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Abstract 

According to the Standards for Educational and Psychological Testing (2014), one aspect of test 

fairness concerns examinees having comparable opportunities to learn prior to taking tests. 

Meanwhile, many researchers are developing platforms enhanced by artificial intelligence (AI) 

that can personalize curriculum to individual student needs. This leads to a larger overarching 

question: When personalized learning leads to students having differential exposure to 

curriculum throughout the K-12 school year, how might this affect test fairness with respect to 

summative, end-of-year highstakes tests? As a first step, we traced the differences in content 

exposure associated with personalized learning and more traditional learning paths. To better 

understand the implications of differences in content coverage, we conducted a simulation study 

to evaluate the degree to which curriculum exposure varied across students in a particular AI-

enhanced learning platform for Algebra instruction with high-school students. Results indicate 

that AI-enhanced personalized learning may pose threats to test fairness as opportunity-to-learn 

on K-12 summative high-stakes tests. We discuss the implications given different perspectives of 

the role of testing in education. 

 

Introduction 

The United States Office of Educational Technology (2017) issued a national technology plan 

updatethat included an emphasis on personalized learning. The report states: 
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“Personalized learning refers to instruction in which the pace of learning and the 

instructional approach are 

optimized for the needs of each learner. Learning objectives, instructional approaches, 

and instructional content (and its sequencing) may all vary based on learner needs. In 

addition, learning activities are meaningful and relevant to learners, driven by their 

interests, and often self-initiated.” (p. 9). 

 

In alignment with this definition of personalized learning, the report emphasizes the importance 

of embedded assessments in educational technology platforms (United States Office of 

Educational Technology, 2017). Embedded assessments are essential in educational technology 

platforms if one is to personalize education, as assessment is critical to track the learning of the 

student. However, the report also briefly discusses the importance of summative statewide 

standardized tests in U.S. public schools for achieving accountability and equity in schooling. 

The notion that schools can fully adopt personalized learning methods while operating under 

current federal summative test accountability policies is questionable. Hyslop and Mead (2015) 

detail this tension. Personalized learning allows for differential student paths and paces through a 

curriculum, whereas U.S. accountability systems monitor student learning in alignment with 

grade-level expectations that are consistent across all students. These expectations are assessed at 

a single time point (i.e., end of year), based on the premise that all students should meet grade-

level learning standards by that time point. Yet the theory of personalized learning aligns with 

assessments that monitor growth over time within students in tandem with their individualized 

pace of learning, rather than comparing all student learning to the same grade-level expectation at 

the same time. 
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Over the past five years, our research team has been implementing personalization algorithms 

based on artificial intelligence (AI) in a virtual learning environment for Algebra instruction with 

high-school students in the state of Florida (Leite et al., 2022). A primary goal of the research is 

to gauge if the personalization is effective for preparing students to pass the high-stakes, Algebra 

1 End-of-Course (EOC) assessment in the state. Students must pass this exam to graduate (Florida 

Department of Education, 2021). We entered the research project theorizing that a more 

personalized approach to Algebra learning and test preparation may increase the percentage of 

students passing this high-stakes exam. However, we quickly came to see the tensions between 

personalized learning and state accountability and testing systems discussed by Hyslop and Mead 

(2015). How can we ensure that all students are ready for the same algebra test at the same time, 

while allowing a high degree of freedom in the personalization of algebra learning? What are the 

consequences for students if they enter the high-stakes test at the same calendar time, but at a 

different point in their personalized paths through the curriculum? Is it fair to submit all students 

to the same high-stakes test at the same time after we have implemented personalization algorithms 

that have likely introduced content exposure and opportunity to learn variability amongst students 

within particular curriculum units? From a measurement perspective, should we conceptually 

make claims about student math abilities based on an end of year exam when those students have 

had different paths through the curriculum? These concerns motivated us to conduct this study. 

The purpose of this study is to empirically evaluate the differences in Algebra 1 content 

exposure at the time of the Florida Algebra 1 EOC assessment administration across groups of 

students who vary in personalization paths within the curriculum. The Standards for Educational 

and Psychological Testing (2014) are clear that unequal opportunities to learn test material prior 

to taking tests can be a problem for fair measurement. Hence, a large variance in Algebra content 
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exposure across students at the time of the high-stakes assessment poses concerns for fairness in 

interpreting and using the test scores as a major decision point for earning a high-school diploma. 

As our larger study is ongoing and has experienced issues with both fidelity to personalized 

recommendations and temporary changes to high-stakes assessments during the 2020–2022 

COVID-19 health pandemic (Leite et al., 2022), we focus our study on a hypothetical, simulated 

situation in which students in Florida engage with our personalization algorithms exactly as 

intended in the algorithms' construction. The overarching research question of our simulation is: 

After engaging in the AI-enhanced curriculum for a full school year, what are the Algebra 1 content 

exposure differences amongst students who have received personalized instruction as well as 

students who have received non-personalized instruction? 

The significance of answering this research question is three-fold. First, while researchers and 

practitioners have discussed the tensions between personalized learning and U.S. accountability 

policies (e.g., Hyslop & Mead, (2015)), we have not seen empirical studies that inform the degree 

of this tension. In conducting our study, we aim to quantitatively evaluate the degree to which 

differential content exposure is expected when personalized learning is enacted in schools. Second, 

issues around unequal content coverage prior to taking a high-stakes test have historically been 

handled in the legal system, and the evidence of content coverage has stemmed from teacher 

descriptions of the course curriculum in general, which are often self-reported and not specific to 

any one student (e.g., Debra P. vs Turlington, as discussed in Pullin & Haertel, 2008). Our research 

project provides an example of a benefit of using AI-enhanced curricula, in that we can more 

accurately track and evaluate content exposure for each student prior to taking high-stakes exams. 

We hope our study serves as an initial example for more formally evaluating opportunities to learn 

through content exposure for all students and provides a methodology for considering such 
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questions in the future that may involve different personalized learning algorithms. Third, the 

health pandemic and societal racial reckoning that upended U.S. society in 2020 called into 

question the fairness and usefulness of large-scale standardized testing in general (see for instance, 

Jiao & Lissitz, 2020). Hence, we see this study as contributing to the broader reexamination of 

equity and fairness in educational measurement systems. 

An overarching aim of this article is to highlight the different perspectives one can take about 

what constitutes test fairness. For instance, in the realm of dynamic assessment, the ideal for test 

fairness is one that is individualized and learner centric. Baharloo (2013), for instance, notes that 

most common views on test fairness, whether related to measurement validity (for instance, 

Kane, 2010) or even from a social justice perspective, are often focused on more traditional 

assessments in which learners and test takers are expected to have common knowledge and 

common preparation. However, the forms of test fairness from which dynamic assessment is 

derived says that a test or assessment should blend teaching, learning, and testing to help learners 

develop in their own way (Baharloo, 2013; Poehner, 2011). The goal of testing in dynamic 

assessment is to make teaching and assessment part of the same task, and fair assessment is viewed 

“in terms of providing each individual with what he or she deserves based on need analysis and 

ongoing assessments used for diagnostic purposes” (Baharloo, 2013, p. 1936). In this way, the two 

views of fairness can be seen in potential opposition and promoting two different forms of testing 

that are value-laden and specific to the purpose of the test. What is considered unfair in one realm 

may be considered fair in the other realm of testing. 

The conflicting two views on testing mentioned in the paragraph above are perhaps best 

represented by the chapter on fairness in the Standards, which emphasizes equal opportunities to 

learn, and the 2017 United States Office of Educational Technology statement about personalized 
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learning that opened this paper. More broadly, from a measurement perspective, these differences 

may additionally manifest in test score interpretation. For instance, one may worry about the extent 

to which content exposure differences should be considered part of the property to be measured or 

something external to the property that is to be measured or assessed. 

 

1.1. Virtual Learning Environments, Personalized Learning, and Test Fairness 

With most students in the United States now having access to computers and the internet at 

home, the use of online learning systems has been increasing (see for example, Koedinger et al. 

1997 for an early discussion of online learning systems, Mean et al., 2013, for discussion of their 

spread and use from a policy perspective). There are many types of online learning resources for 

students, with some being designed to track student progress through online content that is 

specifically built around a theory of learning as well as a specific curriculum in the K-12 system. 

In some cases, these systems are designed for test preparation. The online learning platform of 

interest in this paper is one such case, and we refer to these types of systems as virtual learning 

environments (VLEs; Weller, 2007). 

Some VLEs are advanced learning technologies (Aleven, Beal, & Graesser, 2013) that use AI 

to personalize the students’ learning experience by matching specific learning resources to 

predicted student needs. When personalizing VLEs to individual students using AI, it is critical 

to understand if and when the students will be required to take a test on material that has high-

stakes for the student. The Standards for Educational and Psychological Testing state: 

When student mastery of a delivered curriculum is tested for purposes of informing 

decisions about individual students, such as promotion or graduation, the framework 
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elaborating content domain is appropriately limited to what students have had an 

opportunity to learn from the curriculum as delivered (Standards, 2014, p. 15). 

This formal standard for testing makes one thing clear: if a student has not had basic 

exposure to all curriculum units covered by a high-stakes test, the validity of the high-stakes 

decision is questionable. Extending this idea, if some students have had more opportunity to 

learn from particular units of curriculum content than other students, yet all are taking the same 

high-stakes test with the same high-stakes decisions criteria, then test fairness is questionable. 

There has been a long history of trying to understand and study opportunity to learn. For 

instance, Hume and Coll (2010), Kurz, Elliott, Kettler, and Yel (2014), and Kurz, Talapatra, and 

Roach (2012) note the effects of opportunity to learn on student achievement. Kurz et al. (2014) 

discuss that Carrol (1963) was the first to provide some sort of workable definition, or 

framework, for considering opportunity to learn. In this simple definition, opportunity to learn is 

considered from the perspective of time devoted to topics within a curriculum as well as time 

devoted to content. However, one can see that the frameworks considering quality of coverage 

(Kurz et al., 2014) for opportunity to learn are also important (how might one learn, say, if 

content is covered but too quickly or the environment for learning is poor?). Using these 

concepts, there are a variety of aspects that one may consider important for study – though, it is 

likely that not all can be considered. Kurz et al. (2014), for instance, tried to create an index of 

opportunity to learn using online teacher logs that covered time, engagement, and whether 

teachers covered certain cognitive processes or something similar. However, in the context of 

VLEs in which personalized learning systems are used, there are other considerations – such as 

how a system makes recommendations based on the personalization parameters. Additionally, 

understanding how students move through a VLE can be informative of what students may find 
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useful, or what is reasonable to expect from students given a current online learning system setup 

– for instance, their time spent on consistent work (see, for example, Lowes, Lin, & 

Kinghorn, 2015). 

As stated, the proliferation of VLEs with some element of personalized learning places 

students on different learning trajectories. Students may see different content by the time of the 

high-stakes test. In the context of this study, the Algebra 1 EOC exam is administered at a single 

time point for a high-stakes decision about each student. Therefore, there are numerous questions 

about fairness and validity of decisions made from scores on the EOC when personalized 

learning is the primary mode of content exposure and learning. From a content exposure 

perspective of opportunity to learn, it is not clear that this system is fair. Therefore, crafting both 

conceptual and analytical strategies for understanding opportunity to learn is important – 

especially as there is an increasing number of VLEs used in grades 3 through 12 classrooms that 

are subject to United States federal accountability testing policies. 

 

1.2. Algebra Nation and the Personalized Recommendation System 

Algebra Nation (AN), which is embedded in Math Nation (Lastinger Center for Learning, & 

University of Florida, 2019), is a VLE designed to facilitate the instruction of algebra and to 

prepare students for passing a state-wide Algebra 1 EOC exam required by the state of Florida 

for graduating high school. Every student and every teacher in Florida have access to AN using 

their district-assigned user id and password. There is correlational and quasi-experimental 

evidence that student and teacher use of AN is associated with increased scores on Algebra 1 

EOC (Leite, Cetin-Berber, Huggins-Manley, Collier, & Beal, 2019; Leite, Jing, Kuang, Kim, & 

Huggins-Manley, 2021; Niaki, George, Michailidis, & Beal, 2019). 
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AN consists of instructional videos with 10 sections covering different algebra content. There 

are multiple topics and topic videos within each section, for a total of 93 topics in AN. In our 

simulation, due to problems related to items for assessing two topics, we constrained our 

simulation to 91 complete topics. For each topic video, students can select among different tutors 

of different ethnicities. These tutors use intentionally different presentation styles, where some 

tutors are more thorough – for students who are newer to a topic or need more instruction - and 

some tutors are faster, treating their videos as review sessions. The videos vary in length, being 

anywhere from 5 to 30 minutes. After watching a video on a topic, students take a “Check Your 

Understanding” quiz (CYU) consisting of three items. These items are built to be similar to those 

one might find on the EOC assessment. 

The current operational version of AN does not include personalization. We implemented AI-

based personalization for students in a single school district as part of a larger study (Leite et 

al., 2022). The CYU items used to guide personalization in AN have been field-tested and pre-

calibrated (see Xue, Huggins-Manley, & Leite, 2021, for details) under a two-parameter logistic 

item response theory model (2PL; Birnbaum, 1968). The system calibrates the student trait score 

on the CYU test using expected a posteriori (EAP) estimation with fixed item parameters, and 

then compares the trait score to an average trait score on that CYU test from other students in the 

system that we call “peers.” Peers were determined by stratifying the achievement data based on 

Mahalanobis distances between the students prior to entering the personalization. The 

recommendation for the next action is based, in large part, on the distance from the student’s 

EAP estimate on the CYU to other students with similar academic backgrounds on that same 

CYU. Students also receive an engagement score based on time spent and actions in the platform 

(see Jensen, Hutt, & D’Mello, 2019 for details on quantifying engagement). The CYU score in 
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relation to peers and the engagement score both play a role in the recommendation, along with 

video topic weights. Each video topic in the system is associated with a time-invariant topic 

weight that represents the relative importance of given topics to passing the EOC based on 

previous data (Leite et al., 2022). Using all of this information, a probabilistic model is used to 

make a video recommendation with certain codes and rules. However, this recommender is only 

used in cases where students get 0 items or 1 item correct on the CYU (out of 3). In these cases, 

the recommendation system may recommend a new video, rewatching a video, rewatching a 

portion of a video, or rewatching a video with a new teacher as the speaker. The recommendation 

can be forward or backwards in the progression of the videos and algebra topic. If students get all 

CYU items correct, they are directed to move linearly to the next video. If students get two items 

correct, students are instructed to re-watch the video. One can see that given a set amount of 

time, students who follow recommendations may see fewer topics because they can repeat topics 

and videos. However, the reinforcement learning algorithm used, based on a theory of learning, 

is meant to help with mastery of topics. More details on the full recommendation system are 

provided in (Leite et al., 2022). 

The version of the AN platform we studied is a tailored, active VLE motivated by the notion 

of personalized learning for students. As a result, AN is expected to lead to differential content 

exposure among students with the idea that students will see more of the content they need to see 

to pass the exam. However, all students are required to take the Florida Algebra EOC at the same 

time point, so students may not have been exposed to and mastered all content. Hence, this study 

uses a simulation of this system (in which all students have the same amount of time within the 

VLE) to answer the overarching research question: After engaging in the AI-enhanced 

curriculum for a full school year, what are the Algebra 1 content exposure differences amongst 
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students who have received personalized instruction as well as students who have received non-

personalized instruction? The specific sub-research questions under this are: 

1. What are Algebra 1 content exposure differences between students who receive 

personalized instruction and those who do not? 

2. Among these groups, how does student learning throughout the system affect student 

content exposure?  

3. How do different student math abilities relate to students’ content exposure? 

4. What do the paths through the content in the system look like for different students? 

 

2. Method 

We conducted a simulation study that was intended to mimic the actual operation of the 

personalization system as designed and presented above. We created and compared three groups 

of hypothetical students. 

1. Personalized growth group: Students who received topic and video recommendations and 

whose CYU trait scores grew within each section each time they say a new topic. 

2. Personalized non-growth group: Students who received topic and video recommendations 

but did not grow in CYU trait scores within each section. 

3. Control group: Students who did not receive topic or video recommendations but simply 

advanced through the system linearly, moving from one topic to the next in order of their 

presentation in AN, which aligns with the state algebra standards progression. 
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Assumptions had to be made to commence the simulation, and we list them out here as they 

influence the answers to our research question. 

 

Assumption 1: All students complied with recommendations. 

 

Assumption 2: All students would spend two hours within each section. That is, the simulation 

had students work through videos and take quizzes for a total of two hours within a section 

before proceeding to the next section. 

 

Assumption 3: Students selected among the video teachers probabilistically based on empirical 

data. That is, based on observed student selection of tutors in real data, the probability of a 

student selecting a particular tutor was equal to the proportion of students who selected the tutor 

in real data. 

 

Assumption 4: Students would take approximately 2 minutes per quiz question. The implication is 

that the three-item item quizzes that students took at the end of each topic took 6 minutes. 

 

Assumption 5: Student engagement was constant within a section of AN. 

 

Assumption 6: The topics increase in difficulty ordinally. That is, topic 1 is “easier” than topic 

2, and topic 2 is in turn “easier” than topic 3. 
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Assumption 7: Simulated students from the growth condition grew .1 logits in CYU trait scores 

each time they saw a new topic but returned to their starting CYU trait score when they entered 

a new section. 

 

Assumption 8: Control group simulated students would always move one topic video forward 

and never backwards or skipping a topic, regardless of their CYU trait scores. 

 

 

2.1. Generating Students for the Simulation 

For simulating hypothetical students, we began by defining 20 clusters of students that represented 

peer trait score groups. These clusters were generated such that cluster 1 had the lowest average 

trait score estimate and cluster 20 had the highest average student trait score estimate. In each 

cluster, student abilities were generated from normal distributions with the mean and standard 

deviation equal to the cluster mean and standard deviation. These clustered “peer” students were 

used to create average abilities for each topic within each section. See Table 1 for an example of 

resultant trait score estimates. These cluster trait score parameters (in logits) mimicked what was 

found in operational data. 
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Table 1 

 

An example of the peer trait score clusters where values represent average-estimated trait score 

for that cluster for each topic in Algebra Nation (in logits). You can see that cluster one has the 

lowest values and average trait score values ascend from there. 

 

 

 

 

 

From each cluster, we drew 100 students randomly, generated from a normal distribution 

with the specific cluster parameters describing the distribution from which to be drawn. The trait 

score drawn for the student was subsequently treated as the true trait score of the student, with 

the exception that in the “growth group” this true trait score was increased by .1 logits within a 

given section for each new topic that was presented. This growth occurred across topics within 

each section, but when entering a new section, the original true trait score value was used again 

(without the growth) and growth occurred again within that new section. Each student was then 
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individually sent through the recommender system. We acknowledge that the number of 

assumptions here is large – however, we believe this method is useful for modeling the effects of 

different assumptions that can eventually be investigated empirically and used to update the 

simulation. 

 

2.2. Generating Item Response Data and Estimating Student Abilities 

Since the recommender system only estimates a student’s trait score level based on three items, 

we generated item responses on the pretest for each section based on individual student true 

abilities. To generate this data, we used individual student abilities along with the already pre-

calibrated item difficulties and discrimination parameters for the AN items, and generated 

response probabilities for an item. The probabilities for each student and item were compared to 

a random number drawn from a uniform distribution that ranged from 0 to 1. If the response 

probability was less than the drawn number, the individual response was coded as incorrect, or 0, 

and 1 otherwise. Then, we estimated student abilities from the generated item response data from 

the CYU quizzes just as would be done in the AN platform with real students providing correct 

and incorrect responses on the items. This was recorded as a student CYU trait score for that 

topic. This full process was conducted whenever a simulated student was exposed to a new topic 

under the personalized recommender system. For control group students, no trait scores were 

needed as they do not play a role in their path through the system. 
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2.3. Length of the Simulation 

Video times from within AN were recorded and used for setting how long a student was in the 

system. As noted above, a student was estimated to be in the system for two hours. We assumed 

students took two minutes per test item. We also generated engagement scores randomly to 

mimic the distribution of engagement scores in operational data. When a student had been in the 

system for two hours, students moved onto the next section. However, students could be 

recommended a topic so that the student is moved backwards or forward across sections. The 

operational recommender system constrains how far forward or backwards a student could move 

based on how far along the student is in the school year and what other videos the student has 

already viewed. To mimic this, since AN serves as supplement to ongoing instruction and 

corresponds to a student’s position in the school year, AN sections were effectively equated to 

progression through the school year (so, the first section, students were 1/10th of the way through 

the school year, second section, 2/10th, etc). 

 

2.4. Evaluation Criteria 

For answering our research questions, we recorded the video and topic covered. From a coverage 

perspective of opportunity to learn (as opposed to mastery) this codifies if a student had the 

opportunity to learn from a video or not. This was simply coded as 0 or 1. See Table 2 for an 

example student’s results matrix. In the results matrix in Table 2, each topic corresponds to a 

topic in AN. If a student was recommended and watched a topic, the “seen” column was coded 

as 1. This does not record how many times a student saw a topic and it does not record in what 

order the student saw topics. Additionally, we recorded the raw topic data. This raw topic data 

kept the order of the topics viewed and included repetition. For instance, if a student first saw 
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topic 3, and their next recommendation was topic 3, then both instances were recorded. In this 

way, we could chart student paths through the system given the simulation parameters. 

 

Table 2.  

An example student results matrix that was analyzed for assessing opportunity to learn  

 

 

 

3. Analysis 

Research question 1 and 2 were answered using two methods. The first used descriptive statistics. 

We estimated mean content coverage across the three primary simulation conditions and visualized 

the content exposure differences across different learning and recommendation conditions. For the 

descriptive inferences, we estimated the proportion of the EOC exam content a student was 

exposed to in AN by using a weighted sum of the topics to which each student in the simulation 

was exposed. That is, each topic in AN received a weight, as mentioned in the paper introduction, 

based on the given topic’s prevalence on the EOC exam. The sum of topic weights added up to the 

total number of topics so certain topics had weights greater or less than one. These topic weights 
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were multiplied by 1 if a student saw a video about a topic and a zero otherwise, summed, and 

then divided by the total number of topics used in the simulation (91). This calculation represented 

the proportion of the EOC exam to which a student was exposed in AN. For the visualizations, we 

plotted the proportion of each section of AN that a student was exposed to. Exposure was defined 

as the number of videos a student was recommended within each section divided by the total 

number of videos in the section. In the second method, which will also help answer research 

question 3, we used a repeated measures logistic regression approach. To answer our questions, 

we regressed the outcome of interest, whether a student covered a topic or not, on six predictors 

(variable name in parentheses): 

 

1. AN section (one through ten) (section) 

2. Topic number within section (topic) 

3. Engagement value for a student measured at topic t (integer value from 1 to 5; engage) 

4. Peer cluster number (1 to 20; cluster) 

5. CYU trait score relative peer group trait score, standardized (rel_abil) 

6. Learning condition (personalized growth group, personalized non-growth group, control 

group; learningCondition). 

 

The full model is defined as: 
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4. Results 

 

4.1. Differential Topic Exposure 

To answer research question 1, we first estimated the proportion of EOC content to which the 

student was exposed. On average, students in the control group covered 61% of the content that 

would appear on the EOC. Alternatively, both the growth and no-growth groups (both groups 

receiving recommendations) were exposed to an equal 46% of the content that would appear on 

the EOC. 

For the visualizations, we present box plots intended to convey the difference in content 

exposure between three student groups (not weighted for importance on the EOC). Figure 

1 shows the section number and the corresponding subject covered within that section on the x-

axis and the proportion of the total number of videos covered by students. One notes, that almost 

always, the median proportion of a section covered from the control group – the group that 

moved sequentially with no recommendation system – was higher than the recommendation 

system students. The range and variance of the proportion covered are also worth noting. In 

some cases, the control group has only a few combinations of data for proportion covered (see 

sections 5, 7, 9, and 10). These are cases where differences in video times between speakers is 

relatively low. In the other sections, we can see that, aside from section 6, the range of the 

control group is often much smaller than the recommendation groups (ignoring “outliers” – 

which in the control group are caused by speakers who have much longer videos in specific 

topics). However, for the recommender groups, the minimum and maximum content exposure in 

some sections was 0% and 100% of videos viewed, respectively – since the recommender can 
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recommend videos within and outside the current section to maximize student mastery. 

 

 

 

Figure 1 Distribution of content exposure across learning (grow) and no learning (no_grow) 

groups as well as the control group. 

 

Since we are additionally interested in the effect of student peer cluster on content 

exposure, Figure 2a-2d shows the differences content exposure for four clusters individually and 

the experimental conditions within each cluster. The figure visualizes the lowest trait score group 

(cluster 1), the middle trait score group (cluster 10), and two higher trait score groups (clusters 

15 and 20). One can see that while the inferences about control vs. recommendation (growth and 

no growth) simulation conditions hold within cluster as well as overall (see Figure 1), we can 

also describe specific features related to the highest cluster of students (i.e., those with higher 

CYU trait scores throughout the platform experience). It seems like students in the highest 
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cluster are more likely to be sent backwards since slightly more students, based on the 

25th percentile line in the box plots, are likely not to have exposure to certain sections starting 

with section 5. For instance, Figure 2a, showing the proportion of sections covered for cluster 1, 

only sections 9 and 10 (the last two on the x-axis) have a significant number of students seeing 

no portion of those sections. However as the cluster number increases, and hence student trait 

scores, a greater number of sections have 25% of students not seeing those sections. Figure 2d, 

for cluster 20, the highest ability group, has five sections that show this pattern (sections, 5, 6, 7, 

9, and 10). This helps reveal the logic of mastery within the personalization system – moving 

forward, or at least seeing videos associated with later (and more advanced) topics, is not 

necessarily viewed as beneficial for high trait score students. In other words, cluster coverage 

does not seem to increase across sections as trait score increases. This is descriptive evidence 

that routes though curriculum can be qualitatively different (ideally informed by student learning 

paths). Having said that, the logisitic regression results reveal that the impact of clusters on EOC 

content exposure is not large. 

 

The logistic regression model, addresses research questions 1 and 2 but especially targets 

research question 3. Table 3 reports the results of this model and these results are discussed 

further below. 
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Figure 2 The distribution of content exposure in Algebra Nation across clusters and growth 

conditions. The top panels (a) and (b) show students across simulation conditions of the lowest 

trait score and middle trait score and the lower panels(c) and (d) show students across 

conditions in the top trait score clusters (15 and 20), shows students across conditions in the 

highest trait score cluster.  

 

 

 

 

 

 

 



24 
 

 

Table 3 

Logistic regression results with parameter estimates presented as odds ratios with the 

personalized growth group as the reference group 

 

 

  Estimate (OR)* SE Est/SE** p_val 

SECTION 0.838 0.002 −97.409 < 0.001 

TOPIC_WITHIN 0.936 0.001 −45.315 < 0.001 

ENGAGE 0.975 0.005 −4.734 < 0.001 

CLUSTER 1.002 0.001 3.779 < 0.001 

REL_ABIL 1.007 0.003 2.221 0.026 

NO GROW 0.992 0.006 −1.332 0.183 

CONTROL 1.969 0.041 23.457 < 0.001 

* OR = odds ratio **Est/SE =(1 - exp(Estimate))/SE 

 

4.2. RQ 1: Topic Exposure – Personalized Vs Control Groups 

The control condition students were approximately two times more likely to cover any given 

topic than either the personalized growth or no growth conditions of students, adjusting for other 

predictors in the model (odds ratio = 1.97, p < .001). 
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4.3. RQ2: Learning Conditions – Personalized Growth Vs Personalized No Growth Groups 

The learning condition (given our assumptions) did not significantly affect topic exposure. 

Students in personalized groups were no more likely to see a given topic if they were learning 

than not (after adjusting for other covariates). This finding may not hold if student learning was 

larger than the 0.1 logits per topic that we used for this simulation. i.e., .1 logit increase with 

each topic increase). 

 

4.4. RQ3: Math Abilities and Content Exposure 

Though each additional cluster number (such that an increase in cluster number represents a 

higher overall cluster trait score) is associated with an increase in the odds of covering a harder 

(later in the section) topic (OR = 1.002, p< .001), this associated increase is extremely small. So, 

while it may be the case that a student in cluster 20 is   more likely to cover a topic than a student 

in cluster 19 the differences in paths through AN might be more interesting in kind than in 

quantity. Students’ relative trait score within cluster also had a small impact on content coverage. 

For example, for a 1 SD difference in trait score relative to the cluster mean and standard 

deviation, the odds of students seeing a topic were only nominally larger (less than 1% more 

likely, OR = 1.007, p = .026). 

 

4.5. RQ4: Student Path through AN 

Another relevant aspect for teachers who are considering instructional strategies combined with 

the use of an online learning system is student paths through the system. For this study, we are 

hoping to present methods for thinking about or presenting this information. Further, it is worth 
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considering a more complex view of opportunity to learn that combines not just whether a 

student viewed material, but when and in what contexts. To present a few examples of these 

plots that support the general theme that often student exposure in AN is different not just in 

quantity but also in profile, alluvial plots are presented in Table 3. The data in these plots are 

filtered such that only topics with more than 20 views across all clusters are presented 

(otherwise, the alluvial plots become unreadable). Additionally, these plots show only the 

personalization groups, and notably aggregate the data across the growth and no-growth 

conditions. 

These paths are presented in Figure 3 for students in the three different clusters, namely the 

same clusters as presented above in Figure 2. Each plot shows the students’ paths for Section 5 

only. One can see that while there is topic overlap, in a single 2-hour session, students in 

different clusters or even within clusters may have completely different paths through the 

system. So, in this sense, their opportunities to learn through content exposure are qualitatively 

different. For instance, for the lowest trait score cluster, one can see more homogeneity in their 

paths through the system - denoted by the “alluvials” or thicker blocks. Thicker blocks and 

alluvials generally represent more simulated students being recommended a particular video 

topic - for instance, cluster 1 students in section 5 were primarily presented topic 41. Their most 

common second topic to see, denoted by the thick flow to the next topic, is to watch topic 41 

again. However, of note, students in cluster 20 have much more varied topic combinations 

through AN’s section 5 than students in cluster 1 or cluster 15 (especially for the first two 

moves) implying that if a test were to be given at the same time point across these students, we 

can expect a large degree of differential opportunity to learn through content exposure. 
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Figure 3 Alluvial plots representing common paths through Algebra Nation’s Section 5, where 

the x-axis represents each move in the system a student would make and stacked numbers 

represent topics. The thicker “alluvials” and flows, represent more common paths for each 

cluster. Panel A depicts paths through Algebra Nation in Section 5 for cluster 1, the lowest trait 

score panel. Panel B depicts cluster 10 paths, Panel C represents cluster 15 paths, and panel D 

presents cluster 20 paths.  

 

5. Discussion 

In the current study, we presented hypothetical results from different fully complying students 

moving through an online learning system that tailors content to a student’s learning. In order to 

make recommendations to students, the AN system (Leite et al., 2022) uses embedded quizzes to 

estimate student trait scores for that topic and also estimates a student’s engagement. Based on a 
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theory of learning and AI algorithms, a topic recommendation is made to the student. This study 

began by noting an inherent problem – while standard testing practices and guidelines, as those 

noted by the Standards, require that tests for decisions about selection at a given point in time 

require that students have an equal opportunity to learn, the growing number of personalized online 

learning platforms lead to students having potentially different curricular exposure by the time of 

the test. Therefore, this study highlights a disconnect between standard guidelines for testing and 

new educational technology that takes advantage of data mining and machine learning methods 

(e.g., Baker & Yacef, 2009; Koedinger, D’Mello, McLaughlin, Pardos, & Rose, 2015). 

While we invoked many assumptions for the purpose of this simulation, we tried to be as 

transparent as possible about these assumptions. The reason for this transparency was both for 

reporting purposes and also for identifying which assumptions to investigate in the future. As 

expected, students who received recommendations saw fewer topics than those who moved 

through the system linearly. However, students who entered the system with higher algebra 

abilities were actually more likely to be sent “backwards” in the system, and, as can be seen 

descriptively, may have more variance in topic exposure than those students who did not receive 

recommendations or were of lower math ability. Additionally, while it is likely that students in 

higher ability peer groups see more topic videos, the more interesting differences in topic exposure 

may be differences in kind than in quantity. However, student growth in ability seemed to have 

only a small effect on topic exposure, if any. The student paths through the system may be not 

only more interesting, but also more useful for teachers in knowing which students saw specific 

topics. So, in this sense, their opportunities to learn are qualitatively different. 

The primary goal of this study is not just to show what would happen to students if they moved 

through the system, but to also present a method for interrogating a probabilistic recommendation 
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system that is based on measurements occurring within the system. As noted by Mislevy (for 

instance, Mislevy et al., 2013), assessments often need to be viewed as part of a system – and the 

system of test preparation is considered important and relevant. This preparation may be viewed 

as a threat to test validity or a feature of test validity depending on how the test is built. In the case 

of AN, the system was specifically built to prepare students for an exam. However, it is at odds 

with usual perceived beliefs about students. It is clear, then, that even tacitly, summative end of 

year tests are part of a learning system and do not necessarily stand as isolated events. As such, 

this paper is meant to demonstrate that measurement professionals always need to consider this 

system holistically. 

We additionally hope that this paper serves as a starting point for any other researchers looking 

to understand the extent of a recommendation system’s impact on fairness and equity of 

assessment. Being able to understand the implications of different recommendation systems on 

measurement fairness, especially for downstream measurement efforts, will likely become 

increasingly important as online learning systems become more common. Measurement fairness 

in AI-based VLE should become part of the broader conversation about algorithmic fairness in 

education (Kizilcec & Lee, Forthcoming; Madaio, Blodgett, Mayfield, & Dixon-Román, 2021). 

Hopefully simulations like this one can serve to motivate policies around testing and the role of 

testing. Dorans (2012) notes that there are multiple perspectives one can take about the same test 

that may differ among test takers and other stakeholders. This perspective taking may change 

whether the student or stakeholder views the test as a contest of some sort or as a measurement. 

The way a test like an end of course exam is administered and its role in student learning may also 

change depending on the system leading up to the test. In our study, the system is meant to promote 

and maximize current learning whereas the end of course exam is not meant to do the same. It is 
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also yet possible that, combined with classroom instruction, an online learning system could 

increase exposure to certain topics deemed important for passing tests. 

Finally, this study provides a starting point for understanding how to maximize student use of 

the VLE. First, the simulation can be used in the future to understand how different assumptions 

may change the recommendation. Also, it may allow for presenting hypothetical results to teachers 

to better understand how to change the system to better align with classroom-based practice, within 

a broad strategy of orchestration of technology in the classroom (Prieto, Dlab, Gutiérrez, 

Abdulwahed, & Balid, 2011). Since student use is widely varied and voluntary, having an ideal 

scenario to compare to actual use provides opportunities to make updates to the recommender, re-

simulate, and compare again to actual student use – each time considering the curricular, test, and 

measurement effects. Lastly, we hope to motivate others to use this simulation set up to assess the 

fairness of their online learning system with respect to measurement. 

Moving forward, we hope to both interrogate some of the necessary assumptions based on 

empirical data and use the simulation results to inform future work. While there are certainly many 

potential technical answers to the optimal design of an online learning platform, we hope that this 

discussion also reveals the value laden aspects of educational measurement – as these values are 

embedded in the way test preparation may occur. The values of this test preparation proliferate or 

spread to the test. 

From the perspective of fair testing writ large, this work contrasts different ideals in the realm 

of educational measurement, such that what may be unfair in one world may be fair in another, 

simply based on value-based decisions of which measurement forms one aspect (e.g. Lantolf & 

Poehner, 2013). For instance, Nisbet and Shaw (2019) highlight different perspectives on test 

fairness. Among the perspectives, they emphasize that such standard tools in educational 
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assessment like differential item functioning (DIF) analyses are used to test hypotheses about a 

view of fairness in which fairness is established by ensuring the comparison of like cases. 

However, Nisbet and Shaw (2019) note that this is only one of many perspectives on fairness we 

could take. In personalized learning, cases are by design different, raising the question about what 

constitutes the primary student property to be assessed or measured. For instance, from an end of 

course exam perspective, differential content exposure would lead to construct irrelevant variance 

(Messick, 1989) – a different causal mechanism would lead to differing test scores by student, 

confounding the property of interest, “math ability” perhaps, with background knowledge. In 

personalized learning, a different causal pathway is something to be desired and engineered in 

some cases if it aids the student in their learning progression. The perspective of Randall (2021) 

provides another important perspective on the view that different causal pathways to test scores 

should be considered from an anti-racist perspective - and not doing so is another source of 

unfairness. 

Given the rise of personalized online learning while continuing to operate under end-of-year 

accountability testing policies, fairness of measurement claims is a topic with which educational 

measurement researchers and professionals must grapple. Differential content exposure 

complicates already notable paradoxes in testing related to measurement invariance and prediction 

invariance that should be explored further (see, for instance, Borsboom, Mellenbergh, & Van 

Heerden, 2002 or Zwick, 2019). It is hoped that the results from this study help show the 

implications of these conflicting views. 

 

 

 



32 
 

References 

Aleven, V., Beal, C. R., & Graesser, A. C. (2013). Introduction to the special issue on advanced learning 

technologies. Journal of Educational Psychology, 105(4), 929–931. 

 

Baharloo, A. (2013). Test fairness in traditional and dynamic assessment. Theory and Practice in 

Language Studies, 3(10), 10. 

 

Baker, R. S. J. D., & Yacef, K. (2009). The state of educational data mining in 2009: A Review and 

future visions. Journal of Educational Data Mining, 1(1), 3–17. 

 

Birnbaum, A. (1968). Some latent trait models and their use in inferring an examinee’s ability. In F. M. 

Lord & M. R. Novick’s (Eds.), Statistical theories of mental test scores (pp. 397–479). Reading, 

Mass: Addison-Wesley. 

 

Borsboom, D., Mellenbergh, G. J., & Van Heerden, J. (2002). Different kinds of DIF: A distinction 

between absolute and relative forms of measurement invariance and bias. Applied Psychological 

Measurement, 26(4), 433–450. 

 

Carrol, John B. A model of school learning. Teachers College Record, 64, 723- 733 

 

Dorans, N. J. (2012). The contestant perspective on taking tests: Emanations from the statue 

within. Educational Measurement: Issues and Practice, 31(4), 20–37. 

 

Florida Department of Education. (2021). Florida standards assessment.  

http://www.fldoe.org/accountability/assessments/k-12-student-assessment/fsa.stml 

 

Hume, A., & Coll, R. (2010). Authentic student inquiry: The mismatch between the intended curriculum 

and the student-experienced curriculum. Research in Science and Technological Education, 28(1), 

43–62. 

 

Hyslop, A., and Mead , S. (2015). A path to the future: Creating accountability for personalized 

learning. Bellwether Education Partners. 

 

Jensen, E., Hutt, S., & D’Mello, S. K. (2019). Generalizability of Sensor-free affect detection models 

in a longitudinal dataset of tens of thousands of students. In M. Desmarais, C. F. Lynch, A. 

Merceron, and R. Nkambou (Eds.), The 12th International Conference on Educational Data 

Mining, Montreal, Canada (pp. 324–329). 

 

Jiao, H., & Lissitz, R. W. (2020). What hath the coronavirus brought to assessment? Unprecedented 

challenges in educational assessment in 2020 and years to come. Educational Measurement: Issues 

and Practice, 39(3), 45–48. 

 

Kane, M. (2010). Validity and fairness. Language Testing, 27(2), 177–182. 

 

Kizilcec, R. F., & Lee, H. (Forthcoming). Algorithmic fairness in education. In W. Holmes, and K. 

Porayska-Pomsta (Eds.), The Ethics of Artifical Intelligence in Education. Taylor & Francis. 

http://www.fldoe.org/accountability/assessments/k-12-student-assessment/fsa.stml


33 
 

Koedinger, K. R., D’Mello, S., McLaughlin, E. A., Pardos, Z. A., & Rose, C. P. (2015). Data mining 

and education. Wiley Interdisciplinary Review Cognitive Sciences, 6(4), 333–353. 

 

Kurz, A., Elliott, S. N., Kettler, R. J., & Yel, N. (2014). Assessing students’ opportunity to learn the 

intended curriculum using an online teacher log: Initial validity evidence. Educational Assessment, 

19(3), 159–184. 

 

Kurz, A., Talapatra, D., & Roach, A. T. (2012). Meeting the curricular challenges of inclusive 

assessment: The role of alignment, opportunity to learn, and student engagement. International 

Journal of Disability, Development and Education, 59(1), 37–52. 

 

Lantolf, J. P., & Poehner, M. E. (2013). The unfairness of equal treatment: Objectivity in L2 testing and 

dynamic assessment. Educational Research and Evaluation, 19(2–3), 141–157. 

 

Lastinger Center for Learning, & University of Florida. (2019). Algebra nation. Retrieved September 

20, 2019, from http://lastingercenter.com/portfolio/algebra-nation-2/ 

 

Leite, W. L., Cetin-Berber, D. D., Huggins-Manley, A. C., Collier, Z. K., & Beal, C. R. (2019). The 

relationship between Algebra Nation usage and high-stakes test performance for struggling 

students. Journal of Computer Assisted Learning, 35(5), 569–581. 

 

Leite, W. L., Jing, Z., Kuang, H., Kim, D., & Huggins-Manley, A. C. (2021). Multilevel mixture 

modeling with propensity score weights for quasi-experimental evaluation of virtual learning 

environments. Structural Equation Modeling: A Multidisciplinary Journal, 1–19. 

 

Leite, W.L., Roy, S., Chakraborty, N, Michailidis, G, Huggins-Manley, A. C., D’Mello, S. K., 

Faradonbeh, M. K. S., Jensen, E., Kuang, H., and Jing, Z. (2022). A novel video recommendation 

system for algebra, An effectiveness evaluation study. Proceeding of the Learning Analytics and 

Knowledge (LAK22) Conference. 

 

Lowes, S., Lin, P., & Kinghorn, B. (2015). Exploring the link between online behaviours and course 

performance in asynchronous online high school courses. Journal of Learning Analytics, 2(2), 

169–194. 

 

Madaio, M., Blodgett, S. L., Mayfield, E., & Dixon-Román, E. (2021). Confronting structural 

inequities in AI for education. https://arxiv.org/abs/2105.08847 

 

Messick, S. (1989). Validity. In R. L. Linn (Ed.), Educational measurement (pp. 13–104). New York, 

NY: American Council on Education and Macmillan. 

 

Mislevy, R. J., Haertel, G., Cheng, B. H., Ructtinger, L., DeBarger, A., Murray, E., … Vendlinski, T. 

(2013). A “conditional” sense of fairness in assessment. Educational Research and Evaluation, 

19(2–3), 121–140. 

 

Muthén, L. K., & Muthén, B. O. (2012). Mplus user’s guide (7th ed.). Los Angeles, CA: Muthén & 

Muthén. 

http://lastingercenter.com/portfolio/algebra-nation-2/
https://arxiv.org/abs/2105.08847


34 
 

Niaki, S. A., George, C. P., Michailidis, G., & Beal, C. R. (2019). Investigating the Usage patterns of 

algebra nation tutoring platform. Proceedings of the 9th International Conference on Learning 

Analytics & Knowledge - LAK19 Tempe, AZ, 481–490. 

 

Nisbet, I., & Shaw, S. D. (2019). Fair assessment viewed through the lenses of measurement 

theory. Assessment in Education: Principles, Policy & Practice, 1–18. 

 

Poehner, M. E. (2011). Dynamic assessment: Fairness through the prism of mediation. Assessment in 

Education, Principles, Policy and Practice, 18(2), 99–112. 

 

Prieto, L. P., Dlab, M. H., Gutiérrez, I., Abdulwahed, M., & Balid, W. (2011). Orchestrating technology 

enhanced learning: A literature review and a conceptual framework. International Journal of 

Technology Enhanced Learning, 3(6), 583–598. 

 

Pullin, D., & Haertel, E. (2008). Assessment through the lens of “opportunity to learn.” In P. Moss, D. 

Pullin, J. Gee, E. Haertel, & L. Young (Eds.), Assessment, equity, and opportunity to learn (pp.17–

41). Cambridge: Cambridge University Press. Learning in Doing: Social, Cognitive and 

Computational Perspectives. 

 

Randall, J. (2021). “Color-neutral” is not a thing: Redefining construct definition and representation 

through a justice-oriented critical antiracist lens. Educational Measurement: Issues and Practice, 

40(4), 82–90. 

 

United States Office of Educational Technology (2017). Reimagining the role of technology in 

education: 2017 National Education Technology Plan update (Unnumbered Report). Washington, 

DC: Author. Retrieved from https://tech.ed.gov/files/2017/01/NETP17.pdf. 

 

Weller, M. (2007). Virtual learning environments: Using, choosing and developing your VLE. New 

York, NY: Routledge. 

 

Xue K, Huggins-Manley A Corinne, and Leite W. (2021). Semisupervised Learning Method to Adjust 

Biased Item Difficulty Estimates Caused by Nonignorable Missingness in a Virtual Learning 

Environment. Educational and Psychological Measurement, 001316442110204 

 

Zwick, R. (2019). Fairness in measurement and selection: Statistical, philosophical, and public 

perspectives. Educational Measurement: Issues and Practice, 38(4), 34–41. 

 

https://tech.ed.gov/files/2017/01/NETP17.pdf

