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This symposium will draw on the evidenced-based learning progressions for multiplicative 

thinking, algebraic reasoning, geometrical reasoning, and statistical reasoning presented at 

previous MERGA conferences (see references by symposium authors in the papers that 

follow). The four papers will consider key shifts in thinking identified within each progression, 

without which students’ progress may be seriously constrained.  

 

Paper 1: A Disposition to Attend to Relationships: A Key Shift in the Development of 

Multiplicative Thinking  

[Dianne Siemon] 

This paper draws on multiple data sources to better understand the shift from additive to 

multiplicative thinking, which is crucial to all further participation in school mathematics. 

Paper 2: Key Shifts in Students’ Capacity to Generalise: A Fundamental Aspect of Algebraic 

Reasoning  

[Max Stephens, Lorraine Day, & Marj Horne] 

This paper will elaborate five levels of algebraic generalisation and two key understandings 

based on an analysis of students’ responses to RMFII algebraic reasoning tasks. 

Paper 3: Cognitive Flexibility and the Coordination of Multiple Information in Geometry and 

Measurement  

[Rebecca Seah & Marj Horne] 

This paper analyses students’ solutions to problems in geometry and measurement situations 

in order to identify key components needed to nurture reasoning.  

Paper 4: Facilitating the Shift to Higher-order Thinking in Statistics and Probability 

[Rosemary Callingham, Jane Watson, & Greg Oates] 

Students have difficulty moving from concrete representations and procedural mathematical 

statistics to context-based appreciation of data. This paper examines the barriers to this shift 

to higher-order thinking based on the Statistical Reasoning Learning Progression.
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This paper will elaborate five levels of algebraic generalisation based on an analysis of students’ 

responses to Reframing Mathematical Futures II (RMFII) tasks designed to assess algebraic 

reasoning. The five levels of algebraic generalisation will be elaborated and illustrated using 

selected tasks from the RMFII study. The five levels will be matched against the eight zones 

identified in the RMFII study supported by its Rasch analysis. We identify two shifts where 

students’ capacity to generalise appear difficult to navigate. The first being where students move 

from noticing and describing regularities to formalising these regularities into verbal or 

symbolic expressions. The second is where students use their understanding of equivalence 

based on relational thinking to write and recognise equivalent algebraic expressions.  

Key ideas implicit in the idea of generalisation as they relate to the algebraic reasoning 

tasks of RMFII have been presented by authors such as Love (1986) and Mason (1996), who 

suggested that the generalisation of a pattern, at its core, rests on the capability of noticing 

something general in the particular. Kieran (2007), however, noted that this feature alone may 

not be sufficient to characterise the algebraic generalisation of patterns, arguing that, in 

addition to seeing the general in the particular, students need to be able to express their 

generalisation algebraically, drawing on explicit reasoning in terms of justification and 

explanation. These points are directly relevant to the tasks used by RMFII to assess algebraic 

reasoning in which students were invited to explain their reasoning. Kieran’s ideas will feature 

clearly in the third, fourth and fifth levels of a progression for algebraic generalisation advanced 

in this paper. 

These five levels were enumerated in a previous paper (Stephens et al., 2021). They are: 

Working with particular instances; Noticing and describing regularities and patterns; Forming 

expressions—either verbal or symbolic; Using equivalence to examine different expressions of 

the same relationships and expressions; and Explicit generalised reasoning where students 

move between the particular to the general and vice versa, are able to identify and describe 

what varies and what stays the same, and work confidently with generalised expressions 

including their representation in different forms. 

The research in RMFII developed an effective evidence-based learning progression with 

associated tasks for students’ algebraic reasoning (Day et al., 2017). Nearly all tasks are 

graduated (multi-part) and designed to elicit progressive levels of students’ algebraic 

generalisation, which is a key element of algebraic reasoning. Assessment tasks of this kind 

are helpful for classroom teachers to focus on the key shifts in students’ thinking in order to 

foster their capability in this area. This paper will firstly show how the existing RMFII tasks, 

supported by Rasch modelling, align with and illustrate our five-level categorisation of 

algebraic generalisation. Secondly, the paper will show teachers of mathematics in the middle 

school years the importance of having all students progress at least to the third level of algebraic 

reasoning. 

Drawing on the Rasch modelling (Bond & Fox, 2015) that was used in RMFII to rank the 

task item difficulty of scored responses across eight zones of algebraic reasoning, the Learning 

Progression for Algebraic Reasoning (LPAR) is related to the five levels of algebraic 
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generalisation. In our recent paper (Stephens et al., 2021), several of the RMFII tasks were 

used to illustrate and validate the five levels of algebraic generalisation and in this paper one 

task, the Relational Thinking task, is used to exemplify how the LPAR zones relate to the levels 

of generalisation (Table 1). The Relational Thinking task (ARELS) is comprised of seven task 

items (ARELS1-ARELS7). The coding in the right column refers to the task items enumerated 

in Table 1, and to the score obtained for that item. For example, in Table 2, ARELS4.3 refers 

to the fourth relational thinking task item for which a score of 3 has been obtained. 

Table 1 

Relational Thinking Task Items and Rubrics 

Item no. Task item Task item rubric 

Score 

ARELS1 What numbers would go in these 

boxes to make a true number 

sentence (the numbers may be 

different).  

Explain your reasoning. 

       + 521 = 527 +  

0  No response or irrelevant response 

1  Incorrect response but suggest the difference of 6 is 

recognised in some way (e.g., add 6 to the right hand 

side) 

2 Two correct numbers given (e.g., 13 and 7; 527 and 521) 

but little/no reasoning. 

3  Two correct numbers given where the number on the left is 

6 more than the number on the right (e.g., 100 and 94) 

with reasoning that reflects the relationship between 521 

and 527 (difference of 6). 

ARELS2 Find a different pair of numbers 

that would make the number 

sentence above true. 

0 No response or irrelevant response 

1 A different and correct pair. 

ARELS3 Describe how you could find all 

possible pairs of numbers that 

would make this a true number 

sentence. 

0 No response or irrelevant response 

1 Incomplete attempt based on previous answers (e.g., add 2 

more to both). 
2   Statement regarding the difference of 6 (e.g., number on 

the left must be six more than the number on the right) or 

expression showing the difference (e.g., a + 6, and a) 
ARELS4 What numbers would go in these 

boxes to make a true number 

sentence (the numbers may be 

different). 

      – 521 =       – 527 

Explain how you worked it out. 

0  No response or irrelevant response 

1 Incorrect answer (possibly due to errors in calculation) but 

recognises relationship between 521 and 527 (difference 

of 6).  

2 Two correct numbers given (e.g., 613 and 619) but 

little/no reasoning, may include some calculations. 

3 A pair of correct numbers given where the number on the 

right is 6 more than the number on the left (e.g., 600 and 

606) with reasoning that reflects the relationship between 

521 and 527 (difference of 6). 

ARELS5 Find another pair of numbers 

that would make the number 

sentence above true. 

0 No response or irrelevant response 

1   A different and correct pair. 

ARELS6 Describe how you could find all 

possible pairs of numbers that 

would make this a true number 

sentence. 

0 No response or irrelevant response 

1 Incomplete attempt based on previous answers (e.g., add 

10 to both). 

2  Statement regarding the difference of 6 (e.g., number on 

the right must be six more than the number on the left) or 

an expression showing the difference (e.g., a and a + 6) 

ARELS7 What can you say about the 

relationship between c and d in 

this equation? 

c × 2 = d × 14 

0 No response or irrelevant response 

1  Specific solution provided (e.g., c must be 7 and d must 

be 1 to make it a true number sentence) or a general 

statement (e.g., c is bigger than d) 

2 Statement correctly describes relationship (e.g., c is 7 

times the number d) 
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The first level of our classification of algebraic generalisation is working with particular 

instances, where students find solutions to simple equivalence situations or extending simple 

growing patterns. For example, in the Relational Thinking task the first part of the task asks 

students to find two numbers that make the number sentence true (ARELS1), and the second 

part of the task asks the students to identify a second pair of numbers that also make the 

statement true (ARELS2). 

The second level of our classification of algebraic generalisation is noticing and describing 

regularities, where students are asked to notice regularities among a sequence of particular 

cases. In these cases, students attend to quantities that stay fixed and those that vary (Radford, 

2006; Rivera, 2013) within the context of the task. This is an important level as the next three 

algebraic generalisation levels rely upon being able to notice regularities. 

Forming expressions, either verbal or symbolic is the third level of algebraic generalisation, 

which extends the noticing of regularities to expressing these regularities, as constants and 

variables in formulae that may be articulated verbally or using symbolic language. To obtain 

all three marks for the ARELS1 task item, students have to provide two correct numbers as 

well as demonstrate reasoning that showed the difference of six relationship. 

Establishing and using equivalence enables students to be able to recognise that 

generalisations may be represented by different symbolic expressions. Students should be able 

to show that different expressions can generate the same number where the same variables are 

used and/or algebraic simplification can be used to show equivalence. It is important for 

students to be able to distinguish situations where although two expressions may look different 

from each other, they are in fact equivalent. 

The final level of our classification of algebraic generalisation is explicit generalised 

reasoning. This is where students can move flexibly between the particular and the general and 

vice versa. Students at this level can identify and describe variables and constants and work 

confidently with generalised expressions. The Relational Thinking task item (ARELS7) asked 

students to comment on the relationship between c and d in the equation c x 2 = d x 14. To 

answer this successfully, students need to understand the equivalent relationship between two 

product expressions, and to generalise a relationship explicitly between the two variables c and 

d, using appropriate mathematical language. 

Table 2 

RMFII Zones and Levels of Generalisation Reported in Stephens et al. (2021) 

Item no. RMFII Zone Level of algebraic generalisation  

ARELS1.1 Zone 1 Level 1: Working with particular instances. 

ARELS1.2 Zone 2 Level 1: Working with particular instances. 

ARELS1.3 Zone 6 Level 3: Forming expressions – verbally or symbolically. 

ARELS2.1 Zone 3 Level 2: Noticing and describing regularities. 

ARELS3.1 Zone 5 Level 2: Noticing and describing regularities. 

ARELS3.2 Zone 6 Level 4: Using equivalence. 

ARELS4.1 Zone 3 Level 2: Noticing and describing regularities. 

ARELS4.2 Zone 4 Level 2: Noticing and describing regularities. 

ARELS4.3 Zone 7 Level 4: Using equivalence. 

ARELS5.1 Zone 5 Level 2: Noticing and describing regularities. 

ARELS6.1 Zone 6 Level 3: Forming expressions – verbally or symbolically. 

ARELS6.2 Zone 6 Level 4: Using equivalence. 

ARELS7.1 Zone 5 Level 2: Noticing and describing regularities. 

ARELS7.2 Zone 7 Level 5: Explicit generalised reasoning. 

From the examination of the Relational Thinking task, coupled with the analysis of three 

other RMFII tasks (Stephens et al., 2021) where several responses were located in Zone 8, it 

appeared that two of the key shifts in students’ ability to generalise are difficult for students to 



Stephens, Day, Horne 

49 

navigate. The first of these key shifts is where students move from Level 2 noticing and 

describing regularities to Level 3 where they formalise this noticing and describing to correctly 

form algebraic expressions, either verbally or symbolically. This is demonstrated by noticing 

and describing regularities appearing in Zones 3 and 4 and the beginning of Zone 5 in the LPAR 

(Table 2), while Level 3, which formalises this in verbal and symbolic algebraic expressions 

does not appear until Zone 6. The second of the key shifts, which students find difficult to 

negotiate, is moving from Level 3 to Level 4 drawing on students’ understanding of 

equivalence based on relational thinking and the writing and recognition of equivalent 

algebraic expressions. This level is evident in Zones 5, 6 and 7 of the LPAR (Table 2). 

As these two key shifts are somewhat problematic for students, it is important that teachers 

provide multiple opportunities for students to identify regularities, identify variables and 

constants, form and communicate expressions, and use equivalence. One way for teachers to 

do this is to utilise rich tasks, such as Garden Beds from maths300 (maths300.com), that 

provide opportunities for students to demonstrate all forms of generalisation. By using several 

rich tasks within different contexts, teachers can ensure that students are being exposed to these 

critical steppingstones in the generalisation process. The RMFII Teaching Advice (Day et al., 

2018) includes references to rich tasks from well-known sources such as maths300, reSolve 

(resolve.edu.au) and nrich (nrich.maths.org) at each of the LPAR Zones, which provide 

teachers with tasks that will assist them to progress students in their algebraic learning journeys. 

The algebraic generalisations exemplified in this paper require students to become 

proficient in using appropriate combinations of language, algebraic representation, and 

mathematical justification. These forms of reasoning and proof are applicable across many 

problem-solving situations and explicitly generalised algebraic reasoning will be necessary for 

students’ continuing study of mathematics. Just as important, this paper has drawn attention to 

assisting all students to navigate successfully Levels 3 and 4 where they learn to form correct 

algebraic expressions either verbally or symbolically, and subsequently become able to 

recognise and work with equivalent expressions. Navigating these two key shifts appears 

essential for students to be able to reason algebraically. 
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