than the fum, but greater than the difference of the other two: From this he fhews the circles muft meet one another, in one cafe : and fays, that it may be proved after the fame manner in any other cafe: But the fraight line GM which he bids take from GF may be greater than it, as in the figure here annexed; in which cafe his demonftration muft be changed into another.

\section*{PROP. XXIV, R.I.}

To this is added, " of the two fides DE, DF, let DE be " that which is not greater than the other;" that is, take that fide of the two DE, DF which is not greater than the other, in order to make with it the angle EDG equal to BAC ; becaufe without this reftriction, there might be three different cafes of the propofition, as Campanus and others make.

Mr Thomas Simplon, in p. 262. of the fecond edition of his elements of geometry, printed anno 1760 , obferves in his notes, that it ought to have been Shown, that the point \(F\) falls below the Jine EG; this probably Euclid omitted,
 as it is very eafy to perceive that \(D G\) being equal to \(D F\), the point G is in the circumference of a circle defcribed from the centre \(D\) at the diftance \(D F\), and mult be in that part of it which is above the ftraight line EF, becaufe DG falls above DF, the angle EDG being greater than the angle EDF.
PROP. XXIX. B.I.

The propofition which is ufually called the 5 th poftulate, or IIth axiom, by fome the 12 th, on which this 29th depends, has
given a great deal to do, both to ancient and modern geome- Book I ,
ters : It feems not to be proper!y placed among the Axioms, as indeed, it is not felf-evident ; but it may be demonftrated thus :

\section*{DEFINITION土.}

The diftance of a point from a ftraight line, is the perpendicular drawn to it from the point.
\[
\text { DEF. } 2 .
\]

One ftraight line is faid to go nearer to, or further from, another ftraight line, when the diftances of the points of the firf from the other ftraight line become lefs or greater than they were ; and two ftraight lines, are faid to keep the faine diftance from one another, when the diftance of the points of one of them from the other is always the fame.
A X I O M.

A fraight line cannot firt come nearer to another ftraight line, and then go further from it, before it cuts it ; and, in like manner, a ftraight line cannot go further from another ftraight line, and then come nearer to it ; nor can a ftraight line kcep
 the fame ditance from another ftraight line, and then come nearer to it, or go further from it ; for a ftraight line keeps always the fame direction.

For example, the ftraight line ABC cannot firf come nearer to the ftraight line DE , as from the point \(A\) to the point \(B\), and then, from the point \(B\) to the point C , go further from the fame DE: And in like manner, the ftraight line FGH can-
 not go further from DE, as from \(F\) to \(G\), and then, from \(G\) to H, come nearer to the fame DE: And fo in the laft cafe, as in fig. 2.
PROP.I.

If two equal fraight lines \(A C, B D\), be each at right angles to the fame flraight line \(A B\) : If the points \(C, D\) be joined by the ffraight line \(C D\), the fraight line EF drawn from any point \(E\) in \(A B\) unto \(C D\), at right angles to \(A B\), frall be equal to \(A C\), or BD.

If EF be not equal to AC , one of them muft be greater than the other ; let AC be the greater; then, becaufe FE is
\(\underbrace{\text { Book I. lefs than CA, the ftraight line } \mathrm{CFD} \text { is nearer to the ftraight }}\) line \(A B\) at the point \(F\) than at the point C , that is, CF comes nearer to AB from the point C to F : But becaufe DB is greater than FE the ftraight line CFD is further from \(A B\) at the point \(D\) than at \(F\), that is, FD goes further from AB from F to D : Therefore the ftraight line CFD firft comes \(A\)
 nearer to the ftraight line \(A B\), and then goes further from it, before it cuts it; which is impoffible. If FE be faid to be greater than CA, or DB, the ftraight line CFD firft goes further from the Araight line \(A B\), and then comes nearer to it; which is alfo impoflible. Therefore FE is not unequal to AC, that is, it is equal to it.

\section*{PROP. 2.}

If two equal ftraight lines \(A C, B D\) be each at right angles to the fame ftraight line \(A B\); the ftraight line \(C D\) which joins their extremities makes right angles with \(A C\) and \(B D\).

Join \(\mathrm{AD}, \mathrm{BC}\); and becaufe, in the triangles \(\mathrm{CAB}, \mathrm{DBA}\), \(\mathrm{CA}, \mathrm{AB}\) are equal to \(\mathrm{DB}, \mathrm{BA}\), and the angle CAB equal to the angle DBA ; the bafe BC is equal a to the bafe AD : And in the triangles \(\mathrm{ACD}, \mathrm{BDC}, \mathrm{AC}, \mathrm{CD}\) are equal to \(\mathrm{BD}, \mathrm{DC}\), and the bafe AD is equal to the bafe BC : Therefore the angle ACD is
b 8.1 . equal b to the angle BDC: From any point \(E\) in \(A B\) draw \(E F\) unto CD , at right angles to AB ; therefote by Prop. r. EF is equal to AC , or BD ; wherefore, as has been juft \(A\)
 now fhown, the angle \(A C F\) is equal to the angle EFC: In the fame manner, the angle \(B D F\) is equal to the angle EFD ; but the angles \(\mathrm{ACD}, \mathrm{BDC}\) are equal; therefore the angles EFC and EFD are equal, and right cio. def.. ancles \({ }^{c}\); wherefore alfo the angles \(\mathrm{ACD}, \mathrm{BDC}\) are right angles.

Gor. Hence, if two ftraight lines A.B. CD be at right angles to the fame ftraight line \(A \mathrm{G}\), and if betwixt them a ftraigit line BD) be drawn at right angles to either of them, as to AB ; then \(B D\) is equil to \(A \cup\), and \(B O C\) is a right angle.

If \(A C\) be not equal to \(B D\), take \(B G\) equal to \(A C\), and join \(C G\) : Therefore, by this Propofition, the angle \(A G G\) is a right angle ; but ACD is alfo a right angle; wherefore the an-
gles ACD, ACG are equal to one another, which is impoffible. Book I. Therefore BD is equal to AC ; and by this propofition BDC is a right angle.

\section*{PROP. 3.}

If two ftraight lines which contain an angle be produced, there may be found in either of them a point from which the perpendicular drawn to the other fhall be greater than any given ftraight line.

Let \(\mathrm{AB}, \mathrm{AC}\) be two fraight lines which make an angle with one another, and let AD be the given ftraight line; a point may be found either in \(A B\) or \(A C\), as in \(A C\), from which the perpendicular drawn to the other \(A B\) fhall be greater than \(A D\).

In AC take any point E, and draw EF perpendicular to \(A B\); produce \(A E\) to \(G\); fo that EG be equal to \(A E\); and produce \(F E\) to \(H\), and make \(E H\) equal to \(F E\), and join HG. Becaufe, in the triangles AEF, GEH, AE, EF are equal to GE, EH, each to each, and contain equal a angles, the angle a \(15 . \mathrm{i}\). GHE is therefore equal b to the angle AFE which is a right an- b4. \(\mathbf{r}\). gle: Draw GK perpendicular to \(A B\); and becaufe the ftraight lines FK, HG are at right angles to FH, and KG at right angles to \(\Gamma \mathrm{K}, \mathrm{KG}\) is equ: to FH , by Cor. Pr. \({ }^{2}\). that is, to the
 double of FE..
In the fame manner, if \(A G\) be produced to \(L\), fo that GL be equal to \(A G\), and LM be drawn perpendicular to \(A B\), then LM is double of GK, and fo on. In AD take AN equal to FE, and AO equal to \(K G\), that is, to the double of \(F E\), or AN; alfo, take AP, equal to, LM, that is, to the double of KG , or AO ; and let this be done till the ftraight line taken be greater than AD : Let this ftraight line fo taken be AP, and becaufe AP is equal to LM, therefore LM is greater han AD. Which was to be done.
\[
\text { P R O P. } 4 .
\]

If two ftraight lines \(A B, C D\) make equal angles \(E A B\), ECD with another ftraight line EAC towards the fame parts of it ; \(A B\) and \(C D\) are at right angles to fome ftraight line.

Book I. Bifect AC in F , and draw FG perpendicular to AB ; take CH in the ftraight line CD equal to AG , and on the contrary fice of AC to that on which AG is, and join FH: Therefore, in the triangles AFG, CFH , the fides \(\mathrm{FA}, \mathrm{AG}\) are equal to FC, CH, each to each, and the angle
a 15.1 . b 4. I.

FAG, that \({ }^{\text {a }}\) is EAB is equal to the angle FCH; wherefore \({ }^{\mathrm{b}}\) the angle AGF is equal to CHF, and AFG to the angle CFH: To thefe laft add the common angle AFH; therefore the two angles AFG, AFH are equal to the two angles CFH, HFA, which two laft are equal together to two

\({ }^{\mathrm{c}_{3}}\). r. right angles c , therefore alfo AFG ,
di4. r. AFH are equal to two right angles, and confequently d GF and FH are in one ftraight line. And becaufe AGF is a right angle, CHF which is equal to it is alfo a right angle ; Therefore the ftraight lines \(\mathrm{AB}, \mathrm{CD}\) are at right angles to GH .

\section*{PROP. 5.}

If two ftraight lines \(\mathrm{AB}, \mathrm{CD}\) be cut by a third ACE fo as to make the interior angles \(\mathrm{BAC}, \mathrm{ACD}\), on the fame fide of it, together lefs than two right angles; \(A B\) and \(C D\) being produced fhall meet one another towards the parts on which are the two angles which are lefs than two right angles.
a \(23 . \mathrm{r}\). At the point C in the fraight line CE make \({ }^{\text {a the }}\) angle ECF equal to the angle EAB , and draw to AB the ftraight line CG at right angles to CF: Then, becaufe the angles ECF, \(E A B\) are equal to one another, and that the angles ECF, FCA are together \(\mathrm{b}_{\mathrm{i}}\). I. equal \({ }^{\mathrm{b}}\) totworight angles, the angles \(\mathrm{EAB}, \mathrm{FCA}\) are equal to two right angles. But by thehypothefis, the angles EAB, ACD are together lefs than two right angles; therefore the angle \(A \cap G\) FCA is greater than

ACD , and CD falls between CF and AB : And becaufe CF and CD make an angle with one another, by Prop. 3. a point may be found in either of them CD, from which the perpendicular drawn to CF fhall be greater than the firaight line CG.

Let this point be H , and draw HK perpendicular to CF meeting \(A B\) in \(L\) : And becaufe \(A B, C F\) contain equal angles with AC on the fame fide of it, by Prop. 4. AB and CF are at right angles to the ftraight line MNO which bifects AC in N and is perpendicular to CF: Therefore by Cor. Prop. 2. CG and KL which are at right angles to CF are equal to one another: And HK is greater than CG, and therefore is greater than KL, and confequently the point H is in KL produced. Wherefore the ftraight line CDH drawn betwixt the points \(\mathrm{C}, \mathrm{H}\) which are on contrary fides of AL , muft neceffarily cut the ftraight line AB .

\section*{PROP. XXXV. B.I.}

The demonftration of this Propofition is changed, becaufe, if the method which is ufed-in it was followed, there would be three cafes to be feparately demonftrated, as is done in the tranflation from the Arabic; for, in the Elements, no cafe of a Propofition that requires a diffcrent demonftration, ought to be omitted. On this account, we have chofen the method which Monf. Clairault has given, the firf of any, as far as I know, in his Elements, page 2I, and which afterwards Mr Simpfon gives in his page \(3^{2}\). But whereas Mr Simpfon makes ufe of prop. 26. B. I. from which the equality of the two triangles does not immediately follow, becaufe, to prove that, the 4 of B. 1. muft likewife be made ufe of, as may be feen in the very fame cafe in the 34 . Prop. B. I. it was thought better to make ufe only of the 4 . of B. I.

\section*{PROP. XLV. B. I.}

The ffraight line KM is proved to be parallel to FL from the 33. Prop.; whereas KH is parallel to FG by conftruction, and KHM, FGL have been demontrated to be ftraight lines. A corollary is added from Commandine, as being often ufed.
P R O P. XIII. B. II.

IN this Propofition only acute angled triangles are mentioned, whereas it holds true of every triangle: And the demon-

\section*{Book II,} flrations of the cafes omitted are added; Commandine and Clavius have likewife given their demonftrations of thefe cafes.
PR O P. XIV. B. II.

In the demonftration of this, fome Greek editor has ignorantly inferted the words, " but if nct, one of the two BE,

Book II. "ED is the greater : let BE be the greater, and produce it to " F ," as if it was of any confequence whether the greater or leffer be produced: Therefore, inftead of thefe words, there ought to be read only, " but if not, produce BE to F."

\section*{P R O P. I. B. III.}

Book III.

SEVERAL authors, efpecially among the modern mathematicians and logicians, inveigh too feverely againft indirect or Apagogic demonftrations, and fometimes ignorantly enough; not being aware that there are fome things that cannot be demonftrated any other way: Of this the prefent propofition is a very clear inflance, as no direct demonftration can be given of it : Becaufe, befides the definition of a circle, there is no principle or property relating to a circle antecedent to this problem, from which either a direct or indirect demonftration can be deduced: Wherefore it is neceffary that the point found by the conftruction of the problem be proved to be the centre of the circle, by the help of this definition, and fome of the preceding propofitions: And becaufe, in the demonftration, this propofition muft be brought in, viz. ftraight lines from the centre of a circle to the circumference are equal, and that the point found by the conftruction cannot be affumed as the centre, for this is the thing to be demonftrated : it is manifeft fome other point muft be affumed as the centre: and if from this affumption an abfurdity follows, as Euclid demonitrates there muft, then it is not true that the point affumed is the centre; and as any point whatever was affumed, it follows that no point, except that found by the conftruction, can be the centre, from which the neceffity of an indirect demonftration in this cafe is evident.

\section*{P R O P. XIII. B. III.}

As it is much eafier to imagine that two circles may touch one another within in more points than one, upon the fame fide, than upon oppofite fides; the figure of that cafe ought not to have been omited; but the conftruction in the Greek text would not have fuited with this figure fo well, becaufe the centres of the circles mult have been placed near to the circumferences: On which account another conftruction and demonftration is given, which is the fame with the fecond part of that which Campanus has tranlated from the Arabic, where,
where, without any reafon, the demonftration is divided into \(\underbrace{\text { Book III. }}\) two parts.

\section*{PROP. XV. B. III.}

The converfe of the fecond part of this propofition is wanting, though in the preceding, the converfe is added, in a like cafe, both in the enunciation and demonftration; and it is now added in this. Befides, in the demonftration of the firf part of this 15 th, the diameter AD (fee Commandine's figure, is proved to be greater than the ftraight line BC by means of another ftraight line MN; whereas it may be better done without it: On which accounts we have given a different demonftration, like to that which Euclid gives in the preceding \(\mathbf{x} 4\) th, and to that which Theodofius gives in prop. 6. B. 1. of his Spherics, in this very affair.

\section*{PROP. XVI. . . B. III.}

In this we have not followed the Greek nor the Latin tranflation literally, but have given what is plainly the meaning of the propofition, withour mentioning the angle of the femicircle, or that which fome call the corriicular angle which they conceive to be made by the circumference and the ftraight line which is at right angles to the diameter, at its extremity; which angles have furnifhed matter of great debate between fome of the modern geometers, and given occafion of deducing ftrange confequences from them, which are quite avoided by the manner in which we have expreffed the propofition. And in like manner, we have given the true meaning of prop. 31. B. 3 , without mentioning the angles of the greater or leffer fegments: Thefe paffages, Vieta, with good reafon, fuipects to be adulterated in the 386 th page of his Oper. Math.

\section*{PROP. XX. B. III.}

The firft words of the fecond part of this demonfration, " หє Dr Gregory "Rurfus inclinetur ;" for the tranflation ought to be "Rurfus inflectatur," as Commandine has it: A ftraight line is faid to be inflected either to a ftraight, or curve line, when a fraight line is drawn to this line from a point, and from the point in which it meets it, a ftraight line making an angle with the former is drawn to another point, as is evident from the goth prop. of Euclid's Data : For this the whole line betwixt the firf and laft points, is inflected or broken at

\section*{N O T E S.}
\(\underbrace{\text { Book III. the point of inflection, where the two ftraight lines meet. And }}\) in the like fenfe two ftraight lines are faid to be inflected from two points to a third point, when they make an angle at this point; as may be.feen in the defcription given by Pappus Alexandrinus of Apollonius's Books de Locis planis, in the preface to his \(\eta\) th book: We have made the expreffion fuller from the 90 th Prop. of the Data.
PROP. XXI. B. III.

There are two cafes of this propofition, the fecond of which, viz: when the angles are in a fegment not greater than a femicircle, is wanting in the Greek: And of this a more fimple demonflration is given than that which is in Commandine, as being derived only from the firft cafe, without the help of triangles.

> PR O P. XXIII. and XXIV. B. III.

In propofition 24. it is demonfrated, that the fegment AEB mut coincide with the fegmeut CFD, (fee Commandine's figure), and that it cannot fall otherwife, as CGD, fo as to cut the other circle in a third point \(G\), from this, that, if it did, a circle could cut another in more points than two: But this ought to have been proved to be impoffible in the 23 d Prop. as well as that one of the fegments cannot fall within the other : This part then is left out in the 24 th, and put in its proper place, the 23 d Propofition.

> PROP. XXV. B. III.

This propofition is divided into three cafes, of which two have the fame conftruction and demonftration; therefore it is now divided only into two cafes.

\section*{PR O P. XXXIII. B. III.}

This alfo in the Greek is divided into three cafes, of which two, viz. one, in which the given angle is acute, and the other in which it is obtufe, have exactly the fame conftruction and demonftration; on which account, the demonifration of the laft cafe is left out as quite fuperfluous, and the addition of fome unikilful editor; befides the demonftration of the cafe when the angle given is a right angle, is done a round about way, and is therefore changed to a more fimple one, as was done by Clavius.

\author{
PROP. XXXV. B. III.
}

As the 25 th and \(33^{\text {d }}\) propofitions are divided into more ales, fo this 35 th is divided into fewer cafes than are neceffary. Nor can it be fuppofed that Euclid omitted them becaufe they are eafy; as he has given the cafe, which by far is the eafieft of them all, viz. that in which both the ftraight lines pafs through the centre : And in the following propofition he feparately demonftrates the cafe in which the ftraight line paffes through the centre, and that in which it does not pafs through the centre: So that it feems Theon, or fome other, has thought them too long to infert: But cafes that require different demonftrations, fhould not be left out in the Elements, as was before taken notice of: Thefe cafes are in the tranflation from the Arabic, and are now put into the text.

\section*{PROP. XXXVII. B. III.}

At the end of this, the words, " in the fame manner it may " be demonftrated, if the centre be in AC," are left out as the addition of fome ignorant editor.

\section*{DEFINITIONS of BOOK IV.}

WHEN a point is in a ftraight line, or any other line, this Book IV. point is by the Greek geometers faid \(\alpha \pi \tau \varepsilon \sigma \cdot \frac{9}{}\), to be. upon, or in that line, and when a fraight line or circle meets a circle any way, the one is faid \(\alpha w \tau \varepsilon \sigma \alpha{ }^{\circ}\) to meet the other: But when a Araight line or circle meets a circle fo as not to cut it, it is faid \(\varepsilon \varphi \alpha \pi \tau \varepsilon \sigma \vartheta \alpha\), , to touch the circle; and thefe two terms are never promifcuoully ufed by them: Therefore, in the \(j\) th definition of B. 4. the compound \(\varepsilon \varphi \alpha \pi \tau \eta \tau \alpha i\) muft be read, inftead of the fimple \(\alpha \pi \tau \eta \tau \alpha_{t}\) : And in the \(1 \mathrm{ff}, 2 \mathrm{~d}, 3^{\mathrm{d}}\), and 6th definitions in Commandine's tranflation, " tangit," muft be read inftead of "contingit:". And in the 2d and 3d definitions of Book 3. the fame change muft be made: But in the Greek text of propofitions 11 th, 12 th, 13 th, 18 th, 19th, Book 3 . the compound verb is to be put for the fimple.
PROP. IV. B. IV.

In this, as alfo in the 8th and \(13^{\text {th }}\) propofitions of this book, it is demonftrated indirectly, that the circle touches a ftraight line; whereas in the 17 th, 33 d , and 37 th propofitions of book 3. the fame thing is direetly demonftrated : And this way we
\(\underbrace{\text { Book IV. have chofen to ufe in the propofitions of this book, as it is }}\) fhorter.

\section*{PROP. V. B.IV.}

The demonftration of this has been fpoiled by fome unflilful band : For he does not demonftrate, as is neceffary, that the two ftraight lines which bifect the fides of the triangle at right angles muft meet one another; and, without any reafon, he divides the propofition into three cafes; whereas, one and the fame conftruction and demonfration ferves for them all, as Campanus has obferved; which ufelefs repetitions are now left out: The Greek text alfo in the corollary is manifeftly vitiated, where mention is made of a given angle, though there neither is, nor can be any thing in the propofition relating to a given angle.

> PR O P. XV. and XVI. B.IV.

In the corollary of the firft of thefe, the words equilateral and equiangular are wanting in the Greek: And in prop. i6. inftead of the circle ABCD, ought to be read the circumference \(A B C D:\) Where mention is made of its containing fifteen equal parts.

\section*{D E F. III. B. V.}
\(\underbrace{\text { Book V. }}\) ANY of the modern mathematicians reject this definition : The very learned Dr Barrow has explained it at large at the end of his third lecture of the year 1656 , in which alfo he anfwers the objections made againft it as well as the fubject would allow : And at the end gives his opinion upon the whole, as follows: -
"I thall only add, that the author had, perhaps, no other "defign in making this definition, than (that he might more " fully explain and embellifh his fubject) to give a general " and fummary idea of ratio to beginners, by premifing " this metaphyfical definition, to the more accurate defini" tions of ratios that are the fame to one another, or one of " which is greater, or lefs than the bther: I call it a meta" phyfical, for it is not properly a mathematical definition, " fince nothing in mathematics depends on it, or is deduced, " nor, as I judge, can be deduced from it: And the defini"s tion of analogy, which follows, viz. Analogy is the fimi" litude
" litude of ratios, is of the fame kind, and can ferve for no Bork V . "purpofe in \(m\) tihematics, but cinly to give beginners fome \(\underbrace{-}\) "، general, tho' grofs and confufed notion of analogy: But the " whole of the doctrine of ratios, and the whole of mathema" tics, depend upon the accurate mathematical definitions which " follows this: To thefe we ought principally to attend, as the " doctrine of ratios is more perfectly explained by them; this " third, and others like it, may be entirely fpared without any " lofs to geometry; as we fee in the 7 th book of the elements, " where the proportion of numbers to one another is defined, " and treated of, yet without giving any definition of the ratio " of numbers; tho" fuch a definition was as neceffary and ufe" ful to be given in that book, as in this: But indeed there is " fcarce any need of it in either of them : Though I think that " a thing of fo general and abflracted a nature, and thereby " the more difficult to be conceived and explained, cannot be " more commodioufly defined than as the author has done: " Upon which account I thought fit to explain it at large, and " defend it againft the captious objections of thofe who attack " it." To this citation from Dr Barrow I have nothing to add, except that 1 fully believe the 3 d and 8 th definitions are not Euclid's, but added by fome unfkilful editor.

\section*{D EF. XI. B. V.}

It was neceffary to add the word "continual" before " pro"portionals" in this definition; and thus it is cited in the 33 d prop. of Book II.

After this definition ought to have followed the definition of compound ratio, as this was the proper place for it; duplicate and triplicate ratio being fpecies of compound ratio. But Theon has inade it the 5 th def. of B. 6. where he gives an abfurd and entirely ufelefs definition of compound ratio: For this reafon we have placed another definition of it betwist the itth and 12 th of this book, which, no doubt, Euclid gave; for he cites it exprefsly in prop. 23. B. 6. and which Clavius, Herigon, and Barrow, have likewife given, but they retain alio Theon's, which they ought to have left out of the elements.

\section*{D EF. XIII. B. V.}

This, and the reft of the definitions following, contain the explication of fome terms which are ufed in the 5 th and following books; which, except a few, are eafily enough underftood from

Book V. the propofitions of this book where they are firf mentioned: Th:y feem to have been added by Theon, or fome other. However it be, they are explained fomething more diftinctly for the fake of learners.

\section*{PROP. IV. B. V.}

In the confruction preceding the demonftration of this, the words is efuxs, any whatever. are twice wanting in the Greek, as alfo in the Latin tranlations; and are now added, as being wholly neceffary.

Ibid. in the demonltration; in the Greek, and in the Latin tranflation of Commandinc, and in that of Mr Henry Briggs, which was publifhed at London in 1620 , together with the Greek text of the firft fix books, which tranflation in this place is followed by Dr Gregory in his edition of Euclid, there is this fentence following, viz. " and of A and C have been taken e"quimultiples \(\mathrm{K}, \mathrm{L}\); and of B and D , any equimultiples " whatever (\(\dot{\alpha}\) stux́s) M, N ;" which is not true, the words " any whatever;" ought to be left out: And it is frange that neither Mr Briggs, who did right to leave out thefe words in one place of prop. 3 . of this book, nor Dr Gregory, who changed them into the word "fome" in three places, and left them out in a fourth of that fame prop. \(\mathbf{I}_{3}\). did not alfo leave them out in this place of prop. 4. and in the fecond of the two places where they occur in prop. 17 . of this book, in neither of which they can fiand confiftent with truth : And in none of all thefe places, even in thofe which they corrected in their Latin tranflation have they cancelled the words \(\dot{\alpha} \varepsilon \tau u \chi \varepsilon\) in the Greek text, as they ought to have done.

The fame words \(\dot{\alpha} \varepsilon \tau \nu \chi \varepsilon\) are found in four places of prop. in. of this book, in the firlt and laft of which they are neceffary, but in the fecond and third, though they are true, they are quite fuperfluous; as they likewife are in the fecond of the two places in which they are found in the 12 th prop. and in the like places of Prop. 22.23. of this book; but are wanting in the laft place of prop. 23 . as alfo in prop. 25 . Book 1 I.
COR. IV. PROP. B. V.

This corollary has been unfkilfully annexed to this propofition, and has been made inflead of the legitimate demonfration, which, without doubt, Theon, or fume other editor, has taken away, not from this, but from its proper place in
this book: The author of it defigned to demonftrate, that if Book \(\mathbf{v}\). four magnitudes E, G, F, H, be proportionals, they are alfo proportionals inverfely; that is, \(G\) is to E , as H to F ; which is true; but the demonftration of it does not in the leaft depend upon this \(4^{\text {th }}\) prop. or its demonftration : For, when he fays, " becaule it is demonftrated that if K be greater than \(\mathrm{M}, \mathrm{L}\) is " greater than N,". \&c. This indeed is thewn in the demonftration of the 4th piop. - but not from this, that \(\mathrm{E}, \mathrm{G}, \mathrm{F}, \mathrm{H}\) are proportionals; for this laft is the conclufion of the propofition. Wherefore thefe words, " becaufe it is demonftrated," \&c. are wholly foreign to his defign : And he fhould have proved, that if K be greater than \(\mathrm{M}, \mathrm{L}\) is greater than N , from this, that E, G, F,H are proporcionals, and from the 5 th def. of this book, which he has not; but is done in propofition B , which we have given in its proper place, inttead of this corollary; and another corollary is placed after the 4 th prop. which is often of ufe; and is neceflary to the demonftration of prop. 18. of this book

\section*{PROP. V. B. V.}

In the conftruction which precedes the demonftration of this propofition, it is required that EB may be the fame multiple of CG , that AE is of CF ; that is, that EB be divided into as many equal parts, as there are parts in AE equal to CF : From which it is evident, that this conftruction is not Euclid's; for he does not fhow the way of dividing ftraight lines, and far lefs other magnitudes, into any number of equall parts, until the gth propofition of B. 6 ; and he never requires any thing to be done in the conftruction of which he had not before given the method of doing: For this reafon, we have changed the conftruction to one, which, without doubt, is Euclid's, in which no thing is required but to add a magnitude to itfelf a certain number of times; and this is to be found in tie tranflation from the Arabic, though the enunciation of the propofition and the demonftration are there very much fpoiled. Jacobus Peletarius, who was the firft, as far as I know, who took
 notice of this error, gives alfo the right conftruction in his edition of Euclid, after he had given the other which he blames: He fays, he would not leave it out, \(\mathrm{b}: \mathrm{c}: \mathrm{ufe}\) it was fine, and might Tharpen one's genius to invent others like it ; whereas

Book V. whereas there is not the leaft difference between the two demonftrations, except a fingle word in the conftruction, which very probably has been owing to an un!kilful librarian. Clavius likewife gives both the ways; but neither he nor Peletarius takes notice of the reafon why the one is preferable to the other.

\section*{PROP. VI. B. V.}

There are two cafes of this propofition; of which only the firft and fimpleft is demonftrated in the Greek : And it is probable Theon chought it was fufficient to give this one, fince he was to make ufe of neither of them in his mutilated edition of the 5 th book; and he might as well have left out the other, as alfo the 5 th propofition, for the fame reafon; The demonftration of the other cafe is now added, becaufe both of them, as allo the fifth propofition, are neceffary to the demonftration of the 18 th propofition of this Book. The tranflation from the Arabic gives both cafes briefly.
PROP. A. B. V.

This propofition is frequently ufed by geometers, and it is neceflary in the 25 th prop. of this book, 3 If of the 6 th, and 34 th of the 11 th, and 15 th of the 12 th book: It feems to have been taken out of the elements by Theon, becaufe it appeared evident enough to him, and others, who fubftitute the confufed and indiftinct idea the vulgar have of proportionals, in place of that accurate idea which is to be got from the 5 th def. of this book. Nor can there be any doubt that Eudoxus or Euclid gave it a place in the elements, when we fee the 7 th and \(g^{\text {th }}\) of the fame book demonfrated, tho' they are quite as eafy and evident as this. Alphonfus Borellus takes occafion from this propofition to cenfure the 5 th definition of this book very feverely, but moft unjuftly: In p. i26. of his Euclid reftored, printed at Pifa in 1658 , he fays, "Nor'can even this leaft de". gree of knowledge be obtained from the forefaid property," viz. that which is contained in 5 th def. 5. "That, if four " magnitudes be proportionals, the third muft neceffarily he " greater than the fourth, when the firft is greater than the " fecond: as Clavius acknowledges in the 16 th prop. of the "5th book of the elements." But though Clavius makes no fuch acknowledgment exprefsly, he has given Borellus a handie to fay this of him ; becaufe when Clavins, in the above cited place, cenfures Commandine, and that very jufly, for demonftrating this propofition by help of the 16 th of the 5 th ; yet he himfelf gives no demonftration of \(i t\), but thinks it plain
from the nature of proportionals, as he writes in the end of the Book \(v\). 14 th and 16 th prop. B. 5 . of his edition, and is followed by Herigon in Schol. 1. prop. 14th B. 5 . as if there was any nature of proportionals antecedent to that which is to be derived and underfood from the definition of them: And indeed, though it is very eafy to give a right demonftration of it, no body, as far as I know, has given one, except the learned Dr Barrow, who, in anfwer to Borrellus's objection, demonftrates it indireclly, but very briefly and clearly, from the 5 th definition, in the 322 page of his Lect. Mathem. from which definition it may alfo be eafily demonftrated directly: On which account we have placed it next to the propofitions concerning equimultiples.

\section*{PROP. B. BOOK V.}

This alfo is eafily deduced from the 5 th def. B. 5 . and therefore is placed next to the other; for it was very ignorantly made a corollary from the 4th prop. of this Book. See the note on that corollary.

\section*{PROP. G. B. V.}

This is frequently made ufe of by geometers, and is neceffary to the 5 th and 6th propofitions of the Ioth book. Clavius, in his notes fubjoined to the 8th def. of book 5. demonftrates it only in numbers, by help of fome of the propofitions of the 7 th book: in order to demonftrate the property contained in the 5 th definition of the 5 th book, when applied to numbers, from the property of proportionals contained in the \(20^{\text {th }}\) def. of the 7 th book: And moft of the commentators judge it difficult to prove that four magnitudes which are proportionals according to the 20th def. of 7 th book, are alfo proportionals according to the 5 th def. of 5 th book. But this is eafily made out, as follows:

Firft, if A, B, C, D be four mag. nitudes, fuch that \(A\) is the fame multiple, or the fame part of \(B\), which C is of \(\mathrm{D} ; \mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}\) are proportionals: This is demonftrated in propofition C.

Secondly, if \(A B\) contain the fame parts of CD that EF does of GH ; in this cafe likewife AB is to CD , as EF to GH.

Book V. Let CK be a part of CD, and GL the fame part of GH; and let \(A B\) be the fame multiple of CK, that EF is of GL: Therefore, by prop. C. of 5 th book, \(A B\) is to CK, as EF to GL: And CD, GH are equimultiples of \(\mathrm{CK}, \mathrm{GL}\) the fecond and fourth; wherefore, by Cor. prop. 4. book 5. AB is to CD , as EF to GH.

And if four magnitudes be pro-
 portionals according to the 5 th def. of book 5 . they are alio proportionals according to the 2 cth def. of book 7 .

Firft, if \(A\) be to \(B\), as \(C\) to \(D\); then if \(A\) be any multiple or part of \(B, C\) is the fame multiple or part of \(D\), by prop. \(D\). of B. 5 .

Next, if \(A B\) be to \(C D\), as EF to \(G H\); thén if \(A B\) contains any parts of CD, EF contains the fame parts of GH: For let CK be a part of CD, and GL the fame part of GH, and let AB be a multiple of \(\mathrm{CK}: \mathrm{EF}\) is the fame multiple of GL ; Take M the fame multiple of GL that AB is of CK ; therefore by prop. C. of B. \(5 \cdot \mathrm{AB}\) is to CK, as M to GL; and CD, GH are equimultiples of CK , GL; wherefore by Cor. prop. 4. B. 5. AB is to CD, as M to GH. And, by the hypothefis, \(A B\) is to \(C D\), as \(E F\) to \(G H\); therefore \(M\) is equal to \(E F\) by prop. 9. book 5 . and confequently EF is the fame multiple of GL that \(A B\) is of CK.

> PROP. D. B. V.

This is not unfrequently ufed in the demonftration of other propofitions, and is neceflary in that of prop. 9. B. 6. It feems Theon has left it out for the reaions mentioned in the notes at prop. A.
PR O P. VIII. B. V.

In the demonftration of this, as it is now in the Greek, there are two cafes, (fee the demonftration in Hergavius, or Dr Gregory's edition), of which the firft is that in which AE is lefs than EB ; and in this, it neceffarily follows that \(\mathrm{H} \odot\) the maltiple EB is greater thian 2 H the fame multiple of AE , which laft multiple. by the conltruction, is greater than \(\Delta\); whence alfo \(H \Theta\) muft be greater than \(\Delta\) : But in the fecond cafe, viz. that i:: which ER is lefs than AE, thu' ZH be greater than \(\Delta\), yet HO may be lefs than the fame \(\Delta\); fo that there cannot be taken a multiple of \(\Delta\) which is the firft that is
greater than K or \(\mathrm{H} \Theta\), becaufe \(\Delta\) itfelf is greater than it: Up- Book V . on this account, the author of this demonflration found it neceffary to change one part, of the conftruction that was made ufe of in the firf cafe : But he has; without any neceffity, changed alfo another part of it, viz. when he orders to take N that multiple of \(\Delta\) which is the firft that is greater than ZH; for he might have taken that multiple of \(\Delta\) which is the firft that is greater than \(H \Theta\), or \(K\), as was done in the firft cafe : He likewife brings in this K into the demonftration of both cafes, without any reafon; for it ferves to no purpofe but to lengthen the
 demonftration. There is alfo a third cafe, which is not mentioned in this demonftration, viz. that in which AE in the firtt, or EB in the fecond of the two other cafes, is greater than D ; and in this any equimultiples, as the doubles, of \(\mathrm{AE}, \mathrm{KB}\) are to be taken, as is done in this edition, where all the cafes are at once demonftrated: And from this it is plain that Theon, or fome other unkilful editor, has vitiated this propofition.
PROP. IX. B. V.

Of this there is given a more explicit demonftration than that which is now in the elements.
P R O P. X. B. V.

It was neceffary to give another demonftration of this propofition, becaufe that which is in the Greek and Latin, or other editions, is not legitimate : For the words greater, the fame or equal, leffer, have a quite different meaning when applied to magnitudes and ratios, as is plain from the 5 th and 7 th definitions of book 5. By the help of thefe let us examine the demonftration of the 10 th prop. which proceeds thus: "Let A "have to C a greater ratio, than B to C : I fay that A is greater "than B. For if it is not greater, it is either equal, or lefs. "But A cannot be 'equal to B, becaufe then each of them " would have the fame ratio to C ; but they have not. There"fore A is not equal to B." The force of which reafoning is this, if \(A\) had to \(C\) the fame ratio that \(B\) has to \(C\), then if
\(\underbrace{\text { Book V. any equimultiples whatever of } \mathrm{A} \text { and } \mathrm{B} \text { be taken, and any }}\) multiple whatever of C ; if the multiple of A be greater than the multiple of C , then, by the 5 th def. of book 5 . the multiple of B is alfo greater than that of C ; but, from the hypothefis that A has a greater ratio to C , than B has to C , there muft, by the 7 th def. of book 5 . be certain equimultiples of \(A\) and \(B\), and fome multiple of C fuch, that the multiple of A is greater than the multiple of C , but the multiple of B is not greater than the fame multiple of C : And this propofition directly contradicts the preceding; wherefore A is not equal to B . The demonffration of the roth prop. goes on thus: "But nei"ther is A lefs than B; becaufe then A would have a lefs ra" tio to C, than B has to it: But it has not a lefs ratio, there" fore A is not lefs than B, " \& c . Here it is faid that " A "would have a lefs ratio to C , than B has to C ," or. which is the fame thing, that B would have a greater ratio to C , than A to C ; that is by 7 th def. book 5 . there muft be fome equimultiples of \(B\) and \(A\), and fome multiple of \(C\), fuch that the multiple of \(B\) is greater than the multiple of C , but the multiple of A is not greater than it: And it ought to have been proved that this can never happen if the ratio of A to C be greater than the ratio of B to C ; that is, it hould have been proved, that, in this cafe, the multiple of A is always greater than the multiple of C , whenever the multiple of B is greater than the multiple of C ; for, when this is demonftrated, it will be evident that \(B\) cannot have a greater ratio to \(C\), than \(A\) has to C , or, which is the fame thing, that A cannot have a lefs ratio to C , thin B has to C : But this is not at all proved in the icth propofition: but if the 10 th were once demonftrated, it would immediately follow from it, but cannot without it be eafily demonftrated, as he that tries to do it will find. Wherefore the roth propofition is not fufficiently demonftrated. And it feems that he who has given the demonftration of the 1oth propofition as we now have it, inftead of that which Eudoxus or Euclid had given, has been deceived in applying what is manifeft, when underfood of magnitudes, unto ratios, viz. that a magnitude cannot be both greater and lefs than another. That thofe things which are equal to the fame are equal to one another, is a moff evident axiom when underftood of magnitudes; yet Euclid does not make ufe of it to infer that thofe ratios which are the fame to the fame ratio, are the fame to one another; but explicitly demonftrates this in prop. ir. of book 5. The demonftration we have given of the icth prop.
is no doubt the fame with that of Eudoxus or Euclid, as it is Book V. immediately and directly derived from the definition of a greater ratio, viz. the 7 of the 5 .

The above mentioned propofition, viz. If A have to C a greater ratio than \(B\) to \(C\); and if of \(A\) and B there be taken certain equimultiplies, and fome multiple of C ; then if the multiple of B be greater than the multiple of \(C\), the multiple of \(A^{*}\) is alfo greater than the fame, is thus demonftrated.

Let \(\mathrm{D}, \mathrm{E}\) be equimultiples of \(\mathrm{A}, \mathrm{B}\), and F a multiple of \(C\), fuch, that \(E\) the multiple of \(B\) is greater than \(F\); D the multiple of \(\mathbf{A}\) is alfo greater than \(F_{1}\).

Becaufe \(A\) has a greater ratio to \(C\), than \(B\) to \(C, A\) is greater than \(B\), by the 10 th prop. B. 5. therefore \(D\) the multiple of \(A\) is greater than E the fame multiple of B : And \(E\) is greater than \(F\); much more therefore D is greater than F .

> PROP. XIII. B. V.

In Commandine's, Briggs's, and Gregory's tranflations, at the beginning of this demonftration, it is faid, "And the multi" ple of C is greater than the multiple of D ; but the multi" ple of \(E\) is not greater than the multiple of \(F:\) :" which words are a literal tranflation from the Greek: But the fenfe evidently requires that it be read, " fo that the multiple of \(\mathbf{C}\) " be greater than the multiple of D ; but the multiple of E be " not greater than the multiple of F." And thus this place was reftored to the true reading in the firt editions of Commandine's Euclid, printed in 8vo at Oxford; but in the latter editions, at leaft in that of 1747 , the error of the Greek text was kept in.

There is a corollary added to prop. 3 . as it is neceffary to the 2oth and 2 ift prop. of this book, and is as ufeful as the propofition.

\section*{PROP. XIV. B. V.}

The two cafes of this, which are not in the Greek, are added; the demonftration of them not being exactly the fame with that of the firft cafe.

\section*{Book V. PROP. XVII. B. V.}

The order of the words in a claufe of this is changed to one more natural: As was allo done in prop. I.

\section*{PROP. XVIII. B. V.}

The demonftration of this is none of Euclid's, nor is it legitimate; for it depends upon this hypothefis, that to any three magnitudes, two of which, at leaft, are of the fame kind, there may be a fourth proportional: which, if not proved, the demonftration now in the text is of no force: But this is affumed without any proof; nor can it, as far as I am able to difcern, be demonitrated by the propofitions preceding this: fo far is it from deferving to be reckoned an axiom, as Clavius, after other commentators, would have it, at the end of the definitions of the 5 th book. Euclid does not demonftrate it, nor does he thew how to find the fourth proportional, before the \(x 2\) th prop. of the 6th book: And he never affumes any thing in the demonffration of a propofition, which he had not before demonftrated; at leaft, he affumes nothing the exiftence of which is not evidently polfible; for a certain conclufion can never be deduced by the means of an uncertain propofition: Upon this account, we have given a legitimate demonftration of this propofition inftead of that in the Greek and other editions, which very probably Theon, at leaft fome other, has put in the place of Euclid's, becaufe he throught it too prolix: And as the \({ }^{\prime}{ }^{\prime}\) th prop. of which this 18 th is the converie, is demonitrated by help of the ift and 2 d propofitions of this book; fo, ia the demonftration now given of the 18 th, the 5 th prop. and both cafes of the 6 th are neceffary, and thefe two propofitions are the converfes of the Ift and 2 d . Now the 5 th and 6th do not enter into the demonftration of any propofition in this book as we now have it : Nor can they be of ufe in any propofition of the Elements, except in this 18 th, and this is a manifett proof, that Euclid made ufe of them in his demonftration of it, and that the demonftration now given, which is exactly the converfe of that of the 17 th, as it ought to be, differs nothing from that of Eudoxus or Euclid: For the 5th and Gth have undoubtedly been put into the 5 th book for the fake of fome propofitions in it, as all the other propofitions about equimultiples have been.

Hieronymus Saccherius, in his book named "Euclides ab "omni nævo windicatus," printed at Milan ann. 1733, in 4to, acknowledges
acknowledges this blemish in the demonftration of the 18th, Bork V. and that he may remove it, and render the demonftration we now have of it legitimate, he endeavours to demonftrate the following propofition, which is in page 115 of his book, viz.
"Let A, B, C, D be four magnitudes, of which the two " firlt are of the one kind, and alpo the two others either of the "fame kind with the two firft, or of fume other the fame " kind with one another. I fay the ratio of the third C to the " fourth D , is either equal to, or greater, or less than the ratio " of the firft A to the fecond B."

And after two propofitions premifed as Lemmas, he proceeds thus:
"Either among all the poffible equimultiples of the firm "A, and of the third \(C\), and, at the fame time, among all " the poffible equimultiples of the fecond B , and of the " fourth D, there can be found forme one multiple EF of the " firft \(A\), and one 1 K of the fecond \(B\), that are equal to one " another; and alfo (in the fame cafe) forme one multiple " GH of the third C equal to LM the multiple of the fourth " D , or fuck equality is no where to be found. If the firft " cafe happen, " [i. e. if fuck " equality is to " be found] it " is manifert " from what " is before de" monftrated
 L M " that A is to
" \(B\), as \(C\) to \(D\); but if fuch fimultaneous equality be not to be " found upon both fides, it will be found either upon one " fides, as upon the fide of A [and B;] or it will be found " upon neither fides; if the firft happen; therefore (from " Euclid's definition of greater and leffer ratio foregoing) "A has to B, a greater or lefs ratio than C to D ; accord" ing as GHI the multiple of the third C is left, or greater " than LM the multiple of the fourth D: But if the fecond "cafe happen; therefore upon the one fine, as upon the file " of A the firt and B the fecond, it may happen that the ". multiple EF, [viz. of the firft] may be left than IK the " multiple of the fecond, while on the contrary, upon the o" the fine, [viz. of C and D] the multiple GH [of the third " C] is greater than the other multiple LM [of the fourth " D :] And then (from the fame definition of Euclid) the raX 2
" tho

Book V. "tio of the firft A to the fecond B, is lefs than the ratio of the " third C to the fourth D ; or on the contrary.
"Therefore the axiom [i. e.the propofition before fet down],
" remains demonftrated," \&c.
Not in the leaft; but it remains ftill undemonftrated: For what he fays may happen, may, in innumerable cafes, never happen; and therefore his demonftration does not hold: For example, if \(A\) be the fide, and \(B\) the diameter of a fquare; and C the fide, and D the diameter of another fquare; there can in no cafe be any multiple of \(A\) equal to any of \(B\); nor any one of C equal to one of D , as is well known; and yet it can never happen that when any multiple, of \(A\) is greater than a multiple of \(B\), the multiple of C can be lefs than the multiple of D , nor when the multiple of A is lefs than that of \(B\), the multiple of \(C\) can be greater than that of \(D\), viz. taking equimultiples of \(A\) and \(C\), and equimultiples of \(B\) and \(D:\) For \(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}\) are proportionals; and fo if the multiple of A be greater, \&c. than that of \(B\), fo muft that of C be greater, \&c. than that of D ; by 5th Def. b. 5 .

The fame objection holds good againft the demonftration which fome give of the Ift prop. of the 6th book, which we have made againft this of the 18th prop. becaufe it depends upon the fame infufficient foundation with the other.

\section*{PROP. XIX. B. V.}

A corollary is added to this, which is as frequently ufed as the propofition itfelf. The corollary which is fubjoined to it in the Greek, plainly fhews that, the 5 th book has been vitiated by editors who were not geometers: For the converfion of ratios does not depend upon this 1gth, and the demonftration which feveral of the commentators on Euclid give of converfion is not legitimate, as Clavius has rightly obferved, who has given a good demonftration of it which we have put in propofition \(E\); but he makes it a corollary from the 19 th, and begins it with the words, "Hence it eafily follows," though it does not at all follow from it.

\section*{PR O P. XX. XXI. XXII. XXIII. XXIV. B. V.}

The demonftrations of the 20th and 2 If propofitions, are fhorter than thofe Euclid gives of eafier propofitions, either in the preceding, or following books: Wherefore it was proper to make them more explicit, and the 22 d and 23 d propofitions are, as they ought to be, extended to any number of magnitudes:
magnitudes: And, in like manner, may the 24 th be, as is taken motice of in a corollary ; and another corollary is added, as ufeful as the propofition, and the words, "any whatever", are fupplied near the end of prop 23. which are wanting in the Greek text, and the tramiations from it.

In a paper writ by Philippus Naudæus, and publifhed after his death, in the hiftory of the Royal Academy of Sciences of Berin, anno 1745 , page 59 . the 23 d prop. of the 5 th book, is cenfured as being obfcurely enunciated, and, becaufe of this, prolixly demonftrated : The enunciation there given is not Euclid's but Tacquet's, as he acknowledges, which, though not fo well expreffed, is, upon the matter, the fame with that which is now in the Elements. Nor is there any thing obfcure in it though the author of the paper has fet down the proportionals in a difadvantageous order, by which it appears to be obfcure: But no doubt, Euclid enunciated this 23 d , as well as the 22 d , fo as to extend it to any number of magnitudes, which, taken two and two, are proportionals, and not of fix only; and to this general cafe, the enunciation which Naudæus gives, cannot be well applied.

The demonftration which is given of this 23 d , in that paper, is quite wrong; becaufe, if the proportional magnitudes be plane or folid figures, there can no rectangle (which he improperly calls a product) be conceived to be made by any two of them: And if it fhould be faid, that in this cafe flraight lines are to be taken which are proportional to the figures, the demonftration would this way become much longer than Euclid's: But, even though his demonftration had been right, who does not fee that it could not be made ufe of in the 5 th book?
PROP. F, G, H, K. B. V.

Thefe propofitions are annexed to the 5 th book, becaufe they are frequently made ufe of by both ancient and modern geometers : And in many cafes, compound ratios cannot be brought into demonftration, without making ufe of them.

Whoever defires to fee the doctrine of ratios delivered in this 5 th book folidly defended, and the arguments brought againft it by And. Tacquet, Alph. Borellus, and others, fully refuted, may read Dr Barrow's mathematical lectures, viz. the \(\gamma\) th and Sth of the year 1666 :

The 5 th book being thus corrected, I moft readily agree to what the learned \(\mathrm{D}_{\mathrm{r}}\) Barrow fays *, "That there is nothing

\footnotetext{
- Page \(33^{6 .}\)
}

Book V. " in the whole body of the elements of a more fubtile inven" tion, nothing more folidly eftablifhed, and more accurately " handled than the doctrine of proportionals." And there is fome ground to hope, that geometers will think that this could not have been faid with as good reafon, fince Theon's time till the prefent.

\author{
DEF. II. and V. of B. VI.
}
\(\underbrace{\text { Book VI. THE } 2 d \text { definition does not feem to be Euclid's, but fome }}\) unfkilful editor's: For there is no mention made by Euclid, nor, as far as I know, by any other geometer, of reciprocal figures : It is obfcurely exprefled, which made it proper to render it more diftinct : It would be better to put the following definition in place of \(i t\), viz.

\section*{DEF. II.}

Two magnitudes are faid to be reciprocally proportional to two others, when one of the firft is to one of the other magnitudes, as the remaining one of the laft two is to the remaining one of the firft.

But the 5 th definition, which, fince Theon's time, has been kept in the elements, to the great detriment of learners, is now juftly thrown out of them, for the reafon given in the notes on the 23 d prop. of this book.

\section*{P R O P. I. and II. B. VI.}

To the firf of thefe a corollary is added, which is often ufed: And the enunciation of the fecond is made more general.
PROP. III. B. VI.

A fecond care of this, as ufeful as the firft, is given in prop. A ; viz. the cafe in which the exterior angle of a triangle is bifected by a fraight line : The demonftration of it is very like to that of the firft cafe, and upon this account may, probably, have been left out, as alfo the enunciation, by fome unikilful editor. At leaft, it is certain, that Pappus makes ufe of this cafe, as an elementary propofition, without a demonftration of it, in prop. 39. of his 7 th book of Mathematical Collections.

\section*{PR O P. VII. B. VI.}

To this a cafe is added which occurs not unfrequently in demonftration.

\section*{PROP. VIII. B. VI.}

It feems plain that fome editor has changed the demonftration that Euclid gave of this propofition : For, after he has demonftrated, that the triangles are equiangular to one another, he particularly fhews that their fides about the equal angles are proportionals, as if this had not been done in the demonftration of the \(4^{\text {th }}\) prop. of this book: this fuperfluous part is not found in the tranflation from the Arabic, and is now left out.

\author{
PR O P. IX. B. VI.
}

This is demonftrated in a particular cafe, viz. that in which the third part of a ftraight line is required to be be cut off; which is not at all like Euclid's manner: Befides, the author of the demonftration, from four magnitudes being proportionals, concludes that the third of them is the fame multiple of the fourth, which the firt is of the fecond; now, this is no where demonfrated in the 5 th book, as we now have it: But the editor affumes it from the confufed notion which the vulgar have of proportionals: On this account it was neceffary to give a general and legitimate demonftration of this propofition.

\section*{PROP. XVIII. B. VI.}

The demonftration of this feems to be vitiated : For the propofition is demonftrated only in the cafe of quadrilateral figures, without mentioning how it may be extended to figures of five or more fides:-Befides, from two triangles being equi. angular, it is inferred, that a fide of the one is to the homologous fide of the cther, as another fide of the firlt is to the fide homologous to it of the other, without permutation of the proportionals; which is contrary to Euclid's mantuer, as is clear from the next propofition: And the fame fault occurs again in the conclufion, where the fides about the equal angles are not thewn to be proportionals, by reafon of again neglecting permutation. On thefe accounts, a demonftration is given in Euclid's manner, like to that he makes ufe of in the 20th

Book VI. prop. of this book; and it is extended to five-fided figures, by which it may be feen how to extend it to figures of any number of fides.

\section*{P R O P. XXIII. B. VI.}

Nothing is ufually reckoned more difficult in the elements of geometry by learners, than the doctrine of compound ratio, which Theon has rendered abfurd and ungeometrical, by fubflituting the 5 th definition of the 6th book in place of the right definition, which without doubt Eudoxus or Euclid gave, in its proper place, after the definition of triplicate ratio, \(\& c\). in the 5 th book. Theon's definition is this; a ratio iṣ

 tranlates: " quando rationum quantitates inter fe multi" plicatæ aliquam efficiunt rationem;" that is, when the quantities of the ratios being multiplied by one another make a certain ratio. Dr Wallis tranflates the word rminoointes "ra"" tionem exponentes," the exponents of the ratios: And Dr Gregory renders the laft words of the definition by " illius fa" cit quantitatem," makes the quantity of that ratio But in whatever fenfe the "quantities," or "exponents of the ra" tios," and their " multiplication" be taken, the definition will be ungeometrical and ufelefs: For there can be no multiplication but by a number: Now the quantity or exponent of a ratio (according to Eutochius in his comment. on prop. 4. book 2. of Arch. de Sph. et Cyl. and the moderns explain that term) is the number which multiplied into the confequent term of a ratio produces the antecedent, or, which is the fame thing, the number which arifes by dividing the antecedent by the confequent; but there are many ratios fuch, that no number can arife froin the divifion of the antecedent by the confequent; ex. gr. the ratio of which the diameter of a fquare has to the fide of it; and the ratio which the circumference of a circle has to its diameter, and fuch like. Befides, that there is not the leaft mention made of this definition in the writings of Euclid, Archimedes, A pollonius, or other ancients, tho' they frequently make ufe of compound ratio: And in this 23d prop. of the 6th book, witere compound ratio is firf mentioned, there is not one word which can relate to this definition, though here, if in any place, it was neceffary to be brought in; but the right definition is exprefsly cited in thefe words: "But the " ratio of K to M is compounded of the ratio of K to L ,
" and of the ratio of L to M." This definition therefore of Book VI. Theon is quite ufelefs and abfurd : For that Theon brought it into the elements can fcarce be doubted; as it is to be found in his commentary upon Ptolemy's MEvann Vuvr \(^{2} \xi t\), page 62. where he alfo gives a childifh explication of it, as agreeing only to fuch ratios as can be expreffed by numbers; and from this place the definition and explication have been exactly copied and prefixed to the definitions of the 6th book, as appears from Hervagius's edition : But Zambertus and Commandine, in their Latin tranflations, fubjoin the fame to thefe definitions. Neither Campanus, nor, as it feems, the Arabic manufcripts, from which he made his tranlation, have this definition. Clavius, in his obfervations upon it, rightly judges that the definition of compound ratio might have been made after the fame manner in which the definitions of duplicate and triplicate ratio are given, viz. "That as in Ceveral magni"t tudes that are continual proportionals, Euclid named the "ratio of the firf to the third, the duplicate ratio of the "firft to the fecond; and the ratio of the firt to the fourth, " the triplicate ratio of the firft to the fecond, that is, the " ratio compounded of two or three intermediate ratios that "\% are equal to one another, and fo on; fo, in like manner, if " there be feveral magnitudes of the fame kind, following one " another, which are not continual proportionals, the firft is " faid to have to the laft the ratio compounded of all the inter" mediate ratios,--only for this reafon, that thefe inter" mediate ratios are interpofed betwixt the two extremes, viz. "s the firft and laft magnitudes; even as, in the roth definition " of the 5 th book, the ratio of the firft to the third was called " the duplicate ratio, merely upon account of two ratios be" ing interpofed betwixt the extremes, that are equal to one " another: So that there is no difference betwixt this com" pounding of ratios, anc' the duplication or triplication of "them which are defined in the 5 th book, but that in the du" plication, triplication, \&ec. of ratios, all the interpofed ratios " are equal to one ancther; whereas, in the compounding of "ratios, it is not neceffary that the intermediate ratios fhould "放 equal to one another." Alfo Mr Edmund Scarburgh, in his Englifh tranflation of the firf fix books, page 238. 266. exprefsly affirms, that the 5 th definition of the 6th book, is fuppofitious, and that the true a'efinition of compound ratio is contained in the roth definition of the 5 th book, viz. the definition
\(\underbrace{\text { Book VI. derinition of duplicate ratio, or to be underfood from it, to }}\) wit; in the fame manner as. Clavius has explained it in the preceding citation. Yet thefe, and the reft of the moderns, do notwithftanding retain this 5 th def. of the 6th book, and illuftrate and explain it by long commentaries, when they ought rather to have taken it quite away from the elements.

For, by comparing def. 5. book 6 . with prop. 5. book 8. it will clearly appear that this definition has been put into the elements in place of the right one which has been taken out of them : becaufe, in prop. 5. book 8. it is demonftrated that the plane number of which the fides are \(\mathrm{C}, \mathrm{D}\) has to the plane number of which the fides are E, Z, fee Hergavius's or Gregory's edition), the ratio which is compounded of the ratios of their fides; that is, of the ratios of \(C\) to \(E\), and \(D\) to \(Z\); and by def. 5 . book 6. and the explication given of it by all the commentators, the ratio which is compounded of the ratios of C to E , and D to Z , is the ratio of the product made by the multiplication of the antecedents \(\mathrm{C}, \mathrm{D}\) to the product by the confequents \(\mathrm{E}, \mathrm{Z}\), that is, the ratio of the plane number of which the fides are \(\mathrm{C}, \mathrm{D}\) to the plane number of which the fides are E, Z. Wherefore the propofition which is the 5 th def. of book 6. is the very fame with the 5 th prop. of book 8. and therefore it ought neceffarily to be cancelled iu one of thefe places; becaufe it is abfurd that the fame propofition flould ftand as a definition in one place of the elements, and be demonftrated in another place of them. Now, there is no doubt that prop. 5 . book 8. hould have a place in the elements, as the fame thing is demonfrated in it concerning plane numbers, which is demonftrated in prop. 23. book 6. of equiangular parallelograms; wherefore def. 5. book 6. ought not to be in the elements. And from this it is evident that this definition is not Euclid's, but Theon's, or fome other unflilful geometer's.

But nobody, as far as I know, has hitherto fhown the true ufe of compound ratio, or for what purpofe it has been introduced into geometry: for every propoftion in which compound ratio is made ufe of, may without it be both enunciated and demonftrated. Now the ufe of compound ratio confifts wholly in this, that by means of it, circumlocutions may be avoided, and thereby propofitions may be more briefly either enunciated or demontrated, or both may be done, for inflance, if this \(23^{d}\) propofition of the fixth book were to be enunciated, without mentioning compound ratio, it might be
done as follows. If two parallelograms be equiangular, and
Book Vr. if as a fide of the firft to a fide of the fecond, fo any affumed ftraight line be made to a fecond ftraight line; and as the other fide of the firft to the other fide of the fecond, fo the fecond ftraight line be made a third. The firf parallelogram is to the fecond, as the firf ftraight line to the third. And the demonftration would be exactly the fame as we now have it. But the ancient geometers, when they obferved this enunciation could be made fhorter, by giving a name to the ratio which the firft ftraight line has to the laft, by which name the intermediate ratios might likewife be fignified, of the firft to the fecond, and of the fecond to the third, and fo on, if there were more of them, they called this ratio of the firft to the laft, the ratio compounded of the ratios of the firft to the fecond, and of the fecond to the third ftraight line ; that is, in the prefent example, of the ratios which are the fame with the ratios of the fides, and by this they expreffed the propolition more briefly thus: If there be two equiangular parallelograms, they have to one another the ratio which is the fame with that which is compounded of ratios that are the fame with the ratios of the fides. Which is Shorter than the preceding enunciation, but has precifely the fame meaning. Or yet fhorter thus: Equiangular parallelograms have to one another the ratio which is the fame with that which is compounded of the ratios of their fides. And thefe two eninciations, the firf efpecially, agree to the demonftration which is now in the Greek. The propofition may be more briefly demonftrated, as Candalla does, thus: Let \(A B C D\), CEFG be two equiangular parallelograms, and complete the parallelogram CDHG ; then, becaufe there are three parallelograms AC , \(\mathrm{CH}, \mathrm{CF}\), the firft AC (by the definition of compound ratio) has to the third CF, the ratio which is compounded of the ratio of the \(A\) firt AC to the fecond CH and of the ratio of CH to the third CF ; but the parallelogram AC is to the parallelogram CH , as the fraight line BC to CG ; and the parallelogram CH is to CF , as the flraight
 line \(C D\) is to \(C E\); therefore the parallelogram \(A C\) has to \(C F\) the ratio which is compounded of ratios that are the fame with the ratios of the fides. And to this demonftration agrees the enunciation which is at prefent in the text, viz. Equiangular parallelograms

Book VI. rallelograms have to one another the ratio which is compounded of the ratios of the fides : For the vulgar reading, "which " is compounded of their fides," is abfurd. But, in this edition, we have kept the demonftration which is in the Greek text, though not fo fhort as Candallas; becaufe the way of finding the ratio which is compounded of the ratios of the fides, that is, of finding the ratio of the parallelograms, is fhewn in that, but not in Candalla's demonftration; whereby beginners may learn, in like cafes, how to find the ratio which is compounded of two or more given ratios.

From what has been faid, it may be obferved, that in any magnitudes whatever of the fame kind \(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}\), \& c. the ratio compounded of the ratios of the firt to the fecond, of the fecond to the third, and fo on to the laft, is only a name or expreffion by which the ratio which the firft \(A\) has to the laft D is fignified, and by which at the fame time the ratios of all the magnitudes A to \(\mathrm{B}, \mathrm{B}\) to \(\mathrm{C}, \mathrm{C}\) to D from the firft to the laft, to one another, whether they be the fame, or be not the faine, are indicated; as in magnitudes which are continual proportionals \(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \& \mathrm{c}\). the duplicate ratio of the firlt to the fecond is only a name, or expreffion by which the ratio of the firft A to the third C is fignified, and by which, at the fame time, is fhown that there are two ratios of the magnitudes from the firft to the lait, viz. of the firft A to the fecond \(B\), and of the fecond \(B\) to the third or laft \(C\), which are the fame with one another; and the triplicate ratio of the firf to the fecond is a name or expreffion by which the ratio of the firf \(A\) to the fourth \(D\) is fignified, and by which, at the fame time, is fhown that there are three ratios of the magnitudes from the fift to the laft, viz. of the firft \(A\) to the fecond \(B\), and of \(B\) to the third \(C\), and of \(C\) to the fourth or laft \(D\), which are all the fame with one another; and fo in the cafe of any other multiplicate ratios. And that this is the right explication of the meaning of thefe ratios is plain from the definitions of duplicate and triplicate ratio in which Euclid makes ufe of the word \(\lambda_{\varepsilon y \varepsilon \tau \alpha l}\), is faid to be, or is called; which word, he, no doubt, made ufe of alfo in the definition of compound ratio, which Theon, or fome other, has expunged from the elements; for the very fame word is ftill retained in the wrong definition of compound ratio, which is now the 5 th of the 6th book: But in the citation of thefe definitions it is fometimes retained, as in the demonfration of prop. 19. book
6. " the firft is faid to have, \(\dot{\varepsilon} \chi \varepsilon v^{2} \lambda \varepsilon \gamma \varepsilon \tau \alpha\), to the third the du- Book VI. "plicate ratio," \&c. which is wrong tranflated by Commandine and others, "has" inftead of " is faid to have:" and fometimes it is left out, as in the demonftration of prop. 33. of the 1Ith book, in which we find "the firlt has, \(\varepsilon \chi \varepsilon\), to the third " the triplicate ratio;" but without doubt \(\varepsilon \chi \varepsilon \ell\), "has," in this
 " likewife in prop. 23. B. 6. we find this citation," but the " ratio of K to M is compounded, ovykital, of the ratio of K to " \(L\), and the ratio of \(L\) to \(M\)," which is a fhorter way of exprefling the fame thing, which, according to the definition, ought to have been expreffed by \(\sigma u \gamma \kappa \varepsilon เ \sigma=a \iota \lambda \varepsilon \varepsilon \varepsilon \tau \alpha\), , is faid to be compounded.

From thefe remarks, together with the propofitions fubjoined to the \(5^{\text {th }}\) book, all that is found concerning compound ratio, either in the ancient or modern geometers, may be underfood and explained.

\section*{PR O P. XXIV. B. VI.}

It feems that fome unfkilful editor has made up this demonftration as we now have it, out of two others; one of which may be made from the 2 d prop. and the other from the 4 th of this book: For after he has, from the 2 d of this book, and compofition and permutation, demonftrated that the fides about the angle common to the two parallelograms are proportionals, he might have immediately concluded that the fides about the other equal angles were proportionals, viz. from prop. 34. B. f. and prop. 7. book 5. This he does not, but proceeds to Show that the triangles and parallelograms are equiangular; and in a tedious way, by help of prop. 4 . of this book, and the 22 d of book 5 . deduces the fame conclution : From which it is plain that this ill compofed demonitration is not Euclid's : Thefe fuperfluous things are now left out, and a more fimple demonftration is given from the 4th prop. of this book, the fame which is in the tranflation from the Arabic, by help of the 2d prop. and compofition; but in this the author neglects permutation, and does not fhow the parallelograms to be equiangular, as is proper to do for the fake of beginners.

\section*{PROP. XXV. B. VI.}

It is very evident that the demonftration which Euclid had given of this propofition has been vitiated by fome unfkilful hand: For, after this editor had demonftrated that " as the "rectilineal figure ABC is to the rectulineal KGH , fo is the " parallelogram

\section*{NOTES.}

Book VI. "parailelogram BE to the parallelogram EF;" nothing more fhould have been added but this, " and the rectilineal figure " ABC is equal to the parallelogram \(B E\); therefore the recti" lineal KGH is equal to the parallelogram EF," viz. from prop. I4. book 5. But betwixt thefe two fentences he has inferted this; "wherefore, by permutation, as the rectilineal fi" gure ABC to the parallelogram BE , fo is the rectilineal KGH "t to the parallelogram EF;" by which, it is plain, he thought it was not fo evident to conclude that the fecond of four proportionals is equal to the fourth from the equality of the firft and third, which is a thing demonftrated in the 14 th prop. of B. 5 . as to conclude that the third is equal to the fourth, from the equality of the firft and fecond, which is no where demonftrated in the elements as we now have them : But though this propofition, viz. the third of four proportionals is equal to the fourth; if the firf be equal to the fecond, had been given in the clements by Euclid, as very probably it was, yet he would not have made ufe of it in this place; becaufe, as was faid, the conclufion could have been immediately deduced without this fuperfluous ftep by permutation: This we have fhown at the greater length, both becaufe it affords a certain proof of the vitiation of the text of Euclid; for the very fame blunder is found twice in the Greek text of prop. 23. book 11. and twice in prop. 2. B. 12. and in the 5. II. 12. and 18th of that book; in which places of book 12. except the laft of them, it is rightly left out in the Oxford edition of Commandine's tranflation; And alfo that geometers may beware of making ufe of permutation in the like cafes: for the moderns not unfrequently commit this miftake, and among others Commandine himfelf in his commentary on prop. 5 . book 3. p. 6. b. of Pappus Alexandrinus, and in other places: The vulgar notion of proportionals has, it feems, preoccupied many fo much, that they do not fufficie:tly underfand the true nature of them.

Befides, though the rectilineal figure ABC , to which another is to be made fimilar, may be of any kind whatever; yet in the demonftration the Greek text has "triangle" inftead of "rec"t tilineal figure," which error is corrected in the above-named Oxford edition.

\section*{PROP. XXVII. B. VI.}

The fecond cafe of this has ' \(\alpha \lambda \lambda \omega s\), otherwife, prefixed to it, as if it was a different demonftration, which probably has been done by fome unfkilful librarian. Dr Gregory has right-

Iy left it out: The fcheme of this fecond cafe ought to be Book VI, marked with the fame letters of the alphabet which are in the fcheme of the firft, as is now done.

\section*{PR O P. XXVIII, and XXIX. B. VI.}

Thefe two problems, to the firft of which the 27 th prop. is neceffary, are the moft general and ufeful of all in the elements, and are moft frequently made ufe of by the ancient geometers in the folution of other problems; and therefore are very ignorantly left out by Tacquet and Dechales in their editions of the elements, who pretend that they are fcarce of any ufe: The cafes of thefe problems, wherein \(i=\) is required to apply a rectangle which fhall be equal to a given fquare; to a given ftraight line, either deficient or exceeding by a fquare; as alfò to apply a rectangle which fhall be equal to another given, to a given ftraight line, deficient or exceeding by a fquare; are very often made ufe of by geometers: And, on this account, it is thought proper, for the fake of beginners, to give their conftructions, as follows :
1. To apply a rectangle which fhall be equal to a given fquare, to a given ftraight line, deficient by a fquare: But the given fquare muft not be greater than that upon the half of the given line.

Let \(A B\) be the given ftraight line, and let the fquare upon the given ftraight line \(C\) be that to which the rectangle to be applied muft be equal, and this fquare, by the determination, is not greater than that upon half of the fraight line \(A B\).

Bifect \(A B\) in \(D\), and if the fquare upon \(A D\) be equal to the fquare upon \(\mathbf{C}\), the thing required is done : But if it be not equal to it AD mult be greater than C , according tothe determination: Draw DE at right angles to AB , and make it equal to C ; produce ED to \(F\), fo that EF be equal to AD or DB , and from the centre E, at the diftance EF, defcribe a
 circle meeting \(A B\) in \(G\), and upon GB defcribe the fquare GBKH, and complete the rectangle AGHL; alfo join EG: And becaufe AB is bifected in \(D\), the rectangle \(A G, G B\) together with the fquare of \(D G\) is equal ? to (the fquare of \(D B\), that is, of EF or EG , that is,

Book VI. to) the fquares of \(\mathrm{ED}, \mathrm{DG}\) : Take away the fquare of DG from each of thefe equals; therefore the remaining rectangle \(A G, G B\) is equal to the fquare of \(E D\), that is, of \(C\) : But the rectangle \(\mathrm{AG}, \mathrm{GB}\) is the rectangle AH , becaufe GH is equal to GB: therefore the rectangle AH is equal to the given fquare upon the ftraight line C. Wherefore the rectangle AH equal to the given fquare upon C , has been applied to the given ftraight line \(A B\), deficient by the fquare GK. Which was to be done.
2. To apply a rectangle which fhall be equal to a given fquare, to a given ftraight line, exceeding by a fquare.

Let \(A B\) be the given ftraight line, and let the fquare upon the given ftraight line \(C\) be that to which the rectangle to be applied muft be equal.

Bifect AB in D , and draw BE at right angles to it, fo that \(B E\) be equal to \(C\); and having joined \(D E\), from the centre \(D\) at the diftance DE defcribe a circle meeting. AB produced in G ; upon BG defcribe the fquare BGHK, and complete the rectangle AGHL. And becaufe AB is bifected in D , and produced to \(G\), the rectangle \(A G, G B\) together with the fquare of \(D B\)
a 6.2. is equal a to (the fquare of DG , or DE , that is, to) the fquares of EB, BD. From each of thefe
 equals take the fquare of DB ; therefore the remaining rectangle \(\mathrm{AG}, \mathrm{GB}\) is equal to the fquare of BE , that is, to the fquare upon C . But the rectangle \(\mathrm{AG}, \mathrm{GB}\) is the rectangle AH , becaufe GH is equal to GB . Therefore the rectangle \(A H\) is equal to the fquare upon \(C\). Wherefore the rectangle AH , equal to the given fquare upon C , has been applied to the given fraight line \(\mathrm{A} B\), exceeding by the fquare GK. Which was to be done.
3. To apply a rectangle to a given ftraight line which thall be equal to a given rectangle, and be deficient by a fquare. But the given rectangle muft not be greater than the fquare upon the half of the given ftraight line.

Let \(A B\) be the given ftraight line, and let the given rectangle be that which is contained by the ftraight lines \(\mathrm{C}, \mathrm{D}\), which is not greater than the fquare upon the half of AB ; it is required to apply to \(A B\) a rectangle equal to the rectangle \(\mathrm{C}, \mathrm{D}\), deficient by a fquare.

Draw \(\mathrm{AE}, \mathrm{BF}\) at right angles to AB , upon the fame fine of Book VI. it, and make AE equal to C , and BF to D : Join EF and bifeet it in G ; and from the centre G , at the diftance GE , deScribe a circle meeting AE again in H : join HF and draw GK parallel to it, and GL parallel to \(A E\). meeting \(A B\) in \(L\).

Because the angle EHF in a femicircle is equal to the right angle \(\mathrm{EAB}, \mathrm{AB}\) and HF are parallels, and AH and BF are parallels ; wherefore AH is equal to BF, and the rectangle \(\mathrm{EA}, \mathrm{AH}\) equal to the rectangle \(\mathrm{EA}, \mathrm{BF}\), that is to the rectangle C, D: And because EG, GF are equal to one another, and \(\mathrm{AE}, \mathrm{LG}, \mathrm{BF}\) parallels : therefore AL and LB are equal ; alto EK is equal to KH a, and the rectangle \(\mathrm{C}, \mathrm{D}\) from the a 3 . 3 . determination, is not greater than the fquare of \(A L\) the half of \(A B\); wherefore the rectangle EA, AH is not greater than the fquare of AL, that is of KG : Add to each the fquare of KE; therefore the fquare \(b\) of \(A K\) is not greater than the \(b\) b. 2. quires of EK; KG; that is, than the fquare of EG ; and co: frequently the ftraightline AK or GL is not greater than GE. Now, if GE be equal to GL, the circle EHF touches AB in L , and therefore the fquare of AL is c equal to the rectangle EA, A.H, that is to the given rectangle C, D; and that which was required is done : But if EG , GL be unequal, EG muff be the greater: and
 therefore the circle EHF cuts the ftraight line \(A B\) : let it cut it in the points \(\mathrm{M}, \mathrm{N}\), and upon NB defcribe the fquare NBOP, and complete the rectangle ANPQ: Becaufe LM is equal to dd 3.3 . LN , and it has been proved that AL is equal to LB ; therefore AM is equal to NB, and the rectangle AN, NB equal to the rectangle NA, AM, that is, to the rectangle e EA, AH Cor. \(\mathrm{s}^{6} .3\). or the rectangle \(\mathrm{C}, \mathrm{D}:\) But the rectangle \(\mathrm{AN}, \mathrm{NB}\) is the rectangle AP, becaufe PN is equal to NB: Therefore the rectangle. AP is equal to the rectangle \(\mathrm{C}, \mathrm{D}\); and the rectangle AP equal to the given rectangle C . D has been applied to the given ftraigit line \(A B\), deficient by the fquare \(B P\). Which was to be done.

Book VI. 4. To apply a rectangle to a given ftraight line that fhall be equal to a given rectangle, exceeding by a fquare.

Let \(A B^{\prime}\) be the given ftraight line, and the rectangle \(C, D\) the given rectangle, it is required to apply a rectangle to \(A B\) equal to \(\mathrm{C}, \mathrm{D}\), exceeding by a fquare.

Draw \(\mathrm{AE}, \mathrm{BF}\) at right angles to AB , on the contrary fides of it, and make \(A E\) equal to \(C\), and \(B E\) equal to \(D\) : Join EF , and bifect it in G ; and from the centre G , at the diftance GE, defcribe a circle meeting AE again in H; join HF, and draw GL parallel to AE ; let the circle meet \(A B\) produced in \(\mathrm{M}, \mathrm{N}\), and upon BN defcribe the fquare BNOP, and complete the rectangle ANPQ ; becaufe the angle EHF in a femicircle is equal to the right angle EAB, AB and HF are parallels, and therefore AH and BF are equal, and the rectangle EA, AHequal
 to the rectangle EA, BF, that is, to the rectangle \(\mathrm{C}, \mathrm{D}:\) And becaufe ML is equal to LN, and AL to LB, therefore MA is equal to \(B N\), and the rectangle \(A N, N B\) to \(M A, A N\), that is, a to the rectangle EA, AH, or the rectangle C, D: Therefore the rectangle \(\mathrm{AN}, \mathrm{NB}\), that is, AP , is equal to the rectangle \(\mathrm{C}, \mathrm{D}\); and to the given ftraight line AB the rectangle AP has been applied equal to the given rectangle \(\mathrm{C}, \mathrm{D}\), exceeding by the fquare BP. Which was to be done.

Willebrordus Snellius was the firft, as far as I know, who gave thefe conftructions of the \(3^{\mathrm{d}}\) and \(4^{\text {th }}\) problems in his Appollonius Batavus: And afterwards the learned Dr Halley gave them in the Scholium of the 18 th prop. of the 8 th book of Apollonius's conics reftored by him.

The \(3^{d}\) problem is otherwife enunciated thus: To cut a given fraight line AB in the point N , fo as to make the rectangle AN, NB equal to a given fpace: Or, which is the fame thing, having given \(A B\) the fum of the fides of a rectangle, and the magnitude of it being likewife given, to find its fides.

And the 4 th problem is the fame with this, To find a point \(N\) in the given ftraight line \(A B\) produced, fo as to make the rectangle
rectangle \(\mathrm{AN}, \mathrm{NB}\) equal to a given Space: Or, which is the Book Vi. fame thing, having given \(A B\) the difference of the fides of a rectangle, and the magnitude of it, to find the fides.

\section*{PROP. XXXI. B. VI.}

In the demonftration of this, the inverfion of proportionals is twice neglected, and is now added, that the conclufion may be legitimately made by help of the \(24^{\text {th }}\) prop. of B. 5. as Clavius had done.

\section*{PROP. XXXII. B. VI.}

The enunciation of the preceding 26 th prop. is not general enough : becaufe not only two fimilar parallelograms that have an angle common to both, are about the fame diameter; but likewife two fimilar parallelograms that have vertically oppofire angles, have their diameters in the fame ftraight line : But there feems to have been another, and that a direct demonfIltration of there cafes, to which this 32 d propofition was needfut: And the 32 d may be otherwife, and fomething more briefly demonftrated as follows.

\section*{PR OP. XXXII. B. VI.}

If two triangles which have two fides of the one, \&cc.
Let GAF, HFC be two triangles which have two fides AG, GF, proportional to the two fides \(\mathrm{FH}, \mathrm{HC}\), viz. AG to GF, as FH to HC ; and let AG be parallel to FH , and GF to HC ; AF and FC are in a ftraight line.

Draw CK parallel a to FH, and let it meet GF produced in K: Because AG, KC are each of them parallel to FH, they are parallel b to one another, and therefore the alternate angles \(\mathrm{AGF}, \mathrm{FKC}\) are
 equal : And \(A G\) is to GF , as (FH to HC, that is c) CK to c 34. r. KF ; wherefore the triangles AGF , CKF are equiangular d d 6.6. and the angle AFG equal to the angle CFK: But GFK is a ftraight line, therefore AF and FC are in a ftraight line \(e\).

The 26 th prop. is demonftrated from the 32 , as follows.
Î two fimilar and fimilarly placed parallelograms have an angle common to both, or vertically oppofite angles; their diameters are in the fame ftraight line.

\section*{NOTES.}
\(\underbrace{\text { Book VI. Firft, Let the parallelograms ABCD, AEFG have the an- }}\) gle BAD common to both, and be fimilar, and fimilarly placed ABCD, AEFG are about the fame diameter.

Produce EF, GF, to \(\mathrm{H}, \mathrm{K}\), and join FA, FC ; then becaufe the parallelograms \(\mathrm{ABCD}, \mathrm{AEFG}\) are fimilar, DA is to AB , as GA to AE : where-
a Cor. 19. fore the remainder \(D G\) is a to the 5. remainder EB , as GA to A.E: But DG is equil to \(\mathrm{FH}, \mathrm{EB}\) to HC , and \(A E\) to \(G F\) : Therefore as FH to HC , fo is AG to GF ; and FH, HC are parallel to AG, GF; and the triangles AGF, FHC are joined at one angle, in the point

\({ }^{8}\) 32. 6. F; wherefore AF, FC are in the fame ftraight line b.
Next, Let the parallelograms KFHC, GFEA, which are fimilar and fimilarly placed, have their angles KFH, GFE vertically oppofite; their diameters AF, FC are in the fame ftraight line.

Becaufe AG, GF are parallel to FH, HC ; and that AG is to GF , as FH to HC ; therefore \(\mathrm{AF}, \mathrm{FC}\) are in the fame ftraight line \(b\).

\section*{P R O P. XXXIII. B. VI.}

The words, " becaufe they are at the centre," are left our as the addition of fome unikilful hand.

In the Greek, as alfo in the Latin tramlation, the words a \(\varepsilon \tau u \approx \varepsilon_{,}\)" any whatever," are left out in the demonftration of both parts of the propofition, and are now added as quite neceffary; and, in the demonftration of the fecond part, where the triangle 3 GC C is proved to be equal to CGK, the illative particle apa in the Greek text ought to be omitted.

The fecond part of the propofition is an addition of Theon's, as ine tells in his commentary on Ptolomy's Mevann \(\sum u v \tau \alpha \xi s\), p. 5 .

> PROP. B. C. D. B. VI.

Thefe three propofitions are added, becaufe they are fre: quently made ufe of by geometers.

\section*{D E F. IX. añ XI. B. XI.}

THE fimilitude of plane figures is defined from the cquality of their angles, and the proportionality of the fides about the equal angles; for from the proportionality of the fides only, or only from the equality of the angles, the fimilitude of the figures does not follow, except in the cale when the figures are triangles: The fimilar pofition of the fides which contain the figures, to one another, depending partly upon each of thefe : And for the fame reafon, thofe are fimilar folid figures which have all their folid angles equal, each to each, and are contained by the fame number of fimilar plane figures: For there are fome folid figures contained by fimilar plane figures, of the fame number, and even of the fame magnitude, that are neither fimilar nor equal, as firall be demonftrated after the notes on the roth definition: Upon this account it was neceffary to amend the definition of fimilar folid figures, and to place the definition of a folid angle before it: and from this and the icth definition, it is fuficiently plain how much the elements have been fpoiled by unfrilful editors.

\section*{DEF. X. B. XI.}

Since the meaning of the word "equal" is known and eftablifhod before it comes to be ufed in this definition: therefore the propofition which is the 10 th definition of this book, is a theorem, the truth or falfehood of which ought to be demonftrated, not affumed; fo that Theon, or fome other Editor, has ignorantly turned a theorem which ought to be demonftrated into this roth definition: That figures are fimilar, ought to be proved from the definition of fimilar figures; that they are equal ought to be demoniftrated from the axiom, " Magnitudes that wholly coincide, are equal "to one another;" or from prop. A. of book 5 . or the gth prop. or the r4th of the fame book, from one of which the equality of all kind of figures mut -ultimately be deduced. In the preceding books, Euclid has given no definition of equal figures, and it is certain he did not give this: For what is called the firt def. of the third book, is. really a theorem. in which thefe circles are faid to be equal, that have the ftraight lines from their centres to the circumferences equal, which is plain, from the definition of a circle; and therefore has by

Book XI. fome editor been improperly placed among the definitions. The \(\xrightarrow[\sim]{\text { equality of figures ought not to be defined, but demonftrated : }}\) Therefore, though it were true, that folid figures contained by the fame number of fimilar and equal plane figures are equal to one another, yet he would juftly deferve to be blamed who would make a definition of this propofition which ought to be demonftrated. But if this propofition be not true, muft it not be confeffed, that geometers have, for thefe thirteen hundred years, been miftaken in this elementary matter? And this fhould teach us modefty, and to acknowledge how little, through the weaknefs of our minds, we are able to prevent miftakes even in the principles of fciences which are juftly reckoned amongft the moft certain; for that the propofition is not univerfally true, can be thewn by many examples: The following is fufficient.

Let there be any plane rectilineal figure, as the triangle
a 12. 11. ABC , and from a point D within it draw a the ftraight line DE at tight angles to the plane ABC ; in DE take \(\mathrm{DE}, \mathrm{DF}\) equal to one another, upon the oppofite fides of the plane, and let \(G\) be any point in EF; join DA, DB, DC; EA \(\mathrm{EB}, \mathrm{EC} ; \mathrm{FA}, \mathrm{FB}, \mathrm{FC} ; \mathrm{GA}, \mathrm{GB}, \mathrm{GC}:\) Becaufe the ftraight line EDF is at right angles to the plane ABC , it makes right angles with \(\mathrm{DA}, \mathrm{DB}, \mathrm{DC}\) which it meets in that plane; and in the triangles \(\mathrm{EDB}, \mathrm{FDB}, \mathrm{ED}\) and DB are equal to FD and DB , each to each, and they contain right angles; therefore 1 4 . I . the bafe EB is equal b to the bafe FB; in the fame manner EA is equal to FA , and EC to FC : And in the triangles EBA, FBA; EB, BA are equal to \(\mathrm{FB}, \mathrm{BA}\), and the bafe EA is equal to the bafe FA; wherefore the angle
c8. x. EBA is equal c to the angle FBA , and the triangle EBA equal b to \(B\) the triangle FBA, and the other angles equal to the other angles; there-

\(\left\{\begin{array}{l}\text { 4. 6. fore thefe triangles are } \\ \text { 1. def. fimilard }\end{array}\right.\)
the triangle FBC, and the triangle EAC to FAC; therefore there are two folid figures each of which is contained by fix triangles, one of them by three triangles, the common vertex of which is the point \(G\), and their bales the flraight lines \(A B\), \(\mathrm{BC}, \mathrm{CA}\) and by three other triangles the common vertex of which is the point \(E\) and their bafis the fame lines \(A B\), \(\mathrm{BC}, \mathrm{CA}\) : The other folid is contained by the fame three triangles the common vertex of which is \(G\), and their bafes \(A B\), \(\mathrm{BC}, \mathrm{CA}\); and by three other triangles of which the common vertex is the point \(F\), and their bafes the fame ftraight lines \(A B, B C, C A\) : Now the three triangles GAB, GBC, GCA are common to both folids, and the three others EAB, EEC, ECA of the firt folid have been fhown equal and fimilar to the three others \(\mathrm{FAB}, \mathrm{FBC}, \mathrm{FCA}\) of the other folid, each to each; therefore thefe two folids are contained by the famenumber of equal and fimilar planes: But that they are not equal is manifeft, becaufe the firft of them is contained in the other: Therefore it is not univerfally true that folids are equal whin are contained by the fame number of equal and fimilar planes.

Cor. From this it appears that two unequal folid angles may be contained by the fame number of equal plane angles.

For the folid angle at \(B\), which is contained by the four plane angles EBA, EBC, GBA, GBC is not equal to the folid angle at the fame point \(B\) which is containcd by the four plane angles FBA, FBC, GBA, GBC; for this lat contains the other : And each of thern is contained by four plane angles, which are equal to one another, each to each, or are the felf fame; as has been proved: And indeed there may be innumerable folid angles all unequal to one another, which are each of them contained by plane angles that are equal to one another, each to each : It is likewife manifert that the beforementioned folids are not fimilar, fince their folid angles are not all equal.

And that there may be innumerable folid angles all unequal to one another, which are each of them contained by the fame plane angles difpofed in the fame order, will be plain from the three following propofitions.

\section*{PROP. I. PROBLEM.}

Three magnitudes, \(\mathrm{A}, \mathrm{B}, \mathrm{C}\) being given, to find a fourth fuch, that every three thall be greater than the remaining one. \(\mathrm{Y}_{4}\)
 C together: Of the three \(A, B, C\), let \(A\) be that which is not lefs than either of the two \(B\) and \(C\) : And firft, let B and C together be not lefs than \(A\); therefore \(B, C, D\) together are gieater than \(A\); and becaufe \(A\) is not lefs than \(B ; A, C, D\) together are greater than \(B 3\) : In the like manner \(A, B, D\) together are greater than \(C\) : Wherefore in the cafe in which \(B\) and C together are not lefs than A , any magnitude D which is lefs than \(A, B, C\) together will anfwer the problem.

But if B and C together be lefs than A ; then, becaufe it is required that \(\mathrm{B}, \mathrm{C}, \mathrm{D}\) together be greater than A , from each of thefe taking away \(\mathrm{B}, \mathrm{C}\), the remaining one D muft be greater than the excefs of \(A\) above \(B\) and \(C\) : Take therefore any magnitude D which is lefs than \(\mathrm{A}, \mathrm{B}, \mathrm{C}\) together, but greater than the excefs of \(A\) above \(B\) and \(C\) : Then \(B, C, D\) together are greater than A ; and becaufe A is greater than sither B or C , much more will A and D , together with either of the two \(\mathrm{B}, \mathrm{C}\) be greater than the other : And, by the conftruction, \(\mathrm{A}, \mathrm{B}, \mathrm{C}\) are together greater than D .

Cor. If befides it be required, that A and B together fhall not be lefs than \(C\) and \(D\) together ; the excefs of \(A\) and \(B\) together above C muft not be lefs than D , that is, D muft not be greater than that excefs.

\section*{PROP. II. PROBLEM.}

Four magnitudes A, B, C, D being given, of which A and \(B\) togerher are not lefs than C and D together, and fuch that any three of them whatever are greater than the fourth; it is required to find a fifth magnitude \(E\) fuch, that any two of the three \(A, B, E\) hall be greater than the third, and alfo that any two of the three C, D, E thall be greater than the third. Let A be not lefs than B: And C not lefs than D.

Firft, Let the excefs of \(C\) above \(D\) be not lefs than the excefs of \(A\) above \(B\) : It is plain that a magnitude \(E\) can be taKen which is lefs than the fum of C and D , but greater than the excefs of \(\mathbf{C}\) above D ; let it be taken; then E is greater likewife than the excefs of \(A\) above \(B\); wherefore \(E\) and \(B\) together are greater than \(A\); and \(A\) is not lefs than \(B\); therefore A and E together are greater than B ; And, by the hypothefis, \(A\) and \(B\) together are not lefs than \(C\) and \(D\) together, and C and D together are greater than E ; therefore likewife \(A\) and \(B\) are greater than \(E\).

But let the excefs of A above B be greater than the excefs \(\underbrace{\text { Book XI. }}\) of C above D : And becaufe, by the hypothefis, the three B , \(\mathrm{C}, \mathrm{D}\) are together greater than the fourth \(\mathrm{A} ; \mathrm{C}\) and D together are greater than the excefs of A above B : Thetefore a magnitude may be taken which is lefs than \(C\) and \(D\) together, but greater than the excefs of A above \(\mathbf{3}\). Let this magnitude be \(E\); and becaufe \(E\) is greater than the excefs of \(A\) above \(B\), B together with E is greater than \(\mathrm{A}:\) And, as in the preceding cafe, it may be fhown that A together with \(E\) is greater than \(B\), and that \(A\) together with \(B\) is greater than \(E:\) Therefore, in each of the cafes, it has been fhown that any two of the three \(\mathrm{A}, \mathrm{B}, \mathrm{E}\) are greater than the third.

And becaufe in each of the cafes \(E\) is greater than the excefs of C above \(\mathrm{D}, \mathrm{E}\) together with D is greater than C ; and by the hypothefis, C is not lefs than D ; therefore E together with C is greater than D ; and, by the conftruction, C and D together are greater than \(E\) : Therefore any two of the three, \(\mathrm{C}, \mathrm{D}, \mathrm{E}\) are greater than the third.

\section*{PROP. III. THEOREM.}

There may be innumerable folid angles all unequal to one another, each of which is contained by the fame four plane angles, placed in the fame order.

Take three plane angles, \(A, B, C\), of which \(A\) is not lefs than either of the other two, and fuch, that A and B together are lefs than two right angles: and by problem I. and its corollary, find a fourth angle \(\mathbf{D}\) fuch, that any three whatever of the angles \(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}\) be greater than the remaining angle, and fuch, that \(A\) and \(B\) together be not lefs than \(C\) and D together: And by problem 2. find a fith angle \(E\) fuch that any two of the angles \(A, B, E\) be greater than the thind

and alfo that any two of the angles \(\mathbf{C}, \mathrm{D}, \mathrm{E}\) be greater than the
\(\underbrace{\text { Book XI. the third: And becaufe } A \text { and } B \text { together are lefs than two }}\) right angles, the double of \(A\) and \(B\) together is lefs than four right angles: But \(A\) and \(B\) together are reater than the angle \(\mathbf{E}\); wherefore the double of \(\mathrm{A}, \mathrm{B}\) toyether is greater than the three angles \(\mathrm{A}, \mathrm{B}, \mathrm{E}\) together, which three are confequently lefs than four right angles; and every two of the fame angles \(\mathrm{A}, \mathrm{B}, \mathrm{E}\) are greater than the third ; therefore, by prop. 23. II. a folid angle may be made contained by three plane angles equal to the angles \(\mathrm{A}, \mathrm{B}, \mathrm{E}\), each to each: Let this be the angle F contained by the three plane angles GFH, HFK, GFK which are equal to the angles \(\mathrm{A}, \mathrm{B}, \mathrm{E}\), each to each: And becaufe the angles \(\mathrm{C}, \mathrm{D}\) together are not greater than the angles \(\mathrm{A}, \mathrm{B}\) together, therefore the angles \(\mathrm{C}, \mathrm{D}, \mathrm{E}\) are not greater than the angles \(\mathrm{A}, \mathrm{B}, \mathrm{E}:\) But thefe laft three are lefs than four right angles, as has been demonitrated: wherefore alfo the angles \(\mathrm{C}, \mathrm{D}, \mathrm{E}\) are together lefs than four right angles, and every two of them are greater than the third; therefore a folid angle may be made, which fhall be contained by three plane angles equal to the angles \(C, D, E\), each to

223.11.
each a : And by prop. 26. 11, at the point F in the fraight line FG a folid angle may be made equal to that which is contained by the three plane angles that are equal to the angles C, D, E: Let this be made, and let the angle GFK, which is equal to E , be one of the three; and let KFL, GFL be the other two which are equal to the angles, \(\mathrm{C}, \mathrm{D}\), each to each. Thus there is a folid angle conftituted at the point \(F\) concained by the four plane angles GFH, HFK, KFL, GFL which are equal to the angles \(A, B, C, D\), each to each.

Again, Find another angle M fuch, that every two of the three angles \(\mathrm{A}, \mathrm{B}, \mathrm{M}\) be greater than the third, and alfo every two of the three \(\mathrm{G}, \mathrm{D}, \mathrm{M}\) be greater than the third:
.And, as in the preceding part, it may be demonftrated that Book XI. the three \(\mathrm{A}, \mathrm{B}, \mathrm{M}\) are lefs than four right angles, as alfo that the three \(\mathrm{C}, \mathrm{D} ; \mathrm{M}\) are lefs than four right angles. Make thercfore a a folid angle at N contained by the three plane angles ONP, PNQ, OIVQ, which are equal to \(\bar{A}\),
 a 23.1 . B, M, each to each: And by prop. 26. II. make at the point N in the ftraight line ON a folid angle contained by three plane angles of which one is the angle ONQ equal to \(M\), and the other two are the angles QNR, ONR which are equal to the angles \(\mathrm{C}, \mathrm{D}\), each to each. Thus, at the point N , there is a folid angle contained by the four plane angles ONP, PNQ, QNR, ONR which are equal to the angles \(A, B, C, D\) each to each. And that the two folid angles at the points \(F, N\), each of which is contained by the above named four plane angles, are not equal to one another, or that they cannot coincide, will be plain by confidering that the angles GFK, ONQ; that is, the angles \(\mathrm{E}, \mathrm{M}\), are unequal by the conftruction; and therefore the ftraight lines GF, FK cannot coincide with ON, NQ, nor confequently can the folid angles, which therefore are unequal.

And becaufe from the four plane angles \(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}\), there can be found innumerable other angles that will ferve the fame purpofe with the angles E and M ; it is plain that innumerable other folid angles may be conftituted which are each contained by the fame four plane angles, and all of them unequal to one another, Q. E. D.

And from this it appears that Clavius and other authors are miftaken, who affert that thofe folid angles are equal which are contained by the fame number of plane angles that are equal to one another, each to each. Alfo it is plain that the 26 th prop. of book II. is by no means fufficiently demonfrated, becaufe the equality of two folid angles, whereof each is contained by three plane angles which are equal to one another, each to each, is only affumed, and not demonftrated.

The words at the end of this, " for a ftraight line cannot " meet a ftraight line in more than one point," are left out, as an addition by fome unfkilful hand; for this is to be demonftrated, not affumed.

Mr Thomas Simpfon, in his notes at the end of the 2 d edition of his elements of geometry, p. 262. after repeating the words of this note, alde, "Now, can it poffibly fhow any want " of fisill in an editor (he means Euclid or Theon) to refer to "an axiom which Euclid himfelf hath laid down, Book I. "No. it." he means Barrow's Euclid, for it is the 1oth in the Greek, " and not to have demonfrated, what no man can de" monftrate?" But all that in this cale can follow from that axiom is, that, if two ftraight lines could meet each other in two points, the parts of them betwixt the fe points mult coincide, and fo they would have a fegment betwixt thefe points common to both. Now, as it has not been Dhown in Euclide that they cannot have a common fegment, this does not prove that they cannot meet in two points from which their not having a common fegment, is deduced in the Greek edition: But, on the contrary, becaufe they cannot have a common fegment, as is thown in Cor. of inth prop. Book i. of 4 to edition, it follows plainly that they cannot meet in two points, which the remarker fays no man can demonftrate.

Mr Simpfon, in the fame notes, p. 265 . juftly obferves, that in the corollary of prop. iI. Book I. 4 to edit. the ftraight lines \(A B, B D, B C\), are fuppofed to be all in the fame plane, which cannot be affumed in Ift prop. book II. This, foon after the 4to edition was publifhed, 1 obferved and corrected as it is now in this edition: He is miftaken in thinking the 1 cth axiom he mentions here to be Euclid's; it is none of Euclid's, but is the Ioth in Dr Barrow's edition, who had it from Herigon's Curfus, vol. r. and in place of it the corollary of 10 th prop. Book I. was added.

> P. RO P. II. B. XI.

This propofition feems to have been changed and vitiated by fome editor; for all the figures defined in the int book of the elements, and among them triangles, are by the hypothefis, plane figures; that is, fuch as are defcribed in a plane; wherefore the feccnd part of the enunciation needs no demonftration. Befides, a convex fuperficies may le terminated by
three ftraight lines meeting one another: The thing that Book YI. fhould have been demonftrated is, that two, or three ftraight lines, that meet one another, are in one plane. And as this is not fufficiently done, the enunciation and demonftration are changed into thofe now put into the text.

P R O P. III. B. XI.
In this propofition the following words near to the end of it are left out, viz. " therefore \(\mathrm{DEB}, \mathrm{DFB}\) are not ftraight lines; " in the like manner it may be demonftrated that there can be " no other ftraight line between the points D, B :" Becaufe from this, that two lines include a fpace, it only follows that one of them is not a ftraight line : And the force of the argument lies in this, viz. if the common fection of the planes be not a ftraight line, then two ftraight lines could include a fpace, which is abfurd; therefore the common fection is aftraight line.
P. R O P. IV. B. XI.

The words " and the triangle AED to the triangle BEC" are omitted, becaufe the whole conclufion of the 4 th prop. B. r. has been fo often repeated in the preceding books, it was needlefs to repeat it here.
PROP. V. B. XI.

In this, near to the end, ' \(\varepsilon \pi เ \pi \varepsilon \delta \omega\), ought to be left out in the Greek text : And the word "plane" is rightly left out in the Oxford edition of Commandine's tranflation.

\section*{PROP. VII. B. XI.}

This propofition has been put into this book by fome unfkilful editor, as is evident from this, that fraight lines which are drawn from one point to another in a plane, are, in the preceding books, fuppofed to be in that plane: And if they were not, fome demonftrations in which one ftraight line is fuppofed to meet another would not be conclufive, becaufe thefe lines would not meet one another: For inftance, in prop. 30. B. ı. the ftraight line GK. would not meet TE, if GKi were not in the plane in which are the parallels \(A B, C D\), and in which, by hypothefis, the ftraight line EF is: Befdes, this \(\eta\) th propofition is demontrated by the preceding 3 . in which the very thing which is propofed to be demonftrated in the 7 th, is twice affumed, viz. that the ftraight line drawn from one point to another in a plane, isin that plane; and the fame thing is affumed in the preceding 6th prop. in which the ftraight line whiche
\(\underbrace{\text { Book XI. which joins the points } B, D \text { that are in the plane to which } A B}\) and CD are at right angles, is fuppofed to be in that plane : And the 7 th, of which another demonftration is given, is kept in the book merely to preferve the number of the propofitions; for it is evident from the 7 th and \(35^{\text {th }}\) definitions of the 1 ft book, though it had not been in the elements.
P R O P. VIII. B. XI.

In the Greek, and in Commandine's and Dr Gregory's tranflations, near to the end of this propofition, are the following words: "But DC is in the plane through BA, AD," inftead of which, in the Oxford edition of Commandine's tranflation is rightly put " but DC is in the plane through BD , "DA:" But all the editions have the foliowing words, viz. "becaufe \(\mathrm{AB}, \mathrm{BD}\) are in the plane thro' \(\mathrm{BD}, \mathrm{DA}\), and DC " is in the plane in which are \(\mathrm{AB}, \mathrm{BD}\), " which are manifeftly corrupted, or have been added to the text; for there was not the leaft neceffity to go fo far about to how that DC is in the fame plane in which are \(\mathrm{BD}, \mathrm{DA}\) becaufe it immediately follows from prop. 7. preceding, that \(\mathrm{BD}, \mathrm{DA}\), are in the plane in which are the parallels \(\mathrm{AB}, \mathrm{CD}\) : Therefore, intead of thefe words, there ought only to be " becaufe all three are in the plane in which " are the parallels \(\mathrm{AB}, \mathrm{CD}\)."
PROP. XV. B. XI.

After the words, "and becaufe BA is parallel to GH," the following are added, " for each of them is parallel to DE, and " are not both in the fame plane with it," as being manifefly forgotten to be put into the text.

> PR O P. XVI. B. XI.

In this, near to the end, inftead of the words, "but fraight " lines which meet neither way" ought to be read, "but "ftraight lines in the fame plane which produced meet neither "way:" Becaufe, though in citing this definition in prop. 27. book 1 . it was not neceffary to mention the words, " in the "fame plane," all the Atraight lines in the books preceding this being in the fame plane; yet here it was quite neceffary.

> PR O P. XX. B. XI.

In this near the beginning, are the words, "But if not, let "BAC be the greater:" But the angle BAC may happen to be equal to one of the other two: Wherefore this place fhould
be read thus, "But if not, let the angle BAC be not lefs than Book XI. "either of the other two, but greater than D.AB."

At the end of this propofition it is faid, "in the fame man" ner it may be demon?trated," though there is no need of any demonftration; becaufe the angle BAC being not lefs than either of the other two, it is evident that BAC together with one of them is greater than the other.

\section*{PROP. XXII. B. XI.}

And likewife in this, near the beginning, it is faid, " But " if not, let the angles at \(B\). \(E, H\) be unequal, and let the an"gle at B be greater than either of thofe at E, H:" Which words manifeftly fhow this place to be vitiated, becaufe the angle at \(B\) may be equal to one of the other two. They ought therefore to be read thus, "But if not, let the angles at B, E " H be unequal, and let the angle at B be not lefs than either "of the other two at E, H: Therefore the fraight line AC: "s is not lefs than either of the two DF, GK."

\section*{PROP. XXIII. B. XI.}

The demonftration of this is made fomething fhorter, by not repeating in the third cafe the things which were demonftrated in the firft; and by making ufe of the conftruction which Campanus has given; but he does not demonftrate the fecond and third cafes: The conffruction and demonftration of the third cafe are made a little more fimple than in the Greek text.
PROP. XXIV. B. XI.

The word "fimilar" is added to the enunciation of this prom pofition, becaufe the planes containing the folids which are to be demonftrated to be equal to one another, in the 25 th propolition, ought to be fimilar and equal, that the equality of the folids may be inferred from prop. C. of this book: And, in the Oxford edition of Commandine's tranflation, a corrollary is added to prop. 24. to fhow that the parallelograms mentioned in this propofition are fimilar, that the equality of the folids in prop. 25 . may be deduced from the 1oth def. of book 11 .

> PR O P. XXV. and XXVI. B. XI.

In the 25 th prop. folid figures which are contained by the fame number of fimilar and equal plane figures, are fuppofed to be equal to one another. And it feems that Theon, or fome other.

Book XI. other editor, that he might fave himfelf the trouble of demonftrating the folid figures mentioned in this propofition to be equal to one another, has inferted the roth def. of this book, to ferve inftead of a demonftration ; which was very ignorantly done.

Likewife in the 26 th prop. two folid angles are fuppofed to be equal: If each of them be contained by three plane angles which are equal to one another, each to each. And it is ftrange enough that none of the commentators on Euclid have, as far as I knows perceived that fomething is wanting in the demonflrations of thefe two propofitions. Clavius, indeed, in a note upon the 1 th def. of this book, affirms, that it is evident that thofe folid angles are equal which are contained by the fame number of plane angles, equal to one another, each to each, becaufe they will coincide, if they be conceived to be placed within one another; but this is faid without any proof, nor is it always true, except when the folid angles are contained by three plane angles only, which are equal to one another, each to each : And in this cafe the propofition is the fame with this, that two fpherical triangles that are equilateral to one another, are alfo equiangular to one another, and can coincide : which ought not to be granted without a demonftration. Euclid does not affume this in the cafe of rectilineal triangles, but demonftrates in prop. 8. book I. that triangles which are equilateral to one another are alfo equiangular to one another ; and from this their total equality appears by prop. 4. book I. And Menelaus, in the 4th prop. of his firft book of fpherics, explicitly demonftrates that fpherical triangles which are mutually equilateral, are alfo equiangular to one another; from which it is eafy to flow that they muft coincide, providing they have their fides difpoled in the fame order and fituation.

To fupply thefe defects, it was neceflary to add the three propofitions marked A, B, C to this book. For the 25 th, 26 th and 28 th propofitions of it, and confequently eight others, viz. the 27 th, 3 ift, \(32 \mathrm{~d}, 33^{\mathrm{d}}, 34\) th, 36 th, 37 th, and 40 th of the fame, which depend upon them, have hitherto ftood upon an infirm foundation; as alfo, the 8th, I 2 th, Cor. of I 7 th and 18 th of 12 th book, which depend upon the 9th definition. For it has been fhown in the notes on def. ro. of this book, that folid figures which are contained by the fame number of fimilar and equal plane figures, as alfo folid angles that are contained by the fame number of equal plane angles, are not always equal to one another.

It is to be obferved that Tacquet, in his Euclid, defines equal Book XI. folid angles to be fuch, " as being put within one another do " coincide:" But this is an axiom, not a definition; for it is true of a 1 magnitudes whatever. He made this ufelefs defini\(t\) on, that by it he insht demonftrate the \(3^{6 \text { th }}\) prop. of this book, without the help of the 35 th of the fame: Concerning which demonftration, fee the note upon prop. \(3^{6}\).

\section*{PROP. XXVIII. B. XI.}

In this it ought to have been demonftrated, not affumed, that the diagonals are in one plane. Clavius has fupplied this defect.

\section*{P R O P. XXIX. B. XI.}

There are three cafes of this propofition; the firft is, when the two parallelograms oppofite to the bafe \(A B\) have a fide common to both; the fecond is, when thefe parallelograms are feparated from one another; and the third, when there is a part of them common to both; and to this laft only, the demonffration that has hitherto been in the elements does agree. The firit cafe is immediately deduced from the preceding 28th prop. which feems for this purpofe to have been premiled to this 29 th, for it is neceffary to none but to it , and to the 40 th of this book, as we now have it, to which laft, it world, without doubt, have been premifed, if Euclid had not made ufe of it in the 29th; but fome unkkilful editor has taken it away from the elements, and has murilated Euclid's demonftration of the other two cafes, which is now reftored, and ferves for both at once.

> PR O P. XXX. B. XI.

In the demonftration of this, the oppofite planes of the folid CP , in the figure in this edition, that is, of the folid CO in Commandine's figure, are not proved to be parallel; which it is proper to do for the fake of learners.

\section*{PROP. XXXI. B. XI.}

There are two cales of this propofition; the firft is, when the infliting ftraight lines are at right angles to the bafes; the other, when they are not : The firft cafe is divided again into two others, one of which is, when the bafes are equiangular parallelograms; the other, when they are not equiangular

Book XI. The Greek editor makes no mention of the firf of thefe two laft cafes, but has inferted the demonftration of it as a part of that of the other : And therefore fhould have taken notice of it in a corollary; but we thought it better to give thefe two cafes feparately: The demonftration alfo is made fomething Thorter by following the way Euclid has made ufe of in prop. 14. book 6. Befides, in the demonftration of the cafe in which the infifting ftraight lines are not at right angles to the bafes, the editor does not prove that the folids defcribed in the conftruction, are parallelepipeds, which it is not to be thought that Euclid neglected: Alfo the words, " of which the infinting ftraight " lines are not in the fame ftraight lines," have been added by fome unkilful hand; for they may be in the fame ftraight lines.

\section*{PR O P. XXXII. B. XI.}

The editor has forgot to order the parallelogram FH to be applied in the angle FGH equal to the angle LCG, which is neceffary. Clavius has fupplied this.

Alfo, in the conftruction, it is required to complete the folid of which the bafe is FH , and altitude the fame with that of the folid CD : But this does not determine the folid to be completed, fince there may be innumerable folids upon the fame bafe, and of the fame altitude: It ought therefore to be faid, " complete the folid of which the bafe is FH, and one of " its infifting ftraight lines is FD:" The fame correction muft be made in the following propofition 33.

\section*{PROP. D. B. XI.}

It is very probable that Euclid gave this propofition a place in the elements, fince he gave the like propofition concerning equiangular parallelograms in the 23 d. B. 6 .

\section*{PR O P. XXXIV. B. XI.}
 " of which the infifting ftraight lines are not in the fame " ftraight lines," are thrice repeated; but thefe words ought either to be left out, as they are by Clavius, or, in place of them, ought to be put, " whether the infifting ftraight lines be, *6 or be not in the fame ftraight lines:" For the other cafe is without any reafon excluded; alfo the words, \(\tilde{\omega} y \tau a \dot{v} \psi n\), of which
 ". which the infifting ftraight lines;" which is a plain miftake: For the altitude is always at right angles to the bafe.
PR O P. XXXV. B. XI.

The angles \(\mathrm{ABH}, \mathrm{DEM}\) are demonftrated to be right angles in a fhorter way than in the Greek ; and in the fame way ACH, DFM may be demonftrated to be right angles: Alfo the repetition of the fame demonftration, which begins with " in the fame manner," is left out, as it was probably added to the text by fome editor : for the words " in like manner "we may demonftrate," are not inferted except when the demonffration is not given, or when it is fomething different from the other if it be given, as in prop. 26. of this book. Companus has not this repetition.

We have given another demonffration of the corollary, befides the one in the original, by help of which the following \(3^{6 \text { th }}\) prop. may be demonftrated without the 35 th.

\section*{PR O P. XXXVI. B. XI.}

Tacquet in his Euclid demonftrates this propofition without the help of the 35 th ; but it is plain, that the folids mentioned in the Greek text in the enunciation of the propofition as equiangular, are fuch that their folid angles are contained by three plane angles equal to one another, each to each; as is evident from the conftruction. Nuw Tacquet does not demonftrate, but affumes thefe folid angles to be equal to one another; for he fuppofes the folids to be already made, and does not give the conftruction by which they are made : But, by the fecond demonftration of the preceding corollary, his demonftration is rendered legitimate likewife in the cafe where the folids are conftructed as in the text.

\section*{PROP. XXXVII. B. XI.}

In this it is affumed that the ratios which are triplicate of thofe ratios which are the fame with one another, are likewife the fame with one another; and that thofe ratios are the fame with one another, of which the triplicate ratios are the fame with one another; but this ought not to be granted without a demonftration; nor did Euclid affume the firft and eafieft of thefe two propofitions, but demonftrated it in the cafe of duplicate ratios, in the 22 d prop. book 6 . On this account, another demonftration is given of this propofition like to that which Euclid gives in prop. 22. book 6. as Clavius has done.

PROP.

\section*{PROP. XXXVIII. B. XI.}

When it is required to draw a perpendicular from a point in one plane which is at right angles to another plane, unto this laft plane, it is done by drawing a perpendicular from the point to the common fection of the planes; for this perpendicular will be perpendicular to the plane, by Def. 4. of this book: And it would be foolifh in this cafe to do it by the IIth prop. a 17. r. in in of the fame: But Euclida, Apollonius, and other geometers, other editions. when they have occafion for this problem, direct a perpendicular to be drawn from the point to the plane, and conclude that it will fall upon, the common fection of the planes, becaufe this is the very fame thing as if they had made ufe of the conftruction above mentioned, and then concluded that the ftraight line muft be perpendicular to the plane; but is expreffed in fewer words: Some editor, not perceiving this, thought it was necelfary to add this propofition, which can never be of any ufe to the ith book, and its being near to the end among propofitions with which it has no connection, is a mark of ies having been added to the text.

\section*{PROP. XXXIX. B. XI.}

In this it is fuppofed, that the firaight lines which bifect the fides of the-oppofite planes, are in one plane, which ought to have been demonftrated; as is now done.

\section*{B. XII.}

Book 2 IIT.

THE learned Mr Moor, profeffor of Greek in the Univerfity of Glafgow, obferved to me, that it plainly appears from Archimedes's epiftle to Dofitheus, prefixed to his books of the Sphere and Cylinder, which epiftle he has reftored from ancient manufcripts, that Eudoxus was the author of the chief propofitions in this 12 th book.

> PR O P. II. B. XII.

At the beginning of this it is faid, "if it be not fo, the fquare " of BD fhall be to the fquare of FH , as the circle ABCD is " to fome fpace either lefs than the circle EFGH, or greater " then it:" And the like is to be found near to the end of this propofition, as alfo in prop. 5. Ix. 12. 18. of this book: Concerning

Gerning which, it is to be obferved, that in the demonftration \(\underbrace{\text { Book XI. }}\) of theorems, it is fufficient, in this and the like cafes; that a thing made ufe of in the reafoning can poffibly exitt, providing this be evident, though it cannot be exhibited or found by a geometrical conftruction : So, in this place, it is affumed, that there may be a fourth proportional to thefe three magnitudes, viz. the fquares of \(B D, F H\), and the circle \(A B C D\); becaufe it is evident that there is fome fquare equal to the circle ABCD though it cannot be found geometrically; and to the three rectilineal figures, viz. the fquares of \(\mathrm{BD}, \mathrm{FH}\), and the iquare which is equal to the circle ABCD , there is a fuurth iquare proportional; becaufe to the three fraight lines which are their fides, there is a fourth ftraight line proportional \(\%\), and a \(\mathbf{~ 2} .6\). this fourth fquare, or a fpace equal to it, is the fpace which in this propofition is denoted by the letter \(S\) : And the like is to be underfood in the other places above cited: And it is probable that this has been Chewn by Euclid, but left out by fome editor; for the lemma which fome unfkilful hand has added to this propofition explains nothing of it.

\section*{PR O P. III. B. XII.}

In the Greek text and the tranflations, it is faid, "and " becaufe the two ftraight lines \(\mathrm{BA}, \mathrm{AC}\) which meet one an"other," \&c. here the angles BAC, KHL are demonftrated to be equal to one another by 1oth prop. B. II. which had been done before: Becaufe the triangle EAG was proved to be fimilar to the triangle KHL: This repetition is left out, and the triangles BAC, KHL are proved to be fimilar in a fhorter way by prop. 2I. B. 6.

> PR O P. IV. B. XII.

A few things in this are more fully explained than in the Greek text.
PR O P. V. B. XII.
 " as was before fhown," and the fame are found again in the end of prop. 18. of this book; but the demonftration referred to, except it be the ufelefs lemma annexed to the 2 d prop. is no where in thefe elements, and has been perhaps left out by fome editor who has forgot to cancel thofe words alfo.

\author{
PROP. VI. B. XII.
}

A fhorter demonftration is given of this ; and that which is in the Greek text may be made fhorter by a ftep than it is : For the author of it makes ufe of the 22 d prop. of B. 5 . twice: Whereas once would have ferved his purpofe; becaufe that propofition extends to any number of "magnitudes which are proportionals taken two and two, as well as to three which are proportional to other three.

\section*{COR. PROP.VIII. B. XIY.}

The demonftration of this is imperfect, becaufe it is not fhown, that the triangular pyramids into which thofe upon multangular bafes are divided, are fimilar to one another, as ought neceffarily to have been done, and is done in the like cafe in prop. 12. of this book: The full demonftration of the corollary is as follows :

Upon the polygonal bafes ABCDE, FGHKL, let there be firnilar and fimilarly fituated pyramids whici have the points \(\mathrm{M}, \mathrm{N}\) for their vertices: The pyramid ABCDEM has to the pyramid FGHKLN the triplicate ratio of that which the fide AB has to the homologous fide FG.
Let the polygons be divided into the triangles \(\mathrm{ABE}, \mathrm{EBC}\), ECD; FGL, LGH, LHK, which are fimilar \({ }^{\text {a }}\) each to each; b II. def. II. And becaufe the pyramids are fimilar, therefore \({ }^{b}\) the triangle EAM is fimilar to the triangle LFN, and the triangle ABM to FGN: Wherefore c ME is to EA, as NL to LF ; and as

AE to EB, fo is FL to LG, becaufe the triangles EAB, LFG are fimilar; therefore, ex æquali, as ME to EB , fo is NL to LG;

LG; In like manner it may be fhewn that EB is to BM, as Book XII. LG to GN ; therefore, again, ex æquali, as EM to MB, fo is LN to NG: Wherefore the triangles EMB, LNG having their fides proportionals are dequiangular, and fimilar to one d.s.6. another: Therefore the pyramids which have the triangles EAB, LFG for their bafes, and the points M, N for their vertices, are fimilar \({ }^{\mathrm{b}}\) to one another, for their folid angles are \({ }^{\mathrm{e}} \mathrm{e}\) qual, and the folids themfelves are contained by the fame number of fimilar planes: In the fame manner the pyramid EBCM bir. def. may be fhewn to be fimilar to the pyramid LGHN, and the pyramid ECDM to LHKN : And becaufe the pyramids EABM, LFGN are fimilar, and have triangular bafes, the pyramid EABM has \(f\) to LFGN the triplicate ratio of that which EB has to the homologous fide LG. And, in the fame manner, the pyramid EBCM has to the pyramid LGHN the triplicate ratio of that which EB has to LG: Therefore as the pyramid EABM is to the pyramid LFGN, fo is the pyramid EBCM to the pyramid LGHN : In like manner, as the pyramid EBCM is to LGHN, fo is the pyramid ECDM to the pyramid LHKN : And as one of the antecedents is to one of the confequents, fo are all the antecedents to all the confequents : Therefore as the pyramid EABM to the pyramid LFGN, fo is the whole pyramid ABCDEM to the whole pyramid FGHKLN : And the pyramid EABM has to the pyramid LFGN the triplicate ratio of that which \(A B\) has to \(F G\); therefore the whole pyramid has to the whole pyramid the triplicate ratio of that which \(A B\) has to the homologons fide FG. Q.E.D.

\section*{P R O P. XI, and XII. B. XII.}

The order of the letters of the alphabet is not obferved in thefe two propofitions, according to Euclid's manner, and is now reftored: By which means, the firft part of prop. 12. may be demonftrated in the fame words with the firft part of prop. II.; on this account the demonftration of that firft part is left out, and affumed from prop. II.
P R O P. XII. B. XII.

In this propofition the common fection of a plane parallel to the bafes of a cylinder, with the cylinder itfelf, is fuppofed to be a circle, and it was thought proper briefly to demonftrate it; from whence it is fufficiently manifeft, that this plane divides the cylinder into two others: And the fame thing is unflood to be fupplied in prop. 14.

\author{
PROP. XV. B. XII.
}
"And complete the cylinders AX, EO," both the enunciation and expofition of the propofition reprefent the cylinders as well as the cones, as already defcribed: Wherefore the reading o:ght rather to be, "and let the cones be ALC, ENG; " and the cylinders AX, EO."

The firft cafe in the fecond part of the demonftrat on is wanting; and fomething alfo in the fecond cafe of tha part, before the repetition of the conflruction is mentioned ; which are now added.

\section*{PR O P. XVII. B. XII.}

In the enunciation of this propofition, the Greek words zis

 and others, "in majori folidum polyhedrum defcribere quod " minoris fphæræ fuperficiem non tangat;" that is, "to de" fcribe in the greater fphere a folid polyhedron which fhall " not meet the fuperficies of the leffer fphere:" Whereby
 тns \(\varepsilon \lambda \alpha \sigma \sigma\) ovos \(\sigma \varphi\) aigas: But they ought by no means to be thus tranflated, for the folid polyhedron doth not only meet the fuperficies of the leffer fphere, but pervades the whole of that fphere: Therefore the forefaid worts are to be referred to тo \(\sigma \tau \varepsilon \xi \varepsilon \cup v\) woive \(\delta_{\rho} c \%\) and ought thus to be tranflated, viz. to defcribe in the greater fphere a Tolid polyhedron whofe fuperficies thall not meet the leffer fphere : as the meaning of the propofition neceffarily requires.

The demonftration of the propofition is fpoiled and mutilated : For fome eafy things are very explicitly demonftrated, while others not fo obvious are not fufficiently explained; for example, when it is affirmed, that the fquare of KB is greater than the double of the fquare of BZ , in the firt demonitration; and that the angle BZK is obtufe, in the fecond: Both which ought to have been demonftrated: Befides, in the firft demonftration, it is faid, "draw \(\mathrm{K} \Omega\) from the point K perpen"dicular to \(B D\); whereas it ought to have been faid, " join "KV", and it hould have been demonftrated that KV is perpendicular to \(\mathrm{BD}:\) For it is evident from the figure in Hervagias's and Gregory's editions; and from the words of the demon-
demonftration, that the Greek Editor did not perceive that Book XII. the perpendicular drawn from the point K to the ftraight line
\(\underbrace{\text { Book XII: }}\) BD muft neceffarily fall upon the point V , for in the figure it is made to fall upon the point. \(\Omega\) a different point from \(V\), which is likewife fuppofed in the demonftration. Commandine feems to have been aware of this; for in this figure he marks one and the fame point with the two letters \(\mathrm{V}, \Omega\); and before Commandine, the learned John Dee, in the commentary he annexes to this propofition in Heury Billinfley's tranflation of the Elements printed at London, ann. 1570, exprefsly takes notice of this error, and gives a demonftration fuited to the conftruction in the Greek text, by which he thews that the perpendicular drawn from the point K to BD , muft neceffarily fall upon the point \(V\).

Likewife it is not demonftrated that the quadrilateral figures SOPT, TPRY, and the triangle YRX do not meet the leffer £phere. as was neceffary to have been done: Only Clavius, as far as I know, has obferved this, and demonftrated it by a lemma, which is now premifed to this propofition, fomething altered and more briefly demonftrated.

In the corollary of this propofition, it is fuppofed that a folid polyhedron is defcribed in the other fphere fimilar to that which is defcribed in the fphere BCDE; but, as the conftruction by which this may be done is not given, it was thought proper to give it, and to demonftrate, that the pyramids in it are fimilar to thofe of the fame order in the folid polyhedron defcribed in the fphere BCDE.

From the preceding notes, it is fufficiently evident how much the elements of Euclid, who was a moft accurate geometer, have been vitiated and mutilated by ignorant editors. The opinion which the greateft part of learned men have entertained concerning the prefent Greek edition, viz. that it is very little or nothing different from the genuine work of Euclid, has without doubt deceived them, and made them lefs attentive and accurate in examining that edition; whereby feveral errors, fome of them grofs enough, have efcaped their notice from the age in which Then lived to this time. Upon which account there is fome ground to hope that the pains we have taken in correcting thofe errors, and freeing the Elements as far as we could from blemifhes, will not be unacceptable

Boak XII. ceptable to good judges who can difcern when demonftrations are legitimate, and when they are not.

The objections which, fince the firft edition, have been made againft fome things in the notes, efpecially againft the doctrine of proportionals, have either been fully anfwered in Dr Barrow's Lect. Mathemat. and in thefe notes; or are fuch, except one which has been taken notice of in the note on prop. x. book II. as fhew that the perfon who made them has not fufficiently confidered the things againft which they are brought; fo that it is not neceffary to make any further anfwer to thefe objections and others like them againft Euclid's definition of proportionals; of which definition Dr Barrow juftly fays in page 297. of the above named book, that "Ni"fi machinis impulfa validioribus æternum perfiftet incons"cuffa."
\[
\mathrm{F} \perp \mathrm{~N} \perp \mathrm{~S} \text {. }
\]

\section*{EUCLID's}

\section*{D A T. A.}

IN THIS EDITION
SEVERAL ERRORS ARE CORRECTED,

A N D
SOME PROPOSITIONS ADDED.

BY ROBERT SIMSON, M. D.
Emeritus Profeffor of Mathematics in the Univerfity of Glafgow.
EDINBURGH:

Printed for F.Wingrave, London; and E. Balfour, Edinburgho
M.DCC.XCIV.

\section*{PREFACE.}

EUCLID's DATA is the firft in order of the books written by the ancient geometers to facilitate and promote the method of refolution or analyfis. In the general, a thing is faid to be given which is either actually exhibited, or can be found out, that is, which is either known by hypothefis, or that can be demonftrated to be known; and the propofitions in the book of Euclid's Data fhew what things can be found out or known from thofe that by hypothefis are already known; fo that in the analyfis or inveftigation of a problem, from the things that are laid down to be known or given, by the help of thefe propofitions otherthingsare demonftrated to be given, and from thefe, other things are again thewn to be given, and fo on, until that which was propofed to be found out in the problem is demonftrated to be given, and when this is done, the problem is folved, and its compofition is made and derived from the compofitions of the Data which were made ufe of in the analyfis. And thus the Data of Euclid are of the moft general and neceffary ufe in the folution of problems of every kind.

Euclid is reckoned to be the author of the Book of the Data, both by the ancient and moderngeometers; and there feems to be no doubt of his having written a book on this fubject, but which, in the courfe of fo many ages, has been much vitiated by unfkilful editors in feveral places, both in the order of the propofitions, and in the definitions and demonftrations them-
felves.
felves. To correct the errors which are now found in it, and bring it nearer to the accuracy with which it was, no doubt, at firft written by Euclid, is the defign of, this edition, that fo it may be rendered more ufeful to geometers, at leaft to beginners who defire to learn the inveftigatory method of the ancients. And for their fakes, the compofitions of moft of the Data are fubjoined to their demonftrations, that the compofitions of problems folved by help of the Data may be the more eafily made.

Marinus the philofopher's preface, which, in the Greek edition, is prefixed to the Data, is here left out, as being of no ufe to underftand them. At the end of it, he fays, that Euclid has not ufed the fynthetical, but the analytical method in delivering them; in which he is quite miftaken; for, in the analyfis of a theorem, the thing to be demonftrated is affumed in the analyfis; but in the demonftrations of the Data, the thing to be demonftrated, which is, that fomething or other is given, is never once affumed in the demonftration, from which it is manifeft, that every one of them is demonftrated fynthetically; though indeed, if a propofition of the Data be turned into a problem, for example the 84 th or 85 th in the former editions, which here are the 85 th and 86 th , the demonftration of the propofition becomes the analyfis of the problem.

Wherein this edition differs from the Greek, and the reafons of the alterations from it, will be fhewn in the notes at the end of the Data.

\section*{\(\left[\begin{array}{lll} & 367 &]\end{array}\right.\) \\ EUCLID's DATA. \\ DEFINITIONS.}

\section*{I.}

SPACES, lines, and angles, are faid to be given in magnitude, when equals to them can be found.
II.

A ratio is faid to be given, when a ratio of a given magnitude to a given magnitude which is the fame ratio with it can be found.

\section*{III.}

Rectilineal figures are faid to be given in fpecies, which have each of their angles given, and the ratios of their fides given.
IV.

Points, lines, and fpaces are faid to be given in pofition, which have always the fame fituation, and which are either actually exhibited, or can be found.
A.

An angle is faid to be given in pofition, which is contained by ftraight lines, given in pofition.

A circle is faid to be given in magnitude, when a ftraight line from its centre to the circumference is given in magnitude. VI.

A circle is faid to be given in pofition and magnitude, the centre of which is given in pofition, and a fraight line from, it to the circumference is given in magnitude.

> VII.

Segments of circles are faid to be given in magnitude, when the angles in them, and their bafes, are given in magnitude.

> VIII.

Segments of circles are faid to be given in pofition and magnitude, when the angles in them are given in magnitude, and their bafes are given both in pofition and magnitude.

\section*{IX.}

A magnitude is faid to be greater than another by a given magnitude, when this given magnitude being taken from it, the remainder is equal to the other magnitude.

Bत̈n XTI.

\section*{X.}

A magnitude is faid to be lefs than another by a given magnitude, when this given magnitude being added to it, the whole is equal to the other magnitude.
* I.

\section*{PROPOSITION I.}

See N. HE ratios of given magnitudes to one another is given.

Let \(A, B\) be two given magnitudes, the ratio of \(A\) to \(B\) is given.

Becaufe \(\mathbf{A}\) is a given magnitude, there may
a I . def. a be found one equal to it; let this be C :
dat. And becaufe B is given, one equal to it may be found; let it be D ; and fince A is equal
b. 7. 5. to \(C\), and \(B\) to \(D\); therefore \({ }^{b} A\) is to \(B\), as C to D ; and confequently the ratio of A to \(B\) is given, becaufe the ratio of the given magnitudes \(\mathrm{C}, \mathrm{D}\) which is the fame with it, \(\mathbf{A}\) B \(\mathbf{C}\) has been found.
PR O P. II.

See N. F a given magnitude has a given ratio to another magnitude, " and if unto the two magnitudes by "6 which the given ratio is exhibited, and the given " magnitude, a fourth proportional can be found;" the other magnitude is given.

Let the given magnitude \(A\) have a given ratio to the magnitude \(B\); if a fourth proportional can be found to the three magnitudes above named, B is given in magnitude.

Becaufe \(A\) is given, a magnitude may be
2 3. def. found equal to it a ; let this be C : And becaufe the ratio of \(A\) to \(B\) is given, a ratio which is the fame with it may be found, let this be the ratio of the given magnitude E to the given magnitude \(F\) : Unto the magnitudes E, F, C find a fourth proportional D , which, by the hypothefis, can be done. Wherefore, becaufe A is to B , as E to F ; and as E to \(\mathrm{F}, \mathrm{fo}\) is C to \(\mathrm{D} ; \mathrm{A}\) is \({ }^{\text {b }}\) to B , as C to

\footnotetext{
* The figures in the margin thow the number of the propofitions in the other cations.
}
D. But \(A\) is equal to \(C\); therefore \(c B\) is equal to \(D\). The \(\cdot \mathrm{c} 14.5\). magnitude \(B\) is therefore given \({ }^{2}\), becaufe a magnitude D equal a 1 def. to it has been found.

The limitation within the inverted commas is not in the Greek test, but is now neceffarily added; and the fame muft be underftood in all the propofitions of the book which depend upon this fecond propofition, where it is not exprefsly mentioned. See the note upon it.
PROP. III.
\[
3
\]

I\(F\) any given magnitudes be added together, their fum fhall be given.

Let any given magnitudes \(\mathrm{AB}, \mathrm{BC}\) be added together, their fum. AC is given.

Becaufe \(A B\) is given, a magnitude equal to it may a be found; a I def. let this be \(D E\) : And becaufe \(B C\) is given, one equal to it may be found; let this be EF: Wherefore, becaufe \(A B\) is equal to \(D E\), and \(B C\) equal
 to EF ; the whole AC is equal to the whole DF : AC is therefore given, becaufe DF has been found which is equal to it.
PROP. IV.

IF a given magnitude be taken from a given magnitude; the remaining magnitude fhall be given.

From the given magnitude \(A B\), let the given magnitude \(A C\) be taken; the remaining magnitude \(C B\) is given.

Becaufe \(A B\) is given, a magnitude equal to it may a be a 1 def. found ; let this be DE: And becaufe A C B \(A C\) is given, one equal to it may be
 becaufe \(A B\) is equal to \(D E\), and \(A C\) to DF ; the remainder CB is equal
 to the remainder FE. CB is therefore given \({ }^{\text {a }}\), becaufe FE which is equal to it has been found.
\[
A_{2} \quad \text { PROP }
\]

See N. F of three magnitudes, the firft together with the fecond be given, and alfo the fecond together with the third ; either the firft is equal to the third, or one of them is greater than the other by a given magnitude.

Let \(A B, B C, C D\) be three magnitudes, of which \(A B\) to. gether with \(B C\), that is \(A C\), is given; and alfo \(B C\) together with \(C D\), that is \(B D\), is given. Either \(A B\) is equal to \(C D\), or one of them is greater than the other by a given magnitade.

Becaufe AC, BD are each of them given, they are either equal to one another, or not equal. Firft, let them be equal, and becault
 AC is equal to BD , take away the common part BC ; therefore the remainder \(A B\) is equal to the remainder \(C D\).

But if they be unequal, let \(A C\) be greater than \(B D\), and make CE equal to BD. Therefore CE is given, becaufe BD is given. And the whole AC is
\({ }^{2} 4\) dat. given; therefore a \(A E\) the remain. der is given. And becaufe EC is
 equal to BD , by taking BC from both, the remainder \(E B\) is equal to the remainder CD. And \(A E\) is given; whertfore \(A B\) exceeds \(E B\), that is \(C D\) by the given magnitude AE.

\section*{PROP. VI.}
see \(N\).

IF a magnitude has a given ratio to a part of it, it fhall alfo have a given ratio to the remaining part of it.

Let the magnitude \(A B\) have a given ratio to \(A C\) a part of it; it has alfo a given ratio to the remainder \(B C\).

Becaufe the ratio of \(A B\) to \(A C\) is given, a ratio may be a 2. def. found a which is the fame to it : Let this be the ratio of DE a given magnitude to the given mag. nitude DF. And becaufe DE, DF are b 4. dat. given, the remainder FE is b given And becaufe \(A B\) is to \(A C\), as \(D \mathrm{E}\) to

- E. 5. DF, by converfion \(\mathrm{C} A B\) is to BC , as
\(D E\) to EF. Therefore the ratio of \(A B\) to \(B C\) is given, becaufe the ratio of the given magnitudes \(\mathrm{DE}, \mathrm{EF}\), which is the fame with it, has been found.

Cor. From this it follows, that the parts \(\mathrm{AC}, \mathrm{CB}\) have a given ratio to one another : Becaufe as \(A B\) to \(B C\), fo is \(D E\) to EF ; by divifion d, AC is to CB , as DF to FE ; and \(\mathrm{DF}, \mathrm{d} 17.5\). FE are given; therefore \({ }^{\text {a }}\) the ratio of AC to CB is given. a 2. def.
PROP. VII.
6. See \(N\).
F two magnitudes which have a given ratio to one another, be added together; the whole magnitude fhall have to each of them a given ratio.

Let the magnitudes \(\mathrm{AB}, \mathrm{BC}\) which have a given ratio to one another, be added together; the whole AC has to each of the raagnitudes \(A B, B C\) a given ratio.

Becaufe the ratio of AB to BC is given, a ratio may be found \({ }^{a}\) which is the fame with it; let this be the ratio of the given magnitudes DE, EF : And A B C
becaufe DE, EF are given, the whole DF is given b : And becaufe as AB to BC , fo is DE to EF; by compofition c AC is to CB as DF to FE ; and by converfion \(\mathrm{d}, \mathrm{AC}\) is to AB , as DF to DE : Wherefore becaufe \(A C\) is to each of the magnitudes \(A B, B C\), as DF to each of the others DE, EF ; the ratio of AC to each of the magnitudes \(A B, B C\) is given \(a_{\text {o }}\)

\section*{PROP. VIII.}

\(T^{F}\)F a given magnitude be divided into two parts which have a given ratio to one another, and if a fourth proportional can be found to the fum of the two magnitudes by which the given ratio is exhibited, one of them, and the given magnitude; each of the parts is given.

Let the given magnitude \(A B\) be divided into the parts \(A C\), \(C B\) which have a given ratio to one another ; if a fourch proportional can be found to the above named magnitudes; AC and CB are each of them given.

Becaufe the ratio of AC to CB is F given, the ratio of \(A B\) to \(B C\) is givena; therefore a ratio a 7 dat. A a 2 which
b 2. def. which is the fame with it can be found b , let this be the ratio of the given magnitudes DE, EF : And becaufe the given magnitude \(A B\) has to BC the given ratio of DE to \(E F\), if unto \(D E, E F, A B\) a fourth \(D\)
 proportional can be found, this which
c 2. dat. is \(B C\) is given \({ }^{c}\); and becaufe \(A B\) is given, the other part \(A C\)
d. dat. is given d.

In the fame manner, and with the like limitation, if the difference AC of two magnitudes \(\mathrm{AB}, \mathrm{BC}\) which have a given ratio be given; each of the magnitudes \(\mathrm{AB}, \mathrm{BC}\) is given.

\section*{PROP.IX.}

1 KAGNITUDES which have given ratios to the fame magnitude, have alfo a given ratio to one another.

Let \(A, C\) have each of them a given ratio to \(B\); \(A\) has a given ratio to \(\mathbf{C}\).

Becaufe the ratio of A to B is given, a ratio which is the fame to it may be found a; let this be the ratio of the given magnitudes \(\mathrm{D}, \mathrm{E}\) : And becaufe the ratio of B to C is given, a ratio which is the fame with it may be found a; let this be the ratio of the given magnitudes \(F, G: T o F, G, E\) find a fourth proportional H , if it can be done; and becaufe as \(A\) is to \(B\), fo is \(D\) to \(E\); and as \(B\) to \(C\), fo is (\(F\) to \(G\), and fo is) E to H ; ex æquali, as A to C , fo is D to H : Therefore the ratio of A to C is given a, becaufe the ratio of the given magnitudes D and H , which is the fame with it has been found: But if a
 fourth proportional to F, G, E cannot be found, then it can only be faid that the ratio of \(\mathbf{A}\) to \(C\) is compounded of the ratios of \(A\) to \(B\), and \(B\) to \(C\), that is, of the given ratios of D to E , and F to G .

\section*{D A TA.}

\author{
PROP. X.
}
9.

F two or more magnitudes have given ratios to one another, and if they have given ratios, though they be not the fame, \(t\) fome other magnitudes; thefe other magnitudes fhal: allo have given ratius to one another.

Let two or more magnitudes \(\mathrm{A}, \mathrm{B}, \mathrm{C}\) have given ratios to one another ; and let them have given ra os, th ught they be not the famé, to fome other magnitudes \(\mathrm{D}, \mathrm{E}, \mathrm{F}\) : The magnitudes \(\mathrm{D}, \mathrm{E}, \mathrm{F}\) have given rarios to one another.

Becaufe the ratio of \(A\) to \(B\) is given, and likewife the ratio of A to D ; therefore the ra tio of \(D\) to \(B\) is given \({ }^{\text {; }}\) but the ratio of \(B\) to \(E\) is give: therefore a the ratio of D to E is given: And becaufe th
 ratio of B to C is given, and alfo the ratio of B to E ; the ratio of E to C is given a : And the ratio of C to F is given; wherefore the ratio of E to F is given: \(D, E, F\) have therefore given ratios to one another.

\section*{PROP. XI.}

IF two magnitudes have each of them a given ratio to another magnitude, both of them together fhall have a given ratio to that other.

Let the magnitudes \(A B, B C\) have a given ratio to the magnitude \(D ; A C\) has a given ratio to the fame \(D\).

Becaufe \(A B, B C\) have each of them a given ratio to \(D\), the ratio
 of AB to BC is given \({ }^{2}\) : And by compofition, the ratio of \(A, C\) to \(C B\)

D
a 9. dat. is given \({ }^{b}\) : But the ratio of BC to \(D\) is given; therefore a the ratio of \(A C\) to \(D\) is given.

\section*{EUCLID's}
23.

\section*{P R O P. XII.}

See N.
F the whole have to the whole a given ratio, and the parts have to the parts given, but not the fame, ratios: Every one of them, whole or part, fhall have to every one a given ratio,

Let the whole \(A B\) have a given ratio to the whole \(C D\), and the parts AE, EB have given, but not the fame, ratios to the parts CF, FD: Every one fhall have to every one, whole or part, a given ratio.

Becaufe the ratio of AE to CF is given, as AE to CF, fo make \(A B\) to \(C G\); the rati, therefore of \(A B\) to \(C G\) is given; wherefore the ratio of the remainder EB to the remainder given c: And becaufe AB has to each of the magnitudes \(\mathrm{CD}, \mathrm{CG}\) a given ratio, the ratio of \(C D\) to \(C G\) is given \({ }^{b}\); and therefore \(c\) the ratio of \(C D\) to \(D G\) is given: But the ratio of GD to DF is given, wherefore \(b\) the
d cor. 6. dat.
e Io dat
E \%. dat. ratio of \(C D\) to \(D F\) is given, and confequently \(d\) the ratio of CF to FD is given ; but the ratio of CF to AE is given, as allo the ratio of FD to EB; wherefore e the ratio of AE to EB is given; as alfo the ratio of \(A B\) to each of them \({ }^{f}\) : The ratio therefore of every one to every one is given,
24.

\section*{PROP. XIII.}

See N. F the firft of three proportional ftraight lines has a given ratio to the third, the firft fhall alfo have a given ratio to the fecond.

Let \(\mathrm{A}, \mathrm{B}, \mathrm{C}\) be three proportional ftraight lines, that is, as \(A\) to \(B\), fo is \(B\) to \(C \overline{;}\) if \(A\) has to \(C\) a given ratio, \(A\) fhall alfo have to \(B\) a given ratio.

Becaule the ratio of \(\mathbf{A}\) to \(\mathbf{C}\) is given, a ratio which is the
a 2 def. fame with it may be found a ; let this be the ratio of the gi-
b 33.6. ven ftraight lines \(D, E\); and between \(D\) and \(E\) find \(a^{b}\) mean proportional
proportional F ; therefore the rectangle contained by D and E is equal to the fquare of F , and the rect angle \(\mathrm{D}, \mathrm{E}\) is given, becaufe its fides \(\mathrm{D}, \mathrm{E}\) are given; wherefore the fquare of F , and the ftraight line \(F\) is given : And becanfe as A is to \(\mathbf{C}\), fo is \(D\) to \(E\); but as \(A\) to \(C\), fo is \(c\) the fquare of \(A\) to the fquare of \(B\); and as D to E , fo is c the fquare of D to the fquare of \(F\) : Therefore the fquare \(d\) of \(A\) is to the fquare of \(B\), as the fquare of \(D\) to the fquare of F : As therefore \({ }^{t}\) the ftraight line A to the ftraigh line \(\mathrm{B}, \mathrm{fo}\) is the ftraight line D to the ftraight line F: Therefore the ratio of \(A\) to \(B\) is givena, becaufe the ratio of the given ftraight lines \(D, F\) which is the fame with it has been found.

\section*{PR O P. XIV.}

IF a magnitude together with a given magnitude See N has a given ratio to another magnitude ; the excefs of this other magnitude above a given magnitude has a given ratio to the firft magnitude : And if the excefs of a magnitude above a given magnitude has a given ratio to another magnitude; this other magnitude together with a given magnitưde has a given ratio to the firf magnitude.

Let the magnitude \(A B\) together with the given magnitude BE , that is AE , have a given ratio to the magnitude CD ; the excefs of \(C D\) abovea given magnitude \(h\) is a given ratio to \(A B\).

Becaufe the ratio of AE to CD is given, as AE to CD , fo make BE to FD ; therefore the ratio of BE to FD is given, and BE is given; wherefore FD is given a : And becaufe as AE to CD, fo is BE to FD, the remainder \(A B\) is \({ }^{b}\) to the remainder CE , as AE to CD: But the ratio
 of \(A E\) to \(C D\) is given, therefore the ratio of \(A B\) to \(C F\) is given; that is, CF the excefs of CD above the given magnitude FD has a given ratio to AB .

Next, let the excefs of the magnitude \(A B\) above the given magnitue \(B E\), that is, let \(A E\) have a given ratio to the mag-
nitude \(C D\) : \(C D\) together with a given magnitude has a given ratio to AB .

Becaufe the ratio of AE , to CD is given, as AE to CD , fo make BE to FD ; therefore the ratio of \(A \quad \mathrm{~B}\) \(B E\) to \(F D\) is given and \(B E\) is given,

\section*{PROP. XV.} See N. F a magnitude together with that to which ano-
ther magnitude has a given ratio, be given; the
fum of this other, and that to which the firt magniF a magnitude together with that to which ano-
ther magnitude has a given ratio, be given; the
fum of this other, and that to which the firt magniF a magnitude together with that to which ano-
ther magnitude has a given ratio, be given; the
fum of this other, and that to which the firt magnitude has a given ratio is given.

Let \(A B, C D\) be two magnitudes of which \(A B\) together with BE to which CD has a given ratio, is given; CD is given together with that magnitude to which AB has a given ratio. Becaule the ratio of CD to BE is given, as BE to CD , fo
make AE to FD ; therefore the ratio of AE to FD is given, Becaufe the ratio of \(C D\) to BE is given, as BE to CD , fo
make \(A E\) to FD ; therefore the ratio of AE to FD is given, a 2. dat. and AE is given, wherefore \({ }^{\text {a }} \mathrm{FD}\) a \(\quad\) B \(\quad\) II and \(A E\) is given, wherefore a FD
is given : And becaufe as BE to \(\quad\) B \(\mathrm{I}_{4}\)
6 Cor. 19.5. CD, fo is \(A E\) to \(F D: A B\) is to FC , as BE to CD : And the ratio of \(B E\) to \(C D\) is given, wherefore the ratio of \(A B\) to \(F C\) is given: And \(F D\) is given, that is \(C D\)
together with \(F C\) to which \(A B\) has a given ratio is given. the ratio of \(A B\) to \(F C\) is given: And \(F D\) is given, that is \(C D\)
together with \(F C\) to which \(A B\) has a given ratio is given.
10.

See N.
- wherefore FD is given a : And becaufe as AE to CD , fo is BE to \(\mathrm{FD}, \mathrm{AB}\) is D F
to CF ; as \(\mathrm{C} A E\) to CD : But the ratio
of \(A E\) to \(C D\) is given, therefore the ratio of \(A B\) to \(C F\) is given : that is, CF which is equal to CD together with the given magnitude DF has a given ratio to AB .
B.

PROP. XVI.

IF the excefs of a magnitude above a given magnitade, has a given ratio to another magnitude; the excefs of both together above a given magnitude fhall have to that other a given ratio: And if the excefs of two magnitudes together above a given magnitude, has to one of them a giyen ratio; either the excefs of the other above a given magnitude has to that one a given ratio; or the other is given together with the magnitude to which that one has a given ratio.

Let the excefs of the magnitude AB above a given magnitude, have a given ratio to the magnitude BC ; the excels of AC , both of them together, above the given magnitude, has a given ratio to BC.

Let \(A D\) be the given magnitude, the excefs of \(A B\) above which, viz. DB has a given ratio A D B C. to BC : And becaufe DB ' has a given ratio to BC , the ratio of DC to CB is given \({ }^{2}\), and AD is given ; therefore DC , the excefs a 7 . dat. of \(A C\) above the given magnitude \(A D\), has a given ratio to BC.
Next, let the excefs of two magnitudes \(\mathrm{AB}, \mathrm{BC}\) together, above a given magnitude, have to one of them BC a given ratio; ei-
 ther the excefs of the other of them
\(A \cdot B\) above the given magnitude flhall have to \(B C\) a given ratio ; or AB is given, together with the magnitude to which BC has a given ratio.
Let \(A D\) be the given magnitude, and firt let it be lefs than AB ; and becaufe DC the excefs of AC above AD has a given ratio to \(\mathrm{BC}, \mathrm{DB}\) has b a given ratio to BC ; that is, DB \({ }^{\mathrm{b} \text { Cor. } 6 .}\) d. the excefs of \(A B\) above the given magnitude \(A D\), has a given ratio to BC.

But let the given magnitude be greater than \(A B\), and make \(A E\) equal to it; and becaufe. EC, the excefs of \(A C\) above \(A E\) has to \(B G\) a given ratio, \(B C\) has \(c\) a given ratio to \(B E\); and \(c \sigma\). dat. becaule \(A E\) is given, \(A B\) together with \(B E\) to which \(B C\) has a given ratio is given.

\section*{PROP. XVII.}

IF the excefs of a magnitude above a given magniSee N. tude has a given ratio to another magnitude; the excefs of the fame firft magnitude above a given magnitude, fhall have a given ratio to both the magnitudes together. And if the excefs of either of two magnitudes above a given magnitude has a given ratio to both magnitudes together; the excefs of the fame above a given magnitude fhall have a given ratio to the other.

Let the excefs of the magnitude \(A B\) above a given magnitude have a given ratio to the magnitude BC ; the excels of \(A B\) above a given magnitude has a given ratio to AC.

Let \(A D\) be the given magnitude; and becaufe \(D B\), the cxcefs of \(A B\) above \(A D\), has a given ratio to \(B C\); the ratio of
a 7. dat.
b. 2. dat.
c 12.5 .
a 6 dat.
-19.5.
f Cor. 6. dat. DC to DB is given \({ }^{\text {a }}\) : Make the ratio of AD to DE the fame with this ratio; therefore the ratio of \(A D\) to \(D E\) is given; and \(A D\) \(\qquad\) E 3 C is given, wherefore \(\mathrm{D} D \mathrm{E}\) and the remainder AE are given: And becaufe as \(D C\) to \(D B\), fo is \(A D\) to \(D E, A C\) is \(c\) to \(E B\), as DC to DB ; and the ratio of DC to DB is given; wherefore the ratio of \(A C\) to EB is given: And becaufe the ratio of EB to AC is given. and that AE is given, therefore EB the excefs of \(A B\) above the given magnitude \(A E\), has a given ratio to AC.

Next, let the excefs of AB above a given magnitude have a given ratio to \(A B\) and \(B C\) together, that is to \(A C\); the excefs of \(A B\) above a given magnitude has a given ratio to \(B C\).

Let AE be the given magnitude; and becaufe EB the excefs of \(A B\) above \(A E\) has to \(A C\) a given ratio, as \(A C\) to \(E B\) fo make \(A D\) to \(D E\); therefore the ratio of \(A D\) to \(D E\) is given, as alfod the ratio of \(A D\) to \(A E\) : And \(A E\) is given, wherefore \({ }^{b} A D\) is given: And becaufe, as the whole \(A C\), to the whole EB , fo is AD to DE , the remainder DC is e to the remainder \(D B\), as \(A C\) to \(E B\); and the ratio of \(A C\) to \(E B\) is given; wher fore the ratio o DC to DB is given, as allo \(f\) the ratio of \(D B\) to \(B C\) : And \(A D\) is given; therefore \(D B\), the excefs of \(A B\) above a given maguitude \(A D\), has a given ratio to BC.

\section*{PROP. XVIII.}

IF to each of two magnitudes, which have a given ratio to one another, a given magnitude be added; the whole fhall either have a given ratio to one another, or the excefs of one of them above a given magnitude fhall have a given ratio to the other.

Let the two magnitudes \(A B, C D\) have a given ratio to one another, and to AB let the given magnitude BE be added, and the given magnitude DF to CD: The wholes AE, CF either have a given ratio to one another, or the excefs of one of them above a given magnitude has a given ratio to the other \({ }^{\text {a }}\).

Becaufe BE, DF are each of them given, their ratio is given
and if this ratio be the fame with A
the ratio of AB to CD , the ratio of \(A E\) to \(C F\), which is the fame b
with the given ratio of \(A B\) to \(C D, D\) I fhall be given.

But if the ratio of BE to DF be not the fame with the astio of \(A B\) to \(C D\), either it is greater than the ratio of \(A B\) to CD , or, by inverfion, the ratio of DF to BE is greater than the ratio of CD to AB : Firft, let the ratio of BE to DF be greater than the ratio of \(A B\) to \(C D\); and as \(A B\) to \(C D\), fo make \(B G\). to \(D F\); therefore the ratio of \(B G\) to DF is given; and DF is given, therefore c BG is given: c 2 dat. And becaufe \(B E\) has a greater ratio to \(D F\) than (\(A B\) to \(C D\), that is, than) BG to DF, BE is greater d than \(B G\) : And be- \(d\) ro. 5 caufe as \(A B\) to \(C D\), fo is \(B G\) to \(D F\); therefore \(A G\) is \(b\) to \(C F\), as \(A B\) to \(C D\) : But the ratio of \(A B\) to \(C D\) is given, wherefore the ratio of AG to CF is given; and becaufe BE, BG are each of them given, GE is given: Therefore AG, the excefs of AE above a given magnitude GE , has a given ratio to CF. The other cafe is demonftrated in the fame manner.

> PRO P. XIX.
F from each of two magnitudes, which have a given ratio to one another, a given magnitude be taken, the remainders fhall either have a given ratio to one another, or the excels of one of them above a given magnitude, fhall have a given ratio to the other.

Let the magnitudes \(A B, C D\) have a given ratio to one another, and from \(A B\) let the given magnitude \(A E\) be taken, and from CD, the given magnitudes CF : The remainder EB, FD fhall either have a given ratio to one another, or the excefs of one of them above a gi- A. ven magnitude fhall have a given ratio to the other.

Becaufe AE, CF are each of
 them given, their ratio is givena; and if this ratio be the fame with the ratio of \(A B\) to a \(I\) dat I CD,

CD , the ratio of the remainder EB to the remainder FD ,
b 19. 5. which is the fame \({ }^{b}\) with the given ratio of \(A B\) to \(C D\), fhall be given.

But if the ratio of \(A B\) to \(C D\) be not the fame with the ratio of AE to CF , either it is greater than the ratio of AE to CF , or, by inverfion, the ratio CD to AB is greater than the ratio of \(\dot{C} F\) to \(A E\) : Firft, let the ratio of \(A B\) to \(C D\) be greater than the ratio of \(A E\) to \(C F\), and as \(A B\) to \(C D\), fo make AG to CF; therefore the A
ratio of AG to CF is given, and
c 2 dat CE is given, wherefore \(\mathrm{c} A G\) is given : And becaufe the ratio of 2 \(A B\) to \(C D\), that is, the ratio or \(A G\) to CF , is greater than the ratio of AE to \(\mathrm{CF} ; \mathrm{AG}\) is
d 10.5 . greater \({ }^{d}\) than \(A E\) : And \(A G, A E\) are given, therefore the remainder EG is given, and as \(A B\) to \(C D\), fo is \(A G\) to \(C F\), and fo is \(b\) the remainder GB to the remainder FD ; and the ratio of \(A B\) to \(C D\) is given : Wherefore the ratio of \(G B\) to \(F D\) is given ; therefore \(G B\), the excef \(f_{\overline{3}}\) of \(E B\) above a given magnitude EG, has a given ratio to FD. In the fame manner the other cafe is demonftrated.
PROP. XX.

IF to one of two magnitudes which have a given ratio to one another, a given magnitude be added, and from the other a given magnitude be taken; the excefs of the fum above a given magnitude fhall have a given ratio to the remainder.

Let the two magnitudes \(A B, C D\) have a given ratio to one another, and to AB let the given magnitude \(\mathrm{l} . \mathrm{A}\) be added, and from CD let the given magnitude CF be taken; the excefs of the fum EB above a given magnitude has a given ratio to the remainder FD .

Becaufe the ratio of \(A B\) to \(C D\) is given, make as \(A B\) to \(C D\), fo \(A G\) to \(C F\) : Therefore the ratio of \(A G\) to \(C F\) is given, and
2 dat. CF is given, wherefore \({ }^{\text {a }}\) AG is
given; and EA is given, therefore the whole \(E G\) is given: And becaufe as AB to CD . fo is AG

b 19. 5. to CF , and fo is \({ }^{\mathrm{b}}\) the remainder
GB to the remainder FD ; the ratio of GB to FD is given. And EG is given, therefore GB, the excefs of the fum EB a.
bove the given magnitude EG, has a given ratio to the remain\(\operatorname{der}\) FD.
\[
\mathrm{P} R \text { ○ P. XXI. }
\]

IF two magnitudes have a given ratio to one another, See \(N\). if a given magnitude be added to one of them, and the other be taken from a given magnitude; the fum, together with the magnitude to which the remainder has a given ratio, is given: And the remainder is given together with the magnitude to which the fum has a given ratio.

Let the two magnitudes \(\mathrm{AB}, \mathrm{CD}\) have a given ratio to one another; and to AB let the given magnitude BE be added, and let \(C D\) be taken from the given magnitude FD : The fum AE is given together with the magnitude to which the remainder FC has a given ratio.

Becaufe the ratio of \(A B\) to \(C D\) is given, make as \(A B\) to \(C D\), fo \(G B\) to FD : Therefore the ratio of GB to FD is given, and FD is given, wherefore GB G whole GE is therefore given: and becaufe as \(A B\) to \(C D\), fo is GB
 to \(F D\), and to is \(b\) GA to \(F C\); the ratio of GA to FC is given: And AE together with GA is given, becaufe GE is given; therefore the furn AE, together with \(G A\), to which the remainder \(F C\) has a given ratio, is given. The fecond part is manifeft from prop. I5.

> PROB. XXII.
D.

IF two magnitudes have a given ratioto one another, See N. if from one of them a given magnitude be taken, and the other be taken from a given magnitude; each of the remainders is given together with the magnitude to which the other remainder has a given ratio.

Let the two magnitudes \(A B, C D\) have a given ratio to one another, and from AB let the given magnitude AE be taken, and
and let \(C D\) be taken from the given magnitude CF : The remainder EB is given together with the magnitude to which the other remainder DF has a given ratio.

Becaufe the ratio of \(A B\) to \(C D\) is given, make as \(A B\) to CD , fo \(A G\) to CF : The ratio of \(A G\) to \(C F\) is therefore given, and CF is given, wherefore \({ }^{2}\) AG is given; and AE is given, and therefore the remainder EG is given: And becaufe as AB to

1. 19. 5. CD, fo is AG to CF: And fo is b the remainder \(B G\) to the remainder \(D F\); the ratio of \(B G\) to \(D F\) is given: And EB together with \(B G\) is given, becaufe EG is given : Therefore the remainder EB together with BG, to which DF the other remainder has a given ratio, is given. The fecond part is plain from this and prop. 15 .
20.

> P R O P. XXIII.

See N. F, from two given magnitudes there be taken magnitudes which have a given ratio to one another, the remainders fhall either have a given ratio to one another, or the excefs of one of them above a given magnitude fhall have a given ratio to the other.

Let \(A B, C D\) be two given magnitudes, and from them let the magnitudes AE, CF, which have a given ratio to one another, be taken; the remainders EB; FD either have a given ratio to one another, or the excefs of one of them above a giveri magnitude has a given ratio to the other.

Becaufe AB, CD are each of them given, the ratio of \(A B\) to CD is given: And if this ratio be the fame with the ratio of AE
 to CF , then the remainder EB
a 19. 5. has a the fame given ratio to the remainder FD.
But if the ratio of \(A B\) to \(C D\) be not the fame with the ratio of \(A E\) to \(C F\), it is either greater than it, or, by inverfion, the ratio of \(C D\) to \(A B\) is greater than the ratio of CF to \(A E\) : Firft, let the ratio of \(A B\) to \(C D\) be greater than the ratio of AE to CF ; and as AE to CF , fo make AG to CD ; therefore the ratio of \(A G\) to \(C D\) is given, becaufe the ratio of 8. 2. dat. AE to CE is given; and CD is given, wherefore \({ }^{\mathrm{b}} \mathrm{AG}\) is given;
given ; and becanfe the ratio of AB to CD is greater than the ratio of \((A E\) to CF , that \(\mathbf{A} \quad \mathbf{F} \quad \mathbf{G}\) is, than the ratio of) AG to CD ; AB is greater \({ }^{\mathrm{c}}\) than AG : And AB, AG are gi-
 ven; therefore the remainder BG is given: And becaufe as AE to CF , fo is AG to CD , and fo is a EG, to FD ; the ratio of EG to FD is given : And a 19.50 GB is given ; therefore EG, the excefs of EB above a given magnitude GB, has a given ratio to FD. The other cafe is thown in the fame way.

\section*{PR O P. XXIV.}

TF there be three magnitudes, the firft of which has- See N, a given ratio to the fecond, and the excels of the fecond above a given magnitude has a given ratio to the third ; the excefs of the firft above a given magnitude fhall alfo have a given ratio to the third.

Let \(A B, C D, E\), be the three magnitudes of which \(A B\) has a given ratio to CD ; and the excefs of CD above a given magnitude has a given ratio to \(\mathrm{E}^{\prime}\) : The excefs of AB above a given magnitude has a given ratio to E.

Let CF be the. given magnitude, the excefs of CD above which, viz. FD has a given ratio to E: And becaufe the ratio of \(A B\) to \(C D\) is given, as \(A B\) to \(C D\), fo make \(A G\) to \(C F\); therefore the ratio of \(A G\) to CF is given; and CF is given, wherefore a AG is given : And becaufe as \(A B\) to CD, fo is \(A G\) to \(C F\), and fo is \({ }^{b}\) GB to \(F D\); the ratio of GB to FD is given. And the ratio of FD to E is given, wherefore \({ }^{c}\) the ratio of GB to E is given, and AG is given; therefore GB the excefs of \(A B\) above a given magnitude \(A G\) has a given ratio to E .

Cor. i. And if the firf has a given ratio to the fecond, and the excefs of the firlt above a given magnitude has a given ratio to the third; the excefs of the fecond above a given magnitude fhall have a given fatio to the third. For, if the fecond be called the firft, and the firft the fecond, this corollary will be the fame with the propofition.

Cor. 2. Alfo, if the firft has a given ratio to the fecond, and the excefs of the third above a given magnitude has alfo a given ratio to the fecond, the fame excefs fhall have a given ratio to the firlt; as is evident from the 9 th dat.

\section*{PROP. XXV.}

IF there be three magnitudes, the excefs of the firft whereof above a given magnitude has a given ratio to the fecond; and the excefs of the third above a given magnitude has a given ratio to the fame fecond: The firft fhall either have a given ratio to the third, or the excefs of one of them above a given magnitude fhall have a given ratio to the other.

Let \(\mathrm{AB}, \mathrm{C}, \mathrm{DE}\) be three magnitudes, and let the exceffes of each of the two \(A B, D E\) above given magnitudes have given ratios to \(\mathrm{C} ; \mathrm{AB}, \mathrm{DE}\) either have a given ratio to one another, or the excefs of one of them above a given magnitude has a given ratio to the other.

Let FB the excefs of AB above the given magnitude AF have a given ratio to C ; and let GE the ex- \(\mathbf{A}\) cefs of DE above the given magnitude DG have a given ratio to C ; and becaufe \(\mathrm{FB}, \mathrm{GE}\) Fhave each of them a given ratio to C , they
a 9. dat. have a given ratio a to one another. But to FB, GE the given magnitudes AF, DG are add-
b 18. dat. ed; therefore \({ }^{b}\) the whole magnitudes \(A B\), \(D E\) have either a given ratio to one another, or the excefs of one of them above a given magnitude has a given ratio to the other.
PR O P. XXVI.

IF there be three magnitudes, the exceffes of one of which above given magnitudes have given ratios to the other two magnitudes; thefe two fhall either have a given ratio to one another, or the excefs of one of them above a given magnitude fhall have a given ratio to the other.

Let \(A B, C D, E F\) be three magnitudes, and let \(G D\) the excefs of one of them \(C D\) above the given magnitude CG have a given ratio to AB ; and alfo let KD the excefs of the fame CD above the given magnitude CK have a given ratio to EF, either \(A B\) has a given ratio to EF, or the excefs of one of them above a given magnitude has a given ratio to the other.

Becaufe GD has a given ratio to \(A B\), as \(G D\) to \(A B\), fo make CG to HA ; therefore the ratio of CG to HA is given ; and CG is given, wherefore a HA is given : And becaufe as a 2 . dat. \(G D\) to \(A B\), fo is \(C G\) to \(H A\), and \(f 0\) is \({ }^{b} C D\) to \(H B\); the ra- b12.5. tio of CD to HB is given : Alfo becaufe KD has a given ratio to EF, as KD to EF, fo make CK to LE; H therefore the ratio of CK to LE is given; and CK is given, wherefore LE a is given: And becaufe as KD to EF, fo is CK to LE, and A. fo \({ }^{b}\) is \(C D\) to LF; the ratio of CD to LF is given: But the ratio of CD to HB is given, wherefore c the ratio of HB to LF is given : and from \(\mathrm{HB}, \mathrm{LF}\) the given magnitudes HA, LE being taken, the remainders \(\mathrm{AB}, \mathrm{EF}\) fhall

c g. dat. either have a given ratio to one another or the excefs of one of them above a given magnitude has a given ratio to the other \({ }_{\mathrm{d}}\). d 19 . dat.

\section*{Another Demonftration.}

Let \(\mathrm{AB}, \mathrm{C}, \mathrm{DE}\) be three magnitudes, and let the exceffes of one of them \(C\) above given magnitudes have given ratios to \(A B\) and \(D E\); either \(A B, D E\) have a given ratio to one another, or the excefs of one of them above a given magnitude has a given ratio to the other.

Becaufe the excefs of \(\mathbf{C}\) above a given magnitude has a given ratio to \(A B\); therefore a \(A B\) together with a given mag- a \({ }^{1} 4\). dat. nitude has a given ratio to \(C\) : Let this given \(F\) magnitude be AF , wherefore FB has a given ratio to C : Alfo becaufe the excefs of C above A a given magnitude has a given ratio to DE ; therefore a DE together with a given magnitude has a given ratio to C : Let this given magnitude be DG, wherefore GE has a given B C E ratio to C : And FB has a given ratio to C , therefore \({ }^{\mathrm{b}}\) the ratio \({ }^{\mathrm{b}} 9\). dat. of FB to GE is given: And from FB, GE the given magnitudes \(\mathrm{AF}, \mathrm{DG}\) being taken, the remainders \(\mathrm{AB}, \mathrm{DE}\) either have a given ratio to one another, or the excefs of one of them above a given magnitude has a given ratio to the other c." c 19 . daf

\section*{PROP. XXVII.}

IF there be three magnitudes: The excefs of the firft of which above a given magnitude has a given ratio to the fecond ; and the excefs of the fecond above a given magnitude has alfo a given ratio to the third: The excefs of the firft above a given magnitude fhall have a given ratio to the third.

Let \(\mathrm{AB}, \mathrm{CD}, \mathrm{E}\) be three magnitudes, the excefs of the firft of which \(A B\) above the given magnitude AG, viz. GB, has a given ratio to CD ; and FD the excefs of CD above the given magnitude CF, has a given ratio to E : The excefs of AB above a given magnitude has a given ratio to E .

Becaufe the ratio of GB to CD is given, as GB to CD , to make GH to CF ; therefore the ratio of GH A
2. da t. to CF is given; and CF is given, wherefore a GH is given; and AG is given, wherefore \(G-\) the whole AH is given : And becaufe as GB
 \(E\) is given : And AH is given; therefore HB the excefs of \(A B\) above a given magnitude \(A H\) has a given ratio to E .
"Oiljerwife,
Let \(A B, C, D\) be three magnitudes, the excefs EB of the firlt of which \(A B\) alsove the given magnitude \(A E\) has a given ratio to C , and the excefs of C above a given magnitude has a given ratio to D : The excefs of \(A B\) above a given magnitude has a given ratio to D .

Becaufe EB has a given ratio to C , and the excefs of C above a given magnitude has a gi-
d. \({ }^{2}\). dat. ven ratio to \(D\); therefore \({ }^{d}\) the excefs of EB above a given magnitude has a given ratio to D : Let this given magnitude be EF; therefore FB the excefs of \(E B\) above EF has a given ra-
 tio to D: And AF is given, Becaufe AE, EF
are given: Therefore FB the excefs of AB above a given magnitude AF has a given ratio to D."
P R O P. XXVIII.

\(]^{\mathrm{F}}\)F two lines given in pofition cut one another, the See N . point or points in which they cut one another are given.

Let two lines AB, CD given in pofition cut one another in the point E ; the point E is given.

Becaafe the lines AB, CD are given in pofition, they have always the fame fituation \({ }^{\text {a }}\), and therefore the point, or points in which they cut one another have always the fame fituation: And becaufe the lines \(A B, C D\) can be found \({ }^{\text {a }}\), the point, or points, in which
 they cut one another, are likewife found ; and therefore are given in pofition \({ }^{\text {a }}\).
\[
\mathrm{P} R \quad \mathrm{O} \text { P. XXIX. }
\]

F the extremities of a ftraight line be given in pofition; the ftraight line is given in pofition and magnitude.

Becaufe the extremities of the ftraight line are given, they can be found a : Let thefe be the points \(A, B\), between which a ftraight line \(A B\) can be drawn \({ }^{b}\); this has an invariable pofition, becaufe between two given points there can be drawn but one ftraight line: And when the ftraight line AB is drawn, its magnitude is at the fame time exhibited, or given :Therefore the flraight line \(A B\) is given in pofition and magni ude.

\section*{PROP. XXX.}

IF one of the extremities of a ftraight line given in pofition and magnitude be given ; the other extremity fhall alfo be given.

Let the point \(A\) be given, to wit, one of the extremities of a ftraight line given in magnitude, and which lies in the ftraight line AC given in pofition; the other extremity is alfo given.

Becaufe the ftraight line is given in magnitude, one equal to it can be found \({ }^{2}\); let this be the ftraight line D : From the greater ftraight line \(A C\) cut off \(A B\) equal to the leffer D : Therefore the B C other extremity \(B\) of the fraight line \(A B\) is found: And the point B,has al- D ways the fame fituation; becaufe any other point in \(A C\), upon the fame fide of \(A\), cuts off between it and the point \(A\) a greater or lefs ftraight line than \(A B\), that is, than \(D\); Therefore the point \(B\) is given \({ }^{b}\) : And it is plain another fuch point can be found in AC produced upon the other fide of the point \(A\).

\section*{PROP. XXXI.}

\({ }^{\mathrm{F}}\)F a ftraight line be drawn through a given point parallel to a ftraight line given in pofition; that ftraight line is given in pofition.

Let \(A\) be a given point, and \(B C\) a fraight line given in pofition ; the ftraight line drawn through A parallel to BC is given in pofition.
a 3 r. r.
Throngh A draw a the furaight line DAE parallel to BC; the fraight
 line DAE has always the fame pofition, becaufe no other ftraight line \(B\) can be drawn through A parallel to \(B C\) : Therefore the ftraight line DAE which has been found is given b in pofition.

> PROP.

\title{
D A TA.
}

\section*{PROP. XXXII.}

IF a ftraight line be drawn to a given point in a ftraight line given in pofition, and makes a given angle with it ; that fraight line is given in pofition.

Let \(A B\) be a ftraight line given in pofition, and C a given point in it, the ftraight line drawn to C , which makes a given angle with CB , is given in pofition.

Becaufe the angle is given, one equal to it can be found \(a\); let this be the angle at D , at the given point \(C\), in the given ftraight \(A\) line \(A B\), make \({ }^{b}\) the angle \(E C B\) equal to the angle at \(D\) : Therefore the ftraight line EC has always the fame fituation, becaufe
 any other ftraight line FC , drawn to the point C, makes with CB a greater or lefs angle than the angle ECB, or the angle at \(\mathrm{D}:\) Therefore the ftraight line EC, which has been found, is given in pofition.

It is to be obferved, that there are two ftraight lines EC, GG upon one fide of \(A B\) that make equal angles with it, and which make equal angles with it when produced to the other fide.

\section*{P R O B. XXXIII.}

F a ftraight line be drawn from a given point to a ftraight line given in pofition, and makes a given angle with it, that ftraight line is given in pofition.

From the given point A , let the fraight line AD be drawn to the ftraight line BC given in pofition, and make with it a given angle \(\mathrm{ADC}: \mathrm{AD}\) is given in po- \(\mathbf{E} \quad \mathrm{A} \quad \mathbf{F}\)
fition.

Thro' the point A, draw a the fraight line EAF parallel to BC ; and becaufe thro' the given point \(A\), the ftraight line EAF is drawn parallel to BC, B

D And becaufe the ftraight line \(A D\) meets the parallels \(B C\),
c 29. 1. EF, the angle EAD is equal c to the angle ADC ; and ADC is given, wherefore alfo the angle EAD is given: Therefore, because the ftraight line DA is drawn to the given point \(A\) in the ftraight line EF given in pofition, and makes with it a \(\mathrm{d}_{32}\). dat. given angle EAD, AD is given \({ }^{\text {d }}\) in pofition.

\section*{PROP. XXXIV.}

See \(N\). From a given point to a ftraight line given in pofition; a ftraight line be drawn which is given in magnitude; the fame is aldo given in pofition.

Let A be a given point, and BC a ftraight line given in pofition, a ftraight line given in magnitude drawn from the point A to BC is given in pofition.

Because the ftraight line is given in magnitude, one equal to it can be found a; let this be the freight line D: From the point A draw AE perpendicular to BC: and because AE is the fhorteft of all the ftraight lines which can be drawn from the point \(A\) to \(B C\), the ftraight line \(D\), to which one equal is to be drawn from the \(\mathbf{B}\) point A to BC , cannot be leis than \(\mathrm{AE} . \mathrm{D}\) If therefore \(D\) be equal to \(A E, A E\) is the fraight line given in magnitude drawn from the given point A to BC : And it
b 33 . dat. is evident that AE is given in pofition b, becaufe it is drawn from the given point \(A\) to \(B C\), which is given in pofition, and makes with BC the given angle AEC.

But if the ftraight line D be not equal to AE , it mut be greater than it : Produce AE, and make AF equal to D ; and from the centre \(A\), at the diffance AF , defcribe the circle GFH, and join AG, AH : Becaufe the circle GFH is given in pofition \(c\), and the ftraight line \(B C\) is alfo given in pofiction ; therefore their interfection
d 28 . dat. \(G\) is given \({ }^{d}\); and the point \(A\) is given; wherefore \(A G\) is given in
\& ag. dat. pofition \(e\), that is, the ftraight line \(A G\) given in magnitude, (for it is equal to D) and drawn
 from the given point A to the ftraight line BC given in poriton, is alfo given in pofition: And in like manner AH is given in pofition: Therefore in this cafe there are two ftraight
lines \(A G, A H\) of the fame given magnitude which can be drawn from a given point \(\mathbf{A}\) to a fraight line BC given in polition.

> PR O P. XXXV.

IF a ftraight line be drawn between two parallel ftraight lines given in pofition, and makes given angles with them, the ftraight line is given in magnitude.

Let the fraight line EF be drawn between the parallels AB, CD, which are given in pofition, and make the given angles BEF, EFD: EF is given in magnitude.

In CD take the given point \(G\), and through \(G\) draw a \(G H\) a 3 r. r. parallel to EF: And becaufe CD meets the parallels \(\mathrm{GH}, \mathrm{EF}\), the angle EFD is equal b to the angle \(\quad\) E H B \({ }^{\text {b29. x. }}\) HGD: And EFD is a given angle; wherefore the angle HGD is siven; and becaufe \(H G\) is drawn to the given point \(G\), in the ftraight line \(C D\), given in pofition, and makes a given angle
 HGD : the ftraight line \(H G\) is given in pofition \({ }^{c}\) : And \(A B\) is given in pofition: therefore the c 32 . dat. point \(H\) is givend; and the point \(G\) is alfo given, wherefore \(d 28\). dat. GH is given in magnitude e: And EF is equal to it, there- e 29 . dat. fore EF is given in magnitude.

> PROP. XXXVI.

IF a ftraight line given in magnitude be drawn be- See N. tween two parallel fraight lines given in pofition, it fhall make given angles with the parallels.

Let the ftraight line EF given in magnitude be drawn between the parallel ftraight lines \(A B\), CD , which are given in pofition: the angles AEF, EFC fhall be given.

Becaufe EF is given in magnitude, a ftraight line equal to it can be found \({ }^{2}\) : let this be \(G:\) In \(A B\) take a given point H , and from it draw \({ }^{\mathrm{b}} \mathrm{HK}\) perpendicular to CD: Therefore the ftraight line \(G\),

FK D
that is, EF cannot be lefs than HK: And if G be equal to \(\mathrm{HK}, \mathrm{EF}\) alfo is equal to it ; wherefore EF is at right angles to CD ; for if it be not, EF would be greater than HK, which is abfurd. Therefore the angle EFD is a right, and confequently a given angle.

But if the ftraight line \(G\) be not equal to HK, it muft be greater than it: Produce HK, and take HL, equal to \(G\); and from the centre H , at the diffance HL, defcribe the circle
c 6. def.
d 28. dat.
e 2g. dat.
f A. def. HiN, are given in pofi-

G

HM, HN, let HN be that which is not parallel to EF, for EF cannot be parallel to both of them; and draw EO parallel to HN : EO therefore is equal g to HN , that is, to G ; and EF is equal to G; wherefore EO is equal to EF, and

FF a ftraight line given in magnitude be drawn fromi a point to a fraight line given in pofition, in a given angle; the ftraight line drawn through that point parallel to the fraight line given in pofition, is given in pofition.

Let the firaight line A.D given in magnitude be drawn from the point \(A\) to the ftraight line BC given in E A II \(\boldsymbol{I}\) pofition, in the given angle ADC: the ftraight line EAF drawn through A parallel to BC is given in pofition.
In \(B C\) take a given point \(G\), and draw \(G H\) parallel to AD: And becaufe HG is drawn \(\mathbf{B}\) to a given point G in the ftraight line BC gi-
ven in pofition, in a given angle HGC, for it is equal a to the a 29 . r. given angle ADC; HG is given in pofition \({ }^{h}\) : but it is given \({ }^{5}{ }_{32}\). dat. alfo in magnitude, becaufe it is equal to \({ }^{c}\) AD which is given c 34. . in magnitude; therefore becaufe \(G\) one of the extremities of the ftraight line GH given in pofition and magnitude is given, the other extremity H is given \({ }^{\text {d }}\); and the ftraight line d 30 . dat. EAF, which is drawn through the given point \(H\) parallel to BC given in pofition, is therefore given e in pofition.

\section*{PROP. XXXVIII.}

IF a ftraight line be drawn from a given point to two parallel ftraight lines given in pofition, the ratio of the fegments between the given point and the parallels fhall be given.

Let the ftraight line EFG be drawn from the given point \(E\) to the parallels AB, CD, the ratio of EF to EG is given.

From the point E draw EHK perpendicular to CD; and becaufe from a given point \(E\) the ftraight line \(E K\) is drawn to CD which is given in pofition, in a given angle EKC; EK is

given in pofition a; and \(\mathrm{AB}, \mathrm{CD}\) are given in pofition; there-- a 33. dat. fore \({ }^{b}\) the points \(H, K\) are given: And the point \(E\) is given; b 23 . dat. wherefore \(\mathrm{C} E H, E K\) are given in magnitude, and the ratio d of c 29 . dat. them is therefore given. But as EH to EK, fo is EF to EG, d r. dat. becaufe \(\mathrm{AB}, \mathrm{CD}\) are parallels; therefore the ratio of EF to EG is given.

> PR O P: XXXIX.
35.36.

I\(F\) the ratio of the fegments of a ftraight line between a given point in it and two parallel ftraight lines, be given, if one of the parallels be given in pofition, the other is alfo given in polition.

From the given point A , let the ftraight line AED be drawn to the two parallel ftraight lines \(\mathrm{FG}, \mathrm{BC}\), and let the ratio of the fegments \(\mathrm{AE}, \mathrm{AD}\) be given; if one of the parallels BC be given in pofition, the other FG is alfo given in pofition.

From the point A, draw AH perpendicular to BC, and let it meet \(F G\) in \(K\); and becaufe \(A H\) is drawn from the given point A to the ftraight line BC given in pofition, and makes a

a 33. dat. given angle \(\mathrm{AHD} ; \mathrm{AH}\) is given \({ }^{\text {a }}\) in pofition; and BC is likewife given in pofition, therefore the point H is gi- \(\mathbf{B}\)
\(b_{28}\). dat. ven \({ }^{\mathrm{b}}\) : The point A is alfo given; wherefore AH is given in magni-
c 29. dat. tude c , and, becaufe \(\mathrm{FG}, \mathrm{BC}\) are parallels, as AE to AD , fo is AK to AH ; and the ratio of AE to AD F

d. 2. dat.
e 30 dat.
37. 38.

See N . is given, wherefore the ratio of AK to AH is given ; but AH is given in magnitude, therefore d AK is given in magnitude; and it is alfo given in pofition, and the point \(A\) is given; line FG is drawn through the given point K parallel to BC which is given in pofition, therefore \(f \mathrm{FG}\) is given in pofition.
ments GE, GF into which the ftraight line GEF is cut by the three parallels, be given; the third parallel HK is given in pofition.

In \(A B\) take a given point \(L\), and draw LM perpendicular to CD, meeting HK in \(N\); becaufe LM is drawn from the given point \(L\) to \(C D\) which is given in pofition and makes a given angle LMD; LM is given in pofition \({ }^{\text {a }}\); and CD is given a 33 . dat. in pofition, wherefore the point \(M\) is given \({ }^{b}\); and the point \(L\) b2s. dat. is given, LM is therefore given in magnitude c; and becaufe c. 29. dato the ratio of GE to CF is given, and as GE to GF, fo is NL to

NM; the ratio of NL to NM is given; and therefore d the ratio of ML to LN is given ; but LM is given in magnitude \(i\), d wherefore L LN is given in magnitude : and it is alfo given in pofition, and the point L is given, wherefore f the point N is given; and becaufe the ftraight line HK is drawn through the given point N parallel to CD which is given in pofition, therefore HK is given in pofition g .

\section*{PROP. XLI.}

IF a ftraight line meets three parallel ftraight lines See N. which are given in pofition, the fegments into which they cut it have a given ratio.

Let the parallel ftraight lines \(\mathrm{AB}, \mathrm{CD}, \mathrm{EF}\) given in pofition, be cut by the flaight line GHK ; the ratio of GH to HK is given.

In AB take a given point \(L\), and draw LM perpendicular to \(C D\), meeting EF in N ; therefore a LMI is given in pofition; and CD, EF are given in pofition, wherefore the points \(M\), Nare given: And the point Lis given; therefore \({ }^{\text {b }}\) the ftraight lines LM, MN are given in magnitude; and the ratio

e I. dat. of LM to MN is therefore given e : But as LM to MN, fo is GH to HK ; wherefore the ratio of GH to HK is given.
39.

> P R O P. XLII.

See N .
Feach of the fides of a triangle be given in magnitude, the triangle is given in fpecies.

Let each of the fides of the triangle \(A B C\) be given in magnitude, the triangle \(A B C\) is given in fpecies.

Make a triangle a DEF the fides of which are equal, each to each, to the given ftraight lines \(\mathrm{AB}, \mathrm{BC}, \mathrm{CA}\), which can be done; becaule any two of them mult be greater than the third; and let DE be equal to \(\mathrm{AB}, \mathrm{EF}\) to BC , and FD to CA ; and becaufe the two fides ED, DF are equal to the two \(\mathrm{BA}, \mathrm{AC}\), each to each, and the bafe EF equal to \(B\) the bafe BC ; the angle

b 8. r. EDF, is equl b to the angle BAC ; therefore, becaufe the angle EDF, which is equal to the angle BAC, has been found,
c r. def. the angle BAC is given c , in like manner the angles at \(\mathrm{B}, \mathrm{C}\) are given. And becaufe the fides \(\mathrm{AB}, \mathrm{BC}, \mathrm{CA}\) are given,
d I dat. their ratios to one another are given d , therefore the triangle e 3. def. ABC is given e in fpecies.

> PR O P. XLIII.

IF each of the angles of a triangle be given in magnitude, the triangle is given in fpecies.

Let each of the angles of the triangle \(A B C\) be given in magnitude, the triangle \(A B C\) is given in fecies.
Take a ftraight line DE given in
a 23.1. pofition and magnitude, and at the points D, E make a the angle EDF equal to the angle BAC , and the angle \(D E F\) equal to \(A B C\); therefore the other angles EFD, BCA B
 are equal, and each of the angles at the points \(A, B, C\), is gi-
ven, wherefore each of thofe at the points \(D, E, F\) is given : And becaufe the ftraight line FD is drawn to the given point D in DE which is given in pofition, making the given angle EDF ; therefore DF is given in pofition \({ }^{b}\). In like manner \({ }^{b}{ }^{3}\). dat. EF alfo is given in pofition; wherefore the point \(F\) is given: And the points D, E are given ; therefore each of the ftraight lines \(\mathrm{DE}, \mathrm{EF}, \mathrm{FD}\) is given c in magnitude; wherefore the \({ }_{\mathrm{c}} 29\). dat. triangle DEF is given in fpecies d : and it is fimilar e to the \(\mathrm{d}_{42}\) dat. triangle \(A B C\) : which therefore is given in fpecies.

\section*{PROP. XLIV.}

IF one of the angles of a triangle be given, and if the fides about it have a given ratio to one another; the triangle is given in fpecies.

Let the triangle \(A B C\) have one of its angles \(B A C\) given, and let the fides \(\mathrm{BA}, \mathrm{AC}\) about it have a given ratio to one another; the triangle \(A B C\) is given in fpecies.

Take a ftraight line DE given in pofition and magnitude, and at the point D in the given ftraight line DE , make the angle EDF equal to the given angle BAC; wherefore the angle EDF is given ; and becaufe the ftraight line FD is drawn to the given point D in ED which is given in pofition, making the given angle EDF; therefore FD is given in pofition a. And becaufe the ratio of BA to AC is given, make the ratio of ED to DF the fame with it, and join EF; and becaufe the ratio of ED to DF \(\mathbf{B}\)
 is given, and ED is given, therefore b DF is given in mag- b 2 . dat. nitude : and it is given alfo in pofition, and the point D is given, wherefore the point \(F\) is given \(c\) : and the points \(D, c\) 3o.dat. E are given, wherefore DE, EF, FD are given d in magni-d 29. dat. tude : and the triangle DEF is therefore given e in fpecies; e 42. dat. and becaufe the triangles ABC, DEF have one angle BAC equal to one angle EDF , and the fides about thefe angles proportionals; the triangles are fimilar; but the triangle DEF f 6.6. is given in fpecies, and therefore alfo the triangle ABC.

\author{
PROP.
}

See N. F the fides of a triangle have to one another given ratios; the triangle is given in fpecies.

Let the fides of the triangle \(A B C\) have given ratios to one another, the triangle ABC is given in fpecies.
Take a fraight line D given in magnitude; and becaufe the ratio of \(A B\) to \(B C\) is given, make the ratio of \(D\) to \(E\) the
a 2. dat. fame with it; and \(D\) is given, therefore \(a \mathrm{E}\) is given. And becaufe the ratio of BC to CA is given, to this make the ratio of \(E\) to \(F\) the fame; and \(E\) is given, and therefore a F . And becaufe as AB to BC , fo is D to E ; by compofition AB and BC together are to BC , as D and E to E ; but as BC to CA , fo is E to \(F\); therefore, ex a-
b 22. 5. quali b, as AB and BC are to CA, fo are D and E to F , and
c 20.1 . \(A B\) and \(B C\) are greater \(c\) than CA ; therefore D and E are dA. 5. greater \(d\) than \(F\). In the fame manner any two of the three \(D\), \(\mathrm{E}, \mathrm{F}\) are greater than the third.

e 22. r. Make \({ }^{e}\) the triangle GHK whofe fides are equal to \(\mathrm{D}, \mathrm{E}, \mathrm{F}\), fo that GH be equal to D , HK to E , and KG to F ; and becaufe \(\mathrm{D}, \mathrm{E}, \mathrm{F}\), are, each of them, given, therefore GH, HK, KG are each of them given in mag-
f 42. dat. nitude; therefore the triangle GHK is given f in fpecies; But as AB to BC , fo is (D to E, that is) GH to HK; and as BC to CA , fo is (E to F , that is) HK to KG ; therefore, ex cequali,
g 5: 6 as \(A B\) to \(A C\), fo is GH to GK. Wherefore \(g\) the triangle \(A B C\) is equiangular and fimilar to the triangle GHK ; and the triangle GHK is given in fpecies; therefore alfo the triangle \(A B C\) is given in fpecies.

Cor. If a triangle is required to be made, the fides of which fhall have the fame ratios which three given flraight lines \(D, E, F\) have to one another ; it it neceffary that every two of them be greater than the third.

IF the fides of a right angled triangle about one of the acute angles have a given ratio to one another ; the triangle is given in fpecies.

Let the fides \(A B, B C\) about the acute angle \(A B C\) of the triangle \(A B C\), which has a right angle at \(A\), have a given ratio to one another; the triangle \(A B C\) is given in fpecies.

Take a ftraight line DE given in pofition and magnitude; and becaufe the ratio of \(A B\) to \(B C\) is given, make as \(A B\) to BC , fo DE to EF ; and becaufe DE has a given ratio to EF , and DE is given, therefore a EF is given; and becaufe as \(\mathrm{AB}^{\text {a }}\) 2. dat. to BC , fo is DE to EF; and AB is lefs b than BC , therefore b 19 . I . DE is lefs c than EF. From the pointD draw DG at right angles C A. 5 . to DE , and from the centre \(E\) at the diftance EF, defcribe a circle which fhall meet DG in two points; let \(G\) be either of them, and join EG; therefore the cir-
 cumference of the circle is given \({ }^{d}\) in pofition; and the ftraight line \(D G\) is given e in po- \({ }^{\mathrm{d}}\) 6. def. fition, becaufe it is drawn to the given point D in DE given in pofition, in a given angle; therefore \(f\) the point \(G\) is given; \(f{ }^{28}\). dat. and the points \(\mathrm{D}, \mathrm{E}\) are given, wherefore \(\mathrm{DE}, \mathrm{EG}, \mathrm{GD}\) are given \(g\) in magnitude, and the triangle DEG in fpecies \({ }^{\mathrm{h}}\). \(\mathrm{g}^{29}\). dat. And becaufe the triangles \(A B C, D E G\) have the angle \(B A C^{\text {h. }} 4^{2}\).dat. equal to the angle EDG, and the fides about the angles \(A B C\), DEG proportionals, and each of the other angles BCA, EGD lefs than a right angle; the triangle \(A B C\) is equiangular \(i\) and \({ }^{i} 7.6\). fimilar to the triangle DEG: But DEG is given in fpecies; therefore the triangle \(A B C\) is given in fpecies: And in the fame manner, the triangle made by drawing a ftraight line from \(E\) to the other point in which the circle meets \(D G\) is given in fecies.

\author{
PROP. XLVII.
}

See N.

IF a triangle has one of its angles which is not a right angle given, and if the fides about another angle have a given ratio to one another; the triangle is given in fpecies.

Let the triangle \(A B C\) have one of its angles \(A B C\) a given, but, not a right angle, and let the fides \(\mathrm{BA}, \mathrm{AC}\) about another angle \(B A C\) have a given ratio to one another; the triangle \(A B C\) is given in fpecies.

Firft, Let the given ratio be the ratio of equality, that is, let the fides \(\mathrm{BA}, \mathrm{AC}\), and confequently the angles \(\mathrm{ABC}, \mathrm{ACB}\), be equal; and becaule the angle \(A B C\) is given,
3 32. r. the angle \(A C B\), and alfo the remaining \({ }^{\text {ann- }}\) gle BAC is given; therefore the triangle
b. 43. dat. ABC is given b in fecies; and it is evident C that in this cafe the given angle ABC muft be acute.

Next, Let the given ratio be the ratio of a lefs to a greater, that is, let the fide AB adjacent to the given angle be lefs than the fide AC: Take a ftraightline DE given in pofition and magnitude, and make the angle \(D E F\) equal to the given
c. 32. dat. angle ABC ; therefore EF is given \({ }^{\mathrm{c}}\) in pofition; and beeaufe the ratio of BA to AC is given, as BA to AC, fo make ED to DG; and becaufe the ratio of ED to DG is given, and ED is given, the ftraight line DG is
 d 2. dat. given d, and BA is lefs than e A. 5. AC, therefore ED is lefs e than DG. From the centre D, at the diffance DG defcribe the circle GF meeting EF in F, and join DF; and becaufe the
〔6. def. circle is given \(f\) in pofition, as alfo the fraight line EF, the
528. dat. point F is given g ; and the
 points \(\mathrm{D}, \mathrm{E}\) are given; where-
h. 29. dat. fore the ftraight lines DE, EF, FD are given \(h\) in mag. i 42 dat. nitude, and the triangle DEF in fpecies i. And bek.18. r. caufe BA is lefs than AC, the angle \(A C B\) is lefs \(k\) in. r. than the angle \(A B C\), and therefore \(A C B\) is lefs 1 than
a right angle. In the fame manner, becaufe ED is lefs than DG or DF , the angle DFE is lefs than a right angle: And becaufe the triangies \(A B C, D E F\) have the angle \(A B C\) equal to the angle DEF, and the fides about the angles BAC, EDF proportionals, and each of the other angles ACB, DFE lefs than a right angle; the triangles \(\mathrm{ABC}, \mathrm{DEF}\) are in fimilar, and DEF is given in fpecies, wherefore the triangle \(A B C\) is alfo given in fpecies.

Thirdly, Let the given ratio be the ratio of a greater to a lefs, that is, let the fide \(A B\) adjacent to the given angle be
greater than AC; and as in the laft cafe, take a ftraight line DE given in pofition and magnitude, and make the angle DEF equal to the given angle \(A B C\); therefore \(E F\) is given c in pofiAion: Alfo draw DG perpendicular to EF ; therefore if the ratio of BA to \(A C\) be the fame with the ratio of ED to the perpendicular \(D G\), the triangles \(\mathrm{ABC}, \mathrm{DEG}\) are fimilar m , becaufe the -angles ABC, DEG are equal, and DGE is a right angle: Therefore the
 angle \(A C B\) is a right angle, and the triangle \(A B C\) is given in b fpecies.

But if, in this laft cafe, the given ratio of BA to AC be not the fome with the ratio of ED to DG, th is, with the ratio of \(B A\) to the perpendicular \(A M\) drawn \(f\) om \(A\) to \(C\); the ratio of BA to AC muft be lefs than othe rat o of BA. to \(A M\), becaufe \(A C\) is greater than \(A M\). Make as BA to \(A C\) fo ED to DH ; therefore the ratio of ED to DH is lefs than the ratio of (BA to AM, that is, than the ratio of) ED to DG ; and confequently, DH is great er P than DG ; and becaufe BA is grearer than \(\mathrm{AC}, \mathrm{ED}\) is greater e than DH. From the center D, at the diftance DH, defcribe the circle KHF which necetrarily meets the ftraight line EF in two points, becaufe DH is greater than DG, and lefs than DE. Let the circle meet EF in the points \(\mathrm{F}, \mathrm{K}\) which are given,
 as was fhown in the preceding cafe; and, DF DK being joined, the triangles DEF, DEK are given in fpecies, as was there C c
fhewn.
c 32. dat.

\section*{EUCLID's}
fhewn. From the centre, A at the difance AC , defribe a circle meeting BC again in L : And if the angle ACB be lefs than a right angle, ALB muft be greater than a right angle : And on the contrary. In the fame manner, if the angle DFE be lefs than a right angle, DKE mult be greater than one; and on the contrary. Let each of the angles ACB, DFE be either lefs or greater than a right angle ; and becaufe in the triangles \(\mathrm{ABC}, \mathrm{DEF}\) the angles \(A B C, D E F\) are equal, and the fides BA, AC, and ED, DF, about two of the other angles proportionals, the triangle \(A B C\) is fimilar \(m\) to the triangle DEF. In the fame manner, the triangle ABL is fimilar to DEK. And the triangles, DEF, DEK are given
 in fpecies; therefore alfo the triangles \(\mathrm{ABC}, \mathrm{ABL}\) are given in fecies. And from this it is evident, that, in this third cafe, there are always two triangles of a different fpecies, to which the things mentioned as given in the propofition can agree.

\section*{PROP. XLVIII.}

IF a triangle has one angle given, and if both the fides together about that angle have a given ratio to the remaining fide; the triangle is given in fpecies.

Let the triangle \(A B C\) have the angle \(B A C\) given, and let the fides \(\mathrm{BA}, \mathrm{AC}\) together about that angle have a given ratio to \(B C\); the triangle \(A B C\) is given in fpecies.

Bifect a the angle BAC by the ftraight line AD ; therefore b 3.6. the angle BAD is given. And becaufe as BA to AC , fo is b \(B D\) to \(D C\), by permutation, as \(A B\) to \(B D\), fo is AC to CD ; and as BA and AC to-
c 12.5 . gether to \(B C\), fo is \(c \cdot A B\) to \(B D\). But the ratio of \(B A\) and \(A C\) together to \(B C\) is given, wherefore the ratio of \(A B\) to \(B D\) is given, and the angle BAD is given ; B

d 47. dat. therefore the triangle \(A B D\) is given in fpecies, and the angle \(A B D\) is therefore given ; the angle BAC
8 43. dat. is alfo given, wherefore the triangle \(A B C\) is given in feecies e.
A triangle which fhall have the things that are mentioned in the propofition to be given, can be found in the following
manner. Let EFG be the given angle, and let the ratio of H to K be the given ratio which the two fides about the angle EFG mut have to the third fade of the triangle; therefore becaudle two fides of a triangle are greater than the third fide, the ratio of H to K mut be the ratio of a greater to a left. Bifect a the angle EFG by the ftraight line FL, and by the a 9. r. 47 th propofition find a triangle of which EFL is one of the angles, and in which the ratio of the fides about the angle oppolite to FL is the fame with the ratio of H to K : To do which, take FE given in pofition and magnitude, and draw EL perpendicular to FL: Then if the ratio of H to K be the fame with the ratio of EE to EL, produce EL, and let it meet FG in P ; the triangle EEP is that which was to be found: for it has the given angle EFG; and becaufe this angle is bifected by FL, the fides EF, FP together are to \(\mathrm{E} P\), as \({ }^{\mathrm{b}} \mathrm{FE}\) to EL, that is, as H to K .

But if the ratio of H to K be not the fame with the ratio of FE to EL, it muff be leis

b 3.6 。 than it, as was flown in prop. 47. and in this cafe there are two triangles, each of which has the given angle EFL, and the ratho of the fides about the angle oppofite to FL the fame with the ratio of H to K . By prop. 47. find the fe triangles EFM, EFN each of which has the angle EFL for one of its angles, and the ratio of the fide FE to EM or EN the fame with the ratio of H to K ; and let the angle EMF be greater, and ENF lets than a right angle. And becaufe H is greater than K, EF - is greater than EN, and therefore the angle EFN, that is, the angle NFG, is leis f than the angle ENF. To each of the fe add the angles NEF, EFN ; therefore the angles NEF, EFG are left than the angles NEF, EFN, FNE, that is, than two right angles; therefore the ftraight lines EN, FG muff meet together when produced; let them meet in O , and produce EM to G. Each of the triangles, EFG, EFO has the things mentioned to be given in the propofition: For each of them has the given angle EFG; and becaufe this angle is bifected by the ftraight line FMN, the fides EF, FG together have to EG the third fine the ratio of FE to EM, that is, of H to K . In like manner, the fides EF, FO together have to EO the ratio which H has to K .

\author{
PROP. XLIX.
}

IF a triangle has one angle given, and if the fides about another angle, both together have a given ratio to the third fide; the triangle is given in fpecies.

Let the triangle \(A B C\) have one angle \(A B C\) given, and let the two fides \(\mathrm{BA}, \mathrm{AC}\) about another angle BAC have a given ratio to \(B C\); the triangle \(A B C\) is given in fpecies.

Suppofe the angle BAC to be bifected by the ftraight line \(A D ; B A\) and \(A C\) together are to \(B C\), as \(A B\) to \(B D\), as was fhown in the preceding propofition. But the ratio of BA and \(A C\) together to \(B C\) is given; therefore alfo the ratio of \(A B\) to
244. dat. B.D is given. And the angle ABD is given, wherefore a the triangle \(A B D\) is given in fpecies; and confequently the angle BAD ; and its double the angle BAC are given; and the angle \(A B C\) is giyen. Therefore the triangle ABC b 43 dat. is given in feecies b .

A triangle which fhall have the things mentioned in the propofition to be given, may be thus found. Let EFG be the given angle, and the ratio of H to K the given ratio; and by prop. 44 . find the triangle EFL, which has the angle EFG for one of its angles, and the ratio of the fides \(\mathrm{EF}, \mathrm{FL}\) about this angle the fame
 with the ratio of H to K ; and make the angle LEM equal to the angle FEL. And becaufe the ratio of H to K is the ratio which two fides of a triangle have to the third, H muft be greater than K ; and becaufe EF is to FL , as H to K ; therefore EF is greater than FL, and the angle FEL, that is, LEM, is therefore lefs than the angle ELF. Wherefore the angles LFE, FEM are lefs than two right angles, as was fhown in the foregoing propofition, and the ftraight lines FL, EM muft meet if produced; let them meet in G, EFG is the triangle which was to be found; for EFG is one of its angles, and becaufe the angle FEG is bifected by EL, the two fides FIE, EG together have to the third fide FG the ratio of EF to FL , that is, the given ratio of H to K .

D A T A.

PROP.L.
\(76:\)

IF from the vertex of a triangle given in fpecies, a ftraight line be drawn to the bafe in a given angle; it Thall have a given ratio to the bafe.

From the vertex \(A\) of the triangle \(A B C\) which is given in fpecies, let \(A D\) be drawn to the bafe \(B G\) in a given angle ADB ; the ratio of AD to BC is given.

Becaufe the triangle \(A B C\) is given in fpecies, the angle ABD is given, and the angle \(A D B\) is given, therefore the triangle ABD is given \({ }^{\mathrm{a}}\) in fpecies; wherefore the ratio of \(A D\) to \(A B\) is given. And the ratio of \(A B\) to \(B C\) is given;
 and therefore \(b\) the ratio of \(A D\) to \(B C\) is given.

> P R O P. LI.

RECTILINEAL figures given in \{pecies, are divided into triangles which are given in fpecies.

Let the rectilineal figure \(A B C D E\) be given in fpecies: ABCDE may be divided into triangles given in fpecies.

Join BE, BD; and becaufe ABCDE is given in fpecies, the angle BAE is given \({ }^{2}\), and the ratio of \(B A\) to \(A E\) is given \({ }^{2}\); wherefore the triangle BAE is given in fpecies b , and the angle AEB is therefore given \({ }^{\text {a }}\). But the whole angle AED is given, and therefore the remaining angle BED is given, and the
 ratio of AE to EB is given, as alfo the ratio AE to ED ; therefore the ratio of BE to ED is given \({ }^{c}\). And the angle a 3. def.
b 44. dat.
c g. dat. BED is given, wherefore the triangle BED is given b in fpecies. In the fame manner, the triangle BDC is given in fpecies: Therefore rectilineal figures which are given in fpecies are divided into triangles given in fpecies.
\[
\mathrm{C}_{\mathrm{c}} 3
\]

PROP.

\author{
PROP. LII.
}

IF two triangles given in fpecies be defcribed upon the fame ftraight line; they fhall have a given ratio to one another.

Let the triangles \(A B C, A B D\) given in fpecies be defcribed upon the fame ftraight line \(A B\); the ratio of the triangle \(A B C\) to the triangle \(A B D\) is given.

Through the point \(C\), draw \(C E\) parallel to \(A B\), and let it meet DA produced in E, and join BE. Becaufe the triangle \(A B C\) is given in fpecies, the angle BAC, that is, the angle \(A C E\), is given; and becaufe the triangle \(A B D\) is given in fpecies, the angle \(\mathbf{H}\) DAB that is, the angle AEC, is given. Therefore the triangle ACE is given in fpecies; wherefore the ratio of \(E A\) to \(A C\) is given \({ }^{\text {a }}\), and the ra-
 tio of \(C A\) to \(A B\) is given, as alfo the ratio of \(B A\) to \(A D\); therefore the ratio of \(D E A\) to \(A D\) is given, and the triangle d 6 ACB is equal o the triangle AEB , and as the triangle d. 1 . \(A E B\), or \(A C B\), is to the triangle \(A D B\), fo is the ftraight line EA to AD. But the ratio of EA to AD is given; therefore the ratio of the triangle \(A C B\) to the triangle \(A D B\) is given.

\section*{PROBLEM.}

To find the ratio of two triangles \(A B C, A B D\) given in fpecies, and which are defcribed upon the fame ftraight line \(A B\).

Take afraight line FG given in pofition and magnitude, and becaute the angles of the triangles \(\mathrm{ABC}, \mathrm{ABD}\) are given, at the points \(\mathrm{F}, \mathrm{G}\) of the Atraight line FG , make the angles GFH, GFK equal to the angles BAC, BAD; and the angles FGH, FGK equal to the angles \(A B C, A B D\), each to each. Therefore the triargles \(\mathrm{ABC}, \mathrm{ABD}\) are equiangular to the triangles FGH. FGK, each to each. Through the point H draw HL parallel to FG męeting KF produced in L. And becaufe the angles \(\mathrm{BAC}, \mathrm{BAD}\) are equal to the angles \(\mathrm{GFH}, \mathrm{GFK}\), each to each ; therefore the angles ACE, AEC are equal to FHL, FLH, each to each, and the triangle AEC equiangular to the triangle FLH. Therefore as EA to AC, fo is LF to FH; and
as CA to AB , fo HF to FG : and as \(B A\) to \(A D\), fo is GF to FK ; wherefore, ex æquali, as EA to AD , fo is LF to FK. But as was fhown, the triangle \(A B C\) is to the triangle \(\triangle B D\), as the ftraight line EA to AD, that is, as LF to FK. The ratio therefore of LF to FK has been found, which is the fame with the ratio of the triangle \(A B C\) to the triangle \(A B D\).
P R O P. LIII.

F two rectilineal figures given in fpecies be de- \(\operatorname{see} \mathrm{N}\). frribed upon the fame ftraight line; they fhall have a given ratio to one another.

Let any two rectilineal figures \(\mathrm{ABCDE}, \mathrm{ABFG}\) which are given in fpecies, be defcribed upon the fame ftraight line \(A B\); the ratio of them to one another is given.

Join \(\mathrm{AC}, \mathrm{AD}, \mathrm{AF}\); each of the triangles \(\mathrm{AED}, \mathrm{ADC}\), \(\mathrm{ACB}, \mathrm{AGF}, \mathrm{ABF}\), is given \({ }^{2}\) in fpecies. And becaufe the tri- a 5 r. dat. angles \(\mathrm{ADE}, \mathrm{ADC}\) given in fpecies are defcribed upon the fame ftraight line \(A D\), the ratio of EAD to DAC is given \({ }^{\mathrm{b}}\); and, by compofition, the ratio of EACD to DAC is givenc. And the ratio DAC to CAB is given \({ }^{b}\), becaufe they are defcribed upon the fame ftraight line \(A C\); therefore the ratio of EACD to ACB is given d; and, by compofition, the ratio of

\(\mathbf{H} \xrightarrow{\text { KL MN }} \mathbf{M} \mathbf{O}\) d. dat. ABCDE to ABC is given. In the fame manner, the ratio, of \(A B F G\) to \(A B F\) is given. But the ratio of the triangle \(A B C\) to the triangle \(A B F\) is given; wherefore \(b\), pecaufe the ratio of \(A B C D E\) to \(A B C\) is given, as allo the ratio of ABC to ABF , and the ratio of ABF to ABFG ; the ratio of the rectilineal \(A B C D E\) to the rectilineal \(A B F G\) isigiven \({ }^{d}\).

\section*{PROBLEM.}

To find the ratio of two rectilineal figures given in fpecies, and defcribed upon the fame ftraight line.

Let \(\mathrm{ABCDE}, \mathrm{ABFG}\) be two rectilineal figures given in fpecies, and defcribed upon the fame ftraight line \(A B\), and join AC, AD, AF. Take a ftraight line HK given in pofition and magnitude, and by the 52 d dat. find the ratio of the rriangle \(A D E\) to the triangle \(A D C\), and make the ratio of HK C c 4
to KL the fame with it. Find alfo the ratio of the triangle ACD to the triangle ACB And make the ratio of RLi to LM the fame. Alfo, find the ratio of the triangle \(A B C\) to the triangle ABF , and make the ratio of LM to MN the fame. And laftly, find the ratio of the triangle AFB to the triangle AFG, and make the ratio of MN to NO the fame. Then the ratio of ABCDE to ABFG is the fame with the ratio of HM to MO.

Becaufe the triangle EAD is to the triangle DAC, as the ftraight line HK to KL ; and as the triangle DAC to CAB , fo is the fraight line KL to LM ; therefore by uling compofition as often as the number

\(\mathrm{H}-\mathrm{K}+\mathrm{MN} \mathrm{O}\) of triangles requires, the rectilineal ABCDE is to the triangle ABC , as the ftraightline HM to ML. In like manner, becaufe the triangle GAF is to FAB, as ON to NM. by compofition, the reatilineal ABFG is to the triangle \(A B F\) as \(M O\) to \(N M\); and by inverfion, as \(A B F\) to \(A B E G\), fo is \(N M\) to MO. And the triangle \(A B C\) is to \(A B F\), as \(L M\) to MN. Wherefore, becaufe as ABCDE to ABC, fo is HM to ML ; and as ABC to ABF ; fo is LM to MN ; and as ABF to ABFG, fo is MN to MO; ex æquali, as the rectilineal ABCiDE to ABFG , fo is the ftraight line HM to MO .

\section*{PROP.LIV.}

IF two ftraightlines have given ratio to one another; the fimilar rectilineal figures defcribed upon them fimilarly, fhall have a given ratio to one another.

Let the ftraight lines \(\mathrm{AB}, \mathrm{CD}\); have a given ratio to one another, and let the fimilar and fimilarly placed rectilineal figures \(\mathrm{E}, \mathrm{F}\) be defcribed upon them ; the ratio of E to F is given.

To AB, CD, let G be a third proportional; therefore as \(A B\) to CD . fo is CD to G . And the ratio of \(A B\) to \(C D\) is given; wherefore the ratio of \(C D\) to \(G\) is given; and confeguently the ratio of \(A B\) to \(G\)
a g. dat. is alro given \({ }^{\text {a. But as }} \mathrm{AB}\) to \(G\), fo
b2.Cor 20 , is the figure E to the figure \({ }^{b} \mathrm{~F}\). Thercfore the ratio of E 6. to F is given.

\section*{PROBLEM.}

To find the ratio of two fimilar rectilineal figures, \(E, F\), fimilarly defrribed upon ftraight lines \(\mathrm{AB}, \mathrm{CD}\) which have a given ratio to one another: Let \(G\) be a third proportional to \(A B, C D\).

Take a ftraight line H given in magnitude; and becaufe the ratio of \(A B\) to \(C D\) is given, make the ratio of \(H\) to \(K\) the fame with it ; and becaufe H is given, K is given. As H is to K , fo make K to L ; then the ratio of E to F is the fame with the ratio of H to L ; for \(A B\) is to CD , as H to K , wherefore CD is to \(G\), as \(K\) to \(L\); and, ex æquali, as \(A B\) to \(G\), fo is \(H\) to \(L\) : But the figure \(E\) is to \(b\) the figure \(F\), as \(A B\) to \(G\), that is, as \(H^{b}\) 2 cor, to L .
PROP.LV.

IF two ftraight limes have a given ratio to one another; the rectilineal figures given in fpecies defcribed upon them, thall have to one another a given ratio.

Let \(A B, C D\) be two ftraight lines which have a given ratio to one another; the rectilineal figures E, F given in fpecies and defcribed upon them, have a given ratio to one another.

Upon the ftraight line AB, defcribe the figure AG fimilar and fimilarly placed to the figure F ; and becaufe F is given in fpecies, AG is alfo given in fpecies: Therefore, fince the figures \(\mathrm{E}, \mathrm{AG}\) which are given in fpecies, are defcribed upon the fame ftraight line \(A B\), the ratio of \(E\) to \(A G\) is given a, and becaufe the ratio of AB to
 \(C D\) is given and upon them are defcribed the fimilar and fimiliarly placed rectilineal figures AG, \(F\), the ratio of \(A G\) to \(F\) is given \({ }^{\text {n }}\); and the ratio of \(A G\) to \(E\) is given; thererfore \({ }_{b} 54\). dat. the ratio of \(E\) to \(F\) is given \(c_{\text {. }}\)

\section*{PROBLEM.}

To find the ratio of two rectilineal figures \(E, F\) given in fpecies and defcribed upon the ftraight lines \(A B, C D\) which have a given ratio to one another.

Take a ftraght line \(H\) given in magnitude; and becaufe the rectilineal frgures \(\mathbf{E}, \mathrm{AG}\) given in fpecies are defcribed upon the fame ftraight line AB , find their ratio by the \(53^{d}\) dat. and make the ratio of H to K the fame, K is therefore given. And becaule the dimilar rectilineal figures AG, F are defcribed
upon the ftraight lines \(\mathrm{AB}, \mathrm{CD}\). which have a given ratio, find their ratio by the 54 th dat. and make the ratio of K to L the fame : The figure E has to F the fame ratio which H has to L ; For, by the conftruction, as E is to AG , fo is H to K ; and as AG to F , fo is K to L ; thercfore, ex æquali, as E to F ; fo is H to L .

\section*{PROP. LVI.}

FF a rectilineal figure given in fpecies be defcribed . upon a ftraight line given in magnitude; the figure is given in magnitude.

Let the rectilineal figure ABCDE given in fpecies be defcribed upon the ftraight line \(A B\) given in magnitude; the figure ABCDE is given in magnitude.
\(U_{\text {pon }} A B\) let the fquare \(A F\) be defcribed; therefore \(A F\) is given in fpecies and magnitude, and becaufe the rectilineal tigures \(\mathrm{ABCDE}, \mathrm{AF}\) given in fpecies are defcribed upon the fame ftraight line AB , the ratio of ABCDE to AF is 2 53. dat. given \({ }^{2}\) : But the fquare AF is given in 8. dat. magnitude, therefore balfo the figure ABCDE is given in magnitude.

\section*{PROB.}

To find the magnitude of a rectilineal figure given in fpecies defcribed upon a ftraight line given in magnitude.

Take the ftraight line GH equal to the given ftraight line \(A B\), and by the 53 d dat. find the ratio which the fquare \(A F\) upon \(A B\) has to the figure \(A B C D E\); and make the ratio of GH to HK the fame ; and upon GH defcribe the fquare GL, and complete the parallelogram L.HKM; the figure ABCDE is equal to LHKM; becaufe AF is to ABCDE, as the ftraight line GH to HK, that is, as the figure GL to HM ; and AF is : 14.5 . equal to GL ; therefore ABCDE is equal to HM c.

\section*{P R O P. LVII.}

IF two rectilineal figures are given in fpecies, and if a fide of one of them has a given ratio to a fide of the other ; the ratios of the remaining fides to the remaining fides fhall be given.

Let AC. DF be two reciilineal figures given in fpecies, and let the ratio of the fide AB to the fide DE be given, the ratios of the remaining fides to the remaining fides are alfo given.

Becaufe rhe ratio of AB to DE is given, as alfo a the ratios a 3 def. of \(A B\) to \(B C\), and of \(D E\) to EF, the ratio of \(B C\) to \(E F\) is given \({ }^{b}\). In the fame manner, the ratios of the other fides to the other fides are given.

The ratio which BC has to EF may be found thus: Take : ftraight line \(G\) given in magnitude, and becaule the ratio of \(B C\) to \(B A\) is given, make the ratio of G to H the fame; and becaufe the ratio of \(A B\) to \(D E\) is given,
 b ro. dat. make the ratio of H to K the fame ; and make the ratio of K to L the fame with the given ratio of DE to EF. Since therefore as BC to BA, fo is \(G\) to H ; and as BA to DE, fo is H to K ; and as DE to EF, fo is K to L ; ex cequali, BC is to EF , as G to L ; therefore the ratio of \(G\) to \(L\) has been found, which is the fame with the ratio of BC to EF .

\section*{PROP. LVIII.}

F two fimilar rectilineal figures have a given ratio See N. to one another, their homologous fides have alfo a given ratio to one another.

Let the two fimilar rectilineal figures \(A, B\), have a given ratio to one another, their homologous fides have alfo a given ratio.

Let the fide CD be homologous to EF , and to CD, EF let the ftraight line G be a third proportional. As therefore a CD a 2 Cor . to \(G\), fo is the figure \(A\) to \(B\); and the ratio of \(A\) to \(B\) is given, therefore the ratio of CD to G is given; and \(C D, E F, G\), are proportionals; wherefore \({ }^{b}\) the ratio of \(C D\) to EF is given.
The ratio of CD to EF may be \(\overline{\mathbf{H}} \overline{\mathbf{K}}\) found thus: Take a ftraight line
 H given in magnitude; and becaufe the ratio of the figure \(\mathbf{A}\) to B is given, make the ratio of H to K the fame with it ; Aud, as the \(13^{\text {th }}\) dat. directs to be done, find a mean proportional
tional L between H and K ; the ratio of CD to EF is the fame with that of H to L . Let G be a third proportional to CD , EF ; therefore as CD to G , fo is (A to B , and fo is) H to K ; and as CD to EF, fo is \(H\) to \(L\), as is fhown in the \(I^{\text {th }}\) dat.
54.

See N.

IF two rectilineal figures given in fpecies have a given ratio to one another, their fides fhall likewife have given ratios to one another.

Let the two rectilineal figures \(A, B\), given in fpecies, have a given ratio to one another, their fides fhall alfo have given ratios to one another.

If the figure A be fimilar to B , their homologous fides fhall have a given ratio to one another, by the preceding propofition; and becaufe the figures are given in fpecies, the fides
a 3. def.
b g. dat. of each of them have given ratios \({ }^{\text {a }}\) to one another; therefore each fide of one of them has \({ }^{\text {b }}\) to each fide of the other a given ratio.

But if the figure \(A\) be not fimilar to \(B\), let \(C D, E F\) be any two of their fides; and upon EF conceive the figure EG to be defcribed fimilar and fimilarly placed to the figure A, fo that CD, EF be homologous fides; therefore EG is given in fpecies; and the figure \(B\) is given in fpe-
c 53 . dat. cies; wherefore \({ }^{c}\) the ratio of \(B\) to \(E G\) is given; and the ratio of \(A\) to \(B\) is given, therefore \({ }^{b}\) the ratio of the

H
 figure A to EG is given; and A is fimilar to EG; therefore
d 58. dat. d the ratio of the fide CD to EF is given; and confequently b the ratios of the remaining fides to the remaining fides are given.

The ratio of CD to EF may be found thus: Take a ftraight line H given in magnitude, and becaufe the ratio of the figure A to B is given, make the ratio of H to K the fame with it. And by the \(53^{d}\) dat. find the ratio of the figure B to EG, and make the ratio of K to L the fame: Between H and L find a mean proportional \(M\), the ratio of CD to EF is the fame with the ratio of \(H\) to \(M\); becaufe the figure \(A\) is to \(B\) as H to K ; and as B to EG , fo is K to L ; ex aquali, as A
to EG, fo is H to L : And the figures A, EG are fimilar, and M is a mean proportional between H and L ; therefore, as was fhewn in the preceding propofition, CD is to EF as H to M .

> P R O P. LX.

1F'a rectilineal figure be given in fpecies and mag. nitude, the fides of it fhall be given in magnitude.

Let the rectilineal figure \(A\) be given in fpecies and magnitude, its fides are given in magnitude.

Take a ftraight line BC given in pofition and magnitude, and upon \(B C\) defcribe the figure \(D\) fimilar, and fimilarly a 18.6. placed, to the figure A, and let EF be the fide of the figure \(A\) homo logons to BC the fide of D ; therefore the figure \(D\) is given in fpecies. And becaufe upon the given ftraight line BC the figure D given in fpecies is defcribed, D
 is given bin magnitude, and the figure A is given in magnib. 56. dat. tude, therefore the ratio of A to D is given: And the figure A is fimilar to D ; therefore the ratio of the fide EF to the homologous fide \(B C\) is given' '; and \(B C\) is given, wherefore \(d\) d \({ }_{d}{ }^{53}\). dat. dat. EF is given: And the ratio of EF to EG is given e, there- e 3 . def. fore EG is given. And, in the fame manner, each of the other fides of the figure A can be fhewn to be given.

\section*{PROBLEM.}

To defcribe a rectilinial figure \(\mathbf{A}\) fimilar to a given figure \(\mathbf{D}\) and equal to another given figure H . It is prop. 25.b. 6. Elem.

Becaufe each of the figures \(\mathrm{D}, \mathrm{H}\) is given, their ratio is given, which may be found by making \({ }^{f}\) upon the given ftraight line BC the parallelogram BK equal to D , and upon its fide CK making \({ }^{f}\) the parallelogram KL equal to \(H\) in the angle fcor. \(45^{\circ}\) KCL equal to the angle MBC ; therefore the ratio of D to H , that is, of BK to KL, is the fame with the ratio of BC to CL: And becaufe the figures \(\mathrm{D}, \mathrm{A}\) are fimilar, and that the ratio of D to A , or H is the fame with the ratio of BC to CL ; by the \(5^{\text {8th }}\) dat. the ratio of the homologous fides BC, EF is the fame with the ratio of BC to the mean proportional between \(B C\) and CL. Find EF the mean proportional; then EF is the
fide of the figure to be defcribed, homologous to BC the fide of D , and the figure itfelf can be defcribed by the 18 th prop.
g 2. Cor. 20. 6. h 14.5 . 57.

See N. B. 6 . which, by the conftruction, is fimilar to D ; and becatule D is to A , as g BC to CL, that is as the figure BK to KL; and that \(D\) is equal to \(B K\), therefore \(A^{h}\) is equal to \(K L\), that is, to \(H\).
PROP. LXI.

F a parallelogram given in magnitude has one of its fides and one of its angles given in magnitude, the other fide alfo is given.

Let the parallelogram \(A B D C\) given in magnitude, have the fide \(A B\) and the angle \(B A C\) given in maguitude, the other fide AC is given.

Take a ftraight line EF given in pofition and magnitude; and becaufe the parallelogram AD is given in magnitude, a rectilincal a 1 . def. figure equal to it can be be found a. And a parallelogram equal to this b Cor. 45. figure can be applied \(b\) to the given 1. ftraight line EF in an angle equal to the given angle BAC. Let this be the parallelogram EFHG having the angle FEG equal to the angle BAC. And becaufe th.
 parallelograms \(\mathrm{AD}, \mathrm{EH}\) are equal, and have the angles at \(A\) and \(E\) equal; the fides about them
c \(\mathbf{I} 4.6\). are reciprocally proportional c; therefore as AB to EF . fo is \(E G\) to \(A C\) : and \(A B, E F, E G\) are given, therefore alfo \(A C\) di2.6. is given d. Whence the way of finding \(A C\) is manifert.

PROP. LXII.
See \(N\).
a 43 dat. given, as alfo the angle \(A E B\), the triangle \(A B E\) is given \({ }^{\text {a }}\) in fecies; therefore the ratio of BA to AE is given. Butas BA to br. 6.

IF a parallelogram has a given angle, the rectangle contained by the fides about that angle has a given ratio to the parallelogram.

Let the parallelogram ABCD have the given angle \(A^{\prime} B C\), the rectangle \(A B, B C\) has a given ratio to the parallelogram \(A C\).

From the point A draw AE perpendi. cular to BC ; becaufe the angle ABC is \(A E\), fo is \(b\) the rectangle \(A B, B C\) to the

the rectangle \(A E, B C\); therefore the ratio of
the rectangle \(\mathrm{AB}, \mathrm{BC}\) to \(\mathrm{AE}, \mathrm{BC}\) that is c , to the parallelo- c 35 . r. gram \(A C\) is given.

And it is evident how the ratio of the rectangle to the parallelogram may be found by making the angle FGH equal to the given angle \(A B C\), and drawing, from 'any point \(F\) in one of its fides, FK perpendicular to the other GH; for GF is to FK , as BA to AE , that is, as the rectangle \(\mathrm{AB}, \mathrm{BC}\), to the parallelogram AC.

Cor. And if a triangle \(A B C\) has a given angle \(A B C\), the
66. rectangle \(\mathrm{AB}, \mathrm{BC}\) contained by the fides about that angle, fhall have a given ratio to the triangle \(A B C\).

Complete the parallelogram ABCD ; therefore, by this propofition, the rectangle \(A B, B C\) has a given ratio to the parallelogram \(A C\); and \(A C\) has a given ratio to its half the triangle d \(A B C\); therefore the rectangle \(A B, B C\) has a given e ratio to triangle AL \(工\).

And the ratio of the rectangle to the triangle is found thus: Make the triangle FGK, as was hown in the propofition; the ratio of GF to the half of the perpendicular FK is the fame with the ratio of the rectangle \(A B, B C\) to the triangle \(A B C\). Becaure, as was fhown, GF is to FK , as \(\mathrm{AB}, \mathrm{BC}\) to the paralle\(\operatorname{logram~AC}\); and FK is to its half, as AC is to its half, which is the triangle ABC ; therefore, ex æquali, GF is to the half of FK , as \(\mathrm{AB}, \mathrm{BC}\) rectangle is to the triangle ABC .

\section*{P R O P. LXIII.}

IF two parallelograms be equiangular, as a fide of the firft to a fide of the fecond, fo is the other fide of the fecond to the ftraight line to which the other fide of the firtt has the fame ratio which the firft parallelogram has to the fecond. And confequently, if the ratio of the firft parallelogram to the fecond be given, the ratio of the other fide of the firft to that ftraight line is given; and if the ratio of the other fide of the firft to that ftraight line be given, the ratio of the firft parallelogram to the fecond is given.

Let AC, DF be two equiangular parallelograms, as BC, a fide of the firt, is to EF, a fide of the fecond, fo is DE, the other fide of the fecond, to the ftraight line to which \(A B\), the othes
other fide of the firft has the fame ratio which AC has to DF.
Produce the ftraight line AB , and make as BC to EF , fo DE to BG , and complete the parallelogram BGHC ; therefore, becaufe BC or GH, is to EF, as DE to BG , the fides about the equal angles \(B G H, D E F\) are reciprocally proportional; where-
a 14.6. fore \({ }^{\text {a }}\) the parallelogram BH is equal to \(D F\); and \(A B\) is to \(B G\), as the para!lelogram AC is to BH , that is, to DF ; as therefore BC is to EF , fo is DE to BG, which is the ftraight line to which
 \(A B\) has the fame ratio that \(A C\) has to DT.

And if the ratio of the parallelogram AC to \(D F\) be given, then the ratio of the ftraight line \(A B\) to \(B G\) is given; and if the ratio of \(A B\) to the fraight line \(E G\) be given, the ratio of the parallelogram \(A C\) to \(D E\) is given.
74. 73.

See N .
\[
P R O P . \quad L X I V
\]

IF two parallelograms have unequal, but given angles, and if as a fide of the firft to a fide of the fecond, fo the other fide of the fecond be made to a certain furaight line; if the ratio of the firft parallelogram to the fecond be given, the ratio of the other fide of the firft to that firaight line fhall be given. And if the ratio of the other fide of the firft to that ftraight line be given, the ratio of the firft parallelogram to the fecond thall be given.

Let \(A B C D, E F G H\) be two parallelograms which have the unequal, but given, angles \(\mathrm{ABC}, \mathrm{EFG}\); and as BC to FG , fo make EF to the itraight line M . If the ratio of the parallelogram \(A C\) to \(E G\) be given the ratio of \(A B\) to \(M\) is given.

At the point \(B\) of the ftaight line BC make the angle CBK equal to the angle EFG, and complete the parallelogram KBCL . And becaufe the ratio of AC to EG is given, and that
a 35.1 . AC is equal a to the parallelogram KC , therefore the ratio of KC , to EG is given; and \(\mathrm{KC}, \mathrm{EG}\) are equiangular; there-
563 dat. fore as BC to FG , fo is \({ }^{\mathrm{b}} \mathrm{EF}\) to the ftraight line to which KB has a given ratio, viz. the fame which the parallelogram KC has to EG; but as BC to FG, fo is FF to the ftraight line \(M\); therefore \(K B\) has a given ratio to \(M\); and the ratio

DI \(A B\) to \(B K\) is given, becaufe the triangle \(A B K\) is given in epecies \({ }^{c}\); therefore the ratio of \(A B\) to \(M\) is given \({ }^{d}\). \(c 43\) dat.

And if the ratio of \(A B\) to \(M\) be given, the ratio of the parallelogram \(A C\) to EG is given; for fince the ratio of \(K B\) to BA is given, as alfo the ratio of AB to \(M\), the ratio of \(K B\) to \(M\) is given "; and becaufe the parallelograms \(\mathrm{KC}, \mathrm{EG}\) are equiangular, as \(B C\) to \(F G\), fo is \({ }^{0}\) EF to the ftraight line to which \(K B\) has the fame ratio which the paralleiogram KC has to EG; but as BC to FG, o is EF to M ; therefore KB is to M , as the parallelogram KC is to \(E G\); and
 the ratio of \(K B\) to \(M\) is given, therefore the ratio of the parallelogram KC , that is, of AC to EG , is given

Cor. And if two triangles \(A B C\), EFG have two equal 75 . angles, or two unequal, but given, angles \(\mathrm{ABC}, \mathrm{EFG}\), and if as \(B C\) a fide of the firft to FG a fide of the fecond, fo the other fide of the fecond EF be made to a ftraight line M ; if the ratio of the triangles be given, the ratio of the othe: fide of the firft to the ftraight line M is given.

Complete the parallelograms ABCD , EFGH; and becaufe the ratio of the triangle \(A B C\) to the triangle TFG is given, the ratio of the parallelogram \(A C\) to \(E G\) is given \({ }^{e}\), becaufe the pa-e 15 . \(s\). sallelograms are double f of the triangles; and becaufe \(B C\) is to \(84 \mathrm{x} . \mathrm{z}\). FG, as EF to M , the ratio of AB to M is given by the \(\sigma_{3} \mathrm{~d}\) dat. if the angles \(A B C, E F G\) are equal; but if they be unequal, but given angles, the ratio of \(A B\) to \(M\) is given by this propofition.

And if the ratio of \(A 3\) to \(M\) be given, the ratio of the pamallelogram \(A C\) to EG is given by the fame propoftion; and therefore the ratio of the triangle \(A B C\) to EFG is given.

> PROP. LXV:
68.

F two equiangular parallelograms have a given ratio to one another, and if one fide has to one fide a given ratio; the ofther fide thall alfo have to the other fide a given ratio.

Let the two equianguiar parallelograms \(\mathrm{AB}, \mathrm{CD}\) have a given ratio to one another, and let the fide EB have a given ratio to the fide FD ; the other fide AE has alfo a given ratio to the other fide CF.

Dd
Becaus

Becaufe the two equiangular parallelograms \(\mathrm{AB}, \mathrm{CD}\) have a given ratio to one another; as EB, a fide of the firft, is to FD,
a. 63. dat. a fide of the fecond, fo is \({ }^{2}\) FC, the other fide of the fecond, to the fraight line to which AE, the other fide of the firft, has the fame given ratio which the firft parallelogram \(A B\) has to the other CD. Let this ftraight line be EG; therefore the ratio of \(A E\) to EG is given; and EB is to FP, as FC to EG, therefore the ratio of FC to EG is given, becaufe the ratio of \(E B\) to \(F D\) is given; and becaufe the ratio of \(G\) \(A E\) to \(E G\), as alfo the ratio of FC to EG is given; the

b g. dat. ratio of AE to CF is given \({ }^{\mathrm{b}}\).
The ratio of AE to CF may be found thus: 'Take a feraight line H given in magnitude; and becaufe the ratio of the parallelogram \(A B\) to \(C D\) is given, make the ratio of \(H\) to \(K\) the fame with it. And becaufe the ratio of FD to EB is given, make the ratio of \(K\) to \(L\) the fame: The ratio of \(A E\) to \(C F\) is the fame with the ratio of H to L . Nake as EB to FD , fo FC to EG , therefore, by inverfion, as FD to EB , fo is EG to FC ; and as \(A E\) to \(E G\), fo is \({ }^{\text {a }}\) (the paralielogram \(A B\) to \(C D\), and fo is) H to K ; but as EG to FC, fo is (FD to EB, and fo is) K to L ; therefore, ex æquali, as \(A E\) to FC , fo is H to L .

\section*{PR O P. LXVI.}

雷 F F two parallelograms have unequal, but given angles, and a given ratio to one another; if one fide has to one fide a given ratio, the other fide has alfo a given ratio to the other fide.

Let the two paralleiograms ABCD, . EFGH which have the given unequal angles \(A B C\), EFG have a given ratio to one another, and let the ratio of BC to FG be given; the ratio alfo of \(A B\) to \(E F\) is given.

At the point \(B\) of the fraight line \(B C\) make the angle CBK equal to the given angle EFG, and complete the parallelogram BKLC; and becaufe each of the angles BAK, AKB is
a 43. dat. given, the triangle \(A B K\) is given \({ }^{2}\) in fpecies; therefore the ratio of \(A B\) to \(B K\) is given; and becaufe, by the hypothefis, the
the ratio of the parallelogram AC to EG is given, and that AC is equal. \({ }^{\text {b }}\) to BL ; therefore the ratio of BL to EG is given: b 35 r . And becaufe BL is equiangular to EG, and by the hypothefis, the ratio of \(B C\) to \(F G\) is given; therefore \({ }^{c}\) the ratio of \(K B\) to \(c 6 s\) dato EF is given, and the ratio of \(K B\) to BA is given; the ratio therefore \({ }^{\text {d }}\) of AB to EF is given.

The ratio of AB to EF may be found thus: Take the ftraight line MN given in pofition and magnitude; and make the angle NMO equal to the given angle \(B A K\), and the angle MNO equal to the given angle EFG or AKB: And
 becaufe the parallelogram \(B L\) is equiangular to \(E G\), and has a given ratio to it, and that the ratio of \(B C\) to \(F G\) is given; find by the 6 g th dat. the ratio of KB to EF ; and make the ratio of NO to OP the fame with it : Then the ratio of AB to EF is the fame with the ratio of \(M O\) to \(O P\) : For fence the triangle \(A B K\) is equiangular to MON , as AB to BK , fo is MO to ON : And as KB to EF, fo is NO to OP; therefore, ex requali, as \(A B\) to EF, fo is MO to OP.

\section*{PROP. LXVI.}

F the fides of two equiangular parallelograms have see \(N\). given ratios to one another; the parallelograms Shall have a given ratio to one another.

Let ABCD , EFGH be two equiangular parallelograms, and let the ratio of \(A B\) to \(E F\), as alfo the ratio of \(B C\) to \(F G\), be given ; the ratio of the parallelograin \(A C\) to \(E G\) is given.

Take a ftraight line K given in magnitude, and because the ratio of \(A B\) to \(E F\) is given, make the ratio of K to L the fame with it ; therefore \(L\) is given \({ }^{\mathrm{a}}\) : And because the ratio of \(B C\) to \(F G\) is given, make the ratio of L to M the fame: Therefore M is given \({ }^{\text {a }}\) : and K is given, wherefore \({ }^{b}\) : the
 ratio of K to M is given: But the parallelogram AC is to the parallelogram EG , as the ftraight line K to the ftraight line \(\mathrm{M}_{\text {, }}\),

Dd 2
as is demonftrated in the 23 d prop. of B. 6. Elem. therefore the ratio of AC to EG is given.

From this it is plain how the ratio of two equiangular parallelograms may be found when the ratios of their fides are given.

> P R O P. LXVIII.

See No F the fides of two parallelograms which have unequal, but given angles, have given ratios to one another; the parallelograms fhall have a given ratio to one another.

Let two parallelograms \(\mathrm{ABCD}, \mathrm{EFGH}\) which have the given unequal angles \(A B C\), EFG have the ratios of their fides, viz. of \(A B\) to \(E F\), and of \(B C\) to \(F G\), given; the ratio of the parallelogram AC to EG is given.

At the point B of the ftraight line BC make the angle CBK equal to the given angle \(E \mathrm{FF}_{\mathrm{G}}\), and complete the parallelogram KBCL: And becaufe each of the angles BAK, BKA is given, the triangle \(A B K\) is given \({ }^{2}\) in fpecies: Therefore the ratio of \(A B\) to \(B K\) is given; and the ratio of \(A B\) to EF is given, wherefore \({ }^{b}\) the ratio of BK to EF is given: And the ratio of BC to FG is given; \(\mathrm{K} \quad \mathrm{A} \quad \mathrm{L}\)
and the angle KBC is equal to the angle EFG; there-
c 67. dat fore \({ }^{c}\) the ratio of the parallelogram KC to EG is gi-
d 35.3. ven: But KC is equald to \(A C\); therefore the ratio of \(A C\) to \(E G\) is given.

The ratio of the parallelogram AC to EG may be found thus: 'Take the ftraight line IMN given in pofition and magnitude, and make the angle MNO equal to the given angle \(K A B\), and the angle NMO equal to the given angle AKB or FEH: And becaufe the ratio of AB to EF is given, make the ratio of NO to \(P\) the fame, alfo make the ratio of \(P\) to \(Q\) the fame with the given ratio of \(B C\) to \(F G\), the parallelogram \(A C\) is to EG, as MO to \(Q\).

Becaufe the angle \(K A B\) is equal to the angle \(M N O\), and the angle \(A K B\) equal to the angle NMO; the triangle \(A K B\) is equidagular to NMO : Therefore as KB to BA fo is MO to \(\mathrm{ON}^{\prime}\); and as BA to EF, fo is NO to P; wherefore, ex \(x\).. quali, as \(K B\) to \(L F\), fo is \(M O\) to \(P\) : And \(B C\) is to \(F G\), as \(P\)

\section*{D A T A.}
to \(Q\), and the parallelograms \(\mathrm{KC}, \mathrm{EG}\) are equiangular; therefore, as was fhown in prop. 67 . the parallelogram KC , that is, AC , is to EG, as MO to O .

Cor. I. If two triangles \(\mathrm{ABC}, \mathrm{DEF}\) have two equal angles, or two unequal, but given angles \(\mathrm{ABC}, \mathrm{DEF}\), and if the ratios of the fides about thefe angles, viz. the ratios of \(A B\) to \(D E\), and of \(B C\) to EF be given; the triangles fhall have a given ratio to one another.

Complete the parallelograms BG , EH ; the ratio of BG to EH is gi-
 ven \(^{2}\); and therefore the triangles which are the halves \({ }^{b}\) of \({ }^{3} 67\) or 68 .
them have a given \({ }^{c}\) ratio to one another.

Cor. 2. If the bafes BC, EF of t:vo triangles \(A B C\), DEF have \(\begin{gathered}b \\ c \\ \text { 3. } \\ 54.50\end{gathered}\) a given ratio to one another, and if alfo the ftraight lines \(A G\), either in equal angles, or unequal, but given angles AGC, DHF have a given ratio to one another; the triangles fhall have a given ratio to one another.

Draw BK, EL pazallel to AG, DH , and complete the paralle- B G C I \(\mathbf{H} \mathbf{F}\) lograms KC, LF. And becaufe the angles AGC, DHF, or their equals, the angles KBC , LEF are either equal, or unequal, but given; and that the ratio of AG to DH, that is, of KB to LE, is given, as alfo the ratio of BC to EF; therefore \({ }^{2}\) the ratio of the paralleiogram KC to LF is given; wherefore alfo the ratio of the triangle \(A B C\) to DEF is given \(b\).

> PROP. LXIX.

F a parallelogram which has a given angle be applied to one fide of a rectilineal figure given in fpecies; if the figure have a given ratio to the parallelogram, the parallelogram is given in fecies.

Let \(\Lambda B C D\) be a rectilineal figure given in fpecies, and to one fide of it \(A B\), let the parallelogram \(A B E F\) having the given angle \(A B E\) be'applied; if the figure \(A B C D\) has a given ratio to the parallelogram BF , the parallelogram BF is given in fpecies.

Through the point A draw AG parallcl to BC, and through the point \(C\) draw \(C G\) parallel to \(A B\), and produce \(G A, C B\) to

2 3. def. the points \(\mathrm{H}, \mathrm{K}\); becaufe the angle ABC is given \({ }^{2}\), and the ratio of AB to BC is given, the figure ABCD being given in fpecies; therefore, the parallelogram \(B G\) is given. \({ }^{2}\) in fpecies. And becaufe upon the fame ftraight line A.B the two rectilineal figures BD, BG given in fpecies are defcribed, the ratio of
3 53. dat
c 9 dat
d \(35 . \mathrm{x}\).
cs. 6. \(B D\) to \(B G\) is given \({ }^{b}\); and, by hypothefis, the ratio of BD) to the parallelogram BF is given; wherefore \({ }^{\mathrm{c}}\) the ratio of BF , that is d, of the parallelogram BH , to BG is given, and therefore \({ }^{e}\) the ratio of the ftraight line KB to BC is given; and the ratio of BC to BA is given, wherefore the ratio of \(\mathbb{K} B\) to \(B A\) is given \({ }^{c}\) : And becaufe the angle \(A B C\) is given, the adjacent angle \(A B K\) is given; and the angle \(A B E\) is given, therefore the remaining angle KBE is given. The angle EKB is alfo given, recaufe it is equal to the angle ABK ; therefore the triangle BKE is given in fpecies, and confequently the ratio of EB to BK is given; and the ratio of KB to BA is given wherefore \({ }^{c}\) the ratio of EB to BA is given; and the angle \(A B E\) is given, therefore the paralleiogram BF is given in ipecies.

A parallelogram finilar to BF may be found thus: Take a ftraight
 line LM given in pofition and magnitude; and becaufe the angles \(A B K, ~ A B E\) are given, make the angle NEM equal to \(A B K\), and the angle NLO equal to \(A B E\). And becaufe the ratio of \(B F^{*}\) to \(B D\) is given, make the ratio of \(L M\) to \(P\).the fame with it; and becaufe the ratio of the figure BD to BG is given, find this ratio by the 53 d dat. and make the ratio of \(P\) io \(Q\) the fame. Aifo, becaufe the ratio of \(C B\) to \(B A\) is given, make the ratio of \(Q 10 \mathrm{R}\) the fame; and take \(L N\) equal to \(R\); through the point \(M\) draw \(O M\) parallel to \(L N\) and complete the parallelogram NLOS; then this is fimilar to the parallelogram BF.

Becaufe the angle ABK is equal to NLM, and the angle ABE to NLO, the angle KBE is equal to MLO; and the angles BKE, LNIO are equal, becaufe the angle \(A B K\) is equal to NLM ; therefore the triangles BKE, LMO are equiangular to one another; wherefore as BE to BK , fo is LO to \(L M\); and becauie as the figure BF to BD , fo is the ftraight linie L M to P ; and as BD to BG , fo is P to Q ; ex æquali, as \(B F\), that is \(B H\) to \(B G\), fo is LM to Q : But \(B H\) is to \({ }^{\circ}\)
\(\bar{B} G\), as KB to BC ; as therefore KB to BC , fo is LM to \(Q\); and becaufe BE is to BK as LO to LM ; and as BK to BC, fo is LM to Q : And as \(B C\) to \(B A\), fo \(Q\) was made to \(R\); therefore, ex xquali, as BE to BA, fo is \(L O\) to \(R\), that is to \(L N\); and the angles \(\mathrm{ABE}, \mathrm{NLO}\) are equal ; therefore the parailelogram BF is fimilar to LS .

> P R O P. LXX.

F two Araight lines have a given ratio to one ano. See N . ther, and upon one of them be defcribed a rectilineal figure given in fpecies, and upon the other a parallelogram having a given angle; if the figure have a given ratio to the parallelogram, the parallelogram is given in fpecies.

Let the two ftraight lines \(\mathrm{AB}, \mathrm{CD}\) have a given ratio to one another, and upon \(A B\) let the figure \(A E B\) given in fpecies be defcribed, and upon CD the parallelogrtim \(\mathrm{DF}^{\text {P }}\) having the given angle FCD ; if the ratio of AEB to DF be given, the parallelogram DF is given in fpecies.

Upon the ftaight line \(A B\), conceive the parallelogram \(A G\) to be defcribed fimilar, and fimilarly placed to FD ; and becaufe the ratio of \(A B\) to \(C D\) is given, and upon them afe defcribed the fimilar rectilineal figures \(A G\), FD ; the ratio of AG to FD is given \({ }^{2}\); and the ratio of FD to \(\Lambda E B\) is given; therefore \({ }^{b}\) the ratio of AEB to \(A G\) is given; and the angle \(A B G\) is given, becaufe it is equal to the angle FCD ; becaufe therefore the parallelogram AG which has a given aigle \(A B \cdot G\) is applied to a fide \(A B\) of the figure AEB given in fpe-
 cies, and the ratio of \(A E B\) to \(A G\) is given, the parallelogram \(A G\) is given \({ }^{c}\) in tpecies; but FD is fimilar to \(A G\); therefore \(c 6\). da.. FD is given in fpecies.

A parallelogram fimilar to FD may be found thus: Take a ftraight line \(H\) given in magnitude; and becaufe the ratio of the figure ALB to FD is given, make the ratio of H to K the fame with it: Alfo, becaufe the ratio of the ftraight line \(C D\) to AB is given, find by the \(54^{\text {th }}\) dat. the ratio which the figure FD defcribed upon \(C D\) has to the figure AG defcribed upon AB fimilar to FD ; and make the ratio of K to L the fame with this ratio: And becaufe the ratios of \(H\) to \(K\), and of \(K\) Dd 4
b o. dat. to \(L\) are given, the ratio of \(H\) to \(L\) is given \({ }^{6}\); becaufe, thered fore, as AEB to FD, fo is H to K ; and as FD to \(A G\), to is K to \(L\); ex æquali, as \(A E B\) to \(A G\) fo is \(H\) to \(L\); therefore the ratio of AEB to AG, is given; and the figure AEB is given in fpecies, and to its fide \(A B\) the parallelogram \(A G\) is applied in the given angle ABG ; therefore by the 69 th dat. a parallelogram may be found fimilar to AG : Let this be the parallelogram MN; MN alfo is fimilar to FD; for, by the conftruction, \(\mathbb{M N}\) is fimilar to \(A G\), and \(A G\) is fimilar to \(F D\); therefore the parallelogram FD is fimilar to MN .
PROP. LXXI.

IF the extremes of three proportional ftraight lines have given ratios to the extremes of other three proportional ftraight lines; the means fhall alfo have a given ratio to one another: And if one extreme has a given ratio to one extreme, and the mean to the mean; likewife the other extreme fhall have to the other a given satio.

Ict \(A, B, C\) be three proportional fraight lines, and \(D, E\), \(F\), three other; and ler the ratios of \(A\) to \(D\), and of \(C\) to \(F\) be given; then the ratio of \(B\) to \(E\) is alfo given:

Becaufe the ratio of \(A\) to \(D\), as alfo of \(C\) to \(F\) is given, the a 67 . dat. ratio of the rectangle. \(A, C\) to the rectangle \(D, F\) is given \({ }^{\text {a }}\); 317.6. but the fquare of \(B\) is equal \({ }^{b}\) to the rectangle \(A, C\); and the fquare of \(E\) to the rectangle \({ }^{b} D, F\); therefore the ratio of the
cis 8. dat. fquare of \(B\) to the fquare of \(E\) is given; wherefore \({ }^{c}\) alfo the ratio of the fraight line B to E is given.

Next, let the ratio of \(A\) to \(D\), and of \(B\) to \(E\) be given; then the ratio of C to F is alfo given.

Decaufe the ratio of \(B\) to \(E\) is given, the ratio of \(A B C\) d 54. dat. the fquare of \(B\) to the fquare of \(E\) is givend; there- \(D E M\) fore \({ }^{\text {o }}\) the ratio of the rectangle \(\mathrm{A}, \mathrm{C}\) to the rectangle \(D, F\) is given; and the ratio of the fule \(A\) to the ficie \(D\) is given; therefore the ratio of the other fide
e 65. dat. \(C\) to the other \(F\) is given \({ }^{\mathrm{e}}\).
Cor. Ind if the extremes of four proportionals have to the extremes of four ocher proportionals given ratios, and one of the means a given ratio to one of the means; the other mean: fhall have a given ratio to the other mean, as may be fhown in the fame manacr as in the foregoing propofition.

\section*{PROP. LXXII.}

IF four fraight lines be proportionals; as the firft is to the flraight line to which the fecond has a given ratio, fo is the third to a ftraight line to which the fourth has a given ratio.

Let A, B, C, D be four proportional ftraight lines, viz. as A to B, fo C to D ; as A is to the ftraight line to which B has a given ratio, fo is C to a ftraight line to which D has a given ratio.

Let E be the ftraight line to which B has a given ratio, and as B to E, fo make D to F: The ratio of \(B\) to \(E\) is given \({ }^{2}\), and therefore the ratio of \(D\) to \(F\); and becaufe as A to B , fo is C to D ; and as B to E fo \(D\) to \(F\); therefore, ex requali, as \(A\) to \(E\), fo is C to F ; and E is the ftraight line to which B has a given ratio, and F that to which D has a given ratio; therefore as A is to the ftraight line to which B has a given ratio, fo is C to a line to which D has a given ratio.

P R O P. LXXIII.

IF four ftraight lines be proportionals; as the firt is \(\sec \mathrm{N}\) ? to the fraight line to which the fecond has a: given ratio, fo is a ftraight line to which the third has a givens ratio to the fourth.

Let the feraight line A be to B , as C to D ; as A to the ftraight line to which \(B\) has a given ratio, fo is a ftraight line to which C has a given ratio to D .

Let \(E\) be the ftraight line to which \(B\) has a given ratio, and as \(B\) to \(E\), fo make \(F\) to \(C\); becaufe the ratio of \(B\) to \(E\) is given, the ratio of \(C\) to \(F\) is given: And becaufe A is to B, as C to D; and as B to E, fo F to C ; therefore, ex rquali in proportione per \(\mathbf{F C D}\) turbata \({ }^{2}, \mathrm{~A}\) is to E , as F to D ; that is, A is to E to which \(B\) has a given ratio, as \(F\), to which \(C\) has a given ratio, is to D .

苜F a triangle has a given obtufe angle; the excefs of the fquare of the fide which fubtends the obtule angle, above the fquares of the fides which contain it, fhal! have a given ratio to the triangle.

Let the triangle \(A B C\) have a given obtufe angle \(A B C\); and produce the fraight line CB , and from the point A draw AD perpendicular to \(B C\) : The excefs of the fquare of \(A C\) above the fquares of \(\mathrm{AB}, \mathrm{BC}\), that is \({ }^{\text {a }}\), the double of the rectangle contained by \(\mathrm{DB}, \mathrm{BC}\), has a given ratio to the triangle ABC.

Becaufe the angle \(A B C\) is given, the angle \(A B D\) is alfo given; and the angle \(A D B\) is given; wherefore the triangle ' \(A B 1\))
\(b^{b} 43 . \mathrm{dat}\). is given \({ }^{b}\) in feecies; and therefore the ratio of AD to DB
c r.6. is given : And as AD to DB , fo is \({ }^{c}\) the rectangle \(\mathrm{AD}, \mathrm{BC}\) to the rectangle \(\mathrm{DB}, \mathrm{BC}\); wherefore the ratio of the rectangle \(\mathrm{AD}, \mathrm{BC}\) to the rectangle \(\mathrm{DB}, \mathrm{BC}\) is given, as alfo the ratio of twice the rectangle \(\mathrm{DB}, \mathrm{BC}\) to the rectangle \(\mathrm{AD}, \mathrm{BC}\) : But the ratio of the rectangle \(\mathrm{AD}, \mathrm{BC}\) to the triangle ABC
d 4 I . I .
e 9. dat. is given, becaufe it is doubled of the triangle; therefore the ratio of twice the rectangle \(\mathrm{DB}, \mathrm{BC}\) to the triangle ABC is given \({ }^{c}\); and twice the rectangle \(\mathrm{DB}, \mathrm{BC}\)
 is the excefs \({ }^{2}\) of the fquare of \(A C\) above the fquares of \(A B\), \(B C\); therefore this excefs has a given ratio to the triangle \(A B C\),

And the ratio of this excefs to the triangle \(A B C\) may be found thus: Take a ftraight line EF given in pofition and magnitude; and becaufe the angle \(A B C\) is given, at the point \(F\) of the ftraight line EF, make the angle EFG equal to the angle \(\Lambda B C\); produce \(G F\), and draw FH perpendicular to FG ; then the ratio of the excefs of the fquare of AC above the fquares of \(A B, B C\) to the triangle \(A B C\), is the fame with the ratio of quadruple the ftraight line HF to HE.

Becaufe the angle \(A B D\) is equal to the angle EFH, and the angle \(A D B\) to EHF, each being a right angle; the tri-
f4. 6. angle \(A D B\) is equiangular to \(E H F\); therefore \(f\) as \(B D\) to \(D A\),
g Cor.4.5. fo. WH to HE; and-as quadruple of BD to DA , fo is \(\mathrm{g}^{8}\) quadruple of FH to HE: But as twice BD is to DA, fo is \({ }^{c}\) twice the rectangle \(\mathrm{DP}, \mathrm{BC}\) to the rectangle \(\mathrm{AD}, \mathrm{BC}\); and as DA .
h C. 5. to the half of \(i t\), fo is \({ }^{\text {b }}\) the rectangle \(\mathrm{AD}, \mathrm{BC}\) to its half the triangle
triangle ABC ; therefore, ex æquali, as twice BD is to the half of DA , that is, as quadruple of BD is to DA , that is, as quadruple of FH to HE , fo is twice the rectangle \(\mathrm{DR}, \mathrm{BC}\) to the triangle ABC .

\section*{P R O P. LXXV.}

IF a triangle has a given acute angle, the face by which the fquare of the fide fubtending the acute angle is lefs than the fquares of the fides which contain it, fhall have a given ratio to the triangle.

Let the triangle \(A B C\) have a given acute angle \(A B C\), and draw \(A D\) perpendicular to BC , the fpace by which the fquare of AC is lefs than the fquares of \(\mathrm{AB}, \mathrm{BC}\), that is \({ }^{\text {a }}\), the double \(a \mathrm{~s} .2\). of the rectangle contained by \(\mathrm{CB}, \mathrm{BD}\), has a given ratio to the triangle ABC .

Becaufe the angles \(\mathrm{ABD}, \mathrm{ADB}\) are each of them given, the triangle ABD is given in fpecies; and therefore the ratio of BD DA is given: And as BD to DA , fo is the rectangle \(\mathrm{CB}, \mathrm{BD}\) to the rectangle \(\mathrm{CB}, \mathrm{AD}\) : therefore the ratio of thefe rectangles is given, as alfo the ratio of twice the rectangle \(\mathrm{CB}, \mathrm{BD}\) to the rectangle \(\mathrm{CB}, \mathrm{AD}\), but the rectangle \(\mathrm{CB}, \mathrm{AD}\) has a given ratio to its half the triangle ABC : therefore \({ }^{\mathrm{b}}\) the
 ratio of twice the rectangle \(\mathrm{CB}, \mathrm{BD}\) to the triangle ABC is given; and twice the rectangle \(\mathrm{CB}, \mathrm{BD}\) is \({ }^{2}\) the fpace by which the fquare of \(A C\) is lefs than the fquares of \(A B, B C\); therefore the ratio of this fpace to the triangle \(A B C\) is given: And the ratio may be found as in the preceding propofition.

\section*{LEMMA.}

1F from the vertex \(A\) of an ifofceles triangle \(A B C\), any ftraight line \(A D\) be drawn to the bafe \(B C\), the qquare of the fide \(\overline{\mathrm{AB}}\) is equal to the rectangle \(\mathrm{BD}, \mathrm{DC}\) of the fegments of the bafe together with the fquare of AD ; but if AD be drawn to the bate produced, the fquare of AD is equal to the rectangle BD , \(D C\) together with the fquare of \(A B\).

Cas. 1. Bifect the bafe BC in E, and join AE which will be perpendicular \({ }^{2}\) to \(B C\); wherefore the fquare of \(A B\) is equal \({ }^{\circ}\) to the fquares of \(\mathrm{AE}, \mathrm{EB}\); but the fquare of EB is equal \({ }^{c}\) to the rectangle \(\mathrm{BD}, \mathrm{DC}\) together with the fquare of DE ; therefore the fquare of \(A B\) is equal to the

fquares
b \(47, \mathrm{x}\). fquares of \(\mathrm{AE}, \mathrm{ED}\), that is, to \({ }^{\circ}\) the fquare of AD , together with the rectangle \(B D, D C\); the other cafe is fhown in the fame way by 6. 2. Elem.

\section*{P R O P. LXXVI.}

I\(F\) a triangle have a given angle, the excefs of the fquare of the ftraight line which is equal to the two fides that contain the given angle, above the fquare of the third fide, fhall have a given ratio to the triangle.

Let the triangle \(A B C\) have the given angle \(B A C\), the excefs of the fquare of the fraight line which is equal to \(\mathrm{BA}, \mathrm{AC}\) together above the fquare of BC, flall have a given ratio to, the triangle ABC .

Produce AA , and take AD equal to AC , join DC and produce it to \(E\), and through the point \(B\) draw \(B E\) parallel to AC ; join AE , and draw AF perpendicular to DC ; and becaufe AD is equal to \(\mathrm{AC}, \mathrm{BD}\) is equal to BE ; and BC is drawn from the vertex B of the ifofceles triangle DBE, therefore, by the Lemma, the fquare of BD , that is, of BA and \(\Lambda\) C together, is equal to the rectangle \(\mathrm{DC}, \mathrm{CE}\) together with the fquare of BC ; and, theretore, the fquare of \(\mathrm{B} \Lambda, \mathrm{AC}\) together, that is, of \(B D\), is greater than the fquare of BC by the rectangle DC , CE; and this rectangle has a given ratio to the triangle \(A B C\); becaufe the angle BAC is given, the adjacent angle \(\mathrm{C} A \mathrm{D}\) is given; and each of the angles ADC, DCA is given, for a 5.8 . 32 . each of them is the half: of the given
1. angle. BAC ; therefore the triangle b 43. dat. ADC is given \({ }^{\mathrm{b}}\) in fpecies; and \(\mathrm{AF}^{\prime}\) is
 drawn from its vertex to the bafe in a given angle; whercfore the ratio of AF to the bafe CD is
c 50. dat. given \({ }^{\text {c }}\); and as CD to AF , fo is \({ }^{\text {d }}\) the rectangle \(\mathrm{DC}, \mathrm{CE}\) to
d \(\mathbf{1 . 6}\). the rectangle \(A F, C E\); and the ratio of the rectangle \(A F\),
e 41. r. CE to its halfe; the triangle ACE is given; therefore the ra-
f 37. r. tio of the rcctangle DC , CE to the triangle ACE , that is f , to
89.dat. the triangle \(A B C\), is given \({ }^{8}\) : and the rectangle \(\mathrm{DC}, \mathrm{CE}\) is the excefs of the fquare of \(B A, A C\) together above the fquare of \(B C\) : therefo:e the ratio of this excefs to the triangle \(A B C\) is given.

The ratio which the rectangle \(\mathrm{DC}, \mathrm{CE}\) has to the triangle ABC is found thus: Take the ftraight line GH gixen in pofition
tion and magnitude, and at the point \(G\) in GH make the angle HGK equal to the given angle CAD, and take GK ecqual to GH, join KH, and draw GL perpendicular to it: 'Then the ratio of HK to the half of GL is the fame with the ratio of the rectangle \(\mathrm{DC}, \mathrm{CE}\) to the triangle ABC : Becaufe the angles HGK, D \(\wedge \mathrm{C}\) at the vertices of the ifofceles triangles GHK, ADC are equal to one another, thefe triangles are fimilar; and becaufe GL, AF are perpendicular to the bafes HK, DC, as HK to GL, fo is \({ }^{\text {h }}\) (DC to AF, and fo is) the rectangle DC, \(h\) CE to the rectangle AF, CE; but as GL to its half, fo is the rectangle \(\mathrm{AF}, \mathrm{CE}\) to its half, which is the triangle ACE, or the triangle \(A B C\); therefore, ex wquali, HK is to the half of the ftraight line GL, as the rectangle \(\mathrm{DC}, \mathrm{CE}\) is to the triangle ABC .

Cor. And if a triangle have a given angle, the fpace by which the fquare of the ftraight line which is the difference of the fides which contain the given angle is lefs than the fquare of the third fide, flall have a given ratio to the triangle. This is demonftrated the fame way as the preceding propofition, by help of the fecond cafe of the Lemma.

> PROP. LXXVII.
L.

F the perpendicular drawn from a given angle of See N . a triangle to the oppofite fide, or bale, has a given ratio to the bafe, the triangle is given in fpecies.

Let the triangle ABC have the given angle BAC , and let the perpendicular AD drawn to the bafe EC , have a given ratio to if, the triangle \(A B C\) is given in fpecies.

If \(A B C\) be an ifofceles triangle, it is evident \({ }^{2}\) that if any a \(5 . \& 32\),

one of its angles be given, the reft are alfo given; and therefore the triangle is given in fpecies, without the confideration of the ratio of the perpendicular to the bafe, which in this cafe is given by prop.
50.

But when \(A B C\) is not an ifofceles triangle, take any ftraight line EF given in pofition and magnitude, and upon it defrrike the
the fegment of a circle EGF containing an angle equal to the given angle BAC, draw GH bifecting EF at right angles, and join EG, GF: Then, fine the angle EGF is equal to the angle BAC, and that EGF is an ifofceles triangle, and \(A B C\) is not, the angle FEG is not equal to the angle CBA: Draw EL making the angle FEL equal to the angle CBA; join FL , and draw LM perpendicular to EF; then, becaufe the triangles ELF BAC are equiangular, as alfo are the triangles \(\mathrm{MLE}, \mathrm{DAB}\), as ML to LE, fo is DA to \(A B\); and as LE to EF, fo is \(A B\) to \(B C\); wherefore, ex æquali, as \(L M\) to \(E F\), fo is \(A D\) to \(B C\); and because the ratio of AD to BC is given, therefore the ratio of LM to EF is given; and EF is given, wherefore \({ }^{b}\) LM alfo is given. Complete the parallelogram LMFK; and becaufe LMM is given, FK is given in magnitude; it is aldo given in pofition, and the point F is given, and confequently \({ }^{c}\) the point K ; and becaufe through K the ftraight line KL is drawn parallel to EF a jr. dat. which is given in pofition, therefore \({ }^{\text {d }} \mathrm{KL}\) is given in pofition:

\section*{E OH MF}
and the circumference ELF is given in pofition; therefore the c 28. dat. point L is given \({ }^{e}\). And becaufe the points L, E, F, are given, § 29. dat. the ftraight lines LE, EF, FL, are given \(f\) in magnitude; there\(5 \mathbf{4 2}^{2}\) dat, fore the triangle LEF is given in fpecies \({ }^{8}\); and the triangle \(A B C\) is fimilar to LEF, wherefore alfo \(A B C\) is given in species.

Becaufe LM is lefs than GH, the ratio of LM to EF, that is, the given ratio of \(A D\) to \(B C\), muff be lefs than the ratio of GH to EF, which the ftraight line, in a fegment of a circle contraining an angle equal to the given angle, that bifects the bare of the fegment at right angles, has unto the bare.

Cor. I. If two triangles, \(\mathrm{ABC}, \mathrm{LEF}\), have one angle BAC equal to one angle ELF, and if the perpendicular \(A D\) be to the bare BC , as the perpendicular LM to the bare EF, the triangles \(A B C, L E F\) are fimilar.

Defcribe the circle EGF about the triangle ELF, and draw LN parallel to EF, join EN, NF, and draw NO perpendicular to EF; becaufe the angles ENF, ELF are equal, and that
the angle EFN is equal to the alternate angle FNL, that is, to the angle FEL in the fame fegment; therefore the triangle NEF is fimilar to LEF; and in the fegment EGF there can be no other triangle upon the bafe EF, which has the ratio of its perpendicular to that bafe the fame with the ratio of LM or NO to EF, becaufe the perpendicular muft be greater or lefs than LM or NO ; but, as has been fhewn in the preceding demonftration, a triangle, fimiai to \(A B C\), can be defcribed in the fegment EGF upon the bafe EF , and the ratio of its perpendicular to the bafe is the fame, as was there fhewn, with the ratio of AD to BC , that is, of LM to EF ; thercfore that triangle muft be either LEF, or NEF, which therefure are fimilar to the triangle ABC .

Cor. 2. If a triangle \(A B C\) has a given angle \(B A C\), and if the fraight line \(A R\) drawn from the given angle to the oppofite fide \(B C\), in a given angle \(A R C\), has a given ratio to \(B C\), the triangle ABC is given in fepcies.

Draw AD perpendicular to BC ; therefore the triangle ARD is given in fpecies; wherefore the ratio of \(A D\) to \(A R\) is given: and the ratio of \(A R\) to \(B C\) is given, and confequently \(h\) the ra- h 9. dat. tio of AD to BC is given; and the triangle ABC is therefore given in fpecies \({ }^{i}\).
- Cor. 3. If two triangles \(A B C\), LEF have one angle \(B A C\) equal to one angle ELF, and if tiraight lines drawn from thefe angles to the bafes, making with them given and equal angles, have the fame ratio to the bafes, each to each; then the triangles are fimilar; for having drawn perpendiculars to the bafes from the equal angles, as one perpendicular is to its bafe, fo is the other to its bafe \({ }^{k}\); whercfore, by Cor. 1. the tri-k angles are fimilar.

A triangle fimilar to \(A B C\) may be found thus: Having defcribed the fegment EGF and drawn the ftraight line GH as was directed in the propofition, find FK which has to EF the given ratio of AD to BC ; and place FK at right angles to TH from the point \(F\); then becaufe, as has been thewn, the ratio of AD to BC , that is of FK to EF , muft be lefs than the ratio of GH to EF; therefore FK is lefs than GH; and confequently the parallel to EF drawn through the point \(K\), murt meet the circumference of the fegrent in two points: Let \(L\) be either of them, and join EL, LF, and draw LM perpendicular to EF : then, becaufe the angle BAC is equal, to the angle ELF, and that \(\AA D\) is to \(B C\), as \(K F\), that is, \(L M\) to \(E F\), the triangle \(A B C\) is fimilar to the triangle LEF, by Cor. I.

\section*{E U C L I D's}

PROP. LXXVIII.

IF a triangle have one angle given, and if the ratio of the rectangle of the fides which contain the given angle to the qquare of the third fide be given, the triangle is given in fpecies.

Let the triangle ABC have the given angle BAC , and let the ratio of the rectangle \(B A, A C\) to the fquare of \(B C\) be given; the triangle \(A B C\) is given in fpecies.

From the point A , draw AD perpendicular to BC , the rect-
a 4 I.I. angle \(\mathrm{AD}, \mathrm{BC}\) has a given ratio to its half \({ }^{\text {a }}\) the triangle ABC ; and becaufe the angle \(B A C\) is given, the ratio of the triangle
\({ }^{5}\) Cor. \(62 . \mathrm{BAC}\) to the rectangle \(\mathrm{BA}, \mathrm{AC}\) is given \({ }^{\text {b }}\); and by the hypo-
dat. thefis, the ratio of the rectangle \(B A, A C\) to the fquare of \(B C\) is
c 9. dat. given; therefore \({ }^{c}\) the ratio of the rectangle \(\mathrm{AD}, \mathrm{BC}\) to the
d 1.6 . fquare of \(B C\), that is \({ }^{d}\), the ratio of the ftraight line \(A D\) to \(B C\),
c 77. dat. is given; wherefore the triangle \(A B C\) is given in fpecies \({ }^{\text {e }}\).
A triangle fimilar to ABC may be found thus: Take a ftraight line EF given in pofition and magnitude, and make the angle FEG equal to the given angle BAC , and draw FH perpendicular to EG, and BK perpendicular to AC ; therefore the triangles ABK, EFH are fimilar, and the rectangle \(\mathrm{AD}, \mathrm{BC}\), or the rectangle \(\mathrm{BK}, \mathrm{AC}\) which is equal to it, is to the rectangle \(\mathrm{BA}, \mathrm{BC}\) as the ftraight line BK to BA , that is, as FH to FE. Let
 the given ratio of the rectangle \(\mathrm{BA}, \mathrm{AC}\) to the fquare of BC be the fame with the ratio of the ftraight line EF to FL ; therefore, ex requali, the ratio of the rectangle \(\mathrm{AD}, \mathrm{BC}\) to the Square of BC , that is, the ratio of the ftraight line AD to BC , is the fame with the ratio of HF to FL; and becaufe AD is not greater than the ftraight line MN in the fegment of the circle defcribed about the triangle \(A B C\), which bifects \(B C\) at right angles; the ratio of AD to BC , that is, of HF . to FL , muft not be greater than the ratio of MN to BC : Let it be fo, and, by the \(77^{\text {th }}\) dat. find a triangle OPQ which has one of its angles POQ equal to the given angle BAC , and the ratio of the perpendicular OR , drawn from that angle to the bafe PQ the fame with the ratio of HF to FL ; then the triangle ABC is fimilar to

OPQ: Becaule, as has been fhown, the ratio of AD to BC is the fame with the ratio of (HF to FL, that is, by the conftruction, with the ratio of) OR to PQ ; and the angle BAC is equal to the angle \(P O Q\). Therefore the triangle \(A B C\) is fimilar \({ }^{f} f\) r. Cor. to the triangle POQ .

\section*{Otherruife,}

Let the triangle \(A B C\) have the given angle \(B A C\), and let the ratio of the rectangle \(B A, A C\) to the fquare of \(B C\) be given; the triangle ABC is given in fpecies.

Becaufe the angle \(B A C\) is given, the excefs of the fquare of both the fides \(B A, A C\) together above the fquare of the third fide BC has a given \({ }^{2}\) ratio to the triangle ABC . Let the a 76 . datio figure \(D\) be equal to this excefs; therefore the ratio of \(D\) to the triangle \(A \overline{B C}\) is given; and the ratio of the triangle \(A B C\) to the rectangle \(B A, A C\) is given \({ }^{\mathrm{b}}\), becaufe BAC is a given \(b\) Cor. 6 z . angle; and the rectangle BA, AC has a given ratio to the fquare of BC ; wherefore \({ }^{c}\) the ratio of D to the fquare of BC is given; and, by compofition \({ }^{\text {, }}\), the ratio of the fpace \(D \mathrm{~B}\) d d dat. together with the fquare of \(B C\) to the fquare of \(B C\) is given; but \(D\) together with the fquare of \(B C\) is equal to the fquare of both BA and AC together; therefore the ratio of the fquare of \(\mathrm{BA}, \mathrm{AC}\) together to the fquare of BC is given; and the ratio of \(B A, A C\) together to \(B C\) is therefore given \({ }^{c}\); and the angle e \(s g\). dat: \(B A C\) is given, wherefore \(f\) the triangle ADC is given in fpecies. f 43. dat.

The compofition of this, which depends upon thofe of the 7 th and 48 th propofitions, is more complex than the preceding compofition, which depends upon that of prop. 77. which is eafy.

> PR O P. LXXIX.

IF a triangle have a given angle, and if the fraight See \(\mathbb{N}^{*}\) line drawn from that angle to the bale, making a given angle with it, divides the bafe into fegments which have a given ratio to one another; the triangle is given in fpecies.

Let the triangle \(A B C\) have the given angle \(B A C\), and let, the ftraight line AD drawn to the bafe BC making the given angle ADB , divide CB into the fegments \(\mathrm{BD}, \mathrm{DC}\) which have
a given ratio to one another; the triangle ABC is given in fpecies.
\(=5.4\).
b20.3.
c 44. dat.
d \% dat.
e 9. dat.
f 47. dat. given \(F\) in fpecies, and the angle AED given: alfo the angle DEC is given, becaure each of the angles BED, BEC is given; therefore the angle AEC is given, and the ratio of EA to EC, which are equal, is given; and the triangle \(A E C\) is therefore given \({ }^{c}\) in fpecies, and the angle ECA given; and the angle ECB is given, wherefore the angle \(A C B\) is given, and the angle \(B A C\) is alfo
s 43. dat. given; therefore \({ }^{5}\) the triangle ABC is given in fpecies.
A triangle fimilar to ABC may be found, by taking a ftraight line given in pofition and magnitude, and dividing it in the given ratio which the fegments \(\mathrm{BD}, \mathrm{DC}\) are required to have to one another; then, if upon that fraight line a fegment of a circle be defcribed containing an angle equal to the given angle \(B A C\), and a ftraight line be drawn from the point of divifion in an angle equal to the given angle \(A D B\), and from the point where it meets the circumference, ftraight lines be drawn to the extremity of the firft line, thefe, together with the firft line, fhall contain a triangle fimilar to ABC, as may eafily be fhown.

The demonftration may be alfo made in the manner of that of the 77 th prop. and that of the 77 th may be made in the manner of this.

\section*{PROP. LXXX.}

EF the fides about an angle of a triangle have a given ratio to ont another, and if the perpendicular drawn from that angle to the bafe has a given ratio to the bafe; the triangle is given in fpecies.

Let the fides \(\mathrm{BA}, \mathrm{AC}\), about the angle BAC of the triangle ABC have a given ratio to one another, and let the perpendicular AD have a given ratio to the bafe BC ; the triangle ABC is given in fpecies.

Firft, let the fides \(\mathrm{AB}, \mathrm{AC}\) be equal to one another, therefore the perpendicular \(A D\) bifects a the bafe BC ; and the ratio of AD to BC , and therefore to its half DB , is given; and the angle ADB is given; wherefore the triangle * ABD , and confequently the triangle \(A B C\), is given \({ }^{\circ} \mathbb{D} C \quad{ }^{*} 44\). dat. in fpecies.

But let the fides be unequal, and BA be greater than AC; and make the angle CAE equal to the angle ABC ; becaufe the angle AEB is common to the triangles AEB, CEA, they are fimilar; therefore as AB to BE , fo is CA to AE , and, by permutation, as BA to AC , fo is BE to EA, and fo is EA to EC ; and the ratio of BA to AC is given, therefore the ratio of BE to EA , and the ratio of EA to EC , as alfo the ratio of BE to EC is given \({ }^{c}\); wherefore the ratio of EB to c 9 . dat. \(B C\) is given \({ }^{d}\); and the ratio of \(A D\) to \(B C\) is given by the hypotheris, therefore \({ }^{c}\) the ratio of AD to BE is given; and the ratio of BE to EA was fhown to be given; wherefore the ratio of \(A D\) to \(A E\) is given, and \(B\) FC E D ADE is a right angle, therefore the triangle ADE is given \({ }^{c}\) in fpecies, and the angle AEB given; the ra-e 46 . dat. tio of BE to EA is likewife given, therefore \({ }^{b}\) the triangle ABE is given in feecies, and confequently the angle EAB , as alfo the angle \(A B E\), that is, the angle CAE , is given; therefore the angle \(B A C\) is given, and the angle \(A B C\) being alfo given, the triangle \(A B C\) is given \(f\) in fpecies.

How to find a triangle which ihall have the things which are mentioned to be given in the propofition, is evident in the firft cafe; and to find it the more eafily in the other cafe, it is to be obferved that, if the ftraight line EF equal to EA be placed in EB towards 13, the point F divides the bafe \(B C\) into the fegments \(B F, F C\) which have to one another the ratio of the fides \(\mathrm{BA}, \mathrm{AC}\), becaufe BE, EA, or EF, and EC were fhown to be proportionals, therefore * BF is to FC , \({ }^{2}\). 5.1 as BE to EF , or E , that is, as BA to AC ; and AE cannot be lefs than the altitude of the triangle \(A B C\), but it may be Ee2
equal to it, which, if it be, the triangle, in this cafe, as alfo the ratio of the fides, may be thus found: Having given the ratio of the perpendicular to the bafe, take the ftraight line GH, given in polition and magnitude, for the bafe of the triangle to be found; and let the given ratio of the perpendicular to the bafe be that of the ftraight line K to GH , that is, let K be equal to the perpendicular; and fuppofe GLH to be the triangle which is to be found, therefore having made the angle HLM equal to LGH, it is required that LiN be perpendicular to GM, and equal to K ; and becaufe GM, ML, MH are proportionals, as was fhown of BE, EA, EC, the rectangle GMIH is equal to the fquare of ML.' Add the com. mon fquare of NH , (having bifected GH in N), and the fquare of NM is equal 5 to the fquares of the given ftraight lines NH and ML or K ; therefore the fquare of NM and its fide \(N M\), is given, as alfo the point \(M\), viz. by taking the ftraight line NM , the fquare of which is equal to the fquares of NH , ML. Draw IML equal to K , at right angles to GM ; and becaufe ML is given in pofition and magnitude, therefore the point L is given, join LG, LH; then the triangle LGH is that which was to be found, for the fquare of NNI is equal to the fquares of NHI and ML, and taking away the common £quare of NH, the rectangle GMH is equal \({ }^{8}\) to the fquate of ML: there.. fore as GMi to MIL, fo is ML to MH, and the tri-
 angle LGM is \({ }^{\text {h }}\) therefore, equiangular to HLM , and the angle ITLM equal to the angle LGM, and the ftraight line LM, drawn from the vertex of the triangle making the angle HLM equal to LGH, is perpendicular to the bafe and equal to the given ftraight line K , as was required; and the ratio of the fides G1, LH is the fame with the ratio of GM to ML, that is, with the ratio of the ftraight line which is made up of GN the half of the given bafe and of NM, the fquare of which is equal to the fquares of GN and K , to the ftraight line. K .

And whether this ratio of GM to ML is greater or lefs than the ratio of the fides of any other triangle upon the bafe CH , and of which the altitude is equal to the ftraight line K ,
that is, the vertex of which is in the parallel to GH drawn through the point L, may be thus found. Let OGH be any fuch triangle, and draw OP, making the angle HOP equal to the angle OGH; therefore as before, GP, PO, PH are proportionals, and PO cannot be equal to LM, becaufe the rectangle GPH would be equal to the rectangle GMH, which is impofible; for the point \(P\) cannot fall upon \(M\), becaufe \(\mathbf{O}\) would then fall on L; nor can PO be lefs than LM, therefore it is greater ; and confequently the rectangle GPH is greater than the rectangle GMIH, and the fraight line GP greater than GM: Therefore the ratio of GMI to MII is greater than the ratio of GP to PH, and the ratio of the fquare of GM to the fquare of ML is therefore \({ }^{i}\) greater than the ratio of the \(\mathrm{i} 2 . \mathrm{Cor}\). fquare of GP to the fquare of PO, and the ratio of the ftraight 20.6 . line GM to ML greater than the ratio of GP to PO. But as GM to ML, fo is GL to LH; and as GP to PO, fo is GO to OH ; therefore the ratio of GL to LH is greater than the ratio of GO to OH ; wherefore the ratio of GL to LH is the greatef of all others; and confequently the given ratio of the greater fide to the lefs muft not be greater than this ratio.

But if the ratio of the fides be not the fame with this greateft ratio of GM to LM, it muft neceffarily be lefs than it: Let any lefs ratio be given, and the fame things being fuppofed, viz. that GH is the bafe, and K equal to the altitude of the triangle, it may be found as follows. Divide GH in the point Q , fo that the ratio of GQ to QH may be the fame with the given ratio of the fides; and as GQ to OH , fo make GP to PQ, and fo will \(\mathrm{P} P Q\) be to PH ; wherefore the fquare f 10.5. of GP is to the fquare of \(P Q\), as \({ }^{\text {i }}\) the fraight line \(G P\) to PH: And becaufe GM, ML MH are proportionals, the fquare of GM is to the fquare of ML, as \({ }^{\mathrm{i}}\) the ftraight line GM to MH: But the ratio of GQ to DF, that is, the ratio of GP to PQ , is lefs than the ratio of GMI to ML ; and therefore the ratio of the fquare of GP to the fquare of PQ is lefs than the ratio of the fquare of GM to that of ML; and confequently the ratio of the ftraight line GP to PH is lefs than the ratio of GM to MH ; and, by divifion, the ratio of GH to HP is lefs than that of GH to HM; wherefore \({ }^{k}\) the fraight line HP is \(k\) 10. 5 . greater than HiM, and the rectangle GPH, that is, the fquare of PQ , greater than the rectangle GMIF, that is, than the
\[
\text { E e } 3 \quad \text { fquare }
\]
fquare of ML , and the ftraight line PQ is therefore greater than ML. Draw LR parallel to GP, and from P draw PR at right angles to GP: Becaufe PQ is greater than ML, or PR , the circle defcribed from the centre P , at the diftance PQ , muft neceffarily cut LR in two points; let thefe be \(O, S\), and join \(\mathrm{OG}, \mathrm{OH} ; \mathrm{SG}, \mathrm{SH}\) : each of the triangles OGII, SGH have the things mentioned to be given in the propofition: join OP, SP; and becaufe as GP to PQ , or PO , fo is PO to PH , the triangle OGP is equiangular to HOP ; as, therefore, OG to GP, fo is HO to OP; and, by permutation, as GO to OH, fo is GP to PO, or PO: and fo is GQ to QH : Therefore the triangle OGH has the ratio of its fides GO , OH the fame with the given ratio of GQ to QH : and the perpendicular has to the bafe the given ratio of \(K\) to GH, becaufe the perpendicular is equal to LM, or K: The like may be fhewn in the fame way of the triangle SGH.

This conftruction by which the triangle OGH is found, is flozter than that which would be deduced from the demonftration of the datum, by reafon that the bafe GH is given in pofition and magnitude, which was not fuppofed in the demonftration : The fame thing is to be obferved in the next prapofition.

\section*{PROP. LXXXI.}

IF the fides about an angle of a triangle be unequal and have a given ratio to one another, and if the perpendicular from that angle to the bafe divides it into fegments that have a given ratio to one another, the triangle is given in \{pecies.

Let ABC be a triangle, the fides of which about the angle \(B A C\) are unequal and have a given ratio to one anothers and let the perpendicular AD to the bafe BC divide it into the fegments \(B D, D C\) which have a given ratio to one another, the triangle \(A B C\) is given in fecies.

Let \(A B\) be greater than \(A C\), and inake the angle CAE equal to the angle ABC ; and becaufe the angle AEB is common to the triangles \(\mathrm{ABE}, \mathrm{CAE}\), they are \({ }^{\text {a }}\) equiangular to one another: Therefore as AB to BE , fo is CA to AE , and,

कy permutation, as \(A B\) to \(A C\), fo \(B E\) to EA, and fo is EA to EC: But the ratio of \(B A\) to \(A C\) is given, therefore the ratio of BE to EA, as alfo the ratio of EA to EC is given; wherefore \({ }^{b}\) the ratio of BE to EC , as alfo \({ }^{c}\) the ratio of EC to CB is given:; And the ratio of BC to CD is given d, becaufe the ratio of BD to DC is given; therefore \({ }^{\text {b }}\) the ratio of EC to CD is given, and confequentlyd the
 ratio of DE to EC: And the ratio of EC to EA was fhown to be given, therefore \({ }^{\text {b }}\) the ratio of DE to EA is given: And ADE is a right angle, wherefore \({ }^{e}\) the triangle \({ }^{e} 46\). dat. ADE is given in fpecies, and the angle AED given: And the ratio of CE to EA is given, thereforer the triangle AEC is gi- \({ }^{\prime}{ }^{4} 4\). dat. ven in fpecies, and confequently the angle ACE is given, as alfo the adjacent angle ACB. In the fame manner, becaufe the ratio of BE to EA is given, the triangle BEA is given in fpecies, and the angle \(A B E\) is therefore given: And the angle \(A C B\) is given; wherefore the triangle \(A B C\) is given 8 in fpe- 943 . d2t. cies.

But the ratio of the greater fide \(B A\) to the other \(A C\) muft be lefs than the ratio of the greater fegment \(B D\) to \(D C\).: Becaufe the fquare of BA is to the fquare of AC , as the fquares of \(\mathrm{BD}, \mathrm{DA}\) to the fquares of \(\mathrm{DC}, \mathrm{DA}\); and the fquares of BD , DA have to the fquares of \(\mathrm{DC}, \mathrm{DA}\) a lefs ratio than the fquare of BD has to the fquare of \(\mathrm{DC} \dagger\), becaufe the fquare of BD is greater than the fquare of \(D C\); therefore the fquare of \(B A\) has to the fquare of AC a lefs ratio than the fquare of BD has to that of DC: And confequently the ratio of \(\mathrm{D} \Lambda\) to AC is lefs than the ratio of BD to DC .

This being premiffed, a triangle which fhall have the things mentioned to be given in the propofition, and to which the triangle \(A B C\) is fimilar, may be found thus: Take a ftraight. line GH given in pofition and magnitude, and divide it in \(K\), fo that the ratio of GK to KH may be the fame with the given ratio of BA to AC : Divide alfo GH in L , fo that the ratio
of

\footnotetext{
+ If \(A\) he greater than \(B\), and \(C\) any than \(D\) : But as \(A\) is in \(B\), fo \(A\) and \(C\) ihird magnitude; then \(A\) and \(C l_{\text {loge }}\) ther have to \(B\) and \(C\) together a lef, rasio than \(A\) has to \(B\).

Let \(A\) be to \(B\) as \(C\) to \(D\), and becawfe \(A\) is greater than \(B, C\) is greater.
to B and D ; and \(A\) and \(C\) have 10 b and C a lefs ratio than A and C have on \(B\) and \(D\), becaufe \(C\) is greater than \(D\), therefore \(A\) and \(C\) have to \(B\) and \(K\) 2 lefs ratio than \(A\) to \(B\).
}
of GL to LH may be the fame with the given ratio of BD to DC, and draw LM at right angles to GH: And becaufe the patio of the fides of a triangle is lefs than the ratio of the fegments of the bafe, as has been flown, the ratio of GK to KH is lefs than the ratio of GL to LH; wherefore the point L muft fall betwixt K and H : Alfo make as GK to KH, fo GN
1219.5 to N4, and, fo thall \({ }^{\text {h }}\) NK be to NH. And from the centre N, at the diftance NK, defcribe a circle, and let its circumference meet LM in O , and join \(\mathrm{OG}, \mathrm{OH}\); then OGH is the triangle which was to be defrcribed: Becaufe GN is to NK, or NO, as NO to NH, the triangle OGN is equiangular to HON ; therefore as OG to GN, fo is HO to ON, and, by permutation, as GO to OH, fo is GN to NO, or NK, that is, as GK to KH , that is, in the given ratio of the fides, and by the conftruction, GL, LH have to one another the given ratio of the fegments of the bafe.

F \(F\) a parallelogram given in fpecies and magnitude羄 be increafed or diminifhed by a gnomon given in magnitude, the fides of the gnomon are given in mag. nitude.

Firft, let the parallelogram AB given in fpecies and magnitude be increafed by the given gnomon ECBDFG, each of the firaight lines CE, DF is given.

Becaufe AB is given in fpecies and magnitude, and that the gnomon ECBDFG is given, therefore the whole face \(A G\) is given in magnitude: But \(A G\) is alfo given in fpecies, be--
 \({ }^{2}\left\{\begin{array}{l}2, \text { and } \\ 24,6 . y^{2}{ }^{2} \text { : Each of the ftraight lines } A E, A F\end{array}\right.\) is therefore given; and each of the ftraight \({ }^{b}\) co. dat, lines \(C A, A D\) is given \({ }^{\text {b }}\), therefore each of c 4 dt. the remainders EC, DF is given \({ }^{c}\).

Next let the parallelogram AG given in fpecies and magnitude, be diminifhed by the given gnomon ECBDFG, each of the ftraight lines \(C E, D F\) is given.

Becaufe the parallelogram AG is given, as
 alfo its gnomon ECBDFG, the remaining face \(A B\) is given in magnitude :
magnitude : But it is alfo given in fpecies ; becaufe it is fimilar \({ }^{3}\) to \(A G\); therefore 0 its fides \(C A, A D\) are given, and each of the \({ }^{3}\left\{\begin{array}{l}2 . \text { def, } \\ 2 \text { and }\end{array}\right.\) DC DF ftraight lines EA AF is given; therefore EC, DF are each of is 60 . dat. them given.

The gnomon and its fides CE, DF may be found thus in the firfe cafi. Leet H be the given fpace to which the gnomon muft be made equai, and find \({ }^{d}\) a parallelogram fimilar to \(A B{ }_{d 25}\). \(\sigma_{0}\) and equal to the figures \(A B\) and \(H\) together, and place its fides \(A E, A F\) from the point \(A\), upon the fraight lines \(A C\), AD , and complete the parallelogram \(A G\) which is about the fame diameter \({ }^{c}\) with \(A B\); becaule therefore \(A G\) is equal to \(e 26 . G\). both AB and H , take away the common part AB , the remaining gnomon ECBDFG is equal to the romaining figure \(H\); therefore a gnomon equal to H, and its fides CE, DF are found: And in like manner they may be found in the other cafe, in which the given figure II mut be lefs than the figure Fid from which it is to be taken.

\section*{PROP. LXXRII.}

II a parallelogram equal to a given fpace be applied to a given fraight line, deficient by a parallelogram given in fpecies, the fides of the defect are given.

Let the parallelogram \(A C\) equal to a given foace be applied to the given ftraight line \(A B\), deficient by the parallelogram BDCL given in fpecies, each of the ftraght lines CD, DB are given.

Bifect \(\Lambda B\) in \(E\); thercfore \(E B\) is given in magnitude, upon EB defribe \({ }^{2}\) the parallelogram EF fimilar to DL and fumi- a \(\mathbf{1 8 . 6}\). larly placed; thercfore EF is given in fpecies, and is about the fame diameter \({ }^{\text {b }}\) with DL ; let BCG be the diameter, and conftruct the figure; therefore, becaufe the figure LF given in fpecies is defcribed upon the given fraight line \(\mathrm{LB}, \mathrm{EF}\)
 is given \({ }^{c}\) in magnitude, and the gnomon \(A\) D ELH is equald to the given figure \(A C\) : therefore \({ }^{c}\) fince EF is diminifhed by the given gnomon ELH, \({ }^{\text {d }}{ }^{\text {36. and }}\) the fides EK, FH of the gnomon are given; bat EK is equal e 82 . dat. to DC , and FH to DB ; wherefore \(\mathrm{CD}, \mathrm{DB}\) are each of them given,

This demonftration is the analyfis of the problem in the 28th prop. of book 6. the conftruction and demonftration of which propofition is the compofition of the analyfis; and becaufe the given fpace AC or its equal the gnomon FLH is to be taken from the figure EF defcribed upon the half of AB fimilar to \(B C\), therefore \(A C\) muft not be greater than EF, as is thewn in the \(27^{\text {th }}\) prop. B. 6 .

> PROP. LXXXIV.

IF a parallelogram equal to a given fpace be applied to a given ftraight line, exceeding by a parallelogram given in fpecies; the fides of the excefs are given.

Let the parallelogram \(A C\) equal to a given fpace be applied to the given ftraight line \(A B\), exceeding by the parallelogram BDCL given in fpecies; each of the ftraight lines \(\mathrm{CD}, \mathrm{DB}\) are given.

Bifect AB in E ; therefore EB is given in'magnitude: Upon
288.6. BE defcribe \({ }^{3}\) the parallelogram EF fimilar to LD , and fimilarly placed; therefore EF is given in fpecies, and is about the
626.6. fame diameter \({ }^{\text {b }}\) with LD. Let CBG be the diameter and conftruct the figure: Therefore, becaufe the figure EF given in fpecies is defcribed upon the given \(A\) ftraight line EB, EF is given in magni-
c 56. dat. tude \({ }^{\text {c }}\), and the gnomon ELH is equal

43. \(\mathrm{I}_{0}\) fince EF is increafed by the given gnomon ELH, its fides EK,
e 82. dat. FH are given \({ }^{\mathrm{c}}\); but EK is equal to CD , and FH to BD ; therefore \(C D, D B\) are each of them given.

This demonftration is the analyfis of the problem in the 29th prop. book 6. the conftruction and cemonftration of which is the compofition of the analyfis.

Cor. If a parallelogram given in fpecies be applied to a given ftraight line, exceeding by a parallelogram equal to a given fpace; the fides of the parallelogram are given.

Let the parallelogram ADCE given in fpecies be applied to the given ftraight line \(A B\) exceeding by the parallelogram BDCG equal to a given fyace; the fides \(\mathrm{AD}, \mathrm{DC}\) of the paralzelogram are given.

Draw the diameter DE of the parallelogram \(A C\), and confruit the figure. Becaufe the parallelogram AK is equal \({ }^{2}\) to a 43 . . BC which is given, therefore \(\Lambda K\) is given; and BK is fimilar to AC , therefore BK is given in fpecies. And fine the parallelogram AK given in magniaude is applied to the given ftraight line \(\Lambda B\), exceeding by the parallelogram BK given in fpecies, therefore by this pro-
 pofition, \(\mathrm{BD}, \mathrm{DK}\) the fides of the excefs are given; and the ftraight line AB is given; therefore the whole AD , as alfo DC , to which it has a given ratio is given.
\[
\mathrm{P} \mathrm{R} O \mathrm{~B}
\]

To apply a parallelogram fimilar to a given one to a given ftraight line \(A B\), exceeding by a parallelogram equal to a given face.

To the given ftraight line \(A B\) apply \({ }^{c}\) the parallelogram \(A K c\) 20. 6. equal to the given face, exceeding by the parallelogram BK dimilar to the one given. Draw DF the diameter of BK , and through the point \(A\) draw \(A E\) parallel to \(B F\) meeting DF produce in \(E\), and complete the parallelogram \(A C\).

The parallelogram BC is equal \({ }^{2}\) to AK , that is, to the given face; and the parallelogram AC is fimilar b to BK ; therefore the parallelogram \(A C\) is applied to the ftraight line \(A B\) fimilar to the one given and exceeding by the parallelogram \(B C\) which is equal to the given face.

\section*{PR OP. LXXXV.}

F two straight lines contain a parallelogram given in Magnitude, in a given angle; if the difference of the ftraight lines be given, they shall each of them be given.

Let \(A B, B C\) contain the parallelogram \(A C\) given in magnitide, in the given angle \(A B C\), and let the excels of \(B C\) above \(A B\) be given; each of the ftraight lines \(A B, B C\) is given.

Let DC be the given excels of BC above BA , therefore the remainder BD is equal to BA . Complete the parallelogram AD ; and becaufe \(A B\) is equal to \(B D\), the ratio of \(A B\) to \(B D\) is given; and the angle \(A B D\) is given, therefore the parallelogram AD is
 given in fpecies; and becaufe the given parallelogram AC is applied to the given ftraight line \(D C\), exceeding by the arallelogram AD given in fpecies, the fides of the excels are given \({ }^{2}:\) a 84 . dato
therefore BD is given; and DC is given, wherefore the whole \(B C\) is given: And \(A B\) is given, therefore \(A B, B C\) are each of them given.

\section*{PR O P. LXXXVI.}

IF two ftraight lines contain a parallelogram given in magnitude, in a given angle; if both of then together be given, they fhall each of them be given. 1
Let the two ftraight lines \(\mathrm{AB}, \mathrm{BC}\) contain the parallelogram \(A C\) given in magnitude, in the given àngle \(A B C\), and let \(A B\), \(B C\) together be given; each of the ftraight lines \(A B, B C\) is given.

Produce CB , and make DB equal to BA , and complete the parallelogram ABDE . Becaufe DB is equal to BA , and the angle ABD given, becaufe the adjacent angle \(A B C\) is given, the parallelogram \(A D\) is given in fpecies: And becaufe \(\mathrm{AB}, \mathrm{BC}\) together are given, and AB is equal to BD ; therefore DC is given : And becaufe the given parallelogram \(A C\) is applied to the given ftraight line DC, deficient by the paral-

a 83 . dat. lelogram AD given in fpecies, the fides \(\mathrm{AB}, \mathrm{BD}\) of the defect are given \({ }^{2}\); and \(D C\) is given, wherefore the remainder \(B C\) is given; and each of the ftraight lines \(\mathrm{AB}, \mathrm{BC}\) is therefore given.

\section*{PROP. LXXXVII.}

\(I^{1}\)F two ftraight lines contain a parallelogram given in magnitude, in a given angle; if the excels of the fquare of the greater above the fquare of the leffer be given, each of the ftraight lines fhall be given.

Let the two ftraight lines \(A B, B C\) contain the given parallelogram \(A C\) in the given angle \(A B C\); if the excefs of the fquare of BC above the fquare of BA be given; AB and BC are each of them given.

Let the given excefs of the fquare of BC above the fquare of BA be the rectangle \(\mathrm{CB}, \mathrm{BD}\); take this from the fquare of BC , the remainder, which is \({ }^{\text {a }}\) the rectangle \(\mathrm{BC}, \mathrm{CD}\) is \(\mathrm{e}-\) qual to the fquare of \(A B\); and becaufe the angle \(A B C\) of the parallelogram \(A C\) is given, the ratio of the rectangle b 62. dat. of the fides \(\mathrm{AB}, \mathrm{BC}\) to the parallelogram AC is given \({ }^{\circ}\); and \(A C\) is given, therefore the rectangle \(A B, B C\) is given; and the rectangle \(\mathrm{CB}, \mathrm{BD}\) is given; therefore the ratio of the rect-
angle \(\mathrm{CB}, \mathrm{BD}\) to the rectangle \(\mathrm{AB}, \mathrm{BC}\), that is \({ }^{c}\), the ratio of the \(\mathrm{c}, \sigma\). ftraight line DB to BA is given; therefore \({ }^{d}\) the ratio of the d 54 dat fquare of DB to the fquare of BA is given: And the fquare of BA is equal to the rectangle \(\mathrm{BC}, \mathrm{CD}\) : wherefore the ra-, tio of the rectangle \(\mathrm{BC}, \mathrm{CD}\) to the fquare of BD is given, as alfo the ratio of four
 times the rectangle \(\mathrm{BC}, \mathrm{CD}\) to the fquare of BD ; and, by compofition \({ }^{\mathrm{c}}\), the ratio of four times the rect-e 7 . data angle \(\mathrm{BC}, \mathrm{CD}\) together with the fquare of BC to the fquare of BD is given: But four times the rectangle \(\mathrm{BC}, \mathrm{CD}\) together with the fquare of \(B D\) is equal \(f\) to the fquare of the ftraight \(f 8.2\). lines \(\mathrm{BC}, \mathrm{CD}\) taken together: therefore the ratio of the fquare of \(B C, C D\) together to the fquare of \(B D\) is given; wherefore \({ }^{5}\) the ratio of the ftraight line BC together with CD to BD is g 58 . dat. given: And, by compofition, the ratio of BC together with \(C D\) and \(D B\), that is, the ratio of twice \(B C\) to \(B D\), is given; therefore the ratio of BC to BD is given, as alfo \({ }^{\circ}\) the ratio of the fquare of BC to the rectangle \(\mathrm{CB}, \mathrm{BD}\) : But the rectangle \(\mathrm{CB}, \mathrm{BD}\) is given, being the given excefs of the fquares of BC , \(B A\); therefore the fquare of \(B C\), and the ftraight line \(B C\) is given : And the ratio of BC to BD , as alfo of BD to BA has been fhewn to be given; therefore \({ }^{\text {h }}\) the ratio of \(B C\) to \(B A\) is \(h\) 9. dat, given; and BC is given, wherefore BA is given.
The preceding demonftration is the analyfis of this problem, viz.
A parallelogram \(A C\) which has a given angle \(A B C\) being given in magnitude, and the excefs of the fquare of BC one of its fides above the fquare of the other BA being given; to find the fides : And the compofition is as follows.

Let EFG be the given angle to which the angle ABC is required to be equal, and from any point E in FE , draw EG perpendicular to FG ; let the rectangle EG, GH be the given fpace to which the parallelogram \(A C\) is to be made equal; and the rectangle HG, GL, be the given excefs of the fquares of \(\mathrm{BC}, \mathrm{BA}\).
Take, in the ftraight line GE, FG L O HN GK equal to FE, and make GM double of GK ; join ML, and in GL produced, take LN equal to LM : Bifect GN in O, and between GH, GO find a mean proportional BC: As OG to GL, fo make CB to BD ; and make the angle CBA equal
to GFE, and as LG to GK fo make DB to BA ; and complete the parallelogram \(\mathrm{AC}: ~ \mathrm{AC}\) is equal to the rectangle \(\mathrm{EG}, \mathrm{GH}\), and the excefs of the fquares of \(\mathrm{CB}, \mathrm{BA}\) is equal to the rectangle HG , GL.

Becaufe as CB to BD , fo is OG to GL , the fquare of CB
a 1.6.
b 14.5.
c 22. 6.
d 8. 2. is to the rectangle, \(\mathrm{CB}, \mathrm{BD}\) as \({ }^{2}\) the rectangle \(\mathrm{HG}, \mathrm{GO}\) :o the rectangle \(\mathrm{HG}, \mathrm{GL}\) : And the fquare of CB is equal to the rectargle, \(\mathrm{HG}, \mathrm{GO}\), becaufe \(\mathrm{GO}, \mathrm{BC}, \mathrm{GH}\) are proportionals; therefore the rectangle \(\mathrm{CB}, \mathrm{BD}\), is equal \({ }^{6}\) to \(\mathrm{HC}, \mathrm{GL}\). And becaufe as CB to BD , fo is OG to GL; twice CB is to BD , as twice OG , that is, GN to GL; and, by divifion, as BC together with CD is to BD, fo is NL, that is, LM, to LG: Therefore the fquare of \(D\) C together with CD is to the fquare of BD , as the fquare of ML to the fquare of LG : But the fquare of BC and CD together is equald to four times the rectangle \(\mathrm{BC}, \mathrm{CD}\) together with the fquare of BD ; therefore four times the rectangle \(\mathrm{BC}, \mathrm{CD}\) together with the fquare of \(B D\) is to the fquare of \(B D\), as the fquare of ML to the fquare of \(L G\) : And, by divifion, four times the rectangle \(B C, C D\) is to the fquare of BD , as the fquare of MG to the fquare of GL ; wherefore the rectangle \(\mathrm{BC}, \mathrm{CD}\) is to the fquare of BD as (the fquare of KG the falf of MG to the fquare of GL , that is, as) the fquare of AB to the fquare of BD , becaufe as LG to GK , fo DB was made to BA : Therefore \({ }^{\mathrm{b}}\) the rectangle \(\mathrm{BC}, \mathrm{CD}\) is equal to the fquare of AB . To each of thefe add the rectangle \(\mathrm{CB}, \mathrm{BD}\), and the fquare of BC becomes equal to the fquare of \(A B\) together with the rectangle \(C B, B D\); therefore this rectangle, that is, the given rectangle HG, GL, is the excefs of the fquares of \(\mathrm{BC}, \mathrm{AB}\). From the point A , draw \(A P\) perpendicular to \(B C\), and becaufe the angle \(A B P\) is equal to the angle \(E F G\), the triangle \(A B P\) is equiangular to EFG: And DB was made to BA, as LG to GK; therefore as the reitangle \(\mathrm{CB}, \mathrm{BD}\) to \(\mathrm{CB}, \mathrm{BA}\), fo is the rectangle HG ,

GI , to \(\mathrm{HG}, \mathrm{GK}\); and as the rectangle \(\mathrm{CB}, \mathrm{BA}\) to \(\mathrm{AP}, \mathrm{BC}\), fo is (the ftraight line BA to AP , and fo is FE or GK to

EG, and fo is) the rectangle \(\mathrm{HG}, \mathrm{GK}\) to \(\mathrm{HG}, \mathrm{GE}\); therefore, ex æquali, as the rectangle \(\mathrm{CB}, \mathrm{BD}\) to \(\mathrm{AP}, \mathrm{BC}\), fo is the rectangle \(\mathrm{HG}, \mathrm{GL}\) to \(\mathrm{EG}, \mathrm{GH}\) : And the rectangle \(\mathrm{CB}, \mathrm{BD}\) is equal to \(\mathrm{HG}, \mathrm{GL}\); therefore the rectangle \(\mathrm{AP}, \mathrm{BC}\), that is, the parallelogram AC , is equal to the given rectangle EG, GH.

\section*{PROP. LXXXVIII.}

IF two ftraight lines contain a parallelogram given in magnitude, in a given angle; if the fum of the fquares of its fides be given, the fides fhall each of them be given.

Let the two itraight lines \(\overline{A B}, \mathrm{BC}\) contain the parallelogram \(A B C D\) given in magnitude in the given angle \(A B C\), and let the fum of the fquares of \(A B_{2} B C\) be given; \(A B, B C\) are each of them given.

Firft, let ABC be a right angle; and becaufe twice the rectangle contained by two equal ftraight lines is equal to both their fquares; but if two ftraight lines are un- \(A\)
equal, twice the rectangle contained by them is lefs than the fum of their fquares, as is evident from the 7 th prop. B. 2. Elem; therefore twice
 the given Space, to which fpace the rectangle of which the fides are to be found is equal, muft not be greater than the given fum of the fquares of the fides: And if twice that fpace be equal to the given fum of the fquares, the fides of the rectangle muft neceffarily be equal to one another: Therefore in this cafe defcribe a quare ABCD equal to the given rectangle, and its fides \(A B, B C\) are thofe which were to be found: For the rectangle \(A C\) is equal to the given fpace, and the fum of the fquares of its fides \(A B, B C\) is equal to twice the rectangle \(A C\), that is by the hypothefis, to the given face to which the fum of the fquares was required to be equal.

But if twice the given rectangle be not equal to the given fum of the fquares of the fides, it muft be lefs than it, as has been fhown. Let ABCD be the rectangle, join AC and draw BE perpendicular to it, and complete the rectangle AEBF, and defcribe the circle ABC about the triangle ABC ; \(A C\) is its diameter \({ }^{2}\) : And becaufe the triangle \(A B C\) is fimi-a Cor. s. 4. lar \({ }^{6}\) to AEB , as AC to CB fo is AB to BE ; therefore the b 8.6 . rectangle \(A C, B E\) is equal to \(A B, B C\); and the rectangle \(A B\),
\(B C\) is given, wherefore \(\mathrm{AC}, \mathrm{BE}\) is given: And becaufe the func of the fquares of \(A B, B C\) is given, the fquare of \(A C\) which is
c \(4 \%\). equal \({ }^{c}\) to that fum is given; and \(A C\) itfelf is therefore given in magnitude: Let \(A C\) be likewife given in pofition, and the
d 32. dat. point \(A\); therefore \(A F\) is given \({ }^{\text {d }}\) in pofition: And the rectangle \(\mathrm{AC}, \mathrm{BE}\) is given, as has been fhewn, and AC is e or. dat. given, wherefore \({ }^{\mathrm{e}}\) BE is given in magnitude, as alfo AF which is equal to it; and \(A F\) is alfo given in pofition, and
f 30 . dat. the point \(A\) is given, wherefore \(f\) the point \(F\) is given, and the ftraight line

g 3r. dtt. FB in pofition \({ }^{5}\) : And the circumference
h 28 , dat, ABC is given in pofition, wherefore \({ }^{\mathrm{h}}\) the point B is given: And the points \(A, C\) are given; therefore the ftraight lines
i 29. dat, \(\mathrm{AB}, \mathrm{BC}\) are given \(i\) in pofition and magnitude.
The fides \(\mathrm{AB}, \mathrm{BC}\) of the rectangie may be found thus: Let the rectangle GH, GK be the given fpace to which the rectangle \(\mathrm{AB}, \mathrm{BC}\) is equal; and let \(\mathrm{GH}, \mathrm{GL}\) be the given rectangle to which the fum of the fquares of \(A B, B C\) is equal:
k 14. 2: Find \(k\) a fquare equal to the rectangle GH, GL: And let its fide \(A C\) be given in pofition; upon \(A C\) as a diameter defcribe the femicircle \(A B C\), and as \(A C\) to \(G H\), fo make GK to AF, and from the point A place AF at right angles to AC: There-
156.6, fore the rectangle \(\mathrm{CA}, \mathrm{AF}\) is equal \({ }^{1}\) to \(\mathrm{GH}, \mathrm{GK}\); and, by the hypothefis, twice the rectangle GH, GK is lefs than GH, \(\dot{G} L\), that is, than the fquare of \(A C\); wherefore twice the rectangle \(\mathrm{CA}, \mathrm{AF}\) is lefs than the fquare of AC , and the rectangle \(\mathrm{CA}, \mathrm{AF}\) itfelf lefs than half the fquare of AC , that is, than the rectangle contained by the diameter \(A C\) and its half; wherefore \(A F\) is lefs than the femidiameter of the circle, and confequently the ftraight line drawn through the point \(F\) parallel to AC muft meet the circumference in two points: Let B be either of them, and join \(A B, B C\), and complete the rectangle \(A B C D, A B C D\) is the rectangle which was to be found:
\(\mathrm{m}_{34.1}\). Drave BE perpendicular to AC ; thercfore BE is equal \({ }^{\text {m }}\) to AF , and becaufe the angle \(\triangle B C\) in a femicircle is a right angle, the
b 8.6. rectangle \(\mathrm{AB}, \mathrm{BC}\) is equal \({ }^{5}\) to \(\mathrm{AC}, \mathrm{BE}\), that is, to the rectangle \(\mathrm{CA}, \mathrm{AF}\) which is equal to the given rectangle GH, GK: And the fquares of \(\mathrm{AB}, \mathrm{BC}\) are together equal \({ }^{c}\) to the fquare of AC , that is, to the given rectangle GH, GL.

But if the given angle \(A B C\) of the parallelogram \(A C\) be not a right angle, in this cafe, becaufe ABC is a given angle, the ratio of the rectangle contained by the fides \(\mathrm{AB}, \mathrm{BC}\) to the parallelogram \(A C\) is given \({ }^{n}\); and \(A C\) is given, therefore the rect-n \(G_{2}\). dat! angle \(A B, B C\) is given; and the fum of the fquares of \(A B, B C\) is given; therefore the fides \(A B, B C\) are given by the preceding cafe.

The fides \(A B, B C\) and the parallelogram \(A C\) may be found. thus: Let EFG be the given angle of the parallelogram, and from any point \(E\) in FE draw EG perpendicular to \(F G\); and let the rectangle EG, FH be the given fpace to which the parallelogram is to be made equal, and let EF, FK be the given rectangle to which the fum of the fquares of the fides is to be equal. And, by the preceding cafe, find the fides of a rectangle which is equal to the given rectangle \(\mathrm{EF}, \mathrm{FH}\), and the fquares of the
 fides of which are together equal to the given rectangle EF, FK; therefore, as was fhewn in that cafe, twice the rectangle EF, FH muft not be greater than the rectangle EF, FK; let it be fo, and let \(A B, B C\) be the fides of the rectangle joined in the angle ABC equal to the given angle EFG,
 and complete the parallelogram ABCD , which will be that which was to be found: Draw AL perpendicular to BC , and becaufe the angle \(A B L\) is equal to \(E F G\), the triangle \(A B L\) is equiangular to EFG ; and the parallelogram AC , that is, the rectangle \(\mathrm{AL}, \mathrm{BC}\), is to the rectangle \(\mathrm{AB}, \mathrm{BC}\) as (the ftraight line AL to AB , that is, as EG to \(E F\), that is as) the rectangle EG, FH to EF, FH; and, by the conftruction, the rectangle \(\mathrm{AB}, \mathrm{BC}\) is equal to \(\mathrm{EF}, \mathrm{FH}\), therefore the rectangle \(\mathrm{AL}, \mathrm{BC}\) or, its equal, the parallelogram AC , is equal to the given rectangle \(\mathrm{EG}, \mathrm{FH}\); and the fquares of \(\mathrm{AB}, \mathrm{BC}\) are together equal, by conftruction, to the given rectangle EF, FK.

\section*{E U C L I D's}

\section*{PR O P. LXXXIX.}

IF two ftraight lines contain a given parallelogram in a given angle, and if the excels of the fquare of one of them above a given fpace, has a given ratio to the fquare of the other; each of the ftraight lines fhall be given.

Let the two ftraight lines \(A B, B C\) contain the given parallelogram \(A C\) in the given angle \(A B C\), and let the excefs of the fquare of \(B C\) above a given fpace have a given ratio to the fquare of \(A B\), each of the ftraight lines \(A B, B C\) is given.

Becaufe the excefs of the fquare of BC above a given fpace has a given ratio to the fquare of BA , let the rectangle CB , BD be the given fpace; take this from the fquare of BC , the remainder, to wit, the rectangle \({ }^{2} \mathrm{BC}, \mathrm{CD}\) has a given ratio to the fquare of BA : Draw AE perpendicular to BC , and let the fquare of BF be equal to the rectangle \(\mathrm{BC}, \mathrm{CD}\), then, becaufe the angle \(A B C\), as alfo \(B E A\) is given, the
b 43 . dat. triangle ABE is given \({ }^{\circ}\) in fpecies, and the ratio of \(A E\) to \(A B\) given: And becaufe the ratio of the rectangle \(\mathrm{BC}, \mathrm{CD}\), that is, of
 the fquare of BF to the fquare of BA , is given, the ratio of the ftraight line BF to BA

\section*{BED}
e s \(_{8 .}\) dat. is given \({ }^{c}\); and the ratio of AE to AB is given, wherefore \({ }^{\text {d }}\) the
d \(\%\) dat. ratio of AE to BF is given; as alfo the ratio of the rectangle e 35. 1. \(\mathrm{AE}, \mathrm{BC}\), that is \({ }^{e}\) of the parallelogram AC to the rectangle \(\mathrm{FB}, \mathrm{BC}\); and AC is given, wherefore the rectangle \(\mathrm{FB}, \mathrm{BC}\) is given. The excefs of the fquare of BC above the fquare of BF , that is, above the rectangle \(B C, C D\), is given, for it is equal \({ }^{2}\) to the given rectangle \(\mathrm{CB}, \mathrm{BD}\); therefore, becaufe the rectangle contained by the ftraight lines \(\mathrm{FB}, \mathrm{BC}\) is given, and alfo the excefs of the fquare of BC above the fquare of \(\mathrm{BF} ; \mathrm{FB}, \mathrm{BC}\)
f87. dat. are each of them given \({ }^{f}\); and the ratio of \(F B\) to \(B A\) is given; therefore, \(\mathrm{AB}, \mathrm{BC}\) are given.

\section*{The compofition is as follows:}

Let GHK be the given angle to which the angle of the parallelogram is to be made equal, and from any point \(G\) in HG, draw GK perpendiculas to HK ; let GK, HL be the rect-
angle to which the parallelogram is to be made equal, and let LH, HM be the rectangle equal to the given face which is to be taken from the fquare of one of the fides; and let the ratio of the remainder to the HM Lism fquare of the other fide be the fame with the ratio of the fquare of the given ftraight line NH to the fquare of the given ftraight line HG.

By help of the 87 th dat. find two ftraight lines \(B C, B F\) which contain a rectangle equal to the given rectangle \(\mathrm{NH}_{3}\) HL, and fuch that the excefs of the fquare of BC above the fquare of BF be equal to the given rectangle \(\mathrm{LH}, \mathrm{HM}\); and join CB , BF in the angle FBC equal to the given angle GHK : And as NH to HG, fo make \(\mathbf{B} \mathbf{D} \mathbf{D}\) FB to BA , and complete the parallelogram AC , and draw AE perpendicular to BC ; then AC is equal to the rectangle GK, HL; and if from the fquare of \(B C\), the given rectangle LH, HM be taken, the remainder fhall have to the fquare of BA the fame ratio which the fquare of NH has to the fquare of HG.

Becaufe, by the conftruction, the fquare of BC is equal to the fquare of BF together with the rectangle \(\mathrm{LH}, \mathrm{HM}\); if from the fquare of \(B C\) there be taken the rectangle \(L H, H M\), there remains the fquare of BF which has \({ }^{\mathrm{E}}\) to the fquare of \(\mathrm{g} 22.6_{0}\) BA the fame ratio which the fquare of NH has to the fquare of HG, becaufe, as NH to HG, fo FB was made to BA; but as HG to GK, fo is BA to AE, becaufe the triangle GHK is equiangular to ABE ; therefore, ex requali, as NH to GK fo is FB to AE; wherefore \({ }^{\text {b }}\) the rectangle NH, HL is to the rect-h \(\mathrm{I}, \sigma_{0}\) angle GK, HL, as the rectangle \(\mathrm{FB}, \mathrm{BC}\) to \(\mathrm{AE}, \mathrm{BC}\); but by the conftruction, the rectangle \(\mathrm{NH}, \mathrm{HL}\) is equal to \(\mathrm{FB}, \mathrm{BC}\); therefore \(i\) the rectangle GK, HL is equal to the rectangle \(\mathrm{AE}, \mathrm{i} 44.5\), BC , that is, to the parallelogran AC .

The analyfis of this problem might have been made as in the 36 th prop. in the Greek, and the compolition of it may be made as that which is in prop. 87 th of this edition.

IF two ftraight lines contain a given parallelogram in a given angle, and if the fquare of one of them together with the fpace which has a given ratio to the fquare of the other be given, each of the ftraight lines fhall be given.

Wet the two ftraight lines \(A B, B C\) contain the given paralicYogram \(A C\) in the given angle \(A B C\), and let the fquare of \(B C\) together with the fpace which has a given ratio to the fquare of \(A B\) be given, \(A B, B C\) are each of them given.

Let the fquare of BD be the fpace which has the given ratio to the fquare of AB ; therefore, by the hypothefis, the fquare of BC together with the fquare of BD is given. From the point \(A\), draw \(A E\) perpendicular to \(B C\); and becaufe the angles
a 43. dat. ABE, BEA are given, the triangle ABE is given \({ }^{2}\) in fpecies; therefore the ratio of \(B A\) to \(A E\) is given: And becaufe the ratio of the fquare of 33 D to the fquare of BA is given, the ra-
b 58. dat. tio of the fraight line BD to BA is given \({ }^{\mathrm{D}}\); and the ratio of
c 9. dat. BA to \(A R\) is given; thereforec the ratio of \(A E\) to \(B \bar{D}\) is giBen, as alfo the ratio of the rectangle \(A E, B C\), that is, of the parallologram \(A C\) to the rectangle \(D B, B C\); and \(A C\) is given, therefore the rectangle \(\mathrm{DB}, \mathrm{BC}\) is given; and the fquare of.

a ss. dat. BC togetrier with the fquare of BD is given; therefore \({ }^{\text {d }}\) be caufe the rectangle contained by the two ftraight lines \(\mathrm{DB}, \mathrm{BC}\) is given, and the fum of their fquares is given: The ftraight Iines \(D B, B C\) are each of them given; and the ratio of \(D B\) to \(B A\) is given; therefore \(A B, B C\) are given.

\section*{The compofition is as follorus:}

Let FGH be the given angle to which the angle of the pazallelogram is to be made equal, and from any point \(F\) in GF draw FH perpendicular to GH ; and let the rectangle FH , GK be that to which the parallelogran is to be made equal; and let the rectangle KG, GL be the face to which the fquare

Tf one of the fides of the parallelogram together with the fpace which has a given ratio to the fquare of the other fide, is to be made equal; and let this given ratio be the fame which the fquare of the given ftraight line MG has to the fquare of GF.

By the 88 th dat. find two fraight lines \(\mathrm{DB}, \mathrm{BC}\) which contain a rectangle equal to the given rectangle MG, GK, and fuch that the fum of their fquares is equal to the given rectangle KG, GL; therefore, by the determination of the problem in that propofition, twice the rectangle MG, GK muft not be greater than the rectangle \(\mathrm{KG}, \mathrm{GL}\). Let it be fo, and join the ftraight lines D3, BC in the angle DBC equal to the given angle FGH; and, as MG to GF, fo make DB to BA, aed complete the parailelogram \(\mathrm{AC}: \mathrm{AC}\) is equal to the recto

angle \(\mathrm{FH}, \mathrm{GK}\); and the fquare of BC together with the fquare of BD , which, by the conftruction, has to the fquare of BA the given ratio which the fquare of MG has to the fquare of GF , is equal, by the conftruction, to the given rectangle KG , GI. Draw \(A E\) perpendicular to BC .

Becaufe, as DB to BA, fo is MG to GF; and as BA to AE,反o GF to FH ; ex requali, as DB to AE , fo is MG to FH ; therefore, as the rectangle \(\mathrm{DB}, \mathrm{BC}\) to \(\mathrm{AE}, \mathrm{BC}\), fo is the rectangle MG , GK to \(\mathrm{FH}, \mathrm{GK}\) and the rectangle \(\mathrm{DB}, \mathrm{BC}\) is equal to the rectangle \(\mathrm{M} G\), GK ; therefore the rectangle AE , BC , that is, the parallelogram AC , is equal to the rectangle EH, GK.

> PROP. XCI.
a ftraight line drawn within a circle given in magnitude cuts of a fegment which contains a given angle; the fraight line is given in magnitude.

In the circle ABC given in magnitude, let the ftraight. line AC be drawn, cutting off the fegment AEC which contains the given angle AEC; the ftraight line AC is given in magnitude.

Take \(D\) the centre of the circle \({ }^{2}\), join \(A D\) and produce if a \(x_{s} \hat{3}\), If 3
to E , and join EC: The angle ACE being b 3 r. 3. a right \(b\) angle is given; and the angle c 43 .dat. AEC is given; therefore \({ }^{c}\) the triangle ACE is given in fpecies, and the ratio of EA to AC is therefore given; and EA is given in magnitude, becaufe the circle is d s. def. given \({ }^{\text {d }}\) in magnitude; AC is therefore gi-
 e 2. dat. ven \(^{\mathrm{e}} \mathrm{in}^{\text {m magnitude. }}\)

P R O P. XCII.
Fa fraight line given in magnitude be drawn with. in a circle given in magnitude, it fhall cut off a fegment containing a given angle.
Let the ftraight line AC given in magnitude be drawn within the circle ABC given in magnitude ; it fhall cut off a fegment containing a given angle.

Take D the centre of the circle, join AD and produce it to E , and join EC: And becaufe each of the ftraight lines EA, and \(A C\) is given, their ratio is given \({ }^{2}\); and the angie ACE is a right angle, therefore
b 46. dat. the triangle ACE is given \({ }^{\circ}\) in fpecies, and confequently, the angle AEC is given.

\[
\text { PR } \odot \text { P. XCIII. }
\]

IF from any point in the circumference of a circle given in pofition two ftraight lines be drawn, meeting the circumference and containing a given angle; if the point in which one of them meets the circumference again be given, the point in which the other meets it is alfo given.

From any point \(A\) in the circumference of a circle \(A B C\) given in pofition, let \(A B, A C\) be drawn to the circumference making the given angle \(B A C\); if the point \(B\) be given, the point \(\mathbf{C}\) is alfo given.
lake D the centre of the circle, and join \(B D, D C\); and becaufe each of the 2 29. dat. points \(B, D\) is given, \(B D\) is given \({ }^{2}\) in po.fition ; and becaufe the angle \(B A C\) is gib20.3. ven, the angle \(B D C\) is given \({ }^{\text {b }}\), therefore

becaufe
becaufe the fraight line DC is drawn to the given point D in the ftraight line BD given in pofition in the given angle BDC , DC is given \({ }^{c}\) in pofition: And the circumference ABC is gi- c 32 . dat. ren in pofition, therefore d the point C is given.
d 28 . dat.
P R O P. XCIV.

IFfrom a given point a Araight line be drawn touching a circle given in polition; the ftraight line is given in pofition and magnitude.

Let the ftraight line \(A B\) be drawn from the given point \(A\) touching the circle BC given in pofition; AB is given in pofition and magnitude.

Take D the centre of the circle, and join \(\mathrm{DA}, \mathrm{DB}\) : Becaufe each of the points \(\mathrm{D}, \mathrm{A}\) is given, the ftraight line AD is given \({ }^{2}\) in pofition and magnitude: And DBA is a right \({ }^{\circ}\) angle, wherefore DA is a diameter \({ }^{c}\) of the circle DBA, defcribed about the triangle DBA ; and that circle is therefore given d in pofition: And the circle BC is
 given in pofition, therefore the point \(B\) is given \({ }^{e}\). The point \(A\) is alfo given: therefore the ftraight \(c\) 23. dat. line \(A B\) is given \({ }^{a}\) in pofition and magnitude.

> PROP. XCV.

IF a fraight line be drawn from a given point with. out a circle given in pofition; the rectangle contained by the fegments betwist the point and the circumference of the circle is given.

Let the ftraight line \(A B C\) be drawn from the given point \(A\) without the circle BCD given in pofition, cutting it in \(\mathrm{B}, \mathrm{C}\); the rectangle \(B A, A C\) is given.

From the point \(A\), draw a \(A D\) touch- \(C\) ing the circle; therefore AD is given b in pofition and magnitude: And becaufe AD is given, the fquare of \(A \mathrm{D}\) is
 given \({ }^{c}\) which is equald to the rectangle \(B A, \Lambda C\) : Therefore \({ }^{c}\) s. \(\begin{gathered}6 . d \text { dat. } \\ 3^{6}: 3 .\end{gathered}\) the reetangle \(\mathrm{BA}, \mathrm{AC}\) is given.

PROP.

\section*{P R O P. XCVI.}

IF a ftraight line be drawn through a given point within a circle given in pofition, the rectangle contained by the fegments betwixt the point and the circumference of the circle is given.

Let the ftraight line BAC be drawn through the given point \(A\) within the circle \(B C E\) given in pofition; the rectangle \(B A, A C\) is given.

Take D the centre of the circle, join AD and produce it to the points \(\mathrm{E}, \mathrm{F}\) : Becaufe the points \(\mathrm{A}, \mathrm{D}\) are given, the
a \(29 . \mathrm{datat}_{0}\) ftraight line AD is given \({ }^{\text {a }}\) in pofition; and the circle BFC is given in pofition;
b 28. dat, therefore the points \(\mathrm{E}, \mathrm{F}\) are given \({ }^{\mathrm{b}}\); and the point A is given, therefore EA, AF
 are each of them given \({ }^{2}\); and the rectangle EA, AF is therefore given; and it is equal \({ }^{c}\) to the rectangle \(B A, A C\), which confequently is given.

\section*{PROP. XCVII.}

葠F a ftraight line be drawn within a circle given in magnitude cutting off a fegment containing a given angle; if the angle in the fegment be bifected by a Atraight line produced till it meets the circumference, the ftraight lines which contain the given angle fhall both of them together have a given ratio to the ftraight line which bifects the angle: And the rectangle contained by both thefe lines together which contain the given angle, and the part of the bifecting line cut off below the bafe of the fegment, fhall be given.

Let the ftraight line \(B C\) be drawn within the circle \(A B C\) given in magnitude cutting off a fegment containing the given angle BAC , and let the angle BAC be bifected by the ftraight line \(A D ; B A\) together with \(A C\) has a given ratio to \(A D\); and the rectangle contained by BA and AC together, and the ftraight line ED cut off from AD below BC the bafe of the fegment, is given.

Join \(B D\); and becaufe \(B C\) is drawn within the circle \(A B C\)
given in magnitude cutting of the fegment BAC , containing the given angle \(B A C ; B C\) is given \({ }^{2}\) in magnitude: By the a 9 r . dato fame reafon BD is given; therefore \({ }^{b}\) the ratio of BC to \(\mathrm{BD}_{\mathrm{b}}\) г. dat, is given: And becaufe the angle BAC is bifected by AD , as BA to AC , fo is \({ }^{c} \mathrm{BE}\) to EC ; and, by permutation, as AB c 3.6 . to BE , fo is AC to CE ; wherefore \({ }^{\mathrm{d}}\) as BA and AC together d 12. 5 , to \(B C\), fo is \(A C\) to \(C E\) : And becaufe the angle \(B A E\) is equal to EAC, and the angle ACE to \({ }^{5}\) ADB , the triangle ACE is equiangular to the triangle. ADB ; therefore as AC to CE , fo is AD to DB : But as AC to CE , fo is BA together with AC to BC ; as therefore BA and AC to BC , fo is AD to DB ; and, by permutation, as BA and AC to AD , fo is BC to BD : And the ratio of \(\cdot \mathrm{BC}\) to BD is given, there fore the ratio of BA together with AC to AD is given.

Alfo the rectangle contained by BA and AC together, and \(D E\) is given.

Becaufe the triangle BDE is equiangular to the triangle ACE , as \(B D\) to \(D E\), fo is \(A C\) to \(C E\); and as \(A C\) to CE, fo is \(B A\) and \(A C\) to \(B C\); therefore as \(B A\) and \(A C\) to \(B C\), fo is \(B D\) to DE ; wherefore the rectangle contained by BA and AC together, and \(D E\), is equal to the rectangle \(\mathrm{CB}, \mathrm{BD}:\) But \(\mathrm{CB}, \mathrm{BD}\) is given; therefore the rectangle contained by \(B A\) and \(A C\) together, and DE, is given.

\section*{Othervije.}

Produce \(C A\), and make \(A F\) equal to \(A B\), and join \(B F\); and becaufe the angle \(B A C\) is double \({ }^{\text {a }}\) of each of the angles \({ }_{a}\left\{\begin{array}{l}5 . \& \\ 3 F A, ~ B A D \text {, the angle } B F A \text { is equal to } B A D \text {; and the angle }\end{array}\right.\) BCA is equal to BDA , therefore the triangle FCB is equiangular to ABD : As therefore FC to CB , fo is AD to DB ; and, by permutation, as FC , that is, BA and AC together, to AD , fo is CB to BD : And the ratio of CB to BD is given, therefore the ratio of \(B A\) and \(A C\) to \(A D\) is given.

And becaufe the angle BFC is equal to the angle \(D A C\), that is, to the angle \(D B C\), and the angle \(A C B\) equal to the angle ADB ; the Yriangle FCB is equiangular to BDE , as therefore FC to CB , fo is BD to DE ; therefore the rectangle contained by FC, that is, BA and AC together, and DE is \(\mathrm{e}_{\infty}\)

\section*{E U C LID's}
qual to the refangle \(\mathrm{CB}, \mathrm{BD}\), which is given, and therefore the rectangle contained by \(\mathrm{BA}, \mathrm{AC}\) together, and DE is given.

\section*{P R O P. XCVIII.}

IF a ftraight line be drawn within a circle given in magnitude, cutting off a fegment containing a given angle: If the angle adjacent to the angle in the fegment be bifected by a fraight line produced till it meet the circumference again and the bafe of the fegment; the ex efs of the fraight lines which contain the given angle fhall have a given ratio to the fegment of the bifecting line which is within the circle; and the rectangle contained by the fame excefs and the fegment of the bifecting line betwixt the bale produced and the point where it again meets the circumference, thall be given.

Let the ftraight line BC be drawn within the circle ABC given in magnitude cutting off a fegment containing the given angle BAC , and let the angle CAF adjacent to BAC be bifected by the ftraight line DAE meeting the circumference again in D , and BC the bafe of the fegment produced in E ; the excefs of \(B A, A C\) has a given ratio to \(A D\); and the rectangle which is contained by the fame excefs and the ftraight line ED, is given.

Join BD , and through B , draw BG parallel to DE mecting AC produced in \(G\) : And becaufe \(B C\) cuts off from the circle ABC given in magnitude the fegment BAC containing a given an-
- 9x. dat. gle, BC is therefore given \({ }^{\text {a }}\) in magnitude: By the fame reafon BD is given, becaufe the angle BAD is equal to the given angle \(E A F\) : there- \(B\) fore the ratio of BC to BD is given: And becaufe the angle CAE is equal to EAF, of which CAE is equal to
 the alternate angle AGB, and EAF to the interior and oppofite angle \(A B G\); therefore the angle \(A G B\) is equal to \(A B G\), and the ftraight line \(A B\) equal to \(A G\); fo that \(G C\) is the excefs
of BA, AC: And becaufe the angle BGC is equal to GAE, that is, to EAF, or the angle BAD : And that the angle BCG is equal to the oppofite interior angle BDA of the quadrilateral BCAD in the circle; therefore the triangle BGC is equiangular to BDA: Therefore as GC to CB, fo is AD to DB ; and, by permutation, as GC which is the excefs of \(\mathrm{BA}, \mathrm{AC}\) to AD , fo is \(B C\) to \(B D\) : And the ratio of \(C B\) to \(B D\) is given; therefore the ratio of the excefs of \(\mathrm{BA}, \mathrm{AC}\) to AD is given.

And becaufe the angle GBC is equal to the alternate-angle DEB , and the angle BCG equal to BDE ; the triangle BCG is equiangular to BDE : Therefore as GC to CB , fo is BD to DE ; and confequently the rectangle GC, DE is equal to the rectangle \(\mathrm{CB}, \mathrm{BD}\) which is given, becaufe its fides \(\mathrm{CB}, \mathrm{BD}\) are given : Therefore the rectangle contained by the excefs of BA, AC and the ftraight line DE is given.

> PR.O P. XCIX.

FF from a given point in the diameter of a circle given in pofition, or in the diameter produced, a Staight line be drawn to any point in the circumference, and from that point a ftraight line be drawn at right angles to the firft, and from the point in which this meets the circumference again, a ftraight line be drawn parallel to the firlt; the point in which this parallel meets the diameter is given; and the rectangle contained by the two parallels is given.

In BC the diameter of the circle ABC given in pofition, or in BC produced, let the given point D be taken, and from D let a ftraight line DA be drawn to any point \(A\) in the circumference, and let AE be drawn at right angles to DA, and from the point E where it meets the circumference again let EF be drawn parallel to DA meeting BC in F ; the point F is given, as alfo the rectangle \(\mathrm{AD}, \mathrm{EF}\).

Produce EF to the circumference in G, and join AG: Becaufe GEA is a right angle, the ftraight line \(A G\) is \({ }^{2}\) the dia-a Cor. sif meter of the circle \(A B C\); and \(B C\) is alfo a diameter of it; therefore the point \(H\) where they meet is the centre of the circle, and confequently H is given: And the point D is given, wherefore DH is given in magnitude: And becaufe AD is pa-
64.6. railel to \(\mathrm{FG}_{\text {s }}\) and GH equal to HA ; DH is equal b to HF , and AD equal to GF : And DH is given, therefore HF is given in

magnitude; and it is alfo given in pofition, and the point H is given, therefore \({ }^{\mathrm{c}}\) the point F is given.

And becaufe the ftraight line EFG is drawn from a given point F without or within the circle ABC given in pofition, d95. or 96 therefore d the rectangle \(\mathrm{EF}, \mathrm{FG}\) is given: And GF is equal to
dat. AD , wherefore the rectangle \(\mathrm{AD}, \mathrm{EF}\) is given.

IF from a give point in a ftraight line given in pofition, a ftraight line be drawn to any point in the circumference of a circle given in pofition; and from this point a ftraight line be drawn making with the firft an angle equal to the difference of a right angle, and the angle contained by the ftraight line given in pofition, and the ftraight line which joins the given point and the centre of the circle; and from the point in which the fecond line meets the circumference again, a third ftraight line be drawn-making with the fecond an angle equal to that which the firft makes with the fecond: The point in which this third line meets the ftraight line given in pofition is given; as alfo the rectangle contained by the firf ftraight line and the fegment of the third betwixt the circumference and the ftraight line given in pofition, is given.

Let the ftraight line CD be drawn from the given point C in the ftraight line AB given in pofition, to the circumference of the circle DEF given in pofition, of which G is the centre; join CG, and from the point D let DF be drawn making the angle CDF equal to the difference of a right angle and the angle BCG, and from the point F let FE be drawn making
the angle DFE equal to CDF, meeting \(A B\) in \(H\) : The point \(H\) is given ; as aifo the rectangle \(\mathrm{CD}, \mathrm{FH}\).

Let CD, FH meet one another in the point \({ }^{\prime} \mathrm{K}\), from which draw KL perpendicular to DF; and let DC meet the circumference again in \(M\), and let FH meet the fame in E, and join MG; GF, GH.
Becaufe the angles MDF, DFE are equal to one another, the circumferences \(\mathrm{MF}, \mathrm{DE}\) are equal \({ }^{2}\); and adding or taking away the common part ME, the circumference DM is equal

236.30 to EF ; therefore the ftraight line LM is equal to the ftraight line EF, and the angle GMD to the angle GFE; and the angles GMC, GFH are equal to one another, becaufe they are cither the fame with the angles GMD, GFE, or adjacent to them: And becaufe the angles KDL, LKD are tonethere equal co a right angle, that is, by the hypothefis, to the angles KDL ,
 GCB ; the angle GCB or GCH is \(\mathrm{e}-\mathrm{A} \mathrm{C} \quad \mathrm{HB}\) qual to the angle (LKD, that is, to the angle) LKF or GKH: Therefore the points C, K, H, G are in the circumference of a circle; and the angle GCK is therefore equal to the angle GHF ; and the angle GMC is equal to GFH, and the ftraight line GM to GF; therefore \({ }^{d} \mathrm{CGd} 26 . \mathrm{x}_{0}\) is equal to GH, and CM to HF : And becaufe CG is equal to GH, the angle GCH is equal to GHC ; but the angle GCH is given: Therefore GHC is given, and confequently the angle CGH is given; and CG is given in pofition, and the point \(G\); therefore \({ }^{\text {e }} \mathrm{GH}\) is given in pofition; and CB is alpo given in e 32 dat pofition, whereof the point H is given.

And because HF is equal to CNM, the rectangle \(\mathrm{DC}, \mathrm{FH}\) is equail to \(\mathrm{DC}, \mathrm{CM}\) : But \(\mathrm{DC}, \mathrm{CM}\) is given \(f\), becaufe the point C fos.org6. is given, therefore the rectangle \(\mathrm{DC}, \mathrm{FH}\) is given.
\[
F \quad I \quad N \quad I \quad S
\]

\section*{N O T E S}

\section*{0 N}

\section*{EUCLID's DATA.}

\section*{DEFINITION II.}

THIS is made more explicit than in the Greek text, to prevent a miftake which the author of the fecond demonftration of the 24th propofition in the Greek edition has fallen into, of thinking that a ratio is given to which another ratio is fhown to be equal, though this other be not exhibited in given magnitudes. See the notes on that propofition, which is the \(13^{\text {th }}\) in this edition. Befides, by this definition, as it is now given, fome propofitions are demonftrated, which in the Greek are not fo well done by help of prop. 2 .
D E F. IV.

In the Greek text, def. 4. is thus: "Points, lines, fpaces, " and angles are faid to be given in pofition which have always " the fame fituation;" but this is imperfect and ufelefs, becaufe there are innumerable cafes in which things may be given according to this definition, and yet their pofition cannot be found; for inftance, let the triangle ABC be given in pofition, and let it be propofed to draw a ftraight line \(B D\) from the angle at \(B\) to the oppofite fide AC which fhall cut off the angle DBC which thall be the feventh part of the angle \(A B C\); fuppofe this is done, therefore the ftraight line BD is invariable in its pofition, that is,
 has always the fame fituation; for any other ftraight line drawn from the point \(B\) on either fide of BD cuts off an angle greater or leffer than the feventh part of the angle ABC ; therefore, according to this definition, the ftraight line \(B D\) is given in pofition as alfo \({ }^{2}\) the point \(D\) in a 28. dat. which it meats the ftraight line \(A C\) which is given in pofition. But from the things here given, neither the ftraight line BD nor the point D can be found by the help of Euciid's Elements only, by which every thing in his data is fuppofed may
be found. This definition is therefore of no ufe. We have amended it by adding, " and which are either actually exhibited " or can be found;" for nothing is to be reckoned given, which cannot be found, or is not actually exhibited.

The definition of an angle given by pofition is taken out of the \(4^{\text {th }}\), and given more diftinctly by itfelf in the definition marked A.

\section*{D E F. XI. XII. XIII. XIV. XV.}

The IIth and I2th are omitted, becaufe they cannot be given in Englifh fo as to have any tolerable fenfe; and, therefore, wherever the terms defined occur, the words which exprefs their meaning are made ufe of in their place.

The \(13^{\text {th }}\), \(14^{\text {th }}\), \(15^{\text {th }}\) are omitted, as being of no ufe.
It is to be obferved in general of the data in this book, that they are to be underftood to be given geometrically, not always arithmetically, that is, they cannot always be exhibited in numbers; for inftance, if the fide of a fquare be given, the ratio of
b 44. dat,
c 2. dat. to its diameter is given \({ }^{b}\) geometrically, but not in numbers; and the diameter is given \({ }^{\mathrm{c}}\); but though the number of any equal parts in the fide be given, for example 10 , the number of them in the diameter cannot be given: And the like holds in many other cafes.

\section*{PROPOSITION I.}

In this it is fhown that A is to B , as C to D , from this, that A is to C, as B to D , and then by permutation; but it follows directly, without thefe two fteps, from \(7 \cdot 5\).

\section*{P R O P. II.}

The limitation added at the end of this propofition between the inverted commas is quite neceffary, becaufe without it the propofition cannot always be demonftrated: For the author having faid *, "becaufe A is given, a magnitude equal to it "can be found \({ }^{a}\); let this be C ; and becaufe the ratio of A to
b2.def. "B is given, a ratio which is the fame to it can be found 0 ," adds, " let it be found, and let it be the ratio of C to \(\Delta\)." Now, from the fecond definition nothing more follows than that fome ratio, fuppofe the ratio of \(\mathbf{E}\) to \(Z\), can be found, which is the fame with the ratio of A to B ; and when the author fuppofes that the ratio of \(\mathbf{C}\) to \(\Delta\), which is

\section*{EUCLID's DATA.}
alfo the fame with the ratio of A to B , can be found, he neceffarily fuppofes that to the three magnitudes \(\mathrm{E}, \mathrm{Z}, \mathrm{C}\), a fourth proportional \(\Delta\) may be found; but this cannot always be done by the Elements of Euclid; frem which it is plain Euclid muft have underfood the Propofition under the limitam tion which is now added to his text. An example will make this clear; let A be a given angle, and B another angle to which A has a given ratio, for inftance, the ratio of the given ftraight line E to the given one Z ; then, having found an angle \(C\) equal to \(A\), how can the angle \(\Delta\) be found to which \(C\) has the fame ratio that E has to Z ? Certainly no way, until it be fhown how to find an angle to which a given angle
 has a given ratio, which cannot be done by Euclid's Elements, nor probably by any Geometry known in his time. Therefore, in all the propofitions of this book which depend upon this fecond, the above mentioned limitations muft be underftood, though it be not explicitly mentioned.

\section*{PROP.V.}

The order of the Propofitions in the Greek text between prop. 4. and prop. 25. is now changed into another which is more natural, by placing thofe which are more fimple before thofe which are more complex; and by placing together thofe which are of the fame kind, fome of which were mixed among others of a different kind. Thus, prop. 12. in the Greek is now made the 5 th, and thofe which were the 22 d and 23 d are made the IIth and 12th, as they are more fimple than the propofitions concerning magnitudes, the excefs of one of which above a given magnitude has a given ratio to the other, after which thefe two were placed; and the 24 th in the Greek text is, for the fame reafon, made the 13 th.

\section*{P R O P. VI. VII.}

Thefe are univerfally true, though, in the Greck text, they are demonftrated by prop. 2. which has a limitation; they are therefore now foown without it.

\section*{PR O P. XII,}

In the 23 d prop. in the Greek text, which here is the 12 then \(^{2}\) the words, " \(\mu\) n \(\tau 8 \varepsilon\) autys \(\delta_{\varepsilon}\)," are wrong tranflated by Claud. Hardy, in his edition of Euclid's Data, printed at Paris, ann. 1625 , which was the firt edition of the Greek text; and Dr: Gregory follows him in tranflating them by the words, "etfi, " non eafdem," as if the Greek had been st xat , un \(78 s\) xuтषs, as in prop. 9. of the Greek text. Euclid's meaning is, that the ratios mentioned in the propofition muft not be the fame; for, if they were, the propofition would not be true. Whatever ratio the whole has to the whole, if the ratios of the parts of the firft to the parts of the other be the fame with this ratio, one part of the firft may be double, triple, \&c. of the other part of it, or have any other ratio to it, and confequently cannot have a given ratio to it; wherefore, thefe words muft be rendered by "non autem, eafdem," but not the fame ratios, as Zambertus has tranflated them in his edition.

> P R O P. XIII.

Some very ignorant editor has given a fecond demonftration of this propofition in the Greek text, which has been as ignorantly kept in by Claud. Hardy and Dr Gregory, and has been retained in the tranflations of Zambertus and others; Carolus Renaldinus gives it only: The author of it has thought that a ratio was given, if another ratio could be fhown to be the fame ta it, though this laft ratio be not found: But this is altogether abfurd, becaufe from it would be deduced that the ratio of the fides of any two fquares is given, and the ratio of the diameters of any two circles, \(\mathscr{F}^{\circ} c\). And it is to be abferved, that the moderns frequently take given ratios, and ratios that are always the fame, for one and the fame thing; and Sir Ifaac Newton has fallen into this miftake in the 17 th Lemma of his Principia, edit. 1713 , and in other places; but this flould be carefully avoided, as it may lead into other errors.
\[
P R O P . X I V . X V \text {. }
\]

Euclid in this book has feveral propofitions concerning mag:nitudes, the excefs of one of which above a given magnitude
cude has a given ratio to the other; but he has given none concerning magnitudes whereof one together with a given magnitude has a given ratio to the other; though thefe laft occur as frequently in the folution of problems as the firft; the reaion of which is, that the laft may be all demonftrated by help of the firf; for, if a magnitude, together with a given magnitude, has a given ratio to another magnitude, the excefs of this other above a given magnitude fhall have a given ratio to the firt, and on the contrary; as we have demonftrated in prop. I4. And for a like reaion prop. 15, has been added to the data. One example will make the thing clear; fuppofe it were to be riemonftrated, that if a magnitude A together with a given magnitude has a given ratio to another magnitude \(B\), that the two magnitudes \(A\) and \(B\), together with a given magnitude, have a given ratio to that other magnitude \(B\); which is the fame propofition with refpect to the laft kind of magnitudes above mentioned, that the firft part of prop. I6. in this edition is in refpect of the firft kind: This is thewn thus, from the hypothefis, and by the firft part of prop. 14. the excefs of B above a given magnitude has unto A a given ratio; and, therefore, by the firft part of prop. 17. the excefs of \(B\) above a given magnitude has unto \(B\) and \(A\) together a given ratio; and by the fecond part of prop. 14. \(A\) and \(B\) together with a given magnitude has unto \(B\) a given ratio; which is the thing that was to be demonftrated. In like manner, the other propofitions concerning the laft kind of magnitudes may be fhewn.

\section*{PROP. XVI. XVII.}

In the third part of prop. 10 . in the Greek text, which is the sth in this edition, after the ratio of EC to CB has been fhown to be given; from this, by inverfion and converfion the ratio of BC .to BE is demonftrated to be given; but without thefe two fteps, the conclufion fhould have been made only by citing the 6 th propofition. And in like manner, in the firt part of prop. II. in the Greek, which in this edition is the \(17^{\text {th }}\) from the ratio of \(D B\) to \(B C\) being given, the ratio of \(D C\) to DB is fhewn to be given, by inverfion and compofition inftead of citing prop. 7. and the fame fault occurs in the fecond part of the fane prop. II.

\section*{PR O P. XXI. XXII.}

Theie now are added, as being wanting to complete the fabe ject treated of in the four preceding propofitions.
P R O P. XXIII.

This, which is prop. 20. in the Greek text, was feparated from prop. 14. 15. 16. in that text, after which it fhould have been immediately placed, as being of the fame kind; it is now put into its proper place; but prop. 21. in the Greek is left out, as being the fame with prop. 14. in that text, which is here prop. 's 8 .
PR O P. XXIV.

This, which is prop. 1.3. in the Greek, is now put into its proper place, having been disjoined from the three following in in this edition, which are of the fame kind.
PROP: XXVII.

This, which in the Greek text is prop. 25 . and feveral of the following propofitions are there deduced from def. 4. which is not fufficient, as has been mentioned in the note on that definition: They are therefore now fhewn more explicitly.
PROP. XXXIV. XXXVE.

Each of thefe has a determination, which is now added, which. occafions a change in their demonfrations.
\[
\text { PR } O P \text { P. XXXVI. XXXIX. XL. XLI. }
\]

The \(35^{\text {th }}\) and 36 th propofitions in the Greek text are joined into one, which makes the 3 gth in this edition, becaufe the fame enunciation and demonftration ferves both: And for the fame seafon prop. 37. \(3^{8 .}\). in the Greek are joined into one, whicle here is the 40.

Prop. 37. is added to the data, as it frequently occurs in the folution of problems; and prop. 4 t . is added to complete the seft.
PROP. XLIT.

This is prop. 39 in the Greel text, where the whole cons feruction of prope 22. of book I. of the Elements is put, without need, into the demonftration, but is now only cited.
\[
P R O P \text { XLV. }
\]

This is prop. 42. in the Greek, where the three fraight lines made ufe of in the conftruction are faid, but not fhown, to be fuch that any two of them is greater than the third, which is new dane.

\section*{P R O P. XLVII.}

This is prop. 44. in the Greek text ; but the demonfration of it is changed into another, wherein the feveral cafes of it are fhewn, which, though neceffary, is not done in the Greek.

\section*{PROP. XLVIII。}

There are two cafes in this propofition, arifing from the two cafes of the third part of prop. 47 . on which the 48 th depends; and in the compofition thefe two cafes are explicitly given.
P R O P. LII.

The conftruction and demonftration of this, which is prop. 48. in the Greek, are made fomething fhorter than in that text.
P R O P. LIII.

Prop. 63 . in the Greek text is omitted, being only a cale of prop. 49. in that text, which is prop. 53 . in this edition.

\section*{PROP. LVIII.}

This is not in the Greek text, but its demonftration is contained in that of the firft part of prop. 54 . in that text; which propofition is concerning figures that are given in fpecies: This 58 th is true of finilar figures, though they be not given in fipecies, and, as it frequently occurs, it was neceffary to add it.
P R O P. LIX. LXI.

This is the \(54^{t h}\) in the Greek; and the 77th in the Greek, being the very fame with it, is left out, and a fhorter demonftration is given of prop. 6I.

\section*{PR O P: LXII.}

This, which is moft frequently ufeful, is not in the Greek, and is neceffary to prop. 87.88. in this edition, as alfo, though not mentioned, to prop. 86. 87. in the former editions. Prop. 66. in the Greek text is made a corollary to it.

> P R O P. LX'IV.

This contains both prop. 74. and 73. in the Greek text ; the firft cafe of the \(74^{\text {th }}\) is a repetition of prop. 56 . from which it is feparated in that text by many propofitions; and as there is no order in thefe propofitions, as they ftand in the Greek, they are now put into the order which feemed moft convenient and natural4
\[
\text { Gg } 3
\]

The

The demonfration of the firft part of prop. 73. in the Greek is grofsly vitiated. Dr Gregory fays, that the fentences he has inclofed betwixt two fars are fuperfluous', and ought to be cancelled; but he has not obferved, that what follows them is abfurd, being to prove that the ratio [See his figure] of A \(\Gamma\) to \(r \mathrm{~K}\) is given, which, by the hypothefis at the beginning of the propofition, is exprefly given; fo that the whole of this part was to be alterech, which is done in this prop. 64.

\section*{PROP. LXVI. LXVII.}

Prop. 70. in the Greek text is divided into thefe two, for the fake of diftinctnefs; and the demonfration of the 67 th is xendered fhorter than that of the firt part of prop. 70 . in the Greek, by means of prop. 23. of book 6 . of the Elements.

\section*{PROP. LXX.}

This is prop. 62. in the Greek text; prop. 78. in that text is only a particular cafe of it, and is therefore omitted.

Dr Gregory, in the demonfration of prop. 62. cites the 49th prop. dat. to prove that the ratio of the figure \(A E B\), to the parallelogram AH is given; whereas this was fhewn a few lines hefore: And befides, the \(49^{\text {th }}\) prop. is not applicable to thefe two figures; becaufe Ayr is not given in fpecies, but is, by the flep for which the citation is brought, proved to be given in fiecies.

> PROP. IXXIII.

Trop. \(8_{3}\). in the Greek text is neither well emmeiated nor demonitrated. The 73 d, which in this edition is put in place of it, is really the fame, as will appeas by confidering [Sce Dr Gregry's edition] that \(A, B, \Gamma, E\) in the Greek text are four proportionals; and that the propofition is to fhew that \(A\), which has a given ratio to \(E\), is ta \(r\), as \(B\) is to a ftaight line to which \(A\) has a given ratio \(;\) or, by inverfion, that 5 is to\(A\), as a traight line to which \(A\) has a given ratio, is to \(B\); that is, if the proportionals be placed in this order, viz. \(r, B, A, B\), that the firtt \(r\). is to \(\Delta\) to which the fecond \(E\) has a given ratio, as a ftraight line to which the third A has a given ratio is to the fourth B ; which is the enunciation of this 73 d , and was thus changed that it might be made like to that of prop. 72 . in this culition, which is the 82 d in the Greek teat: And the demonftration.
monftration of prop. 73. is the fame with that of prop. 72. only making ufe of prop. 23. initead of prop. 22: of book 5. of the Elements.

\section*{P R O P. LXXVII.}

This is put in place of prop. 79. in the Greek text, which is not a datum, but a theorem premifed as a lemma to prop. 80. in that text: And prop. 79. is made cor. 1. to prop. 77. in this edition. Cl. Hardy, in his edition of the data, takes notice, that in prop. 80. of the Greek text, the parallel KL in the figure of prop. 77 . in this edition, muft meet the circumference, but does not demonftrate it, which is done here at the end of cor. 3 . prop. 77 . in the conftruction for finding a triangle fimilar to ABC .

\section*{P R O P. LXXVIII.}

The demonftration of this, which is prop. 80. in the Greek, is rendered a good deal thorter by help of prop. 77.

\section*{P R O P. LXXIX. LXXX. LXXXI.}

Thefe are added to Euclid's data, as propofitions which are often ufeful in the folution of problems.

\section*{P R O P. LXXXII.}

This, which is prop. 60. in the Greek text, is placed before the 83 d and 84 th, which in the Greek are the 58 th and 59 th; becaufe the demonftration of thefe two in this edition are dedu* ced from that of prop. 82. from which they naturally follow.

\section*{PROP. LXXXVIII: XC.}

Dr Gregory, in his preface to Euclid's works, which he publifhed at Oxford in 1703, after having told that he had fupplied the defects of the Greek text of the data in innumerable places from feveral manufcripts, and corrected Cl . Hardy's tranflation by Mr Bernard'3, adds, that the 86th theorem, "or "propofition," feemed to be remarkably vitiated, but which could not be reftored by help of the manufcripts; then he gives three different tranflations of it in Latin, according to which he thinks it may be read; the two firft have no diftinct meaning, and the third, which he fays is the beft, though it

Gg 4
contains

\section*{NOTESSON}
contains a true propo tion, which is the goth in this editions: has no connection in the leaft with the Greek text. And it is ftrange that Dr Gregory did not obferve, that, if prop. 86. was changed into this, the demonftration of the 86 th muft be cancelled, and another put into its place: Bat the truth is, both theenunciation and the demonftration of prop. 86. are quite entire and right, only prop: 87 . which is more fimple, ought to have been placed before it; and the deficiency which the Doctor juftly obferves to be in this part of Eaclid's data, and which no doubt, is owing to the careleffnefs and ignorance of the Greek editors, fhould have been fupplied, not by changing prop. 86. which is both entire and neceffary, but by adding the two propofitions, which are the 88 th and goth in thes edition:.

\section*{PRO. XCVMI. C.}

Thefe were communizated to me by two excellent geometers, the firf of them by the Right Honourable the Earl of \({ }^{\circ}\) Stanhope, and the other by Dr Matthew Stewart; to which I have added the demonferations.
'Though the order of the propofitions has been in many places changed from that ia former editions, yet this will be of little difadvantage, as the ancient geometers never cite the data, and. the moderins very rarely.

fS that part of the compofition of a problem which is its. conftuction may not be fo readily deduced from the anaMyfis by beginners: For their fake the following example is given, in which the derivation of the feveral parts of the con.Itruction from the analyfis is particularly fhown, that they may be aflifted to do the like in other problems.
\[
\mathrm{P} \cap \bigcirc \mathrm{~L} \cdot \mathrm{E}: M .
\]

Having given the magnitude of a parallelogram; the angle of which ABC is given, and alfo the excefs of the fquare of its fide \(B C\) above the fquare of the fide \(A B\); to find its fides and defrribe it.

The analyfis of this is the fame with the demonftration of the 87 th prop. of the data, and the conftruction that is given of the problem at the end of that propofition is thus derived from the analyfis.

Let EFG be equal to the given angle ABC , and becaufe in the analyfis it is faid that the ratio of the rectangle \(A B_{9}\) \(B C\) to the parallelogram \(A C\) is given by the \(62 d\) prop. dat. therefore, from a point in FE, the perpendicular EG is drawn to FG, as the ratio of FE to EG is the ratio of the rectangle:

\(A B, B C\) to the parallelogram \(A C\) by what is fhown at the end of prop. 62. Next, the magnitude of \(A C\) is exhibited by mam king the rectangle EG, GH equal to it ; and the given excefs of the fquare of BC above the fquare of BA , to which excefs the rectangle \(\mathrm{CB}, \mathrm{BD}\) is equal, is exhibited by the rectangle HG , GL: Then, in the analyfis, the rectangle \(A B, B C\) is faid to be given, and this is equal to the rectangle \(\mathrm{FE}, \mathrm{GH}\), becaufe the rectangle \(\mathrm{A} s, \mathrm{BC}\) is to the parallelogram AC , as (FE to \(\mathrm{EG}_{2}\) that is, as the rectangle) FE, GH to EG, GH; and the parallelogram AC is equal to the rectangle \(\mathrm{EG}, \mathrm{GH}\), therefore the rectangle \(\mathrm{AB}, \mathrm{BC}\), is equal to \(\mathrm{FE}, \mathrm{GH}\) : And confequently the ratio of the rectangle \(\mathrm{CB}, \mathrm{BD}\), that is, of the rectangle \(\mathrm{HG}_{\text {, }}\) GL , to \(\mathrm{AB}, \mathrm{BC}\), that is, of the ftraight line DB to BA , is the fame with the ratio (of the rectangle GL, GH to \(\mathrm{FE}, \mathrm{GH}\), that is) of the ftraight line GL to FE , which ratio of DB to \(\overline{\mathrm{B}} \mathrm{A}\) is the next thing faid to be given in the analyfis: From this it is plain that the fquare of \(\operatorname{FE}\) is to the fquare of GL, as the fquare of BA , which is equal to the rectangle \(\mathrm{BC}, \mathrm{CD}\), is to the fquare of BD : The ratio of which fpaces is the next thing faid to be given: And from this it follows that four times the fquare of FE is to the fquare of GL, as four times the rectangle \(\mathrm{BC}, \mathrm{CD}\) is to the fquare of BD ; and, by compofition, four times the fquare of FE together with the fquare of GL , is to the fquare of GL, as four times the rectangle \(B C, C D\) together with the fquare of \(B D\), is to the fquare of \(B D\), that is (8.6.) as the fquare of the ftraight lines \(B C, C D\) taken together is to the fquare of BD , which ratio is the next thing faid to be given in the analyfis: And becaufe four times the fquare of FE and the fquare of GL are to be added together: therefore in the perpendicular EG there is taken \(K G\) equal to

\section*{N O T ES O N}

FE, and MG equal to the double of it, becaufe thereby the fquares of MG , GL, that is, joining ML, the fquare of ML, is equal to four times the fquare of FE and to the fquare of GL: And becaufe, the fquare of ML is to the fquare of GL, as the fquare of the ftraight line made up of BC and CD is to the fquare of BD , therefore (22.6 .) ML is to LG , as BC together with CD is to BD ; and, by compofition, ML and LG together, that is, producing GL to N , fo that ML be equal to LN , the ftraight line NG is to GL, as twice BC is to BD; and by taking GO equal to the half of NG, GO is to GL, as BC to BD , the ratio of which is faid to be given in the analyfis: And from this it follows, that the rectangle HG, GO is to \(\mathrm{HG}, \mathrm{GL}\), as the fquare of BC is to the rectangle \(\mathrm{CB}, \mathrm{BD}\), which is equal to the rectangle HG, GL; and therefore the fquare of BC is equal to the rectangle \(\mathrm{HG}, \mathrm{GO}\); and BC is confequently found by taking a mean proportional betwixt HG and GO, as is faid in the conftruction: And becaufe it was fhown that GO is to GL, as BC to BD, and that now the three firft are found, the fourth BD is found by 12. 6 . It was likewife fhown that LG is to FE, or GK, as DB to BA, and the three firft are now found, and thereby the fourth BA. Make the angle ABC equal to EFG , and complete the parallelogram of which the fides are \(\mathrm{AB}, \mathrm{BC}\), and the conftruction is finifhed; the reft of the compofition contains the demonftration.

\(H^{S}\)\(S\) the propofitions from the 13 th to the 28 th may be thought by beginners to be lefs ufeful than the reft, becaufe they cannot fo readily fee how they are to be made ufe of in the folution of problems ; on this account the two following pro.blems are added, to fhor- that they are equally ufeful with the other propofitions, and from which it may be eafily judged that many other problems depend upon thefe propofitions.

\section*{PROBLEM}

Tfind three traight lines fucn, that the ratio of the firft to the fecond is given; and if a given ftraight line be taken from the fecond, the ratio of the remainder to the third is given; alfo the rectangle contained by the firft and third is given.

Let AB be the firft fraight line, CD the fecond, and EF the third: And becaufe the ratio of AB to CD is given, and that if a given frraight line be taken from CD , the ratio of the remainder to EF is given ; therefore \({ }^{2}\) the excefs of the firft \(A B\) a 24, dat? above a given ftraight line has a given ratio to the third EF: Let BH be that given ftraight line; therefore AH, the excefs of \(A B\) above it, has a given ratio to EF; and A H B confequently b the rectangle \(\mathrm{BA}, \mathrm{AH}\), has \(\mathrm{a} \xrightarrow{\mathrm{A}} \mathrm{B}\) I. 6 . given ratio to the rectangle \(\mathrm{AB}, \mathrm{EF}\), which laft rectangle is given by the hypothefis; C G D therefore \({ }^{\text {c }}\) the rectangle BA, AH is given, F c 2. dati and BH the excefs of its fides is given; where- F fore the fides \(A B, A H\) are givend : And be- K NMI \(O^{\text {d } 85 \text { d date }}\) caufe the ratios of \(A B\) to \(C D\), and of \(A H\) to \(\quad N M L O\) EF are given, CD and EF are \({ }^{\mathrm{c}}\) given.

\section*{The Comporition.}

Let the given ratio of KL to KM be that which \(A B\) is required to have to \(C D\); and let \(D G\) be the given frraight line which is to be taken from CD, and let the given ratio of KM to KN be that which the remainder muft have to EF; alfo let the given rectangle NK, KO be that to which the rectangle \(\mathrm{AB}, \mathrm{EF}\) is required to be equal: Find the givea ftraight line BH which is to be taken from \(A B\), which is done, as plainly appears from prop. 24. dat. by making as KM to KL , fo GD to HB . To the given fraight line BH apply \({ }^{\text {e }}\) a rectangle equal to LK, KO e 29.6. exceeding by a fquare, and let BA, AH be its fides: Then is \(A B\) the firft of the ftraight lines required to be found, and by making as LK to KM, fo AB to \(\mathrm{DC}, \mathrm{DC}\) will be the fecond: And laftly, make as KM to KN, fo CG to EF, and EF is the third.
For as \(A B\) to \(C D, f o\) is \(H B\) to \(G D\), each of thefe ratios being the fame with the ratio of LK to KM ; therefore f AH is f 29. 50, to CG, as (AB to CD, that is, as) LK to KM; and as CG to EF, fo is KM to KN; wherefore, ex requali, as AH to EF, fo is LK , to KN : And as the rectangle \(\mathrm{BA}, \mathrm{AH}\) to the rectangle \(\mathrm{BA}, \mathrm{EF}\), fo is \(s\) the rectangle \(\mathrm{LK}, \mathrm{KO}\) to the rectangle \(\mathrm{KN}, g \mathrm{x}, \mathrm{\epsilon}_{0}\) IKO: And by the conftruction, the rectangle \(\mathrm{BA}, \mathrm{AH}\) is equal to LK, KO : Therefore \({ }^{\text {h }}\) the rectangle \(\mathrm{AB}, \mathrm{EF}\) is equal to the h 14. So given rectangle NK, \(K O: A n d A B\) has to \(C D\) the given ratio of KL to KM ; and from CD the given ftraight line GD being taken, the remainder CG has to EF the given ratio of KM to KN. C. E. D.

\section*{PROB. II.}

T0 find three ftraight lines fuch, that the ratio of the firf to the fecond is given; and if a given fraight line be taken from the fecond, the ratio of the remainder to the third is given; alfo the fum of the fquares of the firft and third is given.

Let AB be the firft ftraight line, BC the fecond, and BD the third: And becaufe the ratio of AB to BC is given, and that if a given ftraight line be taken from \(B C\), the ratio of the remain-
24. dat. der to \(B D\) is given; therefore \({ }^{2}\) the excefs of the firft \(A B\) above a given ftraight line, has a given ratio to the third BD : Let AE be that given ftraight line, "therefore the remainder EB has a given ratio to BD : Let BD be placed at right angles to \(E B\),
6 44. dat. and join DE; then the triangle EBD is \(b\) given in fecies; wherefore the angle BED is given: Let AE which is given in magnitude, be given alfo in pofition, as alfo the point E, and
c 32. dat. the ftraight line ED will be given \({ }^{c}\) in pofition: Join \(A D\), and
d 47. I. becaufe the fum of the fquares of \(\mathrm{AB}, \mathrm{BD}\), that is \({ }^{d}\), the fquare of AD is given, therefore the ftraight line AD is given in mag-
c 34. dat.' nitude ; and it is alfo given \({ }^{e}\) in pofition, becaufe from the given point A it is drawn to the fraight line ED given in pofition: Therefore the point D , in which the two ftraight lines AD, ED
f 28. dat. given in pofition, cut one another, is given f : And the ftraight
8 33. dat. line DB , which is at right angles to AB , is given \({ }^{5}\) in pofition, and \(A B\) is given in pofition, therefore \(f\) the point \(B\) is given: h 29. dat. And the points A, D are given, wherefore \({ }^{\text {h }}\) the ftraight lines \(A B, B D\) are given: And the ratio of \(A B\) to \(B C\) is given, and

\footnotetext{
i 2, dat.
} therefore \({ }^{\mathrm{i}} \mathrm{BC}\) is given.

\section*{The Compogition.}

Let the given ratio of FG to GH be that which AB is required to have to BC , and let HK be the given ftraight line which is to be taken from BC, and let the ratio which the red

mainder is required to have to BD be the given ratio of HG to LG, and place GL at right angles to FH, and join LF, LH:

Next, as HG is to GF, fo make HK to AE; produce AE to N , fo that AN be the ftraight line to the fquare of which the fum of the fquares of \(A B, B D\) is required to be equal; and make the angle NED equal to the angle GFL; and from the centre \(A\) at the diftance AN defcribe a circle, and let its circumference meet ED in D , and draw DB perpendicular to AN , and DM making the angle \(B D M\) equal to the angle GLH. Laftly, produce BM to C, fo that MC be equal to KH ; then is AB the firft, BC the fecond, and BD the third of the ftraight lines that were to be found.

For the triangles EBD, FGL, as alfo DBM, LGH being equiangular, as EB to BD , fo is FG to GL ; and as DB to BM , fo is LG to GH ; therefore, ex æquali, as EB to BM, fo is (FG to GH, and fo is) AE to HK or MC ; wherefore \(k, k\) 12. 5 ? \(A B\) is to \(B C\), as AE to HK, that is, as FG to GH, that is, in the given ratio; and from the ftraight line \(B C\) taking \(M C\), which is equal to the given ftraight line HK, the remainder BM has to BD the given ratio of HG to GL; and the fum of the fquares of \(A B, B D\) is equal do the fquare of \(A D\) or \(A N, d 47.7\). which is the given fpace. Q.E. D.

I beiieve it would be in vain to try to deduce the preceding conftruction from an algebraical folution of the problem.
\[
\mathbb{F} \mathbb{N}
\]

\section*{THE}

\section*{E L E M E N T S} 0 F

\section*{PLANE and SPHERICAL}

\section*{TRIGONOMETRY.}

EDINBUR \(\mathrm{C}-\mathrm{H}\) :
Printed for C. Nourse, London; and J. Balfour, Edinburgh. M,DCC,XCIV.

\section*{PLANE TRIGONOMETRY.}

\section*{LEMMA. I. Fig. 1.}

LET \(A B C\) be a rectilineal angle, if about the point \(B\) as a centre, and with any difrance BA, a circle be defcribed, meeting \(\mathrm{BA}, \mathrm{BC}\), the ftraight lines including the angle ABC in \(A, C\); the angle \(A B C\) will be to four right angles, as the arch AC to the whole circumference.

Produce AB till it meet the circle again in F , and through B draw DE perpendicular to AB , meeting the circle in \(\mathrm{D}, \mathrm{E}\).

By 33.6. Elem. the angle \(A B C\) is to a right angle \(A B D\), as the arch \(A C\) to the arch \(A D\); and quadrupling the confequents, the angle ABC will be to fur right angles, as the arch \(A C\) to four times the arch \(A D\), or to the whole circumference.

\section*{IEMMA I. Fig. 2.}

LET ABC be a plane rectilineal angle as before: About B as a centre with any two difunces \(\mathrm{BD}, \mathrm{BA}\), let two circles be defcribed meeting \(B A, B C\), in \(D, E, A, C\); the arch \(A C\) will be to the whole circumference of which it is an arch, as the arch DE is to the whole circumference of which it is art arch.

By Lemma 1 . the arch AC is to the whole circumference of which it is an arch, as the angle ABC is to fon right angles; and by the fame Lemma 1 . the arch DE is to the whole circumference of which it is an arch, as the angle ABC is to four right angles; therefore the arch AC is to the whole circumference of which it is an arch, as the arch DE to the whole circumference of which it is an arch.

\section*{DEFINITIONS. Fig. 3.}
I.

LET \(A B C\) be a plane rećtilincal angle; if about \(B\) as a centre, with BA any diftance, a circle ACF be defcribed meeting \(\mathrm{BA}, \mathrm{BC}\), in \(\mathrm{A}, \mathrm{C}\); the arch AC is called the meafure of the angle \(A B C\).

> II.

The circumference of a circle is fuppofed to be divided into
Hh

360 equal parts called degrees, and each degree into 60 equal parts called minutes, and each minute into 60 equal parts called feconds, \&c. And as many degrees, minutes, feconds, \&c. as are contained in any arch, of fo many degrees, minutes, feconds, \&c. is the angle, of which that arch is the meafure, faid to be.
Cor. Whatever be the radius of the circle of which the meafure of a given angle is an arch, that arch will contain the fame number of degrees, minutes, feconds, \&c. as is manifeft from Lemma 2.

\section*{III.}

Let AB be produced till it meet the circle again in F , the angle CBF , which, together with ABC , is equal to two right angles, is called the Supplement of the angle ABC.

\section*{IV.}

A ftraight line CD drawn through C , one of the extremities of the arch \(A C\) perpendicular upon the diameter paffing through the other extremity A, is called the Sine of the arch AC, or of the angle \(A B C\), of which it is the meafure.
Cor. The Sine of a quadrant, or of a right angle, is equal to the radius.
V.

The fegment DA of the diameter paffing through \(A\), one extremity of the arch AC between the fine CD, and that extremity, is called the Verfed Sine of the arch AC, or angle ABC .

\section*{VI.}

A ftraight line AE touching the circle at A , one extremity of the arch \(A C\), and meeting the diameter \(B C\) paffing through the other extremity C in E , is called the Tangent of the arch \(A C\), or of the angle \(A B C\).

\section*{VII.}

The ftraight line BE between the centre and the extremity of the tangent AE, is called the Secant of the arch AC, or angle ABC .
Cor. to def. 4.6.7. the fine, tangent, and fecant of any angle \(A B C\), are likewife the fine, tangent, and fecant of its fupplement CBF.
It is manifert from def. 4. that CD is the fine of the angle CBF. Let \(C B\) be produced till it meet the circle again in \(G\); and it is manifeft that AE is the tangent, and BE the fecant, of the angle \(A B G\) or \(E B F\), from def. 8.7 .

Cor. to def. \(4 \cdot 5 \cdot 6 \cdot 7\). The fine, verfed fine, tangent, and fecant, of any arch which is the meafure of any given angle ABC , is to the fine, verfed fine, tangent, and fecant, of any other arch which is the meafure of the fame angle, as the radius of the firt is to the radius of the fecond.
Let \(A C, M N\) be meafures of the angle \(A B C\), according to def. r. CD the fine, DA the verfed fine, AE the tangent, and BE the fecant of the arch AC , according to def. 4. 5. 6. 7. and NO the fine, OM the verfed fine, MP the tangent, and BP the fecant of the arch MN, according to the fame definitions. Since CD, NO, AE, MP are parallel, CD is to NO as the radius \(C B\) to the radius \(N B\), and \(A E\) to \(M P\) as \(A B\) to \(B N\), and \(B C\) or \(B A\) to \(B D\) as \(B N\) or \(B M\) to \(B O\); and, by converfion, DA to MO as AB to MB . Hence the corollary is manifeft; therefore, if the radius be fuppofed to be divided into any given number of equal parts, the fine, verfed fine, tangent, and fecant of any given angle, will each con-. tain a given number of thefe parts; and, by trigonometrical tables, the length of the fine, verfed fine, tangent, and fecant of any angle may be found in parts of which the radius contains a given number; and, vice verfa, a number exprefling the length of the fine, verfed fine, tangent, and fecant being given, the angle of which it is the fine, verfed fine, tangent, and fecant may be found.

The difierence of an angle from a right angle is called the complement of that angle. Thus, if BH be drawn perpendicular to AB , the angle CBH will be the complement of the angle ABC , or of CBF .

\section*{IX.}

Let HK be the tangent, CL or DB, which is equal to it, the fine, and BK the fecant of CBH , the complement of ABC , according to def. 4. 6. 7. HK is called the co-tangent, BD the co-fine, and BK the co-fecant of the angle ABC.
Cor. I. The radius is a mean proportional between the tangent and co-tangent.
For, fince HK, BA are parallel, the angles HKB, \(A B C\) will be eqqual, and the angles \(\mathrm{KHB}, \mathrm{BAE}\) are right; therefore
the triangles \(\mathrm{BAE}, \mathrm{KHB}\) are fimilar, and therefore AE is to AB , as BH or BA to HK .
Cor. 2. The radius is a mean proportional between the co-fine and fecant of any angle ABC.
Since \(C D, A E\) are parallel, \(B D^{-}\)is to \(B C\) or \(B A\), as \(B A\) to BE.
\[
\text { P R O P. I. Fig. } 5
\]

IN a right angled plain triangle, if the hypothenufe be made radius, the fides become the fines of the angles oppofite to them; and if either fide be made radius, the remaining fide is the tangent of the angle oppofite to it, and the hypothenufe the fecant of the fame angle.

Let \(A B C\) be a right angled triangle; if the hypothenufe \(B C\) be made radius, either of the fides \(A C\) will be the fine of the angle ABC oppofite to it; and if either fide BA be made radius, the other fide \(A C\) will be the tangent of the argle \(A B C\) oppofite to it, and the hypothenufe \(B C\) the fecant of the fame angle.

About \(B\) as a centre, with \(B C, B A\) for diftances, let two sircles CD, EA be defcribed, meeting BA, BC in D, E: Since \(C A B\) is a right angle, \(B C\) being radius, \(A C\) is the fine of the angle \(A B C\), by def. 4. and \(B A\) being radius, \(A C\) is the tangent, and \(B C\) the fecant of the angle \(A B C\), by def. 6. 7 .

Cor. 1. Of the hypothenufe a fide and an angle of a right angled triangle, any two being given, the third is aifo given.

Cor. 2. Of the two fides and an angle of a right angled triangle, any two being given, the third is alfo given.
\[
\text { P R O P. II. Fig. 6. } 7 .
\]

THE fides' of a plain triangle are to one another, as the fines of the angles oppofite to them.

In right angled triangles, this prop. is manifeft from prop. I. for if the hypothenufe be made radius, the fides are the fines of the angles oppofite to them, and the radius is the fine of a right angle (cor. to def. 4.) which is oppofite to the hypothenufe.

In any oblique angled triangle \(A B C\), any two fides \(A B, A C\) will be to one another as the fines of the angles \(\mathrm{ACB}, \mathrm{ABC}\) which are oppofite to them.
From C, B draw CE, BD perpendicular upon the oppofite fides \(\mathrm{AB}, \mathrm{AC}\) produced, if need be. Since CEB, CDB are right angles, BC being radius, CE is the fine of the angle CBA, and BD the fine of the angle ACB ; but the two triangles CAE , DAB have each a right angle at D and E ; and likervife the common angle CAB ; therefore they are fimilar, and confequently, CA is to AB , as CE to DB ; that is, the fides are as the fines of the angles oppofite to them.
Cor. Hence of two fides, and two angles oppofite to them, in a. plain triangle, any three being given, the fourth is alfo given.

\section*{PROP. III. Fig. 8.}

FN a plain triangle, the fum of any two fides is to their difference, as the tangent of half the fum of the angles at the bafe, to the tangent of half their difference.

Let \(A B C\) be a plain triangle, the fum of any two fides \(A B\), AC will be to their difference as the tangent of half the fum of the angles at the bafe \(\mathrm{ABC}, \mathrm{ACB}\) to the tangent of half their difference.
About \(A\) as a centre, with \(A B\) the greater fide for a diftance, let a circle be defcribed, meeting AC produced in E, F, and BC in D ; join \(\mathrm{DA}, \mathrm{EB}, \mathrm{FB}\) : and draw \(F G\) parallel to \(\mathrm{BC}_{2}\) : meeting EB in \(G\).
The angle EAB (32.1 .) is equal to the fum of the angles at the bafe, and the angle EFB at the circumterence is equal to the half of EAB at the centre (20.3.); therefore EFB is half. the fum of the angles at the bate; but the angle ACB (32. r.) is equal to the angles CAD and ADC , or ABC together; therefore FAD is the difference of the angles at the bafe, and \(F B D\) at the circumference, or BFG, on àccount of the parallels \(\mathrm{FG}, \mathrm{BD}\), is the half of that difference; but fince the angle EBF in a femicircle is a right angle (I. of this) FB being radius, \(\mathrm{BE}, \mathrm{BG}\), are the tangents of the angles EFB , BFG ; but it is manifert that EC is the fum of the fides BA, AC , and CF their difference; and fince BC, FG are parallel (2, 6.) EC is to CF , as EB to BG ; that is, the fum of the
fides is to their difference, as the tangent of half the fum of the angles at the bafe to the tangent of half their difference.

PR O P. IV. Fig. 18.

7\(N\) any plain triangle \(B A C\), whofe two fides are \(B A\), \(A C\) and bafe \(B C\), the lels of the two fides which let be BA , is to the greater AC as the radius is to the tangent of an angle, and the radius is to the tangent of the excefs of this angle above half a right angle as the tangent of half the fum of the angles \(B\) and \(C\) at the bafe, is to the tangent of half their difference.

At the point \(A\), draw the frraight line EAD perpendicular to \(B A\); make \(A E, A F\), each equal to \(A B\), and \(A D\) to \(A C\); join \(B E, B E, B D\), and from \(D\), draw \(D G\) perpendicular upon BF. And becaufe 13 A is at right angles to EF, and EA, \(A B\), \(A F\) are equal, each of the angles \(\mathrm{EBA}, \mathrm{ABF}\) is half a right angle, and the whole EBF is a right angle; (alfo 4. 1. El.) ED is equal to BF . And fince \(\mathrm{EBF}, \mathrm{FGD}\) are right angles, EB is parallel to GD , and the triangles \(\mathrm{EBF}, \mathrm{FGD}\) are fimilar; therefore EB is to BF as DG to GE , and EB being equal to \(\mathrm{BF}, \mathrm{FG}\) muft be equal to GD. And becaufe BAD is a right angle, \(B \Lambda\) the lefs fide is to \(A D\) or \(A C\) the greater as the radius is to the tangent of the angle \(A B D\); and becaufe \(B G D\) is a right angle, BG is to GD or GF as the radius is to the tangent of GBD, which is the excefs of the angle \(A B D\) above. ABF half a right angle. But becaufe EB is parallel to GD, BG is to GF as ED is to DF, that is, fince ED is the fum of the fides \(\mathrm{BA}, \mathrm{AC}\) and FD their difference, (3. of this), as the tangent of half the fum of the angles \(B, C\), at the bafe to the tangent of half their difierence. Therefore, in any plain triangle, \& C. Q. E. D.
\[
\text { PROP. V. Fig. 9. and } 10 .
\]

TN any triangle, twice the rectangle contained by any two fides is to the difference of the fum of the fquares of thefe two fides, and the fquare of the bafe, as the radius is to the co-fine of the angle included by the two fides.

Let \(A B C\) be a plain triangle, twice the rectangle \(A B C\) contained by any two fules \(B A, B C\) is to the difference of the fum
of the fquares of \(\mathrm{BA}, \mathrm{BC}\), and the fquare of the bafe AC , as the radius to the co-fine of the angle ABC .

From \(A\), draw \(A D\) perpendicular upon the oppofite fide \(B C\), then (by .12. and 13. 2. El.) the difference of the fum of the fquares of \(A B, B C\), and the fquare of the bafe \(A C\), is equal to twice the rectangle CBD ; but twice the rectangle CBA is to twice the rectangle CBD ; that is, to the difference of the fum of the fquares of \(A B, B C\), and the fquare of \(A C,(1 . \sigma\).\() as A B\) to BD ; that is, by prop. I . as radius to the fine of BAD , which is the complement of the angle ABC , that is, as radius to the co-fine of ABC .

\section*{PR O P. VI. Fig.'if.}

I\(N\) any triangle \(A B C\), whofe tivo fides are \(A B, A C\), and bafe \(B C\), the rectangle contained by half the perimeter, and the excefs of it above the bafe \(B C\), is to the rectangle contained by the ftraight lines by which the half of the perimeter exceeds the other two fides \(A B, A C\), as the fquare of the radius is to the fquare of the tangent of half the angle BAC oppofite to the bafe.

Let the angles \(\mathrm{BAC}, \mathrm{ABC}\) be bifected by the ftraight lines \(\mathrm{AG}, \mathrm{BG}\); and producing the fide AB , let the exterior angle CBH be bifected by the ftraight line BK , meeting \(A G\) in K ; and from the points \(G, K\), let their be drawn perpendicular upon the fides the ftraight lines GD, GE, GF, KH, KL, KM. Since therefore (4.4.) \(G\) is the centre of the circle infcribed in the triangle \(\mathrm{ABC}, \mathrm{GD}, \mathrm{GF}, \mathrm{GE}\) will be equal, and AD will be equal to \(\mathrm{AE}, \mathrm{BD}\) to BF , and CE to CF . In like manner KH , KL , KM will be equal, and BH will be equal to BM , and AH to AL , becaufe the angles HBM, HAL are bifected by the ftraight lines BK, KA: And becaufe in the triangles \(\mathrm{KCL}, \mathrm{KCM}\), the fides LK , KM are equal, KC is common and KLC, KMC are right angles, CL will be equal to CM : Since therefore BM is equal to BH , and CM to CL ; BC will be equal to BH and CL together; and, adding AB and \(A C\) together, \(A B, A C\), and \(B C\) will together be equal to AH and AL together: But \(\mathrm{AH}, \mathrm{AL}\) are equal: Wherefore each of them is equal to half the perimeter of the triangle ABC : But fince \(\mathrm{AD}, \mathrm{AE}\) are equal, and \(\mathrm{BD}, \mathrm{BF}\), and alfo \(C E, C F, A B\) together with \(F C\), will be equal to half the perimeter of the triangle to which AH or AL was fhewn to be equal; taking away therefore the common \(A B\), the remain\(\mathrm{H}_{4}\)
der FC will be equal to the remainder BH : In the fame manis ner it is demonitrated, that BF is equal to CL: And fince the points \(B, D, G, F\), are in a circle, the angle DGF will be egual to the exterior and oppofite angle FBH, (22.3.) ; wherefore their halves BGD , HBK will be equal to one another: The right angled triangles \(B G D, H B K\) will therefore be e.quiangular, and CD will be to BD ; as BH to HK , and the rectangle contaired by GD, HK will be equal to the rectangle DBH or BFC: But fince AH is to HK , as AD to DG , the rectangle HAD (22.6.) will be to the rectangle contained by \(H K, D G\), or the rcetangle BFC , (as the fquare of AD is to the fquare of DG , that is) as the fquare of the radius to the iquare of the tangent of the angle \(D A G\), that is, the half of \(B A C\) : Wut HA is half the perimeter of the triangle \(A B C\), and AD is the excels of the fame above HD , that is, above the bafe BC ; but BF or CL is the excefs of HA or AL above the fide \(A C\), and FC , or \(H B\) is the excefs of the fame HA above the fide \(A B\); therefore the rectangle contained by half the perimeter, and the excefs of the fame above the bafe, viz. the rectangle HAD , is to the rectangle contained by the ftraight lines by which the half of the perimeter exceeds the other two. fides, that is, the rectangle BFC , as the fquare of the radius is to the fquare of the tangent of half the angle BAC oppofite to the bafe. Q.E.D.

\section*{PR O.P. VII. Fig. 12. 13.}

IN a plain triangle, the bafe is to the fum of the fides: as the difference of the fides is to the fum or dif: ference of the fegments of the bafe made by the perpendicular upon it from the vertex, according as the fquare of the greater fide is greater or lefs than the fum of the fquares of the leffer fide and the bafe.

Lev \(A N C\) be a plain triangle ; if from \(A\) the vertex be drawn: a ftraight line \(A D\) perpendicular upon the bafe \(B C\), the bafe BC will be to the fum of the fides \(\mathrm{BA}, \mathrm{AC}\), as the difference of the fame fides is to the fum or difference of the fegments \(C D\), \(B D\), according as the fquare of \(A C\) the greater fide is greater or lefs than the fum of the fquares of the leffer fide \(A B\), and the bafe BC.

Aboht \(A\) as a centre, with \(A C\) the greater fide for a diftance, let a circle be defcribed meeting AB produced in E , \(F\), and \(C B\) in \(G\) : It is manifeft that \(F B\) is the fum and \(\mathrm{BE}_{5}\)
the difference of the fides; and fince \(A D\) is perpendicular to \(\mathrm{GC}, \mathrm{GD}, \mathrm{CD}\) will be equal ; confequently GB will be equal to the fum or difference of the fegments \(\mathrm{CD}, \mathrm{BD}\), according as the perpendicular AD meets the bafe, or the bafe produced; that is, (by Conv. 12. 13.2.) according as the fquare of AC is greater or lefs than the fum of the fquares of \(A B ; B C:\) But (by 35. 3.) the rectangle \(C B G\) is equal to the rectangle \(E B F\); that is, (16.6.) BC is to BF, as BE is to BG ; that is, the bafe is to the fum of the fides, as the difference of the fides is to the fum or difference of the fegments of the bafe made by the perpendicular from the vertex, according as the fquare of the greater fide is greater or lefs than the fum of the fquares of the leffer fide and the bafe. Q.E.D.

\section*{PR O P. VIII. PROB. Fig. I4.}

THE fum and difference of two magnitudes being given, to find them.
Half the given fum added to half the given difference, will be the greater, and half the difference fubtracted from half the fum, will be the lefs.

For, let \(A B\) be the given fum, \(A C\) the greater, and \(B C\) the lefs. Let AD be half the given fum ; and to \(\mathrm{AD}, \mathrm{DB}\), which are equal, let DC be added, then AC will be equal to BD , and DC together ; that is, to BC , and twice DC ; confequently twice DC is the difference, and DC half that difference; but AC the greater is equal to \(\mathrm{AD}, \mathrm{DC}\); that is, to half the fum added to half the difference, and BC the lefs is equal to the excefs of BD , half the fum above DC half the difference. Q.E. F.

\section*{S C H O L. I U M.}

Of the fix parts of a plain triangle (the three fides and three angles) any three being given, to find the other three is the bufinefs of plane trigonometry; and the feveral cafes of that problem may be refolved by means of the preceding propofition, as in the two following, with the tables annexed. In thefe, the folution is expreffed by a fourth proportional to three given lines; but if the given parts be expreffed by numbers from trigonometrical tables, it may be obtained arithmetically by the common Rule of Three.

\section*{SOLUTION.}

\footnotetext{
Note. In the tables the following abbreviations are ufed: \(R\), is put for the Radius; \(T\), for Tangent; and \(s\), for Sine. Degrees, minutes, feconds, \& \(C_{0}\) are writen in this manner: \(30^{\circ} 2 j^{\prime} I 3^{\prime \prime}\), \&cc. which fignifics. \(3^{\circ}\) degrees, 25 m . nutes, 13 feconds, \&c.
}

\section*{PLANE TRIGONOMETRY.}

\section*{SOLUTION of the Cases of right angled Triangles.}

\section*{GENERAL PROPOSITION.}

IN a right angled triangle, of the three fides and three angles, any two being given befides the right angle, the other three may be found, except when the two acute angles are given, in which cafe the ratios of the fides are only given, being the fame with the ratios of the fines of the angles oppofite to them.

It is manifeft from 47. I. that of the two fides and hypothenufe any two be given, the third may alfo be found. It is alfo manifeft from 32. I. that if one of the acute angles of a right angled triangle be given, the other is alfo given, for it is the complement of the former to a right angle.

If two angles of any triangle be given, the third is alfo given, being the fupplement of the two given angics to two right angles.
Fig. :5. The other cafes may be refolved by help of the preceding propofitions, as in the following table:
\begin{tabular}{|c|c|c|c|}
\hline & Given. & Sought. & \\
\hline 1 & Two fides, AB , AC. & The angles & \(\mathrm{AB}: \mathrm{AC}:: \mathrm{R}: \mathrm{T}, \mathrm{B}\), of which Cis thecomplement. \\
\hline 2 & \(\mathrm{AB}, \mathrm{BC}\), a fide and the hypothenufe. & The angles B, C. & \(B C: B A:: R: S, C\), of which \(B\) is the complement. \\
\hline 3 & \(\mathrm{AB}, \mathrm{B}\), a fide and an angle. & The other fide AC. & \(\mathrm{R}: \mathrm{T}, \mathrm{B}:: \mathrm{BA}: \mathrm{AC}\). \\
\hline 4 & \(A B\) and \(B\), a fide and an angle. & The hypothenufe BC. & \(\mathrm{S}, \mathrm{C}: \mathrm{R}:: \mathrm{BA}: \mathrm{BC}\). \\
\hline 5 & \(B C\) and \(B\), the hypothenufe and an angle. & The fide AC. & \(\mathrm{R}: \mathrm{S}, \mathrm{B}:: \mathrm{BC}: \mathrm{CA}\). \\
\hline
\end{tabular}

Thefe five cafes are refolved by prop. I:

\section*{SOLUTION of the Cases of Oblique-angled}

Triangles.

\section*{GENERAL PROPOSITION.}

N an oblique-angled triangle, of the three fides and three angles, any three being given, the other three may be found, except when the three angles are given; in which cafe the ratios of the fides are only given, being the fame with the ratios of the fines of the angles oppofite to them.

Given. Sought.
\begin{tabular}{|c|c|c|c|}
\hline & fore C, and the fide AB. & BC, AC. & \(|\)\begin{tabular}{l}
\(\mathrm{S,C}: \mathrm{S}, \mathrm{A}:: \mathrm{AB}: \mathrm{BC}\), \\
and alfo, \(\mathrm{S}, \mathrm{C}: \mathrm{S}, \mathrm{B}:: \mathrm{AB}\) \\
\(: \mathrm{AC}\) (2.)
\end{tabular} \\
\hline & \(A B, A C\), and \(B\); two fides and an angle oppofite to one of them. & The angl\(A\) and \(C\). & \(A C: A B:: S, B, S, C\). (2.) This cafe admits of two folutions ; for C may be greater or lefs than a quadrant. (Cor. to def. 4.) \\
\hline & \(A B, A C\), and \(A\), two fides, and the included angle. & The angles & \begin{tabular}{l}
\(A B+A C: A B-A C:: T\), \(\mathrm{C}+\mathrm{B} .: \mathrm{T}, \mathrm{C}-\mathrm{B}:(3\). \\
the fum and difference of the angles \(\mathrm{C}, \mathrm{B}\), being given, each of them is given. (7.) Otherwife. Fig. 18. \\
BA : AC: : R : T, ABC, and alfo \(: \mathrm{T}, \mathrm{ABC}-45^{\circ}\) \(: T, B+C: T, B-C:(4\). \\
therefore B and \(\mathbf{C}^{2}\) are given as before. (7.)
\end{tabular} \\
\hline
\end{tabular}

Given. Sought.
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
\(\mathrm{AB}, \mathrm{BC}, \mathrm{CA}\), \\
the three fides.
\end{tabular} & A, B, C, the three angles. & \\
\hline
\end{tabular}

\section*{SPHERICAL TRIGONOMETRY.}

\section*{DEFINITIONS.}
I.

THE pole of a circle of the fphere is a point in the fuperficies of the fphere, from which all ftraight lines dratit to the circumference of the circle are equal.
II.

A great circle of the fuhere is any whofe plane paffes throueh the centre of the fphere, and whofe centre thercfore is inc fame with that of the fphere.

\section*{III.}

A fpherical triangle is a figure upon the fuperficies of a fphere comprehended by three arches of three great circles, each of which is lefs than a femicircle.

> IV.

A fpherical angle is that which on the fuperficies of a fphee is contained by two arches of great circles, and is the fame with the inclination of the planes of thefe great circles.
PROP. I.

\section*{GREAT circles bifect one another.}

As they have a common centre their common fection will be a diameter of each which will bifeet them.
P R.O P. II. Fig. i.

THE arch of a great circle betwixt the pole and the circumference of another is a quadrant.

Let \(A B C\) be a great circle, and \(D\) its pole; if a great circle \(D C\) pafs through \(D\), and meet \(A B C\) in \(C\), the arch \(D C\) will be a quadrant.

Let the great circle \(C D\) meet \(A B C\) again in \(A\), and let \(A C\) be the common fection of the great circles, which will
pafs through E the centre of the fphere: Join DE, DA, DC : By def. I. DA, DC are equal, and AE, EC are alfo equal, and DE is common; therefore (8. I.) the angles DEA, DEC are equal; wherefore the arches DA, DC are equal, and confequentiy each of them is a quadrant. Q. E. D.
\[
\text { P R O P. III. FlG. } 2 .
\]

IF a great circle be defcribed meeting two great circles \(A B, A C\) paffing through its pole \(A\) in \(B, C\), the angles at the centre of the fphere upon the circumfe. rence \(B C\), is the fame with the fpherical angle \(B A C\), and the arch BC is, called the meafure of the fipherical angle BAC.

Let the planes of the great circles \(\mathrm{AB}, \mathrm{AC}\) interfect, one another in the ftraight line \(A D\) paffing through \(D\) their common centre; join DB, DC.
- Since \(A\) is the pole of \(B C, A B_{2} A C\) will be quadrants, and the angles \(\mathrm{ADB}, \mathrm{ADC}\) right angles; therefore (6. def. II.) the angle CDB is the inclination of the planes of the circles \(A B\), AC ; that is, (def. 4.) the fpherical angle BAC. Q. E. D.

Cor. If through the point \(A\), two quadrants \(A \bar{B}, A C\), be drawn, the point \(A\) will be the pole of the great circle BC , paffing through their extremities \(\mathrm{B}, \mathrm{C}\).

Join \(A C\), and draw \(A E\) a ftraight line to any other point \(E\) in BC ; join DE : Since \(\mathrm{AC}, \mathrm{AB}\) are quadrants, the angles \(\mathrm{ADB}, \mathrm{ADC}\) are right angles, and AD will be perpendicular to the plane of BC : Therefore the angle ADE is a right angle, and \(\mathrm{AD}, \mathrm{DC}\) are equal to \(\mathrm{AD}, \mathrm{DE}\), each to each; therefore \(\mathrm{AE}, \mathrm{AC}\), are equal, and A is the pole of BC , by def. I , Q.E.D.
\[
\text { PR O P. IV. Fig. } 3 .
\]

I
N ifofeles fpherical triangles, the angles at the bafe are equal.

Let \(A B C\) be an ifofceles triangle, and \(A C, C B\) the cqual sides; the angles \(B A C, A B C\), at the bafe \(A C\), are equal.

Let D be the centre of the fphere, and join \(\mathrm{DA}, \ddot{\mathrm{DB}}, \mathrm{DC}\); in DA iake any point E , from which draw, in the plane ADC , the ftraight line EF at right angles to ED meeting CD in F , and draw, in the plane ADB, LG at right angles to the fame ED ; therefore the rectilineal angle FEG is (6. def. 11.) the inclination of the planes \(\mathrm{ADC}, \mathrm{ADB}\), and therefore is the fame with the fpherical angle BAC: From F draw FH perpendicular to DB , and from H draw, in the plane ADB , the ftraight line HG at right angles to HD meeting EG in G, and join GF. Becaufe DE is at right angles to EF and EG, it is perpendicular to the plane EFG, (4.1 II.) and therefore the plane FEG is perpendicular to the plané ADB , in which DE is: (18. II.) In the fame manner the plane FHG is perpendicular to the plane ADB ; and therefore GF the common fection of the planes FEG, FHG is perpendicular to the plane ADB; (19. Ir.) and becaufe the angle FHG is the inclination of the planes \(\mathrm{BDC}, \mathrm{BDA}\), it is the fame with the fpherical angle ABC ; and the fides \(A C, C B\) of the fpherical triangle being equal, the angles EDF, HDF, which ftand upon them at the centre of the fphere, are equal; and in the triangles EDF, HDF, the fide DF is common, and the angles DEF, DHF are right angles ; therefore EF, FH are equal; and in the triangles FEG, FHG the fide GF is common, and the fides EG, GH will be equal by the 47 . I. and therefore the angle FEG is equal to FHG; (8. I.) that is, the fpherical angle BAC is equal to the fpherical angle ABC .
\[
\text { PR OP. V. Fig. } 3 .
\]

I\(F\), in a fpherical triangle \(A B C\), two of the angles \(\mathrm{BAC}, \mathrm{ABC}\), be equal, the fides BC , AC oppofite to them are equal.

Read the conftruction and demonftration of the preceding propofition, unto the words, "and the fides of \(A C, C B, "\) \& and the reft of the demonftration will be as follows, viz.

And the fpherical angles \(B A C, A B C\), being equal, the rectilineal angles FEG, FHG, which are the fame with them \({ }_{2}\) are equal ; and in the triangles FGE, FGH the angles at \(\mathbf{G}\) are right angles, and the fide FG oppofite to two of the equal angles
angles is common ; therefore (26. 1.) EF is equal to FH: And in the right angled triangles DEF, DHF the fide DF is comr mon; wherefore (47. I.) ED is equal to DH, and the angles EDF, HDF, are therefore equal, (4. I.) and confequently the fides \(\mathrm{AC}, \mathrm{BC}\) of the fpherical triangle are equal.
\[
\text { P R O P. VI. Fig. } 4
\]

ANY two fides of a fpherical triangle are greater than the third.

Let \(A B C\) be a fpherical triangle, any two fides \(A B, B C\) will be greater than the other fide AC.

Let D be the centre of the fphere: Join DA, DB, DC.
The folid angle at D , is contained by three plane angles, \(\mathrm{ADB}, \mathrm{ADC}, \mathrm{BDC}\); and by 20. II. any two of them ADB , \(33 D C\) are greater than the third ADC; that is, any two fides \(A B, B C\) of the fpherical triangle \(A B C\), are greater than the third AC.

\section*{PROP. VII. Fig. 4.}

पHE three fides of a fpherical triangle are lefs than
a circle.
Let ABC be a fpherical triangle as bcfore, the three fides \(A B, B C, A C\) are lefs than a circle.

Let D be the centre of the fphere: The folid angle at D is contained by three plane angles \(\mathrm{BDA}, \mathrm{BDC}, \mathrm{ADC}\), which together are lefs than four right angles, (2I. II.) therefore the fides \(\mathrm{AB}, \mathrm{BC}, \mathrm{AC}\) together, will be lefs than four quadrants; that is, lefs than a circle.
\[
\text { P R O P. VIII. Fig. } 5
\]

IN a \{pherical triangle the greater angle is oppofite to the greater fide; and converfely.

Let \(A B C\) be a fpherical triangle, the greater angle \(A\) is oppofed to the greater fide \(B C\).

Let the angle \(B A D\) be made equal to the angle \(B\), and then \(\mathrm{BD}, \mathrm{DA}\) will be equal, (5. of this) and therefore AD , DC

DC are equal to BC ; but \(\mathrm{AD}, \mathrm{DC}\) are greater than AC , (\(\sigma\). of this), therefore \(B C\) is greater than \(A C\), that is, the greater angle A is oppofite to the greater fide BC . The converfe is demonftrated as prop. 19. I. El. Q. E. D.
\[
\text { PROP. IX. Fig. } \sigma \text {. }
\]
N any foherical triangle ABC , if the fum of the fides \(\mathrm{AB}, \mathrm{BC}\), be greater, equal, or lefs than a femicircle, the internal angle at the bafe AC will be greater, equal, or lefs than the external and oppofite BC:) ; and therefore the fum of the angles \(A\) and \(A C B\) will be greater, equal, or lefs than two right angles.

Let \(\mathrm{AC}, \mathrm{AB}\) produced meet in D .
I. If \(\mathrm{AB}, \mathrm{BC}\) be equal to a femicircle, that is, to \(\mathrm{AD}, \mathrm{BC}\), BD will be equal, that is, (4. of this) the angle D , or the angle A will be equal to the angle \(B C D\).
2. If \(\mathrm{AB}, \mathrm{BC}\) together be greater than a femicircle, that is greater than \(\mathrm{ABD}, \mathrm{BC}\) will be greater than BD ; and therefore (8 . of this) the angle D , that is, the angle A , is greater than the angle BCD .
3. In the fame manner is it fhown, that if \(\mathrm{AB}, \mathrm{BC}\) together be lefs than a femicircle, the angle \(A\) is lefs than the angle \(B C D\). And fince the angles \(B C D, B C A\) are equal to two right angles, if the angle \(A\) be greater than \(B C D, A\) and \(A C B\) together will be greater than two right angles. If \(A\) be equal to \(\mathrm{BCD}, \mathrm{A}\) and ACB together will be equal to two right angiles; and if A be lefs than BCD, A and ACB will be lefs than two right angles. Q. E. D.

PR OP. X. Fig. 7.

IF the angular points \(\mathrm{A}, \mathrm{B}, \mathrm{C}\) of the fpherical triangle ABC be the poles of three great circles, thefe great circles by their interfections will form another triangle FDE, which is called fupplemental to the former; that is, the fides \(F D, D E, E F\) are the fup-
plements of the meafures of the oppofite angles \(\mathrm{C}, \mathrm{B}, \mathrm{A}\), of the triangle ABC , and the meafures of the angles \(\mathrm{F}, \mathrm{D}, \mathrm{E}\) of the triangle FDE , will be the fupplements of the fides \(A C, B C, B A\), in the triangle \(A B C\).

Let AB produced meet \(\mathrm{DE}, \mathrm{EF}\), in \(\mathrm{G}, \mathrm{M}\), and AC meet FD, FE in K, L, and BC meet FD, DE in N, H.

Since A is the pole of FE, and the circle AC paffes through \(A, \mathrm{EF}\) will pafs through the pole of \(\mathrm{AC},(13.15 .1\). Th.) and fince \(A C\) pafles through \(C\), the pole of \(F D, F D\) will pafs through the pole of \(A C\); therefore the pole of \(A C\) is in the point \(F\), in which the arches DF, EF interfect each other. In the fame manner, \(D\) is the pole of BC , and E the pole of AB .

And fince F, E are the poles of \(\mathrm{AL}, \mathrm{AM}, \mathrm{FL}\) and EM are quadrants, and FL, EM together, that is, FE and ML together, are equal to a femicircle. But fince \(A\) is the pole of \(M L\), ML is the meafure of the angle BAC, confequently FE is the fupplement of the meature of the angle BAC. In the fame manner, \(\mathrm{ED}, \mathrm{DF}\) are the fupplements of the meafures of the angles \(\mathrm{ABC}, \mathrm{BCA}\).

Since likewife CN, BH are quadrants, \(\mathrm{CN}, \mathrm{BH}\) together, that is, \(\mathrm{NH}, \mathrm{BC}\) together are equal to a femicircle; and fince D is the pole of NH, NH is the meafure of the angle FDE, therefore the meafure of the angle FDE is the fupplement of the fide BC. In the fame manner, it is fhown that the meafures of the angles DEF, EFD are the fupplements of the fides \(A B, A C\), in the triangle \(A B C\). (. E. D.
\[
\text { PROP. XI. Fig. } 7 .
\]

The meafures of the angles \(A, B, C\), in the triangle \(A B C\), together with the three fides of the fupplemental triangle \(D E F\), are (10.0 of this) equal to three femicircles; but the three fides of the triangle FDE, are (7 . of this) lefs than two femicircles;
therefore

\section*{SPHERICAL TRIGONOMETRY.}
therefore the meafures of the angles \(\mathrm{A}, \mathrm{B}, \mathrm{C}\) are greater than a femicircle; and hence the angles \(A, B, C\) are greater than two right angles.

All the external and internal angles of any triangle are equal to fix right angles; therefore all the internal angles are lefs than fix right angles.

\section*{PR O P. XII. Fig. 8.}

IF from any point \(C\), which is not the pole of the great circle ABD , there be drawn arches of great circles CA, CD, CE, CF, \&c. the greateft of thefe is CA , which paffes through H the pole of ABD , and CB the remainder of ACB is the leaft, and of any others \(\mathrm{CD}, \mathrm{CE}, \mathrm{CF}, \& \mathrm{c} . \mathrm{CD}\), which is nearer to CA , is greater than CE, which is more remote.

Let the common fection of the planes of the great circles \(A C B, A D B\) be \(A B ;\) and from \(C\), draw \(C G\) perpendicular to AB , which will alfo be perpendicular to the plane ADB ; (4. def. II.) join GD, \(\mathrm{GE}, \mathrm{GF}, \mathrm{CD}, \mathrm{CE}, \mathrm{CF}, \mathrm{CA}, \mathrm{CB}\).

Of all the ftraight lines drawn from \(G\) to the circumference \(\mathrm{ADB}, \mathrm{GA}\) is the greateft, and GB the leaft; (7.3.) and GD, which is nearer to GA, is greater than GE, which is more remote. The triangles CGA, CGD are right-angled at \(G\), and they have the common fide \(C G\); therefore the fquares of CG, GA together, that is, the fquare of CA, is greater than the fquares of \(\mathrm{CG}, \mathrm{GD}\) together, that is, the fquare of CD : And CA is greater than CD, and therefore the arch CA is greater than CD . In the fame manner, fince GD is greater than GE, and GE than GF, \&c. it is fhown that CD is greater than CE, and CE than CF, \&c. and confequently, the arch \(C D\) greater than the arch CE, and the arch CE greater than the arch CF, \&cc. And fince GA is the greateft, and GB the leaft of all the fraight lines drawn from \(G\) to the circumference \(A D B\), it is manifeft that \(C A\) is the greateft, and \(C B\) the leaft of all the fraight lines drawn from \(C\) to the circumference: And therefore the arch CA is the greateft, and CB the leaft of all the circles drawn through C , meeting ADB . Q.E. D.

\section*{PR O P. XIIL. Fig. 9.}

IN a right-angled fpherical triangle the fides are of the fame affection with the oppofite angles; that is, if the fides be greaten or lefs than quadrants, the oppofite angles will be greater or lefs than right angles.

Let \(A B C\) be a pherical triangle right-angled at \(A\), any fide AB , will be of the fame afficction with the oppofite angle ACB .

Cafe i. Let \(A B\) be lefs than a quadrant, let \(A E\) be a quadrant, and let: EC be a great circle paffing through \(\mathrm{E}, \mathrm{C}\). Since \(A\) is a right angle, and \(A E\) a quadrant, \(E\) is the pole of the great circle AC, and ECA a right angle; but ECA is greater than BCA, therefore BCA is lefs than a right angle. Q.E. D.

Fig. 10. drant, and let a great circle pafs through C, E, ECA is a right angle as before, and BCA is greater than ECA, that is, greater than a right angle. Q.E.D.

> PR O P. XIV.

IF the two fides of a right-angled fpherical triangle be of the fame affection, the hypothenufe will be lefs: than a quadrant; and if they be of different affection. the hypothenufe will be greater than a quadrant.

Let \(A B C\) be a right-angled fphericaltriangle, if the two fides\(A B, A C\) be of the fame or of different affection, the hypothenufe BC will be lefs or greater than a quadrant.
Fig. \({ }^{-1}\) Cafe I. Let \(A B, A C\) be each lefs than a quadrant. Let \(\mathrm{AE}, \mathrm{AG}\) be quadrants; \(G\) will be the pole of AB , and E the pole of AC, and EC a quadrant; but, by prop. 1.2. CE is greater than CB , fince CB is farther off from CGD than CE . In the fame manner, it is fhown that CB , in the triangle CBD , where the two fides \(\mathrm{CD}, \mathrm{BD}\) are each greater than a quadrant \({ }_{2}\) is lefs than CE, that is, lefs than a quadrant. Q. E. D.

Câe

Cafe 2. Let AC be lefs, and AB greater than a quadrant; \(\mathrm{Fi}_{\mathrm{s}, \mathrm{r}} \mathrm{r} 0\) then the hypothenufe BC will be greater than a quadrant; for let AE be a quadrant, then E is the pole of AC , and EC will be a quadrant. But CB is greater then CE by prop. 12. fince \(A C\) paffes through the pole of \(A B D . Q, E . D\).
PROP. XV.

I\(F\) the hypothenure of a right-angled triangle be greater or lefs than a quadrant, the fides will be of different or the fame aftecion.

This is the converfe of the preceding, and demonftrated in the fame manner.

> PR OP. XVI.

IN any fpherical triangle ABC , if the perpendicular \(A D\) from \(A\) upon the bafe \(B C\), fall within the triangle, the angles \(B\) and \(C\) at the bale will be of the fame affection; and if the perpendicular fall without the triangle, the angles \(B\) and \(C\) will be of different affection.
I. Let AD fall within the triangle; then (I 3 . of this) fince Fig. in. \(\mathrm{ADB}, \mathrm{ADC}\) are right-angled fpherical triangles, the angles B , C muft each be of the fame affection as AD .
2. Let AD fall without the triangle, then (13. of this) the Fig: 12. angle B is of the fame affection as AD ; and by the fame the angle \(A C D\) is of the fame affection as \(A D\); therefore the angle \(A C B\) and \(A D\) are of different affection, and the angles \(B\) and ACB of different affection.

Cor. Hence if the angles \(B\) and \(C\) be of the fane affection, the perpendicular will fall within the bafe; for, if it did not, (16.0 of this) \(B\) and \(C\) would be of different affection. And if the angles \(B\) and \(C\) be of oppofite affection, the perpendicular will fall without the triangle; for, if it did not, (i6. of this), the angles B and C would be of the fame affection, contrary to the fuppofition.

PROP

\section*{P R O P. XVII. Fig. 13.}

IN right-angled fpherical triangles, the fine of either of the fides about the right angle, is to the radius \(\overline{o f}_{\text {a }}\) the "fphere, as the tangent of the remaining fide is to the tangent of the angle oppofite to that fide.

Let \(A B C\) be a triangle, having the right angle at \(A\); and let \(A B\) be either of the fides, the fine of the fide \(A B\) will be to the radius, as the tangent of the other fide \(A C\) to the tangent of the angle \(A B C\), oppofite to \(A C\). Let \(D\) be the centre of the fphere; join \(\mathrm{AD}, \mathrm{BD}, \mathrm{CD}\), and let AE be drawn perpendicular to BD , which therefore will be the fine of the arch AB , and from the point E , let there be drawn in the plane BDC the ftraight line EF at right angles to BD , meeting \(D C\) in \(F\), and let \(A F\) be joined. Since therefore the ftraight line DE is at right angles to both EA and EF, it will alfo be at right angles to the plane AEF, (4. ir.) wherefore the plane ABD , which paffes through DE is perpendicular to the plane AEF, (I8. II.) and the plane AEF perpendicular to ABD: The plane ACD or AFD is alfo perpendicular to the fame ABD: Therefore the common fection, viz. the ftraight line AF, is at right angles to the plane ABD: (19. II.) And FAE, FAD are right angles; (3. def. IIt) therefore AF is the tangent of the arch AC ; and in the rectilineal triangle AEF having a right angle at \(\mathrm{A}, \mathrm{AE}\) will be to the radius as AF to the tangent of the angle AEF, (I Pl. Tr.); but AE is the fine of the arch \(A B\), and AF the tangent of the arch AC, and the angle AEF is the inclination of the planes CBD, ABD, (6. def. II.) or the fpherical angle \(A B C\) : Therefore the fine of the arch \(A B\) is to the radius as the tangent of the arch \(A C\), to the tangent of the oppofite angle ABC .

Cor. I. If therefore of the two fides, and an angle oppofite to one of them, any two be given, the third will alfo be given.

Cor. 2. And fince by this propofition the fine of the fide \(A B\) is to the radius, as the targent of the other fide \(A C\) to the
tangent of the angle ABC oppofite to that fide; and as the radius is to the co-tangent of the angle ABC , fo is the tangent of the fame angle ABC to the radius, (Cor. 2. def. Pl. Tr.) by equality, the fine of the fide AB is to the co-tangent of the angle \(A B C\) adjacent to it, as the tangent of the other fide \(A C\) to the radius.

> P R O P. XVIII. Fig. I3.

N right-angled fpherical triangles the fine of the hypothenufe is to the radius, as the fine of either fide is to the fine of the angle oppofite to that fide.

Let the triangle \(A B C\) be right-angled at \(A\), and let \(A C\) be cither of the fides; the fine of the hypothenufe \(B C\) will be to the radius as the fine of the arch \(A C\) is to the fine of the angle \(A B C\).

Let \(D\) be the centre of the fphere, and let CG be drawn perpendicular to DB , which will therefore be the fine of the hypothenufe BC ; and from the point \(G\) let there be drawn in the plane ABD the ftraight line GH perpendicular to DB , and let CH be joined; CH will be at right angles to the plane ABD , as was fhown in the preceding propofition of the ftraight line FA: Wherefore CHD, CHG are right angles, and CH is the fine of the arch \(A C\); and in the triangle CHG, having the right angle CHG, CG is to the radius as CH to the fine of the angle CGH: (r. Pl. Tr.) But lince CG, HG are at right angles to \(D G B\), which is the common fection of the planes CBD, \(A B D\), the angle CGH will be equal to the inclination of thefe planes; (6. def. II.) that is, to the fpherical angle \(A B C\). The fine therefore, of the hypothenufe CB is to the radias as the fine of the fide \(A C\) is to the fine of the oppofite angle \(A B C . Q\). E. D,

Cor. Of thefe three, viz. the hypothenufe, a fide, and the angle oppofite to that fide, any two being given, the third is alfo given by prop. 2.

\section*{P R O P. XIX. Fig. 14 :}

IN right-angled fpherical triangles, the co-fine of the hypothenufe is to the radius as the co-tangent of either of the angles is to the tangent of the remaining angle.

Let ABC be a fpherical triangle, having a right angle at A , the co-fine of the hypothenufe BC will be to the radius as the co-tangent of the angle \(A B C\) to the tangent of the angle \(A C B\),

Defcribe the circle DE, of which \(B\) is the pole, and ler it meet AC in F and the circle BC in E ; and fince the circle BD paffes through the pole B of the circle \(\mathrm{DF}, \mathrm{DF}\) will alfo pafs through the pole of BD. (13.18. 1. Theod. Sph.) And fince \(A C\) is perpendicular to \(B D, A C\) will alfo pafs through the pole of BD ; wherefore the pole of the circle BD will be found in the point where the circles \(\mathrm{AC}, \mathrm{DE}\) meet, that is, in the point F: The arches FA, FD are therefore quadrants, and likewife the arches \(B D, B E\) : In the triangle CEF, right-angled at the point \(E, C E\) is the complement of the hypothenufe \(B C\) of the triangle \(\mathrm{ABC}, \mathrm{EF}\) is the complement of the arch ED , which is the meafure of the angle \(A B C\), and \(F C\) the hypothenufe of the triangle CEF , is the complement of AC , and the arch AD , which is the meafure of the angle CFE , is the complement of AB.

But (17. of this) in the triangle CEF, the fine of the fide CE is to the radius, as the tangent of the other fide is to the tangent of the angle ECF oppofite to it, that is, in the triangle ABC , the co-fine of the hypothenufe BC is to the radius, as the co-tangent of the angle \(A B C\) is to the tangent of the angle ACB. Q.E.D.

Cor. I. Of thefe three, viz. the hypothenufe and the two angles, any two being given, the third will alfo be given.

Cor. 2. And fince by this propofition the co-fine of the hypothenufe BC is to the radius, as the co-tangent of the angle \(A B C\) to the tangent of the angle \(A C B\). But as the radius is to the co-tangent of the angle \(\mathrm{ACB}, \mathrm{fo}\) is the tangent of the fame to the radius; (Cor. 2. def. Pl. Tr.) and, ex Rquo, the co-fine of the hypothenufe BC is to the co-tangent
of the angle \(A C B\), as the co-tangent of the angle \(A B C\) to the radius.

> P R O P. XX. Fic. i4.

RN right angled fpherical triangles, the co-fine of an angle is to the radius, as the tangent of the fide adjacent to that angle is to the tangent of the hypothenufe.

The fame conftruction remaining; in the triangle CEF, (17. of this) the fine of the fide EF is to the radius, as the tangent of the other fide CE is to the tangent of the angle CFE oppofite to it; that is, in the triangle \(A B C\), the co-fine of the angle \(A B C\) is to the radius as (the co-tangent of the hypothenufe \(B C\) to the co-tangent of the fide \(A B\), adjacent to \(A B C\) or as) the tangent of the fide \(A B\) to the tangent of the hypothenufe, fince the tangents of two arches are reciprocally proportional to their co-tangents. (Cor. I. def. Pl. Tr.)

Cor. And fince by this propofition the co-fine of the angle ABC is to the radius, as the tangent of the fide AB is to the tangent of the hypothenufe BC ; and as the radius is to the cotangent of BC , fo is the tangent oi BC to the radius; by equality, the co-fine of the angle \(A B C\) will be to the co-tangent of the hypothenufe BC , as the tangent of the fide AB , adjacent to the angle \(A B C\), to the radius.

\section*{P R O P. XXI. Fig. Ią.}

IN right-angled fpherical triangles, the co-fine of either of the fides is to the radius, as the co-fine of the hypothenufe is to the co-fine of the other fide.

The fame conftruction remaining; in the triangle CEF, the fine of the hypothenufe CF is to the radius, as the fine of the fide CE to the fine of the oppofite angle CFE; (18. of this) that is, in the triangle \(A B C\) the co-fine of the fide CA is to the radius as the co-fine of the hypothenufe BC to the co-fine of the other fide BA. Q. E. D,

\author{
PROP. XXII. Fig. 14.
}

IN right-angled fpherical triangles, the co-fine of either of the fides is to the radius, as the co-fine of the angle oppofite to that fide is to the fine of the other angle.

The fame conftruction remaining; in the triangle CEF, the fine of the hypothenufe CF is to the radius as the fine of the fide EF is to the fine of the angle ECF oppofite to it; that is in the triangle ABC , the co-fine of the fide CA is to the radius, as the co-fine of the angle ABC oppofite to it, is to the sine of the other angle. Q. E. D.

\section*{Of the CIRCULAR PARTS.}

\(I^{N}\)N any right-angled fpherical triangle ABC , the complement Figo 15. of the hypothenufe, the complements of the angles and the two fides are called The circular parts of the triangle, as if it were following each other in a circular order, from whatever part we begin: Thus, if we begin at the complement of the hypothenufe, and proceed towards the fide BA, the parts following in order will be the complement of the hypothenufe, the complement of the angle B , the fide BA the fide AC , (for the right angle at \(A\) is not reckoned among the parts), and, laftly, the complement of the angle C. And thus at whatever part we begin, if any three of thete five be taken, they either will be all contiguous or adjacent, or one of them will not be contiguous to either of the other two: In the firft cafe, the part which is between the other two is called the Middle part, and the other two are called Adjacent extremes. In the fecond cafe, the part which is not contiguous to either of the other two is called the Middle part; and the other two Oppofite extremes. For example, if the three parts be the complement of the hypothenufe BC , the complement of the angle B , and the fide \(B A\); fince thefe three are contiguous to each other, the complement of the angle \(B\) will be the middle part, and the com: plement of the hypothenufe BC and the fide BA will be adjacent extremes: But if the complement of the hypothenufe \(B C\), and the fides BA, AC be taken; fince the complement of the hypon thenufe is not adjacent to either of the fides, viz. on account of the complements of the two angles \(B\) and \(C\) intervening bea tween it and the fides, the complement of the hypothenule \(B C\) will be the middle part, and the fides, \(\mathrm{BA}, \mathrm{AC}\) oppoite extremes. The moft acute and ingenious Baron Napier, the inventor of Logarithims, contrived the two following rules concerning thefe parts, by means of which all the cafes of rightangled fpherical triangles are refolved with the greateft eafe.

\section*{RULEI.}

The rectangle contained by the radius and the fine of the middle part, is equal to the rectangle contained by the tangents of the adjacent parts.

\author{
RULE
}

\section*{RU LE II.}

The rectangle contained by the radius, and the fine of the middle part is equal to the rectangle contained by the cofines of the oppofite parts.
Thee rules are demonftrated in the following manner:
Wig, 36 .
First, Let either of the fides, as BA, be the middle part, and therefore the complement of the angle \(B\), and the fide \(A C\) will be adjacent extremes. And by cor. 2. prop. 17. of this, S, BA is to the \(\mathrm{Co}-\mathrm{T}, \mathrm{B}\), as \(\mathrm{T}, \mathrm{AC}\) is to the radius, and therefore \(\mathrm{R} \times \mathrm{S}, \mathrm{BA}=\mathrm{Co}-\mathrm{T}, \mathrm{B} \times \mathrm{T}, \mathrm{AC}\).

The fame fide BA being the middle part, the complement of the hypothenufe, and the complement of the angle C , are. oppolite extremes; and by prop. 18. S. BC is to the radius, as S , \(B A\) to \(S, C\); therefore \(R \times S, B A=S, B C \times S, C\).

Secondly, Let the complement of one of the angles, as B, be the middle part, and the complement of the hypothenufe, and the fide BA will be adjacent extremes: And by cor. prop. 20. \(\mathrm{Co}-\mathrm{S}, \mathrm{B}\) is to \(\mathrm{Co}-\mathrm{T}, \mathrm{BC}\), as \(\mathrm{T}, \mathrm{BA}\) is to the radius, and therefore \(\mathrm{R} \times \mathrm{Co}-\mathrm{S}, \mathrm{B}=\mathrm{Co}-\mathrm{T}, \mathrm{BC} \times \mathrm{T}, \mathrm{BA}\).

Again, Let the complement of the angle \(B\) be the middle part, and the complement of the angle C , and the fine AC will be oppofite extremes: And by prop. 22. Co-S, AC is to the radias, as \(\mathrm{Co}-\mathrm{S}, \mathrm{B}\) is to \(\mathrm{S}, \mathrm{C}\) : And therefore \(\mathrm{R} \times \mathrm{Co-S}, \mathrm{~B}=\mathrm{Co}-\mathrm{S}\), \(\mathrm{AC} \times \mathrm{S}, \mathrm{C}\).

Thirdly, Let the complement of the hypothenufe be the middle part, and the complements of the angles \(\mathrm{B}, \mathrm{C}\), will be adjacent extremes: But by cor. 2. prop. 19. CooS, BC is to \(\mathrm{Co}-\mathrm{T}, \mathrm{B}\) as \(\mathrm{Co}-\mathrm{T}, \mathrm{B}\) to the radius: Therefore \(\mathrm{R} \times \mathrm{Co}, \mathrm{BC}=\) \(\mathrm{Co}-\mathrm{T}, \mathrm{C} \times \mathrm{Co}-\mathrm{T}, \mathrm{C}\).

Again, Let the complement of the hypothenufe be the middle part, and the fides \(A B, A C\) will be oppofite extremes: But by prop. 21. CooS, AC is to the radius, Co..-S, BC to ColS, BA; therefore \(\mathrm{R} \times \mathrm{Co}-\mathrm{S}, \mathrm{BC}=\mathrm{Co}-\mathrm{S}, \mathrm{BA} \times \mathrm{Co}-\mathrm{S}, \mathrm{AC}\). Q.E. D.

\section*{SOLUTION of the Sixteen Cases of Right-}

\section*{-Angled Spherigal Triangles.}

\section*{GENERAL PROPOSITION.}

N a right-angled fpherical triangle, of the three fides and three angles, any two being given, befides the right angle, the other three may be found.

In the following Table the folutions are derived from the preceding propofitions. It is obvious that the fame folutions may be derived from Baron Napier's two rules above demonffrated, which, as they are eafily remembered, are commonly ufed in practice.
\begin{tabular}{|c|c|c|c|}
\hline Care. & Giv & \multicolumn{2}{|l|}{Sought. .} \\
\hline 1 & AC, C & B & \(R: C o S, A C:: S, C: C o S, B: A n d B\) is of the fame fpecies with CA, by 22 and 13 . \\
\hline 2 & AC, B & C & CoS, AC :R : \(\mathrm{CoS}, \mathrm{B}: \mathrm{S}, \mathrm{C}:\) By 22. \\
\hline 3 & B, C & AC & \(\mathrm{S}, \mathrm{C}: \operatorname{CoS}, \mathrm{B}:: \mathrm{R} \mathrm{CoS} ,\mathrm{AC} \mathrm{:} \mathrm{By} \mathrm{22}\). AC is of the fame fpecies with B. \(1_{3}\). \\
\hline 4 & BA, AC & BC & R:CoS, BA :: CoS, AC : CoS, BC. 2 I . and if both \(A B, A C\) be greater or lefs than a quadrant, \(B C\) will be lefs than a quadrant. But if they be of different affection, BC will be greater than a quadrant. 14 . \\
\hline 5 & BA, BC & Ad & \(\operatorname{CoS}, \mathrm{BA}: \mathrm{R}:=\mathrm{CoS}, \mathrm{BC}, \operatorname{CoS}, \mathrm{AC} .2 \mathrm{I}\). and if \(B C\) be greater or lefs than a quadrant, BA, AC will be of different or the fame affection: By 15 . \\
\hline 6 & BA, AC & B & \(S, B A: R:: T, C A: T, B . ~ ז 7\). and \(B\) is of the fame affection with AC. 13. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline & & \multicolumn{2}{|l|}{} \\
\hline 7 & BA, B & AC & \(\mathrm{R}: \mathrm{S}, \mathrm{BA}:: \mathrm{T}, \mathrm{B}: \mathrm{T}, \mathrm{AC} \mathrm{I}_{7}\). And AC is of the fame affection with B. I3. \\
\hline 8 & AC, B & BA & T, B: R : : T, CA : S, BA. \\
\hline 9 & BC, C & AC & \(\mathrm{R}: \operatorname{CoS}, \mathrm{C}:: \mathrm{T}, \mathrm{BC}: \mathrm{T}, \mathrm{CA}\). 20. If BC be lefs or greater than a quadrant, C and B will be of the fame or different affection. 15.13. \\
\hline 18 & AC, C & BC & \(\mathrm{CoS}, \mathrm{C}: \mathrm{R}:: \mathrm{T}, \mathrm{AC}: \mathrm{T}, \mathrm{BC} .20\). And BC is lefs or greater than a quadrant, according as C and AC or C and B are of the fame or different affection. 14. I. \\
\hline II & BC, CA & C & \(\mathrm{T}, \mathrm{BC}: \mathrm{R}:: \mathrm{T}, \mathrm{CA}: \operatorname{CoS} . \mathrm{C} .20\). If BC be lefs or greater than a quadrant. CA and \(A B\), and therefore \(C A\) and \(C\), are of the fame or different affection. I 5. \\
\hline 12 & BC, B & AC & \(R: S, B C: S, B: S, A C . ~ 18\). And AC is of the fame affection with B . \\
\hline 13 & AC, B & BC & \\
\hline 14 & BC, AC & B & \(S, B C: R:: S, A C: S, B: 18\). And \(B\) is of the fame affection with \(A C\). \\
\hline 15 & B, C & BC & T. C : R : : CoT, B : CoS, BC. 19. And according as the angles \(B\) and \(C\) are of different or the fame affection, BC will be greater or lefs than a quadrant. 14. \\
\hline 16 & BC, C & B & \(\mathrm{R}: \operatorname{CoS}, \mathrm{BC}:: \mathrm{T}, \mathrm{C}: \operatorname{CoT}, \mathrm{B} .19\). If BC be lefs or greater than a quadrant, \(C\) and \(B\) will be of the fameor different affection. 15 . \\
\hline
\end{tabular}

The fecond, eight, and thirteenth cafes, which are commonly called ambiguous, admit of two folutions: For in thefe it is not determined whether the fide or meafure of the angle fought be greater or lefs than a quadrant.

\section*{PR O P. XXIII. Frg. 16.}

N fpherical triangles whether right-angled or oblique. angled, the fines of the fides are proportional to the fines of the angles oppofite to them.

Firft, Let ABC be a right-angled triangle, having a right angle at \(A\); therefore by prop. 18. the fine of the hypothenufe BC is to the radius (or the fine of the right angle at A) as the fine of the fide AC to the fine of the angle B . And in like manner, the fine of \(B C\) is to the fine of the angle \(A\), as the fine of \(A B\) to the fine of the angle \(C\); wherefore (1.5 .5) the fine of the fide \(A C\) is to the fine of the angle \(B\), as the fine of \(A B\) to the fine of the angle \(\mathbf{C}\).

Secondiy', Let BCD be an oblique-angled triangle, the fine Fig. \(\mathbf{y} \boldsymbol{z} . \mathrm{x}\). of either of the fides BC , will be to the fine of either of the other two CD , as the fine of the angle D oppofite to BC is to the fine of the angle B oppofite to the fide CD. Through the point C, let there be drawn an arch of a great circle CA perpendicular upon \(B D\); and in the right-angled triangle ABC (18. of this) the fine of \(B C\) is to the radius, as the fine of \(A C\) to the fine of the angle B ; and in the triangle ADC (by 18 . of this): And, by inverfion, the radius is to the fine of \(D C\) as the fine of the angle \(D\) to the fine of \(A C\) : Therefore ex æquo perturbate, the fine of BC is to the fine of DC , as the frme of the augle \(D\) to the fine of the angle B. Q. E. D.
\[
\text { PR O P. XXIV. Fig. 17. } 18 .
\]

1N oblique-angled fpherical triangles having drawn a perpendicular arch from any of the angles upon the oppofite fide, the co-fines of the angles at the bafe are proportional to the fines of the verticle angles.

Let BCD be a triangle, and the arch CA perpendiculir io the bafe BD ; the co-fine of the angle B will be to the co-fine of the angle \(D\), as the fine of the angle BCA to the fine of \(t\) angle DCA.
For by 22. the co-fine of the angle B is to the fine of the angle BCA as (the co-fine of the fide AC is to the radius; that is, by prop. 22. as) the co-fine of the angle D to the fine of the angle DCA ; and, by permutation, the co-fine of the angle B is to the co-fine of the angle D , as the fine of the angle BCA to the fine of the angle DCA. Q. E. D.
P R O P. XXV. Fig. 17. i8.

THE fame things remaining, the co-fines of the fides \(\mathrm{BC}, \mathrm{CD}\), are proportional to the co-fines of the bafes BA, AD.

For by 21 . the co-fine of BC is to the co-fine of BA, as (the co-fine of AC to the radius; that is, by 21 . as) the co-fine of CD is to the co-fine of AD: Wherefore, by permutation, the co-fines of the fides \(\cdot \mathrm{BC}, \mathrm{CD}\) are proportional to the co-fines of the bafes BA, AD. Q. E. D.
\[
\text { PR O P. XXVI. Fig. 17. } 18 .
\]

THE fame conftruction remaining, the fines of the bafes \(\mathrm{BA}, \mathrm{AD}\) are reciprocally proportional to the tangents of the angles \(B\) and \(D\) at the bafe.

For by 17, the fine of \(\overrightarrow{B A}\) is to the radius, as the tangent of \(A C\) to the tangent of the angle \(B\); and by 17 . and invertion the radius is to the fine of AD , as the tangent of D to the tangent of \(A C\) : Therefore ex æquo perturbate, the fine of \(B A\) is to the fine of AD , as the tangent of D to the tangent of B .

\section*{PR O P. XXVII. Fig. if. 18.}

THE co fines of the vertical angles are reciprocally proportional to the tangents of the fides.

For by prop. 20. the cofine of the angle BCA, is to the radius as the tangent CA is to the tangent of BC ; and by the fame prop. 2e. and by inverfion, the radius is to the co-fine of the angle DCA, as the tangent of \(D C\) to the tangent of CA : Therefore, ex æquo perturbate, the co-fine of the angle \(\beta\) CA is to the co-fine of the angle DCA, as the tangent of DC is to the tangent of BC . Q. E. D.

\section*{L. E M M A. Fig. 19. 20.}

IN right-angled plain triangles, the hypothenufe is to the radius, as the excefs of the hypothenufe above either of the fides to the verfed fine of the acute angle adjacent to that fide, or as the fum of the hypothenule, and either of the fides to the verfed fine of the exterior angle of the triangle.

Let the triangle \(A B C\) have a right angle at \(B ; A C\) will be to the radius as the excefs of \(A C\) above \(A B\), to the verfed fine of the angle \(A\) adjacent to \(A B\); or as the fum of \(A C, A B\) to. the verfed fine of the exterior angle CAK.

With any radius DE, let a circle be defcribed, and from D the centre let DF be drawn to the circumference, making the angle EDF equal to the angle BAC , and from the point F , let FG be drawn perpendicular to DE: Let AH, AK be made equal to \(A C\), and DL, to DE; \(D G\) therefore is the co-fine of the angle EDF or BAC, and GE its verfed fine: And becaufe of the equiangular triangles \(\mathrm{ACB}, \mathrm{DFG}, \mathrm{AC}\) or AH is to DF . or DE, as AB to DG: Therefore (19.5.) AC is to the radius DE as BH to GE , the verfed fine of the angle EDF or 13 AC : And fince \(A H\) is to \(D F\), as \(A B\) to \(D G\), (12. 5.).AH or \(A C\) will be te the radius \(D E\) as \(K B\) to \(L G\), the veried fine of the angle LDT or KAC. Q. E. D.

\section*{PROP. XXVIII. Fig. 21. 22.}

霓N any fpherical triangle, the rectangle contained by the fines of two fides, is to the fquare of the radius, as the excefs of the verfed fines of the third fide or bafe, and the arch, which is the excefs of the fides, is to the verfed fine of the angle oppofite to the bafe.

Let \(A B C\) be a fpherical triangle, the rectangle contained by the fines of \(\mathrm{AB}, \mathrm{BC}\) will be to the fquare of the radius, as the excefs of the verfed fines of the bafe AC , and of the arch, which is the excefs of \(A B, B C\) to the verfed fine of the angle ABC oppofite to the bafe.

Let D be the centre of the fphere, and let \(\mathrm{AD}, \mathrm{BD}, \mathrm{CD}\) be joined, and let the fines \(A E, C F, C G\) of the arches \(A B, B C\), AC be drawn; let the fide BC be greater than BA , and let BH be made equal to BC; AH will therefore be the excefs of the fides \(\mathrm{BC}, \mathrm{BA}\); let HK be drawn perpendicular to AD , and fince \(A G\) is the verfed fine of the bafe AC, and AK the verfed fine of the arch \(\mathrm{AH}, \mathrm{KG}\) is the excefs of the verfed fines of the bafe AC, and of the arch AH, which is the excefs of the fides \(\mathrm{BC}, \mathrm{BA}\) : Let GL likewife be drawn parallel to KH , and let it meet FH in \(\mathrm{I}_{\mathrm{L}}\), let CL, DH be joined, and let AD, FII meet each other in M.

Since therefore in the triangles CDF, HDF, DC, DH are equal, DF is common, and the angle FDC equal to the angle FDH , becaufe of the equal arches BC , BH , the bafe HF will be equal to the bafe FC, and the angle HFD equal to the right angle CFD: The ftraight line DF therefore (4. II.) is at right angles to the plain CFH: Wherefore the plain CFH is at right angles to the plain BDH , which pafies through DF, (18. Ir.) In like manner, fince DG is at right angles to both GC and GL, DG will be perpendicular to the plane CGL; therefore the plane CGL is at right angles to the plane BDH , which paffes through DG : And it was fhown, that the plane CFH or CFL was perpendicular to the fame plane BDH; therefore the common fection of the planes CFL, CGL, viz. the ftraight line CL, is perpendicular to the plane \(\mathrm{BDA},(19.11\).\() and therefore CLF is a rigit angle: In the\) triangle CFL having the right angles CLF, by the lemma CF
is to the radius as LH, the excefs, viz. of CF or FH above FL, is to the verfed fine of the angle CFL; but the angle CFL is the inclination of the planes \(\mathrm{BCD}, \mathrm{BAD}\), fince \(\mathrm{Fe}, \mathrm{FL}\) are drawn-in them at right angles to the common fection BF: The fpherical angle ABC is therefore the fame with the angle CFL ; and therefore CF is to the radius as LH to the verfed fine of the fpherical angle \(A B C\); and fince the triangle \(A E D\) is equiangular (to the triangle MFD, and therefore) to the triangle MGL, AE will be to the radius of the fphere AD, (as \(M G\) to ML; that is, becaufe of the parallels as) GK to LH: The ratio therefore which is compounded of the ratios of AE to the ra. dius, and of CF to the fame radius; that is, (23. 6.) the ratio of the rectangle contained by \(\mathrm{AE}, \mathrm{CF}\) to the fquare of the radius, is the fame with the ratio compounded of the ratio of GK to LH , and the ratio of LH to the verfed fine of the angle \(A B C\); that is, the fame with the ratio of GK to the verfed fiee of the angle \(A B C\); therefore, the rectangle contained by \(\mathrm{AE}, \mathrm{CF}\), the fines of the fides \(\mathrm{AB}, \mathrm{BC}\), is to the fquare of the radius as GK, the excels of the verfed fines \(A G, A K\), of the bafe AC, and the arch AH, which is the excefs of the fides to the verfed fine of the angle ABC oppofite to the bafe AC . Q. E. 1.

\section*{P R O P. XXIX. Fig. 23:}

THE rectangle contained by half of the radius, and the excefs of the verfed fines of \(t\) wo arches, is equal to the rectangle contained by the fines of half the fum, and half the difference of the fame arches.

Let \(A B, A C\), be any two arches, and let \(A D\) be made equal to \(A C\) the lefs; the arch DB therefore is the fum, and the arch CB the difference of \(\mathrm{AC}, \mathrm{AB}\) : Through E the centre of the circle, let there be drawn a diameter DEF, and AE joined, and CD likewife perpendicular to it in G ; and let BH be perpendicular to AE , and AH will be the verfed fine of the arch AB , and \(A G\) the verfed fine of \(A C\), and HG the excefs of there verfed fines: Let \(\mathrm{BD}, \mathrm{BC}, \mathrm{BF}\) be joined, and FC alfo meeting BH in K .

Since therefore BH, CG are parallel, the alternate angles BKC, KCG will be equal; but KCG is in a femicircle, and therefore
therefore a right angle; therefore BKC is a right angle; and in the triangles DFB, CBK, the angles FDB, BCK, in the fame fegment are equal, and \(\mathrm{FBD}, \mathrm{BKC}\) are right angles; the triangles \(\mathrm{DFD}, \mathrm{CBK}\) are therefore equiangular; wherefore DF is to DB , as BC to CK , or HG ; and therefore the rectangle contained by the diameter DF, and HG is equal to that contained by \(\mathrm{DB}, \mathrm{BC}\); wherefore the rectangle contained by a fourth part of the diameter, and \(H G\), is equal to that contained by the halves of \(\mathrm{DB}, \mathrm{BC}\) : But half the chord DB is the fine of half the arch \(D A B\), that is, half the fum of the arches \(A B, A C ;\) and lalf the chord of \(B C\) is the fine of half the arch \(B C\), which is the difference of \(A B, A C\). Whence the propofition is manifeft.
\[
\text { P R O P. XXX. Fig. Ig. } 24 .
\]
\(T H H E\) retangle contained by half of the radius, and the verfed fine of any arch, is equal to the fquare of the fine of half the fame arch.

Let \(A B\) be an arch of a circle, \(C\) its centre, and \(A C, C B\), \(B A\) being joined: Let \(A B\) be bifected in \(D\), and let \(C D\) be joined, which will be perpendicular to BA, and bifect it in E , (4. I.) BE or AE therefore is the fine of the arch DB or AD , the half of \(A B\) : Let \(B F\) be perpendicular to \(A C\), and \(A F\) will be the verfed fine of the arch BA ; but, becaufe of the fimilar tri mgles \(\mathrm{CAE}, \mathrm{BAF}, \mathrm{CA}\) is to AE as AB , that is, twice AE to AF ; and by halving the antecedents, half of the radius CA is to \(A E\) the fine of the arch \(A D\), as the fame \(A E\) to \(A F\) the verfei fine of the arch \(A B\). Wherefore by 16.6 . the propolition is manifeft.

\section*{PROP. XXXI. Fig. 25.}

N a fpherical triangle, the rectangle contained by the
fines of the two fides, is to the fquare of the radius, as the rectangle contained by the fine of the arch which is half the fum of the bafe and the excefs of the fides, and the fine of the arch, which is half the difference of the fame to the fquare of the fine of half the angle oppofite to the bafe.

Let ABC be a fpherical triangle, of which the two fides are \(\mathrm{AB}, \mathrm{BC}\), and bafe AC , and let the lefs fide BA be produced, fo that BD fhall be equal to \(\mathrm{BC}: \mathrm{AD}\) therefore is the excefs of \(\mathrm{BC}, \mathrm{BA}\); and it is to be fhown, that the rectangle contained by the fines of \(\mathrm{BC}, \mathrm{BA}\) is to the fquare of the radius, as the rectangle contained by the fine of haif the fum of \(A C, A D\), and the fine of half the difference of the fame \(\mathrm{AC}, \mathrm{AD}\) to the fquare of the fine of half the angle \(A B C\), oppofite to the bafe AC.

Since by prop. 28. the rectangle contained by the fines of the fides \(\mathrm{BC}, \mathrm{BA}\) is to the fquare of the radius, as the excefs of the verfed fines of the bafe \(A C\) and \(A D\), to the verfed fine of the angle \(B\); that is, (1.6.) as the rectangle contained by half the radius, and that excefs, to the rectangle contained by half the radius, and the verfed fine of \(B\); therefore (29.30.) of this), the rectangle contained by the fines of the fides \(\mathrm{BC}, \mathrm{BA}\) is to the fquare of the radius, as the rectangle contained by the fine of the arch, which is half the fum of \(A C, A D\), and the fine of the arch which is half the difference of the fame \(A C\), AD is to the fquare of the fine of half the angle ABC . Q . E. D.

\section*{SOLUPION of the twelve Cases of Oblique* Angled Spherical Triangles.}

\section*{GENERAL PROPOSITION.}

N an oblique angled fpherical triangle, of the three 1. fides and three angles, any three being given, the other three may be found.

Fig. 26.27
\begin{tabular}{|c|c|c|c|}
\hline & Given. & Sought. & \\
\hline 1 & \(B, D\), and BC, two angles and afide oppofite one of them. & C. & \(\mathrm{CoS}, \mathrm{BC}: \mathrm{R}:=\mathrm{CoT}, \mathrm{B}: \mathrm{T}, \mathrm{BCA}\) rg. Likewife by 24. CoS, B:S, BCA : CoS, D:S, DCA; wherefore BCD is the fum or difference of the angles DCA, BCA according as the perpen dicular CA falls within or without the triangle BCD ; that is, (I 6 . of this, according as the angles \(B, D\) are of the fame or different affection. \\
\hline 2 & \(B, C\), and BC two angles and the fide between them. & D & \(\mathrm{CoS}, \mathrm{BC}: \mathrm{R}:: \mathrm{Co} T, \mathrm{~B}: \mathrm{T}, \mathrm{BCA}\), 19. and alfo by 24. S, BCA : S, DCA \(:: \operatorname{CoS}, \mathrm{B}: \operatorname{CoS}, \mathrm{D}\); and according as the angle BCA is lefs or greater than BCD, the perpendicular CA falls within or without the triangleBCD; and therefore (16 . of this,) the angles \(B, D\) will be of the fame or different affection. \\
\hline 3 & and B . CD , & BD. & \(\mathrm{R}: \mathrm{CoS}, \mathrm{B}:: \mathrm{T}, \mathrm{BC}: \mathrm{T}, \mathrm{BA} .20\). and \(\operatorname{CoS}, \mathrm{BC}: \operatorname{CoS}, \mathrm{BA}:\) : CoS, \(\mathrm{DC}: \operatorname{CoS}, \mathrm{DA} .25\). and BD is the fum or difference of \(B A, D A\). \\
\hline 4 & \(\mathrm{BC}, \mathrm{DB}\),
and B. & CD. & \(\mathrm{R}: \operatorname{CoS}, \mathrm{B}:: \mathrm{T}, \mathrm{BC}: \mathrm{T}, \mathrm{BA}\). 20. and \(\mathrm{CoS}, \mathrm{BA}: \mathrm{CoS}, \mathrm{BC}:: \mathrm{CoS}\), DA : CoS, DC. 25. and according as \(\mathrm{DA}, \mathrm{AC}\) are of the fame or different affection, DC will be lefs or greater than a quadrant. 14. \\
\hline
\end{tabular}

Given. Sought.
\begin{tabular}{|c|c|c|c|}
\hline 5 & B, D and & & \(\mathrm{R}: \operatorname{CoS}, \mathrm{B}:: \mathrm{T}, \mathrm{BC}: \mathrm{T}, \mathrm{BA} .20\). and \(\mathrm{T}, \mathrm{D}: \mathrm{T}, \mathrm{B}:: \mathrm{S}, \mathrm{BA}: \mathrm{S}, \mathrm{DA} .26\). and BD is the fum or difference of BA DA. \\
\hline 6 & \[
\text { and B. } \mathrm{B}, \mathrm{BD} \mid
\] & 1. & \(\mathrm{R}: \operatorname{CoS}, \mathrm{B}:: \mathrm{T}, \mathrm{BC}: \mathrm{T}, \mathrm{BA} .20\). and \(\mathrm{S}, \mathrm{DA}: \mathrm{S}, \mathrm{BA}:: \mathrm{T}, \mathrm{B}: \mathrm{T}, \mathrm{D}\); and according as \(B D\) is greater or lefs than \(B A\), the angles \(B, D\) are of the fame or different affection. 16 . \\
\hline 7 & \[
\begin{aligned}
& \mathrm{BC}, \mathrm{DC} \\
& \text { and } \mathrm{B},
\end{aligned}
\] & C. & \(\operatorname{CoS}, \mathrm{BC}: \mathrm{R}:: \mathrm{Co} T, \mathrm{~B}: \mathrm{T}, \mathrm{BCA}\). 19. and T, DC:'T, BC::CoS, BCA: \(\operatorname{CoS}, \mathrm{DCA}, 27\). the fum or difference of the angles BCA, DCA is equal to the angle BCD . \\
\hline \$ & B, C anci BC. & DC. & \(\operatorname{CoS}, \mathrm{BC}: \mathrm{R}:=\mathrm{Co} \mathrm{T}, \mathrm{B}: \mathrm{T}, \mathrm{BCA}\), 19. alfo by \(27 . \operatorname{CoS}, \mathrm{DCA}: \operatorname{CoS}, \mathrm{BCA}\) \(:: T, B C: T, D C .27\). if DCA and \(B\) be of the fame affection; that is, (13.) if AD and CA be fimilar, DC will be lefs than a quadrant. 14. and if AD , CA be not of the fame affection, \(D C\) is greater than a quadrant. 14. \\
\hline 9 & \[
\begin{aligned}
& B C, D C \\
& \text { and } B \text {. }
\end{aligned}
\] & D. & S, CD : S, B : : S, BC : S, D. \\
\hline 10 & \[
\begin{array}{ccc}
\mathrm{B}, & \mathrm{D} \text { and } \\
\mathrm{BC} . & 1
\end{array}
\] & DC. & S, D : S, BC : : S, B : S, DC. \\
\hline 11 & \[
\left|\begin{array}{c}
\mathrm{BC}, \mathrm{BA}, \\
\mathrm{AC}, \\
\text { Fig. } 25 .
\end{array}\right|
\] & B. & \[
\begin{aligned}
& \mathrm{S}, \mathrm{AB} \times \mathrm{S}, \mathrm{BC}: \mathrm{R} q:: \mathrm{S}, \mathrm{AC}+\mathrm{AD} \\
& \times \mathrm{S}, \mathrm{AC}-\mathrm{AD}: \mathrm{S} q \mathrm{ABC} . \\
& \mathrm{AD} \text {. See Fig. }{ }^{2} \text { the difference of the fides } \\
& \mathrm{BC}, \mathrm{BA} .
\end{aligned}
\] \\
\hline
\end{tabular}

Given. Sought.

The 3 d, \(5^{\text {th }}, 7\) th, 9 th, 10 th, cafes which are commonly called ambiguous, admit of two folutions, either of which will anfwer the conditions required; for, in thefe cafes, the meafure of the angle or fide fought, may be either greater or lefs than a quadrant, and the two folutions will be fupplements to each other. (Cor. to def. 4. 6. Pl. Tr.)

If from any of the angles of an oblique-angled fpherical trí angle; a perpendicular arch be drawn upon the oppofite fide, moft of the cafes of oblique-angled triangles may be refolved by means of Napier's rules.

\section*{F I N I S}

Plane Trig onometry

Spherical Trigonometry plate 1 ":

```

