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Abstract: The use of approximations in solving problems in sciences can be vital for students.  Order of 

magnitude estimation also helps with physical understanding of the quantities involved in a calculation. For 

example, in the first exam in a first-year class in chemistry the student must find the mass in grams of an atom; a 

couple of students will multiply by Avogadro’s number instead of dividing; for atomic weight around 100, this 

gives the order of magnitude of the mass of the moon; the moon is big, atoms are small. If the student 

considered the physical meaning of the mass, this would not be a possible mistake. Another example: calculate 

the total energy, and potential energy, of a system, and from these find the kinetic energy. If the kinetic energy 

comes out negative, something is wrong; the student should realize this. One place a student is taught an 

approximation in first year chemistry is finding the ionization of a weak acid; ionization is approximated by 

taking the square root of the dissociation constant times concentration, which only works if the concentration is 

large compared to the dissociation constant. If the student applies the approximation thoughtlessly, this produces 

an error. The adequacy of any approximation for accurate use is another concept that must be taught. Part of the 

use of approximations includes attaching error estimates to answers (sometimes expressed as significant 

figures). There is a second, related, matter that needs to be taught with the estimates; units must match. A book, 

“The Use of Estimates in Solving Chemistry Problems” (Green and Garland, 1991, Saunders) went through the 

quantitative parts of first year chemistry, showing how to estimate answers for all sections. A few examples 

from more advanced material are included too, as this kind of error persists past the first year. 

 

Keywords: Estimates, Order of magnitude, Problem solving, Physical meaning of values 

 

Introduction 

 

The introduction of calculators in place of slide rules has produced a number of great advantages, but one major 

disadvantage. When students used slide rules, the order of magnitude of the result had to be provided by the 

student, so totally ridiculous answers were relatively rare. Of course, they were not non-existent, but the fact that 

the order of magnitude was the responsibility of the user of the slide rule meant that doing a calculation required 

at least some consideration of what the numbers meant. There were still cases of occasional students who 

memorized a formula instead of understanding it, getting it wrong, and then putting down an answer that was 

incorrect; rarely was it totally ridiculous, however. The classic case is the student who, on the first exam in first 
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year chemistry, when asked to find the mass in grams of an atom with atomic mass 100, multiplies by 

Avogadro’s number instead of dividing, getting something of the order of magnitude of the mass of the moon. 

The moon is big; atoms are small. If the student had any sense of the physical meaning of the number, he or she 

would immediately recognize that the answer is ridiculous, and would correct it. Even if calculators give the 

order of magnitude, a student who is not thinking may leave the answer, because it is what the calculator said; 

the student is not thinking about what the order of magnitude should be. While I do not regret the replacement 

of slide rules by calculators, slide rules did force consideration of what the order of magnitude had to be. Having 

a sense of what is reasonable is a skill that has been recognized by well-known physicists, at least. Enrico Fermi 

famously proposed problems with very little data, the most famous of which asked simply “How many piano 

tuners are there in Chicago?”. No data was given, but if you think through the problem you can get the right 

order of magnitude. It is still the case that estimating orders of magnitude is part of the education of most 

physics students, and physicists routinely estimate orders of magnitude. This is less common in chemistry 

instruction, but would be just as useful. In order to find the answers to chemistry problems, it is a good idea to 

start with understanding what the system properties are. Unfortunately, it is all too common for chemistry to be 

taught with a lot of memorization, including equations. When a student relies on memorizing equations, it is 

usually the last chemistry course that student will pass. More advanced courses cannot be passed by memorizing 

equations. If the student is accustomed to thinking through the physical meaning of the numbers in the 

problems, then that student will understand the work, and will be able to move forward. The use of estimates in 

chemistry problems is offered in this spirit. The essential point has been recognized, sometimes in regard to 

particular cases, sometimes more generally, but limited or specific applications. For example, Penn has pointed 

out the general issue(Penn, 2018). Ryan and Wink gave a general example (candies in a jar), general in the sense 

that it introduces the idea of approximation without being tied to a particular chemical example(Ryan & Wink, 

2012). Matsumoto et al gave examples  suitable for a high school class(Matsumoto, Tong, Lee, & Kam, 2009) 

Specific examples include one topic that is found in most first year chemistry texts, but which students may find 

confusing, namely, pKa calculations(Flynn & Amellal, 2016). By the time one gets to physical chemistry, 

approximations are even more necessary, and specific examples have been offered by a number of 

authors(Gasyna & Light, 2002; Lombardo, 2000; Nassiff & Boyko, 1978; Olivieri, 1990; Soares da Costa 

Junior, Marques da Silva, & Moita Neto, 1999; Viossat & Ben-Aim, 1993; Wallner & Brandt, 1999).  

 

The overall approach can be illustrated by the one example in which an estimate is normally used in first year 

chemistry. The student is taught to make an approximation in calculation of the degree of ionization of a weak 

acid. The general form for this calculation is  

 

Kd = [H+][A-]/[HA] = [H+][A-]/([HA]o – [A-])                                (1) 

 

where Kd is the dissociation constant, [A-] (= [H+]) is the concentration of the corresponding ion, [HA] is the 

concentration of the undissociated acid, and [HA]o the total concentration of the acid plus [A-], thus the known 

concentration that was added to make the solution. If [H+] = [A-] << [HA]o one can approximate this by 



 

International Conference on Education in 
Mathematics, Science and Technology 

 

www.icemst.com April 1-4, 2021 Antalya, TURKEY www.istes.org 

 

19 

discarding [A-] in the denominator, making [H+] ≈ (Kd[HA]o)1/2, simpler than solving the quadratic that would 

be necessary without the approximation. The trouble is that the approximation is valid only for cases in which 

[HA]o >> Kd. This is rarely explained to the student, leading to inappropriate use when the latter condition is not 

fulfilled. Usually the dissociation of a weak acid is introduced in cases where the condition is fulfilled, and later, 

if a case arises in which the approximation is no longer valid, the student still uses the approximation, as he or 

she has not been taught to think about the meaning of the numbers. For that matter, the approximation may be 

good when it is only necessary to get the pH to ±0.3, but not, with the same [HAo] and Kd, if it is necessary to 

calculate the pH to ±0.03. The connection between approximation and the accuracy of the estimated result also 

needs to be taught. Obviously, there are many more examples, and we will consider some more in the main 

discussion. The two main points are that numbers have physical meaning in chemistry and physics, and 

approximations are only accurate to a certain extent and it is possible to estimate the accuracy. Students often 

miss these points. They must be taught.  

 

This is not trivial even in professional literature, where there are approximations, often, but not always, in 

connection with constructing models. Sometimes these approximations are used under conditions in which they 

are so far from correct, because the assumptions on which they are based are not nearly fulfilled, as to constitute 

physical errors. For example, calculating Debye lengths in systems that are too small to have enough ions to 

form an ionic cloud produces nonsense. Small systems, such as found in biology, for example in sub-cellular 

compartments, are subject to large fluctuations, a point which may reasonably be ignored in a first-year class, 

but which must not be ignored in professional literature. The same is true for some inorganic systems at 

surfaces, which, having one small dimension, sometimes act like a small system. This is not the main point of 

this paper; nevertheless, when this type of error appears in professional literature, it suggests that this should 

have been taught in the undergraduate curriculum, at least in simplified form, perhaps not in the first-year 

course, but certainly no later than physical chemistry. In the first year it may be possible to introduce 

fluctuations in an Honors section.   

 

There are on-line tutoring sites, mostly intended for generic use with textbooks. The author is not aware of any 

first-year textbooks that systematically use estimates across the curriculum, and generally point to the physical 

significance of quantities in problems. There are exceptions in specific chapters of some texts, but it is generally 

correct that the use of approximations is not used as much as it should be, nor as systematically. The online sites 

are a good representation of standard treatments of introductory chemistry problems.  

 

It is not the case that there will never be a gross error in a calculation, and this not limited to students; it is the 

case that such an error should recognized and corrected. To do this, estimating the answer, at least as to order of 

magnitude, will allow these errors to be avoided, or else corrected. Green and Garland(Green & Garland, 1991) 

addressed this problem in a book by going through the quantitative parts of the first-year chemistry curriculum 

and showing, using examples, how to start on problems by estimating an answer, at least as to order of 

magnitude. The standard solution followed the estimate in each example in the book, often with some discussion 
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of what the physical meaning of the answer suggests. The usefulness of the estimate is somewhat variable, in 

that some answers allow simply an order of magnitude estimate rather than a priori physical reasoning, without 

use of any equations. However, even these order of magnitude uses of an equation can generally illustrate what 

is being calculated. The Table of Contents of the book shows the topics covered. 

 

Table of Contents 

 

     Chapter 1: Introduction 

     Chapter 2: Dimensional Analysis 

     Chapter 3: Atomic Weight and Molecular Weight Calculations 

     Chapter 4: Gas Law Calculations 

     Chapter 5: Stoichiometry 

     Chapter 6: Atomic Structure and Spectra 

     Chapter 7: Unit Cell Calculations 

     Chapter 8: Solution Calculations 

     Chapter 9: Chemical Equilibrium: Kc, Kp and Keq 

     Chapter 10: Ksp and Solubility 

     Chapter 11: Acids, Bases, Buffers and pH 

     Chapter 12: Thermochemistry 

     Chapter 13: Chemical Kinetics 

     Chapter 14: Electrochemistry 

     Chapter 15: Nuclear and Atomic Structure 

 

Each chapter had about 10 worked out problems, some chapters more, some less, in the format 1) QUESTION 

2) ESTIMATED ANSWER 3) ANSWER. The third section contained the conventional answer, as it would be 

done in most textbooks. The second section is the new element discussed here. Many of the examples had two 

or three parts, of increasing complexity (although in this paper, we will mostly avoid these), in addition to 

comments or notes, suggesting that the student think further about whether the numbers given in the problem are 

in fact plausible, or inviting the student to think further about possible extensions. In this paper, mostly 

examples from the simplest problems, in a fraction of the chapters, are discussed, which suffice to illustrate the 

general principles of the approach. However, one or two instances of more complex cases or more advanced 

topics, are also included here to suggest what is possible. Many problems ran to three or four pages, with the 

complete explanations and comments. 

 

The discussion of the weak acid dissociation problem in the introduction to the book suggests what is involved. 

The introduction covers certain mathematical approximations. For example, to estimate square roots, a 

reasonably good approximation comes from expanding, for a > b, (a2 + b2)1.2 as a + b2/2a. The student does not 

need to know anything about expansions; it is enough to simply know the rule, and check that (a + b2/2a)2 = a2 + 
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b2 + b4/4a2. If a > b, the error is small; the worst case is a = b; try 21/2 = (1 + 1)1/2 ≈ 1 + ½ = 1.5, approximately a 

6% error from the correct value of 1.41. By the time one gets to 101/2 = (9 + 1)1/2 ≈ 3 + 1/6 =3.167, the 

approximation is good to three figures (101/2 = 3.162). The student should test a few examples to know how 

valid the expansion is. While pushing buttons on a calculator could obviously give the correct answer in any 

numerical case, there are times when one has an expression that is the sum of two quantities, one clearly larger, 

and the approximation gives a general result that is much more useful than carrying the radical expression. What 

is more, it gets the student used to using approximations, even if the derivation will not come until later in the 

student’s education. Other examples include logarithms (ln(1+x) ≈ x for x << 1). Several other useful 

approximations are included in the introduction.  

 

This approximation to the square root is useful, for example, in solving a quadratic equation, as might be 

expected. The quadratic equation formula,  

 

X = -b/2a ± (1/2a)(b2 - 4ac)1/2      (2) 

 

because it involves a square root, is an obvious candidate for the use of this approximation. We can combine 

this with the weak acid approximation we discussed earlier. For that case, the solution, assuming [HA]o>>Kd is  

[H+] =  (Ko[HA]o)1/2.  Without the assumption,  

                                        

 [H+] = - Kd/2 ± ½(Kd
2 +4[HA]oKd)1/2     (3) 

 

which reduces to the approximate answer if 4[HA]o>>Kd. What if 4[HA]o ≤ Kd? We can use the approximation 

for the square root to get [H+] ≈ - Kd/2 + ½(Kd +4[HA]oKd/2Kd) = [HA]o  Note that we must take the plus sign 

for the square root to get the concentration to be positive, and for that matter for the approximation for the high 

concentration case to appear from the exact answer. The final answer for the 4[HA]o ≤ Kd case, [H+] ≈ [HA]o, 

means the acid dissociates completely, so we could have reached the same solution by understanding 

fundamental chemistry—if the concentration is less than the dissociation constant, the acid acts like a strong 

acid, dissociating completely. However, it is most likely the student does not have enough experience with 

chemistry for this to be intuitive, so the use of approximations can make the point, which can in turn be 

reinforced by the teacher. This would help the student gain a start toward considering what the approximations 

mean, and the way in which it is possible to attach real chemical meaning to the results of calculations. 

 

The chapter on dimensional analysis is not quantitative, but it is very necessary. One of the most common errors 

students make is to confuse units. There are normally unit conversion exercises in the first chapter of chemistry 

first-year texts, but rarely are the students put through the exercise of first determining reasonable values of the 

answer to a calculation. Each chapter in the Green and Garland book has a brief (some chapters, very brief) 

introduction going over the fundamentals of the topic of the chapter. However, these introductions are not 

intended to take the place of a textbook. 
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 An Example of a Worked-Out Estimate, Emphasizing Unit Conversions 

 

 This example is not the first in the chapter, so it is not the first the student should work through. QUESTION: 

On a certain day in New York, the concentration of CO (carbon monoxide) was measured as 2.0 x 10-5 g L-1. If 

the total volume of air over the city is 1.5 x 1012 ft3, how many English tons of CO were present? (An English 

ton weighs 2000 lbs, as compared to a metric ton which weighs 1000 kg, about 10% more.) 

 

ESTIMATED ANSWER: To begin with, we ignore the difference between English and metric tons—it is 10% 

different, so not important in an estimate. Let’s split the problem up. Again, we have to make two conversions, 

one on mass, one on volume. The mass conversion is easy, 106 g to 1 ton, so 2 x 10-5 g L-1 = 2 x 10-11 tons L-1. 

(Note that grams are smaller than tons, so there are more of them, 10-5 instead of 10-11
, in the same volume, 1 L, 

of air.) [An obvious error that a beginning student can make is to do the conversion in the reverse direction—

one would hope that seeing 10 g L-1 would immediately tell the student to go back; this is not always something 

the student thinks of—the note points out that the direction of conversion should give a smaller number, but 

does not, in this case, point out that the result of choosing the wrong direction is ridiculous—although it might 

be good to do so.] However, we have lots of liters [italic  

“lots” in the original] A cubic foot is bigger than a liter. So we are looking for a number which is bigger than 

(1.5 x 1012 ft3)(2 x 10-11 ton L-1) = 30 ft3 ton L-1. Actually, one foot ≈ 30 cm so 1 ft3 ≈ 27,000 cm3 = 27 L. 

Therefore, we want a number in the vicinity of 30 ft3 ton L-1x 27 L ft-3 ≈ 800 tons  

 

This is the end of the estimate. We forget about the 10% correction to English tons, because we have only one 

significant figure or not even that, in the estimate. The problem is then worked out in the standard manner, 

getting 937 tons, rounded immediately to 900 tons (metric). The volume of air over New York cannot be so 

exact, so at most one significant figure is justified, and there is no real point in bothering to convert to English 

tons, but one would get 1000 English tons to one figure. This is one of the examples in which the student is 

invited to consider the plausibility of the conditions and of the given quantities in a problem. Obviously, this 

problem is only valuable as an exercise, but it is a useful exercise, requiring two conversions, and thinking about 

the direction of each conversion before carrying it out. When the complete problem is worked out, it checks as 

to order of magnitude (better, in this case). Before the student pushes buttons on the calculator, the answer is 

available as a check on whether it is reasonable. If, for example, the student had reversed the conversion from ft3 

to L, and gotten around 1 ton, it should have been immediately obvious that something was wrong (should, 

because it is not so obvious in this case what the order of magnitude should be—it is more the order of 

conversions that should be checked). It may seem that this was a fairly oversimplified example, but students do 

get this type of question wrong often enough to make it worth going through it. By requiring an estimate first, 

the student must think through the steps, which is normally enough to avoid mistakes. The book gave two 

significant figures for the volume and the concentration. An astute student might note that the concentration can 

be measured and averaged over the city, but that the volume depends on some sort of definition of boundary, so 

that the second significant figure of the volume is somewhat arbitrary, and the concentration must depend on an 
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average, since pollutant concentration is unlikely to be as high in wealthy areas of the city as in poorer areas. 

However, all this goes beyond what would be expected in a first-year chemistry class. 

          

Summary of Other Problems 

 

From this point forward, we will only summarize problems, showing the main point(s) that illustrate what is 

being emphasized to the students. 

 

Molecular and atomic mass 

  

1) The isotopes of Cl are given to five significant figures, together with the percentage composition. Of 

course, the student must realize by looking at the figures, without starting to use a calculator, that if the 

sample is roughly ¾  ≈35 atomic mass, ¼ ≈37 atomic mass, the result should be closer to 35, but >35, 

without doing any arithmetic at all. The simplest approximation is to round off the given molecular 

masses to 35 and 37 and average these using 3/4 and 1/4 as proportions, getting about 35.5. After that 

the complete calculation, using a calculator, should be trivial. If the answer is very different, the 

student should be able see at once that the calculation must be redone.  

2) In the same chapter, suppose we ask for the mass in grams of an atom of X, given that the molecular 

mass of AX2 is 120, and the atomic weight of A is 60. This looks totally trivial, but the student should 

note that mass in grams, not atomic mass units, is asked for, so the answer should be of the order of 10-

23, not 10.  

3) Find the molecular mass of YBa2Cu3O7. Estimate: note that there are 6 metal atoms and 7 oxygen 

atoms. If we use 100 for a metal atom, and 100 for 7 O atoms, we get 700. This takes almost no time, 

and the student should be very suspicious of any result out of the 500 to 1000 range. There is no claim 

that 700 is actually correct to even one significant figure, although it happens that it is in this case; the 

answer is 668.9 

 

Gases 

 

Here the book first very briefly reviews the ideal gas laws, but really relies on standard textbooks; it is assumed 

that the student has access to a standard textbook. There are a couple of van der Waals equation problems also 

included, which also help the student understand the order of magnitude of the correction. Anywhere in the 

general vicinity of STP, and past room temperature, the estimates of the total quantities remain unchanged, as 

the correction is too small to see to one significant figure. However, the problems can be used in estimating the 

magnitude of the correction itself. 

 

1) Interstellar space has about 1 atom of H per cm3. The temperature is around 3 K. Find the pressure. 

Estimate: To begin with, this is a one significant figure problem, so there is no extensive calculation in 
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any case, but it is not so obvious how to get the order of magnitude.  By now the student should know 

that the molar volume of an ideal gas at around 300 K, 1 bar pressure is roughly 25 L (22.4 L at 

standard temperature and pressure (STP)). If there is a mole in 25 L, the volume for one atom 

(averages: here we do not introduce fluctuations, so we omit the word averages) is 25/6 x 1023 ≈ 2.5 x 

10-22 L, or, using the fact that there are 1000 cm3 per L, 2.5 x10-19 cm3 per atom, if we were at 300 K. 

Pressure should be around 19 orders of magnitude below the 1 atm value at around STP since there is 

only 1 atom instead of 1019. However, the temperature is 3 K, so the pressure will be another factor of 

100 times less; taken together, we should expect a pressure around 21 orders of magnitude below that 

near STP. Again, this is a one significant figure problem; the estimate of 1 atom per cm3 is not good to 

more than this, and the assumption that the gas is at equilibrium with the cosmic background 

temperature is not locally accurate, except perhaps by accident, either. The estimate in effect is the 

answer in this case. Nevertheless, it is a very useful problem in getting students used to the idea of 

dealing in orders of magnitude, and obtaining reasonable results. 

2) A syringe is filled with 25 mL of CO2 gas at 30o C. The syringe is then immersed in an ice bath at 0o C, 

and the pressure remains in equilibrium with the new surroundings. What is the new volume of the 

gas?  Estimate: here the number of molecules is unchanged, and the pressure is unchanged, so we only 

have a drop-in volume with lower temperature. To begin with, the student should note that one gets a 

drop, not an increase, in volume, as the temperature drops, while all else remains constant. Second, the 

student should convert to Kelvins, getting a drop from 303 K to 273 K, almost exactly a 10% drop, so 

the volume drops approximately 10%, and in this case,  it makes sense to take the estimate to be pretty 

close to exact, making the final volume 22.5 mL. To three figures, this is the final answer as well. The 

difference with the standard approach to the problem, in which the Gay-Lussac Law is plugged into, is 

that the student should reason through the steps, observing that the volume must drop, and seeing at 

once that the drop is close to 10%. If this is done before plugging in to the Law, all possible incorrect 

answers are eliminated. 

 

Standard variations on the same theme include changing the number of molecules and pressure as well as 

volume and temperature.  As noted above, there are also a couple of van der Waals equation problems in the 

book, but these illustrate the point that when small corrections are involved, the estimate is useful instead for the 

magnitude of the correction; the overall quantities can be estimated by sticking to ideal gases, except under 

unusual conditions, such as near the critical point. However, it is at least useful to see at once the direction of the 

change. The (p+a/V2) term means the pressure will be less, while the (V-b) term means the volume must be 

larger, compared to the ideal gas values. For the magnitude of the correction, given the magnitude of the a and b 

terms makes it possible to estimate the magnitude of the difference from the ideal gas case.  

 

Stoichiometry 

 

1) Lavoisier heated tin, Sn, in air, and found that it gained weight. If he started with 10.00 g of tin, how 
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much weight would it gain? Given: Sn + ½ O2 = SnO 

 

Estimate: first we have to know some basic chemistry: tin reacts with oxygen, but not nitrogen, and the 

compound formed is SnO. (We ignore the contribution of SnO2—this is given to the student as an SnO product, 

without the complication) Then, with one atom of oxygen to one atom of tin, it is only necessary to look at the 

atomic weights. Oxygen mass is about 1/8 that of tin, so the weight of oxygen added is about 1/8 that of the tin, 

or around 1.25 g. So far, there has been no calculation other than finding 1/8 of 10. The problem is then worked 

out formally, and the final answer is 1.35 g. Here, the problem can be talked through, so that the student knows, 

before resorting to the calculator, that the answer must be pretty close to 1.25 g. Checking that the weight of 

oxygen is a bit more than 1/8 that of tin tells us that the answer must be >1.25. 

 

Part 2: Extending this problem, Lavoisier found that if he heated 10.00 g of Sn with air in a       sealed 10.00 L 

vessel, the total weight did not change. The initial pressure in the vessel was 1.000 atmospheres. Find the final 

pressure if the system is brought back to the initial laboratory temperature of 17.0 oC. 

 

Estimate: To begin with, gas is being subtracted from what was in the vessel initially, so an upper limit on the 

final answer is 1.00 atm. If all the oxygen reacted, given that O2 is about 20% of air, 80% of the air must remain, 

so a lower limit must be 0.8 atm. Before we do anything, we know the answer must be 0.9 atm ±0.1 atm. We 

can refine the estimate as follows: We have about 0.08 moles of Sn (by this time, the student should know how 

to get from grams to moles); each mole of Sn uses 0.5 mole of O2, hence we use ≈ 0.04 moles of O2, or, 

anywhere in the general vicinity of STP, about 1 L volume of gas, meaning about 0.1 of the original volume, so 

the final pressure should be about 0.9 of the original pressure, or about 0.9 atm.  

 

If the calculation is done to four significant figures, the answer is 0.8998 atm. In order to get the final answer, it 

is necessary to have the temperature. The student is informed that the fact that the estimate equaled the final 

answer to three significant figures is just luck, but again having a reasonable estimate allows confidence in the 

result of a calculation that takes several steps. The 17.0 oC allows four figures, when 273.1 is added. Actually, if 

we assign an error of one in the last place of volume and initial pressure, the answer should really be truncated 

to three figures. This was not discussed in the book, as error calculation that assumes the maximum and 

minimum values of the data are not covered, nor the use of root mean square error estimates. These topics are 

not usually appropriate for a first-year course.  

 

Chemical equilibrium:  There are several types of problems in this category. Essentially these are problems that 

involve equilibrium constants: Keq, including Ka (acid dissociation), Ksp (solubility products), Kp for gas 

pressure equilibrium, and related problems. Although this chapter comes before thermochemistry, the 

introductory material includes the relation  

 

ΔG = -RT ln Keq                                                                           (4) 
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  without much explanation of ΔG, but enough to do some problems.   

 

We start out by pointing out that if Keq approaches zero, we have almost entirely reactant, if Keq>>1, we have 

mostly product (all product if Keq reaches infinity, but we do not discuss in this section the fact that exactly zero 

or infinity is impossible—that requires more of thermodynamics than we can use in this chapter—however, the 

student might surmise this from the fact that  

 

                               Keq  = [P1][P2]/[R1][R2], (Pi = products, Ri = reactants)                       (5) 

 

or similar forms for other stoichiometries, together with the ΔG relation. If Keq ≈ 1, ΔG must be fairly small, 

from the log relation. “Small” must be in relation to RT. If |ΔG| >> RT, Keq ≈ 1 cannot be correct. 

 

      This said, the main point of the chapter concerns the Keq calculations. For gas calculations, Kp is given, as is 

the relation between the Kp and Keq. Some examples: 

 

1) This problem is taken from a 1913 paper (6) on the dissociation of PCl5(g) near 500 K: 

                 PCl5(g)   → PCl3(g) + Cl2(g) 

 

α is the fractional extent of dissociation, so that if we have n moles of PCl5 to start, we have nα of PCl3 and of 

Cl2, and 1 – nα of PCl5. The problem is to find ΔGp at 500K. The data are given in Table 1: 

 

Table 1. Temperature-Pressure relation for PCl5 

T (K) p(mm) α 

462 762.8 0.244 

485 814.7 0.431 

534 1214.5 0.745 

556 1370.1 0.857 

574 1358.6 0.916 

 

ΔGp is the value of ΔG in terms of pressure, and is independent of total pressure. The relation between this and 

the ΔGc (in terms of concentration) is given earlier in the chapter. If the amount of dissociation is about half, the 

ΔG value must be small in absolute value—there is not much difference between reactant and product 

equilibrium concentrations. From the looks of the data, at 500 K the α is around 0.5. This suggests Kp ≈ (.5)2/(1 - 

.5) = 0.5, so ΔG ≈ -RT ln (.5) ≈ 3 kJ. The actual answer, which requires a rather extensive calculation, is +2.6 

kJ. Again, the approximation happens to be closer than it has any right to be. However, that the value should be 

small is apparent without even this much effort. If the value were much greater than 20 kJ, or much less than -20 

kJ, the degree of dissociation would be nowhere near 0.5 (the student should by this time know that RT near 300 
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K is ≈2.5 kJ, so should know that around 600 K, RT≈ 5 kJ). Once we have this much of an estimate, we can 

proceed with some confidence that the answer must not be large in absolute value, probably ≤ RT.   

 

2) The idea of free energy of formation was explained in the introductory material for this chapter. 

Hence, the student should know that if we give the free energy of formation of CO, it is the free 

energy of reaction for  

  

C(S) + ½ O2 → CO                                                      (6) 

     

Question: Given total pressure =10 atm, and ΔGp = -137 kJ mol-1 find the final pressure of O2 and CO. Estimate: 

We are able to find the partial pressure of CO given the total pressure. In this case, the ΔGp is far greater than 

RT, -137 kJ mol-1 and is negative (the free energy of formation of CO is given). 

 

A large negative ΔGp implies that the product, CO, will completely dominate the mixture. We expect pCO ≈ 10 

atm. Since we only have three significant figures, and at 300K, 137/RT > 60, so that we have something like e-60 

≈ 10-24 for the pressure of O2 (this is not exact - and is not the way to do the exact calculation, but for the 

estimate it is good enough). If there is so little O2, all the rest must be CO, so its pressure is equal to the total 

pressure to more than three significant figures, making pco = 10.0 atm. Again, the calculation is fairly complex if 

it is done properly, which allows room for mistakes. If the estimate is done first, an erroneous result will be 

immediately apparent.  

 

3)  Mix 100.0 mL of 0.1000 M HAc with 100.0 mL of 0.0750 M NaOH. Find the final pH. The pKa 

of HAc is 4.75 

 

Estimate: To begin with, the student must recognize that this is a buffer problem; we assume that the student 

does realize this. NaOH is a strong base and HAc a weak acid [presumably the student already knows this, and 

the fact that the pKa is given for HAc should be enough of a reminder, if one is needed]. There is more than half 

as much strong base as acid, so this will form more salt of the acid than there is acid remaining. This already 

tells us that the ratio of [Ac-]/[HAc] >1, so we must have pH > pKa. Since the ratio is not close to an order of 

magnitude, the difference will not be huge. We expect a pH > 4.75, but not by a full pH unit, so around 5. In 

solving the problem, remember that the final volume is 200 mL, so the concentrations are half those in the two 

starting solutions. 

The final answer to the problem is pH = 5.23.  

 

Thermochemistry 

 

This chapter has 8 pages of introductory material, since we were not satisfied with the presentation in some 

texts. There is a brief introduction to the most important thermodynamic quantities, to calorimetry, to the Laws, 
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and to definitions (reversible/irreversible, path independence, etc.). After this, it is possible to introduce 

problems knowing that the student has the basic concepts at least defined.  

 

1) Part 1: For the reaction: 

 

CH4(g)
 + HCl(g) → H2(g) + CH3Cl(g)                                              (7) 

 

the free energies of formation, ΔGf
o, are: CH4: -50.79 kJ; HCl: -95.27 kJ; CH3Cl -58.5 kJ. 

 

Estimate: We can just look at the values—as a rough approximation the CH4 and CH3Cl values cancel, leaving a 

large negative value on the left, so the overall result must be around +95, but less because ΔGf
o of a product is 

more negative than that of the reactant we compared it to. The first thing the student should notice is that with a 

large negative value on the left, the overall result must be >0.  

 

Actually, setting this up is almost trivial, and the answer is +87.6 kJ. 

 

Part 2: Find the final partial pressure of CH4 and of HCl if their initial partial pressures are both 10.0 atm, and 

the initial partial pressures of the products are zero. T=298 K. All reactants and products are gases, and can be 

assumed to be ideal. Then get the partial pressures of the products. 

 

Estimate: With such a large positive ΔGf
o the reaction hardly gets started. Just looking at the exponential term 

exp(-ΔGo/RT) ≈ exp(-35), we see without doing any work the final partial pressure of the reactants is almost as 

large as the initial partial pressure, 10 atm. More than three significant figures would be needed to see a 

difference. We can use this to get the final partial pressures of the products easily, since the final partial pressure 

of the reactants is known. The one estimate we make is to note that the final partial pressure of products must be 

very small. 

 

As there is no change in the number of moles, Kc = Kp = exp(-87.6/(8.3*298)) = 4.49 x 10-16. Given the 

stoichiometry, let P = the final pressure of H2 = final pressure of CH3Cl, so Kp = P2/102, giving P = 2.12 x 10-7 

atm.  

 

In this case, we skipped the estimate for the products, as there was only one step, and we only observe that P<<1 

is satisfied. We could have immediately realized that we needed < e-15 for the pressure from the e-35 we estimated 

for Kp. (e-15 = 3 x 10-7). This could have been used as a check, or an estimate. At the least, the student should see 

that this is reasonable. 

 

This problem, with its two parts, is interesting in that it requires the student to think through information in the 

problem and realize that much more can be obtained than the original, rather simple, thermochemistry problem. 
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We could add a third part, asking, given the number of moles that actually reacts, what the volume must be. 

Then this also becomes a very simple stoichiometry problem, and a somewhat more interesting gas law 

problem. In the latter part, the student is reminded of a short cut to estimate volumes in such problems, with V ≈ 

25 (n/p) L near room temperature, and use only one significant figure for n moles and p bar or atm (bar and 

atmosphere are equivalent for estimates).   

 

2: A solid melts to an “ordinary” liquid, which then boils. Given: ΔHm = 12.5 kJ mol-1; ΔSm = 37.5 J mol-1 K-1; 

ΔSb
  = 85 J mol-1 K-1; MW = 120; Tb =393 K. Find: a) Tm   b) ΔHb

 per mole  c) ΔHb per gram 

 

a) Estimate: For Tm we can use ΔHm =Tm ΔSm. Before we even start doing arithmetic, though, we should 

notice that we have an immediate upper limit, in that Tm will be less than Tb = 393 K. If we get 

anything greater than 393 K for Tm when we do the arithmetic, we should look for a mistake. Also, 

“ordinary” liquids generally have a liquid range under 100 K at ordinary pressures (sometimes even 

less at 1 atm, like CO2, which sublimes, and has no liquid range at 1 atm). Salts and metals are also 

different, with much larger liquid ranges. Many simple salts have relatively high melting points (there 

are some complex salts that are ionic liquids at room temperature), and metals mostly have melting 

points above 393 K (exceptions include Hg and Ga, and, near the upper part of that range, Na and K). 

Knowing some elementary chemical properties helps with the estimate in this problem. Now that we 

have thought of all this, let us return to our “ordinary” liquid, and find that Tm = 12500/37.5 = 333 K, a 

reasonable value (remember that ΔS is in J, ΔH in kJ, so don’t forget to adjust the decimal 

accordingly).     

b) Estimate: ΔHb = Tb ΔSb. This is almost trivial, but we must expect a value greater than       ΔHm. In one 

sense, this is even more trivial than usual, as Tb > Tm and ΔSb > ΔSm. ΔHb = 33.4 kJ. This is about 

3ΔHm, which is reasonable. The value of ΔSb = 85 J K-1 mol-1 is found, within a few kJ, for almost all 

“ordinary” liquids at around 1 atm pressure. The entropy of a gas is much greater than that of a liquid, 

usually, and therefore, the ΔSb = Sg - Sl  is essentially that of the more or less ideal gas at the boiling 

point, where the liquid comes apart into gas molecules. The reason different substances, with different 

Tb, have about the same entropy of the gas phase at the boiling point, is more complicated, and not part 

of the first-year course. If the liquid is highly ordered, such as water, the ΔSb value is larger, as water 

still has more order which is destroyed at the boiling point, hence lower liquid entropy, than an 

ordinary liquid. The difference is not huge: ΔSb (water) = 109 J K-1 mol-1. However, this is enough to 

remind us that water is more ordered than an ordinary liquid. The ΔSb ≈ 85 J K-1 mol-1 value is known 

as Trouton’s Rule, and is fairly general for ordinary liquids. Metals and salts do not follow Trouton’s 

rule. The rule implies that ΔHb α 1/Tb over a range of liquids. This is not the same as the Clausius-

Clapeyron equation, which relates boiling point of a single liquid to pressure.  

c) Estimate: Grams are smaller than molar mass, in this case 120 times smaller, so all the molar quantities 

must be divided by 120 to get the per gram values. It is only necessary to remember that grams are 

smaller than moles to get the relative order of magnitude correct,                     
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Electrochemistry: This topic comes near the end of the course, and many of the concepts that had to be 

introduced earlier can now be assumed known by the students. By this time, thermodynamics, equilibrium, and 

kinetics have all been covered. The students know what a redox reaction is, and presumably should be able to 

handle quantities of charge, meaning numbers of electrons. There are 96,520 Coulombs (C) to a mole of 

electrons, and if one simply keeps a factor of 105 in mind, converting from charge to moles is quick. Since 1 

ampere (A) means 1 C s-1, it takes 105 seconds for 1 A to run a reaction long enough to produce a mole of 

product, if it is a 1 electron reaction. It is not difficult to correct if 2 or 3 electrons are involved, or, as is 

typically the case in laboratory experiments, the current is less than 1 A. Finding the order of magnitude for any 

problem involving a reaction driven by electric current is straightforward.  

 

Redox potentials are a different set of problems. Here the energy is involved, and it is often necessary to 

translate from volts to kJ; the student must know that volts x charge is energy; specifically, 1 C x 1 V = 1 J. 

Again, there are a couple of conversion factors that enable the student to be sure of being in the right 

neighborhood. For a mole of electrons, ≈105C, therefore a redox reaction that has a difference of half-cell 

potentials of 1 V will have ≈100 kJ difference in energy, and will go to completion (or, will not go at all, if 

written in the reverse direction). For a one electron reaction it takes approximately 60 mV to move the 

equilibrium one order of magnitude, for two electrons, 30 mV. This is reflected in pH meters, which are actually 

high input impedance voltmeters, and determine the pH from the potential produced by an electrode sensitive to 

[H+]. One uses concentration without correcting for activity coefficients at first year chemistry level. 

  

 Problem 1.  Consider the reaction 

                                                         Cd+2 + Fe → Cd + Fe+2 

The half-cell potentials are              Cd+2 + 2e → Cd                         E1/2 = -0.403 V 

                                                         Fe+2 + 2e → Fe                          E1/2 = -0.440 V 

 

Find the ratio of concentrations [Fe+2]/[Cd+2] at the point that the reaction has no tendency to move in either 

direction (i.e., at equilibrium). 

 

Estimate: The reduction potentials are not very different, so the ratio should not be orders of magnitude away 

from 1. On the other hand, |Eo| > 30 mV, and it is a two-electron reaction, so the ratio to balance Eo must be >10 

(now check the sign and the ratio—or is it <0.1?). To have the reaction have no driving force, that is for ΔG = 0, 

we must have 

 

= Eo + RT/2F ln [Fe+2]/[Cd+2] = 2.303 RT/2F log10 [Fe+2]/[Cd+2] 

 

where F is the Faraday, 96,520 C. At room temperature, we know 2.3 RT/2F ≈ 30 mV at around 300K, so the 

ratio must be >10 (careful of the sign-- Eo is positive (reverse the Fe half reaction to get the reaction as written; 

one half reaction must be reversed to make the number of electrons cancel, a point that must be explained to the 
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student, especially for cases where a two electron half reaction and a one electron half reaction are involved), 

making ΔGo<0, so the reaction goes to the right and there is more Fe+2 than Cd+2, about one order of magnitude 

more. The actual answer is 17.8.  

 

Problem 2. Given the following half reactions 

Cd2+ + 2e →  Cd                        E1/2 = -0.403 V 

Fe+2 + 2e →  Fe                         E1/2 = -0.440 V 

Cs+   +  e  →  Cs                        E1/2 = -2.923 V 

Ag+   + e  →  Ag                        E1/2 = +0.799 V 

 

Part 1: Find the largest voltage battery that can be made from two of the half reactions 

 

Estimate: This part is pretty trivial, if you remember that the signs reverse when you reverse the direction of the 

half reaction from reduction, as shown, to oxidation. The battery voltage is the difference between the oxidation 

and reduction half reactions. We almost certainly want to use the Cs half reaction, with the largest half cell 

voltage. It becomes positive when we reverse it. Add this to the one positive voltage, the one half cell that 

“wants” to be reduced to the metal, and we get 3.722 V. This part is one case where it is only necessary to 

understand what the question is, and no numerical exercise is worth the effort. 

 

Part 2: What is the equilibrium constant for this reaction? Answer to the correct number of significant figures. 

 

Estimate: This battery has a huge E0 so we expect the reaction to go “to completion”. In other words, the battery 

reaction will lead to essentially all Ag(s) + Cs+, and almost no Ag+ and Cs(s). The solids do not come into the 

equilibrium constant, so Keq = [Cs+]/[Ag+], and we know that it will be huge, around 10
(3.6/0.06) ≈1060 at 

equilibrium. We have already seen a couple of cases in which we had astronomical numbers like this. It means 

that there would be no Ag+ with a mole (actually many moles—even an amount large compared to the size of 

the earth) of Cs+. It is however, possible to do the calculation, although we won’t bother here. One thing this 

does tell us is that if it were possible to carry through the calculation, we would get a nonsense answer, in real 

physical terms. However, why would we want to go to equilibrium? A battery that reaches equilibrium is, by 

definition, unable to do work, hence dead, until recharged. This system would work as a battery at a pair of 

concentrations that had a finite concentration ratio. We can calculate the voltage as a function of the ratio. As an 

exercise, write down an expression for the voltage as a function of the ratio [Cs+]/[Ag+].   

 

This concludes simple examples of problems from several chapters, which serve as a sample of the overall type 

of problems; they are pretty much the same as ordinary problems from texts. In some cases, we use extreme 

conditions, as in the 1 atom per cm3 gas law problem. These have the aim of causing students to consider what 

the numbers are actually telling them. In addition, there are a few more advanced problems, possibly useful in 

Honors sections; here is an example. 
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A more advanced example:  If we consider a very small volume, fluctuations can be significant. Suppose we 

explain to the student that fluctuations in the number of molecules in a volume in contact with an external 

reservoir are of the order of the square root of the number of molecules. Consider a bacterium, with volume of 

roughly 10-17 m3 = 10-14 L.  Suppose a molecule is present at a concentration of 0.4 M (something in the range of 

salt concentration, for example). Then we have 0.4 x 10-14 x 6 x 1023 = 2.4 x 109 molecules. The fluctuations are 

then roughly 5 x 104 molecules, or about a fraction of 2 x 10-5 of the molecules in the bacterium, probably not 

enough for the bacterium to worry about, even if a much larger fraction than one would get in a macroscopic 

system. However, some substances are present in smaller quantities, but are still important. If you have a 

molecule that is present in 100 nanomolar quantities, replace 0.4 in the calculation above with 10-7. Then there 

are about 600 molecules; taking the square root (25 is close enough) and dividing by the total number, 600, we 

get fluctuations around 4%. This is not obviously trivial. It also means that carrying a calculation past 2 

significant figures is not likely to produce a meaningful result. While this is an advanced topic in that it requires 

giving the student the concept of fluctuations in concentration, and pulling the square root relation out of the 

air—deriving it in a first-year class would definitely be going too far--it does reiterate in a new context that 

examining the meaning of a calculated number can be critical. One should also be careful to examine the 

conditions of a problem. A volume of 10-14 L is on the edge of the minimum size that makes sense for a 

bacterium. If the problem had stated the bacterial volume as, say, 10-17 L, it would be necessary to ask whether 

such a bacterium could exist. While this example might be restricted to the honors section of a first-year class, 

other cases in which ordinary systems are given impossible properties could be used to call the student’s 

attention to the point that one must make sure that the physical conditions associated with the numbers in a 

problem are plausible. Once again, the actual calculations are not the point of the problem. 

 

Kinetics:  This can include discussion of reaction mechanisms.  

  Problem 1: Given: Step 1: O3 = O2 +O             fast, reversible 

                                 Step 2: O + O3 →  2 O2         slow 

Find the overall reaction mechanism. 

 

Estimate: Unlike essentially all the previous examples, this is not a numerical example. The student must think 

through what the problem is asking. First, it is useful to have the overall reaction, which the student should get 

from adding the two steps: 2 O3 → 3O2 . The O atoms are not included in the product, as they are used up in the 

second step.  Then, the student can observe that the second step is slow, so both O3 molecules must be in the rate 

step. If O2 increases, the first reaction must reverse, so we should expect that the rate is inversely proportional to 

O2. This appears to give a rate law: 

 

rate = kr [O3]2/[O2] 

 

At this point, we have a plausibility argument, but the student should understand that each of the two overall 

steps given may be complex, but this is not yet proof. Still, the putative rate law is at least plausible.  
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Answer: The student would have to find a steady state approximation for [O], and use this in the slow step. The 

answer turns out to be the estimated rate. 

 

Problem 2: Given that the energy of activation for the reaction 2 HI → H2 + I2 is -185 kJ, and the heat of 

formation of HI is -5.65 kJ. Find the activation energy for formation of HI (i.e., the activation energy of the 

reverse reaction from H2 and I2.)  

 

Estimate: The forward and reverse reactions cannot be that different, because 185 is much greater than 6, which 

is the difference between the reactants and products. There are two HI molecules, so for one HI, the reaction 

should be HI → ½ H2 + ½ I2, which of course will have half the activation energy, or 92.5 kJ. Since the energy 

of formation of HI <0 it will add to the reverse reaction energy, meaning that it must subtract from the absolute 

value of the activation energy. The estimate is then a little less than 92.5 kJ 

 

Answer: We have practically done the entire problem. The answer is 92.5 – 5.7 =86.8 kJ. We have three 

significant figures. However, it is worth drawing a diagram to show how the subtraction works. 

 

Discussion 

 

This is a sampling of the type of problems that can be estimated; there are such problems in every topic. As can 

be seen from the Table of Contents, there are more chapters, therefore topics, than are illustrated in this 

summary of problems. In each chapter that is sampled, there are about five times as many problems as are given 

here. However, this much is sufficient to show the approach to finding estimates; in the book the conventional 

solution to each problem is also given in detail; here we only give the result of this calculation, as going through 

the standard solution of first year chemistry problems is routine. It is important for the student to compare the 

standard solution to the estimate. Thus, students should understand why one would first make an estimate, and 

how this helps in understanding how the estimate is useful. While there are qualitative chemistry problems, as in 

organic chemistry, where finding reaction mechanisms or synthetic paths does not require numerical 

calculations, much of chemistry, especially in the first year, is quantitative. Students who are able to understand 

that numbers have physical meaning in the context of chemistry problems, and understand that the orders of 

magnitude of the answers must be reasonable, can generally continue on to more advanced material. Usually, a 

student who tries to survive by memorizing equations will make unreasonable errors. In addition, because such 

students did not understand the material, they will be unable to advance to new material that builds on the 

material that they never understood in the first place.  

 

Teaching students to pay attention to the orders of magnitude of the quantities being calculated, and to recheck 

their answer against the physical meaning of the answer, mainly requires calling their attention to the matter, 

and giving them some examples to work from. It is a matter of getting the student to think about what the 

numbers mean. The examples given here suggest how this can be done. However, any problem in which the 
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numbers have physical meaning would be a candidate for this approach. 

  

Whether the best approach to bringing this to the student’s attention is a separate book with such problems with 

estimates, or whether it is better to have the problems incorporated into the main text, is another question. In 

principle, incorporating formal estimates for most topics into standard texts seems to be uncommon; however, it 

would probably make more sense than having the estimates exiled to a supplementary text. The book on which 

this paper is based is out of print and no longer available, and would probably need revision in any case before 

any attempt at distribution were made. However, by taking examples from this book, one can see the possibility, 

and the means, of using these estimates to force the student to think about the physical meaning of the numbers. 

This appears to be different from any of the solutions to chemistry problems available on the internet, which we 

may take as a reasonable approximation to what is shown in most textbooks. None of these that this author has 

found takes an approach similar to what is proposed here. On the internet, there are many sample problems, 

carefully worked out, but not checked as to whether the answers are physically or chemically reasonable; they 

generally do not discuss the physical meaning of the numerical values. Such examples do not help with the 

problem of understanding the physical meaning of numbers. 

 

Conclusions 

 

1) Students need to understand that numerical values in chemistry problems have physical meaning. 

2) This can be accomplished in part by requiring the students to estimate at least the order of   magnitude of an 

answer, to make sure that the answer is not ridiculous 

3) Almost every topic in introductory chemistry has sufficient quantitative character for consideration of 

estimates to be applicable.   
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