# Correlated Mathematics for Junior Colleges 

## BRESLICH


"Perhaps the most notable scheme of correlation in the field of mathematics is that evolved by E. R. Breslich. His three volumes on First-, Second-, and Third-Year Mathematics, respectively, demonstrate the possibility and advantages of the new conception of teaching this large subject. . . . . Mr. Breslich has succeeded in organizing a general mathematics course that is both psychological and administratively practicable. He has had the pupil very clearly in mind in each course. Modern solutions are copious, but at the same time well-motivated provisions for independent studying abound in the three volumes. Photographs of . Wand of construction work are introduced as illustra value of geometry. The many exaxci they touch life at almost eve Quest, in The Textbook:

# The University of Chicago <br> NATURE-STUDY SERIES 

By Elliot R. Downing
Associate Professor of Natural Science in the School of Education, University of Chicago

Designed to give a more efficient organization of a course of study in science, with a view to its socialization and practical application. The volumes of the series will be of two kinds: (I) source books with accompanying field and laboratory guides for the use of teachers and students in teachertraining classes, and (2) pupils' notebooks for the grades.

## Already Published

A Field and Laboratory Guide in Biological Nature-Study. Loose-leaf, r20 pages of text, interleaved. \$1.00 (postpaid \$I.IO).
A Source Book of Biological Nature-Study. 526 pages, with 338 illustrations. $\$ 3.00$ (postpaid \$3.15)

In Preparation
A Field and Laboratory Guide in Physical Nature-Study
A Source Book of Physical Nature-Study Nature-study notebooks for the upper and lower school grades.

The University of Chicago Press Chicago, Illinois
Please send me a copy of
$\square$ A Field and Laboratory Guide in Biological Nature-Study
$\square$ A Source Book of Biological NatureStudy
for which I inclose postpaid price.
Also place my name on your mailing list for announcements of the following books as they are published:
$\square$ The books on physical nature-studyThe book for the lower school gradesThe book for the upper school grades

Name
Teaching Position $\qquad$
Address

# THE UNIVERSITY OF CHICAGO MATHEMATICAL SERIES 

Eliakim Hastings Moore<br>General Editor

# THE SCHOOL OF EDUCA'TION TEX'TS AND MANUALS 

George William Myers
Editor

CORRELATED MA'THEMATICS for JUNIOR COLLEGES

# THE UNIVERSITY OF CHICAGO PRESS <br> CHICAGO, ILLINOIS 

THE BAKER \& TAYLOR COMPANY NEW YORK

THE CAMBRIDGE UNIVERSITY PRESS
London and edinburgh
THE MARUZEN-KABUSHIKI-KAISHA
TOKYO, OSAKA, KYOTO, FUKUOKA, SENDAI
THE MISSION BOOK COMPANY
shanghai


## LONDON BRIDGE

Arch construction has been practiced for over 2,000 years. Arches are named as to form, elliptical, semicircular, segmental, parabolic, and pointed. London Bridge is borne on flve granite arches. It is 928 feet in length, 65 feet in width, and 56 feet above the river.

## Correlated Mathematics for Junior Colleges

BY

ERNST R. BRESLICH

Head of the Department of Mathematics in the University
High School, The University of Chicago


Tons

THE UNIVERSITY OF CHICAGO PRESS CHICAGO, ILLINOIS

Copyright igig By The University of Chicago

All Rights Reserved
Published August 1919

## EDITOR'S PREFACE

This book follows the three-year high-school course of mathematics, "along fusion lines," that was begun by Mr. Breslich five years ago. From start to finish the four books have been worked out in classrooms and in faculty conferences.

Through the economies effected by treating mathematical topics in combination and once for all, instead of once in each of the several mathematical branches, and by keeping whatever is once acquired in continual function, this four-year course is able to cover in the usual time allotment to high-school mathematics, in addition to the customary high-school courses, plane analytics and college algebra as given in American colleges, together with considerable work in differential calculus. On completing this course the student is mathematically distinctly ahead of the beginning collegiate Sophomore.

The persons responsible for this series believe that every rightly planned course, if properly administered, should at its close leave the student feeling that there is much more to be known about the subject than he has studied. They hold that a sound test of good teaching is whether at the end of the teaching the student really feels that there are immensely important things in the subject lying ahead, and that he would very much like, even if he cannot, to go on with what he has been learning. They do not believe that it is educationally wholesome to treat a course in the spirit that it is the last course the student is to have, or that, being the last required course, it is all that he really needs. The best course in any subject, and especially in any mathematical
subject, is the course that best prepares the pupil both in attainment and in attitude to go on to the next. In this sense, and in this sense only, each text of the Breslich series is organized in the spirit of the preparatory-school text. When, as in these texts, mathematical material from all branches is so organized that the things studied at each level of maturity are the materials best adapted to this stage that are available in any of the branches, the organization that best prepares for the next advance is the best organization, whether the student actually makes the advance or not. It is only when the preparatory ideal becomes the dominant ideal that mischief is likely to be wrought.

The gratifying results of the systematic employment of this series of texts in the University High School, as shown by standard tests, by the tests of college entrance, by the ability of recent graduates to do subsequent collegiate work well, by the large percentage of University High School pupils who are continuing to elect mathematical courses, and by the number of texts of unified mathematics of both high-school and collegiate grade that have appeared since the publication of Breslich's firstyear book, point to the belief that the route to essential improvement in high-school mathematics lies along the lines of the Breslich books. This belief is also strengthened by the favor this series has found among the best high schools, public and private, and with many of the foremost educators of our country. The editor feels that it is only simple justice to say that in this series of texts Mr. Breslich has rendered a significant service to mathematical education in this country.
G. W. Meyers

Chicago, Illinois June, 1919

## AUTHOR'S PREFACE

This book is designed primarily to follow the third book of the author's series of textbooks of secondary mathematics. It therefore presupposes the essentials of high-school algebra, of plane and solid geometry, and of trigonometry. It aims to combine the work which is commonly covered in separate courses in college algebra and in analytical geometry. The course is therefore suitable for the first year of the junior college and may-be taught either in the fourth year of the high school or in the first year of our colleges.

As in the first three books of the series, the fundamental principle of the course is to associate closely mathematical topics which are naturally related to each other. This combination makes it possible better to motivate each topic, to show the student more clearly the meaning of the subject by means of geometrical representation, and to develop in a natural way the important concept of functional correspondence. Such an arrangement of the material gives unity to a course in which the subject is usually presented as a number of isolated topics. It has the advantage of arousing and holding the interest of the student, with the result that he gains greater power in less time.

The idea of the derivative is presented early and is used in discussing the slope of the tangent to a curve, and maximum and minimum values of a function.

As in the other books of the series, many historical notes have been distributed throughout the books.

For review purposes each chapter contains frequent summaries and a list of the formulas developed. There
are also important tables and a list of mathematical formulas at the end of the book.

All the material has been tried out carefully by the author in the classroom.

The portraits appearing in the book have been taken from the Philosophical Portrait Series, published by the Open Court Publishing Company, Chicago.

The author is greatly indebted to Professor Charles H. Judd, Director of the School of Education, whose encouragement and interest have made the preparation of this course possible.

E. R. Breslich

## CONTENTS

CHAPTER PAGE
I. Location of a Point. Number System ..... 1
Real Numbers. Location of a Point on a Straight Line ..... 1
Location of a Point in a Plane ..... 4
Complex Numbers. ..... 8
The Operations with Complex Numbers ..... 14
II. The Straight Line. Linear Function ..... 22
Slope of a Line ..... 22
Equation of a Straight Line ..... 23
Distances ..... 34
III. Several Straight Lines. Simultaneous Linear Equations. Areas ..... 41
Several Straight Lines. ..... 41
Simultaneous Linear Equations. ..... 44
Simultaneous Linear Equations in Three Vari- ables ..... 54
Areas ..... 61
IV. Determinants. ..... 65
Meaning of Determinants ..... 65
Properties of Determinants ..... 68
Evaluation of Determinants ..... 71
V. Quadratic Function. Parabola ..... 78
Maximum and Minimum ..... 83
Slope and Tangent ..... 84
VI. Rational Integral Functions of Degree Higher Than the Second ..... 92
Rational Integral Function ..... 92
Derivative of a Rational Integral Function ..... 100
chapter PAGE
VII. Solution of Equations with Numerical Co- EFFICIENTS ..... 107
Algebraic Solution ..... 107
Graphical Representation of Roots ..... 109
Location of Real Roots ..... 114
Rational Roots ..... 119
Irrational Roots ..... 123
Relation between Roots and Coefficients ..... 132
VIII. Algebraic Solution of the General Cubic and Biquadratic Equations ..... 138
The Cubic Equation ..... 138
The Biquadratic Equation ..... 145
IX. Limits ..... 150
Theorems on Limits ..... 150
Indeterminate Forms ..... 155
X. Infinite Series ..... 159
Series All of Whose Terms Are Positive ..... 161
Series Having Positive and Negative Terms ..... 170
Series Whose Terms Are Functions of $x$ ..... 173
XI. Partial Fractions ..... 177
XII. Permutations and Combinations ..... 183
Permutations ..... 183
Combinations ..... 190
XIII. The Circle ..... 194
General Quadratic Function of Two Variables ..... 194
The Circle ..... 195
Tangent to a Circle ..... 202
Polar Equation of the Circle ..... 209
XIV. Ellipse. Hyperbola. Parabola. ..... 214
Ellipse ..... 214
Hyperbola ..... 225
Parabola ..... 233

## CONTENTS

xiii
chapter page
XV. Conic Sections. Transformation of Co- ordinates ..... 240
Plane Sections of a Right Circular Cone ..... 240
Transformation of Co-ordinates ..... 245
XVI. The General Equation of the Second Degree. Diameters ..... 252
The General Equation ..... 252
Diameters ..... 261
XVII. Loci ..... 267
Plotting of the Locus ..... 267
Determination of the Equation of the Locus ..... 272
Tables ..... 287
Common Logarithms of Numbers ..... 287
Powers and Ruots ..... 289
Sines, Cosines, and Tangents ..... 290
Mathematical Formulas ..... 291
Greek Alphabet ..... 295
Index ..... 297

## CHAPTER I

## LOCATION OF A POINT. NUMBER SYSTEM

Real Numbers. Location of a Point on a Straight Line

1. Graphical representation of integral numbers. Selecting as unit length any convenient line-segment, $l$, we may lay off on $O X$, Fig. 1, the segments $O A, A B, B C$, etc., each equal to $l$. Thus,
 $O A=l, \quad O B=l+l=2 l, O C=l+l+l=3 l$, etc.

The integers $1,2,3$, etc., are the measures of $O A, O B$, $O C$, etc. The segments $O A, O B, O C$, etc., are said to represent graphically the integral numbers $1,2,3$, etc.

Conversely, to every integral number corresponds a definite point on $O X$.
2. Origin. Abscissa. A point $P$, Fig. 2, on a straight line, $A B$, may be located by stating the distance $x$ of $P \vec{A} \quad{ }_{0}^{1} x \quad{ }_{P}^{P}$ from a fixed reference point, Fig. 2 $O$, on $A B$.

The point $O$ is the origin, the segment $O P=x$ is the abscissa of $P$.
3. Positive and negative numbers. The segments $O A^{\prime}, O B^{\prime}, O C^{\prime}$, etc., Fig. 3, to the left of $O$, differ from the


Fig. 3
segments to the right in direction. To distinguish between these two opposite directions, segments taken in the direction $O X$ are called positive. The numbers represented
by $O A, O B$, etc., are called positive numbers, and a plus $(+)$ sign is prefixed to them. Hence, $O A$ represents +1 , $O B$ represents +2 , etc. The segments $O A^{\prime}, O B^{\prime}, O C^{\prime}$, etc., taken in the direction $O X^{\prime}$, are negative and represent the negative numbers $-1,-2,-3$, etc.

In this way the scale of positive and negative integers is obtained, Fig. 4.
4. Zero. The point $O$,


Fig. 4 Fig. 4, may be thought of as representing a segment having no length, or as representing the number zero.*

## EXERCISES

1. Locate on a straight line the segments representing the following numbers: $-5,+6,-3,0,+8$.
2. Give the meaning of the following thermometer readings: $-2,0,+8,-7,-4$.
3. Graphical representation of fractions. To represent graphically the fraction $\frac{m}{n}$, $m$ and $n$ being integers, we may proceed as follows:

Divide $O A$, Fig. 5, into $n$ equal parts and denote each


Fig. 5
by $\frac{1}{n}$. This locates between $O$ and $A$ a numberr of points whose abscissas are $\frac{1}{n}, \frac{2}{n}, \frac{3}{n}, \ldots \ldots \ldots \frac{m}{n}$,

* Our notation of numbers, known as the Arabic figures, was borrowed by the Arabs from the Hindoos. The principle of position employed in this method of writing numbers required a symbol for zero. Indeed, the use of the 0 made the Arabic notation possible in which a symbol was needed to indicate a digit in the units place which would add nothing to the total.

Hence, to every fraction $\frac{m}{n}, m$ and $n$ being integers, there corresponds a point on $X^{\prime} X$ such that its distance from $O$ represents that fraction.

In the fraction $\frac{m}{n}, m$ is the numerator and $n$ the denominator of the fraction.
6. Rational numbers. Sections 1 to 5 show that all integers and fractions may be represented graphically. Integers and fractions, both positive and negative, form the domain of rational numbers.
7. Irrational numbers. It is easily shown that some segments of $O X$, Fig. 5, do not represent rational numbers. For example, the length of the diagonal of a square whose side is equal to 1 is easily shown to be equal to $\sqrt{2}$. This number is neither an integer nor a fraction, nor can it be expressed exactly in terms of integers and fractions. However, it may be represented geometrically by a segment of $O X$ which has the same length as the diagonal of the square having the side equal to 1 .

Numbers represented by segments of $O X$ which cannot be expressed exactly by rational numbers are irrational numbers. With this agreement each segment of $O X$ corresponds to a number, and every rational or irrational number may be represented by a segment of $O X$.*

There is said to be a one-to-one correspondence between the numbers and the points on $O X$.
8. Real numbers. Men of remote civilization were acquainted with the idea of integers and fractions. The

* Pythagoras is credited with the discovery of the existence of incommensurable ratios, such as the ratio of the diagonal of a square to the side. He and his followers made the distinction between rational and irrational numbers. Definitions for irrational numbers were given by Dedekind (1831-1916) and Cantor (born 1845):
existence of irrational numbers was discovered by the Greeks. They were able to show that the ratio of some segments to a segment of given length cannot be expressed exactly as a fraction. They called these segments incommensurable.

The whole set of integers, fractions, and irrational numbers forms the domain of real numbers.

The choice of such names as rational and irrational may seem arbitrary to the student. However, the introduction of the ideas for which these names stand was a mathematical necessity. For example, positive and negative numbers were needed because without them it was impossible to solve all equations of the form $x+a=b$. To illustrate, the equation $x+5=0$ cannot be solved in the domain of positive numbers.

Furthermore, when solving quadratic equations like $x^{2}+a=b$, we need the irrational numbers. For example, the solutions of the equation $x^{2}+1=4$ are $+\sqrt{3}$ and $-\sqrt{3}$.

In solving the equation $x^{2}+a=b$ a further difficulty arises when $b$ is less than $a$, and we must interpret the meaning of $\pm \sqrt{b-a}$ for the case when $b-a$ is negative. Whatever meaning may be assigned to $-\sqrt{-n}$, it must be such that the laws of algebra formerly established for operating with numbers hold also for this new number. The name imaginary was assigned to the symbol $\sqrt{-a^{2}}, a$ being any positive or negative integer, fraction, or irrational number. These numbers will be studied in $\S \S 12$ and 13.

## EXERCISES

Represent graphically the following numbers: $-5, \sqrt{ } \overline{3}$, $\pi, \frac{2}{3}, 2 \sqrt{2}, 0$.

## Location of a Point in a Plane

9. The Cartesian system of co-ordinates. By taking as reference lines the two intersecting straight lines $X^{\prime} X$
and $Y^{\prime} Y$, Fig. 6, the position of a point $P$ in the plane of these two lines may be determined as follows:

Draw $P M$ parallel to $Y Y^{\prime}$. Let $y$ denote the length of $M P$ and $x$ the length of $O M$. Then the pair of numbers $(x, y)$ locates definitely the point $P$. The two reference lines are usually called the axes of co-ordinates, or axes, and the point of intersection the


Fig. 6 origin. $O X$ is the $x$-axis and $O Y$ the $y$-axis.
$O M=x$ is the abscissa of $P$, and $M P=y$ is the ordinate of $P$. The numbers $x$ and $y$ are the co-ordinates of $P$. Hence we speak of the point $(x, y)$ as the point whose co-ordinates are $x$ and $y$.

The discovery of this system of co-ordinates is due to the philosopher René Descartes (1637), after whom it has been called the Cartesian system of co-ordinates. It is also called the rectilinear system.

Usually the axes of co-ordinates are perpendicular to each other, Fig. 7. In that case $x$ and $y$ are the two perpendicular distances of $P$ from the axes, and the system is called a system of rectangular coordinates. The first writer who used abscissa consistently as a scientific term was Wolff in 1710. Leibnitz in 1694 was the first to use the word ordinate as a consistent technical term, and in 1692 he introduced the word co-ordinates.

The axes divide the plane into four parts called the first, second, third, and fourth quadrants, respectively.

Segments to the right of the $y$-axis are positive, those to the left are negative. Segments above the $x$-axis are positive, and those below are negative.

According to the system of co-ordinates just described, to every possible pair of real numbers $x$ and $y$ corresponds one and only one point of the plane, and to every point of the plane corresponds a pair of two definite real numbers.

To the student this method of locating points is not new. We use it in locating a building in a city when we say it is a certain number of blocks north and then a number of blocks west, in geography when we determine a place by means of its latitude and longitude, in navigation when we find the position of a ship.

## EXERCISES

1. Plot the points whose co-ordinates are

$$
(-3,1) ;(4,-2) ;(0,2) ;(-6,0)
$$

2. Plot the triangles whose vertices are determined by the following co-ordinates:
$(1,-4),(3,2)$, and $(-5,-6) ;(-2,-3),(1,3)$, and $(0,0)$
3. Polar co-ordinates. A point $P$, Fig. 8 , in a plane may be located by its direction and distance from a fixed reference point $O$. Point $O$ is the pole; the angle $X O P$ made by $O P$ and the initial line $O X$ is the vectorial angle of $P$. The distance $O P$ is the radius vector


Fig. 8 of $P$. The initial line $O X$ is the polar axis. Polar coordinates were first used by James Bernoulli in 1691.

The radius vector, $\rho, *$ and the vectorial angle, $\theta, \dagger$ are the polar co-ordinates of $P$.

[^0]A point $P$ in a plane may be located definitely by letting $\rho$ and $\theta$ have positive and negative values. Angle $\theta$ is positive or negative according as the radius vector turns counterclockwise or clockwise. The radius vector $O P$, Fig. 9, is regarded as positive, but distances measured in the direction opposite to $O P$ are negative. Thus $O P^{\prime}$ is negative.


Fig. 9

EXERCISES
Locate the following points:

1. $(\rho, \theta)=\left(2,-\frac{\pi}{3}\right),\left(-4,60^{\circ}\right),\left(-2,-45^{\circ}\right)$
2. $(3, \arctan 1) ;\left(-5, \arccos \frac{1}{2}\right) ;\left(4, \arcsin \frac{\sqrt{3}}{2}\right)$
3. Relation between Cartesian and polar co-ordinates. The following equations express polar co-ordinates in terms of Cartesian co-ordinates. Show how they are derived from Fig. 10.

$$
\left\{\begin{array}{l}
\rho=\sqrt{x^{2}+y^{2}} \\
\theta=\arctan \frac{y}{x} \\
\theta=\arcsin \frac{y}{\sqrt{x^{2}+y^{2}}} \\
\theta=\arccos \frac{x}{\sqrt{x^{2}+y^{2}}}
\end{array}\right.
$$



Fig. 10

The equations

$$
x=\rho \cos \theta, y=\rho \sin \theta, x^{2}+y^{2}=\rho^{2}
$$

express Cartesian co-ordinates in terms of polar coordinates. Prove.

## EXERCISES

1. By means of the equations in $\S 11$ find the Cartesian co-ordinates of the points: $\left(2,-30^{\circ}\right) ;\left(-3, \frac{2 \pi}{3}\right) ;\left(2,60^{\circ}\right)$; $\left(-2, \frac{\pi}{4}\right) ;\left(16, \frac{\pi}{6}\right)$.
2. Find the polar co-ordinates of the points: $(2,-2)$; $(1, \sqrt{3}) ;(-2,-2 \sqrt{3})$.
3. Change the equation $x^{2}-y^{2}=a^{2}$ to polar co-ordinates.
4. Change the equation $\rho=2 a \cos \theta$ to rectangular coordinates.
5. Transform the equation $\rho \sin 2 \theta=2 a^{2}$ into rectangular co-ordinates.
6. Change the equation $x^{2}+y^{2}=2 r x$ to polar co-ordinates.

## Complex Numbers

12. Imaginary numbers. We have seen, § 8 , that the solution of some quadratic equations leads to the square root of negative numbers. For example, no real value of $x$ satisfies the equation $x^{2}+3=0$. At first mathematicians found it impossible to give a meaning to the symbol $\sqrt{V}-3$ and called such numbers imaginary numbers, i.e., numbers having no meaning. Gradually they recognized the desirability of interpreting these new symbols so that they might be subject to the same laws of the fundamental operations of addition, subtraction, multiplication, and division as the real numbers.

This interpretation, however, is not as simple as that of negative and of irrational numbers. A real number may be represented by a line-segment laid off on a line $X^{\prime} X$ from a fixed point $O$, in a given direction. Conversely, to every segment laid off on $X^{\prime} X$ from $O$ corresponds a real number. Hence imaginary numbers cannot
be represented by segments of $X^{\prime} X$. The following suggests the representation of imaginary numbers:

Let the segment $0 A$, Fig. 11, represent the real number $a$. Turning $O A$ about $O$ through two right angles, the segment $O A^{\prime}$ is obtained, which is known to represent the number $-a$. Hence the


Fig. 11 multiplication of a number by the factor -1 may be interpreted geometrically as a rotation through $180^{\circ}$ in the counterclockwise direction. We define $\sqrt{-1}$ as a number which multiplied by itself equals -1 . Hence, $\sqrt{-1} \cdot \sqrt{-1}=-1$. This suggests the idea of interpreting multiplication of a number by $\sqrt{-1} \cdot \sqrt{-1}$ as a rotation through $180^{\circ}$ in counterclockwise direction, and multiplication by $\sqrt{-1}$ as a rotation through $90^{\circ}$.
13. Imaginary unit. The symbol $\sqrt{-1}$ is usually represented by the letter $i$. .* It is called the imaginary unit. Since imaginary numbers, as $\sqrt{-4}, \sqrt{-9}, \sqrt{-a}$, may be changed to the forms $2 \sqrt{-1}=2 i, 3 \sqrt{-1}=3 i$, $\sqrt{a \sqrt{ }-1 \doteq \sqrt{ } a} i$, they may be represented geometrically

by segments of a line $Y Y^{\prime}$ drawn perpendicularly to the $x$-axis at $O$, Fig. 12.

[^1]
## EXERCISES

Write the following numbers in the form ai and represent them graphically:

$$
\sqrt{-9}, \sqrt{-36}, \sqrt{-x^{2}}, \sqrt{-2}
$$

14. Complex numbers. We have seen that real and imaginary numbers are represented by segments drawn from the origin on the $x$-axis and on the $y$-axis, respectively. Conversely, every segment of the $x$-axis, drawn from $O$, represents a real number, and every segment of the $y$-axis represents an imaginary number. This raises the question whether or not segments drawn from $O$, not along the axes, can be interpreted as representing numbers, e.g., the segment $O P$, Fig. 13.

The position of $P$ depends upon two numbers,


Fig. 13 $x$ and $y$, the co-ordinates of $P$. We may pass from $O$ to $P$ by passing first from $O$ to $M$ and then from $M$ to $P$. We may also reach $P$ by laying off $O M=x, M Q=y$, and then rotating $M Q$ through $90^{\circ}$ in the counterclockwise direction. This may be indicated by the symbol $x+i y$, the plus sign meaning that first $x$ is laid off to $M$ and then, in the same direction, $y$ from $M$ to $Q$, the factor $i$ denoting the rotation of $M Q$ through $90^{\circ}$.

In general, to any directed segment (vector) $O P$ corresponds a symbol of the form $x+i y, x$ and $y$ being the co-ordinates of $P$.

The symbol $x+i y$ is called a complex number.*
The complex number $x+i y$ reduces to a real number when $y=0$ and to an imaginary number when $x=0$.

[^2]When $x=y=0$, the number $x+i y$ reduces to 0 and is represented geometrically by the origin. Hence real and imaginary numbers are special cases of complex numbers.

Historical note. The history of the evolution of the imaginary and the complex number and of the system of representing them graphically is eventful and interesting. These things did not spring suddenly from a single genius nor from a single age. Like most mathematical concepts the system was the cumulative result of the attempts of many men through many centuries to realize the true meaning of the varied results of the solution of equations.

On their first appearance both negative and imaginary numbers were called impossible (Diophantus, Cardan, Bombelli).

In the first century the Greek Heron, in a problem on pyramids, obtained a root $\sqrt{18-144}$, and proceeded to find $\sqrt{63}$ rather than $\sqrt{-63}$. It cannot be decided whether he recognized the impossibility of finding $\sqrt{-63}$.

Diophantus ( 250 A.D.) avoided both irrational and imaginary numbers by putting limitations on the coefficients. Obtaining $\sqrt{\left(\frac{a}{2}\right)^{2}-b}$ as a solution of a certain quadratic equation, he said that $\left(\frac{a}{2}\right)^{2}$ must exceed $b$ by a square number.

The Hindu Bhaskara (born 1114 A.d.) says: "There is no square root of a negative number, for such a number cannot be a square."

The geometrized algebra of the Arabs did not encounter imaginaries, so that the Arabs did not consider imaginaries.

The real history of the imaginary number begins in the sixteenth century of our era. In a book called the Summa, written by Pacioli in 1494 , the author assumes that in $\sqrt{\frac{b^{2}}{4}-c}, \frac{b^{2}}{4}$ must always be equal to or greater than $c$. Chuquet (1484) also recognized the impossibility of finding $\sqrt{-a}$.

In 1539 Cardan regarded imaginaries as impossible, but in 1545 he attempted for the first time in history to calculate
with them. He showed that $(5+\sqrt{-15})(5-\sqrt{-15})=40$. Such numbers he said had only a "formal significance."

Bombelli in 1572 used numbers like $+\sqrt{-a}$ and $-\sqrt{-a}$. He asserted that the imaginary in the "so-called irreducible case" of the solution of the cubic was only apparent, and he gave a rule for calculating with $\sqrt{-a}$ and with the sums of such numbers.

Vieta (1540-1603), the "father of modern algebra," never even referred to imaginary numbers.

Girard (1590?-1632) had to include them as numbers to make true his theorem that an equation of $n$th degree has $n$ roots, but he saw in them only the value of making general statements possible.

Descartes (1637) had no clear conception of them.
Leibnitz (1646-1716) used the forms

$$
\sqrt{1+\sqrt{-3}}+\sqrt{1-\sqrt{-3}}=\sqrt{6}
$$

and $x^{4}+a^{4}$
$=(x+a \sqrt{-\sqrt{-1}}) \cdot(x-a \sqrt{-\sqrt{-1}}) \cdot(x+a \sqrt{\sqrt{-1}}) \cdot(x-a \sqrt{\sqrt{-1}})$.
John Bernoulli (1667-1748) established a relation between the arctangent and the logarithm of an imaginary number.

Newton discovered a rule for determining the number of imaginary roots of a given equation. This rule was further perfected by Maclaurin in 1727 and 1729 and by Campbell in 1728.

Wessel in 1797, Argand in 1806, and Gauss in 1831 all gave the graphical representation of complex numbers that is taught in this chapter. The wonder is that so large a body of theory could have been worked out without the clarifying aid of this system. See Tropfke, Geschichte der Elementar-Mathematik, Band I, S. 168 ff.
15. Polar form of a complex number. Since
$x=r \cos \theta$, Fig. 14,
and
$y=r \sin \theta$, it follows that $x+i y=r \cos \theta+i r \sin \theta$


JOHN BERNOULLI

## J O H N B E R N O U L L I

JOHN BERNOULLI (1667-1748) was born and educated at Bâle, and in the university he was a pupil of his older brother James. He was professor of mathematics at Groningen from 1695 until the death of James, whom he succeeded at Bâle in 1705. He occupied the professorship at Bâle until his death in 1748 .

His chief discoveries were the exponential calculus, the analytical treatment of trigonometry, the determination of orthogonal trajectories, the principle of virtual work, the solution of the brachistochrone, and the conditions of a geodesic. He was probably the first to use $g$ for gravity and to arrive at the equation $v^{2}=2 g h$. Prior to his time the same principle had been stated in the form of a proportion, thus: $v_{1}^{2}: v_{2}^{2}=h_{1}: h_{2}$. He introduced $\phi x$ as a function-symbol to displace his own earlier proposal of $X$ or $\xi$. The final adoption of $f, F, \phi$, and $\psi$ to represent functions was due to Euler and Lagrange.

Of most significance to mathematical science were his services as a teacher. However inappreciative he may have been of the performances of others, he was always accessible, appreciative, and fair-minded to his pupils. Notwithstanding the blemish in his character alluded to in the biographical sketch of James (facing p. 270), he seemed capable of imparting his own zeal for mathematics to his pupils. He was the most successful mathematical teacher of his age and one of the greatest since Euclid. His influence was probably the most potent single force that wrought on the Continent of Europe the general adoption of the differential calculus of Leibnitz rather than the fluxional calculus of Newton.

The illustrious Bernoulli family, which in the course of a century furnished eight distinguished members to mathematical science, was of Dutch descent, living originally at Antwerp. Driven from its country by Spanish persecutions, the family sought an asylum first at Frankfort in 1583, and finally at Bâle, in Switzerland.
[See Ball, Cajori, or Encyclopaedia Britannica.]
or',

$$
x+i y=r(\cos \theta+i \sin \theta)
$$

The distance $O P$ or $r$, Fig. 14, is called the modulus and $\theta$ the amplitude, or argument, of the complex number.

The form $r(\cos \theta+i \sin \theta)$ is the polar form of $x+i y$.


Fig. 14

## EXERCISES

Draw the vectors representing the following numbers:

1. $2+i$
2. $2-i$
3. $-3 i$
4. $-5+2 i$
5. $-3-i \sqrt{5}$
6. $-2+6 i$

Write the following numbers in the polar form. Draw a figure for each:
7. $1+i \sqrt{ } \overline{3}$
8. $-1-i \sqrt{ } \overline{3}$
9. $\sqrt{ } \overline{3}-i$
10. $1+i$
11. $-1-i$
12. $-1+i$

Write the following numbers in the form $x+i y$ :
13. $2\left(\cos 45^{\circ}+i \sin 45^{\circ}\right)$
14. $4\left(\cos 135^{\circ}+i \sin 135^{\circ}\right)$
15. $3\left(\cos 30^{\circ}+i \sin 30^{\circ}\right)$
16. $5\left(\cos 90^{\circ}+i \sin 90^{\circ}\right)$
17. $2\left(\cos 270^{\circ}+i \sin 270^{\circ}\right)$
18. $\cos 150^{\circ}+i \sin 150^{\circ}$
16. Equality of complex numbers. Two complex numbers $x_{1}+i y_{1}$ and $x_{2}+i y_{2}$ are equal if, and only if, they are represented by the same vector. Hence, if two complex numbers $a+i b$ and $c+i d$ are equal, we must have $a=c$ and $b=d$. Conversely, two complex numbers $a+i b$ and $c+i d$ are equal if, and only if, $a=c$ and $b=d$.

Hence, if $a+i b=0$, it follows that $a=0, b=0$.
17. Conjugate complex numbers. In the complex number $a+i b, a$ is called the real part and $i b$ the imaginary part. Complex numbers, such as $a+i b$ and $a-i b$,
whose real parts are the same and whose imaginary parts are equal numerically but differ in sign, are conjugate complex numbers.

## EXERCISES

Find the value of $x$ and $y$ satisfying the following equations:

1. $x+y+(x-y) i=4+6 i$
2. $x+y+i(x-y)=24.5+i(8.5)$
3. $5 x+3 y+i(4 x-7 y)=26+2 i$

## The Operations with Complex Numbers

18. Addition of complex numbers. The symbol $x+y i$ has been interpreted geometrically to mean that a segment $O M=x$, Fig. 15, is laid off in the direction of the $x$-axis, that this is followed by laying off $M N=y$, and that $M N$ is then rotated about $M$ through an angle of $90^{\circ}$ in the counterclockwise direction, taking the position $M P$. The segment $O P$ represents $x+y i$.

By the sum of two complex numbers $x_{1}+y_{1} i$ and $x_{2}+y_{2} i$ we shall mean the following: First, the vector $O P$ is constructed, Fig. 16, representing $\quad x_{1}+y_{1} i$. Then, beginning from point $P$ instead of from $O$, the vector $P R$ is constructed equal to the vector $O Q$, which represents $x_{2}+y_{2} i$.


Fig. 16

The vector $O R$ is the sum of $x_{1}+y_{1} i$ and $x_{2}+y_{2} i$.

Show that the sum of $x_{1}+y_{1} i$ and $x_{2}+y_{2} i$ may be obtained by locating the point $R$, whose co-ordinates are $x_{1}+x_{2}$ and $y_{1}+y_{2}$. The vector from $O$ to $R$ then represents the required sum.

Since $O Q$ is equal and parallel to $P R$, it follows that $O P R Q$ is a parallelogram. This suggests a third construction of the sum of two complex numbers: Draw $O P$ and $O Q$ representing the given complex numbers. Draw the parallelogram $O P R Q$ having $O P$ and $O Q$ as two adjacent sides. The diagonal which passes through $O$ represents the sum of the given complex numbers. Since the coordinates of $R$ are $x_{1}+x_{2}$ and $y_{1}+y_{2}, O R$ represents the number $\left(x_{1}+x_{2}\right)+\left(y_{1}+y_{2}\right) i$.

Hence we may define the number $\left(x_{1}+x_{2}\right)+\left(y_{1}+y_{2}\right) i$ as the sum of $x_{1}+y_{1} i$ and $x_{2}+y_{2} i$, i.e.,

$$
\left(x_{1}+y_{1} i\right)+\left(x_{2}+y_{2} i\right)=\left(x_{1}+x_{2}\right)+\left(y_{1}+y_{2}\right) i
$$

## EXERCISES

1. A steamer is moving in the direction $O P$, Fig. 17, and the wind is blowing it in the direction $O Q$. How far and in what direction will it be from the starting-point in one hour?

If the steamer were still, in one hour it would be at $Q$. If then the wind would stop, in another hour the steamer would cover the distance from $Q$ to $R$. Hence, with the wind blowing in the direction of $O Q$, and the steamer starting from $O$ and moving in the direction $O P$, it would actually reach the point $R$ in one hour.

Since the vector $O R$ represents the distance of the steamer from the starting-point after one hour, it denotes its velocity and may be considered as the sum of the two velocities represented by $O P$ and $O Q$. It is customary to call the vectors $O P$ and $O Q$ the components of $O R$ and to call $O R$ the resultant of $O P$ and $O Q$. In general, the resultant of two forces represented by $O P$ and $O Q$ is the force represented by the diagonal $O R$ of the parallelogram $O Q R P$.

Add the following complex numbers both graphically and algebraically:
2. $(5+3 i)+(-1+7 i)$

Graphical addition: Let OP, Fig. 18 , represent $5+3 i$, and let $O Q$ represent $-1+7 i$. Draw the parallelogram $O P R Q$. The diagonal $O R$ represents the sum.

Algebraic addition:

$$
\begin{array}{r}
5+3 i \\
-1+7 i \\
\hline 4+10 i
\end{array}
$$



Fig. 18
3. $(4+i)+(1+5 i)$
4. $(-3-2 i)+(5+3 i)$
5. $(-6+8 i)+(-3-6 i)$
6. $(8-i)+(8+i)$
7. Represent graphically a force of 15 lb . acting southeast and one of 22 lb . acting southwest at the same point. Find the magnitude and direction of the resultant.
19. Subtraction of complex numbers. We have seen that the sum of the numbers $x_{1}+y_{1} i$ and $x_{2}+y_{2} i$ is represented graphically by a diagonal of a parallelogram. Therefore a side of the parallelogram denotes the difference between the numbers represented by the adjacent side and the diagonal. Therefore,


Fig. 19 to find graphically the difference between $x_{1}+y_{1} i$ and $x_{2}+y_{2} i$, let $O P$, Fig. 19, represent $x_{1}+y_{1} i$, and let $O Q$ represent $x_{2}+y_{2} i$.

Draw $Q P$.
Draw $O R \| Q P$, and $R P \| O Q$.
Then $O R$ represents the required difference.

Show that $O R$ represents the number

$$
\left(x_{1}-x_{2}\right)+\left(y_{1}-y_{2}\right) i
$$

Hence we define the difference of two complex numbers $x_{1}+y_{1} i$ and $x_{2}+y_{2} i$ as the complex number

$$
\begin{gathered}
\left(x_{1}-x_{2}\right)+\left(y_{1}-y_{2}\right) i \\
\left(\boldsymbol{x}_{1}+\boldsymbol{y}_{1} i\right)-\left(\boldsymbol{x}_{2}+\boldsymbol{y}_{2} i\right)=\left(\boldsymbol{x}_{1}-\boldsymbol{x}_{2}\right)+\left(\boldsymbol{y}_{1}-\boldsymbol{y}_{2}\right) \boldsymbol{i}
\end{gathered}
$$

i.e.,

## EXERCISES

Subtract the following as indicated and illustrate by a drawing:

1. $(4-3 i)-(2+i)$
2. $(2+i)-(1+4 i)$
3. $(7+8 i)-(5+6 i)$
4. $(2-3 i)-(-1+i)$
5. Multiplication of complex numbers. Assuming that the ordinary laws of algebra are valid for complex numbers, we have

$$
\begin{aligned}
\left(x_{1}+y_{1} i\right)\left(x_{2}+y_{2} i\right) & =x_{1} x_{2}+x_{2} y_{1} i+x_{1} y_{2} i+y_{1} y_{2} i^{2} \\
& =x_{1} x_{2}+y_{1} y_{2} i^{2}+\left(x_{1} y_{2}+x_{2} y_{1}\right) i
\end{aligned}
$$

Since $i^{2}=-1$, we have

$$
\left(x_{1}+y_{1} i\right)\left(x_{2}+y_{2} i\right)=\left(x_{1} x_{2}-y_{1} y_{2}\right)+\left(x_{1} y_{2}+x_{2} y_{1}\right) i
$$

The graphical multiplication of two complex numbers is easily shown by means of the polar form, as follows:

Let $x_{1}+y_{1} i=r_{1}\left(\cos \theta_{1}+i \sin \theta_{1}\right)$
and $\quad x_{2}+y_{2} i=r_{2}\left(\cos \theta_{2}+i \sin \theta_{2}\right)$
Then $\left(x_{1}+y_{1} i\right)\left(x_{2}+y_{2} i\right)$

$$
\begin{aligned}
= & r_{1} r_{2}\left(\cos \theta_{1}+i \sin \theta_{1}\right)\left(\cos \theta_{2}+i \sin \theta_{2}\right) \\
= & r_{1} r_{2}\left[\cos \theta_{1} \cos \theta_{2}-\sin \theta_{1} \sin \theta_{2}\right. \\
& \left.+i\left(\sin \theta_{1} \cos \theta_{2}+\cos \theta_{1} \sin \theta_{2}\right)\right]
\end{aligned}
$$

$\therefore \quad\left(x_{1}+y_{1} i\right)\left(x_{2}+y_{2} i\right)=r_{1} r_{2}\left[\cos \left(\theta_{1}+\theta_{2}\right)+i \sin \left(\theta_{1}+\theta_{2}\right)\right]$
This is a complex number whose modulus is the product of the moduli of the given numbers, and whose amplitude is the sum of their amplitudes.

## EXERCISES

Multiply as indicated and illustrate by means of a drawing:

1. $(2+2 i)(1+\sqrt{ } \overline{3} i)$

$$
\begin{aligned}
(2+2 i)(1+\sqrt{ } \overline{3} i) & =2+(2+2 \sqrt{ }) i-2 \sqrt{3} i^{2} \\
& =(2+2 \sqrt{3})+(2+2 \sqrt{ } \overline{3}) i
\end{aligned}
$$

In the polar form:

$$
\begin{aligned}
2+2 i & =2 \sqrt{2}\left(\cos 45^{\circ}+i \sin 45^{\circ}\right) \\
1+\sqrt{3} i & =2\left(\cos 30^{\circ}+i \sin 30^{\circ}\right)
\end{aligned}
$$

$\therefore$ the modulus of the product is $r_{1} r_{2}=4 \sqrt{2}$ and the amplitude is $75^{\circ}$.
$\therefore$ to construct the product, draw $O R$, making an angle of $75^{\circ}$ with $O \underline{X}$, Fig. 20, and equal in length to $4 \sqrt{2}$.
2. $(2+3 i)(3+5 i)$
3. $(-2-2 i)(2+2 i)$
4. $(3+3 \sqrt{ } 3 i)(2 \sqrt{ } \overline{3}+2 i)$
5. $(\sqrt{2}+\sqrt{5} i)(\sqrt{5}+\sqrt{2} i)$
6. $(3-i)(4+3 i)$
7. $(3-2 i)(4+3 i)$


Fig. 20
21. The $n$th power of a complex number. If a complex number is multiplied by itself we have

$$
[r(\cos \theta+i \sin \theta)]^{2}=r^{2}(\cos 2 \theta+i \sin 2 \theta), \S 20
$$

Multiplying both sides by $r(\cos \theta+i \sin \theta)$, we have

$$
[r(\cos \theta+i \sin \theta)]^{3}=r^{3}(\cos 3 \theta+i \sin 3 \theta)
$$

In general, it may be proved by mathematical induction, $\S 118$, that for any positive integral value of $n$ we have

$$
[r(\cos \theta+i \sin \theta)]^{n}=r^{n}(\cos n \theta+i \sin n \theta)
$$

This equation is known as De Moivre's formula. It can be proved that the theorem holds for any rational value of $n$.
22. Division of complex numbers. The denominator of the quotient $\frac{x_{1}+y_{1} i}{x_{2}+y_{2} i}$ may be rationalized by multiplying both numerator and denominator by the conjugate of $x_{2}+y_{2} i$.

This gives:

$$
\begin{gathered}
\frac{\left(x_{1}+y_{1} i\right)\left(x_{2}-y_{2} i\right)}{\left(x_{2}+y_{2} i\right)\left(x_{2}-y_{2} i\right)}=\frac{\left(x_{1} x_{2}+y_{1} y_{2}\right)+\left(x_{2} y_{1}-x_{1} y_{2}\right) i}{x_{2}{ }^{2}+y_{2}{ }^{2}} \\
\therefore \quad \frac{\boldsymbol{x}_{1}+\boldsymbol{y}_{1} \boldsymbol{i}}{\boldsymbol{x}_{2}+\boldsymbol{y}_{2} \boldsymbol{i}}=\frac{\boldsymbol{x}_{1} \boldsymbol{x}_{2}+\boldsymbol{y}_{1} y_{2}}{\boldsymbol{x}_{2}{ }^{2}+\boldsymbol{y}_{2}{ }^{2}}+\frac{\boldsymbol{x}_{2} y_{1}-\boldsymbol{x}_{1} y_{2}}{\boldsymbol{x}_{2}{ }^{2}+\boldsymbol{y}_{2}{ }^{2} \boldsymbol{i}}
\end{gathered}
$$

This shows that the result is a complex number.
The following division in the polar form suggests a geometric construction for the quotient of two complex numbers.

By rationalizing the denominator,

$$
\begin{aligned}
& \frac{r_{1}\left(\cos \theta_{1}+i \sin \theta_{1}\right)}{r_{2}\left(\cos \theta_{2}+i \sin \theta_{2}\right)}=\frac{r_{1} r_{2}\left(\cos \theta_{1}+i \sin \theta_{1}\right)\left(\cos \theta_{2}-i \sin \theta_{2}\right)}{r_{2}^{2}\left(\cos ^{2} \theta_{2}+\sin ^{2} \theta_{2}\right)} \\
& =\frac{r_{1}}{r_{2}} \frac{\cos \theta_{1} \cos \theta_{2}+\sin \theta_{1} \sin \theta_{2}+i\left(\sin \theta_{1} \cos \theta_{2}-\cos \theta_{1} \sin \theta_{2}\right)}{1} \\
& \quad \therefore \frac{x_{1}+y_{1} i}{x_{2}+y_{2} i}=\frac{r_{1}}{r_{2}}\left[\cos \left(\theta_{1}-\theta_{2}\right)+i \sin \left(\theta_{1}-\theta_{2}\right)\right]
\end{aligned}
$$

Hence the quotient of two complex numbers is a complex number whose modulus is the quotient of the moduli of the given numbers and whose amplitude is the difference of their amplitudes. Thus construct $O P_{3}$, Fig. 21, equal to $\frac{r_{1}}{r_{2}}$ and $\angle X O P_{3}=\theta_{1}-\theta_{2}$. Then $O P_{3}$ represents the required quotient.


Fig. 21

## EXERCISES

Divide as indicated, both algebraically and graphically:

1. $(-2+2 \sqrt{ } \overline{3} i) \div\left(1+\sqrt{ }{ }^{-} i\right)$

Rationalizing the denominator,

$$
\begin{aligned}
& \frac{-2+2 \sqrt{ } \overline{3} i}{1+\sqrt{ } \overline{3} i}=\frac{(-2+2 \sqrt{ } \overline{3} i)(1-\sqrt{3} i)}{(1+\sqrt{ } \overline{3} i)(1-\sqrt{3} i)}=\frac{-2+i(2 \sqrt{3}+2 \sqrt{3})+6}{1+3} \\
& \text { - }=\frac{4+4 \sqrt{3} i}{4}=1+l^{\prime} 3 i
\end{aligned}
$$

Writing both numbers in the polar form,

$$
\begin{aligned}
-2+2 \sqrt{3} i & =4\left(\cos 120^{\circ}+i \sin 120^{\circ}\right) \\
1+\sqrt{3} i & =2\left(\cos 60^{\circ}+i \sin 60^{\circ}\right) \\
\therefore \quad \frac{-2+2 \sqrt{3} i}{1+\sqrt{3} i} & =2\left(\cos 60^{\circ}+i \sin 60^{\circ}\right)
\end{aligned}
$$

2. $(2+2 i) \div\left(1+\frac{1}{3} \sqrt{ } \overline{3} i\right)$
3. $\frac{3}{2 i}$
4. $(1+i) \div\left(\frac{1}{4}-\frac{1}{4} i\right)$
5. $(3-5 i) \div(2-3 i)$
6. $\frac{2+5 i}{4 i}$
7. $(2-2 \sqrt{3} i) \div(1+i)$
8. $\frac{5-3 i}{5+3 i}$
9. $\frac{2+3 i}{3-2 i}$
10. $\frac{2}{-1+\sqrt{3} i}$
11. $\frac{(2+3 i)^{2}}{1+2 i}$
12. Reduce $\frac{11-3 i}{1-3 i}$ and $\frac{9-2 i}{-4-i}$ to the simplest form. Construct the sum.
13. Evaluate $\frac{2 x^{2}-(2-3 i) x+i}{x^{2}+x+1}$ for $x=3+2 i$ and reduce the result to the form $a+b i$.
14. Simplify $\frac{4 i \sqrt{10}}{2-3 i \sqrt{5}}$
15. Reduce $\frac{8+i}{1+2 i}$ and $\sqrt{2+12 i}$ to the form $a+b i$. Then find the sum graphically.

## Summary

23. The chapter has taught the meaning of the following terms:
origin
zero .
abscissa, ordinate
co-ordinates
Cartesian system of co-ordinates
polar co-ordinates
positive and negative numbers integral and fractional numbers
rational and irrational numbers
real and complex numbers conjugate complex numbers
24. Points in a plane may be located by means of Cartesian co-ordinates and by polar co-ordinates.
25. Real and complex numbers may be represented graphically by points or line-segments.
26. Cartesian co-ordinates may be expressed in terms of polar co-ordinates and conversely.
27. Complex numbers may be added, subtracted, multiplied, and divided algebraically and graphically.

## CHAPTER II

## THE STRAIGHT LINE. LINEAR FUNCTION

## Slope of a Line

28. Slope of a straight line. The positive angle $\alpha$, Fig. 22, formed by a line $A B$ and the $x$-axis, is the inclination of the line. The inclination may be determined by means of its trigonometrical ratios. In geometry the tangent ratio is used to measure the inclination of a line. The tangent of the inclination is called the slope of the line.


Fig. 22

Let $P_{1}$ and $P_{2}$, Fig. 23, be any two points of a straight line, and let the co-ordinates be $\left(x_{1}, y_{1}\right)$ and ( $x_{2}, y_{2}$ ), respectively.

Then the slope of $P_{1} P_{2}$ is equal to

$$
\frac{Q P_{2}}{P_{1} Q}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

Denoting the slope by $m$, we have the formula

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$



Fig. 23

The differences $x_{2}-x_{1}$ and $y_{2}-y_{1}$ are briefly denoted by $\Delta x_{1}$ (Delta $x_{1}$ ) and $\Delta y_{1}$ (Delta $y_{1}$ ). In this notation the equation $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$ is written $m=\frac{\Delta y_{1}}{\Delta x_{1}}$. Since the equation holds for every point on the straight line, the subscripts may be omitted, and we have $m=\frac{\Delta y}{\Delta x}$. The quotient $\frac{\Delta y}{\Delta x}$ is called differential quotient.

## EXERCISES

1. Show from a figure that the slope is positive or negative according as the line rises or falls from left to right. Thus the sign of $m$ determines whether or not the line rises or falls.
2. Show that the slope of a line parallel to the $x$-axis is zero.
3. Show that a line parallel to the $y$-axis has no slope.
4. Find the slope and inclination of each of the lines determined by the following points:
$(-2,4)$ and $(3,6) ;(3,8)$ and $(-6,-6) ;(0,-4)$ and $(-3,1)$.

## Equation of a Straight Line

29. Notation for points. The co-ordinates of a fixed point are distinguished from the co-ordinates of a variable point by means of subscripts. Thus fixed points are denoted by $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$, etc., but $(x, y)$ are the coordinates of any point in the plane.

Likewise, if a point moves on a straight line, or on a curve, its co-ordinates are $x$ and $y$, without the subscripts.

If the moving point is to satisfy given conditions, these conditions may be expressed in the form of equations involving $x$ and $y$, the co-ordinates of the point. Since there are several ways of determining a straight line, there are correspondingly various relations between $x$ and $y$. These relations will be worked out in $\S \S 30$ to 44 .

Historical note. This type of mathematics is called analytical geometry. It used to be known as co-ordinate geometry. It has two distinguishing characteristics: one, the employment of co-ordinates; the other, the correlation of algebra and geometry. Before analytical geometry was invented algebra and geometry had long been studied as separate mathematical branches.

The use of co-ordinates is very old. The ancient Egyptian architect drew on the wall where he was to chisel a relief two sets of parallels at right angles. When he transferred his
design, which had been traced over with a pair of parallel systems of lines at right angles, he was using co-ordinates. The Greek astronomer Hipparchus (about 120 b.c.) was employing the principle of co-ordinates when he located points on the earth's surface by longitude and latitude, using the meridian of Rhodes as axis of ordinates. When Heron (about 80 b.c.) mapped his land surveys on cross-lined paper and located streets, public squares, buildings, and monuments with reference to the lines and intersections, and calculated areas of tracts as sums of the rectangles formed on his rectangular paper, he was using co-ordinates.

Apollonius (250-200 в.c.) in his study of conic sections, Oresmus (1323-82 a.d.) in his study of point-sets, Kepler (1571-1630) in his studies in mensuration, all employed the principle of co-ordinates.

Furthermore, algebra and geometry had been studied in combination by individuals long before analytical geometry was invented. All the algebra the Greeks ever studied before Diophantus (ca. 250 A.d.) was of a geometrized type. Two books of Euclid's Elements were really on what we would call algebra. The principles of Arabian algebra were proved by geometrical methods. Leonardo of Pisa in 1202 urged upon all people the importance of geometry as a means of proving algebraic rules and principles. Pacioli (1494) did the same thing, as did also Regiomontanus (1436-76 a.d.), Stifel (14861567), Tartaglia (1500-1557), Cardan (1501-76), and Vieta (1540-1603).

It was Descartes, however, in 1637 who first published the system of representing points by number pairs, lines by equations based on co-ordinates, and the expression and investigation of properties of lines, curved or straight, by the algebraic transformations of equations, as is begun in this chapter. Geometry for more than one thousand years had been helping algebra to grow to maturity. After Descartes algebra began to repay its age-long debt. Since Descartes, algebra and geometry have grown along together.
30. The point-slope form. Let $m$ be the slope of the line $P_{1} P_{2}$, Fig. 24. Let $\left(x_{1}, y_{1}\right)$ be the co-ordinates of the given point $P_{1}$ on line $P_{1} P_{2}$, and let $(x, y)$ be the coordinates of any other point $P$ on $P_{1} P_{2}$.

Then ( $x, y$ ) satisfy the equation

$$
m=\frac{y-y_{1}}{x-x_{1}} \quad \text { Why? }
$$

Solving for $y-y_{1}$, we have


Fig. 24

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

an equation of the first degree in two variables, $x$ and $y$. This equation is satisfied by the co-ordinates $(x, y)$ of every point on $P_{1} P_{2}$, and it is said to be the equation of the straight line whose slope is $m$ and which passes through the point $P_{1}$.

## EXERCISES

1. The slope of a line passing through the point $(4,-3)$ is 5. Find the equation of the line.
2. Find the equation of a line of slope $\frac{3}{5}$, passing through the point $(-4,-3)$.
3. Find the equation of a straight line of slope $-\frac{2}{3}$, passing through the point $(5,7)$.
4. The slope-intercept form. Let $(0, b)$, Fig. 25, be the co-ordinates of the point of intersection of $P_{1} P_{2}$ and the $y$-axis. Substituting $\left(x_{1}, y_{1}\right)=(0, b)$ in the equation $y-y_{1}=m\left(x-x_{1}\right)$, we have

$$
y-b=m(x-0)
$$

or

$$
y=m x+b
$$



Frg. 25

The number $b$ is the $y$-intercept of $P_{1} P_{2}$ and the equation $y=m x+b$ is said to be the equation of the straight line whose slope is $m$ and which has the $y$-intercept $b$.

Using Fig. 25, prove that $y=m x+b$.
32. The two-point form. Let $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ be the co-ordinates of two fixed points and let

$$
\begin{equation*}
y=m x+b \tag{1}
\end{equation*}
$$

be the equation of the line passing through these two points. Then
and

$$
\begin{align*}
& y_{1}=m x_{1}+b  \tag{2}\\
& y_{2}=m x_{2}+b \tag{3}
\end{align*}
$$

Subtracting (2) from (1), and (2) from (3), we have

$$
\begin{equation*}
y-y_{1}=m\left(x-x_{1}\right) \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
y_{2}-y_{1}=m\left(x_{2}-x_{1}\right) \tag{5}
\end{equation*}
$$

Dividing (4) by (5), we have
or

$$
\begin{aligned}
& \frac{y-y_{1}}{y_{2}-y_{1}}=\frac{x-x_{1}}{x_{2}-x_{1}} \\
& \frac{y-y_{1}}{x-x_{1}}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
\end{aligned}
$$

## EXERCISES

1. On squared paper draw a straight line. Select two points on this line and determine its equation.
2. Write the equations of the lines passing through the points:

$$
(5,6) \text { and }(1,-2) ;(0,2) \text { and }(6,-5) ;(-1,3) \text { and }(-4,-3)
$$

33. The determinant form. The equation of a straight line given in $\S 32$ may also be written in the determinant form

$$
\left|\begin{array}{lll}
x & y & 1 \\
x_{1} & y_{1} & 1 \\
x_{2} & y_{2} & 1
\end{array}\right|=0
$$

This may be easily seen by expanding the determinant, § 67 .

## EXERCISE

Show that the condition that three points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$, and $\left(x_{3}, y_{3}\right)$ lie on a straight line is

$$
\left|\begin{array}{lll}
x_{1} & y_{1} & 1 \\
x_{2} & y_{2} & 1 \\
x_{3} & y_{3} & 1
\end{array}\right|=0
$$

34. The intercept form. Let $a$ be the $x$-intercept and $b$ the $y$-intercept of the line $P Q$, Fig. 26.

Then

$$
\begin{aligned}
& \frac{y-b}{x-0}=\frac{0-b}{a-0}, \S 32 . \\
\therefore & \frac{y-b}{x}=-\frac{b}{a} \\
\therefore \quad & y=-\frac{b}{a} x+b \\
\therefore & \frac{x}{a}+\frac{y}{b}=1
\end{aligned}
$$



Fig. 26

This is the intercept form of the equation of a straight line.

## EXERCISES

1. On squared paper draw a straight line cutting both axes. Find the intercepts and determine the equation of the line.
2. Find the intercepts of the lines passing through the points:

$$
(5,-2) \text { and }(1,-3) ;(5,-8) \text { and }(-4,3)
$$

35. Lines parallel to the $x$-axis. Since $m=0$, when the line is parallel to the $x$-axis, the equation $y=m x+b$ takes the form

$$
y=b
$$

36. Lines parallel to the $y$-axis. Let $P Q$, Fig. 27, be parallel to the $y$-axis. Then for all points on $P Q, x=k$, whatever be the value of $y$. For all points not on $P Q, x \neq k$. Hence the equation of $P Q$ is

$$
x=k
$$



Fig. 27
37. Lines passing through the origin. Substituting $x=0$ and $y=0$ in the equation $y=m x+b$, we have $b=0$. Hence the equation of a straight line passing through the origin is

$$
y=m x
$$

38. Theorem: Every equation of the first degree in one or two variables represents a straight line.

The general form of an equation of the first degree in two variables is

$$
A x+B y+C=0
$$

If $B=0$, the equation $A x+B y+C=0$ may be solved for $x$.

This gives

$$
x=-\frac{C}{A}=k
$$

which is the equation of a straight line parallel to the $y$-axis, § 36 .

If $B \neq 0$, the equation $A x+B y+C=0$ may be solved for $y$ and changed to the form

$$
y=m x+b
$$

This defines a straight line cutting the $y$-axis at the point $(0, b), \S 31$.

If $m=0$, we have $y=b, \S 35$, the equation of a line parallel to the $x$-axis.

If $b=0$, we have $y=m x, \S 37$, the equation of a line passing through the origin.

Hence, for all values of $A, B$, and $C$ the equation $A x+B y+C=0$ can be put into one of the forms $x=k$, $y=b, y=m x$, or $y=m x+b$, and therefore it represents a straight line.
39. Linear equation. An equation of the first degree is called a linear equation.
40. Linear function. A function of the first degree, as $m x+b$, is a linear function. In the equation $y=m x+b$, $y$ is an explicit function of $x$; in the equation $A x+B y+C=0$, $y$ is an implicit function of $x$.

The value of $x$ for which $m x+b$ is equal to zero is called the zero of the function $m x+b$.
41. Graphing linear equations. A pair of values of $x$ and $y$ satisfying the equation $A x+B y+C=0$ is a solution of the equation. The point determined by this pair of numbers lies on the straight line defined by the equation.

Since two points determine a straight line, the graph of the equation may be obtained by plotting two solutions and drawing the straight line determined by the two points. This line is the required graph.

## EXERCISES

Graph the locus of each of the following equations:

1. $x=3$
2. $y=4 x$
3. $y=-5$
4. $y=-2 x+3$

Let $x=0$ and find the corresponding value of $y$. Then let $y=0$ and find the corresponding value of $x$.
5. $2 x+2 y=8$
6. $y=3 x+5$
7. $2 x-5 y=0$
8. $\frac{x}{3}+\frac{y}{4}=1$
9. $y=-7$
10. $-4 x+3 y=12$

Write the slope-intercept form and the intercept form of each of the following equations:
11. $2 y+5 x-6=x+3$
12. $\frac{x}{4}+\frac{y}{3}=2$
13. $\frac{x-1}{2}=\frac{y-3}{7}$
14. $x-2 y=6$

Determine $C$ so that the graphs of the following equations pass through the point $(2,-3)$ :
15. $4 x+5 y+C=0$
16. $7 x+y+C=0$
17. $-5 x+3 y+C=0$
18. $10 y+C=0$
19. A straight line passing through the point $(5,3)$ has equal intercepts. Find its equation.
20. Centigrade and Fahrenheit readings taken at the same time satisfy the equation

$$
C=\frac{5}{9} F-\frac{160}{9}
$$

Draw the straight line representing this equation. From the graph find $C$ when $F=30^{\circ}$, and find $F$ when $C=100^{\circ}$.
21. When a body is thrown downward (in a vacuum) with an initial velocity $v_{0}$, its velocity in $t$ seconds is given by the equation $v=v_{0}+g t$. Draw the graph of this equation for $g=32$ and $v_{0}=3$.
22. A man invests $\$ 1,200$ at 3 per cent simple interest. Find the amount $a$ in $n$ years.

Show that $a$ is a linear function of $n$.
Notice that the coefficient of $n$ is the rate of increase of the amount. What is the meaning of the coefficient of $n$ in the graph ?
23. Two variables, $x$ and $y$, are so related as to have a constant ratio $m$. Express the functional relation between $x$ and $y$ in the form of an equation and show that either variable is a linear function of the other.
24. The weight, $w$, of an object varies directly as the volume, $v$. Show that $w$ is a linear function of $v$. The slope of the straight line representing this function graphically denotes the density of the body.
25. The distance, $s$, passed over by a body moving uniformly varies directly as the time, $t$. Show that $s$ is a linear function of $t$. What is the meaning of the slope of the line representing this function?
26. Show that one of the acute angles of a right triangle is a linear function of the other. Represent this function graphically.
42. The polar equation of a straight line. Let $A B$, Fig. 28, be any straight line. Let $O X$ be the initial line, and $O$ the pole, § 10 .

Denote the length of the perpendicular from $O$ to $A B$ by $p$ and the angle $C O X$ by $\omega$.

Let $P(\rho, \theta)$ be any point on $A B$.


Fig. 28

Then

$$
\cos P O C=\frac{p}{\rho}
$$

$$
\angle P O C=\theta-\omega,
$$

$$
\therefore \quad \rho \cos (\theta-\omega)=p
$$

This is the equation of line $A B$ in polar co-ordinates.

## EXERCISES

Draw the graphs of the following equations:

1. $\rho \cos \theta=5$
2. $\rho \cos \left(\theta-30^{\circ}\right)=6$
3. $\rho \cos \left(\theta-120^{\circ}\right)=4$
4. $\rho \sin \left(\theta+\frac{2}{3}\right)=4$
5. Find the polar equation of a straight line passing through the pole.
6. Find the polar equation of the initial line.
7. The equation of a straight line in the normal form. The equation

$$
\rho \cos (\theta-\omega)=p, \S 42
$$

may be written

$$
\begin{array}{r}
\rho \cos \theta \cos \omega+\rho \sin \theta \sin \omega=p \\
\text { Show that }\left\{\begin{array}{l}
\rho \cos \theta=x \\
\rho \sin \theta=y
\end{array}\right. \\
\therefore \quad x \cos \omega+y \sin \omega=p
\end{array}
$$

This is the normal form of a linear equation.
44. Reduction of $A x+B y+C=0$ to the normal form. Since the equations

$$
\begin{align*}
A x+B y+C & =0  \tag{1}\\
\text { and } \quad x \cos \omega+y \sin \omega-p & =0
\end{align*}
$$

represent the same line, they must differ only by a constant factor. Thus, equation (1) may be written

$$
\begin{aligned}
k A x+k B y+k C & =0 \\
\therefore \quad \cos \omega & =k A \\
\sin \omega & =k B \\
-p & =k C
\end{aligned}
$$

$$
\therefore \quad \cos ^{2} \omega=k^{2} A^{2}
$$

Adding,

$$
\frac{\sin ^{2} \omega=k^{2} B^{2}}{\cos ^{2} \omega+\sin ^{2} \omega=k^{2}\left(A^{2}+B^{2}\right)}
$$

$$
\therefore \quad k=\frac{1}{ \pm \sqrt{A^{2}+B^{2}}}
$$

$$
\begin{gathered}
\therefore \quad \cos \omega=\frac{A}{ \pm \sqrt{A^{2}+B^{2}}}, \sin \omega=\frac{B}{ \pm \sqrt{A^{2}+B^{2}}}, \\
-p=\frac{C}{ \pm \sqrt{A^{2}+B^{2}}}
\end{gathered}
$$

Since $p$ is always a positive number, the last equation determines the sign of the radical. Hence the sign of the radical is opposite to that of $C$. Why?

## EXERCISES

Reduce each of the following equations to the normal form and construct the lines from the values of $\omega$ and $p$. Check your results by means of the intercepts.

1. $4 x+3 y-25=0$

Dividing every term by $\sqrt{4^{2}+3^{2}}$, we have

$$
\begin{gathered}
\frac{4 x}{5}+\frac{3 y}{5}-5=0 \\
\therefore \quad \cos \omega=\frac{4}{5}, \sin \omega=\frac{3}{5}, p=5
\end{gathered}
$$

Since $\cos \omega$ and $\sin \omega$ are positive, the perpendicular lies in the first quadrant. Determine the value of $\omega$ and construct the line, Fig. 29.
2. $-x+3 y-4=0$
3. $x+8=-2 y$
4. $3 x+4 y+6=0$
5. $x-y=0$
6. $3 x-5 y=4$
7. $3 x-4 y=0$


Fig. 29

Draw the lines determined by the following conditions and write their equations:
8. $p=3, \omega=30^{\circ}$
9. $p=5, \omega=150^{\circ}$
10. $p=4, \omega=74^{\circ}$
11. $p=5, \omega=135^{\circ}$
12. Find the distance between the parallel lines

$$
7 x-8 y-40=0 \text { and } 7 x-8 y-15=0 .
$$

13. Find the radius of the circle whose center is at the origin and which touches the line $5 x+12 y-25=0$.
14. Distance of a point from a line. Let $A B$, Fig. 30, be a given line, let $P\left(x_{1}, y_{1}\right)$ be a given point, and let $d$ be the distance from $P$ to $A B$.

Through $P$ draw $A^{\prime} B^{\prime} \| A B$.

Let $O D$ be perpendicular to $A^{\prime} B^{\prime}$ and equal to $p^{\prime}$, and let $O C=p$.

Then the equations of $A B$ and $A^{\prime} B^{\prime}$, reduced


Fig. 30 to the normal form, may be written
and

$$
x \cos \omega+y \sin \omega=p
$$

respectively.
Since the equation of $A^{\prime} B^{\prime}$ is satisfied by $\left(x_{1}, y_{1}\right)$, it follows that

$$
\begin{aligned}
& x_{1} \cos \omega+y_{1} \sin \omega=p^{\prime} \\
\therefore & d=p^{\prime}-p=x_{1} \cos \omega+y_{1} \sin \omega-p \\
\therefore & d=x_{1} \cos \omega+y_{1} \sin \omega-p
\end{aligned}
$$

Hence, to find the distance from a point to a line, reduce the equation of the line to the normal form $x \cos \omega+y \sin \omega-p=0$
and substitute the co-ordinates of the point in place of the variables $x$ and $y$.

If $d$ is negative the given point and the origin lie on the same side of the given line; if $d$ is positive they lie on opposite sides of the given line.

## EXERCISES

1. Show that

$$
d=\frac{A x_{1}+B y_{1}+C}{ \pm \sqrt{A^{2}+B^{2}}},
$$

using the - sign when $C$ is positive and the + sign when $C$ is negative.
2. Find the distance of the point $(1,2)$ from the line of $3 x-10=4 y$.
3. Find the distance of the point $(-3,4)$ from the line of $5 x+12 y=25$.
4. Find the distance of the point $(1,1)$ from the line of $3 x+4 y+6=0$.
5. Find the distance of the point $(2,3)$ from the line $3 x+4 y=-12$.
46. Bisector of an angle. Let $P\left(x_{1} y_{1}\right)$, Fig. 31, represent any point on the bisector of that pair of vertical angles which contains the origin.

Since $P$ is equally distant


Fig. 31 from the given lines it follows that the equation of the bisector is

$$
x \cos \omega+y \sin \omega-p=x \cos \omega^{\prime}+y \sin \omega^{\prime}-p^{\prime}
$$

Similarly the equation of the bisector of the other pair of vertical angles is

$$
x \cos \omega+y \sin \omega-p=-\left(x \cos \omega^{\prime}+y \sin \omega^{\prime}-p^{\prime}\right)
$$

## EXERCISE

Find the equations of the bisectors of the angles formed by the lines

$$
3 x-4 y=12 \text { and } 12 x+5 y=30
$$

47. Distance between two points. Show that $P_{2} Q$, Fig. 32, is equal to $y_{2}-y_{1}$, and that $P_{1} Q$ is equal to $x_{2}-x_{1}$
or

$$
\begin{aligned}
\therefore \quad d^{2} & =\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2} \\
d & =\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
\boldsymbol{d} & =\sqrt{(\Delta \boldsymbol{x})^{2}+(\Delta \boldsymbol{y})^{2}}
\end{aligned}
$$



Fig. 32
48. Locus of moving point always equidistant from two given points. Suppose a point $P(x, y)$ moves, always being equidistant from two given points, $P_{1}(1,2)$ and $P_{2}(4,1)$. Find and plot the equation of the locus of $P$.

Since

$$
P P_{1}=P P_{2}
$$

we have

$$
\begin{aligned}
\sqrt{(x-1)^{2}+(y-2)^{2}} & =\sqrt{(x-4)^{2}+(y-1)^{2}}, \S 47 \\
\therefore \quad(x-1)^{2}+(y-2)^{2} & =(x-4)^{2}+(y-1)^{2}
\end{aligned}
$$

This reduces to.

$$
6 x-2 y-13=0
$$

Plot this equation.

## EXERCISES

Find the equation of the locus of a point equidistant from the following pairs of points. Plot the locus.

$$
(-3,4) \text { and }(3,2) ;(0,0) \text { and }(4,6) ;(3,2) \text { and }(-5,1)
$$

49. Division of a segment in a given ratio. Let $P_{3}$, Fig. 33, divide the segment $P_{1} P_{2}$ into the segments $m$ and $n$. The co-ordinates of $P_{3}$ may be determined as follows:

$$
\begin{array}{r}
\frac{P_{1} P_{3}}{P_{3} P_{2}}=\frac{P_{1} D}{D E}=\frac{P_{1} D}{P_{3} F} \\
\therefore \quad \frac{m}{n}=\frac{x_{3}-x_{1}}{x_{2}-x_{3}} \\
\therefore \quad m x_{2}-m x_{3}=n x_{3}-n x_{1} \\
\therefore \quad(m+n) x_{3}=m x_{2}+n x_{1} \\
\therefore \quad x_{3}=\frac{m x_{2}+n x_{1}}{m+n}
\end{array}
$$



Fig. 33

Similarly

$$
y_{3}=\frac{m y_{2}+n y_{1}}{m+n}
$$

50. Midpoint of a segment. In the formulas derived in $\S 49$, let $m=n$. Then show that

$$
\left\{\begin{array}{l}
x_{3}=\frac{1}{2}\left(x_{1}+x_{2}\right) \\
y_{3}=\frac{1}{2}\left(y_{1}+y_{2}\right)
\end{array}\right.
$$

## EXERCISES

1. Derive the distance formulas, $\S 47$, letting $P_{1}$ be in the first quadrant, $\mathrm{P}_{2}$ in the second.
2. Prove the distance formulas for various positions of $P_{1}$ and $P_{2}$, thus showing that the formulas hold in general.
3. Find the distance between $(3,-4)$ and $(8,-2)$.
4. Prove that the midpoint of the hypotenuse of a-right triangle is the center of the circumscribed circle.

Place the triangle, making the sides of the right angle fall along the co-ordinate axes.
5. Find the lengths of the sides of a triangle, the co-ordinates of whose vertices are $(2,2),(4,3),(-3,5)$.
6. Find the lengths of the medians of a triangle, the coordinates of whose vertices are $(7,-3),(-4,7),(5,-2)$.
7. Using the fact that the medians of a triangle are concurrent in a trisection point, find the co-ordinates of the common point.
8. Show that the points $(2,4),(-2,4),(-1,1)$, and $(1,7)$ are the vertices of a parallelogram.
9. Prove that the diagonals of a rectangle are equal.

Make two adjacent sides coincide with the axes.
10. Prove that the line joining the midpoints of two sides of a triangle is equal to one-half of the third side.
11. Show that a circle whose center is the point $(2,-1)$ passes through the points $(6,2),(-1,3),(-2,-4)$.
12. Find the equation of the locus of points equidistant from the points $(-3,-3)$ and ( 0,4 ).
13. What are the co-ordinates of the point dividing the segment $(-1,4),(5,3)$ in the ratio $2: 3$ ?
14. Find the trisection points of the segment joining the points $(0,3)$ and $(6,-3)$.

## Summary

51. The chapter has taught the meaning of the following terms: slope, intercept.
52. The following forms of the equation of a straight line have been developed:
53. The point-slope form:

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

2. The slope-intercept form:

$$
y=m x+b
$$

3. The two-point form:

$$
\frac{y-y_{1}}{x-x_{1}}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

4. The determinant form:

$$
\left|\begin{array}{lll}
x & y & 1 \\
x_{1} & y_{1} & 1 \\
x_{2} & y_{2} & 1
\end{array}\right|=0
$$

5. The intercept form:

$$
\frac{x}{a}+\frac{y}{b}=1
$$

6. The polar form:

$$
\rho \cos (\theta-\omega)=p
$$

7. The normal form:

$$
x \cos \omega+y \sin \omega=p
$$

8. The equation of a line parallel to the $x$-axis:

$$
y=b
$$

9. The equation of a line parallel to the $y$-axis:

$$
x=k
$$

10. The equation of a line passing through the origin:

$$
y=m x
$$

11. The general form:

$$
A x+B y+C=0
$$

53. It has been shown:
54. That every equation of the first degree in one or two variables represents a straight line.
55. How to graph a linear equation.
56. That the equations of the bisectors of the angles formed by two intersecting lines are

$$
x \cos \omega+y \sin \omega-p= \pm\left(x \cos \omega^{\prime}+y \sin \omega^{\prime}-p^{\prime}\right)
$$

54. The following formulas have been proved:
55. The distance from a point to a line:

$$
d=x_{1} \cos \omega+y_{1} \sin \omega-p
$$

2. The distance between two points:

$$
d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

3. The co-ordinates of the point dividing a segment in a given ratio:

$$
(x, y)=\left(\frac{m x_{2}+n x_{1}}{m+n}, \frac{m y_{2}+n y_{1}}{m+n}\right)
$$

4. The co-ordinates of the midpoint of a segment:

$$
(x, y)=\left(\frac{1}{2}\left(x_{1}+x_{2}\right), \frac{1}{2}\left(y_{1}+y_{2}\right)\right)
$$

## CHAPTER III

## SEVERAL STRAIGHT LINES. SIMULTANEOUS LINEAR EQUATIONS IN TWO VARIABLES. AREAS

## Several Straight Lines

55. Parallel straight lines. If two lines are parallel, their slopes are equal, i.e.,

$$
\begin{equation*}
m_{1}=m_{2} \tag{1}
\end{equation*}
$$

Moreover, let $A_{1} x+B_{1} y+C_{1}=0$
and

$$
A_{2} x+B_{2} y+C_{2}=0
$$

be the equations of two parallel straight lines. It follows that
and

$$
\begin{align*}
y & =-\frac{A_{1}}{B_{1}} x-\frac{C_{1}}{B_{1}} \quad \text { Why? } \\
y & =-\frac{A_{2}}{B_{2}} x-\frac{C_{2}}{B_{2}} \quad \text { Why? } \\
m_{1} & =-\frac{A_{1}}{B_{1}} \text { and } m_{2}=-\frac{A_{2}}{B_{2}} \\
\therefore \quad-\frac{A_{1}}{B_{1}} & =-\frac{A_{2}}{B_{2}} \\
\therefore \quad \frac{A_{1}}{A_{2}} & =\frac{B_{1}}{B_{2}} \tag{2}
\end{align*}
$$

Since

Hence, if two straight lines are parallel, the coefficients of the variables in the equations of these lines are proportional.

## EXERCISE

State and prove the converse of the second theorem in $\S 55$.
56. Incompatible equations. The equations of a pair of parallel straight lines are called incompatible, or inconsistent. Such equations have no common solution, § 61 .

Hence the equations
and

$$
A_{1} x+B_{1} y+C_{1}=0
$$

are incompatible, have no common solution, and their lines are parallel, if

$$
\frac{A_{1}}{A_{2}}=\frac{B_{1}}{B_{2}},
$$

or if

$$
m_{1}=m_{2}
$$

## EXERCISES

1. Show that the following pairs of lines are parallel:

$$
\left\{\begin{array} { l } 
{ 3 x - 4 y = 4 } \\
{ 3 x - 4 y = 9 }
\end{array} \quad \left\{\begin{array}{l}
3 x+5 y=2 \\
6 x+10 y=2
\end{array}\right.\right.
$$

2. Find the equation of a straight line parallel to $3 x-5 y=-6$ and passing through the point $(-2,3)$. .
3. Perpendicular straight lines. If two straight lines, Fig. 34, be perpendicular to each other, then

$$
\begin{aligned}
a_{1} & =a_{2}+90^{\circ} \\
\therefore \quad \tan a_{1} & =-\cot \alpha_{2}=-\frac{1}{\tan a_{2}}
\end{aligned}
$$

or

$$
\begin{aligned}
m_{1} & =-\frac{1}{m_{2}}, \S 55 \\
\therefore \quad-\frac{A_{1}}{B_{1}} & =-\frac{1}{-\frac{A_{2}}{B_{2}}} \\
A_{1} A_{2} & =-B_{1} B_{2}
\end{aligned}
$$

or

Thus, if $A_{1} x+B_{1} y+C_{1}=0$ and $A x_{2}+B_{2} y+C_{2}=0$ are equations of perpendicular straight lines, then
or

$$
\begin{aligned}
m_{1} & =-\frac{1}{m_{2}} \\
A_{1} A_{2} & =-B_{1} B_{2}
\end{aligned}
$$

## EXERCISES

1. Show that the lines of the equations $A_{1} x+B_{1} y+C_{1}=0$ and $A_{2} x+B_{2} y+C_{2}=0$ are perpendicular to each other if $A_{1} A_{2}=-B_{1} B_{2}$.
2. Show that the lines of the equations $2 x-y+3=0$ and $x+2 y-7=0$ are perpendicular to each other.
3. Write an equation of a line perpendicular to the line $2 x-y=8$.
4. Write the equation of the straight line perpendicular to $7 x+9 y=-1$. and passing through the point $(5,3)$.
5. Angle between two lines. Let the lines $A B$ and $C D$, Fig. 35, intersect at $P$. Let $\beta$ be the smallest angle through which $C D$ must be turned in counterclockwise direction to coincide $D$ with $A B$. Let $a_{1}>a_{2}$.

Then $\quad \beta=a_{1}-a_{2}$.


Fig. 35
Why?

$$
\begin{aligned}
\therefore \quad \tan \beta & =\tan \left(\alpha_{1}-a_{2}\right) \\
& =\frac{\tan \alpha_{1}-\tan \alpha_{2}}{1+\tan \alpha_{1} \tan \alpha_{2}}
\end{aligned}
$$

Since $\tan a_{1}=m_{1}$ and $\tan \alpha_{2}=m_{2}$, it follows that

$$
\tan \beta=\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}
$$

## EXERCISE

Find the angle between the lines $x+2 y=3$ and $3 x-y=-4$.

## Simultaneous Linear Equations

59. Intersection of two straight lines. Since the co-ordinates of any point on a line satisfy the equation of that line, it follows that the co-ordinates of the point of intersection of two lines satisfy each of the two equations. Hence by solving the equations simultaneously we may determine the co-ordinates of the point of intersection.
60. Solution of a system of linear equations by determinants. In a given system of linear equations in two unknowns the terms containing the unknowns may be brought to one side, and the terms not containing the unknowns to the other side, of the equation. After all similar terms have been combined, the system is of the following form:

$$
\left\{\begin{array}{c}
a x+b y=c \\
a_{1} x+b_{1} y=c_{1}
\end{array}\right.
$$

To eliminate $y$, the first equation is multiplied by $b_{1}$ and the second by $b$. This gives the equations

$$
\left\{\begin{array}{l}
a b_{1} x+b b_{1} y=c b_{1} \\
a_{1} b x+b_{1} b y=c_{1} b
\end{array}\right.
$$

Subtracting the second equation from the first and dividing by the coefficient of $x$,

$$
x=\frac{c b_{1}-c_{1} b}{a b_{1}-a_{1} b}
$$

Similarly,

$$
y=\frac{a c_{1}-a_{1} c}{a b_{1}-a_{1} b}
$$

It will be shown below how these results may be used as formulas to find the solution of the system directly from the given equations.


PIERRE SIMON LAPLACE

## PIERRE SIMON LAPLACE

PIERRE SIMON LAPLACE (1749-1827) was born in Normandy and was educated through the aid of wealthy friends. He held himself so aloof from his relatives and benefactors that very little is known of his early life. As a young man he wrote a paper on the principles of mechanics that induced D'Alembert to recommend him for a place in' a military school. Here he pursued original researches in astronomy for the seventeen years from 1771 to 1787 . During this period he directed numerous memoirs of great power to the French Academy. In 1787 he set himself the task to "offer a complete solution of the great mechanical problem presented by the solar system and bring theory so closely to coincide with observation that empirical equations should no longer find a place in astronomical tables." The results of his work under this ideal are embodied in the Exposition du système du monde and in the Méchanique céleste.

The Exposition was published in 1796 and contains as a sort of appendix the enunciation of the famous nebular hypothesis. The Méchanique céleste was published in five large volumes, the first two in 1799, the third in 1802, the fourth in 1805, and the fifth in 1825. This great work was translated into English, copiously annotated, and published in Boston from 1829 to 1839 by Nathaniel Bowditch. Napoleon once said to him: "M. Laplace, they tell me you have written this large book on the system of the universe, and have not even mentioned its Creator." Laplace's curt reply was: "I had no need for that hypothesis." Nevertheless Laplace was as staunch a religionist as a scientist.

In 1812 he published his analytical theory of probabilities, which still remains one of the chief authorities on this subject.

Laplace was vain and selfish, ungrateful to political friends and the benefactors of his youth, pliant, if not servile, in politics, and unscrupulous about passing off the work of others as his own. Napoleon removed him from a political office for administrative inefficiency. In religion, philosophy, and science he manifested strength of character, and in later life he was both generous and appreciative of the work of his pupils. He once withheld one of his own papers from publication in order that one of his pupils might have entire credit for the investigation.
[See Ball or Cajori, History of Mathematics, or Encyclopaedia Britannica.]

Each of the expressions $c b_{1}-c_{1} b, a b_{1}-a_{1} b$, and $a c_{1}-a_{1} c$ is of the form of the difference of two products. Such expressions are called determinants.*

The determinant $c b_{1}-c_{1} b$ may be represented by the following symbol:

$$
\left|\begin{array}{ll}
c & b \\
c_{1} & b_{1}
\end{array}\right|
$$

which means that from the product $c b_{1}$ we are to subtract the product $b c_{1}$.

Similarly $a b_{1}-a_{1} b$ and $a c_{1}-a_{1} c$ may be written

$$
\left|\begin{array}{ll}
a & b \\
a_{1} & b_{1}
\end{array}\right| \text { and }\left|\begin{array}{ll}
a & c \\
a_{1} & c_{1}
\end{array}\right|
$$

Hence the solution of the system

$$
\left\{\begin{array}{l}
a x+b y=c \\
a_{1} x+b_{1} y=c_{1}
\end{array}\right.
$$

[^3]takes the form
\[

x=\frac{\left|$$
\begin{array}{ll}
c & b \\
c_{1} & b_{1}
\end{array}
$$\right|}{\left|$$
\begin{array}{ll}
a & b \\
a_{1} & b_{1}
\end{array}
$$\right|}, \quad y=\frac{\left|$$
\begin{array}{ll}
a & c \\
a_{1} & c_{1}
\end{array}
$$\right|}{\left|$$
\begin{array}{ll}
a & b \\
a_{1} & b_{1}
\end{array}
$$\right|}
\]

Notice that the two denominators are the same, the numbers in the first column being the coefficients of $x$ and the numbers in the second column the coefficients of $y$ in the given equations. This makes it easy to remember the denominators. The numerator of the fraction which gives the value of $x$ is obtained from the denominator by replacing the numbers in the first column (the coefficients of $x$ ) by the constants $c$ and $c_{1}$ respectively. The numerator of the fraction which gives the value of $y$ is obtained from the denominator by replacing the numbers in the second column (the coefficients of $y$ ) by $c$ and $c_{1}$.

## EXERCISES

Solve the following systems:

1. $\left\{\begin{array}{l}4 x+6 y=9 \\ 2 x+9 y=7\end{array}\right.$

$$
\begin{aligned}
& x=\frac{\left|\begin{array}{ll}
9 & 6 \\
7 & 9
\end{array}\right|}{\left|\begin{array}{ll}
4 & 6 \\
2 & 9
\end{array}\right|}=\frac{9 \cdot 9-6 \cdot 7}{4 \cdot 9-6 \cdot 2}=\frac{81-42}{36-12}=\frac{39}{24}=\frac{13}{8} \\
& y=\frac{\left|\begin{array}{ll}
4 & 9 \\
2 & 7
\end{array}\right|}{\left|\begin{array}{ll}
4 & 6 \\
2 & 9
\end{array}\right|}=\frac{4 \cdot 7-9 \cdot 2}{24}=\frac{10}{24}=\frac{5}{12}
\end{aligned}
$$

Hence, $(x, y)=\left(\frac{13}{8}, \frac{5}{12}\right)$
2. $\left\{\begin{array}{l}2 x+3 y=6 \\ 3 x-5 y=4\end{array}\right.$
3. $\left\{\begin{array}{l}5 x+y=9 \\ 3 x+y=5\end{array}\right.$
4. $\left\{\begin{array}{l}4 x+2 y=1 \\ 3 x-2 y=\frac{5}{2}\end{array}\right.$
5. $\left\{\begin{array}{l}2 x=53+y \\ 19 x-17 y=0\end{array}\right.$
6. $\left\{\begin{array}{l}a x-b y=c \\ d x-e y=f\end{array}\right.$
7. $\left\{\begin{aligned} a x-b y & =0 \\ x-y & =c\end{aligned}\right.$
8. $\left\{\begin{array}{l}k x+l y+n=0 \\ 3 x-4 y=4 n\end{array}\right.$
9. $\left\{\begin{array}{l}\frac{x}{a}+\frac{y}{b}=1 \\ \frac{x}{c}+\frac{y}{d}=1\end{array}\right.$
10. $\left\{\begin{array}{l}\frac{3 x}{4}-\frac{5 y}{6}=1 \\ \frac{5 x}{6}-\frac{3 y}{4}=2\end{array}\right.$
11. $\left\{\begin{array}{l}3 x+4 m y=8 m n \\ \frac{x}{7 m}-7 y+3 n=0\end{array}\right.$
12. $\left\{\begin{array}{l}a x+\frac{b}{y}=2 a b \\ b x+\frac{a}{y}=a^{2}+b^{2}\end{array}\right.$
13. $\left\{\begin{array}{l}(a+b) x+(a-b) y=4 a b \\ (a-b) x-(a+b) y=2 a^{2}-2 b^{2}\end{array}\right.$
14. $\left\{\begin{array}{l}a(x+y)+b(x-y)=a \\ (a+b) x-(a-b) y=b\end{array}\right.$
15. $\left\{\begin{array}{l}(a+b) x-(a-b) y=2 a c \\ (a+c) x-(a-c) y=2 a b\end{array}\right.$
61. Inconsistent and equivalent equations. We have seen that two linear equations in two unknowns are represented graphically by two straight lines, and that the co-ordinates of the point of intersection form the solution of the system. However, two lines do not always intersect: they may be parallel or they may coincide.

1. If we graph the system $\left\{\begin{array}{l}2 x+y=5 \\ 6 x+3 y=18\end{array}\right.$ we obtain two parallel lines, Fig. 36. In this case the equations have no
common solution. They are said to be inconsistent, or incompatible.

Moreover, if we solve the same system by determinants, we have

$$
x=\frac{\left|\begin{array}{rr}
5 & 1 \\
18 & 3
\end{array}\right|}{\left|\begin{array}{ll}
2 & 1 \\
6 & 3
\end{array}\right|}=\frac{-3}{0}, y=\frac{\left|\begin{array}{rr}
2 & 5 \\
6 & 18
\end{array}\right|}{0}=\frac{6}{0}
$$

Since it is impossible to divide the numbers -3 and 6 by zero the resulting forms also show that the equations have no common solution.


Fig. 36
2. If we graph the system $\left\{\begin{array}{r}x-y=2 \\ 5 x-5 y=10\end{array}\right.$ we find that both are represented by the same line, Fig. 37. Hence any solution of either equation is a solution of the other. Such equations are said to be equivalent or dependent.

The difficulty that arises here is not that there is no solution, but


Fig. 37 that there are too many.

Solving the same system by determinants, we have

$$
x=\frac{\left|\begin{array}{rr}
2 & -1 \\
10 & -5
\end{array}\right|}{\left|\begin{array}{rr}
1 & -1 \\
5 & -5
\end{array}\right|}=\frac{-10+10}{-5+5}=\frac{0}{0}, y=\frac{\left|\begin{array}{rr}
1 & 2 \\
5 & 10
\end{array}\right|}{0}=\frac{0}{0}
$$

Since a number multiplied by zero always gives zero, the expression $\frac{0}{0}$ may represent any number. Hence the solution is indeterminate. It is easily seen that one equation may be derived from the other by simple multiplication by a constant.

The two preceding examples show the following:

1. The two linear equations

$$
\left\{\begin{array}{l}
A_{1} x+B_{1} y+C_{1}=0 \\
A_{2} x+B_{2} y+C_{2}=0
\end{array}\right.
$$

are simultaneous, have one, and only one, solution, and the lines intersect if the determinant

$$
\left|\begin{array}{ll}
A_{1} & B_{1} \\
A_{2} & B_{2}
\end{array}\right| \neq 0
$$

Hence this fact may be used to determine whether a system of equations has one, and only one, solution, and whether the two straight lines intersect.
2. The equations have no common solution, are incompatible, and the lines are parallel, if
or if

$$
\left|\begin{array}{ll}
A_{1} & B_{1} \\
A_{2} & B_{2}
\end{array}\right|=0
$$

$$
\frac{A_{1}}{A_{2}}=\frac{B_{1}}{B_{2}}=k
$$

3. The equations are dependent and the straight lines are identical if

$$
\left|\begin{array}{ll}
A_{1} & B_{1} \\
A_{2} & B_{2}
\end{array}\right|=\left|\begin{array}{ll}
C_{1} & B_{1} \\
C_{2} & B_{2}
\end{array}\right|=\left|\begin{array}{ll}
A_{1} & C_{1} \\
A_{2} & C_{2}
\end{array}\right|=0
$$

or if

$$
\frac{A_{1}}{A_{2}}=\frac{B_{1}}{B_{2}}=\frac{C_{1}}{C_{2}}=k
$$

## EXERCISES

Show which of the following systems are equivalent and which inconsistent.

1. $\left\{\begin{array}{l}3 x+\frac{y}{4}=6 \\ 4 x+\frac{y}{3}=8\end{array}\right.$
2. $\left\{\begin{array}{l}3 x+2 y-7-x=12-3 y \\ 2 x+5 y=20\end{array}\right.$
3. $\left\{\begin{array}{l}3 x-2 y=14 \\ 9 x-6 y=36\end{array}\right.$
4. $\left\{\begin{array}{l}7 x-8=4 y-2 x \\ 18 x-8 y=16\end{array}\right.$
5. $\left\{\begin{array}{l}x+\frac{2}{7} y=2 \\ \frac{x}{2}+\frac{1}{7} y=1\end{array}\right.$
6. $\left\{\begin{array}{l}3 x+4 y=12 \\ 6 x+8 y=14\end{array}\right.$
7. 
8. $\left\{\begin{array}{l}x-y+1=0 \\ 4 x+y=16\end{array}\right.$
9. Pencil of lines. The totality of lines, Fig. 38, passing through one and the same point is called a pencil of lines.
Let $\quad\left\{\begin{array}{l}A_{1} x+B_{1} y+C_{1}=0 \\ A_{2} x+B_{2} y+C_{2}=0\end{array}\right.$
be two distinct lines of a pencil.
Let $k$ denote an arbitrary constant.

Show that the equation


Fig. 38

$$
A_{1} x+B_{1} y+C_{1}+k\left(A_{2} x+B_{2} y+C_{2}\right)=0
$$

represents a straight line for any value assigned to $k$.
Moreover, this equation is satisfied by the co-ordinates of the point of intersection of the two given equations. Why?

Therefore the equation

$$
\begin{equation*}
A_{1} x+B_{1} y+C_{1}+k\left(A_{2} x+B_{2} y+C_{2}\right)=0 \tag{2}
\end{equation*}
$$

is the equation of a straight line passing through the point of intersection of the two lines $A_{1} x+B_{1} y+C_{1}=0$ and $A_{2} x+B_{2} y+C_{2}=0$.

Since $k$ is an arbitrary constant, equation (2) determines a system of lines passing through the point of intersection of equations (1).

The arbitrary constant $k$ is the parameter* of the system.

## EXERCISES

Using equation (2), § 62, solve the following problems:

1. Find the line passing through the point of intersection of the lines $4 x-3 y+3=0$ and $3 x+5 y-34=0$ and the origin.
2. Find the equation of the line determined by the point $(-1,4)$ and the point of intersection of the lines $3 x-2 y-1=0$ and $2 x+3 y-15=0$.
3. Find the line of the pencil $2 x+y-13=0,5 x-2 y+11=0$ having an inclination of $60^{\circ}$.
4. Pencil of parallel lines. The equation

$$
A x+B y+k=0
$$

defines a straight line for every value of the arbitrary constant $k$. Since all those lines can be shown to be parallel, they are said to form a pencil of parallel lines.
64. Equation of a pair of lines. Let
and

$$
\left\{\begin{array}{l}
A_{1} x+B_{1} y+C_{1}=0  \tag{1}\\
A_{2} x+B_{2} y+C_{2}=0
\end{array}\right.
$$

be the equations of two given straight lines. Show that the equation

$$
\begin{equation*}
\left(A_{1} x+B_{1} y+C_{1}\right)\left(A_{2} x+B_{2} y+C_{2}\right)=0 \tag{2}
\end{equation*}
$$

is satisfied by the co-ordinates of all points on the two given lines. Moreover, no other point satisfies this equation. Hence equation (2) is said to represent equations (1).

* The word parameter in the sense of an arbitrary constant in an equation was introduced into mathematics by Leibnitz.


## EXERCISES

Represent graphically the following equations:

1. $x^{2}+6 x y+9 y^{2}+5 x+15 y+6=0$

Find the factors of the left member of the equation.
2. $x^{2}+y=x+y^{2}$
3. $x^{2}+3 x y+2 y^{2}=0$
65. Homogeneous equations. If in the equation $A x+B y+C=0$ the constant $C$ is zero, the equation is homogeneous.

In general, an equation is homogeneous with respect to the variables if the sum of the exponents of the variables is the same in all terms.

According to $\S 60$, the solution of the homogeneous system
is $\quad x=\frac{\left|\begin{array}{ll}0 & b_{1} \\ 0 & b_{2}\end{array}\right|}{\left|\begin{array}{ll}a_{1} & b_{1} \\ a_{2} & b_{2}\end{array}\right|}, \quad y=\frac{\left|\begin{array}{ll}a_{1} & 0 \\ a_{2} & 0\end{array}\right|}{\left|\begin{array}{ll}a_{1} & b_{1} \\ a_{2} & b_{2}\end{array}\right|}$

$$
\left\{\begin{array}{l}
a_{1} x+b_{1} y=0  \tag{1}\\
a_{2} x+b_{2} y=0
\end{array}\right.
$$

Hence, if the denominator

$$
\left|\begin{array}{ll}
a_{1} & b_{1} \\
a_{2} & b_{2}
\end{array}\right| \neq 0
$$

the system of equations (1) has the solution ( 0,0 ), which is also the only solution of the system. This means graphically that the two lines are distinct, both passing through the origin.

If, however, the denominator

$$
\left|\begin{array}{ll}
a_{1} & b_{1} \\
a_{2} & b_{2}
\end{array}\right|=0
$$

then, according to § 61 ,

$$
x=\frac{0}{0}, \quad y=\frac{0}{0}
$$

which means that the system (1) has an infinite number of solutions, and, graphically, that the two lines coincide because they have all points in common.

If $x \neq 0$ and $y \neq 0$, it follows from

$$
x=\frac{\left|\begin{array}{ll}
0 & b_{1} \\
0 & b_{2}
\end{array}\right|}{\left|\begin{array}{ll}
a_{1} & b_{1} \\
a_{2} & b_{2}
\end{array}\right|}
$$

that

$$
\left|\begin{array}{ll}
a_{1} & b_{1} \\
a_{2} & b_{2}
\end{array}\right| x=0
$$

Similarly,

$$
\left|\begin{array}{ll}
a_{1} & b_{1} \\
a_{2} & b_{2}
\end{array}\right| y=0
$$

Since $x$ and $y$ are not both zero, it follows that

$$
\left|\begin{array}{ll}
a_{1} & b_{1} \\
a_{2} & b_{2}
\end{array}\right|=0
$$

This shows that the determinant of two homogeneous linear equations in two variables vanishes if the equations are satisfied by values of $x$ and $y$, excluding the case when $x$ and $y$ are both equal to zero.

## EXERCISE

Determine $k$ so that the equations

$$
\left\{\begin{array}{r}
x+y=k x \\
4 x-2 y=k y
\end{array}\right.
$$

have solutions other than $(0,0)$

## Simultaneous Linear Equations in Three Variables

66. Solution by elimination. Systems of equations in three or more unknowns are solved by the methods used in solving equations in two unknown numbers. In general, the aim should be to obtain first two equations in two unknowns by eliminating the third unknown, and then to solve these two equations.

## EXERCISES

Solve the following systems:

1. $\left\{\begin{array}{r}4 x-y+z=1 \\ x+2 y+7 z=7 \\ 3 x-y-5 z=5\end{array}\right.$

Subtracting the third equation from the first,

$$
x+6 z=-4
$$

Multiplying the third equation by 2 and adding the resulting equation to the second equation,

$$
7 x-3 z=17
$$

Solving the system

$$
\left\{\begin{aligned}
x+6 z & =-4 \\
7 x-3 z & =17
\end{aligned}\right.
$$

we have

$$
(x, z)=(2,-1) .
$$

By substituting these values in the first equation, we find

$$
y=6 .
$$

$\therefore(x, y, z)=(2,6,-1)$ is the solution of the system.
2. $\left\{\begin{array}{l}2 a-b+c=1 \\ a-7 b-8 c=1 \\ 7 a+14 b+2 c=7\end{array}\right.$
3. $\left\{\begin{array}{l}x+2 y-4 z=11 \\ 2 x=3 y \\ y-4 z=0\end{array}\right.$
4. $\left\{\begin{array}{l}x+2 y-z=2 \\ 3 x-2 y+2 z=0 \\ 5 x-4 y+3 z=1\end{array}\right.$
5. $\left\{\begin{array}{l}5 x-7 y-z=16 \\ 3 x-2 y+2 z=10 \\ 2 x+y+3 z=6\end{array}\right.$
67. Determinant of the third order. The symbol

$$
\left|\begin{array}{lll}
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2} \\
a_{3} & b_{3} & c_{3}
\end{array}\right|
$$

is called a determinant of the third order. It represents the following sum:

$$
a_{1} b_{2} c_{3}+a_{2} b_{3} c_{1}+a_{3} b_{1} c_{2}-c_{1} b_{2} a_{3}-c_{2} b_{3} a_{1}-c_{3} a_{2} b_{1}
$$

The nine numbers $a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}$, etc., are called the elements. The horizontal lines in the square form are the rows and the vertical lines the columns of the determinant. Each term in the expansion is a product of three elements, no two of which lie in the same row or in the same column.

A determinant of the third order may be expanded as follows:

Draw the diagonal through the first element, $a_{1}$, Fig. 39, and the parallels to it through $a_{2}$ and $a_{3}$ respectively. This gives the terms $a_{1} b_{2} c_{3}$, $a_{2} b_{3} c_{1}$, and $a_{3} c_{2} b_{1}$.

Then draw the diagonal through $c_{1}$ and the parallels through $c_{2}$ and $c_{3}$. The signs of the last three products are then changed. This gives the terms $-c_{1} b_{2} a_{3},-c_{2} b_{3} a_{1}$, and $-c_{3} a_{2} b_{1}$.


Fig. 39

## EXERCISES

Evaluate the following determinants:

1. $\begin{aligned}\left|\begin{array}{rrr}5 & 2 & -6 \\ 1 & 4 & 7 \\ 2 & 3 & 1\end{array}\right| & =5 \cdot 4 \cdot 1+1 \cdot 3 \cdot(-6)+2 \cdot 7 \cdot 2 \\ & -(-6) \cdot 4 \cdot 2-7 \cdot 3 \cdot 5-1 \cdot 1 \cdot 2 \\ & =20-18+28+48-105-2 \\ & =-29\end{aligned}$
2. $\left|\begin{array}{rrr}1 & 3 & 8 \\ -1 & 2 & 0 \\ 1 & -4 & 5\end{array}\right|$
3. $\left|\begin{array}{rrr}1 & 1 & 1 \\ 1 & -1 & -1 \\ 8 & 3 & 0\end{array}\right|$
4. $\left\lvert\, \begin{array}{rrr}1 & 1 & 2 \\ 1 & 1 & 8 \\ 1 & -1 & 0\end{array}\right.$
5. $\left|\begin{array}{lll}1 & 2 & 1 \\ 3 & 7 & 3 \\ 4 & 3 & 5\end{array}\right|$
6. Solution by determinants. By solving the equations

$$
\left\{\begin{array}{l}
a_{1} x+b_{1} y+c_{1} z=d_{1} \\
a_{2} x+b_{2} y+c_{2} z=d_{2} \\
a_{3} x+b_{3} y+c_{3} z=d_{3}
\end{array}\right.
$$

a formula may be obtained for the solution of any system of three linear equations in three unknowns.

Eliminating $y$ between the first two equations, we have

$$
\begin{equation*}
\left(a_{1} b_{2}-a_{2} b_{1}\right) x+\left(b_{2} c_{1}-b_{1} c_{2}\right) z=d_{1} b_{2}-d_{2} b_{1} \tag{1}
\end{equation*}
$$

Eliminating $y$ between the first and third equations, we have

$$
\begin{equation*}
\left(a_{3} b_{1}-a_{1} b_{3}\right) x+\left(c_{3} b_{1}-b_{3} c_{1}\right) z=d_{3} b_{1}-d_{1} b_{3} \tag{2}
\end{equation*}
$$

Solving equations (1) and (2), we have

$$
x=\frac{d_{1} b_{2} c_{3}+d_{2} b_{3} c_{1}+d_{3} c_{2} b_{1}-c_{1} b_{2} d_{3}-c_{2} b_{3} d_{1}-c_{3} d_{2} b_{1}}{a_{1} b_{2} c_{3}+a_{2} b_{3} c_{1}+a_{3} c_{2} b_{1}-c_{1} b_{2} a_{3}-c_{2} b_{3} a_{1}-c_{3} a_{2} b_{1}}
$$

According to $\S 67$ this may be written

$$
x=\frac{\left|\begin{array}{lll}
d_{1} & b_{1} & c_{1} \\
d_{2} & b_{2} & c_{2} \\
d_{3} & b_{3} & c_{3}
\end{array}\right|}{\left|\begin{array}{lll}
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2} \\
a_{3} & b_{3} & c_{3}
\end{array}\right|}
$$

Notice that the denominator is a determinant whose elements are the coefficients of $x, y$, and $z$ in the given system and that the numerator is derived from the denominator by replacing the coefficients of $x$ by the constants.

Similarly,

$$
y=\frac{\left|\begin{array}{lll}
a_{1} & d_{1} & c_{1} \\
a_{2} & d_{2} & c_{2} \\
a_{3} & d_{3} & c_{3}
\end{array}\right|}{\left|\begin{array}{lll}
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2} \\
a_{3} & b_{3} & c_{3}
\end{array}\right|}, z=\frac{\left|\begin{array}{lll}
a_{1} & b_{1} & d_{1} \\
a_{2} & b_{2} & d_{2} \\
a_{3} & b_{3} & d_{3}
\end{array}\right|}{\left|\begin{array}{lll}
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2} \\
d_{3} & b_{3} & c_{3}
\end{array}\right|}
$$

## EXERCISES

Solve by determinants:

1. $\left\{\begin{array}{l}2 x+3 y+4 z=16 \\ 5 x-8 y+2 z=1 \\ 3 x-y-2 z=5\end{array}\right.$
$x=\frac{\left|\begin{array}{rrr}16 & 3 & 4 \\ 1 & -8 & 2 \\ 5 & -1 & -2\end{array}\right|}{\left|\begin{array}{rrr}3 & 4 \\ 5 & -8 & 2 \\ 3 & -1 & -2\end{array}\right|}, y=\frac{\left|\begin{array}{rrr}2 & 16 & 4 \\ 5 & 1 & 2 \\ 3 & 5 & -2\end{array}\right|}{\left|\begin{array}{rrr}2 & 3 & 4 \\ 5 & -8 & 2 \\ 3 & -1 & -2\end{array}\right|}, z=\frac{\left|\begin{array}{rrr}2 & 3 & 16 \\ 5 & -8 & 1 \\ 3 & -1 & 5\end{array}\right|}{\left|\begin{array}{rrr}2 & 3 & 4 \\ 5 & -8 & 2 \\ 3 & -1 & -2\end{array}\right|}$
$\therefore(x, y, z)=(3,2,1)$
2. $\left\{\begin{array}{l}5 x+2 y-4 z=-3 \\ 4 x+5 y+2 z=20 \\ 3 x-3 y+5 z=12\end{array}\right.$
3. $\left\{\begin{array}{l}a+3 b+9 c=23 \\ a+2 b+4 c=15 \\ a+b+c=9\end{array}\right.$
4. $\left\{\begin{array}{l}3 x-y+2 z=9 \\ x-2 y+3 z=2 \\ 2 x-3 y+z=1\end{array}\right.$
5. $\left\{\begin{array}{l}a+b+c=2 \\ a+3 b=4 \\ b-2 c=6\end{array}\right.$
6. In the following problems and exercises the equations may be solved by any method.

## PROBLEMS AND EXERCISES

Solve the following:

1. $\left\{\begin{array}{l}\frac{7 x+8}{5}-\frac{7 y-1}{4}=-2 \\ \frac{2 x-4}{2}+\frac{y-1}{3}=-\frac{1}{3}\end{array}\right.$
2. $\left\{\begin{array}{l}\frac{1}{x-y}+\frac{1}{x+y}=15 \\ \frac{4}{x-y}-\frac{5}{x+y}=17\end{array}\right.$
3. $\left\{\begin{array}{l}2 y-\frac{4 x-2 y}{23-y}=2 y-19 \\ 3 x+\frac{3 x-9}{y-18}=3 x-17\end{array}\right.$
4. $\left\{\begin{array}{l}\frac{2+x}{3}+\frac{2-y}{2}=\frac{3(y-4 x)}{4} \\ \frac{x-3}{2}-5=\frac{y+5}{3}-3(y-x)\end{array}\right.$
5. $\left\{\begin{array}{l}2 x+3 y+5=0 \\ 6 y+5 z=7 \\ 3 x+10 z=1\end{array}\right.$
6. $\left\{\begin{array}{l}\frac{1}{x}+\frac{1}{y}=12 \\ \frac{2}{x}-\frac{3}{y}=14\end{array}\right.$
7. $\left\{\begin{array}{l}x+2 y+z=-17 \\ 2 x+y-z=-1 \\ 3 x-y+2 z=2\end{array}\right.$
8. $\left\{\begin{array}{l}\frac{3}{4 x-y}-\frac{5}{2 x-y}=2 \\ \frac{3}{y-2 x}+\frac{4}{y-4 x}=\frac{23}{5}\end{array}\right.$

Do not clear of fractions.
Regard $\frac{1}{x}$ and $\frac{1}{y}$ as the unknowns.
6. $\left\{\begin{array}{l}\frac{2}{x}+\frac{3}{y}=4 \\ \frac{1}{x}+\frac{7}{y}=6\end{array}\right.$
10. A mixture of alcohol and water contains 10 gallons. A certain amount of water is added, and the alcohol is then 30 per cent of the total. Had double the amount of water beenadded the alcohol would then have been 20 per cent of the whole. How much water was actually added and how much alcohol was there? (Board.)*
11. The value of 146 francs is as great as that of 117 shillings. A dollar and 4 francs together are worth 32 cents more than 6

* (Board) means: taken from an entrance examination given by the College Entrance Examination Board.
shillings. Find the value in cents of a franc and a shilling. (Board.)

12. A photographer has two bottles of diluted developer. In one bottle 10 per cent of the contents is developer and the rest water; in the other the mixture is half and half. How much must he draw from each bottle to make 8 oz . of a mixture in which 25 per cent is developer? (Board.)
13. A principal. of $\$ 2,500$ put at simple interest and for a certain time amounts to $\$ 2,800$. If the rate of interest had been 1 per cent higher and the time two years longer, the amount would have been $\$ 3,200$. Required the time and rate. (Board.)
14. A certain number of bolts can be bought for a dollar. If 10 more could be bought for a dollar the price would be half a cent less per dozen. What is the price per dozen? (Board.)
15. A man travels 50 mi . in an automobile in $3 \frac{1}{4}$ hours. If he runs at the rate of 20 mi . an hour in the country and at the rate of 8 mi . an hour when within city limits, how many miles of his journey is in the country? (Yale.)
16. A company contracted to make 252 automobiles. Two factories, working together, can make this number in 12 days. Working alone, one factory requires 7 days longer than the other to do this amount. Find the time in which each factory alone can fulfil the contract. (Sheffield.)
17. A and B together can do a piece of work in 12 days. After A has worked alone for 5 days, B finishes the work in 26 days. In what time can each alone do the work? (Sheffield.)
18. Two yachts race over a 48 -mile course. Owing to difference in measurement, $B$ is given a start of half a mile in the first trial and is beaten by 6 minutes. In the second trial, the rate of the wind being the same as before, B's start is increased to a mile and a half, and still A wins by 2 minutes. Find the rate in feet per minute of each boat. (Chicago.)
19. A sum of $\$ 1,050$ is divided into two parts and invested; the simple interest on the one part at 4 per cent for 6 yr . is
the same as the simple interest on the other at 5 per cent for 12 yr .; find how the money is divided. (Princeton.)
20. A man has two sons, one six years older than the other. After two years the father's age will be twice the combined ages of his sons, and six years ago his age was four times their combined ages. How old is each? (Princeton.)
21. In buying coal A gets 1 ton more for $\$ 18$ than B does; he pays $\$ 9$ less for 6 tons than B pays. Find the price per ton that each pays. (Princeton.)
22. In paying two bills aggregating $\$ 175$, a merchant availed himself of discount for cash, 10 per cent on one and 5 per cent on the other, and then paid them both with $\$ 166$. What was the amount of each bill? (Chicago.)
23. Two locomotives, A and B , are on tracks which cross each other at right angles. When $B$ is at the point of crossing, A has 675 ft . yet to go before reaching this point. In 5 sec . the two locomotives are at an equal distance from the crossing, and in 40 sec . more they are again at an equal distance from it. What is the rate of each in feet per second? Illustrate by a diagram.
24. A dealer has two kinds of coffee, worth 30 and 40 cents per pound respectively. How many pounds of each must be taken to make a mixture of 70 lb . worth 36 cents per pound? (Yale.)
25. A man bought a certain number of eggs. If he had bought 88 more for the same money they would have cost him less by a cent apiece; if he had bought 56 fewer they would have cost more by a cent apiece. How many eggs did he buy and at what price each? (Yale.)
26. An investment at simple interest for 6 yr . amounts to $\$ 4,960$. If the rate had been 1 per cent greater the amount would have been $\$ 5,000$ in 5 years. Find the rate and the sum invested. (Chicago.)
27. The sum of the three digits of a number is 16 . The sum of the first and third digits is equal to the second; and if
the digits in the units and in the tens places be interchanged the resulting number will be 27 less than the original number. What is the original number?
28. A chauffeur engages to accomplish a journey of 105 mi . in a specified time. After traveling 63 mi . uniformly at a rate which will just enable him to keep his agreement, his car is delayed 24 minutes. He then drives $3 \frac{1}{2}$ mi. faster per hour than before and arrives exactly on time. What was his original rate? (Board.)

## Areas

70. Area of a triangle having one vertex at the origin. In Fig. 40

$$
\triangle O P_{1} P_{2}=\triangle O M P_{2}+\text { trapezoid } M N P_{1} P_{2}-\triangle O N P_{1}
$$

$$
\text { Hence } \triangle O P_{1} P_{2}=\frac{x_{2} y_{2}}{2}+\frac{\left(x_{1}-x_{2}\right)\left(y_{1}+y_{2}\right)}{2}-\frac{x_{1} y_{1}}{2}
$$

$$
=\frac{1}{2}\left(x_{2} y_{2}+x_{1} y_{1}+x_{1} y_{2}-x_{2} y_{1}-x_{2} y_{2}-x_{1} y_{1}\right)
$$

$$
=\frac{1}{2}\left(x_{1} y_{2}-x_{2} y_{1}\right)
$$

$$
\therefore \triangle O P_{1} P_{2}=\frac{1}{2}\left|\begin{array}{ll}
x_{1} & y_{1} \\
x_{2} & y_{2}
\end{array}\right|
$$

The sign of this determinant will be + or - according as the origin is to the left or to the right of the directed segment $P_{1} P_{2}$.


Fig. 40

## EXERCISES

Find the area of each of the following triangles having the vertices as follows:

1. $(0,0)$; $(-1,-3)$; $(5,3)$

$$
A=\frac{1}{2}\left|\begin{array}{rr}
-1 & -3 \\
5 & 3
\end{array}\right|=\frac{-3+15}{2}=6
$$

2. $(0,0) ;(2,5) ;(4,3)$
3. Area of any triangle. Let $P_{1}\left(x_{1}, y_{1}\right), P_{2}\left(x_{2}, y_{2}\right)$, and $P_{3}\left(x_{3}, y_{3}\right)$, Fig. 41, be the vertices of a triangle.

Draw $O P_{1}, O P_{2}$, and $O P_{3}$.
Then $\triangle O P_{1} P_{2}=\frac{1}{2}\left|\begin{array}{ll}x_{1} & y_{1} \\ x_{2} & y_{2}\end{array}\right|$
$\triangle O P_{1} P_{3}=\frac{1}{2}\left|\begin{array}{ll}x_{1} & y_{1} \\ x_{3} & y_{3}\end{array}\right|$
$\triangle O P_{3} P_{2}=\frac{1}{2}\left|\begin{array}{ll}x_{3} & y_{3} \\ x_{2} & y_{2}\end{array}\right|$


Fig. 41
$\therefore \quad \triangle P_{1} P_{2} P_{3}=\frac{1}{2}\left[\left|\begin{array}{ll}x_{1} & y_{1} \\ x_{2} & y_{2}\end{array}\right|-\left|\begin{array}{ll}x_{1} & y_{1} \\ x_{3} & \dot{y}_{3}\end{array}\right|-\left|\begin{array}{ll}x_{3} & y_{3} \\ x_{2} & y_{2}\end{array}\right|\right]$ $=\frac{1}{2}\left[\left|\begin{array}{ll}x_{1} & y_{1} \\ x_{2} & y_{2}\end{array}\right|-\left|\begin{array}{ll}x_{1} & y_{1} \\ x_{3} & y_{3}\end{array}\right|+\left|\begin{array}{ll}x_{2} & y_{2} \\ x_{3} & y_{3}\end{array}\right|\right]$ $=\frac{1}{2}\left|\begin{array}{lll}x_{1} & y_{1} & 1 \\ x_{2} & y_{2} & 1 \\ x_{3} & y_{3} & 1\end{array}\right|$
$\therefore$ Area of $\triangle P_{1} P_{2} P_{3}=\frac{1}{2} \left\lvert\, \begin{array}{lll}x_{1} & y_{1} & 1 \\ x_{2} & y_{2} & 1 \\ x_{3} & y_{3} & 1\end{array}\right.$


Fig. 42


Fig. 43

EXERCISE
Prove the formula given in § 71 for the triangles in Figs. 42 and 43.

## Summary

72. The chapter has taught the meaning of the following terms:
incompatible equations equivalent equations
pencil of lines, parameter
homogeneous equations
73. The following conditions are satisfied by the equations $A_{1} x+B_{1} y+C_{1}=0$ and $A_{2} x+B_{2} y+C_{2}=0$.

If they are equations of parallel lines, they are incompatible and

$$
m_{1}=m_{2}
$$

and

$$
\frac{A_{1}}{A_{2}}=\frac{B_{1}}{B_{2}}=k, \text { or }\left|\begin{array}{ll}
A_{1} & B_{1} \\
A_{2} & B_{2}
\end{array}\right|=0
$$

If they are equations of perpendicular lines, then
and

$$
\begin{aligned}
m_{1} & =-\frac{1}{m_{2}} \\
A_{1} A_{2} & =-B_{1} B_{2}
\end{aligned}
$$

If they are equations of identical lines, they are dependent and

$$
\left|\begin{array}{ll}
A_{1} & B_{1} \\
A_{2} & B_{2}
\end{array}\right|=\left|\begin{array}{ll}
C_{1} & B_{1} \\
C_{2} & B_{2}
\end{array}\right|=\left|\begin{array}{ll}
A_{1} & C_{1} \\
A_{2} & C_{2}
\end{array}\right|=0, \text { or } \frac{A_{1}}{A_{2}}=\frac{B_{1}}{B_{2}}=\frac{C_{1}}{C_{2}}=k
$$

74. The following formulas have been proved:
75. The tangent of the angle between two lines:

$$
\tan \beta=\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}
$$

2. A pencil of lines:

$$
A_{1} x+B_{1} y+C_{1}+k\left(A_{2} x+B_{2} y+C_{2}\right)=0 .
$$

3. A pencil of parallel lines:

$$
A x+B y+k=0
$$

4. The equation of a pair of lines:

$$
\left(A_{1} x+B_{1} y+C_{1}\right)\left(A_{2} x+B_{2} y+C_{2}\right)=0
$$

5. The area of a triangle:

$$
A=\frac{1}{2} \left\lvert\, \begin{array}{lll}
x_{1} & y_{1} & 1 \\
x_{2} & y_{2} & 1 \\
x_{3} & y_{3} & 1
\end{array}\right.
$$

## CHAPTER IV

## DETERMINANTS

## Meaning of Determinants

75. Determinants. The symbol

$$
\left|\begin{array}{ll}
a_{1} & b_{1} \\
a_{2} & b_{2}
\end{array}\right|
$$

denotes the determinant $a_{1} b_{2}-b_{1} a_{2}$, and is called a determinant of the second order.

The symbol

$$
\left|\begin{array}{lll}
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2} \\
a_{3} & b_{3} & c_{3}
\end{array}\right|
$$

is a determinant of the third order. It is defined to mean the following:

$$
\begin{aligned}
& a_{1}\left|\begin{array}{cc}
b_{2} & c_{2} \\
b_{3} & c_{3}
\end{array}\right|-b_{1}\left|\begin{array}{cc}
a_{2} & c_{2} \\
a_{3} & c_{3}
\end{array}\right|+c_{1}\left|\begin{array}{cc}
a_{2} & b_{2} \\
a_{3} & b_{3}
\end{array}\right| \\
= & a_{1}\left(b_{2} c_{3}-c_{2} b_{3}\right)-b_{1}\left(a_{2} c_{3}-c_{2} a_{3}\right)+c_{1}\left(a_{2} b_{3}-b_{2} a_{3}\right) \\
= & a_{1} b_{2} c_{3}+b_{1} c_{2} a_{3}+c_{1} a_{2} b_{3}-a_{1} c_{2} b_{3}-b_{1} a_{2} c_{3}-c_{1} b_{2} a_{3}
\end{aligned}
$$

Show that the same expansion of a determinant of the third order may be obtained by the method given in $\S 67$.
76. Element. Row. Column. Diagonal. The numbers $a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}$, etc., are the elements of the determinant. The horizontal lines are the rows, the vertical lines the columns. The diagonal $a_{1} b_{2} c_{3}$ is the principal diagonal.
77. Minor. If the row and column in which any particular element $a_{k}$ stands be deleted, the determinant formed by the remaining elements is the minor of $a_{k}$.

Show that in the determinant

$$
\left|\begin{array}{lll}
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2} \\
a_{3} & b_{3} & c_{3}
\end{array}\right|
$$

the minor of $b_{2}$ is the determinant

$$
\left|\begin{array}{ll}
a_{1} & c_{1} \\
a_{3} & c_{3}
\end{array}\right|
$$

What are the minors of $c_{1}, a_{3}, c_{3}$ in the given determinant?
The minor of an element may be denoted briefly by a capital letter having the same subscript as the element. Accordingly we have

$$
\left|\begin{array}{lll}
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2} \\
a_{3} & b_{3} & c_{3}
\end{array}\right|=a_{1} A_{1}-b_{1} B_{1}+c_{1} C_{1}
$$

The signs prefixed to the terms in this expansion of the determinant are alternately + and - . Thus the signs of the minors of $a_{1}, a_{2}$, and $a_{3}$ are,+- , and + , respectively.

In general, the sign of the minor of any element is + or - according as the sum of the number of the row and the number of the column of that element is an even or an odd number.
78. Expansion by minors. In $\S 75$ the determinant was expanded by minors of the first row. The following shows that the determinant may be expanded by elements of any row or column without changing its value.

For

$$
\begin{aligned}
\left|\begin{array}{lll}
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2} \\
a_{3} & b_{3} & c_{3}
\end{array}\right| & =-a_{2} A_{2}+b_{2} B_{2}-c_{2} C_{2} \\
& =-a_{2}\left|\begin{array}{ll}
b_{1} & c_{1} \\
b_{3} & c_{3}
\end{array}\right|+b_{2}\left|\begin{array}{ll}
a_{1} & c_{1} \\
a_{3} & c_{3}
\end{array}\right|-c_{2}\left|\begin{array}{cc}
a_{1} & b_{1} \\
a_{3} & b_{3}
\end{array}\right| \\
& =-a_{2} b_{1} c_{3}+a_{2} c_{1} b_{3}+b_{2} a_{1} c_{3}-b_{2} c_{1} a_{3}-c_{2} a_{1} b_{3}+c_{2} b_{1} a_{3}
\end{aligned}
$$

which is identically the same as the expansion given in § 75.

Expand by minors the following determinant and show that the value is zero:
$\left|\begin{array}{lll}0 & 0 & 0 \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3}\end{array}\right|=0 \cdot\left|\begin{array}{ll}b_{2} & c_{2} \\ b_{3} & c_{3}\end{array}\right|-0 \cdot\left|\begin{array}{ll}a_{2} & c_{2} \\ a_{3} & c_{3}\end{array}\right|+0 \cdot\left|\begin{array}{ll}a_{2} & b_{2} \\ a_{3} & b_{3}\end{array}\right|=0$
This illustrates the fact that the value of a determinant is zero when all the elements of any row, or column, are equal to zero.

## EXERCISES

Expand the determinant

$$
\left|\begin{array}{lll}
2 & 1 & 4 \\
3 & 0 & 6 \\
0 & 2 & 0
\end{array}\right|
$$

as indicated below, and in each case find the value:

1. By minors of the first row.
2. By minors of the third column.
3. By minors of the third row.
4. Determinants of order higher than the third. An examination of the expansion of a determinant of the third order, §75, shows that it is the sum of all possible products of three elements, taking as factors one, and only one, element from each row and column. The number of terms in the expansion is equal to 6 , or $3 \cdot 2 \cdot 1=3$ ! (read factorial 3).

Similarly, we may define a determinant of the fourth order as an array of $4^{2}=16$ numbers in four rows and four columns, as

$$
\left.\begin{array}{llll}
a_{1} & b_{1} & c_{1} & d_{1} \\
a_{2} & b_{2} & c_{2} & d_{2} \\
a_{3} & b_{3} & c_{3} & d_{3} \\
a_{4} & b_{4} & c_{4} & d_{4}
\end{array} \right\rvert\,
$$

and as equal to

$$
\begin{aligned}
& a_{1}\left|\begin{array}{lll}
b_{2} & c_{2} & d_{2} \\
b_{3} & c_{3} & d_{3} \\
b_{4} & c_{4} & d_{4}
\end{array}\right|-b_{1}\left|\begin{array}{lll}
a_{2} & c_{2} & d_{2} \\
a_{3} & c_{3} & d_{3} \\
a_{4} & c_{4} & d_{4}
\end{array}\right|+c_{1}\left|\begin{array}{ccc}
a_{2} & b_{2} & d_{2} \\
a_{3} & b_{3} & d_{3} \\
a_{4} & b_{4} & d_{4}
\end{array}\right| \\
& -d_{1}\left|\begin{array}{lll}
a_{2} & b_{2} & c_{2} \\
a_{3} & b_{3} & c_{3} \\
a_{4} & b_{4} & c_{4}
\end{array}\right|
\end{aligned}
$$

Since each of these terms when expanded contains 3 ! terms, the total number of terms in the expansion of a determinant of the fourth order is $4 \cdot 3!=4 \cdot 3 \cdot 2 \cdot 1=4$ !. Notice that each of the terms is the product of 4 elements, one, and only one, being taken from each row and column.

It is seen that a determinant of the fourth order may be expressed in terms of determinants of the third order, which again may be expressed in terms of determinants of the second order.

In the same manner it is possible to expand determinants of the fifth, the sixth, . . . , or any order.

The value of a determinant may be found by expanding it by minors. However, the principles given in §§ 81 to 84 will simplify greatly the process of evaluating a determinant.

## Properties of Determinants

80. The following principles are to be verified for determinants of the second and of the third order only. They hold, however, for determinants of orders higher than the third.
81. Interchange of rows and columns. If the determinant

$$
\left.\begin{array}{lll}
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2} \\
a_{3} & b_{3} & c_{3}
\end{array} \right\rvert\,
$$

is revolved through an angle of $180^{\circ}$ about the principal diagonal $a_{1} b_{2} c_{3}$ as an axis, we obtain the determinant

$$
\left|\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right|
$$

Notice that the first, second, and third rows of this determinant are respectively the first, second, and third columns of the given determinant.

Expand the last determinant and show that the result is the same as that obtained in $\S 75$.

This illustrates the principle that the value of a determinant remains the same when the rows are changed to columns and the columns to rows, the relative order of the rows and columns being preserved.
82. Interchange of two rows, or of two columns. The determinant

$$
\left|\begin{array}{lll}
a_{2} & b_{2} & c_{2} \\
a_{1} & b_{1} & c_{1} \\
a_{3} & b_{3} & c_{3}
\end{array}\right|
$$

is obtained from the determinant

$$
\left|\begin{array}{lll}
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2} \\
a_{3} & b_{3} & c_{3}
\end{array}\right|
$$

by interchanging the first two rows. By expanding each determinant and then comparing, the results show that the two determinants are equal numerically but differ
in sign. This shows that if two adjacent rows, or two adjacent columns, of a determinant are interchanged, the sign of the determinant is changed, but the absolute value remains the same.

Let a determinant have two rows, or two columns, identically the same, as

$$
\left|\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
a_{1} & a_{2} & a_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right|
$$

and let the algebraic value of this determinant be denoted by $D$. Since the value of the determinant obtained by interchanging the two identical rows is $-D$, it follows that

$$
\begin{array}{lrl} 
& D & =-D \\
\text { or } & 2 D & =0 \\
\text { Hence } & D & =0
\end{array}
$$

Thus the value of a determinant is zero, if two rows, or two columns, are identical.
83. Multiplying a determinant by a number. Let each element of a row, or column, of a given determinant be multiplied by $m$, as

$$
\left|\begin{array}{rrr}
m a_{1} & m b_{1} & m c_{1} \\
a_{2} & b_{2} & c_{2} \\
a_{3} & b_{3} & c_{3}
\end{array}\right|
$$

Expanding this determinant by minors, we have

$$
\begin{aligned}
& m a_{1} A_{1}-m b_{1} B_{1}+m c_{1} C_{1} \\
& =m\left(a_{1} A_{1}-b_{1} B_{1}+c_{1} C_{1}\right)
\end{aligned}
$$

This is the same as the product of the given determinant and $m$.

Hence, if all the elements of a row, or column, of a determinant are multiplied by a number, the determinant is multiplied by that number.

Using this fact, show that a determinant vanishes if the elements of a row, or of a column, are multiples of the corresponding elements of another row or column.
84. A determinant expressed as the sum of two determinants. A determinant may be expressed as the sum of two determinants if each element of a row, or column, is expressed as the sum of two terms, i.e.,

$$
\left|\begin{array}{lll}
a_{1}+k_{1} & b_{1} & c_{1} \\
a_{2}+k_{2} & b_{2} & c_{2} \\
a_{3}+k_{3} & b_{3} & c_{3}
\end{array}\right|=\left|\begin{array}{lll}
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2} \\
a_{3} & b_{3} & c_{3}
\end{array}\right|+\left|\begin{array}{lll}
k_{1} & b_{1} & c_{1} \\
k_{2} & b_{2} & c_{2} \\
k_{3} & b_{3} & c_{3}
\end{array}\right|
$$

This equation is easily verified by expanding each determinant by minors of the elements of the first columns.

Similarly, show that

$$
\begin{aligned}
\left|\begin{array}{lll}
a_{1}+m b_{1} & b_{1} & c_{1} \\
a_{2}+m b_{2} & b_{2} & c_{2} \\
a_{3}+m b_{3} & b_{3} & c_{3}
\end{array}\right| & =\left|\begin{array}{lll}
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2} \\
a_{3} & b_{3} & c_{3}
\end{array}\right|+m\left|\begin{array}{lll}
b_{1} & b_{1} & c_{1} \\
b_{2} & b_{2} & c_{2} \\
b_{3} & b_{3} & c_{3}
\end{array}\right| \\
& =\left|\begin{array}{lll}
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2} \\
a_{3} & b_{3} & c_{3}
\end{array}\right|
\end{aligned}
$$

This illustrates the following principle:
The value of a determinant is not changed if each element of a row, or column, is multiplied by a number and then added to the corresponding element of any other row, or column.
85. Evaluation of determinants. The principles stated in $\S \S 81$ to 84 may now be used to advantage in finding the value of a determinant.

Thus the value of the determinant

$$
\left|\begin{array}{rrrr}
13 & 3 & 2 & 16 \\
12 & 6 & 7 & 9 \\
8 & 10 & 11 & 5 \\
1 & 15 & 14 & 4
\end{array}\right|
$$

may be found as follows.
Subtract column 3 from column 2:

| 13 | 1 | 2 | 16 |
| ---: | ---: | ---: | ---: |
| 12 | -1 | 7 | 9 |
| 8 | -1 | 11 | 5 |
| 1 | 1 | 14 | 4 |

Subtract row 4 from row 1, and add it to row 2 and then to row 3:

$$
\left|\begin{array}{rrrr}
12 & 0 & -12 & 12 \\
13 & 0 & 21 & 13 \\
9 & 0 & 25 & 9 \\
1 & 1 & 14 & 4
\end{array}\right|
$$

Take out the factor 12 and then expand by minors of the elements of column 2 :

$$
12\left|\begin{array}{rrrr}
1 & 0 & -1 & 1 \\
13 & 0 & 21 & 13 \\
9 & 0 & 25 & 9 \\
1 & 1 & 14 & 4
\end{array}\right|=12\left|\begin{array}{rrr}
1 & -1 & 1 \\
13 & 21 & 13 \\
9 & 25 & 9
\end{array}\right|
$$

Since the first and last columns are identical, the determinant vanishes.

## EXERCISES

Evaluate the following determinants:

1. $\left|\begin{array}{rrr}-4 & -5 & 3 \\ 16 & 1 & 7 \\ 4 & 4 & -2\end{array}\right|$

Taking out +4 as a factor we have

$$
+4\left|\begin{array}{rrr}
-1 & -5 & 3 \\
4 & 1 & 7 \\
+1 & 4 & -2
\end{array}\right|
$$

Adding 4 times row 1 to row 2 , and then row 1 to row 3 , we have

$$
4\left|\begin{array}{rrr}
-1 & -5 & 3 \\
0 & -19 & 19 \\
0 & -1 & 1
\end{array}\right|=-4\left|\begin{array}{rr}
-19 & 19 \\
-1 & 1
\end{array}\right|=(-4)(0)=0
$$

2. $\left|\begin{array}{rrrr}2 & 2 & 4 & 2 \\ 2 & 5 & 3 & 6 \\ -3 & -7 & -11 & -9 \\ 0 & 6 & 9 & 9\end{array}\right|$
3. $\left|\begin{array}{rrrr}2 & 6 & 3 & -2 \\ 2 & 1 & 3 & 7 \\ 0 & 4 & 0 & -3 \\ 14 & 4 & 6 & 5\end{array}\right|$
4. $\left|\begin{array}{rrrr}6 & 4 & 1 & 5 \\ -2 & 1 & -5 & 7 \\ 2 & -3 & 2 & 2 \\ 3 & 2 & 1 & -9\end{array}\right|$
5. $\left|\begin{array}{rrrr}2 & 1 & 3 & 7 \\ 14 & 4 & 6 & 5 \\ 2 & 5 & 3 & 4 \\ 4 & 7 & 6 & 5\end{array}\right|$
6. $\left|\begin{array}{rrrr}2 & 1 & 7 & 9 \\ 3 & 4 & 11 & 11 \\ 6 & 4 & 10 & 2 \\ 8 & -4 & 13 & 10\end{array}\right|$
7. $\left|\begin{array}{rrrr}3 & 5 & -5 & 6 \\ 2 & 2 & -3 & 4 \\ 3 & 4 & -1 & -2 \\ 4 & 3 & -2 & 1\end{array}\right|$
8. $\left|\begin{array}{rrrr}2 & -2 & 4 & 6 \\ 3 & -3 & 6 & 10 \\ 2 & 1 & 1 & -2 \\ 3 & 0 & 3 & 9\end{array}\right|$
9. $\left\lvert\, \begin{array}{rrrr}3 & 1 & 0 & 5 \\ -1 & 0 & 2 & 3 \\ 4 & 1 & 4 & 4 \\ 0 & -1 & -2 & -1\end{array}\right.$
10. $\left|\begin{array}{rrrr}4 & 6 & 3 & 2 \\ 3 & 7 & 6 & 0 \\ -8 & 9 & 2 & 1 \\ 3 & 7 & 5 & 2\end{array}\right|$
11. $\left|\begin{array}{rrrr}5 & 0 & 2 & 1 \\ 1 & -6 & -3 & 4 \\ 3 & 8 & 4 & -3 \\ 4 & 1 & 2 & 5\end{array}\right|$
12. Factoring determinants. Exercise 1 below shows the methods of finding the factors of a determinant. Find the factors of the following determinants:

## EXERCISES

1. $\left|\begin{array}{lll}1 & a & a^{2} \\ 1 & b & b^{2} \\ 1 & c & c^{2}\end{array}\right|$

First method: Let $a=b$. Then the first two rows become identical. Hence the determinant is equal to zero. Why? Therefore $a-b$ is a factor of the determinant. Why? Show similarly that $b-c$ and $c-a$ are factors of the determinant.

Show that the product of these three factors is of the same degree as the expanded determinant.

Therefore this product and the determinant can differ only by a constant factor $k$.

To determine $k$, compare the term in the principal diagonal, $b c^{2}$, with the corresponding term, $k b c^{2}$, in the product $k(a-b)(b-c)(c-a)$.

It follows that $k=1$

$$
\therefore\left|\begin{array}{lll}
1 & a & a^{2} \\
1 & b & b^{2} \\
1 & c & c^{2}
\end{array}\right| \equiv(a-b)(b-c)(c-a)
$$

Second method: Subtract row 3 from row 1 and then row 3 from row 2. Take out the factors $a-c$ and $b-c$ and expand the resulting determinant. This gives the following:

$$
\begin{aligned}
\left|\begin{array}{ccc}
1 & a & a^{2} \\
1 & b & b^{2} \\
1 & c & c^{2}
\end{array}\right| & =\left|\begin{array}{lll}
0 & a-c & a^{2}-c^{2} \\
0 & b-c & b^{2}-c^{2} \\
1 & c & c^{2}
\end{array}\right|=\left|\begin{array}{ccc}
0 & a-c & (a-c)(a+c) \\
0 & b-c & (b-c)(b+c) \\
1 & c & c^{2}
\end{array}\right| \\
& =(a-c)(b-c)\left|\begin{array}{ccc}
0 & 1 & a+c \\
0 & 1 & b+c \\
1 & c & c^{2}
\end{array}\right|=(a-c)(b-c)(b+c-a-c) \\
& =(a-c)(b-c)(b-a)=(a-b)(b-c)(c-a)
\end{aligned}
$$

2. Show that

$$
\left|\begin{array}{ccc}
a & b & c \\
b+c & a+c & a+b \\
a^{2} & b^{2} & c^{2}
\end{array}\right|=(a-b)(b-c)(a-c)(a+b+c)
$$

3. $\left|\begin{array}{ccc}1 & 1 & 1 \\ a & a^{2} & a^{3} \\ b & b^{2} & b^{3}\end{array}\right|$
4. $\left|\begin{array}{llll}x & a & a & a \\ p & x & b & b \\ q & r & x & c \\ 1 & 1 & 1 & 1\end{array}\right|$
5. Solution of systems of linear equations by means of determinants. Linear equations in three or more variables may be solved by determinants, as shown in exercise 1 , below.

## EXER CISES

Solve the following systems of equations:

1. $\left\{\begin{array}{l}3 a+b+d=20 \\ 3 c+6 a+d=40 \\ 3 c+a+4 b=30 \\ 5 c+8 b+3 d=50\end{array}\right.$

$$
a=\frac{\left|\begin{array}{llll}
20 & 1 & 0 & 1 \\
40 & 0 & 3 & 1 \\
30 & 4 & 3 & 0 \\
50 & 8 & 5 & 3
\end{array}\right|}{\left|\begin{array}{llll}
3 & 1 & 0 & 1 \\
6 & 0 & 3 & 1 \\
1 & 4 & 3 & 0 \\
0 & 8 & 5 & 3
\end{array}\right|}=5
$$

Similarly find $b, c$, and $d$.
2. $\left\{\begin{array}{l}7 a+14 b+2 c=7 \\ 2 a-b+c=1 \\ a-7 b-8 c=1\end{array}\right.$
7. $\left\{\begin{array}{l}a+2 b-4 c-11=0 \\ 2 a-3 b=0 \\ b-4 c=0\end{array}\right.$
3. $\left\{\begin{array}{l}8 x-3 y-7 z=85 \\ x+6 y-4 z=12 \\ 2 x-5 y+z=33\end{array}\right.$
8. $\left\{\begin{array}{l}3 a+2 c-b+2=0 \\ 2 a+b-c+1=0 \\ a+2 b+c+17=0\end{array}\right.$
4. $\left\{\begin{array}{l}x+y+z-14=0 \\ 6 x-3 y-7 z=0 \\ 4 x-9 y+7 z=0\end{array}\right.$
5. $\left\{\begin{array}{l}2 a-c-3=0 \\ b+4 c-2=0 \\ a-3 b-1=0\end{array}\right.$
6. $\left\{\begin{array}{l}2 x+3 y-4 z=1 \\ 3 x+4 z-5 y=2 \\ 4 y+5 z-6 x=3\end{array}\right.$
9. $\left\{\begin{array}{l}3 x+2 y-z+u=2 \\ x+3 y+z-u=5 \\ x+y=4 \\ z+u=6\end{array}\right.$
10. $\left\{\begin{array}{l}2 x+4 y-10=0 \\ 2 y+3 z-13=0 \\ 3 z+4 u-25=0 \\ 4 u+5 x-21=0\end{array}\right.$
11. $\left\{\begin{array}{l}2 p-4 q+3 r+4 s=-3 \\ 3 p-2 q+6 r+5 s=-1 \\ 5 p+8 q+9 r+3 s=9 \\ p-10 q-3 r-7 s=2\end{array}\right.$
12. Determine $c$ so that the following system of equations may have solutions other than $(x, y, z)=(0,0,0)$ :

$$
\left\{\begin{array}{c}
x+y+z=c x \\
2 x-y+2 z=\frac{c y}{2} \\
2 x+5 y+2 z=c z
\end{array}\right.
$$

See § 65.
13. Solve for $x$ :

$$
\left|\begin{array}{lll}
a & a & x \\
b & x & b \\
c & c & c
\end{array}\right|=0
$$

14. Solve for $x$ :

$$
\left|\begin{array}{ccc}
1-x & 2 & 3 \\
2 & 3-x & 5 \\
3 & 5 & 8-x
\end{array}\right|=0
$$

## Summary

88. The chapter has taught the meaning of the following terms:
determinant
element
row, column
diagonal of a determinant minor
order of a determinant
89. The following principles have been studied in this chapter:
90. The sign of the minor of an element is + or according as the sum of the number of the row and the number of the column of that element is an even or an odd number.
91. The value of a determinant remains the same when the rows are changed to columns and the columns to rows, the relative order of the rows and columns being preserved.
92. If all the elements of a row or column are equal to zero, the value of the determinant is zero.
93. If two adjacent rows, or columns, of a determinant are interchanged, the sign of the determinant is changed, but the absolute value remains the same.
94. The value of a determinant is zero if two rows or two columns are identically the same.
95. If all the elements of a row or column are multiplied by a number, the determinant is multiplied by that number.
96. A determinant vanishes if the elements of a row or column are multiples of the corresponding elements of another row or column.
97. The value oj a determinant is not changed if each element of a row or column is multiplied by a number and then added to the corresponding element of any other row or column.
98. The principles in $\S 89$ have been used to expand, to evaluate, and to factor determinants.

Systems of linear equations may be solved by means of determinants.

## CHAPTER V

## QUADRATIC FUNCTION. PARABOLA

91. Quadratic function. The function $y=m x+b$, $\S 31$, is said to be of the first degree in $x$, because the variable $x$ occurs in it only in the first degree. This function is also called a linear function of $x$, because its graph is a straight line, § 41.

The function $y=a x^{2}+b x+c$, in which the highest exponent of the variable $x$ is of the second degree, is a function of the second degree. It is also called a quadratic function of $x$.

The coefficients $a, b$, and $c$ may have any real value, excluding the value $a=0$.
92. Graph of the quadratic function $y=a x^{2}$. This function is obtained from $a x^{2}+b x+c$ by letting $b=c=0$.

If we put $a=1$, and assign to $x$ arbitrary values, we can find the values of $y$ given in the table, Fig. 44.

If we plot the points whose co-ordinates are the corresponding values of $x$ and $y$ given in the table and join them in succes-


Fig. 44 sion by a smooth curve, we have the graph of the function $y=x^{2}$, Fig. 44. This curve is a parabola.

## EXERCISES

Plot the following parabolas with reference to the same axes:
$y=3 x^{2} ; y=-2 x^{2} ; x=2 y^{2} ; x=-3 y^{2} ; y^{2}=-2 x ; y^{2}=3 x$
93. Discussion of the equation $y=a x^{2}$. The equations $y=3 x^{2}$ and $y=-2 x^{2}$ in the exercises above are obtained from the equation $y=a x^{2}$ by taking for a particular value $a=3$ and -2 .

The graphs of these equations show that for $a>0$, and this is true in general, the parabola extends upward, and that for $a<0$ the parabola extends downward, from the origin. However, for $a=0, y=a x^{2}$ reduces to $y=0$, the equation of the $x$-axis.
94. Axis of symmetry of the parabola $y=a x^{2}$. A straight line is an axis of symmetry of a curve if it bisects all chords perpendicular to it. Show that for two values of $x$, numerically equal but opposite in sign, Fig. 45, the values of $y$ obtained from the equation $y=a x^{2}$ are the same.

Hence, if two points $P_{1}$ and $P_{2}$ on the chord of the curve have equal ordinates,


Fig. 45 the abscissas are numerically equal but opposite in sign.

Therefore the $y$-axis is an axis of symmetry of the parabola $y=a x^{2}$.

The point of intersection $O$ of the axis $O Y$ of the parabola with the curve is the vertex.

If $x=0$, we have also $y=0$. Hence the vertex of the curve is at the origin.

As $x$ increases, $y$ also increases. Hence this curve is not closed.
95. Construction of the parabola. When a point moves so as to be always equally distant from a fixed point and a fixed straight line its locus is found to be a parabola.

Hence a parabola may be constructed as follows:
Let point $F$, Fig. 46, be a fixed point, and let $A B$ be a fixed line.

With $F$ as center and a radius equal to $C A$, draw an are meeting $C C_{1}$ at $C_{1}$. This makes $F C_{1}=A C$.

Similarly construct $F_{1}$ making $F F_{1}=F A ; \quad D_{1}$ making $F D_{1}=D A$, etc.

Draw a smooth curve through $O, C_{1}, F_{1}, D_{1}$, etc.

This is the required locus.
The fixed point $F$ is the focus, the fixed line $A B$ the directrix, the


Fig. 46 point $O$ the vertex of the parabola.

An arc of a parabola may be constructed mechanically as follows:

Fasten one end-point of a string of fixed length, $A P+P F$, to the point $F$, Fig. 47, the other to the vertex $A$ of the right triangle $A B C$.

Let the triangle move so that the side $B C$ slides along the line $O Y$.

As the triangle moves, the string is kept taut by means of a pencil point at $P$.

The arc $V P$ described by $P$ is the parabolic arc.


Fig. 47
96. The standard equation of the parabola. Take the vertex of the parabola as the origin.

Let $A F$, Fig. 46, be the $x$-axis, and $O Y \perp A F$ the $y$-axis.

Let $P(x, y)$ be any point on the curve, and denote $O F$ and $O A$ by $p$.

Draw $F P$, and $P R \perp O Y$.
Since $F P=R P$, and since the co-ordinates of $F$ are ( $p, 0$ ), it follows that

$$
\begin{aligned}
& & \sqrt{(x-p)^{2}+y^{2}} & =\sqrt{(x+p)^{2}}, \S 47 \\
& \therefore & x^{2}-2 p x+p^{2}+y^{2} & =x^{2}+2 x p+p^{2} \\
& \therefore & y^{2} & =4 p x
\end{aligned}
$$

This is a standard form of the equation of the parabola. The number $p$ is the parameter of the parabola.

The position of the curve depends upon the value of $p$. If $p$ is positive the curve extends to the right from the vertex $O$; if $p$ is negative the curve extends to the left.
$F_{2} F_{1}$ is the latus rectum of the parabola.
97. The polar equation of the parabola. Let the focus $F$ be taken as pole and the $x$-axis as initial line, Fig. 48.

Let $\rho$ and $\theta$ be the polar coordinates of $P$, any point on the curve. Then the focal radius

$$
\rho=F P=O A+p=x+p
$$

Since

$$
x=O A=F A+p=\rho \cos \theta+p,
$$

we have

$$
\rho=\rho \cos \theta+2 p .
$$

Solving for $\rho$,


Fig. 48

$$
\rho=\frac{2 p}{1-\cos \theta}
$$

## EXERCISES

1. Using the polar equation of the parabola, graph the curve for which $p=3$.
2. Discuss the changes of $\rho$ as $\theta$ changes from 0 to $2 \pi$.
3. Determine $p$ so that the curve $y^{2}=4 p x$ passes through the point $(3,5)$.
4. Graph of the function $y=a x^{2}+b x+c$. The equation $y=a x^{2}+b x+c$ may be re-written as follows:

$$
\begin{aligned}
y & =a\left(x^{2}+\frac{b}{a} x\right)+c \\
& =a\left(x^{2}+\frac{b}{a} x+\frac{b^{2}}{4 a^{2}}\right)+c-\frac{b^{2}}{4 a} \\
& =a\left(x+\frac{b}{2 a}\right)^{2}+c-\frac{b^{2}}{4 a}
\end{aligned}
$$

or

$$
y-\left(c-\frac{b^{2}}{4 a}\right)=a\left(x+\frac{b}{2 a}\right)^{2}
$$

Denote

$$
c-\frac{b^{2}}{4 a} \text { by } k \text { and }-\frac{b}{2 a} \text { by } h
$$

This gives the equation

$$
y-k=a(x-h)^{2}
$$

The graph of the function $y=a x^{2}+b x+c$ differs from that of the function $y=a x^{2}$ only in position. For, if we


Fig. 49
place $x=x^{\prime}-h$ and $y=y^{\prime}-k$, Fig. 49, the equation $y=a x^{2}$ reduces to $y^{\prime}-k=a\left(x^{\prime}-h\right)^{2}$. This is the equation
of a parabola having the same shape as $y=a x^{2}$, but having the vertex at the point $O^{\prime}(h, k)$.

If $x=-\frac{b}{2 a}+m$, or if $x=-\frac{b}{2 a}-m$, the corresponding values of $y$, found from the equation

$$
y-\left(c-\frac{b^{2}}{4 a}\right)=a\left(x+\frac{b}{2 a}\right)^{2}
$$

are the same. Therefore the straight line $x=-\frac{b}{2 a}$ is the axis of the parabola.
99. Summary. The following summary will be helpful in graphing the curve $y=a x^{2}+b x+c$ :

1. The co-ordinates of the vertex are $\left(-\frac{b}{2 a}, c-\frac{b^{2}}{4 a}\right)$.
2. The line $x=-\frac{b}{2 a}$ is the axis.
3. The curve extends upward or downward according as $a>0$, or as $a<0$.

A rough sketch of the curve can be made by locating the vertex, as in step 1 , and one other point on the curve, e.g., the point of intersection with the $y$-axis.

## EXERCISES

Make rough sketches of the following parabolas and in each case determine the vertex and axis:

1. $y=\frac{1}{3} x^{2}-2 x+1$
2. $y=3-x-2 x^{2}$
3. $y=x^{2}-4$
4. $y=-2-3 x^{2}$
5. Maximum and minimum of the function $y=a x^{2}+b x+c$. As the value of $x$ changes from -3 to
+7 , Fig. 50 , the function $y$ first decreases and then increases. At the vertex it is said to have a turning-point.

Evidently, according as $a>0$, or as $a<0$, the ordinate of the vertex represents the least or greatest value of the function within an interval containing the turningpoint. In the first case the function is said to have a minimum


Fig. 50 value $y=c-\frac{b^{2}}{4 a}$ for $x=-\frac{b}{2 a}$. In the last case the function has a maximum value.

Another method of determining the maximum or minimum of a quadratic function will be given in § 123.

## EXERCISES

Determine the maximum or minimum value of each of the following functions:

1. $y=2 x^{2}-4 x+3$
2. $y=3-4 x-5 x^{2}$
3. $y=(x-1)^{2}+(2 x-3)^{2}$
4. $y=-5 x^{2}-7 x+10$
5. Find the largest rectangle whose perimeter is 60 .

Show that $A=30 x-x^{2}$, and find the value of $x$ for which $A$ is a maximum.
6. Of all rectangles having the perimeter equal to $2 a$ determine the one for which the square on the diagonal has the smallest area.
7. Show that of all the rectangles with a perimeter equal to $2 s$ the one having the greatest area is a square.
101. Slope of a curve. The slope of a straight line, $\S 28$, was found by means of the equation

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

It is constant at all points of the straight line. By the slope of a curve at one of its points we mean the slope of the tangent drawn to the curve at that point.
102. Slope of secant. Let $P$ and $P_{1}$, Fig. 51, be two distinct points on the same curve. The straight line $P P_{1}$ is a secant of the curve. Show that the slope of $P P_{1}$ is

$$
m=\frac{y_{1}-y}{x_{1}-x}
$$



Fig. 51

Let $y=a x^{2}$ be the equation of the curve. Then, by substituting for $y$ and $y_{1}$ the values $a x^{2}$ and $a x_{1}{ }^{2}$, we have the slope of the secant $P P_{1}$ equal to

$$
m=\frac{a x_{1}^{2}-a x^{2}}{x_{1}-x}=\frac{a\left(x_{1}^{2}-x^{2}\right)}{x_{1}-x}=a\left(x_{1}+x\right)
$$

This result shows that the slope of the secant is a function of $x$, and therefore not a constant. In general, let $y=f(x)$ be the equation of the curve in Fig. 51.

Denoting $M M_{1}$ by $h$,
Then $O M_{1}=x_{1}$ and $M_{1} P_{1}=y_{1}=f(x+h)$
The slope of the secant $P P_{1}$ is $m=\frac{f(x+h)-f(x)}{x+h-x}$,
or

$$
m=\frac{f(x+h)-f(x)}{h}
$$

Using this as a formula we have for the curve $f(x)=a x^{2}$

$$
m=\frac{a(x+h)^{2}-a x^{2}}{h}=\frac{a\left[(x+h)^{2}-x^{2}\right]}{h}=a(2 x+h)
$$

Show from the figure that this is the same as the result obtained above, i.e., show that $a\left(x_{1}+x\right)=a(2 x+h)$.
103. Tangent to a curve. Let $P_{1}$, Fig. 52, move along the curve, approaching the limiting position $P$. Let $P T$ be the limiting position approached by the secant $P P_{1}$.

Then $P T$ is called the tangent to the curve at the point $P$.

Compare this definition of a tangent to curve with the definition usually given in plane geometry.


Fig. 52
104. Slope of tangent. The slope of the tangent at $\boldsymbol{P}(x, y)$ is defined as the limit which $\frac{f(x+h)-f(x)}{h}$, the slope of the secant, approaches, as $h$ approaches zero.

For example, if the curve is the parabola $f(x)=a x^{2}$, the slope of the tangent at $P$ is the limit of $\frac{a(x+h)^{2}-a x^{2}}{h}$, as $h$ approaches zero.

Since

$$
\frac{a(x+h)^{2}-a x^{2}}{h}=\frac{a\left(x^{2}+2 h x+h^{2}-x^{2}\right)}{h}=a(2 x+h)
$$

it follows that the slope of the parabola at $P(x, y)$ is equal to $2 a x$.
105. Rational integral function. The functions $a x^{2}$, $a x^{2}+b x+c, a x^{3}+b x^{2}+c x+d$ are rational integral functions of $x$. In general, a function of the form

$$
f(x)=a_{0} x^{n}+a_{1} x^{n-1}+a_{2} x^{n-2}+\ldots+a_{n}
$$

in which $a_{0}, a_{1}, a_{2}, \ldots, a_{n}$ are constants and the exponents of $x$ are positive integers, is a rational integral function of $x$ of the $n$th degree.

## EXERCISES

Which of the following functions are rational integral functions of $x$ ? Give the reason for your answer.

1. $x^{2}$
2. $3 x^{2}+4 x$
3. $5 x^{-2}+2 x^{-1}+7-x$
4. $x^{\frac{3}{2}}-2 x^{\frac{1}{2}}+6$
5. $x^{4}+5 x^{2}+4$
6. $x^{3}+2 x^{2}-\frac{1}{x}+3$
7. $x+x^{\frac{1}{2}}-5$
8. Derivative. Let $f(x)$ be a rational integral function of $x$. Then the limit of the quotient

$$
\frac{f(x+h)-f(x)}{h}
$$

as $h$ approaches zero is called the derivative of $f(x)$.
Denoting the derivative of $f(x)$ by $f^{\prime}(x)$, this definition may be stated briefly thus:

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

## EXERCISES

1. Show that the derivative of $a x^{2}$ is $2 a x$.
2. Find the derivative of $a x^{2}+b x+c$.

$$
\begin{aligned}
f(x+h) & =a(x+h)^{2}+b(x+h)+c \\
& =a x^{2}+2 a h x+a h^{2}+b x+b h+c \\
& =a x^{2}+(2 a h+b) x+a h^{2}+b h+c
\end{aligned}
$$

$\therefore f(x+h)-f(x)=2 a h x+a h^{2}+b h$
Dividing by $h, \quad \frac{f(x+h)-f(x)}{h}=2 a x+a h+b$

$$
\therefore \quad \lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=f^{\prime}(x)=2 a x+b
$$

Find the derivative of each of the following functions:
3. $x^{2}$
4. $x^{2}-4 x+1$
5. $x^{3}-20 x^{2}+2$
6. $x^{3}-2 x^{2}+3 x-7$
107. Equation of a tangent. Let $P\left(x_{1}, y_{1}\right)$ be any point on the curve $y=f(x)$ and let the equation of a straight line passing through $\left(x_{1}, y_{1}\right)$ be

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

Since $f^{\prime}\left(x_{1}\right)$ is the slope of the tangent to the curve $f(x)$ at the point whose abscissa is $x_{1}$, it follows that $m=f^{\prime}\left(x_{1}\right)$. Hence the equation of the tangent to $f(x)$, at the point $P\left(x_{1}, y_{1}\right)$, is

$$
y-y_{1}=f^{\prime}\left(x_{1}\right)\left(x-x_{1}\right)
$$

## EXERCISES

Find the equation of the tangent to each of the following curves:

1. $y=x^{2}$ at the point $(-2,4)$ on it.
2. $y=x^{3}$ at the point whose abscissa is 2 .
3. $y=x^{2}+4 x$ at the point whose abscissa is 3 .
4. The parabola as a path of a projectile.* Let a particle be projected with a velocity $v$ from a point $O$, Fig. 53 , in the direction $O Q$, which is inclined to the


Fig. 53 $x$-axis at an angle $a$.

Let $P(x, y)$ be the position of the particle at the time $t$.

* Ancient, mediaeval, and modern mathematicians down to Tartaglia were of the opinion that the path of a projectile was a straight line, at least at the beginning and end of the flight. In 1.537 Tartaglia proved the path to be curved. He also proved that a projectile reached its greatest height under an initial angle of $45^{\circ}$. It was reserved to the great Galileo (1564-1642 A.d.) to prove the path to be a parabola and to show how to calculate its height and range (Tropfke, II, 449).

It follows from a principle of mechanics that in $t$ seconds, if the resistance of air is neglected, the particle moves horizontally a distance of $v(\cos a) t \mathrm{ft}$. and vertically a distance of $v(\sin a) t-\frac{1}{2} g t^{2}$ feet.

Hence
and

$$
\begin{aligned}
& x=v(\cos \alpha) t \\
& y=v(\sin a) t-\frac{1}{2} g t^{2}
\end{aligned}
$$

$g$ being constant and equal to 32.2 , approximately.
Eliminating $t$ we have

$$
y=x \tan \alpha-\frac{g x^{2}}{2 v^{2} \cos ^{2} \alpha}
$$

which is the equation of the path described by the particle.
If the particle is projected horizontally, Fig. 54, angle $\alpha$ is zero. Therefore $\tan a=0, \cos ^{2} a=1$, and the equation of the path of the particle reduces to

$$
\begin{aligned}
y & =-\frac{g x^{2}}{2 v^{2}} \\
x^{2} & =-\frac{2 v^{2}}{g} y
\end{aligned}
$$

from which


Fig. 54

Notice that this is the equation of a parabola whose axis is the axis of $y$.

## EXERCISES

1. A ball is thrown horizontally with a velocity of 4 ft . per second. Find the latus rectum of the parabola described.
2. An airship traveling south at a height of $5,280 \mathrm{ft}$. and at a rate of 25 mi . per hour drops a bomb. Taking the startingpoint as the origin, find the equation of the path described by the bomb. How far south of the starting-point will it strike the ground?

## Summary

109. The chapter has taught the meaning of the following terms:
linear function
quadratic function
parabola
axis of symmetry
vertex of a parabola
focus, directrix
latus rectum

> turning-point maximum and minimum value of a function slope of a curve tangent to a curve rational integral function derivative
110. A parabola may be drawn by plotting the equation, by a geometric construction, and by a mechanical device. A rough sketch may be made by first locating the vertex and then one other point in the curve.
111. The following equations of the parabola were studied:

$$
\begin{aligned}
y^{2} & =4 p x, y-k=a(x-h)^{2} \\
y & =a x^{2}+b x+c \\
\rho & =\frac{2 p}{1-\cos \theta}
\end{aligned}
$$

112. The co-ordinates of the vertex of the parabola $y=a x^{2}+b x+c$ are

$$
(x, y)=\left(-\frac{b}{2 a}, c-\frac{b^{2}}{4 a}\right)
$$

The line $x=-\frac{b}{2 a}$ is the axis.
113. The function $y=a x^{2}+b x+c$ has a minimum value $y=c-\frac{b^{2}}{4 a}$ for $x=-\frac{b}{2 a}$, if $a>0$, and a maximum when $a<0$.
114. The slope of a secant of the curve $y=f(x)$ is

$$
\frac{f(x+h)-f(x)}{h}
$$

The slope of a tangent at the point $\left(x_{1}, y_{1}\right)$ is

$$
m=\lim _{h \rightarrow 0} \frac{f\left(x_{1}+h\right)-f\left(x_{1}\right)}{h}=f^{\prime}\left(x_{1}\right)
$$

The function $f^{\prime}(x)$ is the derivative of $f(x)$.
The equation of the tangent at the point $\left(x_{1}, y_{1}\right)$ in the curve $y=f(x)$ is

$$
y-y_{1}=f^{\prime}\left(x_{1}\right)\left(x-x_{1}\right)
$$

115. The path of a projectile is a parabola.

## CHAPTER VI

## RATIONAL INTEGRAL FUNCTIONS OF DEGREE HIGHER THAN THE SECOND

## Rational Integral Function

116. Rational integral function. Linear and quadratic functions are rational integral functions. In general, a function of the form

$$
\begin{equation*}
a x^{n}+b x^{n-1}+c x^{n-2}+\ldots+p x+q \tag{1}
\end{equation*}
$$

is a rational integral function of the $n$th degree, if $n$ is a positive integer, and if the coefficients $a, b, c, \ldots, q$ are constants.

For example, the expansion of $(x+h)^{n}$, for a positive integral exponent $n$, is a rational integral function. The expansion of $(x+h)^{n}$ is obtained by the binomial theorem. A proof of this theorem, whose truth was assumed in the preceding courses, is given in § 117.
117. Binomial theorem. The formula

$$
(x+h)^{n}=x^{n}+n x^{n-1} h+\frac{n(n-1)}{1 \cdot 2} x^{n-2} h^{2}+\ldots+h^{n}
$$

$n$ being a positive integer, is easily shown to hold for small values of $n$, by multiplying $x+h$ by itself.

It is now to be shown that it holds for any positive value of $n$.

Proof: Assume that the formula is true for $n=k$, i.e., assume that

$$
\begin{aligned}
(x+h)^{k}= & x^{k}+ \\
& k x^{k-1} h+\frac{k(k-1)}{1 \cdot 2} x^{-k 2} h^{2}+\ldots \\
& +\frac{k(k-1) \ldots(k-r+2)}{1 \cdot 2 \cdot \ldots \cdot(r-1)} x^{k-r+1} h^{r-1}+\ldots+h^{k}
\end{aligned}
$$

Multiplying both members of this equation by $x+h$,

$$
\begin{aligned}
& (x+h)^{k+1} \\
& =x^{k+1}+k x^{k} h+\frac{k(k-1)}{1 \cdot 2} x^{k-1} h^{2}+\ldots+\frac{k(k-1) \ldots(k-r+2)}{1 \cdot 2 \cdot \ldots \cdot(r-1)} x^{k-r+2} h^{r-1}+\ldots . \\
& +x^{k} h+\quad k x^{k-1} h^{2}+\ldots+\frac{k(k-1) \ldots(k-r+3)}{1 \cdot 2 \cdot \ldots \cdot(r-2)} x^{k-r+2} h^{r-1}+\ldots .
\end{aligned}
$$

Combining similar terms,

$$
\begin{aligned}
(x+h)^{k+1}=x^{k+1} & +(k+1) x^{k} h+\frac{(k+1) k}{1 \cdot 2} x^{k-1} h^{2}+\ldots \\
& +\frac{(k+1) k \ldots(k-r+3)}{1 \cdot 2 \cdot \ldots \cdot(r-1)} x^{k-r+2} h^{r-1}+\ldots+(k+1) x h^{k}+h^{k+1}
\end{aligned}
$$

Notice that the expansion of $(x+h)^{k+1}$ is of the same form as that of $(x+h)^{k}$, and that it may be obtained from $(x+h)^{k}$ by substituting $k+1$ for $k$. In particular notice that this is true for the $r$ th term of $(x+h)^{k+1}$.

Hence, if the theorem is true for $n=k$, it is also true for a value of $n$ one greater, i.e., for $n=k+1$.

But we know that the theorem holds for $n=2$. For $(x+h)^{2}=x^{2}+2 h x+h^{2}$ follows the theorem.

Therefore it holds for $n=3$.
Again, if it holds for $n=3$, it must also hold for $n=4$.
Since we may proceed this way by taking successive values of $n$ the theorem holds when $n$ is any positive integer.
118. Mathematical induction.* The method of proof used in § 117 is called mathematical induction.

The principal steps in this method are, first, to verify the theorem for a particular case, as above for $n=2$; secondly, to show that the principle is true for $n=k+1$ if it is true for $n=k$.

[^4]The necessity of the first step may be seen as follows: From the statement
$\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\frac{1}{3 \cdot 4}+\ldots+\frac{1}{k(k+1)}=\frac{k}{k+1}+2$
we get, by adding $\frac{1}{(k+1)(k+2)}$ to both sides, the statement

$$
\begin{align*}
\frac{1}{1 \cdot 2}+\ldots+\frac{1}{k(k+1)}+\frac{1}{(k+1)(k+2)} & =\frac{k}{(k+1)}+\frac{1}{(k+1)(k+2)}+2 \\
& =\frac{k^{2}+2 k+1}{(k+1)(k+2)}+2 \\
\therefore \frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\ldots+\frac{1}{(k+1)(k+2)} & =\frac{k+1}{k+2}+2 \tag{2}
\end{align*}
$$

The form of this result shows that if statement (1) is true for $k$ it is also true for $k+1$. It does not follow, however, that statement (1) is true for every value of $k$, e.g., $k=1$. For in that case the left member has the value $\frac{1}{2}$ while the value of the right member is equal to $2 \frac{2}{3}$.

The necessity of the second step may be seen from the following example.

It may easily be verified that the statement

$$
1 \cdot 2+2 \cdot 3+3 \cdot 4+4 \cdot 5+\ldots+n(n+1)=3 n^{2}-3 n+2
$$

is true for $n=1,2$, and 3 , but that it does not hold for the next greater value $n=4$.

## EXERCISES

Write down the general term of each of the following series of numbers:

1. $1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\ldots$.
2. $1+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\frac{1}{4^{2}}+\ldots$.
3. $\frac{3}{1 \cdot 2}+\frac{4}{2 \cdot 3}+\frac{5}{3 \cdot 4}+\ldots$.

Write down the sum of the first five terms of the series whose general terms are as follows:
4. $2^{n}$
5. $n(n+1)(n+2)$
6. $\frac{1}{n+1}$
7. $\frac{n}{3^{n}}$

Prove the following by mathematical induction:
8. $1+3+5+7+\ldots+(2 n-1)=n^{2}$

For $n=1$, we have $1=1^{2}$
For $n=2$, we have $1+3=2^{2}$
For $n=3$, we have $1+3+5=3^{2}$
Hence the statement is true for $n=1,2$, and 3 .
Assume that it is true for $n=r$
Then $1+3+5+7+\ldots+(2 r-1)=r^{2}$
Adding the equation $2(r+1)-1=2(r+1)-1$
we have
$1+3+5+7+\ldots+(2 r-1)+[2(r+1)-1]=r^{2}+2 r+2-1$, or $(r+1)^{2}$
Hence $1+3+5+7+\ldots+(2 r-1)+[2(r+1)-1]=(r+1)^{2}$
The last statement is of the same form as the assumed statement and may be obtained from it by substituting $r+1$ for $r$.

It follows that, if the statement is true for $n=r$, it is also true for $n=r+1$.

Since we know it to be true for $n=2$, it follows that it is true for $n=3,4$, etc.
9. $1^{2}+2^{2}+3^{2}+\ldots+n^{2}=\frac{1}{6} n(n+1)(2 n+1)$
10. $2+2^{2}+2^{3}+\ldots+2^{n}=2\left(2^{n}-1\right)$
11. $1^{3}+2^{3}+3^{3}+\ldots+n^{3}=\frac{n^{2}(n+1)^{2}}{4}$
12. $\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\ldots+\frac{1}{n(n+1)}=\frac{n}{n+1}$
13. $1+2^{2}+2^{4}+2^{6}+\ldots+2^{2 n-2}=\frac{2^{2 n}-1}{3}$
14. $1 \cdot 2+2 \cdot 3+3 \cdot 4+\ldots+(n)(n+1)=\frac{n(n+1)(n+2)}{3}$
119. Graph of a rational integral function. The graph of a linear function, as $f(x)=a x+b$, has been found to be a straight line. If the function is not of the first degree, the graph is usually a curved line. Thus the graph of the function $f(x)=a x^{2}+b x+c$ is a parabola. Both of these functions are rational integral functions. It is one of the purposes of this chapter to make a further study of the graphs of rational integral functions.
120. Evaluation of functions. To graph the function $f(x)$, we must select a number of values of $x$ and then compute the corresponding values of $f(x)$.

The value of $f(x)$ for $x=a$ may be denoted by $f(a)$. This value may be found by substituting in $f(x)$ for $x$ the number $a$. But often it is obtained more easily by the process of synthetic division.*

The following example illustrates the process:
Given $f(x)=2 x^{4}-5 x^{3}+7 x-8$. Find $f(3)$.
Explanation. Write $\begin{array}{llllll} & -5 & 0 & 7 & -8\end{array}$ down the coefficients: 2 , $-5,0 ; 7,-8$.

Bring down the coefficient of $x^{4}$, i.e., 2.

Multiply 2 by 3 , and add the product to -5 . This gives +1 .

Multiply +1 by 3 , and add the product to 0 . This gives +3 .

Multiply +3 by 3 , and add the product to 7 . This gives +16 .

[^5]Multiply +16 by 3 , and add the product to -8 . This gives +40 .

$$
\therefore \quad f(3)=40
$$

EXERCISES

1. If $f(x)=2 x^{4}-5 x^{3}+7 x-8$, find $f(2)$, $f(-1), f(5)$, by using synthetic division.
2. Draw the graph of

$$
f(x)=x^{3}-6 x^{2}+7 x+4, \text { Fig. } 55 .
$$

Assume for $x$ the values $0,1,2,3,4,5$, $-1,-2,-3$, and find the corresponding values of $f(x)$ by means of synthetic division.

Plot the pairs of corresponding numbers and join the points thus found by means of a smooth curve.
3. Draw the graph of

$$
f(x)=-x^{3}+5 x^{2}-2 x-8
$$

121. Continuity of $f(x)$. When making the graph of $f(x)=\frac{1}{x}$, Fig. 56, we find the following pairs of corresponding values of $x$ and $f(x)$.


Fig. 55

| $x$ | -3 | -2 | -1 | $-\frac{1}{2}$ | 0 | $+\frac{1}{2}$ | +1 | $+\frac{3}{2}$ | +2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $f(x)$ | $-\frac{1}{3}$ | $-\frac{1}{2}$ | -1 | -2 | No value | +2 | +1 | $+\frac{2}{3}$ | $+\frac{1}{2}$ |

Notice that the graph of this function is broken, or discontinuous, for $x=0$. The function $f(x)=\frac{1}{x}$ is said to be a discontinuous function.

In order that a function may be continuous in the vicinity of $x=a$, it must have a real and finite value corresponding to $x=a$.


Fig. 56

The curve in Fig. 57 is also discontinuous. In this case $f(x)$ approaches two different values according as $x$ approaches $a$ from the left or from the right.

Such discontinuities cannot occur if $f(x)$ is a rational integral function. For in that case to every real and finite value of $x$ there corresponds one, and only one, real and finite value of $f(x)$.


Fig. 57

More precisely, $f(x)$ is said to be continuous in the vicinity $x=x_{1}$, if $\lim _{h \rightarrow 0}\left[f\left(x_{1}+h\right)-f\left(x_{1}\right)\right]=0$.

That this is true for a rational integral function may be seen as follows:

Substituting in (1), § 116, the value $x_{1}+h$ for $x$, we have

$$
f\left(x_{1}+h\right)=a\left(x_{1}+h\right)^{n}+b\left(x_{1}+h\right)^{n-1}+c\left(x_{1}+h\right)^{n-2}+\ldots .
$$

$$
+p\left(x_{1}+h\right)+q
$$

Expanding the terms in $f\left(x_{1}+h\right)$ by means of the binomial theorem

$$
\begin{aligned}
& a\left(x_{1}+h\right)^{n}= a\left[x_{1}{ }^{n}+n x_{1}{ }^{n-1} h+\frac{n(n-1)}{1 \cdot 2} x_{1}{ }^{n-2} h^{2}+\ldots\right] \\
& b\left(x_{1}+h\right)^{n-1}= b\left[x_{1}{ }^{n-1}+(n-1) x_{1}{ }^{n-2} h\right. \\
&\left.+\frac{(n-1)(n-2)}{1 \cdot 2} x_{1}{ }^{n-3} h^{2}+\ldots\right] \\
& c\left(x_{1}+h\right)^{n-2}==c\left[x_{1}{ }^{n-2}+(n-2) x_{1}{ }^{n-3} h\right. \\
&\left.+\frac{(n-2)(n-3)}{1 \cdot 2} x_{1}{ }^{n-4} h^{2}+\ldots .\right] \\
& \cdot . \quad . \\
& p\left(x_{1}+h\right) \quad=p\left(x_{1}+h\right) \\
& q=q
\end{aligned}
$$

Adding,

$$
\begin{aligned}
& f\left(x_{1}+h\right)=a x_{1}{ }^{n}+b x_{1}{ }^{n-1}+c x_{1}{ }^{n-2}+\ldots+p x_{1}+q \\
&+h\left[n a x_{1}{ }^{n-1}\right. \\
&+(n-1) b x_{1}{ }^{n-2} \\
&\left.+(n-2) c x_{1}{ }^{n-3}+\ldots+p\right] \\
&+ h^{2}\left[\frac{n(n-1)}{1 \cdot 2} a x_{1}{ }^{n-2}+\ldots\right] \\
&+\ldots, \text { etc. }
\end{aligned}
$$

But $f\left(x_{1}\right)=a x_{1}{ }^{n}+b x_{1}{ }^{n-1}+c x_{1}{ }^{n-2}+\ldots+p x_{1}+q$

Subtracting,

$$
\begin{aligned}
f\left(x_{1}+h\right)-f\left(x_{1}\right)= & h\left[n a x_{1}{ }^{n-1}+(n-1) b x_{1}{ }^{n-2}\right. \\
& +(n-2) c x_{1}{ }^{n-3} \\
& +\ldots+p] \\
+ & h^{2}\left[\frac{n(n-1)}{1.2} a x_{1}^{n-2}+\ldots\right]
\end{aligned}+\text { etc. }
$$

Notice that every term of the right member of this equation approaches zero as $h$ approaches zero.

Therefore

$$
\lim _{h \rightarrow 0}\left[f\left(x_{1}+h\right)-f\left(x_{1}\right)\right]=0 \text { and } \lim _{h \rightarrow 0} f\left(x_{1}+h\right)=f\left(x_{1}\right) .
$$

Hence a rational integral function is continuous for all finite values of $x$.

It follows that as $x$ changes from any value $a$ to another value $b, f(x)$ changes from $f(a)$ to $f(b)$ and takes every value between $f(a)$ and $f(b)$ at least once.

Moreover, if $f(a)<0$ and $f(b)>0$, it follows that there is at least one value of $x$ between $a$ and $b$ for which $f(x)$ is equal to zero.

Graphically this means that the curve, Fig. 58, is an unbroken line and crosses the $x$-axis between $A$ and $B$ at least once.


Fig. 58

## EXERCISES

Tabulate $f(x)$ for assumed values of $x$ and locate the places where the graphs of the following functions cross the $x$-axis:

1. $2 x^{2}+x-6$
2. $x^{3}-5 x^{2}+2 x+8$
3. $x^{4}-6 x^{3}+24 x-16$
4. Derivative of a rational integral function of $x$. The derivative of $f(x)$ has been defined as

$$
\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}, \S 106
$$

From § 121,

$$
\begin{gathered}
f(x+h)-f(x)=h\left[n a x^{n-1}\right. \\
+(n-1) b x^{n-2} \\
\\
+h^{2}\left[\frac{\left.n(n-2) c x^{n-3}+\ldots+p\right]}{1 \cdot 2} a x^{n-2}+\ldots\right]+\text { etc. } \\
\therefore \quad \frac{f(x+h)-f(x)}{h}=n a x^{n-1} \\
+(n-1) b x^{n-2} \\
\\
+(n-2) c x^{n-3}+\ldots+p \\
\\
+h\left[\frac{n(n-1)}{1 \cdot 2} a x^{n-2}+\ldots\right] \\
\\
+h^{2}[\ldots] \\
\\
+\ldots, \text { etc. }
\end{gathered}
$$

$$
\begin{aligned}
\therefore \quad \lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=n a x^{n-1} & +(n-1) b x^{n-2} \\
& +(n-2) c x^{n-3}+\ldots+p
\end{aligned}
$$

or, $f^{\prime}(x)=n a x^{n-1}+(n-1) b x^{n-2}+(n-2) c x^{n-3}+\ldots+p$
This shows that, if $f(x)$ is an integral rational function of $x$, the derivative $f^{\prime}(x)$ may be found by the following simple law:

Multiply the coefficient of each term by the exponent of $x$ in that term, and then diminish the exponent of $x$ by unity.


ISAAC BARROW

## I S A A C $\quad$ B A $\quad$ R $\quad$ R $\quad$ O $\quad$ W

ISAAC BARROW (1630-77) was born in London and died in Cambridge, England. He attended school at Charterhouse, London, where he did poorly, then at Felstead, where he did better, and finally completed his schooling at Trinity College, where he devoted himself to literature, science, and particularly to natural philosophy. He then studied for the medical profession and later traveled in France, Italy, and Eastern Europe. In 1659 he returned to England through Germany and Holland.

In 1660 Barrow was appointed to the Greek| professorship at Cambridge. In 1662 he was elected professor of geometry at Gresham College, became a fellow of the Royal Society in 1663 , and in the same year was chosen to be the first occupant of the new Lucasian chair of mathematics at Cambridge. He held this chair until 1669 , when he resigned it in favor of his great pupil Isaac Newton. He then turned to the study of divinity, became a clergyman, and in 1672 was made a master of Trinity College by Royal patent. In 1675 he was cliosen vice-chancellor of Cambridge University. He died May 4, 1677, and was buried in Westminster Abbey.

Ball says of his personality that he was "low in stature, lean, and of a pale complexion" and slovenly in dress. Nevertheless he was noted for his strength, courage, and ready and caustic wit.

He published a complete edition of Euclid's Elements in Latin in 1655 and in English in 1660. In 1657 he published an edition of Euclid's Data. His lectures of 1664-66 were publisled in 1683 in a volume called Lectiones mathematicae. In 1669 he published Lectiones opticae et geometricae.

His chief services to science are his method of tangents, which probably suggested the fluxional calculus to Newton, and the fact that he was the principal teacher and stimulator of Isaac Newton.

Barrow's method of tangents consisted of choosing two neighboring points, $P$ and $Q$, on a curve, drawing their ordinates, and a line, $Q R$, parallel to the horizontal axis, thus forming a little curvilinear triangle, $\cdot P Q R$, which he called the differential triangle. He regarded this differential triangle as containing, in embryo, all the properties of the curve. In fact, his procedure differed from that of the fluxional calculus only in language and notation. It was suggestion enough for a Newton.

Barrow was a great genius. If he had devoted himself continuously to any one of the numerous things which le pursued for a brief period, and if he had been granted a long life, he would have attained high eminence.
[See Ball, Cajori, or Encyclopaedia Britannica.]

## EXERCISES

1. If $f(x)=a x^{2}+b x+c$, show by the law given in $\S 122$ that $f^{\prime}(x)=2 a x+b$ and compare this result with that found in § 106.

Find the derivative of each of the following functions:
2. $f(x)=3 x^{2}-7 x+2$
3. $f(y)=4 y^{2}+3 y-6$
4. $f(x)=6 x^{4}-2 x^{3}+3 x+1$
123. Maxima and minima. When a curve, Fig. 59, runs upward toward the right, the angle of inclination of the tangent $T_{1} P_{1}$ toward the $x$-axis is acute. Hence the slope is positive.

When the curve


Fig. 59 runs downward toward
the right the angle of inclination of the tangent $P_{2} T_{2}$ is obtuse. Hence the slope is negative.

If the slope of the tangent is zero the tangent is parallel to the $x$-axis.

A rational integral function of $x$ is increasing when an increase in $x$ causes the function to increase, and it is decreasing when an increase in $x$ causes the function to decrease.

Hence the function is increasing when the graph runs upward to the right, and it is decreasing when the graph runs downward to the right.

Or the function is increasing when the derivative is positive for a given value of $x$, and decreasing when the derivative is negative for a given value of $x$.

If for a given value of $x$ the derivative is zero, the function may have a maximum or a minimum.

It has a maximum value for $x=a$ if it changes from an increasing to a decreasing function, and it has a minimum value for $x=a$ if it changes from a decreasing to an increasing function.

More precisely, this may be stated by means of the derivative as follows:

Let $h$ be a positive number taken very small. Then $f(a)$ is a maximum of $f(x)$, when $f^{\prime}(a-h)>0, f^{\prime}(a)=0$, and $f^{\prime}(a+h)<0$,
$A n d f(a)$ is a minimum of $f(x)$, when $f^{\prime}(a-h)<0, f^{\prime}(a)=0$, and $f^{\prime}(a+h)>0$.

That the condition $f^{\prime}(a)=0$ alone is not sufficient for a maximum or a minimum is shown by the following example:

Let $f(x)=x^{3}$, Fig. 60 .
Then $f^{\prime}(x)=3 x^{2}$.
For $x=0, f^{\prime}(x)=0$, but it is positive for all positive and negative values of $x$. Hence the curve is increasing for $x<0$ and for $x>0$, and it has neither a maximum nor a minimum in the vicinity of $x=0$.

From the preceding discussion


Fig. 60 we may now formulate the following rule for determining the maxima and minima of a rational integral function:

Find $f^{\prime}(x)$.
Let $f^{\prime}(x)=0$ and solve this equation.
Let a be any one of the roots of the equation $f^{\prime}(x)=0$.
Determine the sign of $f^{\prime}(a-h)$ and of $f^{\prime}(a+h)$.
If the sign of $f^{\prime}(x)$ changes from + to - , as $x$ passes through $a, f(a)$ is a maximum value of $f(x)$.

If the sign of $f^{\prime}(x)$ changes from - to + , as $x$ passes through $a, f(a)$ is a minimum value of $f(x)$.
124. Calculation of $f^{\prime}(x \pm h)$. According to $\S 121$, $f(x+h)=a x^{n}+b x^{n-1}+c x^{n-2}+\ldots+p x+q$

$$
\begin{aligned}
& +h\left[n a x^{n-1}+(n-1) b x^{n-2}+(n-2) c x^{n-3}\right. \\
& +\ldots+p] \\
& +h^{2}\left[\frac{n(n-1)}{1 \cdot 2} a x^{n-2}+\frac{(n-1)(n-2) b x^{n-3}}{1 \cdot 2}\right. \\
& +\ldots, \text { etc. }
\end{aligned}
$$

Notice that the first line in this expansion is $f(x)$, that the function in the parenthesis in the second line is the derivative of $f(x)$, and that the function in the parenthesis in the third line is $\frac{1}{1 \cdot 2}$ multiplied by the derivative of $f^{\prime}(x)$.

The derivative of $f^{\prime}(x)$ is called the second derivative of $f(x)$ and is denoted by $f^{\prime \prime}(x)$.

Similarly, the third, fourth, ...., $k$ th derivatives of $f(x)$ are denoted by $f^{\prime \prime \prime}(x), f^{(\mathrm{iv})}(x), \ldots, f^{(k)}(x)$, respectively.

Using this notation, we have

$$
f(x+h)=f(x)+h f^{\prime}(x)+\frac{h^{2}}{1 \cdot 2} f^{\prime \prime}(x)+\frac{h^{3}}{1 \cdot 2 \cdot 3} f^{\prime \prime \prime}(x)+\ldots
$$

This formula is a particular case of a theorem known as Taylor's theorem.*

Since $f(x)$ is a rational integral function of $x$, the formula just found may be used to find the value of $f(x+h)$.
*Brook Taylor (1685-1731) was one of Newton's admirers. In his book Methodus incrementorum he added the then new mathematical branch, now called "finite differences," and gave a statement of this theorem together with a worthless proof. The value of the theorem was not recognized until Lagrange, fifty years later, showed its great power. One hundred years after its discovery, Cauchy gave the first rigorous proof of the theoreum.

## EXERCISES

1. If $f(x)=3 x^{4}-2 x^{2}-3 x+1$, find $f(x+h)$

$$
\begin{aligned}
& f^{\prime}(x)=12 x^{3}-4 x-3 \\
& f^{\prime \prime}(x)=36 x^{2}-4 \\
& f^{\prime \prime \prime}(x)=72 x \\
& f^{\prime \text { (iv) }}(x)=72 \\
& f^{(\text {v })}(x)=0 \\
& \therefore \quad f(x+h)=3 x^{4}-2 x^{2}-3 x+1+h\left(12 x^{3}-4 x-3\right)+\frac{h^{2}}{1 \cdot 2}\left(36 x^{2}-4\right) \\
&+\frac{h^{3}}{1 \cdot 2 \cdot 3}(72 x)+\frac{h^{4}}{1 \cdot 2 \cdot 3 \cdot 4}(72) \\
&=3 x^{4}-2 x^{2}-3 x+1+h\left(12 x^{3}-4 x-3\right)+h^{2}\left(18 x^{2}-2\right) \\
&+h^{3}(12 x)+h^{4}(3)
\end{aligned}
$$

2. Using the result in exercise 1 , find $f(1+h)$; $f(2+h)$; $f(-1+h)$.

Find the maxima and minima of the following functions:
3. $f(x)=x^{3}+18 x^{2}+105 x$
4. $y=3 x^{3}-2 x+4$
125. Remainder theorem. Let $f(x)$ be a rational integral function of the $n$th degree,

$$
\text { i.e., } f(x)=a x^{n}+b x^{n-1}+c x^{n-2}+\ldots+p x+q
$$

Then $f(r)=a r^{n}+b r^{n-1}+c r^{n-2}+\ldots+p r+q$
Subtracting,

$$
\begin{aligned}
f(x)-f(r)= & a\left(x^{n}-r^{n}\right)+b\left(x^{n-1}-r^{n-1}\right)+\ldots+p(x-r) \\
= & (x-r)\left[a\left(x^{n-1}+x^{n-2} r+x^{n-3} r^{2}+\ldots+r^{n-1}\right)\right. \\
& \left.+b\left(x^{n-2}+x^{n-3} r+\ldots+r^{n-2}\right)+\ldots+p\right]
\end{aligned}
$$

Denoting the function within the brackets by $Q(x)$,

$$
f(x)-f(r)=(x-r) Q(x)
$$

Hence

$$
\begin{equation*}
f(x)=(x-r) Q(x)+f(r) \tag{1}
\end{equation*}
$$

where $Q(x)$ is a rational integral function of $(x)$ of degree $n-1$.

Comparing (1) with the relation

$$
\text { dividend } \equiv \text { divisor } \times \text { quotient }+ \text { remainder }
$$

we conclude that the remainder obtained by dividing $f(x)$ by $x-r$ is $f(r)$.

This result may be expressed in the form of a theorem as follows:

If a rational integral function $f(x)$ be divided by $x-a$, the remainder obtained is equal to the value of the function for $x=a$.

More briefly this may be stated thus: If $f(x)$ is divided by $x-a$, the remainder is $f(a)$.

This theorem is known as the remainder theorem.
126. Factor theorem. If $f(x)$, divided by $x-a$, gives the remainder zero, then $x-a$ is a factor of $f(x)$.

For the remainder $R$ is then equal to $f(a), \S 125$. It follows that $x-a$ is a factor of $f(x)$ if $f(a)=0$.

## EXERCISES

State and prove the converse of the factor theorem.

## Summary

127. The chapter has taught the meaning of the following terms:
rational integral function
mathematical induction
continuity of a function
first, second, and higher derivatives
increasing and decreasing function
maximum and minimum value of a function
the general term of a series
128. Rules have been formulated:
129. For determining the maxima and minima of a rational integral function.
130. For finding the value of $f(x+h)$ in terms of powers of $h$. (Taylor's Theorem.)
131. For finding the derivative of a rational integral function $f(x)$.
132. The following theorems have been proved:
133. The binomial theorem for any positive integral exponent.
134. The remainder theorem.
135. The factor theorem.
136. A rational integral function is continuous for all finite values of $x$.

## CHAPTER VII

## SOLUTION OF EQUATIONS WITH NUMERICAL COEFFICIENTS

## Algebraic Solution

130. Algebraic solution. If $f(x)$ is a rational integral function of the first degree, it is always possible to solve the equation $f(x)=0$. For if $f(x)=a x+b$, the solution of $a x+b=0$ is readily obtained from the formula

$$
x=-\frac{b}{a}
$$

If $f(x)$ is a rational integral function of $x$ of the second degree, as $a x^{2}+b x+c$, the roots of the equation

$$
f(x)=a x^{2}+b x+c=0
$$

are given by the general formula

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Notice that in both cases the roots of the equations are functions of the coefficients. The solutions obtained by means of formulas are called algebraic solutions, if the formulas involve only a finite number of the operations of addition, subtraction, multiplication, division, and extraction of roots.

It will be shown in chapter viii that the cubic equation

$$
a x^{3}+b x^{2}+c x+d=0
$$

and the biquadratic equation

$$
a x^{4}+b x^{3}+c x^{2}+d x+c=0
$$

can also be solved algebraically. However, the solution by means of special formulas, when applied to equations containing only numerical coefficients, is not as practical as the general methods to be given in §§ 143 to 152.

It can be shown by higher mathematics that the equation

$$
f(x)=a x^{n}+b x^{n-1}+\ldots+p x+q=0
$$

cannot generally be solved algebraically if $n>4$.
The great mathematician Niels Henrik Abel, in 1824, was the first to prove it to be impossible to give an algebraic solution of a general quintic equation. Hermite (1822-1901) solved the equation of the fifth degree by means of elliptic functions, and Kléin has given the simplest solution by transcendental functions.
131. Number of roots of an equation. We have seen that every linear equation has one root, and that every quadratic equation has two roots, real or complex. We shall now assume that every rational integral equation of the nth degree whose coefficients are real or complex numbers has at least one root, real or complex.

Let $r_{1}$ be a root of $f(x)=0$.
Then $x-r_{1}$ is a factor of $f(x), \S 126$.
$\therefore f(x)=\left(x-r_{1}\right) f_{1} x$, where $f_{1}(x)$ is the quotient $\frac{f(x)}{x-r_{1}}$ and a rational integral function of $x$ of degree $n-1$.

Hence, according to our assumption above, $f_{1}(x)=0$ has at least one root, $r_{2}$. It follows that

$$
f_{1}(x)=\left(x-r_{2}\right) f_{2}(x)
$$

where $f_{2}(x)$ is of degree $n-2$. By substitution,

$$
f(x)=\left(x-r_{1}\right)\left(x-r_{2}\right) f_{2}(x)
$$

Continuing this process we shall have

$$
f(x)=\left(x-r_{1}\right)\left(x-r_{2}\right) \ldots\left(x-r_{n}\right) A
$$

where $A$ is the coefficient of $x^{n}$ and does not contain $x$.
This shows that every rational integral function of $x$ is the product of $n$ linear factors.

If we substitute for $x$ any one of the values $r_{1}, r_{2}, \ldots, r_{n}$, $f(x)$ will become zero. If we substitute for $x$ any other value, the factors $\left(x-r_{1}\right),\left(x-r_{2}\right), \ldots,\left(x-r_{n}\right)$ are all different from zero, and $f(x)$ cannot be equal to zero.

Hence every rational integral equation of the nth degree whose coefficients are real or complex numbers has $n$, and only $n$, roots, real or complex.

This theorem is called the fundamental theorem of algebra. The theorem was first stated in its complete form by D'Alembert (1717-83). Gauss (1777-1855) was the first to give a satisfactory proof.
132. Multiple roots. Some of the $n$ factors of $f(x)$ may be equal to each other, as in $f(x)=5(x-1)^{2}(x-3)$. In that case the equation $f(x)=0$ is said to have equal roots, or multiple roots.

Graphical Representation of the Roots of $f(x)=0$
133. Real and distinct roots. Let $x_{1}, x_{2}, \ldots, x_{n}$ be the real and distinct roots of $f(x)=0$ and let

$$
x_{1}<x_{2}<\ldots<x_{n}
$$

For example, let $x_{1}=1, x_{2}=3$, and $x_{3}=4$, and let $f(x)=2(x-1)(x-3)(x-4)$.

When $x<1$, all the binominal factors of $f(x)$ are negative. Therefore $f(x)$ is negative, and the graph is below
the $x$-axis, Fig. 61. Thus, when $x=0, f(x)=2(-1)(-3)$ $(-4)=-24$.

When $1<x<3$, the first factor of $f(x)$ is positive and the other two are negative. Therefore $f(x)$ is positive, and the graph is above the $x$-axis. Thus, when $x=2$, $f(x)=2(1)(-1)(-2)=4$.

When $3<x<4$, the first two factors are positive and the last negative. Therefore $f(x)$ is negative, and the graph is below the $x$-axis.

When $x>4$, all factors of $f(x)$ are positive, and the


Fig. 61 graph is above the $x$-axis.

Hence the graph crosses the $x$-axis at the points $x=1$, 3 , and 4.

## EXERCISES

Plot the graph of each of the following equations:

1. $x(x-2)(x-4)=0$
2. $(x+2)(x-2)(x)=0$
3. $\frac{1}{6}\left(x-\frac{1}{2}\right)(x-2)(x-3)=0$
4. $3\left(x+\frac{2}{3}\right)(x-1)(x-4)=0$
5. Real multiple roots. Let

$$
f(x)=a_{0}\left(x-r_{1}\right)\left(x-r_{2}\right)^{2}\left(x-r_{3}\right)=0
$$

and let $r_{1}<r_{2}<r_{3}$. Show that
$f(x)$ is positive when $x<r_{1}$;
$f(x)$ is negative when $r_{1}<x<r_{2}$;
$f(x)$ is zero when $x=r_{2}$;
$f(x)$ is negative when $r_{2}<x<r_{3}$.
Hence at $x=r_{2}$ the graph does not cross the $x$-axis but touches it at point C, Fig. 62.

We may think of point $C$ as being obtained by moving the dotted line in the figure downward until $A$ and $B$ coincide at the point of tangency $C$.

By letting $r_{3}$ vary and approach $r_{2}, f(x)$ will take the form $a_{0}\left(x-r_{1}\right)\left(x-r_{2}\right)^{3}$ and
when $x<r_{1}, f(x)$ is positive;
when $r_{1}<x<r_{2}, f(x)$ is negative;
when $x=r_{2}, f(x)$ is zero;
when $x>r_{2}, f(x)$ is positive.


Fig. 62


Fig. 63

Hence the curve has crossed the $x$-axis at point $C$, Fig. 63.

We may think of point $D$, Fig. 62, as having moved to the left until it coincides with points $A$ and $B$ at point $C$.

In general, if a factor $\left(x-r_{n}\right)$ occurs an even number of times in $f(x)$ the curve does not cross the $x$-axis; if it occurs an odd number of times the curve crosses the $x$-axis.

## EXERCISES

Draw the graph of each of the following equations:

1. $3(x-1)(x-3)^{2}=0$
2. $\frac{1}{4}(x+2) x^{2}(x-3)=0$
3. $(x-2)(x-3)^{3}=0$
4. $x(x-1)^{2}(x-3)^{3}=0$
5. Complex roots. Let $a+b i$ be a root of the equation $f(x)=0$. Then $a+b i$ satisfies the equation $f(x)=0$ and
$f(a+b i)=a(a+b i)^{n}+b(a+b i)^{n-1}+\ldots+p(a+b i)+q=0$
By expanding the powers of $a+b i$, and then combining first the real terms and then the imaginary terms, this equation takes the form

$$
f(a+b i)=A+B i=0
$$

It follows that $A=0, B=0, \S 16$.
Similarly, if we substitute for $x$ the value $a-b i$, we have

$$
f(a-b i)=A-B i
$$

Since

$$
\begin{aligned}
A=0, \text { and } B & =0 \\
A-B i & =0 \\
f(a-b i) & =0
\end{aligned}
$$

or
This means that $a-b i$ is also a root of the equation $f(x)=0$.

Hence the following theorem has been proved:
If a rational integral equation with real coefficients has a complex root $a+b i$, then $a-b i$ is also a root of the equation.

Hence, if $f(x)$ contains a factor of the form $x-(a+b i)$, it must also contain the factor $x-(a-b i)$, and therefore the quadratic factor

$$
[x-(a+b i)][x-(a-b i)]=(x-a)^{2}+b^{2}
$$

This factor is positive for all real values of $x$ and cannot have the value zero. Hence it cannot cause $f(x)$ to become zero nor the graph to touch or cut the x-axis.

## EXERCISES

Draw the graphs of the following equations:

1. $(x+2)\left(x^{2}-3 x+5\right)=0$

Verify the following table and compare the results with the graph in Fig. 64.

| $x$ | $<-2$ | -2 | $>-2$ | -1 | 0 | 1 | 2 | 3 |
| :---: | :---: | ---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $f(x)$ | Negative | 0 | Positive | 9 | 10 | 9 | 12 | 25 |



Fig. 64
2. $\frac{1}{2}(x+4)\left(x^{2}-3 x+4\right)=0$
3. $x(x+3)\left(x^{2}-8 x+20\right)=0$

Solve the following equations:
4. One root of $2 x^{3}-15 x^{2}+46 x-42=0$ is $3+\sqrt{-5}$. Find the others.

Apply the theorem in § 135.
5. One root of the equation $x^{4}-8 x^{3}+21 x^{2}-26 x+14=0$ is $3+\sqrt{2}$. Find the others.
6. One root of the equation $x^{4}-3 x^{2}-42 x-40=0$ is $\frac{-3+\sqrt{-31}}{2}$. Find the others.

## Location of Real Roots

136. Location of real roots. The problem of locating the real roots of $f(x)=0$ is simplified by the use of the theorems stated in the following sections.
137. Descartes' rule of signs. Let $a, b, c, \ldots, p, q$ be the coefficients of $x$ in a rational integral function arranged in descending order.

If two successive coefficients have opposite signs, we have what is called a variation of signs. Thus in

$$
x^{4}-3 x^{3}-2 x^{2}+5 x-4
$$

the signs are

$$
+-\quad-\quad+-
$$

and there are three variations.
When all the signs are the same, $f(x)$ cannot vanish if a positive number is substituted for $x$. Hence the equation $f(x)=0$ cannot have a positive root if there are no variations of sign.

If $f(x)$ is arranged according to descending powers of $x$ and contains all powers of $x$ from $n$ to 0 , show that it cannot vanish for negative values of $x$ in case the signs are alternately positive and negative.

Thus the number of variations of signs in $f(x)$ gives some information regarding the existence of the positive and negative roots of the equation $f(x)=0$.

The following consideration establishes a relation between the number of positive roots of $f(x)$ and the number of variations of signs.

Let $f_{1}(x)=2 x^{8}+6 x^{7}-2 x^{6}-x^{5}-2 x^{4}+3 x^{3}-7 x^{2}+4 x+3$ represent a rational integral function of $x$, arranged according to descending powers of $x$.

The signs of $f_{1}(x)$ may be arranged as follows:

$$
\begin{array}{ccccc}
++ & - & - & + & - \\
+(++) & (+ & + & + & +(+)  \tag{1}\\
+(+)+(+ & +
\end{array}
$$

or

If $f_{1}(x)$ is multiplied by $x-r_{1}$, $r_{1}$ being a positive number, the following signs are obtained

$$
\begin{array}{cccc}
+\quad+\quad--- & +- & ++ \\
- & -++ & +- & +---
\end{array}
$$

These may be grouped, giving the signs of $\left(x-r_{1}\right) f_{1}(x)$, as follows:

$$
\begin{aligned}
& +(++)-(+++)+(+)-(+)+(++) \\
& +(\quad-)-(+--)+(+)-(+)+(+-)-
\end{aligned}
$$

Adding $+(+ \pm)-(+ \pm \pm)+(+)-(+)+(+ \pm)-(2)$
We may now compare the signs in $f_{1}(x)$ as given in (1) with the signs in $\left(x-r_{1}\right) f_{1}(x)$ given in (2). We observe that the number of variations of signs in (2), disregarding the variations due to the ambiguous signs within the parentheses, is one more than the number of variations in (1). If the ambiguous signs in (2) are replaced by either sign, the number of variations either remains the same or is increased. Hence the number of variations of signs in $f_{1}(x)$ is at least one less than the number of variations in $\left(x-r_{1}\right) f_{1}(x)$.

Let $r_{1}, r_{2}, r_{3}, \ldots, r_{k}$ be the only positive roots of $f(x)=0$.

Since the number of variations in $\frac{f(x)}{x-r_{1}}$ is at least one less than the variations in $f(x)$, it follows that $f(x)$ has at least one variation.

Since the quotient $\frac{f(x)}{\left(x-r_{1}\right)\left(x-r_{2}\right)}$ has at least two variations less than $f(x), f(x)$ must have at least two variations.

Similarly, since the quotient $\frac{f(x)}{\left(x-r_{1}\right)\left(x-r_{2}\right) \ldots\left(x-r_{k}\right)}$ has at least $k$ variations less than $f(x), f(x)$ must have at
least $k$ variations, i.e., at least as many variations as the number of positive roots of $f(x)=0$.

This result may be stated in the form of a theorem as follows:

Theorem. The number of positive roots of $f(x)=0$ cannot be greater than the number of variations of sign in $f(x)$.

Since the negative roots of $f(x)$ are the positive roots of $f(-x)=0$, it follows that the number of negative roots of $f(x)=0$ cannot be greater than the number of variations in $f(-x)$.

The theorem given above is known as Descartes' rule of signs.

## EXERCISES

By means of Descartes' rule state some conclusions regarding the roots of the following equations:

1. $x^{3}+5 x-7=0$

Writing the signs, we have
$f(x)=++-\therefore$ there cannot be more than one positive root.
$f(-x)=---\therefore$ there are no negative roots.
$\therefore$ two roots are complex.
2. $x^{3}+3 x+7=0$
3. $x^{3}+3 x+2=0$
4. $x^{3}+1=0$
5. $2 x^{3}-7 x^{2}+3 x-1=0$
6. $y^{3}-y=21.3$
7. $z^{3}+z+3=0$
8. $y^{3}-4 y^{2}-3 y+19=0$
9. $x^{4}-2 x^{2}+1=0$
10. $x^{4}-5 x^{3}+20 x-16=0$
11. $x^{5}-3 x^{2}+6=0$
12. $x^{7}+2 x^{4}-x^{2}-5=0$
13. $x^{7}-2 x^{6}+x^{4}-1=0$
138. Theorem. The first term in the rational integral function

$$
f(x)=a x^{n}+b x^{n-1}+\ldots+p x+q
$$

can be made to exceed the sum of the remaining terms by taking a sufficiently large value of $x$.

For, let $f(x)=a x^{n}+b x^{n-1}+\ldots+p x+q$, and let $m$ be the greatest of the coefficients $a, b, \ldots, p, q$.

Comparing the first term $a x^{n}$ with the sum of the remaining terms, we have

$$
\begin{gathered}
\frac{a x^{n}}{b x^{n-1}+c x^{n-2}+\ldots+p x+q}>\frac{a x^{n}}{m\left(x^{n-1}+x^{n-2}+\ldots+x+1\right)} \\
=\frac{a x^{n}}{\frac{m\left(x^{n}-1\right)}{x-1}}>\frac{a x^{n}(x-1)}{m x^{n}}=\frac{a}{m}(x-1)
\end{gathered}
$$

$$
\therefore \frac{a x^{n}}{b x^{n-1}+c x^{n-2}+\ldots+p x+q}>\frac{a}{m}(x-1)
$$

By taking $x$ sufficiently large, $\frac{a}{m}(x-1)$ can be made greater than 1.
$\therefore \frac{a x^{n}}{b x^{n-1}+\ldots+q}$ can be made greater than 1.
$\therefore \quad \dot{a} x^{n}$ can be made greater than $b x^{n-1}+\ldots+q$.

## EXÉRCISES

1. Show that $2 x^{4}-3 x^{3}+7 x^{2}-4 x-2$ becomes positive for positive and negative values of $x$, provided $x$ be taken sufficiently large numerically.
2. Show that $3 x^{3}-4 x^{2}+7 x-2$ becomes positive when $x$ is positive and increases numerically, and that it becomes negative when $x$ is negative and increases numerically.
3. Theorem. If $f(a)$ and $f(b)$ have opposite signs, an odd number of real roots lies between $a$ and $b$.

For, let $f(x)$ be a rational integral function. Let $A$ and $B$ be two points on the graph of $f(x)$, Fig. 65 , on opposite sides of the $x$-axis.

Since the graph is a continuous curve, $\S 121$, it must cross the $x$-axis an odd number of times in passing from $A$ to $B$.

The values of $x$, between $a$ and $b$, for which $f(x)$ is equal to zero, are roots of $f(x)=0$.

Since $f(x)$ is a continuous function, it must pass through zero at least once, when changing from a positive to a negative value, or from a negative to a positive value.
140. Theorem. If $f(a)$ and $f(b)$ have like signs, either no real root or an even number of real roots lies between $a$ and $b$.

Graphically this means that the curve may not intersect the $x$-axis at all, as in Fig. 66; or touch it; or cut it in two places, as in Fig. 67; or in four places, as in Fig. 68.


Fig. 65


Fig. 66


Fig. 67


Fig. 68
141. Theorem. Every equation of odd degree has at least one real root.

For, if $a$ is sufficiently large numerically, and is negative, $f(a)$ has the same sign as the first term and is therefore negative. Likewise, if $a$ is sufficiently large, numerically, and is positive, $f(a)$ is positive.

Hence $f(x)$ has at least one real root, § 139.
142. Locating the real roots of $f(x)=0$. The theorems stated in $\$ \S 137$ to 141 are now to be applied in locating the real roots of an equation. Exercise 1 below illustrates the process in detail.

## EXERCISES

Locate the roots of the following equations approximately:

1. $f(x)=x^{3}+5 x-7=0$
2. The signs of $f(x)$ and $f(-x)$ are:
$f(x)=++-\therefore f(x)$ has not more than one positive root, § 137.
$f(-x)=---\therefore$ there are no negative roots, § 137.
$\therefore$ two roots are imaginary, and the third is positive. Why?
3. A rough graph of $f(x)$ may be obtained as follows:

For sufficiently large positive values of $x$ the function $f(x)$ is positive, § 138. See Fig. 69.

For $x=0, f(x)=-7$.
For negative values of $x$, sufficiently large numerically, the function $f(x)$ is negative, § 138.
3. Let $x=1$, then $f(x)=-1$.

Let $x=2$, then $f(x)=+11$.
This shows that the positive root lies between 1 and 2 .


Fig. 69
2. $x^{3}+2 x^{2}+8=0$
3. $x^{3}-3 x-1=0$
4. $x^{3}-2 x^{2}-3 x+5=0$
5. $x^{3}+4 x^{2}-2 x-40=0$
6. $x^{5}+2 x^{3}-5 x^{2}+x+11=0$
7. $6 x^{4}+29 x^{3}-54 x^{2}-51 x-10=0$

## Rational Roots

143. Integral roots. If an equation of the form

$$
x^{n}+b x^{n-1}+c x^{n-2}+\ldots+p x+q=0
$$

in which the coefficient of the highest power of $x$ is unity, and in which all coefficients are integers, has rational roots, they are integers.

To prove this, assume that not all of the roots of the equation are integers.

Let $\frac{s}{t}$ be a fractional root where $s$ and $t$ have no common factor.

We may then substitute $\frac{s}{t}$ for $x$ in the given equation. This gives

$$
\frac{s^{n}}{t^{n}}+b \frac{s^{n-1}}{t^{n-1}}+c \frac{s^{n-2}}{t^{n-2}}+\ldots+p \frac{s}{t}+q=0
$$

Multiplying by $t^{n-1}$;

$$
\begin{gathered}
\quad \frac{s^{n}}{t}+b s^{n-1}+c t s^{n-2}+\ldots+p t^{n-2} s+q t^{n-1}=0 \\
\therefore \quad \frac{s^{n}}{t}=-\left(b s^{n-1}+c t s^{n-2}+\ldots+p t^{n-2} s+q t^{n-1}\right)
\end{gathered}
$$

Since the right member of this equation is an integer, $\frac{s^{n}}{t}$ must be integral.

This is impossible, since $s$ does not contain $t$ as a factor.
$\therefore$ the assumption that $\frac{s}{t}$ is a fractional root is wrong, and all the roots of the equation are integers.
144. Theorem. If the equation $f(x)=0, \S 143$, has an integral root $s$, then $s$ is a divisor of $q$.

Since $f(s)=0$, we have

$$
s^{n}+b s^{n-1}+c s^{n-2}+\ldots+p s=-q
$$

Dividing by $s$,

$$
s^{n-1}+b s^{n-2}+c s^{n-3}+\ldots+p=-\frac{q}{s}
$$

Since the left member is integral, $q$ must be divisible by $s$, which was to be proved.
145. Finding the integral roots of $f(x)=0$. We may now find the integral roots of a given equation by trial, using only the integral factors of the constant term,
$\S 144$. As soon as a root is found, the equation may be depressed to one of a degree lower by 1 , by dividing it synthetically by that root.

We may then proceed in the same way to find an integral root of the depressed equation.

## EXERCISES

Solve the following equations:

1. $x^{4}-12 x^{3}+48 x^{2}-68 x+15=0$

By Descartes' rule of signs the equation has no negative roots. Why?

The integral roots are divisors of $15, \S 144$.
Hence we may try the numbers $1,3,5$, and 15 .
By synthetic division,

$$
\begin{aligned}
& 1-12+48-68+15 \quad 1 \\
& 1-11 \quad 37-31 \\
& 1-11 \quad 37-31|-16| \quad \therefore 1 \text { is not a root of } f(x)=0 \\
& 1-12+48-68+15 \quad \mid \underline{3} \\
& 3-27 \quad 63-15 \\
& \overline{1-9+21-5 \quad\lfloor 0} \quad \therefore 3 \text { is a root of } f(x)=0 \\
& \therefore 5 \text { is a root of } f(x)=0
\end{aligned}
$$

Dividing by $5, \frac{5-20+5}{1-4 \quad 1 \quad 0 \mid}$
The equation has now been depressed to the quadratic equation

$$
x^{2}-4 x+1=0
$$

which may be solved by means of the quadratic formula.
2. $x^{3}-5 x^{2}+2 x+8=0$
3. $x^{3}-9 x^{2}+23 x-15=0$
4. $x^{3}+x^{2}-17 x+15=0$
5. $x^{3}-6 x^{2}+7 x+4=0$
6. $x^{4}-10 x^{2}+9=0$
7. $x^{4}-20 x^{2}-21 x-20=0$
8. Two roots of the equation $6 x^{4}+7 x^{3}-37 x^{2}-8 x+12=0$ are 2 and .5. Find the others.
146. Rational fractional roots. The problem of finding the fractional roots of $f(x)=0$ is reduced to that of finding integral roots by transforming the given equation into one whose roots are integers and multiples of the roots of the given equation. The following section will show that it is possible to multiply the roots of an equation by a given number without first finding the roots themselves.
147. To multiply the roots of an equation by $m$. Let

$$
f(x)=a x^{n}+b x^{n-1}+c x^{n-2}+\ldots+p x+q=0
$$

Let $y$ be a root of the transformed equation and equal to $m$ times the corresponding root of the given equation, i.e., $y=m x$.

Since $x=\frac{y}{m}$, we may substitute $\frac{y}{m}$ for $x$ in $f(x)$ and thus eliminate $x$.

This gives

$$
a \frac{y^{n}}{m^{n}}+b \frac{y^{n-1}}{m^{n-1}}+c \frac{y^{n-2}}{m^{n-2}}+\ldots+p \frac{y}{m}+q=0
$$

Multiplying by $m^{n}$,

$$
a y^{n}+m b y^{n-1}+m^{2} c y^{n-2}+\ldots+m^{n-1} p y+m^{n} q=0
$$

Notice that this equation is of the same form as the given equation and may be obtained from it by multiplying the coefficient of the second term by $m$, that of the third term by $m^{2}$, etc.

## EXERCISES

Multiply the roots of the following equations as indicated:

1. $x^{3}-\frac{1}{2} x^{2}+\frac{1}{4} x-3=0$, by 2

Multiplying the second term by 2 , the third by $2^{2}$, and the fourth by $2^{3}$, we have the equation

$$
y^{3}-y^{2}+y-24=0
$$

the roots of which are 2 times the corresponding roots of the given equation.
2. $x^{3}+3 x^{2}-4 x+1=0$, by -2
3. $x^{3}-\frac{1}{5} x^{2}-\frac{1}{25} x+\frac{2}{5}=0$, by 5
4. $x^{4}-\frac{x^{3}}{3}+\frac{x^{2}}{4}+2 x-\frac{1}{16}=0$, by 6
5. $x^{4}-2 x^{3}+13 x^{2}+.2 x-.05=0$, by 10

Solve the following equations:
6. $3 x^{3}+8 x^{2}+x-2=0$

Dividing by 3 ,

$$
x^{3}+\frac{8}{3} x^{2}+\frac{x}{3}-\frac{2}{3}=0
$$

Multiplying the roots by 3 ,

$$
y^{3}+8 y^{2}+3 y-18=0
$$

Thus the original equation has been transformed to an equation which has no fractional root, and which may be solved as the equation in exercise $1, \S 145$. By dividing the roots of this equation by 3 we obtain the roots of the given equation.
7. $4 x^{3}-16 x^{2}-9 x+36=0$
8. $8 x^{3}-4 x^{2}-2 x+1=0$
9. $2 x^{3}+3 x^{2}+5 x+2=0$

## Irrational Roots

148. Geometrical interpretation of the process of finding irrational roots. The irrational roots of an equation may be found by certain processes of approximation, one of which is explained in detail in § 150 .

The following discussion illustrates the geometrical meaning of this process.

Suppose $x_{1}=1.342 \ldots$ to be an irrational root of the equation $f(x)=0$.

1. The integral part of this irrational root may be found by substituting in $f(x)$ for $x$ integral numbers as
$1,2,3,4$, etc. For, if the values of the function $f(x)$ corresponding to two successive values of $x$ have opposite signs, there is at least one root of the equation between them.

The graph of $f(x)$ in Fig. 70 shows that the equation $f(x)=0$ has one root between 1 and 2 .
2. Expressing this root as a decimal fraction, we have

$$
x_{1}=1+\frac{a}{10}+\frac{b}{100}+\frac{c}{1000}+\ldots
$$



Fig. 70
$a, b, c$, etc., representing the decimal figures. In Fig. 70 $a$ is equal to 3 .
3. To find $a$, the origin is moved to the point $x=1$.

Algebraically this is done by denoting $x-1$ by the number $y$. It then follows that $x=y+1$.

Substituting for $x$ its equal $y+1$. in the equation $f(x)=0$, we have an equation in $y$ which may be denoted by $g(y)=0$. This equation has a root

$$
y_{1}=\frac{a}{10}+\frac{b}{100}+\frac{c}{1000}+\ldots
$$

corresponding to the root

$$
x_{1}=1+\frac{a}{10}+\frac{b}{100}+\frac{c}{1000} \ldots \text { of } f(x)=0
$$

Multiplying the roots of the equation $g(y)=0$ by 10 , we obtain the equation $h(z)=0$, which has a root

$$
z_{1}=a+\frac{b}{10}+\frac{c}{100} \ldots
$$

corresponding to $y_{1}$.
Since $a$ is the integral part of an irrational root of the equation $h(z)=0$, we may find it by trial in the same way as we found the integral part of the root $x_{1}$ of $f(x)=0$.
4. The process of finding $b$ and the required remaining decimal figures is a repetition of the process explained in 3.

Notice that the process of finding an irrational root of $f(x)=0$ consists of three steps:
a) The integral part of the root of $f(x)=0$ is located by trial.
b) The origin is translated, or the equation $f(x)=0$ is transformed into the equation $g(y)=0$ such that $y=x-h$, where $h$ is the integral part of the required root of $f(x)=0$.
c) The roots of $g(y)=0$ are multiplied by 10 .

We are familiar with the processes of steps $a$ ) and $c$ ). We shall now learn a process by which to make the transformation in step $b$ ), $\S 149$. This is called the process of diminishing the roots of an equation.
149. To transform an equation $f(x)=0$ into another whose roots are those of $f(x)=0$ each diminished by a constant $k$. Let

$$
f(x)=a x^{n}+b x^{n-1}+\ldots+p x+q=0
$$

Let $x=k+y$ be the value of a root of $f(x)=0$
Then $f(k+y)=0$
This is an equation in $y$, and since $y=x-k$, every root of the equation $f(k+y)=0$ is equal to a corresponding root of $f(x)=0$, diminished by $k$.

According to § 124 ,
$f(x+h)=f(x)+\frac{h}{1} f^{\prime}(x)+\frac{h^{2}}{1 \cdot 2} f^{\prime \prime}(x)+\frac{h^{3}}{1 \cdot 2 \cdot 3} f^{\prime \prime \prime}(x)$

$$
+\ldots+\frac{h^{n}}{1 \cdot 2 \cdots n} f^{(n)}(x)
$$

$\therefore f(k+y)=f(k)+\frac{y}{1} f^{\prime}(k)+\frac{y^{2}}{1 \cdot 2} f^{\prime \prime}(k)+\frac{y^{3}}{1 \cdot 2 \cdot 3} f^{\prime \prime \prime}(k)$

$$
+\ldots \ldots+\frac{y^{n}}{1 \cdot 2 \cdots n} f^{(n)}(k)=0
$$

This is the transformed equation.

The following example illustrates the steps in the process of obtaining the equation $f(k+y)=0$.

Let

$$
f(x)=A x^{4}+B x^{3}+C x^{2}+D x+E=0
$$

Then

$$
\begin{aligned}
f^{\prime}(x) & =4 A x^{3}+3 B x^{2}+2 C x+D \\
f^{\prime \prime}(x) & =12 A x^{2}+6 B x+2 C \\
f^{\prime \prime \prime}(x) & =24 A x+6 B \\
f^{(i v)}(x) & =24 A
\end{aligned}
$$

Hence the coefficients of $y$ in the equation $f(k+y)=0$ are

$$
\begin{aligned}
f(k) & =A k^{4}+B k^{3}+C k^{2}+D k+E \\
f^{\prime}(k) & =4 A k^{3}+3 B k^{2}+2 C k+D \\
\frac{f^{\prime \prime}(k)}{1 \cdot 2} & =6 A k^{2}+3 B k+C \\
\frac{f^{\prime \prime \prime}(k)}{1 \cdot 2 \cdot 3} & =4 A k+B \\
\frac{f^{(i v)}(k)}{1 \cdot 2 \cdot 3 \cdot 4} & =A
\end{aligned}
$$

We could now substitute these values in the equation

$$
f(k+y)=f(k)+y f^{\prime}(k)+\ldots
$$

and thus get the desired transformed equation.
However, these coefficients may be obtained in a more simple way, as may be seen from the following example. It shows that it is necessary only to write the coefficients of $x$ of $f(x)=0$ and then to divide synthetically by $k$. The successive remainders are the required coefficients of $y$ in the equation $f(k+y)=0$.


The same process may easily be verified for equations of degree other than the fourth.

To increase the roots by $a$, diminish them by $-a$.

## EXER CISES

Form equations whose roots are the roots of the following equations diminished by the number indicated in parentheses:

1. $5 x^{4}-4 x^{3}+3 x^{2}+4 x-5=0$

| 5 |  | + 3 | + 4 |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 10 | 12 | 30 | 68 |
| 5 | 6 | 15 | 34 | 63 |
|  | 10 | 32 | 94 |  |
| 5 | 16 |  | 128 |  |
|  | 10 | 52 |  |  |
| 5 |  | 99 |  |  |
|  | 10 |  |  |  |

$\therefore 5 y^{4}+36 y^{3}+99 y^{2}+128 y+63=0$ is the required equation.
2. $x^{2}-5 x+6=0$
3. $x^{3}-6 x^{2}+8 x+10=0$
4. $x^{3}-4 x^{2}+6 x+2=0$
5. $x^{3}-4 x^{2}-3 x-29=0 \quad(-6)$
6. $2 x^{4}-3 x^{2}+2 x+5=0 \quad(-1)$
150. Horner's method of finding positive irrational roots of $f(x)=.0^{*}$ This method is explained by means of the following example:

The equation

$$
f(x)=5 x^{3}-3 x^{2}-6 x+3=0
$$

has one positive root between 1 and 2 . Find the value of this root correct to two decimal places.

$$
\text { Let } x_{1}=1+\frac{a}{10}+\frac{b}{100}+\frac{c}{1000}+\ldots
$$

1. Diminish the roots of $f(x)=0$ by 1 as follows:

| 5 | -3 | -6 | +3 | 1 |
| :--- | ---: | ---: | ---: | ---: |
|  | 5 | 2 | -4 |  |
| 5 | 2 | -4 | -1 |  |
|  | 5 | 7 |  |  |
| 5 | 7 | 3 |  |  |

512 , which gives the equation

$$
g(y)=5 y^{3}+12 y^{2}+3 y-1=0,
$$

which has a root

$$
y_{1}=\frac{a}{10}+\frac{b}{100}+\frac{c}{1000}+\ldots
$$

corresponding to the root $x_{1}$ of the equation $f(x)=0$.
2. Since $y_{1}$ is a decimal fraction, the terms $5 y^{3}$ and $12 y^{2}$ will usually be considerably smaller than the term $3 y$. Hence, to get an approximate value for $a$ we may neglect the first two terms and solve the resulting equation $3 y-1=0$. This gives $y=.3$ approximately, and suggests that $a=3$ approximately.

* William George Horner (1786-1837), an English algebraist, published his method in the Philosophical Transactions in 1819.

To determine the exact value of $a$, find the value of $g(y)$ for $y=.3$. If $g(.3)$ is negative, find $g(.4)$; if this is negative, find $g(.5)$, etc., until $g(y)$ changes sign and becomes positive. If, however, $g(.3)$ is positive, find $g(.2)$. If this is negative, $a=2$, but if $g(.2)$ is positive, find $g(.1)$, etc., until $g(y)$ becomes positive.
3. The work of finding the value of $g(y)$, when $y$ is a decimal fraction, may be simplified by multiplying the roots of $g(y)=0$ by 10 . This gives the equation

$$
h(z)=5 z^{3}+120 z^{2}+300 z-1000=0
$$

4. Dividing synthetically by 2 , we have

$$
\begin{array}{r}
5+120+300-1000 \\
\frac{10+260+1120}{5+130+560+|120|}=h(2)
\end{array}
$$

showing that $h(z)$ is positive for $z=2$.
Dividing synthetically by 1 , we have

$$
\frac{5+120+300-1000}{5+125+425}+\underline{1}
$$

showing that $h(z)$ is negative for $z=1$.
Since the function is negative for 1 and positive for 2 it follows that $a=1$.
$1^{\prime}$. Diminish the roots of $h(z)=0$ by 1.

| 5 | 50 | $300-1000$ | 1 |
| :--- | ---: | :--- | :--- |
|  | 5 | $125+425$ |  |
| 5 | 125 | $425-575$ |  |
|  | 5 | 130 |  |
| 5 | 130 | 555 |  |
|  | 5 |  |  |
| 5 | 135 |  |  |

This gives the transformed equation

$$
k(u)=5 u^{3}+135 u^{2}+555 u-575=0
$$

$2^{\prime}$. 'To find an approximate value for $b$, solve the equation

$$
\begin{aligned}
555 u & =575 \\
u & =1, \text { approximately. }
\end{aligned}
$$

Since $u$ is a decimal fraction, we may find the values of $k(.9), k(.8)$, etc., until the function becomes negative.
$3^{\prime}$. Multiplying the roots of the equation $k(u)=0$ by 10 , we have

$$
5 t^{3}+1350 t^{2}+55500 t-575000=0
$$

$4^{\prime}$. For $t=9$ this fraction is positive. For $t=8$ it is negative.

Hence $b=8$, and $x_{1}=1.18$, approximately.
The preceding process may now be arranged in the following condensed form:

$$
\begin{aligned}
& f(x)=\begin{array}{lrrr}
5 x^{3}-3 x^{2} & -6 x+3=0 \\
5 & -3 & -6 & +3 \\
& 5 & 2 & -4 \\
\hline 5 & 2 & -4 & -1 \\
& 5 & 7 & \\
\hline 5 & 7 & 3
\end{array} \\
& \hline
\end{aligned}
$$

151. Negative irrational roots. Negative roots of $f(x)=0$ correspond to the positive roots of $f(-x)=0$. Hence, to find the negative irrational roots of $f(x)=0$, transform the equation into $f(-x)=0$ and then find the positive irrational roots of this equation. These roots with their signs changed are the required roots.
152. Summary. The following is a summary of the steps involved in finding the real roots of $f(x)=0, f(x)$ being a rational integral function of $x$.
153. Find all the integral roots, $\S \S 143$ to 145 .
154. Find the fractional roots, $\S \S 146,147$.
155. Determine two consecutive integers between which an irrational root lies and find the approximate value of such a root by Horner's method, § 150. All other irrational roots may be found in the same way.

## EXERCISES

Find the real roots of the following equations, correct to two decimal places:

1. $x^{3}+3 x^{2}-2 x-5=0$
2. $x^{3}+x^{2}-4 x-2=0$
3. $2 x^{3}+5 x-100=0$
4. $x^{3}+x^{2}-2 x-1=0$
5. $x^{4}-4 x-2=0$
6. $16 x^{4}+16 x^{2}-15=0$
7. $x^{4}-11 x^{3}+38 x^{2}=51 x-27$
8. $x^{4}-3 x^{3}+3=0$
9. $8 x^{4}+24 x^{3}-x-3=0$
10. $2 x^{5}-4 x-3 x^{2}+6=0$
11. $2 y^{4}-9 y^{3}+11 y^{2}+7 y-15=0$
12. $x^{5}+3 x^{4}-15 x^{3}-35 x^{2}+54 x+72=0$

Solve the following problems:
13. Find the three cube roots of unity.
14. Find the real cube root of 67 .
15. The volume of a spherical segment of one base is given by the formula

$$
V=\pi r h^{2}-\frac{\pi}{3} h^{3}
$$

A hollow sphere of radius 10 inches is partly filled with a gallon of water. What is the depth of the water to three significant figures?

Let $\pi=3.14$, approximately, and let one gallon $=231$ cubic inches.
16. Find an approximate solution, correct to two decimal places, of the system $y=x^{3}, 2 x+y=2$.

## Relation between Roots and Coefficients

153. Identity. According to § 131 every rational integral equation of $n$th degree whose coefficients are real or complex numbers has $n$, and only $n$, roots; for such a function can always be transformed into the form

$$
f(x)=A\left(x-r_{1}\right)\left(x-r_{2}\right) \ldots\left(x-r_{n}\right)
$$

If, however, $A$ should be equal to zero, all coefficients of $x$ in $f(x)$ would be zero, and any value of $x$ would satisfy the equation $f(x)=0$. Furthermore, $f(x)$ can become zero for values of $x$ different from $r_{1}, r_{2} \ldots r_{n}$, only if $A=0$.

Hence, if the function $f(x)=a x^{n}+b x^{n-1}+c x^{n-2}+\ldots$. $+p x+q$ is equal to zero for more than $n$ values of $x$, it follows that

$$
a=b=c=\ldots=p=q=0
$$

If $f(x)=0$ for all values of $x$, the equation is an identity.

## 154. Theorem: If

$a x^{n}+b x^{n-1}+c x^{n-2}+\ldots+p x+q \equiv a_{1} x^{n}+b_{1} x^{n-1}+c_{1} x^{n-2}$ $+\ldots+p_{1} x+q_{1}$
then

$$
a=a_{1}, b=b_{1}, c=c_{1}, \ldots, p=p_{1}, q=q_{1}
$$

## EQUATIONS WITH NUMERICAL COEFFICIENTS 133

For, changing the equation to the form $f(x) \equiv 0$, we have

$$
\begin{aligned}
\left(a-a_{1}\right) x^{n}+\left(b-b_{1}\right) x^{n-1}+\left(c-c_{1}\right) x^{n-2}+\ldots+ & \left(p-p_{1}\right) x \\
& +\left(q-q_{1}\right) \equiv 0
\end{aligned}
$$

Therefore

$$
a-a_{1}=b-b_{1}=c-c_{1}=\ldots=p-p_{1}=q-q_{1}=0, \S 153,
$$

and $a=a_{1}, b=b_{1}, c=c_{1}$, etc.
155. Relations between roots and coefficients. Let $r_{1}, r_{2}, \ldots, r_{n}$ be the roots of the equation

$$
f(x)=x^{n}+p_{1} x^{n-1}+p_{2} x^{n-2}+\ldots+p_{n-1} x+p_{n}=0
$$

Then

$$
f(x) \equiv\left(x-r_{1}\right)\left(x-r_{2}\right) \ldots\left(x-r_{n}\right)
$$

Multiplying as indicated,

$$
\begin{aligned}
f(x) & \equiv x^{n} \\
& -x^{n-1}\left(r_{1}+r_{2}+r_{3}+\ldots+r_{n}\right) \\
& +x^{n-2}\left(r_{1} r_{2}+r_{1} r_{3}+\ldots+r_{2} r_{3}+r_{2} r_{4}\right. \\
& \left.\quad+\ldots \ldots \ldots+r_{n-1} r_{n}\right) \\
& +x^{n-3}\left(r_{1} r_{2} r_{3}+r_{1} r_{2} r_{4}+\ldots \ldots r_{n-2} r_{n-1} r_{n}\right) \\
& +\ldots \ldots \\
& +(-1)^{n}\left(r_{1} r_{2} r_{3} \cdots \cdots r_{n}\right)
\end{aligned}
$$

According to § 154, we have

$$
\begin{aligned}
& p_{1}=-\left(r_{1}+r_{2}+\ldots+r_{n}\right) \\
& p_{2}=+\left(r_{1} r_{2}+\ldots+r_{2} r_{3}+\ldots+r_{n-1} r_{n}\right) \\
& p_{3}=-\left(r_{1} r_{2} r_{3}+\ldots+r_{n-2} r_{n-1} r_{n}\right)
\end{aligned}
$$

$$
p_{n}=(-1)^{n}\left(r_{1} r_{2} \ldots r_{n}\right)
$$

Hence, if the equation $f(x)=0$ is reduced to form

$$
x^{n}+p_{1} x^{n-1}+\ldots+p_{n-1} x+p_{n}=0
$$

the coefficient of $x^{n-1}$ is equal to the sum of the roots with the sign' changed; the coefficient of $x^{n-k}$ is equal to the sum of all possible products taking $k$ roots at the time, with the signs changed when $k$ is odd; the constant term is equal to the product of the roots with the sign changed when $n$ is odd.

## EXERCISES

Form the equations whose roots are:

1. $1,2,3$

$$
\begin{aligned}
& f(x)=x^{3}-(1+2+3) x^{2}+(1 \cdot 2+1 \cdot 3+2 \cdot 3) x-(1 \cdot 2 \cdot 3)=0 \\
& \quad=x^{3}-6 x^{2}+11 x-6=0 \\
& \begin{array}{ll}
\text { 2. } 1,3,-4 & \text { 4. } \pm 1, \pm 2 \\
\text { 3. } 2,-1,3,0 & \text { 5. } \frac{1}{3}, \frac{1}{2}, \frac{5}{6} \\
\text { 6. } 1 \pm \sqrt{5}, 2 \pm \sqrt{3} &
\end{array}
\end{aligned}
$$

Using the first two roots, we have the function $x^{2}-2 x-4$; the last two roots give the function $x^{2}-4 x+1$.
$\therefore f(x)=\left(x^{2}-2 x-4\right)\left(x^{2}-4 x+1\right)=0$
7. $4 \pm \sqrt{ } \overline{3},-1 \pm \sqrt{5}$
8. $2 \pm \sqrt{ } \overline{-3},-3 \pm \sqrt{-2}$
9. $\frac{1 \pm i \sqrt{3}}{2}, \frac{-1 \pm i \sqrt{3}}{2}$
10. Two of the roots are $2-\sqrt{3}$ and $\sqrt{5}$
11. The roots of an equation are $+2,-3,5,4,-1$. Write the second, fifth, and sixth terms.

Solve the following equations:
12. $y^{3}-6 y^{2}-4 y+24=0$, the roots being in arithmetical progression.

Denote the roots by $a-d, a, a+d$
Then $-(a-d+a+a+d)=-6$

$$
\therefore 3 a=6
$$

$$
a=2
$$

$$
-(a-d)(a)(a+d)=-24
$$

$$
a\left(a^{2}-d^{2}\right)=-24
$$

$$
4-d^{2}=-12
$$

$$
d^{2}=16
$$

$$
d= \pm 4
$$

$\therefore$ The roots are $-2,2,6$
13. $x^{3}-\frac{11}{2} x^{2}+6 x+\frac{9}{2}=0$, two roots being equal
14. $y^{3}-8 y^{2}+5 y+14=0$, the sum of two roots being equal to 9 .
15. $y^{3}-\frac{9}{2} y^{2}-\frac{27}{2} y+27=0$, the roots being in geometrical progression.
16. One root of $4 x^{4}-14 x^{3}+16 x^{2}-9 x+2=0$ is an integer; a second is the reciprocal of the first. Find all the roots.
17. The roots of the equation $x^{3}-6 x^{2}+k x+10=0$ are in arithmetical progression. Solve the equation and find the value of $k$.
18. In the equation $x^{4}+x^{3}+3 x^{2}+4 x+6=0$ the sum of two roots is -2 and the product of the other two is 3 . Solve the equation.

## Summary

156. The chapter has taught the meaning of the following terms:
algebraic solution
multiple roots
complex roots.
depressed equation
transformed equation variation of signs
157. It was shown graphically that if a factor $x-r$ occurs an even number of times in $f(x)$, the curve does not cross the $x$-axis; if it occurs an odd number of times, the curve crosses the $x$-axis.

A complex root cannot cause $f(x)$ to become zero nor the graph to touch or cut the $x$-axis.
158. An equation may be transformed:

1. Into another whose roots are equal to the roots of the given equation, multiplied by a constant.
2. Into another whose roots are equal to the roots of the given equation, diminished by a constant.
3. The following theorems have been taught:
4. Every rational integral equation of the nth degree whose coefficients are real or complex numbers has at least one root, real or complex.
5. Every rational integral function of $x$ is the product of $n$ linear factors.
6. Every rational integral equation of the $n t h$ degree whose coefficients are real or complex numbers has $n$, and only $n$, roots, real or complex (fundamental theorem of algebra).
7. If a rational integral equation with real coefficients has a complex root $a+b i$; then $a-b i$ is also a root.
8. The number of positive roots of $f(x)=0$ cannot be greater than the number of variations of sign in $f(x)$, the number of negative roots cannot be greater than the number of variations in $f(-x)$ (Descartes' rule of signs).
9. The first term in a rational integral function of $x$ can be made to exceed the sum of the remaining terms by taking a sufficiently large value of $x$.
10. If $f(a)$ and $f(b)$ have opposite signs, an odd number of real roots lies between $a$ and $b$.
11. If $f(a)$ and $f(b)$ have like signs, either no real root, or an even number of roots, lies between $a$ and $b$.
12. Every equation of odd degree has at least one real root.
13. If a rational integral equation with integral coeffcients, in which the coefficient of the highest power of $x$ is unity, has rational roots, they are integers; if it has an integral root, this root is a divisor of the constant term; the roots may be expressed in terms of the coefficients.
14. To find the roots of a rational integral equation of $n$th degree in one unknown we may proceed as follows:
15. By means of Descartes' rule obtain some information regarding the positive, negative, or complex roots.
16. Locate the roots approximately by making a table of corresponding values of $x$ and $f(x)$.
17. If the equation has integral roots, depress the equation to one of lower degree.
18. Find the fractional roots by transforming the depressed equation into one whose roots are integers.
19. Approximate the irrational roots by Horner's method.

## CHAPTER VIII

## ALGEBRAIC SOLUTION OF THE GENERAL CUBIC AND BIQUADRATIC EQUATIONS

## The Cubic Equation

161. To transform an equation into another in which some particular term is missing. The first step in the solution of a cubic equation, described in § 162, is to eliminate one of its terms. This may be done as follows:

Let $f(x)$ be any rational integral equation, e.g., let

$$
f(x)=a x^{3}+b x^{2}+c x+d=0
$$

Let $x=y+k$,
Then by § 3, we have

$$
f(y+k)=f(y)+\frac{k}{1} f^{\prime}(y)+\frac{k^{2}}{1 \cdot 2} f^{\prime \prime}(y)+\ldots=0
$$

According to § 124 , the calculation of $f(y+k)$ may be arranged in the following manner:

| $a$ | $b$ |  |  |
| :---: | :---: | :---: | :---: |
|  | $a k$ | $a k^{2}+b k$ | $a k^{3}+b k^{2}+c k$ |
| $a \cdot$ | $a k+b$ | $a k^{2}+b k+c$ | $a k^{3}+b k^{2}+c k+d$ |
|  | $a k$ | $2 a k^{2}+b k$ |  |
| $a$ | $2 a k+b$ | $3 a k^{2}+2 b k+c$ |  |

a $\quad 3 a k+b$
$\therefore \quad f(y+k)=$
$a y^{3}+(3 a k+b) y^{2}+\left(3 a k^{2}+2 b k+c\right) y$

$$
+\left(a k^{3}+b k^{2}+c k+d\right)=0
$$

By equating to zero the coefficient of any particular term and solving the resulting equation for $k$, a value of $k$ may be determined which will make that term vanish.

Whatever may be the degree of $f(x)$, the same method may be used to transform $f(x)$ into another function in which some particular term is missing.
162. Solution of the cubic. Let the equation

$$
\begin{equation*}
a x^{3}+b x^{2}+c x+d=0 \tag{1}
\end{equation*}
$$

be the general cubic equation.
Transform this equation by substituting $y+k$ for $x$. In the transformed equation let $k=-\frac{b}{3 a}$.

Then, by § 161, we have

$$
\begin{equation*}
a y^{3}+\left(c-\frac{b^{2}}{3 a}\right) y+\left(d-\frac{c b}{3 a}+\frac{2 b^{3}}{27 a^{2}}\right)=0 \tag{2}
\end{equation*}
$$

Divide both members of this equation by $a$. Then denote the coefficient of $y$ by $p$ and the constant term by $q$. This gives the equation

$$
\begin{equation*}
y^{3}+p y+q=0 \tag{3}
\end{equation*}
$$

where

$$
\begin{equation*}
p=\frac{3 a c-b^{2}}{3 a^{2}}, \text { and } q=\frac{d}{a}-\frac{c b}{3 a^{2}}+\frac{2 b^{3}}{27 a^{3}} \tag{4}
\end{equation*}
$$

The form of the function $y^{3}+p y+q$ may be changed to $y\left(y^{2}+p\right)+q$. This function vanishes if

$$
\begin{equation*}
y\left(y^{2}+p\right)=-q \tag{5}
\end{equation*}
$$

To find a solution of this equation, let

$$
p=-3 u v \text { and }-q=u^{3}+v^{3}
$$

Then equation (5) takes the form

$$
\begin{equation*}
y\left(y^{2}-3 u v\right)=u^{3}+v^{3} \tag{6}
\end{equation*}
$$

It is easily seen that $y=u+v$ satisfies equation (6), and therefore equation (3).

We must next express $u$ and $v$ in terms of $p$ and $q$. Then the sum $u+v$ is the required solution of equation (3).

From the equation

$$
-3 u v=p
$$

it follows that

$$
v=-\frac{p}{3 u}
$$

Substituting this value for $v$ in the equation

$$
u^{3}+v^{3}=-q
$$

we have

$$
u^{3}-\frac{p^{3}}{27 u^{3}}+q=0
$$

or

$$
\begin{aligned}
& 27 u^{6}+27 q u^{3}-p^{3}=0 \\
\therefore & u^{3}=-\frac{q}{2} \pm \sqrt{\frac{q^{2}}{4}+\frac{p^{3}}{27}} \\
\therefore & u=\sqrt[3]{-\frac{q}{2} \pm \sqrt{\frac{q^{2}}{4}+\frac{p^{3}}{27}}}
\end{aligned}
$$

and

$$
v=-\frac{p}{3 u}=\frac{-p}{3 \sqrt[3]{-\frac{q}{2} \pm \sqrt{\frac{q^{2}}{4}+\frac{p^{3}}{27}}}}
$$

Multiplying numerator and denominator by

$$
\sqrt[3]{-\frac{q}{2} \mp \sqrt{\frac{q^{2}}{4}+\frac{p^{3}}{27}}}
$$

$$
\begin{aligned}
v & =\frac{-p \sqrt[3]{-\frac{q}{2} \mp \sqrt{\frac{q^{2}}{4}+\frac{p^{3}}{27}}}}{3 \sqrt[3]{\left[-\frac{q}{2} \pm \sqrt{\frac{q^{2}}{4}+\frac{p^{3}}{27}}\right]\left[-\frac{q}{2} \mp \sqrt[3]{\frac{q^{2}}{4}+\frac{p^{3}}{27}}\right]}} \\
& =\frac{-p \sqrt[3]{-\frac{q}{2} \mp \sqrt{\frac{q^{2}}{4}+\frac{p^{3}}{27}}}}{3 \sqrt[3]{-\frac{p^{3}}{27}}}=\frac{-p \sqrt[3]{-\frac{q}{2} \mp \sqrt{\frac{q^{2}}{4}+\frac{p^{3}}{27}}}}{3 \cdot-\frac{p}{3}}
\end{aligned}
$$

or

$$
\begin{aligned}
v & =\sqrt[3]{-\frac{q}{2} \mp \sqrt{\frac{q^{2}}{4}+\frac{p^{3}}{27}}} \\
\therefore \quad y & =u+v=\sqrt[3]{-\frac{q}{2} \pm \sqrt{\frac{q^{2}}{4}+\frac{p^{3}}{27}}}+\sqrt[3]{-\frac{q}{2} \mp \sqrt{\frac{q^{2}}{4}+\frac{p^{3}}{27}}}
\end{aligned}
$$

Since this sum is the same whether the upper or lower signs before the radical sign be taken, we may choose

$$
y=\sqrt[3]{-\frac{q}{2}+\sqrt{\frac{q^{2}}{4}+\frac{p^{3}}{27}}}+\sqrt[3]{-\frac{q}{2}-\sqrt{\frac{q^{2}}{4}+\frac{p^{3}}{27}}}
$$

Let $u_{1}$ be one of the three cube roots of $-\frac{q}{2}+\sqrt{\frac{q^{2}}{4}+\frac{p^{3}}{27}}$.
Denoting by $v_{1}$ the value of $v$ which satisfies the equation

$$
-3 u v=p
$$

one solution of equation (3) will be given by

$$
y=u_{1}+v_{1}
$$

Moreover, if $u_{1}$ is one of the three cube roots of $-\frac{q}{2}+\sqrt{\frac{q^{2}}{4}+\frac{p^{3}}{27}}$, the other two are $u_{2}=\omega u_{1}$ and $u_{3}=\omega^{2} u_{1}$, where $\omega$ and $\omega^{2}$ are the complex cube roots of unity, $-\frac{1}{2}(1+i \sqrt{3})$ and $-\frac{1}{2}(1-i \sqrt{3})$.

Hence the corresponding values of $v$ are

$$
v_{2}=-\frac{p}{3 u_{2}}=-\frac{p}{3 \omega u_{1}}=+\frac{v_{1}}{\omega}=+\frac{\omega^{2} v_{1}}{\omega^{3}}=\omega^{2} v_{1}
$$

and

$$
v_{3}=-\frac{p}{3 u_{3}}=-\frac{p}{3 \omega^{2} u_{1}}=\frac{v_{\mathrm{i}}}{\omega^{2}}=\frac{\omega v_{1}}{\omega^{3}}=\omega v_{1}
$$

Therefore the three roots of the equation

$$
\begin{aligned}
& y^{3}+p y+q=0 \\
& y_{1}=u_{1}+v_{1} \\
& y_{2}=\omega u_{1}+\omega^{2} v_{1} \\
& y_{3}=\omega^{2} u_{1}+\omega v_{1}
\end{aligned}
$$

are
where

$$
u_{1}=\sqrt[3]{-\frac{q}{2}+\sqrt{\frac{q^{2}}{4}+\frac{p^{3}}{27}}} \text { and } v_{1}=\sqrt[3]{-\frac{q}{2}-\sqrt{\frac{q^{2}}{4}+\frac{p^{3}}{27}}}
$$

the cube roots being selected so that the relation

$$
-3 u_{1} v_{1}=p
$$

may be satisfied.
Historical note. These formulas are known as Cardan's formulas. They were discovered by the Italian mathematicians Tartaglia and Ferro and were first published by Cardan (1501-76) in the treatise known as Ars Magna (1545).

The story of the solution of the cubic is interesting. In an algebra published about the middle of the eleventh century the Arab Omar Alkayyami gave a classification of cubics, together with methods of solution by geometrical construction. No attempt was made at an algebraic solution.

In his Liber abaci of 1202 Leonardo of Pisa introduced the study of algebra into Italy from Arabian sources. The Italians were long the chief cultivators of algebra. In a book called the

Summa, in 1494, Pacioli gave the Arabic classification, stated that in the existing state of science the cubic could not be solved, but directed the attention of mathematicians to the solution of the cubic as the next need in the development of the science. Mathematicians continued working on the problem. An anonymous tract from learned Italian circles of the fourteenth century is witness of these struggles. The French author Chuquet as late as 1484 conceded the solution of the cubic to be impossible, but he did not despair that it would yet be found.

Finally, the sixteenth century brought the light. Scipio del Ferro, about whom we know almost nothing except that he was a professor at Bologna from 1496 to 1526, was the first to find an algebraic solution of the form $x^{3}+a x=b$. Both of the later contestants for the honor of priority of discovery, Tartaglia and Cardan, agree to this. Ferro may have found his solution in an Arab work. At all events he told his discovery to numerous acquaintances, among them a young friend Fiori (or Florido), who was not a mathematician. Fiori got this knowledge according to Tartaglia in 1506 and according to Cardan in 1515.

In 1530 Colla proposed to Tartaglia a problem which depended on a cubic of the form $x^{3}+p x^{2}=q$. Tartaglia's attention was thus directed to the problem of the cubic, and he wrote to Colla that he could solve numerical equations of the form $x^{3}+p x^{2}=q$. Fiori, believing Tartaglia an impostor, proclaimed his own knowledge of the solution of the form $x^{3}+p x=q$, and in accordance with the custom of the time challenged Tartaglia to a contest. Each contestant was to propose 30 problems to the other and to deposit a stake with a notary. The one who solved the larger number of these competitive problems in 30 days was to have the stake.

Tartaglia, suspecting that Fiori's problems would lead to the form $x^{3}+p \dot{x}=q$, bestirred himself to find a solution of this form of the cubic. He says that he found the solution-formula 8 days before the contest, which began February 20, 1535. The next day (February 13) he found the formula for $x^{3}=a x+b$. Tartaglia solved all his problems in less than two hours; and Fiori
could not solve any of his, all of which led to the form $x^{3}+p x^{2}=q$. Tartaglia was declared the victor, and afterward composed some verses to commemorate his victory.

Fiori and others besought Tartaglia to make known his method, but Tartaglia persistently refused. In a letter of February 12, 1539, Cardan, then a most significant mathematician, urged him to divulge his solution. At first Tartaglia refused. Later Cardan, after repeated entreaty, and under the most solemn oath of secrecy, secured enough fragmentary hints from Tartaglia to enable him, good mathematician that he was, to construct the solution. Cardan broke his pledge, when he included it in his great Ars Magna of 1545 . This being the earliest publication of the method, and the facts in the case being then unknown, the solution has until recent years been known as Cardan's solution. Tartaglia was reserving the solution as the "crowning glory" of his own work, which was published the following year, 1546. See Tropfke, Band I, S. 274-77.
163. Discussion of the roots. The nature of the roots of the equation

$$
y^{3}+p y^{2}+q=0
$$

depends upon the value of

$$
\frac{q^{2}}{4}+\frac{p^{3}}{27}
$$

This is called the discriminant of the cubic equation. Let $p$ and $q$ be real numbers.

If $\frac{q^{2}}{4}+\frac{p^{3}}{27}>0$, one root is real and two are conjugate complex.

If $\frac{q^{2}}{4}+\frac{p^{3}}{27}=0$, all roots are real and two are equal:
For
$u_{1}=v_{1}$ and $y_{1}=2 u_{1}=-2 \sqrt[3]{\frac{q}{2}}, y_{2}=-\left(\omega+\omega^{2}\right) u_{1}, y_{3}=-\left(\omega^{2}+\omega\right) u_{1}$
But $\omega^{2}+\omega+1=0 . \quad \therefore y_{2}=y_{3}=u_{1}$

If $\frac{q^{2}}{4}+\frac{p^{3}}{27}<0$, it may be shown that all roots are real.
Although the solution of the cubic equation given in $\S 162$ is of theoretical value, in solving numerical equations the method is not practical, and the methods of chapter vii are to be used.

## EXERCISES

Solve the following equations by means of the formulas in § 162 :

1. $x^{3}-3 x^{2}+6 x-4=0$

$$
\begin{aligned}
a & =1, b=-3, c=6, d=-4=0 \\
k & =1, p=3, q=0 \\
\therefore u_{1} & =1, v_{1}=-1 \\
\therefore y_{1} & =0, y_{2}=\omega-\omega^{2}=i \sqrt{3}, y_{3}=\omega^{2}-\omega=-i \sqrt{ } \overline{3} \\
\therefore x_{1} & =1, x_{2}=1+i \sqrt{3}, x_{3}=1-i \sqrt{3}
\end{aligned}
$$

2. $x^{3}-7 x+6=0$
3. $x^{3}-4 x^{2}-3 x+12=0$
4. $6 x^{3}-7 x^{2}-14 x+15=0$

## The Biquadratic Equation

164. Solution of the biquadratic. Every equation of the form

$$
\begin{equation*}
A x^{4}+B x^{3}+C x^{2}+D x+E=0 \tag{1}
\end{equation*}
$$

may be transformed into one in which the term in $x^{3}$ is missing. Hence it is sufficient to be able to solve the equation

$$
\begin{equation*}
f(y)=y^{4}+p y^{2}+q y+r=0 \tag{2}
\end{equation*}
$$

which contains no term in $y^{3}$.
As in § 162, let

$$
\begin{equation*}
y=u+v+w \tag{3}
\end{equation*}
$$

Squaring,
or

$$
\begin{gathered}
y^{2}=u^{2}+v^{2}+w^{2}+2(u v+u w+v w) \\
y^{2}-\left(u^{2}+v^{2}+w^{2}\right)=2(u v+u w+v w)
\end{gathered}
$$

Squaring again,
$y^{4}-2\left(u^{2}+v^{2}+w^{2}\right) y^{2}+\left(u^{2}+v^{2}+w^{2}\right)^{2}=4\left(u^{2} v^{2}+u^{2} w^{2}+v^{2} w^{2}\right)$

$$
+8\left(u^{2} v w+u v^{2} w+u v w^{2}\right)
$$

or $\quad y^{4}-2\left(u^{2}+v^{2}+w^{2}\right) y^{2}-8 u v w(u+v+w)+\left(u^{2}+v^{2}+w^{2}\right)^{2}$

$$
-4\left(u^{2} v^{2}+u^{2} w^{2}+v^{2} w^{2}\right)=0
$$

or $y^{4}-2\left(u^{2}+v^{2}+w^{2}\right) y^{2}-8 u v w y+\left(u^{2}+v^{2}+w^{2}\right)^{2}-4\left(u^{2} v^{2}\right.$

$$
\begin{equation*}
\left.+u^{2} w^{2}+v^{2} w^{2}\right)=0 \tag{4}
\end{equation*}
$$

Equating coefficients of similar terms in equations and (4),

$$
\begin{align*}
y^{2}+v^{2}+w^{2} & =-\frac{p}{2}  \tag{5}\\
u v w & =-\frac{q}{8} \tag{6}
\end{align*}
$$

and $\left(u^{2}+v^{2}+w^{2}\right)^{2}-4\left(u^{2} v^{2}+u^{2} w^{2}+v^{2} w^{2}\right)=r$. The last equation may be written

$$
\begin{array}{ll} 
& \frac{p^{2}}{4}-4\left(u^{2} v^{2}+u^{2} w^{2}+v^{2} w^{2}\right)=r \\
\text { Hence } & u^{2} v^{2}+u^{2} w^{2}+v^{2} w^{2}=\frac{p^{2}-4 r}{16} \tag{7}
\end{array}
$$

From equations (5), (7), and (6) we obtain the equations

$$
\left.\begin{array}{l}
-\left(u^{2}+v^{2}+w^{2}\right)=\frac{p}{2} \\
+\left(u^{2} v^{2}+u^{2} w^{2}+v^{2} w^{2}\right)=\frac{p^{2}-4 r}{16}  \tag{8}\\
-\left(u^{2} v^{2} w^{2}\right)=\frac{-q^{2}}{64}
\end{array}\right\}
$$

It follows from $\S 155$ that $u^{2}, v^{2}$, and $w^{2}$ are the roots of the equation

$$
\begin{equation*}
t^{3}+\frac{p}{2} t^{2}+\frac{p^{2}-4 r}{16} t-\frac{q^{2}}{64}=0^{*} \tag{9}
\end{equation*}
$$

Denoting the roots of this equation by $t_{1}, t_{2}$, and $t_{3}$, respectively,

$$
y_{1}=u+v+w=\sqrt{t_{1}}+1 \cdot \overline{t_{2}}+\sqrt{t_{3}}
$$

the signs of the radicals involved being selected to satisfy the relation

$$
u v w=-\frac{q}{8}
$$

The following are the combinations satisfying this condition:

$$
\begin{aligned}
\sqrt{t_{1}} \sqrt{\prime} \bar{t}_{2} \sqrt{t_{3}}=\sqrt{t_{1}}\left(-\sqrt{t_{2}}\right)\left(-\sqrt{t_{3}}\right)= & \left(-\sqrt{t_{1}}\right) \sqrt{t_{2}}\left(-\sqrt{\prime} \overline{t_{3}}\right) \\
& =\left(-\sqrt{t_{1}}\right)\left(-\sqrt{t_{2}}\right) \sqrt{t_{3}}
\end{aligned}
$$

Hence the roots of equation (2) are

$$
\left.\begin{array}{l}
y_{1}=\sqrt{t_{1}}+\sqrt{t_{2}}+\sqrt{t_{3}}  \tag{10}\\
y_{2}=\sqrt{t_{1}}-\sqrt{t_{2}}-\sqrt{t_{3}} \\
y_{3}=-\sqrt{t_{1}}+\sqrt{t_{2}}-\sqrt{t_{3}} \\
y_{4}=-\sqrt{t_{1}}-\sqrt{t_{2}}+\sqrt{t_{3}}
\end{array}\right\}
$$

The solution of the biquadratic equation in one unknown was first given by Ferrari (1522-62). Other solutions were given by Descartes and Euler.

## EXERCISES

Solve the following equations:

1. $x^{4}+x^{2}+4 x=3$
2. $x^{4}-10 x^{2}+20 x=16$
3. $x^{4}-9 x^{2}-12 x+10=0$
[^6]
## Summary

165. An equation may be transformed into another in which a particular term is missing. In solving cubic and biquadratic equations this transformation is used to remove the second term.
166. The roots of the cubic equation

$$
y^{3}+p y+q=0
$$

are

$$
y_{1}=u_{1}+v_{1} ; \quad y_{2}=\omega u_{1}+\omega^{2} v_{1} ; \quad y_{3}=\omega^{2} u_{1}+\omega v_{1}
$$

where

$$
u_{1}=\sqrt[3]{-\frac{q}{2}+\sqrt{\frac{q^{2}}{4}+\frac{p^{3}}{27}}}
$$

and

$$
v_{1}=\sqrt[3]{-\frac{q}{2}-\sqrt{\frac{q^{2}}{4}+\frac{p^{3}}{27}}}
$$

and

$$
-3 u_{1} v_{1}=p
$$

167. If in the equation $y^{3}+p y+q=0, p$ and $q$ are real numbers, and

$$
\text { if } \frac{q^{2}}{4}+\frac{p^{3}}{27}>0, \text { one root is real and two are conjugate }
$$

if $\frac{q^{2}}{4}+\frac{p^{3}}{27}=0$, all roots are real and two are equal; if $\frac{q^{2}}{4}+\frac{p^{3}}{27}<0$, all roots are real.
168. The roots of the biquadratic equation

$$
y^{4}+p y^{2}+q y+r=0
$$

are

$$
\begin{array}{ll}
y_{1}=\sqrt{t_{1}}+\sqrt{t_{2}}+\sqrt{\prime} \bar{t}_{3} ; & y_{3}=-\sqrt{t_{1}}+\sqrt{t_{2}}-\sqrt{\boldsymbol{t}_{3}} \\
y_{2}=\sqrt[V]{t_{1}}-\sqrt{t_{2}}-\sqrt{\boldsymbol{t}_{3}} ; & y_{4}=-\sqrt{t_{1}}-\sqrt{t_{2}}+\sqrt{t_{3}}
\end{array}
$$

where $t_{1}, t_{2}$, and $t_{3}$ are the roots of the equation,

$$
t^{3}+\frac{p t^{2}}{2}+\frac{p^{2}-4 r}{16} t-\frac{q^{2}}{64}=0
$$

## CHAPTER IX

## LIMITS

## Theorems on Limits

169. Notion of limit. Illustrations of limits are frequent in elementary mathematics. In geometry we took as the area of a circle the limiting value of the area of a regular inscribed polygon of $n$ sides as $n$ increases without bound. In the study of the geometrical progression

$$
S_{n}=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\ldots+\frac{1}{2^{n-1}}+\ldots
$$

we found the limiting value of $S_{n}$ as $n$ increases without bound. We defined the tangent to a curve at a given point as the limiting position of a variable secant passing through that point, § 103.

The limit of a variable $x$ may be defined as follows:
Let $\delta$ be any positive number assigned in advance and selected as small as we please. Then the variable $x$ is said to approach to a constant a as a limit, if its law of variation is such that the numerical difference between $x$ and a will ultimately become and remain less than $\delta$.

In symbols the statement the limit of $x$ is equal to a is written $\lim x=a ; x$ approaches as a limit is written $x \rightarrow a$; the numerical difference between $x$ and $a$ is indicated by $|x-a|$.

It is important to note that according to the definition $|x-a|$ must not only become but also remain less than $\delta$. For example, in the geometrical progression

$$
S_{n}=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\ldots .
$$

we may tabulate the sums $S_{1}, S_{2}$, etc., as follows:

| $S_{1}$ | $S_{2}$ | $S_{3}$ | $S_{4}$ | $S_{5}$ | $S_{6}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\frac{1}{2}$ | $\frac{3}{4}$ | $\frac{7}{8}$ | $\frac{1}{1} \frac{5}{6}$ | $\frac{31}{3}$ | $\frac{63}{64}$ |

As $n$ takes the successive values $1,2,3$, and $4,\left|S_{n}-\frac{15}{1}\right|$ becomes less than any assigned positive number $\delta$, being equal to zero when $n=4$. But as $n$ increases beyond 4 , $\left|S_{n}-\frac{15}{16}\right|$ increases and does not remain less than any assigned value of $\delta$, e.g., $\delta$ less than $\frac{1}{3}$, Fig. 71.

Hence. $S_{n}$ does not approach $\frac{15}{16}$ as a limit. The variable $S_{n}$ in this example is an increasing variable and always less than the limit.


Fig. 71
However, a variable may be greater than its limit. For example, the area $A_{n}$ of a regular circumscribed polygon having $n$ sides decreases as $n$ increases and is always greater than the area $A$ of the circle as it approaches $A$ as a limit.

Moreover, a variable may be alternately greater than and less than its limit. Such a variable is the sum of $n$ terms of the geometrical progression $1,-\frac{1}{2},+\frac{1}{4},-\frac{1}{8}$, $+\frac{1}{16}$, etc. The limit of this sum is $\frac{2}{3}$. The successive values of $S_{n}$ are $1, \frac{1}{2}, \frac{3}{4}, \frac{5}{8}$, etc. These sums are alternately greater than and less than the limit $\frac{2}{3}$, although $\left|S_{n}-\frac{2}{3}\right|$ decreases as $n$ grows larger and larger.

It follows from the definition of a limit that a variable can have but one limit.
170. Infinitesimal. A variable $x$ whose limit is zero is an infinitesimal. In symbols, $\lim x=0$, or $x \rightarrow 0$.

Thus $x-a$ is an infinitesimal, if $x$ is a variable approaching $a$ as a limit. In symbols, $\lim _{x \rightarrow a}|x-a|=0$.

Notice that an infinitesimal is a variable, not a constant, number.
171. Infinite. The sum of $n$ terms of the series 1,2 , $4,8,16 \ldots$, as $n$ increases without bound, has no limit, as it ultimately becomes and remains greater than any assigned positive number, however large. In general, a variable which ultimately becomes and remains greater than any previously assigned positive number, however large, is said to become infinite. The statement the variable $x$ becomes infinite is expressed in symbols thus: $x \rightarrow \infty$.

Show that the following two statements are immediate inferences of the preceding definitions:

If $n$ is a finite constant, and if $x$ is an infinitesimal, then $\frac{n}{x}$ becomes infinite, i.e., $\frac{n}{x} \rightarrow \infty$, as $x \rightarrow 0$.

If $n$ is a finite constant and if $x$ becomes infinite, then $\frac{n}{x}$ is an infinitesimal, i.e., $\lim _{x \rightarrow \infty} \frac{n}{x}=0$.
172. Theorem. If $u$ and $v$ be two infinitesimals, and $X$ and $Y$ two variables, always less than a finite positive number $k$, then $X u+Y v$ is an infinitesimal.

For, let $\delta$ be a positive number, however small, then $u$ and $v$ will ultimately become and remain less than $\delta$, i.e.,

$$
\begin{aligned}
& |u|<\delta \text { and }|v|<\delta, \S 170 \\
& |X|<k \text { and }|Y|<k, \text { given } \\
\therefore \quad & |X u|<\delta k \text { and }|Y v|<\delta k
\end{aligned}
$$

Since $\quad|X u+Y v| \leqq|X u|+|Y v|$
$\therefore \quad|X u+Y v|<2 \delta k$.
Hence, if we select $\delta$ so that $2 \delta k<\epsilon$, any positive number, however small, we shall have

$$
|X u+Y v|<\epsilon
$$

$\therefore \quad \lim (X u+Y v)=0$, and $X u+Y v$ is an infinitesimal. $\underset{\substack{u \rightarrow 0 \\ v \rightarrow 0}}{ }$
Similarly the theorem may be shown to hold for any finite number of variables.
173. Theorem. Let $x$ and $y$ be two variables approaching the limits $a$ and $b$, respectively. Then the sum, difference, product, and quotient also approach limits, and

1. $\lim _{\substack{x \rightarrow a \\ y \rightarrow b}}(x+y)=\lim _{x \rightarrow a} x+\lim _{y \rightarrow b} y$
2. $\lim _{\substack{x \rightarrow a \\ y \rightarrow b}}(x-y)=\lim _{x \rightarrow a} x-\lim _{y \rightarrow b} y$
3. $\lim _{\substack{x \rightarrow a \\ y \rightarrow b}}(x y)=\left(\lim _{x \rightarrow a} x\right)\left(\lim _{y \rightarrow b} y\right)$
4. $\lim _{\substack{x \rightarrow a \\ y \rightarrow b}}\left(\frac{x}{y}\right)=\frac{\lim _{x \rightarrow a} x}{\lim _{y \rightarrow b} y}$, if $b \neq 0$

For, $\quad|x-a| \rightarrow 0$ and $|y-b| \rightarrow 0, \S 169$

$$
\therefore \quad X(x-a)+Y(y-b) \rightarrow 0, \S 172
$$

i.e.,

Let

$$
X=Y=1
$$

Then $\quad \lim [x-a+y-b]=0$
or

$$
\lim [x+y-(a+b)]=0
$$

which means that

$$
\lim (x+y)=a+b=\lim x+\lim y
$$

To show case 2, proceed similarly, letting

$$
X=1, Y=-1
$$

To show case 3 , let $x-a=u$ and $y-b=v, u$ and $v$ being infinitesimals.

Then

$$
x=a+u \text { and } y=b+v
$$

Multiplying,

$$
\begin{aligned}
x y & =a b+b u+(a+u) v \\
x y-a b & =b u+(a+u) v
\end{aligned}
$$

But $b u+(a+u) v$ is an infinitesimal, § 172.
$\therefore x y-a b$ is an infinitesimal.
Hence $\lim x y=a b=(\lim x)(\lim y)$.
Similarly this may be shown to be true for more than two variables.

To show case 4 , divide $x=a+u$ by $y=b+v$.
Then $\frac{x}{y}=\frac{a}{b+v}+\frac{u}{b+v}$

$$
\begin{aligned}
& =\frac{a}{b}+\left(\frac{a}{b+v}-\frac{a}{b}\right)+\frac{u}{b+v} \\
& =\frac{a}{b}-\frac{a}{b(b+v)} v+\frac{1}{b+v} u
\end{aligned}
$$

$\therefore \quad \frac{x}{y}-\frac{a}{b}=\frac{+1}{b+v} u+\frac{-a}{b(b+v)} v$
Since $b \neq 0, \frac{1}{b+v}$ approaches $\frac{1}{b}$, and $\frac{-a}{b(b+v)}$ approaches $-\frac{a}{b^{2}}$.

Hence, by § 172,

$$
\frac{1}{b+v} u+\frac{-a}{b(b+v)} v \text { is an infinitesimal. }
$$

$\therefore \quad \frac{x}{y}-\frac{a}{b}$ is an infinitesimal.
$\therefore \lim \frac{x}{y}=\frac{a}{b}=\frac{\lim x}{\lim y}$, if $\lim y \neq 0$.
The following statements are immediate consequences of case 3:
5. $\lim _{x \rightarrow a} x^{n}=a^{n}=\left(\lim _{x \rightarrow a} x\right)^{n}$
6. $\lim _{x \rightarrow a} \sqrt[n]{x}=\sqrt[n]{a}=\sqrt[n]{\lim _{x \rightarrow a} x}$
7. $\lim _{x \rightarrow a} k x=k a=k \lim _{x \rightarrow a} \dot{x}, k$ being a constant

## Indeterminate Forms

174. Limiting value of a function. If $f(x)$ is a rational integral function of $x$, and if $a$ is a finite number, then, § 121,

$$
\lim _{x \rightarrow a} f(x)=f(a)
$$

If a rational function $f(x)=\frac{\phi(x)}{\psi(x)}, \phi(x)$ and $\psi(x)$ being rational integral functions of $x$, and if $a$ is a finite number, then

$$
\lim _{x \rightarrow a} f(x)=\frac{\lim _{x \rightarrow a} \phi(x)}{\lim _{x \rightarrow a} \psi(x)}=\frac{\phi(a)}{\psi(a)}=f(a)
$$

provided that $\psi(x)$ does not vanish for $x=a$.
If, however, $\psi(a)=0$, and if the rational function $f(x)$ is in its lowest terms,

$$
f(x) \rightarrow \infty
$$

## EXER CISES

Find the limiting value of each of the following functions:

1. $\frac{x+3}{x+1}$, as $x \rightarrow 1$

$$
\lim _{x \rightarrow 1} \frac{x+3}{x+1}=\frac{1+3}{1+1}=2
$$

2. $\frac{x^{2}+1}{x-3}$, as $x \rightarrow 3$

Since $f(3)=\frac{9+1}{0}$ the function has no finite limit, i.e.,

$$
\frac{x^{2}+1}{x-3} \rightarrow \infty, \text { as } x \rightarrow 3
$$

3. $\frac{x^{2}-4}{x+1}, \quad$ as $x \rightarrow 2$

$$
\lim _{x \rightarrow 2} f(x)=\frac{0}{3}=0
$$

4. $\frac{x^{2}-9}{x-2}, \quad$ as $x \rightarrow 3$
5. $\frac{x^{2}-4 x+3}{x^{2}+3 x+2}$, as $x \rightarrow 2$
6. $\frac{x^{2}+5 x+6}{x^{2}-4}$, as $x \rightarrow 2$
7. $\frac{x^{3}+27}{x^{3}-27}, \quad$ as $x \rightarrow-3$
8. Indeterminate forms. The function

$$
f(x)=\frac{x^{2}-9}{x-3}
$$

takes the form $\frac{\mathbf{0}}{\mathbf{0}}$ when $x=3$. This form has no arithmetical meaning. Reducing $f(x)$ to its lowest terms, we have

$$
f(x)=\frac{x^{2}-9}{x-3}=x+3
$$

which holds for all values of $x$ except $x=3$.
If we let $x$ approach 3 as a limit, without letting it actually reach 3 , we have

$$
\lim _{x \rightarrow 3} \frac{x^{2}-9}{x-3}=\lim _{x \rightarrow 3}(x+3)=6
$$

Since the fraction $f(x)=\frac{x^{2}-9}{x-3}$ gives the meaningless symbol $\frac{0}{0}$, if 3 is substituted for $x$, it is convenient to assign to $f(x)$ for $x=3$ the value $\lim _{x \rightarrow 3} \frac{x^{2}-9}{x-3}=6$.

The function $f(x)=\frac{x^{2}+3}{2 x^{2}+x-1}$ takes the form $\infty$, as $x \rightarrow \infty$. This symbol also has no arithmetical meaning.

Dividing numerator and denominator of $f(x)$ by $x^{2}$, we have

$$
\frac{1+\frac{3}{x^{2}}}{2+\frac{1}{x}-\frac{1}{x^{2}}}
$$

Since $\frac{3}{x^{2}}, \frac{1}{x}$, and $-\frac{1}{x^{2}}$ are infinitesimals when $x \rightarrow \infty$, we have

$$
\lim _{x \rightarrow \infty} \frac{x^{2}+3}{2 x^{2}+x-1}=\lim _{x \rightarrow \infty} \frac{1+\frac{3}{x^{2}}}{2+\frac{1}{x}-\frac{1}{x^{2}}}=\frac{1}{2}
$$

The two preceding examples illustrate the method of finding the limiting value of $f(x)$ when it takes the form $\frac{0}{0}$ or $\frac{\infty}{\infty}$.

The symbols $\frac{0}{0}, \frac{\infty}{\infty}$, are called indeterminate forms. Other indeterminate forms are $0 . \infty$ and $\infty-\infty$. The form $0 \cdot \infty$ may be reduced to the form $\frac{0}{0}$ by first multiplying the two functions and then finding the limit. To find the limit of the form $\infty-\infty$ first perform the indicated subtraction of the two functions and then pass to the limit.

## EXERCISES

Find the limiting value of each of the following:

1. $\frac{x^{3}-1}{x-1}, \quad$ as $x \rightarrow 1$
2. $\frac{x^{3}-2 x}{3 x^{3}+5 x^{2}}$,
as $x \rightarrow \infty$
3. $\frac{n-1}{n+1}, \quad$ as $n \rightarrow \infty$
4. $\frac{x^{2}-x+3}{2 x^{2}+x-4}$,
as $x \rightarrow \infty$
5. $\frac{x+1}{x-2}, \quad$ as $x \rightarrow 2$
6. $\frac{x^{2}+x+1}{x+1}$,
as $x \rightarrow-1$
7. $\frac{x-3}{x(x-3)^{2}}$, as $x \rightarrow 3$
8. $\frac{x^{2}+x-2}{2 x+4}$,
as $x \rightarrow \infty$
9. $\frac{(x-1)^{2}}{x(x-1)^{2}}$, as $x \rightarrow 1$
10. $\left(x^{2}+2 x-3\right) \cdot \frac{1}{x-1}$, as $x \rightarrow 1$
11. $\frac{x+1}{x}, \quad$ as $x \rightarrow \infty$
12. $\frac{3}{x}-\frac{1}{x(x+3)}$,
as $x \rightarrow 0$

## Summary

176. The chapter has taught the meaning of the following terms:
limit of a variable infinitesimal, infinite

indeterminate forms<br>limiting value of a function

177. The following theorems have been studied:
178. If $u$ and $v$ be two infinitesimals and $X$ and $Y$ two variables, always less than a finite number $k$, then $X u+Y v$ is an infinitesimal.
179. If $x$ and $y$ be two variables approaching the limits a and $b$, then

$$
\begin{aligned}
& \lim _{\substack{x \rightarrow a \\
y \rightarrow b}}(x+y)=\lim _{x \rightarrow a} x+\lim _{y \rightarrow b} y \\
& \lim _{\substack{x \rightarrow a \\
y \rightarrow b}}(x y)=\left(\lim _{x \rightarrow a} x\right)\left(\lim _{y \rightarrow b} y\right) \\
& \\
& \lim _{\substack{x \rightarrow a \\
y \rightarrow b}}\left(\frac{x}{y}\right)=\frac{\lim _{x \rightarrow a} x}{\lim _{y \rightarrow b} y}, \text { if } b \neq 0
\end{aligned}
$$

## CHAPTER X

## INFINITE SERIES

178. Sum of a series. The sum of numbers arranged in a sequence according to some law, such as

$$
1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\ldots+\frac{1}{2^{n-1}}
$$

or

$$
1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\ldots+\frac{1}{n}
$$

is called the sum of a series of numbers, or, briefly, the sum of a series.

In general, the sum of a series is represented by the expression

$$
u_{1}+u_{2}+u_{3}+\ldots+u_{k}+\ldots+u_{n}
$$

This may be denoted briefly by $S_{n}$. In place of the capital $S$ the Greek letter sigma, $\sum$, is also used. Thus the statement the sum of terms $u_{k}$ is written $\sum u_{k}$. Similarly we write the sum of $k$ terms from $k=1$ to $k=n$ :

$$
\begin{gathered}
\sum_{k=1}^{n} u_{k}=u_{1}+u_{2}+u_{3}+\ldots+u_{n} \\
\sum_{k=1}^{n} \frac{1}{2^{-1 k}}=1+\frac{1}{2}+\frac{1}{4}+\ldots+\frac{1}{2^{n-1}} \\
\sum_{k=1}^{n} \frac{1}{k}=1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{n}
\end{gathered}
$$

Since the value of the sum of $k$ terms of a series depends upon the value of $k$, it may be thought of as a function of $k$.
179. Infinite series. If the number of terms of a series is allowed to increase without bound, the series is said to have infinitely many terms and is called an infinite series. The following are examples of infinite series:

$$
\begin{align*}
& \sum_{k=1}^{\infty} \frac{1}{2^{k-1}}=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\ldots  \tag{1}\\
& \sum_{k=1}^{\infty} k=1+2+3+4+5+\ldots  \tag{2}\\
& \sum_{k=0}^{\infty}(-1)^{k}=1-1+1-1+1-1+\ldots \tag{3}
\end{align*}
$$

180. Convergent and divergent series. The three examples of infinite series given in $\S 179$ will be used to illustrate the meaning of the words convergent and divergent.
181. The sum $S_{n}$ of $n$ terms of series (1) is $\frac{a-a r^{n}}{1-r}$ $=2-\frac{1}{2^{n-1}}$. Show that $S_{n}$ approaches the definite limit 2 as $n$ grows without bound. The number 2 is called the sum of the infinite series.

In general, an infinite series is said to be convergent if the sum of the first $n$ terms approaches a definite finite limit as $n$ increases without bound. This limit is the sum of the series.
2. The sum $S_{n}$ of $n$ terms of series (2) grows beyond bound as $n$ becomes sufficiently large, i.e., it becomes infinite. The series is said to be divergent.
3. For series (3), $S_{n}$ remains finite as $n$ increases without bound, but it does not approach a limit. It is a divergent series. It is often called oscillating series, because $S_{n}$ takes alternately the values $1,0,1,0$, etc. In general, an infinite series is divergent if it is not convergent.

## Series All of Whose Terms Are Positive

181. We shall now take up the problem of determining whether a series is convergent or divergent. First we shall consider the case of series all of whose terms are positive. The theorems in $\S \S 182$ and 183 will be needed in the discussion.
182. Theorem. If a series $u_{1}+u_{2}+u_{3}+\ldots$ is convergent, it follows that $\lim _{n \rightarrow \infty} u_{n}=0$.

$$
\text { For, } \left.\begin{array}{rl}
u_{n} & =\left(u_{1}+u_{2}+u_{3}+\ldots+u_{n-1}+u_{n}\right) \\
& -\left(u_{1}+u_{2}+u_{3}\right. \\
& =S_{n}-S_{n-1}
\end{array}+\ldots+u_{n-1}\right)
$$

Let $S=\sum_{n=1}^{\infty} u_{n}$
Then $\lim S_{n}=S$ and $\lim S_{n-1}=S$

$$
n \rightarrow \infty \quad, \quad n \rightarrow \infty
$$

and $\lim _{n \rightarrow \infty}\left(S-S_{n}\right)=0$ and $\lim _{n \rightarrow \infty}\left(S-S_{n-1}\right)=0$
$\therefore \lim _{n \rightarrow \infty}\left[\left(S-S_{n-1}\right)-\left(S-S_{n}\right)\right]=0$
or $\lim _{n \rightarrow \infty}\left(S_{n}-S_{n-1}\right)=0$
$n \rightarrow \infty$
or $\lim _{n \rightarrow \infty} u_{n}=0$.
$n \rightarrow \infty$
Thus, it has been shown that this theorem holds for a convergent series. This does not mean, however, that a series is convergent if $\lim u_{n}=0$.
183. Theorem. An infinite series of positive terms is convergent if, as $n$ increases beyond bound, $S_{n}$ remains less than some finite number $N$.

For a series of positive terms cannot oscillate, and it increases as $n$ increases.

Hence, if we assume the series not to be convergent, $S_{n}$ must grow without bound as $n$ increases.

But this is impossible, since $S_{n}$ is always less than $N$.
Therefore the series is convergent.
184. Comparison test. By means of the theorems in $\S \S 182$ and 183 it is possible to compare a given series with a series known to be either convergent or divergent, and thus to establish the convergence or divergence of the given series. The method is known as the comparison test.
185. Theorem. Let

$$
\begin{equation*}
u_{1}+u_{2}+u_{3}+\ldots+u_{n}+\ldots \tag{1}
\end{equation*}
$$

be a given series of positive terms, and let

$$
\begin{equation*}
v_{1}+v_{2}+v_{3}+\ldots+v_{n}+\ldots \tag{2}
\end{equation*}
$$

be a known convergent series of positive terms. If, from some particular term on, each term of series (1) is equal to or less than the corresponding term of (2), series (1) is convergent.

This may be seen as follows. For a sufficiently large value of $n$ the following inequalities hold:

$$
\begin{array}{ll} 
& u_{n+1} \leqq v_{n+1}, u_{n+2} \leqq v_{n+2}, \ldots \\
\therefore & u_{n+1}+u_{n+2}+\ldots \leqq v_{n+1}+v_{n+2}+\ldots \\
& S_{n}=u_{1}+u_{2}+u_{3}+\ldots+u_{n} \\
& S_{n}^{\prime}=v_{1}+v_{2}+v_{3}+\ldots+v_{n}
\end{array}
$$

Let
and

Since series (2) is convergent, $S_{n}^{\prime}$ approaches a definite finite limit. Hence $v_{n+1}+v_{n+2}+\ldots$ may be made as small as we please by taking $n$ large enough.

It follows that $u_{n+1}+u_{n+2}+\ldots$ may be made as small as we please by taking $n$ large enough.

Hence the sum $u_{1}+u_{2}+\ldots+u_{n}$ will always be less than some finite number $N$, and series (1) is convergent.

## 186. Theorem. Let

$$
\begin{equation*}
u_{1}+u_{2}+u_{3}+\ldots+u_{n}+\ldots \tag{1}
\end{equation*}
$$

be a given series of positive terms, and let

$$
\begin{equation*}
v_{1}+v_{2}+v_{3}+\ldots+v_{n}+\ldots \tag{2}
\end{equation*}
$$

be a known divergent series of positive terms. If, from some particular term on, each term of series (1) is equal to or greater than the corresponding term of (2), series (1) is divergent.

Assuming series (1) not to be divergent, it would follow that series (2) is convergent.

Since this is not true, the assumption is incorrect, and series (1) is divergent.

Notice that the convergence or divergence of a series is not changed by adding to, or subtracting from, it a finite number of terms.
187. Theorem. Let
and

$$
\begin{aligned}
& u_{1}+u_{2}+u_{3}+\ldots+u_{n}+\ldots \\
& v_{1}+v_{2}+v_{3}+\ldots+v_{n}+\ldots
\end{aligned}
$$

be two given series with positive terms. If the ratio of each term of one to the corresponding term of the other be finite, the series are either both convergent or both divergent.

For, let $R$ be a finite number greater than the largest value which the ratio $\frac{u_{n}}{v_{n}}$ may have for all possible values of $n$.

Then $\quad \frac{u_{1}}{v_{1}}<R ; \quad \frac{u_{2}}{v_{2}}<R ; \quad \frac{u_{3}}{v_{3}}<R ;$ etc.
$\therefore u_{1}<R v_{1} ; u_{2}<R v_{2} ; u_{3}<R v_{3} ;$ etc.

$$
\therefore \quad u_{1}+u_{2}+u_{3}+\ldots<R\left(v_{1}+v_{2}+v_{3}+\ldots\right)
$$

If $v_{1}+v_{2}+v_{3}+\ldots$ is convergent, $R\left(v_{1}+v_{2}+v_{3}+\ldots\right)$ is finite, $R$ being finite.
$\therefore u_{1}+u_{2}+u_{3}+\therefore .$. is convergent.
Similarly, let $r$ be a finite number less than the smallest value of the ratio $\frac{u_{n}}{v_{n}}$.

Then $u_{1}+u_{2}+u_{3}+\ldots .>r\left(v_{1}+v_{2}+v_{3}+\ldots.\right)$
Therefore if $v_{1}+v_{2}+v_{3}+\ldots$ is divergent, $r$ being a finite number, it follows that

$$
u_{1}+u_{2}+u_{3}+\ldots
$$

is also divergent.
188. Test series for comparison. Two standard series, known to be convergent or divergent, are particularly useful for applying the comparison tests of §§ 184 and 186. They are as follows:

1. The geometric series

$$
a+a r+a r^{2}+\ldots
$$

which is known to be convergent when $r<1$, and divergent when $r \geqq 1$.
2. The series

$$
\frac{1}{1^{p}}+\frac{1}{2^{p}}+\frac{1}{3^{p}}+\frac{1}{4^{p}}+\ldots \frac{1}{n^{p}}+\ldots
$$

which is convergent when $p>1$, and divergent when $p \leqq 1$.

This may be proved as follows:
First, let $p>1$.
Show that the following statements are true:

$$
\begin{aligned}
& \frac{1}{2^{p}}+\frac{1}{3^{p}}<\frac{1}{2^{p}}+\frac{1}{2^{p}}=\frac{2}{2^{p}}=\frac{1}{2^{p-1}} \\
& \frac{1}{4^{p}}+\frac{1}{5^{p}}+\frac{1}{6^{p}}+\frac{1}{7^{p}}<\frac{4}{4^{p}}=\frac{1}{4^{p-1}} \\
& \frac{1}{8^{p}}+\frac{1}{9^{p}}+\ldots+\frac{1}{15^{p}}<\frac{8}{8^{p}}=\frac{1}{8^{p-1}}, \text { etc. }
\end{aligned}
$$

Adding,

$$
\frac{1}{2^{p}}+\frac{1}{3^{p}}+\frac{1}{4^{p}}+\ldots<\frac{1}{2^{p-1}}+\frac{1}{4^{p-1}}+\frac{1}{8^{p-1}}+\ldots
$$

The right member of this inequality is a geometrical progression for which $r=\frac{1}{2^{p-1}}$.

Since $p>1, \therefore \frac{1}{2^{p}-1}<1$, and the right member is a convergent series.
$\therefore$ the left member

$$
\frac{1}{2^{p}}+\frac{1}{3^{p}}+\frac{1}{4^{p}}+\ldots
$$

is convergent when $p>1$.
Next, let $p=1$.
Then

$$
\begin{gathered}
1+\frac{1}{2}=1+\frac{1}{2} \\
\frac{1}{3}+\frac{1}{4}>\frac{1}{4}+\frac{1}{4}=\frac{1}{2} \\
\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}>\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}=\frac{1}{2}, \text { etc. }
\end{gathered}
$$

Adding,

$$
1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\ldots .>1+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\ldots .
$$

The right member of this inequality is divergent. Therefore the left member is divergent. This series is known as the harmonic series.

Finally, let $p<1$
Since every term of the series

$$
\frac{1}{2^{p}}+\frac{1}{3^{p}}+\frac{1}{4^{p}}+\ldots
$$

is greater than the corresponding term of the divergent series

$$
\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\ldots
$$

the first series is divergent.

## EXERCISES

Test the following series for convergence or divergence:

1. $1+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\ldots$.
2. $1+\frac{1}{\sqrt{2^{3}}}+\frac{1}{\sqrt{3^{3}}}+\ldots$.
3. $1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\ldots$.
4. $1+\frac{1}{2}+\frac{1}{2 \cdot 3}+\frac{1}{2 \cdot 3 \cdot 4}+\ldots$.

Compare with $1+\frac{1}{2}+\frac{1}{2 \cdot 2}+\frac{1}{2 \cdot 2 \cdot 2}+\ldots$
5. $\frac{1}{2}+\frac{1}{3 \cdot 2}+\frac{1}{4 \cdot 2^{2}}+\frac{1}{5 \cdot 2^{3}}+\ldots$.
6. $\frac{2}{1}+\frac{3}{2}+\frac{4}{3}+\ldots$.
7. $1+\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+\ldots$.
8. $\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+\frac{1}{8}+\ldots$.
9. $\frac{1}{2}+\frac{1}{1+2^{2}}+\frac{1}{1+3^{3}}+\ldots$.
10. $\frac{2}{1+2 \sqrt{ } 2}+\frac{3}{1+3 \sqrt{3}}+\frac{4}{1+4 \sqrt{4}}+\ldots$.
189. Ratio test. This test is an application of the following theorem:

The series of positive terms

$$
u_{1}+u_{2}+u_{3}+\ldots+u_{n}+u_{n+1}+\ldots
$$

is convergent if, as n grows without bound, the ratio of the $(n+1)$ th term to the nth term approaches a limit $r$, and if $r<1$. The series is divergent, if $r>1$.

If $r=1$, the ratio test does not enable us to decide the question of convergence or divergence.

First, let $r<1$.
Since

$$
\lim _{n \rightarrow \infty} \frac{u_{n+1}}{u_{n}}=r
$$

it is possible to find a positive integer $m$ large enough that for all values of $n$ greater than $m$ the difference

$$
\frac{u_{m+1}}{u_{m}}-r
$$

will become and remain less than a positive number $\delta$ taken small enough to make $r+\delta<1$, Fig. 72.


Fig. 72
Denoting $r+\delta$ by $a$,

$$
\begin{aligned}
& \frac{u_{m+1}}{u_{m}}<a ; \frac{u_{m+2}}{u_{m+1}}<a ; \frac{u_{m+3}}{u_{m+2}}<a ; \text { etc. } \\
\therefore \quad & u_{m+1}<a u_{m} \\
& u_{m+2}<a u_{m+1}<a^{2} u_{m} \\
& u_{m+3}<a u_{m+2}<a^{3} u_{m}, \text { etc. }
\end{aligned}
$$

$\therefore$ every term of the series

$$
u_{m+1}+u_{m+2}+u_{m+3}+\ldots
$$

is less than the corresponding term of the series

$$
a u_{m}+a^{2} u_{m}+a^{3} u_{m}+\ldots
$$

which is equal to

$$
u_{m}\left(a+a^{2}+a^{3}+\ldots\right)
$$

However, this series is convergent, since $a<1$.
$\therefore$ the series $u_{m+1}+u_{m+2}+u_{m+3}+\ldots$ is convergent.
$\therefore u_{1}+u_{2}+u_{3}+u_{4}+\ldots+u_{m}+u_{m+1}+\ldots$ is convergent.

Next, let $r>1$.
By taking $m$ large enough, for all values of $n>m$ the following inequalities will hold:

$$
\frac{u_{m+1}}{u_{m}}>1 ; \frac{u_{m+2}}{u_{m+1}}>1 ; \frac{u_{m+3}}{u_{m+2}}>1 \text {; etc. }
$$

$\therefore u_{m+1}>u_{m}$

$$
u_{m+2}>u_{m+1}>u_{m}
$$

$$
u_{m+3}>u_{m+2}>u_{m}, \text { etc. }
$$

Hence $u_{m+1}+u_{m+2}+u_{m+3}+\ldots>u_{m}+u_{m}+u_{m}$
$\therefore u_{1}+u_{2}+u_{3}+\ldots+u_{m}+u_{m+1}+\ldots$ is divergent for $r>1$. If $r=1$, the series may be convergent or divergent, as the following two examples illustrate:

1. For the divergent harmonic series

$$
1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\ldots
$$

the ratio of the $(n+1)$ th term to the $n$th term is

$$
\frac{u_{n+1}}{u_{n}}=\frac{\frac{1}{n+1}}{\frac{1}{n}}=\frac{n}{n+1}
$$

Hence,

$$
\lim _{n \rightarrow \infty} \frac{u_{n+1}}{u_{n}}=\lim _{n \rightarrow \infty} \frac{n}{n+1}=\lim _{n \rightarrow \infty} \frac{1}{1+\frac{1}{n}}=1
$$

2. In the series

$$
\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\ldots+\frac{1}{n(n+1)}
$$

the ratio of the $(n+1)$ th term to the $n$th term is

$$
\frac{u_{n+1}}{u_{n}}=\frac{\frac{1}{(n+1)(n+2)}}{\frac{1}{n(n+1)}}=\frac{n}{n+2}=\frac{1}{1+\frac{2}{n}}
$$

$\therefore \lim _{n \rightarrow \infty} \frac{u_{n+1}}{u_{n}}=\lim _{n \rightarrow \infty} \frac{1}{1+\frac{2}{n}}=1$
However, this series is convergent, as may be seen from the following:

$$
\begin{aligned}
S_{n} & =\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\frac{1}{3 \cdot 4}+\ldots+\frac{1}{n(n+1)} \\
& =\left(1-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+\ldots+\left(\frac{1}{n}-\frac{1}{n+1}\right) \\
& =1-\frac{1}{n+1}
\end{aligned}
$$

$\therefore \lim _{n \rightarrow \infty} S_{n}=1$, and the series is convergent.

## EXERCISES

Apply the ratio test to the following series:

1. $3+\frac{3^{2}}{2}+\frac{3^{3}}{3}+\ldots+\frac{3^{n}}{n}+\ldots$.

$$
\frac{u_{n+1}}{u_{n}}=\frac{3^{n+1} \cdot n}{(n+1) 3^{n}}=\frac{3}{1+\frac{1}{n}}
$$

$\therefore \lim _{n \rightarrow \infty} \frac{u_{n+1}}{u_{n}}=3$
$\therefore$ the series is divergent.
2. $\frac{1}{2}+\frac{2}{2^{2}}+\frac{3}{2^{3}}+\frac{4}{2^{4}}+\ldots+\frac{n}{2^{n}}+\ldots$.
3. $1+\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+\ldots+\frac{1}{n!}+\ldots$.
4. $\frac{2}{1 \cdot 3}+\frac{4}{3 \cdot 5}+\frac{6}{5 \cdot 7}+\ldots .+\frac{2 n}{(2 n-1)(2 n+1)}+\ldots$.
5. $\frac{1}{1 \cdot 2 \cdot 3}+\frac{1}{2 \cdot 3 \cdot 4}+\frac{1}{3 \cdot 4 \cdot 5}+\ldots+\frac{1}{n(n+1)(n+2)}+\ldots$.
6. $\frac{3}{1 \cdot 2}+\frac{5}{2^{2} \cdot 3}+\frac{7}{3^{2} \cdot 4}+\ldots$.
8. $\frac{5}{2^{2}}+\frac{5^{2}}{3^{2}}+\frac{5^{3}}{4^{2}}+\ldots$.
7. $1+\frac{1}{2^{n}}+\frac{2!}{3^{2}}+\frac{3!}{4^{2}}+\ldots$.
9. $\frac{2^{2}}{2!}+\frac{3^{2}}{3!}+\frac{4^{2}}{4!}+\ldots$.

## Series Having Positive and Negative Terms

190. The following theorem will be useful in examining for convergence a series having positive and negative terms.
191. Theorem. An infinite series $u_{1}+u_{2}+u_{3}+\ldots$, whose terms are all real but not all of the same sign, is convergent, if the positive series $\left|u_{1}\right|+\left|u_{2}\right|+\left|u_{3}\right|+\ldots$ is convergent.

For

$$
u_{1}+u_{2}+u_{3}+\ldots<\left|u_{1}\right|+\left|u_{2}\right|+\left|u_{3}\right|+\ldots
$$

since the corresponding terms in both members are equal numerically, and since some of the terms of the left member are negative.

Since the right member is a convergent series, its sum approaches a definite finite limit as the number of terms grows without bound.

Hence it is possible to select a number $m$ such that for $n>m$ the sum

$$
\left|u_{m+1}\right|+\left|u_{m+2}\right|+\left|u_{m+3}\right|+\ldots
$$

becomes and remains less than a positive number $\delta$, however small.

$$
\therefore u_{m+1}+u_{m+2}+u_{m+3}+\ldots<\delta
$$

Hence the series

$$
u_{1}+u_{2}+u_{3}+\ldots
$$

approaches a definite finite limit as $n$ grows without bound and is convergent.
192. Absolutely convergent series. If a convergent series with positive and negative terms remains convergent when the signs of the negative terms are changed, it is an absolutely convergent series.

For example, the series

$$
1-\frac{1}{2}+\frac{1}{4}-\frac{1}{8}+\frac{1}{16}-\ldots
$$

is absolutely convergent.
193. Ratio test. The ratio test for a series with positive and negative terms is an application of the following theorem:

Theorem. Let

$$
u_{1}+u_{2}+u_{3}+\ldots
$$

be an infinite series.

1. If $\lim _{n \rightarrow \infty}\left|\frac{u_{n+1}}{u_{n}}\right|<1$, the series is convergent.
2. If $\lim _{n \rightarrow \infty}\left|\frac{u_{n+1}}{u_{n}}\right|>1$, the series is divergent.
3. If $\lim _{n \rightarrow \infty}\left|\frac{u_{n+1}}{u_{n}}\right|=1$, the question of convergence or divergence must be decided by some other method.

For, if for a series of positive terms

$$
\lim _{n \rightarrow \infty}\left|\frac{u_{n+1}}{u_{n}}\right|<1
$$

that series is convergent.

Hence the series must be convergent if the signs of some of the terms are changed. This shows that statement 1 is true.

For any convergent series

$$
\lim _{n \rightarrow \infty} u_{n}=0, \S 182
$$

This is impossible for a series for which

$$
\lim _{n \rightarrow \infty}\left|\frac{u_{n+1}}{u_{n}}\right|>1
$$

Hence the series must be divergent, which shows the truth of statement 2 .
194. Alternating series. A series whose terms are alternately positive and negative is an alternating series. For example, $1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\ldots$ is an alternating series.
195. Theorem. An alternating series is convergent if each term is numerically less than the preceding term, and if the limit of the nth term is zero as $n$ increases beyond bound.

For, let

$$
u_{1}-u_{2}+u_{3}-u_{4}+\ldots
$$

be the given alternating series.
Let $n$ be an even number. Then $S_{n}$ may be written

$$
S_{n}=\left(u_{1}-u_{2}\right)+\left(u_{3}-u_{4}\right)+\left(u_{5}-u_{6}\right)+\ldots+\left(u_{n-1}-u_{n}\right)
$$

This is a series of positive terms because $u_{1}>u_{2}>u_{3} \ldots$
But $S_{n}$ may also be written

$$
S_{n}=u_{1}-\left(u_{2}-u_{3}\right)-\left(u_{4}-u_{5}\right)-\ldots-\left(u_{n-2}-u_{n-1}\right)-u_{n}
$$

Since all the differences in the parentheses are positive, it follows that

$$
S_{n}<u_{1}
$$

$\therefore$ The given series is convergent.

Hence the sum $S_{n}$ of an even number of terms approaches a definite finite limit $S$.

Since

$$
S_{n+1}=S_{n}+u_{n+1}
$$

it follows that

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} S_{n+1}=\lim _{n \rightarrow \infty} S_{n}+\lim _{n \rightarrow \infty} u_{n+1} \\
\therefore & \lim _{n \rightarrow \infty} S_{n+1}=S+0
\end{aligned}
$$

$\therefore$ The sum $S_{n+1}$ of an odd number of terms approaches the same limit as $S_{n}$.
$\therefore$ The given alternating series is convergent.

## EXERCISES

Test the following series for convergence or divergence:

1. $\frac{1}{2^{2}}-\frac{1}{3^{2}}+\frac{1}{4^{2}}-\ldots$.
2. $\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{4}}-\ldots$
3. $\frac{1}{2} \cdot \frac{3}{4}-\frac{1}{3} \cdot \frac{4}{5}+\frac{1}{4} \cdot \frac{5}{6}-\ldots$.
4. $1-\frac{3}{2^{2}}+\frac{5}{3^{2}}-\ldots$.
5. $1+\frac{4}{5}+\frac{9}{5^{2}}+\frac{16}{5^{3}}+\ldots$.
6. $1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\ldots$.

## Series Whose Terms Are Functions of $x$

196. The following problem illustrates the method of testing for convergence or divergence a series whose terms are functions of $x$.

Consider the series

$$
\frac{1}{2}+\frac{2 x}{2^{2}}+\frac{3 x^{2}}{2^{3}}+\ldots+\frac{n x^{n-1}}{2^{n}}+\ldots
$$

We have

$$
\begin{gathered}
\frac{u_{n+1}}{u_{n}}=\frac{\frac{(n+1) x^{n}}{2^{n+1}}}{\frac{n x^{n-1}}{2^{n}}}=\frac{(n+1) x^{n} \cdot 2^{n}}{2^{n+1} n x^{n-1}}=\frac{(n+1) x}{2 n}=\frac{\left(1+\frac{1}{n}\right) x}{2} \\
\therefore \lim _{n \rightarrow \infty}\left|\frac{u_{n+1}}{u_{n}}\right|=\frac{1}{2} x
\end{gathered}
$$

$\therefore$ the series is convergent if $\left|\frac{x}{2}\right|<1$, or if $|x|<2$.
The series is divergent if $\left|\frac{x}{2}\right|>1$, or if $|x|>2$.
When $\left|\frac{x}{2}\right|=1$, or when $|x|=2$, we may substitute $\pm 2$ for $x$ in the given series and examine the resulting series for convergence or divergence.

The convergence or divergence of a series decides its usefulness. For example, the series

$$
\begin{aligned}
& x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\ldots ; 1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\ldots ; \\
& \quad \text { and } \frac{x}{1}-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\ldots
\end{aligned}
$$

are used to define respectively the functions $\sin x, \cos x$, and $\log (1+x)$ for all values of $x$ for which the series are convergent

## EXERCISES

Examine the following series for convergence or divergence:

1. $x-\frac{x^{2}}{3!}+\frac{x^{3}}{5!}-\frac{x^{4}}{7!}+\ldots$
2. $\frac{1}{1+x^{2}}+\frac{1}{1+2 x^{2}}+\frac{1}{1+3 x^{2}}+\ldots$.
3. $\frac{x}{1 \cdot 3}-\frac{x^{3}}{3 \cdot 3^{3}}+\frac{x^{5}}{5 \cdot 3^{5}}+\ldots$
4. $\frac{1}{1 \cdot 2}+\frac{x}{2 \cdot 3}+\frac{x^{2}}{3 \cdot 4}$
5. $\frac{1 \cdot 3}{2}+\frac{3 \cdot 5 x}{2^{2}}+\frac{5 \cdot 7 x^{2}}{2^{3}}+\ldots$
6. $\frac{x}{1}+\frac{x^{2}}{2}+\frac{x^{3}}{3}+\ldots$.

## Summary

197. The chapter has taught the meaning of the following terms:
sum of a series
infinite series convergent series

> divergent series
> absolutely convergent series
> alternating series
198. The convergence of a series may be established by the comparison test or by the ratio test.
199. The geometric series $a+a r+a r^{2}+\ldots$ and the series $\frac{1}{1^{p}}+\frac{1}{2^{p}}+\frac{1}{3^{p}}+\ldots+\frac{1}{n^{p}}+\ldots$ are useful for applying the comparison test.
200. The following theorems have been studied:

1. If a series $u_{1}+u_{2}+u_{3}+\ldots$ is convergent, it follows that $\lim u_{n}=0$.
2. An infinite series of positive terms is convergent if $S_{n}$ remains less than some finite number $N$ as $n$ increases without bound.
3. An infinite series of positive terms is convergent if, from some particular term on, each term is equal to, or less than, the corresponding term of a known convergent series of positive terms.
4. An infinite series of positive terms is divergent if, from some particular term on, each term is equal to, or greater than, the corresponding term of a known divergent series of positive terms.
5. If the ratio of each term of one of two given series with positive terms to the corresponding term of the other be finite, the series are either both convergent or both divergent.
6. A series of positive terms is convergent if the limit of the ratio of the $(n+1)$ th term to the nth term as $n$ increases without bound is less than 1, and divergent if the limit is greater than 1.
7. An infinite series $u_{1}+u_{2}+u_{3}+\ldots$ whose terms are all real, but not all of the same sign, is convergent if the series $\left|u_{1}\right|+\left|u_{2}\right|+\left|u_{3}\right|+\ldots$ is convergent.
8. An infinite series $u_{1}+u_{2}+u_{3}+\ldots$ is convergent or divergent according as $\lim _{n \rightarrow \infty}\left|\frac{u_{n+1}}{u_{n}}\right|$ is less than 1 , or greater than 1.
9. An alternating series is convergent if each term is numerically less than the preceding term, and if the limit of the nth term is zero as $n$ increases without bound.

## CHAPTER XI

## PARTIAL FRACTIONS

201. Partial fractions. The identity

$$
\frac{x-5}{x^{2}-1} \equiv \frac{3}{x+1}+\frac{-2}{x-1}
$$

expresses the proper fraction $\frac{x-5}{x^{2}-1}$ as the sum of two partial fractions $\frac{3}{x+1}$ and $\frac{-2}{x-1}$. In this chapter we shall study the problem of decomposing a proper rational fraction into a sum of simpler fractions which cannot themselves be still further resolved. Such fractions are called partial fractions. Our problem is clearly the inverse of the problem of expressing the sum of several given fractions as a single fraction.

It is sufficient to study only the case of proper fractions, i.e., fractions whose numerator is of degree lower than that of its denominator. For any improper fraction can always be changed to the sum of an integral number and a proper fraction. For example,

$$
\frac{3 x^{2}-2}{x^{2}-5} \equiv 3+\frac{13}{x^{2}-5}
$$

202. Case I. Let

$$
R(x)=\frac{f(x)}{g(x)}=\frac{a x^{n-1}+b x^{n-2}+c x^{n-3}+\ldots+l}{a_{1} x^{n}+b_{1} x^{n-1}+c_{1} x^{n-2}+\ldots+l_{1}}
$$

be a proper rational fraction reduced to its lowest terms, and let $g(x)$ be the product of $n$ linear factors, all of which are distinct, i.e.,

$$
g(x)=\left(x-r_{1}\right)\left(x-r_{2}\right)\left(x-r_{3}\right) \ldots\left(x-r_{n}\right)
$$

Let us assume that $R(x)$ may be decomposed into partial proper fractions whose denominators are $x-r_{1}$, $x-r_{2}, \ldots, x-r_{n}$, respectively. Since the degree of the numerator in each fraction is lower than that of the denominator, the numerators are constants.

Thus we have

$$
R(x)=\frac{A}{x-r_{1}}+\frac{B}{x-r_{2}}+\frac{C}{x-r_{3}}+\ldots+\frac{L}{x-r_{n}}
$$

Adding the partial fractions, we have
$R(x)=\frac{A\left(x-r_{2}\right) \ldots\left(x-r_{n}\right)+B\left(x-r_{1}\right)\left(x-r_{3}\right) \ldots\left(x-r_{n}\right)+\ldots+L\left(x-r_{1}\right) \ldots\left(x-r_{n-1}\right)}{\left(x-r_{1}\right)\left(x-r_{2}\right) \ldots\left(x-r_{n}\right)}$
It is clear that the degree of the numerator of this fraction is lower than that of the denominator. Hence the sum of the partial fractions is a proper fraction.

The denominator of this fraction is identically the same as $g(x)$, and the numerator when simplified is of the same form as $f(x)$.

Hence, if we determine $A, B, C, \ldots, L$, so that $f(x)=A\left(x-r_{2}\right) \ldots\left(x-r_{n}\right)+B\left(x-r_{1}\right)\left(x-r_{3}\right) \ldots\left(x-r_{n}\right)$ $+\ldots+L\left(x-r_{1}\right) \ldots\left(x-r_{n-1}\right)$
then

$$
\frac{A}{x-r_{1}}, \frac{B}{x-r_{2}}, \quad \ldots, \frac{L}{x-r_{n}}
$$

are the required partial fractions of $R(x)$.
Exercise 1, below, illustrates the method of resolving a given fraction into partial fractions.

## EXERCISES

Resolve the following into the simplest partial fractions:

1. $\frac{x^{2}}{\left(x^{2}-1\right)(x-2)}$

To determine the partial fractions, let us assume that the fraction may be decomposed into partial fractions whose numerators are constants. Then

$$
\begin{gathered}
\frac{x^{2}}{\left(x^{2}-1\right)(x-2)} \equiv \frac{A}{(x-1)}+\frac{B}{x+1}+\frac{C}{x-2} \\
\therefore \quad x^{2} \equiv A(x+1)(x-2)+B(x-1)(x-2)+C(x-1)(x+1)
\end{gathered}
$$

Since this holds for all values of $x$, it holds for $x=-1,2$, and 1 .
When $x=-1$, we have by substitution,

$$
1=0+B(-2)(-3)+0
$$

$\therefore B=\frac{1}{6}$
When $x=2$,
$4=C(1)(3)$
$\therefore C=\frac{4}{3}$

$$
\begin{aligned}
\text { When } x & =1, \\
1 & =A(2)(-1) \\
\therefore \quad A & =-\frac{1}{2}
\end{aligned}
$$

Hence

$$
\frac{x^{2}}{\left(x^{2}-1\right)(x-2)} \equiv-\frac{1}{2(x-1)}+\frac{1}{6(x+1)}+\frac{4}{3(x-2)}
$$

2. $\frac{2 x-3}{(x-1)(x+2)}$
3. $\frac{x^{2}+2}{x(x-1)(x-2)}$
4. $\frac{3 x(x+4)}{(2 x+1)(x+1)(x-2)}$
5. $\frac{2 x+3}{x^{2}-5 x+6}$
6. $\frac{2 x+3}{x^{3}+x^{2}-2 x}$
7. $\frac{(1+3 x)(1-2 x)}{x\left(x^{2}-1\right)}$
8. Case II. Let the denominator of the fraction to be decomposed into partial fractions be the product of linear factors, not all of which are distinct.

Suppose the denominator has a factor $(x-a)^{m}$. Corresponding to this factor there must be at least one partial fraction with denominator $(x-a)^{m}$. However, there may be other partial fractions with denominators of the forms

$$
(x-a)^{m-1},(x-a)^{m-2}, \ldots,(x-a)^{2}, x-a
$$

Hence we shall assume, corresponding to every factor of the form $(x-a)^{m}$, the sum of the partial fractions

$$
\frac{A}{(x-a)^{m}}+\frac{B}{(x-a)^{m-1}}+\ldots+\frac{L}{(x-a)^{2}}+\frac{M}{x-a}
$$

Exercise 1, below, illustrates the method of determining the coefficients $A, B, C, \ldots$

## EXERCISES

Resolve the following into the simplest partial fractions:

1. $\frac{3 x^{2}+1}{(x+1)(x-1)^{2}}$

Assume that the fraction may be decomposed into partial fractions whose denominators are constants. Then

$$
\frac{3 x^{2}+1}{(x+1)(x-1)^{2}}=\frac{A}{x+1}+\frac{B}{x-1}+\frac{C}{(x-1)^{2}}
$$

Then $3 x^{2}+1 \equiv A(x-1)^{2}+B(x+1)(x-1)+C(x+1)$
Let $\quad x=1$
Then $\quad 3+1=C(2)$

$$
\therefore \quad C=2
$$

Let $\quad x=-1$
Then $3+1=A(-2)^{2}$

$$
\therefore \quad A=1
$$

Select any other convenient value for $x$, as $x=2$.
Then $12+1=A(1)^{2}+B(3)(1)+C(3)$
or $A+3 B+3 C=13$

$$
\therefore \quad 3 B=6
$$

and $\quad B=2$
$\therefore \frac{3 x^{2}+1}{(x+1)(x-1)^{2}}=\frac{1}{x+1}+\frac{2}{x-1}+\frac{2}{(x-1)^{2}}$
2. $\frac{5}{\left(x^{2}-1\right)(x+1)}$
3. $\frac{3}{(x-1)^{3}}$
4. $\frac{x+1}{x(x+1)^{3}}$
5. $\frac{6 x^{2}-x+1}{x\left(1-x^{2}\right)}$
6. $\frac{x^{2}+1}{x^{3}(x-1)}$
7. $\frac{x^{2}+2 x}{x^{3}-x^{2}-x+1}$
204. Case III. Let some of the factors of the denominator be real quadratic which cannot be separated into linear factors.

For every such factor occurring only once we shall assume a partial fraction whose numerator is of the first degree, as

$$
\frac{A x+B}{x^{2}+p x+q}
$$

For every factor of the form $x^{2}+p x+q$ occurring $m$ times we shall assume the sum of the partial fractions

$$
\frac{A x+B}{\left(x^{2}+p x+q\right)^{m}}+\frac{C x+D}{\left(x^{2}+p x+q\right)^{m-1}}+\ldots+\frac{L x+M}{x^{2}+p x+q}
$$

## EXERCISES

Resolve the following into the simplest partial fractions:

1. $\frac{8 x^{4}+5 x^{3}+13 x^{2}+14 x+13}{\left(x^{2}+1\right)^{2}(x+2)}$

For the factors $x^{2}+1$ and $\left(x^{2}+1\right)^{2}$ assume numerators of the form $m x+n$; for the factor $x+2$ assume a constant numerator.

Then $\frac{8 x^{4}+5 x^{3}+13 x^{2}+14 x+13}{\left(x^{2}+1\right)^{2}(x+2)}=\frac{A x+B}{\left(x^{2}+1\right)^{2}}+\frac{C x+D}{x^{2}+1}+\frac{E}{x+2}$
$\therefore 8 x^{4}+5 x^{3}+13 x^{2}+14 x+13$

$$
\begin{aligned}
& \equiv(A x+B)(x+2)+(C x+D)\left(x^{2}+1\right)(x+2)+E\left(x^{2}+1\right)^{2} \\
& \begin{array}{lllll} 
& & A \mid x^{2} & +2 A \mid x & +2 B \\
C \mid x^{4} & +2 C \mid x^{3} & +C & +B & \\
E & +2 C & \\
& +2 D & +D & +2 D \\
& & +2 E & & \\
& & & & \\
& &
\end{array}
\end{aligned}
$$

Equating the coefficients of similar terms,

$$
\begin{aligned}
C+E & =8 \\
2 C+D & =5 \\
A+C+2 D+2 E & =13 \\
2 A+B+2 C+D & =14 \\
2 B+2 D+E & =13
\end{aligned}
$$

Solving these equations we have

$$
A=2, B=5, C=3, D=-1, E=5
$$

$\therefore \quad 8 x^{4}+5 x^{3}+13 x^{2}+14 x+13=\frac{2 x+5}{\left(x^{2}+1\right)^{2}}+\frac{3 x-1}{x^{2}+1}+\frac{5}{x+2}$
2. $\frac{4}{x^{3}-1}$
3. $\frac{1-3 x}{2-x+2 x^{2}-x^{3}}$
4. $\frac{1+x^{3}}{x\left(1+x+x^{2}\right)}$
5. $\frac{2}{(x+1)\left(x^{2}-x+1\right)}$
6. $\frac{1+2 x-5 x^{2}+x^{3}}{\left(x^{2}+5\right)\left(x^{2}+1\right)}$
7. $\frac{x^{2}-4 x+5}{\left(x^{2}-2 x+1\right)\left(x^{2}+1\right)}$

## Summary

205. In decomposing a proper rational fraction into the simplest partial fractions we have considered three cases:
206. If the denominator is the product of distinct linear factors, the numerators of the assumed partial fractions are constants.
207. If the denominator is the product of linear factors not all of which are distinct, the numerators of the assumed partial fractions are constants and the denominators of the form $(x-a)^{m}$.
208. If some of the factors of the denominator are real quadratic, such as $x^{2}+p x+q$, and not factorable into linear factors, the numerators of the assumed partial fractions are constants for every denominator of the form $(x-a)^{m}$, but for every denominator of the form $\left(x^{2}+p x+q\right)^{m}$ the numerators are of the form $m x+n$.

## CHAPTER XII

## PERMUTATIONS AND COMBINATIONS

## Permutations

206. Elements. Permutations. A given number of things may be arranged in one row in a number of ways. Suppose we have three books to be arranged on a shelf. This may be done as follows.

Denoting the books by the letters $a, b$, and $c$, we may select book $a$ first and then either $b$ and $c$, or $c$ and $b$. This gives the arrangements $a b c$ and $a c b$.

Selecting $b$ as the first book, we have the arrangements $b a c$ and bca.

Finally, by taking $c$ for the first place, we have the arrangements $c a b$ and $c b a$.

Thus the three books may be arranged on the shelf in the six different ways:

| $a b c$ | $b a c$ | $c a b$ |
| :--- | :--- | :--- |
| $a c b$ | $b c a$ | $c b a$ |

The things to be arranged are called elements.
Arrangements of $n$ elements, differing from each other only in the order of the elements, are called permutations. Hence, according to the problem above, three elements have six permutations.

To find the number of permutations of four elements we may proceed as follows.

Since there are four elements, each of which may occupy the first place, we may fill the first place in four different ways. In each case the three other places may then be filled in six different ways. This gives $4 \times 6$
different arrangements, or 24 permutations. They are as follows:

| $\boldsymbol{a} b c d$ | $b a c d$ | $\boldsymbol{c} a b d$ | $\boldsymbol{d} a b c$ |
| :--- | :--- | :--- | :--- |
| $\boldsymbol{a} b d c$ | $b a d c$ | $\boldsymbol{c} a d b$ | $\boldsymbol{d} a c b$ |
| $\boldsymbol{a} c b d$ | $b c a d$ | $c b a d$ | $\boldsymbol{d} b a c$ |
| $\boldsymbol{a} c d b$ | $b c d a$ | $\boldsymbol{c} b d a$ | $\boldsymbol{d} b c a$ |
| $\boldsymbol{a} d b c$ | $\boldsymbol{b} d a c$ | $\boldsymbol{c} d a b$ | $\boldsymbol{d} c a b$ |
| $\boldsymbol{a} d c b$ | $\boldsymbol{b} d c a$ | $\boldsymbol{c} d b a$ | $\boldsymbol{d} c b a$ |

Similarly the permutations of five elements may be arranged in five columns, each column containing 24 permutations. Hence there are $5 \times 24$ permutations of five elements.
207. The number of permutations of $n$ elements. Let the number of permutations of $n$ elements be denoted by $P_{n}$.

For example, let it be required to find in how many ways we may arrange $n$ books on a shelf. Denoting the books by numbers $1,2,3,4, \ldots$, we have for two books the permutations 12 and 21, i.e., two permutations.

For three books,

| 123 | 213 | 312 |
| :--- | :--- | :--- |
| 132 | 231 | 321 |

we have $3 \cdot 2$, or 6 permutations.
For four books we shall have $4 \cdot 3 \cdot 2$, or 24 permutations, etc.

Arranging these results in a table,

| $n$ | $P_{n}$ |  |  |
| :--- | :--- | :---: | :---: |
| 1 | 1 |  |  |
| 2 | $1 \cdot 2$ |  |  |
| 3 | $1 \cdot 2 \cdot 3$ |  |  |
| 4 | $1 \cdot 2 \cdot 3 \cdot 4$ |  |  |
| 5 | $1 \cdot 2 \cdot 3 \cdot 4 \cdot 5$ |  |  |

we infer that the number of permutations of $n$ elements is given by the formula

$$
P_{n}=1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot \ldots \cdot n
$$

The products $1,1 \cdot 2,1 \cdot 2 \cdot 3, \ldots, 1 \cdot 2 \cdot 3 \cdot \ldots \cdot n$, are called factorial 1, factorial 2, factorial 3,...., factorial $n$, respectively, and are commonly denoted by the symbols 1 !, 2 !, $3!, \ldots, n$ !, or $1,2,3, \ldots, n$.

Hence

$$
P_{n}=n!
$$

This formula may be proved by mathematical induction, § 118. We assume first that

$$
P_{n}=n(n-1)(n-2) \cdot \ldots \cdot 3 \cdot 2 \cdot 1
$$

To get $P_{n+1}$ we arrange the $n+1$ elements in $n+1$ columns, § 206, each column containing $P_{n}$ permutations. $\therefore P_{n+1}=(n+1) P_{n}=(n+1)(n)(n-1)(n-2) \ldots 3 \cdot 2 \cdot 1$ Hence, if the formula is true for $n$ elements it is also true for ( $n+1$ ) elements.

Since we know it to hold for $n=4$, it must also hold for $n=5$, and therefore for $n=6$, etc., for all positive integral values of $n$.
208. Fundamental principle. In the development of the formula in $\S 207$ we made use of the following principle:

If one thing can be done in $m$ different ways, and if, after this has been done, another can be done in $n$ ways, then the two things together can be done in mn ways.

## EXERCISES

1. Form the permutations of the letters $a, b, c, d$, and $e$.
2. Form the permutations containing $a, b, c, d$, and beginning with $d b$.
3. How many permutations can be formed with 8 elements?
4. How many permutations can be formed with the letters in the world "April"?
5. In how many ways can 7 people be seated on a bench?
6. Permutations of $n$ things, not all of which are different. Thus far we have considered only the case where all elements are distinct. If some of the $n$ things are alike, the number of permutations may be found as follows:

Attach subscripts to the things that are alike and form the number of permutations as if all elements were distinct. For example, we change $a b b b$ to $a b_{1} b_{2} b_{3}$. This gives the following four groups of six permutations having $a$ in the first, second, third, and fourth places, respectively.

| $a b_{1} b_{2} b_{3}$ | $b_{1} a b_{2} b_{3}$ | $b_{1} b_{2} a b_{3}$ | $b_{1} b_{2} b_{3} a$ |
| :--- | :--- | :--- | :--- |
| $a b_{1} b_{3} b_{2}$ | $b_{1} a b_{3} b_{2}$ | $b_{2} b_{1} a b_{3}$ | $b_{1} b_{3} b_{2} a$ |
| $a b_{2} b_{1} b_{3}$ | $b_{2} a b_{1} b_{3}$ | $b_{1} b_{3} a b_{2}$ | $b_{2} b_{1} b_{3} a$ |
| $a b_{2} b_{3} b_{1}$ | $b_{2} a b_{3} b_{1}$ | $b_{3} b_{1} a b_{2}$ | $b_{2} b_{3} b_{1} a$ |
| $a b_{3} b_{1} b_{2}$ | $b_{3} a b_{1} b_{2}$ | $b_{2} b_{3} a b_{1}$ | $b_{3} b_{1} b_{2} a$ |
| $a b_{3} b_{2} b_{1}$ | $b_{3} a b_{2} b_{1}$ | $b_{3} b_{2} a b_{1}$ | $b_{3} b_{2} b_{1} a$ |

If we leave off the subscripts there will be only one permutation in each group. Thus, instead of 4 ! permutations, we have only $\frac{1}{6}(4!)$, or $\frac{4!}{3!}$ permutations.

In general, to find the permutations of $n$ things, $p$ of which are alike, denote the like things by subscripts. They may then be arranged in groups, such that the permutations in each group differ only in the position of the $p$ elements, which were given alike. Since each group contains as many permutations as can be formed with $p$ elements, i.e., $p!$, there are $\frac{n!}{p!}$ groups,

Leaving off the subscripts, all the permutations in one group are the same.

Hence there are $\frac{n!}{p!}$ permutations of $n$ things, $p$ of them being alike.

If among the $n$ given things there are still $q$ other elements that are alike, we divide the $\frac{n!}{p!}$ permutations into groups whose $q$ ! permutations differ only in the position of these $q$ elements.

Hence there are $\frac{\frac{n!}{p!}}{q!}$ or $\frac{n!}{p!q!}$ groups.
Leaving off the subscripts of the $q$ elements, each group will have only one permutation, and the number of permutations is the same as the number of groups, i.e., $\frac{n!}{p!q!}$

By continuing this process we find that the number of permutations of $n$ things of which $p$ are of one lind, $q$ of another, etc., is given by the formula

$$
P=\frac{n!}{p!q!\ldots}
$$

## EXERCISES

1. How many pernutations can be formed from the letters $a a b b b c$ ?
2. In how many different ways can the letters of the word "short" be arranged?
3. In how many different ways can the letters of the word "mathematics" be arranged?
4. In how many ways can 3 white, 1 blue, and 2 red balls be arranged?
5. Permutations of $n$ things, taken $r$ at a time. From four different flags, $a, b, c$, and $d$, signals of two flags each are to be made. We may first select flag $a$ and choose with it one of the remaining flags, $b, c$, or $d$. Thus we have the three arrangements $a b, a c$, and $a d$. Similarly, by choosing first one of the other flags, three arrangements are possible in each case.

Thus we have $4 \cdot 3=4[4-(2-1)]$ possible cases:

| $a b$ | $b a$ | $c a$ | $d a$ |
| :--- | :--- | :--- | :--- |
| $a c$ | $b c$ | $c b$ | $d b$ |
| $a d$ | $b d$ | $c d$ | $d c$ |

If signals of three flags each were to be formed, we would have two possibilities for each of the cases above. Thus, corresponding to $a b$ we have $a b c$ and $a b d$. Hence, altogether we shall have $4 \cdot 3 \cdot 2$ cases.

Similarly we may show that the number of five things taken two at a time is $5 \cdot 4$ or $5[5-(2-1)]$.

Three at a time $5 \cdot 4 \cdot 3$ or $5 \cdot 4$ or $[5-(3-1)]$ ]
And four at a time $5 \cdot 4 \cdot 3 \cdot 2$ or $5 \cdot 4 \cdot 3[5-(4-1)]$.
In general, the number of $n$ things taken $r$ at a time is given by the formula

$$
{ }_{n} P_{r}=n(n-1)(n-2) \ldots(n-r+1)
$$

The formula is easily proved by mathematical induction, as follows:

We have seen that

$$
{ }_{n} P_{r}={ }_{n} P_{r-1}(n-r+1)
$$

Assume

$$
{ }_{n} P_{r}=n(n-1)(n-2) \ldots(n-r+1)
$$

Then

$$
{ }_{n} P_{r+1}={ }_{n} P_{r}(n-r)=n(n-1)(n-2) \ldots(n-r+1)(n-r)
$$

which shows that the formula holds for $r+1$ if it holds for $r$.

Since we know the formula to hold for $r=1$ and 2 , it follows that it holds for any value of $r$.

## EXERCISES

1. In how many ways can 10 soldiers be arranged in a row?
2. How many permutations are there of the letters of the word "player" when 3 are taken at a time?
3. In how many ways can a baseball team be formed from 18 ball players, each of whom will take any position?
4. How many signals can be formed in the 7 flags of different colors, displaying 4 at a time?
5. How many permutations can be formed with the letters of the word "Illinois"?
6. How many different numbers containing 6 digits can be formed with the figures 1122334 ?
7. How many different signals can be made with 10 flags, 3 of which are white, 4 blue, 2 black, and 1 red ?
8. In how many ways can 5 pupils be seated in 8 seats?
9. Permutations in a circle. When the objects are arranged in a circle, or in any closed curve, the relative order is not changed if all objects are shifted the same number of places. Hence the position of one object is immaterial. We may suppose one of the $n$ objects in a fixed position and find the number of arrangements of the $n-1$ remaining objects. For example, if four persons, $\mathrm{A}, \mathrm{B}, \mathrm{C}$, and D , are seated at a table, the arrangement is the same whether we start from $\mathrm{A}, \mathrm{B}, \mathrm{C}$, or D , as long as we proceed in the same direction.

Since $n-1$ objects can be arranged in $(n-1)$ ! orders the number of circular permutations of $n$ objects is $(n-1)$ !.

## EXERCISES

1. In how many ways can 6 persons be seated at a round table?
2. Show that $n$ keys can be arranged in a ring in $\frac{(n-1)!}{2}$ ways.

Consider that by revolving the ring about a diameter through an angle of $180^{\circ}$ each arrangement is found to occur twice.
3. How many different bracelets can be formed with 30 beads of different colors?

## Combinations

212. Combinations. If $\mathrm{A}, \mathrm{B}$, and C are appointed as a committee, the character of the committee is not changed by changing the order in which $\mathrm{A}, \mathrm{B}$, and C may be arranged. The orders $\mathrm{ABC}, \mathrm{ACB}, \mathrm{BCA}, \mathrm{BAC}$, etc., are different permutations of the three men, but they are said to be the same combination. In general, a group of objects in which the order of arrangement is not considered is called a combination.
213. Number of combinations. We have denoted the number of permutations of $n$ things taken $r$ at a time by ${ }_{n} P_{r}$. From every combination of $r$ things we can form $r$ ! permutations. Hence the number of combinations of $n$ things taken $r$ at a time multiplied by $r$ ! is equal to ${ }_{n} P_{r}$. In symbols this may be written briefly

$$
r!\left({ }_{n} C_{r}\right)={ }_{n} P_{r}
$$

or

$$
{ }_{n} C_{r}=\frac{{ }_{n} P_{r}}{r!}=\frac{n(n-1) \ldots(n-r+1)}{r!}
$$

Multiplying numerator and denominator by $(n-r)$ ! this takes the form

$$
{ }_{n} C_{r}=\frac{n!}{r!(n-r)!}
$$

Hence

$$
{ }_{n} C_{r}={ }_{n} C_{n-r}
$$

or the number of combinations of $n$ things taken $r$ at a time is the same as the number of combinations of $n$ things taken $n-r$ at a time.
214. The total number of combinations. In the binomial formula

$$
(a+b)^{n}=a^{n}+n a^{n} b+\frac{n(n-1)}{1 \cdot 2} a^{n-2} b^{2}+\ldots
$$

the coefficients are $1,{ }_{n} C_{1},{ }_{n} C_{2}$, etc.
If we let $a=b=1$, we have

$$
2^{n}=1+{ }_{n} C_{1}+{ }_{n} C_{2}+{ }_{n} C_{3}+\ldots{ }_{n} C_{n}
$$

Hence the total number of combinations of $n$ things taking $1,2,3, \ldots, n$ at a time is $2^{n}-1$.

## EXERCISES

1. In how many ways can a committee of 4 men be appointed from 15 men?
2. How many straight lines can be drawn through 10 points, no 3 of which are in a straight line ?
3. In how many ways can a group of 3 lawyers and 4 merchants be selected from 7 lawyers and 6 merchants?
4. How many different crews of 8 men can be selected from a group of 16 men ?
5. There are 2 roads from $A$ to $B, 3$ from B to C, and 3 from C to D . By how many routes can a man travel from A to D ?
6. In how many ways can 8 men be arranged in a row so that neither of 2 given men may be at either end of the row? (Board.)
7. How many triangles can be drawn with each vertex in 1 of 20 given points, no 3 of which are in the same straight
line? How many such triangles can be drawn if 4 of the given points lie in a straight line? (Board.)
8. From 14 men, how many committees of 4 can be formed? Of these, how many include one particular man, A? How many include A but not B ? (Board.)
9. How many planes are determined by 30 points if no 4 of the points lie in the same plane?
10. A club consists of 8 men and 6 women. How many different committees of 7 members each can be selected from the club, each committee to consist of 3 men and 4 women? (Williams.)
11. How many even numbers of 3 digits each can be formed from the digits $1,2,3,4,5,6,7,8$ ? (Williams.)
12. In how many ways can a committee of 3 be selected from 10 persons so that a particular person A shall always be (1) included and (2) excluded? . (Williams.)
13. A person has 22 friends, of whom 14 are men. In how many ways can he make up dinner parties of 17 guests, it being required that 10 guests of each party be men? (Williams.)
14. In a certain school there are 60 pupils and 5 teachers. An athletic committee of 3 teachers and 2 pupils is to be chosen. How many such committees could be formed? (Harvard.)
15. Six flags of different colors can be hoisted, either singly or any number at a time, one above another. How many different signals can be made with them? (Harvard.)

## Summary

215. The chapter has taught the meaning of the following new terms:
permutation, circular permutation, combination
216. The following important principle has been used: If one thing can be done in $m$ different ways, and if, after this has been done, another can be done in $n$ ways, then the two things together can be done in mn ways.
217. The following formulas have been developed in this chapter:
218. $P_{n}=1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot \ldots \cdot n$, where $P_{n}$ denotes the number of permutations of $n$ elements.
219. $P=\frac{n!}{p!n!\ldots}$, where $P$ denotes the number of permutations of $n$ things, of which $p$ are of one kind, $q$ of another, etc.
220. ${ }_{n} P_{r}=n(n-1)(n-2) \cdot \ldots \cdot(n-r+1)$, where ${ }_{n} P_{r}$ denotes the number of permutations of $n$ things taken $r$ at a time.
221. $P_{n}=(n-1)$ !, where $P_{n}$ is the number of circular permutations of $n$ objects.
222. ${ }_{n} C_{r}=\frac{n(n-1) \ldots(n-r+1)}{r!}=\frac{n!}{r!(n-r)!}$, where ${ }_{n} C_{r}$ is the number of combinations of $n$ things taken $\dot{r}$ at a time.

## CHAPTER XIII

## THE CIRCLE

## General Quadratic Function of Two Variables

218. General quadratic function of two variables. Most of the functions studied in the preceding chapters are functions of one variable. However, functions of several variables are not unknown to the student. For example, in the study of simultaneous equations he has met linear functions of the form $a x+b y+c$, and such quadratic functions as $x y$ and $a x^{2}+b y^{2}-c$.

The function

$$
f(x, y)=A x^{2}+2 H x y+B y^{2}+2 G x+2 F y+C
$$

where the coefficients $A, B, C, F, G$, and $H$ may have any values independent of $x$ and $y$, excluding the case $A=B=H=0$, is called the general rational integral function of the second degree. The terms containing $x^{2}, y^{2}$, and $x y$ are terms of the second degree.

Show that the functions $a x^{2}+b y^{2}+c$ and $x y$ are special cases of the general function.
219. General quadratic equation. The equation

$$
A x^{2}+2 H x y+B y^{2}+2 G x+2 F y+C=0
$$

is the most general equation of the second degree. Any pair of values of $x$ and $y$ which satisfies this equation is a solution of the equation.

Before taking up the study of the general equation we shall consider in this chapter and in chapter xiv some of the special cases.

## The Circle

220. Standard equation of the circle. The circle may be defined as the locus of a point moving in a plane so that it is always equidistant from a fixed point. To find the equation of the circle, Fig. 73, denote the co-ordinates of the center by ( $h, k$ ), the co-ordinates of any point $P$ on the circle by $(x, y)$, and the distance from $P$ to $C$ by $r$. Then, according to the definition above, $C P=r$ for any position of $P$.

Show that


Fig. 73

$$
\begin{aligned}
C P & =\sqrt{(x-h)^{2}+(y-k)^{2}} \\
\therefore \quad \overline{C P}^{2} & =(x-h)^{2}+(y-k)^{2}
\end{aligned}
$$

Hence the equation

$$
\begin{equation*}
(x-h)^{2}+(y-k)^{2}=r^{2} \ldots \tag{1}
\end{equation*}
$$

is satisfied by the co-ordinates $(x, y)$ of any point $P$ on the circle.

Show that the co-ordinates of no other point satisfy equation (1).

Equation (1) is a standard equation of a circle whose center is $C(h, k)$, and whose radius is equal to $r$.

If $h=k=0$, the center of the circle is at the origin and the equation reduces to

$$
x^{2}+y^{2}=r^{2}
$$

## EXERCISES

Write the equations of the following circles and make a sketch of each:

1. Center $(+2,+4)$, radius $=6$
2. Center $(-3,2)$, radius $=5$
3. Center ( 1,0 ), radius $=7$
4. Center $(3,4)$ and passing through the origin
5. Center on the $x$-axis, radius $=a$
6. Center on the $y$-axis, radius $=b$
7. Tangent to $x$-axis, radius $=4$
8. Tangent to both axes, radius $=8$
9. General equation of the circle. The equation

$$
\begin{equation*}
(x-h)^{2}+(y-k)^{2}=r^{2} \tag{1}
\end{equation*}
$$

when expanded reduces to

$$
\begin{equation*}
x^{2}+y^{2}-2 h x-2 k y+\left(h^{2}+k^{2}-r^{2}\right)=0 \tag{2}
\end{equation*}
$$

Comparison of equation (2) with the general quadratic equation

$$
\begin{equation*}
A x^{2}+2 H x y+B y^{2}+2 G x+2 F y+C=0 \tag{3}
\end{equation*}
$$

suggests to let $H=0$, and $A=B$. This gives the equation

$$
\begin{equation*}
A x^{2}+A y^{2}+2 G x+2 F y+C=0 \tag{4}
\end{equation*}
$$

Equation (4) may be shown to be the equation of a circle for all real values of $A, G, F$, and $C$ except $A=0$, as follows: First, divide every term by $A$. This gives

$$
\begin{equation*}
x^{2}+y^{2}+2 \frac{G}{A} x+2 \frac{F}{A} y+\frac{C}{A}=0 \tag{5}
\end{equation*}
$$

By comparing (5) and (2) it is seen that for

$$
\begin{equation*}
h=-\frac{G}{A}, k=-\frac{F}{A}, \text { and } \frac{C}{A}=\frac{G^{2}}{A^{2}}+\frac{F^{2}}{A^{2}}-r^{2} \tag{6}
\end{equation*}
$$

equation (5) reduces to equation (2).

Hence, to reduce equation (5) to equation (2), add and subtract $\frac{G^{2}}{A^{2}}$ and $\frac{F^{2}}{A^{2}}$ to complete, the squares in equation (5). This gives the equation

$$
\left(x^{2}+2 \frac{G}{A} x+\frac{G^{2}}{A^{2}}\right)+\left(y^{2}+2 \frac{F}{A} y+\frac{F^{2}}{A^{2}}\right)+\left(\frac{C}{A}-\frac{G^{2}}{A^{2}}-\frac{F^{2}}{A^{2}}\right)=0
$$

This may be written

$$
\begin{equation*}
\left(x+\frac{G}{A}\right)^{2}+\left(y+\frac{F}{A}\right)^{2}=\left(\sqrt{\frac{G^{2}}{A^{2}}+\frac{F^{2}}{A^{2}}-\frac{C}{A}}\right)^{2} \tag{7}
\end{equation*}
$$

Equation (7) expresses the fact that the square of the distance from $(x, y)$ to $\left(-\frac{G}{A},-\frac{F}{A}\right)$ is constant and equal to $\frac{G^{2}}{A^{2}}+\frac{F^{2}}{A^{2}}-\frac{C}{A}$. This means that equation (7), which is only another form of equation (4), is the equation of a circle whose center is at the point $\left(-\frac{G}{A},-\frac{F}{A}\right)$, and whose radius is equal to

$$
\frac{\sqrt{G^{2}+F^{2}-C A}}{A}
$$

Note the following special cases:

1. When $G^{2}+F^{2}=C \cdot A$, the radius is zero, the equation is satisfied only by the point $(x, y)=\left(-\frac{G}{A},-\frac{F}{A}\right)$, and the circle is a point circle.
2. When $G^{2}+F^{2}<C \cdot A$, equation (7) is not satisfied by any real values of $x$ and $y$. In this case we speak of the circle as an imaginary circle.

It follows that an equation of the form

$$
\begin{equation*}
A x^{2}+A y^{2}+2 G x+2 F y+C=0 \tag{8}
\end{equation*}
$$

represents a circle if $A \neq 0$, and if $G^{2}+F^{2}>A \cdot C$. Equation (8) is the general equation of the circle.
$\left.\begin{array}{l}\text { The center is the point } \\ \qquad(h, k)=\left(-\frac{G}{A},-\frac{F}{A}\right) \\ \text { The length of the radius is } \\ \qquad r=\sqrt{\frac{G^{2}}{A^{2}}+\frac{F^{2}}{A^{2}}-\frac{C}{A}}\end{array}\right\}$
222. Special positions of the circle. Equation (8) of the circle is of a simple form for special positions of the circle.

If the center is at the origin,

$$
-\frac{G}{A}=h=0, \quad-\frac{F}{A}=k=0, \quad \frac{C}{A}=-r^{2}
$$

and the equation is

$$
x^{2}+y^{2}=r^{2}
$$

If the center is on the $x$-axis,

$$
k=-\frac{F}{A}=0 \text { and } F=0
$$

If the center is on the $y$-axis,

$$
h=-\frac{G}{A}=0 \text { and } G=0
$$

## EXERCISE

Write the equation of the circle whose center is on the $x$-axis; on the $y$-axis; on the positive side of the $x$-axis and a distance $r$ from the origin.
223. To find the co-ordinates of the center and radius of a given circle. The co-ordinates of the center and the radius of a given circle may be found either by formula (9), $\S 221$, or by changing the given equation to form (1), § 220. The following example illustrates the methods:

Let the equation of a circle be

$$
7 x^{2}+7 y^{2}-4 x-y-3=0
$$

1. To find the center and radius, divide by 7 and complete the squares.* This gives the equation

$$
x^{2}-\frac{4}{7} x+\frac{4}{49}+y^{2}-\frac{1}{7} y+\frac{1}{196}=\frac{3}{7}+\frac{4}{49}+\frac{1}{196}
$$

or

$$
\left(x-\frac{2}{7}\right)^{2}+\left(y-\frac{1}{14}\right)^{2}=\frac{101}{196}
$$

Hence

$$
h=\frac{2}{7}, k=\frac{1}{14}, r=\frac{\sqrt{101}}{14}
$$

2. According to formula (9), § 221,

$$
h=-\frac{G}{A}=\frac{2}{7}, k=-\frac{F}{A}=\frac{1}{14}, r=\sqrt{\frac{2^{2}}{7^{2}}+\frac{\left(\frac{1}{2}\right)^{2}}{7^{2}}+\frac{3}{7}}=\frac{\sqrt{101}}{14}
$$

## EXERCISES

Find the centers and radii of the following circles. Draw the circle, if possible.

1. $x^{2}+y^{2}=-4 x$
2. $x^{2}+y^{2}+6 y=0$
3. $x^{2}+y^{2}-6 x-8 y=24$
4. $2 x^{2}+2 y^{2}+10 x-6 y-1=0$
5. $x^{2}+y^{2}+10 x+110=0$
6. $4 x^{2}+4 y^{2}-4 x+16 y-19=0$
7. Prove that the co-ordinate axes are axes of symmetry of the circle $x^{2}+y^{2}=r^{2}$.

Show that $x= \pm \sqrt{r^{2}-y^{2}}, y= \pm \sqrt{r^{2}-x^{2}}$. Use § 94 .
8. Prove that the circle $x^{2}+y^{2}=r^{2}$ is symmetric with respect to the origin.

Show that if $\left(x_{1}, y_{1}\right)$ lies on the circle, $\left(-x_{1},-y_{1}\right)$ is also on the circle.
9. Find the intercepts of the circle $a x^{2}+a y^{2}+b x+c y+d=0$ and compare the product of the intercepts on the $x$-axis with that of the intercepts on the $y$-axis.
224. The equation of a circle derived from given conditions. The equation

$$
A x^{2}+A y^{2}+2 G x+2 F y+C=0
$$

contains four constants. However, by dividing by $A$ and substituting for $\frac{2 G}{A}, \frac{2 F}{A}$, and $\frac{C}{A}$ the constants $b, c$, and $d$, respectively, the equation changes to the form

$$
\begin{equation*}
x^{2}+y^{2}+b x+c y+d=0 \tag{1}
\end{equation*}
$$

which involves only three arbitrary constants. Similarly the equation of a circle in the form

$$
\begin{equation*}
(x-h)^{2}+(y-k)^{2}=r^{2} \tag{2}
\end{equation*}
$$

contains three arbitrary constants, $h, k$, and $r$.
Geometrically a circle may be determined by three conditions, e.g., by three points not upon the same straight line. To obtain the equation the co-ordinates of the given points may be substituted in equations (1) or (2) and the resulting equations solved simultaneously. Exercises 1 and 2 below illustrate the method.

## EXER CISES

1. Find the equation of the circle circumscribed about a triangle whose vertices are $A(-1,2), B(0,-3), C(2,3)$.

Substituting the co-ordinates of $A, B$, and $C$ in equation (1),

$$
\begin{aligned}
& 1+4-b+2 c+d=0 \\
& 0+9+0-3 c+d=0 \\
& 4+9+2 b+3 c+d=0
\end{aligned}
$$

Solving for $b, c$, and $d$, we have

$$
b=-\frac{11}{4}, c=\frac{1}{4} d=-\frac{33}{4}
$$

Show that the equation of the circle is

$$
4 x^{2}+4 y^{2}-11 x+y-33=0
$$

2. Find the equation of a circle which passes through the points $(0,4)$ and $(6,0)$, and whose radius is $\sqrt{13}$.

Substituting in equation (2) we have

$$
\begin{aligned}
& (0-h)^{2}+(4-k)^{2}=13 \\
& (6-h)^{2}+(0-k)^{2}=13
\end{aligned}
$$

Solve this system to determine the values of $h$ and $k$.
Find the equations of a circle passing through the following points:
3. $(0,0),(5,0),(0,4)$
4. $(-1,2),(0,-3),(2,3)$
5. $(a, 0),(-a, 0),(0, b)$
6. $(2,-1),(3,-2)$, origin
7. Find the equation of the circle the center of which is at the point $(3,4)$, and which passes through the point $(4,-3)$.
8. Prove that the locus of a point which moves so that the sum of the squares from two fixed points is constant is a circle.
9. Find the equation of a circle the center of which is $(6,8)$, and which touches the line $4 x+3 y+1=0$.
10. Find the equation of the circle circumscribed about the triangle whose sides are determined by the equations $x+y+1=0$, $x-y-1=0, y=4$.
11. Find the locus of a point twice as far from the origin as from the point $(0,6)$.
12. Find the locus of the vertex of a triangle whose distances from the other two vertices are in the ratio $\frac{m}{n}$.
13. Find the equation of the circle passing through the point $(-2,5)$ and tangent to both axes.
14. Find the equation of the circle passing through the points $(2,-3)$ and $(4,-1)$ and having its center on the line $3 y+x=18$.
15. Find the co-ordinates of the point of intersection of

$$
\left\{\begin{array}{r}
x+2 y+1=0 \\
x^{2}+y^{2}-12 x=0
\end{array}\right.
$$

## Tangent to a Circle

225. Differentiation of implicit functions. It has been seen in $\S 106$ that the slope of the tangent to a curve $y=f(x)$ at the point $\left(x_{1}, y_{1}\right)$ is the value of $f^{\prime}(x)$ for $x=x_{1}$.

To find $f^{\prime}(x)$ when the function is of the form $f(x, y)$, we may first solve the equation $f(x, y)=0$ for $\dot{y}$, and then find the derivative of $y$. This process is often inconvenient, as for example in the case of the quadratic function

$$
f(x, y)=A x^{2}+2 H x y+B y^{2}+2 G x+2 F y+C
$$

226. Slope of the tangent to $f(x, y)=0$. A simple process of finding the slope of the tangent to the curve $f(x, y)=0$ may be derived as follows:

Let $\frac{k}{h}$ be the slope of the secant $P_{1} P_{2}$, Fig. 74.


Fig. 74

Since both points, $P_{1}\left(x_{1}, y_{1}\right)$
and $P_{2}, x+h, y+k$, lie on the curve $f(x, y)=0$, their co-ordinates satisfy the equation.

Hence,
$f\left(x_{1}+h, y_{1}+k\right)=A\left(x_{1}+h\right)^{2}+2 H\left(x_{1}+h\right)\left(y_{1}+k\right)+B\left(y_{1}+k\right)^{2}$

$$
+2 G\left(x_{1}+h\right)+2 F\left(y_{1}+k\right)+C=0
$$

and

$$
f\left(x_{1}, y_{1}\right)=A x_{1}^{2}+2 H x_{1} y_{1}+B y_{1}^{2}+2 G x_{1}+2 F y_{1}+C=0
$$

Subtracting the second equation from the first gives $A\left(2 x_{1} h+h^{2}\right)+2 H\left(x_{1} k+y_{1} h+h k\right)+B\left(2 y_{1} k+k^{2}\right)+2 G h$

$$
+2 F k=0
$$

$\therefore k\left(2 H x_{1}+2 B y_{1}+2 F+B k\right)+h\left(2 A x_{1}+2 H y_{1}+2 G\right.$

$$
+A h+2 H k)=0
$$

$\therefore \quad \frac{k}{h}=-\frac{2 A x_{1}+2 H y_{1}+2 G+A h+2 H k}{2 H x_{1}+2 B y_{1}+2 F+B k}$
which is the slope of the secant $P_{1} P_{2}$.
The slope $m$ of the tangent to $f(x, y)=0$ at the point $\left(x_{1}, y_{1}\right)$ is the limit of $\frac{k}{h}$ as $k \rightarrow 0, h \rightarrow 0$.
Hence

$$
m=-\frac{2 A x_{1}+2 H y_{1}+2 G}{2 H x_{1}+2 B y_{1}+2 F}
$$

or

$$
m=-\frac{A x_{1}+H y_{1}+G}{H x_{1}+B y_{1}+F}
$$

This shows that the slope of the tangent to $f(x, y)=0$ may be obtained briefly by the following rule:

1. Differentiate $f(x, y)$ with respect to $x$, regarding $y$ as constant. This gives $f_{x}{ }^{\prime}\left(x_{1}, y_{1}\right)=2\left(A x_{1}+H y_{1}+G\right)$.
2. Differentiate $f(x, y)$ with respect to $y$, regarding $x$ as a constant. This gives $f_{y}{ }^{\prime}\left(x_{1}, y_{1}\right)=2\left(H x_{1}+B y_{1}+F\right)$.
3. Divide $f_{x}^{\prime}\left(x_{1}, y_{1}\right)$ by $f_{y}^{\prime}\left(x_{1}, y_{1}\right)$ and prefix the - sign.

## EXERCISES

Find the slope $m$ of each of the following curves at the point $P(x, y)$ :

1. $y-x^{2}=0$
2. $x^{2}+y^{2}=4$
3. $x^{2}-x y+3=0$
4. $x^{3}+x y+2=0$
5. $2 y^{2}-3 x+5=0$
6. $x^{2} y-6 x+3=0$
7. Equation of the tangent to $f(x, y)=0$. Let $\left(x_{1}, y_{1}\right)$ be the point of contact, and let $m$ be the slope of the tangent. Then according to the point-slope
equation of a straight line the equation of the tangent to $f(x, y)=0$ is

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

228. Equation of the tangent to a circle. To find the slope of the tangent to the circle

$$
f(x, y)=x^{2}+y^{2}-r^{2}=0
$$

at the point $\left(x_{1}, y_{1}\right)$, find $f_{x}^{\prime}\left(x_{1}, y_{1}\right)=2 x_{1}$, and $f_{y}{ }^{\prime}\left(x_{1}, y_{1}\right)=2 y_{1}$. Hence

$$
m=-\frac{x_{1}}{y_{1}}
$$

The equation of the tangent is

$$
y-y_{\mathrm{r}}=-\frac{x_{1}}{y_{1}}\left(x-x_{1}\right)
$$

which reduces to

$$
y_{1} y+x_{1} x=y_{1}^{2}+x_{1}^{2}
$$

or

$$
x_{1} x+y_{1} y=r^{2}
$$

Note the resemblance between this equation and that of the given circle and formulate a rule for remembering the equation of the tangent.
229. Normal to a curve. The normal to a curve is the line perpendicular to the tangent to the curve at the point of contact.
230. Slope of the normal. The slope of the normal is the negative reciprocal of the slope of the tangent, §57.

Show that the slope of the normal to the circle $x^{2}+y^{2}=r^{2}$ is

$$
m=\frac{y_{1}}{x_{1}}
$$

## EXERCISES

1. Find the equation of the normal to the circle at the point $\left(x_{1}, y_{1}\right)$.

Find the equation of the tangent and normal to each of the following curves at the point $\left(x_{1}, y_{1}\right)$ :
2. $y=x^{2}$
3. $y^{2}=x^{3}$
4. $x y=4$
5. $x^{2}+y^{2}=25$
6. Show that the equation of the tangent to the circle

$$
A x^{2}+A y^{2}+2 G x+2 F y+C=0
$$

at the point $\left(x_{1}, y_{1}\right)$ is

$$
A x_{1} x+A y_{1} y+G\left(x+x_{1}\right)+F\left(y+y_{1}\right)+C=0
$$

7. Find the equation of a circle the center of which is $(3,4)$ and which is tangent to the line $4 x-3 y+22=0$.
8. Find the equations of the tangent and normal to the circle $x^{2}+y^{2}-4 x-6 y-12=0$ at the point $(6,0)$.
9. Find the equations of the tangent and normal to the circle $x^{2}+y^{2}-3 x-11 y-40=0$ at the point $(2,-3)$.
10. Find the equation of the circle tangent to the $x$-axis and passing through the points $(4,9)$ and $(-3,2)$.
11. Find the equations of the tangents to the circle $x^{2}+y^{2}=25$ at the ends of the diameter passing through the point ( $3,-4$ ).
12. At the points of intersection of the circle $x^{2}+y^{2}=25$ and the straight line $x+2 y=10$ tangents are drawn to the circle. Find the point of intersection of the tangents and the angle between them.
13. Determine the relation between $a, b$, and $c$ such that the line $a x+b y+c=0$ is tangent to the circle $x^{2}+y^{2}=r^{2}$.
14. Find the point of contact and the equation of the tangent to the circle $(x-2)^{2}+(y-3)^{2}=r^{2}$, having the slope $\frac{-x_{1}-2}{y_{1}-3}$.
15. Find the angle between the lines $3 x-2 y=6$ and $x^{2}+y^{2}=36$.
16. Subtangent. Subnormal. The projection $Q N$ of the normal $P N$, Fig. 75 , on the $x$-axis is called the subnormal. The projection $T Q$ of the tangent $T P$ is called the subtangent.

Since $\tan a=m=\frac{y_{1}}{T Q}$, it follows that the

$$
\text { subtangent } T Q=\frac{y_{1}}{m}
$$



Fig. 75

Since $\tan a_{1}=n=\frac{y_{1}}{Q N}$, it follows that $Q N=\frac{y_{1}}{n}$.

$$
\text { But } n=-\frac{1}{m}
$$

$\therefore$ the subnormal $Q N=-m y_{1}$.

## EXERCISES

1. Find the length of the tangent $P T$, Fig. 75, in terms of the ordinate of $P$ and the slope of $P T$.
2. Find the length of the normal $P N$, Fig. 75 , in terms of the ordinate of $P$, and the slope of the tangent at $P$.
3. Find the lengths of the subtangent, subnormal, tangent, and normal to the circle $x^{2}+y^{2}=r^{2}$ at the point $\left(x_{1}, y_{1}\right)$.
4. The length of a tangent to a circle from a given point. Denoting TP, Fig. 76 , by $t$, the radius $T C$ by $r$, and $C P$ by $d$, show that

$$
t^{2}=d^{2}-r^{2}
$$

But by § 47


Fig. 76

$$
d^{2}=\left(x_{1}-h\right)^{2}+\left(y_{1}-k\right)^{2}
$$

Hence

$$
\begin{equation*}
t^{2}=\left(x_{1}-h\right)^{2}+\left(y_{1}-k\right)^{2}-r^{2} \tag{1}
\end{equation*}
$$

Equation (1), p. 206, shows that the square of the length of the tangent from a given point $\left(x_{1}, y_{1}\right)$ to the circle $(x-h)^{2}+(y-k)^{2}=r^{2}$ is found by substituting the co-ordinates of the point in the equation of the circle.

## EXERCISES

1. Show that the length of the tangent drawn from a point $\left(x_{1}, y_{1}\right)$ to the circle $x^{2}+y^{2}+2 G x+2 F y+C=0$ is given by the formula

$$
t^{2}=x_{1}{ }^{2}+y_{1}{ }^{2}+2 G x_{1}+2 F y_{1}+C
$$

2. Find the length of the tangent to the circle
from the point $(4,5)$.
3. Determine a point such that the length of the tangent drawn from that point to the circles $x^{2}+y^{2}-8 x+12=0$ and $x^{2}+y^{2}-1=0$ is equal to 6 .


Fig. 77
233. Systems of circles. Radical axis. Let the equations of two given circles, Fig. 77, be

$$
\begin{align*}
& x^{2}+y^{2}+2 G_{1} x+2 F_{1} y+C_{1}=0  \tag{1}\\
& x^{2}+y^{2}+2 G_{2} x+2 F_{2} y+C_{2}=0 \tag{2}
\end{align*}
$$

Then the equation
$\left(x^{2}+y^{2}+2 G_{1} x+2 F_{1} y+C_{1}\right)+k\left(x^{2}+y^{2}+2 G_{2} x+2 F_{2} y+C_{2}\right)=0$
represents a system of circles passing through the points common to the given circles.

For we may show that equation (3) in general represents a circle, and that the co-ordinates of a point satisfy equation (3) if they satisfy (1) and (2).

When $k=-1$ equation (3) reduces to

$$
2\left(G_{1}-G_{2}\right) x+2\left(F_{1}-F_{2}\right) y+C_{1}-C_{2}=0
$$

which is the equation of a straight line passing through the points of intersection of the given circles. This straight line is called the radical axis of the two given circles.

The radical axis of two intersecting circles contains the common chord.

## EXERCISES

1. Show that the tangents drawn to two circles from any point on the radical axis are equal.

Denote the equations of the circles by
and

$$
x^{2}+y^{2}+2 G x+2 F y+C=0
$$

Then

$$
x^{2}+y^{2}+2 G^{\prime} x+2 F^{\prime} y+C^{\prime}=0
$$

and

$$
\begin{aligned}
t^{2} & =x_{1}^{2}+y_{1}^{2}+2 G x_{1}+2 F y_{1}+C \\
t^{\prime 2} & =x_{1}^{2}+y_{1}^{2}+2 G^{\prime} x_{1}+2 F^{\prime} y_{1}+C^{\prime}
\end{aligned}
$$

$$
\therefore \quad t^{2}-t^{\prime 2}=2\left(G-G^{\prime}\right) x_{1}+2\left(F-F^{\prime}\right) y_{1}+C-C^{\prime} .
$$

Since ( $x_{1}, y_{1}$ ) is on the radical axis,

$$
\begin{aligned}
2\left(G-G^{\prime}\right) x_{1}+2\left(F-F^{\prime}\right) y_{1}+C-C^{\prime} & =0 \\
\therefore \quad t^{2}-t^{\prime 2} & =0 \\
t & =t^{\prime}
\end{aligned}
$$

and
2. Find the equation of the radical axis of the following circles:

$$
\begin{aligned}
& x^{2}+y^{2}-4 x-6 y-1=0 \\
& x^{2}+y^{2}+6 x+4 y+7=0
\end{aligned}
$$

3. Show that the radical axis of two circles is perpendicular to the line joining their centers.
4. If the radical axes of three circles, taken in pairs, are not parallel, prove that they are concurrent.
5. Find the point of intersection of the radical axes (radical center) of the three following circles:

$$
\begin{aligned}
x^{2}+y^{2}-6 x-4 y+12 & =0 \\
x^{2}+y^{2}-20 x+91 & =0 \\
x^{2}+y^{2} & =64
\end{aligned}
$$

6. Find the circle passing through the intersections of the following circles:

$$
\begin{aligned}
x^{2}+y^{2}+2 x-14 y+25 & =0 \\
x^{2}+y^{2} & =25
\end{aligned}
$$

and through the point $(6,8)$.
7. Find the equation of the radical axis of the following circles:

$$
\begin{array}{r}
x^{2}+y^{2}+6 x-16=0 \\
x^{2}+y^{2}-10 x+21=0
\end{array}
$$

Graph the circles and the radical axis.
234. The polar equation of the circle. The polar equation of a circle, Fig. 78, may be obtained from the equation

$$
(x-h)^{2}+(y-k)^{2}=r^{2}
$$

by making the following substitutions:

$$
\left\{\begin{array}{l}
x=\rho \cos \theta \\
y=\rho \sin \theta \\
h=b \cos a \\
k=b \sin a
\end{array}\right.
$$



Fig. 78

It may also be obtained directly from the law of cosines

$$
\rho^{2}+b^{2}-2 \overline{O P} \cdot \overline{O C} \cos (\theta-a)=r^{2}
$$

This gives

$$
\begin{equation*}
\rho^{2}-2 \rho b \cos (\theta-a)+b^{2}-r^{2}=0 \tag{1}
\end{equation*}
$$

Equation (1), p. 209, represents a circle because it states the relation between $\rho$ and $\theta$ for any point on the circle.

When the pole is at the center, $b=0$ and equation (1) reduces to

$$
\rho=r
$$

When the pole is on the circle, $b=r$ and equation (1) reduces to

$$
\rho=2 r \cos (\theta-a)
$$

This may be written

$$
\rho=2 r \cos \theta \cos a+2 r \sin \theta \sin a
$$

which reduces to

$$
\rho=p \cos \theta+q \sin \theta
$$

where $p$ and $q$ are the intercepts on the polar axis and on the $90^{\circ}$ - axis respectively.

When the pole is on the circle and the polar axis tangent to the circle, equation (1) reduces to

$$
\rho=2 r \cdot \sin \theta
$$

235. Parametric equations. If the co-ordinates $(x, y)$ of a point on a curve can be expressed as functions of a third variable $t$, the equations

$$
\begin{equation*}
x=f(t) \text { and } y=g(t) \tag{1}
\end{equation*}
$$

are parametric equations, and $t$ is a parameter. The equation of the curve in Cartesian co-ordinates may then be obtained by eliminating $t$ from equation (1).

For example, let

$$
\begin{equation*}
x=a \cos t, y=a \sin t \tag{2}
\end{equation*}
$$

To eliminate $t$, square both equations and add. This gives
or $\quad x^{2}+y^{2}=a^{2}$
the equation of a circle.

Hence the parametric equations of a circle are

$$
x=a \cos t, y=a \sin t
$$

The parameter $t$ represents the vectorial angle.
To graph these equations, find corresponding values of $x$ and $y$ for assumed values of $t$ and plot the points $(x, y)$.

## EXERCISES

1. Let $a=5$ and tabulate corresponding values of $t, x$, and $y$ which satisfy equations (2), § 234. Draw the graph.
2. Show that the equation $x=t^{2}$ and $y=2 t$ are parametric equations of the parabola.
3. Graph the circle

$$
\left\{\begin{array}{l}
x=4 \sin t \\
y=4 \cos t
\end{array}\right.
$$

## Summary

236. This chapter has taught the meaning of the following terms:
general quadratic function in two variables
normal, subnormal
subtangent
radical axis
systems of circles
237. The following standard equations of a circle have been developed in this chapter:
238. $(x-h)^{2}+(y-k)^{2}=r^{2}$, where $(h, k)$ are the coordinates of the center and $r$ is the radius.
239. $x^{2}+y^{2}=r^{2}$, where $r$ is the radius and the center is at the origin.
240. $A x^{2}+A y^{2}+2 G x+2 F y+C=0$ if $G^{2}+F^{2}>C A$, and $A \neq 0$, the center being at the point $\left(-\frac{G}{A} ;-\frac{F}{A}\right)$, and the radius being equal to $\sqrt{\frac{G^{2}+F^{2}+C A}{A}}$.
241. $\boldsymbol{\rho}^{2}-2 b \rho \cos (\theta-a)+b^{2}-r^{2}=0$, where $(b, a)$ are the polar co-ordinates of the center:
242. $\left\{\begin{array}{l}x=a \cos t \\ y=a \sin t\end{array}\right.$, where $a$ is the radius and the parameter $t$ represents the vectorial angle.
243. The following are special cases of the general equation of a circle:
244. When $G^{2}+F^{2}=C \cdot A, r=0$, and the circle is a point circle:

$$
(x, y)=\left(-\frac{G}{A},-\frac{F}{A}\right)
$$

2. When $G^{2}+F^{2}<C \cdot A$ the circle is an imaginary circle.
3. The following are special cases of the polar equation of a circle:
4. $p=r$ when the pole is at the center.
5. $\rho=2 r \cos (\theta-a)$ when the pole is on the circle, which may be written in the form

$$
\rho=a \cos \theta+b \sin \theta
$$

where $a$ and $b$ are the intercepts on the polar axis and on the $90^{\circ}$ - axis respectively.
3. $p=2 r \sin \theta$ when the pole is on the circle and the polar axis tangent to the circle.
240. The equation of a circle may be derived from three given conditions, e.g., from three given points.
241. The following formulas have been proved:

1. The slope of the tangent to $f(x, y)=0$ at the point $\left(x_{1}, y_{1}\right)$ :

$$
m=-\frac{f_{x}^{\prime}\left(x_{1}, y_{1}\right)}{f_{y}^{\prime}\left(x_{1}, y_{1}\right)}
$$

2. The equation of the tangent to the circle $x^{2}+y^{2}=r^{2}$ :

$$
x_{1} x+y_{1} y=r^{2}
$$

3. The equation of the tangent to the circle

$$
\begin{gathered}
A x^{2}+A y^{2}+2 g x+2 F y+C=0 \\
A x_{1} x+A y_{1} y+\boldsymbol{G}\left(\boldsymbol{x}+\boldsymbol{x}_{1}\right)+F\left(\boldsymbol{y}+\boldsymbol{y}_{1}\right)+\boldsymbol{C}=\mathbf{0}
\end{gathered}
$$

4. The subtangent and subnormal at the point $\left(x_{1}, y_{1}\right)$ :

$$
\begin{aligned}
& \text { subtangent }=\frac{y_{1}}{m} \\
& \text { subnormal }=-m y_{1}
\end{aligned}
$$

where $m$ is the slope of the tangent.
5. The length of a tangent from the point $\left(x_{1}, y_{1}\right)$ to the circle:

$$
t^{2}=\left(x_{1}-h\right)^{2}+\left(y_{1}-k\right)^{2}-r^{2}
$$

6. A system of circles passing through the points common to two given circles:

$$
\left(x^{2}+y^{2}+2 G_{1} x+2 F_{1} y+C_{1}\right)+k\left(x^{2}+y^{2}+2 G_{2} x+2 F_{2} y+C_{2}\right)=0
$$

7. The equation of the radical axis of two given circles:

$$
2\left(G_{1}-G_{2}\right) x+2\left(F_{1}-F_{2}\right) y+\left(C_{1}-C_{2}\right)=0
$$

## CHAPTER XIV

## ELLIPSE. HYPERBOLA. PARABOLA

## The Ellipse

242. Ellipse. Foci. The locus of a point the sum of whose distances from two fixed points is constant is called an ellipse.

The fixed points are the foci of the ellipse.

Let $F$ and $F_{1}$ be the foci, Fig. 79, and let $P$ be any point on the locus.

Then $F P$ and $F_{1} P$ are the focal radii of the ellipse.


Fig. 79
243. Equation of the ellipse. Denote the constant sum $F P+P F_{1}$ by $2 a$. Let $O$ be the mid-point of $F F_{1}$, and let $O F=O F_{1}=c$. Take the origin at $O$ and $O F$ as the $x$-axis. Then the co-ordinates of the foci are $(c, 0)$ and $(-c, 0)$.

Show that the equation $F_{1} P+P F=2 a$, written in terms of the co-ordinates $x$ and $y$ is

$$
\sqrt{(x+c)^{2}+y^{2}}+\sqrt{(x-c)^{2}+y^{2}}=2 a
$$

Squaring both members, we have

$$
\begin{array}{ccc}
x^{2}+y^{2}+c^{2}+\sqrt{\left(x^{2}+y^{2}+c^{2}+2 c x\right)\left(x^{2}+y^{2}+c^{2}-2 c x\right)} & =2 a^{2} \\
& \therefore & \left(x^{2}+y^{2}+c^{2}\right)^{2}-4 c^{2} x^{2}=\left[2 a^{2}-\left(x^{2}+y^{2}+c^{2}\right)\right]^{2} \\
& \therefore & -4 c^{2} x^{2}=4 a^{4}-4 a^{2}\left(x^{2}+y^{2}+c^{2}\right) \\
& \therefore & \left(a^{2}-c^{2}\right) x^{2}+a^{2} y^{2}=a^{2}\left(a^{2}-c^{2}\right) \\
& \therefore & \frac{x^{2}}{a^{2}}+\frac{y^{2}}{a^{2}-c^{2}}=1
\end{array}
$$

Substituting $b^{2}$ for $a^{2}-c^{2}$ this equation reduces to

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
$$

This is a standard form of the equation of the ellipse.

## 244. Discussion of the equation

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
$$

When we substitute for $x$ the value 0 , the corresponding values of $y$ are $+b$ and $-b$.

When $y=0$, we find $x$ to be $+a$ and $-a$.
Hence the intercepts on the $x$-axis and $y$-axis are $a$ and $b$ respectively.

Hence $O A=O A_{1}=a, O B=O B_{1}=b$.
Since $F_{1} B=B F$, and since $F_{1} B+B F=2 a$, it follows that $F_{1} B=B F=a$.

This may be used to derive the relation

$$
a^{2}=b^{2}+c^{2}
$$

$A_{1} A$ and $B_{1} B$ are called the major and minor axis, respectively.

If $a$ is less than $b$ the foci of the ellipse lie on the $y$-axis.

The more nearly $a$ and $b$ are equal, the smaller is the value of $c$ and the nearer are the foci to the origin. When $a=b$ the value of $c$ is zero, and the equation of the ellipse reduces to that of a circle $x^{2}+y^{2}=a^{2}$.

Hence the circle may be considered as a special case of an ellipse, the two foci coinciding at the center.

Extent of the ellipse.-Solving the equation

$$
b^{2} x^{2}+a^{2} y^{2}=a^{2} b^{2}
$$

for $x$ and for $y$, we have

$$
\begin{equation*}
x= \pm \frac{a}{b} \sqrt{b^{2}-y^{2}} \text { and } y= \pm \frac{b}{a} \sqrt{a^{2}-x^{2}} \tag{1}
\end{equation*}
$$

Hence for real values of $x$ the value of $y$ must be numerically less than $b$ (written briefly $|y|<b$ ); and for real values of $y, x$ must be numerically less than $a(|x|<a)$.

This shows that the ellipse lies wholly within the rectangle $M N R S$, Fig. 80, whose center is the origin and whose sides are parallel to the axes and equal to $2 a$ and $2 b$ respectively.

Symmetry of the el-lipse.-Equations (1) show that the ellipse is symmetrical with respect to the axes, as for every value of $x$ for which $y$ is real there are two values of $y$ equal numerically and opposite in sign.


Fig. 80 Similarly, for every value of $y$ for which $x$ is real there are two values of $x$ equal numerically and opposite in sign.
245. Focal radii. Denoting the lengths of the focal radii $F_{1} P$ and $F P$, Fig. 81, by $r_{1}$ and $r$, we have

$$
\begin{aligned}
r & =\sqrt{(x-c)^{2}+y^{2}} \\
& =\sqrt{(x-c)^{2}+\frac{b^{2}\left(a^{2}-x^{2}\right)}{a^{2}}} \\
& =\sqrt{\frac{\left(x^{2}-2 c x+c^{2}\right) a^{2}+a^{2} b^{2}-b^{2} x^{2}}{a^{2}}}
\end{aligned}
$$

Substitute $b^{2}+c^{2}$ for $a^{2}$. Then

$$
\begin{aligned}
r & =\sqrt{\frac{a^{4}-2 c a^{2} x+c^{2} x^{2}}{a^{2}}} \\
& =\left(\frac{a^{2}-c x}{a}\right) \\
\therefore \quad r & =\left(a-\frac{c}{a} x\right)
\end{aligned}
$$



Fig. 81

Similarly,

$$
r_{1}=\left(a+\frac{c}{a} x\right)
$$

It is easily seen that these results satisfy the condition

$$
r+r_{1}=2 a
$$

246. Mechanical construction of an ellipse. The relation between the focal radii shown in $\S 245$ suggests that the arc of an ellipse may be traced mechanically as follows:

The ends of a string are fastened to two points, $F_{1}$ and $F$, Fig. 82.

The string is kept taut by means of a moving pencil point $P$. This point then describes the arc of an ellipse.


Fig. 82
247. Eccentricity, The ratio of $2 c$, the distance between the two foci, to the major axis $2 a$, is the eccentricity $e$ of the ellipse.

Thus

$$
e=\frac{c}{a}=\frac{\sqrt{a^{2}-b^{2}}}{a}
$$

Since $a>c$, it follows that the eccentricity of the ellipse is less than unity.

## EXERCISES

1. Show as in $\S 243$ that the equation of an ellipse, with the center at the origin, whose foci are on the $y$-axis is $\frac{y^{2}}{a^{2}}+\frac{x^{2}}{b^{2}}=1$ or $a^{2} x^{2}+b^{2} y^{2}=a^{2} b^{2}$.
2. Find the semi-major axis, the semi-minor axis, and the eccentricity of each of the following ellipses. Sketch the ellipse in each case.

$$
\frac{x^{2}}{16}+\frac{y^{2}}{9}=1 ; x^{2}+2 y^{2}=4 ; 3 x^{2}+2 y^{2}=6 ; \quad 15 x^{2}+14 y^{2}=960
$$

3. Find the co-ordinates of the points of intersection of $x^{2}+3 y^{2}=3$ and $x-y=1$; also find the co-ordinates of the foci of the ellipse.
4. Find the equation of the ellipse the major axis of which is 6 and the foci of which are $( \pm 2,0)$.
5. Find the equation of the ellipse the major axis of which is 10 and which passes through the point $(3,1)$.
6. Find the equation of the ellipse whose vertices are $(9,0),(-9,0),(0,6)$, and $(0,-6)$.
7. The sum of the focal radii of an ellipse is 10 and the distance between the foci is 8 , the origin being at the center. Find the equation.
8. Find the points of intersection of the straight line $x+3 y=3$ with the ellipse $9 x^{2}+16 y^{2}=144$.
9. Find the locus of the mid-points of the ordinates of the ellipse whose equation is $b^{2} x^{2}+a^{2} y^{2}-a^{2} b^{2}=0$.
10. Find the locus of a point $P$ on a straight line $A B$ which moves so that its extremities are always on two lines perpendicular to each other.

Let $A P=m, P B=n$.
248. Latus rectum. The latus rectum of an ellipse is the chord through a focus perpendicular to the major axis, as $M N$, Fig. 83.

To find the length of the latus rectum, let $x= \pm c$ in the equation

Show that

$$
y=\frac{b}{a} \sqrt{a^{2}-x^{2}}
$$

$$
2 y=\frac{2 b^{2}}{a}
$$



Fịg. 83

## EXERCISES

1. Find the length of the latus rectum of each of the following ellipses: $2 x^{2}+3 y^{2}=6 ; 25 x^{2}+9 y^{2}=225$
2. Show that the semi-latus rectum is the third proportional to the semi-major and semi-minor axes.
3. Polar equation of the ellipse. Let $F_{1}$, Fig. 84 , be the pole and $F_{1} X$ the polar axis. Then $F_{1} P=a+e x, \quad \S \S 245,247$. Since $O D=x=F_{1} D-F_{1} O$ $=\rho \cos \theta-c$, it follows that


Fig. 84

$$
F_{1} P=\rho=a+e \rho \cos \theta-e c
$$

$\therefore \quad(1-e \cos \theta) \rho=a-e c$
$\therefore \quad \rho=\frac{a-e c}{1-e \cos \theta}$
Since

$$
\begin{aligned}
& e=\frac{c}{a} \\
& \rho=\frac{\frac{a^{2}-c^{2}}{a}}{1-e \cos \theta}=\frac{\frac{b^{2}}{a}}{1-e \cos \theta}
\end{aligned}
$$

Let

$$
\frac{b^{2}}{a}=p
$$

Then the polar equation of the ellipse takes the form

$$
\rho=\frac{p}{1-e \cos \theta} \text { where } e<1
$$

Compare this equation with the polar equation of the parabola, § 97.
250. Discussion of the polar equation. The values of $\rho$ corresponding to $\theta=0^{\circ}$ and $180^{\circ}$ give the intercepts on the polar axis. The intercepts on the $90^{\circ}$-axis are found by letting $\theta=90^{\circ}$ and $270^{\circ}$,

Hence the intercepts are as follows:

| $\theta$ | $0^{\circ}$ | $90^{\circ}$ | $180^{\circ}$ | $270^{\circ}$ |
| :---: | :---: | :---: | :---: | :---: |
| $\rho$ | $a+c$ | $\frac{b^{2}}{a}$ | $a-c$ | $\frac{b^{2}}{a}$ |

Extent of the curve.-When $\theta=0,1-e \cos \theta$ is least, and the largest value of $\rho$ is obtained. When $\theta=180^{\circ}$, $1-e \cos \theta$ is largest, and $\rho$ has the smallest numerical value. For all values of $\theta$ the value of $\rho$ is finite, since $1-e \cos \theta$ cannot equal zero.

Symmetry.-Since $\cos \theta=\cos (-\theta)$, the values of $\rho$ for $\theta$ and $(-\theta)$ are the same. Hence the curve is symmetric with respect to the polar axis.

## EXERCISERS

1. Discuss the equation $\rho=\frac{8}{5-2 \cos \theta}$. What curve is represented by this equation?
2. Reduce the equation $\rho=\frac{8}{5-2 \cos \theta}$ to the standard polar form.
3. Find a polar equation of the ellipse by changing the equation $b^{2} x^{2}+a^{2} y^{2}=a^{2} b^{2}$ to polar co-ordinates, using the center as pole.

Let $x=\rho \cos \theta, y=\rho \sin \theta$.
Substitute these values for $x$ and $y$ in the given equation and simplify.
251. Parametric equations. The equations

$$
x=a \cos t, y=b \sin t
$$

are parametric equations of the ellipse. For the equation $b^{2} x^{2}+a^{2} y^{2}=a^{2} b^{2}$ is satisfied by the corresponding values of $x$ and $y$ for all values of $t$.

To find a geometric meaning of $t$, construct a circle having the major axis as diameter, Fig. 85.

Extend the ordinate $M P$ of the point $P(x, y)$ until it meets this circle at $P_{1}\left(x, y_{1}\right)$, and denote the vectorial angle of $P_{1}$ by $t$.

Then $x=a \cos t$,

$$
y_{1}=a \sin t .
$$

Since $y_{1}=\sqrt{a^{2}-x^{2}}$, and $y=\frac{b}{a} \sqrt{a^{2}-x^{2}}$, it follows that

$$
y=\frac{b}{a} y_{1} \text { and } y_{1}=\frac{a}{b} y
$$

Hence $\frac{a}{b} y=a \sin t$, by substitution, and $y=b \sin t$.


Fig. 85

The angle $t$ is the eccentric angle of the point $P(x, y)$ of the ellipse.
252. Geometrical construction of an ellipse. The parametric equations of the ellipse suggest the following construction of the curve.

Let $a$ and $b$ be the semimajor and semi-minor axes.

Draw the concentric circles, Fig. 86, whose radii are $a$ and $b$ respectively.

Draw $O P_{1}$ meeting the smaller circle at $P_{2}$.

Draw $M_{1} P_{1} \perp O X$ and

$$
P_{2} P \| O X
$$



Fig. 86

The point $P$ thus determined is a point of the required ellipse.

For let $t=\angle P_{1} O M_{1}$. Then $O M_{1}=a \cos t$, and $M_{1} P=M_{2} P_{2}=b \sin t$. The concentric circles are the auxiliary circles of the ellipse.

## EXERCISES

1. Construct the curve represented by the following parametric equations:

$$
x=t, y=\frac{a^{3}}{a^{2}+t^{2}}, \text { for } a=2
$$

This curve is known as the witch.
2. Construct the following loci:

$$
x=1+t, y=\frac{1}{2} t^{3} ; x=3 t, y=t^{2}(3 t-1)
$$

253. Equation of the tangent and normal to an ellipse. Let

$$
f(x, y)=b^{2} x^{2}+a^{2} y^{2}-a^{2} b^{2}
$$

Then the slope of the tangent at the point $\left(x_{1}, y_{1}\right)$ is

$$
-\frac{f_{x}^{\prime}\left(x_{1}, y_{1}\right)}{f_{y}^{\prime}\left(x_{1}, y_{1}\right)}=-\frac{2 b^{2} x_{1}}{2 a^{2} y_{1}}=-\frac{b^{2} x_{1}}{a^{2} y_{1}}, \S 226
$$

or

$$
m=-\frac{b^{2} x_{1}}{a^{2} y_{1}}
$$

$\therefore \quad$ The slope of the normal is given by

$$
n=\frac{a^{2} y_{1}}{b^{2} x_{1}}
$$

Hence the equation of the tangent is

$$
y-y_{1}=m\left(x-x_{1}\right)=-\frac{b^{2} x_{1}\left(x-x_{1}\right)}{a^{2} y_{1}}
$$

Show that this reduces to

$$
\frac{x_{1} x}{a^{2}}+\frac{y_{1} y}{b^{2}}=1
$$

State how this equation may be obtained directly by inspection from the equation of the ellipse.

Show that the equation of the normal is

$$
y-y_{1}=\frac{a^{2} y_{1}}{b^{2} x_{1}}\left(x-x_{1}\right)
$$

## EXERCISES

1. Find the slope of the tangent and normal to the following curves:

$$
\begin{aligned}
& 9 x^{2}+16 y^{2}=73, \text { at the point }(1,2) \\
& 5 x^{2}+18 y^{2}=182, \text { at the point }(2,-3)
\end{aligned}
$$

2. Write the equations of the tangent and normal to each of the following curves:

$$
\begin{aligned}
4 x^{2}+25 y^{2} & =100, \text { at the point }\left(4, \frac{6}{5}\right) \\
x^{2}+4 y^{2} & =16, \text { at the point }(0,-2)
\end{aligned}
$$

3. Find the equation of the tangent to the ellipse $\frac{x^{2}}{8}+\frac{y^{2}}{2}=1$ having the slope equal to .5 .

Find the slope at the point $P\left(x_{1}, y_{1}\right)$ and then determine $\left(x_{1}, y_{1}\right)$ by solving the system of equations
and

$$
\begin{array}{r}
m_{1}=.5 \\
\frac{x_{1}{ }^{2}}{8}+\frac{y_{1}^{2}}{2}=1
\end{array}
$$

When $\left(x_{1}, y_{1}\right)$ are known the equation of the tangent is given in § 253.
4. Find the angle between $x^{2}+4 y^{2}=5$ and $y=\frac{x^{2}}{8}$ at one of the points of intersection.
5. Prove that the tangents drawn at the end-points of the latus rectum to a parabola are perpendicular to each other.
6. Prove that the two tangents to the curve $b^{2} x^{2}+a^{2} y^{2}=a^{2} b^{2}$, which are perpendicular to each other, meet in a point which lies on the curve $x^{2}+y^{2}=a^{2}+b^{2}$.
254. Length of tangent, normal, subtangent, and subnormal.

Show as in $\S 231$ that the subtangent, Fig. 87, is given by the equation

$$
T Q=\frac{y_{1}}{m}=-\frac{a^{2} y_{1}^{2}}{b^{2} x_{1}}
$$



Fig. 87

Show that the
subnormal is given by the equation

$$
Q N=m y_{1}=\frac{-b^{2} x_{1}}{a^{2}}
$$

## EXERCISES

1. By means of the theorem of Pythagoras find the length of the tangent $P T$, and of the normal $P N$, Fig. 87.
2. The angle between the focal radii drawn to a point of an ellipse is bisected by the normal at that point. Prove.

Proof: The equation of the normal,


Fig. 88

$$
y-y_{1}=\frac{a^{2} y_{1}}{b^{2} x_{1}}\left(x-x_{1}\right)
$$

For

$$
\begin{gathered}
x=O N=-\frac{b^{2} x_{1}}{a^{2}}+x_{1}=\frac{\left(a^{2}-b^{2}\right) x_{1}}{a^{2}}=e^{2} x_{1} \\
F_{1} N=F_{1} O+O N=a e+e^{2} x_{1} \\
N F=O F-O N=a e-e^{2} x_{1} \\
\frac{F_{1} N}{N F}=\frac{a+e x_{1}}{a-e x_{1}}=\frac{F_{1} P}{P F}
\end{gathered}
$$

Hence, by plane geometry, the normal $N P$ bisects angle $F_{1} P F$.
This shows that a ray of light, or heat, from one focus of an elliptic surface is reflected to the other focus.
3. By means of exercise 2 show how to construct geometrically the tangent to a given ellipse at any point.
4. Find the equation of the tangent to $9 x^{2}+36 y^{2}=18$, parallel to the line $x-3 y+15=0$.
5. Find the equation of the tangent to the ellipse in exercise 4 drawn from an exterior point (1,2).

Show that the point of contact is found by solving the equation

$$
2-y=-\frac{1}{4} x_{1} y_{1}\left(1-x_{1}\right), \S 253
$$

and

$$
\frac{x_{1}{ }^{2}}{8}+\frac{y_{1}{ }^{2}}{2}=1
$$

6. Find the equation of the tangent from the point $(6,-1)$ to the ellipse $x^{2}+4 y^{2}=9$.
7. Find the lengths of the subtangent, subnormal, tangent, and normal to the equation $x^{2}+4 y^{2}=8$ at the point $(2,1)$.

## The Hyperbola

255. Hyperbola. Foci. The hyperbola is the locus of a point the difference of whose distances from two fixed points is constant. The fixed points are the foci of the hyperbola. The distances from a point on the curve to the foci are the focal radii.
256. Equation of the hyperbola. Denote the constant difference $F_{1} P-F P$ by $2 a$, Fig. 89.

Let $F_{1} F=2 c$.
Take the mid-point $O$ of $F_{1} F$ as origin and $O F$ as $x$-axis.

Then show that the equation

$$
F_{1} P-F P=2 a
$$



Fig. 89
may be written

$$
\sqrt{(x+c)^{2}+y^{2}}-\sqrt{(x-c)^{2}+y^{2}}=2 a
$$

As in $\S 243$ show that this may be reduced to

$$
\begin{equation*}
\left(a^{2}-c^{2}\right) x^{2}+a^{2} y^{2}=a^{2}\left(a^{2}-c^{2}\right) \tag{1}
\end{equation*}
$$

Since $F_{1} P-F P<F_{1} F$, it follows that $2 a<2 c$, or

$$
a<c, \text { and } a^{2}<c^{2}
$$

$\therefore$ Let $a^{2}-c^{2}=-b^{2}$
Then equation (1) reduces to

$$
b^{2} x^{2}-a^{2} y^{2}=a^{2} b^{2}
$$

or

$$
\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1
$$



Fig. 89
which is a standard form of the equation of the hyperbola.
257. Discussion of the equation $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$. For $y=0$ we have $x= \pm a$, which are the intercepts on the $x$-axis. Hence the hyperbola intersects the $x$-axis in two points $A_{1}$ and $A$.

The segment $A_{1} A$ is the transverse axis of the hyperbola. $A_{1}$ and $A$ are the vertices of the curve. The segment $B_{1} O B$ for which $O B_{1}=O B=b$, is called the conjugate axis.

For $x=0, y$ is imaginary. Hence the curve does not intersect the $y$-axis.

Extent of the hyperbola.-Solving the equation

$$
b^{2} x^{2}-a^{2} y^{2}=a^{2} b^{2}
$$

we have

$$
y= \pm \frac{b}{a} \sqrt{x^{2}-a^{2}}, x= \pm \frac{a}{b} \sqrt{y^{2}+b^{2}}
$$

Hence for numerical values of $x<a$ the values of $y$ are complex. If $x$ is numerically greater than $a$ and increases, $y$ is real and increases. This shows that the curves consist of two infinite branches, no points of which lie in the strip between the lines $x=+a$ and $x=-a$.

Symmetry of the hyperbola.-To every value of $x>a$ correspond two values of $y$ numerically equal and opposite in sign. The $x$-axis therefore divides each of the branches of the curve into two congruent symmetric parts.

The equation $x= \pm \frac{a}{b} \sqrt{y^{2}+b^{2}}$ shows that the curve is symmetrical with respect to the $y$-axis.
258. Focal radii. As in $\S 245$, we find
and

$$
\begin{gathered}
F_{1} P=r_{1}=\frac{c x}{a}+a \\
F P=r=\frac{c x}{a}-a
\end{gathered}
$$

259. Eccentricity. Since $c>a$, it follows that for the hyperbola the eccentricity

$$
e=\frac{c}{a}>1
$$

260. Equilateral hyperbola. When $a=b$ the equation $b^{2} x^{2}-a^{2} y^{2}=a^{2} b^{2}$ reduces to

$$
x^{2}-y^{2}=a^{2}
$$

This is called an equilateral or rectangular hyperbola.
261. Latus rectum. The chord $M N$, Fig. 90, drawn through a focus and perpendicular to the transverse axis is the latus rectum.

Show that

$$
M N=2 \frac{b^{2}}{a}
$$



Fig. 90
262. Asymptotes. Let $y=m x$ be the equation of a straight line through the origin. By solving simultaneously the system

$$
\begin{aligned}
y & =m x \\
b^{2} x^{2}-a^{2} y^{2} & =a^{2} b^{2}
\end{aligned}
$$

we have the co-ordinates of the points of intersection

$$
(x, y)=\left(\frac{ \pm a b}{\sqrt{b^{2}-a^{2} m^{2}}}, \frac{ \pm a m b}{\sqrt{b^{2}-a^{2} m^{2}}}\right)
$$

It follows that there is no point of intersection when

$$
b^{2}<a^{2} m^{2}, \text { or } b<a m
$$

Of special interest are the lines for which
i.e.,

$$
\begin{aligned}
b^{2} & =a^{2} m^{2} \\
m & = \pm \frac{b}{a}, \text { Fig. } 91
\end{aligned}
$$

For, changing the equation

$$
y= \pm \frac{b}{a} \sqrt{x^{2}-a^{2}}
$$

to the form


Fig. 91

$$
y= \pm \frac{b}{a} x \sqrt{1-\left(\frac{a}{x}\right)^{2}}
$$

it is seen that as $x$ increases without bound the branches of the hyperbola approach more and more the line

$$
y= \pm \frac{b}{a} x
$$

These lines are called the asymptotes of the hyperbola.
To construct them, draw the rectangle formed by the lines $x= \pm a$ and $y= \pm b$. Then draw the diagonals of this rectangle.

The asymptotes are helpful in drawing the hyperbola.

bridge of sant angelo, rome
The Romans used the arch very extensively in constructing their bridges
263. The equation of the hyperbola whose foci are on the $y$-axis. This equation may be obtained by interchanging the variables $x$ and $y$. It is therefore

$$
\frac{y^{2}}{a^{2}}-\frac{x^{2}}{b^{2}}=1
$$

The transverse axis is $2 a$, the vertices are the points $(0, \pm a)$, and the foci are the points $(0, \pm c)$.
264. Conjugate hyperbolas. The hyperbolas

$$
\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1 \text { and } \frac{y^{2}}{b^{2}}-\frac{x^{2}}{a^{2}}=1
$$

are conjugate hyperbolas, Fig. 92. The transverse and conjugate axis of either are respectively the conjugate and transverse axis of the other.

Since the equation

$$
c^{2}=a^{2}+b^{2}
$$

gives the same value of $c$ for


Fig. 92 both curves, the foci of both are at the same distance from the origin. Hence they lie on a circle whose radius is $c$, and whose center is the origin. They are the points

$$
F_{1}(-c, 0), F(c, 0), F_{1}^{\prime}(0,-c), F^{\prime}(0, c)
$$

The eccentricity of the conjugate hyperbola is

$$
e=\frac{c}{b}
$$

## EXERCISES

1. Discuss the equation $4 x^{2}-9 y^{2}=36$ as to extent, symmetry, intercepts, latus rectum, and asymptotes. Make a sketch of the curve.
2. Discuss as in exercise 1 the equations $9 x^{2}-y^{2}=16$; $x^{2}-y^{2}=9$.
3. Find the points on the curve $b^{2} x^{2}-a^{2} y^{2}=a^{2} b^{2}$, for which the abscissa is equal to the ordinate.
4. Find the points of intersection of the hyperbola $\frac{x^{2}}{9}-\frac{y^{2}}{4}=1$ and the line $3 y-4 x=2$.
5. Write the equation of the hyperbola conjugate to

$$
6 x^{2}-3 y^{2}=8 .
$$

6. Find the locus of a point which moves so that the difference of its distances from the points $(0, \pm 6)$ is equal to 10 .
7. Find the equation of the hyperbola whose center is at the origin whose foci are on the $x$-axis, if it passes through the points $(3 \sqrt{2}, 5)$ and $(-9,5 \sqrt{8})$.
8. Sketch the hyperbola $x^{2}-9 y^{2}=9$ and its conjugate.
9. Find the foci of the curve $9 x^{2}-16 y^{2}=144$.
10. Find the equation of the equilateral hyperbola passing through the point $(-5,2)$.
11. Find the equation of the hyperbola passing through $(1,-3)$ and $(2,4)$.
12. Find the lengths of the focal radii at the point for which $y=1$ and $x>0$, the equation of the curve being $4 x^{2}-9 y^{2}=36$.
13. Polar equation of the hyperbola. As in $\S 250$, the polar equation of the hyperbola, Fig. 93, is found to be

$$
\rho=\frac{p}{1-e \cos \theta}
$$



Fig. 93
where

$$
e>1, e=\frac{c}{a}, p=\frac{-b^{2}}{a}, b^{2}=c^{2}-a^{2}
$$

266. Discussion of the polar equation. Show that the intercepts are as follows:

| $\theta$ | 0 | $90^{\circ}$ | $180^{\circ}$ | $270^{\circ}$ |
| :---: | :---: | :---: | :---: | :---: |
| $\rho$ | $a+c$ | $\frac{-b^{2}}{a}$ | $-(c-a)$ | $\frac{-b^{2}}{a}$ |

Extent of the curve.-The value of $\rho$ increases without bound as $1-e \cdot \cos \theta$ approaches zero, i.e., as $\cos \theta \rightarrow \frac{a}{c}$.

When $\cos \theta>\frac{a}{c}$, show that $1-e \cos \theta<0$ and $\rho>0$. The point $P$ lies, therefore, on the branch of the curve to the right of $O$.

When $\cos \theta<\frac{a}{c}$, show that $1-e \cos \theta>0$ and $\rho<0$, and $P$ lies on the branch to the left of $O$.

The following table gives the changes of $\rho$ and $\theta$ for $\theta=0^{\circ} \ldots 360^{\circ}$

| $\theta$ | 0 | $\ldots$ | $\operatorname{arcos} \frac{a}{c}$ | $\ldots$ | $90^{\circ}$ | $\ldots$ | $180^{\circ}$ | $270^{\circ}$ | $\ldots$ | $\operatorname{arcos} \frac{a}{c}$ | $\ldots$ | $360^{\circ}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\rho$ | $a+c$ | + | $\infty$ | - | $-\frac{b^{2}}{a}$ | - | $-(c-a)$ | $-\frac{b^{2}}{a}$ | - | $\infty$ | + | $a+c$ |

Symmetry.-Since $\cos (-\theta)=\cos \theta$, the curve is symmetric with respect to the polar axis.
267. Equation of the tangent and normal. As in $\S 253$ the slope of a tangent to the hyperbola may be found to be

$$
m=\frac{b^{2} x_{1}}{a^{2} y_{1}}
$$

The slope of the normal is

$$
m=-\frac{a^{2} y^{2}}{b^{2} x_{1}}
$$

The equation of the tangent is

$$
y-y_{1}=\frac{b^{2} x_{1}}{a^{2} y_{1}}\left(x-x_{1}\right)
$$

which reduces to

$$
\frac{x_{1} x}{a^{2}}-\frac{y_{1} y}{b^{2}}=1
$$

The equation of the normal is

$$
y-y_{1}=-\frac{a^{2} y_{1}}{b^{2} x_{1}}\left(x-x_{1}\right)
$$

These equations may also be obtained by substituting $\left(-b^{2}\right)$ for $b^{2}$ in the corresponding equations for the ellipse.
268. Length of tangent, normal, subtangent, and subnormal. The lengths of the subtangent and subnormal may be derived as in $\S 254$. They may also be obtained by substituting $\left(-b^{2}\right)$ for $b^{2}$ in the formulas of $\S 267$.

Hence for the hyperbola the subtangent is $\frac{a^{2} y_{1}^{2}}{b^{2} x_{1}}$ and the subnormal is $\frac{b^{2} x_{1}}{a^{2}}$.

The tangent and normal are found by means of the theorem of Pythagoras.

## EXERCISES

1. Find the equation of the tangent to the hyperbola $\frac{x^{2}}{16}-\frac{y^{2}}{9}=1$ at the point $\left(-6 \frac{2}{3}, 4\right)$.
2. Find the equations of the tangents drawn from the point $(+1 / 2,0)$ to the hyperbola $\frac{x^{2}}{2}-y^{2}=1$.
3. Prove that the angle between the focal radii of any point on the hyperbola is bisected by the tangent at the point.

Sce exercise $2, \$ 254$.
4. Show that the parametric equations of the hyperbola are $x=a \sec \theta$ and $y=b \tan \theta$.

Eliminate the parameter $\theta$.
5. Plot the equation

$$
\rho=\frac{2}{1-2 \cos }
$$

## The Parabola

269. The equation of the parabola has been discussed in chapter v . The following is a review and extension of the important formulas:
270. Standard form of the equation of the parabola:

$$
y^{2}=4 p x
$$

2. Polar equation:

$$
\rho=\frac{2 p}{1-\cos \theta}
$$

3. Tangent to the parabola:

$$
y_{1} y=2 p\left(x+x_{1}\right)
$$

4. Normal to the parabola:

$$
y-y_{1}=-\frac{y_{1}}{2 p}\left(x-x_{1}\right)
$$

5. Subtangent:

$$
2 x_{1}
$$

6. Subnormal:

$$
2 p
$$

7. Focal radius:

$$
r=x_{1}+p
$$

## EXERCISES

1. Find the co-ordinates of the focus and the length of the focal radius from the point $(2,4)$ if the equation of the parabola is $y^{2}=8 x$.
2. Prove that the parametric equations of the parabola are $x=\frac{t^{2}}{4 p}, y=t$.
3. Find the angle between the curves $y^{2}=8 x$ and $.8 x^{2}+.2 y^{2}=1$.
4. Find the equation of the tangent to $y^{2}=4 x$ which makes an angle of $45^{\circ}$ with the $x$-axis.
5. Find the equation of the chord of the parabola $y^{2}=4 x$ which is bisected by the point $(4,2)$.
6. Prove that the angle between the two tangents to a parabola is equal to one-half the angle between the focal radii drawn to the points of contact.
7. Plot and find the co-ordinates of the points of intersection of $y^{2}=4 x+5$ and $y=2 x+1$.

Historical note. The ellipse, parabola, and hyperbola have been studied since the days of Democritus ( $460-370$ b.c.) and of Archytas of Tarentum (430-365 в.c.). The former studied the plane sections of a cone parallel to the base, and the latter studied the mutual intersections of cones and cylinders. Probably Archytas did not recognize his intersections to be plane curves.

Plato, however, urged upon scholars the importance of studying the geometry of solids as well as of planes, and Menaechmus ( 350 в.с.), a disciple of Plato, is credited with being the discoverer of these curves as sections of cones. He regarded the ellipse as a section of an acute-angled cone, by a plane passed perpendicular to an element, a parabola as a similar section of a right-angled cone, and a hyperbola as such a section of an obtuse-angled
cone. Each type was a section of a special form of cone. Menaechmus solved the then celebrated problem of the duplication of the cube in two ways, one with the aid of a parabola and hyperbola, and the other with two intersecting parabolas. His work on these curves became so famous that for many years after his time the curves were called the "Menaechmian triads." Menaechmus' solutions of the cube-duplication problem stimulated other mathematicians to devise other curves to solve one or another of the three classical problems of antiquity. Thus we have the quadratrix of Hippias, the spirals of Archimedes, the conchoid of Nicomedes (ca. 180 b.c.), and the cissoid of Diocles (ca. 180 в.c.).

Aristaeus about 320 в.c. wrote a great work in five books on the ellipse, parabola, and hyperbola, calling them space loci.

Euclid about 300 b.c. wrote on the theory of these curves. Euclid's work is lost, but we are told that Apollonius (between 250 and 200 в.c.), whose monumental work on conic sections constitutes the crown of ancient mathematics, was greatly dependent on Euclid's work, and in an extant manuscript by Euclid there is a passage in which he says that the section of a right circular cone made by a plane not parallel to the base is a "long shield" (i.e., an ellipse). He thus recognized that an ellipse could be cut from a cone by a plane in another position than perpendicular to an element.

Archimedes (287-212 в.c.) wrote on the conics, his chief contributions being the determination of the areas of the parabola and the ellipse.

Apollonius ( $260-200$ в.c.) wrote a great work in eight books on the theory of the conic sections, collecting and systematizing all existing knowledge of the curves and immensely extending it. His work introduced the modern nomenclature and the geometrical method of treatment and soon drove out of circulation all other works on the subject, Euclid's included. Apollonius treated the curves as plane loci, not necessarily to be regarded as sections of cones. It was nearly a thousand years after Apollonius before any further advance was made in the theory of the conics.

It may be said that while the methods of Apollonius were geometrical they nevertheless were equivalent to the use of co-ordinates. The method of treatment given in this text is called analytical, and it employs co-ordinates, but it also employs algebraic equations as a means of revealing the geometrical properties of the conic sections. Thus employment of algebraic equations to develop the properties of the conics was developed comparatively recently. Heron, in the first century before Christ, carried Apollonius' methods into surveying, and the Arabs in the eighth and ninth centuries after Christ applied Appolonius' methods even to the solution of cubic equations. A drawing, with accompanying explanatory text, made by an unknown European author of the tenth or eleventh century after Christ applies co-ordinates to some astronomical problems, and Bishop Nicholas Oresmus (1323-82) taught the astronomical uses of abscissas and ordinates in the College of Navarre in Paris, France, but he had no thought of the use of the algebraic equation as applied to co-ordinates. He located a series of separate points but could not handle a continuous succession of points.

The second essential of the analytical method is the application of algebraic equations to the study of geometry.

Algebra arose out of the pure calculatory processes of arithmetic. These processes were first stated as mere abbreviated rules of reckoning, and later these rules were more compactly written as formulas. The Arabs made some progress in showing the correctness of algebraic rules by the aid of geometrical reasoning. Leonardo of Pisa in 1202 introduced Arabian methods into Europe and urged the importance of proving algebraic formulas by geometry. Subsequently most significant mathematicians both advocated and used geometry to prove algebraic things. Pacioli (1494), Tartaglia (1500-57), Cardan (1501-76), Benedetti. (1530-90), Vieta (1540-1603), all followed this practice, and in 1630 Ghetaldi published a book on algebraic geometry, in which, with Vieta's aid, he systematized both how geometry might be used to rationalize algebra and, by the introduction of an unknown, how algebraic equations might be
employed to derive geometrical properties. Vieta, Pascal, Cavalieri, Fermat, and many others employed algebraic equations in geometrical study. This method indeed characterized the spirit of the mathematical age just before Descartes. But Descartes in 1637 sketched a method by which algebraic equations, in conjunction with co-ordinates, could be applied as a most powerful means of discovering properties of geometrical figures. Descartes' method, as perfected by his immediate successors, is the analytical method, which is the method used in this text. The particular application of the analytical method of the study of the conic sections that is used here embodies, of course, many improvements and simplifications that have been introduced in very recent times. (Mainly from Tropfke, Band II, Th. 12 u. 13.)

## Summary

270. The chapter has taught the meaning of the following terms:
focal radii
latus rectum
focus
eccentricity
parametric equations
eccentric angle
auxiliary circles
subtangent
subnormal
hyperbola
major and minor axis
transverse axis
conjugate axis
equilateral hyperbola
asymptotes
conjugate hyperbolas
271. The table on pp. 238 and 239 contains a list of equations and formulas developed in this chapter.

|  | Circle | Parabola | Ellipse | Hyperbola |
| :---: | :---: | :---: | :---: | :---: |
| Cartesian Equations | $\begin{aligned} & x^{2}+y^{2}=a^{2} \\ & (x-h)^{2}+(y-k)^{2}=a^{2} \end{aligned}$ <br> where $h$ and $k$ are the co-ordinates of the center | $\begin{aligned} & y^{2}=4 p x \\ & (y-k)^{2}=4 p(x-h) \end{aligned}$ <br> where $p=$ the distance from the vertex to the focus | $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ <br> where $a$ and $b$ are the semi-major and -minor axes | Conjugate hyperbolas: $\begin{aligned} & \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1 \\ & \frac{y^{2}}{b^{2}}-\frac{x^{2}}{a^{2}}=1 \end{aligned}$ <br> Equilateral hyperbola: $x^{2}-y^{2}=a^{2}$ |
| Polar Equations | $\rho=2 a \cos \theta$ <br> where $a$ is the radius | $\rho=\frac{2 p}{1-\cos \theta},$ <br> where $p=$ the distance from the vertex to the focus | $\begin{aligned} & \rho=\frac{p}{1-e \cos \theta}, \\ & \text { where } p=\frac{b^{2}}{a}, e<1 \end{aligned}$ | $\begin{aligned} & \rho=\frac{p}{1-e \cos \theta}, \\ & \text { where } p=-\frac{b^{2}}{a}, e>1 \end{aligned}$ |
| Parametric Equations | $\left\{\begin{array}{l} x=a \cos t \\ y=a \sin t \end{array}\right.$ | $x=\frac{t^{2}}{4 p}, y=t$ | $\left\{\begin{array}{l} x=a \cos t \\ y=b \sin t \end{array}\right.$ | $\left\{\begin{array}{l} x=a \sec t \\ y=b \tan t \end{array}\right.$ |
| Asymptotes |  |  |  | $y= \pm \frac{b}{a} x$ |
| Foci |  | $(p, 0)$ | $( \pm c, 0)$ | $( \pm c, 0)$ |


|  | Circle | Parabola | Ellipse | Hyperbola |
| :---: | :---: | :---: | :---: | :---: |
| Intercepts | $\pm a, \pm a$ |  | $\begin{aligned} & \pm a, \pm b \\ & a^{2}=b^{2}+c^{2} \end{aligned}$ | $\begin{aligned} & \pm a \\ & a^{2}=c^{2}-b^{2} \end{aligned}$ |
| Extent of the Curve | $\|x\| \leqq a,\|y\| \leqq a$ | $x \geqq 0$ | $\|x\| \leqq a,\|y\| \leqq b$ | $\|\boldsymbol{x}\| \geqq \boldsymbol{a}, \boldsymbol{y}=$ any value |
| Axes of Symmetry | Any diameter | $x$-axis | $x$-axis, $y$-axis | $x$-axis, $y$-axis |
| Eccentricity |  | $e=1$ | $e=\frac{c}{a}<1$ | $e=\frac{c}{a}>1$ |
| Focal Radii |  | $x_{1}+p$ | $\begin{aligned} & a \pm e x, \\ & r_{1}+r=2 a \end{aligned}$ | $\begin{aligned} & e x \pm a, \\ & r_{1}-r=2 a \end{aligned}$ |
| Latis Rectum |  | $4 p$ | $\frac{2 b^{2}}{a}$ | $\frac{2 b^{2}}{a}$ |
| Tangent | $x_{1} x+y_{1} y=a^{2}$ | $y_{1} y=2 p\left(x+x_{1}\right)$ | $\frac{x_{1} x}{a^{2}}+\frac{y_{1} y}{b^{2}}=1$ | $\frac{x_{1} x}{a^{2}}-\frac{y_{1} y}{b^{2}}=1$ |
| Normal | $y=\frac{y_{1}}{x_{1}} x$ | $y-y_{1}=-\frac{y_{1}}{2 p}\left(x-x_{1}\right)$ | $y-y_{1}=\frac{a^{2} y_{1}}{b^{2} x_{1}}\left(x-x_{1}\right)$ | $y-y_{1}=-\frac{a^{2} y_{1}}{b^{2} x_{1}}\left(x-x_{1}\right)$ |
| Subtangent, Subnormal |  | $2 x_{1}, 2 p$ | $-\frac{a^{2} y_{1}^{2}}{b^{2} x_{1}},-\frac{b^{2} x_{1}}{a^{2}}$ | $\frac{a^{2} y_{1}^{2}}{b^{2} x_{1}}, \frac{b^{2} x_{1}}{a^{2}}$ |

## CHAPTER XV

## CONIC SECTIONS. TRANSFORMATION OF CO-ORDINATES

## Plane Sections of a Right Circular Cone

272. Conic sections. The circle, parabola, ellipse, and hyperbola may be obtained as curves in which a right circular cone is cut by a plane. For this reason they are called conic sections, or conics.*
273. The parabola. We shall first consider the case when the cutting plane is parallel to an element of the cone.

Let $A V B$, Fig. 94, be a right circular cone, and let $C D P$ be a section made by a plane parallel to $V A$.

Let the plane $A V B$ represent a section of the cone passing through the vertex and perpendicular to the plane $C D P$.

Inscribe a sphere in the cone tangent to the plane $C D P$ at $F$. Let the sphere touch the cone in the circle

* The conic sections were first studied by Menaechmus (375325 в. . . .), and they were long known as "Menaechmian triads." Most Greek mathematicians after Menaechmus discussed them. Euclid (about $300-275$ в.c.) wrote a book on conic sections. Apollonius (about $260-200$ в.с.) completed their study. Apollonius introduced the word parabola, together with ellipse and hyperbola into science (Ball, pp. 47, 60, 79).
$G H E I$. Plane $G H E$ is perpendicular to the axis of the cone and therefore to plane $A V B$. Since plane $C D P$ is also perpendicular to $A V B$, the line of intersection $K L$ must be perpendicular to plane $A V B$.

Let $P$ be any point on the section $C D P$.
Draw VP meeting GHE at $M, P N \| F D$.
Then $P F=P M=A G=A^{\prime} G^{\prime}=P N$.
Hence any point $P$ on the section $C D P$ is equidistant from $F$ and $K L$, or $\frac{P F}{P N}=1$

Let $D$ be the origin and $A^{\prime} G^{\prime}$ the $x$-axis.
Then the co-ordinates of $P$ are

$$
x=D A^{\prime}, y=A^{\prime} P
$$

Show that $\quad y^{2}=\left(A^{\prime} P\right)^{2}=\left(A A^{\prime}\right) \cdot\left(A^{\prime} B\right)$

$$
\therefore \frac{y^{2}}{x}=\left(A A^{\prime}\right) \cdot \frac{A^{\prime} B}{D A^{\prime}}=\frac{G G^{\prime} \cdot G E}{V G}
$$

Since for any point $P$ on the given section $C D P$ the lines $G G^{\prime}, G E$, and $V G$ remain constant, we have

$$
\frac{y^{2}}{x}=\text { constant }
$$

Denoting this constant by $4 p$, we obtain the equation

$$
y^{2}=4 p x
$$

which is the equation of a parabola.
274. Definition of a conic section. Equation (1), § 273, illustrates a fundamental property common to all conic sections, which may be defined as follows:

A conic is the locus of a point which moves in a plane so that the distance from a fixed point in the plane is in constant ratio to the distance from a fixed line in that same plane.

The fixed point is called the focus, the fixed line the directrix, and the constant ratio the eccentricity.

When the eccentricity $e=1$ the equation of the conic reduces to the equation of the parabola. When $e<1$ the conic is an ellipse, and when $e>1$ the conic is a hyperbola.
275. The ellipse. Let the plane $C P D$, Fig. 95, cut all elements of the cone. Inscribe a sphere touching the cone in the circle $G M E$ and touching plane $C . D P$ in $F$.

Inscribe a second sphere touching the cone in circle $G_{1} M_{1} E_{1}$ and plane $C D P$ in $F_{1}$.

Draw $P F$ and $\cdot P F_{1}$.
Show that

$$
P F=P M
$$

and that

$$
P F_{1}=P M_{1}
$$

$\therefore \quad P F+P F_{1}=M M_{1}$


Since $M M_{1}$ is constant for every point $P$ in the section $C D P$, it follows that the locus of $P$ is an ellipse.

The points $F_{1}$ and $F$ are the foci of the ellipse. The lines of intersection of planes GME and $C D P$ and of $C D P$ and $G_{1} M_{1} E_{1}$ are parallel and equidistant from the foci. They are the two directrices of the ellipse.
276. The circle. When plane $C D P$, Fig. 95, is parallel to the base of the cone, the section is a circle.

The circle may then be regarded as a particular case of an ellipse.
277. The hyperbola. If the plane $C D P$, Fig. 96, cuts both sheets of the cone, the section is a hyperbola.

For

$$
P F_{1}=P M_{1}
$$

and

$$
\begin{aligned}
P F & =P M \\
P F_{1}-P F & =M M_{1}
\end{aligned}
$$

which is constant for any point $P$.
$F$ and $F_{1}$ are the foci of the hyperbola. The directrices are the lines of intersection of plane $C D P$ with planes GME and $G_{1} M_{1} E_{1}$.

## 278. Limiting cases.

 The parabola may be regarded as the limiting case of both the ellipse and the hyperbola. For if the cutting plane $C D P$, Fig. 95, is made to turn about $D$,

Fig. 96 the point $C$ moves away to an infinite distance when the plane becomes parallel to the element $V A$.

Similarly the branch $C_{1} D_{1} P_{1}$, Fig. 96, moves off to an infinite distance as the plane $C D P$ is made to rotate about $D$ and becomes parallel to $V A$.

If plane $C D P$ becomes a tangent plane to the cone, the section approaches a straight line as a limit.

If the cutting plane passes through $V$, the section will be one straight line, two intersecting straight lines,
or a point, according as the plane is tangent to the cone, intersects the cone in an element, or contains the vertex as the only point of the cone.
279. Directrix. Since for any point $P$, Fig. 97, on the ellipse we have the equation

$$
\frac{F_{1} P}{P N_{1}}=e
$$

it follows that the equation holds for point $A_{1}$ on the ellipse, i.e.,


Fig. 97

$$
\begin{aligned}
\frac{F_{1} A_{1}}{A_{1} D_{1}} & =e, \\
\frac{a-c}{O D_{1}-a} & =e \\
O D_{1} & =\frac{a e+a-c}{e}=\frac{a}{e}
\end{aligned}
$$

Hence the equation of the directrix $D_{1} N_{1}$ is

$$
x=-\frac{a}{e}
$$

Similarly the equation of the directrix $D N$ is

$$
x=+\frac{a}{e}
$$

For the hyperbola, Fig. 98.

$$
\begin{aligned}
\frac{F_{1} P}{P N_{1}} & =e \\
\therefore \quad \frac{F_{1} A_{1}}{A_{1} D_{1}} & =e \\
\frac{c-a}{a-O D_{1}} & =e \\
O D_{1} & =\frac{a e-c+a}{e}=\frac{a}{e}
\end{aligned}
$$

Hence the equations of the directrices of the hyperbola are

$$
x= \pm \frac{a}{e}
$$

## EXERCISES

1. Find the foci, directrices, and latus rectum of the following conics and sketch each:
2. $x^{2}+9 y^{2}=9$
3. $x^{2}-9 y^{2}=9$
4. $9 x^{2}-16 y^{2}=144$
5. $9 x^{2}+25 y^{2}=225$
6. $4 x^{2}+9 y^{2}=36$
7. $9 x^{2}-36 y^{2}=324$
8. Write the equation of the ellipse whose center is the origin and whose major axis is the $x$-axis if the directrix is $x=-3$ and the eccentricity . 6 ; if the equation of the directrix is $x=8$ and the distance between the foci 10 .
9. Find the lengths the semi-axes and the center of the hyperbola whose focus is $(3,0)$, whose directrix is $x=1$, and for which $e=\frac{3}{2}$.

## Transformation of Co-ordinates

280. Changes of axes. It is often possible to simplify the equation of a locus by making a change of the position of the axes of co-ordinates and thus referring the equation to the new axes. This is known as a transformation of co-ordinates.
281. Translation of axes. When the new axes $O^{\prime} X^{\prime}$ and $O^{\prime} Y^{\prime}$, Fig. 99, are parallel respectively to the old axes $O X$ and $O Y$, the transformation is called a translation of the axes.

Let ( $h, k$ ) be the co-ordinates of the new origin $O^{\prime}$ referred to the old axes.


Fig. 99

Let a point $P$ have the co-ordinates $(x, y)$ when referred to the old axes and $\left(x^{\prime}, y^{\prime}\right)$ when referred to the new axes. Then

$$
\begin{array}{cc}
O A=x, & A P=y \\
O^{\prime} A^{\prime}=x^{\prime}, & A^{\prime} P=y^{\prime}
\end{array}
$$

Since $O A=O B+B A$,

$$
\begin{equation*}
x=h+x^{\prime} \tag{1}
\end{equation*}
$$

Since $A P=A A^{\prime}+A^{\prime} P$,

$$
y=k+y^{\prime}
$$



Fig. 99

Equations (1) and (2) are the formulas of translation. Hence, if in an equation of a locus we substitute $h+x^{\prime}$ for $x$ and $k+y^{\prime}$ for $y$, the new equation is the equation of the locus referred to the point $(h, k)$ as origin, the new axes being parallel to the old.,

Thus no point of the locus changes position, although the equation is changed to a different form.

## EXERCISES

1. Prove equations (1) and (2), § 281, when $O^{\prime}$ is located as in Fig. 100.
2. Find the co-ordinates $\left(x^{\prime}, y^{\prime}\right)$ of the point $(x, y)=(-2,3)$ with respect to a new pair of axes intersecting at the point $(2,-1)$ and parallel to the original axes.

Since $(h, k)=(2,-1)$, it follows that


Fig. 100

$$
\begin{aligned}
\quad x & =2+x^{\prime}, y=-1+y^{\prime} \\
\therefore \quad x^{\prime} & =x-2, y^{\prime}=y+1 \\
\text { or } \quad x^{\prime} & =-4, \quad y^{\prime}=4
\end{aligned}
$$

Transform the following equations by translating the axes, in each case moving the origin to the point indicated:
3. $2 x^{2}+3 y^{2}-12 x+2 y+10=0$; new origin $(3,-2)$

Here

$$
x=3+x^{\prime}, y=-2+y^{\prime}
$$

By substitution the equation is changed to

$$
2\left(3+x^{\prime}\right)^{2}+3\left(-2+y^{\prime}\right)^{2}-12\left(3+x^{\prime}\right)+2\left(-2+y^{\prime}\right)+10=0
$$

which reduces to $\quad 2 x^{\prime 2}+3 y^{\prime 2}-10 y^{\prime}-12=0$
The primes may now be dropped, since the old axes are no longer considered.
4. $y=3 x-5$; new origin $(3,-2)$. Graph the given and the transformed equation and both pairs of axes.
5. $y^{2}-3 x+3 y+12=0$; new origin $(1,5)$ -
6. $x^{2}+y^{2}+4 x+8$; new origin $(2,-3)$
7. $y^{2}-3 y-2 x+4=0$; new origin $(2,-1)$
282. Equations of the conic whose principal axis is parallel to one of the co-ordinate axes. The standard equations of the conics were obtained by choosing the origin as center and one of the co-ordinate axes as principal axis. By translating the origin to the point $(h, k)$, the standard equations are transformed to the following:

Circle

$$
(x-h)^{2}+(y-k)^{2}=a^{2}
$$

Ellipse, axis $y=k, \quad \frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1$

$$
\text { axis } x=h, \quad \frac{(y-k)^{2}}{a^{2}}+\frac{(x-h)^{2}}{b^{2}}=1
$$

Hyperbola, axis $y=k, \frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1$

$$
\operatorname{axis} x=h, \quad \frac{(y-k)^{2}}{a^{2}}-\frac{(x-h)^{2}}{b^{2}}=1
$$

Parabola, vertex ( $h, k$ ),

$$
\begin{array}{ll}
\text { axis } y=k, & (y-k)^{2}=4 p(x-h) \\
\text { axis } x=h, & (x-h)^{2}=4 p(y-k)
\end{array}
$$

The equations in $\S 282$ are all of the general form

$$
A x^{2}+B y^{2}+2 G x+2 F y+C=0
$$

They may be derived from this form by completing the squares:

## EXERCISES

Simplify the following equations:

1. $x^{2}-y^{2}-4 x-12 y-20=0$

Completing the squares

$$
\begin{array}{r}
\left(x^{2}-4 x+4\right)-2\left(y^{2}-6 y+9\right)=6 \\
\frac{(x-2)^{2}}{6}-\frac{(y-3)^{2}}{3}=1
\end{array}
$$

or
a conic whose center is $(2,3)$.
2. $9 x^{2}+4 y^{2}-54 x+40 y+145=0$
3. $9 x^{2}-16 y^{2}+90 x+128 y-175=0$
283. Removal of terms of the first degree. An important use of transforming the co-ordinates is the simplification of equations. For the origin can often be so chosen as to remove from the equation the terms of the first degree in $x$ and $y$. The following example illustrates the method.

Simplify the equation

$$
\begin{equation*}
x^{2}+y^{2}-2 x+2 y+7=0 \tag{1}
\end{equation*}
$$



Fig. 101

Let $x=h+x^{\prime}$ and $y=k+y^{\prime}$, Fig. 101.
Then equation (1) becomes

$$
\left(h+x^{\prime}\right)^{2}+\left(k+y^{\prime}\right)^{2}-2\left(h+x^{\prime}\right)+2\left(k+y^{\prime}\right)+7=0
$$

Dropping the primes and collecting terms gives the equation

$$
x^{2}+y^{2}+(2 h-2) x+(2 k+2) y+\left(h^{2}+k^{2}-2 h+2 k+7\right)=0
$$

Let

$$
2 h-2=0 \text { and } 2 k+2=0
$$

or let

$$
h=1, k=-1
$$

Then the equation reduces to

$$
x^{2}+y^{2}=9
$$

This is the equation of a circle whose radius is 3 .
Therefore the given equation represents the same circle referred to the original axes.

## EXERCISES

In the following equations remove the terms of the first degree by translating the axes:

1. $x^{2}+y^{2}-2 x+2 y+3=0$
2. $4 x^{2}+9 y^{2}-16 x-18 y-11=0$
3. $9 x^{2}+4 y^{2}-36 x+16 y=-16$
4. $x^{2}+3 y^{2}+x-9 y=-4$
5. $2 x^{2}-4 y^{2}+4 x+4 y-1=0$
6. By transforming the co-ordinate axes, simplify the equation

$$
x^{2}+4 y^{2}-16 x+24 y+84=0
$$

Sketch the curve, also the old and the new axes.
284. Rotation of axes. Let the angle $X O Y$, Fig. 102, be turned about the origin $O$ to the new position $X^{\prime} O Y^{\prime}$, and denote angle $X O X^{\prime}$ by $\theta$.

Let $(x, y)$ be the co-ordinates of a point $P$ referred to the axes $O X$ and $O Y$, and let ( $x^{\prime}, y^{\prime}$ ) be the co-ordinates of $P$ referred to the axes $O X^{\prime}$ and $O Y^{\prime}$.

Draw $Q^{\prime} R \perp Q P$.


Fig. 102

Then

$$
x=O Q=O S-Q S=x^{\prime} \cos \theta-y^{\prime} \sin \theta
$$

and

$$
y=Q P=S Q^{\prime}+R P=x^{\prime} \sin \theta+y^{\prime} \cos \theta
$$

Hence, when the axes are rotated through a given angle without moving the origin the relations between the old co-ordinates and the new co-ordinates of a point are

$$
\left\{\begin{array}{l}
x=x^{\prime} \cos \theta-y^{\prime} \sin \theta \\
y=x^{\prime} \sin \theta+y^{\prime} \cos \theta
\end{array}\right.
$$

They are called the formulas of rotation.
By means of these formulas the equation of a locus may be transformed into a new equation referred to new axes having the same origin but making a given angle with the original axes. This transformation is called rotation of the axes.

The angle $\theta$ may be so chosen that the new equation shall have no term in $x y$. This will be used to simplify a given equation; see $\S 290$.

## EXERCISES

Transform each of the following equations by rotating the axes through the angle indicated:

1. $x y=8 ; \theta=45^{\circ}$

Let $\quad x=x^{\prime} \cos \theta-y^{\prime} \sin \theta=\frac{x^{\prime} \sqrt{2}}{2}-\frac{y^{\prime} \sqrt{2}}{2}$
and $-\quad y=x^{\prime} \sin \theta+y^{\prime} \cos \theta=\frac{x^{\prime} \sqrt{2}}{2}+\frac{y^{\prime} \sqrt{2}}{2}$
Substituting in the given equation and reducing, we have
or

$$
\begin{aligned}
\frac{x^{\prime 2}-y^{\prime 2}}{2} & =8 \\
x^{2}-y^{2} & =16
\end{aligned}
$$

which is the equation of an equilateral hyperbola.
2. $x^{2}+12 x y+9 y^{2}=16 ; \quad \theta=\frac{\pi}{4}$
3. $29 x^{2}-24 x y+36 y^{2}-180=0 ; \quad \theta=\arctan \frac{3}{4}$
4. $x^{2}+y^{2}=a^{2} ; \quad \theta=\frac{\pi}{6}$

Show that this equation is unaltered by rotating the axes through any angle.
5. $16 y^{2}-24 x y+9 x^{2}-20 x+110 y=75 ; \quad \theta=\arcsin \frac{3}{5}$

## Summary

285. If a right circular cone is cut by a plane the section may be a circle, parabola, ellipse, hyperbola, or two intersecting straight lines.
286. The following equations and formulas have been developed:

| Curves | Equations | Directrices | Equations if the Principal Axis Is Parallel to One of the Co-ordinate Axes |
| :---: | :---: | :---: | :---: |
| Ellipse | $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ | $x= \pm \frac{a}{e}$ | $\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1$, if the axis is $y=k$ $\frac{(y-k)^{2}}{a^{2}}+\frac{(x-h)^{2}}{b^{2}}=1$, if the axis is $x=h$ |
| Hyperbola | $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ | $x= \pm \frac{a}{e}$ | $\frac{(\boldsymbol{x}-\boldsymbol{h})^{2}}{a^{2}}-\frac{(y-\boldsymbol{k})^{2}}{b^{2}}=1$, if the axis is $y=k$ $\frac{(\boldsymbol{y}-\boldsymbol{k})^{2}}{a^{2}}-\frac{(x-h)^{2}}{b^{2}}=1$, if the axis is $x=h$ |
| Circle | $x^{2}+y^{2}=a^{2}$ |  | $(x-h)^{2}+(x-k)^{2}=a^{2}$, if the center is at the point $(h, k)$ |
| Parabola | $y^{2}=4 p x$ |  | $(y-k)^{2}=4 p(x-h)$, if the axis is $y=k$ $(x-h)^{2}=4 p(y-k)$, if the axis is $x=h$ |

Formulas of translation: $\left\{\begin{array}{l}x=h+x^{\prime} \\ y=k+y^{\prime}\end{array}\right.$
Formulas of rotation: $\quad\left\{\begin{array}{l}x=x^{\prime} \cos \theta-y^{\prime} \sin \theta \\ y=x^{\prime} \sin \theta+y^{\prime} \cos \theta\end{array}\right.$

## CHAPTER XVI

## THE GENERAL EQUATION OF THE SECOND DEGREE. DIAMETERS

The General Equation of the Second Degree
287. General equation of a conic. The most general equation of the second degree is of the form

$$
\begin{equation*}
A x^{2}+2 H x y+B y^{2}+2 G x+2 F y+C=0 \tag{1}
\end{equation*}
$$

where $A, H$, and $B$ cannot all be zero.
The following shows that the most general equation of a conic is of the form of equation (1).

Let $P(x, y)$ be any point on the conic, Fig. 103.

Let $D G$ be the directrix given by the equation


Fig. 103

$$
a x+b y+c=0
$$

Then

$$
\begin{align*}
& P D=x \cos \omega+y \sin \omega-p \\
& P F=e \cdot P D \tag{2}
\end{align*}
$$

Let $(h, k)$ be the co-ordinates of the focus $F$.
Then equation (2) may be written

$$
\begin{equation*}
\sqrt{(x-h)^{2}+(y-k)^{2}}=e(x \cos \omega+y \sin \omega-p) \tag{3}
\end{equation*}
$$

By squaring both sides and collecting terms equation (3) reduces to

$$
\begin{array}{r}
\left(1-e^{2} \cos ^{2} \omega\right) x^{2}-2\left(e^{2} \cos \omega \sin \omega\right) x y+\left(1-e^{2} \sin ^{2} \omega\right) y^{2} \\
+2\left(e^{2} p \cos \omega-h\right) x+2\left(e^{2} p \sin ^{2} \omega-k\right) y+h^{2}+k^{2} \\
-e^{2} p^{2}=0 \tag{4}
\end{array}
$$

which is of the form of equation (1).
288. A conic passing through five given points. Equations (1) and (4), § 287, involve five arbitrary constants. They are $h, k, p, \omega$, and $e$ in equation (4), and five ratios between the coefficients $A, H, B, G, F$, and $C$ in equation (1). A conic section is therefore determined by five independent conditions. Thus, in general, a conic can be passed through five points in the same plane.

The equation of a conic to be determined by five points may be found by first substituting the co-ordinates of the given points in the general equation

$$
x^{2}+a x y+b y^{2}+c x+d y+e=0
$$

The values of $a, b, c, d$, and $e$ may then be determined by solving the system of the five linear equations thus obtained.

The following is a shorter method of finding the equation of a conic to be determined by five points.

Let $P, Q, R$, and $S$, Fig. 104, be four of the given points.

Form the equations of the lines $P Q, Q R, R S$, and $S P$.

Suppose these equations are denoted by $l_{1}, l_{2}, l_{3}$, and $l_{4}$, re-


Fig. 104 spectively. Then $l_{1} l_{3}=0$ and $l_{2} l_{4}=0$ are two equations of the second degree in $x$ and $y$, having the points $T, Q, R, S$ in common.

Hence the quadratic equation

$$
l_{1} l_{3}+k l_{2} l_{4}=0
$$

represents a system of conics passing through the four points $P, Q, R$, and $S$. The value of $k$ is determined by substituting in this equation the co-ordinates of the fifth given point.

It will be seen,.$\S 295$, that a parabola is determined by four points.

## EXERCISES

Find the equation of the conic passing through the following points:

$$
\begin{array}{ll} 
& \text { 1. }(1,-2),(2,-1),(1,2),(-3,-1),(-2,4) \\
& l_{1}=-x+y+3=0 \\
& l_{2}=3 x-4 y+5=0 \\
\therefore & l_{1} l_{2}+k l_{3} l_{4}=(-x+y+3)(3 x-4 y+5) \\
& l_{3}=-3 x-y+5=0 \\
l_{4}=-x-4 y-7=0 \\
+k(-3 x-y+5)(-x-4 y-7)=0
\end{array}
$$

Substituting $(x, y)=(-2,4)$ we have

$$
\begin{aligned}
(9)(-17)+k(7)(-21) & =0 \\
k & =-\frac{51}{49}
\end{aligned}
$$

2. $(1,1),(-1,2),(-2,-1),(0,-2),(3,-3)$
3. $(0,0),(0,-2),(2,-1),(-2,3),(4,3)$
4. $(1,-3),(2,4),(-3,1),(4,2),(0,0)$
5. $(1,1),(-1,2),(2,3),(-3,-1),(0,-4)$
6. The general equation of the second degree is a conic. We have seen that the equations of the conics are special cases of the most general equation

$$
A x^{2}+2 H x y+B y^{2}+2 G x+2 F y+C=0
$$

In §§ 290-93 we shall show that this equation always represents a conic or a limiting case of a conic.
290. Removal of the $x y$-term. By means of the rotation formulas the general equation

$$
\begin{equation*}
A x^{2}+2 H x y+B y^{2}+2 G x+2 F y+C=0 \tag{1}
\end{equation*}
$$

is transformed to

$$
A^{\prime} x^{\prime 2}+2 H^{\prime} x^{\prime} y^{\prime}+B^{\prime} y^{\prime 2}+2 G^{\prime} x^{\prime}+2 F^{\prime} y^{\prime}+C^{\prime}=0
$$

where

$$
\begin{aligned}
A^{\prime} & =A \cos ^{2} \theta+2 H \sin \theta \cos \theta+B \sin ^{2} \theta \\
H^{\prime} & =(B-A) \sin \theta \cos \theta+H\left(\cos ^{2} \theta-\sin ^{2} \theta\right) \\
B^{\prime} & =A \sin ^{2} \theta-2 H \sin \theta \cos \theta+B \cos ^{2} \theta \\
G^{\prime} & =G \cos \theta+F \sin \theta \\
F^{\prime} & =F \cos \theta-G \sin \theta
\end{aligned}
$$

Let $H^{\prime}=(B-A) \sin \theta \cos \theta+H\left(\cos ^{2} \theta-\sin ^{2} \theta\right)=0$.
This equation is equivalent to

$$
(B-A) \sin 2 \theta+2 H \cos 2 \theta=0
$$

$\therefore \tan 2 \theta=\frac{2 H}{A-B}$, or $\theta=\frac{1}{2} \arctan \frac{2 H}{A-B}$
As $2 \theta$ changes from $0^{\circ}$ to $180^{\circ}$, or as $\theta$ takes all possible values between $0^{\circ}$ and $90^{\circ}$, $\tan 2 \theta$ assumes all positive and negative values. Hence we can always find a value of $\theta$, less than $90^{\circ}$, which satisfies the equation $\tan 2 \theta=\frac{2 H}{A-B}$.

The term $x^{\prime} y^{\prime}$ in the transformed equation will vanish if the axes are rotated through the angle $\theta$.

Hence, in place of equation (1) we may discuss the simpler transformed equation

$$
A^{\prime} x^{2}+B^{\prime} y^{2}+2 G^{\prime} x+2 F^{\prime} y+C^{\prime}=0
$$

## EXERCISES

Simplify the following equations by removing the $x y$-term:

1. $8 x^{2}+4 x y+5 y^{2}=36$

Here

$$
\tan 2 \theta=\frac{2 H}{A-B}=\frac{4}{3}
$$

Hence,

$$
\cos 2 \theta=\frac{3}{5}
$$

$$
\begin{aligned}
\therefore \quad & \sin \theta=\sqrt{\frac{1-\cos 2 \theta}{2}}=\sqrt{\frac{1}{5}} \\
\quad \cos \theta & =\sqrt{\frac{1+\cos 2 \theta}{2}}=\sqrt{\frac{4}{3}}
\end{aligned}
$$

and

The formulas of rotation are

$$
\begin{aligned}
& \left\{\begin{array}{l}
x=x^{\prime} \sqrt{\frac{4}{\frac{4}{5}}}-y^{\prime} \sqrt{\frac{1}{5}} \\
y=x^{\prime} \sqrt{\frac{1}{5}}+y^{\prime} \sqrt{\frac{4}{5}}
\end{array}\right. \\
& \therefore 9 x^{2}+4 y^{2}=36
\end{aligned}
$$

2. $x^{2}-2 x y+y^{2}-2 y-1=0$
3. $16 y^{2}-24 x y+9 x^{2}-20 x+110 y-75=0$
4. Transform the equation

$$
\rho=\frac{1}{1-2 \cos \theta}
$$

into Cartesian co-ordinates, find the center of the curve, and its intercepts on the axes. Sketch the curve.
5. Transform the co-ordinates so that the $x y$-term disappears from the equation

$$
x^{2}+x y+y^{2}=4
$$

Sketch the curve on the new axes and find the co-ordinates of the foci.

## 291. Discussion of the equation

$$
A x^{2}+B y^{2}+2 G x+2 F y+C=0
$$

By completing the squares this equation may be written

$$
A\left(x+\frac{G}{A}\right)^{2}+B\left(y+\frac{F}{B}\right)^{2}=\frac{A F^{2}+B G^{2}-A B C}{A B}
$$

By translating the axes and moving the origin to the point $\left(-\frac{G}{A},-\frac{F}{B}\right)$, this equation reduces to

$$
A x^{\prime 2}+B y^{\prime 2}=k
$$

If $A$ and $B$ have like signs, this is the equation of an ellipse, if $k$ has the same sign as $A$ and $B$. If the sign of $k$ is opposite to that of $A$ and $B$ the equation is not satisfied by real values of $x$ and $y$, and the locus is
imaginary. If $k=0$ the equation is satisfied only by the point $\left(x^{\prime}, y^{\prime}\right)=(0,0)$ or $(x, y)=\left(-\frac{G}{A},-\frac{F}{B}\right)$. This point may be considered a limiting case of the ellipse.

If $A$ and $B$ have opposite signs, the equation

$$
A x^{\prime 2}+B y^{\prime 2}=k
$$

is a hyperbola when $k \neq 0$.
If $k=0$, the equation represents two straight lines passing through the points $\left(x^{\prime}, y^{\prime}\right)=(0,0)$, or $(x, y)=\left(-\frac{G}{A},-\frac{F}{B}\right)$. They may be considered a limiting case of the hyperbola.

If either $A$ or $B$ is zero, let us suppose $A=0, B \neq 0$. Then the original equation is of the form

$$
B y^{2}+2 G x+2 F y+C=0
$$

Completing the square we have

$$
B\left(y+\frac{F}{B}\right)^{2}=-2 G\left(x+\frac{C}{2 G}-\frac{F^{2}}{2 G B}\right)
$$

If $G \neq 0$, the origin may be moved to the point

$$
(x, y)=\left[\left(-\frac{C}{2 G}+\frac{F^{2}}{2 G B}+x^{\prime}\right),\left(-\frac{F}{B}+y^{\prime}\right)\right]
$$

The equation then is transformed to

$$
y^{\prime 2}=-\frac{2 G}{B} x^{\prime}
$$

the locus of a parabola.
If $G=0$, the equation is of the form

$$
B y^{2}+2 F y+C=0
$$

By factoring we have

$$
B\left(y-r_{1}\right)\left(y-r_{2}\right)=0
$$

$r_{1}$ and $r_{2}$ being the roots of the equation $B y^{2}+2 F y+C=0$. Hence the locus either consists of two parallel or two coinciding lines, or is imaginary, according as $r_{1}$ and $r_{2}$ are real or imaginary.
292. The value of $A B-H^{2}$ is not changed by a rotation of the axes. For

$$
\begin{aligned}
& A^{\prime} B^{\prime}-H^{\prime 2}= \\
& {\left[A \cos ^{2} \theta+2 H \sin \theta \cos \theta+B \sin ^{2} \theta\right]\left[A \sin ^{2} \theta-2 H \sin \theta \cos \theta\right.} \\
& \left.+B \cos ^{2} \theta\right] \quad-\left[(B-A) \sin \theta \cos \theta+H\left(\cos ^{2} \theta-\sin ^{2} \theta\right)\right]^{2} \\
& =A^{2} \sin ^{2} \theta \cos ^{2} \theta \quad+2 A H \sin ^{3} \theta \cos \theta+A B \sin ^{4} \theta \\
& -4 H^{2} \sin ^{2} \theta \cos ^{2} \theta \quad-2 B H \sin ^{3} \theta \cos \theta \quad-2 A H \sin \theta \cos ^{3} \theta \\
& +B^{2} \sin ^{2} \theta \cos ^{2} \theta \quad+2 B H \sin \theta \cos ^{3} \theta \quad+A B \cos ^{4} \theta \\
& -(B-A)^{2} \sin ^{2} \theta \cos ^{2} \theta+2(B-A) H \sin ^{3} \theta \cos \theta-H^{2} \sin ^{4} \theta \quad-2(B-A) H \sin \theta \cos ^{3} \theta \\
& -H^{2} \cos ^{4} \theta \\
& +2 H^{2} \sin ^{2} \theta \cos ^{2} \theta \\
& =\left(A B-H^{2}\right) \sin ^{4} \theta+2\left(A B-H^{2}\right) \sin ^{2} \theta \cos ^{2} \theta \quad+\left(A B-H^{2}\right) \cos ^{4} \theta \\
& =\left(A B-I I^{2}\right)\left[\sin ^{2} \theta+\cos ^{2} \theta\right]^{2}=A B-H^{2}
\end{aligned}
$$

293. Discussion of the equation

$$
A x^{2}+2 H x y+B y^{2}+2 G x+2 F y+C=0
$$

By rotating the axes through an angle

$$
\theta=\frac{1}{2} \arctan \frac{2 H}{A-B}
$$

the equation is transformed to
and

$$
\begin{gathered}
A^{\prime} x^{\prime 2}+B^{\prime} y^{2}+2 G^{\prime} x^{\prime}+2 F^{\prime} y^{\prime}+C^{\prime}=0 \\
A B-H^{2}=A^{\prime} B^{\prime}-H^{\prime 2}=A^{\prime} B^{\prime}
\end{gathered}
$$

Hence, according to §291, if $A^{\prime}$ and $B^{\prime}$ have like signs; or
if $A B-H^{2}>0$, the original equation represents an ellipse, or a point, or an imaginary locus;
if $A B-H^{2}<0$, the equation represents a hyperbola, or two intersecting straight lines;
if $A B-H^{2}=0$, the equation represents a parabola, two parallel lines, two coinciding lines, or an imaginary locus.

These results may be tabulated as follows:

|  | $A^{\prime} F^{\prime 2}+B^{\prime} G^{\prime 2}-A^{\prime} B^{\prime} C^{\prime} \not \mathcal{F}^{\prime} 0$ | $A^{\prime} F^{\prime 2}+B^{\prime} G^{\prime 2}-A^{\prime} B^{\prime} C^{\prime}=0$ |
| :---: | :---: | :---: |
| $A B-H^{2}>0$ | The locus is an ellipse real or imaginary. | The locus is a point. |
| $A B-H^{2}<0$ | The locus is a hyperbola. | The locus consists of two intersecting straight lines. |
| $A B-H^{2}=0$ | The locus is a parabola. | The locus consists of two parallel straight lines, two coinciding lines, or is imaginary. |

The expression $A^{\prime} F^{\prime 2}+B^{\prime} G^{\prime 2}-A^{\prime} B^{\prime} C^{\prime}$ may be expressed in terms of the coefficients of the original equations by means of the values given in $\S 290$. The same results may be obtained by removing the terms of the first degree from the original equation and then computing the numerator of the constant term. The result is
or

$$
\Delta=A B C+2 F G H-A F^{2}-B G^{2}-C H^{2}
$$

$$
\Delta=\left|\begin{array}{lll}
A & H & C \\
H & B & F \\
G & F & C
\end{array}\right|
$$

This is called the discriminant of the equation

$$
A x^{2}+2 H x y+B y^{2}+2 G x+2 F y+C=0
$$

294. Co-ordinates of the center of a central conic. Let $h$ and $k$ be the co-ordinates of the center. The origin may be moved to the point $(h, k)$ by translation of the axes, using the formulas

$$
\left\{\begin{array}{l}
x=h+x^{\prime} \\
y=k+y^{\prime}
\end{array}\right.
$$

The general equation then reduces to

$$
\begin{aligned}
& A x^{\prime 2}-2 H x^{\prime} y^{\prime}+B y^{\prime 2}+2(A h+H k+G) x^{\prime} \\
&+2(H h+B k+F) y^{\prime}+C^{\prime}=0
\end{aligned}
$$

Hence $h$ and $k$, the co-ordinates of the center, satisfy the equations

$$
\left\{\begin{array}{l}
A h+H k+G=0  \tag{1}\\
H h+B k+F=0
\end{array}\right.
$$

Solving for $h$ and $k$

$$
h=\frac{H F-B G}{A B-H^{2}}, k=\frac{H G-A F}{A B-H^{2}}
$$

Equations (1) have one common solution if

$$
A B-H^{2} \neq 0
$$

295. Simplification of numerical equations of a conic. The following suggestions are useful in reducing an equation to the simplest form:

Determine $A B-H^{2}$.
If $A B-H^{2} \neq 0$, and the conic is an ellipse or a hyperbola, find the co-ordinates of the center, § 294. The origin should then be moved to the center, thus removing the first-degree terms.

Remove the $x y$ term by turning the axes through an angle

$$
\theta=\frac{1}{2} \arctan \frac{2 H}{A-B}
$$

If $A B-H^{2}=0$, and if the conic is a parabola, the terms of the first degree cannot be removed, since the equations in $h$ and $k, \S 294$, are inconsistent.

Hence the $x y$-term is removed first. The transformed equation is then of the form

$$
B^{\prime} y^{2}+2 G^{\prime} x+2 F^{\prime} y+C^{\prime}=0
$$

The origin is then moved to the point

$$
(h, k)=\left[\left(\frac{-C^{\prime}}{2 G^{\prime}}+\frac{F^{\prime 2}}{2 G^{\prime} B^{\prime}}+x^{\prime \prime}\right),\left(-\frac{F^{\prime}}{B^{\prime}}+y^{\prime \prime}\right)\right]
$$

reducing the equation to the form

$$
y^{\prime \prime 2}=-2 \frac{G^{\prime}}{B^{\prime}} x^{\prime \prime}
$$

## EXERCISES

Simplify the following equations and determine the locus:

1. $32 x^{2}+8 x y+5 y^{2}+16 x-16 y-16=0$
2. $4 x^{2}-4 x y+y^{2}-2 y-1=0$
3. $x^{2}+2 y x+y^{2}-4=0$
4. $3 x^{2}-3 x y-y^{2}+15 x+10 y-24=0$
5. $8 x^{2}-3 y^{2}+16 x-6 y+11=0$
6. $4 x^{2}+8 x y+4 y^{2}+4 x+3=0$
7. $36 x^{2}-48 x y+16 y^{2}-6 x+4 y-6=0$
8. $4 x^{2}+12 x y+9 y^{2}-30 x+80 y+200=0$
9. Find the vertices, foci, and asymptotes of the hyperbola $x^{2}-4 y^{2}+2 x+12 y=9$.
10. Sketch the curve $x=2-3 \cos t, y=3+2 \sin t$, and find its Cartesian equation.

Find the equation of a parabola passing through the following four points:
11. $(0,-3),(-4,-2),(2,0),(2,7)$

Use $\S 288$ and the equation $A B-H^{2}=0$
12. $(6,-1),(4,-4),(9,4),(5,-2)$
13. $(4,0),(0,4),(1,1),(9,1)$

## Diameters

296. Diameters. The locus of the middle points of a system of parallel chords of a conic is a diameter of the conic.
297. Diameter of a parabola. Let the equation of the parabola be $y^{2}=4 p x$.

Let $Q R$ be any chord, Fig. 105, $P_{1}\left(x_{1}, y_{1}\right)$ the middle point of $Q R$, and $P(x, y)$ any point on $Q R$.

Denote the angle made by $Q R$ and $O X$ by $\theta$, and the distance $P_{1} P$ by $r$.

Then the equation of $Q R$ is

$$
\frac{x-x_{1}}{\cos \theta}=\frac{y-y_{1}}{\sin \theta}=r
$$

It follows that


Fig. 105

$$
\begin{equation*}
x=x_{1}+r \cos \theta, y=y_{1}+r \sin \theta \tag{1}
\end{equation*}
$$

By substituting the results in (1) in the equation $y^{2}=4 p x$ we have

$$
r^{2}\left(\sin ^{2} \theta\right)+2 r\left(y_{1} \sin \theta-2 p \cos \theta\right)+\left(y_{1}^{2}-4 p x_{1}\right)=0
$$

If $P$ falls on $R$, or on $Q$, the two values of $r$ formed by solving this equation are numerically equal and opposite in sign.
Hence $\quad y_{1} \sin \theta-2 p \cos \theta=0$

$$
\begin{aligned}
& y_{1}=2 p \cot \theta \\
& y_{1}=\frac{2 p}{m}
\end{aligned}
$$

where $m$ is the slope of the chord.
As $Q R$ moves parallel to its first position, $m$ remains constant, but the point $P_{1}$ always satisfies the equation

$$
y=\frac{2 p}{m}
$$

This shows that the locus of $P_{1}$, the diameter of the parabola, is a straight line parallel to the axis.

Let $O^{\prime}$ be the point of intersection of the parabola with the diameter.

Then the co-ordinates of $O^{\prime}$ are

$$
\left(x^{\prime}, y^{\prime}\right)=\left(\frac{p}{m^{2}}, \frac{2 p}{m}\right)
$$

Show that the equation of the tangent at $O^{\prime}$ reduces to

$$
y=m x+\frac{p}{m}
$$

Hence the tangent at the end-point of the diameter is parallel to the chords bisected by the diameter.
298. Diameters of an ellipse and hyperbola. Substituting the values in equation (1), § 297, in the equation

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
$$

we have
$\left(\frac{\cos ^{2} \theta}{a^{2}}+\frac{\sin ^{2} \theta}{b^{2}}\right) r^{2}+2\left(\frac{x_{1} \cos \theta}{a^{2}}+\frac{y_{1} \sin \theta}{b^{2}}\right) r+\frac{x_{1}{ }^{2}}{a^{2}}+\frac{y_{1}{ }^{2}}{b^{2}}-1=0$
Hence

$$
\frac{x_{1} \cos \theta}{a^{2}}+\frac{y_{1} \sin \theta}{b^{2}}=0
$$

Dropping the subscripts, the equation of the diameter of the ellipse is

$$
y=-\left(\frac{b^{2}}{a^{2}} \cot \theta\right) x
$$

or

$$
y=-\frac{b^{2}}{a^{2} m} x
$$

The equation shows that the diameters of an ellipse pass through the center.

Similarly the equation of the diameter of the hyperbola

$$
\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1
$$

is found to be

$$
y=\frac{b^{2}}{a^{2} m} x
$$

## EXERCISES

1. Find the equation of the diameter of $4 x^{2}-8 y^{2}=96$, which bisects all the chords parallel to the line $6 x-8 y=10$.
2. Find the equation of the chord of $16 x^{2}+8 y^{2}=32$ which is bisected at the point $(-4,1)$.
3. Find the equation of the diameter of the parabola $2 y^{2}+6 x=0$ bisecting the chords whose slope is 2 .
4. Conjugate diameters. We have seen that the equation of a diameter of the ellipse

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
$$

is

$$
y=-\frac{b^{2}}{a^{2} m} x
$$

Let $m_{1}$ be the slope of the diameter. Then

$$
m_{1}=-\frac{b^{2}}{a^{2} m}
$$

when

$$
m m_{1}=-\frac{b^{2}}{a^{2}}
$$

This is the relation between the slope of the diameter $y=m_{1} x$ and the parallel chords of slope $m$ bisected by the diameter.

If the diameter $y=m x$, Fig. 106, bisects all the chords parallel to the diameter $y=m_{1} x$ the relation between their slopes is

$$
\begin{equation*}
m m_{1}=-\frac{b^{2}}{a^{2}} \tag{1}
\end{equation*}
$$

If the slopes $m$ and $m_{1}$ satisfy the equation

$$
m m_{1}=-\frac{b^{2}}{a^{2}}
$$



Fig. 106
they are called conjugate diameters.

Similarly it may be shown that the conjugate diameters of the hyperbola, Fig. 107, satisfy the relation

$$
m m_{1}=\frac{b^{2}}{a^{2}}
$$



Fig. 107

## EXER CISES

1. Show that the axes of an ellipse or hyperbola are the only pair of conjugate diameters perpendicular to each other.
2. Prove that if one of two conjugate diameters of an ellipse makes an acute angle with the $x$-axis, the other makes an obtuse angle with the $x$-axis.
3. Prove that if one of two conjugate diameters of a hyperbola makes an acute angle with the transverse axis, the other makes an acute angle with it.
4. If the slope of a diameter of an ellipse is $\frac{b}{a}$ show that the slope of the conjugate diameter is $-\frac{b}{a}$. Show that the two diameters are equal, and that their equations are $y= \pm \frac{b}{a} x$.
5. Show that the equal conjugate diameters of a hyperbola coincide with one of the asymptotes.
6. Show that two conjugate diameters of a circle are always perpendicular to each other.

## Summary

300. The chapter has taught the meaning of the following terms:
discriminant diameter of a conic
central conic conjugate diameters
301. The following theorems have been proved:
302. The general equation of the second degree is a conic.
303. A conic is determined by five points.
304. The term in $x y$ in an equation of a conic will vanish if the axes are rotated through an angle

$$
\theta=\frac{1}{2} \arctan \frac{2 H}{A-B}
$$

4. The value of $A B-H^{2}$ is not changed by a rotation of the axes.
5. The locus of the general equation of the second degree may be determined as follows:

| If $A B-H^{2}>0$ | If $A^{\prime} F^{\prime 2}+B^{\prime} G^{\prime 2}-A^{\prime} B^{\prime} C^{\prime} \neq 0$ | The locus is an ellipse real $A^{\prime} F^{\prime 2}+B^{\prime} G^{\prime 2}-A^{\prime} B^{\prime} C^{\prime}=0$ <br> or imaginary. |
| :--- | :--- | :--- |
| The locus is a point. |  |  |
| If $A B-H^{2}<0$ | The locus is a hyperbola. | The locus consists of two <br> intersecting straight lines. |
| The locus is a parabola. <br> The locus consists of two <br> parallel straight lines, two <br> coinciding lines, or is <br> imaginary. |  |  |

## CHAPTER XVII

## LOCI

## Plotting the Locus of an Equation

303. Plotting the locus of an equation. A conic section has been defined as the locus of a point satisfying a given geometric property. For example, the circle is the locus of a point moving in a plane and having a fixed distance from a given point in the plane. This property may be expressed as an equation stating a relation between the co-ordinates of the variable point, such as $x^{2}+y^{2}=r^{2}$, or $\rho=2 r \cos \theta$. The locus may then be constructed by plotting the equation. In general this involves the following steps:
304. Solve the equation for one of the co-ordinates.
305. Tabulate a series of pairs of corresponding values of the co-ordinates.
306. Plot the points corresponding to these pairs of values.
307. Join the points by means of a smooth curve. The method of plotting curves will be illustrated in §§ 304 to 308 .
308. The exponential curve. The exponential curve is defined by the equation

$$
y=a^{x}
$$

In constructing the graph let $a=2$.


Fig. 108

Verify the table in Fig. 108.

Discussion: For all values of $a>1$ the value of $y$ is positive for any value of $x$. Hence the curve does not cross the $x$-axis.

As $x$ increases, $a^{x}$ also increases, and $\lim a^{x}=+\infty$.

$$
x \rightarrow+\infty
$$

As $x$ decreases, $a^{x}$ decreases, and $\lim _{x \rightarrow-\infty} a^{x}=0$, i.e., the curve approaches the $x$-axis as an asymptote.

When $x=0, a^{x}=1$. Hence the curve crosses the $y$-axis at the point $(0,1)$ for all values of $a>1$.
305. The logarithmic curve. The logarithmic curve is defined by the equation $y=\log _{\alpha} x$. According to the definition of a logarithm this relation is equivalent to the equation $x=a^{y}$, which may be obtained from the exponential equation $y=a^{x}$ by interchanging the variables. The graph of the curve is given in Fig. 109.



Fig. 109
306. The four-leafed rose. To graph the equation

$$
\rho=a \sin 2 \theta
$$

let $a=1$ and tabulate corresponding pairs of values of $\rho$ and $\theta$, Fig. 110.

The locus is found to be a four-leafed curve, if plotted for all four quadrants.

Show that as $\theta$ varies from $0^{\circ}$ to $360^{\circ}$ the point describes the leaves in the first, fourth, third, and second quadrants.


Fig. 110

## EXERCISES

1. Plot the four-leafed rose $\rho=a \cos 2 \theta$; the three-leafed rose $\rho=\sin 3 \theta$; the five-leafed rose $\rho=a \sin 5 \theta$.
2. Show that the equation $\rho=a \sin 2 \theta$, transformed into rectangular co-ordinates, takes the form $\left(x^{2}+y^{2}\right)^{2}=4 a^{2} x^{2} y^{2}$.
3. The lemniscate. To obtain the locus of the equation

$$
\rho^{2}=2 a^{2} \cos 2 \theta
$$

solve the equation for $\rho$, which gives $\rho= \pm a \sqrt{2 \cos 2 \theta}$.
Let $a=1$ and let $\theta$ vary from $0^{\circ}$ to $360^{\circ}$. The following table shows the corresponding approximate values of $\rho$ :

| $\theta$ | 0 | $\frac{15^{\circ}}{\rho^{\circ}}$ | $\frac{30^{\circ}}{ \pm 1}$ | $\frac{45^{\circ}}{ \pm .9}$ | $\frac{\text { increasing to } 135^{\circ}}{ \pm .7}$ | $\frac{135^{\circ}}{ \pm 0}$ | $\frac{\text { increasing to } 180^{\circ}}{\text { imaginary }}$ |
| :---: | :---: | :---: | :---: | :---: | :--- | :---: | :---: |
| increasing to $\pm 1$ |  |  |  |  |  |  |  |

The curve is shown in Fig. 111. As $\theta$ varies from $0^{\circ}$ to $45^{\circ}$ the point describes the parts of the curve which lie in the first and third quadrant. As $\theta$ varies from $135^{\circ}$ to $180^{\circ}$ the parts in the second and fourth quadrant are described.


Fig. 111

## EXERCISES

1. Find the intercepts and axes of symmetry of the locus of the equation $\rho^{2}=2 a^{2} \cos 2 \theta$.
2. Transform the equation $\rho^{2}=2 a^{2} \cos 2 \theta$ into the equation $\left(x^{2}+y^{2}\right)^{2}=2 a^{2}\left(x^{2}-y^{2}\right)$.

Historical note. The lemniscate was invented and intensively studied by James Bernoulli (1654-1705), a professor of mathematics from 1687 to 1705 in the Swiss city of Basle. The curve is commonly referred to as the lemniscate of Bernoulli. It is a special case of the Cassimian oval, §313. Fagnano (16821786) also devoted considerable study to this curve. The word lemniscate means "like a hanging ribbon."


JAMES BERNOULLI

JAMES BERNOULLI (1654-1705) was born and educated at Bâle. After finishing his linguistic and philosophical studies at the university at Bâle, he accidentally saw some geometrical figures one day and became seized with a passion for mathematical study. He applied himself secretly to mathematical pursuits against his father's desire to make a clergyman of him. From 1676 to 1682 he traveled to France, England, and Holland and made the acquaintance of distinguished scientists of those countries. Returning to Bâle in 1682 he opened a public seminary on experimental physics and devoted himself to physical and mathematical investigation. He mastered the then newly created calculus by his own almost unaided efforts and was always thenceforth a strong advocate of the differcntial calculus. He was the first to use the word integral as applied to the calculus.

He wrote and published tractates on Teaching Mathematics to the Blind, on Dialling, on Comets, on Gravitation of the Aether, etc. Some of his tracts of this period were tinged with the philosophy of Descartes, and some were said to contain matters worthy of Newton's Principia.

He contributed much to mathematical methods, was the first to solve Leibnitz' problem of the isochronous curve, and proposed the problem of the catenary. He contributed the curves known as the elastica, the lintearia, and the velaria. In his study of spirals he became so impressed with the remarkable properties of the logarithmic spiral that he requested it to be engraved on his tombstone with the words, Eadem numero mutata resurgo. The request was fulfilled.

In 1696 he proposed the famous isoperimetrical problem and offered a reward for its solution. With numerous other mathematicians his brother John offered a solution. James showed John's solution to be incorrect. John altered his solution, resubmitted it, and clained the reward. James showed the amended solution to be still incorrect and called it no solution at all. James then gave a correct solution of his own. John republished another incorrect solution but did not concedeits incorrectness until 1718, after James's death, and then he tried to "palm off" his brother's solution, thinly disguised, for his own incorrect one.

James Bernoulli was professor of mathematics at the university at Bâle from 1687 until his death in 1705, when he was succeeded by his brother John. He was once rector of the university, and numerous honors were bestowed upon him. His chief continuous work was his Ars conjectandi, a book on the calculus of probabilities. This contains what are now called "Bernoulli's theorem" and "Bernoulli's numbers." These numbers are the coefficients of $\frac{x^{n}}{n!}$ in the expansion $\left(e^{x}-1\right)^{-1}$, though Bernoulli did not so regard them.
[See Ball, Cajori, or Encyclopaedia Britannica.]
308. The limaçon and cardioid. The equations of the limaçon

$$
\rho=a \pm b \cos \theta
$$

and $\rho=a \pm b \sin \theta$ lead to different forms of the locus according as $a$ is less than, greater than, or equal to, $b$.

| $\theta$ | $\delta$ |
| ---: | :--- |
| $-0^{\circ}$ | -3. |
| $30^{\circ}$ | 2.7 |
| $45^{\circ}$ | 2.4 |
| $60^{\circ}$ | 2. |
| $90^{\circ}$ | 1. |
| $120^{\circ}$ | 0. |
| $135^{\circ}$ | -.4 |
| $150^{\circ}$ | -.7 |
| $180^{\circ}$ | -.1 |



Fig. 112
Fig. 112 is the locus of the equation $\rho=1+2 \cos \theta$. When $a=b$ the locus is called the cardioid, Fig. 113.


Fig. 113

## EXERCISES

1. Transform the equation $\rho=a \pm b \cos \theta$ into rectangular co-ordinates.
2. Plot and discuss the locus of each of the equations,

$$
\rho=1-2 \cos \theta ; \rho=1+2 \sin \theta ; \rho=1-2 \sin \theta
$$

3. Plot and discuss each of the following cardioids,

$$
\rho=1-\cos \theta ; \rho=1+\cos \theta ; \rho=1-\sin \theta ; \rho=1+\sin \theta
$$

Historical note. The limaçon, commonly called the limaçon of Pascal, was invented and given the name limaçon by Blaise Pascal (1623-62). Pascal was a renowned theologian, analyst, geometrician, and philosopher. The limaçon is a special case of the Cartesian oval, which may be defined as a curve having two focal points, in which a constant multiple of one radius vector of any point differs from the other radius vector of the same point by a constant quantity. The word limaçon means "snail-like."

## Determination of the Equation from the Geometric Property of the Locus

309. The cissoid of Diocles. Let $O B A$, Fig. 114, be a circle with diameter $O A$. Let the variable secant $O B$, revolving about $O$, meet the tangent $A C$ at $D$. From $O$ lay off $O P=B D$. It is required to determine the equation of the locus of $P$.

Let $a$ be the radius of the circle and denote $\angle P O A$ by $\theta$.

Then

$$
\cos \theta=\frac{2 a}{O D}, \text { and } O D=2 a \sec \theta
$$

Similarly

$$
\cos \theta=\frac{O B}{2 a}, \text { and } O B=2 a \cos \theta
$$



Fig. 114

Since

$$
\rho=O P=O D-P D=O D-O B
$$

it follows that

$$
\begin{aligned}
\rho=2 a(\sec \theta-\cos \theta) & =2 a\left(\frac{1-\cos ^{2} \theta}{\cos \theta}\right) \\
& =\frac{2 a \sin ^{2} \theta}{\cos \theta}
\end{aligned}
$$

## $\therefore \quad \rho=2 a \tan \theta \sin \theta$

1. Transform the polar equation of the cissoid into the equation

$$
y^{2}=\frac{x^{3}}{2 a-x}
$$

2. Show that the line $x=2 a$ is an asymptote of the cissoid, that the curve is symmetric with respect to the $x$-axis, and that the values of $x$ must lie between 0 and $2 a$.

Historical note. The cissoid was devised by a Greek mathematician named Diocles, of the first Alexandrian school. Diocles lived about 180 b.c. Little else is known of him except that he solved the problem proposed by Archimedes, to draw a plane to divide a sphere into two parts whose volumes shall be in a given ratio.

The Greek word cissoid means "ivy-like," and Diocles named his curve from its resemblance to the vine of the ivy hanging from a trellis.

Diocles devised the cissoid to solve the problem of inserting two mean proportionals between two given lines, to which Hippocrates, many years before, had reduced the problem of duplicating a cube. To insert two mean proportionals, $x$ and $y$, between any line, $a$, and its double, $2 a$, we take the proportion:

$$
a: x=x: y=y: 2 a
$$

and solve it for $x$, finding easily that

$$
x^{3}=2 a^{3}, \text { whence } x=\sqrt[3]{2 a}
$$

The cissoid enables us to construct $x$. If then $a$ denote the length of the edge of a given cube, $x$ will be the length of edge of a cube of twice the volume.

Taking the proportion

$$
a: x=x: y=y: n a
$$

we readily find

$$
x^{3}=n a^{3} \text {, or } x=a 1^{3} \frac{1}{n}
$$

Now letting $a=1$, we have $x=\sqrt[3]{n}$, and since $n$ is any number, and $x$ can be constructed from the cissoid, this curve enables us to construct a line which equals the cube root of any number.
310. The witch of Agnesi. Let $O A B$, Fig: 115, be a circle whose radius is $a$, and whose diameter is $O A$.

Let the variable secant $O B C$ intersect the tangent $A D$ at $C$.

Draw $C E \perp O X$


Fig. 115 and $B P \perp C E$.

It is required to find the equation of the locus of $P$, as $O C$ turns about point $O$.

Show that

$$
\begin{aligned}
& & \frac{2 a-y}{2 a} & =\frac{B C}{C O}=\frac{x^{2}}{C O^{2}}=\frac{x^{2}}{x^{2}+4 a^{2}} \\
& \therefore & 1-\frac{y}{2 a} & =\frac{x^{2}}{x^{2}+4 a^{2}} \\
& \therefore & \frac{y}{2 a} & =\frac{x^{2}+4 a^{2}-x^{2}}{x^{2}+4 a^{2}} \\
& \therefore & y & =\frac{8 a^{3}}{x^{2}+4 a^{2}}
\end{aligned}
$$

Discuss this equation as to asymptotes and symmetry.
Historical note. The witch of Agnesi was invented by an Italian lady, Maria Gaetana Agnesi (1728-99). She was made a member of the Academy of Bologna in 1748 and was appointed
professor of mathematics in the University of Bologna in 1750. She was an excellent writer and an accomplished scholar. Her writings were translated into both English and French. Madame Agnesi called the curve the versiera, but later mathematicians attached the inventor's own name to it.
311. The strophoid. From the point $A(a, 0)$, Fig. 116, draw $A B$ to any point $B$ on the $y$-axis.

On $A B$ lay off $B P=B P^{\prime}=B O$.
It is required to find the locus of $P$ and $P^{\prime}$ as $A B$ turns about point $A$.

Denote the co-ordinates of $P$ by $\rho$ and $\theta$.

Then in $\triangle O P A$ we have

$$
\frac{\rho}{a}=\frac{\sin O A P}{\sin O P A}
$$

$$
\begin{aligned}
& \angle O P A=180^{\circ}-\angle B P O \\
& \angle B P O=\angle B O P=90-\theta
\end{aligned}
$$

$\therefore \quad \angle O P A=90+\theta$


Fig. 116
$\therefore \quad \angle O A P=180-(90+\theta+\theta)=90-2 \theta$
$\therefore \quad \frac{\rho}{a}=\frac{\sin (90-2 \theta)}{\sin (90+\theta)}=\frac{\cos 2 \theta}{\cos \theta}$
$\therefore \quad \rho=2 a \cos \theta-a \sec \theta$

## EXERCISES

1. Transform the equation of the strophoid into the equation

$$
y= \pm x \sqrt{\frac{a-x}{a+x}}
$$

2. Show that the locus of the equation in exercise 1 is symmetrical with respect to the $x$-axis; that $x$ must lie between $-a$ and $+a$; that $x=-a$ is an asymptote.
3. The conchoid of Nicomedes. Let OA, Fig. 117, be perpendicular to $B C$. Let the line $O D$ turn about point $O$, meeting the straight line $B C$ at point $D$. On $O D$ lay off $D P=D P^{\prime}=$ a constant length $b$. Find the locus of $P$ and $P^{\prime}$.

Let $(\rho, \theta)$ be the co-ordinates of $P$.

Then

$$
\rho=O D+D P=\frac{a}{\cos \theta} \pm b
$$

or

$$
\rho=\frac{a}{\cos \theta} \pm b
$$



Fig. 117

EXERCISES

1. Transform the equation $\rho=\frac{a}{\cos \theta} \pm b$ into the equation $\left(x^{2}+y^{2}\right)(x-a)^{2}=b^{2} x^{2}$ and discuss the locus as to asymptotes and symmetry.
2. Let a line-segment $A B$ move so that the end-points $A$ and $B$ are always on the $x$-axis and $y$-axis, respectively. From the origin $O$ draw $O P$ perpendicular to $A B$. Show that the equation of the locus of $P$ is $\rho=\sin 2 \theta$, the equation of the fourleafed rose.

Historical note. The conchoid, or mussel-shaped curve, was invented by the Greek Nicomedes, who lived in the second century b.c. and about the same time as Diocles. Like the cissoid, it was invented to solve the Delian problem of "duplicating the cube." It is also readily applied to the equally celebrated problem of the "trisection of a given angle." Both the cissoid and the conchoid have been of interest to mathematicians for more than twenty centuries.
313. The ovals of Cassini. Let a point $P(x, y)$, Fig. 118, move so that the product of its distances from two fixed points $F_{1}(-a, 0)$ and $F(a, 0)$ remains constant. It is required to find the locus of $P$.


Fig. 118

Show that $\quad F_{1} P=\sqrt{(x+a)^{2}+y^{2}}$
and that

$$
F P=\sqrt{(x-a)^{2}+y^{2}}
$$

Let $V \overline{(x+a)^{2}+y^{2}} \sqrt{(x-a)^{2}+y^{2}}=c^{2}$
Hence the required equation is

$$
\left[(x+a)^{2}+y^{2}\right]\left[(x-a)^{2}+y^{2}\right]=c^{4}
$$

When $c=a$, the equation reduces to

$$
\left(x^{2}+y^{2}\right)^{2}-2 a^{2}\left(x^{2}-y^{2}\right)=0
$$

which is the equation of the lemniscate $M N$.
When $c>a$, the locus is the oval $P A B$.
When $c<a$, the locus consists of the ovals $C$ and $D$.
314. The spiral of Archimedes. This is the locus of a point whose radius vector $\rho$ is directly proportional to the vectorial angle $\theta$, i.e., $\boldsymbol{\rho}=\boldsymbol{a} \theta$.

The table, Fig. 119, gives approximate corresponding values of $\rho$ and $\theta$ for $a=1$.


Fig. 119

As $\theta$ increases indefinitely, $\rho$ also increases without limit, the curve winding around $O$.

The dotted curve is the spiral obtained when $a=-1$.

## EXERCISES

1. Plot the hyperbolic spiral $\rho^{\theta}=a$. Find the asymptote.
2. Plot the logarithmic spiral $\rho=b^{a \theta}$, or the equivalent equation $a \theta=\log _{b} \rho$.
3. The cycloid. If a circle rolls along a straight line the curve traced by any point of the circle is called a cycloid.

Take as origin, Fig. 120, the point $O$ on $O X$, where a point $P$ of the circle touches the line $O X$.


Fig. 120
Let $a$ denote the radius of the circle, and $\phi$ the central angle $P C D$.

Then

$$
\begin{aligned}
& x=O D-E D=O D-P F \\
& y=D C-F C
\end{aligned}
$$

Show that $\quad O D=P D=a \phi$

$$
P F=a \sin \phi
$$

and

$$
F C=a \cos \phi
$$

$\therefore x=a \phi-a \sin \phi$
and
$y=a-a \cos \phi$, which may be written

$$
\left\{\begin{array}{l}
x=a(\phi-\sin \phi) \\
y=a(1-\cos \phi)
\end{array}\right.
$$

These are the parameter equations of the cycloid. Show that the curve has an unlimited number of equal arches, forming a cusp wherever $P$ touches the line $O X$.

Historical note. A point fixed with respect to any curve which rolls on any other curve generates a routette. If the rolling curve is a circle and the fixed curve is a straight line the curve generated by the point on the rolling circle is a cycloid. If
both the fixed and rolling curves are circles, and the generating point is on the circumference of the rolling circle, the curve generated is an epicycloid if the rolling circle is on the outside of the fixed circle, and is a hypocycloid if the rolling circle is on the inside of the fixed circle.

Galileo in 1630 was the first to call attention to the cycloid, suggesting that as the shape was particularly graceful it should be used for arches of bridges. In 1634 Roberval found its area. Descartes, doubting the correctness of Roberval's solution, defied both him and Fermat to find its tangent. Fermat solved it at once. In 1658 Pascal solved many problems that had been proposed on the cycloid. Wallis, Huygens, and many subsequent mathematicians worked on it. It was the second curve that was rectified. This was done by Wren in 1673.



Fig. 122
316. The trochoid. Let $P$ be any point on the radius, Fig. 121, or on the extension of the radius of circle $C$, Fig. 122. The locus of $P$ is called a trochoid. Show that

$$
\left\{\begin{array}{l}
x=a \phi-b \sin \phi \\
y=a-b \cos \phi
\end{array}\right.
$$

317. The epicycloid. Let the circle C, Fig. 123, roll upon the outside of circle $O$. The locus of any point $P$ on circle $C$ is called an epicycloid.


Fig. 123

Denote the radii of circles $O$ and $C$ by $a$ and $b$, respectively, $\angle O C P$ by $\theta$, and $\angle C O E$ by $\phi$.

Then

$$
x=O D+D E=O D+P F
$$

and

$$
y=D C-C F
$$

Show that

$$
\begin{aligned}
& O D=(a+b) \cos \phi ; \\
& \angle C P F=180-(\theta+\phi), \\
& P F=a \cos [180-(\theta+\phi)]=-a \cos (\theta+\phi) \\
& D C=(a+b) \sin \phi \\
& C F=a \sin [180-(\theta+\phi)]=a \sin (\theta+\phi) \\
&\left\{\begin{array}{l}
x
\end{array}=(a+b) \cos \phi-a \cos (\theta+\phi)\right. \\
& y=(a+b) \sin \phi-a \sin (\theta+\phi) .
\end{aligned}
$$

318. The hypocycloid. If circle $C$, Fig. 123, rolls on the inside of circle $O$, the locus of $P$ is called hypocycloid, Fig. 124.


Fig. 124

Show that the parameter equations of the hypocycloid are

$$
\left\{\begin{array}{l}
x=(b-a) \cos \phi+a \cos \frac{b-a}{a} \phi \\
y=(b-a) \sin \phi-a \sin \frac{b-a}{a} \phi
\end{array}\right.
$$

When the rolling circle makes exactly four revolutions in rolling along circle $O$, as in Fig. 124, the locus of $P$ is called an astroid.

## EXERCISES

1. Show that the equations of the astroid are $x=a \cos ^{3} \phi$, $y=a \sin ^{3} \phi$.

Let $a=4 b$ and express $x$ and $y$ in terms of functions of $\phi$. Use the formulas $\sin 3 \phi=3 \sin \phi-4 \sin ^{3} \phi$, and $\cos 3 \phi=4 \cos ^{3} \phi-3 \cos \phi$.
2. Transform the parametric equations of the astroid into the rectangular equation $x^{\frac{2}{3}}+y^{\frac{2}{3}}=a^{\frac{2}{3}}$.
3. Transform the parametric equations

$$
\left\{\begin{array}{l}
x=\frac{3 a t}{1+t^{3}} \\
y=\frac{3 a t^{2}}{1+t^{3}}
\end{array}\right.
$$

into the equation

$$
x^{3}+y^{3}=3 a x y
$$

4. Plot the locus of exercise 3 .
5. Plot the locus of each of the equations

$$
y=\frac{1}{x-2} ; y=\frac{x-2}{x-3} ; y=\frac{(x-1)(x-3)}{(x-2)(x-4)}
$$

## Summary

319. The equation of the following loci have been studied in this chapter.

Exponential curve:

$$
y=a^{x}
$$

Logarithmic curve:

$$
y=\log _{a} x
$$

Four-leafed rose:

$$
\begin{aligned}
\rho & =a \sin 2 \theta \\
\left(x^{2}+y^{2}\right)^{2} & =4 a^{2} x^{2} y^{2}
\end{aligned}
$$

Five-leafed rose:

$$
\rho=a \sin 5 \theta
$$

Lemniscate:

$$
\begin{aligned}
\rho^{2} & =2 a^{2} \cos 2 \theta \\
\left(x^{2}+y^{2}\right)^{2} & =2 a^{2}\left(x^{2}-y^{2}\right)
\end{aligned}
$$

Limaçon:

$$
\begin{aligned}
& \rho=a \pm b \cos \theta \\
& \rho=a \pm b \sin \theta
\end{aligned}
$$

Cardioid:

$$
\begin{aligned}
& \rho=a(1 \pm \cos \theta) \\
& \rho=a(1 \pm \sin \theta)
\end{aligned}
$$

Cissoid:

$$
\begin{aligned}
\rho & =2 a \tan \theta \sin \theta \\
y^{2} & =\frac{x^{3}}{2 a-x}
\end{aligned}
$$

Witch:

$$
y=\frac{8 a^{3}}{x^{2}+4 a^{2}}
$$

Strophoid:

$$
\begin{aligned}
& \rho=2 a \cos \theta-a \sec \theta \\
& y= \pm x \sqrt{\frac{a-x}{a+x}}
\end{aligned}
$$

Conchoid:

$$
\rho=\frac{a}{\cos \theta} \pm b
$$

Ovals:

$$
\left[(x+a)^{2}+y^{2}\right]\left[(x-a)^{2}+y^{2}\right]=c^{4}
$$

Spirals:

$$
\rho=a \theta, \rho \theta=a, \rho=b^{a \theta}
$$

Cycloid:

$$
\left\{\begin{array}{l}
x=a(\phi-\sin \phi) \\
y=a(1-\cos \phi)
\end{array}\right.
$$

Trochoid:

$$
\left\{\begin{array}{l}
x=a \phi-b \sin \phi \\
y=a-b \cos \phi
\end{array}\right.
$$

Epicycloid:

$$
\left\{\begin{array}{l}
x=(a+b) \cos \phi-a \cos (\theta+\phi) \\
y=(a+b) \sin \phi-a \sin (\theta+\phi)
\end{array}\right.
$$

Hypocycloid:

$$
\left\{\begin{array}{l}
x=(b-a) \cos \phi+a \cos \frac{b-a}{a} \phi \\
y=(b-a) \sin \phi-a \sin \frac{b-a}{a} \phi
\end{array}\right.
$$

Astroid:

$$
\begin{aligned}
& \left\{\begin{array}{l}
x=a \cos ^{3} \phi \\
y=a \sin ^{3} \phi
\end{array}\right. \\
& x^{\frac{2}{3}}+y^{\frac{2}{3}}=a^{\frac{2}{3}}
\end{aligned}
$$

LOGARITHMS OF NUMBERS

| N | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 10 | 0000 | 0043 | 0086 | 0128 | 0170 | 0212 | 0253 | 0294 | 0334 | 0374 |
| 11 | 0414 | 0453 | 0492 | 0531 | 0569 | 0607 | 0645 | 0682 | 0719 | 0755 |
| 12 | 0792 | 0828 | 0864 | 0899 | 0934 | 0969 | 1004 | 1038 | 1072 | 1106 |
| 14 | 1461 | 1492 | . 1523 | 1553 | 1584 | 1614 | 1644 | 1673 | 1703 | 1732 |
| 15 | 1761 | 1790 | 1818. | 1847 | 1875 | 1903 | 1931 | 1959 | 1987 | 2014 |
| 16 | 2041 | 2068 | 2095 | 2122 | 2148 | 2175 | 2201 | 2227 | 2253 | 2279 |
| 17 | 2304 | 2330 | 2355 | 2380 | 2405 | 2430 | 2455 | 2480 | 2504 | 2529 |
| 18 | 2553 | 2577 | 2601 | 2625 | 2648 | 2672 | 2695 | 2718 | 2742 | 2765 |
| 19 | 2788 | 2810 | 2833 | 2856 | 2878 | 2900 | 2923 | 2945 | 2967 | 2989 |
| 20 | 3010 | 3032 | 3054 | 3075 | 3096 | 3118 | 3139 | 3160 | 3181 | 3201 |
| 21 | 3222 | 3243 | 3263 | 3284 | 3304 | 3324 | 3345 | 3365 | 3385 | 3404 |
| 22 | 3424 | 3444 | 3464 | 3483 | 3502 | 3522 | 3541 | 3560 | 3579 | 3598 |
| 23 | 3617 | 3636 | 3655 | 3674 | 3692 | 3711 | 3729 | 3747 | 3766 | 3784 |
| 24 | 3802 | 3820 | 3838 | 3856 | 3874 | 3892 | 3909 | 3927 | 3945 | 3962 |
| 25 | 3979 | 3997 | 4014 | 4031 | 4048 | 4065 | 4082 | 4099 | 4116 | 4133 |
| 26 | 4150 | 4166 | 4183 | 4200 | 4216 | 4232 | 4249 | 4265 | 4281 | 4298 |
| 27 | 4314 | 4330 | 4346 | 4362 | 4378 | 4393 | 4409 | 4425 | 4440 | 4456 |
| 28 | 4472 | 4487 | 4502 | 4518 | 4533 | 4548 | 4564 | 4579 | 4594. | 4609 |
| 29 | 4624 | 4639 | 4654 | 4669 | 4683 | 4698 | 4713 | 4728 | 4742 | 4757 |
| 30 | 4771 | 4786 | 4800 | 4814 | 4829 | 4843 | 4857 | 4871 | 4886 | 4900 |
| $\stackrel{3}{31}$ | 4914 | 4928 | 4942 | 4955 | 4969 | 4983 | 4997 | 5011 | 5024 | 5038 |
| 32 33 3 | 5051 | 5065 | 5079 | 5092 | 5105 | 5119 | 5132 | 5145 | 5159 | 5172 |
| 33 <br> 34 | 5185 5315 | 5198 | 5211 | 5224 | 5237 | 5250 5378 | 5263 5391 | 5276 5403 | 5289 5416 | 5302 5428 |
| 35 | 5441 | 5453 | 5465 | 5478 | 5490 | 5502 | 5514 | 5527 | 5539 | 5551 |
| 36 | 5563 | 5575 | 5587 | 5599 | 5611 | 5623 | 5635 | 5647 | 5658 | 5670 |
| 37 | 5682 | 5694 | 5705 | 5717 | 5729 | 5740 | 5752 | 5763 | 5775 | 5786 |
| 38 | 5798 | 5809 | 5821 5933 | 5832 | 5843 | 5855 | 5866 | 5877 | 5888 | 5899 |
| 39 | 5911 | 5922 | 5933 | 5944 | 5955 | 5966 | 5977 | 5988 | 5999 | 6010 |
| 40 | 6021 | 6031 | 6042 | 6053 | 6064 | 6075 | 6085 | 6096 | 6107 | 6117 |
| 41 | 6128 | 6138 | 6149 | 6160 | 6170 | 6180 | 6191 | 6201 | 6212 | 6222 |
| 43 | 6232 | 6243 | 6253 | 6263 | 6274 | 6284 | 6294 | 6304 | 6314 | 6325 |
| 44 | ${ }_{6435}^{6335}$ | 6444 | 6454 | 6464 | 6474 | 6484 | 6493 | 6405 6503 | 6513 | 6422 |
| 45 | 6532 | 6542 | 6551 | 6561 | 6571 | 6580 | 6590 | 6599 | 6609 | 6618 |
| 46 | 6628 | 6637 | 6646 | 6656 | 6665 | 6675 | 6684 | 6693 | 6702 | 6712 |
| 47 | 6721 | 6730 | 6739 | 6749 | 6758 | 6767 | 6776 | 6785 | 6794 | 6803 |
| 48 | 6812 | 6821 | 6830 | 6839 | 6848 | 6857 | 6866 | 6875 | 6884 | 6893 |
| 49 | 6902 | 6911 | 6920 | 6928 | 6937 | 6946 | 6955 | 6964 | 6972 | 6981 |
| 50 | 6990 | 6998 | 7007 | 7016 | 7024 | 7033 | 7042 | 7050 | 7059 | 7067 |
| 51 | 7076 | 7084 | 7093 | 7101 | 7110 | 7118 | 7126 | 7135 | 7143 | 7152 |
| 52 | 7160 | 7168 | 7177 | 7185 | 7193 | 7202 | 7210 | 7218 | 7226 | 7235 |
| 54 | 7324 | 7332 | 7340 | 7348 | 7356 | 7364 | 7372 | 7380 | 7388 | 7396 |
| 55 | 7404 | 7412 | 7419 | 7427 | 7435 | 7443 | 7451 | 7459 | 7466 | 7474 |

LOGARITHMS OF NUMBERS-Continued

| $\mathbf{N}$ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 55 | 7404 | 7412 | 7419 | 7427 | 7435 | 7443 | 7451 | 7459 | 7466 | 7474 |
| 56 | 7482 | 7490 | 7497 | 7505 | 7513 | 7520 | 7528 | 7536 | 7543 | 7551 |
| 57 | 7559 | 7566 | 7574 | 7582 | 7589 | 7597 | 7604 | 7612 | 7619 | 7627 |
| 58 | 7634 | 7642 | 7649 | 7657 | 7664 | 7672 | 7679 | 7686 | 7694 | 7701 |
| 59 | 7709 | 7716 | 7723 | 7731 | 7738 | 7745 | 7752 | 7.760 | 7767 | 7774 |
| 60 | 7782 | 7789 | 7796 | 7803 | 7810 | 7818 | 7825 | 7832 | 7839 | 7846 |
| 61 | 7853 | 7860 | 7868 | 7875 | 7882 | 7889 | 7896 | 7903 | 7910 | 7917 |
| 62 | 7924 | 7931 | 7938 | 7945 | 7952 | 7959 | 7966 | 7973 | 7980 | 7987 |
| 63 | 7993 | 8000 | 8007 | 8014 | 8021 | 8028 | 8035 | 8041 | 8048 | 8055 |
| 64 | 8062 | 8069 | 8075 | 8082 | 8089 | 8096 | 8102 | 8109 | 8116 | 8122 |
| 65 | 8129 | 8136 | 8142 | 8149 | 8156 | 8162 | 8169 | 8176 | 8182 | 8189 |
| 66 | 8195 | 8202 | 8209 | 8215 | 8222 | 8228 | 8235 | 8241 | 8248 | 8254 |
| 67 | 8261 | 8267 | 8274 | 8280 | 8287 | 8293 | 8299 | 8306 | 8312 | 8319 |
| 68 | 8325 | 8331 | 8338 | 8344 | 8351 | 8357 | 8363 | 8370 | 8376 | 8382 |
| 69 | 8388 | 8395 | 8401 | 8407 | 8414 | 8420 | 8426 | 8432 | 8439 | 8445 |
| 70 | 8451 | 8457 | 8463 | 8470 | 8476 | 8482 | 8488 | 8494 | 8500 | 8506 |
| 71 | 8513 | 8519 | 9525 | 8531 | 8537 | 8543 | 8549 | 8555 | 9561 | 8567 |
| 72 | 8573 | 8579 | 8585 | 8591 | 8597 | 8603 | 8609 | 8615 | 8621 | 8627 |
| 73 | 8633 | 8639 | 8645 | 8651 | 8657 | 8663 | 8669 | 8675 | 8681 | 8686 |
| 74 | 8692 | 9698 | 8704 | 9710 | 8716 | 8722 | 8727 | 8733 | 8739 | 8745 |
| 75 | 8751 | 8756 | 8762 | 8768 | 8774 | 8779 | 8785 | 8791 | 8797 | 8802 |
| 76 | 8808 | 8814 | 8820 | 8825 | 8831 | 8837 | 8842 | 8848 | 8854 | 8859 |
| 77 | 8865 | 8871 | 8876 | 8882 | 8887 | 8893 | 8899 | 8904 | 8910 | 8915 |
| 78 | 8921 | 8927 | 8932 | 8938 | 8943 | 8949 | 8954 | 8960 | 8965 | 8971 |
| 79 | 8976 | 8982 | 8987 | 8993 | 8998 | 9004 | 9009 | 9015 | 9020 | 9025 |
| 80 | 9031 | 9036 | 9042 | 9047 | 9053 | 9058 | 9063 | 9069 | 9074 | 9079 |
| 81 | 9085 | 9090 | 9096 | 9101 | 9106 | 9112 | 9117 | 9122 | 9128 | 9133 |
| 82 | 9138 | 9143 | 9149 | 9154 | 9159 | 9165 | 9170 | 9175 | 9180 | 9186 |
| 83 | 9191 | 9196 | 9201 | 9206 | 9212 | 9217 | 9222 | 9227 | 9232 | 9238 |
| 84 | 9243 | 9248 | 9253 | 9258 | 9263 | 9269 | 9274 | 9279 | 9284 | 9289 |
| 85 | 9294 | 9299 | 9304 | 9309 | 9315 | 9320 | 9325 | 9330 | 9335 | 9340 |
| 86 | 9345 | 9350 | 9355 | 9360 | 9365 | 9370 | 9375 | 9380 | 9385 | 9390 |
| 87 | 9395 | 9400 | 9405 | 9410 | 9415 | 9420 | 9425 | 9430 | 9435 | 9440 |
| 88 | 9445 | 9450 | 9455 | 9460 | 9465 | 9469 | 9474 | 9479 | 9484 | 9489 |
| 89 | 9494 | 9499 | 9504 | 9509 | 9513 | 9518 | 9523 | 9528 | 9533 | 9538 |
| 90 | 9542 | 9547 | 9552 | 9557 | 9562 | 9566 | 9571 | 9576 | 9581 | 9586 |
| 91 | 9590 | 9595 | 9600 | 9605 | 9609 | 9614 | 9619 | 9624 | 9628 | 9633 |
| 92 | 9638 | 9643 | 9647 | 9652 | 9657 | 9661 | 9666 | 9671 | 9675 | 9680 |
| 93 | 9685 | 9689 | 9694 | 9699 | 9703 | 9708 | 9713 | 9717 | 9722 | 9727 |
| 94 | 9731 | 9736 | 9741 | 9745 | 9750 | 9754 | 9759 | 9763 | 9768 | 9773 |
| 95 | 9777 | 9782 | 9786 | 9791 | 9795 | 9800 | 9805 | 9809 | 9814 | 9818 |
| 96 | 9823 | 9827 | 9832 | 9836 | 9841 | 9845 | 9850 | 9854 | 9859 | 9863 |
| 97 | 9868 | 9872 | 9877 | 9881 | 9886 | 9890 | 9894 | 9899 | 9903 | 9908 |
| 98 | 9912 | 9917 | 9921 | 9926 | 9930 | 9934 | 9939 | 9943 | 9948 | 9952 |
| 99 | 9956 | 9961 | 9965 | 9969 | 9974 | 9978 | 9983 | 9987 | 9991 | 9996 |
| 100 | 0000 | 0004 | 0008 | 0013 | 0017 | 0021 | 0026 | 0030 | 0035 | 0039 |

TABLES
TABLE OF POWERS AND ROOTS

| No. | Squares | Cubes | Square Roots | Cube Roots | No. | Squares | Cubes | Square Roots | Cube Roots |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 1 | 1.000 | 1.000 | 51 | 2,601 | 132,651 | 7.141 | 3.708 |
| 2 | 4 | 8 | 1.414 | 1.259 | 52 | 2,704 | 140,608 | 7.211 | 3.732 |
| 3 | 9 | 27 | 1.732 | 1.442 | 53 | 2,809 | 148,877 | 7.280 | 3.756 |
| 4 | 16 | 64 | 2.000 | 1.587 | 54 | 2,916 | 157,464 | 7.348 | 3.779 |
| 5 | 25 | 125 | 2.236 | 1.709 | 55 | 3.025 | 166,375 | 7.416 | 3.802 |
| 6 | 36 | 216 | 2.449 | 1.817 | 56 | 3,136 | 175,616 | 7.483 | 3.825 |
| 7 | 49 | 343 | 2.645 | 1.912 | 57 | 3,249 | 185,193 | 7.549 | 3.848 |
| 8 | 64 | 512 | 2.828 | 2.000 | 58 | 3,364 | 195,112 | 7.615 | 3.870 |
| 9 | 81 | 729 | 3.000 | 2.080 | 59 | 3,481 | 205,379 | 7.681 | 3.892 |
| 10 | 100 | 1,000 | 3.162 | 2.154 | 60 | 3,600 | 216,000 | 7.745 | 3.914 |
| 11 | 121 | 1,331 | 3.316 | 2.223 | 61 | 3,721 | 226,981 | 7.810 | 3.936 |
| 12 | 144 | 1,728 | 3.464 | 2.289 | 62 | 3,844 | 238,328 | 7.874 | 3.957 |
| 13 | 169 | 2,197 | 3.605 | 2.351 | 63 | 3,969 | 250,047 | 7.937 | 3.979 |
| 14 | 196 | 2,744 | 3.741 | 2.410 | 64 | 4,096 | 262,144 | 8.000 | 4.000 |
| 15 | 225 | 3,375 | 3.872 | 2.466 | 65 | 4,225 | 274,625 | 8.062 | 4.020 |
| 16 | 256 | 4,096 | 4.000 | 2.519 | 66 | 4,356 | 287,496 | 8.124 | 4.041 |
| 17 | 289 | 4,913 | 4.123 | 2.571 | 67 | 4,489 | 300,763 | 8.185 | 4.061 |
| 18 | 324 | 5,832 | 4.242 | 2.620 | 68 | 4,624 | 314,432 | 8.246 | 4.081 |
| 19 | 361 | 6,859 | 4.358 | 2.668 | 69 | 4,761 | 328,509 | 8.306 | 4.101 |
| 20 | 400 | 8,000 | 4.472 | 2.714 | 70 | 4,900 | 343,000 | 8.366 | 4.121 |
| 21 | 441 | 9,261 | 4.582 | 2.758 | 71 | 5,041 | 357,911 | 8.426 | 4.140 |
| 22 | 484 | 10,648 | 4.690 | 2.802 | 72 | 5,184 | 373,248 | 8.485 | 4.160 |
| 23 | 529 | 12,167 | 4.795 | 2.843 | 73 | 5,329 | 389,017 | 8.544 | 4.179 |
| 24 | 576 | 13,824 | 4.898 | 2.884 | 74 | 5,476 | 405,224 | 8.602 | 4.198 |
| 25 | 625 | 15,625 | 5.000 | 2.924 | 75 | 5,625 | 421,875 | 8.660 | 4.217 |
| 26 | 676 | 17,576 | 5.099 | 2.962 | 76 | 5,776 | 438,976 | 8:717 | 4.235 |
| 27 | 729 | 19,683 | 5.196 | 3.000 | 77 | 5,929 | 456,533 | 8.774 | 4.254 |
| 28 | 784 | 21,952 | 5.291 | 3.036 | 78 | 6,084 | 474,552 | 8.831 | 4.272 |
| 29 | 841 | 24,389 | 5.385 | 3.072 | 79 | 6,241 | 493,039 | 8.888 | 4.290 |
| 30 | 900 | 27,000 | 5.477 | 3.107 | 80 | 6,400 | 512,000 | 8.944 | 4.308 |
| 31 | 961 | 29,791 | 5.567 | 3.141 | 81 | 6,561 | 531,441 | 9.000 | 4.326 |
| 32 | 1,024 | 32,768 | 5.656 | 3.174 | 82 | 6,724 | 551,368 | 9.055 | 4.344 |
| 33 | 1,089 | 35,937 | 5.744 | 3.207 | 83 | 6,889 | 571,787 | 9.110 | 4.362 |
| 34 | 1,156 | 39,304 | 5.830 | 3.239 | 84 | 7,056 | 592,704 | 9.165 | 4.379 |
| 35 | 1,225 | 42,875 | 6.916 | 3.271 | 85 | 7,225 | 614,125 | 9.219 | 4.396 |
| 36 | 1,296 | 46,656 | 6.000 | 3.301 | 86 | 7,396 | 636,056 | 9.273 | 4.414 |
| 37 | 1,369 | 50,653 | 6.082 | 3.332 | 87 | 7,569 | 658,503 | 9.327 | 4.431 |
| 38 | 1,444 | 54,872 | 6.164 | 3.361 | 88 | 7,744 | 681,472 | 9.380 | 4.447 |
| 39 | 1,521 | 59,319 | 6.244 | 3.391 | 89 | 7,921 | 704,969 | 9.433 | 4.464 |
| 40 | 1,600 | 64,000 | 6.324 | 3.419 | 90 | 8,100 | 729,000 | 9.486 | 4.481 |
| 41 | 1,681 | 68,921 | 6.403 | 3.448 | 91 | 8,281 | 753,571 | 9.539 | 4.497 |
| 42 | 1,764 | 74,088 | 6.480 | 3.476 | 92 | 8,464 | 778,688 | 9.591 | 4.514 |
| 43 | 1,849 | 79,507 | 6.557 | 3.503 | 93 | 8,649 | 804,357 | 9.643 | 4.530 |
| 44 | 1,936 | 85,184 | 6.633 | 3.530 | 94 | 8,836 | 830,584 | 9.695 | 4.546 |
| 45 | 2,025 | 91,125 | 6.708 | 3.556 | 55 | 9,025 | 857,375 | 9.746 | 4.562 |
| 46 | 2,116 | 97,336 | 6.782 | 3.583 | 96 | 9,216 | 884,736 | 9.797 | 4.578 |
| 47 | 2,209 | 103,823 | 6.855 | 3.608 | 97 | 9,409 | 912.673 | 9.848 | 4.594 |
| 48 | 2,304 | 110,592 | 6.928 | 3.634 | 98 | 9,604 | 941,192 | 9.899 | 4.610 |
| 49 | 2,401 | 117,649 | 6.928 | 3.659 | 99 | 9,801 | 970,299 | 9.949 | 4.626 |
| 50 | 2,500 | 125,000 | 7.071 | 3.684 | 100 | 10,000 | 1,000,000 | 10.000 | 4.641 |

## TABLE OF SINES, COSINES, AND TANGENTS OF ANGLES FROM $1^{\circ}-90^{\circ}$

| Angle | Sine | Cosine | Tangent | Angle | Sine | Cosine | Tangent |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $1^{\circ}$ | . 0175 | . 9998 | . 0175 | $46^{\circ}$ | . 7193 | . 6947 | 1.0355 |
| 2 | . 0349 | . 9994 | . 0349 | 47 | . 7314 | . 6820 | 1.0724 |
| 3 | . 0523 | . 9986 | . 0524 | 48 | . 7431 | . 6691 | 1. 1106 |
| 4 | . 0698 | . 9976 | . 0699 | 49 | . 7547 | . 6561 | 1.1504 |
| 5 | . 0872 | . 9962 | . 0875 | 50 | . 7660 | . 6428 | 1.1918 |
| 6 | . 1045 | . 9945 | . 1051 | 51 | . 7771 | . 6293 | 1.2349 |
| 7 | . 1219 | . 9925 | . 1228 | 52 | . 7880 | . 6157 | 1.2799 |
| 8 | . 1392 | . 9903 | . 1405 | 53 | . 7986 | . 6018 | 1.3270 |
| 9 | . 1564 | . 9877 | . 1584 | 54 | . 8090 | . 5878 | 1.3764 |
| 111 | . 1736 | . 9848 | . 1763 | 55 | . 8192 | . 5736 | 1.4281 |
| 11 | . 1908 | . 9816 | . 1944 | 56 | . 8290 | . 5592 | 1.4826 |
| 12 | . 2079 | . 9781 | . 2126 | 57 | . 8387 | . 5446 | 1.5399 |
| 13 | . 2250 | . 9744 | . 2309 | 58 | . 8480 | . 5299 | 1.6003 |
| 14 | . 2419 | . 9703 | . 2493 | 59 | . 8572 | . 5150 | 1.6643 |
| 15 | . 2588 | . 9659 | . 2679 | 60 | . 8660 | 5000 | 1.7321 |
| 16 | . 2756 | . 9613 | . 2867 | 61 | . 8746 | . 4848 | 1.8040 |
| 17 | . 2924 | . 9563 | -. 3057 | 62 | . 8829 | . 4695 | 1.8807 |
| 18 | . 3090 | . 9511 | . 3249 | 63 | . 8910 | . 4540 | 1.9626 |
| 19 | . 3256 | . 9455 | . 3443 | 64 | . 9888 | . 4384 | 2.0503 |
| 20 | 3420 | . 9397 | . 3640 | 65 | . 9063 | . 4226 | 2.1445 |
| 21 | . 3584 | . 9336 | . 3839 | 66 | . 9135 | . 4067 | 2.2460 |
| 22 | . 3746 | . 9272 | . 4040 | 67 | . 9205 | . 3907 | 2.3559 |
| 23 | . 3907 | . 9205 | . 4245 | 68 | . 9272 | . 3746 | 2.4751 |
| 24 | . 4067 | . 9135 | . 4452 | 69 | . 9336 | . 3584 | 2.6051 |
| 25 | . 4226 | . 9063 | . 4663 | 70 | . 9397 | . 3420 | 2.7475 |
| 26 | . 4384 | . 8988 | . 4877 | 71 | . 9455 | . 3256 | 2.9042 |
| 27 | . 4540 | . 8910 | . 5095 | 72 | . 9511 | . 3090 | 3.0777 |
| 28 | . 4695 | . 8829 | . 5317 | 73 | . 9563 | . 2924 | 3.2709 |
| 29 | . 4848 | . 8746 | . 5543 | 74 | . 9613 | . 2756 | 3.4874 |
| 30 | . 5000 | . 8660 | . 5774 | 75 | . 9659 | 2588 | 3.7321 |
| 31 | . 5150 | . 8572 | . 6009 | 76 | . 9703 | 2419 | 4.0108 |
| 32 | . 5299 | . 8480 | . 6249 | 77 | . 9744 | . 2250 | 4.3315 |
| 33 | . 5446 | . 8387 | . 6494 | 78 | . 9781 | 2079 | 4.7046 |
| 34 | . 5592 | . 8290 | . 6745 | 79 | . 9816 | . 1908 | 5.1446 |
| 35 | . 5736 | . 8192 | . 7002 | 80 | . 9848 | . 1736 | 5.6713 |
| 36 | . 5878 | . 8090 | . 7265 | 81 | . 9877 | . 1564 | 6.3138 |
| 37 | . 6018 | . 7986 | . 7536 | 82 | . 9903 | . 1392 | 7.1154 |
| 38 | . 6157 | . 7880 | . 7813 | 83 | . 9925 | 1219 | 8.1443 |
| 39 | . 6293 | . 7771 | . 8098 | 84 | . 9945 | 1045 | 9.5144 |
| 41 | . 6428 | . 7660 | . 8391 | 85 | . 9962 | . 0872 | 11.4301 |
| 41 | . 6561 | . 7547 | . 8693 | 86 | . 9976 | . 0698 | 14.3006 |
| 42 | . 6691 | . 7431 | . 9004 | 87 | . 9986 | . 0523 | 19.0811 |
| 43 | . 6820 | . 7314 | . 9325 | 88 | . 9994 | . 0349 | 28.6363 |
| 44 | . 6947 | . 7193 | . 9657 | 89 | . 9998 | . 0175 | 57.2900 |
| 45 | . 7071 | . 7071 | 1.0000 | 90 | 1.0000 | . 0000 | $\infty$ |

## Formulas

## PLANE GEOMETRY

1. Length of circle $=2 \pi r=3.14159 d$
2. Area of circle $=\pi r^{2}$
3. Area of triangle $=\frac{1}{2} b h=\frac{1}{2} a b \sin C=\frac{1}{2} r(a+b+c)$

$$
=\frac{a b c}{4 R}=\sqrt{s(s-a)(s-b)(s-c)}
$$

4. Area of parallelogram $=b h$
5. Area of square $=a^{2}$
6. Area of equilateral triangle $=\frac{a^{2}}{4} \sqrt{3}$
7. Area of trapezoid $=\frac{1}{2} h\left(b_{1}+b_{2}\right)=h m$
SOLID GEOMETRY
8. Volume of prism $=b a$
9. Volume of pyramid $=\frac{1}{3} b a$
10. Volume of right circular cylinder $=\pi r^{2} a$
11. Total surface of right circular cylinder $=2 \pi r(r+a)$
12. Lateral surface of right circular cylinder $=2 \pi r a$
13. Volume of right circular cone $=\frac{1}{3} \pi r^{2} a$
14. Lateral surface of right circular cone $=\pi r s$
15. Total surface of right circular cone $=\pi r(r+s)$
16. Surface of sphere $=4 \pi r^{2}$
17. Volume of sphere $=\frac{4}{3} \pi r^{3}$

## SERIES

1. Arithmetical progression:

$$
l=a+(n-1) d ; \quad s=\frac{n}{2}(a+l)
$$

2. Geometrical progression:

$$
l=a r^{n-1} ; \quad s=\frac{a-a r^{n}}{1-r} ; \quad \text { if } r<1 \text { and } n \rightarrow \infty, s=\frac{a}{1-r}
$$

3. Binomial theorem:

$$
\begin{aligned}
(a+b)^{n} & =a^{n}+\frac{n}{1} a^{n-1} b+\frac{n(n-1)}{1 \cdot 2} a^{n-2} b^{2} \\
& +\frac{n(n-1)(n-2)}{1 \cdot 2 \cdot 3} a^{n-3} b^{3}+\text { etc. }
\end{aligned}
$$

The $k$ th term

$$
=\frac{n(n-1)(n-2) \ldots(n-k+2)}{1 \cdot 2 \cdot 3 \ldots \cdot k-1} a^{n-k+1} b^{k-1}
$$

## LOGARITHMS

1. $\log a b=\log a+\log b$
2. $\log \frac{a}{b}=\log a-\log b$
3. $\log a^{n}=n \log a$
4. $\log \sqrt[n]{a}=\frac{\log a}{n}$
5. $\log 1=0$
6. $\log _{a} N=\frac{\log _{b} N}{\log _{b} a}$
7. $\operatorname{colog} N=\log \frac{1}{N}=(10-\log N)-10$

## QUADRATIC EQUATION

If $a x^{2}+b x+c=0, x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$.
If $b^{2}-4 a c=0$, the roots are real and equal.
If $b^{2}-4 a c>0$, the roots are real and unequal.
If $b^{2}-4 a c<0$, the roots are complex.

## TRIGONOMETRIC FORMULAS

1. $\sin a=\frac{a}{c}, \cos a=\frac{b}{c}, \tan a=\frac{a}{b}$,
$\csc a=\frac{c}{a}, \sec a=\frac{c}{b}, \cot a=\frac{b}{a}$
2. $\sin ^{2} \alpha+\cos ^{2} \alpha=1$
3. $\sec ^{2} a=1+\tan ^{2} a$
4. $\csc ^{2} \alpha=1+\cot ^{2} \alpha$
5. $\tan a=\frac{\sin a}{\cos a}$
6. $\cot a=\frac{\cos a}{\sin a}$
7. $\sec a=\frac{1}{\cos a}$
8. $\csc a=\frac{1}{\sin a}$
9. $\sin (\alpha \pm \beta)=\sin \alpha \cos \beta \pm \cos a \sin \beta$
10. $\cos (\alpha \pm \beta)=\cos a \cos \beta \mp \sin a \sin \beta$
11. $\tan (\alpha \pm \beta)=\frac{\tan \alpha \pm \tan \beta}{1 \mp \tan \alpha \tan \beta}$
12. $\sin \alpha+\sin \beta=2 \sin \frac{1}{2}(\alpha+\beta) \cos \frac{1}{2}(\alpha-\beta)$
13. $\sin \alpha-\sin \beta=2 \cos \frac{1}{2}(\alpha+\beta) \sin \frac{1}{2}(\alpha-\beta)$
14. $\cos \alpha+\cos \beta=2 \cos \frac{1}{2}(\alpha+\beta) \cos \frac{1}{2}(\alpha-\beta)$
15. $\cos \alpha-\cos \beta=-2 \sin \frac{1}{2}(\alpha+\beta) \sin \frac{1}{2}(\alpha-\beta)$
16. $\sin \alpha \sin \beta=\frac{1}{2} \cos (\alpha-\beta)-\frac{1}{2} \cos (\alpha+\beta)$
17. $\cos \alpha \cos \beta=\frac{1}{2} \cos (\alpha-\beta)+\frac{1}{2} \cos (\alpha+\beta)$
18. $\sin \alpha \cos \beta=\frac{1}{2} \sin (\alpha+\beta)+\frac{1}{2} \sin (\alpha-\beta)$
19. $\sin 2 a=2 \sin a \cos a$
20. $\cos 2 a=\cos ^{2} a-\sin ^{2} a$

$$
=2 \cos ^{2} \alpha-1=1-2 \sin ^{2} \alpha
$$

21. $\tan 2 a=\frac{2 \tan a}{1-\tan ^{2} a}$
22. $\cos (\pi \pm \theta)=-\cos \theta$
23. $\tan (\pi \pm \theta)= \pm \tan \theta$
24. $\sin \frac{1}{2} \alpha= \pm \sqrt{\frac{1-\cos a}{2}}$
25. $\cos \frac{1}{2} a= \pm \sqrt{\frac{1+\cos a}{2}}$
26. $\tan \frac{1}{2} \alpha= \pm \sqrt{\frac{1-\cos \alpha}{1+\cos \alpha}}$
27. $\sin \left(\frac{\pi}{2} \pm \theta\right)=\cos \theta$
28. $\cos \left(\frac{\pi}{2} \pm \theta\right)=\mp \sin \theta$
29. $\tan \left(\frac{\pi}{2} \pm \theta\right)=\mp \cot \theta$
30. $\sin (\pi \pm \theta)=\mp \sin \theta$
31. $\sin (-x)=-\sin x$
32. $\cos (-x)=\cos x$
33. $\tan (-x)=-\tan x$
34. $\csc (-x)=-\csc x$
35. $\sec (-x)=\sec x$
36. $\cot (-x)=-\cot x$
37. $\sin 30^{\circ}=\frac{1}{2}$
38. $\sin 45^{\circ}=\frac{1}{2} \sqrt{2}$
39. $\sin 60^{\circ}=\frac{1}{2} \sqrt{3}$
40. $\cos 30^{\circ}=\frac{1}{2} \sqrt{3}$
41. $\cos 45^{\circ}=\frac{1}{2} \sqrt{2}$
42. $\cos 60^{\circ}=\frac{1}{2}$

## TRIANGLES

43. $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$
44. $\frac{a-b}{c}=\frac{\sin \frac{1}{2}(A-B)}{\cos \frac{1}{2} C}$
45. $a^{2}=b^{2}+c^{2}-2 b c \cos A$
46. $\frac{a+b}{a-b}=\frac{\tan \frac{1}{2}(A+B)}{\tan \frac{1}{2}(A-B)}$
47. $\frac{a+b}{c}=\frac{\cos \frac{1}{2}(A-B)}{\sin \frac{1}{2} C}$

If $s=\frac{1}{2}(a+b+c)$ :
48. $\sin \frac{1}{2} A=\sqrt{\frac{(s-b)(s-c)}{b c}}$. 49. $\cos \frac{1}{2} A=\sqrt{\frac{s(s-a)}{b c}}$.
50. $\tan \frac{1}{2} A=\sqrt{\frac{(s-b)(s-c)}{s(s-a)}}$

If $r=$ radius of inscribed circle:
51. $r=\sqrt{\frac{(s-a)(s-b)(s-c)}{s}}$.
52. $\tan \frac{1}{2} A=\frac{r}{s-a}$.
53. $\tan \frac{1}{2} B=\frac{r}{s-b}$. 54. $\tan \frac{1}{2} C=\frac{r}{s-c}$.
55. Area $=\frac{1}{2} a b \sin C=\frac{C^{2}}{2} \cdot \frac{\sin A \sin B}{\sin C}$

$$
=\sqrt{s(s-a)(s-b)(s-c)}
$$

56. Diameter of circumscribed circle

$$
=\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}
$$

GREEK ALPHABET

| Names | Letters |  | Names | Letters |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Alpha. | A | $\alpha$ | Nu | N | $\nu$ |
| Beta.. | B | $\beta$ | Xi. | $\Xi$ | $\xi$ |
| Gamma | $\Gamma$ | $\gamma$ | Omicron | 0 | - |
| Delta | $\Delta$ | $\delta$ | Pi | II | $\pi$ |
| Epsilon | E | $\epsilon$ | Rho | P | $\rho$ |
| Zeta | Z | $\zeta$ | Sigma | $\Sigma$ | $\sigma$ |
| Eta. | H | $\eta$ | Tau | T | $\tau$ |
| Theta. | $\Theta$ | $\theta$ | Upsilon | $\uparrow$ | $v$ |
| Iota. | I | $\iota$ | Phi.... | $\Phi$ | $\phi$ |
| Kappa. | K | $\kappa$ | Chi | X | $\lambda$ |
| Lambda. | $\Lambda$ | $\lambda$ | Psi | $\Psi$ | $\psi$ |
| Mu | M | , $\mu$ | Omega | $\Omega$ | $\omega$ |

## INDEX

## [References are to sections, not pages]

Abscissa 2, 9 Cissoid ..... 309
Absolutely convergent se- ries .................... 192
Coefficients, relation to roots ..... 155
Agnesi, witch of 310 Column ..... 76
Algebraic solution 130 Combinations ..... 212
Alternating series 194 Comparison, series for ..... 188
Amplitude 15 Comparison test ..... 184
Angle between lines 58 Complex number: $n$th
Archimedes, spirals of ..... 314
Area of triangle ..... 70, 71
Argument ..... 15
Asymptotes ..... 262
Auxiliary circles ..... 252
Axes: rotation of ..... 284
translation of ..... 281
Axis: polar ..... 10
of symmetry ..... 94
Binomial theorem ..... 117
Biquadratic, solution of. ..... 164
Bisectors of angles, equa- tion of ..... 46
Cardioid ..... 308
Cartesian co-ordinates ..... 9
relation to polar ..... 11
Cassinian ovals ..... 313
Center of circle, co- ..... 223
Circle ..... 276
co-ordinates of center ..... 223
equation of ..... 220, 221
parametric equations ..... 235
polar equation ..... 234
Circles, system of ..... 233
[References are to sections, not pagesj
Co-ordinates: of center of223circle................. . 223 Discriminant.
121
121
Discontinuous function
Discontinuous function ..... 293
of center of conic 294 Distance between two points ..... 47
polar ..... 10
rectangular ..... 9
of a point from a line. ..... 45
system of 9 Divergence ..... 180
transformation of 279 Division of line-segment ..... 49
Cubic: discussion of roots of. ..... 163 ..... 274
solution of 163 Elements ..... 76
101 Ellipse. Curve: slope of ..... 101 ..... 242
tangent to ..... 103
Cycloid ..... 316
Epicycloid ..... 317
Equations: equivalent ..... 61
general quadratic ..... 219
homogeneous Decreasing function. ..... 123
De Moivre's theorem ..... 21
Denominator ..... 5
Depressed equation ..... 145
Derivative ..... 106
of rational integral func- tion ..... 122
Descartes' rule of signs ..... 137
Determinants ..... 75, 79
evaluation of ..... 85
expansion of ..... 78
factoring of ..... 86
of third order ..... 67
solution by 60, 68, 87theory of81-84
Diagonal of determinant ..... 76
Diameter ..... 296
of ellipse, hyperbola. ..... 298
Diameters, conjugatè. ..... 299
Differential quotient ..... 28
Diminishing roots ..... 149
Diocles ..... 309
Directrix ..... 95, 274
equation of ..... 279
incompatible ..... 56
inconsistent. ..... 61
of pair of lines. ..... 64
of straight line ..... 30-38
solved by determinant ..... 60
solved by elimination. ..... 66
Equilateral hyperbola ..... 261
Evaluation of determinant ..... 85
of functions ..... 120
Expansion of determinant ..... 78
Exponential curve ..... 304
Factor theorem ..... 126
Factoring of determinant ..... 86
Focal radii. ..... 245, 258
Focus ..... 95
Four-leafed rose ..... 306
Fractions: graphical repre- sentation ..... 5
partial. ..... 201
Functions: continuous ..... 121
derivative of ..... 122
discontinuous ..... 121
evaluation of ..... 120

## [References are to sections, not pages]

general in two variables. 218graphing of. ........41, 92, 98
limiting value of ..... 174
linear ..... 40, 91
quadratic ..... 91
rational integral.119, 105, 116
Fundamental theorem ..... 131
General equation of second degree ..... 287
Homogeneous equations ..... 65
Horner's method ..... 150
Hyperbola ..... 277
Hypocycloid ..... 318
Identity ..... 153
Imaginary number ..... 12
Imaginary unit ..... 13
Incompatible equations ..... 56
Inconsistent equations ..... 61
Increasing function ..... 123
Indeterminate forms ..... 175
Induction, mathematical. ..... 118
Infinite series ..... 179
Infinitesimal ..... 170
Infinity ..... 171
Integral roots ..... 143, 145
Intercept ..... 31
Irrational numbers ..... 7
negative roots ..... 151
roots ..... 148
Latus rectum ..... 96
of ellipse ..... 248
Lemniscate ..... 307
Limaçon ..... 308
Limit, notion of ..... 172 ..... 172
Limiting value of function ..... 174
Limits, theorems on ..... 172
[References are to sections, not pages]
Modulus 15 Polar equation: of circle ..... 234
Multiple root ..... 132
of parabola ..... 97
of straight line ..... 42
Negative numbers 3 Pole. ..... 10
Negative roots, irrational. . 151 Positive numbers ..... 3
Nicomedes 312 Projectile, path of ..... 108
Normal to a curve ..... 229
Numbers: imaginary ..... 12 ..... 9irrational7 Quadratic function
negative ..... 3
positive ..... 3
rational ..... 6
real
233
Radical axis
10
Numerator 5 Ratio test ..... 189, 193
Rational fractional roots ..... 146
Ordinate ..... 9
Origin ..... 2, 9 .....
119 .....
119
graph of
graph of
Parabola ..... 92, 98, 273 ..... 122 ..... 122
Real number ..... 8
diameters ..... 297
polar equation of ..... 97
standard equation of ..... 96
Parallel lines ..... 55
pencil of
Real roots: distinct ..... 133
location of ..... 136
multiple ..... 134
Rectangular co-ordinates ..... 9
63 Remainder theorem ..... 125
Parameter ..... 62
Parametric equation of circle ..... 235
Partial fractions ..... 201
Pencil of lines ..... 62
of parallel lines ..... 63
Permutations ..... 206
in circle ..... 211
Perpendicular lines ..... 57
Plotting of locus ..... 303
Point of division ..... 49
Point, notation of ..... 29
Polar axis ..... 10
Polar co-ordinates ..... 10
relation to Cartesian ..... 11

283, 161
of term in $x y \ldots \ldots \ldots . . .290$
Roots: complex. .......... . 135
of cubic.................. . . . 163
diminishing. . . . . . . . . . . 149
integral. . . . . . . . . . . . 143, 145
irrational................ 148
multiple.............. 132, 134
multiplying. ............. 147
negative irrational. ..... . 151
number of . . . . . . . . . . . . 131
rational fractional. ...... 146
real and distinct. . . . . . . . 133
relation with coefficient. . 155

## [References are to sections, not pages]

Rose, four-leafed 306 Subtangent ..... 231
Rotation of axes 284 Successive derivatives ..... 124
Row 76 Symmetry, axis of ..... 94
Rule of signs, Descartes'... 137 System of circles ..... 233
Secant, slope of ..... 102
Tangent: to a circle ..... 228
Second derivative ..... 124
Series: alternating ..... 194
convergent, divergent ..... 180
sum of ..... 178
Simultaneous equations ..... 66
Slope: of curve ..... 101
of line ..... 28
of secant ..... 102
of tangent ..... 103
of tangent to $f(x, y)=0$. ..... 226
Solution: algebraic ..... 130
by determinants ..... 68, 87
by elimination ..... 66
of biquadratic ..... 164
of cubic ..... 162
Spirals ..... 314
Standard equation of parab- ola ..... 96
Strophoid ..... 311
Subnormal ..... 231
to a curve ..... 103
equation of ..... 107
to $f(x, y)=0$ ..... 227
length of. ..... 232
slope ..... 104
Taylor's theorem ..... 124
Transformation of co- ordinates ..... 280
Translation of axes ..... 281
Transverse axis ..... 257
Triangle, area of ..... 70, 71
Unit, imaginary ..... 13
Vector ..... 10
Vectorial angle ..... 10
Vertex ..... 94, 95
Witch of Agnesi ..... 310
Zero ..... 4
"I believe that every college and high-school student in the country should have the book," says Winfield Scott Hall, of Northwestern University Medical School, speaking of

## The Third and Fourth Generation

## An Introduction to Heredity

By ELLIOT R. DOWNING
Associate Professor of Natural Science in the School of Education, the University of Chicago -

This volume presents in simple language the essentials regarding the phenomena of heredity and the laws governing them, and illustrates these discoveries with things that are at once familiar and of large human import.
For classes in Sunday school, high school, and college.
For general reading.

```
I70 pages, $1.00 (postpaid $1.15)
```

The University of Chicago Press
Chicago - - - - - Illinois


A series of textbooks in secondary-school mathematics based on the principle of correlation.
In this course it is aimed to reorganize the body of secondary-school mathematics in such a way as to fit the subject effectively to the needs of the students and to make it more productive of mental life and growth. Subjects that are closely related are brought together, thus unifying and
 difficult work for a later stage. Thus the student's comprehension of the subject is at the same time deepened and simplified. The amount of formalism is reduced to a minimum. A saving of onehalf year of time is effected in the first three books, and an increased interest in the study of mathematics results.


[^0]:    * A Greek letter, called Rho.
    $\dagger$ A Greek letter, called Theta.

[^1]:    * Due to Gauss (1777-1855).

[^2]:    * The term complex is due to Cauchy (1821).

[^3]:    * Leibnitz in a letter to L'Hôpital, of April 28, 1693, was the first to publish the essential features of the method of solution of equations by determinants, though his procedure was somewhat different from the modern form. He also drew attention to the importance of the theory of permutations and combinations in determining the factors and signs of the products. Beyond these announcements about the method, Leibnitz did nothing further with it, nor did any of his contemporaries. Aside from a "Note" in a mathematical journal of 1700 , nothing further was heard of the method until Gabriel Cramer in an appendix of his book of 1750 on The Analysis of Curves solved a system of $n$ equations in $n$ unknowns by the method, showed how to use the theory of combinations and permutations with it, and convinced men of its power.

    Bézout (1730-83) and Vandermonde (1735-96) both worked on the theory of determinants, and Laplace made important applications of it. Lagrange (1736-1813) applied the doctrine to the problems of analytical geometry, and Gauss, in 1801, made important investigations and improvements in the new theory. The modern name determinants is due to Cauchy (1789-1857). Jacobi (1804-51) completed the theory of determinants. The classic texts on the subject are Brioschi's of 1854, Baltzer's of 1857, Scott's of 1880, and Muir's of 1882 (Tropfke, I, 143-46).

[^4]:    * Mathematical induction was invented by Maurolycus, and used in his arithmetic of 1575 ; but it was first brought into prominence by Pascal. See W. H. Bussey, "The Origin of Mathematical Induction," American Mathematical Monthly, XXIV, 199-207.

[^5]:    * Third-Year Mathematics, pp. 12-14.

[^6]:    * Equation (9) is known as Euler's reducing cubic.

