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Abstract

Despite focused efforts, achievement gaps remain a problem in the America’s education system, 

especially those between students from higher and lower income families. Continued work on 

reducing these gaps benefits from an understanding of students’ reading and math growth from 

typical school instruction and how growth differs based on initial proficiency, grade, and 

demographic characteristics. Data from 5,900 students in Grades 1–5 tested in math and reading at 

six points across two years were analyzed using cohort-sequential latent growth curve models to 

determine longitudinal growth patterns. Results indicated that students with low initial proficiency 

grew more quickly than students with higher proficiency. However, after two school years their 

achievement remained below average and well below that of students with higher initial 

proficiency. Demographic characteristics had small but significant effects on initial score and 

growth rates.
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Efforts to close achievement gaps have been a priority for America’s education system for 

decades. Just since 2000, major initiatives such as the No Child Left Behind legislation and 

the Race to the Top program have focused considerable federal resources on students with 

low achievement. Despite these and many other state and local efforts, achievement gaps 

remain apparent between higher and lower income students and to some extent between 

White and ethnic minority students (Reardon, 2011; Reardon & Portilla, 2016). Indeed, the 

most recent evidence suggests that achievement gaps based on household income are present 

at the beginning of kindergarten and change little over time (Reardon, 2013; Reardon & 

Portilla, 2016). The factors that initiate and maintain achievement gaps likely are multi-

faceted and systemic, reaching far beyond the classroom door. However, a better 

understanding of the patterns of growth that characterize and differentiate student 

achievement across time can help education researchers to identify malleable factors that 

may be responsive to efforts to reduce achievement gaps and reveal critical periods when 

interventions aimed at narrowing achievement gaps are more likely to be successful. Studies 
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of typical instruction also can shed light on the extent to which progress is being made in 

closing achievement gaps and when these gaps are more likely to widen or narrow. 

Documenting growth trajectories in the absence of researcher-introduced interventions 

increases our knowledge about the pattern of effects of typical instruction on student 

achievement. These insights can spur new research on ways to help raise the achievement of 

struggling students and inform policy discussions around achievement gaps.

Much of the research on student growth rates in reading and math has been conducted using 

either nationally representative longitudinal datasets such as the Early Childhood 

Longitudinal Survey (ECLS; e.g., Judge & Watson, 2011; Reardon & Galindo, 2009; 

Reardon & Portilla, 2016; von Hippel, Workman, & Downey, 2018) or longitudinal data 

from annual state assessments of reading and math conducted in the spring of each grade 

(e.g. Clotfelter, Ladd, and Vigdor, 2012; Schulte, Stevens, Elliott, Tindal, & Nese 2016). 

Other researchers have used cross-sectional data from the norming samples of standardized 

assessments to provide effect sizes for growth from spring of one grade through spring of the 

next grade (Bloom, Hill, Black, & Lipsey, 2008; Scammacca, Fall, & Roberts, 2015). These 

studies provide valuable information about how much growth occurs from the end of one 

grade to the end of the following grade.

However, studies that track student growth at multiple time points across more than one 

academic year (i.e., beginning, middle, and end of grade) and allow for examination of both 

within-year and between-year growth are rare. As school districts have adopted practices 

such as universal screening and periodic universal progress monitoring using norm-

referenced, vertically scaled assessments, more data are becoming available that include 

beginning, mid-year, and endof-year assessments. Because these assessments measure 

growth on a continuous, equal-interval vertical scale within and across grades, they provide 

more precise information on students’ growth over time than other types of measures (von 

Hippel et al., 2018). In this study, we examine data from vertically scaled measures of 

reading and math to analyze the effects of initial achievement level, demographic 

characteristics, and grade on student growth and achievement gaps across the 2015–2016 

and 2016–2017 academic years for students in Grades 1–5.

Effect of Initial Level of Achievement on Academic Growth

More than 30 years of research has been conducted to determine the effect of students’ 

initial level of achievement on their pattern of academic growth over time. Perhaps the most 

well-known growth pattern is the “Matthew effect” that education researchers began to 

explore in the 1980s (Stanovich, 1986; Walberg, Strykowski, Rovai, & Hung, 1984; Walberg 

& Tsai, 1983). The Matthew effect proposes that students who start out with high 

achievement will grow at a faster pace than students who start out with low achievement, 

leading to an ever-widening gap between high and low achievers (in other words, the rich get 

richer—a contextomy of a saying in the Gospel of Matthew). The hypothesized mechanism 

by which the gap widens involves inter-relations between motivation, exposure, and skill 

level. According to the Matthew effect, students with high reading or math skills are more 

motivated to engage in and benefit more from reading or math activities, resulting in greater 

exposure to reading and math concepts that then foster growth in those skills at an 
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accelerated pace. Meanwhile, students with poorer skills are less motivated to practice and 

benefit less from reading or math instruction, giving them less exposure to new vocabulary 

words, math concepts, and other math and reading concepts over the course of the school 

year, leading to less skill development. As a result, students with low initial achievement fall 

further behind and those with higher initial achievement race further ahead, widening 

achievement gaps.

Patterns of growth in reading.

Given its memorable name and intuitive appeal, the Matthew effect has been a popular topic 

in education research. However, as early as the mid-1990s, research findings disputed its 

existence in reading (Shaywitz et al., 1995). In a review of studies of reading growth in 

students in Grades 1–6, Pfost, Hattie, Dörfler, and Artelt (2014) found evidence supporting 

the Matthew effect in 23% of 78 results reported in studies conducted in the U.S. and 

abroad. The studies that supported the Matthew effect tended to be those examining 

decoding speed and efficiency and those using highly reliable measures. More recent 

findings from longitudinal research have been equivocal. Data from students in early 

elementary school have supported the Matthew effect in reading (McNamara, Scissons, & 

Gutknecth, 2015). However, longitudinal studies of late elementary and middle school 

students have not, showing instead that students with different levels of reading achievement 

maintained their relative standing over time (Baumert, Nagy, & Lehmann, 2012; Schulte et 

al., 2016). This pattern of stable differences was evident in 26% of the 78 sets of results that 

Pfost et al. reviewed.

A compensatory pattern of growth, in which achievement gaps narrowed over time, occurred 

in 42% of the 78 reading studies that Pfost et al. (2014) reviewed. Because this pattern 

tended to appear in studies where reading measures had floor or ceiling effects, 

measurement error may be one reason for the reduction in gaps over time. The 

compensatory pattern also may be tied to developmental stage, with low-achieving children 

in the early primary grades being more likely to catch up as they benefit from instruction and 

master basic skills. However, researchers have found differences in pace of growth by high 

and low initial achievers that produced a compensatory pattern. Rambo-Hernandez and 

McCoach (2015) determined that students with high initial achievement grew more slowly in 

reading than students with average achievement across Grades 3–6. In a study of students in 

high-poverty schools, Huang, Moon, and Boren (2014) reported that high achievers in 

kindergarten grew at a slower rate in reading skills than low achievers.

Patterns of growth in math.

As with reading, researchers have studied growth trajectories in math to determine if the 

pattern aligns with the Matthew effect, the compensatory pattern, or a pattern of stable 

differences over time. Using data from ECLS:K, Morgan, Farkas, and Wu (2009) tracked 

math growth from kindergarten through Grade 5. Results indicated that math achievement 

for students with low levels of math proficiency in the fall and spring of kindergarten grew at 

the slowest rate through Grade 5 compared to students with low proficiency in fall or spring 

only and students with average or better math proficiency in kindergarten. These results 

remained true even when SES, race, and gender were included in the models. The magnitude 
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of the difference between students with low kindergarten math achievement and students 

with adequate or better kindergarten math achievement was two standard deviations at the 

end of fifth grade, a finding that supports the Matthew effect. Studies examining the 

predictive effect of low math achievement in early elementary grades on later math 

proficiency have shown that students with low initial achievement grow more slowly through 

later elementary grades than students with higher initial achievement (Hansen, Jordan, & 

Rodrigues, 2017; Lu, 2016). In particular, lower-achieving students have demonstrated 

difficulty in gaining fractions knowledge in later grades (Fuchs et al., 2015; Hansen et al., 

2017; Resnick et al., 2016). Math growth among students with learning disabilities also has 

been shown to be slower than among typical students, leading to math achievement gaps that 

either widened or were maintained over time (Jordon, Kaplan, & Hanich, 2002; Shulte & 

Stevens, 2015; Wei, Lenz, & Blackorby, 2012). Other longitudinal studies of math 

achievement in late elementary and middle school students have shown that students 

maintained their relative standing in the achievement distribution over time (Baumert et al., 

2012). In a systematic review of 35 studies of longitudinal math achievement among 

students with math disabilities and difficulties, Nelson and Powell (2018) determined that 

students with low achievement typically did not close the gap with students with higher 

achievement over time. Some studies showed a pattern of stable differences in achievement 

and others showed widening gaps in performance.

Summary of patterns of growth in reading and math.

The research conducted to this point on patterns of math and reading growth for students 

differing in their level of initial achievement is inconclusive regarding the ways in which 

achievement gaps change over time. One possible explanation for the differences seen in 

these studies is the assessments used to measure growth. Studies that explored growth 

patterns in students in kindergarten through Grade 3 often used data from national 

longitudinal surveys such as ECLS. Beginning in Grade 3, students are tested annually using 

state assessments of reading and math and researchers have used the resulting data to track 

growth patterns from that point. However, no studies have examined student’s growth in 

math and reading across multiple time points using the same assessment in Grades 1–5, 

leaving open the question of the role of measurement differences on the observed growth 

patterns. Additionally, the effect of multiple student characteristics on growth has not often 

been explored within the same analytical models in the research conducted to date. Doing so 

likely will provide additional insight into the ways in which these factors interact, especially 

when the measure is held constant across grades.

Effect of Grade Level on Academic Growth

Another important factor to consider in understanding how patterns of growth relate to 

efforts to reduce achievement gaps is the ways in which the magnitude of normative reading 

and math growth change over time as students advance through the elementary grades. 

Previous research has reported declining annual growth rates in reading and math across 

Grades 1–5. Using data from normative samples of students from several standardized 

achievement tests, Bloom et al. (2008) determined that effect sizes for growth from spring of 

one grade to spring of the following grade decreased markedly in size as students advanced 
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through school. In reading, students grew on average by 1.52 SDs from spring of 

kindergarten to spring of Grade 1, but only 0.40 SDs from spring of Grade 4 to spring of 

Grade 5. Annual growth in math also trended downward from 1.14 SDs for spring of 

kindergarten to spring of Grade 1 to 0.56 SDs for spring of Grade 4 to spring of Grade 5. 

Scammacca et al. (2015a) reported similar results when looking at the growth of students in 

the bottom quartile of the normative distributions of standardized reading and math tests. 

These results suggested that achievement gaps among younger students may be more likely 

to diminish over time than those among older students because more academic growth 

occurs in the early primary grades than in later grades.

Longitudinal studies also have documented the deceleration of growth rates as students 

progress through elementary school. Cameron, Grimm, Steele, Castro-Schilo, and Grissmer 

(2015) examined growth rates in two nationally representative longitudinal datasets from 

kindergarten through Grade 8. They concluded that students grew quickly through Grade 3, 

but growth in both reading and math then slowed. Lee (2010) analyzed longitudinal and 

cross-sectional data from nationally representative samples of students in K-12 and 

determined that their rate of growth slowed by 1–4% of a standard deviation per year, with 

reading growth decelerating to a greater extent than math. Effect sizes for math and reading 

growth declined each year with a similar trajectory and magnitude as that reported by Bloom 

et al. (2008).

Effects of Socioeconomic Status and Race or Ethnicity on Growth

Much recent attention has focused on achievement gaps based on socioeconomic status 

(SES), with evidence suggesting that these gaps have expanded over the past several decades 

and are present prior to the beginning of formal schooling (Reardon, 2011, 2013). Children 

from low SES families have shown lower initial achievement and a slower growth rate 

across many studies. For example, using data from ECLS:K, Aikens and Barbarin (2008) 

found differences in initial reading proficiency in kindergarten between low SES and more 

affluent students and that the gap expanded through Grade 3. Examining data from both the 

ECLS:K and the National Longitudinal Survey of Youth, Cameron et al. (2015) found that 

low SES was associated with slower growth in reading and math. Burnett and Farkas (2009) 

found a particularly strong effect for family SES on the math achievement of children age 9 

and younger that faded out in children ages 10–14 when analyzing data from the Children of 

the National Longitudinal Survey of Youth.

Historically, achievement gaps based on race and ethnicity have been the focus of much 

attention, with inequality in available educational opportunities based on segregation of 

neighborhoods viewed as one cause. Recent evidence suggests that the achievement gaps 

between racial groups are narrowing (Reardon, 2013). However, gaps do remain and the 

effect of race and ethnicity on academic growth continues to be an important research 

question. In particular, gaps between White and Hispanic students have become of 

increasing interest as the Hispanic population in many states increases. Researchers have 

reported differences of a half standard deviation or more in math scores and more than a 

third of a standard deviation in reading scores between Hispanic and non-Hispanic White 

students in upper elementary grades (Phillips & Chin, 2004; Reardon & Galindo, 2009). 
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Compared to White students, researchers have documented lower reading and math 

proficiency among Hispanic children at the beginning of kindergarten (Reardon & Galindo, 

2009).

However, when researchers controlled for SES, some studies showed minimal differences in 

initial achievement and growth rate between Hispanic and White students. In Clotfelter et 

al.’s (2012) longitudinal analysis of state assessment data, Hispanic students had lower 

reading and math achievement in primary grades but caught up to White students of similar 

SES and parent education by Grade 5. Reardon and Portilla (2016) investigated changes in 

the magnitude of reading and math achievement gaps based on SES and race and ethnicity 

between 1998 and 2010. They concluded that differences between White and Hispanic 

students and between lower and higher SES students at Grade 4 have narrowed significantly 

over time. However, they asserted that these changes likely reflected improvements in school 

readiness at kindergarten entry for low SES and Hispanic students rather than progress from 

instruction after that point. Their conclusions underscore the importance of modeling these 

demographic characteristics together with initial proficiency level in reading and math to 

develop a better understanding of the factors that affect academic growth.

The Need for Additional Research on Growth Patterns

Despite the research described above, many questions remain unanswered about the effects 

of initial status and student SES and race or ethnicity on growth in reading and math and the 

implications of findings for reducing achievement gaps. More information is needed from 

models that include all of these variables and estimate their effects on reading and math 

achievement in the same students using the same measure over time. Much of the research 

cited above looked at only one factor (i.e., demographic characteristics or initial status) 

without taking account of the effect of others. Additionally, given the nature of available 

datasets, researchers have been able to explore questions about reading and math growth 

primarily from the end of one school year to the end of the next. Patterns of growth and 

factors that affect those patterns rarely have been explored at multiple time points within and 

across academic years. The longitudinal datasets used in many previous studies also are 

dated, meaning that results from more current datasets tracking patterns of growth and the 

factors that affect growth rates are needed to provide insight into the effectiveness of current 

typical school instruction for reducing achievement gaps.

Models of within- and across-year growth in the absence of researcher-introduced 

interventions also can provide more information on the ways in which current instructional 

practices may be funneling resources to students with low initial achievement in an effort to 

reduce achievement gaps, resulting in a faster pace of growth in BAU comparison groups 

than has been observed in the past. Lemons, Fuchs, Gilbert, and Fuchs (2012) presented 

evidence that typical instruction has improved over time, resulting in shrinking treatment 

effects in five randomized control trials of the same instructional intervention conducted 

over nine years. A meta-analysis of reading interventions from 1980–2012 found that 

publication year was a statistically significant predictor of effect size, with more recent 

studies having smaller effects (Scammacca, Roberts, Vaughn, & Steubing, 2015). These 

findings should not be surprising as requirements for evidence-based instruction mean that 
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today’s BAU instruction oftentimes was the treatment in yesterday’s randomized control 

trial.

This Study

Due to the need for additional research documenting the patterns of academic growth and 

changes in achievement gaps over time, we acquired a dataset from a large, diverse school 

district containing two years of reading and math scores for students in Grades 1–5 and 

sought to answer the following research questions:

1. How do rates of growth in reading and math in Grades 1–5 vary depending on 

the student’s initial level of achievement?

2. Do demographic characteristics predict students’ initial status or growth rate?

3. How do effect sizes for growth differ across time for students in Grades 1 to 5?

We expected these research questions to provide additional insights into issues surrounding 

achievement gaps by illuminating the patterns of academic growth seen based on typical 

instruction in reading and math across the elementary grades. To address these research 

questions, we analyzed data from reading and math assessments administered at six time 

points across two grades. The assessments were conducted in the fall, winter, and spring of 

each school year, for a total of six observations in each of four cohorts that we followed for 

two years.

Research Design

This study utilized a cohort-sequential design, with cohorts of students who were in Grades 

1–4 in 2015–2016 followed into the next academic year, when they were in Grades 2–5. A 

cohort-sequential design provides the opportunity to study student growth longitudinally 

across the elementary grades by linking the cohorts and determining if there is a common 

growth trajectory over time (Duncan & Duncan, 1994; Duncan, Duncan, & Strycker, 2006). 

It is a useful solution to the problems of cost, attrition, and delay in producing findings that 

occur in longitudinal research that involves following individuals for a lengthy period of 

time in order to study patterns of growth or change. A typical longitudinal design for 

examining growth in reading and math across Grades 1–5 would require following Grade 1 

students for more than five years, from fall of Grade 1 through spring of Grade 5. In 

contrast, using a cohort-sequential longitudinal design requires following overlapping 

cohorts of students in these grades for only two years each. The overlap from these cohorts 

allows for linking their data across time, providing the ability to test for the existence of a 

single developmental trajectory across cohorts for the time span of interest. If a common 

trajectory is found, the results of the data analysis allow for conclusions to be drawn 

concerning the entire developmental period covered by the cohorts in a conceptually similar 

way as if a single cohort had been followed for the entire period. A comparison of results 

from a true longitudinal design and a cohort-sequential design used to study changes in 

alcohol use showed no significant differences in model parameter estimates (Duncan et al., 

2006). Although not a commonly used research design, the cohort-sequential approach has 

been used to study topics such as developmental trends in illicit substance use (Duncan et 
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al., 2006), executive function (Lee, Bull, & Ho, 2013), fluid and crystalized intelligence 

(McArdle, Ferrer-Caja, Hamagami, & Woodcock, 2002), and self-concept (Cole et al., 

2001). This design is ideally suited to the present study because of the relatively large 

sample size available for each cohort and the similarity in the cohorts based on their 

attendance at schools in the same district, two conditions associated with improved model fit 

(Duncan et al., 2006).

Data from the cohort-sequential design were analyzed for reading and math using latent 

growth curve (LGC) models to determine the nature of student growth over two school years 

and the ways in which initial achievement, SES, and race or ethnicity affected reading and 

math growth. Gender differences were not anticipated, but gender also was included in the 

LGC models to explore possible effects. Initial achievement was operationalized as the 

quartile of the student’s score at Time 1 (the beginning-of-year testing occasion in the first 

year of the student’s participation). Quartile was used because the sample was not of 

sufficient size to make meaningful comparisons by decile and exact percentile ranks were 

not available in the data set that we obtained from the district. LGC models have been 

widely used to study development because they allow researchers to test for between-student 

differences in growth trajectories. These differences are at the heart of this study’s purpose, 

making cohort-sequential LGC models a suitable approach to addressing our research 

questions. In addition, standardized mean difference effect sizes were calculated for growth 

for each grade and for the two-grade period to aid in interpreting the results of the models.

Method

Participants

All participants were students enrolled in Grades 1–4 in the 2015–2016 academic year and 

Grades 2–5 in the 2016–2017 academic year across 18 K-5 elementary schools in one large, 

diverse school district in Texas. The district encompasses 589 square miles and includes 

schools in both urbanized and rural areas. Assessment and demographic data from 

approximately 6,800 students were received. Most students were of White (53%) or 

Hispanic (40%) ethnicity. Therefore, sufficient data were not available to operationalize race 

or ethnicity in a way that compared additional groups. About 35% of students received free 

or reduced-price lunch, which we used as a proxy for low SES because additional data on 

family income could not be obtained from the district. Less than 10% of students had special 

education status and 8.3% had limited English proficiency, meaning that these demographic 

variables could not be included in the analyses due to insufficient sample sizes in each 

cohort. However, students with special education status and limited English proficiency 

remained in the dataset. See Table 1 for a full breakdown of participant demographic 

characteristics.

Measures

Renaissance STAR Assessments.—The Renaissance STAR Reading Enterprise and 

STAR Math Enterprise are norm-referenced assessments designed for students in Grades 1–

12 (Renaissance Learning, 2016a, 2016b). The intended uses of the assessments are to 

identify students in need of reading or math intervention and to monitor the progress of all 
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students. Both assessments are computer-adaptive tests. Students complete a three-item 

practice session the first time they take STAR Reading and Math to learn how to use the 

computer interface. Items in the practice session are intended to be easy enough for students 

with low-level reading or math skills to answer correctly. The first test item presented 

following the practice session the first time a student takes the assessment is a below-grade 

level item that nearly all students will answer correctly. For future assessments, the first item 

is selected based on prior assessment results and is below the student’s ability level on the 

prior assessment. The items that follow depend on student’s response to the prior item and 

are selected using what Renaissance Learning (2016a) terms a “proprietary approach 

somewhat more complex than the simple Rasch maximum information IRT model” (p. 10). 

As a result, the difficulty of the items varies depending on the student’s ability and not on 

their grade level, making ceiling effects less likely.

Scores on both STAR Reading and Math are reported as Renaissance Scale Scores. These 

scores are on vertical (or growth) scales, meaning that the scales estimate ability levels 

across Grades 1–12 on a continuous metric and that growth can be measured on the same 

scale across these grades, with changes in scores representing the same amount of growth 

across the entire scale. To calculate the Renaissance Scale Score, the Renaissance STAR 

software first uses maximum likelihood estimation to locate a student on the Rasch ability 

scale and then converts this location to a Scale Score. Scale Scores are norm-referenced and 

range from 0 to 1400. Norms are based on a nationally representative sample of students in 

Grades 1–12. Scale scores for Reading and Math cannot be compared to each other as the 

two measures were not normed to a common growth scale.

Renaissance STAR Reading Enterprise.—STAR Reading consists of 34 multiple-

choice items that most students complete in less than 25 minutes. Items have time limits that 

vary from 45 to 120 seconds depending on the item type and student’s grade. These time 

limits were set based on latencies observed during the norming process and are intended to 

give students adequate time to respond while controlling total testing time. According to 

Renaissance Learning (2016a), the item bank includes approximately 5,000 items. These 

items measure reading skills at the word level (including phonics, word reading, and 

vocabulary) and the text level (reading passages followed by comprehension items) and 

incorporate both literary and expository text. Specific skills tested on any single 

administration of STAR Reading depend on the student’s ability level as determined by the 

student’s correct or incorrect response to prior items. Students who have demonstrated 

mastery of basic skills are tested on higher-level skills.

Internal consistency reliability for STAR Reading for students in Grades 1–5 ranged 

from .93 - .95 when examined across 100,000 students per grade. Test-retest reliability for 

Grades 1–5 ranged from .82 - .89 across samples of 300 students per grade who were tested 

a second time within 8 days of their initial assessment using a set of items that excluded 

items from the initial test. Renaissance Learning also gathered evidence for the validity of 

STAR Reading in studies where students also were assessed with other norm-referenced 

reading assessments. The resulting correlation coefficients were meta-analyzed to provide 

validity coefficients across studies by grade. The coefficients were .70 for Grade 1 and .78 

(SE=.001) for Grades 2–5.
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Renaissance STAR Math Enterprise.—In STAR Math, students respond to 34 items 

with a time limit of three minutes per item; the average overall testing time is 20 minutes 

(Renaissance Learning, 2016b). The time limit per item was selected based on response 

latencies recorded during the norming process that averaged less than one minute per item. 

Nearly all students in the norming sample responded in less than three minutes per item. The 

item bank contains more than 4,000 items that assess skills that include counting, operations, 

equations, fractions, algebraic thinking, base ten operations, ratios, geometry, measurement, 

and statistics. As with STAR Reading, the specific skills tested on any single administration 

of STAR Math depend on the student’s ability level as demonstrated by correct or incorrect 

responses to prior items.

Renaissance Learning (2016b) reported internal consistency reliability for STAR Math for 

students in Grades 1–5 as ranging from .90 - .94 in samples of 1,500 or more students per 

grade. Test-retest reliability averaged .91 across nearly 7,400 students. In a meta-analysis of 

correlations between STAR Math and other norm-referenced mathematics assessments, the 

average correlation ranged from .56 for students in Grade 1 to .72 for students in Grade 5. 

The standard errors for the average correlations were .01 for Grades 1 and 2 and .001 for 

Grades 3–5.

Procedure

Both the STAR Reading and STAR Math were administered district-wide at three points 

each school year. The average number of calendar days between test administrations ranged 

from 114 to 135. See Table S1 in the online supplement for the means and standard 

deviations for the days between testing occasions for each measure and grade. Teachers 

administered the assessments using the procedures provided by Renaissance Learning. 

Students who were absent on the day of testing were tested on a subsequent day.

Results

The nature of LGC models and the cohort-sequential research design used in this study 

allowed for addressing our first two research questions within a single analysis. The reading 

and math LGC model results were used to determine how rates of growth in reading and 

math varied depending both on the student’s initial level of achievement and demographic 

characteristics. Effect sizes for growth were calculated within grades for the overall sample 

and across two academic years for each cohort to explore our third research question 

regarding the factors that differentiate the magnitude of growth in reading and math. 

Descriptive statistics for all students by grade for each time point are provided in Table 2. 

Descriptive statistics disaggregated by initial status (quartile of the students’ Year 1 

beginning-of-year score in the normative sample), ethnicity, and SES are available in the 

online supplement, Tables S2–S4.

Missing Data

Given the two-year cohort sequential design and the nature of our research questions, we 

included students in the models if they had reading and math scores at the first time point 

(which determined their initial level of achievement) and at least one time point in Year 2. In 
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total, 5,912 students had reading and math scores at Time 1. Of these students, 85.4% had 

reading and math scores at all six time points. In exploring missing data patterns, we found 

no evidence to suggest that likelihood of having missing data was systematically associated 

with initial status, grade, SES, or ethnicity. Rather, missing data likely resulted from students 

entering the school district after the first testing time point or exiting the district after that 

time point. Patterns of missing scores indicated that nearly all students who missed a testing 

time point also missed all subsequent testing time points and students who missed Time 1 

testing had continuous scores from the later time points following when they were first 

tested. Given that the data represent participation in typical school instruction rather than an 

experimental intervention, differential attrition and non-random missingness are not as 

significant of a concern as they would be in an experimental design.

Data Analysis

To address our research questions, we analyzed the data using LGC models (Duncan et al., 

2006; McArdle & Epstein, 1987; Muthén, 2004; Preacher, Wichman, MacCallum, & Briggs, 

2008). Because the Renaissance STAR assessments are vertically scaled, scores from 

students in Grades 1–5 could be included in the same models. The dataset and the cohort-

sequential research design presented complexities that required an analytical approach to the 

LGC model that could accommodate clustering at the school level (students within schools) 

as well as the multiple groups consisting of the overlapping cohorts. As a result, we 

implemented an aggregated analysis model (Muthén & Satorra, 1995; Stapleton, 2013) in 

which the standard errors and chi-squared statistics are adjusted for clustering and model 

parameters are estimated at the student level rather than the school (cluster) level. This 

approach was appropriate because our primary interest was in understanding growth at the 

student level rather than the school level while accounting for the dependence in the data 

that results from nesting students within schools (Stapleton, 2013). All models were run in 

MPlus v8.0 (Muthén & Muthén, 2017) using a TYPE = COMPLEX specifier for the model 

and full-information maximum likelihood (FIML) estimation to accommodate missing data.

As a first step in addressing Research Questions 1 and 2, we estimated unconditional models 

to determine the overall intercept and slope of math and reading scores across Grades 1–5 

and the overall fit of the models to the data. Next, covariates were added to the models to 

determine the effects of initial status (defined as the quartile of a student’s score in 

Renaissance STAR’s normative sample at Time 1) in math and reading and demographic 

characteristics on the latent math and reading slopes and intercepts. Growth in reading and 

math across Grades 1–5 was not constrained to be linear. Rather, slope loadings for the first 

and last time points were fixed in order to identify the model and slope loadings for the 

second through fifth time points were freely estimated (Duncan et al., 2006). Model fit was 

evaluated using the Comparative Fit Index (CFI; Hu & Bentler, 1990), and the Root Mean 

Square Error of Approximation (RMSEA; Browne & Cudeck, 1993) using criteria of CFI 

≥ .95 and RMSEA ≤ .08 as minimum standards for acceptable fit.

To address our third research question, effect sizes for each growth within each grade were 

calculated based on the raw data using means, standard deviations, sample sizes, and 

correlations between scores at each pair of testing occasions. These data were used to 
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compute Hedges’s g and its standard error. Effect sizes by grade also were calculated for 

disaggregated groups by ethnicity and SES. To better understand the way in which initial 

achievement level impacts achievement gaps over the two-year period, effect sizes also were 

calculated by Time 1 quartile for each cohort. The standard deviation for all participants was 

used in calculating effect sizes for all disaggregated groups to avoid inflating the effect size 

due to within-group homogeneity yielding smaller standard deviations for the disaggregated 

group than for the overall sample.

Unconditional Cohort Sequential Latent Growth Curve Models

The first step in estimating a latent growth curve model is to estimate an unconditional 

model. This model represents within-individual growth over time and does not include any 

covariates. A good fit for the unconditional model is required before a conditional model 

with covariates can be estimated. The unconditional models for reading and math were 

estimated with latent means, variances, and covariances constrained as equal across cohorts 

to determine the overall fit of the model (Duncan et al., 2006). The models are based on 

scores at six time points for the four cohorts in Grades 1–4 in Year 1 and Grades 2–5 in Year 

2. Figure 1 is a depiction of the model showing which of the 15 total time points across 

Grades 1–5 were represented by each cohort in the cohort-sequential design. Each cohort 

contributed data from three time points that overlap with the cohort before them, three that 

overlap with the cohort that follows them, or both (in the case of the Grade 2 and Grade 3 

cohorts). The overlapping data allows for the linking of the cohorts to estimate a single 

growth trajectory across Grades 1–5.

To improve model fit, residuals were freely estimated for the beginning-of-year time point 

for data for all six time points in the math model and in the first three time points only in the 

reading model; the remaining residuals were fixed as equal. The resulting models had good 

fit for both reading (CLI = .99; RMSEA = .06, 90% CI = .06 - .07) and math (CLI = .99; 

RMSEA = .06, 90% CI = .06 - .07). Given the large sample size, the chi-squared tests of fit 

for both unconditional models were statistically significant (χ2 (56) = 366.97, p < .001 for 

reading; χ2 (57) = 429.09, p < .001 for math). Because only the first and last slope loadings 

were fixed in the unconditional model, the developmental curve for the longitudinal growth 

trend (based on the freely estimated loadings for the remaining time points) was allowed to 

be non-linear and assume the shape that provided the best fit to the data. As shown in Figure 

2, the shape of the developmental trends in reading and math based on the model-predicted 

means were non-linear and quite similar to the shape of the developmental trend based on 

the actual means. This correspondence and the fit of the unconditional model with equality 

constraints across cohorts indicates that the cohort-sequential LGC model likely provides a 

true representation of the longitudinal growth curve and that the cohorts are members of the 

same longitudinal population (Duncan et al., 2006).

Not surprisingly, the mean slopes were statistically significant for both reading and math, 

showing that significant growth in both math and reading occurred between Grades 1 and 5. 

The statistically significant and negative covariance between the latent intercept and slope 

estimated in the unconditional model in math indicated that students with lower scores at 

Time 1 grew at a faster rate over time than students with higher scores at Time 1. The 
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covariance between the latent intercept and slope was negative but not significantly different 

from zero in the reading model. The variances of the latent means and intercepts in both 

math and reading were statistically significant, meaning that between-student differences 

existed in initial status and growth over time that might be explained by introducing 

covariates into the models. See Table 3 for the parameter estimates for the unconditional 

math and reading LGC models.

Conditional Latent Growth Curve Models

To attempt to explain the inter-individual differences found in the unconditional models and 

to address our research questions, covariates were added to the math and reading models as 

predictors of the latent slopes and intercepts. In the resulting conditional math and reading 

models, we included students’ quartile at Time 1 (fall of Year 1) based on the Renaissance 

STAR’s normative sample for the reading and math assessments. Quartile was coded 0 = 

25th percentile and below, 1 = 26th-50th percentile, 2 = 51st-75th percentile, 3 = above the 

75th percentile. Although we were interested in quartile at Time 1 as a predictor of slope 

(growth over time), it was included as a predictor of intercept as well in order to improve 

model fit. Other covariates included in the models as predictors of the slopes and intercepts 

were gender (0 = male), ethnicity (0 = White), and free or reduced lunch (FRL) status as a 

proxy for SES (0 = did not receive FRL). The models were run first with all covariates 

predicting the slope and intercept. Next, covariates with coefficients where p ≥ .10 were 

dropped from the models one at a time starting with the covariate with the smallest 

coefficient until all remaining covariates had p values below .10, following a procedure 

similar to that used by Duncan et al. (2006). We do not consider covariates with coefficients 

where p ≥ .05 to be statistically significant predictors of the latent intercept or slope. 

However, we retained these covariates in the models in an attempt to explain as much 

variance as possible in the latent intercepts and slopes. Math quartile was included in the 

reading model and reading quartile in the math model to determine if math quartile predicted 

the reading intercept (and vice-versa) and how initial status in one area affected growth 

(slope) in the other.

The final conditional model for reading had excellent fit (CLI = .99; RMSEA = .06, 90% CI 

= .05 - .06), as did the conditional model for math (CLI = .99; RMSEA = .05, 90% CI = .05 

- .06). As with the unconditional models, the chi-squared tests of fit for the conditional 

models were statistically significant for both reading (χ2 (145) = 732.20, p < .001) and math 

(χ2 (146) = 676.14, p < .001). See Table 4 for coefficients, standard errors, and p values for 

all covariates included in the conditional models. The percentage of variance accounted for 

in the latent reading and math intercepts and slopes varied. For the latent reading intercept, 

r2 values ranged from .73 (Grade 1 cohort) to .88 (Grade 4 cohort). For the latent reading 

slope, r2 ranged from .08 (Grade 2 cohort) to .19 (Grade 2 cohort). In the math model, the 

percentage of variance accounted for in the latent intercept was similar across cohorts, r2 

= .90 to .91, but varied for the latent slope, with r2 values ranging from .25 (Grade 4 cohort) 

to .47 (Grade 1 cohort).

Initial status.—Inverse relations were evident between math quartile at the beginning of 

Year 1 and math slope as well as reading quartile at the beginning of the Year 1 and reading 
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slope, with the effect of initial status being larger in math than in reading. Standardized 

coefficients ranged from −.10 to −.33 for reading and −.60 to −.79 for math. Additionally, 

inverse relations between intercept and slope were found in both models (with standardized 

coefficients ranging from −.18 to −.55 for reading and −.28 to −.44 for math; in the Grade 1 

cohort the coefficient was non-significant). These findings mean that students with lower 

scores at Time 1 grew at a faster rate over two school years than those with higher initial 

scores. However, math quartile was a positive predictor of reading slope and reading quartile 

was a positive predictor of math slope, indicating that students who started out with greater 

proficiency in one domain tended to grow at a somewhat faster rate in the other domain.

Demographic variables.—The three demographics variables included in the models had 

small effects on math and reading slopes and, to a more limited extent, intercepts. SES had 

the largest and most consistent effect on slope of growth in math and reading. Standardized 

coefficients ranged from −.12 to −.22 for the effect of SES on reading growth and −.09 to 

−.20 for math growth, though SES was not a significant predictor of reading slope in the 

Grade 3 cohort. The negative coefficients indicated that students of lower SES grew more 

slowly than higher SES students. Low SES was associated with lower reading intercept in 

the Grade 3 (β = −.04) and Grade 4 (β = −.06) cohorts and lower math intercept in the Grade 

3 cohort (β = −.03), indicating that low SES students in these grades started out with weaker 

reading and math skills.

Being of an ethnicity other than White was associated with slower growth in reading, with 

standardized coefficients ranging from −.07 to −.13, and math, with coefficients ranging 

from −.06 to −.17. Ethnicity was not a significant predictor of math or reading intercept, 

indicating that students of all ethnicities had similar levels of initial achievement. Gender 

had a very small but statistically significant effect on reading intercept in the Grade 1 cohort 

(β = .05), with girls having higher intercepts, but no effect on reading slope. Gender had a 

significant effect on math intercept in the Grade 3 cohort only (β = −.03), with boys having 

higher intercepts. However, gender predicted math slope in the Grade 1, 2, and 4 cohorts, 

with boys growing more quickly (β = −.07 to −.13).

Effect Sizes for Within- and Across-Grade Growth

Effect sizes were calculated for growth in each grade for all students across cohorts. As 

expected based on previous research, effect sizes decreased as students progressed through 

elementary school. The effect size for reading growth declined from g = 1.37 in Grade 1 to g 
= 0.50 in Grade 5. In math, growth declined from g = 1.93 to g = 0.73. Effect sizes for 

within-year growth indicated that more growth occurred from the start of the year to mid-

year than from mid-year to end-of-year time points, particularly in math. See Table 5 for 

effect sizes by grade.

Effect sizes by initial status.—In order to examine the magnitude of math and reading 

growth based on students’ initial level of achievement, we calculated effect sizes separately 

for students in each cohort based on the quartile of their score at Time 1. These effect sizes 

represent their growth within and across their two academic years of participation in the 

study. Based on the findings of the LGC model, we expected that effect sizes for growth 
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over time would be larger for students who were in the bottom quartiles of the normative 

distribution at Time 1 than for students with average to above-average proficiency at Time 1. 

This pattern generally held for reading (except for Grade 1) and tended to occur in Year 1 

more often than Year 2 for each cohort. The differences were larger and more consistent in 

math than reading. In the Grade 1 and Grade 2 cohorts, the difference in effect sizes for two 

years of math growth for students in the lowest quartile compared to those in the highest 

quartile exceeded 1 SD in favor of students with lower initial achievement. See Table S5 in 

the online supplement for effect sizes by initial status.

Effect sizes by demographic variables.—Effect sizes in reading for the first half of 

Grade 1 differed by 0.26 SD between students of higher and lower SES. In later grades, 

differences in reading growth between lower and higher SES students were smaller in 

magnitude. Differences in growth between White students and students of other ethnicities 

followed a similar pattern, with the largest differences seen in Grade 1. Reading growth was 

0.41 SD greater across Grade 1 for students with higher SES, but differences across Grades 

2–4 ranged from 0.14 to 0.10 SD and no difference was found in Grade 5. For White 

students compared to students of other ethnicities, reading growth was 0.28 SD greater in 

Grade 1. That difference narrowed to 0.12 in Grade 2, and ranged from 0.04 to 0.09 in 

Grades 3–5.

In math, differences in the magnitude of growth favored students of higher SES across 

Grades 1 and 2 by 0.16 SD, but were 0.05 or less for older students. Growth differed most 

for White students and students of other ethnicities in Grades 1 and 4, amounting to 0.10 SD 

more growth for White students in Grade 1 and 0.11 SD in Grade 4. In other grades, the gap 

in magnitude of math growth was small, amounting to 0.05 SD or less. Table S6 in the 

online supplement contains the effect sizes for reading and math growth by SES and 

ethnicity.

To determine the extent to which membership in demographic groups overlapped with initial 

status, we examined the percentage of students in the lowest quartile at Time 1 that had low 

SES and that were of an ethnicity other than White. Results of chi-squared tests indicated 

statistically significant disproportionality of membership in the lowest quartile for reading 

by students of low SES and non-White ethnicity in each grade. However, no statistically 

significant differences in proportionality of membership in the lowest quartile for math was 

found based on SES or ethnicity for any grade. See Table S7 in the online supplement for the 

demographic characteristics of students in each quartile at Time 1.

Discussion

Given the evidence that achievement gaps have persisted despite concerted efforts to 

ameliorate them, our objective in undertaking this study was to describe the pattern of 

students’ growth in math and reading across Grades 1–5 in order to aid researchers and 

practitioners in better understanding when these gaps appear and how they may change over 

time. By documenting the effectiveness of typical instruction and factors that relate to 

differences in effectiveness, we also intended to contribute to the research on ways to 

ameliorate achievement gaps. Effect sizes for typical growth based on students’ initial 

Scammacca et al. Page 15

J Educ Psychol. Author manuscript; available in PMC 2021 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



achievement level can aid researchers in understanding the effect sizes that interventions for 

these students need to achieve to raise achievement for students with low levels of reading 

and math skills. To that end, we investigated how students’ initial level of achievement, SES, 

and ethnicity affected growth.

Effects of Initial Status on Reading and Math Growth

Our first research question sought to determine the ways in which rates of growth in reading 

and math varied for students who started out in the lowest quartile. This line of inquiry 

related to previous research documenting three patterns of growth: a) the Matthew effect, in 

which gaps widen over time between students with higher and lower initial achievement; b) 

a compensatory pattern, in which gaps between these groups narrow over time; and c) a 

pattern of stable differences that maintains achievement gaps over time. Findings from the 

LGC model indicated that initial status predicted growth pace in both math and reading. 

Students who started the year with scores in the lower quartiles grew at a more rapid rate 

across the school year than students with higher initial scores.

Pattern of reading growth.—Despite the accelerated pace of reading growth of students 

with low initial achievement, the increase was not sufficient to raise their achievement to 

meet that of average students after two years of instruction. The mean reading scores for 

students in Quartile 1 indicated that they did move out of the bottom quartile, with end of 

Grade 2 average scores near the 45th percentile, end of Grade 3 near the 35th percentile, end 

of Grade 4 near the 30th percentile, and end of Grade 5 slightly above the 25th percentile. 

However, based on these results, achievement gains for older students with low initial scores 

did not close the gap for them as much as for younger students. Figure 3 depicts the 

trajectory of reading scores over time for students in each quartile. Despite faster growth, the 

mean end-of-year reading score in Year 1 for students who started out in Quartile 1 was 

below the beginning-of-year mean score for students in Quartile 4. These differences 

worsened for older students; by Grade 4, students who began the year with reading scores in 

Quartile 1 ended the year with lower reading scores than the beginning-of-year scores for 

students in Quartiles 2, 3, and 4. After two school years, students whose initial scores were 

in Quartile 1 had lower reading scores than those achieved after only one school year by 

students with higher initial scores.

Although the accelerated pace of growth for students with low initial achievement seen in 

our findings showed some alignment with the compensatory pattern of growth, the 

magnitude of the differences in reading scores between groups after one and two years of 

instruction suggested the predominant pattern was one of stable differences that maintained 

achievement gaps over time. Pfost et al.’s (2014) review of longitudinal studies of reading 

growth noted that measures of reading skills affected by floor and ceiling effects and 

measures they rated as lower in quality were more likely to show decreasing patterns of 

differences than measures without these limitations. Because the Renaissance STAR tests 

are computer-adaptive and norm-referenced, they are less prone to ceiling and floor effects. 

The tests have been rated as having “convincing evidence” for their reliability and validity 

by the National Center on Intensive Intervention (2018). As a high-quality measure, results 

from the Renaissance STAR reading may be more sensitive to detecting a pattern of stable 
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differences between students with low and high initial achievement. Shulte et al. (2016) also 

found a pattern of stable differences in reading among older elementary students using a 

high-quality measure. In their study, students with learning disabilities grew at a faster pace 

in reading compared to general education students from Grades 3 to 5, but significant 

differences in achievement remained evident. Our findings are similar in that the accelerated 

growth of students with low achievement did not produce a compensatory effect that was 

sufficient to produce a meaningful reduction in the achievement gap.

Studies that have found a compensatory pattern, such as Rambo-Hernandez and McCoach 

(2015) and Huang et al. (2014), showed that slower growth among students with high 

achievement was a factor in reducing the gap. Although students in the highest quartile in 

our study did grow more slowly than students in the lowest quartile, the difference was not 

of sufficient size to allow the lower-achieving students to close the gap to a meaningful 

extent. One reason for the difference in findings is the way in which low achievement was 

defined. Huang et al.’s low-achieving students scored on average at the 16th percentile at the 

end of kindergarten; Most of the lower-achieving students in Rambo-Hernandez and 

McCoach scored at or above the 16th percentile. In the present study, students in the lowest 

quartile in each grade had an average score that was below the 10th percentile. As a result, it 

appears that a compensatory pattern of growth may be less likely to occur among students 

with such low initial reading scores.

Patterns of math growth.—As with reading, the pattern of growth in math showed that 

students with low initial achievement remained well below their classmates with higher 

initial achievement despite having faster rates of growth. End of Grade 2 mean scores for 

Quartile 1 students neared the 33rd percentile, end of Grade 3 neared the 40th percentile, end 

of Grade 4 neared the 33rd percentile, and end of Grade 5 neared the 23rd percentile. As 

shown in Figure 4, at the end of Year 1, Quartile 1 students in all grades had mean math 

scores that were below the beginning-of-year scores for students in Quartile 4. At the end of 

two years of instruction, students who were in Quartile 1 in Year 1 had lower math scores 

than students in Quartile 4 after one year of instruction. As with reading, the gap widened 

for older students. Students in Quartile 1 at the start of Grades 3 and 4 had scores after two 

years that were lower than those of students in Quartiles 2, 3, and 4 after one year.

As in reading, our findings regarding growth in math for students with low initial 

achievement conformed to a pattern of stable differences. This pattern was found in many of 

the studies in Nelson and Powell’s (2018) review of research on achievement gaps in math, 

where achievement gaps were maintained over time. However, some longitudinal studies of 

math growth over time have found that students with math difficulties grow at a slower rate 

in the elementary grades than students with average or better math skills (Jordan et al., 2002; 

Morgan et al., 2009; Shulte & Stevens, 2015; Wei et al., 2012). The difference in our 

findings for rate of growth may be related to the way in which math disabilities were defined 

in the samples in these studies. We defined low-achieving students based on their scores at 

the beginning of two years of instruction rather than using a diagnosis of math disability. 

Fuchs et al. (2015) found that fourth-grade students with low initial achievement grew at a 

rapid rate when provided with a fractions intervention. However, their results indicated that 

the achievement gap widened over the three-year period of their study because the 
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performance of typical-achieving fourth-grade students increased year-over-year with the 

introduction of an improved BAU curriculum. The schools in the district that supplied the 

data for our study, like many across the country, also provided interventions intended to raise 

the achievement of students with low initial scores. Thus, our results and those of Fuchs et 

al. demonstrated that even with intervention and a faster rate of growth, catching up with 

their classmates may be increasingly difficult for students with low initial achievement.

Differences in math and reading results.—Although we did not pose a research 

question regarding differences in patterns of growth and initial status in math and reading, 

the results of the two models presented some interesting comparative results. In discussing 

these findings, it is important to note that the scoring scale for the STAR Reading and STAR 

Math assessments are not equivalent. Thus, no direct comparison of mean scores or of the 

latent intercepts can be made across the two tests. However, latent slopes and predictors in 

the two models can be compared. In doing so, it is clear that initial status had a more 

pronounced influence on math growth than on reading growth. The coefficients for the 

predictive effects of math quartile on math slope were considerably larger than those for the 

effect of reading quartile on reading growth. Differences in effect sizes for growth between 

students in the lowest quartile and those in the highest quartile also were greater for math 

than for reading. Gender, which was included as a predictor in both models, had a 

statistically significant (though small) effect only on math growth, favoring boys in all but 

one cohort. Finally, the percentage of variance accounted for in the math slope (25%−47%) 

was considerably larger than for the reading slope (8%−19%). In considering these findings, 

we are cautious about offering definitive interpretations. Bailey, Duncan, Watts, Clements, 

and Sarama (2018) noted that longitudinal analyses like the present study often find stronger 

correlations between early and later achievement and between reading and math skills than 

is seen in experimental studies that control for confounding variables. These differences and 

the role of math achievement in predicting reading achievement and vice-versa merit further 

investigation in experimental contexts.

Effect of Demographic Characteristics on Initial Status and Growth

Given previous research that has documented achievement gaps based on race/ethnicity and 

SES, our second research question addressed the role of these demographic characteristics in 

predicting students’ initial scores (intercept) and rate of growth (slope) in math and reading. 

The LGC models indicated that demographic variables had small effects on students’ initial 

reading and math scores and pace of growth over two years of instruction. Like Clotfelter et 

al. (2012), we found small effects for ethnicity when SES was included as a covariate. Low 

SES was a significant predictor of lower Time 1 scores in reading in Grades 3 and 4 and 

predicted pace of growth in reading in all but Grade 3. In math, low SES predicted lower 

Time 1 scores only for Grade 3 and had a small effect on growth in math over time across all 

grades. Our findings are similar to Cameron et al. (2015), who also found that low SES 

predicted slower growth in reading and math. Burnett and Farkas (2009) reported a stronger 

negative effect for low SES on math scores in children under age 10 than was found in our 

data. However, their models did not include initial status or other demographic variables. 

Findings from studies such as Reardon and Portilla (2016) that included initial status showed 

that it had a larger role in achievement than SES, as was found in our study. However, it can 
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be difficult to disentangle the effect of SES from the effect of low initial status on later 

achievement. We encountered this difficult in examining reading in our dataset, where 

students with low SES were over-represented in the lowest quartile at Time 1 in reading 

(though not in math).

The small effects for gender indicating that boys grew at a faster rate than girls in math in 

Grades 1, 2, and 4 were unexpected. Recent studies on gender differences in math 

achievement in the U.S. generally have shown that girls and boys have similar levels of math 

achievement in the elementary grades and have pointed to psychosocial factors such as 

attitude toward math and math anxiety to explain the disparity in the number of men and 

women who pursue advanced coursework in math and math-related careers (Geary et al., 

2019; Gunderson, Ramirez, Levine, & Beilock, 2012). However, our findings suggest that 

examining math achievement scores over time for gender differences in pace of growth may 

be warranted. It may be that girls and boys arrive at equality in math achievement through 

growth that follows differing patterns. If our findings replicate to other datasets, these 

patterns may indicate opportunities for educators to shape girls’ attitudes toward math for 

the better.

Differences in Effect Sizes Across Grades

Our third research question focused on investigating differences in effect sizes based on 

grade level. Effect sizes for each grade indicated that growth in both reading and math is 

reduced in magnitude with each advancing grade. This finding held true when looking at 

effect sizes across all levels of initial status and all demographic groups. Effect sizes were 

consistently smaller as students advanced, and effect sizes for reading shrunk more quickly 

than those for math. These findings echo those from other longitudinal studies that also have 

indicated that the pace of growth slows in elementary school, with reading growth slowing 

more than math growth (Baumert et al. 2012; Cameron et al., 2015; Lee, 2010). Cameron et 

al. suggested that the pattern results from a rapid acquisition of foundational skills in early 

grades followed by a slower process of building knowledge on that foundation in later 

grades. The pace of reading growth may slow as students move from learning to read in the 

primary grades to reading to learn content knowledge in upper elementary grades and 

beyond. Lee (2010) noted that math concepts become increasingly complex as students 

progress through school, taking more time to master and potentially explaining the slowing 

pace of growth. A convincing explanation for the difference in trajectories of reading growth 

compared to math growth has not been offered by the researchers who have studied these 

patterns. However, our findings add support to the literature suggesting that grade level is 

one important context to consider when interpreting the magnitude of treatment effects from 

instructional programs (Bloom et al., 2012; Scammacca et al., 2015a). Programs focused on 

younger students likely will have larger effects than those for older students as a result of the 

slowed pace of growth among students of all ability levels.

Interestingly, the magnitude of the effect sizes for growth in each grade and the differences 

in the magnitude of effects for growth based on initial status differs from previous research 

based on cross-sectional calculations of growth based on the normative samples of 

standardized assessments. Two studies have reported effect sizes computed in this way for 
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growth over one calendar year for students in Grades 1–5. Bloom et al. (2008) reported 

effect sizes for the mean of the distribution from seven reading and math assessments. 

Scammacca et al. (2015a) reported that effect sizes for students at the 10th and 25th 

percentiles and at the median from five reading assessments and four math assessments. 

Effect sizes from the two publications were similar and Scammacca et al. found that effect 

sizes were roughly equivalent across the ability distribution. However, the effect sizes for 

reading and math in each grade in both studies were somewhat smaller than those calculated 

in this study. In most cases, the effect sizes were within the 95% confidence intervals 

reported by Bloom et al. and Scammacca et al. The difference in findings may result from 

the use of cross-sectional data versus longitudinal data here. Additionally, both Bloom et al. 

and Scammacca et al. computed effect sizes based on one calendar year of growth (from 

spring of one grade to spring of the following grade). Therefore, their effect sizes included 

summer, when some learning loss may have occurred. However, additional longitudinal 

research using a nationally representative sample of students is needed to bring clarity to the 

magnitude of effects from typical instruction in reading and math.

Implications for Research

Given that students with low initial math and reading scores remained below the 40th 

percentile after two years of instruction and supplemental intervention, more research is 

needed to develop interventions that can produce greater acceleration of growth. In 

particular, students in Grades 3 and 4 who score in the bottom quartile at the beginning of 

the school year require strong doses of reading and math interventions if they are to emerge 

from the bottom third of the normative distribution. The effect sizes for growth over time in 

our results can inform research regarding the magnitude of effects that need to be observed 

from these interventions to improve reading and math skills enough to begin closing 

achievement gaps.

Our findings on the faster growth pace of students with low initial status add to the growing 

literature (Fuchs et al., 2015; Lemons et al., 2012; Scammacca et al., 2015b) on the ways in 

which BAU instruction and school-provided interventions have evolved to provide a more 

efficacious comparison condition to experimental interventions. Given that schools must 

provide evidence-based instruction, researchers testing a new intervention against a BAU 

intervention are often actually comparing alternative treatments—testing two competing 

approaches to remediation rather than testing the effect of additional instruction, as was 

more often the case in decades past. Indeed, as Vaughn et al. (2016) pointed out, the 

treatment versus comparison contrast is better framed as a contrast between school-provided 

and researcher-provided intervention. When possible, researchers should request data on 

student growth in the year or two before their study begins to determine a baseline for 

growth in the absence of their intervention. Acquiring baseline data provides additional 

options for analyzing results from treatment studies to determine if the new intervention is 

more effective than the remediation efforts in place under BAU instruction.

Additionally, researchers should document the instructional practices in the BAU condition 

and assess the extent to which instruction in the treatment conditions varies from the 

comparison condition as part of assessing fidelity of implementation of the treatment 
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(Roberts, Scammacca-Lewis, Fall, & Vaughn, 2017). By doing so, researchers can determine 

which elements of the treatment differentiate it from BAU and which are common to both, 

highlighting what aspects of the treatment might account for larger effects if such effects are 

observed. Using the same observation tool to document instructional practices allows 

researchers to measure both adherence to the experimental treatment’s protocol and the 

distinctive aspects of the treatment compared to BAU instruction. Examples of taking this 

approach to monitoring fidelity exist in the literature (e.g. Denton et al., 2010; Fogerty et al., 

2014; Wolgemuth et al., 2014).

Implications for Practice

The results of this study of reading and math growth patterns can inform school 

policymakers and practitioners as well. Our results suggest that low-performing students 

may benefit from the universal screening, repeated progress monitoring, and interventions 

provided to them. The district that provided the data requires that schools deliver 

interventions to students with low proficiency as determined in part by the results of the 

Renaissance STAR assessments. However, district leaders do not prescribe a specific 

program or curriculum that schools must use. Therefore, the accelerated growth seen among 

students with low initial status may represent an indicator of effectiveness across programs 

and curriculum. Although this study was observational in nature and did not compare the 

effects of screening, progress monitoring, and intervention to the absence of these 

instructional practices, to the extent that our results generalize to other districts with similar 

practices, the data indicated that these efforts may play a part in accelerating growth for 

struggling students.

Despite screening, progress monitoring, and intervention, however, the data showed that at 

the end of one and two school years, large differences in proficiency remained between 

students who started out in the bottom quartile and those who started out with higher 

achievement. The fact that low achievement relative to norms persisted over two years for 

Quartile 1 students despite intervention provides evidence for the magnitude by which 

efforts to close achievement gaps must accelerate growth for these students.

Limitations to Address in Future Research

The primary limitation of our findings is that they represent a single school district. Data 

from other districts that implement Renaissance STAR or similar triannual assessment 

programs should be analyzed in the future to determine if the parameters reported here 

replicate with students in other districts. In particular, analyzing data from districts with 

greater racial and ethnic diversity and with a larger percentage of students with special 

education status and English language learner status would allow for additional covariates to 

be included in the LGC models and for percentile rank at Time 1 to be defined with greater 

specificity.

Additionally, regression to the mean—the tendency for scores at the high and low end of the 

distribution at one time point to be closer to the mean at a later time point—remains a threat 

to the validity of our findings regarding the growth rates of students with high and low initial 

status. Given that the Renaissance STAR assessments are vertically scaled computer-
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adaptive assessments, ceiling effects are less likely to limit our findings for high-achieving 

students. However, measurement error exists in every assessment and always presents a 

limitation to the validity of results. Assessing growth using other standardized, vertically 

scaled measures at multiple points across multiple academic years would provide 

information on the extent to which the results replicate when different assessments are used.

Conclusion

Our findings underscore the reality that achievement gaps, particularly between students of 

higher and lower SES, continue to plague the U.S. education system. Students who enter 

elementary grades with low achievement remain well behind typical and high-achieving 

students despite learning at faster rates, particularly in the upper elementary grades. 

Interventions may accelerate growth, but do not appear to be powerful enough presently to 

result in raising their achievement to that of average students. As researchers continue to 

work to develop, implement, and evaluate new approaches to helping these students catch up 

to their peers, further study of the magnitude of growth observed from typical instruction 

can help to benchmark the gains that are needed to see real progress.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

This research was supported by grant R305A150407 from the Institute of Education Sciences, U.S. Department of 
Education to The University of Texas at Austin and by grant P50 HD052117 from the Eunice Kennedy Shriver 
National Institute of Child Health and Human Development to The University of Texas at Austin. The content is 
solely the responsibility of the authors and does not necessarily represent the official views of the Eunice Kennedy 
Shriver National Institute of Child Health and Human Development, the National Institutes of Health, the Institute 
of Education Sciences, or the U.S. Department of Education.

References

Aikens NL, & Barbarin O (2008). Socioeconomic differences in reading trajectories: The contribution 
of family, neighborhood, and school contexts. Journal of Educational Psychology, 100, 235–251. 
doi:10.1037/0022-0663.100.2.235

Bailey DH, Duncan GJ, Watts T, Clements DH, & Sarama J (2018). Risky business: Correlation and 
causation in longitudinal studies of skill development. The American Psychologist, 73, 81–94. 
doi:10.1037/amp0000146 [PubMed: 29345488] 

Baumert J, Nagy G, & Lehmann R (2012). Cumulative advantages and the emergence of social and 
ethnic inequality: Matthew effects in reading and mathematics development within elementary 
schools?. Child Development, 83, 1347–1367. doi:10.1111/j.1467-8624.2012.01779.x [PubMed: 
22616792] 

Bloom HS, Hill CJ, Black AR, & Lipsey MW (2008). Performance trajectories and performance gaps 
as achievement effect-size benchmarks for educational interventions. Journal of Research on 
Educational Effectiveness, 1, 289–328. doi:10.1080/1934574080240072.

Browne MW & Cudeck R (1993). Alternative ways of assessing model fit In Bollen KA & Long JS 
[Eds.] Testing structural equation models. Newbury Park, CA: Sage, 136–162.

Burnett K, & Farkas G (2009). Poverty and family structure effects on children’s mathematics 
achievement: Estimates from random and fixed effects models. The Social Science Journal, 46, 
297–318. doi:10.1016/j.soscij.2008.12.009

Scammacca et al. Page 22

J Educ Psychol. Author manuscript; available in PMC 2021 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Cameron CE, Grimm KJ, Steele JS, Castro-Schilo L, & Grissmer DW (2015). Nonlinear Gompertz 
curve models of achievement gaps in mathematics and reading. Journal of Educational Psychology, 
107, 789–804. doi:10.1037/edu0000009

Clotfelter CT, Ladd HF, & Vigdor JL (2012). New destinations, new trajectories? The educational 
progress of Hispanic youth in North Carolina. Child Development, 83, 1608–1622. doi:10.1111/
j.1467-8624.2012.01797.x [PubMed: 22966926] 

Cohen J (1988). Statistical power analysis for the behavioral sciences. Hillsdale, NJ: Lawrence 
Erlbaum.

Cole DA, Maxwell SE, Martin JM, Peeke LG, Seroczynski AD, Tram JM, … Maschman T (2001). 
The development of multiple domains of child and adolescent self-concept: A cohort sequential 
longitudinal design. Child Development, 72, 1723–1746. doi:10.1111/1467-8624.00375 [PubMed: 
11768142] 

Denton C, Nimon K, Mathes P, Swanson E, Kethley C, Kurz T, & Shih M (2010). Effectiveness of a 
supplemental early reading intervention scaled up in multiple schools. Exceptional Children, 76, 
394–416. doi:10.1177/001440291007600402

Duncan T, & Duncan S (1994). Modeling incomplete longitudinal substance use data using latent 
variable growth curve methodology. Multivariate Behavioral Research, 29, 313–338. doi:10.1207/
s15327906mbr2904_1 [PubMed: 26745232] 

Duncan T, Duncan S, & Strycker L (2006). An introduction to latent variable growth curve modeling: 
Concepts, issues, and application, (2nd ed.). Mahwah, NJ: Lawrence Erlbaum Associates.

Fogarty M, Oslund E, Simmons D, Davis J, Simmons L, Anderson L, & … Roberts G (2014). 
Examining the effectiveness of a multicomponent reading comprehension intervention in middle 
schools: A focus on treatment fidelity. Educational Psychology Review, 26, 425–449. doi:10.1007/
s10648-014-9270-6

Fuchs LS, Fuchs D, Compton DL, Wehby J, Schumacher RF, Gersten R, & Jordan NC (2015). 
Inclusion versus specialized intervention for very-low-performing students: What does access 
mean in an era of academic challenge? Exceptional Children, 81, 134–157. 
doi:10.1177/0014402914551743

Geary DC, Hoard MK, Nugent L, Chu F, Scofield JE, & Ferguson Hibbard D (2019). Sex differences 
in mathematics anxiety and attitudes: Concurrent and longitudinal relations to mathematical 
competence. Advance online publication. Journal of Educational Psychology. doi:10.1037/
edu0000355

Gunderson EA, Ramirez G, Levine SC, & Beilock SL (2012). The role of parents and teachers in the 
development of gender-related math attitudes. Sex Roles, 66, 153–166. doi:10.1007/
s11199-011-9996-2

Hansen N, Jordan NC, & Rodrigues J (2017). Identifying learning difficulties with fractions: A 
longitudinal study of student growth from third through sixth grade. Contemporary Educational 
Psychology, 50, 45–59. doi:10.1016/j.cedpsych.2015.11.002

Hill CJ, Bloom HS, Black AR, & Lipsey MW (2008). Empirical benchmarks for interpreting effect 
sizes in research. Child Development Perspectives, 2, 172–177. doi:10.1111/
j.1750-8606.2008.00061.x

Hu L, & Bentler PM (1999). Cutoff criteria for fit indexes in covariance structure analysis: 
Conventional criteria versus new alternatives. Structural Equation Modeling: A Multidisciplinary 
Journal, 6, 1–55. doi:10.1080/10705519909540118

Huang FL, Moon TR, & Boren R (2014). Are the reading rich getting richer? Testing for the presence 
of the Matthew effect. Reading & Writing Quarterly: Overcoming Learning Difficulties, 30, 95–
115. doi:10.1080/10573569.2013.789784

Jordon NC, Kaplan D, & Hanich LB (2002). Achievement growth in children with learning difficulties 
in mathematics: Findings of a two-year longitudinal study. Journal of Educational Psychology, 94, 
586–597. doi:10.1037//0022-0663.94.3.586

Judge S, & Watson SMR (2011). Longitudinal outcomes for mathematics achievement for students 
with learning disabilities. The Journal of Educational Research, 104, 147–157. 
doi:10.1080/00220671003636729

Scammacca et al. Page 23

J Educ Psychol. Author manuscript; available in PMC 2021 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Lee J (2010). Tripartite growth trajectories of reading and math achievement: Tracking national 
academic progress at primary, middle, and high school levels. American Educational Research 
Journal, 47, 800–832. doi:10.3102/0002831210365009

Lee K, Bull R, & Ho RMH (2013). Developmental changes in executive functioning. Child 
Development, 84, 1933–1953. doi:10.1111/cdev.12096 [PubMed: 23550969] 

Lemons CJ, Fuchs D, Gilbert JK, & Fuchs LS (2014). Evidence-based practices in a changing world: 
Reconsidering the counterfactual in education research. Educational Researcher, 43, 242–252. 
doi:10.3102/0013189X14539189

Lu Y (2016). Modeling math growth trajectory: An application of conventional growth curve model 
and growth mixture model to ECLS K-5 data. Journal of Educational Issues, 2, 166–184.

McArdle JJ, & Epstein D (1987). Latent growth curves within developmental structural equation 
models. Child Development, 58, 110–133. doi:10.1111/j.1467-8624.1987.tb03494.x [PubMed: 
3816341] 

McArdle JJ, Ferrer-Caja E, Hamagami F, & Woodcock RW (2002). Comparative longitudinal 
structural analyses of the growth and decline of multiple intellectual abilities over the life span. 
Developmental Psychology, 38, 115–142. doi:10.1037/0012-1649.38.1.115 [PubMed: 11806695] 

McNamara JK, Scissons M, & Gutknecth N (2011). A longitudinal study of kindergarten children at 
risk for reading disabilities: The poor really are getting poorer. Journal of Learning Disabilities, 
44, 421–430. doi:10.1177/0022219411410040 [PubMed: 21772059] 

Morgan PL, Farkas G, & Wu Q (2009). Five-year growth trajectories of kindergarten children with 
learning difficulties in mathematics. Journal of Learning Disabilities, 42, 306–321. 
doi:10.1177/0022219408331037 [PubMed: 19299551] 

Muthén B (2004). Latent variable analysis: Growth mixture modeling and related techniques for 
longitudinal data In Kaplan D The SAGE handbook of quantitative methodology for the social 
sciences (pp. 346–369). : SAGE Publications, Inc. doi: 10.4135/9781412986311

Muthén LK & Muthén BO (1998–2015). Mplus User’s Guide, (7th ed). Los Angeles, CA: Muthén & 
Muthén.

Muthén B & Satorra A (1995). Complex sample data in structural equation modeling. Sociological 
Methodology, 25, 216–316. doi:10.2307/271070

National Center on Intensive Intervention. (2018, 10). Academic progress monitoring tools chart. 
Retrieved from https://charts.intensiveintervention.org/chart/progress-monitoring

Nelson G, & Powell SR (2018). A systematic review of longitudinal studies of mathematics difficulty. 
Journal of Learning Disabilities, 51, 523–539. doi:10.1177/0022219417714773 [PubMed: 
28613104] 

Pfost M, Hattie J, Dörfler T, & Artelt C (2014). Individual differences in reading development: A 
review of 25 years of empirical research on Matthew effects in reading. Review of Educational 
Research, 84, 203–244. doi:10.3102/0034654313509492

Phillips M, & Chin T (2004). How families, children, and teachers contribute to summer learning and 
loss In Borman GD, Boulay M, Borman GD, Boulay M (Eds.), Summer learning: Research, 
policies, and programs (pp. 255–278). Mahwah, NJ, US: Lawrence Erlbaum Associates 
Publishers.

Preacher KJ, Wichman AL, MacCallum RC, & Briggs NE (2008). Quantitative applications in the 
social sciences: Latent growth curve modeling. Thousand Oaks, CA: SAGE Publications, Inc. doi: 
10.4135/9781412984737

Rambo-Hernandez KE, & McCoach DB (2015). High-achieving and average students’ reading growth: 
Contrasting school and summer trajectories. The Journal of Educational Research, 108, 112–129. 
doi:10.1080/00220671.2013.850398

Reardon SF (2011). The widening academic achievement gap between the rich and the poor: New 
evidence and possible explanations In Duncan GJ & Murnane RJ (Eds.), Whither opportunity? 
Rising inequality, schools, and children’s life chances. Russell Sage Foundation Retrieved from 
http://www.jstor.org/stable/10.7758/9781610447515

Reardon SF (2013). The widening income achievement gap. Educational Leadership, 70, 10–16.

Scammacca et al. Page 24

J Educ Psychol. Author manuscript; available in PMC 2021 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://charts.intensiveintervention.org/chart/progress-monitoring
http://www.jstor.org/stable/10.7758/9781610447515


Reardon SF, & Galindo C (2009). The Hispanic-White achievement gap in math and reading in the 
elementary grades. American Educational Research Journal, 46, 853–891. 
doi:10.3102/0002831209333184

Reardon SF, & Portilla XA (2016). Recent trends in income, racial, and ethnic school readiness gaps at 
kindergarten entry. AERA Open, 2(3), 1–18. doi:10.1177/2332858416657343 [PubMed: 
26942210] 

Renaissance Learning. (2016a). STAR Reading technical manual. Wisconsin Rapids, WI: Author.

Renaissance Learning. (2016b). STAR Math technical manual. Wisconsin Rapids, WI: Author.

Resnick I, Jordan NC, Hansen N, Rajan V, Rodrigues J, Siegler RS, & Fuchs LS (2016). 
Developmental growth trajectories in understanding of fraction magnitude from fourth through 
sixth grade. Developmental Psychology, 52, 746–757. doi:10.1037/dev0000102 [PubMed: 
26914215] 

Roberts G, Scammacca-Lewis N, Fall AM, & Vaughn S (2017). Implementation fidelity: Examples 
from the Reading for Understanding initiative In Roberts G, Vaughn S, Beretvas SN, & Wong V 
(Eds.), Treatment fidelity in studies of educational intervention (pp. 61–79). New York: Routledge.

Scammacca N, Fall A-M, & Roberts G (2015). Benchmarks for expected annual academic growth for 
students in the bottom quartile of the normative distribution. Journal of Research on Educational 
Effectiveness, 8, 366–379. doi: 10.1080/19345747.2014.952464 [PubMed: 26726300] 

Scammacca N, Roberts G, Vaughn S, & Stuebing K (2015). A meta-analysis of interventions for 
struggling readers in grades 4–12: 1980–2011. Journal of Learning Disabilities, 48, 369–390. 
[PubMed: 24092916] 

Schulte AC, & Stevens JJ (2015). Once, sometimes, or always in special education: Mathematics 
growth and achievement gaps. Exceptional Children, 81, 370–387. 
doi:10.1177/0014402914563695

Schulte AC, Stevens JJ, Elliott SN, Tindal G, & Nese JT (2016). Achievement gaps for students with 
disabilities: Stable, widening, or narrowing on a state-wide reading comprehension test?. Journal 
of Educational Psychology, 108, 925–942. doi:10.1037/edu0000107

Shaywitz BA, Holford TR, Holahan JM, Fletcher JM, Stuebing KK, Francis DJ, & Shaywitz SE 
(1995). A Matthew effect for IQ but not for reading: Results from a longitudinal study. Reading 
Research Quarterly, 30, 894–906. doi:10.2307/748203

Stanovich KE (1986). Matthew effects in reading: Some consequences of individual differences in the 
acquisition of literacy. Reading Research Quarterly, 21, 360–407. doi:10.1598/RRQ.21.4.1

Stapleton L (2013). Multilevel structural equation modeling with complex sample data In Hancock GR 
& Mueller RO (Eds.), Structural equation modeling: A second course (2nd ed.; pp. 521–562). 
Charlotte, NC: Information Age Publishing.

Vaughn S, Solís M, Miciak J, Taylor WP, & Fletcher JM (2016). Effects from a randomized control 
trial comparing researcher and school-implemented treatments with fourth graders with significant 
reading difficulties. Journal of Research on Educational Effectiveness, 9(sup1), 23–44. 
doi:10.1080/19345747.2015.1126386 [PubMed: 28491206] 

von Hippel PT, Workman J, & Downey DB (2018). Inequality in Reading and Math Skills Forms 
Mainly before Kindergarten: A Replication, and Partial Correction, of “Are Schools the Great 
Equalizer?”. Sociology of Education, 91, 323–357.

Walberg HJ, Strykowski BF, Rovai E, & Hung SS (1984). Exceptional performance. Review of 
Educational Research, 54, 87–112. doi:10.2307/1170399

Walberg HJ, & Tsai S (1983). Matthew effects in education. American Educational Research Journal, 
20, 359–373. doi:10.2307/1162605

Wei X, Lenz KB, & Blackorby J (2013). Math growth trajectories of students with disabilities: 
Disability category, gender, racial, and socioeconomic status differences from ages 7 to 17. 
Remedial and Special Education, 34, 154–165. doi:10.1177/0741932512448253

Wolgemuth JR, Abrami PC, Helmer J, Savage R, Harper H, & Lea T (2014). Examining the impact of 
ABRACADABRA on early literacy in Northern Australia: An implementation fidelity analysis. 
The Journal of Educational Research, 107, 299–311. doi:10.1080/00220671.2013.823369

Scammacca et al. Page 25

J Educ Psychol. Author manuscript; available in PMC 2021 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Educational Impact and Implications Statement

The present study determined that students who start out the school year with very low 

scores on math and reading assessments gain knowledge and skills at a faster pace that 

students who start with higher scores. However, the lower-scoring students do not grow at 

a rapid enough pace to catch up to their higher-scoring peers. As a result, achievement 

gaps are maintained over time. Efforts to raise the achievement of struggling students will 

need to involve educational interventions that accelerate growth to a much greater degree 

to make progress in closing achievement gaps.
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Figure 1. 
The unconditional cohort-sequential latent growth curve model.
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Figure 2. 
Observed and predicted growth curves based on mean reading and math scores across 

cohorts.

Scammacca et al. Page 28

J Educ Psychol. Author manuscript; available in PMC 2021 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Mean reading scores by Time 1 quartile.
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Figure 4. 
Mean math scores by Time 1 quartile.
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Table 5

Effect Sizes by Grade

BOY-MOY MOY-EOY BOY-EOY

g SE g SE g SE

Grade 1 Reading .65 .02 .72 .02 1.37 .03

Grade 1 Math 1.13 .03 .83 .02 1.93 .04

Grade 2 Reading .64 .01 .50 .01 1.14 .01

Grade 2 Math .83 .01 .70 .01 1.54 .02

Grade 3 Reading .43 .01 .36 .01 .78 .01

Grade 3 Math .79 .01 .59 .01 1.36 .02

Grade 4 Reading .42 .01 .28 .01 .69 .01

Grade 4 Math .64 .01 .51 .01 1.14 .02

Grade 5 Reading .28 .01 .23 .01 .50 .02

Grade 5 Math .44 .02 .27 .02 .73 .02
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