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FELIX KLEIN 

FELIX KLEIN, probably the most eminent German 
mathematician of his time, was born at Dlisseldorf in 
1849 and is still living, though he retired from profes¬ 

sional life in 1912. He studied at Bonn, Germany, where 
at the age of seventeen he became assistant to the re¬ 
nowned physicist, Pliicker, in the Physical Institute. He 
took his Doctor’s degree at eighteen years of age, then 
went to Berlin, and a little later to Gottingen. Here he 
assisted in editing Pliicker’s works. 

Klein entered the Gottingen university faculty in 1871. 
The next year he became professor of mathematics at 
Erlangen, and afterward held professorships at the Tech¬ 
nical Institute of Munich (1875-80) and at the universi¬ 
ties of Leipzig (1880-86) and of Gottingen (1886-1912). 
He was sent to the World’s Fair at Chicago in 1893 by 
the Prussian government, to represent the university 
interests ol the nation. 

Klein’s pupils are found in most of the leading univer¬ 
sities of the United States. No one else in Germany has 
exerted so great an influence on American mathematics. 
He has been a tireless worker himself, both in the science 
and in the improvement of the teaching of mathematics. 
He was made president of the International Commission 
on the Teaching of Mathematics, in 1908, by the Fourth 
International Congress of Mathematicians held that year 
in Rome, Italy. 

His contributions to mathematics are extensive, but 
they cannot even be enumerated here. It is scarcely too 
much to assert that Klein has led the main movements for 
advancement of mathematical teaching since the begin¬ 
ning of the present century. This applies not only to 
university teaching but to secondary (high-school) 
teaching as well. 

In his Teaching of Geometry, p. 69, Professor David 
Eugene Smith of Teachers’ College, Columbia University, 
says of Klein: “He has the good sense to look at some¬ 
thing besides good mathematics: (1) he insists upon the 
psychological point of view; (2) he demands careful 
selection of subject-matter; (3) he insists on reasonable 
correlation with practical work; (4) he looks with favor 
upon the union of plane and solid geometry; (5) he 
favors also the union of algebra and geometry.” 

Some of Klein’s best interpreters have said of his 
reformatory movement that Klein’s main idea is to make 
“functional thinking in its geometrical form” the dis¬ 
tinguishing mark of secondary-school work in mathematics. 
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EDITOR’S PREFACE 

This book by its copyright purports to be a second 

edition of a former text of the same title by other authors. 

It is this in the sense that it carries forward through the 

second high-school year a reconstructed form of the union 

mathematics of a first-year text. It allies itself with the 

former work also in that it places chief emphasis on plane 

geometry. 

The older Second-Year Mathematics was an attempt 

to furnish a concrete contribution to the problem of 

introducing greater homogeneity and continuity into 

the secondary mathematical subjects from year to year. 

In this particular also this book resembles the earlier 

text. 

In a very real sense, however, this volume is a new con¬ 

tribution, with its own plans and purposes. Its primal 

aim is to furnish a gradually progressive continuation of 

the form of reconstructed mathematics of the text First- 

Year Mathematics, by Mr. Breslich himself. It aims 

definitely to teach how to study as well as the content of a 

second unit of secondary mathematics. It accomplishes 

this through the nature and form of the material, through 

explicit exhibits and formulated tests of sound and un¬ 

sound reasoning, through study-helps, directions for work¬ 

ing, and systematic chapter summaries. 

It seeks neither to eliminate nor to curtail inherent 

mathematical formalism, but to fill forms and technique 

with the meanings that flow from a well-balanced treat¬ 

ment of related material drawn from the kindred ele¬ 

mentary subjects. A unique feature of the book is the 

vii 
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attractive presentation of a considerable body of associ¬ 

ated solid geometry. This is an economy and is in ac¬ 

cord with modern educational precepts. 

The cordial response from the best sources that Mr. 

Breslich’s First-Year Mathematics has met in the first 

year after its publication proves his first text to be 

generally adaptable to classroom conditions, and augurs 

that the present book will be found to work smoothly 

under average conditions. An examination of the con¬ 

text is sufficient to convince the open-minded reader 

that the educational results of this book will greatly 

surpass those, of the text it is displacing, as well as those of 

any standard text treating plane geometry as a separate 

subject. 
G. W. Myers 

Chicago, III. 

August, 1916 



AUTHOR'S PREFACE 

In planning the work of the second year the author 

has kept in mind the following facts: 

1. Through the second year the combined type of material 

of the mathematics taught in the first year is to be carried 

forward, the emphasis here being shifted to geometry. 

2. The operations and laws of arithmetic are to be reviewed 

wherever opportunity is offered or occasion warrants, as in 

the evolution of formulas, in the introduction of new 

algebraic topics, and in problems of calculation. 

3. The algebraic ground gained in the first year is to be 

held and the field extended at least as far as is customary 

with the algebra before the third year. 

A firm hold is kept on algebra by the employment of 

algebraic notation and by the continued application of 

the equation to geometrical matters. New algebraic 

topics are developed when opportunity and need arise. 

Thus, elimination by comparison and by substitution, so 

frequently needed in proofs and in the solution of exer¬ 

cises, is taught very early. The solution of the quad¬ 

ratic equation by means of the formula, the operations 

with fractions, and factoring are all reviews or further 

extensions of topics begun in the first year. 
« 

4. The study of plane geometry is to be completed. 

In the first-year course the student has gained a thor¬ 

ough understanding of the fundamental notions of 

geometry. Accordingly, in the second year, methods of 

a more formal character are introduced from the start. 

But even before this, the advantage of the reasoning 

process over the process of measuring has been recognized. 

IX 



X AUTHOR’S PREFACE 

Mathematical fallacies and optical deceptions are now 

used to make the need of logical proof still more apparent. 

A definite aim is to give the pupil something of the 

secret of geometrical strategy, i.e., some skill in attacking, 

taking possession of, and exploiting a geometrical diffi¬ 

culty. With this in view, methods of proof are discussed 

and emphasized, not once for all, but throughout the 

course. 
To cultivate versatility and system, students are taught 

to choose between various methods of proof, and always 

to follow some definite plan and not to trust to the chance 

of stumbling upon a proof. To this end many model 

proofs are given. With other proofs statements or rea¬ 

sons that are more or less apparent to the student are 

omitted, in order that he may also acquire the habit of 

independent thought and that his powers of argumen¬ 

tation may be strengthened. 

The custom of dividing the subject of geometry into a 

few “books” has been abandoned as being of only tra¬ 

ditional or historical value. The course is, however, 

divided into a number of short chapters, each dealing with 

one or but a few central topics. This arrangement is far 

better adapted to the study of high-school students than 

is the traditional grouping into “ books/7 since the aims 

and purposes of the short chapters are easily seen. It is 

found to be more economical of the student’s time and 

energy than the old method. 

5. The student should receive training in both plane and 
solid geometry. 

Many theorems of solid geometry that are closely 

related to corresponding theorems in plane geometry 

are proved in the second year, thus furnishing the 

student appropriate exercise in both two- and three- 
dimensional thinking. 
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A real advance is thus made in the study of solid 

geometry before plane geometry is completed. The work 

in solid geometry includes the theorems on lines and planes 

in space and on diedral angles. 

6. The study of trigonometry begun in the first year is to 

be continued. 

It is a distinct educational loss that the strong appeal 

that trigonometry has for high-school pupils should not 

be utilized earlier than is customary. Moreover, trigo¬ 

nometric methods here often replace algebraic and geo¬ 

metric methods, giving the student the opportunity to 

see some of the advantages of trigonometry over algebra 

and geometry. 

In addition to the foregoing aims the following are 

included: (a) the application of three trigonometric 

functions (sine, cosine, and tangent) to the solution of 

the right triangle and to a number of practical problems; 

(b) the development of some of the fundamental relations 

between these important functions. 

7. No topical treatment of the theory of limits is 

intended. 

Such a treatment is believed not to belong to the early 

years of the high-school course. However, the question 

of the existence of incommensurable lines and numbers is 

raised, examples of these are given, and the notion of the 

limit of a sequence is developed. 

8. Since the usefulness of a study always appeals very 

strongly to a beginner, this phase is emphasized throughout 

the course. 

The importance and the significance of geometrical 

facts in the affairs of everyday life are impressed upon 

the pupil. This wins his sanction of the worth of the 

study to himself more fully than any other sort of 

appeal that the teacher of geometry can make. 
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9. The plan of introducing definitions whenever needed 

and not before, which is used in the first-year course, has been 

followed also in the second year. 

After definitions are introduced they are continually 

used, in order that the pupil may acquire mastery 

through use. 

The material as arranged in this course opens to the 

student a broader, richer, more useful, and therefore more 

alluring field of ideas, and lays a more stable foundation 

for future work, than does any separate treatment. A 

great saving of the student’s time is effected by developing 

arithmetic, algebra, geometry, and trigonometry side 

by side. This union of subjects also makes unnecessary 

the long and tiresome reviews usually given at the begin¬ 

ning of each subject, and gives place for frequent inci¬ 

dental reviews leading immediately to an extension of the 

subject. 

Often a high-school pupil fails rightly to esteem a 

high-school subject because he cannot discern its bearing 

either on what has preceded or on what is to follow. 

But, having experienced the closeness of the relation 

between the subjects he does not lose sight of the 

familiar fields while he is obtaining an outlook into 

neighboring and more remote ones. There is thus an 

economy resulting both from accomplishing more work 

in less time and from the performance of tasks that are 

intelligently motivated. 

The book contains exercises in sufficiently large num¬ 

bers to allow the instructor some choice in case he wishes 

to reduce the scope of the course. Problems and theorems 

which may be omitted are marked with the symbol J. 

These problems may be taken either in the course by the 

stronger pupils or at the end of the course by all. If 
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taken at the end of the course, they will give the stu¬ 

dent ample drill and review of the right sort. 

“Second-Year Mathematics” may he used successfully 

in classes that have had only algebra during the first year. 

The syllabus at the beginning of the book gives all the 

theorems and axioms taught in First-Year Mathematics, 

indicating the order in which they were given. This 

furnishes an effective introduction to the formal geometry 

of the second year, especially so if it is taught by the 

syllabus method. It helps the student very materially 

in overcoming the difficulties usually encountered in 

beginning demonstrative geometry, and at the same time 

it gives him the opportunity of availing himself of all 

the advantages of the correlation of algebra, geometry, 

and trigonometry in the second year. 

The author desires to render acknowledgment to 

Professor Charles H. Judd for his numerous suggestions 

and criticisms. His recent book on The Psychology of 

High-School Subjects has been of invaluable service in 

planning this course. 

The encouragement, interest, and advice of Principal 

F. W. Johnson, of the University High School, have 

been a very substantial help in bringing about the publica¬ 

tion of this course. 

The author is also indebted to his colleagues, Messrs 

Raleigh Schorling, Horace C. Wright, and Harry N 

Irwin, who have read and criticized .in detail every 

chapter of the book. 

The portraits of Fermat and Gauss which are used as 

inserts in the text have been taken from the “ Philo¬ 

sophical Portrait Series,” published by the Open Court 

Publishing Company, Chicago. 

Chicago, III. 

September, 1910 

Ernst R. Breslich 
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STUDY HELPS FOR STUDENTS1 

The habits of study formed in school are of greater impor¬ 
tance than the subjects mastered. The following suggestions, 
if carefully followed, will help you make your mind an efficient 
tool. Your daily aim should be to learn your lesson in less 
time, or to learn it better in the same time. 

1. Make out a definite daily program, arranging for a definite 
time for the study of mathematics. You will thus form the 
habit of concentrating your thoughts on the subject at that 
time. 

2. Provide yourself with the material the lesson requires; 
have on hand textbook, notebook, ruler, compass, special 
paper needed, etc. When writing, be sure to have the 
light from the left side. 

3. Understand the lesson assignment. Learn to take notes 
on the suggestions given by the teacher when the lesson is 
assigned. Take down accurately the assignment and any 
references given. Pick out the important topics of the 
lesson before beginning your study. 

4. Learn to use your textbook, as. it will help you to use other 
books. Therefore understand the purpose of such devices 
as index, footnotes, etc., and use them freely. 

5. Do not lose time getting ready for study. Sit down and 
begin to work at once. Concentrate on your work, i.e., put 
your mind on it and let nothing disturb you. Have the 
will to learn. 

1 These study helps are taken from Study Helps for Students 
in the University High School. They have been found to be very 
valuable to students in learning how to study and to teachers in 
training students how to study effectively. 

xix 



XX STUDY HELP FOR STUDENTS 

6. As a rule it is best to go over the lesson quickly, then to go 

over it again carefully; e.g., before beginning to solve a 

problem read it through and be sure you understand what 

is given and what is to be proved. Keep these two things 

clearly in mind while you are working on the problem. 

7. Do individual study. Learn to form your own judgments, 

to work your own problems. Individual study is honest 
study. 

8. Try to put the facts you are learning into practical use if 
possible. Apply them to present-day conditions. Illus¬ 

trate them in terms familiar to you. 

9. Take an interest in the subject. Read the corresponding 

literature in your school library. Talk to your parents 

about your school work. Discuss with them points that 
interest you. 

10. Review your lessons frequently. If there were points you 

did not understand, the review will help you to master them. 

11. Prepare each lesson every day. The habit of meeting each 
requirement punctually is of extreme importance. 



CHAPTER I 

ASSUMPTIONS, THEOREMS, AND CONSTRUCTIONS 
GIVEN IN FIRST-YEAR MATHEMATICS 

To the Student 

In the first-year course the student has become familiar 
with a number of geometric truths. In the second-year 
course these are used to establish other truths. A com¬ 
plete list of the geometric assumptions and theorems of 
the first course is given below. Future references will 
be made to this list, to save the student the inconven¬ 
ience of looking them up in First-Year Mathematics. 

The numbers in the parentheses refer to the sections 
in First-Year Mathematics in which the statements were 
given for the first time. 

Classes which did not use First-Year Mathematics as 
the text of the first year may use this list as a syllabus, 
the students working out the proofs under the teacher’s 
direction and in the order indicated by the numbers in 
the parentheses. For this book, however, these truths 
play the part of assumptions. 

* 

Assumptions 

1. Through two points one and only one straight line 
can be drawn. (20) 

2. A straight line two of whose points lie in a plane, 
lies entirely in the plane. (204) 

3. The shortest distance between two points is the 
straight line-segment joining the points. (21) 

4. Two straight lines intersect in one and only one 
point. (25) 

1 



2 SECOND-YEAR MATHEMATICS 

5. A line-segment or an angle is equal to the sum of all 

its parts. (33) 

6. A segment or an angle is greater than any of its 

parts, if only positive magnitudes are considered. (34) 

7. If the same number is added to equal numbers, the 

sums are equal. (35) 

8. If equals are added to equals, the sums are 

equal. (36) 

9. If the same number or equal numbers be subtracted 

from equal numbers, the differences are equal. (41) 

10. The sums obtained by adding unequals to equals 

are unequal in the same order as are the unequal 

addends. (42) 

11. The sums obtained by adding unequals to unequals 

in the same order, are unequal in the same order. (43) 

12. The differences obtained by subtracting unequals 

from equals are unequal in the order opposite to that of 

the subtrahends. (44) 

13. If equals be divided by equal numbers (excluding 

division by 0), the quotients are equal. (78) 

14. If equals be multiplied by the same number or 

equal numbers, the products are equal. (80) 

Angles 

15. All right angles are equal. (118) 

16. Equal central angles in the same or equal circles 

intercept equal arcs. (124) 

17. In the same or equal circles equal arcs are inter¬ 

cepted by equal central angles. (125) 

18. A central angle is measured by the intercepted 

arc. (126) 
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19. If two angles have their sides parallel respectively 

they are equal or supplementary. (197) 

20. If the sum of two adjacent angles is a straight 

angle, the exterior sides are in the same straight 

line. (177) 

21. The sum of all the adjacent angles about a point, 

on one side of a straight line, is a straight angle. (179) 

22. The sum of all the angles at a point just covering 

the angular space about the point is a perigon. (180) 

23. If two lines intersect, the opposite angles are 

equal. (183) 
Angles of a Triangle 

24. The sum of the angles of a triangle is 180°. 

(112), (198) 

25. The sum of the exterior angles of a triangle, taking 

one at each vertex, is 360°. (115) 

26. An exterior angle of a triangle equals the sum of 

the two remote interior angles. (118), (199) 

27. If the angles of one triangle are respect¬ 

ively equal to the angles of another, the triangles are 

similar. (233) 

28. The base angles of an isosceles triangle are 

equal. (280) 

29. An equilateral triangle is equiangular. (281) 

30. If two angles of a triangle are equal the triangle 

is isosceles. (281) 

31. The acute angles of a right triangle are com¬ 

plementary angles. (184) 

32. In a right triangle whose acute angles are 30° and 

60°, the side opposite the 90°-angle is twice as long as the 

side opposite the 30°-angle. (185) 
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33. If two sides of a triangle are unequal, the angles 

opposite to them are unequal, the greater angle lying- 

opposite the greater side. (281) 

34. If two angles of a triangle are unequal the sides 

opposite to them are unequal, the greater side lying 

opposite the greater angle. (281) 

Perpendicular Lines 

35. The shortest distance from a point to a line is the 

perpendicular from the point to the line. (285) 

36. At a given point in a given line one and only one 

perpendicular can be drawn to the line. (176) 

From a given point one and only one perpendicular 

can be drawn to a given line. 

37. All points on the perpendicular bisector of a line- 

segment are equidistant from the endpoints of the seg¬ 

ment. (281) 

38. If a point is equidistant from the endpoints of a 

line-segment, it is on the perpendicular bisector of the 

segment. (283) 

39. If each of two points on one line is equidistant 

from two points of another line the lines are perpendic¬ 

ular. (283) 

Parallel Lines 

40. Parallel lines are everywhere equally distant. (192) 

41. One and only one parallel can be drawn to a line 

from a point outside the line. (194) 

42. If two lines are cut by a transversal making the 

corresponding angles equal, the lines are parallel. (195) 

43. Two lines perpendicular to the same line are 

parallel. (195) 

44. Two lines are parallel if two alternate interior 

angles formed with a transversal are equal. (195) 
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45. Two lines are parallel if the interior angles on 

the same side formed with a transversal are supple¬ 

mentary. (195) 

46. Two lines parallel to the same line are parallel 

to each other. (195) 

47. If two parallel lines are cut by a transversal the 

corresponding angles are equal; the alternate interior 

angles are equal; the interior angles on the same side are 

supplementary. (196) 

Proportional Line-Segments 

48. A line parallel to one side of a triangle divides 

the other two sides into corresponding parts having equal 

ratios. (244) 

49. A line bisecting an angle of a triangle divides the 

side opposite that angle into parts whose ratio is equal 

to the ratio of the other sides. (245) 

50. A line dividing two sides of a triangle into cor¬ 

responding parts having the same ratio, is parallel to the 

third side of the triangle. (246) 

Areas and Volumes 

51. The area of a square is equal to the square of one 

side. (140) 

52. The area of a rectangle equals the product of the 

base by the altitude. (141) 

53. The volume of a rectangular parallelopiped equals 

the product of the length by the height by the width. (145) 

54. The volume of a cube is equal to the cube of one 

edge. (146) 

55. The area of a parallelogram is equal to the pro¬ 

duct of the base by the altitude. (163) 
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56. The area of a triangle is equal to one-half the 

product of the base by the altitude. (164) 

£7. The area of a trapezoid is equal to one-half the 

product of the altitude by the sum of the bases. (166) 

Proportionality of Areas 

58. In a proportion the product of the means is equal 

to the product of the extremes. (259) 

59. The areas of two rectangles are in the same ratio 

as the products of their dimensions. (260) 

60. Two rectangles having equal bases are in the same 

ratio as the altitudes. (261) 

61. Two rectangles having equal altitudes are in the 

same ratio as the bases. (262) 

62. The areas of parallelograms are in the same ratio 

as the products of the bases and altitudes. (263) 

63. The areas of triangles are in the same ratio as the 

products of the bases and altitudes. (264) 

64. The areas of parallelograms having equal bases 

are in the same ratio as the altitudes. (265) 

65. The areas of triangles having equal bases are in 

the same ratio as the altitudes. (266) 

Congruent Triangles 

66. Two triangles are congruent if two sides and the 

included angle of one are equal respectively to two sides 

and the included angle of the other. (s.a.s.) (274) 

67. Two triangles are congruent if two angles and the 

side included between their vertices in one triangle are 

equal respectively to the corresponding parts in the other. 
(a.s.a.) (275) 

68. If three sides of one triangle are equal, respec¬ 

tively, to the three sides of another triangle, the triangles 

are congruent, (s.s.s.) (283) 
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69. Two right triangles are congruent if the hypote¬ 

nuse and one side of one are equal respectively to the 

hypotenuse and a side of the other. (285) 

Similar Triangles 
* 

70. Two triangles are similar if the ratios of the cor¬ 

responding sides are equal. (236) 

Loci 

71. The perpendicular bisector of a segment is the 

locus of all points equidistant from its endpoints. (284) 

72. The bisector of an angle is the locus of points 

which are equidistant from the sides. (304) 

Tangents 

73. The radius drawn to the point of contact of a 

tangent is perpendicular to the tangent. (308) 

74. A line perpendicular to a radius at the outer 

endpoint is tangent to the circle. (309) 

Theorem of Pythagoras 

75. In a right triangle the sum of the squares on the 

sides including the right angle is equal to the square 

on the hypotenuse. (402) 



CHAPTER II 

METHODS OF PROOF 

Logic 

76. Reasoning. In the first-year course we studied 

some of the laws of algebra and became acquainted with 

a number of useful geometric facts. The truth of many 

of these facts was found and verified by measurement, of 

others, especially toward the end of the course, by a 

process of reasoning, or proof. 

In our everyday life we reason whenever we infer one 

truth from another. Thus, from the general truths that 

metals are good conductors of heat and that aluminium 

is a metal, we infer that aluminium is a good conductor 

of heat. Or, if we accept as true the statement that iron 

is the most useful metal and that iron is the cheapest 

metal, we may infer that the most useful metal is also 

the cheapest metal. 

In every branch of knowledge there are employed 

certain principles and forms of thought by means of which 

all persons must think and reason. Logic treats of these 

principles. Moreover, it helps us to avoid the fallacies 

which may arise from neglecting the correct rules of 

thinking. In particular, it points out why it is absurd 

to make such an inference as that all Europeans are 

Frenchmen from the known fact that all Frenchmen are 

Europeans. 

False reasoning. By incorrect reasoning, some of the 

ancient Greek philosophers pretended to prove that 
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motion was impossible. “For,” they said, “a moving 

body must move either in the place where it is, or where 

it is not; now it is absurd to hold that a body could be 

where it is not; and if it moves, it cannot be in a place 

where it is; therefore it cannot move at all.” 

The student is probably familiar with the following 

absurdity: 

No dog has 9 tails. 
One dog has 1 more tail than no dog. 
Therefore, one dog has 10 tails. 

Thus, to know how to use the rules of correct reason¬ 

ing is valuable also in that it enables us to point out weak 

places in an incorrect argument, and to replace incorrect 

reasoning by sound reasoning in our own work. 

Geometrical Fallacies 

77. Likewise the reasoning used in geometry and 

algebra follows certain laws. The importance of exer¬ 

cising great care in a geometric proof may be illustrated 

by two of the well-known puzzles of geometry, viz.: 

1. Theorem: Every triangle is isosceles. 

Given any triangle, as 

ABC, Fig. 1. 

To prove that ABC is 

isosceles. 

Proof: Let DE be the 

perpendicular bisector of AB 

and let CE be the bisector of 

angle C, meeting DE at E. 

From E draw EA and 

c 

EB. 
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Draw EG perpendicular to AC, and EF perpen¬ 

dicular to CB. 
Then A ADE^A BDE (§ 69). 

Hence, AE = BE 
(since corresponding sides of congruent triangles are equal). 

A CEG^ACEF (§67). 

Hence, EG = EF and CG = CF. Why? 

Therefore A AEG ^ A BEF 
(hypotenuse and a side, § 69). 

Hence, 

Since 

GA=FB. 
CG = CF, 

it follows that CG-\-GA=CF -\-FB, 
or CA=CB. 

Therefore the triangle ABC, 
although known not to be isos¬ 

celes, would seem to have been 

proved to be isosceles. 

Make a careful construction of Fig. 1, and discover 

the error in the demonstration. 

2. To show geometrically that 64 = 65. 

Draw two right triangles having the sides including 

the right angle equal to 3 and 8, respectively (Fig. 2). 

s 

Fig. 2 Fig. 3 Fig. 4 

Draw two quadrilaterals (Fig. 3) having one pair of 

opposite sides parallel and equal to 3 and 5, respectively, 
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and the third side perpendicular to the parallel sides 

and equal to 5. Placing the 

triangles and quadrilaterals as 

in Fig. 4, a square is obtained 

whose area is equal to 8X8 = 64. 

If now, they are placed as in 

Fig. 5, a rectangle is formed 

whose area is equal to 13X5 = 65. 

.Hence, 64 = 65! 

Make a careful construction and discover the error. 

78. Need for proof. In both the fallacies in § 77 the 

difficulty has come from assuming that what looks to 

be nearly true is exactly true. The moral is, of course, 

things that look correct cannot always be relied upon as 

correct. The word “intuition” is used to designate the 

sort of reasoning that draws its conclusions from direct 

appearances. 

The following exercises are illustrations of the danger of 

going astray even in geometry through too ready a reliance 

on intuition. 

EXERCISES 

1. Compare the segments a and b, Fig. 6, as to length by 
looking at the figure. Then measure 
each segment. 

b 

Fig. 7 

2. Compare, as in Exercise 1, the segments a and b in 
Fig. 7. Test by measuring. 

> a 

<■ 

/ 

-> 
Fig. 6 
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3. Are the lines AB and CD in A /////////////////B 

Fig. 8 parallel ? Answer the question, \\\\\\\\\\\\\\\ D 
then test by measuring the distances c \ \ \ \ \ \ \ \ \ \ \ \ \\\ 

between the lines. Fig. 8 

4. Are the lines AB and CD, Figs. 9 and 10, in the same 
straight line ? Test with a ruler. 

A B C D A B * C D 

Fig. 9 Fig. 10 

5. Are the lines AB and CD, 

Test with a ruler. 

6. Count the number of blocks 
in Fig. 12. Continue to look at the 
figure and you will see either one 
more or one less. 

Fig. 11, straight lines? 

Fig. 12 
t 

79. Methods. There is no one specific method by 

which all theorems or problems may be attacked or 

proved. However, certain general directions and methods 

as to the way of attacking problems and proving theorems 

may be stated. A knowledge of these methods is of 

greatest importance as they will keep the student from 

groping about blindly for a proof, wasting his time and 

energy. Several methods of proof are discussed in this 

chapter, others are considered in chapter IV. 
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80. General directions. Hypothesis. Conclusion. 

1. Read the problem carefully, get it clearly in mind, 

and keep it in mind while at work on it. Most problems 

need at least two readings. 

2. If the problem is a geometric theorem or exercise, 

draw carefully a general figure. Thus, if the theorem refers 

to a triangle, draw a triangle with unequal sides, not an 

equilateral, or isosceles, or right triangle. This will keep 

you from committing the error of proving a theorem only 

for a special case. 

3. Write down what is given (the hypothesis) and what 

is to be proved (the conclusion), referring all statements 

to the figure. 

4. If a proof does not readily suggest itself to you, 

think of all the things you have learned that are like the 

problem you are trying to work out, e.g., recall the 

theorems that seem like the task before you. 

Thus, if you are to prove two angles equal, ask the 

question: Under what conditions are two angles equal? 

If you wish to prove two lines parallel, the question should 

be: When are two lines parallel ? Then select the theorem 

that seems to you most promising or suitable, until you 

find something that brings you to your goal. It is a good 

plan to review and summarize the theorems and prob¬ 

lems that have been established previously. Keep up 

this practice until it becomes a habit, and you will acquire 

the art of selecting very quickly the 

theorem that is needed to prove a 

new theorem or problem. 

5. The conclusion may sometimes 

be obtained by drawing lines, not given 

in the figure, as described by the hy¬ 

pothesis. Thus, if AC = CB, Fig. 13, 

c 

D 

Fig. 13 
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we may prove that ZA = ZB, by drawing the bisector of 

angle C and then proving A ADC ^ A BDC. 

81. Method of proof by superposition. This method 

was used in proving some of the theorems on congruent 

triangles, §§ 66, 67. It consists in placing one figure 

over another and then showing that all parts of the one 

coincide with the corresponding parts of the other. 

This method, although practical when the elements 

involved in the proof are few and specific, is not considered 

a good theoretical test by the mathematician. For, the 

axioms validating superposition are usually not given 

in full detail. The result is that the student is in danger 

of drawing rashly the conclusion which is to be established 

by the superposition of the one figure upon the other. 

The method is used only in a few cases. 

82. Method of congruent triangles. 
When trying to prove that lines or 

angles are equal, it is sometimes 

possible to show that they are corre¬ 

sponding parts of congruent triangles. 

It may be necessary to draw help¬ 

ing lines to obtain the congruent 

triangles, of which the lines or angles 

to be proved equal are corresponding 

parts. The following proof will illus¬ 

trate the method: 

83. Theorem: If each of two points on a given line is 

equally distant from two given points, the given line is the 

perpendicular bisector of the segment joining the given points. 

Given the line AB, Fig. 14, and the points C and D 
such that 

Fig. 14 

To prove 
AC =AD, CB=BD 

x=xf, CE = ED 
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Preliminary discussion: We know that x=x', if 

ACAE&ADAE. 

However, since we only know that AE=AE, that CA =AD 

and therefore that ZACE=ZADE (§28), we do not 

have the required parts to show that A CAE^ A DAE. 

Hence, we shall first prove y=y'} by proving that 

AACB^AADB. 

Proof: 

STATEMENTS REASONS 

AC = AD, CB — BD. . .by hypothesis. 
AB = AB.common to both triangles 

ACB and ADB. 
Therefore, AACB= A ADB.s.s.s. (68) 

Hence, y=y'.corresponding parts of 
congruent triangles are 
equal. 

AE = AE.common. 
AC = AD.by hypothesis. 

Therefore, AACE= A ADE.s.a.s. (67) 

Hence, x = x', and CE — ED.. corresponding parts of 
congruent triangles are 
equal. 

84. Symbols for “therefore” and “since.” The symbol 

means therefore, and *.* means since. 

85. Conventional treatment of a theorem. The 

formal demonstration of a theorem consists of three 

main parts: the hypothesis, conclusion, and proof. In 

writing a proof a reason must be given for each 

step. This means that each statement must be based 

upon (1) a definition, (2) the hypothesis, (3) an 

axiom, or (4) a theorem which has been proved 
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previously.* The last step in the proof must be the 

same as the conclusion, f 

86. Reviews. It is a good plan to review daily for a 

time after passing them, the proofs of theorems previ¬ 

ously established. This may be done by simply recalling 

the figure, the method of proof used, and the principal 

steps, i.e., a sort of sketch or outline of the proof. Thus, 

in a few minutes a day the student will accomplish easily 

what will be a most difficult task if left until the 

end of a chapter, or until the day before an examination. 

* Hippocrates (b. about 470 b.c.) introduced the method of 
“reducing” one theorem to another that has been previously 

proved. See W. W. R. Ball, A Short Account of the History of Mathe¬ 

matics, 5th ed., p. 39, hereafter referred to as Ball. 

f The processes of proving theorems were developed by the 

Greeks. Greece was indebted to Egypt for its beginnings in geome¬ 
try. However, the Egyptians carried geometry no farther than was 

necessary for the practical needs of life. They may have felt the 

truth of some theorems; but the Greeks formulated these geometric 
truths into scientific language and subjected them to proof (see 

Ball, pp. 16-19). The Greeks also recognized that it is impossible 
to prove everything in geometry and that some simple statements have 

to be assumed. 

Euclid (about 300 b.c.) used the term common notion in the 

sense in which in modern mathematics we use axiom, i.e., a general 
statement admitted to be true without proof. Thus, the statement: 
“If equals are added to equals, the sums are equal” is an axiom 

because it holds in mathematics in general, i.e., in arithmetic, 
algebra, or geometry. 

In modern mathematics, a statement referring to geometry 

only and admitted to be true without proof, is called a 'postulate. 

Thus, the statement “Two points determine a straight line” is a 
postulate. Some textbook writers use the word axiom or assump¬ 
tion to denote postulates as well as axioms. 

Moreover, just as we assume unproved propositions, we have 
undefined terms, such as points, fines, etc. Pasch (1881) recognized 
the obvious impossibility of defining everything in geometry. 
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87. Inductive method. Mathematical facts can often 

be discovered by considering enough special cases to enable 

the student to recognize the general law underlying these 

cases. The method may be illustrated by the following 

example: 

EXAMPLE OF INDUCTIVE METHOD 

Problem: It is known that the sum of the angles of 

a triangle is 180°. What is the sum of the angles of a 

quadrilateral, pentagon . ... , etc., or of any polygon ? 

To find the sum of the angles of a polygon, divide 

it into triangles by means of diagonals drawn from one 

Fig. 16 Fig. 17 

vertex to the others. Thus, a quadrilateral may be 

divided into two triangles, Fig. 15; a pentagon into three 

triangles, Fig. 16; a hexagon into four triangles, Fig. 17, 

etc. The table below gives the sum of the angles in 

the various cases. 

How does the number of triangles in each polygon 

compare with the number of sides? Hence, how does 

the sum of the angles compare with the number of sides ? 

What seems to be the sum of the angles of an n-gon ? 

Make the table complete by filling out the blank spaces. 

Number of sides of 
polygon. 3 4 5 6 7 10 15 n 

Number of triangles 1 2 3 4 5 

Sum of angles. 180° 2X180° 3X180° 4 X180° 5X180° 
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It is seen that the inductive method suggests mathematical 

facts, hut does not prove them. Hence, having found that 

the sum of the interior angles of an n-gon would seem to 

be (ft—2) 180°, it still remains to be proved that this is 

true. This may be done as follows: 

88. Theorem: The sum of the interior angles of a 

polygon having n sides is in—2)180°, or (n—2) straight 

angles. 
Given the polygon ABCD . ... , Fig. 18, having 

ft sides. 

To prove that the sum of the 

interior angles, S, is given by the 

equation: 

$ = (ft—2)180°. 

Proof: Draw diagonals from A 

to the other vertices. 

E 

This divides the polygon into Fig. 18 

(ft —2) triangles. Why? 

The sum of the angles of the triangles of the polygon 

is (ft-2) 180°. Why? 

The sum of the angles of these triangles is equal to 

the sum of the angles of the polygon. Why ? 

Hence, the sum of the angles of the polygon is 

(ft-2) 180°. Why? 

EXERCISES 

1. Using the formula >S= (n—2)1S0°, find the sum of the 

interior angles of hexagon, octagon, decagon, 2n-gon. 

2. The sum of the angles of a polygon is 1800°. Find the 

number of sides. 
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89. Theorem: The sum of the exterior angles of a 

polygon, one exterior angle at each vertex being taken, is 

860°, or 2 straight angles. 

Given the polygon ABCD . , etc., Fig. 19, 

having n sides and the exterior angles a, b, c, d . . . . , 

etc. 

To prove that a+fe+c+d .... = 360°, or 2 straight 

angles. 

Preliminary discussion: 

How is an exterior angle 

related to the adjacent interior 

angle ? 

How may we find the sum 

of the exterior and interior 

angles ? 

Knowing the sum of the in¬ 

terior angles to be (n—2)180°, 

how may we find the sum of 

the exterior angles? 

Proof: a+a' = 180° Why? 

b+b' = 180° Why? 

c+c' = 180°, Why? 

. etc. 

a~\~b~\~c~\~.. a'-\~b'~\~c'• • —tvISO0 —(180ti)' 

Why? 

a'+6'+c' + .. = (w—2)180° = (180n)° —360° 
Why? 

a~\~b~\~c.. . . =300° Why ? 

Show that the sum of the exterior angles of a polygon 

is independent of the number of sides of the polygon. 
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EXERCISES 

1. Prove that any interior angle of a regular polygon is 

n 
2. If two angles of a quadrilateral are supplementary, show 

that the other two are supplementary. 

3. How many right angles are contained in the sum of the 
angles of a polygon having n sides ? 

4. How many sides has a polygon the sum of whose angles 
is 36 right angles ? 18 straight angles ? 720°? 

5. Show that the sum, S, of the interior angles of a polygon 
is a junction of the number of sides. 

6. What is the sum of the vertex angles a, b, c, d, and e of the 
five-point star, Fig. 20 ? 

7. If the sum of the interior angles of 
a polygon is twice the sum of the exterior 
angles, how many sides are there in the 
polygon ? 

8. How many diagonals may be drawn 
in a polygon having 4 sides? 5 sides? 
6 sides ? 

Fig. 20 

9. Show that in an n-gon (n — 3) diagonals may be drawn 
from one vertex. 

10. Show that in an n-gon 
n(n—3) 

2 diagonals may be drawn. 

11. Show that the number of diagonals, N, that may be 
drawn in a polygon is a function of the number of sides, n. 

90. Algebraic method. This method is used when 

the numerical value of a magnitude is to be found or 

when a relation between several magnitudes is to be 
proved. 

First, the relations between the magnitudes are 

expressed in algebraic symbols. The required magnitude 
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is then found by a process of elimination. The following 

problem illustrates the method. 

EXAMPLE OF ALGEBRAIC METHOD 

Prove that the bisectors of two supplementary ad¬ 

jacent angles are perpen¬ 

dicular to each other. 

Given that x and y, 

Fig. 21, are adjacent angles 

and that x-\-y = 180. 

Also, a —a! and b = b'. Fig. 21 

To prove that a'+6' = 90. 

Proof: a-\-a'-\-b'-\-b = 180. Why? 

Thus, we have a relation between a, a', b and b'. 

Since the conclusion contains only a' and b', we must 

eliminate a and b from the equation a+a'+fe'+6 = 180. 

a = af Why ? 

and b=b' Why? 

Then, a and b may be eliminated by substituting a' and b' 

for a and b, respectively. 

This gives a'-\-a'-\-br+6' = 180 

Collecting terms, 2a'+2&' =180. 

Hence, a'+6'= 90 Why? 

91. In the preceding proof a and b were eliminated by 

substitution. Methods of elimination will be discussed 

in the next chapter. 

EXERCISES 

Prove the following exercises: 

1. If two angles of one triangle are equal to two angles of 
another, the third angles are equal and the triangles are mutually 
equiangular. 
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2. Find the angle formed by the bisectors of the acute angles 
of a right triangle. 

3. One base angle of an isosceles triangle is f of the vertex 
angle. Find the angles of the triangle. 

Summary 

92. The chapter has shown the value of logic in 

supporting correct reasoning and detecting fallacies, the 

danger in depending upon intuition alone as a means of 

proof, and the need for a logical proof. 

93. The meaning of the following terms has been 

taught: hypothesis, conclusion, proof. 

94. The following methods of proof have been illus¬ 

trated: superposition, the method of congruent triangles, 

the inductive method, and the algebraic method. 

95. Some general directions have been given for 

attacking, or proving, problems and theorems (§ 80). 

The importance of systematic reviews has been empha¬ 

sized (§ 86). In the study helps (p. xix) the student will 

find some valuable suggestions as to the way he may study 

effectively. 

96. The following theorems have been proved: 

1. The sum of the interior angles of a polygon is (n—2) 

straight angles. 

2. The swn of the exterior angles of a polygon is 360°. 

3. If each of two points on a given line is equally distant 

from two given points, the given line is the perpendicular 

bisector of the segment joining the given points. 



CHAPTER III 

METHODS OF ELIMINATION. PROBLEMS AND 
EXERCISES IN TWO UNKNOWN NUMBERS 

97. Elimination. In the first-year course we learned 

how to eliminate literal numbers by addition or sub¬ 

traction. In § 90 we have seen that in a system of equa¬ 

tions magnitudes may be eliminated by substituting 

equal magnitudes for them. In future work we shall 

have occasion frequently to eliminate numbers. There 

are various methods of elimination, and we should be 

able to select that method which for any particular 

problem is most advantageous. We shall accordingly 

review briefly what we know about elimination, and then 

study other methods. 

98. Elimination by addition or subtraction. The 

solution of the following system (pair) of equations will 

recall the method of eliminating by addition or sub¬ 

traction. 

ILLUSTRATIVE PROBLEM 

Let 9a; — Sy = l 

and 15a;+12?/ = 8 

The problem is to find the values of x and y. 

Multiplying the first equation by 3 and the second by 

2, we have 
27a; — 24y = 3 

30a;+24?/ = lG 

23 
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By adding the equations the y-terms are eliminated, 
and we obtain 

Substituting this value for x in either one of the given 
equations, as 9x—8y = 1, we get 

3—8j/ = 1 

cc — - 

_ i > is the solution of the system 

Thus, to eliminate by addition or subtraction we 
proceed as follows: 

1. By multiplying one or both equations by the proper 

numbers the coefficients of one of the unknown numbers are 

made numerically the same in both equations. 

2. One of the unknowns is then eliminated by adding or 

subtracting the equations according as the coefficients of this 

unknown have unlike signs, or like signs. 

EXERCISES 

Solve the following systems, eliminating by addition or 
subtraction: 
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99. Graphical method of solving a system of equations. 
The pupil will recall that every linear equation in two 

variables, as x and y, may be represented graphically 
by a straight line. To 

graph a linear equa¬ 

tion in two variables, 

we may graph two, 

preferably three, solu¬ 

tions of the equation 

and draw the straight 

line passing through 

the three points cor¬ 

responding to the so¬ 

lutions. 

The solution of a 

system of two linear 

equations consists of 

the x- and ^/-distances 

(co-ordinates) of the 

point of intersection of the two straight lines. In Fig. 22, 

line AB represents the equation 9a;—Sy = 1 and line CD 

represents 15x-\-12y = 8. The point of intersection, P, 

represents the solution x = y = \, in the sense that the 

x- and ^/-distances of P represent the values of x and y 

that satisfy 9x—8y — l and 15a;+12y = 8, simultaneously. 

EXERCISES 

Solve graphically the following systems: 

1. 

2. 

jSx—4y= 14 
\5a;+2y = 32 

|9a;+6y = 51 
\4z+3?/=24 

fz-2y+4 = 0 
\x+y = 5 

t4. 
Sx — 2y = Q 
2x — 3y = 4: 

t All problems marked t are not essential, and may be 

omitted at the discretion of the teacher, 
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100. Elimination by substitution. This method is 

most advantageous when one of the unknown numbers 

is easily expressed in terms of the other. 

For example, if x—2y = 7, it follows that x = 7 -\-2y. 

Why? 

The following problem will illustrate the method: 

ILLUSTRATIVE PROBLEM 

Solve the following system of equations eliminating by 
substitution: 

7^-22 = 46.(1) 
w+z = 13.(2) 

Solving equation (2) for z, 2 = 13 —w 
Substituting 13—w for z in equation (1), 

7w—2(13—w) =46. This eliminates z. 
Hence, w = 8. Why ? 
and 2 = 5. Why? 

.*. The solution is 
w = 8 
2 = 5 

Thus, to solve a system of equations, eliminating by 

substitution, express one of the unknown numbers in terms 

of the other by solving one equation. Then substitute the 

result in the other equation, and solve the equation thus 

obtained.* 

PROBLEMS AND EXERCISES 

Solve the equations obtained from the following problems 
by the method of elimination by substitution: 

1. One of the base angles, x, of an isosceles triangle is equal 
to twice the vertex angle, y. Find all the angles of the triangle. 

2. The difference of two numbers is 14, and the sum is 100. 
What are the numbers ? 

* This method of solving equations was first used by Isaac 
Newton (1642-1727). 
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3. A man invests one part of $3,200 at 6 per cent and the 
other part at 5 per cent. If his annual income is $180, how much 
did he invest at each rate ? 

Solve the following systems of equations: 

4. 
f 9/£ — 2r = 44 

J7. \ 
(9j = 2?/+84 

'c
T
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*5. f x-\-2y=l7 
J8. | 
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\3x— y = 2 II O
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6. J8x+5y = 44 
9. < 

(2x= y+f 

T
o 1 II to
 

[Qx-{- 6y = 5 

10. The angles r and 3s are supplementary and r — s = 20°. 

Find r, s, and 3s. 

11. The angles x and y are complementary and the differ- 

ence is 10°. Find x and y. 

12. The sides of an equiangular triangle are denoted by 
£+3y, 2x—y, and 14. Find x and y. 

13. The angles of an equiangular triangle are denoted by 
7x-\-2y, 3(3a; —2y), and 60. Find x and y. 

tu. The three sides of an equiangular triangle are denoted 
by 7x-\-2y, 5(a;+2y), and 8x —3y+2. Find x and y. 

15. A man bought two pieces of vacant property, one at 
$42 a foot, the other at $56 a foot. Altogether he had 140 ft., 
and paid for it the sum of $6,780. Find the number of feet of 
ground he bought at each price. 

16. From two kinds of coffee selling at 30 cents and 35 cents, 
respectively, a grocer wishes to get a mixture of 20 pounds to 
be sold at 32 cents a pound. How many pounds of each kind 
must he use ? 

17. A leaves town three hours before B, traveling at a rate 
of 2\ mi. an hour. B travels at 4 mi. an hour. When and 
where does B overtake A ? 
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J101. Elimination by comparison. This method works 

well if one of the unknowns has the same coefficient in 

both equations of the system, as with 

[4a; = 3 

|4a; = 5+2 y 

The value of x to be determined here being the same 

for both equations, it follows that 5+2?/= 3. Why? 

Hence, y— — 1. 

EXERCISES 

Solve the following systems, eliminating by comparison, 
doing as much of the work as you can without the pencil. 

1. 

2. 

3. 

pJrw = 12 A { i+y-5 
p—w= —4 x 13 y 

k 5 5 

x+y = 3 
5. j r2F+3K=7.5 

a; = 5 —3 y +E+3X=-2 

x = my-\-n2 
6. x-\- y = 560 

x= ny-\-m2 [ x — 3?/ = 0 

PROBLEMS LEADING TO EQUATIONS IN TWO UNKNOWNS 

102. Problems about work. Solve the following, 

doing alt you can orally: 

1. If the time required to do a piece of work is 10 days, what 
part of it is done in 1 day ? In 3 days ? In 10 days ? 

2. If the entire time is x days, what part of the work is 
done in 1 day ? In 3 days ? In a; days ? 
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3. If the time is y days, what part of the work is done in 

1 day ? In 3 days ? In y days ? 

4. If A works 3 days on a piece of work and B, 2 days, they 

do yy of it. But if A works 2 days and B, 3 days, they do yV 

of it. In how many days could each one do it, working alone ? 

Letting x and y denote the number of days required by A and 

B, respectively, then - and - will denote the parts A and B, respec- 
x y 

tively, can do in one day. 

Whence, 
3 ,2^14 
x ' y 15 (1) 

and, 
2 3= 9^ 
x'y 10 

(2) 

These equations are not linear in x and y, but are linear in - 

and -. They should not be cleared of fractions, but - or - should 
y ^ " 

first be eliminated, thus, 

Subtracting, 

Whence, 

and, 

Substituting in equation (1), x = 5. 

Solution: 
jx = 5 

6 4=28 

x y 15 
6 9 _27 

x y 10 

5 _ _25 

y 30 

1=1 
y 6 

y=6 
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EXERCISES 

Solve the following systems of equations without clearing 

of fractions, and check them: 

r 1 1__8 
I r 

1. 

2. 

x y 15 
1_1_ 2 
x y 15 

3—7=5 
x y 

?A = 3 
x y 

3. 

4. \ 

f 10_9_1^ 

x y 20 

x y o 

7 4_11 

x y 30 

5_6 

x y 

3 

28 

J5. 

6. 

J7. 

6+5 =2 
x y 

— -— = 3 
X y 

-+- = 5 
x y 

—— 17 
x y 

5 6 24 

x+y ”143 

t8. 

i3_n 

X y 

V 
x y 

15 21 

x V 

30 

22 
105 

4 

21 

9. 

10. 

til. 

J12. 

V 
x'y 12 

-4-3 =o 
x y 

--- =2 
a y 

3 =6 
‘2/ 

fn_2 _i 
x 2/ ~6 
2 3 _31 
x y 24: 

6 3 _ 13 

a; 2/ 60 
9 20_7 
a; ?/ 12 

MISCELLANEOUS PROBLEMS 

103. Solve the following problems: 

1. A boy is 17 months 5 days older than his sister. After 

21 days he is twice as old as his sister. How old is each ? 

2. Two kinds of coffee, one at 32 cents a pound, the other at 

25 cents a pound are to be mixed in the ratio 3:2. How many 

pounds of each must be taken to make a mixture to cost $8.00? 

3. The sides of a rectangle are to each other as 3:8. Find 

the lengths of the sides if the perimeter is 283. 

4. Two sums are invested at 3 per cent and 3j per cent, 

respectively, bringing an annual income of $52.60. If the first 

sum is invested at 3 \ per cent and the second at 3 per cent, the 

annual income is $52.70. What are the two sums? 
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5. Three times the reciprocal of the first of two numbers 
and 4 times the reciprocal of the second are together equal to 5. 
Seven times the reciprocal of the first less 6 times the reciprocal 
of the second is equal to 4. What are the numbers ? 

Summary 

104. In this chapter the processes of solving linear 

equations in two unknowns graphically and by eliminating 

magnitudes have been extended. 

The following processes have been studied for the first 

time: 

(1) Elimination by substitution. 

(2) Elimination by comparison. 



CHAPTER IV 

QUADRILATERALS. PRISMATIC SURFACE. 
DIEDRAL ANGLES 

Parallelograms 

105. Parallelogram. A quadrilateral having both pairs 

of opposite sides parallel is a parallelo¬ 

gram. (See Fig. 23.) 

106. Uses of the parallelogram. Fig. 23 

Some designs are based upon the 

parallelogram. A designer some¬ 

times constructs tile flooring, Fig. 24, 

from a network of parallelograms. 

Give other examples of designs 

based upon the parallelogram. 

Tops of desks and tables, 

blackboards, windows, walls, picture 

frames, etc., are examples of 

parallelograms. 

Constructions with the parallel 
ruler, Fig. 25, which is used to draw parallel lines, are 

based upon a property of parallelograms. (See § 124). 

Fig. 25 

The same principle is used in the construction of the 

adjustable shelf, Fig. 26, which remains in horizontal 

position as it is moved to and from the wall. 

32 
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Surveyors make use of a property of the parallelogram 

to lay off parallel lines, Fig. 27, or to extend a line beyond 

an obstacle, 

Fig. 28 (see j i _ - 

§ 125). _i_i_ I.-- — 
The use of Fig. 27 Fig. 28 

the parallelo¬ 

gram in physics may be seen from the following 

problem: 

The wind drives a steamer northeastward with a force which 
would carry it 12 miles per hour, and the engine is driving it 
southward with a force which would carry it 15 miles per hour. 
What distance will it travel in an hour and in what direction ? 

Let AB, Fig. 29, represent in magnitude 
and direction the 12-mile rate toward the 
northeast and AC the 15-mile rate south¬ 
ward; then it is shown by experiments that 
the rate and direction in which the boat 
actually moves may be represented by a line- 
segment as follows: 

Construct a parallelogram as ABDC on 
AB and AC as adjacent sides and draw a 
line-segment from A to the opposite vertex, 
D. The diagonal line AD is the required 
segment. Before we can solve this problem 
we must know how to construct the parallelogram from these 
given parts. 

107. Construction of parallelograms. To construct a 

parallelogram having given two adjacent sides and the 

included angle. 

Given two segments, a and h and angle x, Fig. 30. 

Required to construct a parallelogram having two 

adjacent sides equal to a and b, and including an angle 

equal to x. 

B 

D 
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Construction: Suppose a= 1.5 in., 6 = 1 in., and x = 45°. 

Draw a line as AB. 
On AB, lay off AC = a. 

At A, construct line AD making with AB angle x' 

equal to angle x. 

On AD lay off AE = b. 

With C as center and radius equal to 6, draw arc 1. 

With E as center and radius equal to a, draw arc 2 

intersecting arc 1 at F. 

Draw EF and CF. 

ACFE is the required parallelogram. 

The proof that ACFE is a parallelogram is based upon 

one of the properties of parallelograms to be studied 

later .in this chapter (see § 124). 

EXERCISES 

1. Construct a parallelogram haying a = 2 in., 6 = 1.5 in., 
and x = 50°, and compare it with the parallelograms constructed 
by other members of the class. 

2. How do two parallelograms, having two sides and the 
included angle equal respectively, seem to compare in size and 
shape ? 

3. Prove that two 'parallelograms are congruent, if two 
adjacent sides and the included angle of one are equal, respectively, 

to the corresponding parts of the other. 

Proof by superposition: Apply one of the parallelograms to the 
other and show that they can be made to coincide throughout. 
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4. On squared paper construct the parallelogram of the 
steamer problem in § 106, and find the solution by measuring 
the diagonal AD, and Z CAD, Fig. 29. 

5. Represent graphically a force of 20 lb. acting northeast 
and a force of 30 lb. acting northwest upon the same body. 
What single force has the same effect upon the motion of the 
body as the two forces together? In what direction will the 
body move ? 

108. Before taking up the study of the parallelogram, 

we shall recall some facts about parallel lines. At the 

same time we shall discuss and exemplify two important 

methods of proof, that were not given in chapter II. 

109. Indirect method of proof. The indirect method 

may be illustrated by proving the following theorem: 

Theorem: If each of two lines is parallel to a third 

line, they are parallel to each other. 

Given A B || EF, CD || EF, 

Fig. 31. 

To prove A B || CD. 

A- 

C 

E 

B 

D 

Fig. 31 

Proof: Assume AB not parallel to CD. 

Then AB and CD intersect at some point, as P, if 

far enough extended. For, two intersecting lines have one 

point in common (§4). 

But PA || FE, by hypothesis, 

and PC II FE, by hypothesis. 

Hence, there are two lines parallel to FE passing 

through the point P. 

This is impossible. For, through a point outside of 

a given line only one line can be drawn parallel to the 

given line (§41). 

Therefore the assumption that AB is not parallel 

to CD is wrong, and AB || CD. 
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It is thus seen that the indirect method of proof con¬ 

sists of the following/o^r steps, numbered I, II, III, and IV: 

I. Make an assumption which denies the conclusion of 

the theorem. 

Thus, if you are to prove that a = h, assume that 

a^b, or if AB is to be proved parallel to CD, assume AB 

not parallel to CD. 
II. By correct reasoning show that the assumption leads 

to an absurdity. 

In the preceding theorem the absurdity is the state¬ 

ment that two lines can be drawn parallel to the same line 

passing through a given point. 

III. It then follows that the assumption is wrong. 

For, if we start right, correct reasoning cannot lead 

us to a wrong conclusion. To reach a correct conclusion 

in a course of reasoning, two things are necessary, and only 

two, namely: (1) the premises from which the reasoning 

starts—in geometry, we call them the assumptions—must 

he correct, and (2) the reasoning must he sound. 

If a certain conclusion is known to be incorrect, the 

assumption from which the reasoning starts is incorrect 

or the reasoning is faulty, or both. If a conclusion is 

incorrect and the reasoning is sound, the assumption must 

he incorrect. 

IV. Hence, the conclusion is correct and the theorem is 
proved. 

110. Theorem: Two lines that 

to the same line are parallel. 

Given ABE EF, CDJLEF, 
Fig. 32. 

To prove AB || CD. 

are pcrpe7idicular 

E 

A 

c 

J 
V 

B 

D 

Proof (indirect method): 

Assume AB not parallel to CD Fig. 32 
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Then AB and CD intersect at some point, P. Why ? 

Hence, PA _L EF and PC ±EF. Why ? 

This is impossible. Why ? 

Therefore, the assumption that 

A B is not parallel to CD is wrong, — 

and AB || CD. - 

1. Show that this theorem affords Fig. 33 

a very simple way of drawing 

parallel lines by means of a T-square (Fig. 33). 

2. State the conditions which make two lines parallel 
to each other. 

3. Draw two parallel lines, using § 110. 

4. Point out in the classroom two lines not in the 

same plane, but perpendicular to the same line. Are these 

lines parallel ? 

111. The method of proof used in §§ 109-110 is com¬ 

monly known as a reductio ad absurdum ,* or a reduction 

to an absurdity, which means that from assuming the nega¬ 

tion of the conclusion of the theorems in question we are 

(by correct reasoning) led to a statement which is contra¬ 

dictory to known, or accepted, facts. It is a powerful 

method of proof, used not only in geometry but in everyday 

life. 

* Eudoxus of Cnidus (408 b.c.), founder of the School at 

Cyzicus, and a contemporary of Plato, used the reductio ad absurdum 

method. In his Short Account of the History of Mathematics (5th ed.), 

Ball says (p. 39) that while the principle of the reductio ad absurdum 

had been used occasionally before, Hippocrates of Chios (b. about 

470 b.c.) drew attention to it as a legitimate mode of proof, capable 

of numerous applications. In this sense Hippocrates may be re¬ 

garded as having introduced the method. 
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112. Method of analysis.* The following example 

will illustrate the method of analysis: 

Theorem: If two alternate interior angles, formed by 

two lines and a transversal are equal, the lines are 

parallel. 

Given A B, CD, and the transversal EF; a = a', Fig. 34. 

To prove A B II CD. 

Preliminary discussion: 

To prove AB II CD, we 

may begin by asking the 

general question: When 

are two lines parallel ? 
Thus we know that A B is parallel to CD, if both lines 

are perpendicular to the same line (§ 110). 
This suggests drawing a line, as GH, perpendicular 

to one of the given lines and then proving it to be per¬ 

pendicular to the other. 
GH is perpendicular to AB, if Z GHF is a right angle. 

We may show Z GHF to be a right angle by showing 

that it is equal to the right angle HGE. 
This will be true, if we can show AMHF ^ AMGE. 

In triangles MHF and MGE, we know that x = x' 

and a = af, which is not sufficient to make the triangles 

congruent. But by taking M, so that EM = MF, we 

will have the third part which is necessary to make 

amhf^amge. 
Being able to prove AMHF^AMGE, it may be 

possible so to reverse the steps in this discussion as to 

prove the lines AB and CD to be parallel. This may be 

done as follows: 

* Plato (429-348 b.c.) is said to have formulated this method 

of proof. 
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Proof: Bisect EF at M. 
Through the middle point, M, of EF, draw MG 

perpendicular to CD and prolong GM to meet AB at H. 

Prove that A EGM ^ A MHF (a.s.a., § 67). 

y = y' Why? 

But, y = rt. Z Why? 
y' = rt. Z Why? 

AB and CD are both perpendicular 

to GH Why? 

AB || CD Why? 

It is seen that the method of analysis consists of the 

following four steps: 
I. Ask the question: “Under what conditions is the 

conclusion true?” Select from the answers the one you 

think you can establish to be true. Thus, when AB is 

to be proved parallel to CD the question should be, 

“When are two lines parallel?” The answer will be: 

“We have proved previously that two lines are parallel, 

(1) if they are perpendicular to the same line, or (2) if 

they are parallel to the same line.” From these two 

possibilities, select the one you think you can prove to 

be true. The conclusion is true, if the truth of this 

second fact is established. 
II. Repeat the same process of reasoning with the 

second fact, thus: This second fact is true, if a certain 

third fact can be proved. 
III. Continue this type of reasoning until you deduce 

a fact that is known to be true. 
IV. Starting from this known fact, reverse the pro¬ 

cess, proving every statement, until the conclusion is 

reached. 

113. Proof by analysis. Step IV, § 112, is the proof 
of the theorem. The preliminary reasoning in steps 
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I, II, and III is called the analysis. The purpose of 

the analysis is to enable the student to discover the 

known fact from which to start, and to learn how to 

arrange the proof. In the demonstration of a theorem 

only the proof is given. 

114. Converse of a theorem. A theorem is said to 

be the converse of another theorem, if the hypothesis 

and conclusion of one are, respectively, the conclusion 

and hypothesis of the other. 

State the converse of the following: 

1. If two sides of a triangle are equal, the angles opposite 

them are equal. 

2. In a circle equal arcs are subtended by equal chords. 

Are the converses of the following statements true ? 

If two angles are right angles they are equal. 

If two parallelograms have equal bases and altitudes, 

they are equal. 

All righteous people are happy. 

If two angles of a triangle are equal the sides opposite 

them are equal. 

Thus, because a theorem is true, it does not follow 

that the converse is true. Since some converses are true 

and some are not, a proof is necessary before the converse 

can be accepted as true. 

115. Methods used to prove the converse of a theorem. 
Two methods are used most frequently to test the truth 
of the converse of a theorem. 

1. If the steps of the proof of the original theorem 

are reversible, use this proof as analysis and retrace it, 

step by step, until the hypothesis is reached. Since the 

hypothesis of the original theorem is the conclusion of 

the converse, this proves the converse. 
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2. The indirect method. 

116. Theorem: If two parallel lines are cut by a trans¬ 

versal, the alternate interior angles are equal. (Converse 

of the theorem in § 112.) 

Given AB \\ CD. AB 

and CD cut by EH, 

Fig. 35. 

To prove a — ar. 

Proof (indirect method): 

Suppose a 9^ a' 

Draw GF making b = a'. 

Then, GF || CD 

But, AB || CD 

It is impossible that both GF and AB are parallel to 

CD. Why ? 

Therefore, the assumption that a^a' is wrong, and 

a — a'. 

Why ? . 

Why? 

EXERCISE 

Prove that if one of two parallel lines is perpendicular to a 

third line the other is also. 

117. Properties of parallelograms. In § 106 it was 

seen that some of the properties of parallelograms could 

be applied in a number of ways. We will now prove the 

following: 

If a quadrilateral is a parallelogram — 

1. A diagonal divides it into congruent triangles; 

2. The opposite sides are equal; 

3. The opposite angles are equal; 

4. The consecutive angles are supplementary; 

5. The diagonals bisect each other. 
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118. Theorem: A diagonal divides a 'parallelogram 

into two congruent triangles. 

Given the parallelogram A BCD 

with the diagonal A C, Fig. 36. 

To prove that 

aabc^aadc. 

Analysis: What conditions are sufficient to make 

two triangles congruent ? In what ways can we prove 

two angles equal, and which of them may be used to 

prove x = x' ? 

Proof: 

STATEMENTS 

AC=AC 

DC II AB 

• T - 

AD || BC 

•'•y=y' 

aabc&aadc 

REASONS 

Common 

Since ABCD is a parallelo¬ 
gram by hypothesis. 

If two parallel lines are cut 
by a transversal the alter¬ 
nate interior angles are 
equal. 

By hypothesis. 

Alternate interior angles 
formed by parallel lines 
and a transversal are 
equal. 

a.s.cL. 

119. Theorem: The opposite sides of a parallelogram 

are equal (method of congruent triangles). 
Use § 118. 

120. Theorem: The opposite angles of a parallelogram 
are equal. 

Use § 118 to prove ZD=ZB, Fig. 36. Then draw 
diagonal DB to prove ZA = ZC. 
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121. Theorem: The consecutive angles of a parallelo¬ 

gram are supplementary. 

Notice that the consecutive angles are interior angles 

on the same side, formed by two parallels cut by a trans¬ 

versal. Use § 47. 
i 

122. Theorem: The diagonals of a parallelogram 

bisect each other. 

Given the parallelogram A BCD 

with the diagonals AC and BD, 

Fig. 37. Fig. 37 
To prove that AE = EC, DE = EB. 

Analysis: How may two line-segments be proved 

equal ? 

Which of these ways seems the most promising to 

prove AE = EC f 

Proof: Prove ADEC ^ AAEB. 

AE then equals EC, and BE equals ED. Why ? 

EXERCISES 

1. Prove that if one of the angles of a parallelogram is a 
right angle, all the angles are right angles. 

2. Prove that if two adjacent sides of a parallelogram are 
equal, all the sides are equal. 

3. Prove that parallels intercepted between parallels are 
equal. 

4. Prove that parallels are everywhere equally distant. 

5. One pair of opposite sides of a parallelogram is denoted 
by x2-\-x and 6(3—a;) and the other pair by y2—y and 3(5 —y). 
Find x and y, and the lengths of the sides. 

f6. Two opposite angles of a parallelogram are denoted by 
£2+6 and 7(x-f2). Find x and all the angles of the parallelo¬ 
gram. 
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123. Conditions under which a quadrilateral is a 
parallelogram. 

In the following it will he proved that a quadrilateral is a 

parallelogram— 

1. If the opposite sides are parallel; 

2. If the opposite sides are equal; 

3. If one pair of opposite sides are equal and parallel; 

4. If the opposite angles are equal; 

5. If the diagonals bisect each other. 

124. Theorem: If the opposite sides of a quadrilateral 

are equal, the quadrilateral is a parallelogram. 

Given the quadrilateral ABCD, Fig. 38, having 

AB = DC, AD = BC. 

To prove AB || DC, 

AD II BC. 

Proof: Draw AC. 

Prove A ABC ^ A ADC. 
(s.s.s.) 

Then x = x', and y = y' Why? 

Hence, AB || DC and AD || BC. Why ? 

125. Theorem: If one pair of opposite sides of a 

quadrilateral are equal and parallel, the quadrilateral is a 

parallelogram. 

Given the quadrilateral ABCD, Fig. 39, having 

AB = DC, and AB || DC. 

To prove that ABCD is a paral¬ 

lelogram. 

Proof: Prove A ABC ^ A ADC. 
(s.a.s). 

Then AD = BC. Why? 

Use the theorem of § 124 to prove that ABCD is a 

parallelogram. 

Fig. 39 
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126. The proof of the following theorem is a good 

example of the algebraic method of proof: 

Theorem: If the opposite angles of a quadrilateral are 

equal, the quadrilateral is a parallelogram. 

Given the quadrilateral ABCD, 

Fig. 40, having a — c, b = d. 

To prove AB || DC, AD || BC. 

Analysis: Under what con¬ 

ditions are two lines parallel ? 

What relations are known between, a, b, c, and d t How 

may we obtain from these relations a relation which will 

show that AB || DC ? 

Fig. 40 

REASONS 

Why? 

Why? 

Why? 

By eliminating b and c. 

Combining like terms. 

Why? ' 

Why? 

Proof: 

STATEMENTS 

a~\~b c-\- d — 360 

a = c 

b = d 

Hence, a-\-d-\-a-\-d = 360 

2a+2d = 360 

a~\~d —180 

Hence, AB || DC 

Similarly, prove that AD || BC. 

127. If the diagonals of a quadrilateral bisect each other, 

the quadrilateral is a parallelogram. 

Draw the diagonals AC and BD, 

Fig. 41. 

Prove A DEC ^ A AEB. 

Then DC = AB. 

Similarly, show that AD = BC. 

Hence, 

D 

E 

u ' 
\ s X 
_ 

B 

Fig. 41 

ABCD is a parallelogram. Why ? 
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128. Classification of quadrilaterals. Quadrilaterals 

may be classified as follows: 

Parallelogram. A quadrilateral having two pairs of 

opposite sides parallel is a parallelogram. 

Rhomboid. A parallelogram whose angles are oblique 

is a rhomboid. 

Rhombus. An equilateral rhomboid is a rhombus. 

Rectangle. A parallelogram whose angles are right 

angles is a rectangle. 

Square. An equilateral rectangle is a square. 

Trapezoid. A quadrilateral having one pair of opposite 

sides parallel is a trapezoid. 

Isosceles trapezoid. If the two non-parallel sides are 

equal the trapezoid is isosceles. The parallel sides 

of the trapezoid are the bases. 

The same classification is represented in the following 

table: 

Rhomboid 

(oblique angles, 
consecutive sides 

unequal) 

Rhombus 

(oblique angles, 
equilateral) 

Parallelogram 

(2 pairs of J 
opposite sides 

parallel) 

Quadrilateral 

(figure of < 
4 sides) 

Rectangle 

(right angles, 
consecutive sides 

unequal) 

Square 

(right angles, 
equilateral) 

Trapezoid 
Isosceles trapezoid 

(2 non-parallel 
sides equal) 

(1 pair of 
opposite sides 

parallel) 
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EXERCISES 

Prove the following: 

1. If two consecutive sides of a rectangle are equal, all the 
sides are equal. 

2. If the diagonals of a parallelogram are equal, the figure 
is a rectangle. 

3. The diagonals of a rectangle are equal. 

4. The diagonals of a square are e^qual. 
*• 

5. The diagonals of a rhombus bisect each other perpen¬ 
dicularly. 

6. The diagonals of a square bisect each other perpen¬ 
dicularly. 

7. If the diagonals of a parallelogram bisect each other 
perpendicularly, the figure is a rhombus, or a square. 

8. A circle may be circumscribed about a rectangle, or a 
square. 

9. If the angles of a parallelogram are bisected by the 
diagonals, the figure is a rhombus, or 
a square. 

tlO. If the midpoints of two oppo¬ 
site sides of a parallelogram are joined 
to a pair of opposite vertices, Fig. 42, 
a parallelogram is formed. 

. til. In the parallelogram, Fig. 43, 
AE=BF = CG=DH. Prove that 
EFGH is a parallelogram. 

$12. The perpendiculars to a 
diagonal of a parallelogram from the 
vertices not on the diagonal are equal, 
Fig. 44, i.e., DE=BF. 

13. If two points on the same side 
of a line are equally distant from the 
line, the line passing through the two 
points is parallel to the given line. Fig. 44 
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J14. The bisectors of two opposite angles of a parallelogram 

are parallel. 

115. The bisectors of the angles of a 
parallelogram form a rectangle. 

J16. The bisectors of the angles of a 
rectangle form a square. 

J17. The sum of the perpendiculars from 
a point on the base of an isosceles triangle to 
the two equal sides is equal to the altitude to 
one of these sides. Fig. 45. 

J18. The sum of the perpendiculars from 
a point within an equilateral triangle to the 
three sides is equal to the altitude. Fig. 46. 

Constructions 

129. Make the following constructions: 

1. Given a side and the diagonal of a rectangle, construct 
the rectangle. 

2. Given a side and an angle of a rhombus, construct the 
rhombus. 

3. Given the diagonal of a square, construct the square. 

4. Given the diagonals of a rhombus, construct the rhombus. 

Problems 

130. Solve the following problems algebraically: 

1. The diagonals of a rectangle are denoted by x2—x and 
2(2x+7). Find both values of x and the diagonals. 

2. The diagonals of a parallelogram divide each other so 
that the segments of one are x2-\-x and 2(5x —7), and of the 
other, t2+2t and 8(3 — 0. Find x, t, and the lengths of the 
diagonals. 
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|3. The diagonals of a rhomLtis divide each other so that 
the parts of one diagonal are denoted by a:2 and 3(2x+9), and 
of the other by y2 and 2(?/+4). Find x, y, and both of the 
diagonals. 

|4. Two of the four angles that the diagonals of a rhombus 
make with each other are given by x2—10 and 10(2:c —11). 
Find x and the four angles. 

Quadratic Equations 

131. Solve the following equations, using either the 

method by factoring or by completing the square: 

1. x2 = 5x — 4 3. x2—x = 3x—4 

2. z2-fl = 2(:r+18) 4. z2-4 = a;+16 

The Trapezoid 

132. Prove the following: 

1. If the two angles at the ends of a base of a trapezoid are 
equal, the trapezoid is isosceles. 

Draw CF || DA, Fig. 47. 
Prove CE = CB. 

2. If the non-parallel sides of 
a trapezoid are equal, the angles 
at the ends of a base are equal. 

J3. Prove that the diagonals of an isosceles trapezoid are 

equal. 

The Rite 

133. The kite. A quadrilateral 

having two pairs of adjacent sides 

equal, is a kite. 
Thus, ABCD, Fig. 48, is a kite 

if AD-DC, and AB = BC. 

D 

Fig. 48 
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EXERCISES 

Prove the following: 

1. The diagonals of a kite are perpendicular to each other. 

2. One pair of opposite angles of .a kite are equal, i.e., 

Zi= AC. 

Symmetry 

134. Axis of symmetry. A line 

is called an axis of symmetry of a 

figure if it is the perpendicular 

bisector of all line-segments joining 

corresponding points of the figure. 

Thus, AE, Fig. 49, is the axis of 
symmetry in DCBAB'C'D'. 

EXERCISES 

1. What is the axis of symmetry of a line-segment ? 

A 

Fig. 49 

2. Draw the axis of symmetry of a given angle. 

3. Draw an axis of symmetry in a given equilateral triangle. 
Prove the following: 

4. The diagonal BD of the kite, 
Fig. 50, is an axis of symmetry. 

5. The point of intersection E of the 

diagonal DB} Fig. 50, and the bisector of 

A A (axis of symmetry of A A), is equi¬ 

distant from AD and AB and therefore 

may be taken as a center of a circle 

inscribed in the kite. 

Use Exercise 4. 

D 

6. The perpendicular bisector of a base of an isosceles trape¬ 
zoid is an axis of symmetry. 

Prove by superposition. 
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7. The point of intersection of the perpendicular bisectors 

of one of the bases and of one of the non-parallel sides of an 

isosceles trapezoid is equidistant from the 4 vertices. Hence, 

a circle can be circumscribed about an isosceles trapezoid. 

8. Each diagonal of a rhombus is an axis of symmetry, 

Hence, a circle can be inscribed in any rhombus. 

Loci* 

135. Solve the following problems: 

1. Where must the center of a wheel lie while the wheel 

rolls along a straight track ? 

2. Find the place (locus) of a point in a plane having a 

fixed distance from a given line. 

3. Find the locus of a point in a plane equidistant from 

two parallel lines. 

Surfaces 

136. Prismatic surface. Prism. Given a polygon 

ABCD . . . , Fig. 51. A straight line AA', not in the 

plane of the polygon, moves always remaining parallel to 

its first position AA', and always touching the polygon. 

A A' is said to generate a prismatic surface, Fig. 52. 

* Loci is the plural of locus. 
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Let the polygon ABCD . , Fig. 52, move, to a 

position, A 'B'C'D' . . . . , Fig. 53, 

always remaining parallel to its first 

position, points A, B, C, ... . 
moving along the straight lines 

AA', BB', CC' ... , respectively. 

The figure thus formed is a prism. 

137. Bases of prism. Lateral 
surface. The parallel polygons 

ABCD .... and A'B'C'D' .... 

are the bases of the prism. The 

portion of the prismatic surface 

between the bases is the lateral surface. 

138. Lateral faces. The quadrilaterals of which the 

lateral surface is composed are the lateral faces of the 
prism. 

In the classroom! point out a prism and indicate its bases 
and the lateral faces. 

Er 

Fig. 53 

EXERCISES 

1. Show that the lateral faces of a prism are parallelograms. 

2. Show how to generate 

according to the method of 

§ 136 a triangular prism, i.e., a 

prism whose base is a triangle, 
Fig. 54. 

3. Show how to form a 
parallelopiped using as a base 

a parallelogram, Fig. 55. 
Fig. 54 Fi'g. 55 

4. What must be the position of the generating line AA', 
Fig. 55, with reference to the plane of the base ABCD, in order 

that all the lateral faces of the parallelopiped be rectangular ? 
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Lines and Planes in Space 

139. Determination of a plane. In the first-year 

course the pupil has become acquainted with the following 

important solids of geometry: the cube, parallelopiped, 

prism, cone, pyramid, cylinder, and sphere (§§ 203-13). 

In the study of these solids, he has learned the meaning 

of such terms as plane, surface, lines perpendicular to 

planes, parallel planes, etc. Illustrate these terms on 

the cube. 

The pupil has seen that several planes may pass 

through (contain) the edge of a solid, or through two 

given points. Illustrate this with a cube, or by using 

the hinges of a door as the two points and the door as the 

plane. 

When a plane passes through two points in space, 

it is possible to let the plane rotatd about the straight 

line determined by these points, so that any number of 

planes may be passed through the line. However, the 

position of a plane is fixed, if besides making it pass 

through a given straight line, we make it pass through a 

fixed point not on the given line. 

The conditions which determine the position of a plane 

in space are as follows: 

1. A straight line and a point not in that line. 

2. Three points not in the same straight line. 

For, if two of the points are joined by a straight line, 

condition (1) is satisfied. 

3. Two intersecting straight lines. 

For by taking one of the lines and a point on the 

other (not the point of intersection), condition 1 is satis¬ 

fied. 
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4. Two parallel straight lines. 

For two parallel lines lie in the same plane and there 

exists but one plane containing one of the parallel lines 

and a point on the other (condition 1). 

EXERCISES 

1. Illustrate each of the 4 conditions named above on a 

cube. 

2. Illustrate the same facts by using lines and points in the 

classroom. 

140. Relative positions of two straight lines. Two 
straight lines in space may have the following relative 

positions: 

1. They may intersect, produced if necessary. 

2. They may be parallel. 

3. They may not be parallel and not intersect. 

EXERCISES 

1. Illustrate these three possibilities by selecting the proper 

edges of a cube. 

2. Find other illustrations in the classroom. 

141. Relative positions of a straight line and a plane. 
A straight line and a plane may have the following relative 

positions: 

1. The straight line may intersect the plane, produced 

if necessary. 

2. The straight line may be parallel to the plane, i.e., 

have no point in common with the plane, however far 

produced. 
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3. The straight line may have two points in common 

with the plane and therefore lie entirely within the 
plane. 

Illustrate each of these cases on the cube and on lines 
and planes in the classroom. 

142. Representation of a plane in space. A plane is 
conveniently represented by a 

plane figure, such as a rec¬ 

tangle, parallelogram, etc., 

Fig. 56. However, the figure 

indicates only the position of 

the plane, the plane itself being regarded as indefinite in 

extent. 

143. Theorem: If two planes intersect, the intersection 

is a straight line. 

Given two intersecting planes 

P and Q, Fig. 57. 

To prove that P and Q inter¬ 

sect in a straight line. 

Proof (indirect method): 

Suppose the intersection, A B, of planes P and Q 

not to be a straight line. 

Then it will be possible to find three points on AB not- 

in the same straight line. 

Since these three points lie on the intersection, they 

must be in both planes, P and Q. 

Therefore P and Q must coincide. Why ? 

This contradicts the hypothesis in which P and Q are 

understood to be two different planes. Hence, the assump¬ 

tion, that the intersection of P and Q is not a straight line, 

is wrong. 

Therefore the intersection of P and Q is a straight line. 
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Diedral Angles 

144. Diedral angles. Two intersecting planes form 

a diedral angle, Fig. 58. The planes are the faces and 

the line of intersection is the 

edge of the diedral angle. Point 

out diedral angles in the class- a 

room and on the cube. 

A diedral angle is named by- 

two points in the edge and an 

additional point in each face. 

Thus, the diedral angle in Fig. 58 is denoted C-AB-D. 
Sometimes it is sufficient to name only two points on the edge, 
as AB. 

145. Size of diedral angles. A diedral angle may be 

formed by rotating a plane about a line in the plane. The 

size of the diedral angle, therefore, depends upon the 

amount of rotation, not upon the extension of the faces. 

146. Plane angle. If at a point in the edge of a 

diedral angle two lines are drawn perpendicular to the 

edge, one in each face, the angle formed is the plane angle 
of the diedral angle. 

Thus, ABC, Fig. 59, is the plane angle 

■of P-QR-S. 

A plane angle may be drawn at any 

point of the edge. 

It will be shown in § 380 that all plane 

angles of a diedral angle are equal. 
Fig. 59 

147. Classification of diedral angles. A 
diedral angle is said to be right, straight, acute, obtuse, 

reflex, oblique, according as the plane angle is right, 

straight, etc. Diedral angles are adjacent if they have 
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a common edge and a common face between them. 

Thus, A-BC-D and D-BC-E, 

Fig. 60, are adjacent diedral 

angles. 
Two diedral angles are 

complementary or supple¬ 

mentary according as the plane 

angles are complementary or 

supplementary. 
Fig. 60 

148. Perpendicular planes. Two planes are perpen¬ 
dicular to each other, if they form a right diedral angle. 

Point out perpendicular planes on the cube; in the 

classroom. 
Summary 

149. The chapter has taught the meaning of the 

following terms: 

parallelogram 
rhomboid 
rhombus 
rectangle 
square 
trapezoid 
isosceles trapezoid 

kite 
prismatic surface 
prism 
base of prism 
lateral surface 
lateral faces 
diedral angle 

plane angle of a diedral 
angle 

perpendicular planes 
analysis 
converse of a theorem 
axis of symmetry 
locus 

150. The following theorems have been proved: 

1. Two parallelograms are congruent, if two adjacent 

sides and the included angle of one are equal, respectively, 

to the corresponding parts of the other. 

2. A parallelogram may he constructed if two adjacent 

sides and the included angle are given. 

3. Two lines perpendicular to the same line are parallel. 

4. If two alternate interior angles formed by two lines 

and a transversal are equal, the lines are parallel. 
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5. If two parallel lines are cut by a transversal, the alter¬ 

nate interior angles are equal. 

6. If a quadrilateral is a parallelogram— 

1. A diagonal divides it into congruent triangles; 

2. The opposite sides are equal; 

3. The opposite angles are equal; 

4. The consecutive angles are supplementary; 

5. The diagonals bisect each other. 

7. A quadrilateral is a parallelogram if— 

1. The opposite sides are parallel; 

2. The opposite sides are equal; 

3. One pair of opposite sides are equal and parallel; 

4. The opposite angles are equal; 

5. The diagonals bisect each other. 

8. If two planes intersect, the intersection is a straight line. 

151. Quadrilaterals have been classified as follows: 

Rhomboid—Rhombus 

Quadrilaterals • Rectangle—Square 

Trapezoid—Isosceles Trapezoid 

152. The following methods of proof have been 

taught: (1) the indirect method, (2) the method of 

analysis. 

153. Quadratic equations were solved by factoring, or 

by completing the square. 

154. Each of the following conditions determines the 

position of a plane in space: 

1. A straight line and a point not in that line; 

2. Three points not in the same straight line; 

3. Two intersecting straight lines; 

4. Two parallel straight lines, 



CHAPTER V 

PROPORTIONAL LINE-SEGMENTS 

Uses of Proportional Line-Segments 

155. Measurement of line-segments. To measure a 

-line-segment is to find how many times it contains another 

line-segment, called the unit^segment. The number of 

times a segment b is contained in a segment a is the 

numerical measure of a in the unit b, or the numerical 
measure of a with respect to b. 

156. Ratio of two segments. The ratio of the numeri¬ 

cal measures of two segments, both being measured with 

the same unit, is the ratio of the two segments. Another 

method of finding the ratio of two segments is given in 

. § 162. 

as 

157. Proportion. 
4_2 1 _ 3 a_c 

6“3’ 5~l5; b~d’ 

An equation of two equal ratios, 

is called a proportion. Four magni¬ 

tudes are said to be in proportion, if their numerical 

measures are proportional. 

Thus, if the ratio of the rectangles, Fig. 61, is | and 

if the ratio of the altitudes is also -f-> the rectangles are 

proportional to the altitudes. 

Show that the central angles, AOB and A'O'Bin 

Fig. 62, are proportional to the intercepted arcs, 

59 
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Fig. 63 

158. Uses of proportional line-segments. Fig. 63 
represents a pair of proportional compasses, 
used to make scale drawings of given figures. 

By making OB' = ^OB and OA' = ^OA and 

by opening the compass so that AB equals 

a given line-segment, we obtain A'B' equals 

§ A B. This fact follows from one of the prin¬ 

ciples of proportional line-segments (§ 167). 

The pantograph, Fig. 64, is used to draw 

figures to definite scales, and to enlarge or 

to reduce maps, drawings, designs, etc. The 

instrument consists of four pointed bars, 

making BBiA2A a parallelogram. According to the prin- 
OB 

ciples of proportional line-segments, if is made equal 

to y J1, points 0, A, and A\ 

must fall in a straight line, 
. . OA OB ,, . / 

makmg qJ^qb^ Keeping g- 

point 0 fixed, point A is made 

to describe figure (a). The 

pencil at Ai will then describe 

figure (6), which is figure (a) 

magnified to the scale 0B\ to OB. 

The diagonal scale, Fig. 65, is another instrument 

whose construction is based upon principles of propor- 

Fig. 64 

Fig. 65 
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tional line-segments. By means of it lengths may be 

measured to hundredths of an inch. 

.6" A" .2" X1 X 

Fig. 66 

Fig. 66 represents part of Fig. 65, enlarged. 

By § 167, 

Hence, 

Similarly, 

and 

Since 

BBi AB 1 

XXi ^Z“10 

EBy = L XXt 

CC1=^XX1 

DD1=^XXhetc. 

xx‘-To AY-W 
we have BBi = . 01", CCi = . 02", DDi = . 03", etc. 

Likewise, BB% = . 1"+.01" = .11" 

CC'2=.1"+.02"=.12" 

DDi =.!"+.03" =.13", etc. 
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EXERCISES 

1. What is the length of AB, Fig. 65 ? 

2. Draw a line-segment. Measure it to hundredths of an 
inch by using the diagonal scale, Fig. 65. 

Proportional Segments 

159. Theorem:* A line that bisects one side of a 

triangle, and is parallel to a second side, bisects the third 

side. 

Given A ABC, CD = DA, 

DE il AB, Fig. 67. 
To prove CE = EB. 

Analysis: How may two line- 

segments be proved to be equal? 

Draw EF || CA. 

CE will equal EB, if A DEC ^ AFBE. 

Proof: AFED is a parallelogram. Why? 

FE = AD. Why? # 

Show that FE = CD. 

Show that x = xr, y — y'. 

:. A DEC ^ AFBE. Why ? 
.*. CE=EB. Why? 

EXERCISES 

1. Prove that CD, DA, CE, and EB, Fig. 67, are propor¬ 
tional. 

2. Prove that DE = ^AB. State this fact in form of a 
theorem. 

3. If CD —3, DA — 3, CE=4, and EB = x—2, find x and the 
length of EB. 

* This theorem is probably to be credited to Eudoxus (408- 
355 b.c.). 
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4. If CD=1, DA = 1, CE=^T^-^r^,EB^7-^-4, 
* ’ 4 5’ 10 ’ 

find x and the lengths of CE and EB. 

160. Theorem:* If three or more parallel lines inter¬ 

cept equal segments on one transversal they intercept equal 

segments on every transversal. 

Proof (method of congru¬ 

ent triangles): Draw helping 

lines a" II a, h" || b, etc., 

Fig. 68. 

Prove AI = AH ^ Alii, 
etc. 

Then a' = b' = c', etc. Why? 

EXERCISES 

1. Prove segments a, b, c,., a', b', c'}., Fig. 08, 
proportional. 

d_c 
2. A line drawn through the 

midpoint of one of the non-parallel 
sides of a trapezoid, parallel to the 
bases, bisects the other side. Prove. 
Apply § 160. 

161. Median of a trapezoid. The segment joining 

the midpoints of the non-parallel sides of a trapezoid is 

the median of the trapezoid. 

EXERCISE 

Prove that the median of a trapezoid 
equals one-half the sum of the bases. 

Show that mi = ^6i, m2 = §&2, Fig. 70; 

.*. ■m=mi+m2 = ^(61+62). 

bo 

* This theorem is attributed to Archimedes (287-212 b.c.). 
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162. Ratio of line-segments. The ratio of two line- 

segments may be found by means of the compass as 

follows: 

Let AB and CD, Fig. 71, be two segments whose ratio is to be 
found. 

E G 
At 

27 27 27 

H-h 
5 2 

F 
MD 

Fig. 71 

Let us assume that AB and CD contain a common unit of 
measure. It will be shown in § 165 that there are line-segments 
that have no common unit of measure. To find the common 
unit, proceed as follows: 

Lay off the smaller segment CD on the larger AB as often as 
possible, leaving a remainder EB, which is less than CD. 

Lay off EB on CD, leaving a remainder FD, which is less 
than EB. 

Lay off FD on EB, leaving a remainder GB. 
Lay off GB on FD, leaving no remainder. 
The last remainder, GB, is a common unit of measure of AB 

and CD. 
Using GB as unit, show that AT? = 86, and CD = 27. 

Therefore 

163. Theorem: 7/ two parallels cut two intersecting 

transversals the segments intercepted on one transversal are 

proportional to the corresponding 

segments on the other. 

Given AB || DE and AD 

intersecting BE at C, Fig. 72, 

To prove 
CD CE CD CE DA EB 
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Proof: To find the ratio 
CD 

DA 
lay off the smaller 

segment, DA, on the larger, CD, as often as possible. If 

there is a remainder, lay it off on AD. If there is still 

a remainder lay it off on the preceding remainder, etc. 

We will assume that after laying off these remainders a 

definite number of times there is no remainder. Then 

the last remainder is a common unit of CD and DA. 

Let this common unit be contained in CD and DA, 

m and n times, respectively. 

Then 
CD 

DA 

m 

n 
(in Fig. 72, 

", CE 

CD 

DA 

6N 

To find the value of proceed as follows: 

Draw lines parallel to AD passing through the points 

of division of CA. 

These lines will divide CE and EB into m and n parts, 

respectively. Why ? 

Moreover, these parts are equal to each other. 

CE m Why? 

Why ? 

Hence, 
EB 

CD 

n 

CE 
Why 

DA EB 

Similarly, we may prove > CA = CD 
CD CE DA E* 

EXERCISES 

1. Prove that a line parallel to one side of 
a triangle divides the other two sides propor¬ 
tionally. (Apply § 163.) 

|2. Prove the theorem* in § 163, using 
Fig. 73. 

* This form of the theorem is attributed to Archimedes. 
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164. Commensurable magnitudes. In the proof of 

the theorem of § 163 it was assumed that a common unit 

for CD and DA could be found. Two magnitudes which 

have a common unit of measure are said to be com¬ 
mensurable. 

165. Incommensurable magnitudes. Not all mag¬ 

nitudes have a common unit of measure. Magnitudes 

not having a common unit of measure are said to be 

incommensurable. 

EXAMPLE 

The side and diagonal of a square are incommensurable 
segments. This may be seen as follows: 

Since AB <AC, Fig. 74, AB may 
be laid off on AC, leaving a remainder 

BiC. 
Draw BiAi ±AC at Bi. Prove, by 

congruent triangles, that BiA\ — A\B. 
Prove BiC=BiAi = AiB. 
Since BiC <A\C, it follows that 

BiC may be laid off on AiC leaving a 
remainder, as BfC. 

Thus, BiC may be laid off on BC 
twice, leaving a remainder B2C. 

In the same way it may be shown that B^C may be laid off 
on BiC twice, leaving a remainder, BuC; that BzC may be laid 
off twice on BoC, leaving a remainder, etc. 

In each case the process is a repetition of the preceding case, 
only with smaller segments. Since in each case there is a 
remainder, the process may be kept up indefinitely. 

Hence, no common unit of AB and AC can be fowid. 

D c 

It will be seen later, § 254, that the ratio 
AC 
AB = ^2, is an 

irrational number, i.e., a number which cannot be expressed 
exactly in terms of integers, or of fractions whose terms are 
integers. 
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X166. The incommensurable case of the theorem 
in § 163. Since several theorems that have not 

yet been proved are 

needed for proof of the 

incommensurable case, 

only an outline of the 

proof will be given. 

The method of proof is 

indirect. Fig. 75 

Assume 

Then either 

Let 

DA EB 

CD 

DA 

CD 

DA 

^ CE ’ 

EB >. 

> 

CE ’ 

EB 

DA ^EB 

0r CD<CE' 

CD" CE' 

Select a point F on the extension of EB, making EF 

long enough to give = .(!) 

It is possible to determine a point H between B and 

F, making CE and EH commensurable. 

Draw 

Then, 

Since, 

it follows that .(2) 

HK 

DK 

BA 

EH 

CD CE 

DA < DK, 

DA EH 

CD CE. 
EF EH 

Comparing (2) and (1), we have 77^ < 7, Tjl 
CL CL 

.*. EF <EH 
DA EB 

This is impossible and the assumption that > ^7^ 

is wrong. 

Similarly, we may prove that is not less than . 

TT DA EB 

Hence’ CD CE' 
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167. Theorem:* If a number of parallel lines are cut 

by two transversals, the segments of one transversal are pro¬ 

portional to the corresponding segments of the other. 

Show that J-p (§ 163) 

Draw DE || AB 
b" b' 

Prove that —= — 
c c 

But b = b" and c = c 

Why? 
b b' . 

.*. - = —, etc. 

EXERCISE 

Prove that if two given lines are cut by two parallel lines the 
segments of the parallel lines are proportional to the corresponding 
segments of the given lines. c 

We are to prove 

Draw 

Then, 

CD DE 
, Fig. 77. CA AB 

DF || CB. 
CD _ BF _ DE 
CA BA AB 

Why? 

168. Theorem: Two lines that cut two given intersecting 

lines, and make the corresponding segments of the given lines 

proportional, are parallel (converse 

of § 163). 

CD CE 
Given da eb ’ 

To prove AB || DE 

Proof (indirect method): 

Suppose AB not parallel to DE. 

Draw AF || DE 

* This theorem was first proved by Archimedes. 
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Then, 

But, 

CD CE 

DA~~EF 

CD CE 

DA~EB 

CE _CE 

* *EF~EB 

Why? 

Why? 

Why? 

CE • EB-CE • EF Why? 

.*. EB = EF. Why? 

This is impossible. Why ? 

Therefore the assumption that A B is not parallel to 

DE is wrong and AB || DE. 

EXERCISES 

Prove the following: 

tl. If 
CA CB 
CD~CE 

Fig. 78, then DE || AB. 

2. The line joining the midpoints of two sides of a triangle 
is parallel to the third side. 

Prove that two sides are divided proportionally. Then apply 

§ 168. 

|3. Prove § 168, using Fig. 79. 

x xr 
4. In Fig. 80 a \ b and -=. —Prove 

y y 
that c || b. 

5. The median of a trapezoid is parallel 
to the bases. 

6. The quadrilateral whose vertices 
are the midpoints of the sides of a triangle 
and one vertex of the triangle is a paral¬ 
lelogram. 
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7. The midpoints of the sides of a quad¬ 
rilateral, Fig. 81, may be taken as vertices of 
a parallelogram. 

Draw the diagonal. Use Exercise 2. 

169. Summary of the more important 

proportional segments in §§ 159-68: 

1. A line bisecting one side 

of a triangle and parallel to a 

second side, bisects the third 

side, Fig. 82. 

2. If the segments inter¬ 

cepted by parallel lines on one 

transversal are equal, then the 

segments intercepted on every 

transversal are equal, Fig. 83. 

3. The line drawn through 

the midpoint of one of the non¬ 

parallel sides of a trapezoid 

parallel to the bases, bisects 

the other side, Fig. 84. 

4. A line parallel to one 

side of a triangle divides the 

other two sides proportionally, 

Fig. 85. 

5. If a number of parallels 

cut two transversals the seg¬ 

ments of one transversal are 

proportional to the correspond¬ 

ing segments of the other, 

Fig. 86. 

theorems in 

6. A line parallel to the base of a trapezoid divides 

the two non-parallel sides proportionally, Fig. 87. 
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7. Two lines that cut 

two intersecting lines 

making the corresponding 

segments proportional are 

parallel, Fig. 88. 

8. The line joining the 

midpoints of two sides of 

a triangle is parallel to the 

third side, Fig. 89. 

9. The median of a 

trapezoid is parallel to the 

bases, Fig. 90. 

EXERCISES 

t 1. If the segment joining the midpoints of two opposite 
sides of a quadrilateral and a diagonal bisect each other, the 
quadrilateral is a parallelogram. 

2. Prove that the medians and 
diagonals of a parallelogram meet in 
a common point (Fig. 91). Fig. 91 

170. Theorem: The bisector 

triangle divides the opposite side 

into segments that are propor¬ 

tional to the adjacent sides. 

Given A ABC, x — y, 
Fig. 92, 

AD AC 

DB CB * 

of an interior angle of a 

E 

To prove 
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Proof: Extend BC 
Draw AE II DC 
mi AD EC 
Then, DB CB Why ? 

x=x' Why? 

y=y’ Why? 

x = y Why? 

.’. x'—y' Why? 

.*. EC = CA Why? 

AD AC 
“ DB~ CB 

Why? 

EXERCISES 

B 

1. Prove that a line passing through the vertex of a triangle 
and dividing the opposite side into segments proportional to the 
other two sides, bisects the angle included between those sides 
(converse of § 170). 

To prove this exercise, use the proof in § 170 as an analysis. 

2. In Fig. 92, AC = 8, CB = 10, AB = 9. Find the lengths 
of AD and DB. 

3. In Fig. 92, AC = 5, CP = 4, DB = 3. Find the lengths of 
AD and AB. 

4. If CA — 8, CB —16, and AB = 12, Fig. 92, find AD and DB. 

Fig. 93 

B 

Fig. 94 

B 

171. External division of a segment. A point P on a 
segment AB divides AB into the segments AP and PBy 
Fig. 93. Considering the _ 

direction AB as positive, 
and the direction BA as 

negative, then _ 

(+4P)+(+PB) = (+A£). A 
If P is on the extension 

of A B, Fig. 94, then AP is positive, and PB is negative, 

-i— 

p 
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nevertheless the statement (AP)+(P B) = (+AB) still 

holds good. Because of this equation, AP and PB are 

called parts of AB, and AB is said to be divided 

externally by P. Thus, in external as in internal division 

of AB the two parts are measured one from A to P, and 
the other from P to B. 

172. Theorem: The bisector of an exterior angle of a 

triangle divides the opposite side externally into segments 

that are proportional to the other sides. * 

Given A ABC,x = y. 

rj, AD AC 
To prove BB • 

The proof is practi¬ 

cally the same as in § 170. 

173. Harmonic divi¬ 
sion. If a segment is 

divided internally and Fig* 95 

externally in the same 

ratio it is said to be divided harmonically. 

EXERCISE 

Prove that the bisector of an interior angle of a triangle 
and the bisector of the exterior angle at the same vertex divide 
the opposite side harmonically. 

Problems of Construction 
CL C 

174. Fourth proportional. In a proportion, as^ = ^, 

d is the fourth proportional to a, b, and c. 

* Pappus of Alexandria recognized this theorem, though the 

Pythagoreans were the first to deal with the harmonic division of 
lines (Tropfke, History of Elementary Mathematics [in German], 

Vol. II, p. 82). 
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EXERCISES 

1. To construct the fourth proportional to three given segments. 
Given the segments a, b, and c. 
Required to construct the fourth proportional to a, b, and c. 

a) Algebraic solution: Let x be the fourth proportional. 
Find the values of a, b, and c by measuring and substitute them 

in the proportion ^ ^. 

Solve this equation for x. 
Construct a segment whose measure is x. 
This is the required fourth proportional. 

a 

b) Geometric solution: On one of two intersecting lines, as 
AB, lay off AD = a, DE = b, 
Fig. 96. 

On the other, as AC, lay off 
AF = c. 

Draw DF. 
Draw EG || DF. 
Then FG is the required 

fourth proportional. Prove by 
§ 163. 

To test the correctness of the construction, measure the four 
segments to two decimal places and see if these four numbers are 
proportional. 

2. Find by means of an equation the fourth proportional to 
1, 2, and 8. 

3. Solve for x: 
x_4 
57= 13 * 

a b 
175. Third proportional. In a proportion, as 

c is called the third proportional to a and b. 

EXERCISE 

Construct the third proportional to two segments: (a) alge¬ 
braically; follow the instructions of (a), exercise 1, § 174; 
(ib) geometrically, as in (6), § 174. 



PHOTOGRAPH OF 500-DRAW SPAN, SHOWING CHANNEL OPEN 

CONSTRUCTION OF RAILWAY BRIDGE IN SIERRA LEONE, 
WEST AFRICA 

Point out the uses of mathematical forms in bridge and trestle 
construction, using the structures shown above as illustrations. 
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176. To divide a segment in a given ratio. To divide 

a segment A B internally in the ratio ^ means to find a 

point, P, on AB so that To divide AB externally 

m 
in the ratio — means to find a point, P', on the extension 

n 

of AB so that -^75- = — (see § 171). 
P B n 

EXERCISES 

7YI 
1. To divide a segment internally in the ratio —. 

Let AB (Fig. 97) be the given 
segment. Draw a line AC through A 
and lay off AD— m and DE=n. Draw 
EB. Through D draw DF || EB. Then 

m 

E 
ny 

F divides AB internally in the ratio 1 
m 
n 

Test the correctness of the construc¬ 
tion by measuring the segments. Give 
proof. 

F 

. Fig. 97 

771 
2. Show how to divide a segment internally in the ratio —, 

using § 170. 
. m 

3. To divide a segment externally in the ratio —. 
it 

Draw AD — m (Fig. 98), DE = n. Join E to B and draw DF'\\ EB. 
AF' _m 
FLg-n 

Then Prove. 

- 

/<? 

A^- 
B 

Fig. 98 

4. Show how to divide a segment externally, using § 172. 
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5. A segment AB = 18 is divided internally, or externally, at 
AP 

a point P. What is the ratio p-g for AP = 2? 3? 6? 9? 

20? 30? 

6. To divide a given segment, AB, into segments proportional 

to several given segments, x, y, and z. 

On a line, as AC (Fig. 99), lay off x, y, z successively and join 
B to the last point of division D. 

'X? X 
points of division. Then —=-. 

y y 
y[_y 
z' z' 

A 

c 
Fig. 99 

Draw parallels to BD at the 

Why? 

Why? 

A 

Fig. 100 

7. To divide a segment into equal parts (Fig. 100). 

The construction is the same as in exercise 6, using equal 
segments instead of x, y, and z. 

Lines and Planes in Space 

177. Line perpendicular to a plane. If a straight line 
intersects a plane and is perpendicular to every straight 

line passing through the point of intersection and lying 

in the plane, it is said to be perpendicular to the plane. 

Show that the vertical edge of a door is perpendicular to 

the floor of the classroom. 

Show that an edge of a cube is perpendicular to one of the 

faces. 
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178. Theorem: Two planes perpendicular to the same 
line are parallel. 

Given planes P and Q per¬ 

pendicular to A B. 

To prove P || Q.* 

Proof (indirect method): 

Suppose P is not parallel to Q. 

Then P, if far enough extended, 

meets Q in some point, C. 

Imagine CA and CB drawn. 

Then CA lies wholly in plane P. Why? 

CB lies in plane Q. Why ? 

CA and CB are both perpendicular to AB 

(§ 177). 
This is impossible, as only one perpendicular can be 

drawn from a point to a line. 

Therefore, the assumption is wrong and P is parallel 
to Q. 

179. Theorem: If two parallel 

third plane, the intersections are 

parallel. 

Given plane P II plane Q, 

plane R intersecting planes P and 

Q in AB and CD respectively; 

Fig. 102. 

To prove A B || CD. 

* When proving theorems involving lines and planes in space, 

the student will find it helpful to think of lines and planes in thh 
classroom as representing the conditions of the theorem. Thus, 

the ceiling, the floor and the line of intersection of two walls will 

illustrate the conditions of this theorem. 

planes are cut by a 

Fig. 102 

A 

// B Q/ 

Fig. 101 
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Proof (indirect.method): 

Assume AB not parallel to CD. 

Since AB and CD lie in plane 

R they would meet, if far 

enough extended, at some 

point E. 

Then E, being on both lines 

AB and CD would lie in both 

planes P and Q. Why ? 

This contradicts the hypothesis that P || Q. 

Therefore the assumption is wrong and AD II CD 

Fig. 102 

180. Theorem: Parallel line-segments intercepted by 

parallel planes are equal. 

Prove ACDB, Fig. 103, a parallelo¬ 

gram. 

Then AB = CD. Why? 

181. Theorem: If three or more par- Fig. 103 

allel planes are cut by two transversals, the 

corresponding segments of the transversals are in proportion. 

Given planes P II Q II R, 

cut by A B and CD, Fig. 104. 

« AE CF 
To prove pB pD. 

Proof: • Draw CB, 
cutting Q in K. Pass 

planes through AB and 

BC, and BC and CD, 
cutting planes P, Q, and R Fig. 104 

in AC, EK, KF, and BD. 

P II Q Why ? 

.-. ACWEK Why? 
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and 

Q II R 
KF II BD 

AE CK 

EB ~ KB 

CK CF 

ICB ~FD 

AE CF 

EB FD 

Why? 

Why? 

Why? 

Why? 

Why? 

Summary 

182. The chapter has taught the meaning of the fol¬ 

lowing terms: 

proportion 

diagonal scale, pantograph, 

proportional compasses 

median of a trapezoid 

commensurable and incom¬ 

mensurable magnitudes 

internal and external division 

of a segment, harmonic 

division 

fourth proportional, third pro¬ 

portional 

line perpendicular to a plane 

183. The following theorems have been proved: 

1. A line bisecting a side of a triangle and parallel to a 

second side bisects the third side. 

2. If three or more parallel lines intercept equal segments 

on one transversal, they intercept equal segments on every 

transversal. 

3. If two parallels cut two intersecting transversals, 

the segments intercepted on one transversal are proportional 

to the corresponding segments on the other. 

4. 7/ a number of parallels cut two transversals the 

segments intercepted on one transversal are proportional 

to the corresponding segments on the other. 

i 
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5. Two lines that cut two given intersecting lines and 

make the corresponding segments of the given lines propor¬ 

tional, are parallel. 

6. The line joining the midpoints of two sides of a 

triangle is parallel to the third side. 

7. The bisector of an interior (exterior) angle of a triangle 

divides the opposite side internally (externally) into seg¬ 

ments that are proportional to the adjacent sides. 

8. Two planes perpendicular to the same line are parallel. 

9. If two parallel planes are cut by a third plane the 

intersections are parallel. 

10. Parallel segments intercepted by parallel planes are 

equal. 

11. If three or more parallel planes are cut by two 

transversals, the corresponding segments of the transversals 

are in proportion. 

184. The following constructions have been taught: 

1. To construct the fourth proportional to three given 

line-segments. 

2. To construct the third proportional to two segments. 

3. To divide a segment in a given ratio, internally and 

externally. 

4. To divide a segment into parts proportional to several 

given segments. 

5. To divide a segment into equal parts. 



CHAPTER VI 

PROPORTION. FACTORING. VARIATION 

Fundamental Theorems 

185. In the first-year course we saw the importance 

of proportions in the solution of problems. In chapter v 

we made a study of proportional line-segments. It is 

one of the purposes of this chapter to study the properties 
of proportions. 

186. Theorem: In a proportion the product of the 

means is equal to the product of the extremes. 

Proof: Multiply both members of the equation 

t = Cj by bd. 
b d J 

The preceding theorem is important because it is a 

convenient test of proportionality, and also because it 

suggests a simple way of clearing of fractions such equa¬ 

tions as are proportions. 

EXERCISES 

Using the theorem in § 186, work the following exercises: 

1. Which of these statements are proportions ? 

15_ 10 8__4 6 _7 4_ 12 

9~6; 15 7 ; 18~21 * 7— 20' 

81 
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2. Clear the following equations of fractions, but do not 

solve them: 

4_20 180—x 5 2-j-x 5+x 
x“3 ’ x 14’ 3—x“8—x’ 

x—y_ 7 8 u2—uv-f-v2 _ 
10 — x2+x?/+?/2 * u+v~ 2 ’ 

x+2 x+6 _ x—1_x+2 
x—4 x—7 ’ x2+3x+4 2x2—4x+7 ' 

cc 12 
3. Solve the equation ^ = “g • 

187. The following exercises show that proportions 

may be obtained from equations that express equality 

of products. 

EXERCISES 

1. The statements below are different arrangements of the 

four factors in the equation 8 • 7 = 14 • 4. Some of them are 

equations, others only appear to be equations. Apply the 

test of 'proportionality and point out which statements are 

proportions. 

4 

7 
§_14 

3‘ 7“14 5* 7“ 4 
7. §_z_ 

4“ 14 

2. 7 

4 
14 
8 

7 

4 

7__8 8__7 
6# 14 “4 8‘ 14 “4 

2. Exercise 1 shows that proportions are formed from the 
numbers 4, 7, 8, and 14 only when they are taken in a certain 

order. From what place in the equation 8 • 7 = 14 • 4 must the 

means be taken to form a proportion ? The extremes ? 

3. Write four proportions from 3 • 28 = 4 • 21. Apply in 
each case the test of proportionality. 
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4. Write four proportions from a • 126 = 3a • 46, and test. 

Exercises 1 to 4 illustrate the following theorem: 
/ 

188. Theorem: If the product of two factors is equal 

to the product of two others, proportions may he formed hy 

taking as means the factors of either product, and as 

extremes the factors of the other product. 

Given ad = hc. 

To prove that ^=3- 

Proof: Divide both members of the equation ad=hc 

by bd. 

EXERCISES 

1. Let ad = bc. Prove that the following statements are 

proportions: 

a 6 6 _d c _d c __a 

c d a c a b * d 6 

2. Form proportions from: 

1. 5a—106 = 4c2—Sxy 

2. 16a2—2axy=ax-\-ay—az 

3. (x-{-y)2 = m2—2mx+x2 

4. JG°+8/C+16 = 62-66+9 

5. 16a2 — 2562 = 36—25y2 

6. a2—62 = c2—d2 

7. p4— 16 = a2—64 

8. ax-\-ay-\-az = br-\-bs-\-bt 

9. 5m2+10mn—15n2 = 9a2—4a6 —1362 

10. 6:c2+13z-l-2 = a2+2a+l 

11. x2 — 5x-\-Q=y2+3y—28 
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Factoring 

189. Review: In arithmetic we have tests of divisi¬ 

bility by which we can tell when 2, 3, 5, 9, 11, etc., are 

divisors of a number. Likewise, in the course of the first 

year we have learned how to recognize factors of 

certain polynomials. This work may be summarized as 

follows: 

Polynomials: Common monomial factor, as ax-\-ay. 

In this case the common factor is one of the factors of 

the polynomial. The other factor is found by dividing 

the polynomial by the common factor. 

Thus, ax-\-ay = a{x-\-y). 

Factor the following: 

1. 3x-}~3y 

2. cx2-\-dx3jrfxA 

3. 5a36+24a4c — 10a5d 

4. Sa2b— 12ab2 

5. Sx3y3-\-4:X2y3 

6. 3x2y2 — 2xy — 3xy3 

7. 15a3x—10a3y-\-5a3z 

8. 32a3b3 — ab3 

Binomials: The difference of two squares, as x2—y2. 

The factors are: the difference of the square roots of 

these squares and the sum of the square roots. 

Thus, x2—y2= (x-y)(x-ry). 

Factor the following: 

1. 1 —144x2i/2 

3. £6 —25y2 

4. (5+c)2—a2 

5. (a+b)2-(c+d)2 

6. 9a2—16 

7. 16a2-25 

8. 1 —r4 

9. 4x2 —9y2 

10. a4—64 

11. £6 —7/6 
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Trinomials: (1) Trinomial Squares, as x2 3 -\-2xy-\-y2 and 

x2 — 2 xy-\-y2. 

In each case we have two equal factors, i.e., the sum 

of the square roots of the square terms if the sign of the 

remaining term is + , and the difference of the square 

roots of the square terms if the sign of the remaining 

term is —. 

Thus, x2+2xy+y2=(x+y)2 
and x2-2xy-\-y2=(x—y)2. 

Factor the following: 

1. 4m2—12am+9a2 5. 25+80r-f-64r2 

2. a2 — 8a+16 

3. 9+30£+25x2 

4. 36:c2-b25y2 — 60xy 

6. c2— 16c+64 

7. z4+30z2+225 

8. 121a2+198a?/+81?/2 

(2) Trinomials of the form ax2-\-hx-\-c. The factors 

are found by- trial. 

Thus, for factors of 3x2+17o;+10 we have as one of 

f 3:r+2 
the various possibilities: j 

that 3£2+17z+10=(3x+2)Or+5). 

Multiplying, we find 

Factor the following: 

1. 2:c2+lla;+12 5. 8?/2 —3R/+21 

2. 8c2+45c—1262 

3. 3x2-17:r+10 

4. lla2-23a6+262 

6. 5x2-38:r+21 

7. 7k2 + 123k-54 

8. 5 m2 —29mn+36n2 
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190. Further extension of factorable polynomials. 

EXERCISES 

1. Multiply as indicated and make a rule by which we 

may find by inspection the products of polynomials like the 

following: 

1. (x+y)(x2-xy+y2) 

2. {x-y){x2+xy+y2) 

3. (a+6) (a2 — ab-\-b2) 

4. (a—b){a2-\-ab-\-b2) 

5. (a+26)(a2—2a&+462) 

6. (3a — 6) (9a2+Sab+b2) 

7. (2a+36)(4a2-6a6+962) 

8. (3a2+562)(9a4-15a252+25&4) 

9. (7a3-462)(49a6+28a362+1664) 

10. (2a2b2 — 3c2) (4a464+6a2b2c2+9c4) 

2. Make a rule for factoring the sum of two cubes. 

3. Make a rule for factoring the difference of two cubes. 

4. Factor 64a3+2763. 

The expression is the sum of two cubes, 64a3 = (4a)3 and 
27b3 = (3b)3. Therefore, one factor is the sum of the cube roots of 
64a3 and 2763, i.e. (4a+36). 

The other factor is obtained from the first factor as follows: 
square the first term, (4a)2 = 16a2, subtract the product of the two terms, 
— (4a) (3b) = — 12a6, add the square of the second term, (36)2 = 962. 

Hence, 64a3 +2763 = (4a+36)(16a2-12a6+962). 

5. Factor 8x3—125y3. 

Show by multiplying that— 

8x3 -125y3 = (2x - by) (4z2+10xy+25?/2). 

Explain how the factor ^x^-\-l0xy+2by2 may be formed from 
the terms of the factor 2x — 5y. 

6. Form proportions from x2—y2=m3-\-n3. (Apply § 188.) 

7. Form proportions from p3—v3 = a2—b2. 



PROPORTION. FACTORING. VARIATION 87 

Factor the following expressions, doing as many as you can 

mentally: 

8. a3+53 18. 125.r3+8?/3 

9. a3—63 19. 27a3+6463 

10. 8x3—y3 

11. ??i3+27?i3 

12. 8c3.- d3 

20. 512c3 —27d3 

21. Jv3Z3+343 

22. 729a6+216c6 

13. 343+x3 

14. a;3+64 

15. z3+f 

16. axz—8ayz 

17. 216—27a3 

23. (a+5)3+c3 

24. (m+w)3 —a3 

25. (ic+3)3-£3 

26. (5m—n)3+c3 

27. (s+203+27x3 

Proportions Obtained from Given Proportions 

191. Proportions may be obtained from other propor¬ 

tions in various ways, as is shown in the following: 

EXERCISES 

1. Using a length equal to 2 centi¬ 

meters as a unit, measure to two places of 

decimals AB, DB, DA, EB, EC, and BC, 

Fig. 105, and show by dividing that— 

B 

1. 

2. 

BD 

DA' 

BD 

BE 

BE 

EC 

DA 

EC 

3. 

4. 

DA 

DB' 

BA 

BD 

EC 
EB 

BC 

BE 
5. 

BA BC 

DA~ EC 

2. Apply the test of proportionality to the following: 

4 12 
4. 

4+7 12+21 

7~21 4 12 

P 7 
5. 

4+7 12+21 

12~21 7 21 

7 -21 7-4 21-12 

1. 

2. 

3. 7 = 4 12 12 
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3. What change in the position of the terms of proportion 

1, exercise 2, will transform it into proportion 2 ? Equation 

2 is said to be obtained from 1 by alternation. 

4. What change will transform proportion 1 into 3 ? Equa¬ 

tion 3 is said to be obtained from 1 by inversion. 

5. What change will transform proportion 1 into 4 ? Equa¬ 

tion 4 is said to be obtained from 1 by addition. 

6. What change will transform proportion 1 into 5 ? 

7. What change will transform proportion 1 into 6 ? Equa¬ 
tion 6 is said to be obtained from 1 by subtraction. 

192. Alternation. When, by interchanging the means, 

or by interchanging the extremes of a given proportion 

a second proportion is formed, it is said to be obtained 

from the given proportion by alternation. 

EXERCISES 

d Q 
2. Apply alternation to 

«#• • 

Apply first the theorem of § 186, then of / 
§188. 

4. Show that if t = t7 and etc. 
6 6 c c ’ 

Fig. 106 
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5. If two equilateral polygons, Fig. 107, have the same 

number of sides, the corresponding sides are in proportion. 

Prove. 

Show that f = 1 and 
o 

a _a' 
b~b' 

Why? 

a _b 
a'~b' 

Why? 

Similarly, y 
c _d 
c'~dn 

etc. 

a 

a 

Fig. 107 

193. Inversion. By inverting the ratios of a given 

proportion a second proportion is formed, which is said 

to be obtained from the given proportion by inversion. 

See § 191, exercise 2, 1 and 3. 

EXERCISES 

1. Apply inversion to ^ ^. 

, . ... a c ,, b d 
2. Prove that if r = 3 then - = - . 

b a a c 

Apply the theorems of §§ 186, 188. 

194. Antecedent. Consequent. In a ratio as 
AB 

CD ’ 

or t, AB and a are the antecedents and CD and b the 
b 

consequents. 

195. Addition. Subtraction. Theorem: In a propor¬ 

tion the sum (or difference) of the terms of one ratio is to 

the antecedent, or consequent, as the sum (or difference) of 

the terms of the other ratio is to its antecedent or consequent. 

8 16 
Thus, from ^=77,, we obtain the proportions 

5 10 
8+5 16 + 10 , 8-5 16-10 
-=-- and -g— = • 

5 10 5 
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The resulting proportion is said to be obtained from 

the given proportion by addition if the sum is taken, and 

by subtraction if the difference is taken. 

_. (X c 
Given 

o a 
^ . a-\-b c-\-d 
To prove that — 

Analysis: 

1. Assume 
a~\~b c-\-d 

b d 

2. Then (a-\-b)d= (c-\-d)b 

3. adJrbd = cbJrbd 

4. .*. ad = cb 

5. 
a _c 

b~d 

Why? 

Why? 

Why? 

Why? 

The proof is obtained by reversing the steps in the 

preceding analysis as follows: 

Proof: 

L J-5 Why? 

2. ad = cb Why ? 

3. ad-\-bd = cb-\-bd Why? 

4. (a+6)d= (c+d)6 Why? 

a+b __ c+d 

~b~~~=~lT 
Why? 

Notice the method used in obtaining this proof. First, we 
assume the conclusion to be true. 

Then, by correct reasoning, we deduce a known fact, e.g., the 
hypothesis. The steps being reversible, we start from this known 
fact and get the conclusion by reversing the steps. 

This last part is the 'proof of the theorem. 

Similarly, prove that • 
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196. Theorem: In a 'proportion the swn of the terms 

of one ratio is to their difference as the sum of the terms of 
the other ratio is to their difference. 

Thus, if = ttj it follows that = • 
3 9 4 12 

EXERCISE 

if 

Use the method of analysis, as in § 195, to prove that 

a c a-\-b c-\-d 
t = -;, then-7 =- 

197. Addition and subtraction. The 

a-\-h c-\-d . .. , . » . - a c 
-7 = —; is said to be iormed from T = . 
a—b c—d b d 

and subtraction. 

proportion 

by addition 

EXERCISES 

Apply addition and subtraction to the following proportions: 

2m+3?r_2s-f-3£ 

** 2m—3n 2s—3t 

2m+3n+2m—3n 2s+3£+2s —St 4 m 4s m s 
-!-—- or — =— or — = - 
2ra+3/i—2m+3n 2s+3£—2s+3£ 6n 6t ’ n t 

x — aJrb_a—h—x 

x-\-a—b a+b+x 

V'l+x+Vl^x 

v'I+Z-V'l=i. 

Solve for x: 

2-\-^ x V z+5+ V x 

2—y'x Vx-\-b—Vx 

Apply addition and subtraction and then solve. 
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198. Theorem: If two or more ratios are equal, the 

sum of the antecedents is to the sum of the consequents as any 

antecedent is to its consequent. 

Thus, from 
2_4 

3“6 

to this theorem, that 

— =•••> it follows, according 

2+4+ 8 . . . . 2 
3+6+12 .... = 3 * 

Given T = ^ = t = |= • • • 
b d f h 

— a + c+c+o + 
To prove that ; , , - 7- o+a+/+/i + 

a _c 

b~d 

Proof: a a 

b~b 
Why? 

c a 

d~b 
Why? 

e a 

f~b 
Why? 

g—~ etc h~b’ etc. Why? 

ab — ab Why? 

cb = ad Why? 

eb = af Why? 

gb = ah, etc. Why? 

Adding (a+c+e+^f.)6 = a(6+d+/+/i 

a+c+e+tf.=a_c + 
“ 6+d+/+/i. b d’ 

.) 

Why? 

EXERCISES 

Prove the following exercises: 

a az ac 
!• If r = 5, it follows that = r~3 = 

V a V\ 

d 

c 

62 d2’ b3 d3 

2. If it follows that ||=|; 

i7 6 V d 
ma me 

and —r = 
?id 
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Prove the following by the method of analysis: 

3a-\-b 3 c~\~d _ .a c . 
3. If t = 3 , then 

b a ’ d 

T. a c . 
4. If r = 3 , then 

b d ’ 

a _a+5b 

c c+5d 

„ Trx s 3*/-f2£ 3:r+2s 
5. If - =, , then —-= —.—- 

y t ’ 4 y 

a c e a-\-2c c+3e e-j~5a 

6* 11 b~d~f’t lGn b+2d~d+3f~f+5b 

T. a c . 
7. If ^ = ^ , then 

a-\-c_a2d 

b-\-d b2c 

Analysis: Assume 
a + c _ a2d 
b-\-d b2c 

Then 

Since, 
and 

ab2c-\-b2c2 = a2bd -\-a2d2 Why ? 

be — ad Why ? 
b2c2 = a2d2 Why ? 

ab2c = a2bd Why? 
bc = ad Why? 

The proof is obtained by retracing the steps in the analysis. 

a c . a2-{-c2 ab-\-cd 
8. If r = -;, then 

6 d a2—c2 ab—cd 

T, a b . a2-\-b2 b2-\-c2 
9. If 7 = -, then 

b c ’ a 

T, a b . a+c a—c 
10. It t = ~, then rr.—; = ; 

b c’ b2-\-c2 b-—c2 

a b 
11. If ^ = - , then 

a2-\-ab b2-\-bc 

a c 

An r,a c e a+c c-\re e+a 

n- If b~d~f’then b+d~d+f~J+b 
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199. We have seen in §§ 192-98 that from a propor- 
a 

tion, as ^ ^, the following proportions may be obtained: 

. a b , d c 
1. - = i and t = - , 

c a b a 

2. 
a c 

0 a-\-b c-\-d , 
S. -= .- and 

a c 

a—b c—d 
4. 

5. 

6. 

a c 

a-\-b c-\-d 

and 

a-\-b _c+d 

~~b~~~cT 

a—b_c—d 

a — b 

a+c 
b~\~d 

c-d’ 

a _c 

b~d 

by alternation 

by inversion 

by addition 

by subtraction 

by addition and sub¬ 

traction 

by § 198: the sum of 

the antecedents is 

to the sum of the 

consequents as any 

antecedent is to its 

consequent. 

EXERCISES 

1. Divide 40 into parts that are in the ratio of 3:5. 

2. Divide 44 into parts in the ratio of 2/3:4/5. 

3. Divide m into parts in the ratio of a:c. 

4. The denominator of a fraction is 5 greater than the 
numerator, and the value of the fraction is 2/3. Find the 
fraction. 

5. The value of a fraction is 2/3. If 3 is added to both 
terms the value becomes 7/10. Find the fraction. 

The required fraction is of the form Why ? 

Then ISi-si- Why? Solve- 
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6. The value of a fraction is 2/5. If 5 be added to the 
denominator and subtracted from the numerator, the value 
becomes 3/10. Find the original fraction. 

|7. Solve each of the following if the value of the original 
fraction is 5/7: 

1. If 1 be added to both terms the value of the fraction becomes 

8/11. Find the original fraction. 

2. If 1 be subtracted from both terms the value becomes 7/10. 

Find the original fraction. 

3. If 1 be added to the numerator and subtracted from 
the denominator the value becomes 4/5. Find the original 

fraction. 

4. If 1 be subtracted from the numerator and added to the 
denominator the value becomes 7/11. Find the original fraction. 

8. Find the values of x and y from 
J x 

2 

V 

3 
7* 

Relation between Proportion and Variation 

200. Direct Variation. When two variables change 

values but have always the same ratio, each is said to 

vary directly as, or to vary as, the other. 

Thus, the number y is said to vary directly as x, if 

v 
the ratio - remains constant, x and y both changing, or 

x 

varying. The equation 

I 

expresses algebraically, and is equivalent to, the state¬ 

ment that y varies directly as x 

Show that y is a function of x. 
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201. Relation between direct variation and proportion. 
Let y vary directly as x and let xi, yi, xi, y2; X3, y$, etc., 

be corresponding values of x and y. 

Since y = cx, it follows that ~ = c and that — = c, — = c, 
* x Xi x2 

— = c, etc. 
%3 

Therefore, — = — 
Xi X2 

From this equation we can determine any one of the four 

numbers xi, ylf x2 and y2, if the other three are given. 

EXERCISES 

1. The area of a rectangular piece of land of given width 

varies directly as the length. If the area of a piece 30 ft. long 

is 2100 sq. ft., what must be the length of a strip containing 

10500 sq. feet ? 

Since the area varies directly as the length, 

Ai _ li 
A.2 1'2 

But Ai = 2100, 

A2 = 10500, 

and Zi =30 
2100 30 

Hence, 
10500 ~ l2 ‘ 

Solve this equation for Z2. 

2. The cost of silk of a certain grade varies as the number 
of yards. If 35 yd. of silk cost $61.25, find the cost of 90 yards. 

» 

3. One hundred feet of copper wire of a certain size weighs 
35 pounds. What is the length of wire weighing 175 pounds? 

4. If y varies as x} and if y = 80 when x = 10, what is the 
value of y when x = 18 ? 

202. Inverse variation. When two numbers so vary 

as to leave the product of any value of one by the corres¬ 

ponding value of the other constant, then one is said to 

vary inversely as the other. 
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The equation 
xy = c 

expresses algebraically, and is equivalent to, the state¬ 

ment that the variable y varies inversely as the variable x. 
Show that y is & function of x. 

203. Relation between inverse variation and propor¬ 

tion. Let y vary inversely as x and let Xi, yi) x2, y2\ 
x3, 2/3; etc., be corresponding values of x and y. 

Since xy = c, it follows that xpyx — c, x2y2 = c, £3y3 = c, 
etc. 

Hence, xiyi = x2y2. 

From this we may obtain the proportion ~ =~- 

If any three of the four numbers Xi, x2) yi, and y2 are 

given, the fourth may be found from this proportion. 

EXERCISES 

1. The volume of air in a bicycle pump varies inversely as 
the pressure on the piston. If the volume is 16 cu. in., when the 
pressure is 18 lb., what is the pressure when the volume is 
2 cubic inches ? 

2. The pressure of steam in an engine cylinder varies 
inversely as the volume. When the pressure is 100 lb. per sq. in. 
the volume is 50 cubic inches. What will be the pressure per 
sq. in. when the volume is 75 cubic inches? 

3. If x varies inversely as y and if £ = f when y = -f, find the 
value of y when x = l^. 

204. Historical note. Like many other mathematical 
topics, proportion was long used before men comprehended its 
principles. The two forms of proportion that have been studied 
for over two thousand years are proportion applied to numbers, 
and proportion applied to line-segments and areas. 

Proportion as applied to numbers is one of the oldest mathe¬ 
matical topics. In the oldest known mathematical writing, the 
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Book of Ahmes (see Cajori, p. 11), written by an Egyptian 

scribe 1700 b.c., proportion is one of the important subjects. 
The ancient Chaldeans, Phoenicians, Hindus, Chinese, and 

Greeks all gave it an important place in their books. The 

Greeks, Arabs, Hindus, Moors, Romans, and other European 

peoples of the dark and mediaeval ages, that made any preten¬ 

sions to learning, all emphasized the doctrine of proportion. 

Mediaeval geometries and mercantile arithmetics made it a 
major theme. Indeed, until fifty years ago the “single rule 

of three” and the “double rule of three,” which meant simple 

proportion and compound proportion, made up most of advanced 

arithmetic. 

The principles of proportionality as applied to line-segments 

and to areas were first studied by the Greeks. They drew their 

beginnings from Egypt and, perhaps, Babylon. Thales of 

Miletus (640-546 b.c.) used proportionality, perhaps without 

knowing it. The Pythagoreans (after 529 b.c.) employed it 

more extensively. Archytas of Tarentum (428-347 b.c.) ex¬ 

tended the theory greatly. Plato (429 — 348 b.c.) was wrell 

versed in it, and Eudoxus of Cnidos (408-355 b.c.) greatly per¬ 

fected the form of the doctrine. Euclid’s Elements (300 b.c.) 

devotes the fifth and a part of the sixth book to the doctrine of 

proportionality as applied to line-segments and areas, a form of 

the doctrine believed to be due to Eudoxus. 

Every nation and people that has acquired any standing in 

mathematics has given great attention to this doctrine. It wras 

once the most practical part of all geometry, and some of the 

most practical subjects and topics of mathematics are still based 
on it. 

Summary 

205. The chapter has taught the meaning of the 

following terms: 

alternation 
inversion 
addition applied to a proportion 
subtraction applied to a pro¬ 

portion 

addition and subtraction 
direct variation 
inverse variation 
antecedent 
consequent 



PROPORTION. FACTORING. VARIATION 99 

206. The following theorems have been proved: 

1. In a proportion the product of the means equals the 

product of the extremes. 

2. If the product of two factors equals the product of 

two others, proportions may he fonned by taking as means 

the factors of one product and as extremes the factors of the 

other product. 

3. Proportions may he obtained from other proportions 

by alternation, by inversion, by addition, by subtraction, by 

addition and subtraction. 

4. If two or more ratios are equal, the sum of the ante¬ 

cedents is to the sum of the consequents as any antecedent 

is to its consequent. 

207. The following expressions may be factored: 

I. Polynomials: having a common factor, as ax-\-ay. 

II. Binomials: which are the difference of two squares, 

as x2 — y2%, 

the difference of two cubes, 

as a3 —63; 

the sum of two cubes, as 

a3-f-63. 

III. Trinomials: which are perfect squares, 

as x2=i=2xy-\-y2) 

which are of the form ax2-\-bx-\-c. 

208. The relation between variation and proportion 
has been shown. 



CHAPTER VII 

SIMILAR POLYGONS 

Uses of Similar Triangles 

209. Similar triangles and polygons. We saw in our 

work of the first year that similar triangles have the 

following two important properties: 

. (1) the ratios of the corresponding sides are equal and 

(2) the corresponding angles are equal. 

The same properties are possessed by similar poly¬ 

gons. For this 

reason similar poly¬ 
gons are defined as 

polygons having the 

corresponding sides 

proportional and 

the corresponding 

angles equal. 

Hence, the state¬ 

ment: polygon ABCDEFA'B'C'D'E'F', Fig. 108, may 

be expressed symbolically by the two following state¬ 

ments : 

Fig. 108 

a_b_ c_d_e _f 

< a'~b'~c'~d'~e'~f' 

L2. ZA = ZA', ZB=ZB', ZC=ZC', etc. 

210. Uses of similar triangles. Many problems may 

be solved by the aid of similar triangles, as may be seen 

from the following exercises. 

100 
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EXERCISES 

H 

1. To find the height of a chimney. 

Let AC, Fig. 109, 

represent the shadow 

of the chimney AB, 

and A'C' the shadow Bl 

of a vertical stick A'B'. 

Assuming rays of 

sunlight to be parallel, 

show that AC = ZC’. Fig. 109 

Since triangles 

ABC and A'B'C' have two angles equal respectively, they can be shown 
to be similar (§217). 

Hence, 4n* = 4£ Why? 

ll Ji 
A C A i' c' 

and 

A'B' A'C' 

AB=AC• 
A'B’ 
A'C' 

Why?* 

Using this equation as a formula, find the height of a chimney 

whose shadow is 108 ft., if at the same time the shadow of a 4-ft. 

vertical stick is 9 ft. long ? 

2. To determine the distance across a river. 

Sighting across the river with telescope A, Fig. 110, place in the 

line of sight 

vertical rods, 

as at B and 

C. Take 

readings of 

rods at E and 

D. Depress 

the telescope 
sighting at C and take the reading at F. From the readings com¬ 

pute the length of DF and EC. 

EC II DF (See § 373.) 

.'. Triangles AFD and ACE are similar. 

For, a line parallel to a side of a given triangle forms with the 

other two sides a triangle similar to the given triangle (§ 214). 

TT AE EC 
Hence, AD DF 

a jy AD • EC . . . 
AE =—— , which 

Fig. 110 

DF 
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expresses AE in terms of the known lengths AD, EC, and DF. 

The length, ED, may be 
found by subtracting AD from B 

AE. 

3. To determine 

accessible distance. 

an m- 

distance to be measured. 
From a point C, chosen con 

veniently, measure BC and AC. 
Mark point D on AC. 

On BC determine point E so that 
CD 

CA 

CE 

CB‘ 
Measure DE. 

Triangles CDE and CEB may be shown to be similar. 
For, two triangles are similar if the ratio of two sides of one equals 

the ratio of two sides of the other, and the angles included between these 

sides are equal (§ 218). 

TJ AB AC 
Hence, 

and 

DE 

AB 

DC 

DE-AC 

DC 

Thus DE, AC, and DC being known, AB may be found as the 
quotient of the product DE • AC and DC. 

1211. To find graphically the quotient of two arithmetical 

numbers. 

There are a number of instruments for performing 

mechanically the processes of multiplication, division, and 

extraction of roots. Fig. 112 is a device based upon 

similar triangles for finding the quotients of arithmetical 

numbers 

Let OA be the dividend-line and OB the line of divisors. 

To divide 42 by 72, let the side of a large square repre¬ 

sent 10. 

Lay off OC = 42 and from C lay off vertically CD = 72. 

Stretch the string fastened at 0 so that it passes 

through D, meeting the quotient-line, FQ, at E. 
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Fig. 112 
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FE , . 42 
Then represents the quotient — 

100 • £ 

For, triangles OFF and OLD are similar. 

Therefore, FE °P 

Hence, 

and 

LD OL 

FE LD 

OF 

FE 

100 

OL 

42 

72 

Why 

42 
Since FE = 58 approximately, it follows that = .58, 

approximately. 

EXERCISES 

1. Using Fig. 112 find the following quotients approxi- 

, , . , , 76 64 45 57 
mately to two decimal places: » gg > gg, yg. 

42 
2. Find the quotient yy, using MP as quotient-line. 

AOMN^AOLD, 

MN OM 

Since 

it follows that 
LD OL 

MN LD 

OM OL 

MN 42 

10 '72 

Why? 

42 . .1 
Hence, the quotient == could be obtained by taking — of MN 

( £ 1U 

which is . 6 approximately. \ 
68 

In a similar way find the quotient ^ • 

3. In a freshman class of 130 pupils taking mathematics, 

21 obtained a grade of A, 29 a grade of B, 35 a grade of C, 27 a 

grade of D, and 18 failed. What per cent of pupils in the class 

received a grade of A ? of B ? of C ? of D ? What per cent 

failed ? 
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Suppose x per cent of the pupils receive an A grade. 
x 

Then, 21 = ^.130 

TT x 21 

HettCe- 100 = 130 
21 

From Fig. 112, we find 220= 16, approximately. 

Therefore, approximately 16 per cent receive an A grade. 

212. Construction of similar polygons. 

Let ABCDEF, Fig. 

113, be a given polygon. 

To construct a polygon 

similar to ABCDEF. 

Construction: Draw 

diagonals from one vertex, as 

B, to the other vertices, and 

extend them. 

From any point on BA, as 

A', draw A'F' || AF. 
Fig. 113 

Draw F'E' || FE, E'D' || ED and D'Cf || DC. 
Then A'BC'D'E'F' is the required polygon. 

Proof: Prove ZD=ZD', ZE=ZE', etc. 
CD BD DE 

Show that twvt/= = WVT7, etc. (§214) 

Hence, 

CD’ 
CD 
C'D'~ D'E'~ E'F 

BD' 
DE 

D'E'’ 
EF 

n etc. Why ? 

213. Homologous parts. Corresponding sides of simi¬ 

lar polygons are homologous sides. 

Corresponding angles, diagonals, altitudes, and medians 

are homologous angles, diagonals, altitudes, and medians. 

EXERCISES 

1. Show that congruent polygons are similar. 

2. Show that polygons similar to the same polygon are 

similar to each other. 
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Theorems on Similar Figures 

214. Theorem: A line parallel to one side of a triangle 
forms with the other two sides a triangle similar to the given 
triangle. 

Given A ABC, and DEW AB, Fig. 114, 

To prove that A DEC™ A ABC. 

Analysis: What conditions must be satisfied to make 

two triangles similar? More definitely, what must be 

shown for triangles ABC and DEC f 

Proof: Prove that the angles of A DEC are respec¬ 

tively equal to the angles of AABC. 
Since DE [| AB 

CD CE 

Draw 

Then 

CA 
DF 
FB 

CB 
IBC. 
DC 

AB AC 

Why? 

Why? 

Why? 

Quadrilateral DFBE is a parallelogram. Why ? 

.*. DE = FB Why? 

Substituting for FB its equal, DE, 

This may be written 

Hence, 

DE DC 
AB~ AC 
CD DE 
CA~ AB 
CD CE DE 
CA~CB~ AB 

AABC™ ADEC 

Why? 

Why? 
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215. Conditions sufficient to make triangles congruent. 
In geometry we have seen the importance of congruent 

triangles in proving theorems and solving problems. The 

definition of congruent triangles contains six conditions, viz.: 

1. The equality of the corresponding angles, 

ZA = ZA', ZB=ZB', ZC=ZCr. 

2. The equality of the corresponding sides, 

a = a', b — b', c = c'. 

However, it was shown that we do not need to estab¬ 

lish all of these conditions to prove two triangles con¬ 

gruent and that the following conditions are sufficient: 

1. Two sides and the angle included between them in 

one triangle equal respectively to the corresponding parts 

of the other triangle. 

2. Two angles and the side between their vertices 

equal, respectively. 

3. Three sides equal, respectively. 

Thus, the problem of proving two triangles congruent 

is greatly simplified. 

216. Conditions sufficient to make two triangles 
similar. 

The definition of similar triangles contains five con¬ 

ditions, viz.: 

1. The equality of the corresponding angles, or— 

ZA = ZA'} ZB — Z B\ ZC=ZC'. 

2. The proportionality of the corresponding sides, or 

a,=T,, T,—-n from which it follows that 
a b b c c a 

As in the case of congruent triangles it is not necessary 

to show that all five of these conditions are satisfied to 
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make two triangles similar. It will be shown that any 

one of the following three conditions is necessary and 
sufficient: 

1. The equality of two pairs of corresponding angles. 

2. The proportionality of two pairs of corresponding 

sides, and the equality of the included angle. 

3. The proportionality of the corresponding sides. 

217. Theorem: Two triangles are similar if two 

angles of one are respectively equal to two angles of the other. 

Given A ABC and A'B'C', with A=A' and C = C'. 

Fig. 115. 

To prove that A ABC^ A A'B'C. 

Proof: 

STATEMENTS REASONS 

On C'A' lay off C'D = CA 

Draw DE || A'B' 

Then, ADEC'^AA'B'C' §214 

adec'^aabc a.s.a. 

AABCoAA'B'C' Why? 

EXERCISE 

Two right triangles are similar if an acute angle of one is 
equal to an acute angle of the other. 
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218. Theorem: Two triangles are similar, if the ratio 

of two sides of one equals the ratio of two sides of the other 

and the angles included between these sides are equal. 

c' 

Given 
CA CB' 

CA’ CBn 

A ABC and 

Fig. 116. 

A'B'C', with 

To prove that A ABC A A'B'C'. 

C — C' and 

Proof: 
STATEMENTS REASONS 

On C'A' lay off C’D — CA By construction 

On C'B' lay off C'E = CB By construction 

mu C'D C'E 0 
Then, Why ? 

.’. DE\\A'B' Why? 

.'. ADEC'^AA'B'C' Why? 

But ADEC'^AABC . s.a.s. 

AABC«> AA'B'C' Why? 

EXERCISES 

1. Two right triangles are similar if the ratio of the sides 
including the right angle of one, is equal to the ratio of the cor¬ 
responding sides of the other. 

2. Lines drawn joining the midpoints of the sides of a 
triangle form a triangle which is similar to the first triangle. 

3. Two isosceles triangles are similar, if an angle in one is 
equal to the corresponding angle in the other. 
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219. Theorem: Two triangles are similar if the cor¬ 

responding sides are in proportion. 

c' 

Given A ABC and A'B'C\ with 

Fig. 117, 
To prove that A ABC oo A A'B'C 

BC 

B'C' 

CA 

C'A'’ 

Proof: 
STATEMENTS 

Then 

But 

lay off C'D = CA 

lay off C'E = CB 

C'D C'E 

C'A' ~C'B' 

A DEC' c/, A A'B'C' 
C'D DE 

" C'A' ~ A'B' 

C'D AB 

C'A' ~ A'B' 

DE AB 

* ' A'B' ~ A'B' 
DE = AB 

ADEC'^AABC 

AABCoAA'B'C' 

reasons 

Why? 

(§ 218) 

Why? 

Why ? 

Why? 

Why? 

s.s.s. 

Why? 

PROBLEMS AND EXERCISES 

Prove the following exercises: 

1. Two triangles are similar if the corresponding sides are 

parallel, or perpendicular. 
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For, if the sides of the angles are parallel or perpendicular, 
each to each, the angles are either equal or supplementary. 

Thus, (1) A—A'} or (2) A +A' = 2 right angles 

(3) B = B', or (4) R+R'=2 right angles 

(5) C = C', or (6) C+C'= 2 right angles 

Show that the three equations (2), (4), and (6) cannot all be 

true at the same time. 
Show that two of the equations (2), (4), and (6) cannot both be 

true at the same time. 

Hence, at least two of the equations (1), (3), and (5) must be 

true and the triangles are mutually equiangular. 

Apply § 217. 

J2. Two parallelograms are similar if an angle in one is 
equal to an angle in the other and the including sides are 
proportional. 

J3. Two rectangles are similar if the ratio of two consecutive 
sides of one is equal to the ratio of the corresponding sides of the 
other. 

4. The perimeters of similar 
triangles are to each other as any 
two homologous sides. 

Since the triangles, Fig. 118, 

are similar, 

a _ b _ c 
a'~b'~c' 

Why? 

a-\-b ~\~c a_b_c 
a'+b'+c' a' b' c' 

Why ? 

6. The perimeters of similar 
polygons are to each other as any 
two homologous sides. 

C 

c r 

Since the polygons, Fig. 119, are similar 

j 

a _b 

a'~b' 
Why? 

a+6+c+etc. _a_b_c 

*** a'+b'+c'+etc'a^b'”?’ 
Why? 
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6. The homologous altitudes of similar triangles are to each 
other as the homologous sides, and as the perimeters. 

Prove 
AADCc* AA'D'C', Fig. 120. 

b = h 

b'~ h' 

b _ a _ c 

b'~a'~c' 

h a b c 

Then 

But 

h' a' b' c' 

Why? 

Why? 

Why? 

‘J7. The altitudes of a triangle are inversely proportional 
to the sides to which they are drawn. 

Prove ADBC ^ A ABE, Fig. 121. 

J8. The homologous medians of 
two similar triangles are to each other 
as any two homologous sides, and as 
the perimeters. 

c 

Fig. 121 

|9. The bisectors of homologous 
angles of similar triangles are to each other as two homologous 
sides, and as the perimeters. 

JIO. The length of the shadow cast by a 4-ft. vertical rod is 
feet. At the same time the length of the shadow cast by a 

spire is 220 feet. How high is the spire ? 

»1. A man at a window sees a point on the ground in line 
with the top of a post and window-sill. He finds that the point 
is 2 ft. 8 in. from the foot of the post, and that the post is 3 ft. 
high and 24^- ft. from a point just under the window. How high 
is the window from the ground ? 

J12. A boy wishes to know d 

how far it is from the shore of a 
lake at A to an island, B, Fig. 122. 60 
At C, 20 yd. from A on the line 
BA, he lays off CD ±CB and 
CD = 60 rods. At A he constructs 
a line perpendicular to AB meet- Fig. 122 
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ing DB at E. By measuring he finds AE = 50 rods. Find the 

required distance. 

J13. The line joining the midpoint of one of the bases of a 

trapezoid to the point of intersection of the diagonals bisects 

the other base. 

14. The lengths of the sides of a triangular piece of land are 

approximately 125 rd., 54 rd., and 112 rods. A drawing is 

made of it, the longest side of which is 3 feet. What are the 

lengths of the other sides of the triangle in the drawing ? 

15. The non-parallel sides of a trapezoid of bases 18 and 60 

and of altitude 6 are produced until they meet. What are the 

altitudes of the triangles on the bases of the trapezoid ? 

$16. The base of a triangle is 72 in., and the altitude is 

12 inches. Find the upper base of the trapezoid cut off by a line 

parallel to the base and 8 in. from it. 

t-17. Two sides of a triangle are 14 in. and 3.5 in. and the 

included angle is 75°. Two sides of another triangle are 20 in. 

and 5 in. and the included angle is 75°. Show that the triangles 

are similar. 

18. The perimeter of a triangle is 15 cm., and the sides of a 

similar triangle are 4.5 cm., 6.4 cm., and 7.1 centimeters. Find 

the lengths of the sides of the first triangle. 

19. The perimeters of two similar triangles are rc2-f3#+2 

and 16, and a pair of homologous sides are respectively Sx and 8. 

Find the value of x. 

J20. The perimeters, p and p', of two similar triangles, and 

V v' a 
■- 

a' 

a:2 + l X 1 

3K*+9K 27 35 4 

4 2/2—2i/H-l 1 4 

a pair of homologous sides, a and a', are expressed in the table 

above. Find the values of x, y, and K. 
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220. Theorem: Similar 'polygons may be divided by 

homologous diagonals into triangles similar to each other 

and similarly placed. 

Fig. 123 

Given polygon ABCD, etc., <*> polygon A'B'C'D', etc., 

Fig. 123, with diagonals drawn from A and A'. 

To prove AI^ Al', AII^ AH', etc. 

Proof: 

STATEMENTS 

a _b 

a'~b' 

B = B' 

Al oo Al' 

REASONS 

Why? 

Why? 

Why? 

Why? 

Why? 

Why? 

x = x 

C = C' 

y=y' 
b_d 

b' d! 

b _ c 

b'~? 

Why? 

Why? 

Why? 

Why? AIT AH', etc. 



SIMILAR POLYGONS 115 

Summary 

221. The following theorems were proved in this 

chapter: 

1. A line parallel to one side of a triangle forms with 

the other two sides a triangle similar to the given triangle. 

2. Two triangles are similar if two angles of one are 

respectively equal to two angles of the other. 

3. Two triangles are similar, if the ratio of two sides of 

one equals the ratio of two sides of the other and the angles 

included between these sides are equal. 

4. Two triangles are similar if the corresponding sides 

are in proportion. 

5. The perimeters of similar polygons are to each other 

as any two homologous sides. 

G. Similar polygons may be divided by homologous 

diagonals into triangles similar to each other and similarly 

placed. 

222. It was shown how to construct a polygon similar 

to a given polygon. 

223. Quotients of arithmetical numbers may be 

found mechanically by means of squared paper and a 

string. 



CHAPTER VIII 

RELATIONS BETWEEN THE SIDES OF TRIANGLES. 

THEOREM OF PYTHAGORAS AND ITS GENERAL¬ 
IZATIONS. QUADRATIC EQUATIONS. 

RADICALS. 

Similarity in the Right Triangle 

224. Theorem: The perpendicular to the hypotenuse 

from the vertex of the right angle divides a right triangle into 

parts similar to each other and to 
r* 

the given triangle. 

Given AABC with the 

right angle C, and CD_L AB, 

Fig. 124. 

To prove 

A ADC" A BDC^ A ABC. 

Proof: x = x' Why ? 

y = y' Why? 

.*. AADC^ABDC Why? 

Prove that A ADC and ABC are mutually equi¬ 

angular and therefore similar. 

Similarly, prove A BDC A ABC. \ 

225. Projection of a point. The pro- p-^-^ 
jection of a point upon a given line is the pIG 125 

foot of the perpendicular drawn from 

the point to the line. Thus, point D, Fig. 125, is the pro¬ 

jection of point A upon BC. 

116 
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226. Projection of a segment. To project a line- 
segment, as A B, Fig. 126, upon a line, as CD, drop 

perpendiculars to CD from the 

endpoints of the segment AB. 

Then EF is the projection of AB 

upon CD. 

In general, the projection of 
a given segment upon a line is 

the segment of the line whose endpoints are the pro¬ 

jections of the endpoints of the given segment. 

c E F D 

Fig. 126 

EXERCISES 

1. In each of the following figures name the projection of 

AB upon CD, (Figs. 127-29.) 

B 

A 

Fig. 129 

Draw a figure in which the segment 

is equal to the projection. 

2. In triangle ABC, Fig. 130, name 

the projection of AC upon AB; of BC 
upon AB. 

3. In triangle ABC, Fig. 130, project 

BC upon AC; AB upon BC. 

4. Draw an obtuse triangle, as ABC, 

Fig. 131. Project AB upon BC; AC 
upon AB; BC upon AB; AB upon 

AC. 

c 
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227. Mean proportional. In the proportion 

b is a mean proportional between a and c. 

a 

b 

b 

EXERCISES 

1. Find a mean proportional between 4 and 9. 

-jl OC 
Denoting the mean proportional by x, we have -=-. 

x 9 
.*. z2 = 4»9 Why? 

x ==*=■/4 • 9 
.*. x = ±2 • 3 Why? 

or x =+6, — 6. Check both results. 

2. In triangle ABC, Fig. 132, find 

the projection of the median, m, upon 

AB. 

c 

228. Radical. An indicated root of a number is a 

radical. Thus, 1/5, V x, V 16, Va+62 are radicals. 

229. Simplification of radicals. In computing the 

value of a radical it is often of advantage to change the 

form of the number under the radical sign. The following 

examples illustrate this: 

T f 1/25-16 = 5 • 4, for (5 • 4)(5 • 4) = 25 • 16. 

\l/36 • 9 = 6 • 3, for (6 • 3)(6 • 3) =36 • 9. 

Thus the values of T 25 • 16, V36 • 9, etc., are found 

by extracting the square roots of the factors separately 

and then multiplying the results. 

In general, the square root of a product, as ab, may be 

found by taking the square roots of the factors, as a and b, and 

then taking the product of these square roots. This may be 

stated briefly in the form of an equation, thus, 

l ab= 1 a • Vb 
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This principle enables us to obtain by inspection the 

square roots of some large numbers, as is shown by the 

following examples: 

{V3136 = V 4 • 784 = 1/4-4 - 196 = 14 • 4 • 4 • 49 
II. = 2.2-2- 7 = 56. 

y 4225 = l/5 • 845 = 1 5 • 5 • 169 = 5 • 13 = 65 

The principle explained above may be applied to 

advantage even when the number under the radical sign 

is not a square. For example: 

III. V 50 = V 5 • 5 • 2 = 51 2. 

Knowing the square root of 2 to be 1.414+. 

it follows that V50 = 7.070+ . 

Similarly, = y'4a2. 2a = 2aV/2a 

and 1/IO8 = l/9 • 12 = VO ■ 4 • 3 = 6l3 

EXERCISES 

1. Reduce the following radicals to the simplest form: 

1. F75 

2. F27 

3. ^ a563 

4. V 20xhj 

5’ V128a2b2 

6. V lQ2x2y2 

7. V 243a&2 

8. lflG 

9. V' a2+2oh+b“ 

10. V 4a2 —20a&+2562 

11. V 9a3—9a26 

12. V (a+6) (a2—62) 

2. Find the mean proportionals between 2 and 18; 10 and 

90; 8 and 200; 20 and 180. 

3. Find the mean proportionals between a? and b~; c2 and d2. 

4. Find the mean proportional between a;2+2xy-\-y2 and 

x2-2xy-\-y2. 

5. Show that the mean proportional between a and b is 

the square root of the product of a and b. 
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230. Theorem: In a right triangle, the perpendicular 

from the vertex of the right angle to the hypotenuse is the 

mean proportional between the segments of the hypotenuse. 

m h 
That is, we are to prove , Fig. 133. 

To prove this proportion, use 

the principle that in similar triangles 

the sides opposite equal angles are 

homologous sides and are therefore A 

proportional. Fig. 133 

231. Section 230 affords a way of finding geometrically 

the mean proportional between two segments (see prob¬ 

lem 1, below). 

Problems of Construction 

1. To construct a mean proportional between two segments. 

Given the segments m and n, Fig. 134, 

Required to 

construct the mean 

proportional be¬ 

tween m and n. 

Construction: 

On a line, as AB, lay 

off AC = m, CD — n. 
Draw CE ±AB. 
Draw the circle 

AFD on AD as a diameter, meeting CE at F. 
Then FC is the mean proportional between m and n. 

Proof: Draw AF, DF, and the median HF. 
Show that Z AFH = Z A —x 
Show that Z HFD — Z.D — y 
Then 2x+2y = l80° Why? 

Z AFD = 90° Why? 
m FC 
wrn Why? 
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2. Construct a square equal to a given rectangle. 

Let a and b be the dimensions of the given - 
rectangle, Fig. 135. a 

Construct the mean proportional between a_ 
and b. b 

On the mean proportional between a and b Fig. 135 

as a side, construct a square. 

Prove that the area of this square is equal to the area of the given 
rectangle. 

3. Construct the square root of a number. 

1. To find the square root of 2, lay off on squared paper two 
factors of 2, as 2 and 1, Fig. 136, in the same way as m and n, 

problem 1. (Use the scale 1=2 cm.) 

Fig. 136 

The mean proportional, BD, between AB and BC, represents 

graphically the required square root of 2. Why ? 

Measure BD to two decimal places. 

Check by extracting the square root of 2 to two decimal places. 

2. Find geometrically the square root of 6; of 5; of 8. 

EXERCISE 

A perpendicular to a diameter of a circle at any point, extended 
to the circle, is the mean proportional between the segments of the 
diameter. Prove. 
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Relations of the Sides of a Right Triangle 

232. Theorem: In a right triangle either side of the right 
angle is a mean proportional between its projection upon the 
hypotenuse and the entire hypotenuse. 

We are to prove 

Fig. 137. 

m a . n b 
— =- and T , 
a c be a / 

/ m n 

that homologous sides of similar Fig. 137 

triangles are in proportion. 

This theorem enables us to obtain a proof for one of 
the most important theorems of geometry: 

233. Theorem of Pythagoras. The square of the 
hypotenuse in a right triangle is equal to the sum of the 
squares of the sides of the right angle. 

~ . m a 
Proof: — =- 

a c 
Why? 

and, 
n b 
b c 

Why? 

a2 = mc Why? 
and b2 = nc Why? 

.’. a?-\-b2= (m-\-ri)c Why? 
or a2+62 = c2 

The last four steps in this proof suggest the following 
geometric illustrations: 

The equation, a2 = m • c, means that the square on BC, 
Fig. 138, is equal to a rectangle of dimensions m and c, 
as BEFD. (Notice that the sides of the rectangle 
BEFD are m, the projection of BC on AB, and BE which 
is equal to c, the length of the hypotenuse AB.) 

Similarly, b2 = n • c means that the square on A C is 
equal to a rectangle as FHAD, having the dimensions 
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equal to n, the projection 

of BC on AB, and BH 

which is equal to the 

hypotenuse, c. 

Hence, the sum of 

the squares on AC and 

BC is equal to the sum 

of these two rectangles, 

or to the square on the 

hypotenuse. 

This illustration may 

be used as an outline of 

Euclid’s proof of the 

theorem of Pythagoras 

given in § 462. 

234. Historical note: It is said that Pythagoras, jubilant 
over his great accomplishment of having found a proof of the 
theorem, sacrificed a hecatomb to the muses who inspired him. 
The invention was well worthy of this sacrifice, for it marks 
historically the first conception of irrational numbers. It is 
believed that Pythagoras showed the existence of irrational 
numbers, by showing that the hypotenuse of a 
certain isosceles right triangle is equal to j/2 
(See Figure.) 

His followers found much pleasure in finding 
special sets of integral values of a, b, c satisfying 
the equation a2+62 = c2, the simplest set being 
3, 4, and 5. Such numbers are called Pytha¬ 
gorean numbers. The question naturally arose later whether 
there existed any sets of integral values of a, b, and c that would 
satisfy the equations a3+63 = c3, a4+64 = c4, etc., in general, 
an-\-bn = cn for n > 2. 

The great mathematician Fermat, who lived 1601-65, states 
among his notes the theorem that the equation xn-\-yn = zn is 
not satisfied by a set of integral numbers for x, y, z, and n except 
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for ?i = 2. He also makes the statement that he has discovered 

a really wonderful proof for the theorem. Unfortunately, he 

gives not the least suggestion as to the nature of his proof. 

The theorem is very simple, but it has been impossible to this 

day to find a proof, although a price of 100,000 marks ($20,000) 

has been offered by a German society to the fortunate person 

who first gives a complete proof of the theorem, or who shows 

by a single exception that the theorem is not true. (See Balks 

Mathematical Recreations, 4th ed., 1905, pp. 37-40.) 

EXERCISES 

1. In triangle ABC, Fig. 139, Z.ACB is a right angle and 

CD±AB. AD —2, DB = 30. Find the lengths of AC and CB. 

2. The radius of a circle is 12.5, Fig. A 
140. Find the projection of the chord 

AC upon the 

diameter AB c 
passing through 

one of the end¬ 

points of the 

chord. 

3. In the Fig. 139 Fig. 140 

right triangle 
ABC, Fig. 141, find c, m, n, and h, if 

a =12 and 6 = 5. 
Find 6, m, n, and h, if <2 = 8 and 

c= 10. 
Find a, h, c, and h if ra = 9f- and 

n = 5f. 

4. Compute the dimensions of the 

section of the strongest beam that can B 
be cut from a cylindrical log. 

Let the circle, Fig. 142, represent a 
cross-section of the log. Then the dimen¬ 
sions of the strongest beam are computed jpIQ 

as follows: 
Trisect the diameter AB at C and D (§ 176, exercise 7). 





PIEllllE D E PER M A T 

PIERRE DE FERMAT was born near Toulouse in 
1601 and died at Castres in 1665. The great mathe¬ 
matical historian Cantor and others have called 

Fermat “the greatest French mathematician of the seven¬ 
teenth century,” and this was a century of great French 
mathematicians. He was the son of a leather merchant 
and was educated at home. He studied law at Toulouse 
and in 1631 became a councilor of the Parliament of 
Toulouse. He is said to have performed the duties of his 
office with scrupulous accuracy and fidelity. He loved 
mathematical study, made it his avocation, spending most 
of his leisure on it. His disposition was modest and retiring. 
He published very little—only one paper—during his life¬ 
time. Though his vocation was that of a lawyer and parlia¬ 
mentarian, his celebrity rests upon what he accomplished 
in his avocation. 

Notwithstanding the fact that Fermat published very 
little, he exerted a great influence on the mathematicians 
of his age through a continual correspondence which he 
carried on with them. The mathematical discoveries upon 
which his fame rests were made known to the world 
through his correspondence or through the notes on his re¬ 
sults that were found after his death,written on loose sheets 
of paper, or scribbled on the margins of books he had 
annotated while reading. A part of these notes and Fer¬ 
mat’s marginal notes, found in his copy of Diophantus’ 
Arithmetic, were published after his death by his son, 
Samuel. As Fermat’s notes do not seem ever to have 
been intended for publication, it is often difficult to estimate 
when his discoveries wTere made, or whether they were 
really original. 

Most of his proofs are lost, and probably some of 
them were not rigorous. He seems to have worked care¬ 
lessly, or at least unsystematically, for one of his marginal 
notes on an important theorem that still awaits proof, 
notwithstanding the facts that several of the world’s 
greatest mathematicians have tried their wits upon it and 
that the Paris Academy of Sciences has on two occasions 
at least, in 1850 and 1853, offered to the world a prize of 
3,000 francs for a complete proof of it, is the remark: “I 
have found for this a truly wonderful proof, but the margin 
is too small to hold it.” 

The theorem referred to in the foregoing remarks is 
called the “greater Fermat theorem,” or the “last Fermat 
theorem” (see § 234 of this book). Several of Fermat’s 
theorems have been proved by later mathematicians, but 
they have required good mathematical ability. Some are 
still awaiting mathematical genius. 

For fuller information about Fermat see Ball’s History, 
pp. 293-301; Cajori’s History, pp. 173 and 179-82; or 
Historical Introduction to Mathematical Literature, by 
G. A. Miller, published by Macmillan. 
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Erect CE_L AB and DFA.AB. 

Draw the quadrilateral AFBE. 

This is the required section of the strongest 
beam. 

If the diameter of the log is 15 in., compute 

AE and AF. 

5. Prove that the diagonal of a square is 

equal to the product of the side by the square 

root of 2, Fig. 143. 

6. Prove that the diagonal of a rectangle is 

equal to the square root of the sum of the squares 

of two consecutive sides, Fig. 144. 

7. Express the altitude of an equilateral 

triangle in terms of the side, Fig. 145. 

8. Fig. 146 represents a circular window. 

The radius of the largest circle is 6. Find the 

radius, x, of the smallest window. 

The sides of the right triangle ABC 

are 3, z+3 and 6—x respectively. Why ? 

.*. (z+3)2 = (6—z)2+9 
x2+6x+9 = 36 - 12x+:c2+9 

.*. x = 2 

a 

Fig. 144 

A 3 B 3 

Fig. 146 

Quadratic Equations* 

235. Summary of methods of solving quadratic 
equations. In the preceding course quadratic equations 

have been solved by the following three methods: 

(1) By graph. 

(2) By factoring. 

(3) By completing the square. 

* See historical note, § 238. 
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The graphical method exhibits to the eye the solutions 

of the equation and enables one to determine the solutions 

approximately. 

The method of factoring is brief, but fails when we 

are unable to factor the trinomial. 

The method by completing the square always gives 

the exact results. The objection to it is the length of 

the process. 

For this reason another method will be developed 

which is not only brief, but which can be applied to any 

quadratic equation. 

All quadratic equations in one unknown may be ar¬ 

ranged in the normal form 

ax2+bx-\-c=0, 

where a stands for the coefficient of x2 when all terms in x2 

have been combined into one; b denotes the coefficient of 

x, and c is the constant, i.e., the term or the sum of terms 

not containing x. 

Thus, in 5x2+3:r—4 = 0, a — 5, 6 = 3, c=—4. 

EXERCISES 

Arrange each of the following equations in the normal form, 

ax2-\-bx-{-c = Q, and determine the values of the coefficients a, 
b, and c: 

1. x2-(-4x —5 = 0 3. c2 = 4c+l 

2. y2 — 2y =11 4. a2 = 7a—7 

Change the following equations to the normal form: 

6. ax2Jrbx = b-\-ax 7. 2z2-{-ab = 2az-\-bz 

6. 2y2-\-4:ay-\-2ab= —by 8. s2+a2 = 2as — 2 
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236. Solution of the equation ax2-\-bx-{-c=0. Since 

every quadratic equation may be changed to the normal 

form ax2Jrbx+c = 0, we may obtain a solution of every 

quadratic equation by solving ax2+bx-{-c = 0. Thus, we 

shall derive a formula, by means of which the solution 

of any quadratic equation may readily be found. 

Give reasons for every step in the following solution: 

ax2-\-bxJrc = 0 

ax2-\-bx = — c 

Completing the square on the left side by adding — 

to both sides of the equation we have— 

or 
9 bx b2 _b2 4ac 

X +h+4a2~^a2~4^2 

or 
„ . bx . b2 b2 — 4ac 

X+a+4a? = ~W- 

Whence, 

and 

or 

Whence, x = 
v fr2 — 4ac 

2 a 
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237. General quadratic formula. The values of 
x in the equation— 

ax2-\-bx+c = 0 

have been found to be 
Xi 

x2- 

-b-\-1 b2—4ac 

2a 

— b — \ b2—4ac 

2a 

These are the general quadratic formulas. They may 

be combined into a single formula thus, 

— b±Vb2—4ac 
x= 

2a 

EXERCISES 

By means of the quadratic formula solve the following equa¬ 

tions. In these equations consider a, b, and c as knowns and 

all other letters as unknowns: 

1. 3x2+5x-2 = 0 

Here a — 3, 6 = 5, c— —2. 
Substituting these values in the formula, 

-5±-/25+24_ -5±7_1 
6 ” 6 3 

2. 2o;2+5a;+2 = 0 

3. 6a;2 —1 la;+5 = 0 

4. 2r2 — r—6 = 0 

5. 2o;2+o;= 15 

6. 1.4a;2+5a; = 2.4 

7. l\x2+x-11.2 = 0 

8. . 6a;2 — 1.4a; = 3.2 

or —2. 

9. a;2+J-a; = l 

flO. r2 —9r—36 = 0 

11. £2+15£ = —44 

Jl2. x2 — 72 = 6a; 

i 13- 3m2 = Q — 7m 

14. 6+lla; = — 18a;2 —20 

15. 14?/2+2?/ = 28y — 10y2 + 5 
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|16. 11/22 —1072 = 24 — 10722 

17. 6p2— 13p= lOp —21 

J18. 8P-12Z+3 = 0 

19. s2-2as-j-a2~h2 = 0 

20. t2—3ab(-h2a2b2 — 0 

21. a—y2=(l — a)y 

22. cy2-\-ly-\-r=0 

|23. y2JrmyJrn = 0 

24. 8y2-f-8c?/+2c2 = — 19c2 —6p2 

J25. 28b2= — 17by-\~3y2 

26. 12 m2— 16am — 3a2 = 0 

27. ax2-\-(b — a)x—b = 0 

28. 2p2+(4a+6)?/ = — 2ab 

$29. 2z2-(2a+b)z+ab=Q 

Solve the following problems: 

30. The diagonal of a rectangle, 

Fig. 147, is 17 inches. One of the sides is * 

7 in. longer than the other. Find the 
“h 7 

length of each side. piG ^ 

31. The diagonal of a rectangle is 8 units longer than one side 

and 9 units longer than the other. How long is the diagonal ? 

32. A ladder 33 ft. long leans against a house. The foot 

of the ladder is 14 ft. from the house. How far from the 

ground is the point of the house touched by the top of the 

ladder ? 

33. The diagonal of a rectangle, 

Fig. 148, is 26. The distance from the 

vertex to the diagonal is 12. Find the 

segments into which the perpendicular 

divides the diagonal. 

34. The height, y, to which a ball thrown vertically upward, 

with a velocity of 100 ft. per second, rises in x seconds is given 

by the formula p= lOOv—16x2. In how many seconds will the 

ball rise to a height of 144 feet ? 

Make a graph of the function 100x—16^2 and by means of 

this graph interpret the meaning of the solutions of the 

equation. 

x -t- 7 

Fig. 147 
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238. Historical note: To solve a pure quadratic equation, 

such as x2 = 25, is merely to extract a square root. A way of 

extracting square roots of numbers has been known since the 

dawn of history. Early mathematical students did what 

amounted to solving a pure quadratic long before they even 

thought about quadratic equations. 

But no one could have written the tenth book of Euclid’s 
Elements (300 b.c.) without a good knowledge of ways of solving 

quadratic equations. Since this tenth book contains most of 

Euclid’s original work, it may safely be assumed that Euclid 

had this knowledge. He solved no quadratics algebraically, 

but he proved geometrical theorems that amounted to such solu¬ 

tions. Euclid was a Greek and Greek geometers did not like 

calculatory processes like solving quadratics, because they did 

not think practical numerical calculating scientific work. 

Plato (429-348 b.c.) had said calculating is a childish art beneath 

the dignity of a philosopher. 

The great skill of Archimedes (287-212 b.c.) in difficult 

calculations, makes men think that he also must have known 

how to solve quadratics algebraically, but his writings contain 

nothing about it. 

Heron of Alexandria (first century b.c.) was a scientific engi¬ 

neer and surveyor and he solved correctly numerous quadratic 

equations. In his Geometria he solves a problem leading to a 

quadratic, which in modem symbolism, is— 

11 

14 
d?+~d=S 

in which S is a given number and d is the diameter of a circle. 

He gives correctly a rule which in modern form is— 

d = 
V154$-f 841 —29 

11 

Thus by Heron’s time the algebraic rule had become entirely 

dissociated from geometry, and was known and studied for itself, 

without any connection with geometrical theorems of area or of 
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lines. It had taken centuries, however, to bring about this 
separation from geometry. 

The next important appearance of the solution of the 

quadratic equation is in the Arithmetic of Diophantus (third and 

fourth centuries a.d.). He distinguishes three normal forms, 
viz.— 

1. ax2-\-bx = c 2. ax2 = bx+c 3. ax2-\-c = bx 
As the Greeks knew no negative numbers, the three forms 

had to be kept separate for treatment, and of course they could 

not handle the form— 

x2+px+q = 0, 

for it requires a knowledge of both negative and complex num¬ 

bers, which neither antiquity nor later times until the seven¬ 

teenth century b.c. was able to comprehend. 

The union of the three normal forms into one was first accom¬ 

plished by the Hindus. The rule of Brahmagupta (b. 598 a.d.), 

which was assumed as known by his predecessor Aryabhatta 

(b. 476 a.d.), expressed in modern form, was— 

ax2-\-bx = c, whence x — 

the agreement of which with Diophantus’ first form perhaps 

suggests a Greek origin of Hindu algebraic knowledge. 

A later Hindu scholar, Cridhara, introduced a slight im¬ 

provement by changing the form to the following: 

V 4ac+62—b 

The eastern Arab Alkarchi (about 1010 a.d.), who was the 

greatest Arabian algebraist, introduced the higher degree equa¬ 

tions of quadratic form— 

ax2n+bxn = c; ax2n = bxnJrc; and ax2n-\-c = bxn, 

and solved them by reducing them to the three principal cases. 
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Mediaeval European mathematicians before Cardan (1501— 

76*), still unable to construe the significance of negative number, 

continued to split up the solution of quadratics into numerous 

special cases, often including as many as 24 special cases each 

with its special rule of reckoning. Finally, Cardan succeeded 

in gaining the correct insight into negative number, and the 

Italian school of thinkers attacked the imaginary. Through 

the work of this school it became possible to supply the lacking 

form— 
x1-\-px-\-q = 0, for the cases of p>0 and q>0. 

The Generalization of the Theorem of Pythagoras 

239. In the right triangle ABC, Fig. 149, imagine the 

angle ABC to decrease, leaving the lengths of the sides 

AB and BC unchanged. Then the squares on AB and 

BC are not changed in size, but as the distance between 

the endpoints A and C, of AB and BC, decreases, the 

square on AC decreases, Fig. 150. Therefore in a* triangle 

the square on the side opposite an acute angle is less than 

the sum of the squares on the other two sides. 

In a similar way, by increasing the right angle ABC, 

Fig. 149, as in Fig. 151, we find that the square on the side 

opposite the obtuse angle B is greater than the sum of the 

squares on the other two sides. 
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The following two theorems will show by how much 

the square on one side of a triangle differs from the sum 

of the squares on the other two sides. 

240. The square on the side opposite an acute 
angle. 

Let Z B be an acute angle of triangle ABC, Fig. 152. 

c c 

Draw CD perpendicular to AB. Denote the projec¬ 

tion of a on c by a'. 

Then 62 = /i2+(c — a')2. Why? 

And a2 = h2-\-at2. 

Subtracting, b2 — a2 = (c—ar)2 — a'2 = c2—2ca'-\-a'2 — a'2. 

Therefore b2 — a2 = c2 — 2ca'. 

Solving for b2, b2 = a2-\-c2 — 2ca'. 

This shows that the product 2ca' is the amount by 

which a2-\-c2 exceeds b2. 

Hence, we have proved the following theorem; 

Theorem: In a triangle the square on the side opposite 

an acute angle is equal to the sum of the squares of the other 

two sides, diminished by two times the product of one of 

these two sides and the projection of the other upon it. 

exercises 

1. Find a', Fig. 152, when a, b, and c are respectively 2, 4, 5; 

7, 10, 8. 

2. Prove the theorem in §240, using Fig. 153. 
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241. The square on the side opposite an obtuse angle. 

Theorem: In a triangle the square on the side opposite 

an obtuse angle is equal to the sum of the squares on the other 

two sides, increased by two times 

the product of one of them and the 

projection of the other upon it. 

Given A ABC with Z ABC 
obtuse, Fig. 154. 

To prove 62 = a2-fc2+2ca' 

Proof: 

Fig. 154 

b2 = h2+(c+a')2 Why? 

a2 = h2+o!2 Why? 

Therefore b2 — a2 = c2+2ca’+a'2 — a'2 Why ? 

Hence, &2 = a2+c2-j-2ca'. 

EXERCISE 

The side opposite an obtuse angle is b, and c' is the pro¬ 
jection of c upon a, Fig. 155. 

Find a' and c' when a, b, and c are 

respectively 

1. 5, 15, 12 
2. 6, 12, 8 

J3. 7, 11, 8 
4. s2—1, s2+2, 2s 

and in each case compare 2a'c with 2ac' 

Summary 

242. The chapter has taught the meaning of the follow¬ 

ing terms: 

projection of a point quadratic formula 

projection of a segment radical 

mean proportional reduction of radical to simplest form 
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243. The following theorems were proved: 

I. Theorems expressing relations between the sides of a 
triangle: 

1. In a right triangle the square of the hypotenuse is 

equal to the sum of the squares of the sides of the right 

angle. 

2. In a triangle the square on the side opposite an acute 
angle is equal to the sum of the squares of the other two sides 

diminished by two times the product of one of these two sides 

and the projection of the other upon it. 

3. In a triangle the square on the side opposite the obtuse 
angle is equal to the sum of the squares on the other two sides, 

increased by two times the product of one of them and the 

projection of the other upon it. 

II. Theorems on mean proportionals: 

1. In a right triangle the perpendicular from the vertex 

of the right angle to the hypotenuse is the mean proportional 

between the segments of the hypotenuse. 

2. In a right triangle either side of the right angle is the 

mean proportional between its projection upon the hypotenuse 

and the entire hypotenuse. 

3. A perpendicular to a diameter of a circle at any point, 

extended to the circle, is the mean proportional between the 

segments of the diameter. 

III. Similarity in the right triangle: 

The perpendicular to the hypotenuse from the vertex of 

the right angle divides a right triangle into parts similar 

to each other and to the given triangle. 
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244. The following constructions were taught: 

1. To construct a mean proportional between two 

segments. 

2. To construct a square equal to a given rectangle. 

3. To construct the square root of a number. 

245. Quadratic equations may be solved by graph, 
by factoring, by completing the square, and by the 
formula: 

— 6 ± l/fr2 —4ac 
x —--- 

2 a 

where a, b, c are the coefficients in the equation— 

ax2-\-bx-\-c = 0. 

246. The following principle is useful in reducing 

radicals to the simplest form: 

The square root of a product may be found by taking 

the square root of the factors and then taking the product 

of these square roots. 

In symbols the principle may be stated thus: 

V/ab = V a Vb 



CHAPTER IX 

TRIGONOMETRIC RATIOS. RADICALS. QUADRATIC 
EQUATIONS IN TWO UNKNOWNS 

Trigonometric Ratios 

247. Finding angles and distances. The theorem 

of Pythagoras, the fact that two right triangles are similar 

if an acute angle of one equals an acute angle of the 

other, and the principle that the acute angles of a right 

triangle are complementary, enable us to work out a 

method for finding unknown angles and distances. 

These principles are the basis of trigonometry, a sub¬ 

ject which is useful not only in the study of more advanced 

mathematics, but also in all the exact sciences. 

EXERCISES 

1. Show that all right triangles having an acute angle of one 

equal to an acute angle of the other, are similar. 

2. On squared paper draw a right triangle having an angle 

of 30°. Measure the sides to two decimal places and find the 

ratio of the side opposite the angle of 30° to the hypotenuse. 

3. Prove that this ratio is the same for all right triangles, 

having an angle of 30°. 

4. In the triangle of exercise 2, find approximately to two 

decimal places the ratio of the side opposite the angle 60° to the 

hypotenuse. Compare your result with the results obtained by 

other members of the class. 

5. Prove that this ratio is constant for all right triangles 

that have an angle of 60°. 

6. In a right triangle having an angle of 45°, find the ratio 

to two decimal places of the side opposite the angle 45° to the 

hypotenuse. 
137 
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7. Prove that this ratio is constant for all right triangles 

having an angle of 45°. 

8. Draw with a protractor an 

angle of 40°, Fig. 156. From 

points on either side of the angle 

as A\, A2, A3, draw perpendiculars 

to the other side. Measure AiCi, 
and AiO and find their ratio. 

9. Prove that the ratio of the side opposite the angle 40° 

to the hypotenuse is the same for all triangles of Fig. 156. 

Exercise 9 illustrates the fact that the ratio of the sides, 

Fig. 156, remains constant as the lengths of the sides vary. 

The constant ratio of the opposite side to the hypot¬ 

enuse, as in Fig. 156, is called the sine of angle /+0°. 

248. Trigonometric ratios of an angle. Let angle A> 

Fig. 157, be a given angle. From any point, as B, on 

either side of the angle draw a perpendicular to the other 

side. Thus, a right triangle is formed, as ABC. 

In this triangle, the ratio of the 

side opposite the vertex of Z A to the 

hypotenuse is the sine of angle Z* 

(written: sin A), 
. a 

i.e., sm A =-. 
c 

Fig. 157 

* The word “sine” is a shortened form of the latin sinus, which is 
the translation of an Arabic word meaning a “bay,” or “gulf.” 
Albert Girard (1595-1632), a Dutch mathematician, was the first 
to use the abbreviations “sin,” and “tan” for “sine” and “tangent” 
(Ball, p. 235). Ball (p. 243) says the term “tangent” was intro¬ 
duced by Thomas Finck (1561-1646) in his Geometriae Rotundi of 
1583. The same historian says (p. 243) the term “cosine” was 
first employed by E. Gunter in 1620 in his Canon on Triangles, and 
that the abbreviation “cos” for “cosine” was introduced by Ough- 
tred in 1657. These contractions, “sin,” “cos,” and “tan,” did 
not however come into general use until the great Euler reintroduced 
them in 1748. The word “cosine” is an abbreviation for “comple¬ 
mentary sine.” 
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to 90° are tabulated in the table on p. 140. Compare your results 

for exercises 1 and 2 with the corresponding values given in 

the table. 

250. Values of the trigonometric ratios found by means 
of the table. The table on p. 140 gives approximately 

to 4 places the values of the ratios for angles containing 

an integral number of degrees from 1° to 90°. This is 

quite sufficient for our purposes. 

Where greater accuracy is required, tables are avail¬ 

able which give the values of the trigonometric ratios of 

angles containing fractions of degrees. 

EXERCISE 

From the table find the values of the following ratios: 

sin 2° cos 11° tan 20° 

sin 42° cos 63° tan 85° 

State your results in the form of equations. 

251. Trigonometric functions. Examine the table, 

p. 140, and notice how the values of the trigonometric 

ratios change as the angle changes from 1° to 90°. Since 

a change in the angle produces a corresponding change in 

the ratio, the trigonometric ratios are also called trigo¬ 
nometric functions. 

From the table, obtain the changes of sin A as A increases 

from 0° to 90°. 

Similarly, obtain the changes of cos A. 

Having given the value of a single function of an angle 

the values of the other functions and the number of 

degrees in the angle may be determined in various ways. 

If a table of trigonometric functions is available, they may 

be looked up in the table. An algebraic method is given 

in § 262. The following is a graphical method. 
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252. Graphical method of finding the values of the 
functions of an angle when one of them is known. 

EXERCISES 

1. Given the sine of an angle equal to j, find the values of 

the other functions and the number of degrees in the angle. 

Draw a right angle, A, Fig. 159. 

On one side of the angle lay off 

AB = 1. 
With B as center and radius equal to 

2 draw a circle arc meeting AC at C. 

Measure AC and find the values of 

the cosine and tangent of angle C. 
With a protractor find the number of degrees in Z C. 

2. Find the number of degrees in an angle whose sine is -J; 

.2; .75. Also find the values of the other functions. 

3. Find the angle and the values of the other two functions 

if cos B = 0.6; if tan A =-J. 

Exact Values of the Functions of 30°, 45°, and 60°. 

253. Values of the functions of 30° and 60°. Since 

angles of 30°, 45°, and 60° are used in a large number of 

problems, the student should remember the exact values 

of the functions of these angles, as found in the following 

exercises: 
EXERCISES 

1. To construct a right triangle containing an angle of 30°, 

draw an equilateral triangle, Fig. 160, and divide it into two 

congruent triangles by drawing the alti¬ 

tude to one side. 

Show that the acute angles of triangle 

ADC are 60° and 30°. 
Show that the hypotenuse is twice as 

long as the side opposite the 30° — angle. 
Hence, if AD be denoted by x, AC 

must be 2x. 
Show that CD = xV3. 

c 
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2. Find the value of sin 30°, using Fig. 160. 

sin 30° = ^ = ^ Why? 

3. Find the value of sin 60°. 

xVs Vs sin 60° = : 

4. Find the value of cos 30°. 

6. Find the value of cos 60°. 

6. Find the value of tan 30°. 

2x 

tan 30° = 
x lVs V3 

XV3 V3-V3 3 

7. Find the value of tan 60°. 

254. Rationalizing the denominator. In exercise 6 

the fraction was changed to ?> by multiplying 
f 3 

numerator and denominator by 1^3. This does not 

change the value of the fraction but changes the de¬ 

nominator to a rational number. This process is called 

rationalizing the denominator. The object of the ration¬ 

alizing process is to obtain a form of the fraction more 

easily calculated arithmetically. 

EXERCISES 

Rationalize the denominators in the following fractions: 

V 2 
4. 

12 

7V S 
1. 
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7. 
V a+/ b 

V c 
8. V x-V v 

/ 
9. 

To rationalize the denominator in 
2-/3 

rator and the denominator by 2 + /3. Thus, 

3  3(2+ /3) 

2-/3 

multiply the nume- 

10. 

11. 

2-/3 

5 

2+/5 

6 

3-/5 

(2-/3)(2 + /3) 

12. -rrt- 
/ 2—1 

. 13. 7 

6+^l=6+3l/- 

14. 

15. 

3-/2 

5+/2 

1+/3 

2-/3 3+2/5 

In the following rationalize the denominator and then find 

the approximate values of the fractions to two decimal places: 

5+/3 16. 8+^ 18. 
8-1/6 

17 4+31/5 

4-31/5 
19. 

3-/2 

1 1 

3-/2 2+/ 3 

|20. Find the value of * satisfying the equation 

5*= / 3(1+2*) 

and express it as a fraction with a rational denominator. 

255. Exact values of the functions of 45°. To con¬ 

struct an angle of 45°, draw an isosceles right triangle, 

Fig. 161. 
EXERCISES 

1. In the isosceles right triangle ABC, c 
Fig. 161, show that A = C = 45°. 

2. Denoting the equal sides of triangle 

ABC, Fig. 161, by x, show that AC = x/2. 

3. Find the values of the functions of 

45°, giving all results with rational 

denominators. 

B 
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256. Summary of the exact values of the functions 
of 30°, 45°, and 60°. The following is a simple device 

for memorizing these values. For the sake of symmetry, 

let J be written in the form \V 1, then 

sin 30° = |r 1, sin45° = ^l/2, sin 60° = 3. 

The values of the cosine are the same as above, but 

in reverse order, thus: 

cos 60° = |v I, cos 45° = \V\ cos 30° = \Vz 

This may be conveniently arranged in the form of a 

table: 

Angle 

Functioii\^ 
30° 45° 

1 

C0° 

Sine. Kl It/? 2 v * jy.3 
Cosine. Wi A-i/2 2 v " Ki 

It will be seen in § 262 that it is not necessary to 

memorize the values of the tangent-function because 

they are easily computed from a simple relation existing 

between the trigonometric functions. However, before 

making a study of these relations, we shall take up some 

of the practical applications of the functions. 

Application of the Trigonometric Functions 

257. Determination of a triangle. We know that all 

right triangles in which the following parts are equal, 

each to each, are congruent: 

1. The two sides including the right angle. 

2. A side and one acute angle. 

3. The hypotenuse and one of the other sides. 
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In other words, if in a right triangle two parts in addi¬ 

tion to the right angle are given (at least one being a side), 

the triangle is completely determined, and may be con¬ 

structed from these given parts. The unknown parts 

may be computed by the methods of scale drawing, or by 

using the sine, cosine, and tangent of the angles, as will be 

seen in the following exercises: 

EXERCISES 

1. The rope of a flagpole is stretched out so 

that it touches the ground at a point 20 ft. from 

the foot of the pole, and makes an angle of 73° 

with the ground. Find the height of the flag¬ 

pole. 

1. Graphical solution: With a ruler and pro¬ 

tractor, draw the right triangle, ABC, Fig. 162, to 
scale. By measurement, x is found to represent 

66 ft. approximately. 

II. Trigonometric solution: Using the tangent 

of Z.A, we have: 

^r = tan 73° = 3.2709, from the table on p. 140. 
Ji\J 

Therefore z = 20 X 3.2709 = 65.418 

The result, 65.418, is misleading, as it gives the impression that 
the length of BC has been determined accurately to three decimal 

places. This is impossible since the length of AC, i.e., 20, from 
which 65.418, was derived by multiplication had not been deter¬ 

mined even to the first decimal place. Hence, the decimal .418 
has no meaning and should be discarded. The length of BC is 
said to be 65 ft., approximately. 

2. A balloon is anchored to the ground by a rope 260 ft. 
long, making an angle A of 67° with the ground. Assuming the 

rope line to be straight, what is the height of the balloon ? 

Use the sine of angle A. 
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3. A kite-string 300 ft. long, Fig. 163, is fastened 
to a stake at A. The distance from the stake to a 
point C directly under the kite B is 102^- feet. 
Find the height of the kite, supposing the kite¬ 
string to be straight. 

Find the angle of elevation of the kite from 
the stake. 

I. Graphical solution: Draw the right triangle 
ABC to scale and measure a and A. 

B 

Fig. 163 

II. Trigonometric solution: 

cos A = 
102,5 _ 
300 

From the table, p. 140, cos 72°= .3090 
and cos 73° = .2924 
.'. the angle of elevation of the kite is about 72° or 73°. 

Since ^r=sin 72°=.9511, from p. 140, 
oUU 

therefore a = 300 X . 9511 = 285. 

III. Algebraic solution: The value of a may also be obtained 
from the equation 

a = V3002 —102.52 Why? 

4. A vertical pole, 8 ft. long, casts on level ground a shadow 
9 ft. long. Find the angle of elevation of the sun. 

Use the tangent ratio. 

5. The angle of elevation of an aeroplane at a point A on 
level ground, is 60°. The point C on the ground directly under 
the aeroplane is 300 yd. from A. Find the height of the aero¬ 
plane. 

/ 

6. What is the angle of elevation of the top of a hill 500^3 ft. 
high, at a point in the plain whose shortest distance from the 
top of the hill is 1,000 feet ? 

7. Wrhat is the angle of elevation of a road that rises 1 ft. 
in a distance of 50 ft. measured on the road ? 
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|8. A road makes an angle of 6° with the horizontal. How 

much does the road rise in a distance of 100 ft. along the hori¬ 

zontal ? 

■9. On a tower is a search-light 140 ft. above sea-level. The 

beam of light is depressed (lowered) from the horizontal, through 

an angle of 20°, revealing a passing boat. How far is the boat 

from the base of the tower? 

JlO. A boat passes a tower on which is a search-light 120 ft. 

above sea-level. Find the angle through which the beam of 

light must be depressed from the horizontal, so that it may 

shine directly on the boat when the boat is 400 ft. from the base 

of the tower.' 

11. From the top of a cliff 150 ft. high, the angle of depres¬ 

sion of a boat is 25°. How far is the boat from the top of the 

cliff? 

12. When an aeroplane is directly over a town C the angle 

of depression of town B, 2\ miles from C, is observed to be 10°. 

Find the height of the aeroplane. 

J13. From an aeroplane, at a height of 600 ft., the angle of 

depression of another aeroplane, at a height of 150 ft. is 39°. 

How far apart are the two aeroplanes ? 

14. Two persons, 1,200 ft. apart, observe an aeroplane 

directly over the straight line from one to the other. One 

person finds the angle of elevation of the aeroplane to be 35°; 

the other, at the same time, from his position, finds it to be 

55°. Find the height of the aeroplane. 

J15. On the top of a tower stands a flagstaff. At a point 
A on level ground, 50 ft. from the base of the tower, the angle 

of elevation of the top of the flagstaff is 35°. At the same point 

A, the angle of elevation of the top of the tower is 20°. Find the 

length of the flagstaff. 
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16. A boy wishes to determine the height HK of a factory 

chimney. He places a transit first at B and then at A and 

measures the angles x and y. The transit is on a tripod ft. 

from the ground. A and B are two points in line with the 

chimney and 50 ft. apart. What is the height of the chimney 

if the ground is level and if x = 63° and y= 33 J°, Fig. 164? 

In Fig. 165 w/z = tan 63° = 1.9626 (1) 

—-— = tan 33J=.6620 
50+2 2 (2) 

(1) and (2) are simultaneous equations in which w and z are 

the unknown numbers. To eliminate w, by substitution, we have 

w = l .9626s (from (1)) (3) 

By substituting (3) in (2), 

1.96262 

50+2 
= .6620 (4) 

Find the value of z in (4). Substitute this value of z in (3), thus 

obtaining the value of w. 

Show how the height of the chimney could be readily found by 
measuring shadow-lengths, without using angles. One method 

would thus furnish a check on the other. 

17. From a point A on the south bank of a river flowing due 

east the angle of elevation of the top of a tree on the north 

side is 45°. At a point B, 70 yd. south of A, the angular 

elevation is 30°. Find the width of the river. 
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18. At a window 20 ft. from the ground, the angle of depres¬ 

sion of the base of a tower is 15°, and the angle of elevation of 

the top of the tower is 37°. What is the height of the tower ? 

J19. Village B, Fig. 166, is due 

north of village C. An army outpost 

is located at a point A, 8 miles due 

west of C. B bears 60° east of north 

from A. An areoplane is observed to 

fly from C to B in a quarter of an hour. 

Find the average horizontal speed of 

the aeroplane. 

J20. To measure the width of a 

river flowing due east, a man selects a 

point A from which a tree at C, on the 

other side bears 60° east of north. He 

then walks east from A until he finds 

a point B from which C bears 30° west of north. AB is found 

to be 300 yards. Find the width of the river, CH, Fig. 167. 

Show that 2 = 150, and y = 260. 

J21. Two aeroplanes start from city C at the same time. 

Aeroplane A flies south at the average rate of 15 mi. an hour. 

Aeroplane B flies west. At the end of f of an hour, aeroplane B 
is observed to bear 5lJ° west of north from aeroplane A. How 

far apart are the aeroplanes at the time of observation ? What 

is the average speed of aeroplane B ? 

$22. A balloon is directly over a straight road. The angles 

of depression of two buildings on the road are 34° and 64°. If 

the buildings are 65 yd. apart, how high is the balloon ? 

J23. From a lighthouse, situated on a rock, the angle of 

depression of a ship is 12°, and from the top of the rock it is 8°. 

The height of the lighthouse above the rock is 45 feet. Find 

the distance of the ship from the rock. 

J24. From an aeroplane the angles of depression of the top 

and bottom of a flagpole 55 ft. high, are 45° and 67°, respectively. 
Find the height of the aeroplane. 

c 
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258. Problems on isosceles triangles. Problems on 

isosceles triangles may be solved by using the two right 

triangles into which an altitude line from the vertex- 

angle of an isosceles triangle divides the triangle. 

PROBLEMS 

A 

1. The distance from a cannon to a straight road is 7 miles. 

If the range of the cannon is 10 mi., what length of the road 

is commanded by the cannon ? 

Show that BAC, Fig. 168, 
is an isosceles triangle, and that 
AH bisects BC. In the right 
triangle ABH, find the length 
of BH. B 

/ 
/ 

C 

2. The arms of a pair of 

compasses are opened to a 

distance of 6.25 cm. between 

the points. If the arms are 11.5 cm. long, what 

angle do they form ? 

In the isosceles triangle ABC, Fig. 169, draw 
the altitude AH. 

3. A pair of compasses is opened to an angle 

of 50°. What is the distance between the points 

if the arms are 12.5 cm. long? 

Draw the altitude of the isosceles triangle. 

|4. A cannon with a range of 11 mi. can 

shell a stretch of 13 mi. on a straight road. How far is the 

cannon from the road? 

J5. A clock pendulum, 20 in. long, swings through an angle 

of 6°. Find the length of the straight line between the farthest 

points which the lower end reaches. 

6. A clock pendulum is 25 in. long. Through what angle 

does the pendulum swing if the distance between the farthest 

points which the lower end reaches is 6 inches ? 
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7. Two firemen are playing a stream of water on the wall 

of a burning building from a fire-hose which throws water 120 

feet. The distance on the ground from the firemen to the wall 

is 100 feet. What is the greatest distance on the wall which can 

be reached by the water ? 

Relations of Trigonometric Functions 

259. Important relations between the sine, cosine, and 

tangent of an angle can be shown by simple formulas. 

EXERCISES 

1. Prove that if A is any acute angle 
(sin A)2+(cos A)2= 1 

In Fig. 170 sinA=- (1) 
c 

cos A = - (2) 
c 

Squaring (1) and (2), 

(sin A)2 = ~ (3) 
& 

(cos 4)* = ^ (4) 
• L* 

Adding (3) and (4), 
rAl _1_ 

(sin A)2 + (cos A)2 = -~— (5) 
c 

a2+62 = c2 

.'. (sin A)2 + (cos A)2 = 1 (6) 

(sin A)2 is usually written sin2 A; similarly (cos A)2 and (tan A)2 
are written cos2 A and tan2 A. 

2. In Fig. 170 prove that sin2 jB+cos2I? = 1. 

3. Using the formula sin2 rr+cos2 x = 1, show that 

sin x= Vl — cos2z* (1) 

and cos x = v71—sin2 x (2) 

* We shall not use the double sign before the radical because 
we have found no meaning for a negative sine or cosine of angles. 

B 
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4. From Fig. 170 show that 

tan A = 

and tan B = 

sin A 
cos A ’ 

sin B 
cos B 

260. Trigonometric identities. 
relations 

sin2 A-f-cos2 A =1 
. sin A 

tan A 

The two fundamental 

(1) 

(2) cos A * 

are true for any value of A. They are therefore called 
identities, and are sometimes written thus, 

sin A 
sin2 A+cos2 A = l; tan A = 

cos A 

a 

261. Symbol of identity. The symbol, =, is read is, 
or is identical to. 

EXERCISES 

1. In Fig. 171 show that— 

1. sin A = cos B 2. cos A = sin B, 

i.e., that the sine of an angle is the B 
cosine of the complement of the angle. 

2. In Fig. 171 show that 

tan A =7-p, 
tan B 

i.e., the tangent of an angle equals the re¬ 
ciprocal of the tangent of the complement. 

262. Given the value of one function, to find algebrai¬ 
cally the values of the others. The exercises on p. 154 show 
that the two fundamental identities sin2 A+cos2 A = 1, 

sin. i4 
and tan A =-j , may be used to find the values of two 

COS Jx 

of the functions, if the value of the third function is known. 
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EXERCISES 

In the following exercises find the values of two of the func¬ 

tions when—■ 

1. tan B = f 

Solution: 

tan B = Sm p —f. Why? (1) 
cos B * 

and sin2 R+cos2 R = 1. (2) 

Equations (1) and (2) may be solved as simultaneous equations 
in the two unknowns, sin B and cos B. Sin B may be eliminated by 

substitution, as follows: 

From (1) sin B = f cos B (3) 

Substituting (3) in (2), yg- cos2 R+cos2 B = 1 (4) 

Clearing (4) of fractions, 9 cos2 R-f 16 cos2 B = 16 (5) 

25 cos2 B = 16 (6) 

cos2 R = (7) 

cos R = f (8) 

From equation (3), sin R = f 

2. cos B = \ 6. cos B — m 10. cosR = Jv/3 

3. sinR = J 7. B = \V2 11. tanR = i^3 

4. tanR = f 8. cosR = Jv/2 12. tanR = Jv/3 

6. sin R = 0.5 9. sin R=^~^3 13. tan R=s 

263. Exercises 1 to 13, § 262, illustrate one of 

the uses of the fundamental trigonometric relations, 

sin A 
tan A = 

cos A 
and sin2 A-\- cos2 A = 1. The study of 

other trigonometric relations is postponed until we have 

had a good review of the principles of the operations with 

arithmetic and algebraic fractions. These principles are 

reviewed and extended in chapter x. 
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Quadratic Equations in Two Unknowns 

264. In exercise 1, § 262, we have solved the system 

of equations: 

sin B=f cos B 

sin2 Z?+cos2 B= 1. 

In this system of equations sin B and cos B are considered 

as unknowns. To solve the system, sin B was eliminated by 

substituting J cos B in place of sin B in the second equation. 

This is the general method of solving a system of equations in 

two unknowns, of which one is linear and the other quadratic. 

Many problems lead to quadratic equations in two 

unknowns. The following problem will illustrate further 

the method of solution to be used in solving a system of 
equations in two unknowns, when one equation is of the 

first degree and the other of the second. 

ILLUSTRATIVE PROBLEM 

In the right triangle ABC, Fig. 172, 

construct a line through C so that the 

perimeters of the two new triangles 

formed may be equal. 

Analysis: Consider the problem 

solved and let CD be the required line 

through C. The position of D evidently 

is determined by determining AD. 

Solution: Denoting the length of AD 

by x, and the length of DB by y, 

3+x+CD = 4+y+CD. Why? • 

Hence, x — y = 1 Why? (1) 
AB2 = (x+y)2 = 32+42 = 25 Why? 

Hence, x2-\-2xy+y2 = 25 (2) 

The values of x and y are the solutions of the system of equations 

(1) and (2). 

with sides 3 and 4, to 

c 

Fig. 172 
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Solving (1) for x and substituting in (2), 

(1 +y)2 +2(1 +y)y+y2 = 25 
y2+y-6=0 

(3) 

[2/i = 2 

l*i = 3 

The values x= — 2, y=— 3 satisfy equations (1) and (2) but 
do not satisfy the conditions of the problem. Therefore this 

solution is disregarded and 3 and 2 are the required values of 

x and y, respectively. 

From the preceding solution it is seen that a system of 

equations in two unknowns, when one of the equations is of the 

first and the other of the second degree, may be solved as follows: 

Solve the linear equation for one of the unknowns, x or y, and 
substitute that value in the second-degree equation. This will lead 

to a second-degree equation in the other unknown, y or x, as (3), 
which is then to be solved. 

The values of y or x, thus found, may then be substituted in 

the first-degree equation, as (1), to determine the corresponding 

values of the other unknown. 

Notice that the method of solving the system of equations 

above is the method of elimination by substitution. 

EXERCISES 

1. Construct a right triangle whose perimeter is 30 and whose 

hypotenuse is 13. 

2. In the right triangle 

of ACD and BCD are equal, 

and AD. 
c 

ABC, Fig. 173, the perimeters 
CB — 4, and DB — 2. Find AC 

Fig. 174 

3. In the right triangle of Fig. 174, with sides 5*, 3y, and 

13, x-\-y = 5. Construct the triangle. 
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4. Solve 
x2-\-y2 = 25 

y—x= 1 
6. Solve 

(m?-\-mn-\-n2 = 63 

\m—n — 3 

5. Sclve 
r2+4s2 = 25 

r+2s = 7 
t7. Solve 

f 2m2—mn-\- 3 n2 — 54 

\m-\-n=7 

Quadratic Equations Solved by the Graph 

265. Problems which lead to quadratic equations in 

two unknowns may be solved by means of the graph, as 

follows: 
exercises 

1. Solve x2-\-iy2 = 25 and y—x= 1 by the graph. 

By assuming values for x, and solving x2-\-y2 = 25 for y, we have 
the following solutions of the equation x2Jry2 = 25: 

fx = 0 fx = 3 fx = 4 fx = 5 fx=— 3 fx= — 4 jx=— 5 

W=±5 \y==±=4 [y = ^3 \y = 0 \y = =i=4 \y = ±3 \y= 0 

Plotting these solutions, Fig. 175, we find that the graph of 

x2-\~y2 = 25 is a circle whose cen¬ 
ter is at the origin and whose 

radius is V 25, or 5. 

That z2+?/2 = 25 is a circle 

may be shown as follows: 

The equation expresses the 

fact that the sum of the 

squares of the co-ordinates of 
any point on the graph of the 

equation is 25, e.g., 

OPi2 = Xi2-\-yi2 = 25 

Hence, OPi = 5. 

Moreover, a line every 

point of which has the same dis¬ 

tance from a given point is a 

circle. Therefore the graph of x2-\-y2 = 25 is a circle whose radius is 5. 
The points of intersection of this circle and the straight-line 

graph of equation y—x = 1, are Pi (3, 4), and P2(—4, —3). 

Fig. 175 

Thus 
fz = 3 

\y=4 
are the required values of x and y. 
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2. In triangle ABC, Fig. 176, AB = 5, CD = , angle 

(7 = 90° Construct the triangle. 

c 

Fig. 176 

X 

Fig. 177 

3. The perimeter of the rectangle, Fig. 177 is 34. Find the 

dimensions. 

4. Solve by eliminating by substitution, and verify by 

graphing: 

x2 = 58—y2 
y= 10—x 

x2Jry2 = 4:0 

x — 3y = 0 

5. In triangle ABC, Fig. 178, draw 

DE parallel to AB so that DE is the 
mean 'proportional between AC and DC. 

6. Solve the following systems: 

xy—18 
t6. 

f2a2+62 —33 = 0 

1 to
 

II o
 

\2a = 9-b 

3xy—5y+l = 0 
7. 

(x2—y2 = 25 

x — 2y — 0 \x—y=10 

x2Jr xy~C y2 = 7 t8. 
(x2—y2 = 9 

x+4 y— —1 \£+y = 9 

x2+4?/2 = 32 
J9. 

fx2Jry2 — 25 
5x+6v/ = 8 \x+y=l 

2r2 — rs — 6s 
tlO. 

f2a+6 = 5 

r-f-2s = 7 \3a2-762 = 5 

>c 
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Summary 

266. The trigonometric ratios sine, cosine, and tangent 
have been defined. 

267. The value of a trigonometric ratio of a given 

angle may be found (1) from the table, (2) graphically. 

268. The exact values of the sine of angles of 30°, 

45°, and 60° are J, §1 2, and \V 3 respectively. 

The exact values of the cosine of the same angles are 

%V 3, §1/2, and J, respectively. 

The value of the tangent is found from the relation 

. . sin A 
tan A =-7 . 

cos A 

269. Many problems in distances, which may be 

solved graphically, can be solved simply by calculating 

by the aid of trigonometric functions. 

270. The following fundamental trigonometric iden¬ 

tities have been proved: 

sin2 A + cos2 A = 1 

. . sin A 
tan A=-7 

cos A 

271. If the value of one function is given the values 

of the other functions may be found, (1) from the table, 

(2) graphically, (3) algebraically, using the identities in 

§ 270. 
1 . 

272. A system of equations in two unknowns, when 

one equation is of the first degree and the other of the 

second, may be solved by the method of elimination by 

substitution. 

273. The irrational denominator of a fraction may 

be rationalized by multiplying the numerator and the 

denominator by the same number. 



CHAPTER X 

THE CIRCLE 

Review and Extension of the Properties of the Circle 

274. Gothic arch. One of the uses of the circle in 

designs is illustrated in Fig. 179. It 

represents the so-called equilateral 

Gothic arch, frequently found in 
modern architecture. Its most 

common use is in church windows. 

A B C is an equilateral triangle and 

arcs A C and C B are drawn with centers 

at A and B, respectively, and radius A B. Fig. 179 

EXERCISES 

1. In Fig. 180 three Gothic arches 

are joined with a circle. Construct this 

figure with ruler and compass. 

To find the center of circle 0 use A 

and B as centers and radius equal to 
f AB. In exercise 3, § 289, we shall learn 

to prove that the circles in this figure are 
tangent to each other in pairs. 

t 

c 

Fig. 181 

2. Study the designs in Fig. 181 and construct them, using 

ruler and compass. 

160 
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3. Compare the distances from the center of a circle to 

several points taken anywhere within, upon, or outside of, the 

circle with the length of the radius. 

Exercise 3 shows that a point is within, upon, or without a circle 
according as its distance from the center is less than, equal to, or greater 

than, the radius. 

275. Concentric circles. Draw several circles having 

the same center but unequal radii. Circles having the 

same center are called concentric circles. 

EXERCISE 

On notebook paper draw two circles having equal radii. If 

one of the circles is cut out and laid upon the other making the 

centers coincide, the circles should coincide. See if you can make 

one of your circles coincide with the other. 

If they do not coincide, what seems to cause the failure of 

coincidence ? 

In general, two circles having equal radii are equal, and equal 

circles have equal radii. 

276. Semicircle. Major arc. Minor arc. Cut a 

circle from paper. Fold it along a diameter. How do the 

two parts of the circle compare as to size? 

This shows that a diameter divides a circle into two 

equal parts* Each of these parts is called a semicircle. 
If a circle is divided into unequal parts, one is called the 

major arc, the other the minor arc. 

277. Secant. Tangent. Draw 

a circle as A, Fig. 182. Move a 

ruler B across the circle and notice 

the different positions of the edge, 

as B, Bi, B2, etc. How many points 
may a circle and a straight line have in common f 

* According to Proclus this theorem is a discovery of Thales. 

Fig. 182 
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A straight line intersecting a circle in two points is a 

secant. 
A line touching a circle in only one point is a tangent. 

278. Number of points common to two circles. By 

moving one circle over another, Fig. 183, show that two 

Fig. 183 

circles must intersect in two points, or touch in one point, 

or have no point in common. 

279. Chord. A segment joining two 
points of a circle is a chord, Fig. 184. 

280. Symbol for arc. The symbol ^ 

means arc. Thus, arc AB may be written 

AB. 

Draw two equal circles. Lay one circle upon the 

other, making the centers coincide. If AB on one circle 

is equal to CD on the other, they can be made to coincide. 

How do the chords AB and CD compare ? 

In a given circle construct two equal arcs. 

281. Theorem: In the same or equal circles equal 

central angles ' intercept equal arcs, and equal arcs are inter¬ 

cepted by equal central angles. 

For if the arcs are made to coincide the central angles coin¬ 
cide, and conversely. 

282. Subtending chord. The chord joining the end¬ 

points of an arc subtends (stretches under or across) 
the arc. 
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283, Theorem: In the same or equal circles equal arcs 

are subtended by equal chords; and conversely, equal chords 

subtend equal arcs. 

The truth of the theorem is 

easily shown by the method of 

superposition. 

To prove the converse, 

draw CA, CB, C'A', and C'B', 

Fig. 185. 

Prove A ABC ^ A A'B'C'. 

Then, ZC=ZC' Why? 

AB^jPb' Why? 

Diameters, Chords, and Arcs 

284. Theorem: A line drawn through the center of a 

circle perpendicular to a chord, bisects the chord and the 

arcs subtended by the chord. 

Given O 0* and CD drawn through the center 0, 

intersecting the chord AB at E; also CDJ_AB, Fig. 186. 

To prove AE=EB; AD=DB; 

AC = CB. 

Proof (method of congruent tri¬ 

angles) : 

Draw AO and OB. 

Prove AAEO^ABEO 

Hence, AE = EB Why? 

and y = y' Why ? 

Show that AD = DB 

and AC = CB 

c 

y 
* The symbol O 0 means the circle whose center is 0. The 

symbol (s) means circles. 
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The theorem above is one of a group of theorems in¬ 

volving the following conditions: 

1. A line passes through the center. 

2. A line is perpendicular to a chord. 

3. A chord is bisected by a line. 

4. A minor arc is bisected. 

5. A major arc is bisected. 

By taking as hypothesis any two of these five conditions 

and as conclusion one of the remaining three we can form 

a number of theorems. Some of these are stated among 

the following exercises: 

EXERCISES 

1. A diameter that bisects a chord is perpendicular to the 

chord and bisects the subtended arcs. Prove. 

2. A line bisecting a chord and one of the subtended arcs 

passes through the center, is perpendicular to the chord,, and 

bisects the other subtended arc. Prove. 

Prove AACE= A BCE, Fig. 187. 

Then CD LAB. Why? 

Hence, CD passes through 0. For the 
perpendicular bisector of a segment contains 

all points equidistant from its endpoints 

(§7i). _ _ 
Show that AD = DB 

.*. AD = DB' Why? 

D 

, , Fig. 187 
3. The line-segment joining the mid¬ 

points of the arcs into which a chord divides a circle is a 

diameter, bisects the chord, and is perpendicular to the chord. 

Prove. 

|4. A diameter bisecting an arc is the perpendicular bi¬ 

sector of the chord subtending the arc. Prove. 
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5. The perpendicular bisector of a chord passes through the 

center of the circle and bisects the subtended arcs. Prove. 

J6. A line perpendicular to a chord and bisecting one of the 

subtended arcs passes through the center of the circle, and bisects 

the chord and the other subtended arc. Prove. 

7. A diameter that bisects a chord bisects the central angle 

between the radii drawn to the endpoints of the chord. 

8. Bisect a given arc. 

9. Given a circle, find the center. 

10. Given an arc, find the center and draw the circle. 

11. Draw a circle through three points not lying in the same 

straight line. 

12. Show that the perpendicular bisectors of the sides of an 

inscribed polygon meet in a common point. 

13. Circumscribe a circle about a triangle. 

|14. Through a point within a circle draw a chord that will 

be bisected by the point. 

15. Draw a circle that will pass through two given points 

* and have a given radius. ' 

16. If a circle is divided into 3 equal parts, and the points 

of division are joined by chords, an equilateral triangle is formed. 

Prove. 

17. If the endpoints of a pair of perpendicular diameters 

of a circle are joined consecutively, what kind of polygon is 

formed ? Prove. 

J18. Show that the perpendicular to a tangent at the 

contact-point passes through the center of the circle. 

19. Construct a tangent to a circle at a given point of the 

circle. 

J20. To a given circle draw a tangent that shall be parallel 

to a given line. 
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285. Theorem: In the same, or in equal circles, equal 

chords are equally distant from the center; and, conversely, 

chords equally distant from the center are equal. 

Given 00=00', AB = A'B'=A"B" 

OC±AB, O'C'AA'B', OC"±A"B", Fig. 188. 

To prove 0C = 0C" = 0'C'. 

Proof (method of congruent triangles): 

Draw OA, OA" and O'A'. 

Prove that A0=A'0'=A"O. 

Prove AA0C^AA"0C"^AA'0'C'. 

Then, OC = OC", and OC = O'C'. 

Conversely, If OC" = 0’C = OC, prove that 

AB = A7B' = Ai7B". 

Prove AOAC^ AOA"C"^O'A'C'. 

Then, AC = A'C' = A"C" and AB = A'B' = A"B". 

EXERCISES 

1. If two intersecting chords make equal angles with the line 

joining their common point to the center, the chords are equal. 

Prove. 

2. In a circle the distances from the center to two equal 
chords are denoted by— 

1. 22+32 and 4(15—z) J3. x(x —3) and 4(32 — 9) 

2. 2(2+4) and 3(2x-j-5) J4. 3x2-\-4;X and 12(1—2) 

Find x and the distances from the center to the chords. 
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286. Theorem: The arcs included between two parallel 

secants are equal; and, conversely, if two secants include equal 

arcs, and do not intersect within the circle, they are parallel. 

I. Given circle 0 and AB || CD, cutting the circle at 

A and B, and at C and D, respectively, Fig. 189, 

To prove AC = BD. 

Proof: Draw OEEAB, and prolong 

it to meet CD. 

Then, OE±CD. Why? 

CE = DE Why? 

AE = EB Why? 
-s Fig. 189 

.-. AC = BD Why? 

II. Conversely, given AC = BD, Fig. 189, AB and 

CD not intersecting within the circle, 

To prove AB || CD. 

Proof: Draw OEEAB and prolong it to F. 

Prove EC = ED. Why ? 

Then, EF±CD Why? 

.\ ABWCD Why? 

III. Prove the theorem with one of the lines, as ABf 

tangent to the circle, as in Fig. 190. 

IV. Prove the theorem with both parallels tangent 

to the circle, as in Fig. 191. 

Draw HK || AB and apply Case III. 
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287. Theorem: The line joining the centers of two 

intersecting circles bisects the common chord perpendicularly. 

Fig. 193 Fig. 192 

Let 0 and O' be the intersecting circles, Figs. 192, 

193. Let AB be the common chord. 

To prove 00'±AB. 

To prove this apply § 39. 

Tangent Circles 

288. Tangent circles. Two circles are said to be 

tangent to each other if both are tangent to the same line 

at the same point. This point is the point of tangency, or 

the point of contact of the circles. 

If the tangent circles lie wholly without each other 

they are tangent externally, Fig. 194. 

Fig. 194 Fig. 195 

If one of the tangent circles lies within the other they 

are tangent internally, Fig. 195. 
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289. Theorem: If two circles are tangent to each other, 

the centers and the point of tangency lie in a straight line. 

I. Let 0 and O' be the centers of two circles tangent 

externally, T being the point of tangency, Fig. 196. 

To prove 0, O', and T lie in a straight line. 

Prove that OTO' is a straight angle. 

Then OT and O'T are in a straight line. Why ? 
* 

II. Prove the theorem for the case shown in Fig. 197. 

EXERCISES 

1. Draw a circle tangent to a given circle at a given point. 

How many such circles can be drawn ? 

2. Draw a circle through a given point and tangent to a given 

circle. 

3. If the distance between the centers of two circles is equal 

to the sum of their radii the circles are tangent externally. 

Prove. 

4. The distance between the centers of two tangent circles 

is 2\ inches. The radius of one is f inch. Draw the two circles. 

t5. The radii of three circles are 1 in., \\ in., and f in., 

respectively. Draw the circles tangent to each other externally. 

6. Construct a circle with a given point as center and tangent 

to a given circle. 
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7. To construct a circle having a given radius and tangent 
to two given circles. 

J8. With the vertices of a 
triangle as centers construct three 
circles tangent to each other. 
(See Fig. 198.) 

Show algebraically that one of 
the radii is equal to hah the 
perimeter diminished by one of 
the sides. 

290. Historical note: The part of the theory of the circle 
that deals with chords, tangents, and secants is older than the 
time of Euclid. Most of it was probably first worked out by 
the Pythagoreans. It is well known that Archytas of Tarentum 
(430-365 b.c.) at a certain point in his construction of the prob¬ 
lem of doubling a cube, assumed a knowledge of the theorem that 
the angle between a tangent and the contact-radius is a right 
angle. The first use of the theorem of the equality of the two 
tangents to a circle from an outside point of which we have 
knowledge is with Archimedes (287-212 b.c.). Heron (first 
century b.c.) is the first to give it place as an independent 
theorem. 

The converse theorem, that the center of the circle lies 
on the bisector of the angle between two tangents is first met 
with in the seventh book of the Synagoge of Pappus about 
the end of the third century a.d. Archimedes is said to have 
written an entire work on the tangency of circles. The so-called 
taction-problem of Apollonius was to draw a circle which should 
fulfil three conditions, viz., go through a given point, be tangent 
to a given straight line, and a given circle. In the fourth book of 
his Synagoge Pappus studied the problem to draw a circle tangent 
externally to three given circles and treated another interesting 
problem “ through three points of a straight line to draw three 
other straight lines that should form an inscribed triangle within 
a given circle.” This problem has more recently given rise to 
varied generalizations. 
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Summary 

291. The meaning of the following terms was taught: 

concentric circles 

arc 

secant 

tangent 

chord 

subtending chord 

tangent circles 

semicircle 

major arc 

minor arc 

The following symbols were introduced: for chord, 
^ for arc, O for circle, (s) for circles. 

292. The truth of the following theorems has been 
shown: 

1. A point is within, upon, or without, a circle according 
as its distance from the center is less than, equal to, or greater 
than, the radius. 

2. Circles having equal radii are equal, and equal circles 
have equal radii. 

3. A diameter divides a circle into equal parts. 

A In the same or equal circles equal central a?igles 
intercept equal arcs, and equal arcs are intercepted hy equal 
central angles. 

293. The following theorems have been proved: 

1. In the same or equal circles equal arcs are subtended by 
equal chords; and, conversely, equal chords subtend equal arcs. 

2. If any two of the following conditions are taken as 
hypothesis the remaining three are true: 

(1) A line passes through the center. 

(2) A line is perpendicular to a chord. 

(3) A chord is bisected by a line. 

(4) A minor arc is bisected. 

• (5) A major arc is bisected. 
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3. In the same or equal circles equal chords are equally 

distant from the center; and, conversely, chords equally 

distant from the center are equal. 

4. The arcs included between two parallel secants are 

equal; and, conversely, if two secants include equal arcs, 

and do not intersect within the circle, they are parallel. 

5. The line joining the centers of two intersecting circles 

bisects the common chord perpendicularly. 

6. If two circles are tangent to each other, the centers 

and the point of tangency lie in a straight line. 

7. Two arcs are equal if one of the following conditions 

holds: 

(1) The subtending chords are diameters. 

(2) The central angles intercepting the arcs are 

equal. 

(3) The subtending chords are equal. 

(4) The arcs are intercepted by parallel chords, 

secants, and tangents. 

8. Two chords are equal if one of the following condi¬ 

tions holds: 

(1) The chords subtend equal central angles. 

(2) The chords subtend equal arcs. 

(3) The chords are equally distant from the center. 



CHAPTER XI 

MEASUREMENT OF ANGLES BY ARCS OF THE CIRCLE 

294. Units of angular measure. In all preceding 

work angles have been measured by comparing them with 

such angular units as degree, minute, second, right angle, 

and straight angle. Thus, the measure of an angle is 45, 

if it contains 45 degrees; the measure of the same angle is 

if the right angle is used as unit; or it is J, if the straight 

angle is the unit of measure. 

In the following it will be shown that, if the sides of an 

angle touch or intersect a circle, it is possible to measure the 

angle in terms of the arcs intercepted* by the sides of the angle. 

EXERCISES 

1. From cardboard cut a right angle. Move it so that the 

sides always pass through two fixed points, as A and B, Fig. 

199. This may be done by letting 

the sides always touch two pins 

stuck into the paper at A and B. 
Mark the position of the vertex for 

various positions of the angle. How 

does the vertex move ? 

2. Repeat exercise 1 with an 

acute angle; with an obtuse angle. 

3. Draw a semicircle. Join various points of the semicircle 

to the endpoints of the diameter forming angles whose vertices 

lie on the circle. With a protractor measure these angles. How 

do they compare in size ? 

* Note the difference between the words “intercept” and “inter¬ 
sect.” The former means “to hold between” and the latter “to 
cut, or to cross.” 

173 
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4. Draw a circle. With a chord cut off an arc greater than a 

semicircle and join various points of the arc to the endpoints 

of the chord. By measuring, compare the angles having the 

vertices on the arc. 

5. Repeat exercise 4, using an arc less than a semicircle. 

295. Inscribed angle. An angle whose vertex is on a 

circle and whose sides are chords is an inscribed angle. 

EXERCISES 

1. Exercises 4 and 5, § 294, illustrate the fact that all in¬ 

scribed angles intercepting the same arc are equal, and that the 

angle is acute, right, or obtuse according as the intercepted arc 

is less than, equal to, or greater than, a semicircle. 

How does an inscribed angle vary as the arc increases from a 

short length to the length of the circle ? 

2. Show how a carpenter’s square may be used to test the 
accuracy of a semicircular groove. (See 

Fig. 200.) 

Fig. 200 Fig. 201 

3. Show how a carpenter’s square may be used to find where 

a ring must be cut so that the two 

parts are equal. (See Fig. 201.) 

4. The circle in Fig. 202 represents 

a region of dangerous rocks to be avoided 

by ships passing near the coast AB. 
Outside of the circle there is no danger. 

Show that the ship S is out of danger 

as long as angle ASB, found by observa¬ 

tions made from the ship, is less than the 

known angle ACB. 

S 

Fig. 202 
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296. If two lines intersect and also cut or touch a 

circle, the various positions may be illustrated as in 

Figs. 203-209. 

In Fig. 203 the lines intersect at the center of the 

circle, i.e., the angle is formed by two radii. 

In Fig. 204 the lines intersect within the circle, not 

at the center, i.e., the angle is formed by two chords. 

Moving the intersecting lines until the vertex of the 

angle is on the circle, the angle becomes an inscribed angle, 

Fig. 205. 

Leaving one side of the angle, Fig. 205, fixed and turn¬ 

ing the other until it is tangent to the circle, Fig. 206 is 

obtained. In this figure the angle is formed by a tangent 

and a chord. 

Fig. 207 shows the lines intersecting outside of the 

circle, the angle now being formed by two secants. 

Rotating the sides of the angle about O, Fig. 207, until 

they became tangent to the circle, Figs. 208 and 209 are 

obtained. 
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Some of the following theorems show how, in each of 

the Figs. 203 to 209, the measure of the angle formed by 

the two intersecting lines may be expressed in terms of the 

intercepted arc or arcs. 

297. Measure of a central angle. 
be a central angle and let it be divided 

into equal parts.- Taking one of 

these as a unit, the number of equal 

parts is the measure of the angle. 

What is the measure of ZAOBf 

Show that CD is divided into 

equal parts. 

Taking as a unit one of the equal 

Let ZAOB, Fig. 210, 

-N # /—N 

parts of CD, what is the measure of CD ? 

In general, if the measure of a central angle is m, the 

measure of the intercepted arc is also m. Why ? 

Briefly, we may say a central angle has the same 

measure as the intercepted arc, or— 

A central angle is measured by the intercepted arc. 

EXERCISES 

1. Draw a central angle. With a protractor find the num¬ 

ber of degrees, integral or fractional, contained in the angle. 

How many arc-degrees are there in the intercepted arc ? What 

is a measure of the intercepted arc ? 

2. Draw a circle and mark off an arc. Find the number of 

arc-degrees contained in it. What is the measure of the arc ? 

3. Using ruler and compass only, divide a circle into 2 

equal arcs, 4 equal arcs, 8 equal arcs. 

4. Using ruler and compass only, construct arcs of 90°, 45°, 
60°, 30°, 15°, 75°, 105°, 165°. 

How may an angle of 90° be trisected ? An angle of 45° ? 
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5. Divide a circle into three arcs in the ratio 1:2:3. 

Find algebraically the number of degrees in each. Then use the 

protractor to draw the arcs. 

6. A circle is divided into 4 arcs in the ratio 1:4:6:7. Find 
the number of degrees contained in each arc. 

7. The length of a circle is 63 inches. A central angle inter¬ 

cepts an arc 7 in. long. How many degrees does the angle 

contain ? 

8. In the same or equal circles two central angles have the same 
ratio as the arcs intercepted, by their sides. 

To show this, let the measures of the angles be m and n, 

respectively. 

Show that the measures of the intercepted arcs are also m and 

n respectively. 

Then each ratio is — . Why ? 
n 

9. In Fig. 211, AB is a 

diameter. The number of de¬ 

grees in ZAOC is denoted by 

x2-\-kx and in Z BOC by 3x2+12#. 

Find the values of x and the 

number of arc-degrees in arcs AC 
and CB. 

Fig. 211 Fig. 212 

JlO. In Fig. 212 Z ABC is a right angle. ZABD = (2x2 — S)°, 
and Z DBC = (10x2 —15)°. Find the values of x and the number 

of degrees in arcs AD and DC. 

298. Measure of an inscribed angle. 
Draw an inscribed angle, as ABC, Fig. 213. 

With a protractor measure angle ABC. 

Find the number of arc-degrees in AC. 

How does the measure of the inscribed 

angle compare with the measure of the arc ? 

The following theorem shows how to find the measure 

of an inscribed angle in terms of the intercepted arc: 

B 
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Theorem: An inscribed angle is measured by one-half 
the arc intercepted by its sides. 

Let ABC, Fig. 213, be an inscribed angle inter¬ 

cepting AC. 

To prove that ABC is measured by b 

I AC. 
In proving the theorem three cases are 

considered: 

Case I. The center of the circle lies on 

one side of the angle, Fig. 214. 

Proof: Draw the radius CD. 

Denote the measures of ABC, ADC, and 
/“N 

AC by z, y, and xf, respectively, and show 

that /. BCD = x. 

Hence, we have the relation—• 

x+x = y Why? 

Solving for x, x = ^y 

But, y = x' Why? 

x = \x' Why? 

B 

Case II. The center of the circle lies within the angle, 

Fig. 215. 

Proof: Draw the diameter BD. 

x = y+z Why? 
B 

II S3> Case I (r\) 

II 
t
O

|^
 

Case I V t>, ^ 

x-V'+Z' 
X~ 2 

Why? 
Fig. 215 

x = ^x' Why? 
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Case III. The center of the circle lies outside of the 

angle, Fig. 216. 

Proof: Draw the diameter BD. 

But 

z = x+y 

x = z — y 

zf 

Z~2 

and y= 

x — 

y 

z'-y' 

Why? 

Why? 

Why? 

Why? 

Why? 

B 

or x — ^x' 

299. Segment of a circle. The portion 

of a plane included between a chord and 

the arc it subtends is a segment of the circle. 

The shaded part ABC, Fig. 217, is a seg¬ 

ment of circle 0. 

EXERCISES 

Prove the following exercises: 

1. All angles inscribed in the same segment of a circle are 

equal. 

2. All angles inscribed in a semicircle are right angles.* 

3. All angles inscribed in a segment smaller than a semi¬ 

circle are greater than a right angle. 

4. All angles inscribed in a segment 

greater than a semicircle are less than a 

right angle. 

5. Two chords AB and CD, Fig. 218, 

intersect within a circle. Show that AAEC 
and BED are mutually equiangular and 

therefore similar. 

Fig. 218 

* Perhaps known and used by Thales; first proved by the 
Pythagoreans, 
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|6. (Mathematical puzzle). Find the error in the proof of 

the following theorem: From a point not on a given line two 

perpendiculars may be drawn to the line. 

In the two intersecting circles 0 and 

O', Fig. 219, diameters AB and AC are 
drawn from *A, one of the points of inter¬ 

section of the circles. 
Draw CB intersecting the circles in 

points D and E. 
Draw AE and AD. 
Z AEC is a right angle, being inscribed in a semicircle. 

.-. AE±CB 

Similarly, Z.ADB is a right angle. 

adlcb 
% 

7. An inscribed triangle is a triangle whose vertices lie on a 

circle. Two angles of an inscribed 

triangle are 82° and 76°. How many 

degrees are there in each of the three 

arcs subtended by the sides? 

8. Two circles intersect at points A 
and B, Fig. 220. AC and AD are 
diameters. Prove that C, B, and D lie Fig. 220 

in the same straight line. 

300. Theorem: An angle formed by a tangent and a 
chord passing through the point of contact is measured by 

one-half of the intercepted arc. 

Let. CD, Fig. 221, be tangent to 

circle O, and let AB be a chord of 

the circle, drawn from the point of 

contact. 

To prove that A ABC is meas¬ 

ured by one-half of AB. 
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Proof: Draw the diameter BE. 

Denoting the measures of A ABC, EBA, and EBC 

by x, y, and z, respectively, and the measures of arcs BA, 

AE, and BAE by x', y', and z', we have the following 

relations: 
z — x-\-y. Why? 

x = z — y. Why? 

But, y = \y’. Why? 

and, z = \z', since z=90° and z' = 180°. 

••• * = ¥-h' = W-y')- Why? 

x = §x'. Why? 

EXERCISES 

1. A triangle ABC, Fig. 222, is inscribed in a circle and 

ZA — 57°, ZB — 66°. Tangents are 

drawn at A, B, and C forming the 

circumscribed triangle A'B'C'. Find 

the angles A', B', and C'. 

2. Two angles of a circumscribed 

triangle A'B'C' are 70° and 80°, 

Fig. 222. Find the number of de¬ 

grees in each of the three angles of 

the inscribed triangle ABC. 

3. The vertices of an inscribed 

quadrilateral divide the circle into 

arcs in the ratio 3:4:5:6. Find the 

angles of the quadrilateral. 

4. From the point of tangency, 

A, Fig. 223, of two circles tangent 

internally two chords are drawn 

meeting the circles in B, C, D, and 

E. Prove BC II DE. 
Draw the common tangent. 

Fig. 223 
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5. Prove that the tangents drawn 

from a point to a circle are equal, 

Fig. 224. 

Problems of Construction 

301. Make the following con¬ 

structions : 

1. Upon a given line-segment as a chord construct a segment of a 
circle in which the inscribed angles are equal to a given angle. 

Given the line-segment a and an angle equal to x, Fig. 225. 

B 

K 

To construct upon a as a chord a segment of a circle in which an 

angle equal to x may be inscribed. 

Construction: Draw AB=a. 
At A, on AB, construct ZCAB = x. 
Draw AE _\_DC. 
Draw FE, the perpendicular bisector of AB. It will meet AE 

as at E. Why ? 
With E as center and radius EA draw a circle. This circle must 

pass through B. Why ? 

A KB is the required segment. 

Proof: Let ZALB be any angle inscribed in segment A KB. 

Then ZALB = \AB. Why? 

ZBAC = \AB. Why? 
.*. Z ALB = ZB AC. Why ? 
/. ZALB is equal to x. Why? 

Test the accuracy of the construction with the protractor. 
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2. Make the construction of problem 1, using a given obtuse 

angle. 

3. On a given line-segment, construct a segment of a circle 

containing an inscribed angle of 60°: of 30°; of 120°; 45°; 

135°; using ruler and compass only. 

4. From a point outside of a circle 
to construct a tangent to the circle. 

Let A be the center of the given 

circle and B the given point outside of 

the circle, Fig. 226. 
To construct a tangent to circle A 

from B. 

Construction: Find the midpoint of AB. 
Draw a circle having AB as diameter, cutting circle A at D 

and E. 
Draw BD and BE. 
BD and BE are the required tangents. 

Proof: Draw AD and show that ZADB is a right angle. Then 

BD is tangent to circle A. Why ? 

J5. Euclid’s method of solving 

problem 4, as given in Book III, 

Theorem 17 of his Elements, was as 

shown in Fig. 227. 

The given circle is 0 and the 

given point, A. 

A concentric circle is drawn through 

A. 0 and A are joined with OA. 
Where OA cuts the given circle, at B, erect CC' perpendicular to 

OA. Connect C and C' with 0. Join the crossing points, T and 

T', with A. AT and AT' are the required tangents. Prove. 

Tropfke says the mode of construction of problem 4 first 
occurred in 1583 in Thomas Finck’s well-known and valuable geo¬ 
metrical work, entitled Geometriae rotundi. Some elementary 

geometries of the eighteenth century followed Finck’s construction, 

and some followed Euclid’s. Which do you prefer and why ? 
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6. To draw a common tangent to two circles exterior to each 

other. 

The number of common tangents to two circles depends upon 

the position of the circles. If one circle is entirely outside of the 
other, Fig. 228, there are four common tangents, i.e., two external 

tangents, AB and CD, and two internal tangents, EF and GH. 

© 
Fig. 232 

If the circles are tangent to each other externally, there are two 

external and one internal tangent, Fig. 229. 
If the circles intersect, two external tangents can be drawn, 

Fig. 230. 
If the circles are tangent internally, there exists only one external 

tangent, Fig. 231. 
No common tangent exists if one circle lies entirely within the 

other, Fig. 232. 

Notice that in every case the line passing through the centers 
of the circles is an axis of symmetry of the figure. 

Let A and A', Fig. 233, be the center of two circles exterior to 

each other. 

I. It is required to draw 

the common internal tangents. 

Construction: Draw A A'. 
Divide A A' into segments 

having the same ratio as the 
radii (§ 176), and let B be the 

point of division. 

From B construct BC 
tangent to circle A (problem 4). 

BC is one of the required internal tangents. 
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Proof: Draw AC. Draw A'C' ACB. 
If it can be proved that A'C' is equal to the radius of circle A', 

then BC is tangent to circle A' (§ 74). 

Denoting the radii of circles A and A' by R and R', 
AB R , x 

= by construction. 

Prove AABCoo AA'BC' 
. AB AC R 

Why? 
** BA' A'C' A'C' 

R R 
Why? 

" R' A’C'‘ 

Prove that A'C' = R'. 
BC is tangent to circle A'. Why? 

Show how to construct the other common internal tangent. 

II. To draw the external tangents. 

Construction: Draw 

AA', Fig. 234. 

Divide A A' externally 

in the ratio of the radii at 

the point B (§ 176). 

Draw BC tangent to 

circle A. 
BC is one of the re¬ 

quired external tangents. 

Show how to construct the other external tangent. 
The proof is the same as for Case I. 

In § § 302, 303 we find two illustrations of external and internal 

tangents common to two circles. 

302. Circular motion. Circular motion may be trans 

mitted by means of a belt 

Figs. 235, 236. 

Two pulleys whose radii, 

R and r, are 12 in. and 5 in., 

respectively, are fastened to 

parallel shaftings and are 

connected by a belt, Fig. 

235. 

running over two pulleys, 
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The distance, a, between the centers of the pulleys is 

32 inches. Make a drawing to the scale 1 to 16. 

Find the length, l, of the belt 

from the formula 

l — 7r (R -f- r) d- 2<z. 

In Fig. 236 the pulleys are con¬ 

nected by a crossed belt. Find the 

length of the belt by means of the 

formula, 
1 = 2V (#+r)2+a2+7r(E+r). 

Notice that the pulleys, as connected in Fig. 236, turn in opposite 
directions. 

303. Lunar eclipse. A lunar eclipse occurs when the 

moon passes through the earth’s shadow. If the moon is 

within the dark part of the shadow, Fig. 237, the eclipse 

Fig. 237 

is said to be total. This part is included between the earth 

and the two external tangents common to the earth and 

the sun. If the moon is in the half-light region which is 

determined by the common internal tangents the eclipse 

is said to be partial. 

Find the length of the earth’s shadow, taking the distance from 
Earth to Sun as 93,000,000 mi., the diameter of the Sun as 806,500 
mi., and the diameter of Earth as 8,000 miles. 
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304. Theorem: If two chords intersect within a circle, 

either angle formed is measured by one-half 

the sum of the intercepted arcs. 

Draw AD, Fig. 238. 

Show that x = y+z 

y=W 
z = ¥ 
Z = W+2') Fig. 238 

305. Theorem: If two secants 

the angle formed is measured by 

one-half the difference of the inter¬ 

cepted arcs. 

Draw AD, Fig. 239. 

Show that y = x-\-z 
and x = y—z 

Complete the proof as in § 304. 

meet outside of a circle 

306. Theorem: The angle formed by a tangent and a 

secant meeting outside of a circle is measured by one-half the 

difference of the intercepted arcs. 

Draw CD, Fig. 240. 

Then y=x-\-z 
and x — y—z 

y=W 
*=¥ 
x=Uy'-z') 

307. Theorem: The angle formed by two tangents 

to a circle is equal to one-half a 

the difference of the intercepted 

arcs. 

Show that 

y = x-\-z, Fig. 241. 

x = y—z = \(y'—z') Fig. 241 
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EXERCISES 

1. The arcs and angle being denoted as in Fig. 242, find x 

and y. 

2. Find x and y, Fig. 243, the arcs and 

angle between the secants being as indi¬ 

cated in the figure. 

3. When two tangents to a circle make 

an angle of 60° into what arcs do they 

divide the circle ? 

J4. Into what arcs do two tangents at 

right angles to each other divide the circle ? 

5. Two tangents include two arcs of a 

circle, one of which is four times the other. 

How many degrees in the angle they form? 

$6. The angle between two secants 

intersecting outside of a circle is 76°. 

One of the intercepted arcs is 243°. Find the other. 

7. The points of tangency of a circumscribed quadrilateral 

divide the circle into arcs in the ratio of 7:8:9:12. Find the 

angles of the quadrilateral. 

Or* 

Fig. 243 

8. Two tangents to a circle from an outside point form an 

angle of 70°. What part of the circle is the larger arc included 

by the points of tangency ? 

9. The angle between two secants is 

30°, Fig. 244. The number of degrees in 

arc DE is represented by 
6x2+29o:+30 

the arc BC, by 
2z2—7x—15 

x—5 

2x+3 
m 

Find x and 

the number of degrees in each of the two arcs. 

Reduce the fractions to lowest terms. 
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J10. In Fig. 245 Z.AED is 60°, arc BC is represented by 
z2+8:r+15 , ^ , z2-H2:r-45 _ , 

; arc AD, by x+15 • Fmd A 

the number of degrees in each of the two arcs. 

11. Prove that the sum of the three angles 
of a triangle is two right angles. 

In Fig. 246, let ABC be any triangle. 
Circumscribe a circle about it. 

The three inscribed angles are measured by 
one-half the sum of the three arcs AB, BC, and 
CA. 

But the sum of the three arcs AB, BC, and 
CA is the entire circle. 

.’.One-half the circle, or 180°, is the measure 

of the sum of the three angles of the triangle. 

J12. In laying a switch on a railway track 

a “frog” is used at the intersection of two 

rails to allow the flanges of the wheels moving on one rail to 
cross the other rail. Show that the 

angle of the frog, a, Fig. 247, made 

by the tangent to the curve and the 

straight rail DE, is equal to the 

central angle FOB, of the arc BF. 

Fig. 246 

B 

MISCELLANEOUS EXERCISES 

308. A limited number of the 

exercises below may be worked: 

1. Prove that the circles de¬ 

scribed on any two sides of a 

triangle as diameters intersect on the third side 

2. A circle described on one of the two equal sides of an 

isosceles triangle as a diameter, cuts the base at its middle point. 

3. Prove that if a circle is circumscribed about an isosceles 

triangle, the tangents drawn through the vertices form an 

isosceles triangle. 



190 SECOND-YEAR MATHEMATICS 

4. A point moves so that the angle made by the two lines 

that connect it with two fixed points, C and D, is always the same. 

Find the locus of the point. 

5. Prove that a parallelogram inscribed in a circle is a rec¬ 

tangle. 

6. Two lines, Fig. 248, are drawn 

through the point of tangency of two 

circles touching each other externally. 

If the lines meet the circles in points 

A, B, C, and D, prove AB II CD. 

7. Two circles intersect at points A 
and B. A variable secant through A cuts the circles in C and 

D. Prove that the angle CBD is constant for all positions of 

the secant. 

8. Two circles are tangent to each other externally, and a line 

is drawn through the point of contact terminating in the circles. 

Prove that the radii to the extremities of the line are parallel. 

9. Given two diagonals of a regular inscribed pentagon 

intersecting within it. Find the number of degrees in the angle 

between them. 

10. In triangle ABC the altitudes BD and AE are drawn. 
Prove Z ABD= ZAED. 

Draw a semicircle on AB as diameter. 

11. One side of a triangle is fixed in length and position, and 

the opposite angle is given. The other two sides being variable, 
find the locus of the movable vertex. 

12. Two circles are tangent externally at P. A tangent 

common to the two circles touches them at points A and B. 
Prove ZAPB = 90°. 

13. Two circles are tangent externally. A line through the 

point of tangency intersects the circles at A and B, respectively. 

Prove that the tangents at A and B are parallel. 
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14. Three circles, Fig. 249, touch each other at A, B, and 

C. Lines AB and AC meet the third 

circle at E and D. Prove that E, 0, 
and D lie in the same straight line. 

D 

Fig. 249 Fig. 250 

15. In Fig. 250 AC and DF are drawn through the points 

of intersection of two circles. Prove that AD || CF. 

Prove z+2/= 180, u-\-z = 180 
x = z, y = u 

z+u = 180 

16. Prove that the common external tangent AB, Fig. 251, 

to two circles that are tangent externally is a mean proportional 

between the diameters of 

the circles. 

Prove that AE=EB = EF 
is a mean proportional be¬ 
tween CF and FD. 

B 

Fig. 251 Fig. 252 

17. Triangle DEF, Fig. 252, is formed by joining the feet of 

the altitudes of A ABC. Prove that the altitudes bisect the 

angles of A DEF. 

Show that x = y, both being complements of Z.ACB. 
Draw circles on AO and BO as diameters. 
Show that x'=x and y'=y. 
.*. x' = y'. 

C 
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18. Prove that a line from the center of a circle to the point 

of intersection of two tangents bisects the angle between the 

tangents. 

Summary 

309. The chapter has taught the meaning of the fol¬ 

lowing terms: 

inscribed angle inscribed and circumscribed 

segment of a circle polygons 

310. The following theorems were shown to be true: 

1. A central angle is measured by the intercepted arc. 

2. In the same or equal circles two central angles have 

the same ratio as the intercepted arcs. 

311. The following theorems were proved: 

1. An inscribed angle is measured by one-half the arc 

intercepted by the sides. 

2. An angle formed by a tangent and a chord passing 

through the point of contact is measured by one-half of the 

intercepted arc. 

3. If two chords intersect within a circle either angle 

formed is measured by one-half the su?n of the intercepted 

arcs. 

4. If two secants meet outside of a circle the angle formed 

is measured by one-half the difference of the intercepted arcs. 

5. The angle formed by a tangent and a secant meeting 

outside of a circle is measured by one-half the difference of the 

intercepted arcs. 

6. The angle formed by two tangents to a circle is equal 

to one-half the difference of the intercepted arcs. 
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312. The following constructions were taught: 

1. Upon a given line-segment as a chord construct a 

segment of a circle in which the inscribed angles are equal 

to a given angle. 

2. From a point outside of a circle to construct a tangent 

to the circle. 

3. To draw the common external and internal tangents 

to two circles exterior to each other. 



CHAPTER XII 

PROPORTIONAL LINE-SEGMENTS IN CIRCLES 

313. A railroad surveyor wishes to determine the 

radius of a circular railway curve ABC, Fig. 253. He 

measures the chord AC, and BD, the 

part of the perpendicular bisector of AC 

intercepted by AC and arc ABC. If 

AC = 200 ft. and BD = 6 ft., how may the 

radius be determined ? 

If we can establish a relation between 

AD, DE, DC, and DB, the problem will 

easily be solved. 

To find this relation, draw a circle, 

Fig. 254, and a chord AC intersecting 

chord BE, as at D. Measure to two 

decimal places the segments AD, DE, DC, 

and DB and compare AD-DC with 

ED • DB. 

Note the approximate equality of the 

products of the segments of each of the 

two chords. 

To what is the difference, if any, probably due ? This 

illustrates the following theorem: 

314. Theorem: If two chords of a circle intersect, the 

product of the segments of one is equal to the product of the 

segments of the other. 

State the hypothesis and the conclusion. Then prove 

the theorem as follows: 

B 

/100 6ioo\ 
/ 

D 

\ 
\ 
\ 
s 
\v 

r 
/ 

/ / 

E 

Fig. 253 

B 

194 
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Proof: Draw BC and AE, Fig. 255. 
Prove AADE go ABDC. 

Show that 
AD DE 
DB~ DC’ 

AD • DC = DE • DB. Why? 

EXERCISES 

B 

1. Solve the problem of § 313 by applying the theorem in 
§314. 

2. Using the theorem in § 314, construct a square equal to a 
given rectangle. 

In a circle large enough draw a chord equal to the sum of two 
consecutive sides of the given rectangle. 

Draw a radius to the point of division. What chord through 
this point is bisected at the point ? 

3. Show how exercise 2 may be used to find geometrically 
the square root of a number. Using this method, find the square 
roots of 6; 5; 10. 

4. The segments of two intersecting chords are x+5 and 
z—6 of the one, and x-\-2 and x—5 of the 
other. Find x and the length of each chord. 

6. A chord of a circle DC, Fig. 256, 
cuts the chord AB at the midpoint E. ED 
is 4 in. longer than EC and AB = 16 inches. 
Find the lengths of ED and EC approxi¬ 
mately to tot inch. 

6. The segments of intersecting chords 
are given below. Find x. 

First Chord Second Chord 

1. X—4 £“t“8 ic —f- 3 x—4 

2. x+2 £+6 x — 4 z+18 

13. 2x+5 £ + 1 £+2 3x+2 

14. 2x+2 

lo
 1 

C
O

 x4-l x+5 

A 
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|7. The distance between two points, A and B, on a railroad 

curve is 2a ft., and the distance from the midpoint of the chord 

AB to the midpoint of the curve is 6 feet. Find the radius. 

|8. Find the radius of the circle in exercise 7 if a= 100, 6 = 4; 

o=150, 6 = 5.6. 

9. How far in one direction can a man see 

from the top of a mountain 2 mi. above sea- 

level ? 

Let AB, Fig. 257, represent the height of the 

mountain and let AD be the required distance. 
Assuming the diameter of the earth to be 

8,000 mi., the value of AD may be found if we 
establish a relation between AB, AD, and AC. 

c 

Fig. 257 

The following theorem expresses this relation: 

315. Theorem: If from a point without (<outside of) 

a circle a tangent and secant be drawn, the tangent is a mean 

proportional between the entire secant (to the concave arc) 

and its external segment. 

State the hypothesis and the 

conclusion. 

Proof: Draw DB and DC, 

Fig. 258. 

Show AABD c/5 AACD. 

AC AD _ _ 

" AD AB' Why 4 

EXERCISES 

1. Using the theorem § 315, solve exercise 9, § 314. 

2. If two adjacent sides of a rectangle are given, show how 

the theorem in § 315 may be used to construct other equivalent 
rectangles. 

3. Using the theorem in § 315, show how to construct a square 
equal to a given rectangle. 



PROPORTIONAL LINE-SEGMENTS IN CIRCLES 197 

4. Show how the theorem in § 315 may be used to find 

geometrically the square root of a number. 

5. Prove by means of the theorem in § 315 that the two tan¬ 

gents from an external point to a circle are equal. 

6. A tangent and a secant 

outside of a circle. The secant 

measured to the concave arc 

is three times as long as the 

tangent, and the length of its 

external segment is 10 feet. 

Find the length of the tangent 

and secant. 

are drawn from the same point 

c 

7. Using Fig. 259, prove 
that the square of the hypotenuse of a right triangle is equal to the 
sum of the squares of the other two sides. 

Let ABC be a right triangle having Z C = 90°. 

Show that BE •BD=JdC2' 
Hence, (c-f-b) (c — b) = a2, or, c2 = a2+b2. 

8. To divide a line-segment into two 
parts so that the longer part is a mean 
proportional between the whole segment 
and the shorter part. 

Let AB be the given line-segment, 

Fig. 260. 
To find the point C, such that 

AB AC 
AC CB ' 

Construction: DrawBD±AB at B, making BD =4^ • 

With D as center and radius DB, draw circle D. 
Draw AD cutting circle D at E and F. 
On AB lay off AC = AE. 
C is the required point. 

This may be proved as follows: 
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Proof: 
AF = AB 
AB~ AE' 

AF-AB AB-AE 
AB ~~ AE 

AF-EF AB-AC 
AB AC 

AE CB 
AB AC’ 

AC CB 
AB AC 

AB AC 
AC' 'CB 

Why? 

(§ 195) 

Why? 

Why? 

Why? 

Why? 

Problem 7 will be used in the construction of a regu¬ 

lar inscribed decagon (10-side), §443. 

316. Mean and extreme ratio.* A line-segment is 
divided into mean and extreme ratio if the longer part 

is a mean proportional between the segment and its 

shorter part. 

* The current method of dividing a line in extreme and mean 
ratio is, according to an Arabian commentator, due to Heron of 
Alexandria. The theorem for dividing the line has been called by 
various names. Plato called it “The Section”; Lorentz (1781) 
called it “Continued Division.” 

Campanus (last half of the twelfth century) called continued 
division “a wonderful geometrical performance.” Paciolo (1445- 
1514) gave it even higher esteem by writing an entire work dealing 
with problems in continued division and gave his work the title: 
Divine Proportion. 

The peculiar mysticism of later times seized upon Paciolo’s 
idea and went still beyond him. Ramus (1515-72) associated the 
divine trinity with the three segments of a continued division. 
Kepler (1571-1630) created a complete symbolism for his sectio 
divina (“divine section”). In the middle of the nineteenth century 
there arose a sort of amateurish natural philosophy that sought to 
subtilize mathematical laws in every branch of study. A kind of 
universal validity was fantastically ascribed to this continued divi¬ 
sion, and it was now christened “Golden Section.” 

This “Golden Section” was held to be not only the criterion 
for all metrical relations in nature, but it was also regarded as 
the “principle of beauty” in painting, architecture, and the 
plastic arts, as well. (Tropfke, Geschichte der Elementar-Mathematik, 
Band II, S. 99-103.) 
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317. Theorem: If from a point .without a circle two 

secants are drawn to the concave arc, the product of one 

secant and its external segment is equal to the product of 

the other secant and its external segment. 

Proof: From C draw CF, Fig. 261, tangent to the 

circle. 

Show that CA •CB = CF2 and CD • CE=CF\ 

EXERCISES 

1. Two secants to the same circle from an outside point are 

cut by the circle into chords that are to their external segments 

as -J and 5(=y). The first secant is 8 ft. long. Find the length 

of the second secant. 

2. The following exercises relate to two secants from an 

external point as in exercise 1. Find the length of the second 

secant. 

Ratios of 
Segments of 
First Secant 

Ratios of 
Segments of 

Second 
Secant 

Length of 
First Secant 

1. 5:2 3:1 28 ft. 

2. 3:1 5:2 28 ft. 

13. 4:1 5:4 625 ft. 

14. 4:1 4:3 25 ft. 

15. 7:2 7:3 36 ft. 
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|3. Two lines drawn through the common points of two 

intersecting circles, Fig. 262, meet the circles in A, B, C, and 

D, E, F, respectively. Prove AD || CF. 

Show that 
GA GD 
GC GF* 

Fig. 263 

4. Show how to find a point such that the tangents to two 

given circles are equal (see Fig. 263). 

5. Determine a point A without a circle so that the sum 

of the length of the tangents from A to the circle shall be equal 

to the distance from A to the farthest point of the circle. 

Summary 

318. The following theorems were proved: 

1. If two chords of a circle intersect, the product of the 

segments of one is equal to the product of the segments of the 

other. 

2. If from a point without a circle a tangent and secant 

he drawn the tangent is a mean proportional between the 

entire secant to the concave arc and the external segment. 

3. If from a point without a circle two secants he drawn 

to the concave arc, the product of one secant and its external 

segment is equal to the product of the other secant and its 

external segment. 

319. The following construction was taught: 

To divide a segment into mean and extreme ratio. 



CHAPTER XIII 

THE OPERATIONS WITH FRACTIONS. FRACTIONAL 
EQUATIONS 

320. In future work we shall need considerable skill 

in working with fractions, which occur in many problems. 

It is the purpose of this chapter to review and extend our 

knowledge of the operations with fractions. 

Addition and Subtraction of Fractions 

321. Adding and subtracting fractions that have the 
same denominator. 

EXERCISES 

1. Show from Fig. 264 that 

3 4 7 
8+8 8* 

2. Show from a figure that 

7_4 = 3 

9 9 9‘ 

i-i/.8—|--( 

i—i—i-1—i—i—i—i—i 

i-7/8-1 -/8-\ 

Fig. 264 

3. Make a rule for adding and subtracting fractions having 

the same denominator and, using this rule, combine each of the 

following expressions into a single fraction: 
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7. 
a_^_6 

c c 
13. 

c — ax. c+3aa; 

4s 4s 

8. 
a 6 

14. 
3a 3a—86 

c c 56 56 

9. 
m_j_w 

X X X 
15. 

10a; . 12a; 5a; 

17a+17a 17a 

10. 
r s_^_ t v 

y y v y 
16. 

5a—6 2a—36 

x-y x-y 

11. 3 I 
5 7 

7. 
/61a . 48c\ /49a . 57 c 

a+6 a+6 a+6 U76+176/ V176+ 176. 

12. 
1 19a; 31 y 43a; 

18. 
17y+ 18z 22y+llz 

16 m 16m 16m 16m 27a; 27x 

/29s 13y\ , /33a; 19y\ 
19' \lo io/+Vio “To/ 

2x+15y ,9x-8y _7x-3y 
• 6 K QK QK 

23a+86 19a-286 176-8a 

’ 12a; 12a; 12a; 

322. Adding and subtracting fractions having different 
denominators. 

EXERCISES 

1. Reduce f- and f- to fifteenths. 

2. Reduce f and -§ to fractions having the same denominator. 

3. Add f and -J. 

5 7_5 • 4 3 • 7 5 -4+3-7 82 _41 . 

o 8 6-4+3-8~ 6-4 ~6-4_24’ 

4. Subtract y from -§. 

8 4 _7 • 8 9*4 7-8-9- 4 20 
9 7 7-9 9-7 9 • 7 63* 
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323. Exercises 1 to 4, § 322, show that fractions with 

different denominators are added (or subtracted) by first 

changing the form so that all have the same denominator. 

The sum (or the difference) of the numerators is then written 

over the common denominator and the resulting fraction 

reduced to its lowest terms. 

EXERCISES 

In the following exercises change to one fraction each of 

the indicated sums and differences, giving as many as you can 

mentally. Reduce all results to lowest terms by dividing 

numerator and denominator by common factors. 

1 ±+l_5_3+ 11 
* 15 20 9 4 18 

2 -4-2^ — 1— 
2‘ 3 8+24 12 

K O2 .7 Q I o b | 14 
5. 

6 
\4a 5 a) \6a 18a 5a/ 

7. “ + $- 
cx cy 

8. 
c ca 

9. 

10. 

11. 

12. 

x 
I2ab 6 b 

a—b , b—c ,c—a 
ab 

a 

be ca 

U_3_5 16 

14 4 3+21 

. 5x 7x . x 
* ^+22 33+6 

x2y xy2 

a+6.a—b 
x 3x 

13. 
a—2b 4 a—5b 

3x 5x 

i4* -V-4+- as a2 a 

15 2 __3y2_^_xyb+y3 
xy xyz x2y6 

*16. 

J17. 

18. 

a ab 
a—l a(a—1) 

1 _ 1 
x— 1 2(x — 1) 

1 . x+y 
2x — 3 y 4x2 — 6xy ' 
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19. 
06 

o+26 3ad-\-6bd 

20. -+6 
X 

Put 6 = 

Ol X 21. —a 
y 

{22. 5o+ 
2o 

23. 

{24. 

26. 

{26. 

27. 

38. 

39. 

40. 

41. 

{42. 

o+6+ c 

be ac ab 

1 1 
x-y y 

5x — 4y+3z . 2x-j-3y—4z 
x 3 y 

7o+36 —4c_26+4o—3c 

a b 

x 4,2 

x2y x2y2 Xy2 

28. 

29. 

30. 

31. 

{32. 

33. 

34. 

36. 

36. 

37. 

3 o+6 

o+6 a 
o o -6 

(o+6)2 
_ 1 

• 

4a6 

x , z+3 a: —3 

r—
H

 

1 H
 

H
 

1 <M
 £+1 

3a 0 2oc 

c-\-d c- — d c 2—+ 

1 1 
6 o+6 

1 1 
o+6 o -6 

1 1 
2o+36 3o+26 

1 1 

x2-\~y2 x2 — y2 

1 1 
o+6 o+6+c 

3z by 7 z 
4 a{x-\-y) 3 a{x-\-y) 2ax-\-2ay 

_9_7 2 
2x+4 y 3x+6 y 5x+10t/ 

4 3 2 
(o+l)(o+2) (o+2)(o+3) (o+3)(o+l) 

z+4 £+2 
1 * ' 

(z+2) (o:+3) (z+3)0+4) (x+4) (x+2) 

x+y-z . x-y+z x+y+z 
(x+2)(?/+2) (x+y)(y+z) (x+y)(x+z) 
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43. 
5a:+7m _ 25# . lx 

4a: + 12 m 6a;+18m 2x+6m 

44. 

|45. 

46. 

J47. 

48. 

5x | xy 4 y 

x+y x2—y2 y—x 

y—x= ~--(x-y) 

3 a2 . 2a+l 2a—1 

a2- 1H r2a—2 2a+2 

2a:+3 a:2 —lla:+18 a: —6 

a: —6 a:2—36 a:+6 

36 
4 i 3 

25a:2 — 9 5a:-3^5a:+3 

x+ma 1 x—ma m2ab 

49. 

J50. 

61. 

$52. 

63. 

5x — 6y . x+l&y 38x2—2xy+lhy2 

6a:2+6a:y 10xy—l 0 y2 15x3 — 15 xy2 

x2—y2 1 x-y x2+y2 

{x+y)2 x+y %
 

1 
cs

S to
 

3 4x+12 6 

2a:—3 to
 1 C

O
 

4a:2+12a:+9 

2a: 3 y 2x2+3xy—2y2 

x+2y •4 x+8y x2+4:xy+4:y2 

i , 3 i 
2 

Zx+21 5a:-l (3z+2)(5z-l) 

Multiplication of Fractions 

2 
324. The number 4-—means 

2 2 2 8 
U—4-—4-— = — 

11 

2 

11 ‘ 11 ' 11 1 11 

i- 

1 i i- 

I—2—\ 

Thus’4'n=ii (See Fig. 265.) 

!-■*-+ 

/ ■* 
’4mu 

H-1—I-1 

Fig. 265 
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EXERCISES 

1. Give the meaning of c • ~ 

a * a • c 
2. Express in words the equation c • - = — 

b b 
3 

3. Multiply by 8; by 12; by 5; by 25; by a; by xy 
TC 

4. Multiply l by | by 1; f by \ ■ J by J; J by |; 1 by { 

(I by \ of and \ • ^ are all equivalent.) 

a a a 
5. Multiply | byby|; by |; by|; by^; by^; by- 

6. State the rule for multiplying two fractions and compare 

it with the following: 

Fractions are multiplied by multiplying their numerators for 
the numerator of the product, and multiplying their denominators 
for the denominator of the product. 

Since the product of fractions should generally be reduced to 
the simplest form, factors that are common to numerator and 
denominator should be divided out before multiplying. 

7. Multiply || by 

12 15 12-15 3-3 
35*16 35-16 7-4’ 

8. Multiply |by 15,f 

7x 

9 y 
• 15?/ 

7x • 15y2 _7x • 5y 
etc. 

9. Multiply 2x2_2 by (2x+2) 

7x /o.r | on _7z(2z+2)_ 7x • 2(x + l) _ 7x 
2x2-2 ^ 2x2 — 2 2(x + l)(x-l) x-1 
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iO. Multiply ~ by g 

56x2 KF/_56z2 • 10?/ 

55y2 ’ 21x 55y2 • 21* ’ 

3*+3 y 2x2—2y2_{3x-\-3y){2x2—2y2) 
2x—2y 3a;2+3 y2 (2x—2y)(3x2+3y2) 
J3{x+y)2(x+y)(x-y) etc> 

2{x-y)3(x2-\-y2) 

325. Exercises 7 to 11, § 324, show that fractions 

may be multiplied by writing the indicated products of 

the numerators over the indicated products of the denomina¬ 

tors and then reducing the fraction obtained. 

EXERCISES 

The following products are to be given in simplest form. 

Special effort should be made to cover this list of exercises in the 

minimum amount of time. 

Multiply as indicated: 

,231 
_ • — • — 

* 5 5 8 

2‘ 102 * 133 

3. - • ac 
a 

68 95 
_ • . 

ah * yz 
xy be 

2ab 5ax 

2a2x " 6 by2 . 5 b 

\ 
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a-\-b ' a2—b2 
a—b a2-\-b2 

14. 

15. 

27x ' x+y 
8y-\-8x 3 

a b _ • - 
a-\-b a—b 

\8x2-\-l2xy-\-2y2 . 5x2y—15xy2 
Sx3—27 xy2 36x2y—4ry3 

9a2bx — 9a2by . Axy2v—Axiy2u 
8cx2u—8cx2v 15 ab2y — 15ab2x 

6ma-j-6m5 . 7as—7bs 
8bna—35nb 9ar+96r 

22 27pqm—27 pqn . 7bpx — 7bpy 
35abx—35aby 9anq—9amq 

16 6 (x — y) * 15x2y3 
5xy2 8 (x—y) 

17. 
a2—ab ' x2-\-xy 
x2—xy a2-\-ab 

x2-xy ' (g+5)2 

3a-f35 (x—y)2 

23. 
x2 —4 

x—4 

£+4 
x2+4a:-j-4 

Division of Fractions 

326. To divide a number by a fraction means to find 

the number which multiplied by the divisor gives the dividend. 

4 4 
Thus, 64- Q means to find what number multiplied by - will 

give 6. Since (^6 • ^ ^ gives 6, it follows that 6 • | is the 

4 9 
required number. Therefore 6-4--= 6 • - . 

9 4 

EXERCISES 

1. Using the same reasoning divide the following numbers 

by 3; 11; a. 

2. Similarly show that ^-4-^ = ^ • f 
8 3 8 5 

3. Show that ~ 
babe 

4. Translate the equation of exercise 3 into words. 
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327. Reciprocals. Two numbers whose product is 1 
are reciprocals of each other. 

1. Give the reciprocals of 4, 3, §. 

2. Compare your statement of exercise 4 with the 

following: 

A number is divided by a fraction by multiplying the 

dividend by the inverted divisor; that is, by multiplying the 

dividend by the reciprocal of the divisor. 

EXERCISES 

1. Divide 25x2 by 

1 
25a;2 -r —— = 25a;2 

V 

.. 62a;2, 

2-Dlvlde 3v 

15a; 

y 

y 
* 15a; 

93 xy 
55ap 

2 5x2y 

15x > 
etc. 

62 a;2 . 93xy _Q2x2 55ap _ 62x2 • 55ap 

35p2^55ap~35p2 * 93xy~35p2 • 93xy’ 6 C* 

3. Give in the simplest form: 

ab 

T 
j)2 

2 a 

ab^,2a 
■ jXp.ete. 

ab 
T 

& 
2 a 

Find the results in the following indicated divisions and 

reduce them to the simplest forms: 
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10. a-f . y 
X 

. xy 11. ab-r- 

12. 12a;3-f 
16a;2 

13. 25a6-h 

7 V 

10a2 

9a;2 

14. 180+/++ 
15 xzyzz 

ab 

15. ( — ab) + 
3 d 

5ab 

22. (S2xzy2z2—A.0x2yzz2) 

16. 

17. 

18. 

19. 

20. 

16a362 8a36 

27 xbyz 9 x2y* 

20x2y3 . 4axy 

21. 

21a4c5 3a2b2c2 

40a755c6 35a666c6 

22mzxAzh ’ 88m6xz7 

(a—l)2 . a2 —1 

a+1 * a 

a;2—1 . a;+l 

4mn * 2w 

a;+4_!_a;2+16 

a;—4 * a;2 —16 

8xhfzz 

23. 

24. 

25. 

a?b2 

24(s-l)2 . 30(a; —1) 

70(a2—62) * 28(a—6)2(a+6) 

14a;2—7a; . 2a; —1 

12a;3+24a;2 ’ a;2+2a; 

S(x2—4:y2)^x—2y 

4(a2—62) ' a+6 

26. 

27. 

(a+b)2 

a—b 

3a;2-3 

+ (a2—b2) 

. 1+a; 
a;+?/ x2—y2 

Complex Fractions 

328. Complex fractions. A fraction in which either 

numerator or denominator, or both terms, contain frac- 

6 31 ^ 
tions is a complex fraction, e.g., —, —, and 

The last fraction may be reduced in two ways: 

T _ 3 9 _/0\ t _ t * 4 • 9 _ 3 • 9 A ^ 
5 tX s"j etc., or (2) r etc. 
4 4 4-4-9 5-4 

(!) 
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In the second method, numerator and denominator 

of the complex fraction have been multiplied by the same 

number, viz., the least common multiple (l.c.m.) of 4 and 

9. Sometimes the use of this method is more advantage¬ 

ous than the first method. 

EXERCISES 

Reduce the following complex fractions: 

x — 1 

1 — 
1 

x— 

x — 1 x — 1 
- • X 

X X x— 1 
1“ / 1\ 1 

II 

1 
X- 1 1 

X V x/ 

etc. 

2. 
2 
3 

5 

6 

6. 
3# 

J 
+ 7y 

15 
5z 
6 

3. 
x y 
1_1 
y x 

-+1 --1 
y v 

X z 

7 u.y.y 
Z X X 

z 

Perform the indicated operations: 

8. (™+P)("-l) 
\n q/ \m q/ 

9 /8X3_ 

’ \ y* 27a;3/ '-\y 2>x) 

in /2a;+5y 5x+2y\ . /2x-Sy ,7x-Sy\ 

\3x+y x+3y) ’ \ 2a; 2a;+6y) 
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Fractional Equations 

329. Solve the following equations: 

1 ?4-? = ?4-4 
* 3+4 

Multiplying each term by the least common multiple of the 

denominators, i.e., by 12, 

12a; . 12a; 12a: . 

~T+~T~~6"+12' 

Reducing, we have 4a;+3a; = 2a;+48, which is easily solved- 

15x z_9i 
2- ~2~ 4-^ 

3. 5x-^^ = 2x+2^ 

4. .05(2(te—3.2) = .8(4x+. 12) —11.256 
% 

Clear of fractions by multiplying every term by 100. 

_ 1 „ 1 A1 .21a;+.012 , 0 
5. 1.4a; —1.61---= 1.3.r 

. o 

6. 1 — 2a;_2a; — -5 , 2a:— 3_6.35— .5a; 
.25 12.5 

7. 5r—13 = 
2r—5 , r+4 

8. 

4 4 

5r2 - 3r+12 _ 1Q (3r +1) (r -10) 
42 

J9. 

r . 1 r 
—— r— 
3 2 3 3 

’2 

tio. 15r-^±i-r-=i=-6 

6r2—2r+l . 2r2—3r 
11. 2r- = -l 
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10# lOx x—4_x— 1 
2x^2 3x-3~ x^2~x+3 

l.c.m. = 2 • 3(x — 1) 

Since exercises 13-20 are proportions, the theorem that the 
product of the means is equal to the product of the extremes may be 
used to clear them of fractions. 

14. 

tl5. 

J16. 

17. 

3a; — 1_3a;-|-1 
18. 

4x+2 4x+5 

a;+3_a; —1 
19. ro 1 s* 

H
 1 

a;-f-2_a;+8 
20. 

a;+4 a;+4 

x+l A _x—1.7 
|21. 

a; —1.4 a;+.3 

lOx —2 4a;+5 

10a;+6 - kc+i 

x-\-5  5a; -19 

x — 3 x -3 

4—x 15 —x 
1—x 3- -x 

5a; —3 _ a;+l 

5^+3 x~\~3 

330. Summary of the laws of fractions. 

State the laws that the following expressions formulate: 

m n_m+n „ x n • x 
7. n • - =- 

y v 

m n_m—n 
d d d 

8. 
a x a • x 
b y b • y 

3. 
m n m^n 
d d d 

„ a aA-n 
9- ra“— 

ac_a • d=*=c • b 
4* b^d b • d 

m a . a 10. T+n=1- 
b b • n 

5. *.2=1 
y x 

a 1 

6‘ 6 6 

.. a 6 
11. n-r--=n • 

o a 

io 
b'd b c 

a 
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Problems Leading to Fractional Equations 

331. Motion problems. Solve the following prob¬ 

lems: 

1. The report of a cannon shot was heard 3.4 seconds after 

the flash. If sound travels 1,080 ft. per second, how far away 

was the cannon ? 

The time it takes light to travel 1,080 ft. is too small to be 
considered in the problem. 

2. In one year light travels a distance 63,000 times as great 

as the distance of the earth from the sun. Assuming the distance 

of the earth from the Pole-star to be 2,898,000 times as great as 

the distance of the earth from the sun, how long does it take the 

light of the Pole-star to reach the earth ? 

3. Two trains go from P to Q on different routes, one of 

which is 15 mi. longer than the other. The train on the shorter 

route takes 6 hours, and the train on the longer, running 10 

mi. less per hour, takes 8j hours. * Find the length of each 

route. 

For the train on the short route: For the train on the longer route: 

r 

< 

v 

d—x 
t = 6 

x 

r 

< 

V 

X £+15 
6 8J 

d = x+15 

t = 8§ 
£ + 15 

4. A robber attempted to escape in an automobile going at 

the rate of 28 mi. an hour. Fifteen minutes later he was 
followed by the police in an automobile going at the rate of 

32 mi. an hour. How soon did they overtake the robber ? 

6. The distance from A to B is 100 mi. A train leaving 

A at a certain rate, meets with an accident 20 mi, from B, 
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reducing the speed one-half and causing it to reach B 1 hour late. 

What was the rate per hour before the accident ? 

To solve the problem find a relation between the regular time, 
the time before the accident, and the time after the accident. 

6. A man walks beside a railway at the rate of 4 mi. per 

hour. A train 208 yd. long, running 30 mi. per hour, over¬ 

takes him. How long will it take the train to pass the man ? 

7. Two boys are running along a circular path whose length 

is 100 feet. When they run in opposite directions, they meet 

every eight seconds, and when they run in the same direction 

they are together every 25 seconds. What are their rates ? 

332. Percentage and interest problems. 

Solve the following problems: 

1. A property owner uses 8 per cent of the money received 

for rent to pay the taxes. His taxes having been raised to 11 per 

cent, what per cent must he raise the rent in order to keep his 

income the same as it was before ? 

Denoting by A the amount received for rent, show that his 
92 89 x 

income is under the old tax rate and under the 

advanced rate. 

rp. 89 . . X .. 92 . 
Thus, 100(A +100A) - 100A- 

Divide each term by A and solve the equation for x. 

2. A contractor needs 40,500 bricks for a building. His 

experience has shown that usually 3.5 per cent are spoiled. 

How many bricks must he order ? 

3. A man paid $6,200 for his house. His tax is $77, his coal 

bill is $72, and he spends $50 a year for repairs. If money is 

worth 5 per cent, how much is his monthly rental ? 

4. A man invested $3,000, part at 5 per cent and the 

remainder at 6 per cent, obtaining an income of $157 per year. 

How much has he invested at each rate ? 
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333. Loss of weight problems. 

If a body weighing 2 lb. in the air is suspended by a cord 

and weighed when immersed in water, it will weigh less than 

2 pounds. It can be shown that as the weight of the water the 

body displaces the loss of weight is the same. 

1. A mass of gold weighs 97 oz. in air and 92 oz. in water, 

and a mass of silver weighs 21 oz. in air and 19 oz. in water. 

How many ounces of gold and of silver are there in a mass of 

gold and silver that weighs 320 oz. in air and 298 oz. in water ? 

Solution: (1) Let x be the number of ounces of gold in the mass. 
(2) Then 320—a; is the number of ounces of silver. 

(3) Since 97 ounces of gold lose 5 ounces, 1 ounce 

loses of an ounce. 

(4) Since 21 ounces of silver lose 3 ounces, 1 ounce 
loses ^ of an ounce. 

(5) Therefore the loss of x ounces of gold is ~ 
y i 

ounces, and the loss of 320—x ounces of silver 
._ 3(320—x) 
is 21 

(6) Then ^ + —— =22 is the loss of the whole 

mass. 

(7) The root of this equation is the required number. 

2. A pound of lead loses -g-5T of a pound, and a pound of iron 

loses yt of a pound when weighed in water. How many pounds 

of lead and of iron are there in a mass of lead and iron that weighs 

159 lb. in air and 143 lb. in water ? 

3. If 38 oz. of gold lose 2 oz. when weighed in water and if 

30 oz. of silver lose 3 oz. when weighed in water, what is the 

amount of each in a mass of gold and silver that weighs 106 oz. 
in air and 99 oz. in water? 

J4. If 19^ lb. of gold and 10£ lb. of silver each lose one pound 

when weighed in water, how much gold and silver is contained 

in a mass of gold and silver that weighs 20 lb. in air and 18f lb. 
in water ? 



FRACTIONS. FRACTIONAL EQUATIONS 

Trigonometric Relations 

217 

334. The exercises below give practice in the opera¬ 

tions with fractions. 

Prove the following trigonometric identities: 

1. 1+tan2 A =—\— 
cos2 A 

Analysis: Assume 

1+tan2 A — 
1 B 

cos2 A 

Then 
1 

1+p' = ^2 (S(3e 

62+a2 

a 

•• » Why? 

Substituting for &2+a2 its equal c2, 

c2 c2 

Fig. 266 

= which is an identity. 

c2 c2 
Starting from the statement p—p , by reversing the steps 

of the analysis, we may now prove that 1+tan2 A 
1 

cos2 A ' 

In exercises 2-18 reversing the steps involves no par¬ 

ticular difficulties. That part of the proof may therefore 

be omitted. 

2. cos A = 
sin A 
tan A 

_ , , cos A 
3. tan A • ——r = 1 

6. sin A 

1 

1 

4. 
1 

sin A 

1 

cos A tan A sin A 

1 

t7. 

8. 

tan A 

1 

tan2 A sin2 A 

sin A+cos A 

=cos A 

1 

5. cos A • tan A 
sin A 

= 1 J9. - 

1+tan A 

1 

cos A 

sin A 
sin A = cos A 

1 

tan A 
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1°. —i-r • -A-r^tan A+—L. 
cos A sin A tan A 

11. V \ — sin2 A =sin A • 
1 

tan A 

Assume Vl — sin2 A = sin A 

Then = 
\ C2 C </L 

lc2 — a'? b 

tan A 

••• V 

A1 

or 

b2 = h 
C2 C 

b = b 
c c 

12. tan A • cos A = V1 — cos2 A 

J13. 1 
1 1 

tan2 A sin2 A 

14- (1+ti)(1-cosM)sl 

15. (1+tan2 A)(l — sin2 A) =1 

l.x a cos A J16. ——r+tanis: 
cos A 1—tan A cos A 

17. 
cos A 

• sin A • tan A = cos A 

J16. [—^-r+A-r II l-j-hjl 
LcosA smAJL tanAJ 

_ 
LcosA sinAJL tan A 
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Summary 

335. The chapter has reviewed and extended the laws 

of the operations with fractions, i.e.: 
« 

1. Addition and subtraction of fractions having the 

same denominator. 

2. Addition and subtraction of fractions having differ¬ 

ent denominators. 

3. Multiplication of fractions. 

4. Division of fractions. 

5. Reduction of complex fractions. 

336. Fractional equations are solved by multi¬ 

plying each term by the least common multiple of the 

denominator, and then reducing each term to the simplest 

form. 

337. A number of trigonometric identities were proved. 

i 



CHAPTER XIV 

INEQUALITIES 

338. Review and extension of the axioms and 
theorems of inequality previously established. 

1. A line-segment, or an angle, is greater than any part oj 

itself (§6). 
This axiom is to be applied only when the magnitudes 

and their parts are all positive. For, let the segment AC, 

Fig. 267, be considered positive. 

Then CB is negative and J[-£-£ 

AC-\-CB = AB. For this reason pIG 267 
AC and CB may be called parts 

of AB. One of these parts, AC, is greater in magnitude 
than AB. 

2. The sums obtained by adding unequals to equals are 

unequal in the same order as the unequal addends (§ 10). 

For example, 8 >3 
and 4 = 4 
Hence, 12 >7 

3. The sums obtained by adding unequals to unequals 

in the same order are unequal in the same order (§ 11). 

For example, 9 > 2 
and 4 >3 
Hence, 13 >5 

4. If three magnitudes are so related that the first is 

greater than the second and the second greater than the third, 

the first is greater than the third. 

220 
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For, if a >b and b>c, then a+b>b+c. 
Subtracting b from both sides, a>c. 
In obtaining the last inequality the following axiom is used: 

5. If equals are subtracted from unequals, the remainders 

are unequal in the same order as the unequal minuends. 

For example, 10>4 
and 3 = 3 
Hence, 7>1 

6. The differences obtained by subtracting unequals 

from equals are unequal in the order opposite to that of the 

subtrahend (§ 12). 

For example, 12 = 12 
and 8> 2 
Hence, 4 <10 

7. The products obtained by multiplying unequals by 

positive equals are unequal in the same order as the multi- 

plicands. 

For example, 10 < 15 
2 = 2 

20 <30 

8. The products obtained by multiplying unequals by 

negative equals are unequal in the order opposite to that of the 

multiplicands. 

12 <15 
—3= —3 

-36 >-45 

For example, 

9. The quotients obtained by dividing unequals by posi¬ 

tive equals are unequal in the same order as the dividends. 

For example, 20 <30 
2= 2 

10 <15 
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10. The quotients obtained by dividing unequals by 

negative equals are unequal in the order opposite to that of the 

dividends. 

For example, 50 > 40 

- 2= — 2 
-25 <-20 

11. The shortest distance between two points is the 

straight line-segment joining the points (§3). 

The following theorems express inequalities: 

12. The sum of two sides of a triangle is greater than the 

third side, and their arithmetical differ¬ 

ence is less than the third side. 

The first part of this theorem follows 

directly from 11. 

The second part follows from 5. For, 

let a-\-b>c, Fig. 268. 

Then, c <a-\-b. 
Subtracting a from both sides c—a<b. 
Similarly, show that b—a<c; that c — b<a. 

13. The shortest distance from a point to a line is the 

perpendicular from the point to the line (§ 35). Prove. 

14. If two sides of a triangle are unequal, the angles 

opposite them are unequal, the greater angle lying opposite 

the greater side (§ 33). Prove. 

15. If two angles of a triangle are unequal, the sides 

opposite them are unequal, the greater side lying opposite 

the greater angle (§ 34). Prove. 

16. Any point not on the perpendicular bisector of a 

line-segment is unequally distant from the endpoints (§71). 
Prove. 
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17. The perpendicular bisector of a line-segment is the 

locus of all points equidistant from the endpoints of the 

segment (§71). Prove. 

18. Any point not on the bisector of an angle is not 

equidistant from the sides of the angle (§72). Prove. 

19. The bisector of an angle is the locus of all points 

within the angle equidistant from the sides (§ 72). Prove. 

Solution of problems by means of inequalities 

339. Many problems lead to relations expressed as 

inequalities. These inequalities may then be solved by 

using the axioms of inequality in the same way as equa¬ 

tions are solved by using the axioms of equality. The 

following exercises will show the solution of problems by 

means of inequalities: 

EXERCISES 

1. Express relations which hold 
between the sides of the triangle in 
Fig. 269. 

2. For what values of x do the rela¬ 
tions in exercise 1 hold ? 

Fig. 269 

rc+4+9 >£ + 12. Why? 
.’. 13 >12. Why? 

.'. x = any value, i.e., any value of x will satisfy the in¬ 
equality. 

9+£ + 12>£+4. Why? 
.*. 21 >4. Why? 

.'. £= any value, 
£+12+£+4>9 

2£+16 >9 
2£> —7 

£ > —3^ 

.*. any value of x greater than —3j will satisfy all three 
inequalities. Why ? 
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3. For what values of x may the following expressions 

represent the lengths of the sides a, b, and c, of a triangle ? 

a. x — 5 2x+3 x+5 7 2x 

b. x+7 2x+2 S—x x—S 5 

c. 16 21 1 9 4x — 7 

4. Two sides of a triangle are 9 and 24 inches. Between 

what limits must the third side be ? 

Let x denote the third side. 
Then z+9>24. Why? 

re+24 >9. Why? 
9+24 > re. Why? 

Find the values of x satisfying all three inequalities. 

5. There are $50 in the treasury of a club. The club wants 

to buy furniture costing between $80 and $90. How much 

should be raised ? 

Let x be the number of dollars to be raised, etc. 

J6. A twentieth-century limited train wants to make the 

distance between New York and Chicago (1,000 miles approxi¬ 

mately) in less than 20 hours. During the first five hours it 

goes at the rate of 45 miles per hour. During the next 7 hours 

it goes at the rate of 57 miles per hour. How fast should 

it go thereafter to cover the distance within the desired 

time ? 

J7. A'*s record average speed on a 2-mile run is 6 miles per 
hour, and B’s is 5f miles. How many feet 

can A afford to give B as a handicap ? 

8. Prove that the diameter of a circle 

is longer than any other chord of that 

circle. 

Show that AB = CO+OD>CD, Fig. 270. 
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9. Prove the following: 

(а) The distance between the 

centers of two circles which lie 

entirely outside of each other is 

greater than the sum of the radii, 

Fig. 271. 

(б) The distance between the 

centers of two circles touching each 

other externally is equal to the sum 

of.the radii, Fig. 272. 

(c) The distance between the 

centers of two intersecting circles is 

less than the sum of the radii, but 

greater than the difference, Fig. 273. 

(d) The distance between the 

centers of two circles touching each 

other internally is equal to the 

difference of the radii, Fig. 274. 

(e) The distance between the 

centers of two circles, one of which 

lies entirely within the other, is less 

than the difference of the radii, 

Fig. 275. 

10. Prove that an exterior angle 
of a triangle is greater than either of 
the remote interior angles. 

Use § 26. 

11. In Fig. 276 prove that x is 

greater than y. 

12. Prove that the sum of the 

diagonals of a quadrilateral is less 

than the perimeter, but greater than 

the semi-perimeter. 
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13. The lengths of the diagonals, 

Fig. 277, are denoted by 5z+4 and 

4a;—31. By means of the relations 
in exercise 12, determine the integral 

values of a;. 

14. The line joining a vertex of 

a triangle to the midpoint of the 

opposite side is a median of the 

triangle. 

Prove that the median to one 

side of a triangle is less than one- 

half of the sum of the other two 

sides. 

In Fig. 278 extend BD making 
DE = BD and draw EC. 

Then BE<BC+CE. 
Prove CE = BA. 

15. Two towns are located at 

A and B respectively, Fig. 279. 

Determine a point P on the edge of 

a river, XY, so that the distances 

from P to A and B may be piped 

with the least amount of pipe. 

Draw AA'XXY and make CA' = CA. 
Draw BA' meeting XY at P. 
P is the required point. 
Show that BP'A >BPA, P' being any other point on the edge of 

the river. 

340. Theorem: If two oblique line-segments drawn 

to a line from a point on the perpendicular to the line have 

unequal projections, the oblique 

line-segments are unequal. 

Let EA _L BC, and A F >A D, 

Fig. 280. 

Prove that EF > ED. 
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Proof: Lay off AD' = AD and draw ED'. 
Then x>y 

Since y = 90°, x>90° 

z < 90° 

x>z 

.% EF>ED' 
and EF > ED 

341. Theorem: Two unequal oblique line-segments 

drawn to a line from a point on a perpendicular to the line 
have unequal projections. 

c 

Given 

Fig. 281. 

To prove that 

CB>CA, CD±AB, 

DB>DA. A B 

Proof (indirect method): Fig. 281 

1. Assume DB = DA, then CB = CA. Why? 

This contradicts the hypothesis. 

.*. The assumption is wrong and DB^DA.* 

2. Assume DB<DA. 

Then show that CB<CA. 

This is impossible. Why? and DB is not less 

than DA. 

3. Since DB is not equal to DA and not less than DA, 

it follows that DB>DA. 

In some of the following theorems the points and lines 

do not all lie in the same plane. Before studying their 

proofs select points and lines in the classroom to illus¬ 

trate the figure given in the textbook. If the practice is 

followed until it becomes a habit it will add greatly to 

clearness of thought. 

*The symbol, means “is not equal to.” 
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342. Theorem: Prove that the perpendicular is the 

shortest line from a point to a plane. 

Let A BCD, Fig. 282, repre¬ 

sent a plane and E be any point 

not in the plane. 

Let EF be perpendicular to 

A BCD and G be any other point 

than F in A BCD. 

Draw EG. 

To prove that EF<EG. 

Proof: In triangle EFG we have EF±FG. 

For, a line perpendicular to a plane is perpendicular 

to any line in the plane passing through the foot of the 

perpendicular. 
.*. EF<EG (§ 35). 

343. Distance from a point to a plane. The length 

of the perpendicular from a point to a plane is the distance 
from the point to the plane. 

344. Theorem: Oblique lines drawn from a point to 

a plane, meeting the plane at points equidistant from the 

foot of the perpendicular, are equal. 

Given ABJ_CDEF and A any 

point on AB, Fig. 283. 

BG = BH.* 

To prove AG —AH 

Proof: Show that' 

AABG^AABH. 

* BG and BH are the 'projections of AG and AH upon the plane 
CDEF (see §§ 353-355). 
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345. Theorem: Oblique lines drawn from a point to a 

plane meeting the plane at points unequally distant from 

the foot of the perpendicular are unequal, the more remote 

being the greater. 

Given plane CDEF, AB±CDEF and BH>BG, 

Fig. 284. 

To prove AH >AG. 

Proof: Lay off BG on BH> 

making BK = BG. 

Then AK = AG. Why? 

AH>AK. §340. 

AH>AG. Why? 

346. Theorem: Equal oblique lines drawn from a point 

to a plane meet the plane at points equidistant from the 

foot of the perpendicular. Prove. 

347. Theorem: Of two unequal oblique lines drawn 

from a point to a plane the greater meets the plane at the 

greater distance from the foot of the perpendicular. 

Let AH>AG, Fig. 284. 

Lay off BK = BG. Then AK = AG (§ 346). 

.*. AH > AK, by substitution. 

.*. £#>£#(§ 341). 

.*. BH > BG. Why? 

EXERCISE 

Given a point A on a perpendicular to a plane. Find the 
locus of points in that plane having a given distance from A. 
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348. Theorem: If from a point inside a triangle, line- 

segments are drawn to the endpoints of one side, the sum of 

these line-segments is less than the sum of the other two sides. 

Given A ABC, Fig. 285, and a 

point P inside the triangle. 

To prove that 

AP+PC<AB+BC. 

Proof: Prolong AP until it inter¬ 

sects BC at some point, as D. 

We now have: 
AP+PD<AB+BD. Why? 

PC<PD+DC. Why? 

Adding, . AP+PD+PC <AB+BD+PD+DC. 

Subtracting PD from both sides 

AP+PC<AB+BD+DC. 

.*. AP+PC<AB+BC. Why? 

B 

EXERCISES 

1. Prove that the sum of the three 

line-segments joining a point inside of a 

triangle with the vertices, is less than the 

perimeter of the triangle but greater than 

its semi-perimeter, Fig. 286. 

Use § 338, exercise 12, and § 348. 

2. Determine be¬ 

tween what limits x 
must lie in Figs. 287 

and 288. 

Apply exercise 1. 

What values could 

x have if it were re¬ 

quired to be an in¬ 

teger ? Fig. 287 Fig. 288 
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3. Construct a triangle ABC, the sides a and b and the angle 

A, opposite one of them, being given, Fig. 289. 

Construction: On a 

line of indefinite length, 

as AB, construct an angle 

equal to angle A. On 

one side of this angle, as 
AC, lay off AD = b. 

With D as center and 

radius a draw a circle. 

This circle will either in¬ 

tersect AB in two points, or it will touch AB, or it will not meet AB 
at all. 

Discussion: We will consider the case where ZA is acute. 

1. If a<h, the length of the per¬ 
pendicular from D to AB, the circle will 

not meet AB, and there is no triangle 
satisfying the given conditions, i.e., no 
solution of the problem exists, Fig. 289. 

2. If a = h the circle will touch 

AB and there is one solution of the 

problem, i.e., AADE, Fig. 290. 

3. If a>h, and <b, the circle 

will intersect AB in two points F and 

F'. There are two solutions, i.e., 

AADF and AADF', Fig. 291. 

4. If a is equal to b the 

circle will meet AB in A and in 

another point, F. There is one solu¬ 

tion, i.e., A ADF, Fig. 292. 

5. If a>b, the circle will meet 
AB in two points F and F', but only 

A ADF satisfies the conditions of the 

problem, Fig. 293. 

D 

4. Express trigonometrically 

the length of the perpendicular, 

h, in terms of b and A, i.e., show 

that h = b sin A. 
Find sin A from the right 

triangle ADE (see §248). 

-B 
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349. Theorem: In the same circle or in equal circles, 

unequal chords are unequally distant from the center of the 

circle, the shorter chord lying at the greater distance; and, 

conversely, chords unequally distant from the center are 

unequal, the chord at the greater distance being the shorter 

chord. 

Given OP = OQ, Fig. 294. 

Chord AB> chord DE, PP' J_AB, QQ' _LDE. 

To prove PP' < QQ'. 

Proof: Place QQ on OP, 

so that Q falls on P, D on B, 

and chord DE in the position 

BC; then Qr will take a posi¬ 

tion as at Q". 

Draw P'Q". 

A 

AB>DE. Why? 

/. AB>BC. 

PP'±AB. Why? 

P'P = |AP. Why? 

QQ'±DE. Why? 

PQ"±BC. 

BQ" = %BC. Why ? 

Then P'B>BQ". Why? 

x>y. Why? 

x+z^y-pu. Why? 

z<u. Why? 

/. PP'<PQ". Why? 

.\ PP'<QQ'. Why? 

Since 
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Conversely, given OP=OQ, Fig. 294, PP'±AB; 
QQ'±DE; PP'<QQ'. 

To prove that AB>DE. 

Proof: Proceed with the steps of the foregoing demon¬ 

stration in the opposite order. 

EXERCISES 

1. Triangles are to be constructed with the following parts: 

1. 6=145 a =178 A =41° 

2. 

o
 II e
 6= 3.5 

o
 C
O

 
C

D
 

II 

3. a = 140 6 = 170 A = 40° 

4. 6= 28 

C
O

 
C

M
 

II e
 A = 65° 

Without constructing the triangle, tell the number of solu¬ 

tions in each case by comparing the lengths of a, 6, and h, as 

found by the formulas in exercise 4, § 348. 

J2. Construct the triangles in exercise 1 and see if the con¬ 

structions verify the results obtained from the formula. 

3. Discuss exercise 3, § 348, for angle A a right angle; for 

angle A an obtuse angle. 

4. Prove that, in the same circle, a side of a regular inscribed 

decagon is less than a side of a regular inscribed pentagon, but 

that the side of the decagon is greater than half the side of the 

regular pentagon. 

5. Show that the greater the number of sides of a regular 

inscribed polygon, the shorter is the length of one of its sides. 

6. Prove that the distance from the center of a circle to a 

side of a regular inscribed polygon is greater, the greater the 

number of sides of the polygon. 
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350. Theorem: If two sides of one triangle are equal 

to two sides of another triangle but the angle included between 

the two sides in the first is greater than the angle included 

by the corresponding sides in the second; then the third side 

in the first triangle is greater than the third side in the second. 

Given AABC and DEF, Fig. 295. 
AB = DE; BC = EF; ZB> ZE. 

To prove that AC>DF. 

Proof: Place A DEF on AABC so that DE falls on 

AB, D on A, E on B, and EF on the same side of AB 

as BC. Then EF must fall within Z ABC. Why ? 

For the position of F there are three possibilities. 

I. F falls below AC, as at F', Fig. 295. 

Fig. 295 

Then a >b. Why? 
b = c. Why? 
a>c. Why? 
c>d. Why? 
a>d. Why? 

.\ AC>AF' and AC>DF. Why? 

II. F falls on AC, as at F", Fig. 296. 

B E 

A C D 

Fig. 296 

F 
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Then AC>AF". Why? 

AC>DF. Why? 

III. F falls above AC, as at F'n, Fig. 297. 

Then AF'"+F''fB <AC+CB. Why? 

F"'B = CB. Why ? 

AF"' <AC. Why? 

and DF<AC. Why? 

351. Theorem: If two sides of one triangle are equal 

to two sides of another triangle, the third side of the first 

triangle being greater than the third side of the second; then 

the angle opposite the third side of the first triangle is greater 

than the angle opposite the third side of the second triangle. 

Given APQR and XYZ, Fig. 298. 

PQ = XY; QR=YZ; PR>XZ. 

To prove that ZQ> ZY. 

Analysis: If Q = Y what is known 

about the triangles, about PR and 

XZ? 

Hence, can Q—Y if PR>XZ, 

as here given? 

What do we know about PR and XZ if Q < Y ? Why ? 

Then, is Q<Y, if PR>XZ, as here given? 

How, then, must angles Q and Y compare, if PR>XZ f 
Give full proof, using the indirect method. 
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352. Theorem: In the same circle or in equal circles, 

the arcs subtended by unequal chords are unequal in the same 

order as the chords; and, conversely, chords subtending un¬ 

equal arcs are unequal in the same order as the arcs. 

Given OA = OB, Fig. 299. 

To prove arc CD > arc EF. 

CD>EF. 

Fig. 299 

Proof: Draw radii 

AC, AD, BE, and BF. 

Show that 

ZCAD> ZEBF (§ 351). 

Place O B on © A, so 

that EB falls on CA, E on 

C, B on A, and F on the same side of C as D. 

Then BF must come between AD and AC, as in posi¬ 

tion AF'. Why? 

Hence EF comes in the position CF', and F' falls 

on the circle between C and D. 

Then, arc CF'<arc CD. Why? 

also, arc CF' = arc EF. Why ? 

.’. arc EFKslyg CD. Why? 

Conversely, given ©A = OB, Fig. 299, CD>EF. 

To prove chord CD>chord EF. 

Proof: Draw radii AC, AD, BF, and BE, and place 

OB on OA so that EB coincides with CA. 

Since CD>EF, the point F will fall between C and 

D, as at F', and the line BF will come on the same side of 

AD as AC, as in position AF'. 

Then, we have: Z CAF' < Z CAD. Why ? 

also, Z CAF' — Z EBF. Why ? 

and, _ _ZCAD > ZEBF. Why? 

Show that CD>EF (§350). 
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EXERCISES 

1. The length of the chords AB and BC, Fig. 300, being 
6x —14 and 4x4-20, respectively, and the lines PP' and PP" 
being 16 and 10, determine x and the chords. 

We have P'B = 3x —7. 

P"B =2x4-10. 

Then, (3x —7)24-162 = P£2. 

(2x4-10)24-102 = PF. and 

or 

(3x-7)24-162 = (2x4-10)24T02 

9x2 - 42x4-49 4-256 = 4x2 4-40x +100 4-100 

5x2-82x4-105 = 0 

82=*=l/822 — 4 • 5 • 105 x — 
10 

Then 

82=^68 ri,i 
s = iQ =15, or [If] 

AB = 76. 

CB = 80. 

How is the truth of the theorem in § 349 illustrated by these 

answers ? 

2. The length of the lines AB and BC, PP' and PP" 
(Fig. 300) being denoted by U, h, d\, and d-2, respectively, deter¬ 

h h d\ di 

1. 2a —7 4a-14 2 1 
2. 6 12 a 4-11 3w4-4 
t3. x4-3 x4-5 6 4 
14. 4£ + 14 10t—2 6 3 

mine the unknown number in each of the following cases. In 
every case test by § 349. 
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Lines and Planes in Space 

353. Projection of a solid upon a plane. Imagine a 

model of a geometric solid, such as a cube made of 

wire, with only the edges and corners represented. Sup¬ 

pose this skeleton cube placed between a small light 

and the black¬ 

board (Fig. 301). 

A shadow of the 

cube will appear on 

the board, giving a 

picture containing 

all the important 

lines and points of 

the solid. A draw¬ 

ing of this shadow 

will give a very 

good idea of the 

form of the cube. The shadow is the projection of the 

solid. 

By removing the light (center of projection) far enough, 

the projecting rays become nearly parallel, as in the case 

when the sunlight is the center of projection. The pro¬ 

jecting rays may be perpendicular or oblique to the plane 

of the blackboard. 

We shall consider only projections obtained by pro¬ 

jecting rays that are parallel to each other and perpen¬ 

dicular to the plane containing the projections. 

354. Projection of a point upon a plane. The foot 

of the perpendicular drawn from a given point to a given 

plane is the projection of the point on the plane. 

Choose some point in the classroom as the tip of a gas 

jet, the corner of a desk, etc., and tell what its projections are 

on the floor, on the side wall, the end wall, and the ceiling. 
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355. Theorem: The projection upon a plane, of a 

straight line not perpendicular to the plane, is a straight line. 

For, all projecting rays, AA', A 

BB', CC', Fig. 302, being parallel, 

lie in a plane passing through AD. 

Hence, the projections of all 

points of AD lie in the line of inter¬ 

section of planes AD' and MN. Fig. 302 

356. Theorem: The projection upon a plane, of a 

straight line perpendicular to the plane, is a point. Why ? 

357. Theorem: The acute angle formed by a given line 

and its projection upon a plane is smaller than the angle 

which it makes with any other line in the plane passing through 

the point of intersection of the given line and the plane. 

Given line AB meeting plane P at B, and BA', the 

projection of AB upon P. Let BC be any other line in 

plane P passing through B, Fig. 303. 

To prove that Z A'BA < Z CBA. 

Proof: On BC lay off BD = BA'. 

Then, AB — AB 

BA' = BD 

and, AA'<AD(§342) 

ZA'BA< ZDBA (§351). 

EXERCISES 

1. Find the length of the projection of AB, Fig. 303, in 
terms of AB and ZABA'. 

2. Find the length of the projection upon a plane of a line 
10 ft. long and making an angle of 60° with the plane. 

Use the formula derived in exercise 1. 

3. How does the length of AB, exercise 2, compare with the 
length of the projection ? 
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Summary 

358. The chapter has taught the meaning of the follow¬ 

ing terms: 

distance from a point to a projection of a point upon a 
plane plane 

median of a triangle 
projection of a solid upon a 

projection of a segment upon 
a plane 

plane 

359. The axioms and theorems on inequalities studied 

in the preceding chapters were reviewed and extended. 

360. The use of inequalities in the solution of problems 

was shown. 

361. The following theorems were proved: 

1. The diameter of a circle is larger than any other chord 

of the circle. 

2. An exterior angle of a triangle is greater than either 

of the remote interior angles. 

3. If two oblique line-segments drawn to a line from a 

point on a perpendicular to the line have unequal projections, 

the oblique line-segments are unequal. 

4. Two unequal oblique line-segments drawn to a line 

from a point on a perpendicular to the line have unequal 

projections. 

5. If from a point inside a triangle, line-segments are 

drawn to the endpoints of one side the sum of these line- 

segments is less than the sum of the other two sides. 

6. In the same or in equal circles unequal chords are 

unequally distant from the center, the shorter chord lying 

at the greater distance; and the converse of this theorem. 
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7. If two sides of one triangle are equal to two sides of 

another triangle, hut the angle included between the two sides 

of the first is greater than the angle included between the 

corresponding sides in the second, then the third side in the 

first is greater than the third side in the second; and the 

converse of this theorem. 

8. In the same or equal circles, the arcs subtended by 

unequal chords are unequal in the same order as the chords, 

and the converse of this theorem. 

362. The points and lines in the following theorems 

do not all lie in the same plane: 

1. The perpendicular is the shortest distance from a point 

to a plane. 

2. Oblique lines drawn from a point to a plane, meeting 

the plane at points equidistant from the foot of the perpen¬ 

dicular, are equal. 

3. Oblique lines drawn from a point to a plane meeting 

the plane at points unequally distant from the foot of the 

perpendicular are unequal, the more remote being the greater. 

4. Equal oblique lines drawn from a point to a plane 

meet the plane at points equidistant from the foot of the 

perpendicular. 

5. Of two unequal oblique lines drawn from a point 

to a plane the greater meets the plane at the greater distance 

from the foot of the perpendicular. 

6. The projection upon a plane of a straight line, not 

perpendicular to the plane, is a straight line. 

7. The projection of a straight line perpendicular to the 

plane, upon a plane, is a point. 
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8. The acute angle formed biy a given line and its pro¬ 

jection upon a plane is smaller than the angle which it makes 

with any line in the plane passing through the point of inter¬ 

section of the given line and the plane. 

The following construction was taught: 

363. To construct a triangle ABC, the sides a and b and 

the angle A, opposite one of them, being given. 



CHAPTER XV* 

LINES AND PLANES IN SPACE. DIEDRAL ANGLES. 
THE SPHERE 

364. Theorem: If a line is perpendicular to each of 

two intersecting lines it is perpendicular to the plane deter¬ 

mined by these lines, f 

Given line AB, Fig. 304, inter¬ 

secting plane P at C. 

AC±CD, AC ACE. 

To prove AC±P. 

Proof: Let CF be any line in P 

passing through C. 

Draw a straight line DE inter¬ 

secting CD, CF, and CE. 

Draw AD, AF, and AE. 

Lay off CB = CA and draw BD, BF, and BE. 

Show that in plane ADB, DC is the perpendicular 

bisector of AB. 

Hence, DA =DB. For, any point on the perpendicu¬ 

lar bisector of a line-segment is equidistant from the 

endpoints. 

Similarly show that EA = EB. 

Show that A DEA ^ A DEB. 

Show that AADF^ ABDF (s.a.s.). 

.\ AF = BF. 

* This chapter may be omitted if it seems desirable to shorten 

the course. 

f Originated by Euclid, simplified by Cauchy, 

243 
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Since FA-=FB and CA = CB, it 
follows that FC is perpendicular to 

AB. For, if two points on a given 

line are equidistant from the end¬ 

points of a segment, the given line 

is a perpendicular bisector of the 

segment. 

Since it has been shown that 

AB is perpendicular to CF, which 

represents any line in P passing 

through C, it follows that AB is perpendicular to P. 

365. Problem: Through a given point in a given line 

pass a plane perpendicular to the given line. 

Construct two lines perpendicular to the given line at the 
given point. Pass a plane through those lines. This is the 
required plane. Prove. 

366. Theorem: All the perpendiculars to a given line 

at a given point lie in a plane perpendicular to the given line 

at that point. 

Given AB, Fig. 305, AC±AB, AD±AB, AE±AB. 

To prove that lines AC, AD, AE 

lie in the same plane. 

Proof (indirect method): 

Let P be the plane determined 

by AC and AD. 

Then P±AB. Why? 

Let AE represent any of the 

lines perpendicular to AB at A. 

Assume that AE is not in plane P. 

Then plane Q, determined by AE 

sect plane P in a straight line, as AF. 

B 

and AB will inter 



S. MARIA DEL FIORE—FLORENCE, ITALY 

The picture above illustrates the use of geometrical forms of 
architecture. 
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Then in plane Q, AF±AB. Why? 
and AE±AB. Why? 

The last two statements contradict the theorem that 
in a plane (as plane PQ) only one perpendicular can be 
drawn to a given line at a given point. 

Therefore the assumption is wrong and AE lies in 
plane P. 

367. Theorem: At a given point in a given line 
only one plane can be constructed perpendicular to the 
line. 

Show that this follows from § 366. 

368. Theorem: From a given point outside of a given 
line one, and only one, plane can be constructed perpendicu¬ 

lar to the line. 

Given line A B, Fig. 306, and 
point C not on AB. 

To construct a plane through C 
perpendicular to AB. 

Construction: Draw CDl_AB. 
Draw DEJ_AB. 
Construct the plane, P, deter¬ 

mined by CD and DE. 
This is the required plane. 

Why? 
Moreover, P is the only plane 

perpendicular to AB from C. 
For, if plane Q, Fig. 307, be also 

perpendicular to AB, intersecting 
AB in D', then CD' and CD would 
both be perpendicular to AB. This 
is impossible. Why ? Fig. 307 
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369. Problem: At a given point in a given plane con¬ 

struct a perpendicular to the plane. 

Given point A, Fig. 308, in 

plane P. 

Required to construct at A a 

line perpendicular to plane P. 

Construction: Draw BC in plane 

P passing through A. 
Construct plane Ql.BC at A, intersecting plane P 

in AD. 

In plane Q construct AE1 AD. 

AE is the required perpendicular. 

To prove this, show that AE A AD and AElAB. 

370. Theorem: Only one line can be constructed per¬ 

pendicular to a given plane at a given point. 

Given ABlP, Fig. 309. 

To prove that A B is the only 

line perpendicular to P at A. 

Proof: Assume that AB is not 

the only perpendicular to P at A. 

Then let AC be another perpen¬ 

dicular to P at A. 

Pass plane Q through AB and AC cutting P in DE. 

Show that AB and AC are both in Q and perpendicular 

to DE. 

This is impossible, and the assumption that AB is 

not the only perpendicular to P at A is wrong. 

371. Problem: From a point outside of a plane con¬ 

struct a line perpendicular to the plane. 

Given plane P, Fig. 310, and point A, not in P. 

To construct a perpendicular from A to P. 
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Construction: In P draw a 

line, as BC. 

Draw AD ABC. 

In P draw DE ABC. 

Draw AF ADE. 

AF is the required line. 

/ k , , 
/ ~F w/ 

/ P ^A/o/ ■y/B / 
/ 

A' 

Fig. 310 
Proof: Draw FG any line 

through F in plane P meeting 

BC in G. 

Extend AF making FA' = FA. 

Draw A'G, A'D, and AG. 

Show that BC±_plane ADF. 

Show that AD —A'D. 

Show that AADGm AA'DG. 

AG = GA'. Why? 

FG is a perpendicular bisector of AA'. Why ? 

Show that AF 1_P. 

372. Theorem: From a given 'point outside of a given 

plane only one line can be constructed perpendicular to the 

plane. 

. State the hypothesis and conclusion. 

Proof (indirect method): 

Assume that AB, Fig. 311, is 

not the only perpendicular from 

A to P. Let AC be another 

perpendicular from A to P. 

Draw plane Q, determined by 

AB and AC, intersecting P in BC. 

In plane Q both AB and AC are perpendicular to BC. 

This is impossible. 

Hence, the assumption is wrong, and AB is the only 

perpendicular from A to P. 

Fig. 311 
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373. Theorem: Lines perpendicular to the same plane 

are parallel. 

Given lines AB and CD perpen¬ 

dicular to plane P. 

To prove AB || CD. 

Proof: Draw BD. 

In P draw EF±BD, and lay off 

DE = DF. 

BE = BF (any point on the perpendicular bisector to a line- 
segment is equidistant from the endpoints). 

.\ AE = AF. (§ 344.) 

Show that AD is the perpendicular bisector of EF. 

Thus, EF is perpendicular to DA, DB, and DC. 

Therefore DB, DA, and DC lie in the same plane. 

Why? 

AB and CD lie in that plane. For, if two points 

of a line lie in a plane the line lies wholly in that 

plane. 

Since AB and CD are also both perpendicular to BD, 

it follows that AB || CD. 

374. Theorem: If one of two parallel lines is perpen¬ 

dicular to a plane, the other is perpendicular to the same 

plane. 

Let AB, Fig. 313, be parallel to CD. 

Let AB be perpendicular to P. 

If CD is not perpendicular to plane 

P, Fig. 313, we may draw DC'A_P. 

Then DC' || BA and DC II BA. 

Why? 

This is impossible. Why ? 

Complete the proof. 

b d 

a c 

Fig. 313 
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375. Theorem: Two lines parallel 

to the same line are parallel to each 

other. 

Let A || B and C II B, Fig. 314. 

To prove A II C. 

Proof: Draw plane P_LP. 

Then, 4lP and C±P. Why? 

.\ A II C. Why? 

376. Theorem: If two lines are parallel, a plane con¬ 

taining one of them and not the other, is parallel to the other. 

Given AB || CD, Fig. 315, 

and plane P containing CD, but 

not AB. 
To prove AB || P. 

Proof: Suppose AB not 

parallel to P. 
ThenHP must meet Pat some Fig. 315 

point E, if far enough extended. 

Show that point E is in planes P and Q. 
Then E must be on their intersection, CD. 
Hence, AB and CD meet. 

This contradicts the hypothesis that AB || CD and 

the assumption that HP is not parallel 

to P is wrong. 

377. Theorem: If one of two 

parallel planes is perpendicular to a 

line, the other is also. 

Given plane P II Q, Fig. 316. 

Plane P±AA'. 
To prove plane Q±AA'. 

B 

Fig. 316 
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Proof: Through A A' pass planes R and S, meeting 

P in AC and AD, and meeting Q in A'C' and A'D'. 

Then, AC || A'C' 

and AD || A'D'. Why? 

AA' is perpendicular to AC and AD. Why? 

.*. A A' is perpendicular to A'C' and A'D'. Why? 

.*. AA' AQ. Why? 

378. Theorem: If two intersecting lines are parallel 

to a given plane, their plane is parallel to the given plane. 

Given lines A B and A C. 

AB and AC are parallel to plane P. 

To prove Q || P. 

Proof: Draw A A' ±P. 

Draw plane R, passing through A A' 

and AC, and plane S passing through 

AA' and AB. 

R 

^b7 

c / 
Fig. 317 

Then, AA'±A'B' and A'C'. Why ? 

AC || A'C', for, if AC meets A'C', it will 

meet P. 

Likewise, AB || A'B'. 

.\ AA'JlAB and AC. Why ? 

.*. AA'1_Q. Why? 

Show that Q II P. Use indirect method. Apply 

§ 368. 

379. Theorem: If two angles 

have their sides parallel and running 

in the same direction, the angles are 

equal and their planes are parallel. 

not in the same plane 

Given angles A, A', Fig. 318, 

such that AB || A'B', AC II A'C'. 

To prove AA = AA', P || P'. Fig. 318 
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Proof: Draw AA'. Lay off AB = A'B', AC = A'C'. 

Draw BC and B'C'. 

Draw CC' and BB'. 

Since AB is equal and parallel to A'B', ABB'A' is a 

parallelogram and A A' is equal and parallel to BB'. 

Likewise, A A' is equal and parallel to CC'. 

CC' is equal and parallel to BB'. Why ? 

AABC^AA'B'C'. Why? 

P is parallel to A'C' and A'B' (§ 376). 

P IIP' (§378). 

Diedral Angles 

380. Theorem: All plane angles of a 

diedral angle are equal. 

Show that the sides of the plane angles x and 
y, Fig. 319, are parallel. 

Then apply § 379. 

381. Theorem: Two diedral angles are 

equal if their plane angles are equal. Con¬ 

versely, if two diedral angles are equal their 

plane angles are equal. 

Fig. 319 

Given diedral angles BC 

and B'C' and their plane 

angles EFG = E'F'G'. 

To prove BC = B'C'. 

Proof: Place diedral 

angle BC on diedral angle 

B'C', making ZEFG 

coincide with E'F'G'. This 

may be done because 

AEFG and E'F'G' are equal. 

D 
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Then CF must coincide with C'F'. 
Face A must fall on 

face A' and face D on face 

D'. Why? 

Hence, the diedral 

angles coincide and are 

equal. 

The student may prove 

the converse theorem. 

A number of theorems 

on diedral angles are analo¬ 

gous to theorems on angles 
and may be proved in the same way. Some of these 

theorems are stated in the following exercises: 

EXERCISES 

Prove the following: 

1. All right diedral angles are equal. 

2. The sum of two adjacent diedral angles formed by two 

intersecting planes is 180°. 

3. Vertical diedral angles are equal. 

4. Diedral angles which are complements or supplements 

of the same or of equal diedral angles are equal. 

5. If two parallel planes are cut by a transversal plane— 

The alternate interior diedral angles are equal. 

The corresponding diedral angles are equal. 

The interior diedral angles on the same side are supple¬ 
mentary. 

6. State and prove the converse of exercise 5. 

7. The bisecting planes of a pair of vertical diedrals, are 
perpendicular. 
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382. Theorem: If a line is perpendicular to a plane, 

every plane passing through this line is perpendicular to the 

plane. 
b/\ 

Given AB_L plane P, Fig. 321, / 

and plane Q any plane passing 

through AB. 

E 

/A 
To prove that Q±P. 

_D 

Fig. 321 

Proof: In plane P draw AC±DE, the intersection 

of P and Q. 

BAADE. Why? 

ABAC is the plane angle of B-ED-C. Why? 

V BA A AC, ABAC is a right angle. 

Q±P. Why? 

EXERCISE 

Show that through a line perpendicular to a given plane any 

number of planes may be drawn perpendicular to the given 

plane. 

383. Theorem: If two planes are perpendicular to 

each other, a line drawn in one of them perpendicular to 

the intersection is perpendicular to the other. . 

Given P±Q, AB±CD. 

To prove that AB±Q. 

Proof: In plane Q draw 

BE±CD. 

Then A ABE is the plane 

angle of A-DC-E. 

.’. A ABE is a right angle. 

AB±BE. 

.*. AB±Q. Why? 

c 
Fig. 322 

Why? 
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EXERCISES 

Prove the following: 

1. If two planes are perperidicular to each other, a line per¬ 

pendicular to one of them at a point of the intersection must lie 

in the other. 

Let AB, Fig. 323, be perpendicular to 

dicular to Q. 

Suppose AB does not lie in P. Then 
CB may be drawn perpendicular to DE in 

plane P. 
CB±Q (§383). 
But AB±Q at the same point B. 

This is impossible, etc. 

Q and let P be perpen- 

Fig. 323 

2. If from a point in one of two perpendicular planes a line 

is drawn perpendicular to the other it must lie in the first plane. 

Use the indirect method of proof. 

384. Theorem: If a plane is perpendicular to two 

planes it is perpendicular to the line of intersection. 

Given plane P, Fig. 324, per¬ 

pendicular to Q and to R. 

To prove PA. the line of inter¬ 

section AB. 

Proof: At A, the point common 

to P, Q, and R, draw a line perpen¬ 

dicular to P. 

This line must lie in plane Q. 

For the same reason it must lie in plane R. 

It is therefore the intersection of Q and R. 

Hence, the intersection of Q and R is a line perpendicu¬ 

lar to plane P. 

How could this theorem be applied to test whether 

the line of hinges of a door is perpendicular to the floor of 

a room, using only a carpenter’s square ? 

Fig. 324 

Why ? 
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385. Theorem: Through a line not perpendicular to 

a given plane, one plane and only one may be passed perpen¬ 

dicular to the given plane. 

Given AB not _L to P, Fig. 325. 

To prove that through AB one 

plane may be drawn perpendicular to 

P and only one. 

Construction: From any point C 

on A B draw CDJLP. 

Draw the plane Q determined by AB and CD. 

This is the required plane. 

Prove that QA.P. 

Q is the only plane through AB perpendicular to P. 

For if another plane could be passed through AB per¬ 

pendicular to P, it would follow that P±AB, the 

intersection of the two planes. This contradicts the 

hypothesis. 
EXERCISES 

Prove the following: 

1. A plane perpendicular to the edge of a diedral angle is 

perpendicular to the faces. 

2. Through a point within a diedral angle a plane may be 

passed perpendicular to each face. 

3. If three lines are perpendicular to each other at the same 

point, each line is perpendicular to the plane determined by the 

other two. 
B 

The Sphere 

386. Sphere. Center. Radius. 
Diameter. A sphere is a solid 

bounded by a surface, all points of 

which are equidistant from a point 

within called the center, Fig. 326. 

A line-segment from the center to ' pIG 326 

the surface of the sphere is a radius, 

as OA. 
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A diameter is a segment passing through the center and 

terminated by the surface, as BC. 

A sphere may be produced by revolving a semicircle 

about the diameter. 

387. Preliminary theorems: 

1. All radii of the same sphere are equal. 

2. All diameters of the same sphere are equal. 

3. The radii of equal spheres are equal. 

4. Spheres having equal 

radii are equal. 
388. Section of a 

sphere. The intersection 

of a plane with the surface 

of a sphere is a section of 

the sphere, as the curve 

ABCD, Fig. 327. 
389. Theorem: The section of a sphere made by a 

plane is a circle. 

Given a sphere 0 cut 

by a plane P, making the 

section ABC. 

To prove that A B C is a \ o 

circle. 

Fig. 328 

Proof: Let A and B be 

any two points on the sec¬ 

tion ABC. 

Draw the radii OA and OB. 

Draw OD _L plane P. 

Draw AD and DB. 

Then DA =DB (see § 346). 

.'. A PC is a circle, since all points on ABC are equi¬ 

distant from D. 
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390. Great circle. Small circle. Poles. Axis. A 
section made by a plane passing 

through the center of a sphere is a 

great circle, as ABC, Fig. 329. 

A section whose plane does not 

pass through the center is a small 
circle, as A'B'C', Fig. 329. 

The diameter perpendicular to the 

plane of a circle of a sphere is the axis 
of the circle and the extremities of the diameter are the 

poles of the circle. 

EXERCISES 

1. Find the area of a plane section of a sphere of radius 10, 

which passes 6 units from the center. (Board). 

Show the truth of the following theorems: 

2. The axis of a circle passes through the center. 

3. The diameter of a sphere passing through the center of a 

circle is perpendicular to the plane of the circle. 

4. All great circles of a sphere are equal. 

5. Two great circles bisect each other. 

6. Through two points on the surface of a sphere, not the end¬ 

points of a diameter, only one great circle can be drawn. 

How many points determine a plane ? 

What third point must be selected to determine a circle 

on the sphere ? 

When do two given points and the center of the sphere not 

determine a plane ? 

7. Every great circle bisects the sphere. 

For, the two portions into which the great circle divides the 
surface of a sphere can be made to coincide, as all points on the 
surface of the sphere are equidistant from the center. 
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391. Spherical distance between two 
points. The length of the minor arc of a 

great circle passing through two points 

is the spherical distance between them. 

Thus ADB, Fig. 330, is the spherical dis¬ 

tance between A and B. 

392. Theorem: All points on a circle of a sphere are 

equidistant from its poles. 

Given two points A and B, Fig. 331, 

on the circle A B of the sphere 0; P and 

Pf the poles of circle AB. 

To prove that PA = PB. 

Proof: Let the axis PP' intersect the 

plane of circle AB in C. 

Then C is the center of circle AB. 

Why ? 

.\ CA = CB. Why? 

p 

Fig. 331 

PA = PB. Why ? 

PA=PB. Why? 

393. Polar distance. The spherical distance from 

the nearer of the poles of a small circle to any point on the 

circle is the polar distance of the circle. 

The polar distance of a great circle is the spherical 

distance to either pole. 

394. Quadrant. One-fourth of the length of a great 

circle is a quadrant. 

395. Theorem: The polar distance of a great circle 

is a quadrant. Prove. 
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396. Theorem: If a point on the surface of a sphere is 

at the dista?ice of a quadrant from each of two given points 

on the surface, it is a pole of the great circle passing through 
the given points. 

Given points A, B, and C on a 

sphere, Fig. 332; AB = sl quadrant; 

AC = el quadrant; BCD a great circle 
arc. 

To prove that A is a pole of BCD. 

Analysis: If A is a pole of arc BC, 

what can be said of diameter AOE ? 

How can we show that AOE_L plane 

of QO? 

How large are angles AOB and AOC ? Give proof. 

397. Theorem: The intersection of the surfaces of two 

spheres is a circle whose plane is perpendicular to the line 

of centers of the spheres and whose center is in that line. 

Let the two intersecting spheres 

be generated by rotating circles, A 

and B, Fig. 333, about the center- 

line AB as an axis. 

To prove that the spherical sur¬ 

faces intersect in a circle whose 

center is in A I? and whose plane is 

perpendicular to AB. 

Proof: Let CD be the common chord of circles A and B. 

Then AB is the perpendicular bisector of CD. Why ? 

As the plane of circles A and B revolves about AB, 

C describes the line common to the two spheres thus 

generated. 

Linq-CE always lies in the plane perpendicular to 

AB at E. Why ? 

The path of C is a circle in that plane. Why ? 
EXERCISE 

Two spheres, whose radii are 12 inches and 5 inches respect¬ 
ively, have their centers 13 inches apart. Find the area of the 
circle in which these two spheres intersect. (Harvard.) 

A 

Fig. 332 
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398. Tangent line. Tangent plane. If the surface of 

a sphere and a line (plane) have only one point in com¬ 

mon, the line (plane) is said to be tangent to the sphere. 

399. Theorem: A plane tangent to a sphere is per¬ 

pendicular to the radius at the point of contact. 

Given sphere A, Fig. 334, 

and plane P tangent to A. 

To prove that PLAB. 

Proof: Let C be any point 

in P, not B. 

Then C is outside of the Fig. 334 

sphere. Why ? 

.*. AC>radius. Why? 

AC>AB. 

Hence, AB is the shortest distance from A to plane P. 

Why? 
.*. P±AB. Why? 

400. Theorem: A plane perpendicular to a radius 

of a sphere at the outer extremity is tangent to the sphere. 

To prove this, reverse the order of steps in the proof of the 
preceding theorem. 

Summary 

401. The chapter has taught the meaning of the follow¬ 

ing terms: 

sphere 
center 
radius 
diameter 
section of a sphere 

great circle 
small circle 
poles 
axis of a circle 
polar distance 

spherical distance be¬ 
tween two points 

quadrant 
tangent line 
tangent plane 
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402. The following theorems were proved: 

1. If a line is perpendicular to each of two intersecting 

lines it is perpendicular to the plane determined by these 

lines. 

2. All the perpendiculars to a given line at a given point 

lie in a plane perpendicular to the given line at the point. 

3. Only one plane can be constructed perpendicular 

to a given line at a given point. 

4. Only one plane can be constructed perpendicular 

to a given line from a point outside of the line. 

5. Only one line can be constructed perpendicular to a 

given plane at a given point. 

6. From a point outside of a given plane only one line 

can be constructed perpendicular to the plane. 

7. Lines perpendicular to a plane are parallel. 

8. If one of two parallel lines is perpendicular to a 

plane, the other is perpendicular to the same plane. 

9. Two lines parallel to the same line are parallel to 

each other. 

10. If two lines are parallel, a plane containing one of 

them and not the other, is parallel to the other. 

11. If one of two parallel planes is perpendicular to a 

line the other, is also. 

12. If two intersecting lines are parallel to a given plane, 

their plane is parallel to the given plane. 

13. If two angles not in the same plane have their sides 

parallel and running in the same direction, the angles are 

equal and their planes are parallel. 

14. All plane angles of a diedral arigle are equal. 
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15. If two diedral angles are equal their plane angles 

are equal. 
♦_ 

16. Two diedral angles are equal if the plane angles are 

equal. 

17. If a line is perpendicular to a plane every plane 

through this line is perpendicular to the plane. 

18. If two planes are perpendicular to each other a line 

drawn in one of them perpendicular to the intersection is 

perpendicular to the other. 

19. If two planes are perpendicular to each other a line 

perpendicular to one of them at a point of the intersection 

must lie in the other. 

20. If from a point in one of two perpendicular planes 

a line is drawn perpendicular to the other, it must lie in the 

first plane. 

21. If a plane is perpendicular to two planes it is per¬ 

pendicular to their intersection. 

22. Through a line not perpendicular to a given plane, 

one plane and only one may he passed perpendicular to the 

given plane. 

23. The section of a sphere made by a plane is a circle. 

24. The axis of a circle passes through the center. 

25. The diameter of a sphere passing through the center 

of a circle is perpendicular to the plane of the circle. 

26. All great circles of a sphere are equal. 

27. Every great circle bisects the sphere. 

28. Through two points on the surface of a sphere, not the 

endpoints of a diameter, only one great circle can be drawn. 

29. All points on a circle of a sphere are equidistant 

from its poles. 
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30. The polar distance of a great circle is a quadrant. 

31. If a point on the surface of a sphere is at the dis¬ 

tance of a quadrant from each of two given points on the 

surface, it is a pole of the great circle passing through the 

given points. 

32. The intersection of two spherical surfaces is a circle 

whose plane is perpendicular to the line of centers of the 

spheres, and whose center is in that line. 

33. A plane tangent to a sphere is perpendicular to the 

radius at the point of contact. 

34. A plane perpendicular to a radius of a sphere at the 

outer extremity is tangent to the sphere. 

35. To determine the diameter of a material sphere. 

403. The following constructions were taught: 

1. Through a given point in a given line pass a plane 

perpendicular to a given line. 

2. From a given point outside of a given line construct 

a plane perpendicular to the given line. 

3. At a given point in a given plane construct a per¬ 

pendicular to the plane. 

4. From a point outside of a plane construct a line 

perpendicular to the plane. 

5. To pass a plane perpendicular to a given plane, that 

shall contain a line not perpendicular to the given plane. 



CHAPTER XVI 

LOCI. CONCURRENT LINES 

Loci 

404. Locus. When a point moves it traces a path 

whose shape is determined by the conditions under which 

the point moves. Thus, a stone 

falling from rest moves along a 

straight line, a particle projected 

obliquely into space moves along 

a curve, which is practically a 

parabola, Fig. 335. 

In the study of geometry we have learned that the 

location of all points in a plane at a given distance from 

a fixed point is a circle; that the place of all points of a 

plane at equal distances from two fixed points is a straight 

line, the perpendicular bisector of the segment joining the 

given points. 

The place of all points satisfying some specified 

condition and not containing other points is called the 

locus of the points. Locus* is a Latin word, meaning 

place. ” u 

405. Determination of a locus. To determine the 

locus of a point mark a number of positions of the point. 

From these points it will be possible to obtain a notion of 

the locus. 

Thus, marking several positions of the pedal of a bicycle 

on a wall beside a walk suggests the locus of the pedal. 

* The plural of locus is loci. 

264 
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EXERCISES 

1. A circle C, Fig. 336, is rolled without sliding along the 
edge of a ruler AB. Find the locus of a point P on the circle. 

Cut a circle from 
cardboard and roll it 
carefully along the ruler. 
By pricking through 
with a pin, mark a 
number of positions of 
P. Draw a smooth 
curve through the points thus obtained. 
cycloid. 

The locus of P is called a 

2. Draw two perpendicular lines, 
Fig. 337. On a piece of tracing 
paper draw a segment AB and mark 
a point P on AB. Move AB so 
that B slides along OY and A along 
OX and mark a number of positions 
of P. Draw the locus of P. The 
locus will be a quarter of an ellipse. 

v 

3. What is the locus of points in a plane having a given 
distance from a given line ? 

Mark several points at the given distance from the given line. 
Their position will suggest the locus. 

4. What is the locus of points in a plane at equal distances 
from two given parallel lines ? 

6. What is the locus of points in space having a given dis¬ 
tance from a given point ? 

6. What is the locus of points in space equally distant from 
two given points? 

7. What is the locus of points in space equally distant from 
two parallel lines ? 

8. What is the locus of points in space having a given dis¬ 
tance from a given line ? 
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9. What is the locus of points in space at equal distances from 
three given points? (See § 411.) 

406. Proof for a locus. The locus of points satisfying 

given conditions must contain all points satisfying these 

conditions and no other points, i.e.: 

I. Every point on the locus ?nust satisfy the given con¬ 

ditions. 

II. (a) Every point satisfying the conditions must lie on 

the locus, or 

(ib) Any point not on the locus must not satisfy the 

conditions. 

407. Theorem: The locus of points in a plane equi¬ 

distant from two given points is the perpendicular bisector 

of the segment joining these points. 

Proof: I. Show that every point 

bisector is equidistant from the two 

points. 

II. Let PA = PB, Fig. 

338. Let PC be a line drawn from 

P to the midpoint, C, of AB. ■ 

Show that x = y. 

408. Theorem: The locus of points in a plane which 

are within an angle and equidistant from its sides is the 

bisector of the angle. 

Proof: I. Show that every point 

on the bisector is equidistant from* a 

the sides. 

II. If PBA.AB, Fig. 339, 

PC_L AC and BP = PC, show that x = y. Fig. 339 

on the perpendicular 

p 

Fig. 338 
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409. Theorem: The locus of points in a plane at a 

given distance from a given point is the circle whose center 

is the given point and whose radius is equal to the given 

distance. 

Proof: I. Every point on the circle, 

Fig. 340, has the given distance from the 

given point. Why? 

II. Show that a point P, not 

on the circle, is not at the given distance 

from the given point C. 

410. Theorem: The locus of points in a plane at a 

given distance from a given line 

consists of a pair of lines 

parallel to the given line and 

the given distance from it. 

Show that conditions I and 
II are satisfied in Fig. 341. 

p 

p" 

Fig. 341 

D 
EXERCISES 1 

/ i 

1. Show that the locus of the centers of 
all circles in a plane tangent to a given line 
at a given point is the perpendicular to the 
given line at that point. 

2. Show that the locus of the centers of 
all circles in the same plane of given radius 
and tangent to a given line consists of two 
lines parallel to the given line and at the given 
distance from it. 

3. Show that the locus of the vertex of an 
angle of given size, x, whose sides pass through 
two fixed points A and B consists of two arcs 
having AB as chord and x as inscribed angle. (See § 301 for con¬ 
struction of this locus.) Show that for a point D, Fig. 342, outside 
of the circle arc, y <x and for a point E within the circle arc, z > x. 
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4. Construct an isosceles triangle having given the base 
and the angle opposite the base. 

6. Find the locus of the midpoints of parallel chords of a 
circle. 

6. Find the locus of the midpoints of chords of a circle 
equidistant from the center. 

7. Find the locus of the midpoints of all chords passing 
through a given point on the circle, Fig. 343. 

8. Find the locus of the centers of all 
circles passing through two given points. 

9. Find the locus of the centers of all 
circles tangent to p, given circle at a given 
point. 

10. Find the locus of the midpoints of all segments drawn 
from one vertex of a triangle and terminated by the opposite 
side. 

Fig. 343 

11. Construct a circle with a given radius which shall be 
tangent to each of two intersecting lines. 

411.* Theorem: The locus of 'points in space equi¬ 
distant from all points on a circle is the line perpendicular 
to the plane of the circle at the center. 

Proof: I. Show that any point P 
on the perpendicular at C, Fig. 344, 
is equidistant from all points of the 
circle. (Use § 344.) 

II. Show that any point fig. 344 

P' not on the perpendicular at C is 
not equidistant from all points of the circle. (Use § 345.) 

* §§ 411-413 may be omitted, if chapter XV has been omitted. 
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412. Theorem: The locus of points in space equi¬ 

distant from two given points is the plane bisecting the seg¬ 

ment joining these points, and perpendicular to it. 

Proof: I. Show that any 

point in plane P, Fig. 345, is 

equidistant from A and B. 

II. Let D be any point 

not in plane P, and let DA = DB. 

Show that DC is perpen¬ 

dicular to AB. Hence, DC must 

lie in plane P. 

413. Theorem: The locus of a point within a diedral 

angle and equidistant from the faces is the plane bisecting 

the angle. 

Given the diedral 

angle A-BC-D, Fig. 

346. Plane P bisects 

the diedral angle. 

To prove that P 

is the locus of points 

equidistant from the 

faces Q and R. 
Fig. 346 

Proof: I. Prove that any point, as E, in plane P, is 

equidistant from Q and R, as follows: 

Draw EF _L Q and EH PR. 

Pass plane S through EF and EH. 

Then £_LQ, and S±R (§ 382). 

/. S±BOC (§ 384). 

.*. BO is perpendicular to FO, EO,. and HO. Why ? 

.’. AFOE and HOE are plane angles of the diedral 

angles formed by P and Q, and by P and R. Why ? 
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.*. A FOE = A HOE. Why? 

Prove A FOE^ A HOE. 
Then EF = EH. 

II. Prove that every point equidistant from 

Q and R lies in the 

bisecting plane P. as 

follows: 

Prove as in Case I 

that A FOE and HOE 
are plane angles of 

diedral angles PQ 
and PR. 

Since it is given 

that EF — EH, we 
Fig. 346 

may prove 

AFOEm AHOE (hypotenuse and one side). 

AFOE= AHOE. 
:. Diedral angle PQ = diedral angle PR. 
.'. Plane P bisects Q-BC-R. 
Hence, P is the required locus. 

Concurrent Lines 

414. Median. The median of a triangle is a segment 

drawn from a vertex to the midpoint of the opposite 

side. 

415. Center of gravity of a triangle. From cardboard 

cut a triangle. Draw the three medians of the triangle. 

If the construction is made carefully, the three medians 

will meet in a point. If the triangle is supported by 

placing a pin under the point of intersection, the triangle 

will be found to balance. For this reason the point of 

intersection of the three medians of a triangle is called 
the center of gravity of the triangle. 
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416. Concurrent lines. If three or more lines pass 

through the same point, they are called concurrent lines. 

417. Theorem: The medians of a triangle are con¬ 

current in a point which lies two-thirds the distance from 

the vertex to the midpoint of the opposite side. 

Given AABC, Fig. 347, with the medians AE, BF, 
and CD. 

Proof: AE must intersect CD at some point, as 0. 
For, if AE does not intersect CD, it follows that 

AE || CD 

and that Z EAC-\- A DC A = 180°. Show that this is 

impossible. 

Draw KH joining K, the midpoint of AO to H, the 

midpoint of 0(7. 

Draw DE, DK, and EH. 
Then, DE || AC and DE = ^AC (§ 168, exer¬ 

cise 2, and § 159, exercise 2). 

Similarly, KH II AC and KH = %AC. 
.*. KHED is a parallelogram (§ 125). 

EO = OK=KA. 
and, DO = OH = HC. 

.*. AO = %AE and CO = %CD. 
Similarly, we may show that CD and BF meet in a 

point which is two-thirds the distance from B to F and 

from C to D, i.e., at 0. 
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418. Trisection point. The two points dividing a 

segment into three equal parts are trisection points. 
Thus, the point of intersection of the medians of a triangle 

is a trisection point of each median. 

419. Theorem: The perpendicular bisectors of the 
sides of a triangle are concurrent in a point equidistant 
from the vertices of the triangle. 

Given A ABC, Fig. 348, and DE, 
FG, and HK the perpendicular 

bisectors of AB, BC, and CA, 
respectively. 

To prove that DE, FG, and HK 
are concurrent in a point equidistant 

from A, B, and C. 

Proof: Draw DF. 
Z EDB = 90° 

Z GFB = 90° 

ZEDB+ZGFB = 180° 

.*. ZEDF+ZGFD< 180°. Why?c 

DE and FG must intersect at Fig. 349 

some point, as 0, Fig. 349. 

For, if DE does not intersect FG, then 

DE || FG and 

ZEDF+GFD = m°. 
OC = OB. Why? 

OB = OA. Why? 

.*. OC = OA. Why? 

.’. HK must pass through 0. For, the perpendicular 

bisector of a segment is the locus of all points equidistant 

from the endpoints. 

B 

Fig. 348 

B 
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EXERCISES 

1. Show that the point 0, Fig. 349, is the center of the cir¬ 
cumscribed circle of triangle ABC. 

2. Draw the circle circumscribed about a triangle. 

3. Draw a circle passing through three points not in the same 
straight line. 

420. Circumcenter. The point of intersection of the 

perpendicular bisectors of the sides of a triangle is the 

circumcenter of the triangle. 

421. Theorem: The bisectors of the angles of a triangle 

are concurrent in a point which is equidistant from the sides 

of the triangle. 

Given A ABC, Fig. 350, with AD, BE, and CF, the 

bisectors of A A, B, and C, respectively. 

To prove that AD, BE, and CF are concurrent in a 

point equidistant from AB, BC, and CA. 

Proof: Show that AD and BE intersect, as at 0, 
Fig. 351. 

Draw OHA-AB, OK1.AC, OLA-BC. 

Then, OH = OK. Why ? 

OH = OL. Why ? 

.-. OK = OL. Why? 

,\ CF must pass through 0. Why ? 
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EXERCISES 

1. Show that the point 0, Fig. 351, is the center of the circle 
inscribed in triangle ABC. 

2. Inscribe a circle in a triangle. 

422. Theorem: The three altitudes of a triangle are 
concurrent. 

Given A ABC, Fig. 352, with ADLBC, BE LAC, 
and CFLAB. 

To prove that AD, BE, and CF are concurrent. 

Proof: Draw B'C'LAD, C'A'LBE, and A'B'LCF, 
forming AA'B'C'. 

Then, AB || A'B', 
BC II B'C', 

and CAWC'A'. Why? 

Show that B'C = AB = CA'. 
Hence, CF is the perpendicular bisector of A'B'. 
Similarly, show that AD is the perpendicular bisector 

of A'C' and that BE is the perpendicular bisector of C'A'. 
.*. AD, BE, and CF are concurrent. Why ? 

423. Orthocenter. The point of intersection of the 

three altitudes of a triangle is called the orthocenter of the 

triangle. 
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424. Incenter. The point of intersection of the bi¬ 

sectors of the interior angles of a triangle is called the 
incenter of the triangle. 

exercise 

Show that the bisectors of one 
interior angle, as A, Fig. 353, and of 
the exterior angles at B and C are 
concurrent. 

425. Excenter. The point of 

intersection of the bisectors of two exterior angles of a 

triangle and the third interior angle is called an excenter 
of the triangle. 

1. How many excenters are there ? 

2. Draw a triangle. Construct four circles tangent 

to the three sides. 

3. Prove that the bisectors of the angles of a quadri¬ 

lateral circumscribed about a circle meet at a point. 

426. Historical note. The ancients even before Euclid’s 
time were acquainted with the theorems of the medians, of the 
altitudes, of the angle-bisectors and of the perpendicular bisectors 
of the sides of a triangle, but they placed no great importance 
upon them. They used the incenter, the circumcenter, the ortho¬ 
center, and the center of gravity in constructions but they did 
not theorize about them. Greek mathematics so completely 
dominated the science until after mediaeval times that theorems 
not given by Euclid were regarded as of little moment. At the 
beginning of the eighteenth century the neglected theme began 
to be studied. In 1723 the problem was raised, to construct 
a triangle having given the position of its center of gravity, G, 
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of the incenter, I, and of the orthocenter, 0. Nothing worth 
mentioning came from this problem. 

In 1765 Euler (1707-83) attacked and solved the problem 
of calculating the distance of the points 0, G, and I from one 
another and from C, the circumcenter, in terms of the sides a, 
b, and c. He found that OCG, (see figure), is a straight line and 

that GC=% GO. The straight line OCG was later named in his 
honor, the Eulerian line. In 1821 Poncelet showed that the 
midpoints of the sides, the feet of the altitudes, and the mid¬ 
points of the upper segments of the altitudes of a triangle all lie 
on the same circle. 

In 1822 Feuerbach (1800-1834) also discovered this circle. 
He showed that its center M' bisects the segment CO, and that 
its radius equals half the radius of the circumscribed circle 
( = r/2). Germans in his honor call this circle Feuerbach’s 
circle but English mathematicians prefer to call it the nine- 
point circle. 

Feuerbach also showed the circle to be tangent internally to 
the inscribed circle and externally to the escribed circle, and that 
the segment OG of the Eulerian line is divided by the center 
M' in the ratio 2:1. Since Feuerbach’s time all these points 
and properties have been extensively studied from varied points 
of view, and much mathematical knowledge has resulted. 
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Feuerbach’s circle was first given place in an elementary book 
on geometry by C. F. A. Jacobi in 1834. (See Tropfke, Ge- 
schichte der Elementar-Mathematik, II. Bd., S. 88-90.) 

Summary 

427. The chapter has taught the meaning of the follow¬ 
ing terms: 

locus 
cycloid 
ellipse 
median 

center of gravity of 
a triangle 

concurrent lines 
trisection point 

circumcenter 
incenter 
excenter 
orthocenter 

428. The proof for a locus consists in showing— 

I. That every point on the locus satisfies given con¬ 
ditions. 

II. (a) That every point satisfying these conditions 
lies on the locus, or 

(b) That every point not on the locus does not 
satisfy these conditions. 

429. The following theorems were proved: 

1. The locus of points in a plane equidistant from two 

given points is the perpendicular bisector of the segment 

joining these points. 

2. The locus of points in a plane which are within an 

angle and equidistant from its sides is the bisector of the 

angle. 

3. The locus of points in a plane at a given distance from 

a given point is the circle whose center is the given point and 

whose radius is equal to the given distance. 

4. The locus of points in a plane at a given distance from 

a given line consists of a pair of lines parallel to the given 

line and the given distance from it. 
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5. The locus of points in space equidistant from all 

points on a circle is the line perpendicular to the plane of the 

circle at the center. 

6. The locus of points in space equidistant from two 

given points is the plane bisecting the segment joining these 

points and pei'pendicular to it. 

7. The locus of points within a diedral angle equidistant 

from the faces is the plane bisecting the angle. 

8. The medians of a triangle are concurrent. 

9. The perpendicular bisectors of the sides of a triangle 

are concurrent in a point equidistant from the vertices of the 

triangle. 

10. The bisectors of the angles of a triangle are concurrent 

in a point which is equidistant from the sides of the triangle. 

11. The three altitudes of a triangle are concurrent. 



CHAPTER XVII 

REGULAR POLYGONS INSCRIBED IN, AND CIRCUM¬ 
SCRIBED ABOUT, THE CIRCLE. LENGTH 

OF THE CIRCLE 

Construction of Regular Polygons 

430. Regular polygon. A polygon that is both equi¬ 
lateral and equiangular is a regular polygon. 

431. Regular polygons in designs. Regular polygons 

are involved in many forms of decorative design. We 

use them in the tile floor, Fig. 354; in the ornamental 

Fig. 354 Fig. 356 

Fig. 357 

window, Fig. 355; in linoleum patterns, Figs. 356—357; 

in paper doilies, Fig. 358; in ceiling panels, Fig. 359, 

floor borders, furniture designs, etc. 

279 
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Point out the regular polygons in Figs. 354-359. 

It is the purpose of the first part of the chapter to 

learn how to construct regular polygons. 

EXERCISES 

1. Show that an equilateral triangle is a regular polygon. 

2. Draw a quadilateral that is equilateral but not equi¬ 
angular. What is such a quadrilateral called ? 

3. Draw an equiangular quadrilateral. What is such a 
quadrilateral called? 

4. Draw a quadrilateral that is not equiangular and not 
equilateral. 

5. Show that a square is a regular polygon. 

6. Make a sketch of a regular pentagon; hexagon; octagon 
(8-side). 

432. Inscribed polygon. A polygon whose vertices 

lie on a circle is an inscribed polygon. The circle is said 

to be circumscribed about the polygon. 

Draw an inscribed pentagon; hexagon. 

433. Circumscribed polygon. A polygon whose sides 

are tangent to a circle is a circumscribed polygon. The 

circle is said to be inscribed in the polygon. 

Draw a circumscribed polygon. 

434. The theorems in §§ 435 and 437 will be used when 

we wish to prove that an inscribed or circumscribed poly¬ 

gon is a regular polygon. They show that the construc¬ 

tion of regular inscribed and circumscribed polygons 

depends upon the problem of dividing a circle into a given 

number of equal parts. 
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435. Theorem: If a circle is divided into equal arcs, 

the chords subtending these arcs form a regular inscribed 

polygon. 

Fig. 360 

Given the circle 0, Fig. 360, divided into equal arcs, 

AB, BC, CD, etc. 

The polygon ABCD .... formed by the chords 

subtending these arcs. 

To prove that ABCD .... is a regular inscribed 

polygon. 

Proof: I. Show that chords AB, BC, CD, . . . . 

are equal. 

II. In triangles ABC and EDC show that 

x = y, m = n (§ 298). 

.*. ZP= ZB. Why? 

Similarly, prove that the other angles of the polygon 

are equal. 

Hence, ABCD .... is a regular inscribed polygon. 

Why? 

436. Theorem: If the midpoints of the arcs sub¬ 

tended by the sides of a regular inscribed polygon of n sides 

are joined to the adjacent vertices of the polygon, a regular 

inscribed polygon of 2n sides is formed. Prove. 
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437. Theorem: If a circle is divided into equal arcs, 

the tangents drawn at the points of division form a regular 

circumscribed polygon. 

Given circle 0, Fig. 361; 

PQ = QR=RS, etc.; AB, BC, CD, 

etc., tangent to circle 0, forming the 

circumscribed polygon ABCD . . . . 
To prove A BCD .... a regular 

polygon. 

D R C 

Proof: Draw PQ, QR, RS, . , Fig. 361 

etc. 

Prove APBQ, QCR, RDS, etc., congruent isosceles 

triangles. 

ZA= ZB= AC, etc. 

Since AP = BQ, Why? 

and PB = QC, Why ? 

AB = BC. Why? 

Similarly, prove BC = CD = DE, etc. 

Hence, ABCD is a regular polygon. 

438. Theorem: If tangents are 

drawn to a circle at the midpoints of the 

arcs terminated by consecutive points of 

contact of the sides of a regular circum¬ 

scribed polygon a regular circumscribed 

polygon is formed having double the 

number of sides. Prove. (See Fig. 362.) 

EXERCISES 

1. Prove that an equilateral inscribed polygon is regular. 

Show that the circle is divided into equal arcs. Then apply 
§ 435. 
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2. Prove that an equiangular circumscribed polygon is 
regular. 

Show that the circle is divided into equal arcs. Then use 
§437. 

439. Problem: To inscribe a square in a given circle. 

B 

D 

Given circle 0, Fig. 363. 

Required to inscribe a square 

in circle 0. 

Analysis: Since the square is a 

regular quadrilateral, we can in¬ 

scribe a square if we can divide the 

“circle into four equal arcs. 

A circle may be divided into 

four equal arcs by dividing the 

plane around the center into four equal angles. 

Since the sum of the angles around 0 is 360°, each of 

the four equal angles must be 90°. 

State a way of constructing four right angles at 0. 

Fig. 363 

Construction: Draw the diameter AB. 
Draw diameter CD±AB. 
Draw AD, DB, BC, and CA. 
Then ADBC is the required square. 

Proof: a = b=c=d = 90°. Why? 

.*. AD = DB = BC = CA. Why? 

.*. ADBC is a regular quadrilateral, i.e., a square. 
Why? 

440. Problem: To circumscribe a square about a given 
circle. 

Proceed as in the construction in § 439 and draw tangents 
at A, B, C, and D. 
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EXERCISES 

1. Denoting the side of the inscribed square by a, the 
radius by r, prove that a = rV 2. 

The problem may be solved by 

algebra, or by trigonometry: 
(a) Apply the theorem of Pythagoras 

to the sides of triangle AOD, Fig. 364. 

(b) Find the required relation using 

the sine of 45°. 
Notice that the equation a = rV 2 

expresses the fact that the side of the 

inscribed square varies directly as the 

radius. 
Show that a is a function of r. 

2. Express the side a of the circumscribed square in terms of 
the radius r. 

3. Express the perimeters of the inscribed and circumscribed 
squares in terms of the radius; in terms of the diameter. 

4. Prove that the point of intersection of the diagonals of a 
square is the center of the inscribed and circumscribed circles. 

6. Show how to construct regular polygons of 8, 16, 32, etc., 
sides. 

6. Show that the number of sides of the polygons in exer¬ 
cise 5 is expressed by the formula 2n, where n is a positive integer 
equal to, or greater than 2. 

441. Problem: To inscribe a regular hexagon in a 

given circle. 

Analysis: Into how many equal arcs must the circle 
be divided ? 

How large must the central angles be that intercept 
these arcs ? 

State a simple way of constructing an angle of 60°. 

c 
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Construction: With A as center 

and radius AO, Fig. 365, draw an arc 

cutting the circle at B. 

With B as center and the same 

radius draw the arc at C. 

Similarly, draw arcs at D, E, 
and F. 

Draw the polygon ABCDEF. This 

is the required hexagon. 

Proof: Draw OA, OB, OC, etc. 

Prove that a = b = c = d = e=f = 60°. 

Prove that AB = BC.=FA. 

• Then polygon ABCDEF is regular. Why ? 

442. Problem: To circumscribe a regular hexagon 

about a given circle. 

EXERCISES 

1. Express the relation between the side a of the regular 
inscribed hexagon and the radius r. 

2. Express in terms of the radius the side of the regular 
circumscribed hexagon. 

Draw OA and OK, Fig. 366. 

Show that triangle AOK is a 60°-30° 

light triangle. 
Hence AO = 2 • AK = a. 

Find the required relation between a 

and r, 

First by using the theorem of Pythagoras; 

Secondly, by using the tangent of 30°. 

Show that the side of the regular circum¬ 

scribed hexagon varies directly as the radius. 

Show that the side is a function of the radius. 

3. Inscribe and circumscribe an equilateral triangle, a 
regular 12-side, 24-side, etc. 

Fig. 366 
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4. Show that the number of sides of the polygons in exer¬ 
cise 3 are given by the formula 3 • 2n, n being a positive integer, 
or zero. (See exercise 7 below for value of 2°.) 

a' 
6. Show that —=a2; — = a4; 

a° a° 
am 
an ' 

am~n, m being greater 

than n, and m and n being positive integers. 

a* „ a° ^ am 
6. Show that —= 1; . = 1; — = 1 

a2 ’ am a° a 

dm am 
7. Assuming that — — am~n when m = n; show that — = a0. 

& an am 

So far we have not defined the expression a0. To make the 
results of exercises 6 and 7 agree, we shall define a0 to mean 1. 

8. Give the values of 2°, 3°, x°, (a+6)°, (2x—y+z)0. 

9. Express in terms of the radius r, the side of the inscribed 
equilateral triangle. 

Show that OK, Fig. 367 is ~ (§ see exercise 2). 
A 

Obtain the required relation first, by using the theorem of 
Pythagoras; secondly, by using the tangent of 60°. 

Express your result in the language of variation. 

c 

Fig. 368 

10. Show that the side of the circumscribed equilateral 
triangle is 2rV 3 (Fig. 368). 

(1) Use the theorem of Pythagoras. 
(2) Use the tangent function. 
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11. Express in terms of the radius r the perimeters— 
(a) of the regular inscribed and circumscribed hexagon, 
(b) of the equilateral inscribed and circumscribed triangles. 

Show that the perimeters vary directly as the radii. 

443. Problem: To inscribe a regular decagon in a given 

circle. 

Analysis: Into how many equal arcs must the circle 

be divided? 

How large are the central angles intercepting these 
* 

arcs ? 

Construction: The construction 

of an angle of 36° depends upon 

the problem of dividing a segment 

into mean and extreme ratio. 

(See § 315, exercise 8.) 

Draw the radius AO, Fig. 369. 

Divide AO into mean and ex¬ 

treme ratio at B, making 

OA^OB 

OB BA' 

With A as center and radius OB draw an arc at C. 

With the same radius and center C draw an arc at D. 

Similarly, draw arcs at E, F, G, H, I, J, and K. 

Draw AC, CD, etc. 
Polygon ACD.K is the required polygon. 

G 

Fig. 369 

Proof: Draw BC and OC. 

Since 
OA _0B 

OB BA1 

OA AC 

AC BA* 
Why? 
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I.e., in ABCA and AOC two sides of one are propor¬ 

tional to two sides of the other. 

Show that the included angle A 
is the same in both triangles. 

ABCAc^AAOC. Why? 

BC CA Why? 

CA. Why? 

Why? 

Why? 

OA 0C‘ 
/. OC-BC = OA< 

BC = CA. 

BC = OB. 
Denoting A AOC by x, show 

that OCB = x and that ZBCA=x. 
Since AOCA= ZOAC, it follows that ZOAC = 2x. 

.*. 2x-\-2x-\-x= 180°. Why? 
36°. 

Fig. 369 

X 

Show 
decagon. 

that polygon ACD.K is a regular 

EXERCISES 

1. To circumscribe a regular decagon about a circle. 

2. Show how to inscribe and circumscribe a regular pentagon 
in a given circle. 

3. To inscribe and circumscribe regular polygons having 
20, 40, etc., sides. 

4. Show that the number of sides of the polygons in exer¬ 
cise 3 may be expressed by the formula 5-2n, n being a positive 
integer or zero. 

5. Express the relation between the 
side of the inscribed decagon and the 
radius of the circle. 

Denoting AC = OB by a, Fig. 370, OA by 

r, then BA =r—a. 

Show that - = —. 
a r — a 

.*. a2=r2—ra. 

.*. a2+ra—r2 = 0. Fig. 370 
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Solving by means of the quadratic formula, 

— T =b "[/ y2 4.7*2 

a =--- 
2 

0=-r±r/5 = r(_1±1/5) 

2 2 

Show that the minus sign before the 
radical cannot be used in this problem. 

a = ^(V5 —l) =|(l.236) = .618r. 

|6. Show that the side of a regular 
rp /-Zl 

inscribed pentagon is equal to ^ 10 — 2 V 5 

Let KC, Fig. 371, be the side of the 

pentagon, KA and AC sides of the decagon. 

Denote KF by b, OK by r, and KA by a. 
Then, OF2 = r2 — b2 and OF = V r2 — b2. 

.*. FA =r — V r2 — b2. 

Since KF2 = KA2-Ja2, 

b2 — a2 — (r — Vr2 — b2)2- Why? 

Substituting for a2 its equal, ^V/5 —l)') (exercise 5) and 

solving for b, we have— 

b = £Z 10—2i/5 

26=|l/l0-2i/5. 

J7. Show that an approximate value of 1710 — 2^5 is 

2.351+. 

8. Using the sine function, find the side of the regular in¬ 
scribed pentagon; decagon. 

Notice the advantage of the trigonometric method over the 

algebraic methods used in exercises 5 and 6. 

9. A man has a round table top which he wishes to change 
into the form of a pentagon as large as possible. The diameter 
of the top is 2J feet. What is the length of the cut required ? 

Why? 
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444. Problem: To construct a regular 15-side in a 
given circle. 

Analysis: The circle must be divided into 15 equal 

arcs. How large are the central angles intercepting these 

arcs ? 

Notice that 24° = 60°-36°. 

This suggests the following con¬ 

struction : 

Construction: At 0 on OA con¬ 

struct an angle of 60°, Fig. 372. 

At 0 on OA construct an angle of 

36°, as ZAOC. 
Then Z COB = 24°. 

.*. CB may be taken as the side of the regular in¬ 

scribed 15-side. 

Fig. 372 

EXERCISES 

1. Show how'to construct regular inscribed and circum¬ 
scribed polygons having 30, 60, 120 .... sides. 

f2. Show that the number of sides of the polygons in exer¬ 
cise 1 is given by the formula 15*2W where n is a positive integer, 
or zero.f 

f Gauss (1777-1855), a German mathematician, proved that 
by the use of an unmarked straight edge and a compass a circle can 
be divided into (2*+1) equal parts, k being a number that makes 

2H1 a prime number. 

Denoting 2&+1 by n, we have 
For A; = 1, n = 3, a prime number. 
For k = 2, n = 5, a prime number. 

For k = 3, n = 9, not a prime number. 
For k =4, n = 17, a prime number. 

For k = 5, n = 33, not a prime number, etc. 
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CARL FRIEDRICH GAUSS 

CARL FRIEDRICH GAUSS was born at Brunswick, 
Germany, April 30, 1777, and died at Gottingen, 
February 23, 1855. His father was a bricklayer and did 
not sympathize with the son’s aspirations for an edu¬ 

cation. Coupled with this was the fact that the schools of 
Gauss’s day were very poor; but in spite of parental disap¬ 
proval and very inadequate schools he became one of the 
greatest mathematicians of all time. 

Gauss had a marvelous aptitude for calculation, and in later 
years used to say, perhaps only as a joke, that he could reckon 
before he could talk. He owed his education to the fact that 
one of his teachers, named Bartels, drew the attention of the 
reigning duke of Brunswick to the remarkable talents of the 
boy. The duke provided for him the means of obtaining a 
liberal education. As a boy Gauss studied the languages with 
quite as much success as mathematics. 

When only nineteen, Gauss discovered a method of inscrib¬ 
ing a regular polygon of seventeen sides in a circle. This 
encouraged him to pursue mathematical studies. He studied 
at Gottingen from 1795 to 1798. He made many of his most 
important discoveries while yet a student. His favorite study 
was higher arithmetic. In 1798 he went back to his home 
town of Brunswick, and for a few years earned a scanty living 
by private tuition. 

In 1799 Gauss published a demonstration of the important 
theorem that every algebraical equation has a root of the form 
a-\-bi, and in 1801, a volume on higher arithmetic. His next 
great performance was in the field of astronomy. He invented 
a method for calculating the elements of a planetary orbit from 
three observations, by so powerful an analysis of existing data 
as to place him in the first rank of theoretical astronomers. 

In 1807 he was appointed professor of mathematics and 
director of the observatory at Gottingen. He retained these 
offices until his death. _ He was devoted to his work. He 
never slept away from his observatory except on one occasion 
when he attended a scientific congress in Berlin. As a teacher 
he was clear and simple in exposition, and for fear his auditors 
might not get his train of thought perfectly he never allowed 
them to take notes. His writings are more difficult to follow, 
for he omitted the developmental details that he was so careful 
to supply in his lectures. His memoirs in astronomy,. in 
geodesy, in electricity and magnetism, in electrodynamics, 
and in the theories of numbers and celestial mechanics are 
all epoch-making. Most of the whole science of mathematics 
has undergone a complete change of form by virtue of Gauss’s 
work. 

Gauss was the first to develop a real mathematical theory 
of errors. He introduced the geometrical theory of complex 
numbers into Germany. He was the first to use the term 
“complex number” in the sense it has today. _ He used the 
symbol =to signify congruence. A good description of Gauss’s 
important work on the inscription of a regular polygon in a 
circle may be read in § 35 of Miller’s Historical Introduction 
to Mathematical Literature (Macmillan). 

The last-mentioned work, pp. 241-43, and also both Ball’s 
and Cajori’s Histories, give brief accounts of Gauss and 
his work. 
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+3. The following is a practical method of constructing the 
side of a regular 10-side and 5-side. 

Construction: Draw the diameter AB, 
Fig. 373. 

Draw OCA.AB. 
Bisect OB at D. 
With center at D and radius DC draw 

the arc CE. 
Draw the straight line CE. 
The sides of triangle EOC are equal 

to the sides of a regular hexagon, penta¬ 
gon, and decagon, respectively. 

Proof: I. CO = r and is equal to the side of the regular inscribed 
hexagon. 

II. CZ)2 = r2+y . 
4 

.\ CD=^Vl. 

EO = ED-OD = CD-OD=^V5-r2=^(y5-l) . 

Hence, EO is the side of the decagon. 

(See § 443, exercise 5.) 

III. EC2=r2-fj?02 = r2+^6—2i/5^ =4r2+6r^-2rVg 

EC = <~V 10 — 2t/5, the side of the pentagon. 
Z 

(See § 443, exercise 6.) 

4. Find the side of a decagon inscribed in a circle of radius 
8; 10; 15; a. 

15. The side of an inscribed pentagon is 18.8 inches. Find 
the radius of the circumscribed circle. 

6. The side of an inscribed decagon is 14.83 inches. Find 
the radius of the circumscribed circle. 

c 
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J7. If at the midpoint of the arcs subtended by the sides of a 

given regular inscribed polygon, tangents are drawn to the circle, 

they are parallel to the sides of the given polygon and form a regular 

circumscribed polygon. 

To prove that AB || A'B', Fig. 374, 
contact point of A'B'. Show that AB 
and A'B' are both perpendicular to OP'. 

To prove that A'B'C'D'E' is regu¬ 

lar, show that P'Q' = Q'R' = R'S', etc. 

8. In Fig. 374, prove that points 

0, B, and B' are on a straight line. 

Prove that B and B' lie on the 
bisector of Z P'OQ'. 

9. Express 8 as a theorem. 

draw the radius OP' to the 

445. Theorem: A circle may be circumscribed about 

any given regular polygon. 

Given the regular polygon 

ABCD., Fig. 375. 

To construct a circle circum¬ 

scribed about ABCD. 

Construction: Construct a circle 

through A, B, and C. 

This is the required circle. 

Proof: It is to be proved that 

the circle ABC passes through D, E, etc. 

x-{-y = z-\-u. Why? 

y = z. Why? 

.*. x = u. Why? 

Prove AAOB^ ACOD. 

.'. AO — OD and the circle passes through D. 

Similarly, it may be shown that the circle passes 

through E, F, etc. 
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446. Theorem: A circle may be inscribed in any given 

regular polygon. 

Given the regular polygon 

ABC., Fig. 376. 

Required to inscribe a circle 

within ABC. 

Construction: Construct the 

center, 0, of the circumscribed 

circle. 

Draw OK LAB. 

With 0 as center and radius OK draw circle KLM.... 
This is the required circle. 

Proof: Draw the circumscribed circle ABC. 
Draw OP_LAE. 

Since chord AB = chord AE, it follows that OK = OP. 

Why ? 

Hence, circle KLM passes through P. Why ? 

AE is tangent to the circle. Why? * 

Similarly, show that ED, DC, etc., are tangents to 

circle KLM. 

447. Theorem: The perimeter of a regular inscribed 

2n-side is greater than the perimeter of the regular n-side 

inscribed in the same circle. Prove. 

448. Theorem: The perimeter of a regular circum¬ 

scribed 2n-side is less than the perimeter of the regular 

n-side circumscribed about the same circle. Prove. 

449. Two important facts follow from the theorems 

in §§447 and 448, viz.: 

1. The perimeter of the regular inscribed polygon 

increases as the number of sides increases. 
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2. The perimeter of the regular circumscribed polygon 

decreases as the number of sides increases. 

The Length of the Circle 

450. • In the following discussion it will be shown that 

by increasing the number of sides of regular inscribed 

and circumscribed polygons, the perimeters approach 

each other more and more, and that the decimal fractions 

expressing these two perimeters can be made to agree 

to a greater and greater number of decimal places. 

It is easily proved that the length of a circle is greater 

than the perimeter of any inscribed polygon. We will 

assume that the length of a circle is less than the perim¬ 

eter of any circumscribed polygon. 

Hence, the length of a circle lies between the lengths 
of the perimeters of any pair of inscribed and circumscribed 
polygons. 

The determination of the length of the circle is 

obtained very simply by means of 

trigonometry: 

Let AB, Fig. 377, be the side of a 

regular inscribed n-side. 

Draw 

Show that 

OD±AB. 

a 
(360\O 2 

~2^f) = ~ ’ a denoting the side of the 

polygon and r the radius of the circumscribed circle. 

Hence, a = sin (7^) d. Why? 
V 2 n J 

.'. the perimeter, p = ??|"sin^7^^ Why?. . (A) 
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From Fig. 378 show that the perimeter P of the circum¬ 
scribed polygon is given by 

p={tan©°]d.(B) 

By means of formulas (A) and (B) 

the perimeters of inscribed and circum¬ 

scribed polygons may be computed, 

leading to the determination of 

approximate values of the length of 

the circle. 

Make the computations and compare your results 

with the results given in the following table: 

Fig. 378 

N umber 
of sides 

1 
Perimeter of 

inscribed polygon Length of circle, l 
Perimeter 

of circumscribed 
polygon 

3 2.5980.... • d 2.5d<l<5.2d 5.1963.... • d 

4 2.8284.... • d 2.8d<l<4:.0d 4.0000.... • d 

5 2.9390.... • d 2.9d<l<3.7d 3.6325.... • d 

6 3.0000.... • d 3.0d<l<3.5d 3.4644.... • d 

7 3.0359.... • d 3.0d<l<3 Ad 3.3691.... • d 

8 3.0614.... • d 3.0d<l<3Ad 3.3137.... • d 

12 3.1058.... • d 3.1d<l<3.3d ' 3.2153.... • d 

18 3.1248.... • d 1 — 3. Id, approxi¬ 
mately 

3.1734.... • d 

90 3.1410.... • d l = 3.141d, approxi¬ 
mately 

3.141.• d 

The table above shows how the decimal fractions 

expressing the perimeters agree more and more closely 

as the number of sides of the polygon is increased. 
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The following table, which gives the decimal fractions 

to six places, shows the approach of the perimeters still 

better: 

P4* = 4.000000 • d V* = 2.828427... • d 
P6 =3.464121... • d Pe = 3.000000 • d 

P8 =3.313708... ■ d P* = 3.061467... • d 

P12 =3.215390... • d Pl2 = 3.105828.. . • d 

Pie =3.182598... • d Pie = 3.121445... • d 
P24 =3.159659... • d 'pu = 3.132623... • d 

P32 =3.151725... • d Pz2 = 3.136548... • d 

P48 =3.146086... • d PiS = 3.139350... • d 
P64 =3.144118... • d Pei = 3.140331... • d 
P96 =3.142714... • d P9 6 = 3.141032... • d 
P128 = 3.142224... • d Pm = 3.141277... • d 

P192= 3.141873... • d Pl92 =3.141452... ■ d 

P256 = 3.141750... • d P2he = 3.141514... • d 

P348 = 3.141662... • d Pue = 3.141557... • d 

The last two perimeters agree to three decimal places. 

Thus, the length of the circle of diameter d which lies 

between these perimeters is found correct to three decimal 

places. It equals 3.141... • d. 

As the perimeters of the inscribed and circumscribed 

polygons with increasing numbers of sides, approach 

each other in length, both of them approach more and 

more closely the length of the circle. But however close 

the length of the perimeter of any polygon may come 

to the length of the circle, there is always another polygon 

the perimeter of which comes still closer to the length 

of the circle; and for every number given as expressing 

the difference between any perimeter and the circle we 

can find a polygon whose perimeter differs from the circle 

by less than that number. This is expressed by saying 

that the perimeters of the inscribed and circumscribed 

polygons approach the circle as a limit. 

* The subscripts indicate the number of sides of the polygons. 
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As is seen by the table on p. 296, the value of this limit 

can be expressed more and more closely by taking poly¬ 

gons of a greater and greater number of sides. It cannot, 

however, be determined exactly. 

Continuing to increase the number of sides, we find 

in the table above 

P8i92 = 3.1415928.. -d 

and p8i92 = 3.1415926.. • d. 

From this it is seen that the circle, being between 

P8192 and psi92, can be expressed by (7 = 3.141592.. • d, 

approximately, with an error less than 1 millionth. 

The length of the circle is therefore a multiple of the 

diameter, which, however, may not be exactly expressed 

in figures. The number 3.141592... .by which d is 

multiplied, is commonly denoted by 7r (the first letter of 

Tr£pL<f>€peia, meaning periphery or circumference). 

Thus, C = ivd, 

and C = 2irr 

are the formulas expressing the length of the circle in 

terms of the diameter and radius, respectively. For our 

purposes it is sufficient to use 7r = 3.14, or tt = -2t2-, which is 

equal to 3.14 when carried out to two decimal places. 

451. Historical note. The determination of the value and 

of the nature of the number tt is one of the famous problems of 

geometry. 

Ahmes took 

Archimedes (212-287 b.c.) found the value of 7r to be such 

that 3^? <7r <3~ by finding the values of Pge and pge- 
71 70 

Ptolemy (150 a.d.) calculated 7r = 3+~+^- = 3.14166. 
60 602 
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At the end of the sixteenth century Vieta (1579 a.d.) found 
the value of 7r to 10 decimal places, and Ludolph van Ceulen 
(1540-1610) to 20, 32, and 35 places. The value of 7r has since 
been carried out to more than 700 decimal places, to 30 places 
it is as follows: 

3.141592653589793238462643383279+ (see the article 
“Circle” in the Encyclopaedia Brittanica, 11th ed.). 

It was shown by Lambert (1728-1777) that the number 7r 
cannot be expressed exactly in terms of integers and hence is 
not a rational number. 

Lindemann (1882) proved that 7r belongs to a class of num¬ 
bers called transcendental, numbers which do not satisfy any 
algebraic equation with rational coefficients. 

EXERCISES 

1. The length of a circle is 100 inches. Find the radius. 

2. Show that the lengths of two circles are to each other as the 
radii or as the diameters. 

3. The distance around one of the famous large trees in 
California is about 100 feet. Find the diameter. 

4. The radius of a fly wheel of an engine is 9 feet. If the 
wheel makes 40 revolutions per minute, what is the rate, in 
feet, per minute of a point on its outer rim ? 

5. The size of a man’s hat is indicated by the number of 
inches in the diameter of a circle of length equal to the distance 
measured around the head where his hat rests. What size of hat 
does a man need, the distance around whose head is 22f 
inches ? 

6. Measure the distance around your own head and calculate 
the size of hat you need. 

7. A trick circus rider performed on a tall bicycle one turn of 
whose driving wheel carried the bicycle 62.8 ft. forward. How 
tall was the wheel ? 
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8. A circular pond is 2640.1 yd. in circumference. Find 
the diameter. 

• 

462. Historical note. Regular polygons have been used for 
decorative purposes since the beginning of mathematical history. 
Only such regular polygons as result from the division of the 
circle into 4 equal parts, i.e., squares, octagons, etc., were known 
in Egypt before the Eighteenth Dynasty. About this time the 
dodecagon appeared on presents sent to Pharaoh by his Asiatic 
subjects. Since the Nineteenth Dynasty chariot wheels with 
six spokes are shown on mural reliefs, and very rarely with four 
or eight spokes. The knowledge of the sextuple division of the 
circle was brought to Egypt from Babylon, though it is not 
known at what date this occurred. The Chaldaeans had a strong 
bias in favor of six and its multiples. 

The Greeks advanced the knowledge of regular polygons. 
The Pythagoreans thoroughly reworked Egyptian and Baby¬ 
lonian knowledge and extended it by original research. They 
taught how to calculate the central angle for all w-gons. It is 
not definitely known whether the Pythagoreans could construct 
the regular pentagon, though they used the pentagram (the star 
pentagon) as a symbol of secrecy, and at least studied the penta¬ 
gon. At all events the Greek mathematicians by the time of 
Eudoxus (408-355 b.c.) were masters of the division of a line 
into mean and extreme ratio, upon which the construction of the 
regular decagon depends. 

That the side of a regular inscribed hexagon is equal to the 
radius of the circle was known in substance to the ancient Baby¬ 
lonians. Hippocrates (440 b.c.) mentions this property of 
the hexagon as a well-known theorem. The mode of calculating 
the sides of our most familiar regular polygons was known 
by the time of Hero of Alexandria (first century, b.c.). 

Antipho (430 b.c.) was the first to make use of the regular 
inscribed polygon to approximate the area and length of the 
circle. Bryso, a contemporary of Antipho, improved on the 
latter’s method, and the theory was very greatly extended by 
Archimedes. The latter had a method of calculating the side 
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of a 2n-gon from the side of an n-gon. By means of regular 
polygons he shut tv in between the limits of 3f and 3yy* 

After Archimedes *no further advance in the theory of 
regular polygons was made until the thirteenth century. Jor- 
danus Nemorarius (1237 a.d.) did not seek to square the circle 
by the aid of regular polygons, as most later writers had done, 
but rather co derive relations between the perimeters and areas 
of regular inscribed and circumscribed polygons of n and 2n 
sides. 

Summary 

453. The chapter has taught the meaning of the fol¬ 

lowing terms: 

regular polygon, circumscribed polygon, inscribed polygon 

454. The following theorems may be used to prove 

that inscribed or circumscribed polygons are regular: 

1. If a circle is divided into equal arcs the chords sub¬ 

tending these arcs form a regular inscribed polygon. 

2. If the midpoints of the arcs subtended by the sides 

of a regular inscribed polygon of n sides are joined to the 

adjacent vertices of the polygon, a regular inscribed polygon 

of 2n sides is formed. 

3. If a circle is divided into equal arcs, the tangents 

drawn at the points of division form a regular circumscribed 

polygon. 

4. If tangents are drawn to a circle at the midpoints 

of the arcs terminated by consecutive points of contact of 

the sides of a regular circumscribed polygon, a regular cir¬ 

cumscribed polygon is formed having double the number of 

sides. 

455. Other theorems proved in the chapter are: 

1. If at the midpoints of the arcs subtended by the sides 

of a given regular inscribed polygon, tangents are drawn to 
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the circle, they are parallel to the sides of the given polygon 

and form a regular circumscribed polygon. 

2. A circle may be circumscribed'about any given regular 
polygon. 

3. A circle may be inscribed in any given regular polygon. 

4. The perimeter of a regular inscribed 2n-side is greater 

than the perimeter of the regular n-side inscribed in the same 

circle. 

5. The perimeter of a regular circumscribed 2n-side is 

less than the perimeter of the regular n-side circumscribed 

about the same circle. 

456. The chapter has taught how to inscribe in, and to 

circumscribe about a circle the following regular polygons: 

square, hexagon, decagon, 15-side. 

Other regular inscribed and circumscribed polygons 

may be obtained by dividing the arcs of the circle into 

two or more equal parts, and then joining the points of 

division of the circle successively by line-segments. 

457. The side and perimeter of a regular inscribed or 

circumscribed polygon may be expressed in terms of the 

radius of the circle. The side and perimeter vary directly 

as the radius. 

458. The length of a circle is expressed by the formula 

C = Trd, or C = 2irr. 



CHAPTER XVIII 

COMPARISON OF AREAS. LITERAL EQUATIONS. 
AREA OF THE TRIANGLE. FACTORING 

{ 

Comparison of Areas 

459. Theorem: Parallelograms having equal bases 

and equal altitudes are equal * 

b b 
Fig. 379 

Given parallelograms ABCD and A'B' C'D', Fig. 379, 

having equal altitudes h, and equal bases b. 

To prove that ABCD = A'B'C'D'. 

Proof: Imagine ABCD placed upon A'B'C'D', so 

that AB coincides with A'B'. Why can this be done? 

Then DC must fall in the same line as D'C, for the 

parallelograms have equal altitudes. 

Prove that AD'D"A'^C'C"B' (s.a.s.). 

But D'A'B'C"=D'A'B'C". 

. A'B'C"D" = A'B'C'D' 

(equals subtracted from equals give equals). 

ABCD =A'B'C'D'. Why? 

460. Theorem: A parallelogram is equal to a rectangle 

having the same base and altitude. 

Apply the theorem in § 459. 

* Equal is here used in the sense of equal in area, or equivalent. 

302 
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461. Theorem: A triangle is 

parallelogram having the same base 

and altitude. 

Use the theorem that a diagonal 
divides a parallelogram into congru¬ 
ent triangles (Fig. 380). 

equal to one-half a 

462. Theorem of Pythagoras: The square on the 

hypotenuse of a right triangle is equal to the sum of the 

squares on the sides, including the right angle. 

D 

Fig. 381 

Let ABC, Fig. 381, be a 

right triangle having a right , 

angle at C. Let Si, S2, and S 

denote the squares on the sides 

a, b, and c, respectively. 

To prove S = Si-+ >S2. 

Proof: Draw CDAAB, 

dividing S into rectangles Ri 

and R2. 

Draw AE and CF. 

Show that triangle EBA 

and square Si have equal bases 

and altitudes. 

Then triangle EBA = ^Si. 

Similarly, prove that 

triangle FBC = ^Ri. 

But AABE^ AFBC. 

For EB = BC. Why ? 

AB = BF. Why? 

And Z ABE = Z FBC. Why ? 

From (1), (2), (3) we have ^Si = ^Ri. 

Therefore Si = Ri. 

Similarly, draw BG and CH, and prove S2 = R2. 
Therefore S = Si-\-S2. 

Why? (1) 

(2) 
(3) 

(4) 
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463. Theorem: The sum of the squares of two sides 

of a triangle is equal to twice the square of one-half of the 

third side increased hy twice c 

the square of the median to the 

third side * 

Given A ABC having the 

median m to the side c, Fig. 382. 

To prove that a2 3-\-b2 = +2m2. 

‘B 

Fig. 382 

Proof: a2 = Q2+m2 -2^ An'. § 240. 

&2 = (0+ro2+2h)m'. §241. 

o2+62 = 2(|V+2m2. Why? 

Exercises in Literal Equations in One Unknown 

1. Show that the length of the median to a side of a triangle 
may be expressed in terms of the sides of the triangle by 
means of the following formula: 

|o*+6*-2(|)> _ 
mc=\I- - - =|/2a2+262-c2 

2. Find mc when a, b, and c are respectively, 

(1) 6, 10, 8 t(2) 5, 13, 12 J(3) 9, 15, 12 

3. Express ma in terms of the sides a, b, and c of the 
triangle ABC. 

* This theorem was added to elementary geometry by Pappus 

who lived and taught at Alexandria at the end of the third century 
a.d. It enables us to find the medians of a triangle when the lengths 

of the sides are known. 
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Solve the following equations for x or y: 

4. ax — bx = a — b 

Combining the terms in x, (a — b)x = a — b. 
Dividing both sides by a — b,x = 1. 

5. x2-c2 = 3c2-2cx+x2 

6. x3—2ax-\rC = a-\-3ax-\-x3 

7. a2-\-ax-\-cx—ac = 0 

8. — 3rx+2 cm = — 3cx+2 rm 

9. — b2x-\-a2x= — a-\-b 

10. cx-\-ax = a2-\-c2-\-2ac 

11. 3x — ax = a2Jr9 — 6a 

12. s2xJ[-r2x—2rsx = r2 — s2 

13. (m-\-n)x-\-{m—n)x = 2m2 

14. -9(y-a)+6(2y+a) = —2(y+a) 

tie- m(my-\-n) -\-n2 = n(my-\-n) -f-m2 

$16. p(x-'p)+2pq=(x+q)q 

17. 5+3 = 1 24. 
a 2 a 

18. x_^_x_ 1 
a b ab 

£25. 

19. -*+£-: 
-b2Jra2 

26. 
a b ab 

£20. 

£
 a

 

CO
 

1 
O-
 H

 
II 6 a—8b 

12 ab 
£27. 

£21. X , , 
-—£=1+ 

1 _2 CO 
03 

•i—h 

a a2 a 

22. — a-\-b . - -a—b 
-= —a 29. 

x x 

2 x — b_ x — 2 s 
6x+s 3 x-\-b 

2 x—a x — a_a 
c d c 

cx—d. dx—c A i c—d 
dx 

^ 1 
cx cdx 

2 x-\-a —x — a 
= +- 

c c d 

x2—d j d-\-x 2x d 
cx c c X 

m  n 
x—m x—n 

23. X-x= -c-f1 
c c 

£30. 
x-\-m _m-\-n 
x—n m—n 
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Systems of Linear Equations in Two Unknowns Having 
Literal Coefficients 

464. Solve for x and y: 

a?x+b2y = a-\-b (1) 

,abx—aby = b — a (2) 

oX( 1) a3x+a 62?/= a2-f- (3) 

6X(2) afr2x — a62y = b2 — cib (4) 

(Add. Ax.) (a3+a&2) x = a2+62 (5) 

a2Jrb2 _ a2+fr2 _ 1 

a3+a62 a(a2+62) a 

Find the value of y, first by eliminating the x-terms from 

equations (1) and (2); and then by substituting x = i in equa- 
CL 

tion (2). Check your results. 

EXERCISES 

Solve each of the following; then check: 

f x+y= 1 
\ax — by = 0 

jcx-\-ny= 1 
\ax—by = 0 

2 (ax-srby = h 
\bx-\-ay = k 

1. 

2. 

4. 

5. 

6. 

icx-\-dy = 2cd 
\bx — cy = d—c 

j ax-\-by = 2ab 
{2bx-\-3ay = 2b2Jt-3a2 

[aix+biy = ci 

\ a2x+b2y = c2 

"7. 
x y n 
1_1 = 1 
x y k 

8. 

f9. 

a . b 
—b- = c 
x y 

-+-=/ 
x ?/ 

m , n , 
—+-=« 
x y 
7i . m 7 
-H— = /i 
x y 

* Equations in exercises 7, 8, and 9 are not linear in x and y, 

but in - and -. 
x y 
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The Area of the Triangle 

465. Since all plane figures formed by straight lines 

may be divided into triangles, it is important to obtain 

formulas for computing the area of a triangle from given 

parts. All other figures may then be measured by means 

of the triangle. We are acquainted with the following 

formula which gives the area of a triangle in terms of the 

base and altitude: 

Theorem: The area of a triangle is equal to one-half 

the product of the base and altitude. (§ 56). 

AABC=\b■h 

466. The area of a triangle may be expressed in terms 

of two sides and the included angle. 

For, from Fig. 383, AABC = ^b • h. 

h 
sin A =-, 

c 
Since 

it follows that h = c sin A. 

By substitution, AABC = \ be sin A. 

This may be expressed as a 

theorem as follows: 

Theorem: The area of a tri¬ 

angle is equal to one-half the prod¬ 

uct of two sides by the sine of the 

included angle. 

EXERCISES 

B 

Fig. 383 

Show that the area of an equilateral triangle of side a 

a? /— 

is equal to —V 3. 

Show that the area of a regular hexagon of side a is 

313 , 
—^a2. 
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467. Triangles inscribed in, or circumscribed about, a 

circle are frequently met. 

The areas of such triangles may be expressed in terms 

of the sides and the radius of 

the circle as follows: 

Let 0, Fig. 384, be the 

center of the inscribed circle. 

Draw OA, OB, and OC, 

dividing triangle ABC into 

three triangles whose sum is Fig. 384 
A ABC. 

Show that ACOA = §r • b 

AAOB = \r • c 

A BOC = Jr • a 

.’. AABC — (^T'fr'Tc). 

Hence, the area of a triangle is equal to the 'product 

of one-half the perimeter by the radius of the inscribed 

circle. 

It is customary to denote J(<a+b+c) by the symbol s. 

Then, AABC = rs. 

468. Theorem: The area of a triangle is equal to the 
product of the three sides divided by 

four times the radius of the circum¬ 

scribed circle. 

For, let ABC, Fig. 385, be an 

inscribed triangle. 

Draw the diameter BE. 

Join EC. 

AABC = \b*h Fig. 385 

Show ABDA co A BCE 

Then, -=£. Why? 
a 2 r 
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By substitution, A ABC = J • b • — , 

or, A ABC = 
abc 
4 r 

EXERCISES 

1. The three sides of a triangle are 14, 8, and 12. The 
diameter of the circumscribed circle is 14.1. Find the area of 
the triangle. 

2. Denoting the area of a triangle by T, then T = ^. Solve 

the equation for r. Find, in terms of T, the radius of the circle 
circumscribed about a triangle whose sides are 17, 10, and 9; 
8, 8, and 8; 15, 20, and 25. 

3. Using the facts that the area of a triangle is ^bh and ^, 

d being the diameter of the circumscribed circle, find a formula 
for the altitude to the side b in terms of the other sides and the 
diameter. 

4. The sides of a triangle are 12, 10, and 8. The area is 
39.7. Find the diameter of the circumscribed circle. 

5. The angles of a right triangle are to each other as 1:2:3 
and the altitude on the hypotenuse is 6 feet. Find the area. 

J6. Heron (1st cen. b.c.) expressed the altitude and area 
respectively, of an equilateral triangle as h=a(l—TV— uM, 
and A = a2(|-4-T1Q-). 

Calculate the errors of Heron’s expressions. 

469. The area of a triangle may be expressed in terms 

of the sides alone, thus: 
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Theorem: The area of a triangle, in terms of its sides 

is V/s(s—a)(s — b)(s — c). 

Given in triangle ABC, 

Fig. 386, the sides a, b, and c. 

To prove that the area of 

ABC is equal to 

Vs(s — a) (s — b)(s — c) • 

Proof: Area ABC = ^b • h 

This gives the area in terms of one side and the alti¬ 

tude h, which is not known. Let us now express h in 

terms of the sides and then substitute for h in equa¬ 

tion (1). 
h2 = c2-Cb-a')2. Why? (2) 

h2 = a2 — a'2. Why ? (3) 

We must next eliminate a', which is not one of the three 

sides. 

By comparison, c2— (b — a')2 = a2 — a'2. (4) 

Therefore, c2 — a2 — 62+26a' = 0. (5) 

Solving for ar, we find a' = -—, (6) 

Substituting in (3) the value of a' found in (6), we get 

h2=a2-(^w^)2 • w 

Equation (7) expresses h2 in terms of the sides a, b, 

and c. 

We could now substitute the value of h in equation 

(1) and have a formula for the area of ABC in terms of 

a, b, and c. But in order to get a more symmetrical result, 

the value of h2 in (7) will be changed inform before sub¬ 

stituting in (1). 

B 

Fig. 386 

(1) 
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The right side of equation (7), being the difference of 

two squares, may be factored thus: 

h2 = (a + b2 — c2+a2\/ b2 — c2+a2 

2b )(“ 2b ) 
Carrying out the indicated addition and subtraction 

within the parentheses, we have 

Or 

h2 = 

h2 = 

h2 = 

h2 = 

2 ab-\-b2 — c2-\-a2 2 ab — b2-\-c2 — a2 
2b ~2b * 

a2+2a6+62 —c2 c2— (a2—2ab-\-b2) 
2b 2b * 

(a+6)2 —c2 c2—(a — b)2 
2b 2b '* 

(a+6 —c)(a+6+c) (c+a — b)(c—a+6) 

2b 2b 

Why? 

Why? 

. (8) 

Let a-{-b-\-c—2s. 

Subtracting from both sides of this equation first 2c, 

then 2a and then 2b, we have 

a-\-b — c = 2s — 2c = 2(s — c) 

6+c —a = 2s —2a = 2(s —a) 

c-\-a—b = 2s — 2b = 2(s — b)j 
(9) 

Substituting (9) in (8), 

h2 = 
2(s — c) • 2s • 2(s — b) • 2(s — a) _ 

452 - 

4s • (s —a) (s — b) (s — c) 

b2 

Therefore, 

h = ^\/s(s — a)(s — b)(s — c) • Why? (10) 
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Substituting (10) in (1), 

ABC = ^b • ^Vs{s — a){s — b){s — c). 

Therefore, 

ABC= V s{s—a)(s— b){s—c) . (11)* 

EXERCISES 

1. The sides of a triangle are 3, 5, and 6. Find the area. 

Using formula (11) of § 469, 

the area = l/7 • (7 —3) (7—5) (7 —6) = V 7 • 4 • 2 • 1 =2i/14, or 7.482, 
approximately. % 

2. The sides of a triangle are 34, 20, and 18. Find the area. 

3. The sides of a triangle are 10, 6, and 8. Find the area. 

|4. The sides of a triangle are 90, 80, and 26. Find the area. 

J6. The sides of a triangle are 70, 
58, and 16. Find the area. 

470. Altitudes of a triangle. 
Denoting the altitudes of the 

triangle ABC to the sides a, b, 
A. 

and c by ha, hb, and hc, respec¬ 

tively, Fig. 387, show that 

2 / 
hb — ^Vs{s — a) (s — b) (s — c) (1) 

(See §469, formula [10].) 
0 

ha = - V s(s — a) {s — b) (s — c) 
(X 

(2) 

2 . 
hc=-Vs(s — a){s — b){s — c) . 

0 
(3) 

How can (2) and (3) be obtained from (1) by analogy ? 

* The law of formula (11) was introduced into mathematical 

texts by Heron of Alexandria in the first century b.c. 

b 
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EXERCISES 

1. In the triangle ABC, a =10, 6 = 17, c = 21. Find ha. 

s — §(a+6+c) — ^(10 + 17 +21) =24 
s—a —14, s —6 = 7, s—c = 3. 

Substitute these values in the formula, and 

1 /- 1 /fl 0 ,, wv 84 . _4 
= +4 • 9 • 4 • 49 = ^(2 • 3 • 2 • 7)=-^=165. 

2. Find the altitudes of each of the following triangles: 

(1) a = 35, 6 = 29, c= 8 

(2) a = 70, 6 = 65, c= 9 

|(3) a = 45, 6 = 40, c=13 

3. The sides of a quadrilateral are as follows: 
AB — 29, BC = 8, CD = 28, DA = 21, and the diagonal AC = 30. 
Find the area and the distance from D to AC. 

471. Area of an equilateral triangle. The area of an 

equilateral triangle is one-fourth the square of a side times 

(B — 
the square root of 3, or, in symbols, A = ^i/3 . 

The area of triangle ABC, Fig. 388, is given by the formula 

A ABC = \ah 

Fig. 388 
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EXERCISES 

1. Find the areas of the following equilateral triangles, hav¬ 
ing the side equal to 12; 10; 4; 8; c+d; 2mn. 

2. Find the side of an equilateral triangle whose area is 

25^3; 10^3. 

In proving the formula for the area of a triangle in 
terms of the sides, §469, we have factored the polynomials 
2ab-\-b2—c2-\-a2 and 2ab—62+c2—a2. 

In §472-476 we shall study further the method used 
in factoring these polynomials as well as some other fre¬ 
quently occurring polynomial forms. 

Polynomials Factored by Grouping 

472. The terms of some 'polynomials may be grouped 
to show a common binomial factor. 

1. Factor 3a4-36+5a-f-56 
Grouping the first two terms and the last two terms, 

3<z-}-3&-f-5u-f-5& =3(ci-|-&) = (ot -F&) (3 —{—5) 

Test by multiplication. 

2. Factor ac+bc+ad+bd 
ac-\-bc+ad-\-bd = c(a-\-b)+d(a-\rb) = (a+6)(c+d) 

Test by multiplication. 

3. Factor 14x3 —6x2 —21x-f-9 

14z3 - 6x2 - 21x-f 9 = 2x2 (7x - 3) - 3 (7x - 3) = (7z - 3) (2x2 - 3) 

Test by substitution and by multiplication. 
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EXERCISES 

Resolve into factors the following expressions and test 

results, doing as many as you can mentally: 

1. ax-b6x+am-f 6m 16. 9-15r+27r2-45r3 

2. ar-f-6r+as+6s 17. 8gh+12ah + 10by+15a6 

3. ad-\-bd~\~aL~\-bt 18. 15,2 — 6 — 20zw 8w 

4. 3a+36+ay-{-by 19. 2m2-}-3km — 14mn—21kn 

5. ak—bk-\-al—bl 20. 3ax+3a6+2x2-|-26x+6+x 

6. ax2—bx2-\-ayz — byz 21. 4x3+4x —4x22—42 

7. a6c-f a6x-f-nc-fme 22. l+r—r2xy—r3xy 

8. a2&+a2Z+62/b-f62Z 23. x2—x3+l— x 

9. 5au—5av-{-mu—mv 24. (a+m)(c+n) — 2n(a+m) 

10. m2a+ma2+m3a2+m2a3 25. (x-\~y)(a-f-6) — (x-\~y)(6+c) 

11. a2—ad+a6 — bd 26. m(x+?/)2+(x4-?/) 

12. x6-f 5x4-f x3-f 5x 27. a2(2a+l)2—2a—1 

13. 6x2 —9x — 10xy-\-15y 28. a—b+a2xy—b2xy 

14. 2m3-+-m2+6m+3 29. (c+'d)(c2+d2)+2c2d+2cd2 

15. 3ac+3ax — 5c—5x 30. (x+y)Kx-y)-(x-y)2(x+y) 

Reduce the following fractions to lowest terms: 

31. 

32. 

ax-f bx+am+bm 
ar-b6rd-as+6s 

Su—3v-\-au — av 
5 bu — 5 bv+2 ku—2 kv 

33. 

34. 

ax2 — bx2-fay2—by2 
mx2+my2+nx2+?i?/2 

x4—2x3+7x —14 
2x3 — 4x2+6x —12 
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473. The terms of some 'polynomials may he grouped 

to show the difference of two squares. 

EXERCISES 

Factor the following polynomials: 

1. a2—2db-\-b2 — c2 

Grouping the first three terms, a2—2a6+62 —c2 equals 

(a — b)2 — c2 = (a — b +c) (a — b — c) 

2. x2—Qxy-\-9y2—16z2 5. 1 — a2—2ab — b2 

3. 25x2Jrl6y2 —4a2-b4Cto/ 6. 9m2—a2 —4a& —462 

4. k2—x2 — 2xy—y2 7. 36r2 — 4-)-20£ — 25£2 

8. x2+2xy+i/2—a2 —2a6 —62 

9. a2+2a+26c —62—c2+l 

10. 9x2-R 16?/2 — 49a2—452-f28a&-f-2<ixy 

11. 9a2 — 12ab-\-4:b2 — lQx2—8xy — y2 

474. The terms of some polynomials can be grouped 

to show a perfect square. 

EXERCISES 

Factor the following polynomials: 

1. a2 -f- 2ab -f- b2 T- 6u -f- 66 4" 9 

Grouping the first three terms, the 4th and 5th terms, and keep¬ 
ing the last term separate, we have, 

a2-f-2a&-f &2+6a-j-66-f-9 = (a+6)2+6(a-(-5)+9 = (a-j-6+3)2 

2. m2+2mn-f-ri2+2m+2n+l 

3. m2+2mn+ft2+6am-f-6cm+9a2 

4. a2+62+c2+2a64-2ac-f-26c 
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475. The terms of some 'polynomials may he grouped 

to show a trinomial which can he factored hy the trial method. 

EXERCISES 

Factor the following: 

1. x2Jry2-\-x — 2xy — y—6 

Grouping the first, second, and fourth terms, the third and 
fifth terms, and keeping the sixth term separate, 

x2-\-y2 -\-x—2 xy—y — Q=x2 —2 xy -\-y2+x — y — Q 

= (x-y)2 + (x—y)-Q = (x-y+3)(x-y+2) 

2. a2-\-2ob-\-h2-\-3a-\-3h—10 

3. a2 — 6ab-\-%2-\-7ac — 216c—44c2 

4. m4x-\-m2x — Q5Ox 

6. 4x2+Sxy-+4?/2+13#+ 13?/+3 

6. 3c2 — Qcd+3d2 — 2c+2d — 5 

476. Some trinomials may he factored hy first changing 

them to complete squares. 

EXERCISES 

Factor the following trinomials: 

1. x4-\-x2y2-{-y4 

By adding x2y2 to the trinomial xi~\-x2y2-\-yi, it becomes a per¬ 

fect square: z4+2x2y2-\-y4. However, this changes the value of 

the trinomial. To keep the value unchanged x2y2 is subtracted from 

the trinomial. Thus, xiJrx2y2Jry4 = xi-\-2x2y2Jryi—x2y2. This may 

be written: (x2-\-y2)2 — (xy)2. This is the difference of two squares 

and its factors are (x2-\-y2+xy)(x2-{-y2 — xy). 

2. a4 — 7a2h2Jrh4 5. 25x4+31xY+16?/ 

6. a2x*-\-a2x4-{-a2 

7. 49a464—53a262a:2+4x4 

3. x4-\-x2-\-1 

4. 16x4 — 17x2y2+y‘ 
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8. 9x4— lCte2?/2-H/4 9. 4a4 — 5a262-f-64 

The difference of two squares may be obtained in exercise 9 by 
adding and subtracting either a-b2, giving 4a4—4a262 +64—a2b2, or 
by adding and subtracting 9a262, giving 4a4+4a262+64 —9a262. 

Show that both lead to the same prime factors. Show also that 

exercise 8 gives two pairs of factors that lead to the same prime factors. 

10. Factor the following trinomials by adding and subtract¬ 
ing a monomial square: 

1. rc4+4 

Add and subtract 4x2 

5. a4+32464 

6. 1024ad+?/4 

7. 8bc4-f-4?/4 

2. 4:c4+l 

3. m4+4 

4. a464+64 

477. Summary of factoring. Polynomials to be 

factored may be classified according to the number of 

terms they contain. 

I. If the polynomial is a binomial it may be of the 

following types: 

1. The difference of two squares, as x2 — y2. The 

factors are (x-\-y)(x — y). 

2. The difference of two cubes, as x3 — y3. The factors 

are (x — y){x2-\-xy-{-y2). 

3. The sum of two cubes, as x3-\-y3. The factors are 

(x+y) (x2-xy+y2). 

II. If a polynomial is a trinomial it may be of the 

following types: 

1. The perfect square, as x2=i=2xy-\-y2. The factors are 

(x=±y)2. 
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2. A trinomial which may be changed into a perfect 

square by adding a term, as x*-{-x2y2-\-y4. This is changed 

to v*-{-2x2y2-\-yi — x2y2 and is then factored as the difference 

of two squares. 

3. A trinomial of the form ax2-{-bx-\-c. Such tri¬ 

nomials may be factorable, having factors obtainable by 

the trial method. 

III. Polynomials not of any of the types in I and II 

may be factored: 

1. By dividing each term by a common factor, as 

ax-{-ay. The factors are a{x-{-y). 

2. By grouping its terms so as to change it to the form 

of one of the preceding types. Thus, ax-\-bx-\-ay-{-by 

when grouped, takes the form (ax-\-bx) + (ay-{-by). This 

equals x{a-{-b) +y(a-\-b), which is of type III, 1. 

Similarly, the polynomial x2-\-2xy-{-y2 — a2 — 2ab — b2 is 

changed to x2-{-2xy-\-y2— (a2-\-2ab-{-b2), which is of type 

I, 2. 

Miscellaneous Review of Factoring 

478. Factor the following polynomials: 

1. 26xyzJr65xy2 9. z2—x2-\-2xy—y2 

2. 7£+35£2-fT4x3 10. a2 — 8ab-\-15b2 

3. 32 — 16a+1862—962a 11. m2—4tmn — 77n2 

4. m2-{-\mn—4mp — 3np 12. 343a3+12563 

5. 121m2?i2—64p252 13. a6+4a—36 —12 

6. 81 xY-z4 14. x2-{-22x-\-12l 

7. 32mn4— 162m 15. xi-{-x2—x — 1 

8. 16z2-f-49?/2 — 5Qxy 16. (m—n)2—ll(m—n) —12 
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17. a:3 —343 26. 64—a:6 

18. 5a+6a2+l 

19. 56 — 15a+a2 

26. 9x2-j- 24xy +16z/2 

27. 362-145a+8a2 

28. 3m2+4(2m+l) 20. a+/2+30:n/+104 

21. 8x2y2z2-18z4 

22. 8x9+729 

29. x2-\-y2-\-2xy—a2 — b2—2ah 

30. m2-\-t2-\-2mt—x2—y2 — 2xy 

31. 25a4 —26a252+54 (2 pairs) 

32. 4x4— 13x2?/2+9?/4 (2 pairs) 

23. a6+25a3+24 

24. m8—38m4+105 

Summary 

479. The following theorems were proved in this 

chapter: 

1. Parallelograms having equal bases and equal altitudes 

are equal. 

2. A parallelogram is equal to a rectangle having the 

same base and altitude. 

3. A triangle is equal to one-half a parallelogram having 

the same base and altitude. 

4. The square on the hypotenuse of a right triangle is 

equal to the sum of the squares on the sides including the 

right angle. 

5. In a triangle the sum of the squares of two sides is 

equal to twice the square of one-half of the third side increased 

by twice the square of the median to the third side. 

6. The area of a triangle is equal to one-half the product 

of the base and altitude, 

A = ^b • h. 
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7. The area of a triangle is equal to one-half the product 

of two sides by the sine of the included angle, 

A = l2ab sin C. 

8. The area of a triangle is equal to one-half the perim¬ 

eter times the radius of the inscribed circle, 

A = \p ■ r. 

9. The area of a triangle is equal to the product of the 

three sides divided by four times the radius of the circum¬ 

scribed circle, 
abc 

10. The area of a triangle is equal to 

A = 1 s(s—a)(s—b)(s — c). 

11. The area of an equilateral triangle is one-fourth the 

square of a side times the square root of 3 

480. The chapter has given drill in solving literal 
equations in one and two unknowns and in factoring poly¬ 
nomials. 



CHAPTER XIX 

AREAS OF POLYGONS. AREA OF THE CIRCLE. 
PROPORTIONALITY OF AREAS 

Areas of Polygons 

481. Area of the rectangle. The rectangle is the 

fundamental figure by which the areas of all other recti¬ 

linear figures are measured. In the first-year course we 

have seen that the area of the rectangle is given by the 

formula 
S = b • h 

S denoting the area, b the base, and h the altitude. In the 

form of a theorem this is stated as follows: 

The area of a rectangle is equal to the product of the base 

by the altitude. 

The formula, S = b • h, which was shown to hold foi 

rational values of b and h, is also true when b and h are 

irrational. This may be shown as follows: 

Let b = V 12 = 3.464101.and h = V 27 = 5.196152. 

Then the following table gives the areas of rectangles, 

the lengths of whose sides vary, being approximations 

Rectangle b h S = b • h 

I. 3.464 5.196 17.998944 

II. 3.4641 5.1961 17.99981001 

Ill. 3.46410 5.19615 17.999983215 

IV. 3.464101 5.196152 17.999995339352 

of ]/l2 and V27 to three, four, five, and six decimal 

places and, therefore, rational numbers. Hence, the 

formula S = b • h may be applied in each case. 

322 
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It is seen from the table that the difference between 18 
and the several areas, I, II, III, and IV decreases, being . 

less than .002, .0002, .00002, .000005, respectively. By 

taking b and h to a greater number of decimal places, this 

difference will continue to decrease, in fact it can be made 

less than any assigned number, however small. The area 

is accordingly said to approach 18 as a limit. The same 

result is obtained by applying the formula 

S = b ■ h = 1/I2 • i/ 27 = v/22 • 3 • 33 = 18. 

B 

482. Theorem: The area of a parallelogram is equal 

to the product of the base and altitude. Prove. Use § 460. 

483. Theorem: The area of a trapezoid is equal to 

one-half the product of the altitude by the sum of the bases. 

Prove (see Fig. 389). 

Show that the area of a 

trapezoid is equal to the prod¬ 

uct of the altitude by the 

median (see § 161). 

484. Theorem: The area of a 

regular inscribed' polygon is equal to 

the product of one-half of the perim¬ 

eter and the perpendicular from the 

center to the side (apothem). 

Draw AO, BO.., Fig. 390. 

Denote the length of a side of 

the polygon by a, the perpendicular 

from the center to the side by h, 
the number of sides by n. -l 

Then, A AOB=^, 

Fig. 389 

E 

~ic 

ABOC = ”, etc. Why ? 

ABCD...= 
nah p • h 

Why? 
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485. Theorem: The area of a regular circumscribed 

. polygon is equal to the product of one-half the perimeter and 

the radius. 

1. Express in terms of the radius the areas of the inscribed 
and circumscribed squares (see exercises 1, 2, § 440). 

2. The area of a square is 16 square centimeters. Find 
the diameters of the inscribed and circumscribed circles. 

3. Prove that the area of the equilateral inscribed triangle 

is Ar2-/ 3 (see exercise 9, § 441). 

Thus, the area of the equilateral inscribed triangle varies as 

the square of the radius. Give reason. 

4. Prove that the area of the circumscribed equilateral 
triangle is 3r2^3 . 

Show that the area varies as the square of the radius. Show 
that the area is a function of the radius. Sketch freehand, without 

plotting points, the graph of this function. 

5. Prove that the area of the regular inscribed hexagon is 

fr2V3. 

6. Prove that the area of the circumscribed regular hexagon 

is 2r2v/ 3 . 

7. Find the area of a regular hexagon whose side is 6 inches. 

8. The radius of a circle is 10. Find the area of the inscribed 
regular hexagon. 
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9. The diameter of a circle is 8. Find the area of the regular 
inscribed hexagon. 

10. Prove that in the same circle the area of the regular 
inscribed hexagon is twice as Targe as that of the equilateral 
inscribed triangle. 

486. Area of any polygon. The areas of polygons 

may be found by dividing the polygons into triangles, as 

in Fig. 392, or into triangles and trapezoids, as in Fig. 393. 

Area of the Circle 

c 

487. If the midpoints of the arcs subtended by the 

sides of a given regular inscribed polygon, as triangle 

ABC, Fig. 394, are joined to the 

adjacent vertices of the polygon, 

a regular inscribed polygon, 

AFBECD, is formed having twice 

as many sides as the given polygon 

(see §436). 

The perimeter of the second 

polygon is greater than that of the 

first. Why? 

If the process of doubling the 

number of sides is continued, the perimeter increases as 

the number of sides increases. It can be made to differ 

from the length of the circle by less than any quantity, 

however small. The perimeter is said to approach the 

circle as a limit. 

Fig. 394 
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The apothem OX approaches the radius as a limit. 

The area of the polygon approaches the area of the 

circle as a limit. 

D H 

488. If tangents are drawn at the midpoints of the 

arcs terminated by consecutive points of contact of the 

sides of a given regular circum¬ 

scribed polygon, as ABCD, Fig. 395, 

a regular circumscribed polygon, as 

EFGHIKLM is formed having 

twice as many sides as the given 

polygon (see §438). 

The perimeter of the second 

polygon is less than that of the 

first. Why ? 

If the process of doubling the 

number of sides is continued, the perimeter decreases as 

the number of sides increases. It can be made to differ 

from the length of the circle by less than any quantity, 

however small, thus approaching the circle as a limit. 

The area of the polygon approaches the area of the 

circle as a limit. 

489. According to §§487 and 488, the area of the 

circle is the common limit approached by the areas of 

the inscribed and circumscribed regular polygons, as the 

number of sides increases indefinitely. 

These areas are given by the formulas: 

~ and respectively (see §§ 484, 485). 

As the number of sides of the polygons is increased 
7)h c • 

indefinitely, — approaches 
Z z 

pfoaches c, and h approaches r. 

r 

as a limit, for p ap- 

Pr , c 
— approaches — as a limit, for P approaches c. 



POLYGONS. CIRCLES. PROPORTIONALITY 327 

Hence, the common limiting value, , expresses the 

area of the circle. 

In words, this may be stated as follows: 

Theorem: The area of a circle is one-half the 'product 

of the length of the circle and the radius, i.e.; area of circle 
is given by 

* 

Since, c = 2ttv, it follows that the area of a circle is 
given by 

tv r2. 

Show that the area of a circle is a function of the radius 

and sketch the graph of this function. 

490. Theorem: The area of a sector of a circle is equal 

to one-half the product of the radius and the length of the 

arc of the sector. 

We have seen in § 297 that central angles have the 

same measure as the intercepted arcs and that two central 

angles are to each other as the intercepted arcs (§ 297, 

exercise 8). 

Hence, 
a 

b 
Fig. 396. 

Similarly, we may show that equal 

central angles include equal sectors and 

that two sectors are to each other as their 

central angles. 

Hence, 
a _ A 

b~~B 
Fig. 396 

* A proof of the theorem is not attempted, as this is considered 

beyond the province of secondary-school work. 
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Denote by a the number of degrees in a central 

angle, and consider the circle as an arc whose central 

angle is 360°. 

° ~ .. (A) Then, 
a , , tt ra 

360~2Vr’ and a —180 

Similarly* 

A = 

A_ 
7JT2 

tt r2a 

a 

360 

or 

360 

1 
2 

i 

■nra 

180 

Why? 

Why? 

A = -,a (B) 

c 

491. Area of a segment. The area of a segment 

ACB, Fig. 397, may be found by sub¬ 

tracting the area of triangle, AOB, from 

the area of the sector, AOBC, the area 

of triangle A OB being computed by 

means of the formula T = ^r2 sin 0, 

§ 466; or, by T = ^a yjr2-j , § 233. 

Hence the area of a segment is given 

by the following formulas: 

(1) S = ^a'r—^r2 sin X, where X is the central 

angle subtended by the chord a. 

aA 

Or by (2) S = %a'r-%a aJt2-~ • 

Where a is the length of the chord, a' the length of 

the arc, and r the radius of the circle. 

EXERCISES 

1. The area of a circle is 64. Find the diameter and 
length. 

2. Find the diameter of a circle whose area is 1 square inch; 
1 square foot; 1 square yard. 
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3. What is the area of the ring formed by two concentric 
circles, Fig. 398, whose radii are 5 inches and 
6 inches, respectively; a inches and b inches, 
respectively ? 

4. The length of a circle is 50 inches. What 
is the area ? 

5. The area of a circle is 616 square inches. 
How many degrees are there in an angle at the center that 
intercepts an arc 11 inches long? 

6. The radius of a circle is 100 feet. The length of the arc 
of a sector is 25 feet. Find the area of the sector. 

Use formula, (R), § 490. 

7. The radius of a sector is 9 inches, its area is 72 square 
inches. Find the length of the arc. 

8. The area of a sector is a square foot, and the radius is r feet 
long. Find the length of the arc. 

9. The radius of a circle is 8 inches. Find the area of a sector 
with arc 36°. 

Make use of the fact that the area of the sector is rV of the area 

of the circle. 

10. Find the area of the segment whose arc is 36° in a circle 
of radius 12 inches. 

When finding the area of the triangle notice that the base of the 

triangle is the side of a regular 10-side, exercise 5, § 443, or use 

the formula \ab sin C. 

11. Find the area of a segment of arc 72°, in a circle of 

radius 20. 

12. The area of a circle is 15,400 square inches. Find the area 

of a segment whose arc is 60°. 

Fig. 398 
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Proportionality of Areas 

The proofs of the theorems in §§492-496 are very 

simple and are left to the student. 

492. Theorem: Two 'parallelograms are to each other 

as the products of their bases and altitudes, i.e., ^ 
P' b'h' 

493. Theorem: Two parallelograms having equal bases 

Pi hi 
are to each other as the altitudes, i.e., ^ = • 

P 2 Al2 

By alternation, = 
J ’ hi h2 

Thus, if the base of a parallelogram remains fixed and if the 
altitude varies continuously, taking successive values hi, h2, 
hs,., etc., P takes the corresponding values Pi, P2, 

p 
P3,., etc. However, remains constant, i.e., 

Pl = P2 = P3 
hi hi h3 

, etc. 

Denoting this constant ratio by b, we have Pi = bhx, P2=bh2, 
P3 = bhz, etc. Show that P is a function of h. Without plotting 
points, sketch the graph of this function. 

Hence, P is directly proportional to h, or P varies directly 
as h if the base b remains constant. 

494. Theorem: Two triangles are to each other as the 

products of the bases and altitudes. 

495. Theorem: Areas of triangles having equal bases 

are to each other as the altitudes. 

496. Theorem: Areas of triangles having equal alti¬ 

tudes are to each other as the bases. 
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EXERCISES 

1. Show that the area of a triangle having a fixed base varies 
T 

directly as the altitude, i.e., show that remains constant, as h 
varies. 

2. Show that the area of an equilateral triangle varies 
directly as the square of the side. 

3. Show that the area of a circle varies directly as the square 
of the radius. 

497. Theorem: The areas of two triangles that have 

an angle in one equal to an angle in the other are to each 

other as the products of the sides including the equal angles. 

Given AABC and A'B'C' having C = C\ Fig. 399. 

_ T ab 
To prove that =—rr, • 

r T ab 

Fig. 399 

Proof: T = \ab sin C. Why? 

V = \aV sin C'. Why ? 

T _ ab 

r~a/b'' 
Why? 

EXERCISES 

1. Two triangles have an angle in each equal. The includ¬ 
ing sides of one are 48 and 75, those of the other triangle are 
and 45 and 70. Find the relative areas of the triangles. 

2. Two sides of a triangular building are 150 ft. and 130 
feet. What part of the whole building is included by 50 ft, 
on the first side and 30 ft. on the second ? 
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3. A triangular lot extends 60 ft. and 80 ft. on two sides 
from a corner. If a building is to front 50 ft. on the first side, 
how many feet on the second side should it occupy to cover 
§ of the lot ? 

4. Two sides, a and b, of a triangle are 9 and 15 respectively. 
Show where a line going through a point on a and 5 units from 
the common vertex of a and b must intersect the side b to bisect 
the surface of the triangle. 

498. Theorem: The areas of similar triangles are to 

each other as the squares of the homologous sides. 

Fig. 400 

Show that ‘ W’ Fig’ 40°* 

h = b 

h' b' ‘ 

Tf=b b 

r b'' F * 

jr = 52 

T' F2 * 

Why? 

EXERCISES 

1. The side of a triangle is 10 inches. Find the correspond¬ 
ing side of a similar triangle having twice the area. 

2. Two similar triangles have two homologous sides 5 and 
15 respectively. What is the ratio of the areas ? 

3. Bisect the surface of a triangle by a line drawn from a 
vertex to the opposite side. 
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499. Theorem: The areas of similar polygons are to 

each other as the squares of the homologous sides. 

Given polygon ABC.<*> polygon A'B'C'. 

(Fig. 401). Let P denote the area of ABC.and 

P' denote the area of A'B'C'. 

P d2 
To prove ^57-=^. 

C’ 

Proof: Divide ABC.and A'B'C'.into 

triangles I, II, III, etc., and I', II', III', etc., respectively, 

by drawing diagonals from homologous vertices as B 

and B'. 

Then J <*> I', II ^ IP, etc. Why? 

I c2 II d2 

•• r c'2’ir d'2. 
., etc. Why ? 

c2 d2 
Show that -^ = -775. 

c2 d 2 
.., etc.’ Why ? 

I II III 

" I' IP IIP'" 
..., etc. Why ? 

/ + // + ///+ . 

* ‘ P+IP+IIP+ . 

II d2 
(§498). 
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EXERCISES 

1. Two homologous sides of two similar triangles are 5 and 
8. The area of the first is 150. Find the area of the second. 

2. If one square is 9 times as large as another, what is the 
relative length of the homologous sides ? 

3. The area of a polygon is 6j times the area of a similar 
polygon. A side of the smaller is 4 feet. Find the length of the 
homologous side of the larger. 

4. Show that if equilateral triangles are constructed on the 
sides of a right triangle, the triangle on the hypotenuse is equal 
to the sum of the triangles on the other two sides. 

6. Show that if semicircles are drawn on the sides of a right 
triangle, the area of the semicircle on the hypotenuse is equal 
to the sum of the areas of the semicircles 
on the two sides of the right angle. 

J6. Semicircles are drawn on the sides 
of a right triangle, Fig. 402. Show that 
the sum of the areas of lunes I and II is 
equal to the area of the right triangle 
(theorem of Hippocrates, 430 b.c.). 

7. Similar polygons, Pi, P2, and P3, 
are drawn on the sides of a right triangle 
as homologous sides, Fig. 403. Prove 
that P3, the area of the polygon on the 
hypotenuse, is equal to the sum of Pi 
and P2. 

Pi _a2 

Pz~c2’ 

P2J)2 

Pz c2 

Pi+P2_a2+62 
“pT^_ c2 ' 

(Pi+P2)e2 = P3(a2+52). 

P1-h P2= P3« 

Why? 

Why? 

Proof: 

Why ? 

Why? 

Why? 
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8. The homologous sides of similar hexagons are 9 in. and 

12 in., respectively. Find the homologous side of a similar 

hexagon equal,to their sum. 

500. Theorem: The areas of two circles are to each 

other as the squares of the radii, or as the squares of the 

diameters. 
EXERCISES 

1. What is the ratio of the areas of two circles whose radii 

are 5 in. and 10 inches ? 

2. The areas of two circles are in the ratio 2 to 4. What is 

the ratio of the diameters? 

3. The radii of two circles are to each other as 3:5, and their 

combined area is 3850. Find the radii of the two circles. 

4. The radii of two circles are to each other as 7:24, and the 

radius of a circle whose area is equal to their sum is 50. Find 

the radii of the first two circles. 

Problems of Construction 

501. Make the following constructions. 

1. Construct a square 

equal to the sum of two or 

more given squares. 

Given x, y, z, w, the sides 

of given squares. 
Required to construct a 

square equal to the sum of the 

given squares. Fig. 404 suggests 

the construction. 

Prove that 

c2 = x2+y2+z2+w2. 

2. Construct a square equal to four times a given square. 

Fig. 404 



336 SECOND-YEAR MATHEMATICS 

3. Construct the square root of an 

integral number. 

Make the construction, Fig. 405, on 
squared paper. 

Measure AC, AD, AE, AF and check by 
extracting the square roots of 2, 3, 4, 5. 

4. Transform a polygon into a triangle 

equal to it. 

Fig. 405 

Draw the diagonal AD, 
Fig. 406. 

Through E draw EF || AD 
intersecting the extension of 

AB in F. 
Draw DF and show that 

A DFA = A DEA. 
Show that FBCD is equal 

to ABODE. 
This reduces the pentagon the equivalent quadrilateral FBCD. 

Draw the diagonal DB. 
Draw CG || DB. 
Draw DG. 
Show ADCB = ADGB. 
Show that FBCD = AFGD, which is the required triangle. 

ABODE = AFGD. Why? 

5. Draw a square equal to a given triangle. 

Analysis: Since the area of the triangle is \bh and since the area 
of the square is a2, we must have a2 = ^bh, where b and h are known, 
and a unknown. Hence, the problem reduces to constructing the 

mean proportional between ^b and h. 

Construction: On AB, Fig. 407, lay off AC — \b and CD = h. 
Draw CE A AD. 
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Draw the semicircle on AD. 
Draw a square on CE as a side. This is the required square. 
Prove. 

6. Explain how to draw a square equal to a given polygon. 

MISCELLANEOUS PROBLEMS AND EXERCISES 

J502. Solve the following problems and exercises: 

1. Bisect a parallelogram by a line drawn through a point 
on its perimeter. 

2. Construct an equilateral triangle equivalent to a given 
triangle. 

1. Transform the given triangle into an equal triangle having 
one angle 60°. 

2. To determine the length of the side of the equilateral triangle, 
apply the theorem—two triangles having an angle in each equal 
are to each other as the products of the sides including the equal 
angles. 

3. The base of a triangle is 18 feet. Find the length of a line 
parallel to the base which bisects the triangle. 

4. A line parallel to the base of a triangle cuts off a triangle 
equal to J of it. If one side of the triangle is 12, how far from 
the vertex does the line cut it ? 

5. Draw through a vertex of a triangle lines dividing it: 

(1) Into two parts one of which shall be (a) f, (6) (c) of 

the other. 

(2) Into three parts in the 
ratio of 2:3:4. 

6. To bisect the surface of 
a triangle by a line through a 
given point P on the perimeter 
not at the vertex of an angle 
(see Fig. 408). 

A 

Draw the median BM, also PM, BD || PM, and PD. 
Then, APMD = APMB. Why ? 

AADP = AAMB = ABMC = PDCB. Why? 
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7. The sides of a triangle are 17, 10, and 9. The altitude 

of a similar triangle upon the side homologous to the side 10 in 

the given triangle is 14|. Find all the sides of the second tri¬ 

angle. 

8. The side of a square (or of any polygon, or the radius of a 

circle) is a. Find the side (or radius) of a similar figure k times 

as large. 

9. The radii of two circles are 25 and 24. Find the radius of 

a circle equivalent to their difference. 

10. The area of one of three circles is equal to the sum of the 

other two, and their radii are x, x—7, £+1. Find x. 

11. The difference of two circles whose diameters are s+2 

and x is equivalent to a circle whose diameter is s —7. Find x. 

12. The area of a rectangle is 60 and diagonal is 13. Find its 

dimensions. 

13. The perimeter of a rectangle is 46 and the area is 120. 

Find its dimensions. 

14. The perimeter of a rectangle is 62 and the diagonal is 

25. Find its area. 

15. The altitude and base of a rectangle are in the ratio 

of 8 to 15 and the diagonal is 34 feet. Find the area. 

16. The dimensions of a rectangle are in the ratio of 2ab 

to a?—b2, and the diagonal is a2c2+62c2. Find the area. 

17. Compute the altitude upon the hypotenuse of the right 

triangle ABC in terms of the sides of the right angle. 

18. The diagonals of a rhombus are 2x —14 and 2x, and a 

sideisx+1. Finds. 

19. The homologous sides of two similar hexagons are 9 in. 

and 12 in. respectively. Find the homologous side of a 

similar hexagon (1) equal to their sum; (2) equal to then* 

difference. 
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Summary 

503. The following theorems have been proved in 

the chapter. 

1. The area of a rectangle is equal to the product of the 

base and the altitude. 

2. The area of a parallelogram is equal to the product 

of the base and the altitude. 

3. The area of a trapezoid is equal to one-half the prod¬ 

uct of the altitude by the sum of the bases. 

4. The area of a regular inscribed polygon is equal to the 

product of one-half the perimeter and the apothem. 

5. The area of a regular circumscribed polygon is equal 

to the product of one-half the perimeter and the radius. 

6. The area of a circle is one-half the product of the length 

of the circle and the radius, i.e., A=^cr. 

7. The area of a circle is given by the formula A — tty2. 

8. The area of a sector is given by the formula A = ^arr. 

9. The area of a segment of a circle is given by the 

or 

A = \a!r—\r2 sin X. 

10. Two parallelograms are to each other as the products 

of the bases and altitudes. 

11. Two parallelograms having equal bases are to each 

other as the altitudes. 

12. Two triangles are to each other as the products of the 

bases and altitudes. 
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13. Areas of triangles having equal bases {altitudes) are 

to each other as the altitudes (bases). 

14. The areas of two triangles having an angle in one 

equal to an angle in the other are to each other as the products 

of the sides including the equal angles. 

15. The areas of similar triangles are to each other as the 

squares of the homologous sides. 

16. The areas of similar polygons are to each other as the 

squares of the homologous sides. 

17. The areas of two circles are to each other as the squares 

of the radii. 

504. The following problems of construction were 

taught: 

1. Construct a square equal to the sum of two or 

more given squares. 

2. Construct the square root of an integral number. 

3. Transform a polygon into a triangle. 

4. Draw a square equal to a given triangle. 
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TABLE OF SINES, COSINES, AND TANGENTS OF 
ANGLES FROM l°-89° 

Sine Cosine Tangent Angle Sine Cosine Tangent 

•0175 .9998 •0175 46° • 7*93 .6947 1-°355 
•0349 •9994 •0349 47 •7314 .6820 I.0724 
•0523 .9986 .0524 48 •7431 .6691 I.1106 
.0698 .9976 .0699 49 •7547 .6561 I-I504 
.0872 .9962 .0875 50 . 7660 .6428 I .1918 

.1045 •9945 .1051 5i .7771 .6293 I.2349 

. 1219 •9925 .1228 52 . 7880 •6i57 I.2799 

.1392 •9903 .1405 53 . 7986 .6018 I.3270 

.1564 •9877 .1584 54 .8090 .5878 I-3764 
•1736 .9848 -1763 55 .8192 •5736 I.4281 

. 1908 .9816 .1944 56 .8290 •5592 I.4826 

. 2079 .9781 .2126 57 •8387 • 5446 1-5399 

.2250 •9744 •2309 58 .8480 •5299 1.6003 

.2419 •9703 •2493 59 •8572 •5I5° 1.6643 

.2588 •9659 . 2679 60 .8660 .5000 1.7321 

.2756 .9613 

vO
 

CO
 

01 61 .8746 .4848 1.8040 
.2924 •9563 •3057 62 .8829 •4695 1.8807 

•3°9° •95ii •3249 63 .8910 •4540 1.9626 
•3256 •9455 • -3443 64 .8988 •4384 2.0503 
.3420 •9397 .3640 65 .9063 .4226 2■1445 

•3584 •9336 •3839 66 •9I35 .4067 2.2460 
•3746 .9272 .4040 67 •9205 •3907 2-3559 
•39°7 .9205 •4245 68 .9272 . -3746 2-4751 
.4067 •9I35 •4452 69 •9336 •3584 2.6051 
.4226 .9063 .4663 70 •9397 .3420 2-7475 

• 4384 .8988 •4877 7i •9455 •3256 2.9042 
•4540 .8910 •5095 72 •9511 .3090 3.0777 

.4695 .8829 •53I7 73 •9563 . 2924 3.2709 

. 4848 .8746 •5543 74 •96i3 .2756 3-4874 

.5000 .8660 •5774 75 •9659 .2588 3-7321 

•5i5o •8572 .6009 76 •97°3 .2419 4.0108 

•5299 .8480 .6249 77 •9744 .2250 4•33I5 
• 5446 •8387 .6494 78 .9781 .2079 4.7046 
•5592 .8290 •6745 79 .9816 . 1908 5.1446 
•5736 .8192 . 7002 80 .9848 -1736 5-6713 

.5878 .8090 .7265 81 •9877 .1564 6.3138 

.6018 .7986 •7536 82 •9903 .1392 7 • I]C54 
•6i57 .7880 •7813 83 •9925 . 1219 8.1443 
.6293 •7771 .8098 84 •9945 .1045 9•5I44 
.6428 .7660 .8391 85 .9962 .0872 11.4301 

.6561 •7547 .8693 86 .9976 .0698 14.3006 

.6691 •7431 .9004 87 .9986 •0523 19.0811 

.6820 • 73I4 •9325 88 •9994 •0349 28.6363 

.6947 •7i93 •9657 89 •9998 •0175 57.2900 

.7071 .7071 1.0000 

341 



TABLE OF POWERS AND ROOTS 

No. Squares Cubes Square 
Roots 

Cube 
Roots No. Squares Cubes 

Square 
Roots 

Cube 
Roots 

I I I 1.000 1.000 51 2,601 132,651 7.141 3.708 
2 4 8 1.414 I.259 52 2,704 140,608 7.211 3-732 
3 9 27 I.732 I.442 53 2,809 148,877 7.280 3-756 
4 16 64 2.000 I-587 54 2,916 157,464 7-348 3-779 
5 25 125 2.236 I.709 55 3,025 166,375 7.416 3.802 
6 36 216 2-449 1.817 56 3A36 175,616 7-483 3-825 
7 49 343 2.645 1.912 57 3,249 185,193 7-549 3.848 
8 64 512 2.828 2.000 58 3,364 195,112 7-6i5 3.870 
9 81 729 3.000 2.080 59 3,48i 205,379 7.681 3.892 

IO 100 1,000 3i62 2.154 60 3,600 216,000 7-745 3-914 
ii 121 L33I 3-3I6 2.223 61 3,721 226,981 7.810 3 936 
12 144 1,728 3 464 2.289 62 3,844 238,328 7.874 3-957 
13 169 2,197 3-605 2-351 63 3,969 250,047 7-937 3-979 
14 196 2,744 3-741 2.4IO 64 4,096 262,144 8.000 4.000 
15 225 3,375 3.872 2.466 65 4,225 

4,356 
274,625 8.062 4.020 

16 256 4,096 4.000 2.519 66 287,496 8.124 4.041 
17 289 4,9I3 4123 2.571 67 4,489 300,763 8.185 4.061 
18 324 5,832 4.242 2.620 68 4,624 314,432 8.246 4.081 
19 361 6,859 4-358 2.668 69 4,761 328,509 8.306 4.101 
20 400 8,000 4.472 2.714 70 4,900 343,ooo 8.366 4.121 
21 441 9,261 

10,648 
4.582 2.758 7i 5,041 357,9H 8.426 4.140 

22 484 4.690 2.802 72 5,184 373,248 8.485 4.160 
23 529 12,167 

13,824 
4-795 2.843 73 5,329 389,017 8 • 544 4.179 

24 576 4.898 2.884 74 5,476 405,224 8.602 4.198 
25 625 15,625 5-ooo 2.924 75 5,625 421,875 8.660 4.217 
26 676 17,576 5-099 2.962 76 5,776 438,976 8.717 4-235 
27 729 19,683 5.196 3.000 77 5,929 456,533 8-774 4-254 
28 784 21,952 5-291 3-036 78 6,084 474,552 8.831 4.272 
29 841 24,389 5-385 3.072 79 6,241 493,039 8.888 4.290 

30 900 27,000 5-477 3.107 80 6,400 512,000 8-944 4.308 

31 961 29,791 5-567 3 • I4I 81 6,561 531,441 9.000 4.326 
32 1,024 32,768 5-656 3-174 82 6,724 55L368 9-055 4-344 
33 1,089 35,937 5-744 3.207 83 6,889 57L787 9. no 4.362 
34 1,156 39,304 5-830 3-239 84 7.056 592,704 9- i65 4-379 
35 1,225 42,875 5.916 3.271 85 7,225 614,125 9.219 4-396 
36 1,296 46,656 6.000 3-301 86 7,396 636,056 9-273 4.414 
37 1,369 50,653 6.082 3-332 87 7,569 658,503 9-327 4 • 431 
38 L444 54,872 6.164 3-36i 88 7,744 681,472 9.380 4-447 
39 L52I 59,319 6.244 3-391 89 7,921 704,969 9-433 4.464 

40 1,600 64,000 6.324 3-419 90 8,100 729,000 9.486 4.481 

4i 1,681 68,921 6.403 3-448 9i 8,281 753,571 9-539 4-497 
42 1,764 74,088 6.480 3-476 92 8,464 778,688 9-591 4-514 
43 1,849 79,507 6-557 3-503 93 8,649 804,357 9-643 4-530 
44 i,936 85,184 6.633 3-530 94 8,836 830,584 9-695 4-546 
45 2,025 91,125 

97,336 
6.708 3-556 95 9,025 857,375 9.746 4.562 

46 2,116 6.782 3-583 96 9,216 884,736 9-797 4-578 
47 2,209 103,823 6.855 3.608 97 9,409 912,673 9.848 4-594 
48 2,304 110,592 6.928 3-634 98 9,604 941,192 9.899 4.610 
49 2,401 117,649 7.000 3-659 99 9,801 970,299 9-949 4.626 

50 2,500 125,000 7.071 3.684 100 10,000 1,000,000 10.000 4.641 



SYMBOLS 

= equals, equals, is equal to 

> is greater than 

< is ^ess than 

|| parallel, is parallel to 

-L perpendicular, is perpen¬ 
dicular to 

c/d similar, is similar to 

= congruent, is congruent to 
Z angle 

A angles 

□ parallelogram 

□ rectangle 

O circle 

(s) circles 

hence, therefore. 

V since 

= identical, is identical to 

= approaches 

-f- plus 

— minus 

does not equal 

rt / right angle 

A triangle 

A triangles 

^ arc 

FORMULAS 

a2-\-b2=c2: relation between the sides of a right triangle. 

a2+b2=*=2ab' = c2: relations between the sides of an oblique 

triangle. 
c = 2ttv = nd: length of a circle. 

b-h: area of a parallelogram, of rectangle. 

a2: area of a square. 

ibh, \ab sin C, |r(a+6+c), 4/J, ^s(s—a) (s—b)(s—c): 

area of a triangle. 

ia2V3: area of an equilateral triangle. 

hm=\h{b-\-b'): area of a trapezoid. 
area of a regular inscribed polygon. 

\p-r: area of a regular circumscribed polygon. 

§cr = 7ir2: area of a circle. 

sin A = - , cos A = ^, tan A = ^, sin2A+cos2A = 1, tan A = 
sin A 

cos A 
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• INDEX 

Addition and subtraction, 

195-197 

Ahmes. 204,451 

Algebraic method. 90 

Alternation. 192 

Altitude of triangle.470 

Analysis: method of. 112 

proof by. 113 

Angle: central. 297 

inscribed. 295 

measure of. 297, 298 

Angles: exterior. 89 

interior. 88 

of parallelogram... 120,121 

Antecedent. 194 

Antipho. 452 

Apollonius. 290 

Apothem. 484 

Approximate measure¬ 

ment . 257 

Arc: intercepted. 294 

major, minor. 276 

subtended.282 

Arch, Gothic. 274 

Archimedes. .160, 238, 290, 451 

Archytas. 204, 249 

Areas: comparison of.... 459 

of circle.489 
of parallelogram. 482 

of rectangle.481 

465 
regular inscribed 

polygon. 484 

of regular circumscribed 
polygon. 485 

of segment of circle. ... 491 

of sector of circle. 490 

Assumptions, list of. . . . 1-79 

Cardan. 238 

Center of gravity.415 

Central angle. 297 

Chord.  279 

subtending. 282 

Circle: length of. 450 

sector of. 489 

segment of. 299 

Circles: tangent.288 

axis of. 390 

poles of. 390 
Circular motion. 302 

Circumcenter. 420 

Circumscribed polygon... 433 

Commensurable, magni¬ 

tudes. 164 

Comparison. 101 

Compasses, proportional. 158 

Complex fractions. 328 

Concentric circles.275 

Conclusion. 80 

[References are to sections, not to pagesl 

of triangle.. .. 
of 
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[References are to sections, not to pages] 

Concurrent lines. 416 

Conditions: for congruent 

triangles. 215 

for similar triangles.... 216 

Congruent triangles, con¬ 

ditions for. 215 

Consequent. 194 

Converse: of a theorem.. 114 

proof of. 115 

Cosine of angle. 248 

Diagonal scale. 158 

Diedral angle. 144, 380 

plane angle of. 146 

size of. 145 

Diedral angles, classifica¬ 

tion of. 147 

Direct variation. 200 

Distance: polar. 393 

spherical. 391 

Division of line-segments: 

external. 171,176 

harmonic. 173 

internal. 176 

in mean and extreme 

ratio. 316 

Eclipse, lunar. 303 

Elimination. 97 

by addition or subtrac¬ 

tion . 98 

Equations: literal. 464 

in two unknowns. 97 

quadratic. 131 

Euclid, Elements of 204,238 

Eudoxus. Ill, 204, 452 

Euler.426 

Excenter.425 

Exterior angles, sum of.. 89 
Factoring. . . 189-190, 472-478 

Fallacies, geometrical.... 77 

Fermat, Pierre de.234 

Feuerbach. 426 

Fourth proportional. 174 

Fractions. 320-328 

complex.328 

Fractional equations. 329 

Functions, trigonometric. 251 

Gauss, Carl Friedrich... . 444 

Geometrical fallacies.... 77 

Gothic arch. 274 

Graphical method of solu- i 

tion. 99 

Gravity, center of. 415 

Great circle of sphere.. . . 390 

Harmonic divisions. 173 

Heron of Alexandria 238, 290 

Hippocrates of Chios, 111, 452 

Historical notes, 85, 100, 111 

112, 161, 163, 172, 234, 238, 

248, 276, 290, 299, 301, 364, 

426, 444, 452, 463, 469 

Homologous parts. 213 

Hypothesis. 80 

Incenter. 424 

Incommensurable, case.. 166 

magnitudes. 165 

Inequalities, axioms of.. 338 

problems of. 339 
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[References are to sections, not to pages] 

Indirect method of proof. 109 

Inductive method. 87 

Inscribed angle. 295 

measurement of. 298 

Inscribed polygon. 432 

Interest problems. 332 

Interior angles, sum of. . 88 

Inversion.,. 193 

Irrational numbers. 234 

Isosceles trapezoid. 128 

Kite. 133 
Klein, Felix. p. v 

Length of circle. 450 

Lindeman. 451 

Lines: concurrent. 416 

perpendicular to plane. 177 

relative positions of.... 140 

Line-segment: divided 
harmonically. 173 

divided into mean and 
extreme ratio. 316 

measurement of. 155 

ratio of. 156 

Line-segments, propor¬ 
tional in circles. 313 

Literal equations. 464 

Locus. 135,404 

determination of.405 

proof of. 406 
Logic. 8 

Lunar eclipse. 303 

Mathematical forms in 
architecture, pp. 74, 160, 
245, 280, 323 

puzzle. 299 

Mean and extreme ratio.. 316 

Mean proportional. . 227, 231 

Measurement: of angles, 
294, 297 

of inscribed angles. 298 
Median. 414 

of trapezoid. 161 

Methods: of proof, 71, 81, 82, 

87, 90, 91, 109, 112 

of elimination. 97 

Motion, circular.302 

Orthocenter. 423 

Pantograph. 158 

Pappus. 290, 463 
Parallelogram. 105, 128 

construction of. 107 

properties of. 117 

uses of. 106 

Percentage problems. 332 

Perpendicular planes. 148 

Pi(7r). 450' 

Plane: determination of.. 139 

representation of. 142 

tangent to sphere. 398 

Planes: perpendicular.... 148 

perpendicular to line... 177 

in space. 364 

Plato. 112,204,238 

Point of trisection. 418 

Polar distance. 393 

Polygon: circumscribed.. 433 

inscribed. 432 
regular. 430 

similar. 209 

Proclus. 276 
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Projection: of a point 225,354 

of a segment. 226 

of a solid. 353 

Proportion. 157 

Proportional: compasses. 158 
fourth. 174 

line-segments. 158 

mean. 227 

third. 175 

Proportionality: of areas 492 

test of. 186 

Prism. 136 

bases of. 137 

lateral face. 137 

lateral surface of. 137 

Proof: general directions 

for. 80 

methods of.79, 81, 82 

need of..... 78 

Properties of parallelo¬ 

gram. 117 

Puzzle, mathematical.... 299 

Pythagoras, theorem of, 
233, 462 

Quadrant. 394 

Quadratic equations, 
131, 235-237 

in two unknowns. 264 

solved by graph. 265 

Quadrilaterals. 128 

Quotient, found from 

graph. 211 

Radical. 228 
simplification of. 229 

Ratio of line-segments... 156 

trigonometric. 248 

Rationalizing the denomi¬ 

nator . 254 

Rectangle. 128 

Redudio ad absurdum.... Ill 

Reasoning.,... 76 

Reciprocal. 327 
Regular polygon........ 430 

Relations, trigonometric. 334 

Reviews. 86 

Rhomboid. 128 

Rhombus. 128 

Scale, diagonal. 158 

Secant of circle. 277 

Semicircle. 276 

Similar polygons. 209 

Sine of angle. 248 

Sphere. 386 

center, radius, diame'ter 386 

great circle of. 390 

section of. 388 

Spherical distance. 391 

Square. 128 

Study helps.p. xix 
Substitution.91, 100 

Subtending chord.282 

Superposition. 81 

Surface, prismatic. 136 

Symbols.p. 343 

Symmetry. 134 

Tangent: line, plane. . . . 398 

of angle. 248 

circles. 288 

to circle. 277 
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Test of proportionality... 186 
Thales. 204 
Third proportional. 175 
Trapezoid.128, 132 

median of. 161 
Triangle: area of. 465 

altitude of. 470 
Trigonometric: functions. 251 
relations. 334 

Trisection point. 418 

Units of angular measure 294 

Variation: direct. 201 
inverse. 202 

Weight problems. 333 
Work problems. 102 
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