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EDITOR’S PREFACE 

This book follows the three-year high-school course of 

mathematics, “along fusion lines,” that was begun by 

Mr. Breslich five years ago. From start to finish the 

four books have been worked out in classrooms and in 

faculty conferences. 

Through the economies effected by treating mathe¬ 

matical topics in combination and once for all, instead of 

once in each of the several mathematical branches, and 

by keeping whatever is once acquired in continual func¬ 

tion, this four-year course is able to cover in the usual 

time allotment to high-school mathematics, in addition 

to the customary high-school courses, plane analytics and 

college algebra as given in American colleges, together 

with considerable work in differential calculus. On com¬ 

pleting this course the student is mathematically dis¬ 

tinctly ahead of the beginning collegiate Sophomore. 

The persons responsible for this series believe that 

every rightly planned course, if properly administered, 

should at its close leave the student feeling that there is 

much more to be known about the subject than he has 

studied. They hold that a sound test of good teaching 

is whether at the end of the teaching the student really 

feels that there are immensely important things in the 

subject lying ahead, and that he would very much like, 

even if he cannot, to go on with what he has been learn¬ 

ing. They do not believe that it is educationally whole¬ 

some to treat a course in the spirit that it is the last 

course the student is to have, or that, being the last 

required course, it is all that he really needs. The best 

course in any subject, and especially in any mathematical 

vii 



Vlll EDITOR’S PREFACE 

subject, is the course that best prepares the pupil both in 

attainment and in attitude to go on to the next. In this 

sense, and in this sense only, each text of the Breslich 

series is organized in the spirit of the preparatory-school 

text. When, as in these texts, mathematical material 

from all branches is so organized that the things studied at 

each level of maturity are the materials best adapted to 

this stage that are available in any of the branches, the 

organization that best prepares for the next advance is 

the best organization, whether the student actually makes 

the advance or not. It is only when the preparatory 

ideal becomes the dominant ideal that mischief is likely 

to be wrought. 

The gratifying results of the systematic employment 

of this series of texts in the University High School, as 

shown by standard tests, by the tests of college entrance, 

by the ability of recent graduates to do subsequent col¬ 

legiate work well, by the large percentage of University 

High School pupils who are continuing to elect mathe¬ 

matical courses, and by the number of texts of unified 

mathematics of both high-school and collegiate grade that 

have appeared since the publication of Breslich’s first- 

year book, point to the belief that the route to essential 

improvement in high-school mathematics lies along the 

lines of the Breslich books. This belief is also strength¬ 

ened by the favor this series has found among the best 

high schools, public and private, and with many of the 

foremost educators of our country. The editor feels 

that it is only simple justice to say that in this series of 

texts Mr. Breslich has rendered a significant service to 

mathematical education in this country. 

G. W. Meyers 

Chicago, Illinois 

June, 1919 



AUTHOR’S PREFACE 

This book is designed primarily to follow the third 

book of the author’s series of textbooks of secondary 

mathematics. It therefore presupposes the essentials 

of high-school algebra, of plane and solid geometry, and 

of trigonometry. It aims to combine the work which is 

commonly covered in separate courses in college algebra 

and in analytical geometry. The course is therefore 

suitable for the first year of the junior college and may be 

taught either in the fourth year of the high school or in 

the first year of our colleges. 

As in the first three books of the series, the funda¬ 

mental principle of the course is to associate closely 

mathematical topics which are naturally related to each 

other. This combination makes it possible better to 

motivate each topic, to show the student more clearly 

the meaning of the subject by means of geometrical 

representation, and to develop in a natural way the 

important concept of functional correspondence. Such 

an arrangement of the material gives unity to a course 

in which the subject is usually presented as a number of 

isolated topics. It has the advantage of arousing and 

holding the interest of the student, with the result that 

he gains greater power in less time. 

The idea of the derivative is presented early and is 

used in discussing the slope of the tangent to a curve, and 

maximum and minimum values of a function. 

As in the other books of the series, many historical 

notes have been distributed throughout the books. 

For review purposes each chapter contains frequent 

summaries and a list of the formulas developed. There 

IX 



X AUTHOR’S PREFACE 

are also important tables and a list of mathematical 

formulas at the end of the book. 

All the material has been tried out carefully by the 

author in the classroom. 

The portraits appearing in the book have been taken 

from the Philosophical Portrait Series, published by the 

Open Court Publishing Company, Chicago. 

The author is greatly indebted to Professor Charles 

H. Judd, Director of the School of Education, whose 

encouragement and interest have made the preparation 

of this course possible. 
E. R. Breslich 
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CHAPTER I 

LOCATION OF A POINT. NUMBER SYSTEM 

Real Numbers. Location of a Point on a Straight Line 

1. Graphical representation of integral numbers. 

Selecting as unit length any convenient line-segment, l, 

we may lay off on OX, Fig. 1, ( , , , , , 
the segments OA, AB, BC, ° A b c d e x 

etc., each equal to l. Thus, Fig- 1 

OA=l, OB = l+l=2l, OC = l+l+l = Zl, etc. 
The integers 1, 2, 3, etc., are the measures of OA, OB, 

OC, etc. The segments OA, OB, OC, etc., are said to 

represent graphically the integral numbers 1, 2, 3, etc. 

Conversely, to every integral number corresponds a 

definite point on OX. 

2. Origin. Abscissa. A point P, Fig. 2, on a straight 

line, AB, may be located by 

stating the distance x of P a o * p b 

from a fixed reference point, pIG 2 

0, on AB. 

The point 0 is the origin, the segment OP=x is the 

abscissa of P. 

3. Positive and negative numbers. The segments 

OA', OB', OC', etc., Fig. 3, to the left of 0, differ from the 

-1—h—1—1—1—1—1—1—1—1—1—- 
X' E< D’ C> B' A' O A B C D E X 

Fig. 3 

segments to the right in direction. To distinguish between 

these two opposite directions, segments taken in the direc¬ 

tion OX are called positive. The numbers represented 

l 



2 CORRELATED MATHEMATICS 

by OA, OB, etc., are called positive numbers, and a plus 

(+) sign is prefixed to them. Hence, OA represents +1, 

OB represents +2, etc. The segments OA', OB', OC', 

etc., taken in the direction OX', are negative and repre¬ 

sent the negative numbers —1, —2, —3, etc. 

In this way the scale of positive and negative integers 
is obtained, Fig. 4. 

——i—i—i—i—i—i—i- 

X —3 —2 -1 O +i + 2 4 3 X 

4. Zero. The point 0, F 4 

Fig. 4, may be thought of 

as representing a segment having no length, or as repre¬ 

senting the number zero A 

EXERCISES 

1. Locate on a straight line the segments representing the 

following numbers: —5, +6, —3, 0, +8. 

2. Give the meaning of the following thermometer readings: 

-2, 0, +8, -7, -4. 

5. Graphical representation of fractions. To repre- 
771 

sent graphically the fraction —, m and n being integers, we 
71 

may proceed as follows: 

Divide OA, Fig. 5, into n 

equal parts and denote each 

by - . This locates between 0 and A a numbdr of points 

x1 
4- 

O A 

Fig. 5 

B 

n 
‘ . 12 3 

whose abscissas are - , -. - 
n n n 

m 

n 

* Our notation of numbers, known as the Arabic figures, was 
borrowed by the Arabs from the Hindoos. The principle of position 
employed in this method of writing numbers required a symbol for 
zero. Indeed, the use of the 0 made the Arabic notation possible 

in which a symbol was needed to indicate a digit in the units place 
which would add nothing to the total. ^ 



LOCATION OF A POINT. NUMBER SYSTEM 3 

Hence, to every fraction — , m and n being integers, 

there corresponds a point on X'X such that its distance 

from 0 represents that fraction. 

In the fraction — , m is the numerator and n the denom- 
n 

inator of the fraction. 

6. Rational numbers. Sections 1 to 5 show that all 

integers and fractions may be represented graphically. 

Integers and fractions, both positive and negative, form 

the domain of rational numbers. 

7. Irrational numbers. It is easily shown that some 

segments of OX, Fig. 5, do not represent rational numbers. 

For example, the length of the diagonal of a square whose 

side is equal to 1 is easily shown to be equal to 1 2. This 

number is neither an integer nor a fraction, noi can it be 

expressed exactly in terms of integers and fractions. How¬ 

ever, it may be represented geometrically by a segment 

of OX which has the same length as the diagonal of the 

square having the side equal to 1. 
Numbers represented by segments of OX which can¬ 

not be expressed exactly by rational numbers are irrational 
numbers. With this agreement each segment of OX cor¬ 

responds to a number, and every rational oi irrational 

number may be represented by a segment of OX. 
There is said to be a one-to-one correspondence between 

the numbers and the points on OX. 

8. Real numbers. Men of remote civilization were 

acquainted with the idea of integers and fractions. The 

* Pythagoras is credited with the discovery of the existence of 

incommensurable ratios, such as the ratio of the diagonal of a square 

to the side. He and his followers made the distinction between 

rational and irrational numbers. Definitions for irrational num¬ 

bers were given by Dedekind (1831-1916) and Cantor (born 1845). 



4 CORRELATED MATHEMATICS 

existence of irrational numbers was discovered by the 

Greeks. They were able to show that the ratio of some 

segments to a segment of given length cannot be expressed 

exactly as a fraction. They called these segments incom¬ 

mensurable. 
The whole set of integers, fractions, and irrational 

numbers forms the domain of real numbers. 
The choice of such names as rational and irrational 

may seem arbitrary to the student. However, the intro¬ 

duction of the ideas for which these names stand was a 

mathematical necessity. For example, 'positive and 

negative numbers were needed because without them it 

was impossible to solve all equations of the form x-\-a = b. 

To illustrate, the equation z+5 = 0 cannot be solved in 

the domain of. positive numbers. 

Furthermore, when solving quadratic equations like 

x2-\-a=b, we need the irrational numbers. For example, 

the solutions of the equation x2-\-\ =4 are +1^3 and — V?>. 

In solving the equation x2+a = b a further difficulty 

arises when b is less than a, and we must interpret the 

meaning of ±1 b—a for the case when b—a is negative. 

Whatever meaning may be assigned to — V—n, it must be 

such that the laws of algebra formerly established for op¬ 

erating with numbers hold also for this new number. The 

name imaginary was assigned to the symbol V—a2, a being 

any positive or negative integer, fraction, or irrational 

number. These numbers will be studied in §§ 12 and 13. 

EXERCISES 

Represent graphically the following numbers: —5, V 3, 
ir, §, 2/2, 0. 

Location of a Point in a Plane 

9. The Cartesian system of co-ordinates. By taking 

as reference lines the two intersecting straight lines X'X 
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Fig. 6 

and Y'Y, Fig. 6, the position of a point P in the plane 
of these two lines may be determined as follows: 

Draw PM parallel to YY'. 
Let y denote the length of MP 
and x the length of OM. Then 
the pair of numbers (x, y) locates 
definitely the point P. The two 
reference lines are usually called 
the axes of co-ordinates, or axes, 
and the point of intersection the 
origin. OX is the x-axis and OY the y-axis. 

OM =xis the abscissa of P, and MP = y is the ordinate 
of P. The numbers x and y are the co-ordinates of P. 
Hence we speak of the point (x, y) as the point whose 
co-ordinates are x and y. 

The discovery of this system of co-ordinates is due to 
the philosopher Rene Descartes (1637), after whom it 
has been called the Cartesian system of co-ordinates. It 
is also called the rectilinear system. 

Usually the axes of co-ordinates are perpendicular to 
each other, Fig. 7. In that case x and y are the two per¬ 
pendicular distances of P from the axes, and the system 
is called a system of 
rectangular co¬ 
ordinates. The first 
writer who used ab¬ 
scissa consistently as 
a scientific term was 
Wolff in 1710. Leib¬ 
nitz in 1694 was the 
first to use the word 
ordinate as a con¬ 
sistent technical term, and in 1692 he introduced the 
word co-ordinates. 

II Quadrant 
Y 

I Quadrant 

TP 
l 
\y i 
i 

X' x M X 

III Quadrant IV Quadrant 

Yf 

Fig. 7 
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The axes divide the plane into four parts called the 

first, second, third, and fourth quadrants, respectively. 

Segments to the right of the y-a,xis are positive, those 

to the left are negative. Segments above the z-axis are 

positive, and those below are negative. 
According to the system of co-ordinates just described, 

to every possible pair of real numbers x and y corresponds 

one and only one point of the plane, and to every point of 

the plane corresponds a pair of two definite real numbers. 

To the student this method of locating points is not 

new. We use it in locating a building in a city when we 

say it is a certain number of blocks north and then a num¬ 

ber of blocks west, in geography when we determine a 

plac^by means of its latitude and longitude, in navigation 

when we find the position of a ship. 

EXERCISES 

1. Plot the points whose co-ordinates are 
(-3, 1); (4, -2); (0,2); (-6,0) 

2. Plot the triangles whose vertices are determined by the 
following co-ordinates: 

(1, -4), (3, 2), and (-5, -6); (-2, -3), (1, 3), and (0,0) 

10. Polar co-ordinates. A point P, Fig. 8, in a plane 

may be located by its direction and distance from a fixed 

reference point O. Point 0 is 

the pole, the angle XOP made 

by OP and the initial line OX 

is the vectorial angle of P. The ° x 

distance OP is the radius vector 
of P. The initial line OX is the polar axis. Polar co¬ 

ordinates were first used by James Bernoulli in 1691. 

The radius vector, p,* and the vectorial angle, 6, f are 
the polar co-ordinates of P. 

* A Greek letter, called Rho. 

t A Greek letter, called Theta. 
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A point P in a plane may be located definitely by 

letting p and 6 have positive and negative values. Angle 

6 is positive or negative according as 

the radius vector turns counterclock¬ 

wise or clockwise. The radius vector 

OP, Fig. 9, is regarded as positive, 

but distances measured in the direc¬ 

tion opposite to OP are negative. 

Thus OP' is negative. „ 
° Fig. 9 

EXERCISES 

Locate the following points: 

1. (p, ff)= (2, -|), (-4, 60°), (-2, —45°) 

2. (3, arc tan 1); ( — 5, arc cos J); (4, arc sin 

11. Relation between Cartesian and polar co-ordinates. 
The following equations .express polar co-ordinates in 

terms of Cartesian co-ordinates. Show how they are 

The equations 

x = p cos 0, y = p sin 0, x2+y2 = p2 

express Cartesian co-ordinates in terms of polar co¬ 

ordinates. Prove. 
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EXERCISES 

1. By means of the equations in § 11 find the Cartesian 

2. Find the polar co-ordinates of the points: (2, —2); 
(1, V3); (-2, —2V73). 

3. Change the equation x2 — y2 = a2 to polar co-ordinates. 

4. Change the equation p = 2a cos 6 to rectangular co¬ 

ordinates. 

5. Transform the equation p sin 20 = 2a2 into rectangular 

co-ordinates. 

6. Change the equation x2-\-y2 — 2rx to polar co-ordinates. 

Complex Numbers 

12. Imaginary numbers. We have seen, § 8, that 

the solution of some quadratic equations leads to the 

square root of negative numbers. For example, no real 

value of x satisfies the equation x2-\- 3 =0. At first mathe¬ 

maticians found it impossible to give a meaning to the 

symbol V — 3 and called such numbers imaginary num¬ 

bers, i.e., numbers having no meaning. Gradually they 

recognized the desirability of interpreting these new sym¬ 

bols so that they might be subject to the same laws of the 

fundamental operations of addition, subtraction, multi¬ 

plication, and division as the real numbers. 

This interpretation, however, is not as simple as that 

of negative and of irrational numbers. A real number 

may be represented by a line-segment laid off on a line 

X'X from a fixed point 0, in a given direction. Con¬ 

versely, to every segment laid off on X'X from 0 cor¬ 

responds a real number. Hence imaginary numbers cannot 
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be represented by segments of X'X. The following 

suggests the representation of imaginary numbers: 

Let the segment OA, Fig. 11, represent the real num¬ 

ber a. Turning OA about 0 through two right angles, 

the segment OA' is obtained, _^t_i_ 

which is known to represent A ° A 

the number —a. Hence the FlG‘ 11 

multiplication of a number by the factor —1 may be 

interpreted geometrically as a rotation through 180° in 

the counterclockwise direction. We define V — 1 as a 

number which multiplied by itself equals —1. Hence, 

V — 1 • v —1 = —1. This suggests the idea of interpret¬ 

ing multiplication of a number by V— 1 • V—1 as a 

rotation through 180° in counterclockwise direction, and 

multiplication by V — 1 as a rotation through 90°. 

13. Imaginary unit. The symbol V — 1 is usually 

represented by the letter i* It is called the imaginary 
unit. Since imaginary numbers, as V —4, V —9, V—a, 

may be changed to the forms 2l/ —1=2i, — 1=3i, 

VaV —1 = 1/ a i, they may be represented geometrically 

by segments of a line YY' drawn perpendicularly to the 

x-axis at 0, Fig. 12. 

* Due to Gauss (1777-1855). 
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Y 1 

7\ 
i 

X' 0 

Y' 

X M Q X 

EXERCISES 

Write the following numbers in the form ai and represent 
them graphically: 

V^36, V~^c\ i/^2 

14. Complex numbers. We have seen that real and 

imaginary numbers are represented by segments drawn 

from the origin on the x-axis and on the ?/-axis, respec¬ 

tively. Conversely, every segment of the x-axis, drawn 

from 0, represents a real number, and every segment of 

the y-axis represents an imaginary number. This raises 

the question whether or not segments drawn from 0, 

not along the axes, can be 

interpreted as represent¬ 

ing numbers, e. g., the 

segment OP, Fig. 13. 

The position of P de¬ 

pends upon two numbers, 

x and y, the co-ordinates 

of P. We may pass from 0 to P by passing first from 

0 to M and then from M to P. We may also reach P 

by laying off OM = x, MQ=y, and then rotating MQ 

through 90° in the counterclockwise direction. This may 

be indicated by the symbol x-\-iy, the plus sign meaning 

that first x is laid off to M and then, in the same direc¬ 

tion, y from M to Q, the factor i denoting the rotation 

of MQ through 90°. 

In general, to any directed segment (vector) OP cor¬ 

responds a symbol of the form x-\-iy, x and y being the 
co-ordinates of P. 

The symbol x-\-iy is called a complex number.* 
The complex number x-\-iy reduces to a real number 

when y = 0 and to an imaginary number when £=0. 

* The term complex is due to Cauchy (1821). 

Fig. 13 
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When x=y = 0, the number x-\-iy reduces to 0 and is 

represented geometrically by the origin. Hence real and 

imaginary numbers are special cases of complex numbers. 

Historical note. The history of the evolution of the imagi¬ 

nary and the complex number and of the system of representing 

them graphically is eventful and interesting. These things did 

not spring suddenly from a single genius nor from a single age. 

Like most mathematical concepts the system was the cumulative 

result of the attempts of many men through many centuries 

to realize the true meaning of the varied results of the solution 

of equations. 

On their first appearance both negative and imaginary 

numbers were called ivipossible (Diophantus, Cardan, Bombelli). 

In the first century the Greek Heron, in a problem on 

pyramids, obtained a root V18 —144, and proceeded to find 

V 63 rather than i7 — 63. It cannot be decided whether he 

recognized the impossibility of finding V —63 . 

Diophantus (250 a.d.) avoided both irrational and imaginary 

numbers by putting limitations on the coefficients. Obtaining 

— b as a solution of a certain quadratic equation, he said 

that must exceed b by a square number. 

. The Hindu Bhaskara (born 1114 a.d.) says: “There is no 

square root of a negative number, for such a number cannot be 

a square.” 
The geometrized algebra of the Arabs did not encounter 

imaginaries, so that the Arabs did not consider imaginaries. 

The real history of the imaginary number begins in the six¬ 

teenth century of our era. In a book called the Summa, written 

lb2 b2 
by Pacioli in 1494, the author assumes that in — c ^ must 

always be equal to or greater than c. Chuquet (1484) also 

recognized the impossibility of finding v —a . 
In 1539 Cardan regarded imaginaries as impossible, but 

in 1545 he attempted for the first time in history to calculate 
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with them. He showed that (5-f^ — 15)(5 — V — 15) =40. 

Such numbers he said had only a “formal significance.” _ 

Bombelli in 1572 used numbers like + V — a and — V —a • 

He asserted that the imaginary in the “so-called irreducible 

case” of the solution of the cubic was only apparent, and he gave 

a rule for calculating with V —a and with the sums of such 

numbers. 

Vieta (1540-1603), the “father of modern algebra,” never 

even referred to imaginary numbers. 

Girard (1590?-1632) had to include them as numbers to 

make true his theorem that an equation of nth degree has n 
roots, but he saw in them only the value of making general 

statements possible. 

Descartes (1637) had no clear conception of them. 

Leibnitz (1646-1716) used the forms 

l/ l+i/—3+l/1— 3= V 6 

and x*+aA 

= (x+al/ — t/ — l) * (« — a]/ — l/ — l) * (z+a~\/y/ —l) * (»—al/"y/ — l) • 

John Bernoulli (1667-1748) established a relation between 

the arctangent and the logarithm of an imaginary number. 

Newton discovered a rule for determining the number of 

imaginary roots of a given equation. This rule was further per¬ 

fected by Maclaurin in 1727 and 1729 and by Campbell in 1728. 

Wessel in 1797, Argand in 1806, and Gauss in 1831 all gave 

the graphical representation of complex numbers that is taught 

in this chapter. The wonder is that so large a body of theory 

could have been worked out without the clarifying aid of this 

system. See Tropfke, Geschichte der Elementar-Mathematik, 
Band I, S. 168 ff. 

15. Polar form of a complex number. Since 

x = r cos 6, Fig. 14, 

y = r sin 6, it follows that 

x-\-iy = r cos d-\-ir sin 0 

and 
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JOHN BERNOULLI 

JOHN BERNOULLI (1667-1748) was born and edu- 

cated at Bale, and in the university he was a pupil 
of his older brother James. He was professor of 

mathematics at Groningen from 1695 until the death of 
James, whom he succeeded at Bale in 1705. He occupied 
the professorship at Bale until his death in 1748. 

His chief discoveries were the exponential calculus, 
the analytical treatment of trigonometry, the determi¬ 

nation of orthogonal trajectories, the principle of virtual 
work, the solution of the brachistochrone, and the 

conditions of a geodesic. He was probably the first to 
use g for gravity and to arrive at the equation v2=2gh. 
Prior to his time the same principle had been stated in 
the form of a proportion, thus: v\w\ =hi’.h2. He intro¬ 
duced 4>x as a function-symbol to displace his own earlier 

proposal of X or £. The final adoption of /, F, <j>, and \p to 
represent functions was due to Euler and Lagrange. 

Of most significance to mathematical science were 
his services as a teacher. However inappreciative he 

may have been of the performances of others, he was 
always accessible, appreciative, and fair-minded to his 
pupils. Notwithstanding the blemish in his character 

alluded to in the biographical sketch of James (facing 
p. 270), he seemed capable of imparting his own zeal for 

mathematics to his pupils. He was the most successful 
mathematical teacher of his age and one of the greatest 
since Euclid. His influence was probably the most 

potent single force that wrought on the Continent of 

Europe the general adoption of the differential calculus 
of Leibnitz rather than the fluxional calculus of Newton. 

The illustrious Bernoulli family, which in the course of 
a century furnished eight distinguished members to mathe¬ 

matical science, was of Dutch descent, living originally 
at Antwerp. Driven from its country by Spanish per¬ 

secutions, the family sought an asylum first at Frankfort 
in 1583, and finally at Bale, in Switzerland. 

[See Ball, Cajori, or Encyclopaedia Britannica.] 
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p 

V 

/ \ 

0 X 1 If 

or, 
xPiy = r(cos 0+i sin 0) 

The distance OP or r, Fig. 14, is called the modulus 

and 6 the amplitude, or argument, 

of the complex number. 

The form r (cos dpi sin 6) is 

the polar form of xpiy. 
Fig. 14 

EXERCISES 

Draw the vectors representing the following numbers: 

1. 2pi 4. —5+2i 

2. 2—i 5. — 3 — 1V5 

3. —3 i 6. —2+6 i 

Write the following numbers in the polar form. Draw a 

figure for each: 

7. \pW3 10. 1 Pi 

8. —1—W3 11. -1 -i 

9. VS-i 12. -1 Pi 

Write the following numbers in the form xPiy: 

13. 2(cos 45°+tsin45°) 16. 5(cos 90°+i sin 90°) 

14. 4(cos 135°+f sin 135°) 17. 2(cos 270°+i sin 270°) 

15. 3(cos 30°Pi sin 30°) 18. cos 150°+f sin 150° 

16. Equality of complex numbers. Two complex 

numbers Xipiyi and x2piy^ are equal if, and only if, they 

are represented by the same vector. Hence, if two com¬ 

plex numbers apib and cpid are equal, we must have 

a = c and b = d. Conversely, two complex numbers apib 

and cpid are equal if, and only if, a=c and b=d. 

Hence, if aPib = 0, it follows that a=0, 6 = 0. 

17. Conjugate complex numbers. In the complex 

number a Pib, a is called the real part and ib the imagi¬ 

nary part. Complex numbers, such as aPib and a—ib, 
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whose real parts are the same and whose imaginary parts 

are equal numerically but differ in sign, are conjugate 
complex numbers. 

EXERCISES 

Find the value of x and y satisfying the following equations: 

1. y)i = 4+6i 

2. x-\-y-\-i{x—2/) = 24.5+z‘(8.5) 

3. 5x+3y+i(4x—7y) = 26+2i 

The Operations with Complex Numbers 

o M v N 

Fig. 15 

18. Addition of complex numbers. The symbol 

x-\-yi has been interpreted geometrically to mean that a 

segment OM=x, Fig. 15, is laid 

off in the direction of the x-axis, 
♦ ' 

that this is followed by laying off 

MN =y, and that MN is then 

rotated about M through an 

angle of 90° in the counterclock¬ 

wise direction, taking the position MP. The segment 

OP represents x-\-yi. 

By the sum of two complex numbers Xi~\~yii and 

xz+yzi we shall mean 

the following: First, 

the vector OP is con¬ 

structed, Fig. 16, rep¬ 

resenting xi -\-yii. 

Then, beginning from 

point P instead of 

from 0, the vector PR 

is constructed equal to 

the vector OQ, which 
represents Xz+yd. Fig. 16 

The vector OR is the sum of aq+yff and x^y^i. 
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Show that the sum of £i+2/if and £2+2/2i may be ob¬ 

tained by locating the point R, whose co-ordinates are 

£i+£2 and 2/1+2/2. The vector from 0 to R then repre¬ 

sents the required sum. 

Since OQ is equal and parallel to PR, it follows that 

OPRQ is a parallelogram. This suggests a third con¬ 

struction of the sum of two complex numbers: Draw 

OP and OQ representing the given complex numbers. Draw 

the parallelogram OPRQ having OP and OQ as two adjacent 

sides. The diagonal which passes through 0 represents 

the sum of the given complex numbers. Since the co¬ 

ordinates of R are £i+£2 and 2/1+2/2, OR represents the 

number (£i+£2) +(2/1+272)+ 
Hence we may define the number (x\ +£2) + (2/1 +2/2+ 

as the sum of £1+2/if and £2+2/2^ he., 

(xi -pyii) + (*2 +2/21) = (X1+X2) + (yi +2/2)1’ 

EXERCISES 

1. A steamer is moving in the direction OP, Fig. 17, and 
the wind is blowing it in the direction OQ. How far and in 
what direction will it be from the starting-point in one hour ? 

If the steamer were still, in one hour 

it would be at Q. If then the wind would 

stop, in another hour the steamer would 

cover the distance from Q to R. Hence, 

with the wind blowing in the direction of 

OQ, and the steamer starting from 0 and 

moving in the direction OP, it would actu¬ 

ally reach the point R in one hour. 
Since the vector OR represents the distance of the steamer from 

the starting-point after one hour, it denotes its velocity and may be 

considered as the sum of the two velocities represented by OP and 
OQ. It is customary to call the vectors OP and OQ the components 

of OR and to call OR the resultant of OP and OQ. In general, the 

resultant of two forces represented by OP and OQ is the force 

represented by the diagonal OR of the parallelogram OQRP. 

Fig. 17 
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Add the following complex numbers both graphically and 

algebraically: R 

2. (5+3i) + (-l+7i) 

Graphical addition: Let OP, Fig. 

18, represent 5+3^, and let OQ repre¬ 
sent — 1+7i. Draw the parallelogram 

OPRQ. The diagonal OR represents 

the sum. 

Algebraic addition: 

5+3 i 

— 1+7 i 

4 + l(K Fm. 18 

3. (4+i) + (l+5i) 5. (—6+8f) + ( — 3 — 6i) 

4. ( — 3 — 2i) + (5+3f) 6. (8—i) + (8+i) 

7. Represent graphically a force of 15 lb. acting southeast 

and one of 22 lb. acting southwest at the same point, 

magnitude and direction of the resultant. 

Find the 

19. Subtraction of complex numbers. We have seen 

that the sum of the numbers xi +y+ and £2+2+f is repre¬ 
sented graphically by a di¬ 

agonal of a parallelogram. 

Therefore a side of the paral¬ 

lelogram denotes the difference 

between the numbers repre¬ 

sented by the adjacent side 

and the diagonal. Therefore, 

to find graphically the dif¬ 

ference between x\-\-y\i and £2+2/2+ lei OP, Fig. 19, repre¬ 

sent £1+2/1+ and let OQ represent £2+2/2^. 
Draw QP. 

Draw OR || QP, and RP |j OQ. 

Then OR represents the required difference. 
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Show that OR represents the number 

(xi-xf) + (y1-yf)i 

Hence we define the difference of two complex numbers 

Xi-\-y\i and x2-\-y2i as the complex number 

(xi—xf)+(yi—y2)i 

he., ([xi~\-yii) — (*2+1/21) = (*i—*2)+ (2/1— yf)i 

EXERCISES 

Subtract the following as indicated and illustrate by a 

drawing: 

1. (4 — 37) — (2+7) 3. (7+87)-(5+6i) 

2. (2+7) — (1+47) 4. (2 —3f) — (—1+7) 

20. Multiplication of complex numbers. Assuming 

that the ordinary laws of algebra are valid for complex 

numbers, we have 

(xi+yii) (x2+y2i) = *1*2+x2yd+x1y2i-\-yly2i2 

= xix2-\-yiy2i2+(xiy2-\-x2yf)i 

Since i2 = — 1, we have 

(xi+yj)(x2+y2i) = (XiX2-yiyf) + (xiy2+x2yf)i 

The graphical multiplication of two complex numbers is 

easily shown by means of the polar form, as follows: 

Let £i+2/ii=ri(cos + +f sin Of) 

and x2-\-y2i=r2(cos 02+f sin Of) 

Then (xr+yii) (x2+y2i) 
= nr2(cos Oi-\-i sin Of)(cos 02-\-i sin Of) 

= rir2[cos 0\ cos 02 —sin Oi sin 02 

+2'(sin Oi cos 02+cos 0\ sin Of)] 

(*i+i/ii)(*2+i/2i) =rir2[cos (8i+02)+i sin (0i+02)] 

This is a complex number whose modulus is the product 

of the moduli of the given numbers, and whose amplitude is 

the sum of their amplitudes. 
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EXERCISES 

Multiply as indicated and illustrate by means of a drawing: 

1. (2+20(1+^30 
(2+20(1+^30 =2 + (2+2l/ 3)i—2V 3i2 

= (2+2v/3) + (2+2i/3 )i 

In the polar form: 
2+2i = 2v/2(cos 45°+i sin 45°) 

1+V" 3i = 2 (cos 30° +i sin 30°) 

the modulus of the product is rir2=4l/2 and the amphtude 

is 75°. 
. to construct the product, 

draw OR, making an angle of 75° 

with OX, Fig. 20, and equal in length 

to W2. 

2. (2+30(3+50 

3. (-2-20(2+20 

4. (3+3^30(2^3+20 

5. (l/2+i/50 (Vl+V2i) 

6. (3-0(4+30 

7. (3-20(4+30 

21. The nth power of a complex number. If a com¬ 
plex number is multiplied by itself we have 

[r (cos 0+ i sin 0)f=r2 (cos 26-\-i sin 26), § 20 

Multiplying both sides by r (cos 6-\-i sin 6), we have 

[r(cos 6-\-i sin 0)]3=r3(cos 36-\-i sin 36) 

In general, it may be proved by mathematical induction, 
§118, that for any positive integral value of n we have 

[r(cos 0+z sin 0)]w = rn(cos n0+z sin nO) 

This equation is known as De Moivre’s formula. It 
can be proved that the theorem holds for any rational 
value of n. 
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22. Division of complex numbers. The denominator 

of the quotient Xl\yi\ may be rationalized by multiplying 
X2+IJ2I 

both numerator and denominator by the conjugate of 

X2 -\-yii- 
This gives: 

{xi-\-yii)(x2—yzi) _ (^2+^2) +fey 1—x^i 

(X2 [ 2/2^) (X2 yfy) X2~\~y2 

Xi+yii ^XiX2+yij/2 . X2yi-x1y2. 
X2 “hy^i *22 + */22 ^22+y22 

This shows that the result is a complex number. 

The following division in the polar form suggests a 

geometric construction for the quotient of two complex 

numbers. 
By rationalizing the denominator, 

ri(cos d\-\-i sin df) _rir2(cos di-fi sin fli)(cos 62— i sin 62) 

7*2 (cos 62 -pi sin 02) r22(cos'2 02+sin2 62) 

ri cos 6\ cos 02+sin 6i sin fl2~M(sin di cos 62 — cos di sin 62) 

xi+ydn 
X2~\~yii *2 

cos (0i-02)+f sin (01 -02) 

Hence the quotient of two complex numbers is a complex 

number whose modulus is the quotient of the moduli of the 

given numbers and whose am¬ 

plitude is the difference of their 

amplitudes. Thus construct 

OP3, Fig. 21, equal to ^ and 

ZXOP3 = di-02. Then OP3 

represents the required quo¬ 

tient. 
Fig. 21 
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EXERCISES 

Divide as indicated, both algebraically and graphically: 

1. (—2+2v/3i)-Kl+i/3i) 

Rationalizing the denominator, 

-2+2T/3f_ (-2+2/30(1 -VSi) _-2+i(2Vs+2VS) +6 

I+1/3 i (1+i/3i) (1-VSi) 
. =4+4V/3t==1 + ]//3 i 

1+3 

Writing both numbers in the polar form, 

—2+2l/3i =4 (cos 120°+f sin 120°) 

l+l/3i=2 (cos 60° +i sin 60°) 

-2+2l/3i 

" l+T/3i 

2. (2+2iH(l+|v/3t) 

3. (l+i)-s-(|—\i) 

4. (3-5i) + (2-3t) 

5. (2—2v/3i)-Kl+i) 

5-3 i 

= 2 (cos 60° +i sin 60°) 

3 

6. 

7. 

5+3?: 

2 

8. 

9. 

10. 

11. 
— 1+ V Si 

2 i 

2+5i 
4?: 

2+3?: 
3—2i 

(2+3?~)2 
1+2?: 

12. Reduce 11 and 9 7 2—. to the simplest form. Con- 
1-3?: —4—?: 

struct the sum. 

13. Evaluate 2x2-&-3i)x+i for x = 3+2i and reduce the 
x2+x+l 

result to the form a+bi. 

14. Simplify 
4tVlO 

2-ZiVl 

15. Reduce and V 2-\-Yli to the form a+bi. Then 
1+2?: 

find the sum graphically. 
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Summary 

23. The chapter has taught the meaning of the follow¬ 

ing terms: 

positive and negative numbers 

integral and fractional num- 
ongin 

zero • 

abscissa, ordinate 

co-ordinates 

Cartesian system of 

bers 

rational and irrational num¬ 

bers 

real and complex numbers 

conjugate complex numbers 
co-ordinates 

polar co-ordinates 

24. Points in a plane may be located by means of 

Cartesian co-ordinates and by polar co-ordinates. 

25. Real and complex numbers may be represented 

graphically by points or line-segments. 

26. Cartesian co-ordinates may be expressed in terms 

of polar co-ordinates and conversely. 

27. Complex numbers may be added, subtracted, 

multiplied, and divided algebraically and graphically. 
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THE STRAIGHT LINE. LINEAR FUNCTION 

Slope of a Line 

28. Slope of a straight line. The positive angle a, 

Fig. 22, formed by a line AB and the £-axis, is the 

inclination of the line. The inclination 

may be determined by means of its 

trigonometrical ratios. In geometry 

the tangent ratio is used to measure 

the inclination of a line. The tangent 

of the inclination is called the slope of 

the line. 

Let Pi and P2, Fig. 23, be any two points of a straight 

line, and let the co-ordinates be (x\, yf) and (x2, 2/2), 

respectively. 

Then the slope of P\P2 is equal to 

QP2=y*-yi 
PiQ x2—xi 

Denoting the slope by m, we have 

the formula 
y^—yi 

7 Fig. 23 
X2~X\ 

The differences x2—Xi and y2 — yi are briefly denoted 

by Axi (Delta xf) and Ayx (Delta yf). In this notation 

2/2 

V2-Vi 
• y ll ‘ ' 

/S i &g~ Q 

K ! 
*1 j 1 

L 
0 xl " X 

the equation m d/i • Ai/i. 
is written m — Since the 

x2 — Xi Axi 
equation holds for every point on the straight line, 

Ay 
the subscripts may be omitted, and we have m . The 

Ax 

quotient is called differential quotient. 
lAlJO 

22 
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EXERCISES 

1. Show from a figure that the slope is positive or negative 

according as the line rises or falls from left to right. Thus the 

sign of m determines whether or not the line rises or falls. 

2. Show that the slope of a line parallel to the z-axis is zero. 

3. Show that a line parallel to the y-axis has no slope. 

4. Find the slope and inclination of each of the lines deter¬ 

mined by the following points: 

( — 2, 4) and (3, 6); (3, 8) and ( — 6, —6); (0, —4) and ( — 3, 1). 

Equation of a Straight Line 

29. Notation for points. The co-ordinates of a fixed 

point are distinguished from the co-ordinates of a variable 

point by means of subscripts. Thus fixed points are 

denoted by {xh y0, (x2, 2/2), etc., but (x, y) are the co¬ 

ordinates of any point in the plane. 
Likewise, if a point moves on a straight line, or on a 

curve, its co-ordinates are x and y, without the subscripts. 

If the moving point is to satisfy given conditions, 

these conditions may be expressed in the form of equations 

involving x and y, the co-ordinates of the point. Since 

there are several ways of determining a straight line, there 

are correspondingly various relations between x and y. 

These relations will be worked out in §§30 to 44. 

Historical note. This type of mathematics is called ana¬ 

lytical geometry. It used to be known as co-ordinate geometry. 
It has two distinguishing characteristics: one, the employment 

of co-ordinates; the other, the correlation of algebra and geom¬ 

etry. Before analytical geometry was invented algebra and 

geometry had long been studied as separate mathematical 

branches. 
The use of co-ordinates is very old. The ancient Egyptian 

architect drew on the wall where he was to chisel a relief two 

sets of parallels at right angles. When he transferred his 
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design, which had been traced over with a pair of parallel 

systems of lines at right angles, he was using co-ordinates. The 

Greek astronomer Hipparchus (about 120 b.c.) was employing 

the principle of co-ordinates when he located points on the 

earth’s surface by longitude and latitude, using the meridian 

of Rhodes as axis of ordinates. When Heron (about 80 b.c.) 

mapped his land surveys on cross-lined paper and located 

streets, public squares, buildings, and monuments with reference 

to the lines and intersections, and calculated areas of tracts as 

sums of the rectangles formed on his rectangular paper, he was 

using co-ordinates. 

Apollonius (250-200 b.c.) in his study of conic sections, 

Oresmus (1323-82 a.d.) in his study of point-sets, Kepler 

(1571-1630) in his studies in mensuration, all employed the 

principle of co-ordinates. 

Furthermore, algebra and geometry had been studied in 

combination by individuals long before analytical geometry was 

invented. All the algebra the Greeks ever studied before 

Diophantus (ca. 250 a.d.) was of a geometrized type. Two 

books of Euclid’s Elements were really on what we would call 

algebra. The principles of Arabian algebra were proved by 

geometrical methods. Leonardo of Pisa in 1202 urged upon 

all people the importance of geometry as a means of proving 

algebraic rules and principles. Pacioli (1494) did the same 

thing, as did also Regiomontanus (1436-76 a.d.), Stifel (1486- 

1567), Tartaglia (1500-1557), Cardan (1501-76), and Vieta 

(1540-1603). 

It was Descartes, however, in 1637 who first published the 

system of representing points by number pairs, lines by equa¬ 

tions based on co-ordinates, and the expression and investigation 

of properties of lines, curved or straight, by the algebraic trans¬ 

formations of equations, as is begun in this chapter. Geometry 

for more than one thousand years had been helping algebra to 

grow to maturity. After Descartes algebra began to repay its . 

age-long debt. Since Descartes, algebra and geometry have 

grown along together. 
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30. The point-slope form. Let m be the slope of the 

line P1P2, Fig. 24. Let (xi, yf) be the co-ordinates of 

the given point Pi on line PiP2, and let (x, y) be the co¬ 

ordinates of any other 

point P on PiP2. 

Then (x, y) satisfy 

the equation 

mJLHi\ Why? 
x — Xi 

Solving for y — yhwe have 

y~yl = m(x-x]) 

P{x,y) 

PrXx<i ,y<2) 

(o,6) 

X 

Fig. 24 

an equation of the first degree in two variables, x and y. 

This equation is satisfied by the co-ordinates (x, y) of 

every point on PiP2, and it is said to be the equation of the 

straight line whose slope is m and which passes through the 

point Pi. 

EXERCISES 

1. The slope of a line passing through the point (4, —3) is 

5. Find the equation of the line. 

2. Find the equation of a line of slope J-, passing through 

the point ( — 4, —3). 

3. Find the equation of a straight line of slope — §, passing 

through the point (5, 7). 

31. The slope-intercept form. Let (0, 6), Fig. 25, be 

the co-ordinates of the point 

of intersection of PiP2 and 

the ?/-axis. Substituting 

(xi, yi) = (0, 6) in the equa¬ 

tion y—yi=m(x—xi), we 

have 

or 

y — b =m(x — 0), 

y = mx-\-b Fig. 25 
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The number b is the ^-intercept of P1P2 and the equation 

y=mx-\-b is said to be the% equation of the straight line 

whose slope is m and which has the y-intercept b. 

Using Fig. 25, prove that y=mx-\-b. 

32. The two-point form. Let (xi, yi) and (x2, y2) be 

the co-ordinates of two fixed points and let 

y = mx-\-b (1) 

be the equation of the line passing through these two 

points. Then 

yi=mxi-\-b (2) 

and y2—mx2-\-b (3) 

Subtracting (2) from (1), and (2) from (3), we have 

• y~yi = rn{x—xi) (4) 

and y2—yl=m(x2—x1) (5) 

Dividing (4) by (5), we have 

y —y ijx — xi 

yz—yi X2—X1 

y-yi=yi-yi 
X—Xi X2—X1 

EXERCISES 

1. On squared paper draw a straight line. Select two points 
on this line and determine its equation. 

2. Write the equations of the lines passing through the 
points: 

(5, 6) and (1, -2); (0, 2) and (6, -5); (-1, 3) and (-4, -3) 
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33. The determinant form. The equation of a 

straight line given in § 32 may also be written in the 

determinant form 

x y 

*i yi 
*2 y2 

This may be easily seen by expanding the determinant, 

§ 67. 

exercise 

Show that the condition that three points (x\, yi), (X2, yi), 
and (xz, yi) lie on a straight line is 

Xi y i 
x2 y2 
xz 2/3 

34. The intercept form. Let a be the ^-intercept 

and b the y-intercept of the line PQ, Fig. 26. 

Then 
y—b_0—b » 

x-0~a-0 ’ ^ 

y-b_ b 

x a 

y = —x-\-b 
(X 

x 
a 

This is the intercept form of the equation of a straight 

line. 

EXERCISES 

1. On squared paper draw a straight line cutting both axes. 
Find the intercepts and determine the equation of the line. 
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2. Find the intercepts of the lines passing through the 
points: 

(5, —2) and (1, —3); (5, —8) and ( — 4, 3) 

35. Lines parallel to the x-axis. Since m = 0, when 
the line is parallel to the x-axis, the equation y—mx-\-b 

takes the form 
y = b 

36. Lines parallel to the y-axis. Let y 

PQ, Fig. 27, be parallel to the y-axis. 
Then for all points on PQ, x = k, what- 

P 

ever be the value of y. For all points 0 
not on PQ, x^k. Hence the equation 

k X 

of PQ is Q 

x = k Fig. 27 

37. Lines passing through the origin. Substituting 
x = 0 and y = 0 in the equation y=mx-\-b, we have 6 = 0. 
Hence the equation of a straight line passing through the 

origin is 
y = mx 

38. Theorem: Every equation of the first degree in one 

or two variables represents a straight line. 

The general form of an equation of the first degree in 
two variables is 

Ax ~\~By-j-C = 0 

If B= 0, the equation Ax+By+C = 0 may be solved 
for x. 

This gives 
C i. x = —j = k 
A 

which is the equation of a straight line parallel to the 
y-axis, § 36. 
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If B^O, the equation Ax-\- By-\- C = 0 may be solved 

for y and changed to the form 

y = mx+b 

This defines a straight line cutting the y-axis at the point 

(0,6), §31. 
If m = 0, we have y=b, §35, the equation of a line 

parallel to the x-axis. 
If 6 = 0, we have y=mx, § 37, the equation of a line 

passing through the origin. 

Hence, for all values of A, B, and C the equation 

Ax-\- By+C = 0 can be put into one of the forms x = k, 

y=b, y = mx, or y = mx-f-6, and therefore it represents a 

straight line. 

39. Linear equation. An equation of the first degree 

is called a linear equation. 

40. Linear function. A function of the first degree, 

as rax+6, is a linear function. In the equation y = mx+b, 

y is an explicit function of x; in the equation Ax-\~By-\-C = 0, 

y is an implicit function of x. 
The value of x for which mx+6 is equal to zero is 

called the zero of the function mx+6. 

41. Graphing linear equations. A pair of values of 

x and y satisfying the equation Ax-\- By-\- C = 0 is a solu¬ 

tion of the equation. The point determined by this pair 

of numbers lies on the straight line defined by the equation. 

Since two points determine a straight line, the graph 

of the equation may be obtained by plotting two solu¬ 

tions and drawing the straight line determined by the 

two points. This line is the required graph. 
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EXERCISES 

Graph the locus of each of the following equations: 

1. x = S 3. y = -5 

2. y = 4x 4. y=-2x+3 

Let x = 0 and find the corresponding value of y. 
Then let y = 0 and find the corresponding value of x. 

6. 2x+2y = 8 

6. y = 3x+5 

7. 2x—5y = 0 

8 -+V- = 1 8. 3+4 1 

9. y=-7 

10. -4:X+Sy =12 

Write the slope-intercept form and the intercept form of 
each of the following equations: 

11. 2y-\-5x — 6 = x+3 

12. l+l~2 

13. x — 1 y — 3 
2 7 

14. x — 2y = Q 

Determine C so that the graphs of the following equations 
pass through the point (2, — 3): 

15. 4x-{-5y-\-C = 0 17. —5x-\-3y-\-(7=0 

16. 7x+y+C = 0 18. 10y+C=0 

19. A straight line passing through the point (5, 3) has equal 
intercepts. Find its equation. 

20. Centigrade and Fahrenheit readings taken at the same 
time satisfy the equation 

160 
9 

Draw the straight line representing this equation, 
graph find C when F = 30°, and find F when C = 100°. 

From the 

21. When a body is thrown downward (in a vacuum) with 
an initial velocity v0, its velocity in t seconds is given by the 
equation v = v0+gt. Draw the graph of this equation for <7 = 32 
and fl0 = 3. 

22. A man invests $1,200 at 3 per cent simple interest, ‘Find 
the amount a in n years. 
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Show that a is a linear function of n. 

Notice that the coefficient of n is the rate of increase of the 

amount. What is the meaning of. the coefficient of n in the graph ? 

23. Two variables, x and y, are so related as to have a con¬ 

stant ratio m. Express the functional relation between x and 

y in the form of an equation and show that either variable is a 

linear function of the other. 

24. The weight, w, of an object varies directly as the volume, 

v. Show that w is a linear function of v. The slope of the 

straight line representing this function graphically denotes the 

density of the body. 

25. The distance, s, passed over by a body moving uni¬ 

formly varies directly as the time, t. Show that s is a linear 

function of t. What is the meaning of the slope of the line 

representing this function ? 

26. Show that one of the acute angles of a right triangle is 

a linear function of the other. Represent this function graphi¬ 

cally. 

42. The polar equation of a 

Fig. 28, be any straight line. 

Let OX be the initial line, 

and 0 the pole, § 10. 

Denote the length of the 

perpendicular from 0 to A B 

by p and the angle COX by co. 

Let P (p, 6) be any point 

on A B. 

Then cos POC = 

straight line. Let A B, 

Since /.POC = 0—u, 

.*. pcos(0 — <*))=/> 

This is the equation of line A B in polar co-ordinates. 
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EXERCISES 

Draw the graphs of the following equations: 

1. p cos 0 = 5 3. p cos ($—120°) =4 

2. p cos (6—30°) = 6 4. p sin (0+§) = 4 

5. Find the polar equation of a straight line passing through 

the pole. 

6. Find the polar equation of the initial line. 

43. The equation of a straight line in the normal 
form. The equation 

p cos (0-co)=p, §42, 

may be written 

p cos 6 cos co+p sin 0 sin co=p Why? 

fp cos 6=x 
Show that< . 

fp sin 6=y 

.*. x cos <D+i/ sin <o =p 

This is the normal form of a linear equation. 

44. Reduction of Ax-\-By+C=Q to the normal form. 
Since the equations 

Ax+By+C = 0 (1) 

and x cos co+y sin co—p = 0 (2) 

represent the same line, they must differ only by a con¬ 

stant factor. Thus, equation (1) may be written 

kAx-{-hBy-\-kC = 0 

cos cc = kA 

sin w—kB 

—p = kC 

.’. cos2 co = k2A2 

sin2 co = k'2B2 

cos2 co+sin2 co =k2(A2+B2) Adding, 
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±1/42 + B2 

A . B 
.*. cos co =- ■ _ , sin to =-t-j 

±l/A2+B2 ±1 A2+£2 

±L+42+B2 

Since p is always a positive number, the last equation 

determines the sign of the radical. Hence the sign of the 

radical is opposite to that of C. Why? 

EXERCISES 

Reduce each of the following equations to the normal form 

and construct the lines from the values of co and p. Check 

your results by means of the intercepts. 

1. 42+32/—25 = 0 

Dividing every term by l/42+32, we have 

++-5 = 0 
5 5 

4 . 3 - 
cos co = g, sin co = - , p = o 

Since cos co and sin co are positive, the perpendicular lies in the first 

quadrant. Determine the value of co and construct the line, Fig. 29. 

2. —2+3?/ —4 = 0 

3. 2+8 — — 2y 

4. 32+42/+6 = 0 

5. x — y = 0 

6. 32 —5?/= 4 

7. 32—4?/ = 0 Fig. 29 
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Draw the lines determined by the following conditions and 

write their equations: 

8. p = 3, (o = 30° 10. p = 4, (o = 74° 

9. p = 5? (0=150° 11. p = 5, o> = 135° 

12. Find the distance between the parallel lines 

7x — 8y—40 = 0 and 7x — 8y—15 = 0 

13. Find the radius of the circle whose center is at the origin 

and which touches the line 5x-\-12y—25 = 0. 

45. Distance of a point from a line. Let AB, Fig. 30, 

be a given line, let P(xi, yi) be a given point, and let d 

be the distance from P a> 

to AB. 

Through Pdraw 

A'B' WAB. 

Let OD be perpen¬ 

dicular to A'B' and equal 

to p', and let 0C = p. 

Then the equations 

of A B and A'B', reduced 

to the normal form, may be written 

Fig. 30 

x cos cc-\-y sin cc=p 

and x cos (x-\-y sin cj=p', 

respectively. 

Since the equation of A'B' is satisfied by (xh yi), it fol¬ 

lows that 

Xi cos co —(~ ?/i sin co=p' 

.'. d—p' p=X\ cos co —{— ?/i sin co—p 

d=X\ cos oo-f-yi sin co—p 

Hence, to find the distance from a point to a line, reduce the 

equation of the line to the normal form x cos copy sin co—p = 0 
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and substitute the co-ordinates of the point in place of the 

variables x and y. 

If d is negative the given point and the origin lie on the 

same side of the given line; if d is positive they lie on 

opposite sides of the given line. 

EXERCISES 

1. Show that 
Ax\-\-By\-\-C 

d =-. , 
±VA2+B2 

using the — sign when C is positive and the + sign when C is 
negative. 

2. Find the distance of the point (1, 2) from the line of 
3x —10 = 4 y. 

3. Find the distance of the point ( — 3, 4) from the line of 
5x-\-12y = 25. 

4. Find the distance of the point (1, 1) from the line of 
3x+4?/+6 = 0. 

5. Find the distance of the point (2, 3) from the line 
Zx+4y=-12. 

46. Bisector of an angle. 
Let P(xiyi)j Fig. 31, represent 

any point on the bisector of that 

pair of vertical angles which con¬ 

tains the origin. 

Since P is equally distant 

from the given lines it follows that the equation of the 

bisector is 

x cos co+y sin o)—p=x cos co'-\-y sin to'—p' 

Similarly the equation of the bisector of the other pair 

of vertical angles is 

x cos <o+y sin o>—p=—(x cos w'd~y sin <o'— p') 
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EXERCISE 

Find the equations of the bisectors of the angles formed by 

the lines 

3x—4?/ = 12 and 12z+5?/ = 30 

47. Distance between two points. Show that P2Q, 

Fig. 32, is equal to y2—yi, and that p. 

PiQ is equal to x2—Xi \yrv i 

.*. d2 = (x2-x1y+(y2-yi)2 

Pi/x-i-Xa !q 

d = V(x2—xi)2 + (y2 - yi)2 

i y \ 1 
. ' 
i ■ 

or d = V (Ax)2+(Ay)2 

Xi 

Fig. 32 

48. Locus of moving point always equidistant from 
two given points. Suppose a point P(x, y) moves, always 

being equidistant from two given points, Pi(l, 2) and 

P2(4, 1). Find and plot the equation of the locus of P. 

Since PPi = PP2, 

we have 

l/(x-l)2+(i/-2)2 = V/(a:-4)2+(?/-l)2, §47 

(x — l)2+(j/ — 2)2 = (a:—4)2+(?/ — I)2 

This reduces to 

6x — 2y —13 = 0 

Plot this equation. 

EXERCISES 

Find the equation of the locus of a point equidistant from 
the following pairs of points. Plot the locus. 

(—3, 4) and (3, 2); (0, 0) and (4, 6); (3, 2) and ( — 5, 1). 
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49. Division of a segment in a given ratio. Let P3, 

Fig. 33, divide the segment PiP2 into the segments m and 

n. The co-ordinates of P3 may be 

determined as follows: 

PiP3 PiD PiD 

Similarly 

P3P2 

m 

n 

DE P3P 

X3—X1 

X2~X3 

mx2—rnxz = nx3—nx 1 

(m+ri)x3 = mx2+nx\ 

mx2-\-nxi 
x3 = 

m+n 

_my2+nyi 
m+n 

Y n(Vi1 

P s' ' r3s^ 1 ^ 
p ~ 

fV-f 
' 1 

1 1 1 

1 ! 1 1 1 

O A B C Ji 

Fig. 33 

50. Midpoint of a segment. In the formulas derived 

in § 49, let m = n. Then show that 

X3 = ^(Xi-pX2) 

yz=-2iyi-\-y‘i) 

EXERCISES 

1. Derive the distance formulas, § 47, letting Pi be in the 

first quadrant, P2 in the second. 

2. Prove the distance formulas for various positions of Pi 

and P2, thus showing that the formulas hold in general. 

3. Find the distance between (3, —4) and (8, —2). 

4. Prove that the midpoint of the hypotenuse of a right 

triangle is the center of the circumscribed circle. 

Place the triangle, making the sides of the right angle fall 

along the co-ordinate axes. 
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5. Find the lengths of the sides of a triangle, the co-ordinates 

of whose vertices are (2, 2), (4, 3), ( — 3, 5). 

6. Find the lengths of the medians of a triangle, the co¬ 

ordinates of whose vertices are (7, —3), (—4, 7), (5, —2). 

7. Using the fact that the medians of a triangle are con¬ 

current in a trisection point, find the co-ordinates of the common 

point. 

8. Show that the points (2, 4), ( — 2, 4), ( — 1, 1), and (1, 7) 

are the vertices of a parallelogram. 

9. Prove that the diagonals of a rectangle are equal. 

Make two adjacent sides coincide with the axes. 

10. Prove that the line joining the midpoints of two sides 

of a triangle is equal to one-half of the third side. 

11. Show that a circle whose center is the point (2, — 1) 

passes through the points (6, 2), ( — 1, 3), (—2, —4). 

12. Find the equation of the locus of points equidistant 
from the points ( — 3, —3) and (0, 4). 

13. What are the co-ordinates of the point dividing the 

segment ( — 1, 4), (5, 3) in the ratio 2:3? 

14. Find the trisection points of the segment joining the 
points (0, 3) and (6, —3). 

Summary 

51. The chapter has taught the meaning of the follow¬ 

ing terms: slope, intercept. 

52. The following forms of the equation of a straight 

line have been developed: 

U The point-slope form: 

y-yi = m(x-xi) 

2. The slope-intercept form: 

y = mx+b 
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3. The two-point form: 

y-yi=y2-yi 
X — Xi X2 — X1 

4. The determinant form: 

x y 1 
Xi yi 1 
x2 y2 1 

= 0 

6. The intercept form: 

5+|=l a b 

6. The polar form: 

P cos (0 — to) =p 

7. The normal form: 

X COS <o + z/ sin w =p 

8. The equation of a line parallel to the x-axis: 

y=b 

9. The equation of a line parallel to the y-axis: 

x=k 

10. The equation of a line passing through the origin: 

y = mx 

11. The general form: 

Ax+By+C = 0 

53. It has been shown: 

1. That every equation of the first degree in one or two vari¬ 

ables represents a straight line. 

2. How to graph a linear equation. 

3. That the equations of the bisectors of the angles formed 

by two intersecting lines are 

x cos <o-f-i/ sin <o —p = ± (x cos <o'+y sin u'—p') 
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54. The following formulas have been proved v 

1. The distance from a point to a line: 

d = xi cos w+yi sinw— p 

2. The distance between two points: 

d=V (x-,-xi)2+(y2-yi)2 

3. The co-ordinates of the point dividing a segment in a given 

ratio: 

mxz+nx i mz/2+nt/i 

m-\-n ' m+n 

4. The co-ordinates of the midpoint of a segment: 



CHAPTER III 

SEVERAL STRAIGHT LINES. SIMULTANEOUS 

LINEAR EQUATIONS IN TWO 

VARIABLES. AREAS 

Several Straight Lines 

55. Parallel straight lines. If two lines are parallel, 

their slopes are equal, i.e., 

mi = m2 (1) 

Moreover, let Aix-\-Biy-\-Ci = 0 

and A2x-{~ B2y-\- C2 — 0 

be the equations of two parallel straight lines. It follows 

that 

and 

Since 

y=- 
A! 

BiX 
Ci 

Bi 
Why? 

y=■ 
a2 

B2 
C* 

b2 
Why? 

mi= ■ 
A\ ^ 

—T) and m2 = - 
L> i 

A2 

b2 

A1 A2 

Bffi b2 

MJBi 

A2 B2 
(2) 

Hence, if two straight lines are parallel, the coefficients 

of the variables in the equations of these lines are propor¬ 

tional. 

EXERCISE 

State and prove the converse of the second theorem in § 55. 

41 



42 CORRELATED MATHEMATICS 

56. Incompatible equations. The equations of a pair 

of parallel straight lines are called incompatible, or incon¬ 
sistent. Such equations have no common solution, §61. 

Hence the equations 

B^y Ci = 0 

and A%x-]r B2y~\~ C2= 0 

are incompatible, have no common solution, and their 

lines are parallel, if 

MJh 
A2 Bz’ 

or if mi = m-2 

EXERCISES 

1. Show that the following pairs of lines are parallel: 

f 3x—4?/=4 (3z+ 5y=2 

\3x—4:y=9 \6x+10i/ = 2 

2. Find the equation of a straight line parallel to 

3x—5y=—Q and passing through the point (—2, 3). • 

57. Perpendicular straight lines. If two straight 

lines, Fig. 34, be perpendicular to each other, then 

or 

ct 1 — a2+90° 

tan ai= — cot a2 = 
1 

tan ct2 

or Fig. 34 
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Thus, if Aix+Biy-\-Ci = 0 and Ax2-\- B2y-\- C2 =0 are 

equations of perpendicular straight lines, then 

or AiA2— —B\B2 

EXERCISES 

1. Show that the lines of the equations Aix-\-Biy-\-Ci = 0 
and A2.x-\-B‘2y-\-C2=0 are perpendicular to each other if 

A1A2 — —BiB2. 

2. Show that the lines of the equations 2x—?/+3 = 0 and 

x+2t/—7 = 0 are perpendicular to each other. 

3. Write an equation of a line perpendicular to the line 

2x — y = 8. 

4. Write the equation of the straight line perpendicular to 

7x-\-9y= — 1 and passing through the A, 
point (5, 3). U/c 

58. Angle between two lines. Let Jp 

the lines AB and CD, Fig. 35, intersect Ah' / \ ( \ 

at P. Let (3 be the smallest angle / / 

through which CD must be turned in / 
counterclockwise direction to coincide d B/ 

with AB. Let ai>a2. Fig. 35 

Then (3 = ai — a2. Why? 

.*. tan /3=tan (ai — a2) 

tan ai—tan a2 

1 +tan ai tan a2 

Since tan ai=mi and tan a2=m2, it follows that 

tan p = 
mi—m2 
l+mim2 

EXERCISE 

Find the angle between the lines a:+2t/ = 3 and 3x — y= — 4. 
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Simultaneous Linear Equations 

59. Intersection of two straight lines. Since the 

co-ordinates of any point on a line satisfy the equation 

of that line, it follows that the co-ordinates of the point 

of intersection of two lines satisfy each of the two equa¬ 

tions. Hence by solving the equations simultaneously 

we may determine the co-ordinates of the point of inter¬ 

section. 

60. Solution of a system of linear equations by 
determinants. In a given system of linear equations in 

two unknowns the terms containing the unknowns may 

be brought to one side, and the terms not containing the 

unknowns to the other side, of the equation. After all 

similar terms have been combined, the system is of the 

following form: 

f ax-j- by = c 
\aix+biy = ci 

To eliminate y, the first equation is multiplied by bi 
and the second by 6. This gives the equations 

jabiX-\-bbiy = cbi 
\aibx-\-biby = Cib 

Subtracting the second equation from the first and 

dividing by the coefficient of x, 

Similarly, 

cbi—cib 

abi—aib 

V 
aci — a\C 

abi—aib 

It will be shown below how these results may be used as 

formulas to find the solution of the system directly from 
the given equations. 
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PIERRE SIMON LAPLACE 

PIERRE SIMON LAPLACE (1749-1827) was born in 
Normandy and was educated through the aid of 
wealthy friends. He held himself so aloof from his 

relatives and benefactors that very little is known of his 
early life. As a young man he wrote a paper on the 
principles of mechanics that induced D’Alembert to 
recommend him for a place in a military school. Here 
he pursued original researches in astronomy for the 
seventeen years from 1771 to 1787. During this period 
he directed numerous memoirs of great power to the 
French Academy. In 1787 he set himself the task to 
“offer a complete solution of the great mechanical problem 
presented by the solar system and bring theory so closely to 
coincide with observation that empirical equations should 
no longer find a place in astronomical tables. ” The results 
of his work under this ideal are embodied in the Exposition 
du systeme du monde and in the Mechanique celeste. 

The Exposition was published in 1796 and contains 
as a sort of appendix the enunciation of the famous 
nebular hypothesis. The Mechanique celeste was published 
in five large volumes, the first two in 1799, the third in 
1802, the fourth in 1805, and the fifth in 1825. This 
great work was translated into English, copiously anno¬ 
tated, and published in Boston from 1829 to 1839 by 
Nathaniel Bowditch. Napoleon once said to him: 
“M. Laplace, they tell me you have written this large 
book on the system of the universe, and have not even 
mentioned its Creator.” Laplace’s curt reply was: “I 
had no need for that hypothesis.” Nevertheless Laplace 
was as staunch a religionist as a scientist. 

In 1812 he published his analytical theory of proba¬ 
bilities, which still remains one of the chief authorities 
on this'subject. 

Laplace was vain and selfish, ungrateful to political 
friends and the benefactors of his youth, pliant, if not 
servile, in politics, and unscrupulous about passing off 
the work of others as his own. Napoleon removed him 
from a political office for administrative inefficiency. In 
religion, philosophy, and science he manifested strength of 
character, and in later life he was both generous and ap¬ 
preciative of the work of his pupils. He once withheld one 
of his own papers from publication in order that one of his 
pupils might have entire credit for the investigation. 

[See Ball or Cajori, History of Mathematics, or 
Encyclopaedia Britannica.] 
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Each of the expressions cbi—cib, abi—aib, and aci — cqc 

is of the form of the difference of two products. Such 

expressions are called determinants * 

The determinant cbi—cib may be represented by the 

following symbol: 

c b 

Ci b i 

which means that from the product cbi we are to subtract 

the product bc\. 

Similarly abi—aib and aci—aic may be written 

a b 

ai b\ 
and 

a c 

ai Ci 

Hence the solution of the system 

j a x-\-b y=c 

\aix+biy = ci 

* Leibnitz in a letter to L’Hopital, of April 28, 1693, was the 
first to publish the essential features of the method of solution of 
equations by determinants, though his procedure was somewhat 
different from the modern form. He also drew attention to the 
importance of the theory of permutations and combinations in 
determining the factors and signs of the products. Beyond these 
announcements about the method, Leibnitz did nothing further with 
it, nor did any of his contemporaries. Aside from a “Note” in a 
mathematical journal of 1700, nothing further was heard of the 
method until Gabriel Cramer in an appendix of his book of 1750 on 
The Analysis of Curves solved a system of n equations in n unknowns 
by the method, showed how to use the theory of combinations and 
permutations with it, and convinced men of its power. 

Bezout (1730-83) and Vandermonde (1735-96) both worked 
on the theory of determinants, and Laplace made important applica¬ 
tions of it. Lagrange (1736-1813) applied the doctrine to the 
problems of analytical geometry, and Gauss, in 1801, made important 
investigations and improvements in the new theory. The modern 
name determinants is due to Cauchy (1789-1857). Jacobi (1804-51) 
completed the theory of' determinants. The classic texts on the 
subject are Brioschi’s of 1854, Baltzer’s of 1857, Scott’s of 1880, 
and Muir’s of 1882 (Tropfke, I, 143-46). 
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takes the form 

c b 

ci bi 
x=- 

a b 

ai bi 

y = 

a c 

ai Ci 

a b 

ai bi 

Notice that the two denominators are the same, the 

numbers in the first column being the coefficients of x 

and the numbers in the second column the coefficients 

of y in the given equations. This makes it easy to remem¬ 

ber the denominators. The numerator of the fraction 

which gives the value of x is obtained from the denomi¬ 

nator by replacing the numbers in the first column (the 

coefficients of x) by the constants c and Ci respectively. 

The numerator of the fraction which gives the value of 

y is obtained from the denominator by replacing the 

numbers in the second column (the coefficients of y) by 

c and Ci. 

EXERCISES 

Solve the following systems: 

f4z+6?/ = 9 

\2x+Vy = 7 

9 6 

7 9 9*9 —6*7 81- 42 39 13 

4 6 4-9—6-2 36- 12 24 8 

2 9 

4 9 
2 7 4*7—9*2 10 5 

4 6 24 24 12 

2 9 

Hence, (x, V)=(^§, ^ 
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[2x-\-3y = § 
\3x —52/ = 4 

ibx+y = 9 
\3^H-2/ = 5 

Ux+2y=l 

\Sx-2 y=^ 

3. 

4. 

5. 

6. 

7. 

i2x = 53-\-y 
[lQx-17y = 0 

'ax — by = c 
dx—ey=f 

'ax—by = 0 
, x— y = c 

(kx+ly+n = 0 
\Sx—\y — \n 

13. 

14. 

15. 

9. 
*+!=i a b 

M-i c d 

10. 

3z_% 
4 6 ~1 
5x_3y_ 
6 4 

( 3x-f-4m?/ = 8mn 
11. \ x „ 

l7^-7y+3n = 0 

12. 
ax-\— = 2ab 

V 
a 

bx-\-~ = a2-\-b2 
V 

' {a+b)x-{- {a—b)y = iab 

Xa—b)x — {a+b)y = 2a2—2b2 

'a{x-\-y)-{-b(x—y) =a 

Xa-\-b)x — (a—b)y = b 

'{a-\-b)x— (a—b)y = 2ac 

Xa-\~c)x — (a—c)y = 2ab 

61. Inconsistent and equivalent equations. We have 

seen that two linear equations in two unknowns are 

represented graphically by two straight lines, and that 

the co-ordinates of the point of intersection form the 

solution of the system. However, two lines do not always 

intersect: they may be parallel or they may coincide. 

(2x-\- V — 5 
1. If we graph the system L -18 we obtain tw0 

parallel lines, Fig. 36. In this case the equations have no 
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common solution. They are said to be inconsistent, or 

incompatible. 
Moreover, if we solve the same 

system by determinants, we have 

x= 

5 1 2 5 

18 3 -3 6 18 6 

2 1 0 ’ y 0 0 

6 3 xr 

yr 

\ 

n_ 

Y 

Fig. 36 

Since it is impossible to divide the 

numbers —3 and 6 by zero the result¬ 

ing forms also show that the equations 

have no common solution. 
f CC_ y — 2 

2. If we graph the system we find that 

both are represented by the same. 

line, Fig. 37. Hence any solution of 

either equation is a solution of the 

other. Such equations are said to 

be equivalent or dependent. 
The difficulty that arises here 

is not that there is no solution, but 

that there are too many. 

Solving the same system by determinants, we have 

x = 

2 -1 
10 -5 

1 -1 
5 -5 

-10 + 10 
-5+5 

0 

0 y 

l 
5 

2 
10 

0 

0 

0 

Since a number multiplied by zero always gives zero, 

the expression -- may represent any number. Hence the 

solution is indeterminate. It is easily seen that one equa¬ 

tion may be derived from the other by simple multipli¬ 

cation by a constant. 
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The two preceding examples show the following: 

1. The two linear equations 

f B\y T- Ci— 0 
\A2x-\-B2y-\- C2 = 0 

are simultaneous, have one, and only one, solution, and the 

lines intersect if the determinant 

Ai Bi 
A2 B2 

9^0 

Hence this fact may be used to determine whether a 

system of equations has one, and only one, solution, and 

whether the two straight lines intersect. 

2. The equations have no common solution, are incom¬ 

patible, and the lines are parallel, if 

A1 Bi 
A2 B2 

= 0 

or if 
A\ _ 2?i 

A2 b2 

3. The equations are dependent and the straight lines 

are identical if 

= 0 Ai Bi Ci Bi Ai Ci 
A2 B2 C2 b2 A2 C2 

or if 

A\__B\ _C\_. 
a2~b2~c2~ 
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EXERCISES 

Show which of the following systems are equivalent and 
which inconsistent. 

3x+|=6 4. 

4x+!=8 
6 \ 5. 

3x — 2y= 14 - 

9x —6y = 36 

x+^y = 2 

6. 

X - 1 t 
-2+-7V = l 

7. 

(3x-\-2y—7—x=l2 — 3y 
\2x-\-5y = 20 

(7x — 8 = 4:y—2x 
\18x — 8y= 16 

f3:r+4?/= 12 
\Qx-\-8y= 14 

[x-y+1 = 0 
\4:X-\-y= 16 

62. Pencil of lines. The totality of lines, Fig. 38, 

passing through one and the same point is called a pencil 
of lines. 

Let [A\X-\-B\y-\-Ci = 0 ... 

and |^2£+£>22/+C2 = 0 ' 

be two distinct lines of a pencil. 

Let k denote an arbitrary con¬ 

stant. 
Show that the equation Fig. 38 

A\X-\- Ci~\-k(A2X-\-B^y-h C2) =0 

represents a straight line for any value assigned to k. 

Moreover, this equation is satisfied by the co-ordinates 

of the point of intersection of the two given equations. 

Why? 

Therefore the equation 

AiX~hBiy-\-Ci-\-k(A2X-h^2y ~\~C2) =0 (2) 

is the equation of a straight line passing through the point 

of intersection of the two lines AiX-\- Biy-\- Ci=0 and 

A%x T B2 y ~b C2= 0. 
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Since k is an arbitrary constant, equation (2) deter¬ 
mines a system of lines passing through the point of 
intersection of equations (1). 

The arbitrary constant k is the parameter* of the 
system. 

EXERCISES 

Using equation (2), § 62, solve the following problems: 

1. Find the line passing through the point of intersection 
of the lines 4x —3?/+3 = 0 and 3x+5?/—34 = 0 and the origin. 

2. Find the equation of the line determined by the point 
( —1, 4) and the point of intersection of the lines 3x—2y—1 = 0 
and 2x+3y —15 = 0. 

3. Find the line of the pencil 2x-\-y —13 = 0, 5x-2y-\-11 = 0 
having an inclination of 60°. 

63. Pencil of parallel lines. The equation 

Ax+By-\-k = 0 

defines a straight line for every value of the arbitrary 
constant k. Since all those lines can be shown to be 
parallel, they are said to form a pencil of parallel lines. 

64. Equation of a pair of lines. Let 

Ci = 0 /-n 
and | A<lX-\- B<2,y-\- C% = 0 

be the equations of two given straight lines. Show that 
the equation 

{AiX-\-Biy-\-C^){A2X-\-B‘2,y-\-C<2) =0 (2) 

is satisfied by the co-ordinates of all points on the two 
given lines. Moreover, no other point satisfies this 
equation. Hence equation (2) is said to represent 
equations (1). 

* The word parameter in the sense of an arbitrary constant in 
an equation was introduced into mathematics by Leibnitz. 
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EXERCISES 

Represent graphically the following equations: 

1. £2+6r#+9y2+5o;+15y+6 = 0 2. x2-\-y = x-\-y2 

Find the factors of the left member of 

the equation. 
3. x2+3xy-\-2y2 = 0 

65. Homogeneous equations. If in the equation 

Ax+By-\-C = 0 the constant C is zero, the equation is 

homogeneous. 

In general, an equation is homogeneous with respect 

to the variables if the sum of the exponents of the vari¬ 

ables is the same in all terms. 

According to § 60, the solution of the homogeneous 

system 

fciiX-\-biy = 0 
\a2x+b2y=0 a) 

is X 

0 61 CLi 0 

0 b2 
> y 

a2 0 

61 ai 
a2 b2 a2 b2 

Hence, if the denominator 

ai bi 

a2 b2 
^0 

the system of equations (1) has the solution (0, 0), which 

is also the only solution of the system. This means 

graphically that the two lines are distinct, both passing 
through the origin. 

If, however, the denominator 

ai 

a2 
61 

b2 
= 0 
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then, according to § 61, 

0 0 

x=0’ y=o 
which means that the system (1) has an infinite number of 

solutions, and, graphically, that the two lines coincide 

because they have all points in common. 

If x^O and y^O, it follows from 

0 bi 

0 b« 
x=- 

ai 
a2 

that 

<h h 

02 62 

bi 

b2 

x = 0 

Similarly, 

ai 

02 
b1 

b2 
y=0 

Since x and y are not both zero, it follows that 

ai bi 

02 52 
= 0 

This shows that the determinant of two homogeneous linear 

equations in two variables vanishes if the equations are 

satisfied by values of x and y, excluding the case when x 

and y are both equal to zero. 

EXERCISE 

Determine k so that the equations 

f x+ y = kx 
\4:X—2y = ky 

have solutions other than (0, 0) 
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Simultaneous Linear Equations in Three Variables 

66. Solution by elimination. Systems of equations in 
three or more unknowns are solved by the methods used 

in solving equations in two unknown numbers. In 
general, the aim should be to obtain first two equations 

in two unknowns by eliminating the third unknown, and 

then to solve these two equations. 

EXERCISES 

Solve the following systems: 

1. 
4x— y-\- z = 1 

x+2y+7z = 7 

[3x— y — 5z = 5 

Subtracting the third equation from the first, 

z+6 z = —4 

Multiplying the third equation by 2 and adding the resulting 
equation to the second equation, 

7x—3z = 17 

Solving the system 

f x+6z=—4 
[7x-3z = 17 

we have (x, z) = (2, —1). 

By substituting these values in the first equation, we find 

y=6. 

(%, y, z) = (2, 6, —1) is the solution of the system. 

2a—bJrc=l ' x-\-2y—z = 2 
2. • a—7b — 8c=l 4. < 3x-2y-\-2z = 0 

k7n+14&+2c = 7 k 5x—4y+3z = 1 

3. 
’ x-\-2y — 4^ = 11 

* 2x = 3y 
jy-4z = 0 

5. 
5x — 7y—z= 16 

• 3x—2y+2z= 10 

k 2x-f y+3z = 6 
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67. Determinant of the third order. The symbol 

CLi hi Ci 

0*2 b2 C2 

&3 C3 

is called a determinant of the third order. It represents 
the following sum: 

fli&2C3+«2&3Ci+a35ic2—Ci62«3 — c2bsai — c3a2&i 

The nine numbers ah a2, a3, 61, b2, &3, etc., are called the 

elements. The horizontal lines in the square form are the 

rows and the vertical lines the columns of the determinant. 

Each term in the expansion is a product of three ele¬ 

ments, no two of which lie in the same row or in the 
same column. 

A determinant of the third order may be expanded as 
follows: 

Draw the diagonal through the first element, cq, 

Fig. 39, and the parallels to it through a2 and a3 respec¬ 

tively. This gives the terms ai62c3, 

Then draw the diagonal through C\ 

and the parallels through c2 and c3. 

The signs of the last three products are 

then changed. This gives the terms 

— Cib2a3, — c263ai, and — c3a2&i. 
Fig. 39 

EXERCISES 

Evaluate the following determinants: 

5 2-6 

1. 1 4 7 =5*4* 1 + 1 *3* (—6)+2*7*2 

2 3 1 — ( — 6) *4*2 —7*3*5 —1*1*2 

= 20-18+28+48-105-2 

= -29 
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1 3 8 1 1 2 

2. -1 2 0 4. 1 1 8 

1 -4 5 1 -1 0 

1 1 1 1 2 1 

3. 1 -1 - -1 5. 3 7 3 

8 3 0 4 3 5 

68. Solution by determinants. By solving the equa¬ 
tions 

CL\X -j- bit/ -f- C\Z = di 

• a2x-\-b2y-\-c2z=d2 
„ a3x b^y+C3Z = dz 

a formula may be obtained for the solution of any system 
of three linear equations in three unknowns. 

Eliminating y between the first two equations, we have 

(aib2 — a2bi)x + (b2Ci — biC2)z = dib2—d2bi (1) 

Eliminating y between the first and third equations, 
we have 

(«3&i ~ aibz)x + (c3&i — b3Ci)z = d3bi — dxb3 (2) 

Solving equations (1) and (2), we have 

dib2c3 +d263Ci+d3c2&i—Cib2d3 — c2b3di — c3d2bi % =---—--- 

aib2c3+a2b3Ci+a3c2bi — Cib2a3 — c2b3ai — c3a2bi 

According to § 67 this may be written 

di bi Ci 
d2 b2 c2 

d3 bz Cz 
x =- 

a\ b\ C\ 

a2 b2 c2 

a3 bz Cz 
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Notice that the denominator is a determinant whose 

elements are the coefficients of x, y, and z in the given 

system and that the numerator is derived from the de¬ 

nominator by replacing the coefficients of x by the 

constants. 

Similarly, 

ai dx Ci ai bi di 

d2 c2 a2 b2 d2 

a3 d3 C3 
) 2 = 

a3 b3 d3 

ai h Cl ai bi Ci 

a2 b2 C2 a2 b2 c2 

a3 b3 C3 ds b3 C3 

EXERCISES 

Solve by determinants: 

1. 
'2z+3rMz=16 

- 5x—8y+%z= 1 

k3 x—y —2 z= 5 

16 3 
1 -8 
5 -1 

2 3 
5 -8 
3 -1 

(x, y, z) — (3, 2, 1) 

2. 
5x-\-2y—4:Z= —3 

• 4x+5y-\-2z = 20 

k3x—3^+52= 12 
4. 

a 4" 36 -f- 9c = 23 
- a+26+4c = 15 
, a-\-b-\-c — 9 

Cj3x — y+2z = § 
3. \ x — 2yJr3z = 2 

(bx—3y+z = 1 
5. 

a-\-b-\-c — 2 
• a+36 = 4 
,b —2c = 6 
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69. In the following problems and exercises the equa¬ 

tions may be solved by any method. 

PROBLEMS AND EXERCISES 

Solve the following: 

f 7o:+8 7y-l ~ f 1 . 1 

1. \ 
5 4 ="2 

2x — 4 , y —1_ _1 

~2 ' 3 3 

5. 

2. 
2 y 

3a:- 

4a: — 2 y  

23-y 
3a: —9 

2a/ —19 

= 3a: —17 
6. { 

y-18 

'2+a: , 2 — y_3(y —4a:) 

a:-?/ a:+2/ 

_4_5_ 

x-y x+y 

f2+?=4 
a: ?/ 

47=6 
a: ?/ 

= 15 

= 17 

3. S 
^-5=y+S-3{y-x) 

4. i 

^+- = 12 
x y 

-—- = 14: 
x y 

'2a:+3i/+5 = 0 

7. * 6y+5z = 7 

,3a: 4-102:= 1 

'a:+2?/+2= — 17 

8. * 2x-\-y—z= —1 

,3a: — y-\-2z = 2 

Do not clear of fractions. 

Regard - and - as the unknowns. 
x y 

9. \ 
4 x — y 2 x—y 

3 , 4 

■ 2 

23 

\y — 2x y—4x 5 

10. A mixture of alcohol and water contains 10 gallons. 

A certain amount of water is added, and the alcohol is then 

30 per cent of the total. Had double the amount of water been_ 

added the alcohol would then have been 20 per cent of the whole. 

How much water was actually added and how much alcohol 

was there? (Board.)* 

11. The value of 146 francs is as great as that of 117 shillings. 

A dollar and 4 francs together are worth 32 cents more than 6 

* (Board) means: taken from an entrance examination given by 
the College Entrance Examination Board. 
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shillings. Find the value in cents of a franc and a shilling. 
(Board.) 

12. A photographer has two bottles of diluted developer. 

In one bottle 10 per cent of the contents is developer and the 

rest water; in the other the mixture is half and half. How 

much must he draw from each bottle to make 8 oz. of a mixture 

in which 25 per cent is developer ? (Board.) 

13. A principal of $2,500 put at simple interest and for a 

certain time amounts to $2,800. If the rate of interest had been 

1 per cent higher and the time two years longer, the amount 

would have been $3,200. Required the time and rate. (Board.) 

14. A certain number of bolts can be bought for a dollar. 

If 10 more could be bought for a dollar the price would be 

half a cent less per dozen. What is the price per dozen? 

(Board.) 

15. A man travels 50 mi. in an automobile in 3^ hours. If 

he runs at the rate of 20 mi. an hour in the country and at the 

rate of 8 mi. an hour when within city limits, how many miles 

of his journey is in the country? (Yale.) 

16. A company contracted to make 252 automobiles. Two 

factories, working together, can make this number in 12 days. 

Working alone, one factory requires 7 days longer than the other 

to do this amount. Find the time in which each factory alone 

can fulfil the'contract. (Sheffield.) 

17. A and B together can do a piece of work in 12 days. 

After A has worked alone for 5 days, B finishes the work in 26 

days. In what time can each alone do the work ? (Sheffield.) 

18. Two yachts race over a 48-mile course. Owing to differ¬ 

ence in measurement, B is given a start of half a mile in the first 

trial and is beaten by 6 minutes. In the second trial, the rate 

of the wind being the same as before, B’s start is increased to a 

mile and a half, and still A wins by 2 minutes. Find the rate 

in feet per minute of each boat. (Chicago.) 

19. A sum of $1,050 is divided into two parts and invested; 

the simple interest on the one part at 4 per cent for 6 yr. is 
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the same as the simple interest on the other at 5 per cent for 

12 yr.; find how the money is divided. (Princeton.) 

20. A man has two sons, one six years older than the other. 

After two years the father’s age will be twice the combined ages 

of his sons, and six years ago his age was four times their com¬ 

bined ages. How old is each ? (Princeton.) 

21. In buying coal A gets 1 ton more for $18 than B does; 

he pays $9 less for 6 tons than B pays. Find the price per ton 

that each pays. (Princeton.) 

22. In paying two bills aggregating $175, a merchant availed 

himself of discount for cash, 10 per cent on one and 5 per cent 

on the other, and then paid them both with $166. What was 

the amount of each bill? (Chicago.) 

23. Two locomotives, A and B, are on tracks which cross 

each other at right angles. When B is at the point of crossing, 

A has 675 ft. yet to go before reaching this point. In 5 sec. 

the two locomotives are at an equal distance from the crossing, 

and in 40 sec. more they are again at an equal distance from it. 

What is the rate of each in feet per second? Illustrate by a 
diagram. 

24. A dealer has two kinds of coffee, worth 30 and 40 cents 

per pound respectively. How many pounds of each must be 

taken to make a mixture of 701b. worth 36 cents per pound? 

(Yale.) 

25. A man bought a certain number of eggs. If he had 

bought 88 more for the same money they would have cost him 

less by a cent apiece; if he had bought 56 fewer they would have 

cost more by a cent apiece. How many eggs did he buy and 
at what price each ? (Yale.) 

26. An investment at simple interest for 6 yr. amounts to 

$4,960. If the rate had been 1 per cent greater the amount 

would have been $5,000 in 5 years. Find the rate and the sum 
invested. (Chicago.) 

27. The sum of the three digits of a number is 16. The 

sum of the first and third digits is equal to the second; and if 
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the digits in the units and in the tens places be interchanged the 

resulting number will be 27 less than the original number. 

What is the original number ? 

28. A chauffeur engages to accomplish a journey of 105 mi. 

in a specified time. After traveling 63 mi. uniformly at a rate 

which will just enable him to keep his agreement, his car is 

delayed 24 minutes. He then drives mi. faster per hour than 

before and arrives exactly on time. What was his original rate ? 
(Board.) 

Areas 

70. Area of a triangle having one vertex at the origin. 
In Fig. 40 

AOPiP2= AOMP2+trapezoid MNP\P2 — AON Pi 

Hence AOP1P2=°^ 
{xi-x2){iji+y2) 

2 
xjiy i 

2 

= %(x2y2+x1yi+x1y2-x2yi-X2ij2-x^yi) 

= 2(^12/2—0:22/1) 

A OP,P2 = \ xi y 1 

*2 y> 

The sign of this determinant will be 

+ or — according as the origin is to 

the left or to the right of the directed 

segment P1P2. 

p2 

EXERCISES 

Find the area of each of the following triangles having the 
vertices as follows: 

1. (0,0); (-1, -3); (5,3) 

-3+15 A -1 A — 2 
-1 -3 

5 3 
= 6 

2. (0, 0); (2, 5); (4, 3) 

2 
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71. Area of any triangle. Let Pi(xh yi), P2{x2, 2/2), 

and Pz(xz, y3), Fig. 41, be the vertices of a triangle. 

Draw OPi, OP2, and OP3. 

Then A OPiP2 = J 

A OP1Ps = ± 

A OP3P2 = J 

Xi 2/i 

x2 2/2 

Xi 2/i 

Xz 2/3 

Xz 2/3 

x2 2/2 

A P1P2P3=} 
#1 

x2 

Xi 

x2 

Xi 

x2 

Xs 

2/i 2/i Xz 2/3 

2/2 £3 2/3 x2 2/2 
- 

2/i Zi 2/i 
+ 

x2 2/2 

2/2 £3 2/3 Xz 2/3 

y 1 1 

2/2 1 
2/3 1 

Area of A PiP2Pz=\ 
xi yi 1 
x2 y2 1 

*3 2/3 1 

Prove the formula given in § 71 for the triangles in Figs. 42 
and 43. 
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Summary 

72. The chapter has taught the meaning of the follow¬ 

ing terms: 

incompatible equations pencil of lines, parameter 

equivalent equations homogeneous equations 

73. The following conditions are satisfied by the 

equations Aix+B1y+Ci = 0 and A2£-|-i?2?/H-C2 = 0. 

If they are equations of parallel lines, they are incom¬ 

patible and 

and 

mi = m2 

A2 
or ili 

A2 

B1 
B2 

If they are equations of perpendicular lines, then 

1 
mi=- 

m.2 

and AiA2=—B1B2 

If they are equations of identical lines, they are de¬ 

pendent and 

ill #1 Cl £1 ill Cl „ .Ai Bt Cl 
A2 B2 c2 b2 A2 c2 °’01 a2 b, c2 

74. The following formulas have been proved: 

1. The tangent of the angle between two lines: 

tan p = 
mi—m2 
l+mim2 

2. A pencil of lines: 

A\X-\-B\y+Ci+&(i42x-f-i?2i/+C2) —0. 
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3. A pencil of parallel lines: 

Ax+2?y+/e = 0 

4. The equation of a pair of lines: 

{A\X^B\y -\-Ci){A^x-\-B2y+C2) =0 

5. The area of a triangle: 

xi y 1 

*2 y2 

1 

1 

1 



CHAPTER IV 

DETERMINANTS 

Meaning of Determinants 

75. Determinants. The symbol 

«i hi 

0*2 t>2 

denotes the determinant afbi — bia2, and is called a deter¬ 

minant of the second order. 

The symbol . 
ai 61 Cl 
a2 bi Ci 
a3 b3 Cs 

is a determinant of the third order. 

following: 

ai 
b2 
b3 

Ci 

C3 

Cl 

C3 

It is defined to mean the 

+ Cl 
a2 

a3 

bi 

b3 

— a\ (62C3—Cibf) — bi (OiC3—Ciaf) + C\ (02&3—biaf) 

= aibtfz+biCiaz+Ciaibz—aiCib3 — biaic3—Ci62«3 

Show that the same expansion of a determinant of the 

third order may be obtained by the method given in § 67. 

76. Element. Row. Column. Diagonal. The num¬ 

bers ah 02, o3, bh b2, 63, etc., are the elements of the determi¬ 

nant. The horizontal lines are the rows, the vertical 

lines the columns. The diagonal afbic3 is the principal 
diagonal. 

77. Minor. If the row and column in which any 

particular element ak stands be deleted, the determinant 

formed by the remaining elements is the minor of ak. 

65 
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Show that in the determinant 

ai 61 Ci 
a2 62 C2 
a3 63 c3 

the minor of b2 is the determinant 

ai ci 

a3 c3 

What are the minors of ci, a3, c3 in the given determinant? 

The minor of an element may be denoted briefly by 

a capital letter having the same subscript as the element. 

Accordingly we have 

ai 61 Ci 
a2 62 c2 
a3 63 c3 

— d\A. i — b\ B\+C1C1 

The signs prefixed to the terms in this expansion of the 

determinant are alternately + and —. Thus the signs of 

the minors of ah a2, and a3 are +, —, and +, respectively. 

In general, the sign of the minor of any ele?nent is + 

or — according as the sum of the number of the row and the 

number of the column of that element is an even or an odd 

number. 

78. Expansion by minors. In § 75 the determinant 

was expanded by minors of the first row. The following 

shows that the determinant may be expanded by elements 

of any row or column without changing its value. 

For 

ai bi 

a2 b2 

a3 b3 

Ci 

C2 

c3 

— —02+2+62^2— c2C2 

= —a2 
61 Ci 

63 c3 
+65 

Ol Cl 

a3 c3 
-c2 

ai 61 

a3 63 

— — a2biC3+a2Cib3+b2aic3—b2cia3—c2af>3+c2bia3 
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which is identically the same as the expansion given in 

§75. 

Expand by minors the following determinant and 

show that the value is zero: 

0 
a2 

a3 

0 0 
b2 c2 

b3 c3 

= 0 
b2 

b3 

a2 

a3 

a2 

a3 

This illustrates the fact that the value of a determinant 

is zero when all the elements of any row, or column, are equal 

to zero. 

EXERCISES 

Expand the determinant 

2 1 4 
3 0 6 
0 2 0 

as indicated below, and in each case find the value: 

1. By minors of the first row. 

2. By minors of the third column. 

3. By minors of the third row. 

79. Determinants of order higher than the third. An 

examination of the expansion of a determinant of the 

third order, § 75, shows that it is the sum of all possible 

products of three elements, taking as factors one, and 

only one, element from each row and column. The num¬ 

ber of terms in the expansion is equal to 6, or 3 • 2 • 1 = 3! 

(read factorial 3). 
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Similarly, we may define a determinant of the fourth 

order as an array of 42 = 16 numbers in four rows and four 

columns, as h, r„ d. 

CL2 C2 C?2 

U3 63 C3 d3 

U4 64 C4 d\ 

and as equal to 

b2 c2 C?2 a2 Ci d2 CL2 b2 d2 

b3 c3 d3 -h «3 c3 d3 ~\~Ci a3 b3 d3 

b4 C4 d4 a4 C4 d4 (14 b4 d4 

a2 

a3 

a4 

h2 

63 

64 

c2 

C3 

c4 

Since each of these terms when expanded contains 3! 

terms, the total number of terms in the expansion of a 

determinant of the fourth order is 4 • 3! = 4 • 3 • 2 • 1=4!. 

Notice that each of the terms is the product of 4 elements, 

one, and only one, being taken from each row and column. 

It is seen that a determinant of the fourth order may 

be expressed in terms of determinants of the third order, 

which again may be expressed in terms of determinants of 

the second order. 

In the same manner it is possible to expand deter¬ 

minants of the fifth, the sixth, . . . . , or any order. 

The value of a determinant may be' found by expand¬ 

ing it by minors. However, the principles given in 

§§81 to 84 will simplify greatly the process of evaluating 

a determinant. 

Properties of Determinants 

80. The following principles are to be verified for 

determinants of the second and of the third order only. 

They hold, however, for determinants of orders higher 

than the third. 
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81. Interchange of rows and columns. If the deter¬ 

minant 
ai h Ci 
a2 b2 c2 
a3 b3 c3 

is revolved through an angle of 180° about the principal 

diagonal aib2c3 as an axis, we obtain the determinant 

a i a2 a3 

bi b2 b3 

Cl c2 c3 

Notice that the first, second, and third rows of this 

determinant are respectively the first, second, and third 

columns of the given determinant. 

Expand the last determinant and show that the result 

is the same as that obtained in § 75. 

This illustrates the principle that the value of a deter¬ 

minant remains the same when the rows are changed to 

columns and the columns to rows, the relative order of the 

rows and columns being preserved. 

82. Interchange of two rows, or of two columns. The 

determinant 
a2 b2 C2 
ai hi Cl 

a3 b3 Cz 

is obtained from the determinant 

ai hi Cl 

a2 b2 C2 
a3 b3 c3 

by interchanging the first two rows. By expanding each 

determinant and then comparing, the results show that 

the two determinants are equal numerically but differ 
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in sign. This shows that if two adjacent rows, or two 

adjacent columns, of a determinant are interchanged, the 

sign of the determinant is changed, hut the absolute value 

remains the same. 

Let a determinant have two rows, or two columns, 

identically the same, as 

ai $2 a3 

a\ a2 a3 

Ci c2 Cs 

and let the algebraic value of this determinant be denoted 

by D. Since the value of the determinant obtained by 

interchanging the two identical rows is — D, it follows that 

D=-D 

or 2D = 0 

Hence D = 0 

Thus the value of a determinant is zero, if two rows, or two 

columns, are identical. 

83. Multiplying a determinant by a number. Let 

each element of a row, or column, of a given determinant 

be multiplied by m, as 

mai mbi mci 

a2 b2 c2 
a3 h c3 

Expanding this determinant by minors, we have 

maiA i — mb i Bi + mc\ C i 

=m(aiAi—biBi+CiCi) 

This is the same as the product of the given determinant 

and m. 
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Hence, if all the elements of a row, or column, of a 

determinant are multiplied by a number, the determinant 

is multiplied by that number. 

Using this fact, show that a determinant vanishes if 

the elements of a row, or of a column, are multiples of the 

corresponding elements of another row or column. 

84. A determinant expressed as the sum of two 
determinants. A determinant may be expressed as the 

sum of two determinants if each element of a row, or 

column, is expressed as the sum of two terms, i.e., 

Ol+fcl bi Ci ai bi Cl hi bi Cl 

$2 H- k2 b2 c2 = a2 b2 c2 + k2 b2 c2 
dz~\~k3 bz C3 «3 bz Cz kz &3 Cz 

This equation is easily verified by expanding each deter¬ 

minant by minors of the elements of the first columns. 

Similarly, show that 

ai-\-mbi bi Cl CLi h Cl bi bi Cl 

a^-\-mb2 b2 c2 = a2 b2 c2 +m b2 b2 c2 
a3+mb3 b3 Cz a3 b3 Cz b3 bz Cz 

ai bi Cl 

= a2 b2 C2 

a3 bz Cz 

This illustrates the following principle: 

The value of a determinant is not changed if each element 

of a row, or column, is multiplied by a number and then 

added to the corresponding element of any other row, or 

column. 

85. Evaluation of determinants. The principles stated 

in §§81 to 84 may now be used to advantage in finding 

the value of a determinant. 
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Thus the value of the determinant 

13 3 2 16 

12 6 7 9 

8 10 11 5 

1 15 14 4 

may be found as follows. 

Subtract column 3 from column 2: 

13 1 2 16 

12 -1 7 9 

8 -1 11 5 

1 1 14 4 

Subtract row 4 from row 1, and add it to row 2 and 

then to row 3: 

12 0 1 i—
1 

to
 

12 

13 0 21 13 

9 0 25 9 

1 1 14 4 

Take out the factor 12 and then expand by minors of 

the elements of column 2: 

12 

1 
13 

9 

1 

0 

0 

0 

1 

- 1 1 
21 13 

25 9 

14 4 

1 

13 

9 

- 1 1 
21 13 

25 9 

Since the first and last columns are identical, the 

determinant vanishes. 

EXERCISES 

Evaluate the following determinants: 

1. 
4-5 3 

16 1 7 
4 4-2 
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Taking out +4 as a factor we have 

Adding 4 times row 1 to row 2, and then row 1 to row 3, we have 

-1 - 5 
-19 

3 
19 

-19 19 
0 = -4 i 1 
0 - 1 1 

— 1 
= (-4)(0)=0 

2 2 4 2 
2 5 3 6 

-3 -7 -11 -9 
0 6 9 9 

2 6 3 -2 
2 13 7 
0 4 0 -3 

14 4 6 5 

6 4 15 
-2 1 -5 7. 

2 3 2 
3 2 1 

2 1 7 9 
3 4 11 11 
6 4 10 2 
8 -4 13 10 

2 -2 4 6 
3 -3 6 10 
2 1 1 -2 
3 0 3 9 

4 6 3 2 
3 7 6 0 

•8 9 2 1 
3 7 5 2 

2 13 7 
14 4 6 5 

2 5 3 4 
4 7 6 5 

3 5-5 6 
2 2-3 4 
3 4 -1 -2 
4 3-2 1 

86. Factoring determinants. Exercise 1 below shows 

the methods of finding the factors of a determinant. Find 

the factors of the following determinants: 
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1. 
1 a a2 

1 b b2 

1 c c2 

EXERCISES 

First method: Let a = b. Then the first two rows become 
identical. Hence the determinant is equal to zero. Why ? There¬ 
fore a — b is a factor of the determinant. Why? Show similarly 
that b—c and c—a are factors of the determinant. 

Show that the product of these three factors is of the same 
degree as the expanded determinant. 

Therefore this product and the determinant can differ only by 
a constant factor k. 

To determine k, compare the term in the principal diagonal, be2, 

with the corresponding term, kbc2, in the product k(a — b)(b — c) (c—a). 

It follows that k = 1 

1 a a2 
1 b b2 

Ice2 

(a — b) (b—c) (c—a) 

Second method: Subtract row 3 from row 1 and then row 3 

from row 2. Take out the factors a—c and b—c and expand the 
resulting determinant. This gives the following: 

1 a a2 0 a—c a2—c2 0 a—c (a—c)(a+c) 
1 b b2 — 0 b—c b2—c2 = 0 b — c (b—c) (b+c) 

1 c c2 1 c c2 1 c c2 

= (a—c) (b—c) 

0 1 a+c 
0 1 b+c 

1 c c2 

= (a — c)(b — c)(b—a) = (a — b) (b—c) (c—a) 

= (a—c) (b—c) (b-\-c—a—c) 

2. Show that 

a 

b-\-c 

a2 

b 

a-f-c 
b2 

c 
a+6 

c2 

= (a—b) (b—c) (a—c) (a+6+c) 

1 1 1 X a a a 

3. a a2 a3 
4. V X b b 

b b2 63 Q r X c 

1 1 1 1 
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87. Solution of systems of linear equations by means 
of determinants. Linear equations in three or more 

variables may be solved by determinants, as shown in 

exercise 1, below. 

EXERCISES 

Solve the following systems of equations: 

1. 

3a+6+d — 20 

3c+6c2+<i = 40 

3c+a+46 = 30 

5c+86+3d = 50 

a = 

20 1 
40 0 
30 4 
50 8 

0 
3 
3 
5 

1 
1 
0 
3 

3 10 1 
6 0 3 1 
14 3 0 
0 8 5 3 

= 5 

Similarly find b, c, and d. 

'7a+146+2c = 7 
2. < 2a —6+c=l 

a —76 —8c = 1 

'8x-3y-7z = 8b 
3. « x-\-6y—4z = 12 

2x — 52/+2 = 33 

' x-\-y-\-z—14 = 0 
4. « Qx — 3y—7z = 0 

4x — 9y+72 = 0 

2cl — c—3 = 0 
6. < 6+4c —2 = 0 

a—36 —1 = 0 

2x-\~3y—4z = 1 
6. 3x-\~4z—5?/ = 2 

4y-\~5z — 6x = 3 

7. 
++26 —4c —11 = 0 

< 2a — 36 = 0 

6 — 4c = 0 

8. 
'3a+2c —6+2 = 0 

< 2a+6 — c+1 = 0 

a+26+c+17 = 0 

9. 
3x+2?/ —2+22 = 2 

£ + 3?/ + 2 —22 = 5 

x+y = 4 
2+22 = 6 

10. 

2x-\~4y —10 = 0 

2?/+32—13 = 0 

32+422-25 = 0 

4u-\~bx — 21 = 0 
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11. < 

2p — 4g,+3r+4s= —3 
3p — 2g+6r+5s = — 1 
5p-f-8g+9r+3s = 9 
p —10# — 3r — 7s = 2 

12. Determine c so that the following system of equations 
may have solutions other than (x, y, z) = (0, 0, 0): 

x-\- y-\- z = cx 

• 2x — y+2z=^ 

See § 65. 

13. Solve for x: 

14. Solve for x: 

2x-\-by-\-2z = cz 

1—x 
2 
3 

a a 
b x 
c c 

2 
S—x 

5 

x 
b 
c 

0 

3 
5 

8—x 
= 0 

Summary 

88. The chapter has taught the meaning of the follow¬ 
ing terms: 

determinant 
element 
row, column 

diagonal of a determinant 
minor 
order of a determinant 

89. The following principles have been studied in 
this chapter: 

1. The sign of the minor of an element is -{-or — 

according as the sum of the number of the row and the 

number of the column of that element is an even or an odd 

number. 
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2. The value of a determinant remains the same when 

the rows are changed to columns and the columns to rows, 

the relative order of the rows and columns being preserved. 

3. If all the elements of a row or column are equal to 

zero, the value of the determinant is zero. 

4. If two adjacent rows, or columns, of a determinant 

are interchanged, the sign of the determinant is changed, 

but the absolute value remains the same. 

5. The value of a determinant is zero if two rows or 

two columns are identically the same. 
9 

6. If all the elements of a row or column are multiplied 

by a number, the determinant is multiplied by that number. 

7. A determinant vanishes if the elements of a row or 

column are multiples of the corresponding elements of 

another row or column. 

8. The value of a determinant is not changed if each 

element of a row or column is multiplied by a number and 

then added to the corresponding element of any other row 

or column. 

90. The principles in § 89 have been used to expand, 

to evaluate, and to factor determinants. 

Systems of linear equations may be solved by means 

of determinants. 



CHAPTER V 

QUADRATIC FUNCTION. PARABOLA 

91. Quadratic function. The function y=mx-\-b, 

§ 31, is said to be of the first degree in x, because the vari¬ 

able x occurs in it only in the first degree. This function 

is also called a linear function of x, because its graph is a 

straight line, § 41. 

The function y = ax2-\-bx-\-c, in which the highest 

exponent of the variable x is of the second degree, is a 

function of the second degree. It is also called a quadratic 

function of x. 

The coefficients a, b, and c may have any real value, 

excluding the value a — 0. 

92. Graph of the quadratic function y = ax2. This 

function is obtained from 

ax2-\-bx-\-c by letting 

6 = c = 0. 

If we put a = 1, and 

assign to x arbitrary values, 

we can find the values of y 

given in the table, Fig. 44. 

If we plot the points 

whose co-ordinates are the 

corresponding values of x 

and y given in the table 

and join them in succes¬ 

sion by a smooth curve, we 

have the graph of the function y=x2, Fig. 44. This 

curve is a parabola. 

X y 

-5 25 
-4 16 
-3 9 
-2 4 
-1 1 

1 
— 2 

1 
4 

0 0 
+i 

i 
4 

+i 1 
+2 4 
+3 9 
+4 16 
+5 25 

T Y nr 

A (5 

7 
/ 
/ 

+ to 
i 
/ 
/ 
/ 

+ 5 

) 
1 
l / 

_LL a 

Fig. 44 

78 
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EXERCISES 

Plot the following parabolas with reference to the same axes: 

y = 3x2; y=— 2x2; x = 2y2; x=-3y2; y2=-2x; y2 = 3x 

93. Discussion of the equation y = ax2. The equations 

y=3x2 &ndy=—2x2 in the exercises above are obtained 

from the equation y = ax2 by taking for a particular value 
a = 3 and —2. 

The graphs of these equations show that for a>0, 

and this is true in general, the parabola extends upward, 

and that for a<0 the parabola extends downward, from 

the origin. However, for a = 0, y = ax2 reduces to y= 0, 

the equation of the x-axis. 

94. Axis of symmetry of the parabola y=ax2. A 

straight line is an axis of symmetry of a curve if it bisects 

all chords perpendicular to ii. 

Show that for two values of x, 

numerically equal but opposite 

in sign, Fig. 45, the values of 

y obtained from the equation 

y = ax2 are the same. 

Hence, if two points Pi 

and P2 on the chord of the 

curve have equal ordinates, 

the abscissas are numerically equal but opposite in sign. 

Therefore the y-axis is an axis of symmetry of the 

parabola y=ax2. 

The point of intersection 0 of the axis OY of the 

parabola with the curve is the vertex. 
If x=0, we have also y= 0. Hence the vertex of the 

curve is at the origin. 

As x increases, y also increases. Hence this curve is 
not dosed. 
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95. Construction of the parabola. When a point moves 

so as to be always equally distant from a fixed point and a 

fixed straight line its locus is found to be a parabola. 
Hence a parabola may be constructed as follows: 

Let point F, Fig. 46, be a fixed point, and let 45 be a 

fixed line. 

With F as center and a radius 

equal to CA, draw an arc meeting 

CCiatCi. This makes F Ci =A C. 

Similarly construct F\ making 

FFi = FA; Di making FDi = DA, 

etc. 

Draw a smooth curve through 

0, Ci, Fi, Di, etc. 

This is the required locus. 

The fixed point F is the focus, 
the fixed line A B the directrix, the 

point 0 the vertex of the parabola. 

An arc of a parabola may be constructed mechanically 

as follows: 

Fasten one end-point of a string of fixed length, 

AP-\-PF, to the point F, Fig. 47, the other to the vertex 

A of the right triangle ABC. 

Let the triangle move so that the 

side B C slides along the line 0 Y. 

As the triangle moves, the string 

is kept taut by means of a pencil 

point at P. 

The arc VP described by P is 

the parabolic arc. 

11 r 
— 

F * 

ti ivj L 
h\ 

r\ A 
V / 

CY 
\X 

/ 
1 / / 

; / 
A/ 

,L o' CF D Eft L 7 j Ml V .V 
i 

i 

F l 

Fig. 46 

96. The standard equation of the parabola. Take 

the vertex of the parabola as the origin. 

Let AF, Fig. 46, be the z-axis, and OY±AF the 

y-axis. 
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Let Pfa y) be any point on the curve, and denote 

OF and OA by p. 

Draw FP, and PRYOY. 

Since FP = RP, and since the co-ordinates of F are 

(p, 0), it follows that 

V(x-p)2+y2 = V (x+p)2, §47 

x2 — 2px-\-p2-\~y2 =x2-\-2xpJr p2 

y2 = &px 

This is a standard form of the equation of the parabola. 

The number p is the parameter of the parabola. 

The position of the curve depends upon the value of p. 

If p is positive the curve extends to the right from the 

vertex 0; if p is negative the curve extends to the left. 

F2Fi is the latus rectum of the parabola. 

97. The polar equation of the parabola. Let the 

focus F be taken as pole and the a>axis as initial line, 

Fig. 48. 

Let p and 6 be the polar co¬ 

ordinates of P, any point on the 

curve. Then the focal radius 

p = FP = OA -\-p=x-\-p 

Since 

x = OA — FA -\-p — p cos 0-\-p 

we have 

p=p cos 6-\-2p. 

Solving for p, 

. aP 
" 1—COS 0 

EXERCISES 

1. Using the polar .equation of the parabola, graph the curve 
for which p = 3. 

Fig. 48 
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2. Discuss the changes of p as 0 changes from 0 to 2?r. 

3. Determine p so that the curve y2 = ^.px passes through 

the point (3, 5). 

98. Graph of the function y = ax1Jrbx-\-c. The equa¬ 

tion y =ax2-\-bx-\-c may be re-written as follows: 

or 

Denote 

This gives the equation 

y—k=a(x—h)2 

The graph of the function y = ax2-\-bx-\-c differs from 

that of the function y = ax2 only in position. For, if we 

o x 
h x 

Fig. 49 

place x=x' — h and y=y'—k, Fig. 49, the equation 

y = ax2 reduces to y' — k = a(x'—h)2. This is the equation 
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of a parabola having the same shape as y = ax2, but having 

the vertex at the point 0'(h, k). 

If x=— or if x== corresPonciing 

values of y, found from the equation 

are the same. Therefore the straight line x= —— is the 
JL/Cl 

axis of the parabola. 

99. Summary. The following summary will be help¬ 

ful in graphing the curve y = ax2-\-hx-\-c: 

1. The co-ordinates of the vertex are ( 
\ 2 a 4:aJ 

2. The line x= — ■=— is the axis. 
2 a 

3. The curve extends upward or downward according 

as a>0, or as a<0. 

A rough sketch of the curve can be made by locating 

the vertex, as in step 1, and one other point on the curve, 

e.g., the point of intersection with the y-axis. 

EXERCISES 

Make rough sketches of the following parabolas and in each 

case determine the vertex and axis: 

1. y = \x2-2x-\-\ 3. y = x2 — 4 

2. y = 3—x — 2x2 4. y= —2 — 3x2 

100. Maximum and minimum of the function 
y =ax2-\-bx-{-c. As the value of x changes from —3 to 
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+7, Fig. 50, the function y first decreases and then in¬ 

creases. At the vertex it is said 

to have a turning-point. 

Evidently, according as a > 0, 

or as a< 0, the ordinate of the vertex 

represents the least or greatest 

value of the function within an 

interval containing the turning- 

point. In the first case the func¬ 

tion is said to have a minimum 

value V = c~~^a f°r x= ~^a' 

has a maximum value. 

Another method of determining the maximum or 

minimum of a quadratic function will be given in § 123. 

Fig. 50 

In the last case the function 

EXERCISES 

Determine the maximum or minimum value of each of the 

following functions: 

1. y — 2x2 — 4x4-3 3. y— (x— l)2+(2x — 3)2 

2. y — S — 4x — 5x2 4. y= — 5x2 — 7X+10 

5. Find the largest rectangle whose perimeter is 60. 

Show that A = 30x—x2, and find the value of x for which A is a 
maximum. 

6. Of all rectangles having the perimeter equal to 2a deter¬ 

mine the one for which the square on the diagonal has the 

smallest area. 

7. Show that of all the rectangles with a perimeter equal to 

2s the one having the greatest area is a square. 

101. Slope of a curve. The slope of a straight line, 

§ 28, was found by means of the equation 

tn-ym 
X2—X1 

4 
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It is constant at all points of the straight line. By the 

slope of a curve at one of its points we mean the slope of 

the tangent drawn to the curve at that point. 

102. Slope of secant. Let P Y 

and Pi, Fig. 51, be two distinct P'V 

points on the same curve. The s' /l 
// yir\ 

straight line PPi is a secant of pyf^y \, --1^ \y' 

the curve. Show that the slope y> 1 / i 1/ 
of PPi is O y' x M h M X 

_ yi-y / sc, 

Xi~x Fig. 51 

Let y=ax2 be the equation of the curve. Then, by 

substituting for y and yi the values ax2 and axi2, we have 

the slope of the secant P Pi equal to 

m=ax^-a^=a(x^-x^ 
Xi—X X\—X 

This result shows that the slope of the secant is a 

function of x, and therefore not a constant. In general, 

let y=f(x) be the equation of the curve in Fig. 51. 

Denoting MMi by h, 

Then OMi = Xi and MiPi = yi=f(x-\-h) 
■f _fix') 

The slope of the secant P Pi is m =-, , —-, 

or m = 
f(x+h) -/(*) 

h 

Using this as a formula we have for the curve f(x) =ax2 

m =ajE+hy-_a^ =a\^_+hYzA =a(2x+h) 
h h 

Show from the figure that this is the same as the result 

obtained above, i.e., show that a(xi+x) =a(2x-\-h). 
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103. Tangent to a curve. Let Ph Fig. 52, move 

along the curve, approaching* the limiting position P. 

Let PT be the limiting position 

approached by the secant PPi. 

Then PT is called the tan¬ 
gent to the curve at the point P. 

Compare this definition of 

a tangent to curve with the _ 

definition usually given in plane 

geometry. Fla 52 

o 

104. Slope of tangent. The slope of the tangent at 

P(x, y) is defined as the limit which —lifl} the 

slope of the secant, approaches, as h approaches zero. 

For example, if the curve is the parabola f(x)=ax2, 

a(x-\-h)2 —ax2 
the slope of the tangent at P is the limit of 

as h approaches zero. 
h 

Since 

a{x-\-h)2—ax2 a(x2-\-2hx-\-h2 —x2) 

h h 
= a(2x-\-h) 

it follows that the slope of the parabola at P(x, y) is equal 

to 2ax. 

105. Rational integral function. The functions ax2, 

ax2f-bxf-c, ax*-\-bx2Jrcx-\-d are rational integral functions 

of x. In general, a function of the form 

fix) = a0xn-\-aiXn~l+a2£n-2+ .... -\-an 

in which a0, «i, a2, ., an are constants and the expo¬ 

nents of x are positive integer^, is a rational integral 
function of x of the nth degree. 
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EXERCISES 

Which of the following functions are rational integral func¬ 
tions of x ? Give the reason for your answer. 

1. x2 

2. Sx2-\-4lX 

3. 5x~2-\-2x~1Jt-7—x 

4. x%—2#i+6 

5. x4+5x2+4 

6. x3+2x2-1+3 
x 

7. £+£- — 5 

106. Derivative. Let/(a;) be a rational integral func¬ 

tion of x. Then the limit of the quotient 

f(x+h)-f(x) 

h 

as h approaches zero is called the derivative of f(x). 

Denoting the derivative of fix) by f'(x), this definition 

may be stated briefly thus: 

„t~\- lim f(x+h)-f(x) 
J \X) — h->0 ^ 

EXERCISES 

1. Show that the derivative of ax2 is 2ax. 

2. Find the derivative of ax2-\-bx-\-c. 
\ 

f(x-\-h) = a{x-\-h)2-\-b(x-\-h)-\-c 

= ax2 +2 ahx-\-ah2-\-bx-\-bh-{-c 

= ax2 + (2 ah -f b) x+ah2 + bh -f- c 

f(x+h) —f{x)=2ahxJrah2Jrbh 

Dividing by h, ^X^~\—= ah-\-b 

••• lim/^+ft)-/W-fW-2ax+6 

Find the derivative of each of the following functions: 

3. x2 5. x3-20x2-\-2 

4. x2—4X+1 6. a;3 — 2x2+3x — 7 
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107. Equation of a tangent. Let P(xh yi) be any 

point on the curve y=f(x) and let the equation of a 

straight line passing through (xi, y\) be 

y — yi=rn(x — xi) 

Since f'{xi) is the slope of the tangent to the curve 

f(x) at the point whose abscissa is xh it follows that 

m=f'(xi). Hence the equation of the tangent to f(x), at 

the point P(xi, yi), is 

y-y<.=f'(xi)(x-xi) 

EXERCISES 

Find the equation of the tangent to each of the following 
curves: 

1. y = x2 at the point ( — 2, 4) on it. 

2. y = x3 at the point whose abscissa is 2. 

3. y = x2-\-4:X at the point whose abscissa is 3. 

108. The parabola as a 
path of a projectile.* Let 

a particle be projected with 

a velocity v from a point 

0, Fig. 53, in the direction 

OQ, which is inclined to the 

x-axis at an angle a.- 

Let P(x, y) be the position 

Y QJ1 

/ -\ 

// \v 

: 
O X X 

Fig. 53 

the particle at the time t. 

* Ancient, mediaeval, and modern mathematicians down to 

Tartaglia were of the opinion that the path of a projectile was a 

straight line, at least at the beginning and end of the flight. In 

1537 Tartaglia proved the path to be curved. He also proved that a 

projectile reached its greatest height under an initial angle of 45°. 
It was reserved to the great Galileo (1564-1642 a.d.) to prove the 

path to be a parabola and to show how to calculate its height and 

range (Tropfke, II, 449). 
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It follows from a principle of mechanics that in t 

seconds, if the resistance of air is neglected, the particle 

moves horizontally a distance of v(cos a)t ft. and ver¬ 

tically a distance of u(sin a)t — %gt2 feet. 

Hence 

£ = z;(cos a)t 

and y = v(sin a)t — ^gt2 

g being constant and equal to 32.2, approximately. 
Eliminating t we have 

y=x tana 
2v2 cos2 a 

which is the equation of the path described by the particle. 

If the particle is projected horizontally, Fig. 54, angle 

a is zero. Therefore tan a = 0, cos2 a = 1, and the equation 

of the path of the particle reduces to 

from which 

y = 

X2 = 

qx* 

W 

2v2 
y 

Fig. 54 

Notice that this is the equation of a parabola whose 

axis is the axis of y. 

EXERCISES 

1. A ball is thrown horizontally with a velocity of 4 ft. per 

second. Find the latus rectum of the parabola described. 

2. An airship traveling south at a height of 5,280 ft. and at 

a rate of 25 mi. per hour drops a bomb. Taking the starting- 

point as the origin, find the equation of the path described by the 

bomb. How far south of the starting-point will it strike the 

ground ? 
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Summary 

109. The chapter has taught the meaning of the fol¬ 

lowing terms: 

linear function 

quadratic function 

parabola 

axis of symmetry 

vertex of a parabola 

focus, directrix 

latus rectum 

turning-point 

maximum and minimum 

value of a function 

slope of a curve 

tangent to a curve 

rational integral function 

derivative 

110. A parabola may be drawn by plotting the equa¬ 

tion, by a geometric construction, and by a mechanical 

device. A rough sketch may be made by first locating 

the vertex and then one other point in the curve. 

111. The following equations of the parabola were 

studied: 

y'2 = 4:px, y—k = a(x—h)2 

y =ax2+bx+c 

o =_JP__ 
p 1—cos 0 

112. The co-ordinates of the vertex of the parabola 

y = ax2-\-bx-\-c are 

The line x= — is the axis. 
2a 

113. The function y = ax2-\-bx-\-c has a minimum 
b2 b 

value y~c~^ for x=~2a’ ^ a>0, and a maximum 

when a<0. 
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114. The slope of a secant of the curve y=f(x) is 

f(x+h) -/(*) 
h 

The slope of a tangent at the point yi) is 

m= lim M+ft)=/,(jti) 
A->0 fl 

The function/'(*) is the derivative of f(x). 

The equation of the tangent at the point (xi, yi) in the 

curve y =f(x) is 

y-yi=f'(xi)(x-x1) 

115. The path of a projectile is a parabola. 



CHAPTER VI 

RATIONAL INTEGRAL FUNCTIONS OF DEGREE 

HIGHER THAN THE SECOND 

Rational Integral Function 

116. Rational integral function. Linear and quadratic 

functions are rational integral functions. In general, a 

function of the form 

axn-\-bxn~l+cxn~2-\-.... -\-px-\-q a) 
is a rational integral function of the nth degree, if n is a 

positive integer, and if the coefficients a, b, c, . . . ., q are 

constants. 

For example, the expansion of (x+h)n, for a positive 

integral exponent n, is a rational integral function. The 

expansion of (x-\-h)n is obtained by the binomial theorem. 

A proof of this theorem, whose truth was assumed in the 

preceding courses, is given in § 117. 

117. Binomial theorem. The formula 

n being a positive integer, is easily shown to hold for small 

values of n, by multiplying x-\-h by itself. 

It is now to be shown that it holds for any positive 

value of n. 

Proof: Assume that the formula is true for n=k, i.e., 

assume that 

fc(fc-l). . ■ .(fc-r+2) . 

1 • 2 • (r—1) 
x?c-r+1hr-1+ 

92 



RATIONAL INTEGRAL FUNCTIONS 93 

Multiplying both members of this equation by x-\-h} 

(Z+>1)*+1 

= xk+1 + kxkh+^=^xk-1*2+.. 

+ xKh + kxk~1h2+.. 

, k(k-l)....(k-r+2) k-r+2,r-l , 

1.2* • (r— 1) X n 

, fc(*-l)-(k-r+3) „k-r+2,r-l , 

’ 1*2* .... • (r—2) * * 

Combining similar terms, 

(s+ft)fc+1 =xfc+1+(A;+l)a;fcA+(^y xk~1h2+.... 
JL • Z 

+lk+»k...Ak-r+3)xk-r+2hr-l + ' +(t+1)l4i+**+l 
1 • Z • .... • (r— 1; 

Notice that the expansion of (x-\-h)k+l is of the same 

form as that of (x+h)kf and that it may be obtained from 

(x+h)k by substituting A; + l for h. In particular notice 

that this is true for the rth term of Or+A)^1. 

Hence, if the theorem is true for n = k, it is also true 

for a value of n one greater, i.e., for n = k-\-1. 

But we know that the theorem holds for n = 2. For 

(x+h)2 =x2-\-2hx-)-h2 follows the theorem. 

Therefore it holds for n— 3. 

Again, if it holds for n = 3, it must also hold for n= 4. 

Since we may proceed this way by taking successive 

values of n the theorem holds when n is any positive 

integer. 

118. Mathematical induction.* The method of proof 

used in § 117 is called mathematical induction. 
The principal steps in this method are, first, to verify 

the theorem for a particular case, as above for n = 2; 

secondly, to show that the principle is true for n = k-\-1 

if it is true for n = k. 

* Mathematical induction was invented by Maurolycus, and used in 
his arithmetic of 1575; but it was first brought into prominence by Pascal. 
See W. H. Bussey, “The Origin of Mathematical Induction,” American 

Mathematical Monthly, XXIV, 199-207. 
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The necessity of the first step may be seen as follows: 

From the statement 

——|——-f—— -f -f---= ^ . 

1 • 2 '2 • 3^3 • 4 ' ' '^/c(/c + l) ]fc + l 

we get, by adding 

ment 

1 
(k-\-l)(k-\-2) 

to both sides, the state- 

1 • 2+‘ • • •+/c(/c + l) + (/c + l)(/c+2) (A: + l) + (/c + l)(A;+2)4 

1 1 

1-2 ' 2-3 hr^+ 

/c2+2/c + l 

(k-\-l)(k-\-2) 

1 _fc + l 

(/b —|— 1) (/c —f- 2) k-\-2 

The form of this result shows that if statement (1) is 

true for k it is also true for k-\-1. It does not follow, 

however, that statement (1) is true for every value of k, 

e.g., k== 1. For in that case the left member has the 

value J while the value of the right member is equal 

to 2f. 

The necessity of the second step may be seen from the 

following example. 

It may easily be verified that the statement 

1 -2+2*3+3*4+4*5 +.. . .T^(^Tl) — 3?F—3nT-2 

is true for n = 1, 2, and 3, but that it does not hold for 

the next greater value n=4. 

EXERCISES 

Write down the general term of each of the following series 

of numbers: 

1,1,1 
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Write down the sum of the first five terms of the series 
whose general terms are as follows: 

4. 2n 6. n(n-\-l)(n-{-2) 

Prove the following by mathematical induction: 

8. 1+3+5+7+... .+(2n-l)=n2 

For n = l, we have 1 = l2 

For n—2, we have 1+3 = 22 

For n — 3, we have 1 +3+5 =32 

Hence the statement is true for n = l, 2, and 3. 
Assume that it is true for n=r 
Then 1+3+5+7+. . . .+(2r-l)=r2 

Adding the equation 2 (r + 1) —1=2 (r + 1) — 1 

we have 

1+3+5+7+. . . .+(2r-l) + [2(r+l)-l]=r2+2r+2-l, or (r + 1)2 

Hence 1+3+5+7+. .. .+(2r-l) + [2(r+l)-1] = (r+1)2 

The last statement is of the same form as the assumed statement 
and may be obtained from it by substituting r+1 for r. 

It follows that, if the statement is true for n=r, it is also true 
for n = r + l. 

Since we know it to be true for n= 2, it follows that it is true 
for n = 3, 4, etc. 

9. l2+22+32+ ... .+n2 = Jn(n+l)(277+l) 

10. 2+22+23+ .... +2w = 2(2n'— 1) 

4 

n{n-\-1) n+1 
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13. l+22+24+26+. . ..+2^-2 = ?^—- 
O 

14. 1-2+2-3+3-4+ ■ ■ ■. +(n)(n+l) =”('t+1Kn+2) 
o 

119. Graph of a rational integral function. The graph 

of a linear function, as/Or) = ax-\-b, has been found to be 

a straight line. If the function is not of the first degree, 

the graph is usually a curved line. Thus the graph of the 

function f{x) =ax2-\-bx-\-c is a parabola. Both of these 

functions are rational integral functions. It is one of the 

purposes of this chapter to make a further study of the 

graphs of rational integral functions. 

120. Evaluation of functions. To graph the function 

f(x)j we must select a number of values of x and then 

compute the corresponding values of }{x). 

The value of f(x) for x=a may. be denoted by /(a). 

This value may be found by substituting in f(x) for x the 

number a. But often it is obtained more easily by the 

process of synthetic division.* 

The following example illustrates the process: 

Given f(x) = 2x4 — 5x3-\-7x—8. Find /(3). 

Explanation. Write 2 —5 0 7 —8 
down the coefficients: 2, 6 +3 + 9 +48 

5Brlng down the coeffi- 2 +1 +3 +16 

cient of x4, i.e., 2. 

Multiply 2 by 3, and add the product to —5. 

gives +1. 

Multiply +1 by 3, and add the product to 0. 

gives +3. 

Multiply +3 by 3, and add the product to 7. 
gives +16. 

+40 

This 

This 

This 

* Third-Year Mathematics, pp. 12-14. 
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Multiply +16 by 3, and add the product to —8. 

gives +40. 
/(3) =40 

This 

EXERCISES 

1. If f(x) = 2x4-5x3+7x-8, find /(2), 
/(—l), f(5), by using synthetic division. 

2. Draw the graph of 
/(x)=x3—6x2+7x+4, Fig. 55. 

Assume for x the values 0, 1, 2, 3, 4, 5, 

— 1, —2, —3, and find the corresponding 

values of fix) by means of synthetic division. 

Plot the pairs of corresponding numbers 

and join the points thus found by means of a 
smooth curve. 

3. Draw the graph of 
f(x) = — x3+5x2 — 2x — 8. 

121. Continuity of /(x). When 

making the graph of f(x)=~, Fig. 56, 
Ob 

we find the following pairs of corre¬ 

sponding values of x and fix). Fig. 55 

X -3 -2 -1 1 
— 2 0 +i +1 +1 +2 

/(+ 
i 

“ 3 
1 
2 -1 -2 

» 
No value +2 +1 

r 2 
^ 3 + 1 

Notice that the graph of this function is broken, or 

discontinuous, for x=0. The func¬ 

tion f(x)=- is said to be a discon- 
Ob 

tinuous function. 

In order that a function may 

be continuous in the vicinity of 

x = a, it must have a real and finite 

value corresponding to x = a. Fig. 56 
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The curve in Fig. 57 is also discontinuous. In this 

case f(x) approaches two different values according as 

x approaches a from the left or from 

the right. 
Such discontinuities cannot occur if 

f(x) is a rational integral function. For 

in that case to every real and finite 

value of x there corresponds one, and 

only one, real and finite value of f(x). 

More precisely, f(x) is said to be continuous in the 

vicinity x=xi, if [f(xi+h)—f(xi)] = 0. 

That this is true for a rational integral function may 

be seen as follows: 

Substituting in (1), § 116, the value Xi-\-h for x, we 

have 

f(xi+h) =a(xi+h)n-\-b(xi+h)n~1-\-c(xi+h)n~2-{-. ... 

+p(xi+h)+q 

Expanding the terms in f{x\-\-h) by means of the 

binomial theorem 

a(xi-\-h)n =a Xin+nxC“lh P-x?~2h2+ 
l • z 

b(xi-\-h)n~l =b + (w — l)xin~2h 

c{xiJrh)n~2 = c 

' 1 • 2 

Xin~2+(n — 2)xin~sh 

(n — l)(n — 2) ,79 , 
v -a:C“3/i2+_ 

(«-2)(»-3)  
1 • 2 

p(xi+h) =p(x1+h) 

q = q 
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Adding, 

f{xi~\-h) =axin+bxin~l-\-cxin~2-\-.... -\-yxi~\-q 
-\-h[nax in ~1 + (n — 1) bx\n ~2 

+ (n — 2)cxin~s-{-. . . . +p] 

n(n — 1) 
+h2 

1 • 2 
-axin-2+. . . . 

-j~...., etc. 

But f(xf) =axin-\-bxin~1-\-cxin~2-\- .... -\-pxi~\-q 

Subtracting, 

/(^i+h) — / (o^i) = h[naxin “1 + (n — 1) bxin ~2-\-(n—2)cxin~i 

+-+p] 

1 • 2 
+ etc. 

Notice that every term of the right member of this 

equation approaches zero as h approaches zero. 

Therefore 

!™0 [/&+*)-/(*!)]-0 and f(x1+h)=f(x1). 
h-> 0 

Hence a rational integral function is continuous for all 
finite values of x. 

It follows that as x changes from any value a to 

another value b, f(x) changes from f(a) to f(b) and 

takes every value between f(a) and f(b) at least once. 

Moreover, if/(a)<0 and/(6) >0, it follows that there is 

at least one value of x between a and 

b for which f{x) is equal to zero. 

Graphically this means that the 

curve, Fig. 58, is an unbroken line 

and crosses the z-axis between A 

and B at least once. Fig. 58 

A 

t! / j 
V b 
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EXERCISES 

Tabulate /(x) for assumed values of x and locate the places 
where the graphs of the following functions cross the x-axis: 

1. 2x2-fx — 6 2. x3 —5x2+2x-f8 3. x4—6x3+24#—16 

122. Derivative of a rational integral function of x. 
The derivative of /(x) has been defined as 

lim f(x+h)-f(x) s 
h->0 8 iUO 

From § 121, 

f(x-{-h) —/(x) =h[naxn~l-\-(n — l)bxn~2 

+ (n —2)cxw_3 +.... +p] 
»(n-l) _ 2> 

+/i2 
1 • 2 

ax' !+ . .. . + etc. 

/(a+/t)-/(a) 
h 

= naxn~lJr(n — l)bxn~2 

+ (w—2)cxn-3+.... 

ax' !+ • • ■ • 1 +* 1-2 

. . .] 
+_, etc. 

IS, r/® - waaf- >+(n -1) to-» 

+ (n —2)cxn-3+.... +p 

or, /'(x) =naxn_1 + (n —l)bxn-2 + (n—2)cxn_3+.... +/> 

This shows that, if f(x) is an integral rational function 

of x, the derivative f'(x) may be found by the following 

simple law: 

Multiply the coefficient of each term by the exponent of x 

in that term, and then diminish the exponent of x by unity. 
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ISAAC BARROW 

ISAAC BARROW (1630-77) was born in London and died 
in Cambridge, England. He attended school at Charter- 
house, London, where he did poorly, then at Felstead, where 

he did better, and finally completed his schooling at Trinity 
College, where he devoted himself to literature, science, and 
particularly to natural philosophy. He then studied for the 
medical profession and later traveled in Prance, Italy, and 
Eastern Europe. In 1659 he returned to England through 
Germany and Holland. 

In 1660 Barrow was appointed to the Greek! professor¬ 
ship at Cambridge. In 1662 he was elected professor of 
geometry at Gresham College, became a fellow of the Royal 
Society in 1663, and in the same year was chosen to be the 
first occupant of the new Lucasian chair of mathematics at 
Cambridge. He held this chair until 1669, when he resigned 
it in favor of his great pupil Isaac Newton. He then turned to 
the study of divinity, became a clergyman, and in 1672 was made 
a master of Trinity College by Royal patent. In 1675 he was 
chosen vice-chancellor of Cambridge University. He died 
May 4, 1677, and was buried in Westminster Abbey. 

Ball says of his personality that he was “low in stature, 
lean, and of a pale complexion” and slovenly in dress. Never¬ 
theless he was noted for his strength, Courage, and ready and 
caustic wit. 

He published a complete edition of Euclid’s Elements in 
Latin in 1655 and in English in 1660. In 1657 he published an 
edition of Euclid’s Data. His lectures of 1664-66 were published 
in 1683 in a volume called Lectiones mathematicae. In 1669 
he published Lectiones opticae et geometricae. 

His chief services to science are his method of tangents’, 

which probably suggested the fluxional calculus to Newton, 
and the fact that he was the principal teacher and stimulator 
of Isaac Newton. 

Barrow’s method of tangents consisted of choosing two 
neighboring points, P and Q, on a curve, drawing their ordinates, 
and a line, QR, parallel to the horizontal axis, thus forming a 
little curvilinear triangle, PQR, which he called the differential 

triangle. He regarded this differential triangle as containing, 
in embryo, all the properties of the curve. In fact, his pro¬ 
cedure differed from that of the fluxional calculus only in 
language and notation. It was suggestion enough for a 
Newton. 

Barrow was a great genius. If he had devoted himself 
continuously to any one of the numerous things which he pm- 
sued for a brief period, and if he had been granted a long life, 
he would have attained high eminence. 

[See Ball, Cajori, or Encyclopaedia Britannica.] 
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EXERCISES 

1. If f(x) =ax1-\-bx-\-c, show by the law given in § 122 
that f'(x) = 2ax-\-b and compare this result with that found in 
§ 106. 

Find the derivative of each of the following functions: 

2. f(x) = 3x2-7x+2 

3. /(y) = V+3y-6 

4. f(x) = 6.x4— 2xZJr3x-\-l 

Fig. 59 

123. Maxima and minima. When a curve, Fig. 59, 
runs upward toward 
the right, the angle of 
inclination of the tan¬ 
gent TiPi toward the 
X-axis is acute. Hence 
the slope is positive. 

When the curve 
runs downward toward 
the right the angle of inclination of the tangent P2T2 is 
obtuse. Hence the slope is negative. 

If the slope of the tangent is zero the tangent is parallel 
to the £-axis. 

A rational integral function of x is increasing when an 
increase in x causes the function to increase, and it is 
decreasing when an increase in x causes the function to 
decrease. 

Hence the function is increasing when the graph runs 
upward to the right, and it is decreasing when the graph 
runs downward to the right. 

Or the function is increasing when the derivative is 
positive for a given value of x, and decreasing when the 
derivative is negative for a given value of x. 
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If for a given value of x the derivative is zero, the 

function may have a maximum or a minimum. 

It has a maximum value for x =a if it changes from an 

increasing to a decreasing function, and it has a minimum 

value for x = a if it changes from a decreasing to an in¬ 

creasing function. 

More precisely, this may be stated by means of the 

derivative as follows: 

Let h be a positive number taken very small. Then 

f(a) is a maximum of fix), when f'(a —h)> 0, f'(a) =0, and 

fia+h)< 0, 

Andf(a) is a minimum of fix) ,whenf'(a—h) <0,/'(a) =0, 

and f'(a-\-h)> 0. 

That the condition/'(a) =0 alone is not sufficient for a 

maximum or a minimum is shown by the following example: 

Let fix) =x3, Fig. 60. 

Then fix) = 3x2. 

For :r = 0, fix) — 0, but it is 

positive for all positive and nega¬ 

tive values of x. Hence the curve 

is increasing for x<0 and for x>0, 

and it has neither a maximum nor 

a minimum in the vicinity of x = 0. 

From the preceding discussion 

we may now formulate the following rule for determining 

the maxima and minima of a rational integral function: 

Find f'(x). 

Let f'(x)= 0 and solve this equation. 

Let a he any one of the roots of the equation f'(x) =0. 

Determine the sign of f'(a—h) and of f'{a-\-h). 

If the sign of f'(x) changes from + to —, as x passes 

through a, f{a) is a maximum value of fix). 

If the sign of f'(x) changes from — to +, as x passes 

through a, f (a) is a minimum value of f (x). 
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124. Calculation of /'(* =*=/*)• According to § 121, 
f(x-\-h) =axn-\-bxn~l-\-cxn~2-\-.... -\-px-\-q 

Jrh[naxn~l-{-(n — l)bxn~‘1-\-(n—2)cxn 3 

+.. . . -\-p] 

+h2 
n(n~l)_n_2 , (n-l)(n-2)bx n—3 

1 • 2 

+ ...., etc. 

ax 
1 • 2 

+ • • • • 

Notice that the first line in this expansion is/Or), that 

the function in the parenthesis in the second line is the 

derivative of f(x), and that the function in the parenthesis 

in the third line is -—- multiplied by the derivative of 
1*2 

/'(«)• 
The derivative of f'(x) is called the second derivative 

of f(x) and is denoted by f"(x). 
Similarly, the third, fourth, . . . ., kth. derivatives of 

f(x) are denoted by f'"(x), /(iv)(x), ... ., respec¬ 

tively. 
Using this notation, we have 

f(x+h) =f(x) +/i/'(x) + jTcj/"W +i .2.3+- 

This formula is a particular case of a theorem known 

as Taylor’s theorem * 
Since }{x) is a rational integral function of x, the 

formula just found may be used to find the value of 

/(x+/i). 

* Brook Taylor (1685-1731) was one of Newton’s admirers. In 

his book Methodus incrementorum he added the then new mathe¬ 

matical branch, now called “finite differences,” and gave a state¬ 

ment of this theorem together with a worthless proof. The value 

of the theorem was not recognized until Lagrange, fifty years later, 

showed its great power. One hundred years after its discovery, 

Cauchy gave the first rigorous proof of the theoreum. 



104 CORRELATED MATHEMATICS 

EXERCISES 

1. If f(x) = 3x4—2x2—3x+l, find f(x+h) 

f (x) = 12x3 —4x — 3 
f"(x) = 36x2—4 

72x 

/(iv)(x) =72 

fM(x)=0 
h2 

f{x+h) = 3x4 _ 2.x2 - 3a: +1 + h (12x3 - 4x - 3) + (36.x2 - 4) 

h3 
;(72x)- 

¥ 
-(72) 

1 • 2 • 3V’“~/ 1 1 • 2 • 3 • 4' 
= 3x4—2x2 —3x + l+/i(12x3—4x —3)+/i2(18x2-2) 

+h3(12x)+h*(3) 

2. Using the result in exercise 1, find /(l+/i); /(2+Zi); 

/( — 1+^)- 
Find the maxima and minima of the following functions: 

3. f{x) =x3+18x2+105x > 

4. t/ = 3x3 — 2x+4 

125. Remainder theorem. Let f(x) be a rational 

integral function of the nth degree, 

i.e., f(x) = axn-\-bxn~l-\-cxn~2-\-.... -\-px-\-q 
Then f(r) =arn -\-brn~l -\-crn~2 +. . . . -\-pr +g 

Subtracting, 

f(x) -fir)=aixn—rn)-\-bixn~1—rn~1)-\- . . . .-\-pix—r) 

= ix—r)[aixn~l-\-xn~2r-\-xn~*r2-\-. . . . H-rn~l) 

Jrbixn~2-\-xn~*r-\-.... + rn~2) + . . . . -\-p\ 

Denoting the function within the brackets by Qix), 

fix) -fir) = ix-r)Qix) 

Hence f(x) = ix—r)Q(x)-\-f(r) (1) 

where Qix) is a rational integral function of (x) of degree 
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Comparing (1) with the relation 

dividend = divisor X quotient+remainder 

we conclude that the remainder obtained by dividing 
f(x) by x-r is f(r). 

This result may be expressed in the form of a theorem 
as follows: 

If a rational integral function f{x) be divided by x—a, 

the remainder obtained is equal to the value of the function 
for x = a. 

More briefly this may be stated thus: If fix) is divided 
by x — a, the remainder is f (a). 

This theorem is known as the remainder theorem. 

126. Factor theorem. If f(x), divided by x—a, gives 

the remainder zero, then x—a is a factor of f{x). 

For the remainder R is then equal to f(a), § 125. It 

follows that x—a is a factor of f{x) if /(a) =0. 

EXERCISES 

State and prove the converse of the factor theorem. 

Summary 

127. The chapter has taught the meaning of the 
following terms: 

rational integral function 

mathematical induction 

continuity of a function 

first, second, and higher 

derivatives 

increasing and decreasing 

function 

maximum and minimum 

value of a function 

the general term of a 

series 

128. Rules have been formulated: 

1. For determining the maxima and minima of a 
rational integral function. 
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2. For finding the value of f(x+h) in terms of powers 

of h. (Taylor’s Theorem.) 

3. For finding the derivative of a rational integral 

function f(x). 

129. The following theorems have been proved: 

1. The binomial theorem for any positive integral 

exponent. 

2. The remainder theorem. 

3. The factor theorem. 

4. A rational integral function is continuous for all 

finite values of x. 



CHAPTER VII 

SOLUTION OF EQUATIONS WITH NUMERICAL 

COEFFICIENTS 

Algebraic Solution 

130. Algebraic solution. If f(x) is a rational integral 

function of the first degree, it is always possible to solve 

the equation f(x) =0. For if f(x) = ax-\~b, the solution of 

ax+b = 0 is readily obtained from the formula 

a 

If fix) is a rational integral function of x of the second 

degree, as ax2-\rbxfi-c, the roots of the equation 

f(x) = ax2-\-bx-\-c = 0 

are given by the general formula 

— b±V b2—4gc 

2 a 

Notice that in both cases the roots of the equations are 

functions of the coefficients. The solutions obtained by 

means of formulas are called algebraic solutions, if the 

formulas involve only a finite number of the operations of 

addition, subtraction, multiplication, division, and extrac¬ 

tion of roots. 

It will be shown in chapter viii that the cubic equation 

ax3-\-bx2-\-cx-\-d = 0 

and the biquadratic equation 

ax4+bxs+cx2+dx+c = 0 

107 
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can also be solved algebraically. However, the solution 

by means of special formulas, when, applied to equations 

containing only numerical coefficients, is not as practical 

as the general methods to be given in §§ 143 to 152. 

It can be shown by higher mathematics that the 

equation 

f(x) =axn-\-bxn~l-\- ■ . .+px+g = 0 

cannot generally be solved algebraically if n>4. 

The great mathematician Niels Henrik Abel, in 1824, 

was the first to prove it to be impossible to give an alge¬ 

braic solution of a general quin tic equation. Hermite 

(1822-1901) solved the equation of the fifth degree by 

means of elliptic functions, and Klein has given the 

simplest solution by transcendental functions. 

131. Number of roots of an equation. We have seen 

that every linear equation has one root, and that every 

quadratic equation has two roots, real or complex. We 

shall now assume that every rational integral equation of 

the nth degree whose coefficients are real or complex numbers 

has at least one root, real or complex. 

Let ri be a root of f(x) =0. 

Then x—n is a factor of f(x), § 126. 
f hr) 

.*. f(x) = (x—ri)fix, where fi(x) is the quotient 
? 1 

and a rational integral function of x of degree n — 1. 

Hence, according to our assumption above, /i(a;)=0 

has at least one root, r2. It follows that 

fi(x) = (x-rf)h(x) 

where /2(#) is of degree n—2. By substitution, 

f(x) = (x—n) (x -rf)U{x) 
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Continuing this process we shall have 

f(x) = (x- ri) (x - r2)-(x- rn)A 

where A is the coefficient of xn and does not contain x. 

This shows that every rational integral function of 
x is the product of n linear factors. 

If we substitute for x any one of the values rh r2, ... . ,rn, 

fix) will become zero. If we substitute for x any other 

value, the factors ix-rf), ix-r2), -, (x — rn) are all 

different from zero, and f(x) cannot be equal to zero. 

Hence every rational integral equation of the nth degree 

whose coefficients are real or complex numbers has n, and 
only n, roots, real or complex. 

This theorem is called the fundamental theorem of 
algebra. The theorem was first stated in its complete 

form by D’Alembert (1717-83). Gauss (1777-1855) was 
the first to give a satisfactory proof. 

132. Multiple roots. Some of the n factors of f(x) 

may be equal to each other, as in f(x) =5(x — l)2(x — 3). 

In that case the equation f(x)= 0 is said to have equal 
roots, or multiple roots. 

Graphical Representation of the Roots of fix) = 0 

133. Real and distinct roots. Let xh x2, . ..., xn be 

the real and distinct roots of fix) = 0 and let 

Xi < x2 <....< xn 

For example, let aq = l, x2=S, and x3=4, and let 

f(x)=2(x — l)(x—3)(x—4). 

When x<l, all the binominal factors off(x) are nega¬ 

tive. Therefore f(x) is negative, and the graph is below 
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the a>axis, Fig. 61. Thus, when x = 0, fix) = 2( —1)(—3) 
(_4) = -24. 

When l<a><3, the first factor of fix) is positive and 

the other two are negative. Therefore fix) is positive, 

and the graph is above the 

z-axis. Thus, when x = 2, 

f(x) =2(1)( —1)(—2) =4. 

When 3<z<4, the first 

two factors are positive and 

the last negative. There¬ 

fore/^) is negative, and the 

graph is below the a>axis. 

When x>4t, all factors 

of / (x) are positive, and the 

graph is above the z-axis. 

Hence the graph crosses the £-axis at the points x = l, 

3, and 4. 

/(*) 

+16■ / 
+ 4- • /7N, / 

O fl 2 5 X 

-24j 

Fig. 61 

EXERCISES 

Plot the graph of each of the following equations: 

1. x(x — 2)(x — 4) =0 3. ^(x — J)(z — 2)(x—3) = 0 

2. (x+2)(x — 2)(x) =0 4. 30c-ff)(a; —l)(:c—4) =0 

134. Real multiple roots. Let 

f(x) =ao{x—ri){x—rf)2{x—rf) =0 

and let n < r2 < rs. Show that 

fix) is positive when x<ri, 

fix) is negative when ri<x<r2; 

fix) is zero when x = r2; 

fix) is negative when r2<x<r3. 

Hence at x = r2 the graph does not cross the z-axis but 

touches it at point C, Fig. 62. 
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We may think of point C as being obtained by moving 

the dotted line in the figure downward until A and B 

coincide at the point of tangency C. 

By letting r3 vary and approach r2, fix) will take the 

form a0(x—ri)(x—r2y and 

when x<n, fix) is positive; 

when ri<x<r2, f(x) is negative; 

when x = r2, f(x) is zero; 

when x>r2,f(x) is positive. 

Hence the curve has crossed the x-axis at point C, 

Fig. 63. 

We may think of point D, Fig. 62, as having moved 

to the left until it coincides with points A and B at 

point C. 

In general, if a factor (x — rn) occurs an even number of 

times in f(x) the curve does not cross the z-axis; if it 

occurs an odd number of times the curve crosses the 

rc-axis. 

EXERCISES 

Draw the graph of each of the following equations: 

1. 3(z —l)(z-3)2 = 0 3. Or —2)(z —3)3 = 0 

2. ^(x+2)a:2(x —3) =0 4. x(x — l)2(x — 3)3 = 0 
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135. Complex roots. Let a-\-bi be a root of the 

equation f(x)= 0. Then a-\-bi satisfies the equation 

fix) =0 and 

/ (a-\-bi) = a (a-\-bi)n-{-b(a-\rbi)n~l.... +pia+bi)+q = 0 

By expanding the powers of o+6i, and then combining 

first the real terms and then the imaginary terms, this 

equation takes the form 

fia~\~bi) — A ~f- Bi — 0 

It follows that A = 0, B = 0, § 16. 

Similarly, if we substitute for x the value a—bi, we 

have 

IT
 

1 o-
 

II 

Since A= 0, and B = 0 

A-Bi = 0 

or fia — bi) =0 

This means that a — bi is also a root of the equation 

/(*) = o. 
Hence the following theorem has been proved: 

If a rational integral equation with real coefficients 

has a complex root a-\-bi, then a — bi is also a root of the 

equation. 

Hence, if f(x) contains a factor of the form x-(a-\-bi), 

it must also contain the factor x — (a — bi), and therefore 

the quadratic factor 

[x-(a-\-bi)][x — (a—bi)] = (x-a)2-\-b2 

This factor is positive for all real values of x and 

cannot have the value zero. Hence it cannot cause fix) to 

become zero nor the graph to touch or cut the x-axis. 
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EXERCISES 

Draw the graphs of the following equations: 

1. (x+2)(x2 — 3x-{-5) =0 

Verify the following table and compare the results with the 

graph in Fig. 64. 

X < — 2 -2 > —2 -1 O 1 2 3 

f(x) Negative 0 Positive 9 10 9 12 25 

2. ^-(x+4)(x2 — 3x+4) =0 

3. x(x-f-3)(x2 — 8x+20) =0 

Solve the following equations: 

4. One root of 2x3 — 15x2-f46x — 42 = 0 is 3+ V — 5. Find 
the others. 

Apply the theorem in § 135. 

5. One root of the equation x4 5 6—8x3+21x2—26x+14 = 0 is 

3+ v/2. Find the others. 

6. One root of the equation x4—3x2 —42x —40 = 0 is 

~3±_. Find the others. 
2 
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Location of Real Roots 

136. Location of real roots. The problem of locating 

the real roots of f(x)= 0 is simplified by the use of the 

theorems stated in the following sections. 

137. Descartes’ rule of signs. Let a, b, c, . . . ., p, q 

be the coefficients of x in a rational integral function 

arranged in descending order. 

If two successive coefficients have opposite signs, we 

have what is called a variation of signs. Thus in 

x4—3x3 — 2x2+5x—4 
the signs are 

_[_ _ _ + — 

and there are three variations. 

When all the signs are the same, f(x) cannot vanish 

if a positive number is substituted for x. Hence the 

equation f(x)= 0 cannot have a positive root if there are 

no variations of sign. 

If f(x) is arranged according to descending powers of 

x and contains all powers of x from n to 0, show that it 

cannot vanish for negative values of x in case the signs are 

alternately positive and negative. 

Thus the number of variations of signs in f(x) gives 

some information regarding the existence of the positive 

and negative roots of the equation /(x) = 0. 

The following consideration establishes a relation be¬ 

tween the number of positive roots of f(x) and the number 

of variations of signs. 

Let fi(x) =2x8-{-Qx7 — 2x6—xh — 2x4-\-Sxz — 7x2-\-^x-\-2> 

represent a rational integral function of x, arranged 

according to descending powers of x. 

The signs of fi(x) may be arranged as follows: 

+ + ___ -f- — + +, 
or +(++)-(+ + +) + (+)-(+) + (++) (1) 
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If fi(x) is multiplied by x—rh n being a positive num¬ 

ber, the following signs are obtained 

+ + — — — -[- + + 

- + + +- +- 

These may be grouped, giving the signs of (x—ri)fi(x), 
as follows: 

+ (H—b) — (d—I—h) + (+) — (+) + (H—b) 

+ ( —) — (H-—) + (+) — (+) + (d ) — 

Adding + (+ =»=)-(+ ± =*=) + (+)-(+) + ( + =*=)- (2) 

We may now compare the signs in fi(x) as given in (1) 

with the signs in (x—ri)fi(x) given in (2). We observe 

that the number of variations of signs in (2), disregarding 

the variations due to the ambiguous signs within the 

parentheses, is one more than the number of variations 

in (1). If the ambiguous signs in (2) are replaced by 

either sign, the number of variations either remains the 

same or is increased. Hence the number of variations 

of signs in fi(x) is at least one less than the number of 

variations in (x—ri)fi(x). 

Let rh r2, r3, . . . ., r* be the only positive roots of 

/0)=o. 
fix') 

Since the number of variations in -- is at least one 
x—n 

less than the variations in /Or), it follows that f(x) has 

at least one variation. 

Since the quotient /O) has at least two 
(x — ri)(x — r2) 

variations less than /Or), f(x) must have at least two 

variations. 
/* (.x^) 

Similarly, since the quotient 7-77——t-7-r 
. (x—ri)(x—r2)....(x — rk) 

has at least k variations less than /Or), /Or) must have at 
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least k variations, i.e., at least as many variations as the 

number of positive roots of f(x) =0. 

This result may be stated in the form of a theorem as 

follows: 

Theorem. The number 0} positive roots of f(x) = 0 
cannot be greater than the number of variations of sign in 

/(&)• 
Since the negative roots of f(x) are the positive roots 

of /(—x) = 0, it follows that the number of negative roots 

of fix) — 0 cannot be greater than the number of variations 

inf(-x). 

The theorem given above is known as Descartes, rule 
of signs. 

EXERCISES 

By means of Descartes’ rule state some conclusions regard¬ 
ing the roots of the following equations: 

1. x3-\-5x — 7 = 0 

Writing the signs, we have 

f(x) = + H—there cannot be more than one positive root. 

f(—x) =-there are no negative roots. 

.*. two roots are complex. 

2. a;3-f-3a;+7 = 0 8. y3 — 4y2 — 3y-\-19 = 0 

3. x3+3a:-f-2 = 0 9. x*-2x2 + l = 0 

4. £3+l = 0 

5. 2x3-7x2+3x-l = 0 

6. y3-y = 21.3 

7. z3+z+3 = 0 

10. x4—5x3-\-20x —16 = 0 

11. x5 6—^3a;2+6 = 0 

12. xl-\-2x4—x2 — 5 = 0 

13. x7—2xe-\-x4— 1 = 0 

138. Theorem. The first term in the rational integral 
function 

fix) = axn-\-bxn~l + .... -f-px-\-q 
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can be made to exceed the sum of the remaining terms by 

taking a sufficiently large value of x. 

For, let f(x) =axn+bxn-* 1-\-. . . .+px+q, and let m 

be the greatest of the coefficients a, b, . . . p, q. 

Comparing the first term axn with the sum of the 

remaining terms, we have 

ax' 
> 

axr 

bx11 l-\-cxn 2+ .... -\-px-\-q m{xn~l-\-xn~2 + • • • • +£ + 1) 
ax n axn{x — l)_a( . 

m(xn — 1) mxn m X 

x — 1 

__axf_ a (t . 

bxn~1-\-cxn~2-\~ . .-\-px-\-q m X 

By taking x sufficiently large, -(x — 1) can be made 
m 

greater than 1. 

-;— can be made greater than 1. 
bxn~lJr_-\-q 

axn can be made greater than 6xn-1+. .. . -\-q. 

EXERCISES 

1. Show that 2a:4—3x3+7x2 — 4x — 2 becomes positive for 

positive and negative values of x, provided x be taken sufficiently 

large numerically. 

2. Show that 3.x3—4x2-\-7x — 2 becomes positive when x is 

positive and increases numerically, and that it becomes negative 

when x is negative and increases numerically. 

139. Theorem. If f(a) and f(b) have opposite signs, 

an odd number of real roots lies between a and b. 

For, let f{x) be a rational integral function. Let A and 

B be two points on the graph of f(x), Fig. 65, on opposite 

sides of the x-axis. 
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Y 
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/b 
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O ! x 
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/ 

7-S'- 

/ b 

Fig. 65 

Since the graph is a continuous curve, § 121, it must 

cross the x-axis an odd number of times in passing from 

A to B. 

The values of x, between a 

and b, for which /(x) is equal 

to zero, are roots of f(x) =0. 

Since /(x) is a continuous 

function, it must pass through 

zero at least once, when chan¬ 

ging from a positive to a nega¬ 

tive value, or from a negative 

to a positive value. 

140. Theorem. If f (a) and 

f(b) have like signs, either no 

real root or an even number of 

real roots lies between a and b. 

Graphically this means 

that the curve may not inter¬ 

sect the x-axis at all, as in 

Fig. 66; or touch it; or cut it 

in two places, as in Fig. 67; or 

in four places, as in Fig. 68. 

141. Theor e m. Every 

equation of odd degree has at 

least one real root. 

For, if a is sufficiently large 

numerically, and is negative, 

/(a) has the same sign as 

the first term and is there¬ 

fore negative. Likewise, if a is sufficiently large, numeri¬ 

cally, and is positive, f{a) is positive. 

Hence fix) has at least one real root, § 139. 

/(«) 

Fig. 68 
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142. Locating the real roots of /(x) = 0. The theorems 

stated in §§ 137 to 141 are now to be applied in locating 

the real roots of an equation. Exercise 1 below illustrates 
the process in detail. 

EXERCISES 

Locate the roots of the following equations approximately: 

1. f(x)=x3+5x-7 = 0 

1. The signs of f(x) and f(—x) are: 

/(x) = + H—.'. f(x) has not more than one positive root, 
§137. 

f{—x) =-.’. there are no negative roots, § 137. 

.'. two roots are imaginary, and the third is positive. 
Why? 

2. A rough graph of fix) may be obtained as follows: 

For sufficiently large positive values of x the function fix) is 
positive, § 138. See Fig. 69. 

For x = 0, f(x) = —7. 

For negative values of x, sufficiently 

large numerically, the function f(x) is nega¬ 

tive, § 138. 

3. Let x = l, then f(x) = — 1. 

Let x = 2, then f(x) = +11. 

This shows that the positive root lies 
between 1 and 2. Fig. 69 

2. £3+2a;2+8 = 0 5. z3+4a;2 —2„r —40 = 0 

3. x3 — Zx—l = 0 6. xb-\-2x3 — 5x2+£+ll = 0 

4. x3 — 2x2 — 3x+5 = 0 7. 6.r4+29:r3 — 54x2 — 51x —10 = 0 

Rational Roots 

143. Integral roots. If an equation of the form 

xnJrbxn~l-\-cxn~2-\-.... -\-px-\-q = 0 

in which the coefficient of the highest power of x is unity, 

and in which all coefficients are integers, has rational roots, 

they are integers. 
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To prove this, assume that not all of the roots of the 

equation are integers, 
s 

Let - be a fractional root where s and t have no com- 
b 

mon factor. 
s 

We may then substitute - for x in the given equation. 

This gives 
nTl nTl 1 nil 2 o 

¥+b~+4^-2+....+Pl+q = 0 

Multiplying by tn~l. 

V t 

y+6sn“1+cfen~2+. . . . -\rpt,l~2s-\-qt,l~1 = 0 
t 

yn 

— = — (6sn-1+ds/i-2+ • • • • -\~ptn~2s-\rqtn~l) 
b 

Since the right member of this equation is an integer, 
b 

must be integral. 

This is impossible, since s does not contain t as a factor. 

1\ the assumption that - is a fractional root is wrong, 
t 

and all the roots of the equation are integers. 

144. Theorem. If the equation f {x) = 0, § 143, has an 

integral root s, then s is a divisor of q. 

Since/(s) =0, we have 

sn-\-bsn~1+cs n — 2 

Dividing by s, 

sn-1+6sn-2+cs n — 3 + ....+P=-^ 
S 

Since the left member is integral, q must be divisible by s, 

which was to be proved. 

145. Finding the integral roots of/(x)=0. We may 

now find the integral roots of a given equation by trial, 

using only the integral factors of the constant term, 
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§ 144. As soon as a root is found, the equation may be 

depressed to one of a degree lower by 1, by dividing it 

synthetically by that root. 

We may then proceed in the same way to find an 

integral root of the depressed equation. 

EXERCISES 

Solve the following equations: 

1. x4-12z3+48z2 —68z+15 = 0 

By Descartes’ rule of signs the equation has no negative roots. 

Why? 
The integral roots are divisors of 15, § 144. 

Hence we may try the numbers 1, 3, 5, and 15. 

By synthetic division, 

1-12+48-68 +15 \1_ 

1-11 37-31 ~ 

1 — 11 37—311 —16 | .’. 1 is not a root of/(x) = 0 

1-12+48-68 +15 |3_ 

3-27 63 -15 

1 — 9+21— 5 | 0 | .*. 3 is a root of f(x) =0 

5-20+ 5 
Dividing by 5, -- 

1—4 1 j 0 ] .*. 5 is a root of f{x) =0 

The equation has now been depressed to the quadratic equation 

x2—4x+1 =0 

which may be solved by means of the quadratic formula. 

2. a;3 —5x2+2x+8 = 0 5. x3-6x2+7x+4 = 0 

3. 23 — 922 + 232 —15 = 0 6. 24-1022+9 = 0 

4. 23 + 22-172+15 = 0 7. x4-20x2 —2Lc —20 = 0 

8. Two roots of the equation 624 + 723 — 3722 — 82+12 = 0 are 

2 and . 5. Find the others. 
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146. Rational fractional roots. The problem of find¬ 

ing the fractional roots of f(x)=0 is reduced to that of 

finding integral roots by transforming the given equation 

into one whose roots are integers and multiples of the 

roots of the given equation. The following section will 

show that it is possible to multiply the roots of an equa¬ 

tion by a given number without first finding the roots 

themselves. 

147. To multiply the roots of an equation by m. Let 

fix) = axn-\-bxn~1-\-cxn~2-\-. . . .-\-px-\-q = 0 

Let y be a root of the transformed equation and equal to 

m times the corresponding root of the given equation, 

i.e., y—mx. 
• V V 

Since x——, we may substitute — for x in fix) and 
m m 

thus eliminate x. 

This gives 

a^+^+c^2+.... = 0 
m n m n- m m 

Multiplying by ?nn, 

ayn+mbyn ~1+m2cyn ~2 +-+mn~lpy+mnq = 0 

Notice that this equation is of the same form as the given 

equation and may he obtained from it by multiplying the 

coefficient of the second term by m, that of the third term by 
mr, etc. 

EXERCISES 

Multiply the roots of the following equations as indicated: 

1. x3 — %x2+lx — 3 = 0, by 2 

Multiplying the second term by 2, the third by 22, and the fourth 
by 23, we have the equation 

2/3 — 2/2-+~2/ ~24 = Q 
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the roots of which are 2 times the corresponding roots of the given 

equation. 

2. z3+3z2 —4o;+l = 0, by -2 

3. x3—\x2—Jtx+f=0, by 5 

4. z4-|-+!+2z-tV = 0, by 6 

5. a;4—2o;3+13.r2+ .2# — .05 = 0, by 10 

Solve the following equations: 

6. 3x3+8x2+x-2 = 0 

Dividing by 3, * 

*>+£**+!-1=0 

Multiplying the roots by 3, 

2/3 H-82/2 +32/ — 18 = 0 

Thus the original equation has been transformed to an equation 

which has no fractional root, and which may be solved as the equa¬ 

tion in exercise 1, § 145. By dividing the roots of this equation 

by 3 we obtain the roots of the given equation. 

7. 4a;3 —16x2 —9.r+36 = 0 

8. 8a;3—4x2 — 2x-\-\ = 0 

9. 2a;3+3x2+5a;+2 = 0 

Irrational Roots 

148. Geometrical interpretation of the process of 
finding irrational roots. The irrational roots of an equa¬ 

tion may be found by certain processes of approximation, 

one of which is explained in detail in § 150. 

The following discussion illustrates the geometrical 

meaning of this process. 

Suppose Xi = 1.342 .... to be an irrational root of the 

equation f(x) =0. 
1. The integral part of this irrational root may be 

found by substituting in f(x) for x integral numbers as 
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1, 2, 3, 4, etc. For, if the values of the function f(x) cor¬ 
responding to two successive values of x have opposite 
signs, there is at least one root of the 
equation between them. 

The graph of }{x) in Fig. 70 shows 
that the equation f(x) = 0 has one root 
between 1 and 2. 

2. Expressing this root as a decimal 
fraction, we have 

b , c a 
= l+77d 10 ' 100 1 1000 

Fig. 70 

a, b, c, etc., representing the decimal figures. In Fig. 70 
a is equal to 3. 

3. To find a, the origin is moved to the point x = l. 
Algebraically this is done by denoting x — 1 by the 

number y. It then follows that x = y-\-1. 
Substituting for x its equal y + l.in the equation 

j(x) =0, we have an equation in y which may be denoted 
by g(y) =0. This equation has a root 

a | b ( c | 
2/1=Io+Io6+Iooo+"'' 

corresponding to the root 

Xi = l 
b 

100 
c 

1000‘' 
of f(x) = 0 

Multiplying the roots of the equation g(y)= 0 by 10, 
we obtain the equation h(z) =0, which has a root 

10 1 100’'‘ 

corresponding to yi. 
Since a is the integral part of an irrational root of the 

equation h{z) =0, we may find it by trial in the same way 
as we found the integral part of the root Xi of f(x) =0, 
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4. The process of finding b and the required remaining 

decimal figures is a repetition of the process explained in 3. 

Notice that the process of finding an irrational root 

of f{x) =0 consists of three steps: 

a) The integral part of the root of fix) = 0 is located by 

trial. 
b) The origin is translated, or the equation fix) = 0 is 

transformed into the equation g(y) — 0 such that y = x—h, 

where h is the integral part of the required root of fix) = 0. 

c) The roots of g(y)= 0 are multiplied by 10. 

We are familiar with the processes of steps a) and c). 

We shall now learn a process by which to make the trans¬ 

formation in step b), § 149. This is called the process of 

diminishing the roots of an equation. 

149. To transform an equation /(jt)=0 into another 
whose roots are those of f{x)= 0 each diminished by a 
constant k. Let 

fix) = axn-\-bxtl~1-\-.... -\-px-\-q = 0 

Let x = k+y be the value of a root of f(x)= 0 

Then f(k+y) =0 
This is an equation in y, and since y=x—k, every 

root of the equation f(k+y)=0 is equal to a correspond¬ 

ing root of f(x) =0, diminished by k. 

According to § 124, 

fix+h) =/(z)+j/'(>) 

f(k+y)=f(k)+lf'(k) 

h2 

1 • 2 
f"(x) 

h3 

r 
1 • 2 

+ *. 

+ • • • • 

1*2*3 

hn 

1 * 2 

yz 

.re*) 
f(n) (x) 

n‘ 

1*2*3 

V 
TO 

.1 * 2 n 
f^(k)= 0 

This is-the transformed equation. 
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The following example illustrates the steps in the pro- ' 

cess of obtaining the equation f(k-\-y) =0. 

Let f(x) =Ax*-\-BxZjrCx2-\-DxJrE = § 

Then f'(x) =4:AxZjr2>Bx2-\-2Cx-\-D 

f"(x) = 12Ax2+6Bx+2C 

f”(x)=24Ax+6B 

/6v)(x)=24A 

Hence the coefficients of y in the equation f(k-\-y) =0 

are 

f(k) =Ak*+Bk*+CW+Dk+E 

f'(k) = 4H&3+35/c2+2C/c+D 

C®=6Afc2+3Bfc+C 

1-2-3 
= 4Ak+B 

f(iv)(k) 

1 • 2 • 3 • 

We could now substitute these values in the equation 

f(k+y)=f(k)+yf'(k) +- 

and thus get the desired transformed equation. 

However, these coefficients may be obtained in a 

more simple way, as may be seen from the following 

example. It shows that it is necessary only to write the 

coefficients of x of f(x) =0 and then to divide synthetically 

by k. The successive remainders are the required 

coefficients of y in the equation f(k-\-y) =0. 
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A -\-B +C -\-D + •£+ 
+ Ak + Ak*+ Bk + Ak>+ Bk*+ Ck +Ak<+Bfo+Ck*+Dk 

A Ak+B+ Ak*+ Bk+C+ A&3+ Bk'+ Ck+D+Ak* -\-Bkz+Ck*+Dk +E [ =/( A;)] 
Ak 2 Ak*+ Bk +3A te+2Bk>+ Ck 

A+2Ak+B+3Ak*+2Bk + C+4Ak>+3Bk*+2Ck+D[=f'(k)] 
Ak 3 Ak*+ Bk 

A +3Ak+B+6Ak*+3Bk+C 
Ak [ run 

1.2 J 

/(i,)w I 
1.2.3.4j 

The same process may easily be verified for equations 

of degree other than the fourth. 

To increase the roots by a, diminish them by —a. 

EXERCISES 

Form equations whose roots are the roots of the following 

equations diminished by the number indicated in parentheses: 

1. 5x4-4x3+3x2+4a;-5 = 0 (2) 

5— 4+3+4 — 5 |2 
10 12 30 68 

5 6 15 34 63 
10 32 94 

5 16 47 128 
10 52 

5 26 99 
10 

5 36 

5?/4+36?/3+99?/2 +1282/+63=0 is the required equation. 

2. x2— 5x+6 = 0 (3) 

3. x3 —6x2+8x+10 = 0 (2) 

4. z3—4x2+6z+2 = 0 (3) 

5. x3—4x2—3x —29 = 0 (-6) 

6. 2x4-3x2+2z+5 = 0 (-1) 
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150. Horner’s method of finding positive irrational 
roots of /(*)=.0* This method is explained by means 

of the following example: 

The equation 

f(x) =5xz—3x2 — 6z+3 =0 

has one positive root between 1 and 2. Find the value 

of this root correct to two decimal places. 

Let *> = 1+io+To6 + 1000+- 

1. Diminish the roots of f(x) =0 by 1 as follows: 

5 -3 -6 +3 |1 

5 2 —4 

5 2-4-1 

5 7 

5 7 3 

5 

5 12 , which gives the equation 

g(y) =5yz-{-12y2-\-3y — l =0, 

which has a root 
a , b , c , 

J/I“10+I00 + 1000+"" 
corresponding to the root x\ of the equation/(x) =0. 

2. Since yi is a decimal fraction, the terms 5y3 and 

12y2 will usually be considerably smaller than the term 

3y. Hence, to get an approximate value for a we may 

neglect the first two terms and solve the resulting equation 

3y —1=0. This gives y=.3 approximately, and sug¬ 

gests that a = 3 approximately. 

* William George Horner (1786-1837), an English algebraist, 

published his method in the Philosophical Transactions in 1819. 
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To determine the exact value of a, find the value of 

g(y) for y = .3. If gr(.3) is negative, find g{A); if this is 

negative, find g(.5), etc., until g(y) changes sign and 

becomes positive. If, however, g(.3) is positive, find 

g(.2). If this is negative, a = 2, but if g(.2) is positive, 

find g(. 1), etc., until g(y) becomes positive. 

3. The work of finding the value of g(y), when y is 

a decimal fraction, may be simplified by multiplying the 

roots of g(y) =0 by 10. This gives the equation 

h 0) = 523+120z2+300^ -1000=0 

4. Dividing synthetically by 2, we have 

5 + 120+300-1000 

10+260 + 1120 

5 + 130+560 + 120 = h( 2) 

showing that h{z) is positive for 2 = 2. 

Dividing synthetically by 1, we have 

5 + 120+300-1000 

5 + 125+ 425 

5 + 125+425 -575 =h( 1) 

showing that h(z) is negative for 2 = 1. 

Since the function is negative for 1 and positive for 2 

it follows that a — 1. 
1'. Diminish the roots of h(z) =0 by 1. 

5 + 120 

5 

300 -1000 

125 + 425 

5 125 425 - 575 
5 130 

5 555 

5 135 
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This gives the transformed equation 

k (u) = 5 u3 +13 5w2+ 555w - 575 = 0 

2'. 

tion 

To find an approximate value for b, solve the equa- 

555u = 575 

which gives u = 1, approximately. 

Since u is a decimal fraction, we may find the values 

of k(.9), k(.8), etc., until the function becomes negative. 

3'. Multiplying the roots of the equation k(u) = 0 

by 10, we have 

5£3+1350£2+55500£ - 575000 = 0 

4'. For t= 9 this fraction is positive. For £ = 8 it is 

negative. 

Hence 5=8, and xi = 1.18, approximately. 

The preceding process may now be arranged in the 

following condensed form: 

5x3 —3x2 — 6x+3 = 0 
5 -3 -6 +3 11 

5 2 -4 

5 2 -4 -1 
5 7 

5 7 3 
5 

5 12 
5 120 300 -1000 11 

5 125 425 

5 125 425 - 575 
5 130 

5 130 555 
5 

5 135 
5 1350 55500-575000 

40 11120 532960 

# 

5 1390 66620- 42040 
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151. Negative irrational roots. Negative roots of 

f(x)= 0 correspond to the positive roots of /(—x) = 0. 

Hence, to find the negative irrational roots of f(x) = 0, 

transform the equation into /(—x) = 0 and then find the 

positive irrational roots of this equation. These roots with 

their signs changed are the required roots. 

152. Summary. The following is a summary of the 

steps involved in finding the real roots of /(x) = 0, f(x) 

being a rational integral function of x. 

1. Find all the integral roots, §§ 143 to 145. 

2. Find the fractional roots, §§ 146, 147. 

3. Determine two consecutive integers between which 

an irrational root lies and find the approximate value of 

such a root by Horner’s method, § 150. All other 

irrational roots may be found in the same way. 

EXERCISES 

Find the real roots of the following equations, correct to two 
decimal places: 

1. x3+3x2 — 2x —5 = 0 

2. x3+x2 —4x — 2 = 0 

6. 16x4+16x2—T5 = 0 

7. x4-llx3+38x2 = 51x-27 

3. 2x3+5x —100 = 0 8. x4—3x3+3 = 0 

4. x3Tx2 — 2x —1 = 0 9. 8x4+24x3—x — 3 = 0 

5. x4—4x —2 = 0 10. 2x5—4x —3x2+6 = 0 

11. 2?/4—9?/3-Hb/2+7?/—15 = 0 

12. x5+3x4-15x3-35x2+54x+72 = 0 

Solve the following problems: 

13. Find the three cube roots of unity. 

14. Find the real cube root of 67. 

16. The volume of a spherical segment of one base is given 
by the formula 

V = irrh?~l¥ 
o 
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A hollow sphere of radius 10 inches is partly filled with a 

gallon of water. What is the depth of the water to three 

significant figures ? 

Let 7r = 3.14, approximately, and let one gallon =231 cubic 
inches. 

16. Find an approximate solution, correct to two decimal 

places, of the system y — xz, 2x-\-y=2. 

Relation between Roots and Coefficients 

153. Identity. According to § 131 every rational 

integral equation of nth degree whose coefficients are 

real or complex numbers has n, and only n, roots; for 

such a function can always be transformed into the form 

fix) =A(x-r1){x-r2)-(x — rn) 

If, however, A should be equal to zero, all coefficients of 

x in f{x) would be zero, and any value of x would satisfy 

the equation f(x)= 0. Furthermore, fix) can become 

zero for values of x different from r1} r2. .. ,rn, only if 

A= 0. 

Hence, if the function fix) = axn-\-bxn~l-\-cxn~2-\-. . . . 

-\-px-\-q is equal to zero for more than n values of x, it 

follows that 

a = b = c=. . . .= p = q = 0 

If fix)= 0 for all values of x, the equation is an 
identity. 

154. Theorem: If 

axn-\-bxn~l-\-cxn~2-\-... . +px+^=ai^n+6iXn_1+Cia;n-2 

+-+piz+gi 
then 

a = ah b = bi, c = ch . . . ., p=pi, q = qi 
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For, changing the equation to the form/(:r) = 0, we have 

(a — ai)xn-\-(b — bi)xn~'l-\r(c — Ci)xn~?-\-. . . .+(p — pi)x 

Therefore 

a—ai=b — bi = c — Ci= .... =p—pi = q — qi = 0, § 153, 

and a = a\, b = bi, c=ci, etc. 

155. Relations between roots and coefficients. Let 

n, r2, . . . ., rn be the roots of the equation 

fix) = xn+Pixn -1 + p2xn -2 +-+ pn _ iX+pn = 0 
t 

Then 

f(x)^(x-r1)(x—r2)-(x-rn) 

Multiplying as indicated, 

f(x)=xn 

-xn-1(ri+r2+r3+-+rn) 

+xn~2(r ir2+rir3+.... +r2r3+r2r4 

+.+ Ui-lU*) 

+xn-3 (rir2r3+r4r2r4 +-rn _ 2rn _ 4rn) 

+. 

+ ( —l)n(rir2r3-rn) 

According to § 154, we have 

pi=— (u+r2+.... +rn) 

p2 — +(r4r2+.... +r2r3+.... +rre_irn) 

ps=- (ur2r3+-+rn_2r^_irn) 

pn = (-l)n(nr2... .rn) 

Hence, if the equation }{x) =0 is reduced to form 

xn+p1xn~1-\--+pn_irr+pn = 0, 
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the coefficient of xn~l is equal to the sum of the roots with the 

sign changed; the coefficient of xn~k is equal to the sum of 

all possible products taking k roots at the time, with the signs 

changed when k is odd; the constant term is equal to the 

product of the roots with the sign changed when n is odd. 

EXERCISES 

Form the equations whose roots are: 

1. 1, 2, 3 

/(z)=z3 — (l+2+3)x2 + (l*2 + l-3+2-3):r —(1-2-3) =0 

=x3 — 6x2 +1 lx — 6 = 0 

. 2. 1, 3, —4 4. ±1, ±2 

3. 2,-1, 3,0 5- i b | 

6. l±/5, 2±v/3 

Using the first two roots, we have the function x2—2x—4; the 

last two roots give the function x2 — 4^ + 1. 

.fix) = (x2 —2x — 4)(x2 — 4x+l) =0 

7. 4±l/3, -l±i/5 9 l±tV3 -\±iVz 

8. 2± V^3, -3±V^2 2 ’ 2 

10. Two of the roots are 2— 1^3 and V 5 

11. The roots of an equation are +2, —3, 5, 4, —1. Write 

the second, fifth, and sixth terms. 

Solve the following equations: 

12. y3 — 6y2—4?/+24 = 0, the roots being in arithmetical 
progression. 

Denote the roots by a—d, a, a-f-d 
Then — (a—d+a+a+d) = — 6 

.*.3a = 6 
a —2 

— (a—d)(a)(a+d) = —24 
a(a2—d2) = —24 

4—d2= —12 

d2 = 16 
d = =fc4 

.*. The roots are —2, 2, 6 
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14. yz — 8?/2+5?/+14 = 0, the sum of two roots being equal 

to 9. 

progression. 

16. One root of 4x4- 14x3+16x2-9a:+2 = 0 is an integer; a 
second is the reciprocal of the first. Find all the roots. 

17. The roots of the equation xz — 6rc2+/h;+10 = 0 are in 
arithmetical progression. Solve the equation and find the 

value of k. 
18. In the equation x44-x3+3x2+4x+6 = 0 the sum of two 

roots is —2 and the product of the other two is 3. Solve the 

equation. 

Summary 

156. The chapter has taught the meaning of the fol¬ 

lowing terms: 
depressed equation 

transformed equation 

variation of signs 

algebraic solution 

multiple roots 

complex roots 

157. It was shown graphically that if a factor x-r 

occurs an even number of times infix), the cuive does not 

cross the z-axis; if it occurs an odd number of times, the 

curve crosses the x-axis. 
A complex root cannot cause fix) to become zeio noi 

the graph to touch or cut the .r-axis. 

158. An equation may be transformed: 

1. Into another whose roots are equal to the roots 

of the given equation, multiplied by a constant. 

2. Into another whose roots are equal to the roots 

of the given equation, diminished by a constant. 
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159. The following theorems have been taught: 

1. Every rational integral equation of the nth degree 

whose coefficients are real or complex numbers has at least 

one root, real or complex. 

2. Every rational integral function of x is the product 

of n linear factors. 

3. Every rational integral equation of the nth degree 

whose coefficients are real or complex numbers has n, and 

only n, roots, real or complex (fundamental theorem of 

algebra). 

4. If a rational integral equation with real coefficients 

has a complex root a-\-bi, then a — bi is also a root. 

5. The number of positive roots of f(x)= 0 cannot be 

greater than the number of variations of sign in f(x), the 

number of negative roots cannot be greater than the number 

of variations inf(-x) (Descartes’ rule of signs). 

6. The first term in a rational integral function of x 

can be made to exceed the sum of the remaining terms by 

taking a sufficiently large value of x. 

7. If f (a) and f(b) have opposite signs, an odd number 

of real roots lies between a and b. 

8. If f{a) and fib) have like signs, either no real root, 

or an even number of roots, lies between a and b. 

9. Every equation of odd degree has at least one real 
root. 

10. If a rational integral equation with integral coeffi¬ 

cients, in which the coefficient of the highest power of x is 

unity, has rational roots, they are integers; if it has an 

integral root, this root is a divisor of the constant term; the 

roots may be expressed in terms of the coefficients. 
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160. To find the roots of a rational integral equation 

of nth degree in one unknown we may proceed as follows: 

1. By means of Descartes’ rule obtain some informa¬ 

tion regarding the positive, negative, or complex roots. 

2. Locate the roots approximately by making a table 

of corresponding values of x and f(x). 

3. If the equation has integral roots, depress the 

equation to one of lower degree. 

4. Find the fractional roots by transforming the 

depressed equation into one whose roots are integers. 

5. Approximate the irrational roots by Horner’s 

method. 



CHAPTER VIII 

ALGEBRAIC SOLUTION OF THE GENERAL CUBIC 

AND BIQUADRATIC EQUATIONS 

The Cubic Equation 

161. To transform an equation into another in which 
some particular term is missing. The first step in the 

solution of a cubic equation, described in § 162, is to 

eliminate one of its terms. This may be done as follows: 

Let/(V) be any rational integral equation, e.g., let 

f(x) = axz-\-bx2-]-cx-\-d = 0 

Let x — y-\-k, 

Then by § 3, we have ’ 

f(y+k) =f(,y)+jf'(y)+Y^2f"(y)+-=° 

According to § 124, the calculation of may be 

arranged in the following manner: 

a b c d 

ak ak2-\- bk ak3-\-bk2-\-ck 

a* ak-\-b ak2-\- bk-\-c akz-{-bk2jtck-\-d 

ak 2ak2-\- bk 

a 2 ak-\-b 3ak2-\-2bk+c 

ak 

a 3 ak-\-b 

f(y+k) = 
ay3 + (3 ak -\-b)y2+(3 ak2 + 2 bk -\-c)y 

+ (akz + bk2 + ck+d) = 0 

138 
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By equating to zero the coefficient of any particular 

term and solving the resulting equation for k, a value of 

k may be determined which will make that term vanish. 

Whatever may be the degree of f{x), the same method 

may be used to transform f(x) into another function in 

which some particular term is missing. 

162. Solution of the cubic. Let the equation 

ax3-\-bx2+cx-\-d = 0 (1) 

be the general cubic equation. 

Transform this equation by substituting y-\-k for x. 

In the transformed equation let k= —^ . 

Then, by § 161, we have 

ay3+(c-£)j/+(d-£+S)=o (2) 

Divide both members of this equation by a. Then 

denote the coefficient of y by p and the constant term by 

q. This gives the equation 

y3+py+q = 0 (3) 

where 

3 ac—b2 . d cb 263 /A. 

p=^-’and9 = a“ 3^+2W (4) 

The form of the function ys-\-py+q may be changed to 

y{y2-\-p)-\-q. This function vanishes if 

y(y2+p) = -q (5) 

To find a solution of this equation, let 

p=—Suv and —q = u*-\-v* 

Then equation (5) takes the form 

y(y2—3uv) =u*-\-v* (6) 
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It is easily seen that y=u-{-v satisfies equation (6), and 

therefore equation (3). 

We must next express u and v in terms of p and 

q. Then the sum u-\-v is the required solution of equa¬ 

tion (3). 

From the equation 

—3 uv = p 

it follows that 

_ p 

V 3 u 

Substituting this value for v in the equation 

we have 

or 

and 

us-\-v3 = — q 

u 3 p8 

27 u3 
+q = 0 

27u&+27qu*-p* = 0 

Multiplying numerator and denominator by 
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v =■ 

-nil~q= t,P3 
VV 2^\4+27 

Q 
2 

If .Pi 
4^27 

4=s f,Pl 
2 \4+27 

3 / q 
P\-\ 

if .if 
4 ‘27 

34 
p* 

27 

or 

v = \l-l lt4.pl 
4 '27 

y = u+v = \j-|± 
'M+v-f- 4 1 27 

Since this sum is the same whether the upper or lower 

signs before the radical sign be taken, we may choose 

it+t+iLi. 
4^27^ V 2 

tion 

Let Ui be one of the three cube roots 

Denoting by Vi the value of v which satisfies the equa- 

it _L t_ 
'4+27 

of ~I+\I 
t4.ll 
4_r27' 

—3uv = p 

one solution of equation (3) will be given by 

y=u1+v1 

Moreover, if u\ is one of the three cube roots of 
q q2 p3 

~2~^\4^~27’ °^er two are U2=ooui and u^=co2Ui, 

where co and co2 are the complex cube roots of unity, 

-i(l+fl/3) and -1(1-fi/3). 
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Hence the corresponding values of v are 

0)2^i 

COVi 

Therefore the three roots of the equation 

y*+Py+q=0 

are yi=Ui+Vi 

v2 = 

and 

v3 = 

v_ 

3^2 

V 

V _ j vi 

3co^i co 

V 
3co2^i 

Vi 

CO2 

(j)2Vi 

CCVi 

77 

y2 = <owi+o)2yi 

y3=<02l/i+(0Z/i 

where 

u i i+? 
4^27 

and Vi = P 
27 

the cube roots being selected so that the relation 

—3uiVi =p 

may be satisfied. 

Historical note. These formulas are known as Cardan’s 
formulas. They were discovered by the Italian mathemati¬ 

cians Tartaglia and Ferro and were first published by Cardan 

(1501-76) in the treatise known as Ars Magna (1545). 

The story of the solution of the cubic is interesting. In 

an algebra published about the middle of the eleventh century 

the Arab Omar Alkayyami gave a classification of cubics, 

together with methods of solution by geometrical construction. 

No attempt was made at an algebraic solution. 

In his Liber abaci of 1202 Leonardo of Pisa introduced the 

study of algebra into Italy from Arabian sources. The Italians 

were long the chief cultivators of algebra. In a book called the 
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Summa, in 1494, Pacioli gave the Arabic classification, stated that 

in the existing state of science the cubic could not be solved, but 

directed the attention of mathematicians to the solution of 

the cubic as the next need in the development of the science. 

Mathematicians continued working on the problem. An 

anonymous tract from learned Italian circles of the fourteenth 

century is witness of these struggles. The French author 

Chuquet as late as 1484 conceded the solution of the cubic 

to be impossible, but he did not despair that it would yet be 
found. 

Finally, the sixteenth century brought the light. Scipio del 

Ferro, about whom we know almost nothing except that he was 

a professor at Bologna from 1496 to 1526, was the first to find an 

algebraic solution of the form x3+ax = b. Both of the later con¬ 

testants for the honor of priority of discovery, Tartaglia and 

Cardan, agree to this. Ferro may have found his solution in 

an Arab work. At all events he told his discovery to numerous 

acquaintances, among them a young friend Fiori (or Florido), 

who was not a mathematician. Fiori got this knowledge 

according to Tartaglia in 1506 and according to Cardan in 1515. 

In 1530 Colla proposed to Tartaglia a problem which 

depended on a cubic of the form x3+px2 = q. Tartaglia’s atten¬ 

tion was thus directed to the problem of the cubic, and he wrote 

to Colla that he could solve numerical equations of the form 

x3-\-px2 = q. Fiori, believing Tartaglia an impostor, proclaimed 

his own knowledge of the solution of the form x3-\-px = q, and 

in accordance with the custom of the time challenged Tartaglia 

to a contest. Each contestant was to propose 30 problems to 

the other and to deposit a stake with a notary. The one who 

solved the larger number of these competitive problems in 

30 days was to have the stake. 
Tartaglia, suspecting that Fiori’s problems would lead to the 

form x2-\-px = q, bestirred himself to find a solution of this form of 

the cubic. He says that he found the solution-formula 8 days 

before the contest, which began February 20, 1535. The next 

day (February 13) he found the formula for xz — ax-\-b. Tar¬ 

taglia solved all his problems in less than two hours, and Fiori 
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could not solve any of his, all of which led to the form xz-\-px2 = q. 

Tartaglia was declared the victor, and afterward composed 

some verses to commemorate his victory. 

Fiori and others besought Tartaglia to make known his 

method, but Tartaglia persistently refused. In a letter of 

February 12, 1539, Cardan, then a most significant mathe¬ 

matician, urged him to divulge his solution. At first Tartaglia 

refused. Later Cardan, after repeated entreaty, and under the 

most solemn oath of secrecy, secured enough fragmentary hints 

from Tartaglia to enable him, good mathematician that he was, 

to construct the solution. Cardan broke his pledge, when he 

included it in his great Ars Magna of 1545. This being the 

earliest publication of the method, and the facts in the case 

being then unknown, the solution has until recent years been 

known as Cardan’s solution. Tartaglia was reserving the solu¬ 

tion as the “crowning glory” of his own work, which was pub¬ 

lished the following year, 1546. See Tropfke, Band I, S. 274-77. 

163. Discussion of the roots. The nature of the roots 

of the equation 

y*+py2-\-q=0 

depends upon the value of 

q2 p3 

' 4+27 

This is called the discriminant of the cubic equation. 

Let p and q be real numbers. 
/-y2 ^3 

If ^>0, one root is real and two are conjugate 
t: £ l 

complex. 

If q+27=0> a^ roo^s are rea,l and two are equal. 

For 

Ui = Vi and y1 = 2u1= — 2^|, y2= — (o)+u)2)ui, ?/3 = -(o>2+a))^i 

But w2+w+l — 0. .’. — yz — ui 
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If 
Ci T)° 
^+^-<0, may be shown that all roots are real. 
rr Zj ( 

Although the solution of the cubic equation given in 

§ 162 is of theoretical value, in solving numerical equations 

the method is not practical, and the methods of chap¬ 

ter vii are to be used. 

EXERCISES 

Solve the following equations by means of the formulas 
in § 162: 

1. x3 — Sx2-\-Qx—4 = 0 

o = l, b = —3, c = 6, d = —4 = 0 

k = 1, p = 3, g = 0 

.*. U\ = 1, Vi= — 1 

yx =0, y2 = w — o>2 =ii/3, y3 — w2 — w = — iV3 

.•. Xi = 1, x2 = 1 x3 = 1—11/3 

2. x3 — 7x-|-6 = 0 

3. x3 — 4x2 — 3x +12=0 

4. 6z3 — 7x2 — 14a;-}-15 = 0 

The Biquadratic Equation 

164. Solution of the biquadratic. Every equation of 

the form 

Axi-\-Bx3-\-Cx2-\-Dx-\- E = 0 (1) 

may be transformed into one in which the term in xz is 

missing. Hence it is sufficient to be able to solve the 

equation 

/ (y) = yx+vv2+qy+r=0 (2) 

which contains no term in yz. 

As in § 162, let 

y =u-\-v-\-w (3) 
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Squaring, 

y2 = u2-\-v2-\-w2-{-2(uv-\-uw-\-vw), 

or y2 — (u2Jrv2+w2) = 2(uv-{-uw-\-vw) 

Squaring again, 

y* — 2 (■u2+v'2+w2) y2 + (u2+v2+w2)2 = 4 (■u2v2+u2w2+v2w2) 

+8 (u2vw+uv2w + uvw2) 

or yA — 2 (u2+v2+w2) y2—Suvw (u-\-v-f - u?) + (u2 -{-v2 -\-w2)2 

—4 (uV+wV+fV) =0 

or y* — 2 (u2 -\-v2-\-w2)y2—Suvwy+(u2+v2+w2)2—4 (u2v2 

-\-u2w2-\-v2w2) = 0 (4) 

Equating coefficients of similar terms in 

and (4), 

equations (2) 

y2 -J- v2 w2 = —^ (5) 

q 
uvw = —~ 

o 
(6) 

and {u2-\-v2-\-w2)2—4(u2v2-\-u2w2-)-v2w2) = r. 

The last equation may be written 

^-—4 (u2v2-\-u2w2-\-v2w2) —r 

Hence u2v2-\-u2w2 -\-v2w2 — ^ ^r 
16 

(7) 

From equations (5), (7), and (6) we obtain the 

equations 

V — (u2-\-v2-\-w2) =; 

+ (U2V2 + U2W2 + V2W2) 
p2 —4r 

16 

— ('U2V2W2) = 
— q2 

~6T 

(8) 
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It follows from § 155 that u2, v2, and w2 are the roots of 

the equation 

<s+|<2+- 
:~4r, -n* 
16 64 

Denoting the roots of this equation by th t2, and t3, 
respectively, 

y\—u-\-v-\-w = \//t2-\-^t3 

the signs of the radicals involved being selected to satisfy 

the relation 

The following are the combinations satisfying this con¬ 

dition : 

Vk Viyh = V'h {-Vti){-\/h) = {-Vt1) Vk{ - V' k) 

= {-v'tl)(-\/ h)Vt3 

Hence the roots of equation (2) are 

t/i = V ti+V t2+i t3 

y2 — y^ti — v/t2—i t3 

y,\ = — i ti-j-t2 — 

y± — — i t\ — i t2+1 t3 j 

The solution of the biquadratic equation in one 

unknown was first given by Ferrari (1522-62). Other 

solutions were given by Descartes and Euler. 

EXERCISES 

Solve the following equations: 

1. x4-\-x2-\-4:X = 3 

2. ad-10z2-f-20a: = 16 

3. ad-9ad-12a;+10 = 0 

* Equation (9) is known as Euler's reducing cubic. 
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Summary 

165. An equation may be transformed into another 

in which a particular term is missing. In solving cubic 

and biquadratic equations this transformation is used to 

remove the second term. 

166. The roots of the cubic equation 

y*+Py+q=o 

are 

where 

yi=Ui+Vi; y2 = v>ui+v)2vi; ys =to2i/i+(oi;i, 

and 

and 

Vi = 
-H 

t +P1 
4^27 

—3uiVi =p 

167. If in the equation y*-\-py-\-q = 0, p and q are real 

numbers, and 

q2 t)3 
if -j-~ > 0, one root is real and two are conjugate 

complex; 

q2 t}3 
if = 0, all roots are real and two are equal; 

q2 

if a^ roo^s are re°l' 
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168. The roots of the biquadratic equation 

yi+Py2+qy+r=0 

are 

y^VU+v'h+Vty, yz=-Vh+Vh-Vu 
yi=VU-VU-VU\ yt= -Vh-Vh+Vh 

where t\, t2, and U are the roots of the equation 



CHAPTER IX 

LIMITS 

Theorems on Limits 

169. Notion of limit. Illustrations of limits are fre¬ 
quent in elementary mathematics. In geometry we took 
as the area of a circle the limiting value of the area of a 
regular inscribed polygon of n sides as n increases without 
bound. In the study of the geometrical progression 

Sn — J + • • • • 4 

we found the limiting value of Sn as n increases without 
bound. We defined the tangent to a curve at a given 
point as the limiting position of a variable secant passing 
through that point, § 103. 

The limit of a variable x may be defined as follows: 
Let b be any positive number assigned in advance and 

selected as small as we please. Then tjie variable x is said 

to approach to a constant a as a limit, if its law of variation 

is such that the numerical difference between x and a will 

ultimately become and remain less than b. 

In symbols the statement the limit of x is equal to a 

is written lim x = a; x approaches a. as a limit is written 
x->a; the numerical difference between x and a is indicated 
by \x—a\. ■ 

It is important to note that according to the definition 
\x—a\ must not only become but also remain less than b. 
For example, in the geometrical progression 

TT2" i~'6T +7TV + 

150 
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we may tabulate the sums Si, S2, etc., as follows: 

Si St Ss Si S5 Se 

1 3 7 1 5 3 1 6 3 
2 8 1 6 3T 6T 

Asn takes the successive values 1, 2, 3, and 4, |$n—ttI 

becomes less than any assigned positive number b, being 

equal to zero when n = 4. But as n increases beyond 4, 

l^—ttI increases and does not remain less than any 
assigned value of b, e.g., b less than Fig. 71. 

Hence Sn does not approach as a limit. The 

variable Sn in this example is an increasing variable and 

always less than the limit. 

—Vi -j-IL—4 Vs--'"‘k'k'k 

3A- 
-Vs- - 

-15/l6- 

~0l/32~ 

Fig. 71 

J 

.J 

However, a variable may be greater than its limit. For 

example, the area An of a regular circumscribed polygon 

having n sides decreases as n increases and is always 

greater than the area A of the circle as it approaches A 
as a limit. 

Moreover, a variable may be alternately greater than 

and less than its limit. Such a variable is the sum of n 

terms of the geometrical progression 1, — +J, — J, 

+1V, e^c* The limit of this sum is f. The successive 
values of Sn are 1, \, f, f, etc. These sums are alter¬ 

nately greater than and less than the limit f, although 

|*Sn— § | decreases as n grows larger and larger. 

It follows from the definition of a limit that a variable 

can have but one limit. 
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170. Infinitesimal. A variable x whose limit is zero 
< 

is an infinitesimal. In symbols, lim z = 0, or £-»0. 

Thus x—ais an infinitesimal, if x is a variable approach¬ 

ing a as a limit. In symbols, lim \x — a\ =0. 
x->a 

Notice that an infinitesimal is a variable, not a constant, 

number. 

171. Infinite. The sum of n terms of the series’1, 2, 

4, 8, 16. . . ., as n increases without bound, has no limit, 

as it ultimately becomes and remains greater than any 

assigned positive number, however large. In general, a 

variable which ultimately becomes and remains greater 

than any previously assigned positive number, however 

large, is said to become infinite. The statement the 

variable x becomes infinite is expressed in symbols thus: 
x^cc. 

Show that the following two statements are imme¬ 

diate inferences of the preceding definitions: 

If n is a finite constant, and if x is an infinitesimal, 

then ^ becomes infinite, i.e., ^^co, as 

If n is a finite constant and if x becomes infinite, then 

- is an infinitesimal, i.e., lim -=0. 

172. Theorem. If u and v be two infinitesimals, and 

X and Y two variables, always less than a finite positive 

number k, then Xu-\- Yv is an infinitesimal. 

For, let 5 be a positive number, however small, then 

u and v will ultimately become and remain less than 5, i.e., 

\u\ < 5 and | v\ <5, § 170 

w <k and | Y\ < k, given 

\Xu\< 5k and \ Yv | <bk • • 
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Since \Xu+ F^|Xw| + | Yv\ 

\Xu-\- Yv\<25k. 

Hence, if we select 5 so that 2dk<e, any positive number, 

however small, we shall have 

\Xu-\- Yv|<€ 

.*. lim (Xu-\- Yv) =0, and Xu-\-Yv is an infinitesimal. 
u—>0 
a->0 

Similarly the theorem may be shown to hold for any 

finite number of variables. 

173. Theorem. Let x and y be two variables approach¬ 

ing the limits a and b, respectively. Then the sum, difference, 

product, and quotient also approach limits, and 

1. lim (x-\-y) =lim rc+lim y 
2—>a x—a y->b 
y->b 

2. lim (x—y) =lim x—lim y 
x-^-a 
y—>b 

2->a 

3. lim (xy) = /lim /lim y\ 
X-^-a 1 \y^l) J 
y->b 

/ \ lim x 
4. lim | 

x-^-a 
y->b 

)-f^a , if 6^0 
\yj lim y 

y->b 

For, \x—a|-*0 and |j/ — b|-*0, §169 

X(x-a)+ Y(y—b)-*0, § 172 

lim [X(x-a)+ Y(y-b)]= 0 

Let X = Y = 1 

Then lim [x-afi-y — b] =0 

lim [x+y — (a-\-b)] = 0 

which means that 

lim (x+y) = a+&=lim x+lim y 
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To show case 2, proceed similarly, letting 

X = l, F= —1 

To show case 3, let x — a = u and y — b=v, u and v 

being infinitesimals. 

Then 

x = a-\-u and y = b-\-v 

Multiplying, 

xy = ab-\-bu-{-(a+u)v 

xy—ab =bu-\-(a-{-u)v 

But bu-\-(a-\-u)v is an infinitesimal, § 172. 

xy—ab is an infinitesimal. 

Hence lim xy — ab = (lim :r)(lim y). 

Similarly this may be shown to be true for more than 

two variables. 

To show case 4, divide x = a-\-u by y = b-\-v. 
x a , u 

Then 
y b+v'b-\-v 

_a ( a o' 

~b’i~\Hrv~b/ 

u 

b-\-v 

a a 
-v- 

b b(b+v) b-\-v 

+ 1 

u 

x a_ -|-i —a 

y b b+vU b(b-{-v) 
v 

Since b^ 0, 
1 , 1 . —a 

r-T— approaches T, and v n 
b-\-v b b(b+v) 

approaches 

a 

b2 ‘ 

Hence, by § 172, 

1 a 
-u 

b-\-v b(b+v) 
v is an infinitesimal. 
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X CL 
—-r is an infinitesimal. 
V b 

b lim v ’ u y 

The following statements are immediate consequences 
of case 3: 

5. lim xn = an = (lim x)n 
>a x->a 

6. lim Vx = Va = % 
x->a ' x~>a 

7. lim kx = ka — k lim x, k being a constant 
x-^-a x-^-a 

Indeterminate Forms 

174. Limiting value of a function. If f{x) is a rational 

integral function of x, and if a is a finite number, then, 

§121, 

lim f(x) =f(a) 
x-^-a 

If a rational function /(x) = </>Qc) 
\Js(x) 

<f>(x) and \f/(x) being 

rational integral functions of x, and if a is a finite number, 
then 

lim f(x) = 
>a 

lim <f>(x) 
x-^-a 

lim \f/(x) 
x—^a 

provided that \J/(x) does not vanish for x = a. 

If, however, and if the rational function/(x) 

is in its lowest terms, 

f(x)-*QQ 
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EXERCISES 

Find the limiting value of each of the following functions: 

x+3 
1. 

x+1 
, as x—>1 

v £+3 1+3 0 
lim —— = ——=2 
2->i£ + 1 1 + 1 

x2+l 
2. -^ , as x->3 

x —3 ’ 

Since /(3) 
9 + 1 

0 
the function has no finite limit, i.e., 

3. 
ar 
x +1 ’ 

x2+l 
x —3 

as x->2 

>oo, as x->3 

0 
lim f{x) = o=0 

x->2 3 

4. 
x2 — 9 

as x->3 6. 
x —2 ’ 

x2—4x+3 
x2+3x+2 » 

as x->2 7. 

x2+5x+6 _ 
' x2-4~ > as x 

x3+27 
x3—27 ’ 

as x-> —3 

175. Indeterminate forms. The function 

x2—9 
}{x) = 

x 
0 

takes the form ^ when x = 3. This form has no arith¬ 

metical meaning. Reducing f(x) to its lowest terms, we 

have 
x2 — Q 

/w=^=*+3 

which holds for all values of x except x=3. 

If we let x approach 3 as a limit, without letting it 

actually reach 3, we have 

lim ——5= lim (x+3) =6 
2—5 2->3 
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2 — Q 
Since the fraction f(x) =-- gives the meaningless sym- 

0 x ~^ 
bol - , if 3 is substituted for x, it is convenient to assign 

to f{x) for a; = 3 the value lim ——^ =6. 
' ' x->3 ^ 3 

a;2+3 
takes the form as 

£->00 

The function f(x) = 23*+x-i 

This symbol also has no arithmetical meaning 

Dividing numerator and denominator off(x) by x2, we 

have 

l+-2 
xL 

2+-—\ 
x x1 

3 1 1 
Since and —- are infinitesimals when x- 

xv x' 
■oo, we 

have 

1+— 
.. £2+3 .. 'x2 
lim ^ „ .-r = hm 

1 

x-9>oo 2x“ X 1 x->oo 2 | ^ ^ ^ 

~X X2 

The two preceding examples illustrate the method of 

finding the limiting value of f(x) when it takes the form 

0 co 
x or — . 
0 oo 

The symbols jj, , are called indeterminate forms. 

Other indeterminate forms are 0 • co and co — oo. The 

form 0 • co may be reduced to the form by first multi¬ 

plying the two functions and then finding the limit. To 

find the limit of the form oo — oo first perform the indicated 

subtraction of the two functions and then pass to the limit. 
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EXERCISES 

Find the limiting value of each of the following: 

x3— 1 
x — 1 ’ 

as x->l 7. 

n— 1 
n-j-11 

as n-> oo 8. 

x+1 
x-2’ 

as x->2 9. 

x—3 
as x^>3 10. 

x(x — 3)2 ’ 

x(x — l)2 ’ 
as x->l 11. 

xT 1 as x->oo 12. 
x 

x3—2x 
3x3+5x2 ’ 

as x->co 

x2—x-f3 

2x2+x—4 ’ 
as x->oo 

x2+x+l 

x+1 ’ 
as x->— 1 

x2+x —2 

2x+4 ’ 
as x->go 

(x2+2x —3) • . 
x— 1 

, as x->l 

3 1 

x x(x+3) 1 
as x->0 

Summary 

176. The chapter has taught the meaning of the 

following terms: 

limit of a variable indeterminate forms 
infinitesimal, infinite limiting value of a function 

177. The following theorems have been studied: 

1. If u and v be two infinitesimals and X and Y two 

variables, always less than a finite number k, then Xu-\- Yv 

is an infinitesimal. 

2. If x and y be two variables approaching the limits a 

and b, then 
lim (x-\-y) =lim x+lim y 
x->a x—^a y->b 
y->b 

lim (xy) = /lim x\ /lim y\ 
z—\x->a / \y->b / 
y->b 

aH>a \2/> 
y->b 

lim x 

;rr^~ , if 
lim y 
y->b 



CHAPTER X 

INFINITE SERIES 

178. Sum of a series. The sum of numbers arranged 

in a sequence according to some law, such as 

1+2+i+i+ — +2^1 

or 

+ . •. • H— 
n 

is called the sum of a series of numbers, or, briefly, the sum 
of a series. 

In general, the sum of a series is represented by the 
expression 

U\-\-u<i-)rUz-\-.... -\-Uk~h.... ~\~un 

This may be denoted briefly by Sn. In place of the 

capital S the Greek letter sigma, , is also used. Thus 

the statement the sum of terms Uk is written Simi¬ 

larly we write the sum of k terms from k = 1 to k —n: 

n 

'S^^U]c—Ui-\-U2-\-Uz~{- .... -\-un 
k = 1 

n 

k = l 

Si=1+i+^+---+^ 
k = 1 

• • 2«-i 

1 

159 
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Since the value of the sum of k terms of a series depends 

upon the value of k, it may be thought of as a function 

of k. 

179. Infinite series. If the number of terms of a 

series is allowed to increase without bound, the series is 

said to have infinitely many terms and is called an infinite 
series. The following are examples of infinite series: 

CO 

= 1+^ + 1+f+- (1) 
k = 1 

00 

Vfc = l+2+3+4+5+.... (2) 
k = 1 

00 

^ (—l)fc = l —1 + 1 —1 + 1 —1 +- (3) 
k = 0 

180. Convergent and divergent series. The three 

examples of infinite series given in § 179 will be used to illus¬ 

trate the meaning of the words convergent and divergent. 

a — arn 
1. The sum Sn of n terms of series (1) is ——— 

= 2—Show that Sn approaches the definite limit 

2 as n grows without bound. The number 2 is called 

the sum of the infinite series. 

In general, an infinite series is said to be convergent if 

the sum of the first n terms approaches a definite finite limit 

as n increases without bound. This limit is the sum of 

the series. 

2. The sum Sn of n terms of series (2) grows beyond 

bound as n becomes sufficiently large, i.e., it becomes 

infinite. The series is said to be divergent. 
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3. For series (3), Sn remains finite as n increases 

without bound, but it does not approach a limit. It is a 

divergent series. It is often called oscillating series, 

because Sn takes alternately the values 1, 0, 1, 0, etc. In 

general, an infinite series is divergent if it is not convergent. 

Series All of Whose Terms Are Positive 

181. We shall now take up the problem of determin¬ 

ing whether a series is convergent or divergent. First we 

shall consider the case of series all of whose terms are 

positive. The theorems in §§ 182 and 183 will be needed 
in the discussion. 

182. Theorem. If a series wi+w2+w3+. ... is con¬ 
vergent, it follows that lim un = 0. 

CO 

For, un — (wi+W2+^3+.... -\-un-\-\-un) — (Ui-\-u2-\-Us 

+-+^n-l) 

—1 

00 

Let S = V.' u. 
71= 1 

Then lim Sn=S and lim Sn-i=S 
7i->oo n-> oo 

and lim (S—Sn) =0 and lim (S—Sn-i) =0 
«->• oo n-^-oo 

lim [((S—<S„_i) — (iS—/S„)] =0 
7l->-00 

or lim (Sn—Sn-i) =0 
71—^00 

or lim un = 0. 
71-> CO 

Thus, it has been shown that this theorem holds for 

a convergent series. This does not mean, however, that 

a series is convergent if lim un = 0. 
77->Q0 
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183. Theorem. An infinite series of positive terms is 

convergent if, as n increases beyond bound, Sn remains less 

than some finite number N. 

For a series of positive terms cannot oscillate, and it 

increases as n increases. 

Hence, if we assume the series not to be convergent, 

Sn must grow without bound as n increases. 

But this is impossible, since Sn is always less than N. 

Therefore the series is convergent. 

184. Comparison test. By means of the theorems in 

§§ 182 and 183 it is possible to compare a given series 

with a series known to be either convergent or divergent, 

and thus to establish the convergence or divergence of the 

given series. The method is known as the comparison 
test. 

185. Theorem. Let 

Ui-\-U2-\-Us~{- .... + Un~\~ .... (1) 

be a given series of positive terms, and let 

^i+^2~b^3+ • • • • .... (2) 

be a known convergent series of positive terms. If, from 

some particular term on, each term of series (1) is equal to 

or less than the corresponding term of (2), series (1) is 

convergent. 

This may be seen as follows. For a sufficiently large 

value of n the following inequalities hold: 

^n+l = ^TO+lj ^n+2 = • • • • 

.'. Un+ifi-Un+2~{- .... + 

Let Sn =Ui-\-U2~{~'U'3-\- .... ~\~^n 

and S'n =Vi~\-V2 +^3• • • • 
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Since series (2) is convergent, S'n approaches a definite 

finite limit. Hence z;n+2+. . . . may be made as 
small as we please by taking n large enough. 

It follows that wn_|_i-|-wn+2+. . . . may be made as 
small as we please by taking n large enough. 

Hence the sum wi-j-w2+.... -\-un will always be less 

than some finite number N, and series (1) is convergent. 

186. Theorem. Let 

U\-\-U2~{-Uz-\- .... ~\rUn-\-.... (1) 

be a given series of positive terms, and let 

^1 + ^2 + ^3-f- • • • • • • • • (2) 

be a known divergent series of positive terms. If, from some 

particular term on, each term of series (1) is equal to or 

greater than the corresponding term of (2), series (1) is 
divergent. 

Assuming series (1) not to be divergent, it would 

follow that series (2) is convergent. 

Since this is not true, the assumption is incorrect, and 

series (1) is divergent. 

Notice that the convergence or divergence of a series 

is not changed by adding to, or subtracting from, it a 

finite number of terms. 

187. Theorem. Let 

U\-\-U2-\-Uz~\- .... -\-un-\-.... 

and V\-\-V2 + v% -f-. ... -\-vn +. . .. 

be two given series with positive terms. If the ratio of each 

term of one to the corresponding term of the other be finite, 

the series are either both convergent or both divergent. 
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For, let R be a finite number greater than the largest 

value which the ratio — may have for all possible values 
pn 

of n. 

Then -<R; -<R; -<R; etc. 
Vi v2 v3 

.'. ui<Rvi; u2<Rv2; u3<Rv3; etc. 

.*. Ui~\-u2-{-u3-{-. . . . <C R(vi~\~v2-\-v3-\-.. . .) 

If V\~\~v2~\~v3~\~. . . . is convergent, R{vi-\-v2-\-v3-\-. ...) 

is finite, R being finite. 

.*. n\~\~n2~\~n3~\~. ... is convergent. 

Similarly, let r be a finite number less than the smallest 

value of the ratio — . 

Then U\-\-u2-\-u3-\-.... ^>r(vi~\~v2-\-v3-\-. . . .) 

Therefore if ^+^2+^3+. ... is divergent, r being a finite 

number, it follows that 

W1+W2+W3+ • • . • 

is also divergent. 

188. Test series for comparison. Two standard 

series, known to be convergent or divergent, are particu¬ 

larly useful for applying the comparison tests of §§ 184 

and 186. They are as follows: 

1. The geometric series 

a-\-ar-\-ar* 1 2-\-.... 

which is known to be convergent when r<l, and divergent 

when r ^ 1. 

2. The series 

\p'2p'3p'4p' ’ ’ * 'np ‘ ‘ * ’ ’’ 

which is convergent when p>l, and divergent when p^l. 
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This may be proved as follows: 

First, let p> 1. 

Show that the following statements are true: 

1+I<I+I=l =_L 
1 2P 9 P 1 9 p 9 P 2P~1 2p 

1 + — + — + — <— = ■ 1 4 p 1 5? 1 gp 1 4P-1 

Adding, 

gp 1 7p ^ 4P 

—+ —+ H——< — 
8p^qp^ t15ps'8p 

—+—+—+ <— 2p 3p 4p ’ * * 2p 

8P 
31 j etc. 

1 
-i 4P -i 8P -i 

The right member of this inequality is a geometrical 

progression for which r = —“n • 

Since p> 1, ^—< 1, and the right member is a 

convergent series. 

the left member 

—+—+—+ 2p ‘ 3P ‘ 4p“ 

is convergent when p>l. 

Next, let p = 1. 

Then 

i+i=l+i 

3 • 4 ^4 T4 ~ 2 

i+i+r+i+i=i> e^c- 

Adding, 

l+i+i+T+-5~+ • • • • 

The right member of this inequality is divergent. There¬ 

fore the left member is divergent. This series is known 

as the harmonic series. 
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Finally, let p< 1 

Since every term of the series 

i+i+i+ 
2p 3v '4.P ' ' ■ ’ * 

is greater than the corresponding term of the divergent 

series 
• • • • 

the first series is divergent. 

EXERCISES 

Test the following series for convergence or divergence: 

1. 1+22d"• • • • 

2. 1 
1 

3. 14 

1/23 V 33 

1 . 1 

V2 V3 

^* 2^~2 • 3~^2*3*4 

Compare with 1+ 
1 

5> 2+3 • 2+4 • 22+5 • 23 

6* ?+i+5+.... 
7. l+2+^+y4" • • • • 

8- 2+i+^+^+"-- 

9. 

10. 

1 1 
2 1 14-22 1 14-33 

2 3 

1 
2 ' 2 • 2 1 2 • 2 • 2 

1 . 1 

1+2F2 1+3VS 1+41/4 
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189. Ratio test. This test is an application of the 
following theorem: 

The series of positive terms 
0 

U\-\-U2~{-Uz-\- .... .... 

is convergent if, as n grows without bound, the ratio of the 

0n-\-\)th term to the nth term approaches a limit r, and if 
r< 1. The series is divergent, if r > 1. 

If r = 1, the ratio test does not enable us to decide the 

question of convergence or divergence. 

First, let r< 1. 
Since 

lim^±i=r 
n—^oo Un 

it is possible to find a positive integer m large enough that 

for all values of n greater than m the difference 

+ l _ 
um 

will become and remain less than a positive number 5 

taken small enough to make r-j-5< 1, Fig. 72. 

o r-j-5 

Fig. 72 

Denoting r+5 by a, 

U^<a; V^<a; ^±-3<a; etc. 
Um ^m+1 ^m+2 

. . um-\.\ < aum 

'U'm ^ au,a UjYi 

Uyfi-^-3 aum-^-2 ^ ei um , etc. 

every term of the series 

wm+i -\-u m +2 ~\~U m +3+- 
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is less than the corresponding term of the series 

aum+a2um+azum +- 

which is equal to 

Um(ci-\-CL2-\-CL3-\- • . • .) 

However, this series is convergent, since a<l. 

the series .... is convergent. 

.... .... is con¬ 

vergent. 

Next, let r> 1. 

By taking m large enough, for all values of n>m the 

following inequalities will hold: 

^to+2 nm_|_i 

^to+3 ^ ^m+2 ^•> etc. 

Hence (~nw_|_2 —t-^?n-l-3"+ .... '^jm~f~I- 
.*. ni+n2+n3+ .... -\-um-\rUm+1+ .... is divergent 

for r>l. If r = 1, the series may be convergent or 

divergent, as the following two examples illustrate: 

1. For the divergent harmonic series 

l+^+i+i+ 

the ratio of the (n+l)th term to the nth term is 

1 

un+1 n+1 n 

un 1 n+1 

n 

Hence, 

n 
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2. In the series 

1 . 1 

1*2 2*3 ’ ’ ' ’ n(n-\-1) 

the ratio of the (w+l)th term to the r?th term is 

1 

Un+1_ (n+l)pt+2) n_1_ 
1 u n _ n+2 2 

w(w+l) n 

lim^2±l = iim —I—= 1 
00 n—^ | 

' n 

However, this series is convergent, as may be seen from the 
following: 

« 1 , 1 . 1 . . 1 
1*2 2*3 3*4 •••' 1 n(n+l) 

= d-i)+(§-i)+(i-l)+.. • •+(s_STl) 

=i 
n+1 

lim $n = l, and the series is convergent. 
7i->C0 

EXERCISES 

Apply the ratio test to the following series: 

32 Q3 on 

1- 3+2"+3"^ * * * • +^ +- 

Un+l 3W+1 • n 3 
Un (?l-j-l)3n ^ 1 

‘ n 

lim =3 
n—^-oo Un 

.*. the series is divergent. 
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1 1 1 1 Vl 
2. 2+22+23+24^"-- 

3* 1+2!+3!+4!+ • • * * +n! + 

4 6 
1 • 3 1 3 • 5 1 5 • 7 

1 1 

4. 

5. 

6. 

1 2! 3! 
7* l~rc\n • Q2~r"/t2 • • • • 

2/i 
• 1 (2ft— l)(2ft+l) 1 • 

i i 
1-2-3'2-3-4'3-4-5 

1 • 2T22 • 3^32 • 4T' ’'' 

2» 1 32 r42 

ft(ft+l)(ft+2) 

8 
22 ' 32'42 ' • • • • 

9 l2+?!+i2+ 

Series Having Positive and Negative Terms 

190. The following theorem will be useful in examin¬ 

ing for convergence a series having positive and negative 

terms. 

191. Theorem. An infinite series Wi+t^+wsH- • . • ., 
whose terms are all real hut not all of the same sign, is con¬ 

vergent, if the positive series |wi| + |w2| + |w3| + -.... is 
convergent. 

For 

. . . . < \ui\ -{- 1^21 1^3! H“ • • • • 

since the corresponding terms in both members are equal 

numerically, and since some of the terms of the left mem¬ 

ber are negative. 

Since the right member is a convergent series, its sum 

approaches a definite finite limit as the number of terms 

grows without bound. 

Hence it is possible to select a number m such that for 

n>m the sum 

l^m+l | + |^'to+2 I + I + 31 T" • • • 
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becomes and remains less than a positive number 8, 
however small. 

um+l +WTO-f.2 + Wm + 3+ .... <5 

Hence the series 

Ui-\-U2+UZ+- 

approaches a definite finite limit as n grows without bound 
and is convergent. 

192. Absolutely convergent series. If a convergent 

series with positive and negative terms remains con¬ 

vergent when the signs of the negative terms are changed, 
it is an absolutely convergent series. 

For example, the series 

1 2*4 8 Tti 

is absolutely convergent. 

193. Ratio test. The ratio test for a series with posi¬ 

tive and negative terms is an application of the following 
theorem: 

Theorem. Let 
n\~\-u2-\-u% T-.... 

be an infinite series. 

1. If lim ^n+1 

n->oo Un 

2. If lim ^n+1 

n-> oo Un 

3. If lim ^n+1 

n—>co Un 

<1, the series is convergent. 

>1, the series is divergent. 

= 1, the question of convergence or 

divergence must be decided by some other method. 

For, if for a series of positive terms 

lim 
n-> oo 

Un-\-1 

u n 

that series is convergent. 

<1 
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Hence the series must be convergent if the signs of 

some of the terms are changed. This shows that state¬ 

ment 1 is true. 

For any convergent series 

lim un — 0, § 182 
n->oo 

This is impossible for a series for which 

lim 
n—>oo Un 

>1 

Hence the series must be divergent, which shows the 

truth of statement 2. 

194. Alternating series. A series whose terms are 

alternately positive and negative is an alternating series. 
For example, 1— J+. ... is an alternating series. 

195. Theorem. An alternating series is convergent if 

each term is numerically less than the preceding term, and 

if the limit of the nth term is zero as n increases beyond 

bound. 

For, let 
U\—U2-\~Uz— Ui~\- . . . . 

be the given alternating series. 

Let n be an even number. Then Sn may be written 

Sn = (Ui~uf) -\-{Uz~uf) -\~{u<o — uf)A~ .... -\~{un-l — Un) 

This is a series of positive terms because ui>u2>u3. . . . 
But Sn may also be written 

^1 (^2 'Ojf) (^4 ^5) .... ([un—2 'U'n — l) 

Since all the differences in the parentheses are positive, 

it follows that 
Sn U\ 

.’. The given series is convergent. 
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Hence the sum Sn of an even number of terms 
approaches a definite finite limit S. 

Since 

$»+l =&n~{~Un+\ 

it follows that 

lim $n+i=lim $n+lim un+i 
go n->-oo n-> oo 

lim &n+i=&+0 
n-> co 

The sum $n+i of an odd number of terms approaches 
the same limit as Sn. 

The given alternating series is convergent. 

\ 

EXERCISES 

Test the following series for convergence or divergence: 

!• 22 32 T ■ 

_1 J_ 
V 2 V v\ 

3 U-U+U 
2 4 3 5+4 6 

4 1 —— 4- —— 22 r g2 • • • • 

4 Q Ifi 
5.1+-+-+^+.... 

6‘ —7^~ * * ’' 

Series Whose Terms Are Functions of x 

196. The following problem illustrates the method of 

testing for convergence or divergence a series whose 
terms are functions of x. 

Consider the series 

1 , 2x . 3a:2 nx n — 1 

+ 2 22 23 2n 
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We have 

Wn-f i 

u 

(w+l)xn 
2W+1 (n-\-l)xn • 2n _{n-\-l)x 

n—1 

1+-)* 

n nx 
)n 

2n+1nxn~1 

^n+l 

2 n 

lim 
tt->CO U n 

= \x 

.*. the series is convergent if 

The series is divergent if X 

x 
<1, or if |a;| <2. 

> 1, or if \x\ >2. 

When 
x 

= 1, or when \x\=2, we may substitute ±2 

for a; in the given series and examine the resulting series 
for convergence or divergence. 

The convergence or divergence of a series decides its 
usefulness. For example, the series 

/y»3 /y*5 /y*7 
»v | *v »v . 

X_3!+5!~7!+ 
Xr X4 X6 

• 1 — ——i———_4- 

2!^4! 6!^' 
✓y» /y»2 /y»3 

1 *v * tv 

and - 

are used to define respectively the functions sin x, cos x, 
and log (l+rc) for all values of x for which the series are 
convergent 

EXERCISES 

Examine the following series for convergence or divergence: 

x2 x3 x4 
3! ' 5!—7!~^ ‘ ‘ 

2. 

3. 

1 1 
l+x2 ' l+2x2 ' l+3x2 

x X* x° 
1-3 3 • 33 5 • 35 

+.... 
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‘ 1 •2 2 • 3 "3 • 4 

1 • 3 3 • 5x 5 • 7x2 
* 2 22 23 '- 

/y* /y»2 /y»3 

6. Y+2 + 3 + - 

Summary 

197. The chapter has taught the meaning of the fol¬ 
lowing terms: 

sum of a series divergent series 
infinite series absolutely convergent series 
convergent series alternating series 

198. The convergence of a series may be established 

by^ the comparison test or by the ratio test. 

199. The geometric series a+ar+ar2-f. .. . and the 

series --are use^ul f°r applying 

the comparison test. 

200. The following theorems have been studied: 

1. If a series Ui-\-U2~{-U3-\-. • . • is convergent, it follows 
that lira un = 0. 

»-> 00 

2. An infinite series of positive terms is convergent if 

Sn remains less than some finite number N as n increases 

without bound. 

3. An infinite series of positive terms is convergent if, 

from some particular term on, each term is equal to, or less 

than, the corresponding term of a known convergent series 

of positive terms. 
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4. An infinite series of positive terms is divergent if, from 

some particular term on, each term is equal to, or greater 

than, the corresponding term of a known divergent series of 

positive terms. 

5. If the ratio of each term of one of two given series 

with positive terms to the corresponding term of the other 

he finite, the series are either both convergent or both divergent. 

6. A series of positive terms is convergent if the limit 

of the ratio of the (nfi-l)th term to the nth term as n increases 

without bound is less than 1, and divergent if the limit is 

greater than 1. 

7. An infinite series W1+W2+W3+.... whose terms are all 

real, but not all of the same sign, is convergent if the series 

|wi| + \uf\ +1^31 + • . • • is convergent. 

8. An infinite series W1+W2+W3+. . . . is convergent 

or divergent according as lim 
w->oo 

greater than 1. 

^n+l 

U n 
is less than 1, or 

9. An alternating series is convergent if each term is 

numerically less than the preceding term, and if the limit of 

the nth term is zero as n increases without bound. 



CHAPTER XI 

PARTIAL FRACTIONS 

201. Partial fractions. The identity 

x~5 __ 3 —2 
i i -i i-__ i 

x2 —1 x + 1 x —1 
£_ p) 

expresses the proper fraction ——- as the sum of two 

x-j-1 x — 1 
study the problem of decomposing a proper rational frac¬ 

tion into a sum of simpler fractions which cannot them¬ 

selves be still further resolved. Such fractions are called 

partial fractions. Our problem is clearly the inverse of 

the problem of expressing the sum of several given 

fractions as a single fraction. 

It is sufficient to study only the case of proper frac¬ 

tions, i.e., fractions whose numerator is of degree lower 

than that of its denominator. For any improper fraction 

can always be changed to the sum of an integral number 

and a proper fraction. For example, 

3x2 — 2 _ 0 , 13 
_9 r ^ I _o 
x2 — 5 x2 — 5 

202. Case I. Let 

, , _/(x) _axn~l-\-b xn~2-\-c xn“3+ ....+£ 

X g{x) a i x n -\-biXn~l-\-CiXn~2-\r . . . . +h 

be a proper rational fraction reduced to its lowest terms, and 

let g(x) be the product of n linear factors, all of which are 

distinct, i.e., 

g (x) = (x—ri) (x — r2) (x — r 3)-(x - rn) 

177 
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Let us assume that R(x) may be decomposed into 

partial proper fractions whose denominators are x—n, 

x—r2, ...x—rn, respectively. Since the degree of the 

numerator in each fraction is lower than that of the 

denominator, the numerators are constants. 

Thus we have 
d/ \ | B , C , , L 
R(x) —-1-1-[-•••• H- 

x — ri x — r2 x — r3 x—rn 

Adding the partial fractions, we have 

A(x-r2) (x-rn)+Bix-rJix-rJ (x-rn) + +L(x-r1) (x-rn_x) 

^ (x-rx)(x-r2) f x—rn) 

It is clear that the degree of the numerator of this frac¬ 

tion is lower than that of the denominator. Hence the 

sum of the partial fractions is a proper fraction. 

The denominator of this fraction is identically the 

same as g(x), and the numerator when simplified is of the 

same form as fix). 

Hence, if we determine A, B, C, .. . ., L, so that 

f(x) =A(x-r2)-(x—rn) + B(x—ri)(x—r3)-(x—rn) 
+-+ L{x—ri)-(x—rn-i) 

then 
_A_ B L 

x—ri7 x—r2’ *'••> x — rn 

are the required partial fractions of R(x). 

Exercise 1, below, illustrates the method of resolving 

a given fraction into partial fractions. 

EXERCISES 

Resolve the following into the simplest partial fractions: 

1* Or2-1)0-2) 

To determine the partial fractions, let us assume that the 
fraction may be decomposed into partial fractions whose numerators 
are constants. Then 
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x2 A B C 

{x2 — l){x—2)~{x — \) x+1 x—2 

x2=A(x+l)(x-2)+B(x-l)(x-2)+C(x-l)(x+l) 

Since this holds for all values of x, it holds for x = —1, 2, and 1* 

When x = —1, we have by substitution, 

1=0+R(—2)(—3)+0 

••• B = ! 

When x — 2, 

4 = 0(1) (3) 

• r — a .. o — 3 

When x — \, 
1 =A(2)( —1) 

A = -\ 

Hence 

x2 _ 114 
(x2-l)(x-2)~ 2(x-l)+6(^+l)+3(x-2) 

2x — 3 
5. 

2z+3 
(x-l)(x+2) x2—5^+6 

x2-\-2 
6. 

2x+3 
x(x — l)(x — 2) xz-\-x2—2x 

3x(x-\-4) 
7. 

(l+3z)(l-2x) 
(2z-|-l)O+l)0r-2) x(x2— 1) 

203. Case II. Let the denominator of the fraction to 

be decomposed into partial fractions be the product of linear 

factors, not all of which are distinct. 

Suppose the denominator has a factor (x—a)m. Cor¬ 

responding to this factor there must be at least one partial 

fraction with denominator (x—a)m. However, there may 

be other partial fractions with denominators of the forms 

(x—a)m~1, (x — a)m~2, ...(x—a)2, x—a 
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Hence we shall assume, corresponding to every factor of 

the form (x —a)m, the sum of the partial fractions 

B 

(x—a)m (x—a) m ~i+- • 

M 

(x—a)2 x—a 

Exercise 1, below, illustrates the method of determining 

the coefficients A, B, C, .... 

EXERCISES 

Resolve the following into the simplest partial fractions: 

3x2+l 
ll (x+l)(x-l)2 

% 

Assume that the fraction may be decomposed into partial 
fractions whose denominators are constants. Then 

3x2 + l _ A__C_ 

(x + l)(x — l)2 x + 1 x —1 (x — l)2 

Then 3x2 + l=A(x — l)2-f5(x+l)(x-1)+(7(x+l) 
Let x = 1 

Then 3 + 1 =(7(2) 
(7 = 2 

Let x = — 1 
Then 3 + l=A(-2)2 

A — l 

Select any other convenient value for x, as x = 2. 

Then 12+1 =A(1)2+5(3)(1) +(7(3) 
or A+35+3(7 = 13 

35 = 6 
and 5 = 2 

3x2+1 12 2 
” (x+l)(x-l)2 x+l^x-l^ix-iy 

(x2 — 1) (x + 1) 

3 _A_ 
(x-1)3 

s+1 
x (x +1)3 

6x2—x+1 

x(l —X2) 

6. x2+1 
x3(x — 1) 

7. 
x2+2x 

x3—x2—x+1 
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204. Case III. Let some of the factors of the denomi¬ 

nator be real quadratic which cannot be separated into linear 
factors. 

For every such factor occurring only once we shall 

assume a partial fraction whose numerator is of the first 
degree, as 

Ax+B 

x2+px+q 

For every factor of the form x2+px+q occurring m 

times we shall assume the sum of the partial fractions 

Ax+B Cx+D Lx AM 

(x2+px+q)m^ (x2+px+q)m~l ~^~x2+px+q 

EXERCISES 

Resolve the following into the simplest partial fractions: 

8a:4+5a:3+13a:2+14a:H-13 

1* (a:2+l)2(a:+2) 

For the factors a;2+l and (a;2+l)2 assume numerators of the 

form mx+n; for the factor o:+2 assume a constant numerator. 

} 8a:4+5a:3 + 13a:2 + 14a: + 13 _ Ax+B Cx+D E 
(x^+\Y(x+2) • (x2 + l)2+ a:2+l +x+2 

.'. 8a:4+5a:3 + 13x2 + 14a: + 13 

= (Ax+B) (x+2) + (Cx+D) (x2 +1) (a:+2) +E (x2 +1 )2 

= A x2 +2 A 
+ B 

c a:4 +2C x* + C +2 C 
+ D +2 D + D 

E +2E 

Equating the coefficients of similar terms, 

C+E = 8 

2 C+D= 5 
A +C+2D +2E = 13 
2A+B+2C+D = 14 

2B+2D+E = 13 

+2 B 

+2D 
+ E 
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Solving these equations we have 

A = 2, 5 = 5, (7 = 3, D= —1, E = 5 

2x+5 , Sx-1 

2. 

3. 

4. 

8X4+5.X3 + 13x2 + 14x+13 

4 

(x2 + l)2 1 z2 + l ' x+2 

2 

xz—l 

1-Sx 

2-x-\-2x2—x3 

l+a3 

^(l+rr-ba;2) 

5. 

6. 

(£+l)(£2 — z+l) 
1+2#—5z2+x3 
(x2+5)(x2+l) 

a; 4a;+5 

(x2—2x+1) (x2+1) 

Summary 

205. In decomposing a proper rational fraction into 

the simplest partial fractions we have considered three 

cases: 

1. If the denominator is the product of distinct linear 

factors, the numerators of the assumed partial fractions 

are constants. 

2. If the denominator is the product of linear factors 

not all of which are distinct, the numerators of the assumed 

partial fractions are constants and the denominators of 

the form (x — a)m. 

3. If some of the factors of the denominator are real 

quadratic, such as x2-\-px-\-q, and not factorable into 

linear factors, the numerators of the assumed partial 

fractions are constants for every denominator of the 

form (x—a)m, but for every denominator of the form 

(x2-\-px-\-q)m the numerators are of the form mx-\-n. 



CHAPTER XII 

PERMUTATIONS AND COMBINATIONS 

Permutations 

206. Elements. Permutations. A given number of 

things may be arranged in one row in a number of ways. 

Suppose we have three books to be arranged on a shelf. 
This may be done as follows. 

Denoting the books by the letters a, b, and c, we may 

select book a first and then either b and c, or c and b. This 

gives the arrangements abc and acb. 

Selecting b as the first book, we have the arrangements 
bac and bca. 

Finally, by taking c for the first place, we have the 
arrangements cab and cba. 

Thus the three books may be arranged on the shelf 
in the six different ways: 

% 

abc bac cab 

acb bca cba 

The things to be arranged are called elements. 

Arrangements of n elements, differing from each 

other only in the order of the elements, are called permuta¬ 
tions. Hence, according to the problem above, three 
elements have six permutations. 

To find the number of permutations of four elements 
we may proceed as follows. 

Since there are four elements, each of which may 

occupy the first place, we may fill the first place in .four 

different ways. In each case the three other places may 

then be filled in six different ways. This gives 4X6 

183 
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different arrangements, or 24 permutations. They are 

as follows: 

abed bacd cabd dabc 

abdc bade cadb dacb 

acbd bead ebad dbac 

aedb beda cbda dbca 

adbc bdac edab dcab 

adeb bdea cdba deba 

Similarly the permutations of five elements may be 

arranged in five columns, each column containing 24 

permutations. Hence there are 5X24 permutations of 

five elements. 

207. The number of permutations of n elements. 
Let the number of permutations of n elements be denoted 

by Pn• 
For example, let it be required to find in how many 

ways we may arrange n books on a shelf. Denoting the 

books by numbers 1, 2, 3, 4, . . . ., we have for two books 

the permutations 12 and 21, i.e., two permutations. , 

For three books, 

123 213 312 
132 231 321 

we have 3 • 2, or 6 permutations. 

For four books we shall have 4 • 3 • 2, or 24 permuta¬ 

tions, etc. 

Arranging these results in a table, 

n Pn 

1 1 
2 1 • 2 
3 1-2-3 
4 1 • 2 • 3 • 4 
5 1 • 2 • 3 • 4 • 5 
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we infer that the number of permutations of n elements is 

given by the formula 

Pn = 1 • 2 • 3 • 4 • 5 n 

The products 1, 1*2, 1*2*3, .... , 1*2*3* .... • n, 

are called factorial 1, factorial 2, factorial 3, .... , fac¬ 

torial n, respectively, and are commonly denoted by the 

symbols 1!, 2!, 3!, ...., n\, or [1, |2, |3, . .. ., n. 

Hence Pn=7?! 

This formula may be proved by mathematical induction, 

§ 118. We assume first that 

Pn = n(n — l)(n — 2) • .... *3*2*1 

To get Pn+i we arrange the n-\-1 elements in n+1 

columns, § 206, each column containing Pn permutations. 

.-. Pn+i = (n+l) Pn = (ri) (n—l)(n—2)-3*2*1 

Hence, if the formula is true for n elements it is also true 

for (n+1) elements. 
Since we know it to hold for n= 4, it must also hold 

for n = 5, and therefore for n = 6, etc., for all positive 

integral values of n. 

208. Fundamental principle. In the development 

of the formula in § 207 we made use of the following 

principle: 
If one thing can he done in m different ways, and if, 

after this has been done, another can he done in n ways, then 

the two things together can he done in mn ways. 

EXERCISES 

1. Form the permutations of the letters a, h, c, d, and e. 

2. Form the permutations containing a, h, c, d, and beginning 

with d h. 
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3. How many permutations can be formed with 8 elements ? 

4. How many permutations can be formed with the letters 
in the world “April” ? 

5. In how many ways can 7 people be seated on a bench ? 

209. Permutations of n things, not all of which are 
different. Thus far we have considered only the case 

where all elements are distinct. If some of the n things 

are alike, the number of permutations may be found as 

follows: 

Attach subscripts to the things that are alike and 

form the number of permutations as if all elements were 

distinct. For example, we change abbb to db\b2bz. This 

gives the following four groups of six permutations 

having a in the.first, second, third, and fourth places, 

respectively. 

abibzbz bidb2bz bib2dbz bib2bzd 

dbibzb2 b\dbzb2 bzbidbz bibzb2d 

db2bibz b^dbibz bibzdb2 b2bibzd 

b2dbzbi bzbidb2 b2bzbid 

dbzbib2 bzdbib2 bzbzdbi bzbib2d 

dbzb2bi bzdb<ibi bzb2dbi bzb2bid 

If we leave off the subscripts there will be only one 

permutation in each group. Thus, instead of 4! permuta¬ 

tions, we have only | (4!), or |-j permutations. 

In general, to find the permutations of n things, p of 

which are alike, denote the like things by subscripts. 

They may then be arranged in groups, such that the per¬ 

mutations in each group differ only in the position of the 

p elements, which were given alike. Since each group 

contains as many permutations as can be formed with 

p elements, i.e.? pl} there are 
n\ 

p\ 
groups, 
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Leaving off the subscripts, all the permutations in one 
group are the same. 

71 f 
Hence there are —j permutations of n things, p of them 

being alike. 

If among the n given things there are still q other ele- 
71 

ments that are alike, we divide the —j permutations into 

groups whose q\ permutations differ only in the position of 
these q elements. 

n\ 

Hence there are or groups. 
q\ p\q\ 

Leaving off the subscripts of the q elements, each 

group will have only one permutation, and the number 

of permutations is the same as the number of groups, 
n\ 

1,e” 

I 

p'q 
By continuing this process we find that the number 

of permutations of n things of which p are of one kind, q 

of another, etc., is given by the formula 

P = 
nl 

plql.... 

EXERCISES 

1. How many permutations can be formed from the letters 
aabbbc? 

2. In how many different ways can the letters of the word 
“short” be arranged? 

3. In how many different ways can the letters of the word 
“mathematics” be arranged? 

4. In how many ways can 3 white, 1 blue, and 2 red balls be 
arranged ? 
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210. Permutations of n things, taken r at a time. 
From four different flags, a, b, c, and d, signals of two 

flags each are to be made. We may first select flag a 

and choose with it one of the remaining flags, b, c, or d. 

Thus we have the three arrangements ab, ac, and ad. 

Similarly, by choosing first one of the other flags, three 

arrangements are possible in each case. 

Thus we have 4 • 3=4[4 — (2 — 1)] possible cases: 

ab ba ca da 

ac be cb db 

ad bd cd ■dc 

If signals of three flags each were to be formed, wc 

would have two possibilities for each of the cases above. 

Thus, corresponding to ab we have abc and abd. Hence, 

altogether we shall have 4*3*2 cases. 

Similarly we may show that the number of five things 

taken two at a time is 5 • 4 or 5[5 —(2 —1)]. 

Three at a time 5 • 4 • 3 or 5*4 or [5 —(3 —l)]j 

And four at a time 5 • 4 • 3 • 2 or 5 • 4 • 3[5 —(4 —1)]. 

In general, the number of n things taken r at a time 

is given by the formula 

nPr=n{n-l)(n-2)-(n-r+1) 

The formula is easily proved by mathematical induc¬ 

tion, as follows: 

We have seen that 

nPr=nPr— 1 ^ “b 1) 

Assume 

nPr = n(n — l)(n — 2)_(n—r+1) 

Then 

nPr+i=nPr(n—r) =n(n — l)(n—2)-(n — r+l)(A—r) 
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which shows that the formula holds for r-f 1 if it holds 

for r. 

Since we know the formula to hold for r = 1 and 2, it 

follows that it holds for any value of r. 

exercises 

1. In how many ways can 10 soldiers be arranged in a row ? 

2. How many permutations are there of the letters of the 

word “player” when 3 are taken at a time? 

3. In how many ways can a baseball team be formed from 

18 ball players, each of whom will take any position ? 

4. How many signals can be formed in the 7 flags of different 

colors, displaying 4 at a time ? 

5. How many permutations can be formed with the letters 

of the word “Illinois”? 

6. How many different numbers containing 6 digits can be 

formed with the figures 1122334? 

7. How many different signals can be made with 10 flags, 

3 of which are white, 4 blue, 2 black, and 1 red ? 

8. In how many ways can 5 pupils be seated in 8 seats ? 

211. Permutations in a circle. When the objects are 

arranged in a circle, or in any closed curve, the relative 

order is not changed if all objects are shifted the same 

number of places. Hence the position of one object is 

immaterial. We may suppose one of the n objects in a 

fixed position and find the number of arrangements of the 

n — 1 remaining objects. For example, if four persons, 

A, B, C, and D, are seated at a table, the arrangement is 

the same whether we start from A, B, C, or D, as long as 

we proceed in the same direction. 

Since n — 1 objects can be arranged in (n —1)! orders 

the number of circular permutations of n objects is (n — 1)!. 
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EXERCISES 

1. In how many ways can 6 persons be seated at a round 
table ? 

2. Show that n keys can be arranged in a ring in 
. (n— 1)! 

ways. 

Consider that by revolving the ring about a diameter through 

an angle of 180° each arrangement is found to occur twice. 

3. How many different bracelets can be formed with 30 
beads of different colors ? 

Combinations 

212. Combinations. If A, B, and C are appointed as 

a committee, the character of the committee is not changed 

by changing the order in which A, B, and C may be 

arranged. The orders ABC, ACB, BCA, BAC, etc., are 

different 'permutations of the three men, but they are said 

to be the same combination. In general, a group of objects 

in which the order of arrangement is not considered is 

called a combination. 

213. Number of combinations. We have denoted the 

number of permutations of n things taken r at a time by 

nPr. From every combination of r things we can form 

r\ permutations. Hence the number of combinations of 

n things taken rata time multiplied by r! is equal to nPr. 

In symbols this may be written briefly 

or 

nCr 

r!(wCV) nPr 

nPr n(n-1)-(n-r+1) 
r! r! 

Multiplying numerator and denominator by (n—r)\ 

this takes the form 
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Hence 
C — C n^r nKjn—r 

or the number of combinations of n things taken r at a time 

is the same as the number of combinations of n things taken 
n—r at a time. 

214. The total number of combinations. In the 
binomial formula 

(a+b)n = an+nanb+n(jl }\n~2b2+_ 
I • A 

the coefficients are 1, nCi, nC2, etc. 

If we let a = 6 = 1, we have 

2" = l+nC,l + n^2+n^3+• • • nCn 

Hence the total number of combinations of n things 

taking 1, 2, 3, ...n at a time is 2n — 1. 

EXERCISES 

1. In how many ways can a committee of 4 men be appointed 
from 15 men ? 

2. How many straight lines can be drawn through 10 points, 
no 3 of which are in a straight line ? 

3. In how many ways can a group of 3 lawyers and 4 
merchants be selected from 7 lawyers and 6 merchants ? 

4. How many different crews of 8 men can be selected from 
a group of 16 men ? 

5. There are 2 roads from A to B, 3 from B to C, and 3 from 
C to D. By how many routes can a man travel from A to D ? 

6. In how many ways can 8 men be arranged in a row so 
that neither of 2 given men may be at either end of the row? 
(Board.) 

7. How many triangles can be drawn with each vertex 
in 1 of 20 given points, no 3 of which are in the same straight 
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line ? How many such triangles can be drawn if 4 of the given 

points lie in a straight line ? (Board.) 

8. From 14 men, how many committees of 4 can be formed ? 

Of these, how many include one particular man, A? How 

many include A but not B ? (Board.) 

9. How many planes are determined by 30 points if no 4 

of the points lie in the same plane ? 

10. A club consists of 8 men and 6 women. How many 

different committees of 7 members each can be selected from 

the club, each committee to consist of 3 men and 4 women? 

(Williams.) 

11. How many even numbers of 3 digits each can be formed 

from the digits 1, 2, 3, 4, 5, 6, 7, 8? (Williams.) 

12. In how many ways can a committee of 3 be selected 

from 10 persons so that a particular person A shall always be 

(1) included and (2) excluded? .(Williams.) 

13. A person has 22 friends, of whom 14 are men. In how 

many ways can he make up dinner parties of 17 guests, it being 

required that 10 guests of each party be men? (Williams.) 

14. In a certain school there are 60 pupils and 5 teachers. 

An athletic committee of 3 teachers and 2 pupils is to be chosen. 

How many such committees could be formed ? (Harvard.) 

15. Six flags of different colors can be hoisted, either singly 

or any number at a time, one above another. How many 

different signals can be made with them ? (Harvard.) 

Summary 

215. The chapter has taught the meaning of the 

following new terms: 

permutation, circular permutation, combination 

216. The following important principle has been used: 

If one thing can he done in m different ways, and if, after 

this has been done, another can he done in n ways, then the 

two things together can he done in mn ways. 
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217. The following formulas have been developed in 
this chapter: 

1. Pn = 1 • 2 • 3 • 4 • 5 •-• n, where Pn denotes the 
number of permutations of n elements. 

2. P =pYn| — > where P denotes the number of per¬ 

mutations of n things, of which p are of one kind, q of 
another, etc. 

3. nPr=n(n —l)(n—2) •-• (n-r+1), where nPr 

denotes the number of permutations of n things taken 
r at a time. 

4. Pn = {rt — 1)!, where Pn is the number of circular 
permutations of n objects. 

k ^ n(n-l)... .(n-r+1) n! 
"W-----=7T(y2_r)!> where nUr is 

the number of combinations of n things taken r at a time. 



CHAPTER XIII 

THE CIRCLE 

General Quadratic Function of Two Variables 

218. General quadratic function of two variables. 
Most of the functions studied in the preceding chapters 

are functions of one variable. However, functions of 

several variables are not unknown to the student. For 

example, in the study of simultaneous equations he has 

met linear functions of the form ax+by-\-c, and such quad¬ 

ratic functions as xy and ax2-\-by2—c. 

The function 

f{x, y) =Ax2-\-2Hxy-{-By2-{-2Gx-{-2Fy-\-C 

where the coefficients A, B, C, F, G, and H may have any 

values independent of x and y, excluding the case 

A = B = H = 0, is called the general rational integral 
function of the second degree. The terms containing 

x2, y2, and xy are terms of the second degree. 

Show that the functions ax2-\-by2-\-c and xy are special 

cases of the general function. 

219. General quadratic equation. The equation 

Ax2-\-2 HxyBy2-\-2Gx-\-2Fy-\- C = 0 

is the most general equation of the second degree. Any 

pair of values of x and y which satisfies this equation is a 

solution of the equation. 

Before taking up the study of the general equation we 

shall consider in this chapter and in chapter xiv some of 

the special cases. 

194 



THE CIRCLE 195 

The Circle 

220. Standard equation of the circle. The circle 

may be defined as the locus of a point moving in a plane so 

that it is always equidistant from a fixed point. To find 
the equation of the circle, Fig. 73, 

denote the co-ordinates of the 

center by (h, k), the co-ordinates 

of any point P on the circle by 

(x} y), and the distance from P 

to C by r. Then, according to 

the definition above, CP=r for 

any position of P. 

Show that 

C P = 1 / (x—h)2 -f- (y—k)2 

CP = (x-h)2-\- (y—k)2 

Hence the equation 

(x-h)2+(y-k)2 = r2- (1) 

is satisfied by the co-ordinates (x, y) of any point P on 
the circle. 

Show that the co-ordinates of no other point satisfy 
equation (1). 

Equation (1) is a standard equation of a circle whose 

center is C(h, k), and whose radius is equal to r. 

If h=k = 0, the center of the circle is at the origin and 
the equation reduces to 

x2-\-y2 = r2 

EXERCISES 

Write the equations of the following circles and make a 
sketch of each: 

1. Center (+2, +4), radius = 6 

2. Center ( — 3, 2), radius = 5 
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3. Center (1, 0), radius = 7 

4. Center (3, 4) and passing through the origin 

5. Center on the x-axis, radius = a 

6. Center on the y-axis, radius = 6 

7. Tangent to x-axis, radius = 4 

8. Tangent to both axes, radius = 8 

221. General equation of the circle. The equation 

(x—h)2 + (y — k)2 = r2 

when expanded reduces to 

x2 -\-y2 — 2hx — 2ky (h2 -\-k2—r2) =0 

a) 

(2) 

Comparison of equation (2) with the general quadratic 

equation 

Ax2-\-2Hxy-\-By2-\-2Gx-\-2Fy-\-C = 0 (3) 

suggests to let H = 0, and A = B. This gives the equation 

Ax2+Ay2+2Gx+ZFy+C = 0 (4) 

Equation (4) may be shown to be the equation of a 

circle for all real values of A, G, F, and C except ^4=0, 

as follows: First, divide every term by A. This gives 

(5) 

By comparing (5) and (2) it is seen that for 

(6) 

equation (5) reduces to equation (2). 
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Hence, to reduce equation (5) to equation (2), add 
Q2 j?2 

and subtract -p and -p to complete the squares in 

equation (5). This gives the equation 

' ,G2\./ 0.oF , F*\ ( (C G2 F2 

X +2Ax+A°) + (y +2Ay+A*) + {A~A>-A*. 
= 0 

This may be written 

-W 
G2 F2_C\2 
A2+A2 Aj (7) 

Equation (7) expresses the fact that the square of the 

(G F\ 
—j ) is constant and equal 

G2 F2 C 
to -p+^p—^ means that equation (7), which is 

only another form of equation (4), is the equation of a 

(G F\ 
—-j , — -j j, and whose 

radius is equal to 

l/(72+F2-CA 

A 

Note the following special cases: 

1. When (r2+F2=C • A, the radius is zero, the 

equation is satisfied only by the point (x, y) = 

and the circle is a point circle. 

2. When G2-\-F2<C • A, equation (7) is not satisfied 

by any real values of x and y. In this case we speak of 

the circle as an imaginary circle. 

It follows that an equation of the form 

Ax2+Ay2+2Gx+2Fy+C = 0 (8) 
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represents a circle if A 5*0, and if G2-\-F2>A • C. Equa¬ 

tion (8) is the general equation of the circle. 

The center is the point 

(h, fc)=(-| 

The length of the radius is 

r = 4 
G2 F_C 
A2+A2 A 

222. Special positions of the circle. Equation (8) 

of the circle is of a simple form for special positions of the 

circle. 

If the center is at the origin, 

G , n 
A=h = °’ 

F , n G -7 = &=0, ~7 

A A 
_^*2 

and the equation is 

x2-\-y2=r2 

If the center is on the x-axis, 

k =—K =0 and F—0 
A 

If the center is on the y-axis, 

h = —r =0 and G=0 
A 

EXERCISE 

Write the equation of the circle whose center is on the z-axis; 
on the ?/-axis; on the positive side of the z-axis and a distance r 
from the origin. 
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223. To find the co-ordinates of the center and radius 
of a given circle. The co-ordinates of the center and the 
radius of a given circle may be found either by formula (9), 
§ 221, or by changing the given equation to form (1), 
§ 220. The following example illustrates the methods: 

Let the equation of a circle be 

7x2-\-7y2—\x—y — 3 = 0 

1. To find the center and radius, divide by 7 and 
complete the squares. This gives the equation 

X2—~rw~^-y2~TT9 6 

or 

Hence 

(x 

h 

)2+(y- tV)5 1 0 1 
TITS' 

— 2 Z« — 1 2 h 
7 > ^ T 4 ) 

„ — V ioi 
' TT~ 

2. According to formula (9), § 221, 

3_i/101 
7~ 14 

EXERCISES 

Find the centers and radii of the following circles. Draw 
the circle, if possible. 

1. x2-\-y2=— \x 4. 2x2-{-2y2~\-10x—6y—1 = 0 

2. x2-Jry2-\-6y = 0 6. x2+i/2+10x+110 = 0 

3. x2+y2-Qx-$y = 24: 6. 4z2+4i/2-4a;+16i/-19 = 0 

7. Prove that the co-ordinate axes are axes of symmetry of 
the circle x2-\-y2 = r2. 

Show that x = ±Vr2—y2, y—d=Vr2—x2. Use §94. 

8. Prove that the circle x2-\-y2 — r2 is symmetric with respect 
to the origin. 

Show that if (xi} y{) lies on the circle, {—Xi, —yi) is also on the 
circle. 
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9. Find the intercepts of the circle ax2-{-ay2-{-bx-{-cy-\-d = 0 

and compare the product of the intercepts on the a>axis with 

that of the intercepts on the y-axis. 

224. The equation of a circle derived from given con¬ 
ditions. The equation 

Ax2+Ay2+2Gx+2Fy+C = 0 

contains four constants. However, by dividing by A 

and substituting for and -j the constants b, c, 

and d, respectively, the equation changes to the form 

x2-\-y2-{-bx-\-cy-{-d = 0 (1) 

which involves only three arbitrary constants. Similarly 

the equation of a circle in the form 

(x — h)2A(y — k)2=r2 (2) 

contains three arbitrary constants, h, k, and r. 

Geometrically a circle may be determined by three 

conditions, e.g., by three points not upon the same straight 

line. To obtain the equation the co-ordinates of the 

given points may be substituted in equations (1) or (2) and 

the resulting equations solved simultaneously. Exercises 

1 and 2 below illustrate the method. 

EXERCISES 

1. Find the equation of the circle, circumscribed about a 

triangle whose vertices are A( — 1, 2), J5(0, —3), C(2, 3). 

Substituting the co-ordinates of A, B, and C in equation (1), 

1+4— b +2c+d = 0 
0+9+0 — 3c+d = 0 

4+9 +2 b+3c+d = 0 

Solving for b, c, and d, we have 

h — _11 r _ 1 _ 3 3 
0 — -g-, C — 4 a — 4~ 
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Show that the equation of the circle is 

4x2+4y2 -1 lx-+y - 33 = 0 

2. Find the equation of a circle which passes through the 
points (0, 4) and (6, 0), and whose radius is V13. 

Substituting in equation (2) we have 

(0 — h)2 + (4 — fc)2 = 13 
(6 — h)2 + (0 — k)2 = 13 

Solve this system to determine the values of h and k. 

Find the equations of a circle passing through the following 
points: 

3. (0, 0), (5, 0), (0, 4) 5. (a, 0), (-a, 0), (0, b) 

4- (“1, 2), (0, —3), (2, 3) 6. (2, —1), (3, —2), origin 

7. Find the equation of the circle the center of which is at 

the point (3, 4), and which passes through the point (4, —3). 

8. Prove that the locus of a point which moves so that the 

sum of the squares from two fixed points is constant is a circle. 

9. Find the equation of a circle the center of which is 
(6, 8), and which touches the line 4x+3y-\-l = 0. 

10. Find the equation of the circle circumscribed about the 

triangle whose sides are determined by the equations x+y+l = 0, 
x-y-1 = 0, y = 4. 

11. Find the locus of a point twice as far from the origin as 
from the point (0, 6). 

12. Find the locus of the vertex of a triangle whose distances 
7YI 

from the other two vertices are in the ratio —. 
n 

13. Find the equation of the circle passing through the point 
( — 2, 5) and tangent to both axes. 

14. Find the equation of the circle passing through the 

points (2, —3) and (4, —1) and having its center on the line 
3y+x= 18. 

15. Find the co-ordinates of the point of intersection of 

j x+2y+l = 0 

\ x2+y2—12x = 0 
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Tangent to a Circle 

225. Differentiation of implicit functions. It has 

been seen in § 106 that the slope of the tangent to a 

curve y=f{x) at the point (xh y{) is the value of f'(x) for 

X=Xi. 

To find/'(:r) when the function is of the form/Or, y), 

we may first solve the equation f{x, y)= 0 for y, and then 

find the derivative of y. This process is often incon¬ 

venient, as for example in the case of the quadratic 

function 

/Or, y)=Ax2+2Hxy+By2+2Gx+2Fy+C 

226. Slope of the tangent to f(x, y)= 0. 
process of finding the slope 

of the tangent to the curve 

/Or, y)= 0 may be derived 

as follows: 

k 

A simple 

Y 

Px 

P^.Xi+h^^k) 

O X 

Fig. 74 

Let ^ be the slope of 

the secant P1P2, Fig. 74. 

Since both points, Pi (xi, yi) 
and P2, x+hf y+k, lie on the curve f(x, y)= 0, their 

co-ordinates satisfy the equation. 

Hence, 

f(xi-\-h, yi~\~k) = A(xi-phY-\~2H(xi+h)(y\.-\-k)B(yi-\-k)2 

-\-2iG(xi-\-h) +2P (yi~\~k) -f- C = 0 

and 

f(xh yi) =Ax12+2Hx1y1+By12+2Gx1+2Fyl+ C = 0 

Subtracting the second equation from the first gives 

A (2xih-\-h?) +2 H (xik-\-yih+hk) + B (2yik-jrk2) +2 Gh 
+2Ffc=0 
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/. k(2Hxi+2By1+2F+Bk)+h(2Axl+2Hy1+2Q 
JrAh-\-2Hk) =0 

. k_ 2Axi-\-2Hyi~\-2G-\-Ah-\-2Hk 
h~ 2Hx1+2By1+2F+Bk 

which is the slope of the secant PiP2. 

The slope m of the tangent to f(x, y)= 0 at the point 
k 

(xi, yi) is the limit of T as k->0, 
h 

Hence 
_ 2Ax\-\-2Hy\-\-2G 

m ~ ~2ffa:1+2Bj/1+2F 
or 

Axi+Hyi+G 
HXl+Byi+F 

This shows that the slope of the tangent to }{x, y)= 0 may 

be obtained briefly by the following rule: 

1. Differentiate f(x, y) with respect to x, regarding y 
as constant. This gives fx'(xh yi) = 2(Axi+ Hyi-\-G). 

2. Differentiate f(x, y) with respect to y, regarding x 
as a constant. This gives fy'(xh yd) = 2(Hxi-\-Byi+F). 

3. Divide fx'(xi, yd) byfy'(xi, yd and prefix the — sign. 

EXERCISES 

Find the slope m of each of the following curves at the point 
P(x, y): 

1. y—x2 = 0 4. x3-\-xy-{-2 = 0 

2. z2+?/ = 4 5. 2y2-3x+5 = 0 

3. x2—xy-\r3 = 0 6. x2y— 6x+3 = 0 

227. Equation of the tangent to f(x, y)= 0. Let 

(xi, yd) be the point of contact, and let m be the slope 

of the tangent. Then according to the point-slope 
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equation of a straight line the equation of the tangent 

to f{x, y)= 0 is 

y-yi = m{x-x i) 

228. Equation of the tangent to a circle. To find the 

slope of the tangent to the circle 

f(x, y) =x2-\-y2—r2 = 0 

at the point ixh ^i), find//(or, yi) =2xh and fy'ixh yi) =2yi. 

Hence 
Xi 

m=- 
y i 

The equation of the tangent is 

y Vi ~ (•£ 

which reduces to 
yiy+xix=yi*+xi2 

or 
xix+yiy = r2 

Note the resemblance between this equation and that 

of the given circle and formulate a rule for remembering 

the equation of the tangent. 

229. Normal to a curve. The normal to a curve is 

the line perpendicular to the tangent to the curve at the 

point of contact. 

230. Slope of the normal. The slope of the normal 

is the negative reciprocal of the slope of the tangent, § 57. 

Show that the slope of the normal to the circle 

x2-\-y2=r2 is 
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EXERCISES 

1. Find the equation of the normal to the circle at the point 

On 3/i) * 

Find the equation of the tangent and normal to each of the - 
following curves at the point (xh yx): 

2. y=x2 4. xy = A 

3* V1 ~xZ 6. x2+y2 = 25 

6. Show that the equation of the tangent to the circle 

Ax2+Aiy2+2Gx+2Fy+C=0 

at the point (xlf yx) is 

AXiX+Ayiy + G (.X+Xx) +F(y+yx) + C = 0 

7. Find the equation of a circle the center of which is (3; 4) 
and which is tangent to the line ix — 3?/+22=0. 

8. Find the equations of the tangent and normal to the 
circle x2+y2-Ax-5y-12 = 0 at the point (6, 0). 

9. Find the equations of the tangent and normal to the 
circle x2-\-y2-3x-ll?/-40 = 0 at the point (2, -3). 

10. Find the equation of the circle tangent to the z-axis and 
passing through the points (4, 9) and (-3, 2). 

11. Find the equations of the tangents to the circle 

x2+iy2 = 25 at the ends of the diameter passing through the 
point (3, —4). 

12. At the points of intersection of the circle x2+y2 = 25 and 

the straight line x-\r2y=10 tangents are drawn to the circle. 

Find the point of intersection of the tangents and the angle 
between them. 

13. Determine the relation between a, b, and c such that 

the line ax-\-by-\-c = 0 is tangent to the circle x2-\-y2 = r2. 

14. Find the point of contact and the equation of the tangent 

to the circle {x-2)2-\-(y—3)2 = r2, having the slope ———~. 
Vi 3 

.15. Find the angle between the lines 3x—2y=6 and *2+2,2=36. 
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231. Subtangent. Subnormal. The projection QN 
of the normal PN, Fig. 75, on the z-axis is called the 

subnormal. The projection 

TQ of the tangent TP is 

called the subtangent. 

Since tan a=m — 

it follows that the 

TQ ’ 

yi sub tangent TQ = 

Since tan ai — n — 

But n= 

m 

yi 
QN 

JL 

m 

, it follows that QN =—1. 
’ n 

the subnormal QN= —myx. 

EXERCISES 

1. Find the length of the tangent PT, Fig. 75, in terms of 

the ordinate of P and the slope of PT. 
2. Find the length of the normal PN, Fig. 75, in terms of the 

ordinate of P, and the slope of the tangent at P. 

3. Find the lengths of the subtangent, subnormal, tangent, 

and normal to the circle x2-\-y2 = r2 at the point (xi, f/i). 

232. The length of a tangent to a circle from a given 
point. Denoting TP, Fig. Y 
76, by t, the radius TC 
by r, and CP by d, show 

that 

t2=d2—r2 

But by § 47 

Hence 

C(h,k) f~d Tixi'Vi) 

Fig. 76 

d2 = (xi — h)2 + (yi — k)2 

^2 = (Xl_^)2+(y1_/e)2_r2 (1) 
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Equation (1), p. 206, shows that the square of the 

length of the tangent from a given point (xh yf) to the circle 

{x-h)2-\-(y — k)2 = r2 is found hy substituting the co-ordinates 

of the point in the equation of the circle. 

EXERCISES 

1. Show that the length of the tangent drawn from a point 

(x\, yi) to the circle x2+y2+2Gx+2Fy+C = 0 is given by the 
formula 

t2 = x,2+yi2+2 GXl+2 Fyi+C 

2. Find the length of the tangent 

• to the circle 

x2+if-4x-6y+l0 = 0 

from the point (4, 5). 

3. Determine a point such that the 

length of the tangent drawn from that 

point to the circles x2-\-y2— 8x+12 = 0 

and x2-\-y2—1 = 0 is equal to 6. 

233. Systems of circles. Radical axis. Let the equa¬ 

tions of two given circles, Fig. 77, be 

x2+y2+2G1x+2F1y+C1=0 (1) 

and x2-\-y2-\-2G2X-\-2F2y 0% = 0 (2) 

Then the equation 

(x2+y2-\-2G1x+2F1y-\-C1)+k(x2+y2+2G2x+2F2y+C^ =0 (3) 

represents a system of circles passing through the points 

common to the given circles. 

For we may show that equation (3) in general repre¬ 

sents a circle, and that the co-ordinates of a point satisfy 

equation (3) if they satisfy (1) and (2). 
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When k = — 1 equation (3) reduces to 

2(Gi — G2)x-\-2t{Fi —F 2 )y -\-C\ — C2 = 0 

which is the equation of a straight line passing through 

the points of intersection of the given circles. This 

straight line is called the radical axis of the two given 

circles. 
The radical axis of two intersecting circles contains the 

common chord. 
% 

EXERCISES 

1. Show that the tangents drawn to two circles from any 

point on the radical axis are equal. 

Denote the equations of the circles by 

x2+y2+2Gx+2Fy+C = 0 

and x2+y2+2 G'x +2 F'y+C' = 0 

Then 

i2=xi2+y?+2Gxl+2Fy1+C 

and t'> = X!2+7/12 +2G'xi +2F'Vl+C 

P-t'2 = 2(G-Gf)xi+2(F-F')yi+C-C' * 

Since (xi, yi) is on the radical axis, 

2(G-G')xl+2{F-F')y1+C-C' = 0 

t2-t'2 = 0 

and t = t' 

2. Find the equation of the radical axis of the following 

circles: 
x2-\-y2—4x — 6y — 1 = 0 

£2+2/2+6x+4y+7 = 0 

3. Show that the radical axis of two circles is perpendicular 

to the line joining their centers. 

4. If the radical axes of three circles, taken in pairs, are not 

parallel, prove that they are concurrent. 
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5. Find the point of intersection of the radical axes {radical 

center) of the three following circles: 

x2-f- if — ftx — 4y+12 = 0 

x2-\-y2—20x+91 = 0 

x2 ~f~ y2 — 64 

6. Find the circle passing through the intersections of the 

following circles: 

x2-\-y2Jr2x— 14t/+25 = 0 

x2-\-y2 = 25 

and through the point (6, 8). 

7. Find the equation of the radical axis of the following 

circles: 
x2Jry2-\- 6x —16 = 0 

x2+y2- 10x+21 = 0 

Graph the circles and the radical axis. 

234. The polar equation of the circle. The polar 

equation of a circle, Fig. 78, may be obtained from the 

equation 

{x — h)2Jr{y—k)2 = r2 

by making the following substi¬ 

tutions: 

r x=p cos 6 

y=P sin 6 
< 

h=b cos a 

k=b sin a 

It may also be obtained directly from the law of cosines 

This gives 

p2+62 —20P • OC cos {Q-a)=r2 

p2 —2pb cos (0 —a)+h2—r2 = 0 (1) 
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Equation (1), p. 209, represents a circle because it 

states the relation between p and 9 for any point on 

the circle. 

When the pole is at the center, 6=0 and equation 

(1) reduces to 
p =r 

When the pole is on the circle, b=r and equation 

(1) reduces to 
p =2r cos (0— a) 

This may be written 

p = 2r cos 6 cos a+2r sin 9 sin a 

which reduces to 
p =p cos 0+# sin 0 

where p and q are the intercepts on the polar axis and on 

the 90° — axis respectively. 

When the pole is on the circle and the polar axis tangent 

to the circle, equation (1) reduces to 

p = 2r sin 0 

235. Parametric equations. If the co-ordinates (x, y) 

of a point on a curve can be expressed as functions of a 

third variable t, the equations 

x=J(t) and y=g(t) (1) 

are parametric equations, and t is a parameter. The 

equation of the curve in Cartesian co-ordinates may 

then be obtained by eliminating t from equation (1). 

For example, let 

x = a cos t, y = a sin t (2) 

To eliminate t, square both equations and add. This 

^ V x2-\-y2 = a2 cos2 t-\-a2 sin2 t = a2 

or x2-\-y2 = a2 

the equation of a circle. 
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Hence the parametric equations of a circle are 

x =a cos t, y=a sin t 

The parameter t represents the vectorial angle. 

To graph these equations, find corresponding values of 

x and y for assumed values of t and plot the points (x, y). 

EXERCISES 

1. Let a — 5 and tabulate corresponding values of t, x, and 

y which satisfy equations (2), § 234. Draw the graph. 

2. Show that the equation x = t2 and y — 2t are parametric 

equations of the parabola. 

3. Graph the circle 
x = 4 sin t 
y = 4 cos t 

Summary 

236. This chapter has taught the meaning of the 

following terms: 

general quadratic function subtangent 
in two variables 

normal, subnormal 
radical axis 
systems of circles 

237. The following standard equations of a circle 

have been developed in this chapter: 

1. {x—h)2Jr{y—k)2 = r2, where Qi, k) are the co¬ 

ordinates of the center and r is the radius. 

2. x2-\-y‘2 = r2, where r is the radius and the center is 

at the origin. 

3. Ax2-\-Ay2-\-2GxJr2Fy-\-C = 0 if G2+F2> CA, and 
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4. p2—26p cos (0 — a)+62 —r2 = 0, where (6, a) are 

the polar co-ordinates of the center. 

5. Ix ~ a c°s * where a is the radius and the parameter 
\y =a sin t 

y 
t represents the vectorial angle. 

238. The following are special cases of the general 

equation of a circle: 

1. When G2-\-F2=C • A, r=0, and the circle is a 

point circle: 

{X, = -£) 
2. When G2+F2<C • A the circle is an imaginary 

circle. 

239. The following are special cases of the polar 

equation of a circle: 

1. p =r when the pole is at the center. 

2. p=2rcos(0—a) when the pole is on the circle, 

which may be written in the form 

p =a cos 0+6 sin 0 

where a and b are the intercepts on the polar axis and on 

the 90° — axis respectively. 

3. p=2r sin0 when the pole is on the circle and the 

polar axis tangent to the circle. 

240. The equation of a circle may be derived from 

three given conditions, e.g., from three given points. 

241. The following formulas have been proved: 

1. The slope of the tangent to f(x, y)= 0 at the point 

(xi, Vi) ■ 
y 1) 

fy'ix-u 2/1) 
m = 
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2. The equation of the tangent to the circle x2-\-y2 =r2: 

Xi x+y1y = r2 

3. The equation of the tangent to the circle 

Ax2 +Ay2+2gx-\-2Fy (7 = 0: 

Ax\X -\-Aij\y+G(x +Xi) -\-F{y +yi) +C = 0 

4. The subtangent and subnormal at the point (aq, yi): 

subtangent = yi 
m 

subnormal = —myi 

where m is the slope of the tangent. 

5. The length of a tangent from the point (xh yi) to 
the circle: 

P = (xi -h)2-\-(yi —k)2—r2 

6. A system of circles passing through the points 
common to two given circles: 

(x2+y2+2G1x+2F1y+C1)+/z(x2+^+2G2x+2E2y+C2)=0 

7. The equation of the radical axis of two given circles: 

2 (Gx - G2)x +2 (/q - F2)y + (Cx - C2) = 0 



CHAPTER XIV 

ELLIPSE. HYPERBOLA. PARABOLA 

The Ellipse 

242. Ellipse. Foci. The locus of a point the sum of 

whose distances from two fixed points is constant is called 

an ellipse. 1 iL_P(*,J/) 

The fixed points are 

the foci of the'ellipse. / / 

Let F and F\ be the f / 

foci, Fig. 79, and let P be F,('c,o) ° 
F{c,o) JA X 

any point on the locus. 

Then FP and F\P 

are the focal radii of the 
% 

ellipse. Fig- 79 

243. Equation of the ellipse. Denote the constant sum 

FP+ PFX by 2a. Let 0 be the mid-point of FFh and let 

OF = OFi = c. Take the origin at 0 and OF as the x-axis. 

Then the co-ordinates of the foci are (c, 0) and ( — c, 0). 
Show that the equation FiP-\- PF = 2a, written in 

terms of the co-ordinates x and y is 

V (x+c)2+y2+V (x-c)2-Jry2=2a 

Squaring both members, we have 

x2+y2+c2+V (x2+y2+c2+ 2cx) (x2+ y2+ c2- 2 cx) =2a2 

. \ (x2+y2+c2)2- 4c2x2 =[2a2-(x2+y2+c2)]2 

—4c2x2 = 4a4—4a2 (x2+y2+c2) 

(a2 — c2)x2 -\-a2y2 = a2 (a2 — c2) 

, v2 =-> 
a2'a2—c2 

214 
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Substituting b2 for a2 — c2 this equation reduces to 

xz 
— 4-— = 1 
a- b2 

This is a standard form of the equation of the ellipse. 

244. Discussion of the equation 

b2 

When we substitute for x the value 0, the correspond¬ 
ing values of y are +6 and —b. 

When y = 0, we find x to be +a and —a. 

Hence the intercepts on the r-axis and y-axis are a 

and b respectively. 

Hence OA =OAi = a, OB =OBi = b. 

Since FiB = BF, and since FiB-\-BF = 2a, it follows 

that FiB = BF — a. 

This may be used to derive the relation 

a2 = b2+c2 

AiA and BiB are called the major and minor axis, 

respectively. 

If a is less than b the foci of the ellipse lie on the 

y- axis. 

The more nearly a and b are equal, the smaller is the 

value of c and the nearer are the foci to the origin. When 

a = b the value of c is zero, and the equation of the ellipse 

reduces to that of a circle x2-\-y2 = a2. 

Hence the circle may be considered as a special case 

of an ellipse, the two foci coinciding at the center. 

Extent of the ellipse.—Solving the equation 

b2x2-\-a2y2 =a2b2 

for x and for y, we have 

a. 
x = =*= tVb2 — y2 and y = =±-V a2 

b u u a 
■xl a) 
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Hence for real values of x the value of y must be numeri¬ 

cally less than b (written briefly \y\<b); and for real 

values of y, x must be numerically less than a(\x\ <a). 

This shows that the ellipse lies wholly within the 

rectangle MNRS, Fig. 80, whose center is the origin and 

whose sides are parallel to the axes and equal to 2a and 

2b respectively. 
Symmetry of the el¬ 

lipse.—Equations (1) 

show that the ellipse is 

symmetrical with respect 

to the axes, as for every 

value of x for which y is 

real there are two values 

of y equal numerically Fig 80 

and opposite in sign. 
Similarly, for every value of y for which x is real there are 

two values of x equal numerically and opposite in sign. 

245. Focal radii. Denoting the lengths of the focal 

radii FiP and FP, Fig. 81, by n and r, we have 

r — V (x — c)2-\~y2 

= yj(x-c)2-t 
b2(a2—x2) 

a1 

j (x2 — 2 cx+c2)a2+a2b2 — b2x2 

a1 

Substitute b2-\-c2 for a2. 

\ 
a4 — 2ca2^+c2x2 

a2 

a2 — ex' 

a 

r= a -x 
a Fig. 81 
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Similarly, 

r1 = (a+L) 

It is easily seen that these results satisfy the condition 

r+ri = 2a 

246. Mechanical construction of an ellipse. The rela¬ 

tion between the focal radii shown in § 245 suggests that 

the arc of an ellipse may be traced mechanically as follows: 

The ends of a string are 

fastened to two points, Fi and 

F, Fig. 82. 

The. string is kept taut by 

means of a moving pencil 

point P. This point then de¬ 

scribes the arc of an ellipse. Fig. 82 

247. Eccentricity. The ratio of 2c, the distance 

between the two foci, to the major axis 2a, is the eccen¬ 

tricity e of the ellipse. 

Thus z- 
c l a2 — b2 

e=- =- 
a a 

Since a>c, it follows that the eccentricity of the ellipse is 

less than unity. 

EXERCISES 

1. Show as in § 243 that the equation of an ellipse, with the 
y2 /^2 

center at the origin, whose foci are on the y-axis is 

or a2x2-\-b2y2 = a2b2. 

2. Find the semi-major axis, the semi-minor axis, and the 
eccentricity of each of the following ellipses. Sketch the 
ellipse in each case. 

9 2 

2q+! = 1; xs+2j/s = 4; 3x'i+2yi = 6; 15x*+14j/J = 960 
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3. Find the co-ordinates of the points of intersection of 

x2+3y2 = 3 and x—y— 1; also find the co-ordinates of the foci 

of the ellipse. 

4. Find the equation of the ellipse the major axis of which 

is 6 and the foci of which are (±2, 0). 

5. Find the equation of the ellipse the major axis of which 

is 10 and which passes through the point (3, 1). 

6. Find the equation of the ellipse whose vertices are 

(9, 0), (-9, 0), (0, 6), and (0, -6). 

7. The sum of the focal radii of an ellipse is 10 and the 

distance between the foci is 8, the origin being at the center. 

Find the equation. 

8. Find the points of intersection of the straight line 

x-\-3y = 3 with the ellipse 9x2+16?/2= 144. 

9. Find the locus of the mid-points of the ordinates of the 

ellipse whose equation is b2x2-\-a2y2—a2b2 — 0. 

10. Find the locus of a point P on a straight line AB which 

moves so that its extremities are always on two lines perpen¬ 

dicular to each other. 

Let AP = m, PB — n. 

—-V a2—x2 
a 

Show that 

2y 
2b- 

248. Latus rectum. The latus rectum of an ellipse 

is the chord through a focus perpendicular to the major 

axis, as MN, Fig. 83. 

To find the length of the 

latus rectum, let x==±=c in 

the equation 
b 

V 

a 
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EXERCISES 

1. Find the length of the latus rectum of each of the following 
ellipses: 2x2+3?/2 = 6; 25x2+9?/2 = 225 

2. Show that the semi-latus rectum is the third proportional 
to the semi-major and semi-minor axes. 

Y 

249. Polar equation of 

the ellipse. Let Fh Fig. 

84, be the pole and FiX 

the polar axis. Then 

FXP = a-\-ex, §§ 245, 247. 

Since OD=x = FiD — FiO 

=P cos 6 — c, it follows that ^ 
Fig. 84 

FxP =p=a+ep cos d—ec 

.*. (1 —e cos 9)p = a—ec 

a—ec 
. . p =- 

l—e cos 6 

Since e = - 
a 

a2 — c2 b2 

__a__ a 

l—e cos 6 l—e cos 6 

Let ~ =p 
a 

Then the polar equation of the ellipse takes the form 

P = i---n where e < 1 
1— e cos 0 

Compare this equation with the polar equation of the 
parabola, § 97. 

250. Discussion of the polar equation. The values 

of p corresponding to 0 = 0° and 180° give the intercepts 

on the polar axis. The intercepts on the 90°-axis are 
found by letting 0 = 90° and 270°, 
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Hence the intercepts are as follows: 

9 0° 90° 180° 270° 

P a+c 
b2 

a 
a—c 

b2 

a 

Extent of the curve.-—When 0 = 0, 1—e cos 0 is least, 

and the largest value of p is obtained. When 0 = 180°, 

1—e cos 0 is largest, and p has the smallest numerical 

value. For all values of 0 the value of p is finite, since 

1—e cos 0 cannot equal zero. 
Symmetry.—Since cos 0 = cos (-0), the values of p for 

0 and (-0) are the same. Hence the curve is symmetric 

with respect to the polar axis. 

EXERCISES 
g 

1. Discuss the equation p = 5_2 cos q • What curve is 

represented by this equation ? 
g 

2. Reduce the equation p = . _2 CQg~^ to the standard polar 

form. 

3. Find a polar equation of the ellipse by changing the 

equation b2x2+a2y2 = a1b2 to polar co-ordinates, using the center 

as pole. 

Let x = p cos d, y = p sin d. 

Substitute these values for x and y in the given equation and 

simplify. 

251. Parametric equations. The equations 

x = a cos t, y = b sin t 

are parametric equations of the ellipse. For the equation 

b2x2+a2y2 = a2b2 is satisfied by the corresponding values of 

x and y for all values of t. 
To find a geometric meaning of t, construct a circle 

having the major axis as diameter, Fig. 85. 
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Extend the ordinate MP of the point P(x, y) until 

it meets this circle at Px(x, yi), and denote the vectorial 
angle of Pi by t. 

Then x = a cos t, 

yi=a sin t. 

Since yi = l a2 —x2, and 

y=-V/a2 —x2, it follows 
a 

that 
b . a 

y=-y i and yi=^y 

Hence ^y = a sin t, by 

substitution, and y = b sin t. Fig. 85 

The angle t is the eccentric angle of the point P(x, y) 
of the ellipse. 

252. Geometrical construction of an ellipse. The 

parametric equations of the 

ellipse suggest the following 

construction of the curve. 

Let a and b be the semi¬ 

major and semi-minor axes. 

Draw the concentric 

circles, Fig. 86, whose radii 

are a and b respectively. 

Draw OPi meeting the 

smaller circle at P2- 

Draw MiPiA-OX and 

P2P||OX. 

The point P thus determined is a point of the required 

ellipse. 

For let t=/.PiOMi. Then OMi = acost, and 

MiP = M2P2 — b sin t. The concentric circles are the 

auxiliary circles of the ellipse. • 
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EXERCISES 

1. Construct the curve represented by the following para¬ 

metric equations: 
eft 

x = t, y — ^2_|_£2 > a ~ ^ 

This curve is known as the witch. 

2. Construct the following loci: 

x = l+t, y = ^t3) x = 3t, y = t2(St — 1) 

Let 

253. Equation of the tangent and normal to an ellipse. 

f(x, y) = b2x2-\-a2y2—a2b2 

Then the slope of the tangent at the point (xh yf) is 

fx'(xhyi)_ 2h2xi_ b2x i 
}y'{xi, yf) 2ahji a2yx 

, §226 

or 

m = 
b2 xi 
a2yi 

The slope of the normal is given by 

a2yi 
n = 

b2x i 

Hence the equation of the tangent is 

. . b2x i(x—xf) 
y-yi=m{x-x1) =-^— 

Show that this reduces to 

a2 "1~ b2 

State how this equation may be obtained directly by 

inspection from the equation of the ellipse. 
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Show that the equation of the normal is 

y-y i 
a2yi 
b2x i 

(X-Xi) 

EXERCISES 

1. Find the slope of the tangent and normal to the following 
curves: 

9x2+l6y2 = 73, at the point (1, 2) 

5x2+18?/2= 182, at the point (2, —3) 

2. Write the equations of the tangent and normal to each of 
the following curves: 

4:X2-\-25y2= 100, at the point (4, J-) 

x2-\-4i/2 = 16, at the point (0, —2) 

x2 y2 
3. Find the equation of the tangent to the ellipse ^+^ = 1 

o 2 
having the slope equal to .5. 

Find the slope at the point P(xi, y{) and then determine (xi, yi) 
by solving the system of equations 

and 

mi = .5 

zi2 ,2/1* 
8 t 2 

When (xi, y{) are known the equation of the tangent is given in 
§ 253. 

x2 

4. Find the angle between £2-f4?/2 = 5 and y = -$- at one of 
o 

the points of intersection. 

5. Prove that the tangents drawn at the end-points of the 

latus rectum to a parabola are perpendicular to each other. 

6. Prove that the two tangents to the curve b2x2-\-a2y2 = a2b2, 

which are perpendicular to each other, meet in a point which 

lies on the curve x2-\-y2 = a2-\-b2. 



224 CORRELATED MATHEMATICS 

254. Length of tangent, normal, subtangent, and sub¬ 
normal. v A 

Show as in §231 
that the subtangent, 

Fig. 87, is given by 
the equation 

TQ = — = 
m 

CL\f\ 

b2x i 

Show that the 
subnormal is given by the equation 

^Ar -b2x i 
QN=my1=—-r- 

Fig. 87 

EXERCISES 

1. By means of the theorem of Pythagoras find the length 
of the tangent PT, and of the normal PN, Fig. 87. 

2. The angle be¬ 

tween the focal radii 

drawn to a point of 

an ellipse is bisected 

by the normal at that 

point. Prove. 

Proof: The equa¬ 
tion of the normal, 
Fig. 88, is 

For 

and 

Fig. 88 

y=o 

x = ON = 
b2x i 

-Xi 

(a2 — b‘2)xi 

a? ' ~ a2 

FiN = FiO+ON = ae+e2xi 

NF = OF—ON — ae — e2x\ 

FiN _ a+ex\ _ F\P 

NF a—ex i PF 

— e2x\ 
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Hence, by plane geometry, the normal NP bisects angle FXPF. 
This shows that a ray of light, or heat, from one focus of an 

elliptic surface is reflected to the other focus. 

3. By means of exercise 2 show how to construct geomet¬ 
rically the tangent to a given ellipse at any point. 

4. Find the equation of the tangent to 9z2+36?/2 = 18, 
parallel to the line x—3y+15 = 0. 

5. Find the equation of the tangent to the ellipse in exercise 4 
drawn from an exterior point (1, 2). 

Show that the point of contact is found by solving the equation 

and 

2-2/=—§253 

Xi2 Vi2 

v+v=1 

6. Find the equation of the tangent from the point (6, -1) 
to the ellipse a;2+4?/2 = 9. 

7. Find the lengths of the subtangent, subnormal, tangent, 
and normal to the equation z2+4?/2 = 8 at the point (2, 1). 

The Hyperbola 

255. Hyperbola. Foci. The hyperbola is the locus 

of a point the difference of whose distances from two fixed 

points is constant. The fixed points are the foci of the 

hyperbola. The distances from a point on the curve 
to the foci are the focal radii. 

256. Equation of the hyperbola. Denote the constant 
difference FiP — FP by 2a, Fig. 89. 

Let FiF = 2c. 

Take the mid-point 

0 of F\F as origin and 

OF as £-axis. 

Then show that the 

equation 

FlP-FP = 2a 
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may be written 

V (x+c)2Jry2 — V'(x—cY-\-y2 = e2a 

As in § 243 show that this may be reduced to 

(a2 — c2)x2-\-a2y2 =a2(a2—c2) (1) 

Since FiP — F P <FXF, it follows that 2a<2c, or 

a<c, and a2 < c2 

which is a standard form of the equation of the hyperbola. 

x2 y2 
257. Discussion of the equation —2—^ = 1. For 

y = 0 we have x = =*= a, which are the intercepts on the 

x-axis. Hence the hyperbola intersects the a>axis in 

two points Ai and A. 

The segment A\A is the transverse axis of the hyper¬ 

bola. Ai and A are the vertices of the curve. The 

segment BiOB for which OB1 = OB =b, is called the 

conjugate axis. 
For £ = 0; y is imaginary. Hence the curve does not 

intersect the y-axis. 

Extent of the hyperbola.—Solving the equation 

b2x2—a2y2 = a2b2 

y = =*=^.l/x2—a2, x = y2~fb2 

we have 
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Hence for numerical values of x<a the values of y are 

complex. If x is numerically greater than a and increases, 

y is real and increases. This shows that the curves 

consist of two infinite branches, no points of which lie in 

the strip between the lines x = -\-a and x= —a. 

Symmetry of the hyperbola.-—To every value of x>a 

correspond two values of y numerically equal and opposite 

in sign. The rr-axis therefore divides each of the branches 

of the curve into two congruent1 symmetric parts. 

The equation x = ^=^-\/y2-\-b2 shows that the curve is 

symmetrical with respect to the y-axis. 

258. Focal radii. As in § 245, we find 

F\P =ri =—\-a 
a 

and F P = r = — —a 
a 

259. Eccentricity. Since c>a, it follows that for the 

hyperbola the eccentricity 

e = C>l 
a 

260. Equilateral hyperbola. When a = b the equation 

b2x2—a2y2 = a2b2 reduces to 

x2-y2=a2 

This is called an equilateral or rectangular hyperbola. 

261. Latus rectum. The chord \ 

M N, Fig. 90, drawn through a focus \ 

and perpendicular to the transverse ) o 

axis is the latus rectum. 
Show that nb2 

MN=2— 
a Fig. 90 
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262. Asymptotes. Let y—mx be the equation of a 

straight line through the origin. By solving simul¬ 

taneously the system 
y = mx 

b2x2 — a2y2 = a2b2 

we have the co-ordinates of the points of intersection 

(x v)-( ±o&' ‘ ±amh \ 
\ V b2—a2m2 ’ 1/b2 — a2m2/ 

It follows that there is no point of intersection when 

b2 < a2m2, or b < am 

Of special interest are the lines for which 

y = *=-x 
J a Mi 

it is seen that as x increases without bound the branches 

of the hyperbola approach more and more the line 

b 
y = =*=-* 
* a 

These lines are called the asymptotes of the hyperbola. 

To construct them, draw the rectangle formed by the 

lines x=±a and y==*=b. Then draw the diagonals of 

this rectangle. 

The asymptotes are helpful in drawing the hyperbola. 
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263. The equation of the hyperbola whose foci are 
on the z/-axis. This equation may be obtained by inter¬ 

changing the variables x and y. It is therefore 

The transverse axis is 2a, the vertices are the points 

(0, ±a), and the foci are the points (0, =t=c). 

264. Conjugate hyperbolas. The hyperbolas 

x2 u2 
*2—f^iand 
a2 b2 

|/2_X 

b2 a2 

are conjugate hyperbolas, 
Fig. 92. The transverse and 

conjugate axis of either are re¬ 

spectively the conjugate and 

transverse axis of the other. 

Since the equation 

c2=a2-\-b2 

gives the same value of c for pIG 92 

both curves, the foci of both 

are at the same distance from the origin. Hence they 

lie on a circle whose radius is c, and whose center is the 

origin. They are the points 

Fi( — c, 0), F(c, 0), F/(0, -c),F'(0, c) 

The eccentricity of the conjugate hyperbola is 
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EXERCISES 

1. Discuss the equation 4x2 — 9y2 = 36 as to extent, symmetry, 
intercepts, latus rectum, and asymptotes. Make a sketch of 
the curve. 

2. Discuss as in exercise 1 the equations 9x2 — ?/2 = 16; 
x2 — y2 = 9. 

3. Find the points on the curve b2x2—a2y2 = a2b2, for which 
the abscissa is equal to the ordinate. 

/^2 ^ 12 

4. Find the points of intersection of the hyperbola -g — ^ = 1 

and the line Sy—4x = 2. 

5. Write the equation of the hyperbola conjugate to 

Qx2 — 3 y2 = 8. 

6. Find the locus of a point which moves so that the differ¬ 
ence of its distances from the points (0, ±6) is equal to 10. 

7. Find the equation of the hyperbola whose center is at 
the origin whose foci are on the z-axis, if it passes through the 
points (3V72, 5) and ( — 9, bV8). 

8. Sketch the hyperbola x2—9y2 = 9 and its conjugate. 

9. Find the foci of the curve 9x2— 16y2= 144. 

10. Find the equation of the equilateral hyperbola passing 
through the point ( — 5, 2). 

11. Find the equation of the hyperbola passing through 
(1, —3) and (2, 4). 

12. Find the lengths of the focal radii at the point for which 
y= 1 and x>0, the equation of the curve being 4x2—9y2 = 36. 

265. Polar equation 
of the hyperbola. As 

in § 250, the polar equa¬ 

tion of the hyperbola, 

Fig.-93, is found to be 

P 
p 1 — e cos 0 Fig. 93 
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where 
c — b2 

e>l, e=-yp = —, b2=c2—a2 
a a 

266. Discussion of the polar equation. Show that 
the intercepts are as follows: 

e 0 90° 180° 

p 

-i 

a+c 

— 

— b2 

a 
-(c—a) 

270° 

—b2 
a 

Extent of the curve.-—The value of p increases without 

bound as 1 — e cos 6 approaches zero, i.e., as cos 0->a . 
c 

When cos 0>^, show that 1— ecos0<O and p>0. 

The point P lies, therefore, on the branch of the curve to 
the right of 0. 

When cos 0<- , show that 1— e cos 0>O and p<0, 

and P lies on the branch to the left of 0. 

The following table gives the changes of p and 0 
for 0 = 0°... .360° 

e 0 .... a 
arcos - 

c 
.... 

p a-\-c + 00 — 

90° 

_bf 

a 

180° 270° 
a 

arcos- 
c 

.... 360° 

1 1 b2 

a 
— 00 + a-\-c 

Symmetry.-—Since cos (— 9) = cos 6, the curve is 

symmetric with respect to the polar axis. 

267. Equation of the tangent and normal. As in 

§ 253 the slope of a tangent to the hyperbola may be 
found to be 

b2Xi 
m 

a2yi 
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The slope of the normal is 

m = 
ay 

b2Xi 

The equation of the tangent is 

b2Xif \ 
y-y i=-r~{x—xi) 

a2y i 

which reduces to 
y^y=1 

a2 b2 

The equation of the normal is 

a2y x 

y~yi~~¥xiX x^ 

These equations may also be obtained by substituting 

( — b2) for b2 in the corresponding equations for the 

ellipse. 

268. Length of tangent, normal, subtangent, and 

subnormal. The lengths of the subtangent and sub¬ 

normal may be derived as in § 254. They may also be 

obtained by substituting ( — b2) for b2 in the formulas 

of § 267. 
aV 

Hence for the hyperbola the subtangent is and 
b2x.\ 0“Xi 

the subnormal is —r . 
a2 

The tangent and normal are found by means of the 

theorem of Pythagoras. 

EXERCISES 

1. Find the equation of the tangent to the hyperbola 

^—^ = 1 at the point ( — 6§, 4). 

2. Find the equations of the tangents drawn from the point 

(+1/2, 0) to the hyperbola ~K — y2= 1. 
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3. Prove that the angle between the focal radii of any point 
on the hyperbola is bisected by the tangent at the point. 

See exercise 2, § 254. 

4. Show that the parametric equations of the hyperbola 
are x = a sec 6 and y = b tan 6. 

Eliminate the parameter 6. 

5. Plot the equation 
2 

p 1 — 2 cos 

The Parabola 

269. The equation of the parabola has been discussed 

in chapter v. The following is a review and extension of 

the important formulas: 

1. Standard form of the equation of the parabola: 

2. Polar equation: 

P = 

y2=4:px 

2p 
1—cos 0 

3. Tangent to the parabola: 

yiy = 2p(x+xi) 

4. Normal to the parabola: 

y-y i 

5. Subtangent: 

6. Sub?ior?nal: 

2xi 

2 p 

7. Focal radius: 

r=xi+p 
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EXERCISES 

1. Find the co-ordinates of the focus and the length of the 

focal radius from the point (2, 4) if the equation of the parabola 

is y2 — Sx. 

2. Prove that the parametric equations of the parabola are 

3. Find the angle between the curves y2 = 8x and 

.8x2Jr .2y2= 1. 

4. Find the equation of the tangent to y2 = 4x which makes 

an angle of 45° with the z-axis. 

5. Find the equation of the chord of the parabola y2 = 4x 

which is bisected by the point (4, 2). 

6. Prove that the angle between the two tangents to a 

parabola is equal to one-half the angle between the focal radii 

drawn to the points of contact. 

7. Plot and find the co-ordinates of the points of inter¬ 

section of y2 — 4x+5 and y = 2x-\-\. 

Historical note. The ellipse, parabola, and hyperbola 

have been studied since the days of Democritus (460-370 b.c.) 

and of Archytas of Tarentum (430-365 b.c.). The former 

studied the plane sections of a cone parallel to the base, and the 

latter studied the mutual intersections of cones and cylinders. 

Probably Archytas did not recognize his intersections to be 

plane curves. 
Plato, however, urged upon scholars the importance of study¬ 

ing the geometry of solids as well as of planes, and Menaechmus 

(350 b.c.), a disciple of Plato, is credited with being the discoverer 

of these curves as sections of cones. He regarded the ellipse as a 

section of an acute-angled cone, by a plane passed perpendicular 

to an element, a parabola as a similar section of a right-angled 

cone, and a hyperbola as such a section of an obtuse-angled 
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cone. Each type was a section of a special form of cone. 

Menaechmus solved the then celebrated problem of the duplica¬ 

tion of the cube in two ways, one with the aid of a parabola 

and hyperbola, and the other with two intersecting parabolas. 

His work on these curves became so famous that for many 

years after his time the curves were called the “Menaechmian 

triads.” Menaechmus’ solutions of the cube-duplication prob¬ 

lem stimulated other mathematicians to devise other curves to 

solve one or another of the three classical problems of antiquity. 

Thus we have the quadratrix of Hippias, the spirals of Archi¬ 

medes, the conchoid of Nicomedes (ca. 180 b.c.), and the cissoid 
of Diodes (ca. 180 b.c.). 

Aristaeus about 320 b.c. wrote a great work in five books 

on the ellipse, parabola, and hyperbola, calling them space loci. 
Euclid about 300 b.c. wrote on the theory of these curves. 

Euclid’s work is lost, but we are told that Apollonius (between 

250 and 200 b.c.), whose monumental work on conic sections 

constitutes the crown of ancient mathematics, was greatly 

dependent on Euclid’s work, and in an extant manuscript by 

Euclid there is a passage in which he says that the section 

of a right circular cone made by a plane not parallel to the 

base is a “long shield” (i.e., an ellipse). He thus recog¬ 

nized that an ellipse could be cut from a cone by a plane in 

another position than perpendicular to an element. 

Archimedes (287-212 b.c.) wrote on the conics, his chief 

contributions being the determination of the areas of the 

parabola and the ellipse. 

Apollonius (260-200 b.c.) wrote a great work in eight books 

on the theory of the conic sections, collecting and systematizing 

all existing knowledge of the curves and immensely extending 

it. His work introduced the modern nomenclature and the 

geometrical method of treatment and soon drove out of circula¬ 

tion all other works on the subject, Euclid’s included. Apol¬ 

lonius treated the curves as plane loci, not necessarily to be 

regarded as sections of cones. It was nearly a thousand years 

after Apollonius before any further advance was made in the 

theory of the conics. 
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It may be said that while the methods of Apollonius were 

geometrical they nevertheless were equivalent to the use of 

co-ordinates. The method of treatment given in this text is 

called analytical, and it employs co-ordinates, but it also 

employs algebraic equations as a means of revealing the geomet¬ 

rical properties of the conic sections. Thus employment of 

algebraic equations to develop the properties of the conics was 

developed comparatively recently. Heron, in the first century 

before Christ, carried Apollonius’ methods into surveying, and 

the Arabs in the eighth and ninth centuries after Christ applied 

Appolonius’ methods even to the solution of cubic equations. 

A drawing, with accompanying explanatory text, made by an 

unknown European author of the tenth or eleventh century 

after Christ applies co-ordinates to some astronomical problems, 

and Bishop Nicholas Oresmus (1323-82) taught the astronomical 

uses of abscissas and ordinates in the College of Navarre in 

Paris, France, but he had no thought of the use of the algebraic 

equation as applied to co-ordinates. He located a series of 

separate points but could not handle a continuous succession 
of points. 

The second essential of the analytical method is the applica¬ 

tion of algebraic equations to the study of geometry. 

Algebra arose out of the pure calculatory processes of arith¬ 

metic. These processes were first stated as mere abbreviated 

rules of reckoning, and later these rules were more compactly 

written as formulas. The Arabs made some progress in show¬ 

ing the correctness of algebraic rules by the aid of geometrical 

reasoning. Leonardo of Pisa in 1202 introduced Arabian 

methods into Europe and urged the importance of proving 

algebraic formulas by geometry. Subsequently most significant 

mathematicians both advocated and used geometry to prove 

algebraic things. Pacioli (1494), Tartaglia (1500-57), Cardan 

(1501-76), Benedetti (1530-90), Vieta (1540-1603), all followed 

this practice, and in 1630 Ghetaldi published a book on algebraic 

geometry, in which, with Vieta’s aid, he systematized both how 

geometry might be used to rationalize algebra and, by the 

introduction of an unknown, how algebraic equations might be 
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employed to derive geometrical properties. Vieta, Pascal, 

Cavalieri, Fermat, and many others employed algebraic equa¬ 

tions in geometrical study. This method indeed characterized 

the spirit of the mathematical age just before Descartes. But 

Descartes in 1637 sketched a method by which algebraic equa¬ 

tions, in conjunction with co-ordinates, could be applied as a 

most powerful means of discovering properties of geometrical 

figures. Descartes’ method, as perfected by his immediate 

successois, is the analytical method, which is the method used 

in this text. The particular application of the analytical 

method of the study of the conic sections that is used here 

embodies, of course, many improvements and simplifications 
that have been introduced in very recent times. (Mainly from 
Tropfke, Band II, Th. 12 u. 13.) • 

Summary 

270. The chapter has taught the meaning of the 
following terms: 

focal radii 

latus* rectum 

focus 

eccentricity 

parametric equations 

eccentric angle 

auxiliary circles 

subtangent 

subnormal 

hyperbola 

major and minor axis 

transverse axis 

conjugate axis 

equilateral hyperbola 
asymptotes 

conjugate hyperbolas 

271. The table on pp. 238 and 239 contains a list of 

equations and formulas developed in this chapter. 
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CHAPTER XV 

CONIC SECTIONS. TRANSFORMATION OF 

CO-ORDINATES 

Plane Sections of a Right Circular Cone 

272. Conic sections. The circle, parabola, ellipse, 

and hyperbola may be obtained as curves in which a 

right circular cone is cut by a plane. For this reason they 

are called conic sections, or conics.* 

273. The parabola. 

We shall first consider 

the case when the cut¬ 

ting plane is parallel to 

an element of the cone. 

Let AVB, Fig. 94, 

be a right circular cone, 

and let CDP be a sec¬ 

tion made by a plane 

parallel to FA. 

Let the plane AVB 
Fig. 94 

represent a section of the cone passing through the vertex 

and perpendicular to the plane CDP. 

Inscribe a sphere in the cone tangent to the plane 

CDP at F. Let the sphere touch the cone in the circle 

* The conic sections were first studied by Menaechmus (375- 
325 b.c.), and they were long known as “Menaechmian triads.” 

Most Greek mathematicians after Menaechmus discussed them. 

Euclid (about 300-275 b.c.) wrote a book on conic sections. Apol¬ 
lonius (about 260-200 b.c.) completed their study. Apollonius 
introduced the word parabola, together with ellipse and hyperbola 

into science (Ball, pp. 47, 60, 79). 

240 
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GHEI. Plane GHE is perpendicular to the axis of the 

cone and therefore to plane AVB. Since plane CDP is 

also perpendicular to AVB, the line of intersection KL 
must be perpendicular to plane AVB. 

Let P be any point on the section CDP. 
Draw VP meeting GHE at M, PN\\FD. 
Then PF = PM =AG=A'G'=PN. 
Hence any point P on the section CDP is equidistant 

PF 
from F and KL, or = 1 (1) 

Let D be the origin and A'G' the x-axis. 

Then the co-ordinates of P are 

x = DA', y—A'P 

Show that y2 = (A'P)2 = (AA') • (A'B) 

. y2 f a \ r\ A'B GG' • GE 
* ' x 1 J DA' VG 

Since for any point P on the given section CDP the 

lines GG', GE, and VG remain constant, we have 

y2 
— = constant 
x 

Denoting this constant by 4p, we obtain the equation 

• * y2=±px 

which is the equation of a parabola. 

274. Definition of a conic section. Equation (1), 
§ 273, illustrates a fundamental property common to all 

conic sections, which may be defined as follows: 

A conic is the locus of a point which moves in a plane 
so that the distance from a fixed point in the plane is in 
constant ratio to the distance from a fixed line in that same 

plane. 
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The fixed point is called the focus, the fixed line the 

directrix, and the constant ratio the eccentricity. 

When the eccentricity e = l the equation of the conic 

reduces to the equation of the parabola. When e < 1 the 

conic is an ellipse, and when e> 1 the conic is a hyperbola. 

275. The ellipse. Let the plane CPD, Fig. 95, cut 

all elements of the cone. Inscribe a sphere touching 

the cone in the circle 

GME and touching 

plane CDP in F. 

Inscribe a second 

sphere touching the 

cone in circle GiMiEi 

and plane CDP in F\. 

Draw PF and P F\. 

Show that 

PF=PM 

and that 

PFi—PMi 

PF+PFi=MM i 

Since MMi is constant for every point P in the 

section CDP, it follows that the locus of P is an ellipse. 

The points F\ and F are the foci of the ellipse. The 

lines of intersection of planes GME and CDP and of 

CDP and GiM1E1 are parallel and equidistant from the 

foci. They are the two directrices of the ellipse. 

276. The circle. When plane CDP, Fig. 95, is 

parallel to the base of the cone, the section is a circle. 

The circle may then be regarded as a particular case 

of an ellipse. 
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277. The hyperbola. If the plane CDP, Fig. 96, cuts 

both sheets of the cone, the section is a hyperbola. 

For 

PFi=PMi 

and 

PF=PM 

PF1-PF = MM1 

which is constant for any 

point P. 

F and Fi are the foci 

of the hyperbola. The 

directrices are the lines of 

intersection of plane CDP 

with planes GME and 

GiMiEi. 

278. Limiting cases. 

The parabola may be re¬ 

garded as the limiting case 

of both the ellipse and the 

hyperbola. For if the cut¬ 

ting plane CDP, Fig. 95, 

is made to turn about D, 

the point C moves away 

to an infinite distance when the plane becomes parallel to 

the element VA. 
Similarly the branch C\DiPi, Fig. 96, moves off to an 

infinite distance as the plane CDP is made to rotate about 

D and becomes parallel to VA. 

If plane CDP becomes a tangent plane to the cone., 

the section approaches a straight line as a limit. 

If the cutting plane passes through V, the section 

will be one straight line, two intersecting straight lines, 
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or a point, according as the plane is tangent to the cone, 

intersects the cone in an element, or contains the vertex 

as the only point of the cone. 

279. Directrix. Since for any point P, Fig. 97, on the 

ellipse we have the equation 

FiP 
PNi 6 

it follows that the equation 

holds for point A\ on the 

ellipse, i.e., 
F\A\ 

AiDi 
a — c 

= e. 

or 
ODi—a 

= e 

OD\= 
ae-\-a — c a 

e e 

Hence the equation of the directrix DxNi is 

x= — 

Similarly the equation of the directrix DN is 

c—a 

a—ODi 

ODi = 
ae — c+a a 
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Hence the equations of the directrices of the hyperbola 

EXERCISES 

1. Find the foci, directrices, and latus rectum of the following 
conics and sketch each: 

1. x2+9y2 = 9 4. 9z2+25?/2 = 225 

2. x2 — 9y2 = 9 5. 4z2+9?/2 = 36 

3. 9o;2-16?/=144 6. 9x2-36?/2 = 324 

2. Write the equation of the ellipse whose center is the 

origin and whose major axis is the z-axis if the directrix is x= — 3 
and the eccentricity .6; if the equation of the directrix is x = 8 
and the distance between the foci 10. 

3. Find the lengths the semi-axes and the center of the 

hyperbola whose focus is (3, 0), whose directrix is x=l, and 
for which e = JL 

Transformation of Co-ordinates 

280. Changes of axes. It is often possible to simplify 

the equation of a locus by making a change of the position 

of the axes of co-ordinates and thus referring the equation 

to the new axes. This is known as a transformation of 
co-ordinates. 

281. Translation of axes. 

and O'Y', Fig. 99, are parallel 

respectively to the old axes 

OX and OF, the transforma¬ 

tion is called a translation of 

the axes. 

Let (h, k) be the co-ordi¬ 

nates of the new origin O' re¬ 

ferred to the old axes. 

When the new axes O'X' 

Y Y 
t 

I 
ri 
i 
i 
i 
i 
i 
i 

> 

>y' 

O' 

h 

'-; J At A 

k x' ! 

O B A 

Fig. 99 
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Let a point P have the co-ordinates (x, y) when 

referred to the old axes and (V, y') when referred to the 

new axes. Then 

OA=x, AP = y 

0'A'=x', A'P =y' 

Since OA =OB-\-BA, 

x =h+x' (1) 

Since AP=AA'+A'P, 

y=k+y' (2) 

Y Y f 

1 

i 
i 
i 
i l i 

>y’ 

O’ 
h Ic , i 

O B A 

Fig. 99 

Equations (1) and (2) are the formulas of transla¬ 

tion. Hence, if in an equation of a locus we substitute 

/i-f x' for x and k+y' for y, the new equation is the equa¬ 

tion of the locus referred to the point (h, k) as origin, 

the new axes being parallel to the old. 

Thus no point of the locus changes position, although 

the equation is changed to a different form. 

EXERCISES 

1. Prove equations (1) and (2), 

in Fig. 100. 

2. Find the co-ordinates (x', y') 
of the point (x, y) — ( — 2, 3) with 

respect to a new pair of axes inter¬ 

secting at the point (2, —1) and 

parallel to the original axes. 

. Since (h, k) = (2, —1), it follows 

that 

281, when O' is located as 

Y Y 

?P 
1 
i 
1 
1 
1 

B -h O <A X 
-k 1 

1 

O’ A1 X’ 

x=2-\-x', y — -1 Ay' 

x'=x-2, y' = y +1 

or x' — —4, y'= 4 

Fig. 100 
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Transform the following equations by translating the axes, 

in each case moving the origin to the point indicated: 

3. 2x2+3y2 — I2x+2y+10 = 0; new origin (3, —2) 

x = 2>+x', y= -2+2/' Here 

By substitution the equation is changed to 

2(3+x')2+3( —2-f?/')2 —12(3+x') +2( —2+2/') + 10 = 0 

which reduces to 2x'2+3y'2 —10?/' — 12=0 

The primes may now be dropped, since the old axes are no 
longer considered. 

4. y = 3.x-5; new origin (3, -2). Graph the given and the 

transformed equation and both pairs of axes. 

5. y2-3z+3?/+12 = 0; new origin (1, 5) • 

6. x2+y2+4.r+8; new origin (2, —3) 

7. y2—3y — 2x+4 = 0; new origin (2, —1) 

282. Equations of the conic whose principal axis is 
parallel to one of the co-ordinate axes. The standard 
equations of the conics were obtained by choosing the 
origin as center and one of the co-ordinate axes as prin¬ 
cipal axis. By translating the origin to the point (k, k), 
the standard equations are transformed to the following: 

Ellipse, axis y = k, 

Circle (x-h)2+(y-k)2=a2 

(x-h)2 (y-kY_1 

axis x = h, 

axis x = h, 

Parabola, vertex (h, k), 

axis y — k, (y— k)2 =4/>(x— h) 
axis x = h, (x-h)2=±p(y-k) 
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The equations in § 282 are all of the general form 

Ax2+By2+2Gx+2Fy + C = 0 

They may be derived from this form by completing the 

squares. 

EXERCISES 

Simplify the following equations: 

1. x2—y2—4x — 12y—20 = 0 
Completing the squares 

O2—4.r+4) —2(2/2 — 62/4-9) =6 
(x—2)2 (2/ —3)2_1 

or “6 3~_1 
a conic whose center is (2, 3). 

2. 9.r2+4|/2 —54x+40?/+145 = 0 

3. 9x2 — 16?/2+90^4-128?/—175 = 0 

283. Removal of terms of the first degree. An 

important use of transforming the co-ordinates is the 

simplification of equations. For 

the origin can often be so chosen 

as to remove from the equation 

the terms of the first degree in 

x and y. The following example 

illustrates the method. 

Simplify the equation 

x2+2/2-2x+22/+7=0 (1) 

Let x = h-\-x' and y = k-\-y', Fig. 101. 

Then equation (1) becomes 

(h+x'y+(k+y')2-2(h+x')+2(k+y,)+7 = 0 

Dropping the primes and collecting terms gives the 

equation 

x2+y2+(2h-2)x+(2k+2)y+(h2-\-k2-2h+2k+7)=0 
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Let 2h —2 = 0 and 2/c+2 = 0 

or let h = 1, h = — 1 

Then the equation reduces to 

x2-\-y2 = 9 . 

This is the equation of a circle whose radius is 3. 

Therefore the given equation represents the same 

circle referred to the original axes. 

exercises 

In the following equations remove the terms of the first 
degree by translating the axes: 

1. x2Jry2—2x-f-2?/-f 3 = 0 

2. 4.r2+9?/—16z —18?/—11 = 0 

3. 9x2-f-4?/2—36o;-fl6?/= —16 

4. x2-\-3y2-\-x — 9?/= — 4 

5. 2x2—4?/2+4x-f4?/— 1 = 0 

6. By transforming the co-ordinate axes, simplify the 
equation 

x2+4?/2 — 16x-j-24?/+84 = 0 

Sketch the curve, also the old and the new axes. 

284. Rotation of axes. Let the angle XOY, Fig. 102, 

be turned about the origin O to the new position X'OY', 

and denote angle XOX' by 6. 

Let (x, y) be the co-ordi¬ 

nates of a point P referred to 

the axes OX and OY, and let 

(xr, y') be the co-ordinates of 

P referred to the axes OX' 

and OY'. 

Draw Q'RJlQP. 
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Then 
x = OQ=OS — QS = x' cos 0—y' sin 0 

and 
y = QP=SQ'-\-RP=x' sin 6-\-y' cos d 

■ 

Hence, when the axes are rotated through a given 

angle without moving the origin .the relations between 

the old co-ordinates and the new co-ordinates of a point 

are 
j x=x' cos 8 —y' sin 0 
| y=x' sin 0+y' cos 0 

They are called the formulas of rotation. 
By means of these formulas the equation of a locus 

may be transformed into a new equation referred to new 

axes having the same origin but making a given angle 

with the original axes. This transformation is called 

rotation of the axes. 
The angle 6 may be so chosen that the new equation 

shall have no term in xy. This will be used to simplify 

a given equation; see § 290. 

EXERCISES 

Transform each of the following equations by rotating the 
axes through the angle indicated: 

1. xy — 8; 0 = 45° 

Let x =x' cos d — y' sin 9 

and y = xf sin 0-\-y' cos 6 

x'V 2 y'V 2 

2 2 

x'V2 . y'V2 

2 ' 2 

Substituting in the given equation and reducing, we have 

x'2 — y'2 
= 8 

or x2—y2 = lQ 

which is the equation of an equilateral hyperbola. 
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2. x2-\-12xy-\-9?/2 = 16; 0 = ^ 

3. 29x2—24a;?/-f-36?/2—180 = 0; 0 = arc tan \ 

4. x2Jry2 = a;2; 0 = ^j 

Show that this equation is unaltered by rotating the axes 
through any angle. 

5. 16?/2—24xy-\-9a;2 — 20a:+1107/ = 75; 0 = arc silly 

Summary 

285. If a right circular cone is cut by a plane the 

section may be a circle, parabola, ellipse, hyperbola, or 

two intersecting straight lines. 

286-. The following equations and formulas have been 

developed: 

Curves Equations Directrices Equations if the Principal Axis Is Parallel to 
One of the Co-ordinate Axes 

Ellipse -+^ = 1 
a- b2 

a 
x = ±- 

e 

(.x—h)2 (y — k)2 i , . . 7 
-—~—-—[- • ■■■ =1, if the axis is y = k 

a2 b2 

(y — k)2 (x—h)2 1 , 
——r—-—f--—= 1, if the axis is x = h 

a- b“ 

Hyperbola x2 y2_± 
a2 b2 

a 
x = =*=- 

e 

(x — h)2 (y — k)2 i .. , . . , 
---r-1— y =1, if the axis is y = /c 

a- 

^ ^= 1, if the axis is x = h 
a2 h2 

Circle x2-\-y2 = a2 (x — h)2-\-(x — k)2 = a2, if the center is at 
the point (h, k) 

Parabola II 

(y — k)2 = 4p(x—h), if the axis is y = h 

(x—h)2 = 4p(y — k), if the axis is x = h 

Formulas of translation: 

Formulas of rotation: 

f x=h+x' 

\y = k+y' 
J x=x' cos 0 —y' sin 0 

\ y =x' sin 0-fy' cos 0 
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CHAPTER XVI 

THE GENERAL EQUATION OF THE SECOND 
DEGREE. DIAMETERS 

The General Equation of the Second Degree 

287. General equation of a conic. The most general 

equation of the second degree is of the form 

Ax2+2Hxy+By2+2Gx+2Fy+C=0 (1) 

where A, H, and B cannot all 

The following shows that 

the most general equation of a 

conic is of the form of equa¬ 

tion (1). 

Let P(x, y) be any point 

on the conic, Fig. 103. 

Let DG be the directrix 

given by the equation 

be zero. 

Then 
ax-\-by-\-c = 0 

PD=x cos <x+y sin co—p 

PF = e • PD 

Let (h, k) be the co-ordinates of the focus F. 

Then equation (2) may be written 

V(x—h)2-\-(y — k)2 = e(x cos co-\-y sin co—p) (3) 

By squaring both sides and collecting terms equation 
(3) reduces to 

(1—e2 cos2 (xi)x2 — 2(e2 cos a; sin co)xy-\-(l — e2 sin2cc)y2 

+2(e2p cos co — h)x+2(e2p sin2 co—k)y-\-h2-{-k2 

—e2p2 = 0 (4) 
which is of the form of equation (1). 

252 
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288. A conic passing through -five given points. 
Equations (1) and (4), § 287, involve five arbitrary 

constants. They are h, k, p, «, and e in equation (4), 

and five ratios between the coefficients A, H, B, G, F, 

and C in'equation (1). A conic section is therefore deter¬ 

mined by five independent conditions. Thus, in general, 

a conic can be passed through five points in the same plane. 

The equation of a conic to be determined by five 

points may be found by first substituting the co-ordinates 

of the given points in the general equation 

x2+axy+by2+cx+dy+e = 0 

The values of a, b, c, d, and e may then be deter¬ 

mined by solving the system of the five linear equations 

thus obtained. 

The following is a shorter method of finding the equa¬ 

tion of a conic to be determined 

by five points. 

Let P, Q, R, and S, Fig. 104, 

be four of the given points. 

Form the equations of the 

lines PQ, QR, RS, and SP. 

Suppose these equations are 

denoted by lh Z2, U, and U, re¬ 

spectively. Then hh = 0 and 

kU = 0 are two equations of the second degree in x and y, 

having the points T, Q, R, S in common. 

Hence the quadratic equation 

Z1Z3 -\-kl2l4 — 0 

represents a system of conics passing through the four 

points P, Q, R, and S. The value of k is determined by 

substituting in this equation the co-ordinates of the fifth 

given point. 
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It will be seen, .§ 295, that a parabola is determined 

by four points. 

EXERCISES 

Find the equation of the conic passing through the following 

points: 

1. (1, -2), (2, -1), (1, 2), (-3, -1), (-2, 4) 

h = — .t+?/+3 = 0 k = — 3x — y+5 =0 
l2 = 3x — 4?/+5 = 0 h= — x — Ay — 7 = 0 

lihAkUU = (— x+i/+3)(3x — 4?/+5) 
+&(—Sx — yJr5)(—x—Ay—7) =0 

Substituting (x, y) = { — 2, 4) we have 

(9)( —17)+fc(7)(—21) =0 
i* — _5 JL 
/v _ 49 

2. (1, 1), (-1, 2), (-2, -1), (0, -2), (3, -3) 

3. (0, 0), (0, -2), (2, -1), (-2,3), (4,3) 

4. (1, -3), (2,4), (-3, 1), (4, 2), (0, 0) 

5. (1,1), (-1,2), (2,3), (-3, -1), (0, -4) 

289. The general equation of the second degree is a 
conic. We have seen that the equations of the conics are 

special cases of the most general equation 

Ax2-\-2Hxy-\- By<1Jr2Gx-\~2Fy-{- C = 0 

In § § 290-93 we shall show that this equation always 

represents a conic or a limiting case of a conic. 

290. Removal of the xy-term. By means of the rota¬ 

tion formulas the general equation 

Ax2-\-2Hxy-\-By2Jr2Gx-\-c2‘FyJrC =0 (1) 

is transformed to 

A'x '2+2 H'x'y' +B'y'2+2 G'x' +2F'y'+C'=0 
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where 

A' =A cos2 9-\-2H sin 9 cos 9-\-B sin2 9 
H' = {B — A) sin 9 cos 9-\-H(cos2 9 — sin2 9) 
B' = A sin2 9 — 2H sin 6 cos 9-\-B cos2 0 
G' = G cos 9-\-F sin 6 
F' = F cos 6 — G sin 9 

Let H' = (JB—A) sin 9 cos 0+H(cos2 9—sin20)=O. 

This equation is equivalent to 

(B — A) sin 29-\-2H cos 29=0 

tan 20 =-.—=, or 0 = „arc tan _ 
A—B z A—B 

As 29 changes from 0° to 180°, or as 9 takes all possible 

values between 0° and 90°, tan 29 assumes all positive and 

negative values. Hence we can always find a value of 9, 

less than 90°, which satisfies the equation tan 29 = 
2 H 

A-B* 

The term x'y' in the transformed equation will vanish 

if the axes are rotated through the angle 9. 

Hence, in place of equation (1) we may discuss the 

simpler transformed equation 

A'x24- B'y2-f 2 G'x+2 F'y+ Cf = 0 

EXERCISES 

Simplify the following equations by removing the xy-term: 

1. 8x2+4a;?/+52/2 = 36 
O TT 

Here tan 29=—A—= 4 
A —B 6 

Hence, cos 29 — |- 

sin 9 = _c^s ^ = i/T 

cos 9 = — -j/ i and 
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The formulas of rotation are 

\y=x'V \Ary'V \ 

9x2+4?/2 = 36 

2. x1—2xyAy2—2y—1 = 0 

3. 16y2— 24xy+ 9x2— 20x+110y—7 5 = 0 

4. Transform the equation 
1 

p~ 1—2 cos 6 

into Cartesian co-ordinates, find the center of the curve, and 
its intercepts on the axes. Sketch the curve. 

5. Transform the co-ordinates so that the xy-term disappears 
from the equation 

x2+xy+y2 = £ 

Sketch the curve on the new axes and find the co-ordinates of 

the foci. 

291. Discussion of the equation 

Ax2A By2 -\-2Gx+2Fy -f C = 0 

By completing the squares this equation may be written 

A AB^yA 
F\2 AF2+BG2-ABC 

B/ AB 

By translating the axes and moving the origin to the 

point this equation reduces to 

Ax'2-\- By'2 = k 

If A and B have like signs, this is the equation of an 

ellipse, if k has the same sign as A and B. If the sign 

of k is opposite to that of A and B the equation is not 

satisfied by real values of x and y, and the locus is 
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imaginary. If k=0 the equation is satisfied only by the 

(G F\ 
-j, -g). This point 

may be considered a limiting case of the ellipse. 

If A and B have opposite signs, the equation 

Ax'2By'2 = k 

is a hyperbola when 0. 
If k = 0, the equation represents two straight 

lines passing through the points (x'} y') = (0, 0), or 

(C F\ 
—— , ——). Th9y may be considered a limiting 

case of the hyperbola. 
If either A or B is zero, let us suppose A =0, 0. 

Then the original equation is of the form 

By2+2Gx+2Fy+C = 0 

Completing the square we have 

B(y+^)2=-2G(x- 
C 

2 G 

F2 \ 

2GB ) 

If Gt^ 0, the origin may be moved to the point 

O, y) = 
C F2 

2G+2GB 

F 

The equation then is transformed to 

2 G 
y 

'2 — 

B 
x 

the locus of a parabola. 
If G = 0, the equation is of the form 

By*+2Fy+C = 0 

By factoring we have 

B(y-r1)(y-r2)=0 
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n and r2 being the roots of the equation By2+2Fy + 0 = 0. 

Hence the locus either consists of two parallel or two 

coinciding lines, or is imaginary, according as n and r2 

are real or imaginary. 

292. The value of AB-H2 is not changed by a rota¬ 

tion of the axes. For 

[A cos2 9 + 2H sin 0 cos e+B sin2 0] [A sin2 0 -2H sin 0 cos 0 
+ B cos2 0] -l(B-A) sin 0 cos 9 + H (cos2 9-sin2 0)]2 

= A2 sin2 9 cos2 9 +2AH sin3 9 cos 9+AB sin4 9 
— 4:H- sin2 9 cos2 9 — 2B# sin3 0 cos 0 — 2A//sin 0 cos3 0 
+ B2sin20cos20 +2B//sin0 cos3 0 

— (B — A)2 sin2 0 cos2 0 +2(B — A)H sin3 0 cos 9-H- sin4 0 —2(B — A)H sin 0 cos3 0 

+2H2 sin2 0 cos2 9 
= (AB — II2) siw 9+2(A B — H3) sin2 0 cos20 +(A5-jff«) cos4 0 
= (A B —//2)[sin2 0-f cos2 9]2 = A B — H2 

293. Discussion of the equation 

Ax2+2Hxy+ By2+2 G*+ 2 + C = 0 

By rotating the axes through an angle 

a ± , 2H 
d = £ arc tan —A—~ 

2 A —B 
the equation is transformed to 

A'x'2+B'y,2+2 G V+2Fy+C" = 0 

and -H2=A'B'-H,2=A’B' 

Hence, according to §291, if A' and Br have like 

signs; or 
if AB—H2> 0, the original equation represents an 

ellipse, or a point, or an imaginary locus; 

if AB —H2<0, the equation represents a hyperbola, 

or two intersecting straight lines; 
if AB—H2 = 0, the equation represents a parabola, 

two parallel lines, two coinciding lines, or an imaginary 

locus. 



GENERAL EQUATION. DIAMETERS 259 

These results may be tabulated as follows: 

A'F'2+B'G'2-A'B'C'^ 0 A'F'2 +B'G'2 - A'B'C' =0 

AB -H*>0 

AB -W-<0 

AB-m =0 

The locus is an ellipse real 
or imaginary. 

The locus is a hyperbola. 

The locus is a parabola. 

The locus is a point. 

The locus consists of two in¬ 
tersecting straight lines. 

The locus consists of two 
parallel straight lines, two 
coinciding lines, or is 
imaginary. 

The expression A'F'2+B'G'2—A'B'C' may be ex¬ 

pressed in terms of the coefficients of the original equations 

by means of the values given in § 290. The same results 

may be obtained by removing the terms of the first degree 

from the original equation and then computing the 

numerator of the constant term. The result is 

or 

A = 

A = 

ABC-\-2FGH-AF2-BG2-CH2 

ARC 
H B F 

G F C 

This is called the discriminant of the equation 

Ax2+2Hxy+By2+2Gx+2Fy+ C = 0 

294. Co-ordinates of the center of a central conic. 
Let h and k be the co-ordinates of the center. The 

origin may be moved to the point (h, k) by translation of 

the axes, using the formulas 

jx = h-\-x' 

\y = k+y' 

The general equation then reduces to 

A x'2 - 2 Hx'y'+By1'2+2 {A h+Hk + G)x' 
+2 (Hh+Bk + F)y' + C' = 0 
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Hence h and k, the co-ordinates of the center, satisfy 
the equations 

(Ah+Hk+G = 0 
\Hh+Bk+F = 0 (1) 

Solving for h and k 

HF-BG HG-AF 
AB-H2’ AB-H2 

Equations (1) have one common solution if 

AB-H2^ 0 

295. Simplification of numerical equations of a conic. 
The following suggestions are useful in reducing an equa¬ 
tion to the simplest form: 

Determine AB—H2. 
I[AB-H2^0} and the conic is an ellipse or a hyper¬ 

bola, find the co-ordinates of the center, § 294. The 

origin should then be moved to the center, thus removing 
the first-degree terms. 

Remove the xy term by turning the axes through an 
angle 

a i . 2 H 
u = % arc tan —- 

If AB—H2 = 0, and if the conic is a parabola, the 

terms of the first degree cannot be removed, since the 

equations in h and k, § 294, are inconsistent. 

Hence the xy-term is removed first. The transformed 
equation is then of the form 

B'y2+2G'x+2F'y+ C'= 0 

The origin is then moved to the point 

(h, k) = 
- C' F'2 
2 G' +2 G'B' 
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reducing the equation to the form 

»"•=- 2§!x" 

EXERCISES 

Simplify the following equations and determine the locus: 

1. 32a;2+8au/+5?/+16a;-16?/-16 = 0 

2. 4a;2—Axy+y2—2y —1 = 0 

3. x2-\-2yx-\-y2—4 = 0 

4. 3a;2 —3a;?/ — y2-\-l5x-\-10y — 24 = 0 

5. 8a;2'-3?/2-f-16a:-6?/+ll = 0 

6. 4a;2+8a;2/+4?/2d-4x+3 = 0 

7. 36x2—48a;?/+16y2 — 6a:+4?/ — 6 = 0 

8. 4a;2 +12a;?/+9y2 — 30a;+80y+200 = 0 

9. Find the vertices, foci, and asymptotes of the hyperbola 

a;2-4?/2+2a;+12?/ = 9. 

10. Sketch the curve a; = 2 —3 cos t, y = 3+2 sin t, and find 

its Cartesian equation. 

Find the equation of a parabola passing through the follow¬ 

ing four points: 

11. (0, -3), (-4, -2), (2, 0), (2, 7) 

Use § 288 and the equation AB—H2= 0 

12. (6, -1), (4, -4), (9,4), (5, -2) 

13. (4, 0), (0, 4), (1, 1), (9, 1) 

Diameters 

296. Diameters. The locus of the middle points of 

a system of parallel chords of a conic is a diameter of 

the conic. 
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297. Diameter of a parabola. Let the equation of 

the parabola be y2=4px. 

Let QR be any chord, Fig. 105, Pi(xh yf) the middle 

point of QR, and P{x, y) any point 

on QR. 

Denote the angle made by QR 

and OX by 9, and the distance P\P 

by r. 

Then the equation of QR is 

x — xi=y — yi 

cos 9 sin 9 
= r 

Y 

0*/t{J 

f Fk 
O , / X 

It follows that 
Fig. 105 

x=Xi+r cos 9, y = y\-\-r sin 9 (i) 

By substituting the results in (1) in the equation 

y2=Apx we have 

r2(sin2 6)-\-2r(yi sin 6 — 2p cos 9)-\-(yi2 —4pxi) =0 

If P falls on R, or on Q, the two values of r formed by 

solving this equation are numerically equal and opposite 

in sign. 

Hence y\ sin 6 — 2p cos 9 = 0 

yi = 2p cot 9 

2 p 
or y i = m 

where m is the slope of the chord. 

As QR moves parallel to its first position, m remains 

constant, but the point Pi always satisfies the equation 

y = 
2P 
m 

This shows that the locus of Pi, the diameter of the 

parabola, is a straight line parallel to the axis. 
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Let O' be the point of intersection of the parabola 

with the diameter. 

Then the co-ordinates of 0' are 

(x', v,) = (1i, — 
\m2 m, 

Show that the equation of the tangent at O' reduces to 

i V y = mx H— 
J m 

Hence the tangent at the end-point of the diameter is 

parallel to the chords bisected by the diameter. 

298. Diameters of an ellipse and hyperbola. Sub¬ 

stituting the values in equation (1), § 297, in the equation 

L2_i_^ = 1 
a2 ' 62 

we have 

/cos2 e sin2 e\ (xi cos 6 y_i sin 6\ xj j/i2 = 

\ d2 + b2 ) +\ a2 + b2 )+a2 + b2 U 

Hence 

Xi cos 6 yi sin 6 

a1 b2 
=0 

Dropping the subscripts, the equation of the diameter 

of the ellipse is 

V =-(-•.j coteja; 

or 

y = 
b2 

a2m 

The equation shows that the diameters of an ellipse pass 

through the center. 
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Similarly the equation of the diameter of the hyperbola 

is found to be 

x2 • y2_ 

a2 b2 

b2 
y=-r-x 

a~m 

EXERCISES 

1. Find the equation of the diameter of 4n;2 — 8?/2 = 96, 
which bisects all the chords parallel to the line 6x — 8y= 10. 

2. Find the equation of the chord of 16:c2+8?/2 = 32 which 
is bisected at the point ( — 4, 1). 

3. Find the equation of the diameter of the parabola 
2y2-\-6x = 0 bisecting the chords whose slope is 2. 

299. Conjugate diameters. We have seen that the 

equation of a diameter of the ellipse 

is 

•E2,^2 _ 

a2 o2 

y = 
b2 

a2rri 

Let Wi be the slope of the diameter. 

Then 

b2 

when 

mrrii = — 
bf 
a2 

This is the relation between the slope of the diameter 

y=mix and the parallel chords of slope m bisected by the 

diameter. 
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If the diameter y=mx, Fig. 106, bisects all the chords 

parallel to the diameter y = mix the relation between their 

slopes is 
b1 2 3 4 

mm\ ——„ (1) 
a2 

If the slopes m and m\ sat 

isfy the equation 

b2 
mrrii = —^ 

a2 

they are called conju¬ 
gate diameters. 

Similarly it may 

be shown that the 

conjugate diameters 

of the hyperbola, Fig. 

107, satisfy the rela¬ 

tion 

b2 
mmi= - 

a2 

EXERCISES 

1. Show that the axes of an ellipse or hyperbola are the 

only pair of conjugate diameters perpendicular to each other. 

2. Prove, that if one of two conjugate diameters of an 

ellipse makes an acute angle with the £-axis, the other makes 

an obtuse angle with the x-axis. 

3. Prove that if one of two conjugate diameters of a hyper¬ 

bola makes an acute angle with the transverse axis, the other 

makes an acute angle with it. 

4. If the slope of a diameter of an ellipse is - show that the 

slope of the conjugate diameter is —Show that the two 

a . b 
diameters are equal, and that their equations are y= =*=-x. 

ci 
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5. Show that the equal conjugate diameters of a hyperbola 

coincide with one of the asymptotes. 

6. Show that two conjugate diameters of a circle are always 

perpendicular to each other. 

Summary 

300. The chapter has taught the meaning of the 
following terms: 

discriminant diameter of a conic 

central conic conjugate diameters 

301. The following theorems have been proved: 

1. The general equation of the second degree is a conic. 

2. A conic is determined by five 'points. 

3. The term in xy in an equation of a conic will vanish 
if the axes are rotated through an angle 

n 1 . 2H 
6 = o arc tan -- 

2 A-B 

4. The value of A B — H2 is not changed by a rotation of 
the axes. 

302. The locus of the general equation of the second 
degree may be determined as follows: 

If A'F'*+B'G'2-A'B'C' ^0 If A'F'z +B'G'2 —A'B'C' =0 

If AB-H*>0 The locus is an ellipse real 
or imaginary. 

The locus is a point. 

If AB-H2<0 The locus is a hyperbola. The locus consists of two 
intersecting straight lines. 

If AB-H2 =0 The locus is a parabola. The locus consists of two 
parallel straight lines, two 
coinciding lines, or is 
imaginary. 



CHAPTER XVII 

LOCI 

Plotting the Locus of an Equation 

303. Plotting the locus of an equation. A conic 

section has been defined as the locus of a point satisfying 

a given geometric property. For example, the circle is 

the locus of a point moving in a plane and having a fixed 

distance from a given point in the plane. This property 

may be expressed as an equation stating a relation between 

the co-ordinates of the variable point, such as x2+y2 = r2, 

or p = 2r cos 6. The locus may then be constructed by 

plotting the equation. In general this involves the follow¬ 
ing steps: 

1. Solve the equation for one of the co-ordinates. 

2. Tabulate a series of pairs of corresponding values 
of the co-ordinates. 

3. Plot the points corresponding to these pairs of 
values. 

4. Join the points by means of a smooth curve. The 

method of plotting curves will be illustrated in §§304 
to 308. 

304. The exponential 
curve. The exponential 

curve is defined by the 

equation 
y = ax 

In constructing the graph 

let a = 2. 

Verify the table in Fig. 108. 

267 

Fig. 108 
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Discussion: For all values of a > 1 the value of y is 

positive for any value of x. Hence the curve does not 

cross the x-axis. 

As x increases, ax also increases, and lim ax = + oo. 

As x decreases, ax decreases, and lim ax = 0, i.e., the 
x-> — co 

curve approaches the x-axis as an asymptote. 

When x = 0, a* = l. Hence the curve crosses the y-axis 

at the point (0, 1) for all values of a>l. 

305. The logarithmic curve. The logarithmic curve is 

defined by the equation y 

definition of a loga¬ 

rithm this relation is 

equivalent to the 

equation x = ay, which 

may be obtained from 

the exponential 01 

equation y=ax by { 

interchanging the 10 
20 

variables. The graph 

of the curve is given 

in Fig. 109. 

loga x. According to the 

306. The four-leafed rose. To graph the equation 

p = a sin 26 

let a = l and tabulate corresponding pairs of values of 

p and 9, Fig. 110. 

The locus is found to be a four-leafed curve, if plotted 

for all four quadrants. 
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Show that as 6 varies from 0° to 360° the point describes 

the leaves in the first, fourth, third, and second quadrants. 

e p 

0° 0.0 
15° 0.5 
30° 0.9 
45° 1.0 
60° 0.9 
75° 0.5 
90° 0.0 

Fig. 110 

EXERCISES 

1. Plot the four-leafed rose p = a cos 20; the three-leafed 
rose p = sin 30; the five-leafed rose p = a sin 50. 

2. Show that the equation p = a sin 20, transformed into 
rectangular co-ordinates, takes the form {x2-\-y2)2=^a2x2y2. 

307. The lemniscate. To obtain the locus of the 

equation 
p2 = 2a2 cos 20 

solve the equation for p, which gives p= =*=al 2 cos 20. 

Let a = 1 and let 0 vary from 0° to 360°. The follow¬ 

ing table shows the corresponding approximate values of p: 

e 0 15° 30° 45° increasing to 135° 135° increasing to 180° 

p ± .9 ± .7 ±0 imaginary 0 increasing to ± 1 
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The curve is shown in Fig. 111. As 6 varies from 0° 

to 45° the point describes the parts of the curve which 

lie in the first and third quadrant. As 6 varies from 

135° to 180° the parts in the second and fourth quadrant 
are described. 

Fig. Ill 

EXERCISES 

1. Find the intercepts and axes of symmetry of the locus 
of the equation p2 = 2a2 cos 26. 

2. Transform the equation p2 = 2a2 cos 26 into the equation 
(x2 -f- y2)2 = 2a2 (x2—y2). 

Historical note. The lemniscate was invented and inten¬ 

sively studied by James Bernoulli (1654-1705), a professor of 

mathematics from 1687 to 1705 in the Swiss city of Basle. 

The curve is commonly referred to as the lemniscate of Bernoulli. 
It is a special case of the Cassinian oval, § 313. Fagnano (1682- 

1786) also devoted considerable study to this curve. The word 
lemniscate means ‘Tike a hanging ribbon.” 
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JAMES BERNOULLI (1654-1705) was born and educated 
at Bale. After finishing his linguistic and philosophical 
studies at the university at Bale, he accidentally saw some 

geometrical figures one day and became seized with a passion 
for mathematical study. He applied himself secretly to 
mathematical pursuits against his father’s desire to make a 
clergyman of him. From 1676 to 1682 he traveled to France, 
England, and Holland and made the acquaintance of distin¬ 
guished scientists of those countries. Returning to Bale in 
1682 he opened a public seminary on experimental physics 
and devoted himself to physical and mathematical investi¬ 
gation. He mastered the then newly created calculus by his 
own almost unaided efforts and was always thenceforth a 
strong advocate of the differential calculus. He was the first 

to use the word integral as applied to the calculus. 
He wrote and published tractates on Teaching Mathematics 

to the Blind, on Dialling, on Comets, on Gravitation of the Aether, 
etc. Some of his tracts of this period were tinged with the 
philosophy of Descartes, and some were said to contain matters 

worthy of Newton’s Principia. 
He contributed much to mathematical methods, was the 

first to solve Leibnitz’ problem of the isochronous curve, and 
proposed the problem of the catenary. He contributed the 
curves known as the elastica, the lintearia, and the velaria. 
In his study of spirals he became so impressed with the remark¬ 
able properties of the logarithmic spiral that he requested it to 
be engraved on his tombstone with the words, Eadem numero 

mutata resurgo. The request was fulfilled. 
In 1696 he proposed the famous isoperimetrical problem 

and offered a reward for its solution. With numerous other 
mathematicians his brother John offered a solution. James 
showed John’s solution to be incorrect. John altered his solu¬ 
tion, resubmitted it, and claimed the reward. James showed 
the amended solution to be still incorrect and called it no solution 
at all. James then gave a correct solution of his own. John 
republished another incorrect solution but did not concede 
its incorrectness until 1718, after James’s death, and then he 
tried to “palm off’’ his brother’s solution, thinly disguised, 

for his own incorrect one. 
James Bernoulli was professor of mathematics at the 

university at Bale from 1687 until his death in 1705, when he 
was succeeded by his brother John. He was once rector of the 
university, and numerous honors were bestowed upon him. 
His chief continuous work was his Ars conjectandi, a book on 
the calculus of probabilities. This contains what are now called 
“Bernoulli’s theorem’’ and “Bernoulli’s numbers.” These 

~n . . x \ — 1 
numbers are the coefficients of —- in the expansion (e —1) > 

n\ 
though Bernoulli did not so regard them. 

[See Ball, Cajori, or Encyclopaedia Brilannica.) 
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308. The limagon and cardioid. 
limaqon 

p =a±b cos 0 

The equations of the 

and p = a=*=b sin 9 lead to different forms of the locus 
according as a is less than, greater than, or equal to, b. 

Fig. 112 is the locus of the equation p = l+2cos0‘ 
When a = b the locus is called the cardioid, Fig. 113. 

Fig. 113 
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EXERCISES 

1. Transform the equation p = a±b cos 0 into rectangular 
co-ordinates. 

2. Plot and discuss the locus of each of the equations, 

P=l — 2 cos 0; p = l+2sin0; p=l — 2 sin 0 

3. Plot and discuss each of the following cardioids, 

p= 1 —cos#; p = l+cos0; p = l — sin 0; p=l+sin0 

Historical note. The limagon, commonly called the lima¬ 

gon of Pascal, was invented and given the name limagon by Blaise 

Pascal (1623-62). Pascal was a renowned theologian, analyst, 

geometrician, and philosopher. The limagon is a special case 

of the Cartesian oval, which may be defined as a curve having 

two focal points, in which a constant multiple of one radius 

vector of any point differs from the other radius vector of the 

same point by a constant quantity. The word limagon means 
‘‘snail-like.” 

Determination of the Equation from the Geometric 
Property of the Locus 

309. The cissoid of Diodes. Let OB A, Fig. 114, be a 

circle with diameter OA. Let the vari¬ 

able secant OB, revolving about 0, meet 

the tangent AC at D. From 0 lay off 

OP — BD. It is required to determine 

the equation of the locus of P. 
Let a be the radius of the circle and 

denote Z POA by 6. 

Then 

cos 6 = 
2 a 

OD 

Similarly 

OB 
cos 6 = 

2 a 

and OD = 2a sec 6 

and OB =2a cos 6 
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Since 

it follows that 

p = OP = OD — PD = OD — OB 

P = 2a(sec 6 — cos 6)=2a 

2a sin2 6 

cos 6 
p = 2 a tan 0 sin 0 

- 1. Transform 

the equation 

the polar equation of the cissoid into 

y 2 a-x 

2. Show that the line x = 2a is an asymptote of the 

cissoid, that the curve is symmetric with respect to the 

x-txxis, and that the values of x must lie between 0 and 2a. 

Historical note. The cissoid was devised by a Greek mathe¬ 

matician named Diodes, of the first Alexandrian school. Diodes 

lived about 180 b.c. Little else is known of him except that 

he solved the problem proposed by Archimedes, to draw a 

plane to divide a sphere into two parts whose volumes shall be 

in a given ratio. 

The Greek word cissoid means “ ivy-like,” and Diodes 

named his curve from its resemblance to the vine of the ivy 
hanging from a trellis. 

Diodes devised the cissoid to solve the problem of inserting 

two mean proportionals between two given lines, to which 

Hippocrates, many years before, had reduced the problem of 

duplicating a cube. To insert two mean proportionals, x and y, 

between any line, a, and its double, 2a, we take the proportion: 

a : x = x : y = y : 2a 

and solve it for x, finding easily that 

x3 — 2a3, whence x = \3 2a 

The cissoid enables us to construct x. If then a denote 

the length of the edge of a given cube, x will be the length of edge 

of a cube of twice the volume. 
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Taking the proportion 

a : x — x : y=y : na 

we readily find 

xz = na3, or x = af n 

Now letting a= 1, we have x—f n, and since n is any 
number, and x can be constructed from the cissoid, this curve 

enables us to construct a line which equals the cube root of any 
number. 

310. The witch of Agnesi. Let OAB, Fig? 115, be a 

circle whose radius is 

a, and whose diameter 

is OA. 
Let the variable 

secant OBC intersect 

the tangent AD at C. 

Draw CEA.OX pIG 115 

and BPA.CE. 
It is required to find the equation of the locus of 

P, as OC turns about point 0. 

Show that 
2a—y BC x2 _ x2 

~~C0~~C02~ z2+4 a2 

y _ xL 

2 a #2+4a2 

y rc2+4 a2—x2 

2 a £2+4 a2 

8a3 
y~x2+ia2 

Discuss this equation as to asymptotes and symmetry. 

Historical note. The witch of Agnesi was invented by an 

Italian lady, Maria Gaetana Agnesi (1728-99). She was made 

a member of the Academy of Bologna in 1748 and was appointed 
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.professor of mathematics in the University of Bologna in 1750. 

She was an excellent writer and an accomplished scholar. Her 

writings were translated into both English and French. 

Madame Agnesi called the curve the versiera, but later mathe¬ 

maticians attached the inventor’s own name to it. 

311. The strophoid. From 

Fig. 116, draw AB to any point 

B on the y-axis. 

On AB lay off BP =BP' =BO. 

It is required to find the locus 

of P and P' as AB turns about 

point A. 

Denote the co-ordinates of P 

by p and 6. 

Then in A OP A we have 

0), 

P 

a 

sin OAP 

sin OP A 

Z 0 PA = 180° —ZB PO 

Z BPO= Z BOP = 90 —6 

Z OP A =90 + 0 

Z OAP = 180-(90 + 0+0) =90-20 

P _sin (90 —2d) _cos 26 

a sin (90 -f-0) cos 6 

p=2a cos 8 —a sec 0 

EXERCISES 

1. Transform the equation of the strophoid into the equation 

y a—x 

a+x 

2. Show that the locus of the equation in exercise 1 is 

symmetrical with respect to the z-axis; that x must lie between 

— a and +a; that x — — a is an asymptote. 
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312. The conchoid of Nicomedes. 
be perpendicular to B C. Let 

the line OD turn about point 

0, meeting the straight line 

BC at point D. On OD lay off 

DP = DP' = a constant length b. 

Find the locus of P and Pr. 

Let (p, 6) be the co-ordinates 

of P. 

Then 
a 

P=OD+DP 
cos 6 

or 

P = 
cos 0 

=fc& 

Let OA, Fig. 117,. 
B 

EXERCISES 

1. Transform the equation p =-n^b into the equation 
cos v 1 

{x2-\-y2)(x — a)2 = b2x2 and discuss the locus as to asymptotes and 
symmetry. 

2. Let a line-segment AB move so that the end-points A 
and B are always on the #-axis and y-axis, respectively. From 

the origin 0 draw OP perpendicular to AB. Show that the 

equation of the locus of P is p — sin 2d, the equation of the four- 
leafed rose. 

Historical note. The conchoid, or mussel-shaped curve, 

was invented by the Greek Nicomedes, who lived in the second 

century b.c. and about the same time as Diodes. Like the 

cissoid, it was invented to solve the Delian problem of “duplicat¬ 

ing the cube.” It is also readily applied to the equally celebrated 

problem of the “trisection of a given angle.” Both the cissoid 

and the conchoid have been of interest to mathematicians for 
more than twenty centuries. 
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313. The ovals of Cassini. Let a point P(x, y), 

Fig. 118, move so that the product of its distances from 

two fixed points Fi( — a, 0) and F(a, 0) remains constant. 

It is required to find the locus of P. 

Fig. 118 

Show that FiP = V (x-\-a)2-{-y2 

and that FP — V{x —a)2-\-y2 

Let V (x-\~a)2-\-y2V/ (x—a)2+y2 = c2 

Hence the required equation is 

[ (x+a)2+ y2][ (x - a)2 +y2] = c4 

When c = a, the equation reduces to 

(x2~Yy2)2 — 2a2(x2—y2) =0 

which is the equation of the lemniscate MN. 

When c>a, the locus is the oval PAB. 

When c<a, the locus consists of the ovals C and D. 

314. The spiral of Archimedes. This is the locus of a 

point whose radius vector p is directly proportional to 

the vectorial angle 6, i.e., p=a0. 
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The table, Fig. 119, gives approximate corresponding 

values of p and 6 for a = 1. 

0 p 

0 0 

7T 

12 
.26 

7T 

6 
.52 

7T 

4 
.79 

7T 

3 
1.05 

7T 

2 
1.57 

2 7T 

“3 
2.09 

7T 3.14 

3 7T 

"2 
4.71 

it 

321 
2 

Fig. 119 

As 6 increases indefinitely, p also increases without 

limit, the curve winding around 0. 

The dotted curve is the spiral obtained when a= — 1. 

EXERCISES 

1. Plot the hyperbolic spiral pe=a. Find the asymptote. 

2. Plot the logarithmic spiral p = bad, or the equivalent 
equation ad = \ogb p. 

315. The cycloid. If a circle rolls along a straight 

line the curve traced by any point of the circle is called 

a cycloid. 
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Take as origin, Fig. 120, the point 0 on OX, where a 

point P of the circle touches the line OX. 

Let a denote the radius of the circle, and <£ the central 

angle PCD. 

Then x = OD—ED =OD — PF 

and y = DC — FC 

Show that OD =PD=a<f> 

PF — a sin <f> 

and FC = a cos </> 

x — a(f> — a sin <f> 

and y=a—a cos </>, which may be written 

f x=a(4>— sin<|>) 
\y = a(l-cos<(>) 

These are the parameter equations of the cycloid. 

Show that the curve has an unlimited number of equal 

arches, forming a cusp wherever P touches the line OX. 

Historical note. A point fixed with respect to any curve 
which rolls on any other curve generates a roulette. If the 
rolling curve is a circle and the fixed curve is a straight line the 
curve generated by the point on the rolling circle is a cycloid. If 
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both the fixed and rolling curves are circles, and the generating 
point is on the circumference of the rolling circle, the curve 
generated is an epicycloid if the rolling circle is on the outside 
of the fixed circle, and is a hypocycloid if the rolling circle is on 
the inside of the fixed circle. 

Galileo in 1630 was the first to call attention to the cycloid, 
suggesting that as the shape was particularly graceful it should 
be used for arches of bridges. In 1634 Roberval found its area. 
Descartes, doubting the correctness of Robervahs solution, 
defied both him and Fermat to find its tangent. Fermat 
solved it at once. In 1658 Pascal solved many problems that 
had been proposed on the cycloid. Wallis, Huygens, and many 
subsequent mathematicians worked on it. It was the second 
curve that was rectified. This was done by Wren in 1673. 

316. The trochoid. Let P be any point on the radius, 

Fig. 121, or on the extension of the radius of circle C, 

Fig. 122. The locus of P is called a trochoid. Show that 
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317. The epicycloid. Let the circle C, Fig. 123, roll 

upon the outside of circle 0. The locus of any point P 

on circle C is called an epicycloid. 

Denote the radii of circles 0 and C by a and b, respec¬ 

tively, Z OCP by 0, and Z COE by 0. 

Then x = ODJrDE = OD-{-PF 

and y = DC — CF 

Show that 

OD = (a+b) cos 0; 

Z CPF = 180 — (0+0), 

PF = a cos [180 — (0+0)] = —a cos (0+0) 

DC = (a-\-b) sin <f> 

CF = a sin [180— (0+0)] =a sin (0+0) 

f x = (a+6) cos 0 — acos (0+0) 
{y = (a-j-b) sin 0— a sin (0+<j>) 
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318. The hypocycloid. If circle C, Fig. 123, rolls on 

the inside of circle 0, the locus of P is called hypocycloid, 
Fig. 124. 

Show that the parameter equations of the hypocycloid 
are 

< 

x = (b—a) cos <J> H-a cos 

y = (b—a) sin<|>—a sin-—a<j> 
a 

When the rolling circle makes exactly four revolutions 

in rolling along circle 0, as in Fig. 124, the locus of P is 

called an astroid. 

exercises 

1. Show that the equations of the astroid are .r = a cos3 <j>, 
y = a sin3 <f>. 

Let a = 46 and express x and y in terms of functions of <j>. Use 

the formulas sin 30 = 3 sin 0 — 4 sin3 0, and cos 30 = 4 cos3 0—3 cos <f>. 
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2. Transform the parametric equations of the astroid into 
the rectangular equation x*-{-y$ = a*. 

3. Transform the parametric equations 

Sat 

x = l+t3 
Sat2 

y=T+p 
into the equation 

xz-\-yz = Saxy 

4. Plot the locus of exercise 3. 

5. Plot the locus of each of the equations 

1 x—2 (x —1)(»—3) 

y = x — 2 ; y~x^S 5 y~ (x-2)(x-4:) 

Summary 

319. The equation of the following loci have been 

studied in this chapter. 

Exponential curve: 

y=ax 

Logarithmic curve: 

V ~ loga X 

Four-leafed rose: 

p=a sin 26 

(x2-\- y2)2 =4:a2x2y2 

Five-leafed rose: 
p=a sin b6 

p2 = 2a2 cos 26 

(x2-\-y2)2 = 2a2 (x2—y2) 

Lemniscate: 
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Limagon: 

p=a±b cos 9 

p = a±b sin 9 

Cardioid: 

P=a(l=±=cos 9) 

P=a{l=*=sin 9) 

Cissoid: 

p = 2a tan 9 sin 9 
/y*3 

y 2a-x 

Witch: 

8 a3 

V x2+4 a2 

Strophoid: 

p=2a cos 9 —a sec 9 

a—x 

V = ±X^a+x 

Conchoid: 

a 
P ~ a^=b 

cos 9 

Ovals: 

[ (x+a)2+y2][ (x—a)2+y2] = c4 

Spirals: 

P=a6, p9=a, p = ba9 

Cycloid: 

(x = a(cf)—sin </>) 

\y = a( 1—cos 4>) 

Trochoid: 
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Epicycloid: 

ix = {a-\-b) cos 4>—a cos (0+0) 

(?/ = (a+&) sin 0—a sin (0+0) 

Hypocy cloid: 
■ 

x = (b — a) cos 0+a cos--0 
a 

1 b-a 
y = (b — a) sin 0 —a sin-0 

V 

Astroid: 
jx = a cos3 0 

\y = a sin3 0 
2,2 2 

^34“2/3 =^3 



♦ 

, 
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LOGARITHMS OF NUMBERS 

N 0 1 2 3 4 5 6 7 s 9 

10 0000 0043 0086 0128 0170 0212 0253 0294 0334 0374 
11 0414 0453 0492 0531 0569 0607 0645 0682 0719 0755 
12 0792 0828 0864 0899 0934 0969 1004 1038 1072 1106 
13 1139 1173 1206 1239 1271 1303 1335 1367 1399 1430 
14 1461 1492 .1523 1553 1584 1614 1644 1673 1703 1732 

15 1761 1790 1818 1847 1875 1903 1931 1959 1987 2014 
16 2041 2068 2095 2122 2148 2175 2201 2227 2253 2279 
17 2304 2330 2355 2380 2405 2430 2455 2480 2504 2529 
18 2553 2577 2601 2625 2648 2672 2695 2718 2742 2765 
19 2788 2810 2833 2856 2878 2900 2923 2945 2967 2989 

20 3010 3032 3054 3075 3096 3118 3139 3160 3181 3201 
21 3222 3243 3263 3284 3304 3324 3345 3365 3385 3404 
22 3424 3444 3464 3483 3502 3522 3541 3560 3579 3598 
23 3617 3636 3655 3674 3692 3711 3729 3747 3766 3784 
24 3802 3820 3838 3856 3874 3892 3909 3927 3945 3962 

25 3979 3997 4014 4031 4048 4065 4082 4099 4116 4133 
26 4150 4166 4183 4200 4216 4232 4249 4265 4281 4298 
27 4314 4330 4346 4362 4378 4393 4409 4425 4440 4456 
28 4472 4487 4502 4518 4533 4548 4564 4579 4594 4609 
29 4624 4639 4654 4669 4683 4698 4713 4728 4742 4757 

30 4771 4786 4800 4814 4829 4843 4857 4871 4886 4900 
8*1 4914 4928 4942 4955 4969 4983 4997 5011 5024 5038 
32 5051 5065 5079 5092 5105 5119 5132 5145 5159 5172 
33 5185 5198 5211 5224 5237 5250 5263 5276 5289 5302 
34 5315 5328 5340 5353 5366 5378 5391 5403 5416 5428 

35 5441 5453 5465 5478 5490 5502 5514 5527 5539 5551 
36 5563 5575 5587 5599 5611 5623 5635 5647 5658 5670 
37 5682 5694 5705 5717 5729 5740 5752 5763 5775 5786 
38 5798 5809 5821 5832 5843 5855 5866 5877 5888 5899 
39 5911 5922 5933 5944 5955 5966 5977 5988 5999 6010 

40 6021 6031 6042 6053 6064 6075 6085 6096 6107 6117 
41 6128 6138 6149 6160 6170 6180 6191 6201 6212 6222 
42 6232 6243 6253 6263 6274 6284 6294 6304 6314 6325 
43 6335 6345 6355 6365 6375 6385 6395 6405 6415 6425 
44 6435 6444 6454 6464 6474 6484 6493 6503 6513 6522 

45 6532 6542 6551 6561 6571 6580 6590 6599 6609 6618 
46 6628 6637 6646 6656 6665 6675 6684 6693 6702 6712 
47 6721 6730 6739 6749 6758 6767 6776 6785 6794 6803 
48 6812 6821 6830 6839 6848 6857 6866 6875 6884 6893 
49 6902 6911 6920 6928 6937 6946 6955 6964 6972 6981 

50 6990 6998 7007 7016 7024 7033 7042 7050 7059 7067 
51 7076 7084 7093 7101 7110 7118 7126 7135 7143 7152 
52 7160 7168 7177 7185 7193 7202 7210 7218 7226 7235 
53 7243 7251 7259 7267 7275 7284 7292 7300 7308 7316 
54 7324 7332 7340 7348 7356 7364 7372 7380 7388 7396 

55 7404 7412 7419 7427 7435 7443 7451 7459 7466 7474 
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LOGARITHMS OF NUMBERS—Continued 

N 0 1 2 3 4 5 6 7 8 9 

55 7404 7412 7419 7427 7435 7443 ' 7451 7459 7466 7474 
56 7482 7490 7497 7505 7513 7520 7528 7536 7543 7551 
57 7559 7566 7574 7582 7589 7597 7604 7612 7619 7627 
58 7634 7642 7649 7657 7664 7672 7679 7686 7694 7701 
59 7709 7716 7723 7731 7738 7745 7752 7760 7767 7774 

60 7782 7789 7796 7803 7810 7818 7825 7832 7839 7846 
61 7853 7860 7868 7875 7882 7889 7896 7903 7910 7917 
62 7924 7931 7938 7945 7952 7959 7966 7973 7980 7987 
63 7993 8000 8007 8014 8021 8028 8035 8041 8048 8055 
64 8062 8069 8075 8082 8089 8096 8102 8109 8116 8122 

65 8129 8136 8142 8149 8156 8162 8169 8176 8182 8189 
66 8195 8202 8209 8215 8222 8228 8235 8241 8248 8254 
67 8261 8267 8274 8280 8287 8293 8299 8306 8312 8319 
68 8325 8331 8338 8344 8351 8357 8363 8370 8376 8382 
69 8388 8395 8401 8407 8414 8420 8426 8432 8439 8445 

7© 8451 8457 8463 8470 8476 8482 8488 8494 8500 8506 
71 8513 8519 9525 8531 8537 8543 8549 8555 9561 8567 
72 8573 8579 8585 8591 8597 8603 8609 8615 8621 8627 
73 8633 8639 8645 8651 8657 8663 8669 8675 8681 8686 
74 8692 9698 8704 9710 8716 8722 8727 8733 8739 8745 

75 8751 8756 8762 8768 8774 8779 8785 8791 8797 8802 
76 8808 8814 8820 8825 8831 8837 8842 8848 8854 8859 
77 8865 8871 8876 8882 8887 8893 8899 8904 8910 8915 
78 8921 8927 8932 8938 8943 8949 8954 8960 8965 8971 
79 8976 8982 8987 8993 8998 9004 9009 9015 9020 9025 

80 9031 9036 9042 9047 9053 9058 9063 9069 9074 9079 
81 9085 9090 9096 9101 9106 9112 9117 9122 9128 9133 
82 9138 9143 9149 9154 9159 9165 9170 9175 9180 9186 
83 9191 9196 9201 9206 9212 9217 9222 9227 9232 9238 
84 9243 9248 9253 9258 9263 9269 9274 9279 9284 9289 

85 9294 9299 9304 9309 9315 9320 9325 9330 9335 9340 
86 9345 9350 9355 9360 9365 9370 9375 9380 9385 9390 
87 9395 9400 9405 9410 9415 9420 9425 9430 9435 9440 
88 9445 9450 9455 9460 9465 9469 9474 9479 9484 9489 
89 9494 9499 9504 9509 9513 9518 9523 9528 9533 9538 

90 9542 9547 9552 9557 9562 9566 9571 9576 9581 9586 
91 9590 9595 9600 9605 9609 9614 9619 9624 9628 9633 
92 9638 9643 9647 9652 9657 9661 9666 9671 9675 9680 
93 9685 9689 9694 9699 9703 9708 9713 9717 9722 9727 
94 9731 9736 9741 9745 9750 9754 9759 9763 9768 9773 

95 9777 9782 9786 9791 9795 9800 9805 9809 9814 9818 
96 9823 9827 9832 9836 9841 9845 9850 9854 9859 9863 
97 9868 9872 9877 9881 9886 9890 9894 9899 9903 9908 
98 9912 9917 9921 9926 9930 9934 9939 9943 9948 9952 
99 9956 9961 9965 9969 9974 9978 9983 9987 9991 9996 

too 0000 0004 0008 0013 0017 0021 0026 0030 0035 0039 
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No. Squares Cubes Square 
Roots 

Cube 
Roots No. Squares Cubes Square 

Roots 
Cube 
Roots 

1 1 1 1.000 1.000 51 2,601 132,651 7.141 3.708 
2 4 8 1.414 1.259 52 2,704 140,608 7.211 3.732 
3 9 27 1.732 1.442 53 2,809 148,877 7.280 3.756 
4 16 64 2.000 1.587 54 2,916 157,464 7.348 3.779 

5 25 - 125 2.236 1.709 55 3,025 166,375 7.416 3.802 
6 36 216 2.449 1.817 56 3,136 175,616 7.483 3.825 
7 49 343 2.645 1.912 57 3,249 185,193 7.549 3.848 
8 64 512 2.828 2.000 58 3,364 195,112 7.615 3.870 
9 81 729 3.000 2.080 59 3,481 205,379 7.681 3.892 

10 100 1,000 3.162 2.154 60 3,600 216,000 7.745 3.914 
11 121 1,331 3.316 2.223 61 3,721 226,981 7.810 3.936 

. 12 144 1,728 3.464 2.289 62 3,844 238,328 7.874 3.957 
13 169 2,197 3.605 2.351 63 3,969 250,047 7.937 3.979 
14 196 2,744 3.741 2.410 64 4,096 262,144 8.000 4.000 

15 225 3,375 3.872 2.466 65 4,225 274,625 8.062 4.020 
16 256 4,096 4.000 2.519 66 4,356 287,496 8.124 4.041 
17 289 4,913 4.123 2.571 67 4,489 300,763 8.185 4.061 
18 324 5,832 4.242 2.620 68 4,624 314,432 8.246 4.081 
19 361 6,859 4.358 2.668 69 4,761 328,509 8.306 4.101 

20 400 8,000 4.472 2.714 TO 4,900 343,000 8.366 4.121 
21 441 9,261 4.582 2.758 71 5,041 357,911 8.426 4.140 
22 484 10,648 4.690 2.802 72 5,184 373,248 8.485 4.160 
23 529 12,167 4.795 2.843 73 5,329 389,017 8.544 4.179 
24 576 13,824 4.898 2.884 74 5,476 405,224 8.602 4.198 

25 625 15,625 5.000 2.924 T5 5,625 421,875 8.660 4.217 
26 676 17,576 5.099 2.962 76 5,776 438,976 8.717 4.235 
27 729 19,683 5.196 3.000 77 5,929 456,533 8.774 4.254 
28 784 21,952 5.291 3.036 78 6,084 474,552 8.831 4.272 
29 841 24,389 5.385 3.072 79 6,241 493,039 8.888 4.290 

30 900 27,000 5.477 3.107 80 6,400 512,000 8.944 4.308 
31 961 29,791 5.567 3.141 81 6,561 531,441 9.000 4.326 
32 1,024 32,768 5.656 3.174 82 6,724 551,368 9.055 4.344 
33 1,089 35,937 5.744 3.207 83 6,889 571,787 9.110 4.362 
34 1,156 39,304 5.830 3.239 84 7,056 592,704 9.165 4.379 

35 1,225 42,875 6.916 3.271 85 7,225 614,125 9.219 4.396 
36 1,296 46,656 6.000 3.301 86 7,396 636,056 9.273 4.414 
37 1,369 50,653 6.082 3.332 87 7,569 658,503 9.327 4.431 
38 1,444 54,872 6.164 3.361 88 7,744 681,472 9.380 4.447 
39 1,521 59,319 6.244 3.391 89 7,921 704,969 9.433 4.464 

40 1,600 64,000 6.324 3.419 90 8,100 729,000 9.486 4.481 
41 1,681 68,921 6.403 3.448 91 8,281 753,571 9.539 4.497 
42 1,764 74,088 6.480 3.476 92 8,464 778,688 9.591 4.514 
43 1,849 79,507 6.557 3.503 93 8,649 804,357 9.643 4.530 
44 1,936 85,184 6.633 3.530 94 8,836 830,584 9.695 4.546 

45 2,025 91,125 6.708 3.556 95 9,025 857,375 9.746 4.562 
46 2,116 97,336 6.782 3.583 96 9,216 884,736 9.797 4.578 
47 2,209 ■<03,823 6.855 3.608 97 9,409 912.673 9.848 4.594 
48 2,304 il0,592 6.928 3.634 98 9,604 941.192 9.899 4.610 
49 2,401 117,649 6.928 3.659 99 9,801 970,299 9.949 4.626 

50 2,500 125,000 7.071 3.684 lOO 10,000 1,000,000 10.000 4.641 
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TABLE OF SINES, COSINES, AND TANGENTS OF 
ANGLES FROM l°-90° 

Angle Sine Cosine Tangent Angle Sine Cosine Tangent 

1° .0175 .9998 .0175 46° .7193 .6947 1.0355 
2 .0349 .9994 .0349 47 .7314 .6820 1.0724 
3 .0523 .9986 .0524 48 .7431 .6691 1.1106 
4 .0698 .9976 .0699 49 .7547 .6561 1.1504 

5 .0872 .9962 .0875 50 .7660 .6428 1.1918 
6 .1045 .9945 .1051 51 .7771 .6293 1.2349 
7 .1219 .9925 .1228 52 .7880 .6157 1.2799 
8 .1392 .9903 .1405 53 .7986 .6018 1.3270 
9 . 1564 .9877 .1584 54 .8090 .5878 1.3764 

1© .1736 .9848 .1763 55 .8192 .5736 1.4281 ' 
11 . 1908 .9816 .1944 56 .8290 .5592 1.4826 
12 .2079 .9781 .2126 57 .8387 .5446 1.5399 
13 .2250 .9744 .2309 58 .8480 .5299 1.6003 
14 .2419 .9703 .2493 59 .8572 .5150 1.6643 

15 .2588 .9659 .2679 60 .8660 .5000 1.7321 
16 .2756 .9613 .2867 61 .8746 .4848 1.8040 
17 .2924 .9563 -.3057 62 .8829 .4695 1.8807 
18 .3090 .9511 .3249 63 .8910 .4540 1.9626 
19 .3256 .9455 .3443 64 .9888 .4384 2.0503 

20 .3420 .9397 .3640 65 .9063 .4226 2.1445 
21 .3584 .9336 . 3839 66 .9135 .4067 2.2460 
22 .3746 .9272 .4040 67 .9205 .3907 2.3559 
23 .3907 .9205 .4245 68 .9272 .3746 2.4751 
24 .4067 .9135 .4452 69 .9336 .3584 2.6051 

25 .4226 .9063 .4663 70 .9397 .3420 2.7475 
26 .4384 .8988 .4877 71 .9455 .3256 2.9042 
27 .4540 .8910 .5095 72 .9511 .3090 • 3.0777 
28 .4695 .8829 .5317 73 .9563 .2924 3.2709 
29 .4848 .8746 .5543 74 .9613 .2756 3.4874 

3© .5000 .8660 .5774 75 .9659 .2588 3.7321 
31 .5150 .8572 .6009 76 .9703 .2419 4.0108 
32 .5299 .8480 .6249 77 .9744 .2250 4.3315 
33 . 5446 .8387 .6494 78 .9781 .2079 4.7046 
34 .5592 .8290 .6745 79 .9816 .1908 5.1446 

35 .5736 .8192 .7002 80 .9848 .1736 5.6713 
36 .5878 .8090 .7265 81 .9877 .1564 6.3138 
37 .6018 .7986 .7536 82 .9903 .1392 7.1154 
38 .6157 .7880 .7813 83 .9925 .1219 8.1443 
39 .6293 .7771 .8098 84 .9945 .1045 9.5144 

4© .6428 .7660 .8391 85 .9962 .0872 11.4301 
41 .6561 .7547 .8693 86 .9976 .0698 14.3006 
42 .6691 .7431 .9004 87 .9986 .0523 19.0811 
43 .6820 .7314 .9325 88 .9994 .0349 28.6363 
44 .6947 .7193 .9657 89 .9998 .0175 57.2900 

45 .7071 .7071 1.0000 90 1.0000 .0000 GO 
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Formulas 

PLANE GEOMETRY 

1. Length of circle = 2wr = 3.14159d 

2. Area of circle =tr2 

3. Area of triangle = \bh = ^ab sin C — Jr(a+6+c) 

= ^ = T/s(*-a)(s-6) (s-c) 

4. Area of parallelogram = bh 

5. Area of square = a2 

6. Area of equilateral triangle = V3 

7. Area of trapezoid = J/i(6i+62) =/*m 

SOLID GEOMETRY 

. 1. Volume of prism = ba 

2. Volume of pyramid = \ba 

3. Volume of right circular cylinder = 7rr2a 

4. Total surface of right circular cylinder = 27rr(r+a) 

5. Lateral surface of right circular cylinder = 2xra 

6. Volume of right circular cone = ^7rr2a 

7. Lateral surface of right circular cone = 7rrs 

8. Total surface of right circular cone = 7rr(r-f-s) 

9. Surface of sphere = 47rr2 

4 
10. Volume of sphere = ^7rr3 

i 

SERIES 

1. Arithmetical progression: 
71 

l = a-\-(n—\)d; s — 
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2. Geometrical progression: 

l = arn~l; s=~- ar - if r<l and w->oo 5 = 7^- 
1-r * 1-r 

3. Binomial theorem: 

(a+b)n = an+jan~ Tb+V^~-~-an~2b2 
1 1 • Z 

n(n— l)(n—2) „„ , 
H-;—^—o—-an~3&3-}-etc. 

1-2-3 

The kth term 

= ?(n-l)(n-2)-(n-k+2) 
1 -2-3 .... k-l a 0 

LOGARITHMS 

1. log ab = log a+log b 

2. log ^ = log a—log b 

3. log an = n log a 

4. log = 
n 

5. log 1 = 0 

6. io& 
log6 a 

7. colog JV=log ~ = (10—log iV) -10 

QUADRATIC EQUATION 

If ax2+bx+c=0, x=-b±l/b*-4aC' 
2 a 

If b2—4ac = 0, the roots are real and equal. 

If b2—4ac>0, the roots are real and unequal. 

If b2 ~4ac<0, the roots are complex. 
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1. 

2. 

3. 

4. 

5. 

9. 

10. 

11. 

12. 

13. 

14. 

15. 

16. 

17. 

18. 

19. 

20. 

TRIGONOMETRIC FORMULAS 

a b , a 
sin a = -, cos a = - , tan a = T, 

c c b 

c c , b 
esc a = -, sec a == , cot a = - 

a b a 

sin2 a + cos2 a = 1 

sec2 a = 1+tan2 a 

esc2 a = 1 + cot2 a 

sin a 
tan a = —— 

cos a 

6. cot a= 

7. sec a= 

cos a 

sin a 

1 
cos a 

8. 1 
esc a = —— 

sin a 

sin (a =*= jS) = sin a cos 0 =*= cos a sin 

cos (a =•= /3) = cos a cos (3 =f sin a sin /3 

tan (a=±=/3) = 
tan a=*=tan /3 

1 =f tan a tan 

sin a+sin (3 = 2 sin |(a+/3) cos ^(a —/3) 

sin a — sin /3 = 2 cos J(a+/3) sin §(a —(3) 

cos a+cos /5 = 2 cos |(a+/3) cos J(a — /3) 

cos a — cos 0= —2 sin J(a+/3) sin %(a — (3) 

sin a sin /3 = | cos (a —(3)—^ cos (a+0) 

cos a cos /? = § cos (a — /?)+§ cos (a+/3) 

sin a cos (3 = \ sin (a+/3)+J sin (a—(3) 

sin 2 a = 2 sin a cos a 

cos 2 a = cos2 a — sin2 a 

= 2 cos2 a — 1 = 1 — 2 sin2 a 
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21. tan 2 a = 
2 tan a 

1 — tan2a 

22. sin 

23. cos b* 

24. tan 

2a-±\/ 

ia= 
2 \1 

1 -f-cos a 

— cos a 

1+cosa 

x 
25. sin^-=t^J =cos0 

26. cosg^fl) = =f sin 0 

27. tang=*=0^ = =FCot 6 

28. sin (tt*=0) = =Fsin 0 

29. cos (t^=6) = — cos 0 

30. tan (tt=±6) = tan 9 

31. sin ( — x) = —sin x 

32. cos ( — #) = cos:c 

33. tan ( —#) = —tan x 

34. esc (— x) = — esc x 

35. sec (—x) =sec x 

36. cot ( — x) = — cot x 

37. sin 30° = \ 

38. sin 45° = \V 2 

39. sin 60° = \V 3 

40. cos 30° = \V3 

41. cos 45° =\V2 

42. cos 60° = j 

TRIANGLES 

43 a = b = c da a~sin h (A-B) 
sin A sin B sin C c cos \ C 

44. a2 = 52+c2—26c cos A ^ a+5_cos ^ (A — B) 

^ a+5_tan ^ (A+B) * c sin J C 

a—b tan J (A—B) 

If s = § (a+5-f c): 

48. sin iA = yj(s~b^~c'>. 49. cos f A = J^E^. 

50. tan i A = 
2 X s(s-a) 
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If r= radius of inscribed circle: 

5i.r-JOBEE3. 52. tan jA= — 
v « 2 s-a 

53. tan i B = 
s-6‘ 

54. tan A C = 
s—c 

c2 sin A sin B 
55. Area = J ob sin C =— • . ^ 

2 sin C 

= — a)(s — b)(s—c) 

56. Diameter of circumscribed circle 

a _ 6 _ c 
sin A sin Z? sin C 

GREEK ALPHABET 

N ames 

Alpha.. 
Beta.. . 
Gamma 
Delta.. 
Epsilon 
Zeta. . . 
Eta.. . . 
Theta.. 
Iota . . . 
Kappa. 
Lambda 
Mu.... 

Letters Names 

A a Nu. 
B fi 1 Xi. 
r 7 Omicron. 
A 5 I Pi. 
E € Rho. 
Z r Sigma. 
H V Tau. 
0 e Upsilon. 
I t, Phi. 
K K Chi. 
A X Psi. 
M Omega. 

Letters 

N 
/—f 

0 
n 
p 
2 
T 
T 
$ 
X 
* 
ft 

t
 

i)
 

O
 
rr

r 
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general in two variables. 218 Line: determinant form... 33 

graphing of.41, 92, 98 general form. 38 

limiting value of. 174 intercept form. 34 

linear.40, 91 normal form. 43 

quadratic. 91 parallel to x-axis. 35 

rational integral. 119, 105, 116 parallel to ?/-axis. 36 

Fundamental theorem. 131 passing through origin... 37 

point-slope form. 30 

General equation of second polar form. 42 

degree. 287 slope-intercept form. 31 
V 

slope of. 28 
Homogeneous equations.. . 65 two-point form. 32 
Horner’s method. 150 Linear equation. 39 
Hyperbola. 277 function. 40 
Hypocycloid.: . . . . 318 graphing of. 41 

Lines: angle between. 58 
Identity. 153 condition for parallel.... 55 
Imaginary number........ 12 condition for perpendicu- 
Imaginary unit. 13 lar. 57 
Incompatible equations.... 56 equation of pair of. 64 
Inconsistent equations. 61 pencil of. 62 
Increasing function. 123 pencil of parallel. 63 
Indeterminate forms. 175 Line-segment, division of. . 49 
Induction, mathematical.. . 118 midpoint of. 50 
Infinite series. 179 Location of real root. 136 
Infinitesimal.*. 170 Locus, of a point. 48 
Infinity. 171 plotting of. 303 
Integral roots.143, 145 Logarithmic curve. 305 
Intercept. 31 

Irrational numbers. 7 Major axis. 244 

negative roots. 151 Mathematical induction. . . 118 

roots. 148 Maximum.100, 123 

Measure. 1 

Latus rectum. 96 Mechanical construction of 

of ellipse. 248 ellipse... . .. 246 

Lemniscate. 307 Midpoint of segment. 50 

Lima^on. 308 Minimum.100, 123 

Limit, notion of. 172 Minor axis. 244 

Limiting value of function. 174 Minor of determinant..... 77 

Limits, theorems on. 172 expansion by minors.... 78 
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Rotation of axes. 284 
Row.,. .. . 76 

Rule of signs, Descartes’... 137 

Secant, slope of. 102 

Second derivative. 124 
Series: alternating. 194 

convergent, divergent. . . 180 

sum of. 178 

Simultaneous equations.... 66 

Slope: of curve. 101 
of line.  28 

of secant. 102 

of tangent. 103 
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Solution: algebraic. 130 
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of biquadratic. 164 

of cubic. 162 
Spirals. 314 

Standard equation of parab¬ 

ola. 96 
Strophoid. 311 

Subnormal. 231 

Subtangent.  231 

Successive derivatives. 124 
Symmetry, axis of. 94 

System of circles.  233 
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to a curve. 103 
equation of. 107 

to f(x, y)= 0.227 
length of. 232 

slope. 104 
Taylor’s theorem. 124 

Transformation of co¬ 

ordinates. 280 

Translation of axes. 281 
Transverse axis. 257 

Triangle, area of.70, 71 

Unit, imaginary. 13 

Vector. 10 

Vectorial angle. 10 
Vertex.94, 95 

Witch of Agnesi. 310 

Zero. 4 
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dent in the country should have the book/’ says 
Westfield Scott Hall, of Northwestern 
University Medical School, speaking of 

The Third and Fourth 
Generation 

An Introduction to Heredity 

By ELLIOT R. DOWNING 
Associate Professor of Natural Science in the School 

of Education, the University of Chicago 

This volume presents in simple language 
the essentials regarding the phenomena of 
heredity and the laws governing them, and 
illustrates these discoveries with things that 
are at once familiar and of large human 
import. 

For classes in Sunday school, high school, and 
college. 

For general reading. 
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