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Abstract 

Background. A key aspect of STEM learning is the use of visual representations for problem 

solving. To successfully use visuals, students need to make sense of how they show concepts 

and to fluently perceive domain-relevant information in them. Adding support for sense 

making and perceptual fluency to problem-solving activities enhances students’ learning of 

content knowledge. However, students need different types of representational-competency 

supports, depending on their prior knowledge. This suggests that adaptively assigning 

students to sense-making and perceptual-fluency support might be more effective than 

assigning all students to the same sequence of these supports.  

Method. We tested this hypothesis in an experiment with 44 undergraduate students in a 

chemistry course. Students were randomly assigned to a ten-week sequence of problem-

solving activities that either provided a fixed sequence of sense-making support and 

perceptual-fluency support or adaptively assigned these supports based on students’ problem-

solving interactions.  

Findings. Results show that adaptive representational-competency supports reduced students’ 

confusion and mistakes during problem solving while increasing their learning of content 

knowledge.  

Contribution. Our study is the first to show that adaptive support for representational 

competencies can significantly enhance learning of content knowledge. Given the 

pervasiveness of visuals, our results may inform general STEM instruction. 
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Visual representations play a key role in problem-solving practices in science, 

technology, engineering, and math (STEM) domains (Kozma, Chin, Russell, & Marx, 2000; 

Wertsch & Kazak, 2011). When scientists study a phenomenon of interest, they typically 

visually represent the phenomenon, so that they can use the visual representation to reflect on 

the nature of the phenomenon. During this reflection process, they may gather new data and 

revise their visual representation to reflect new discoveries. Indeed, observational studies of 

expert scientists in chemistry and other STEM domains shows that their problem-solving 

practices critically rely on such representation-reflection iterations (Fan, 2015; Kozma & 

Russell, 2005a; Latour, 1986). Therefore, an important part of STEM instruction is for 

students to learn to use visual representations to solve disciplinary problems (Gilbert, 2005; 

NRC, 2006; Rau, 2017). The goal of this article is to investigate ways to support students in 

this learning process. 

Most STEM disciplines use established visual representations that have evolved as 

part of problem-solving practices that required reasoning about visuo-spatial concepts 

(Gilbert, 2005; NRC, 2006). Because different visual representations can illustrate different 

aspects of these phenomena, STEM instruction typically involves multiple visual 

representations (Ainsworth, 2006; Kozma et al., 2000; Rau, 2017). For example, chemists 

typically use a variety of visual representations (see Figure 1) to illustrate concepts related to 

atomic structure and bonding.  

--- Insert Figure 1 about here --- 
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While multiple visual representations can help students learn, they also pose an 

educational dilemma (Ainsworth, 2006; NRC, 2006; Rau, Aleven, & Rummel, 2015). 

Instructional activities often present problems that engage students in reflection about 

domain-relevant concepts. Students are to explore these concepts by manipulating visual 

representations, which mimics common representation-reflection iterations that are part of 

disciplinary practices. However, because both the concepts and the representations are novel 

to students, students have to learn about how the visual representations show information 

about the concepts while also learning about the concepts from the visual representations. 

This conundrum is known as the representation dilemma (Dreher & Kuntze, 2015; Rau, 

2017).  

To overcome the representation dilemma, students need representational 

competencies, which allow them to understand how various visual representations show 

information about different aspects of complex concepts in the given domain (Gilbert, 2005, 

2008; NRC, 2006). Indeed, representational competencies have been shown to enhance 

students’ learning of domain knowledge in math (Cheng, 1999; Noss, Healy, & Hoyles, 

1997), physics (Klein, Viiri, Mozaffari, Dengel, & Kuhn, 2018; Larkin & Simon, 1987), 

biology (Treagust & Tsui, 2013), and chemistry (Kozma et al., 2000; Stieff, Hegarty, & 

Deslongchamps, 2011).  

However, supporting representational competencies during problem solving is not 

straightforward. Prior research, reviewed in detail below, shows that there are multiple types 

of representational competencies that require different types of instructional support 
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(Ainsworth, 2006; Kellman & Massey, 2013; Rau, 2017). Further, students need different 

types of instructional support at different times during their learning trajectory (Rau, 2018a, 

b). This suggests that adapting representational-competency supports in real time to 

individual students’ needs may enhance their learning of domain knowledge. This article 

investigates this hypothesis in the context of chemistry problem solving.  

In the following, we review prior research on representational competencies and ways 

to support them during problem solving. Then, we present our own prior work that has led to 

the development of a technology-based learning environment for undergraduate chemistry, 

which served as a platform for this study. We describe how we used prior data from this 

learning environment to develop adaptive support for representational competencies. We then 

report on a randomized experiment that was carried out as part of an undergraduate chemistry 

course. The experiment tested whether adaptive support for representational competencies is 

more effective than fixed support for representational competencies at enhancing chemistry 

learning outcomes as well as perceived and observed problem-solving difficulty. We conclude 

with a discussion of implications for learning with visual representations. 

Literature Review 

Representational Competencies 

Two mostly separate lines of prior research have investigated which types of 

representational competencies enhance STEM learning (for an overview, see Rau, 2017). One 

line of research originates in theories of conceptual learning and focuses on deliberate, 



REPRESENTATIONAL-COMPETENCY SUPPORT 7 

 

 

explanation-based processes involved in the acquisition of sense-making competencies (Chi, 

2009; Schnotz, 2014). Another line of research originates in theories of perception and 

focuses on inductive pattern-recognition processes that yield perceptual intuitions (Gibson, 

2000; Kellman & Massey, 2013). Both types of competencies play a crucial role in scientific 

practices (Dreyfus & Dreyfus, 1986; Latour, 1986). In the following, we review each line of 

prior research in turn. 

Sense-Making Competencies 

Sense-making competencies describe a student’s ability to map visual features to 

meaningful concepts (Ainsworth, 2006; Bodemer & Faust, 2006). For example, a student may 

map the dots in a Lewis structure (see Figure 1a) to valence electrons within an atom. Further, 

when students work with multiple visual representations, sense-making competencies involve 

the ability to make connections among corresponding visual features of different 

representations by reasoning about the concepts they show (Ainsworth, 2006; Rau, 2017). For 

example, a student may connect the dots in a shell model (see Figure 1b) to the arrows in an 

energy diagram (see Figure 1c) because both features show the total electrons of an atom. The 

ability to make such connections also enables students to reason about differences and 

similarities between the representations (Ainsworth, 2006; Rau, 2017). For example, students 

may reason that both energy diagrams (see Figure 1c) and orbital diagrams (see Figure 1d) 

show the orbitals that electrons occupy, but that orbital diagrams do not show how many 

electrons reside in these orbitals, whereas energy diagrams do. Understanding such types of 
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differences and similarities between representations is the basis for students’ ability to 

flexibly choose appropriate representations for problem solving (Acevedo Nistal, Van 

Dooren, & Verschaffel, 2013; diSessa, 2004). 

According to cognitive theories of learning, students acquire these competencies 

through sense-making processes (Chi, Bassok, Lewis, Reimann, & Glaser, 1989; Koedinger, 

Corbett, & Perfetti, 2012). These processes involve verbal explanations of how visual features 

map to concepts (Chi et al., 1989; Gentner, 1983). They are explicit because students have to 

willfully engage in them and because they require conscious effort (Chi, de Leeuw, Chiu, & 

Lavancher, 1994; Koedinger et al., 2012). According to Schnotz and Bannert’s Integrated 

Model of Picture Comprehension (Schnotz, 2014; Schnotz & Bannert, 2003), these verbal 

explanation processes are a mechanism through which students integrate information from 

multiple representations into their existing schemas of domain knowledge.  

According to theories of disciplinary practices, students’ acquisition of sense-making 

competencies is mediated by participation in scientific practices (Airey & Linder, 2009; 

Kozma & Russell, 2005b; Wertsch & Kazak, 2011). That is, when students participate in 

scientific practices, they learn conventions that have been shaped by the history of a given 

scientific community (Latour, 1986; Vygotsky, 1978). They also learn conventions about how 

representations are commonly used to solve problems (Cobb & McClain, 2006; Roschelle, 

1992). 

Prior research has established several principles for the design of supports for sense-

making competencies that can be added to problem-solving activities. First, students should 
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verbally explain the mappings of visual features to concepts (Berthold & Renkl, 2009; Rau, 

2017; Seufert & Brünken, 2006). For example, self-explanation prompts have been proven 

effective in engaging students in such explanations (Berthold, Eysink, & Renkl, 2008; Rau, 

Aleven, et al., 2015). Second, students should become active in making these mappings 

themselves (Bodemer & Faust, 2006; Chi, 2009). For example, interventions where students 

themselves had to actively construct connections among visuals and concepts have been 

proven more effective than interventions that presented students with pre-made mappings 

(Bodemer & Faust, 2006; Gutwill, Frederiksen, & White, 1999). Finally, students need 

assistance in making mappings between visual features and concepts (Ainsworth, Bibby, & 

Wood, 2002; Rau, Aleven, Rummel, & Pardos, 2014). For example, prior research shows that 

particularly students with low prior knowledge need help to focus on conceptually relevant 

visual features, rather than on surface features that bear no meaningful information (Bodemer 

& Faust, 2006; Stern, Aprea, & Ebner, 2003). 

Perceptual Fluency 

Perceptual fluency describes a student’s ability to quickly and effortlessly see meaning 

in visual representations based on perceptual cues (Kellman & Massey, 2013; Massey, 

Kellman, Roth, & Burke, 2011; Rau, 2017). For example, chemists simply “see” that the 

visual representations in Figure 1 show carbon without having to think about it. Perceptual 

fluency also allows experts to fluently translate among different visual representations 

(Kellman & Massey, 2013; Massey et al., 2011; Rau, 2017). High levels of acuity, 
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automaticity, and efficiency in processing visual representations frees cognitive resources for 

higher-order thinking about complex problems (Goldstone & Barsalou, 1998; Richman, 

Gobet, Staszewski, & Simon, 1996). Therefore, perceptual fluency enhances learning of 

STEM domain knowledge (Gilbert, 2005; Taber, 2014). For example, chemistry education 

research shows that a lack of perceptual fluency can impede students’ learning: the cognitive 

effort involved in making sense of the representations without the ability to process them 

fluently can slow students’ thinking and impede their ability to follow complex explanations 

about chemical bonding (Anderson & Bodner, 2008). Further, perceptual fluency allows 

experts to think creatively and react adaptively to novel situations (Dreyfus & Dreyfus, 1986; 

Gibson, 1969, 2000; Richman et al., 1996). 

The processes through which students acquire perceptual fluency differ fundamentally 

from those through which students learn sense-making competencies. According to cognitive 

theories of learning, students learn perceptual fluency through implicit, nonverbal, inductive 

processes (Gibson, 2000; Goldstone, 1997; Kellman & Massey, 2013; Koedinger et al., 

2012). That is, these processes occur unintentionally and often unconsciously (Frensch & 

Rünger, 2003; Shanks, 2005). Verbal reasoning and explicit instruction about the visual 

representations are not necessary but may even impede students’ engagement in perceptual 

learning processes (Kellman, Massey, & Son, 2009; Schooler, Fiore, & Brandimonte, 1997). 

Rather, students inductively learn to recognize visual patterns through exposure to many 

examples (Kellman & Massey, 2013; Rau, 2017). 
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According to theories of disciplinary practices, students acquire perceptual fluency by 

engaging in nonverbal communication practices (Singer, 2017; Wertsch & Kazak, 2011). This 

may involve person-to-person communication about visuals, for example when students use 

gestures to direct each other’s attention to visual cues (Singer, 2017), or it may involve 

visuals that mediate communication, for example when students learn to express themselves 

in terms of representations (Braden & Hortin, 1982). To this end, students need to become 

fluent in a “multimodal language” that they learn by repeatedly participating in disciplinary 

discourse (Airey & Linder, 2009; Schönborn & Anderson, 2006). For example, Airey and 

Linder (2009) describe how students who work together on problems with representations 

gradually learn to translate flexibly among the representations to the extent that doing so 

becomes “almost second nature” (p. 10). Further, as students see other members of the 

scientific community use representations to communicate, they start imitating these practices 

(Wertsch & Kazak, 2011). Through these processes, students gradually induce how visual 

representations provide information about disciplinary problems (Rau, 2017). 

To help students acquire perceptual fluency during problem solving, prior research has 

established several design principles for instructional supports. These principles serve to 

ensure that students engage in implicit, nonverbal, inductive forms of learning. First, students 

should be exposed to a large variety of example representations (Kellman et al., 2008; 

Kellman et al., 2009). Second, these examples should present contrasting cases (Chase, 

Shemwell, & Schwartz, 2010) so that they vary irrelevant visual features that students should 

learn to ignore and repeat conceptually relevant visual features that students should attend to. 
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Third, students should be prompted to rely on their perceptual intuitions, so as to encourage 

implicit rather than explanation-based processing. Finally, immediate feedback on the 

accuracy of students’ use of visual information is helpful, but this feedback should not 

provide detailed explanations so that students continue to engage in nonverbal processes as 

opposed to verbal reasoning processes.  

Integrating Support for Sense-Making Competencies and Perceptual Fluency in 

Chemistry Instruction 

In our own prior work, we developed Chem Tutor, an educational technology for 

undergraduate chemistry problem solving that provides support for sense-making 

competencies and perceptual fluency. Chem Tutor served as a platform for a series of prior 

studies that tested whether these supports enhance chemistry learning and how the supports 

should be sequenced.  

Chem Tutor: Technology-Based Problem Solving with Support for Representational 

Competencies 

The development of Chem Tutor was based on learner-centered studies of how 

students and instructors use visual representations in their teaching and learning (Rau, 

Michaelis, & Fay, 2015; Rau, Aleven, & Rummel, 2017). To this end, students were observed 

and interviewed while they solved chemistry problems that were posed in undergraduate 

chemistry courses and interviewed about difficulties in interpreting and manipulating the 

representations. Instructors’ teaching practices were observed in lectures, discussion sessions, 
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and laboratory sessions. Further, they were interviewed about their teaching strategies and 

about the difficulties they found prevalent among their students. These studies revealed a 

number of chemistry-specific competencies that relate to visual representations that 

instructors deem important but that their students struggle with. While these competencies are 

specific to particular chemistry concepts, they fall into the two broader categories of 

representational competencies outlined above; that is, they either involved making sense of 

how visual representations depict concepts or they involved fluent perception of information 

based on visual cues.  

For each of the identified representational competencies, we then developed 

instructional activities. In doing so, we followed the instructional design principles reviewed 

above. For example, we found that understanding the probabilistic nature of the location of 

electrons within an atom is an important concept. To help students understand this concept, 

instructors typically use energy diagrams (see Figure 1c) and orbital diagrams (see Figure 1d). 

Several representational competencies relate to this concept. First, students have to make 

sense of similarities between the two representations, for example that the horizontal lines in 

the energy diagram correspond to the median of the probability distribution that is shown by 

the colored shapes in the orbital diagram. Second, students have to make sense of differences 

between the two representations, for example that the energy diagram shows how many 

electrons occupy each orbital, whereas the orbital diagram does not. Third, students have to 

become so fluent in translating between these representations so that when they see an energy 

diagram, they automatically mentally visualize the shape of the orbitals the electrons occupy.  
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To support sense-making competencies as in the first and second example, we 

developed activities that asked students to compare pairs of visual representations by mapping 

them to the concepts they illustrate. For example, Figure 2 shows an example sense-making 

activity that supports the sense-making competencies just described. Students first use an 

interactive tool to create an orbital diagram of the atom shown by an energy diagram. Then, 

they receive prompts to explain similarities and differences between the visual 

representations.  

--- Insert Figure 2 about here --- 

This example illustrates that these sense-making activities implement the design 

principles reviewed above to support sense-making competencies. First, to support conceptual 

reflection and explanation, students respond to the prompts via menu-based selection, which 

has been shown to support sense-making processes in prior studies with educational 

technologies (Aleven & Koedinger, 2002; Atkinson, Renkl, & Merrill, 2003) more effectively 

than open-ended responses to prompts (Gadgil, Nokes-Malach, & Chi, 2012; Johnson & 

Mayer, 2010). The options of the menu-based prompts were populated with students’ 

statements in the interview studies mentioned above (Rau et al., 2015, 2017). Second, because 

students have to create one of the visual representations based on another representation and 

because the prompts are phrased as fill-in-the-gap sentences that students have to complete, 

this design ensures that students themselves have to become active in establishing the 

mappings between the visual representations (Bodemer & Faust, 2006; Bodemer, Ploetzner, 

Bruchmüller, & Häcker, 2005; Bodemer, Ploetzner, Feuerlein, & Spada, 2004). Finally, 
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students receive assistance from Chem Tutor. If they make a mistake, they receive feedback 

specific to their mistake that provides a rationale for why their answer is wrong and provides 

suggestions for how to improve their reasoning. Further, students can ask for hints on each 

step that provide explanations about the mappings between the two representations based on 

the concept they show. The content and wording of error-feedback messages and hints was 

also based on the student and instructor interviews obtained from the learner-centered studies 

mentioned above (Rau et al., 2015, 2017). 

To support perceptual fluency competencies as illustrated in the third example above, 

we developed activities that expose students to many example visuals while encouraging non-

verbal processing. For example, Figure 3 shows an example perceptual-fluency activity that 

supports the competency described above. Here, students are given an energy diagram and are 

asked to select one of four given orbital diagrams that shows the same atom.  

--- Insert Figure 3 about here --- 

This example illustrates the design principles for perceptual-fluency supports 

described above. First, each perceptual-fluency activity is short as it contains only one step, 

and students receive many of these activities in a row. Therefore, students are exposed to a 

large variety of example representations. Second, the four choice options implement the 

contrasting cases principle. Based on the learner-centered studies mentioned above (Rau et 

al., 2015, 2017), we identified visual cues that students often confuse, fail to attend to, or are 

distracted by. The choice options contain visuals that have these features, so that students get 

practice in processing them accurately and efficiently. Third, to encourage implicit 
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processing, students are prompted to solve the task quickly, without overthinking it, and 

without fear of making mistakes, so as to train their perceptual intuitions. These prompts are 

implemented in two ways: students watch a short video that explains the nature of perceptual 

trainings prior to the perceptual-fluency activities, and then receive written prompts to rely on 

their perceptual intuitions as part of each activity. Finally, students receive immediate 

feedback on their responses in the form of a red highlight if they chose a wrong option or a 

green highlight if they chose the correct option. If they chose the wrong option, they receive 

no explanation for why it is wrong, so as not to engage students in explanation-based 

processes that could interfere with perceptual learning, but a prompt to try again without 

overthinking it, so as to encourage experience-based learning. 

In sum, these examples illustrate that sense-making and perceptual-fluency activities 

embody qualitatively different instructional design principles that emerged from the different 

lines of prior research reviewed above. 

Prior Research on Effectiveness of Representational-Competency Supports 

If students need both sense-making competencies and perceptual fluency to learn with 

visual representations, then supporting both types of competencies should enhance students’ 

learning of domain knowledge. In our prior research, we tested this hypothesis in experiments 

on elementary-school math learning (Rau et al., 2017) and undergraduate chemistry learning 

(Rau & Wu, 2018). In these experiments, all students received an introduction to the topic and 

the visual representations. Then, students were randomly assigned to receive (1) both sense-
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making activities and perceptual-fluency activities, (2) only sense-making activities, (3) only 

perceptual-fluency activities, or (4) a control condition that received the same visual 

representations but without support for either type of representational competency. The 

content covered was identical across conditions. Learning of domain knowledge was assessed 

with a pretest, an immediate posttest (given immediately after students worked on 

instructional activities), and a delayed posttest (given one week after the instructional 

activities) that contained multiple-choice and open-response items.  

Results from both experiments showed that students’ learning of domain knowledge 

was enhanced only by the combination of both types of support. That is, only students who 

received sense-making and perceptual-fluency activities showed higher learning gains than 

the control condition. Students who received only sense-making activities had learning gains 

about as high as students in the control condition. Students who received only perceptual-

fluency activities had lower learning gains than students in the control condition. These 

findings suggest that sense-making competencies and perceptual fluency interact to enhance 

one another. 

To better understand the nature of this interaction, we investigated the relationship 

between sense-making competencies and perceptual fluency. To this end, we tested two 

hypotheses. First, one might hypothesize that perceptual fluency builds on sense-making 

competencies. Prior research shows that students have difficulties in making connections 

among representations and tend not to do so spontaneously (Ainsworth et al., 2002; Rau et al., 

2014). Therefore, it may be unrealistic to expect that students can induce correct connections 
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from perceptual-fluency activities unless they have a prerequisite level of sense-making 

competencies. This argument aligns with a broader literature that suggests that inductive 

learning without prior explicit instruction is often not successful (Kirschner, Sweller, & Clark, 

2006). In line with this argument, participants in prior studies on perceptual-fluency activities 

typically had considerable prior knowledge about the representations (Kellman et al., 2008; 

Kellman et al., 2009). Indeed, Kellman and colleagues suggest that the acquisition of 

perceptual fluency does not exclusively rely on bottom-up processes but that it also draws on 

top-down processes that enable students to selectively attend to meaningful visual features 

(Kellman & Massey, 2013). Although these top-down processes may not be explicit or 

conscious but instead implicit and nonverbal, they may be informed by previously acquired 

sense-making competencies (Goldstone, 1997; Rau, 2017). Based on this reasoning, this 

hypothesis predicts that students’ learning is enhanced if they receive sense-making activities 

followed by perceptual-fluency activities. 

Second, one might hypothesize that sense-making competencies build on perceptual 

fluency. This argument is based on the observation that novices have to invest significant 

mental effort into interpreting representations, which can lead to cognitive overload and hence 

interfere with their ability to learn with visual representations. Therefore, before students are 

able to make sense of visual representations, they may need some preliminary level of 

perceptual fluency. In line with this argument, Kellman and colleagues (e.g., Kellman & 

Massey, 2013; Kellman et al., 2009) propose that perceptual fluency decreases cognitive load, 

which frees up the capacity necessary to engage in higher-order reasoning about domain-
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relevant knowledge. Based on this reasoning, this hypothesis predicts that students’ learning 

is enhanced if they receive perceptual-fluency activities followed by sense-making activities. 

 We tested these hypotheses in experiments on elementary-school math learning (Rau 

et al., 2017) and undergraduate chemistry learning (Rau, 2018; Rau & Wu, 2018). In these 

experiments, students were randomly assigned to receive either sense-making activities 

followed by perceptual-fluency activities or vice versa. Learning outcomes were assessed 

with pretests, immediate and delayed posttests, as in the previous studies. Further, we used 

structural equation modeling to test how students’ sense-making competencies enhanced their 

subsequent learning of perceptual fluency and vice versa. Results showed that students’ prior 

knowledge about how the visual representations show domain-relevant concepts determined 

the direction of the relationship between sense-making competencies and perceptual fluency 

as well as which sequence was most effective. For students with low prior knowledge, sense-

making competencies enhanced subsequent learning of perceptual fluency, and receiving 

sense-making activities followed by perceptual-fluency activities was most effective. For 

students with high prior knowledge, the effect was reversed: for them, perceptual fluency 

enhanced subsequent learning of sense-making competencies, and receiving perceptual-

fluency activities before sense-making activities was most effective.  

These findings suggest that students need different types of representational-

competency supports as their learning progresses. As students’ knowledge level changes 

during the course of a longer learning intervention and because not all students learn at the 

same rate, it seems reasonable to hypothesize that adapting representational-competency 
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supports to the individual student’s needs enhances their learning of domain knowledge. 

However, because these prior studies were cross-sectional, they did not test this hypothesis. 

Further, while prior research has investigated whether adaptive support for problem-solving 

skills enhances learning (e.g., Koedinger & Corbett, 2006; VanLehn, 2011), we are not aware 

of any prior studies that have tested whether adaptive support for representational 

competencies can enhance learning. 

Research Questions and Hypotheses 

The goal of this article is to investigate whether support for sense-making 

competencies and perceptual fluency that adapts to the individual student’s needs during 

problem solving enhances learning of chemistry knowledge. Specifically, we investigated: 

Research question 1: Does adaptive support for representational competencies reduce 

students’ confusion about how visual representations show chemistry concepts, compared to 

fixed support? 

Research question 2: Does adaptive support reduce errors students make during 

problem solving? 

Research question 3: Does adaptive support increase students’ pretest-to-posttest 

learning gains of chemistry content knowledge? 

Based on our own prior research, we hypothesize that adaptive support (1) reduces 

confusion, (2) reduces errors during problem solving, and (3) increases learning gains more so 

than fixed support. To test these hypotheses, we developed an adaptive algorithm that predicts 

whether a student would benefit from sense-making activities or perceptual-fluency activities 
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based on the student’s problem-solving behaviors and then assigns subsequent activities 

appropriately. An experiment conducted as part of weekly assignments in an undergraduate 

chemistry course compared adaptive assignment of activities to a fixed sequence of activities 

within Chem Tutor.  

Methods 

Development of Adaptive Algorithm 

To develop an algorithm that adaptively assigns representational-competency 

supports, we collected data that served as the basis for a model that predicts, based on a 

student’s problem-solving behaviors, whether he/she would benefit from sense-making or 

perceptual-fluency activities. 

Dataset 

We used data from a pilot study with 129 undergraduate students who were enrolled 

in an introductory chemistry course at a large university in the United States Midwest. 

Students worked on one Chem Tutor unit per week, for ten weeks. Table 1 lists the topics 

covered in each unit as well as the visual representations used.  

--- Insert Table 1 about here --- 

Students were randomly assigned to one of five sequences of activities for the duration 

of the ten weeks. Students in a control condition received regular Chem Tutor activities that 

provided no support for sense-making competencies or perceptual fluency. Figure 4 shows an 

example regular activity. Here, students were given one visual representation at a time and 
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were asked to solve chemistry problems using the information shown in the visual. 

Consecutive regular activities provided different visuals. Students in this condition received 

four regular activities per Chem Tutor unit. 

--- Insert Figure 4 about here --- 

Students in a sense-only condition received two regular activities followed by four 

sense-making activities per unit. Students in a perceptual-only condition received four regular 

activities followed by 32 perceptual-fluency activities. Students in a sense-perceptual 

condition received two regular activities followed by two sense-making activities followed by 

16 perceptual-fluency activities. Students in a perceptual-sense condition received two regular 

activities followed by 16 perceptual-fluency activities followed by two sense-making 

activities. As shown in Table 2, the number of activities per condition was chosen so that the 

number of problem-solving steps was equal across the five conditions. For example, because 

each perceptual-fluency activity contains only one problem-solving step, 16 perceptual-

fluency activities involve about as many steps as two sense-making activities. Because sense-

making activities contain on average half the number of steps of a regular activity, two sense-

making activities equate one regular activity. A pilot study had established that equating the 

number of problem-solving steps across conditions ensures that the average time on task was 

equal across conditions. Further, the content covered in each condition was identical. Finally, 

we used problem-solving behaviors on steps that were identical across conditions (i.e., in the 

first two regular activities per unit) to predict whether students’ learning benefits from sense-

making and perceptual-fluency activities. 



REPRESENTATIONAL-COMPETENCY SUPPORT 23 

 

 

--- Insert Table 2 about here --- 

We assessed students’ learning outcomes with pretests and posttests for each unit. The 

tests contained multiple-choice items as well as open-response items. The items tested 

students’ conceptual understanding of the chemistry content covered in the given unit. As 

illustrated in Figure 5, students received a pretest at the beginning of each unit. Then, they 

worked on the Chem Tutor activities assigned to them based on their condition. Next, they 

received an immediate posttest. At the beginning of the following week, they first completed 

a delayed posttest of the content covered in the previous week’s unit, then continued with the 

pretest for the current week’s unit, and so forth. In the last week, they only completed the 

delayed posttest of the previous week. We used three different test versions for the pretest, 

immediate and delayed posttests. The test versions were equivalent in that the items asked the 

same questions but used different examples (e.g., different elements). The order of the test 

versions was counterbalanced. 

--- Insert Figure 5 about here --- 

To predict whether students’ learning benefited from sense-making and/or perceptual-

fluency activities, we focused on the first two regular activities in each unit that were the 

same across conditions. For each problem-solving step in these activities, we computed step 

performance based on whether a student’s first attempt at solving the step was correct or 

incorrect. Across the ten units, this yielded step-performance measures for 171 steps per 

student. 
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Analyses 

We searched for step-performance measures that were predictive of students’ benefit 

from sense-making and perceptual-fluency activities. To this end, we constructed a linear 

regression model for each unit. The dependent variable for each model was the pretest-to-

posttest learning gain (averaging the immediate and the delayed posttest) for the given unit. 

Predictors were the experimental factors (i.e., whether or not students received sense-making 

activities and whether or not they received perceptual-fluency activities), the step-

performance measures on the first two regular activities in the given unit, and the interaction 

between each step-performance measure with each of the experimental factors. As there were 

no differences between the conditions that received sense-making and perceptual-activities 

(i.e., sense-perceptual and perceptual-sense), we did not distinguish between these conditions 

in the following analyses. The interaction effects between step-performance and the 

experimental factors were the key point of interest of the analysis: If performance on a given 

step interacts with one of the experimental factors, that indicates an aptitude-treatment 

interaction (Park & Lee, 2003) in the sense that low-performing students benefit from a 

different type of activity than high-performing students. The regression model yielded 

significance tests and regression coefficients for each predictor. 

Results 

The regression analyses identified steps for which performance interacted significantly 

with at least one of the experimental factors. We identified 20 significant interaction effects 
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between step-performance measures and sense-making activities. Ten of them had a negative 

regression coefficient, which suggests that low-performing students are more likely to benefit 

from sense-making activities than high-performing students. Hence, these steps were 

indicative of a misconception that sense-making activities could remedy (i.e., the student 

made a mistake indicating lack of knowledge that the sense-making activities could provide). 

Figure 6 (Example 1) shows two steps for which we found significant negative interactions 

with sense-making activities. Both steps involve knowledge about the order in which orbitals 

are filled. Hence, this example suggests that sense-making activities that help students 

compare energy diagrams to another visual can help them understand orbital filling orders. 

Ten of the interaction effects involving sense-making activities had a positive 

regression coefficient, which indicates that students with high performance on these steps 

were more likely to benefit from sense-making activities. Hence, these steps were indicative 

of prerequisite understanding that prepares students to learn from sense-making activities (i.e., 

the student correctly answered a question, thereby indicating that they possessed knowledge 

that the sense-making activities presumed). Figure 6 (Example 2) shows a step for which we 

found a significant positive interaction with sense-making activities. This example suggests 

that understanding Hund’s rule is a prerequisite for students’ benefit from sense-making 

activities. 

--- Insert Figure 6 about here --- 

--- Insert Figure 7 about here --- 

--- Insert Figure 8 about here --- 
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Further, we identified 16 significant interaction effects between step-performance 

measures and perceptual-fluency activities. Fifteen of them had a negative regression 

coefficient, which indicates misconceptions that perceptual-fluency activities can remedy 

(i.e., the student made a mistake indicating lack of knowledge that the perceptual-fluency 

activities could provide). Figure 7 shows an example that suggests that students who construct 

an incorrect Lewis structure benefit from perceptual-fluency activities that ask them to 

quickly map Lewis structures to other visuals  

One of the interaction effects involving perceptual-fluency activities had a positive 

regression coefficient, which indicates prerequisite knowledge for perceptual-fluency 

activities (i.e., the student correctly answered a question, thereby indicating that they 

possessed knowledge that the perceptual-fluency activities presumed). Figure 8 shows the 

corresponding step, which suggests that students need to understand how an atom’s quantum 

numbers predict orbital shapes before they can benefit from perceptual-fluency activities that 

involve translations between orbital diagrams and other visuals. Table 3 provides a summary 

of the prerequisites and misconceptions identified per unit.  

--- Insert Table 3 about here --- 

Finally, we found no steps for which performance interacted significantly with both 

sense-making and perceptual-fluency activities. That is, there was no case in which receiving 

both sense-making activities and perceptual-fluency activities was predicted to be beneficial 

for the same Chem Tutor unit. 
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Adaptive Algorithm 

We translated these results into if-then rules so that if a student’s step-performance 

indicated some prerequisite or misconception suggesting that sense-making activities or 

perceptual-fluency activities would benefit the student, then they would be assigned next. For 

instance, the if-then rule corresponding to the misconception shown in Figure 6, Example 1 

specified that if a student incorrectly stated that 3d orbitals are filled before the 4s orbital, then 

the student would receive sense-making activities for the given unit. A second if-then rule 

from the example in Figure 6 specifies that if a student incorrectly stated that 3d orbitals are 

filled after the 4p orbitals, then the student would receive sense-making activities next. 

Similarly, a third if-then rule corresponding to the prerequisite knowledge shown in Figure 6 

(see Example 2) specified that if students correctly stated that Hund’s rule says that orbitals 

have two electrons only if all same-energy orbitals have at least one electron, then they 

received sense-making activities next. The if-then rules were ordered so that those 

corresponding to higher regression coefficients were prioritized. For example, the regression 

coefficient for the third rule from the examples just mentioned (see Figure 6) had the highest 

regression coefficient among the rules for this unit. Therefore, if a student exhibited the 

prerequisite knowledge specified in this rule, the student would receive the sense-making 

activities as specified. These rules were executed by a Python algorithm. The algorithm used 

the rules to determine, based on a student’s performance on the first two regular activities of a 

given unit, whether they met conditions for sense-making activities or perceptual-fluency 

activities. If they did, they would receive those activities next. If they did not meet conditions 
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for either sense-making or perceptual-fluency activities, they received regular activities on the 

same content. 

Methods 

To investigate whether adaptively assigning sense-making and perceptual-fluency 

activities enhances students’ learning more so than a fixed assignment of these activities, we 

conducted an experiment as part of an undergraduate chemistry course. 

Participants 

Participants were students enrolled in an introductory chemistry course for 

undergraduate students at a large university in the United States Midwest, taught by the first 

author. The course had no prerequisites but was advertised to students enrolled in 100- and 

300-level courses in chemistry and related programs (e.g., biochemistry). Fifty students 

enrolled at the beginning of the semester, but five dropped within the first three weeks of the 

semester. One student who did not consent to his/her data being used for research was 

excluded from the analysis. Hence, a total of 44 undergraduate students participated in the 

experiment (n = 23 in the adaptive condition, n = 21 in the static condition). On average, their 

age was 19.64 years (sd = 1.16). Twenty-six students reported they were female, twelve were 

male, and six preferred not to say. 

Experimental Design 

The experiment was conducted across ten weeks, with students working on one Chem 

Tutor unit per week. Students were randomly assigned either to a fixed assignment of sense-
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making and perceptual-fluency activities or to an adaptive assignment of these activities for 

the duration of the experiment. Students in the fixed condition received the sequence of sense-

making and perceptual-fluency activities that had been shown to be the most effective version 

of students with low prior knowledge in our prior studies (Rau, 2018). That is, for each unit, 

students first received two regular activities, then two sense-making activities, and then 16 

perceptual-fluency activities. Students in the adaptive condition received the same two regular 

activities at the start of each unit. Then, the adaptive algorithm assigned them to sense-making 

and perceptual-fluency activities as per the rules described above for the remainder of the 

unit. 

To equate average time on task across the conditions, we used the same procedure as 

described above; that is, we ensured each condition had the same number of problem-solving 

steps in each unit. For example, for the fixed condition, unit 1 contained 67 steps across all 

activities in this unit. For the adaptive condition, all possible options also totaled 67 steps. For 

example, if the algorithm decided a student needed more regular activities after the first two 

regular activities, these would add up to 67 steps in total including the first two regular 

activities. If the algorithm decided a student should receive sense-making activities, these 

would add up to 67 steps in total as well. Further, as described above, the content covered, 

and the visuals used by these activities was the same. Therefore, students in the fixed 

condition practiced the same content with the same visuals as students in the adaptive 

condition, regardless of which activities the adaptive algorithm assigned. Hence, the sole 

difference between the conditions was whether students received support for sense-making 
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competencies as well as perceptual fluency in all units or whether they received support only 

for the representational competency for which they were predicted to need support. 

Measures 

We assessed the effects of adaptive vs. fixed representational-competency supports on 

students’ learning of chemistry content in multiple ways. First, we were interested in whether 

adaptive support reduces students’ confusion about how the visual representations show 

chemistry concepts during learning (research question 1). To this end, students were asked to 

write weekly reflection papers. They were told that they could reflect on anything they had 

learned in the given week’s Chem Tutor assignment, with a particular focus on what they did 

or did not understand well. We then used a grounded analysis approach (Glaser & Strauss, 

1967) to examine how students expressed confusion about the chemistry concepts. In their 

reflection papers. We identified points of confusion when students stated questions (e.g., 

“What can be accepted to increase charge asides from a proton?”), mentioned they did not 

understand something (e.g., “I also didn’t get a grasp on Planck’s constant.”), or expressed 

uncertainty or difficulty understanding a concept or visual representation after completing 

instructional activities that covered these concepts or visuals (e.g., “I struggled with 

understanding the quantum numbering.”). We did not include general expressions of 

confusion on concepts or representations not covered in the given week. We then coded the 

reflection papers for the number of times the student expressed confusion in the ways just 

described. In doing so, we counted the number of distinct concepts the student expressed 
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confusion about. That is, if a student made two statements referring to confusion but they 

were referring to the same concept, they only counted as one expression of confusion. 

However, if the student made two statements about different concepts, they counted as two 

expressions of confusion. To establish inter-rater reliability, two graduate student researchers 

independently coded a random sample of twenty percent of the reflection papers with a 

resulting kappa of .78. One of the graduate students continued coding the remainder of the 

papers. 

Second, we investigated whether adaptive support reduces students’ errors during 

problem solving (research question 2). To this end, we computed error rates based on the log 

data obtained from Chem Tutor. Specifically, error rates were computed as the average 

number of times a student solved a step incorrectly on the first attempt.  

Third, we tested whether adaptive support increases students’ pretest-to-posttest 

learning gains (research question 3). To this end, we used pretests and posttests as in the pilot 

study. That is, students received a pretest immediately before they started working on the 

given week’s Chem Tutor unit. Then, they received an immediate posttest right after they had 

finished working on the given week’s Chem Tutor unit. Then, at the beginning of the 

following week, they received a delayed posttest on the previous week’s Chem Tutor unit, 

which they completed before the pretest for the given week’s Chem Tutor unit, and so forth. 

The delayed posttest for the tenth Chem Tutor unit was given at the beginning of the eleventh 

week’s course meeting and concluded the study (see Figure 5). Each test contained multiple-

choice items as well as open-response items. The items tested students’ conceptual 
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understanding of the chemistry content covered in the given unit. The open-response items 

asked students to make predictions about specific cases and explain their reasoning in relation 

to relevant concepts. For example, students were asked to compare whether the electrons of 

silicon or carbon are more likely to be farther from the nucleus and explain their reasoning in 

terms of valence electron’s energy levels. The agreement among independent graders of 10% 

of the open-response items was 85.91%. 

Procedure 

The study took place in the Fall 2018 semester as part of the chemistry course 

described above. Consent to use students’ data for research was obtained at the beginning of 

the course. The instructor of the course was blind to students’ consent and received all data in 

anonymized fashion. The study began in week 2 of the course. At the beginning of each 

course meeting, the instructor gave a 3-minute overview of the content covered in the given 

week. Then, for about one hour, students worked independently and at their own pace on the 

assigned materials for the given week (i.e., pretest for unit 1, Chem Tutor unit 1, posttest for 

unit 1; delayed posttest for unit 1, pretest for unit 2, Chem Tutor unit 2, posttest for unit 2, 

etc.). Then, the instructor led a discussion of the content covered in class. As part of the 

discussion, students were given prompts to discuss as a whole class or in small groups. If 

students were unable to attend a course meeting, they were given a chance to complete the 

assigned materials in a research lab.  

Results 
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We report partial η2 for effect sizes. According to Cohen (1988), an effect size partial 

η2 of .01 corresponds to a small effect, .06 to a medium effect, and .14 to a large effect. Table 

4 shows the means and standard deviations by condition and assessment. 

--- Insert Table 4 about here --- 

Prior Checks 

First, we checked if students showed significant pretest-to-posttest learning gains. To 

this end, we used a repeated measures ANOVA with pretest, immediate posttest, and delayed 

posttest as dependent measures. To prevent alpha-error accumulation, we use average scores 

on the pretests, immediate and delayed posttests across the ten units. We found large 

significant learning gains, F(2, 86) = 63.879, p < .001, p. η² = .598. 

Second, we checked if there were differences between conditions on the pretests. To 

this end, we used an ANOVA with condition as independent factor and average scores on the 

pretests as the dependent variable. There were no significant differences between conditions 

on the pretests (F < 1). Because pretest scores correlated significantly with immediate posttest 

scores (r = .657, p < .001) and with delayed posttest scores (r = .608, p < .001), we include 

pretest as a covariate on all subsequent analyses. 

Finally, we checked whether assumptions for ANOVA analyses were met. 

Kolmogorov-Smirnov tests showed that the distribution of none of the continuous variables 

used in our analyses significantly differed from the assumption of a normal distribution (ps > 

.200). Therefore, we can assume that the variables are normally distributed. Further, Levene’s 
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test for equality of variances showed that the error variance of the dependent variables did not 

significantly differ between groups (ps > .238). Therefore, we can assume homogeneity of 

variances. 

Effects on Weekly Reflections 

To address research question 1 (whether adaptive support reduces students’ confusion 

about how visual representations show chemistry concepts), we used an ANCOVA with 

number of confusions mentioned across all reflection papers as the dependent measure, 

condition as the independent factor, and pretest scores averaged across the units as a 

covariate. In line with our hypothesis, results showed a significant medium-sized effect of 

condition, F(1, 42) = 5.661, p = .022, p. η² =.12, such that students in the static condition 

mentioned significantly more often that they were confused than students in the adaptive 

condition. Table 5 summarizes the number of times students mentioned confusion. 

--- Insert Table 5 about here --- 

A qualitative inspection of what students were confused about revealed three major 

themes, each regarding one particular type of representation. First, we found eight instances 

where students expressed confusion about energy diagrams. Their confusion ranged from 

expressing general uncertainty about how to interpret the diagram to uncertainty about how 

specific information about atoms is represented by the energy diagram and questions about 

how the energy diagram relates to other visuals. For instance, one student mentioned being 

confused about the relationships between the electron density distribution shown by the 
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orbital diagram and the energy levels that are shown by the energy diagram. Another student 

found it difficult to create an energy diagram with the information from a Lewis structure. As 

shown in Table 5, students in both conditions mentioned being confused about this 

representation equally often. 

Second, we found ten instances of students being confused by orbital diagrams. The 

majority of these instances were related to how the orbital diagram depicts information about 

specific orbitals (e.g., about the 2px, 2py, and 2pz orbitals) or how to interpret visual features 

of the orbital diagram (e.g., shapes, size, and colors). One student mentioned difficulties in 

creating Lewis structures based on the orbital diagram. As shown in Table 5, students in the 

static condition expressed being confused by orbital diagrams more often than students in the 

adaptive condition.  

Third, we found seven instances where students expressed being confused by Lewis 

structures. In part, confusion resulted from uncertainty about how Lewis structures relate to 

other visuals. In addition, students were confused about how to interpret specific features of 

the Lewis structure (e.g., dots) and about how to infer information about other atomic 

properties from Lewis structures (e.g., atomic radius or bonding valency). For example, one 

student mentioned that Lewis structures were especially confusing because they pair electrons 

rather than spacing them out. Another student mentioned difficulties remembering the steps 

involved in constructing Lewis structures. As shown in Table 5, students in the static 

condition expressed confusion about Lewis structures more often than students in the adaptive 

condition.  
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Finally, there were 25 instances of confusion related to other visuals and concepts 

addressed within the class. Five of those instances were specifically related to visuals that 

were used only once during the curriculum, such as density distributions. For example, two 

students mentioned that they had difficulties understanding density distributions. The 

remaining 20 instances where students expressed uncertainty about specific chemistry 

concepts. These instances referred to specific concepts without reference to a visual 

representation. Because of low occurrences for each concept (< 3), we assigned these 

instances to an “other” category. The concepts included quantum numbers, electron affinity, 

isomers, charges, paramagnetic and diamagnetic compounds, and acids and bases. For 

instance, two students mentioned confusion about the difference between cis and trans 

isomers and two students mentioned uncertainty about calculating formal charges. As shown 

in Table 5, students in the static condition expressed confusion about other visuals and 

concepts more often than students in the adaptive condition. 

Effects on Errors during Problem Solving 

To address research question 2 (whether adaptive support reduces errors students 

make during problem solving), we used an ANCOVA with error rates across all ten units as 

the dependent measure, condition as the independent factor, and pretest scores as a covariate. 

Results showed a large significant effect of condition, F(1, 43) = 8.922, p = .005, p. η² =.18. 

As illustrated in Figure 9, students in the static condition had significantly higher error rates 

than students in the adaptive condition, which is in line with our hypothesis.  
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--- Insert Figure 9 about here --- 

Next, we sought to get insights into the nature of errors that were reduced in the 

adaptive condition compared to the static condition. In particular, we wondered whether 

adaptive support for representational competencies prevented particular types of mistakes. To 

this end, we qualitatively examined the steps during which error rates were particularly 

disparate between conditions (i.e., the error occurred at least twice as often in one condition 

compared to the other). Five themes emerged from this analysis. First, errors made on the 

perceptual-fluency activities were highly disparate across all units, so that students in the 

static condition made more errors on these activities. 

The second-most prevalent difference between conditions regarded errors students 

made when using visual representations to reason about chemistry concepts that required 

them to extrapolate from information shown in the representation. Specifically, we found that 

students in the static condition made more errors when working with: energy diagrams to 

reason about magnetism (unit 3); Lewis structures and shell models to reason about periodic 

table trends such as nuclear charge and shielding (unit 4); Lewis structures and orbital 

diagrams to reason about periodic table trends such as ionization energy (unit 5); shell models 

to reason about lattice energy, electrostatic forces, and the Born-Haber cycle (unit 6); orbital 

diagrams to reason about electron sharing among bonded atoms (unit 7); space-filling models 

to reason about bond energy (unit 7); electrostatic potential maps to reason about bond 

stability and ionic compounds (unit 8); shell models to explain concepts related to atomic 
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size, electron shielding, and electronegativity (unit 9); and when using ball-and-stick models 

to reason about bond stability (unit 10).  

The third most prevalent difference was that students in the static condition made 

more errors when interpreting representations. Specifically, we found that students in the 

static condition made more errors when interpreting: how shell models show the first and 

second quantum numbers (unit 1); how orbital diagrams show the first quantum number (unit 

2), how energy diagrams show valence electrons (unit 3); how Lewis structures and shell 

models each show atomic radii (unit 4); how many orbitals an orbital diagram shows (unit 5); 

how orbital diagrams and space-filling models each show electron clouds (unit 6); and how 

electrostatic potential maps show electronegativity differences between bonded atoms (unit 

9).  

The fourth most prevalent difference regarded errors made when constructing visual 

representations. Specifically, we found that students in the static condition made more errors 

when constructing: shell models (unit 1, unit 6); energy diagrams and orbital diagrams (unit 

2); and Lewis structures (unit 3, unit 5).  

Finally, the least prevalent difference was that students in the static condition made 

more errors when comparing different visual representations. Specifically, we found that 

students in the static condition made more errors when comparing: how energy diagrams and 

orbital diagrams show electrons and energy levels (unit 2); how Lewis structures and energy 

diagrams show valence electrons (unit 3); how Lewis structures and electrostatic potential 
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maps show real versus formal charges (unit 9); and how ball-and-stick models and 

electrostatic potential maps show bonds and bond dipoles (unit 10).  

In sum, the adaptive condition showed reduced errors specifically during steps that 

involved visual representations, especially when perceiving information and using that 

information to reason in ways that extended what was explicitly shown by the visuals. 

Condition Effects on Learning Gains 

To address research question 3 (whether adaptive support increases students’ pretest-

to-posttest learning gains of chemistry content knowledge), we used a repeated measures 

ANCOVA with immediate and delayed posttest scores as repeated dependent measures, 

condition as the independent factor, and pretest scores as the covariate. Results showed a 

large significant effect of condition, F(1, 41) = 7.656, p = .008, p. η² =.16. As illustrated in 

Figure 10, students in the adaptive condition had significantly higher learning gains than 

students in the static condition, which is in line with our hypothesis. 

--- Insert Figure 10 about here --- 

Inspection of Adaptive Assignments 

Next, to gain additional insights into how the adaptive version of Chem Tutor might 

supported student learning, we qualitatively examined how the 23 students in the adaptive 

condition moved through the sense-making and perceptual-fluency activities across the units. 

Figure 11 shows that there were 22 unique sequences for n = 23 students, such that only two 

students received the exact same sequence. However, we discovered common themes of how 
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students moved through the units across these sequences. To illustrate our findings, we selected 

one case of one student, Alex (pseudonym) who is representative of these themes (see red 

highlight in Figure 11).  

--- Insert Figure 11 about here --- 

As illustrated in Figure 11, many students (n = 10) received regular activities before 

they received either sense-making or perceptual-fluency activities, for at least the first unit. 

Otherwise (n = 13), they received sense-making activities in unit 1. Our examination of the 

log data showed that most of these students (n = 12) received sense-making activities because 

they made a mistake constructing a shell model. For example, Alex (pseudonym) constructed 

an incorrect shell model in unit 1. Therefore, he was assigned to sense-making activities, 

which asked him to reflect on how shell models show electrons in relation to orbital diagrams. 

Further, the majority of the students (n = 19) received sense-making activities for at 

least one unit before receiving perceptual-fluency activities, whereas the remaining students 

(n = 4) received regular activities before perceptual-fluency activities. That is, no students 

received perceptual-fluency activities in unit 1. Most students first received perceptual-

fluency activities in unit 3 (n = 12) or unit 2 (n = 9). Our inspection of the log data showed 

that all students who received perceptual-fluency activities in in unit 2 were assigned to them 

because they had demonstrated an understanding of orbital shapes in orbital diagrams. For 

example, Alex correctly explained that carbon has two orbitals with two electrons, and two 

orbitals with one electron. Therefore, he received perceptual-fluency activities in unit 2, 

which asked him to quickly translate between orbital diagrams and energy diagrams. Orbital 
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diagrams use shapes to show which orbitals are occupied without differentiating between 

orbitals that contain one or two electrons. By contrast, energy diagrams explicitly indicate 

how many electrons occupy each orbital. Without understanding this concept, it may have 

been too difficult for Alex to translate between these representations. 

All students who received perceptual-fluency activities in unit 3 were assigned to 

them because they made a mistake in constructing a Lewis structure or because they 

misinterpreted the atomic symbol in Lewis structures. For example, Alex thought the atomic 

symbol stands for the nucleus alone, rather than the nucleus and the core electrons. Therefore, 

he received perceptual-fluency activities, which asked him to quickly translate between 

energy diagrams and Lewis structures. To do so, he had to distinguish Lewis structures with 

the same number of valence electrons based on knowledge about their different number of 

core electrons. Hence, these activities likely offered Alex experience-based opportunities to 

learn that the atomic symbol of Lewis structures implies the core electrons. 

Also, most students (n = 22) received at least one unit with sense-making activities 

and at least one unit with perceptual-fluency activities. Our inspection of the log data showed 

that in most units (all except unit 2, as mentioned in the example above), perceptual-fluency 

activities were assigned because students made an error indicative of a misconception. For 

example, Alex made a mistake in unit 8 indicating that he did not understand the concept of 

electronegativity, which describes the tendency of an atom to attract electrons. 

Electronegativity affects the distribution of electrons among bonded atoms. Therefore, he was 

assigned to perceptual-fluency activities, which asked him to quickly translate between shell 
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models and electrostatic potential maps. Shell models contain information that can be used to 

retrieve knowledge about electronegativity trends in the periodic table. Electrostatic potential 

maps show electron distributions among bonded atoms. Hence, the perceptual-fluency 

activities offered opportunities for Alex to practice how electronegativity affects bonding.  

Additionally, all students who received at least one unit of perceptual-fluency 

activities (n = 22) received additional sense-making activities after the perceptual-fluency 

activities (except for the only student who never received perceptual-fluency activities). Our 

inspection of the log data showed that the algorithm assigned sense-making activities for a 

variety of reasons; both to address misconceptions and because students had exhibited 

prerequisite knowledge for the sense-making activities. For example, in unit 4, Alex drew an 

incorrect number of valence electrons when constructing a Lewis structure. Therefore, he 

received sense-making activities, which asked him to use what he learned about shell models 

to reflect on how Lewis structures show valence electrons. In unit 7, Alex demonstrated 

prerequisite knowledge for sense-making activities by correctly explaining that electrons do 

not occupy fixed positions but rather have some likelihood of being in a certain region. The 

sense-making activities asked him to relate orbital diagrams to space-filling models, which 

presumes an understanding of electron distributions. 

Finally, what stands out is that perceptual-fluency activities were almost never 

assigned for units 4-7 (with three exceptions). Our inspection of the log data showed that 

students rarely exhibited misconceptions that triggered the adaptive algorithm to assign 

perceptual-fluency activities. For example, Alex did not exhibit misconceptions about 
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electron shielding (unit 4) and electron distributions (unit 7) and constructed correct Lewis 

structures (unit 5) and energy diagrams (unit 6). One possible reason is that most of the visual 

representations in these units had been used in previous units, so that students were less likely 

to have misconceptions about them.  

Discussion 

With respect to research question 1, the results show that adaptive support for 

representational competencies reduced students’ confusion about the visual representations. In 

particular, students in the adaptive condition expressed being confused less often, particularly 

with respect to orbital diagrams, Lewis structures, and shell models. What stands out in our 

qualitative analysis of the reflection papers is that recurring themes referred to visual 

representations and how they related to specific concepts. Cases in which students referred to 

concepts irrespective of visual representations seemed to be unique cases that did not recur 

across multiple students. This suggests that students’ learning of the concepts is indeed driven 

by their ability to interpret visual representations that illustrate the concepts. 

With respect to research question 2, the results show that adaptive support reduced 

error rates during problem solving, compared to static support. Recall that the adaptive 

algorithm assigned students to sense-making and perceptual-fluency activities depending on a 

diagnosis of their misconceptions or prerequisites that was based on their performance on the 

first two regular activities in the given unit. It seems reasonable to assume that if students had 

the prerequisite knowledge to benefit from sense-making activities or perceptual-fluency 

activities, they would make fewer mistakes on those activities. Further, if students had 
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misconceptions that could be addressed by sense-making or perceptual-fluency activities, they 

should make fewer errors that exhibit that misconception later on. The finding that students in 

the adaptive condition had lower error rates is altogether in line with the interpretation that 

students received the support they needed to successfully learn with the visual 

representations.  

The qualitative inspection of which specific errors differed between conditions 

concurs with this interpretation. We found that students in the adaptive condition tended to 

make fewer errors on steps that involved interacting with visual representations, specifically, 

perceptually translating among the representations, using the information from the 

representations to reason about concepts, interpreting the representations, constructing them, 

and comparing them. Given that all these steps involved interactions with visual 

representations, it appears that adaptive support for representational competencies indeed 

helped students perform well on steps that relied on representational competencies, as it was 

designed to do. Further, our qualitative analysis showed that the impact of adaptive support 

was largest in reducing errors on perceptual-fluency activities and on steps that required 

students to use information from the representations to reason about chemistry concepts while 

extending beyond what was explicitly shown by the representations. Thus, it seems that the 

benefit of adaptive support for representational competencies particularly benefited students 

in preparing them for perceptual learning and for applying their knowledge about the visual 

representations to concepts that were abstract in the sense that they were not directly depicted. 
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With respect to research question 3, we found that adaptive support increased 

students’ gains in chemistry knowledge more so than static support. Recall that students in 

both conditions received instruction on the same chemistry content. What differed between 

the conditions was merely how the sense-making and perceptual-fluency activities were 

assigned. Students in the static condition may have received support for representational 

competencies they did not need support for, either because they had already acquired those 

competencies or because they did not have the prerequisite knowledge to benefit from support 

for them. In the first case, students would have received redundant support. Prior research on 

the expertise-reversal effect shows that redundant support can distract from content (Chen, 

Kalyuga, & Sweller, 2016; Kalyuga, Ayres, Chandler, & Sweller, 2003). Further, prior 

research on scaffolding shows that support should be carefully calibrated to the students’ 

needs in order to be effective and that overscaffolding can be counterproductive 

(Puntambekar & Kolodner, 2005; Reiser & Tabak, 2014). In the second case, students may 

have received sense-making activities or perceptual-fluency activities for which they were not 

ready. Sense-making activities may have been too difficult because they asked students to 

compare multiple visual representations, which requires students to consider how each visual 

representation depicts chemistry concepts. This requires more cognitive effort than using only 

one visual representation at a time. The qualitative inspection of errors lends credibility to this 

interpretation, given that students in the static condition made more errors on steps that asked 

them to compare visual representations. Perceptual-fluency activities may have been more 

difficult for students who lacked prerequisites because understanding how each of the visuals 
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shows chemistry concepts can enhance top-down processes involved in perceptual learning 

that allow students to quickly attend to conceptually visual features. Our inspection of how 

the adaptive algorithm assigned students to activities as well as Alex’s case provide several 

examples of how adaptive assignment to sense-making and perceptual-fluency activities may 

have supported students’ learning. 

Taken together, these findings expand prior research in several ways. First, our own 

prior research showed that students’ benefit from sense-making and perceptual-fluency 

activities depends on their prior knowledge level (Rau, 2018). Further, prior research showed 

that adapting the assignment of particular problem types to students’ given problem-solving 

skill level enhances their learning (e.g., Koedinger & Corbett, 2006; VanLehn, 2011). Yet, 

our study is the first to show that adaptively assigning activities that support specific 

representational competencies can enhance students’ learning of domain knowledge, even 

when the content covered is the same across conditions. Hence, adaptive support for 

representational competencies can enhance the effectiveness of activities in which students 

use visual representations to learn about domain knowledge. 

Second, our results provide further evidence for how support for sense-making and 

perceptual-fluency competencies should be sequenced as students’ learning progresses, 

beyond the cross-sectional findings from prior research (Rau et al., 2017; Rau, 2018; Rau & 

Wu, 2018). The results of the pilot study that were the basis for the adaptive assignment 

algorithm had suggested that students should start with regular activities or sense-making 

activities before they can benefit from perceptual-fluency activities. Our examination of how 
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the algorithm actually assigned students showed that the majority of students started with this 

sequence. Further, the adaptive assignment algorithm provided students with sense-making 

activities after they had received perceptual-fluency activities. This assignment was based on 

the algorithm’s decision that each individual student had acquired prerequisites or exhibited 

misconceptions that would allow them to benefit from sense-making activities. This finding 

aligns with earlier cross-sectional results that students benefit from sense-making activities 

again after becoming perceptually fluent (Rau, 2018). Also, in spite of these commonalities, 

most students received unique sequences, which supports the idea that students move through 

a learning progression of representational competencies at their own speed. 

Third, the current results also provide further evidence for earlier findings that 

students should receive both sense-making and perceptual-fluency activities (Rau et al., 2017; 

Rau & Wu, 2018) because the adaptive assignment algorithm assigned most students to both 

types of representational-competency supports. However, simply combining these activities is 

not maximally effective, as evidenced by the significant difference between the static and 

adaptive conditions. If any combination of sense-making and perceptual-fluency activities 

was equally effective, there should not have been a significant differences between these 

conditions. Rather, adapting the combination and sequence to students’ learning progress 

seems to be important to ensure that students benefit from them.  

Finally, our results may guide the design of representational-competency supports for 

problem-solving activities that ask students to interact with multiple visuals. We used linear 

regression to identify steps that were predictive of benefit from sense-making and perceptual-
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fluency activities because they indicate prerequisite knowledge about visuals or 

misconceptions about visuals. We translated these results into simple if-then rules that assign 

the type of representational-competency support a student needs. This methodological 

approach can be applied to any set of technology-based activities where students use visual 

representations to solve domain-relevant problems.  

Limitations 

Our findings should be interpreted in light of several limitations. First, several 

limitations relate to the choice of sample. Our study was part of a course that involved other 

activities such as class discussions, which likely affected pretest-to-posttest learning gains. 

However, we do not see why they should have affected differences between conditions. Also, 

because participating students were enrolled in a chemistry class, they were likely highly 

motivated to learn chemistry. They may also have seen the visuals in other chemistry classes 

before. Again, because this was true for all students in the sample, we do not believe this 

confounded the experimental design, although it may have affected the overall learning gains.  

Second, our sample was relatively small due to the small class size of 45 students. 

This sample size is sufficient for testing differences between two conditions, but it is not 

sufficient for testing for aptitude-treatment interactions. For example, it is possible that the 

adaptive assignment algorithm better predicted benefit from sense-making and perceptual-

fluency activities if they started out with low prior knowledge. To analyze such effects, future 

research should repeat the experiment with a larger sample.  
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Third, we did not compare the adaptive condition to control conditions that received 

only sense-making activities, only perceptual-fluency activities, or only regular activities. In 

part, this was due to the small sample size, in part, this was due to prior studies showing that 

the combination of sense-making and perceptual-fluency activities that we used in the static 

condition was more effective than any of these control conditions. Nevertheless, future 

research should verify that adaptive representation-skill support is indeed more effective than 

these control conditions within one experiment.  

Finally, because our study investigated learning with visuals in chemistry, we cannot 

assume that our findings necessarily generalize to other STEM domains. The use of visuals in 

chemistry is similar to other STEM domains because they are used to show concepts that are 

invisible or not observable with the regular eye and because a variety of visuals are used to 

illustrate different concepts. Nevertheless, each domain relies on its own set of visuals that 

were developed to address the communication needs of the given scientific community. 

Therefore, future research should test whether adaptive representational-competency support 

also enhances learning in other domains and with other visuals. 

Conclusions 

In conclusion, our study is the first to show that adaptive support for representational 

competencies can significantly enhance learning of content knowledge by reducing students’ 

confusion as well as errors during problem solving. We found medium to large effect sizes 

that are due to the individualized order in which students received support for representational 

competencies while the content covered was identical in both conditions. Given that multiple 
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visuals are widely used and that lack of representational competencies is an obstacle in many 

STEM domains, our findings suggest that adaptive support for representational competencies 

may significantly enhance STEM learning. 
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