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Abstract 
 

 Performance on a range of spatial and mathematics tasks was measured in a sample of 

1592 students in kindergarten, third grade, and sixth grade. In a previously published analysis of 

these data, performance was analyzed by grade only. In the present analyses, we examined 

whether the relations between spatial skill and mathematics skill differed across socio-economic 

levels, for boys versus girls, or both. Our first aim was to test for group differences in spatial 

skill and mathematics skill. We found that children from higher income families showed 

significantly better performance on both spatial and mathematics measures, and boys 

outperformed girls on spatial measures in all three grades, but only outperformed girls on 

mathematics measures in kindergarten. Further, comparisons using factor analysis indicated that 

the income-related gap in mathematics performance increased across the grade levels, while the 

income-related gap in spatial performance remained constant. Our second aim was to test 

whether spatial skill mediated any of these effects, and we found that it did, either partially or 

fully, in all four cases. Our third aim was to test whether the “separate but correlated” two-factor 

latent structure previously reported for spatial skill and mathematics skill (Mix et al., 2016) was 

replicated across grade, SES, and sex. Multi-group confirmatory factor analyses conducted for 

each of these subgroups indicated that the same latent structure was present, despite differences 

in overall performance. These findings replicate and extend prior work on SES and sex 

differences related to spatial and mathematics skill, but provide evidence that the relations 

between the domains are stable and consistent across subgroups. 
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Similarities and Differences Related to Age, SES, and Gender 
 

 To understand children’s developmental outcomes, psychologists have long been 

interested in individual differences in both cognitive skills and school achievement. This 

research has established that children growing up in families of lower socio-economic status 

(SES) tend to perform worse on measures of cognitive skill, such as language, executive 

function, and spatial skill (Noble, McCandliss, & Farah, 2007). Low-income children also show 

lower levels of academic achievement in the areas of reading and mathematics (Reardon, 2011). 

Individual differences in both cognitive skill and academic outcomes have also been examined in 

terms of sex, although as we will see, the evidence in this area is mixed (see Miller & Halpern, 

2014, for a review). Although the extant literature provides evidence of individual differences in 

both cognitive skills and academic outcomes separately, few studies have examined how 

individual differences in cognitive skills and academic outcomes are related, and whether these 

relations change over time. These relations are important to clarify because they are sometimes 

hypothesized to be causal. For example, it has been argued that one reason boys outperform girls 

in mathematics may be that boys have stronger spatial skills (e.g., Casey, Nuttal, & Pezaris, 

1997). A first step investigating whether differences in cognitive skill underlie differences in 

academic outcomes is to confirm these relations in subgroups and understand how they differ 

across age. 

The present study provides such an investigation for the relation of spatial skills and 

mathematics achievement via a secondary analysis of a previously published dataset (Mix et al., 

2016; Mix et al., 2017). We address three specific questions. First, we ask whether performance 

on either spatial or mathematics tasks differed based on SES, sex, or both, in any of the three 

grades tested. Though this question does not pertain directly to the relation between spatial skill 
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and mathematics, it contributes to the broader literature on individual differences in spatial skill 

and mathematics. Second, and more directly related to our main aim, we ask whether spatial skill 

mediated any observed effects of either SES or sex on mathematics. Although studies have 

revealed SES and gender differences in spatial and mathematics skills separately, research has 

not yet examined the relations between these skills for different subgroups of children, and how 

these relations might differ across age. Third, we ask whether the latent structure of spatial skill 

and mathematics differs for any of the SES- and sex-related subgroups at each of the three grade 

levels, which is directly relevant to the relation of spatial skill and mathematics for different 

subgroups. Because our dataset included multiple measures of spatial skill and mathematics at 

multiple age points, it is well-suited to address these critical questions. 

SES Differences 

 Studies have demonstrated significant relations between SES and a broad range of 

cognitive skills in childhood (Noble et al., 2007). Spatial skills are among those on which 

children from lower SES backgrounds perform worse than do children from middle or high SES 

backgrounds (Farah, Shera, Savage, Betancourt, et al., 2006; Jirout & Newcombe, 2015; Levine, 

Vasilyeva, Lourenco, Newcombe, & Huttenlocher, 2005). These SES effects have been obtained 

when controlling for language skill, suggesting that they are not due to differences in general 

cognitive ability (Noble et al., 2007). 

There is also a large literature reporting SES differences in academic achievement, 

including mathematics (Cobb-Clark & Moschion, 2017; Denton & West, 2002; Sirin, 2005). One 

meta-analysis reported that on average, there is a medium effect of SES on mathematics 

achievement, though these effects are influenced by a number of variables that are correlated 

with SES, such as school location and students’ race and ethnicity (Sirin, 2005). These 
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differences appear to be weaker, though still significant, in younger versus older children, 

indicating a widening SES gap over time (e.g., Cobb-Clark & Moschion, 2017; Crane, 1996). 

There is also evidence that SES differences can moderate other individual differences, 

such as sex differences in spatial skill. For example, Levine, Vasilyeva, Lourenco, Newcombe 

and Huttenlocher (2005) found significant sex differences on spatial tasks, but only among 

middle- and high-income children. For children at lower SES levels, there were no significant 

differences in spatial performance between the sexes, with both boys and girls performing at 

lower levels than their higher SES peers. Note that such moderating effects are not always 

obtained (e.g., Wai et al., 2009) perhaps due to task differences (See Levine, Foley, Lourenco, 

Ehrlich & Ratliff, 2016 for a discussion). Also, the origins of SES and sex differences in spatial 

performance are complex, with evidence pointing to both genetic and environmental factors 

(Hackman & Farah, 2009; Levine et al., 2016). In the present study, we ask whether the resulting 

spatial differences relate to mathematics performance differently at different ages, as well as 

relative to children’s sex and SES background. 

Sex Differences 

 Significant sex differences have been reported in both spatial skill and mathematics, 

although the patterns differ somewhat for the two domains. For spatial skill, a male advantage 

emerges in infancy (Moore & Johnson, 2008; Quinn & Liben, 2008), is evident throughout 

childhood (Levine et al., 2005; Lippa, Collaer & Peters, 2010; Levine, Foley, Lourenco, Ehrlich, 

Ratliff, 2016; Voyer, Voyer & Bryden, 1995), and remains evident in adulthood (Linn & 

Peterson, 1985; Silverman, Choi, MacKewn, Fisher, et al., 2000). Despite this apparent 

consistency, it should be noted that not all studies have revealed significant sex differences in 

spatial skill, suggesting that the effects may be task-specific (e.g., Spelke, Gilmore & McCarthy, 
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2011). Further, a recent meta-analysis indicated that the magnitude of the difference appears to 

increase with age (Lauer, Yhang & Lourenco, 2019). Nonetheless, the bulk of the evidence 

suggests a male advantage on certain spatial tasks that is evident to some extent, irrespective of 

age. In addition to differences in overall performance, the evidence also suggests that boys and 

girls differ in their approaches to spatial tasks. Specifically, males appear to use more holistic 

spatial strategies, such as mentally rotating a figure in its entirety, whereas females tend to use 

shape cues and part-by-part solutions (Geiser, Lehmann, Corth, & Eid, 2008; Heil & Jansen-

Osmann, 2008; Pezaris & Casey, 1991; Wang & Carr, 2014). 

 The evidence for sex differences in mathematics is less straightforward (see Herts and 

Levine, 2020, for a review). Large scale testing and meta-analyses suggest there is a small male 

advantage on mathematics tests, but that the effect is most apparent among high performing 

students and for complex problem-solving tasks (Lindberg, Hyde, Petersen & Linn, 2010; Reilly, 

Neumann, & Andrews, 2015). Also, even though girls sometimes perform worse than their male 

peers on high stakes standardized mathematics tests, they tend to earn higher mathematics grades 

in school (Duckworth & Seligman, 2006; Pomerantz, Altermatt & Saxon, 2002; Kenney-Benson, 

Pomerantz, Ryan, & Patrick, 2006). Further, the male advantage in mathematics may not appear 

until adolescence, perhaps due to the nature of the measures used in that age range, or children’s 

familiarity with the mathematics being tested, with males performing better than females when 

problems are less familiar (Ceci, Williams & Barnett, 2009). Among younger children, most of 

the evidence suggests either no sex differences (Bakker, Torbeyns, Wijns, Verschaffel & 

DeSmedt et al., 2019; Hutchison, Lyons & Ansari, 2019; Kersey, Csumitta & Cantlon, 2019; 

Lachance & Mazzocco, 2006; Lindberg et al., 2010; McGraw, Lubienski & Strutchens, 2006) or 

a female advantage on routinized operations such as counting and computation (Duckworth & 
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Seligman, 2006; Hutchinson et al., 2019; Hyde, Fennema, & Lamon, 1990). One exception may 

be a small male advantage in kindergarten reported among the very highest mathematics 

performers (top 10%) (Penner & Paret, 2008). 

Developmental Relations between Spatial Skill and Mathematics 

 Research has established that spatial skill and mathematics achievement are related over 

developmental time, in potentially causal ways. Longitudinal studies have shown that spatial 

skill is associated with achievement in science, technology, engineering, and mathematics 

(STEM) disciplines (Wai, Lubinski, & Benbow, 2009), as well as directly predicting 

mathematics outcomes across development (Frick, 2018; Geer, Quinn, & Ganley, 2019; Gilligan, 

Flouri & Farran, 2017; Lauer & Lourenco, 2016). For example, Lauer and Lourenco (2016) 

demonstrated that spatial skill in infancy predicted both spatial skill and number sense at age 4 

years. CITATION BLINDED FOR REVIEW reported that spatial skill and mathematics were 

highly related in each of three age groups (kindergarten, 3rd grade, and 6th grade). Studies have 

also shown that training to improve spatial skill can lead to measurable improvement in 

mathematics (Cheng & Mix, 2014; Cheung, Sung, & Lourenco, 2019; Lowrie, Logan & Ramful, 

2017; Mix, Levine, Cheng, Stockton, & Bower, 2020). If spatial skill and mathematics are 

causally related, then it is possible this relation contributes to the sex and SES differences 

reviewed above, within each domain. 

 To illustrate, recall that boys and girls have exhibited different approaches to spatial 

tasks, with boys tending to use holistic strategies and girls tending to focus on parts. Sex 

differences in strategy use have also been reported for mathematics, with elementary school boys 

using more independently invented strategies and mental models, and girls tending to use more 

conventional or concrete strategies (Fennema, Carpenter, Jacobs, Franke, & Levi, 1998). 
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Interestingly, however, these strategy differences did not lead to performance differences—both 

boys and girls obtained similar scores on a mathematics test. Still, it is possible that superior 

spatial skill supports the use of abstract mathematics strategies, such as generating mental 

models, that may impact performance, particularly on challenging or novel problems that may 

not have been tested in prior research studies. Better spatial skill might also improve 

mathematics performance by helping students track their position in a complex written algorithm 

(Mix, 2019), which may only be apparent on complex problems for which tracking is needed. 

This overall line of thinking raises the issue that spatial training might close the gender gap in 

mathematics outcomes, though existing studies have failed to show differential improvement in 

spatial skill for females following training (see Newcombe, 2017, for a discussion). 

 Similar explanations have been posited to explain SES differences in spatial and 

mathematics performance. For example, one explanation for the different levels of mathematics 

performance for children from high versus low SES families is their lower levels of spatial 

visualization skill (Casey, Dearing, Vasilyeva, Ganley & Tine, 2011). A recent investigation of 

student achievement in STEM education also found that spatial skill mediated SES-differences in 

computer science course grades (Parker, Solomon, Pritchett, Illingworth, et al., 2018). In line 

with this, investigators have asked whether spatial training might close the SES-linked STEM 

achievement gap (Newcombe, 2017). Others have emphasized the role of informal home 

experiences and parent input for specific academic content areas (Elliott & Bachman, 2018). 

Interestingly, there have been links reported between parent input and spatial skill (Pruden, 

Levine, & Huttenlocher, 2011), with parents from low SES backgrounds providing less spatial 

input on average (Dearing et al., 2012; Verdine et al., 2017). Thus, it is possible that parent input 



 9 

affects mathematics achievement directly via differences in mathematics support, and indirectly 

via support for spatial skill development. 

 Only a few studies have examined these possibilities. With regard to SES, the findings 

have been significant but mixed. Casey et al. (2011) found that fourth grade students in more 

affluent families outperformed those from lower income families across various spatial and 

mathematics measures, yet also reported SES-linked differences in the way the two domains 

related. Specifically, children from higher SES families had a strong relation between spatial 

skill and mathematics, but this was not the case among lower SES children. In contrast, Demir, 

Prado and Booth (2015) reported the opposite pattern for children of roughly the same age (9 to 

12 years)—spatial regions of the brain were engaged during subtraction problem solving, in 

children from lower, but not higher SES families. 

The findings regarding sex differences in the relation of spatial skill and mathematics are 

also mixed. In a study of 2nd and 4th grade students, Moè (2018) found that boys and girls 

showed similar correlations between spatial skill and mathematics. In contrast, a study of 

kindergarten students found that spatial performance was significantly related to mathematics 

performance in boys, but not girls. For girls, only verbal processing was predictive of 

mathematics scores, and for the most part, verbal processing did not predict mathematics scores 

for boys (Klein, Adi-Japha, & Hakak-Benizri, 2010). Taken together, these findings raise 

questions about whether differences in spatial skill explain differences in mathematics 

performance for either low-income children or girls, at least in the lower elementary school 

grades. 

 However, a different pattern emerges from evidence among adolescents. In separate 

studies, Casey, Nuttall and Pezaris (1997; 2001) demonstrated that the male advantage on both 
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the SAT mathematics subtest (SAT-M) and the Third International Mathematics and Science 

Study (TIMSS) (eighth grade students) was mediated by level of spatial skill. Interestingly, sex 

differences on the SAT-M were eliminated when mental rotation skill on a 3-D task was 

statistically controlled (Casey, Nuttal, Pezaris and Benbow, 1995). Fennema and Tartre (1985) 

also found that middle school students with stronger spatial visualization skills tended to use 

diagrams and drawings in problem solving more frequently, though this strategy difference did 

not lead to differences in problem solving performance. Whereas girls were more likely than 

boys to use these spatial strategies, their problem-solving accuracy was actually lower than that 

of boys, perhaps because their weaker spatial skills led to less effective spatial strategies. 

Overall, these results suggest that better spatial skills may contribute to the albeit limited male 

advantage on these mathematics tests, even though non-spatial mathematics strategies may be 

equally effective, at least for the problems tested in existing research studies. 

The Present Study 

 The research reviewed above leads to several conclusions. First, there is strong and 

consistent evidence that children from higher SES families perform better on both spatial and 

mathematics tasks. Second, although there is strong evidence that boys outperform girls on 

spatial tasks, the evidence is mixed for sex-related differences in mathematics. There is abundant 

research showing that spatial skill and mathematics skill are related, and the strength of this 

relation seems stable over development. However, the specific ways that spatial skill and 

mathematics achievement are related may vary across age, and it is possible that similar 

variations exist for subgroups of children based on SES and sex. The few studies examining 

these potential differences have yielded mixed results. 
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 The present study takes a fresh look at these questions using a large cross-sectional data 

set that includes three grade levels (kindergarten, third, sixth) and twelve measures (six spatial 

measures, up to seven mathematics measures, and one measure of vocabulary intended to tap 

general cognitive ability). Although the measures were adapted to be age-appropriate, they were 

conceptually constant across the grade levels. This consistency permitted us to compare 

performance more directly than is possible when comparing across studies using different 

methods and measures. 

Method 

Participants Data from 1592 children (753 boys and 839 girls) were collected in two cohorts 

using the same measures and age groups. The data from Cohort 1 (n = 854, collected in 2013-14) 

were submitted to an exploratory factor analysis reported previously (Mix et al., 2016). The data 

from Cohort 2 (n = 738, collected in 2014-15) were analyzed and reported as part of a multi-

group confirmatory factor analysis (Mix et al., 2017). We refer readers to those articles for 

complete details related to grade, sex, population characteristics, exclusions, and so forth. All 

data were collected with informed consent from children’s caregivers and the approval of the 

relevant institutional review boards. The sample size was determined based on a target of 220 

children per age group per cohort, because a sample size of 20 children per measure (i.e., 11 

measures) should ensure adequate power for latent variable analysis (MacCallum, Widaman, 

Zhang & Hong, 1999; Raykov & Marcoulides, 2010). We succeeded in testing more than the 

minimum sample both years, resulting in a far greater total number of children when the two 

cohorts were combined (i.e., kindergarten n = 526; third grade n = 538; sixth grade n = 529) and 

more than adequate power for the latent variable analyses reported here. Power estimates using 

G*Power (Faul, Erdfelder, Buchner, & Lang, 2009) also confirmed that our total sample size of 
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1592 children was adequate to detect a medium effect, (i.e., f2 = .10 with 0.80 power) based on 

Cohen’s (1988) suggested values for small, medium, and large effects (f2 = 0.02, 0.15, and 0.35) 

in an analysis of covariance (ANCOVA) with 36 groups (three grades by two sexes by six 

income levels) and one covariate. 

Procedure Children completed a battery of tests that measured spatial skill, mathematics skill, 

and verbal skill. The tests were blocked based on whether they were individually- or group-

administered but the order of tests within each block varied randomly. Further, the order of 

presentation for group versus individual tests was random and counterbalanced across children. 

The test battery was completed over three to four sessions to avoid fatigue (see Mix et al., 2016; 

Mix et al., 2017 for details). 

Measures Reliabilities were estimated using Cronbach’s α (1951) and were calculated from the 

combined dataset (Cohort 1 and Cohort 2). Most of the reliabilities approached or reached α = 

.70, which is a generally accepted cut-off, though not a hard and fast rule (Lance et al., 2006; 

Nunnally, 1978). In some cases (e.g., map reading) the reliabilities were lower than .70 which 

may reflect multidimensionality within the measure. Low internal consistency is known to 

attenuate relations among measures and as such could affect some of the relations tested here; 

however, some argue this risk has been overstated and measures with low reliability may still be 

useful if they provide meaningful content coverage (Schmitt, 1996). 

 Mental Rotation. (adapted from Neuberger, Jansen, Heil, & Quaiser-Pohl, 2011 and 

Peters, Laeng, Latham, Jackson, et al., 1995). In the kindergarten/third grade version, small 

groups of children were shown four unfamiliar figures (i.e., forms based on manipulating 

components of capital letters) and asked to indicate which two were the same as the target. The 

two matching items could be rotated in the picture plane to overlap the target, whereas the two 
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foils could not because they were mirror images of the target. The task was introduced with four 

practice items on a laptop for which children received feedback that included animations with the 

correct answers rotating to match the target. The 16 test items were group-administered by 

presenting them in a paper booklet (kindergarten a = .74; third grade a = .87). The sixth-grade 

version was the same, except that stimuli were perspective line drawings of three-dimensional 

block constructions presented on paper. Children completed 12 items consisting of a target and 

four choice drawings, two of which could be rotated in the picture plane to match the target (a = 

.81). 

 Visual Spatial Working Memory. (adapted from Kaufman & Kaufman, 1983). On each 

test trial, groups of children were shown a 14 cm x 21.5 cm grid that was divided into squares 

(e.g., 3 x 3, 4 x 3, or 5 x 5). Drawings of objects were displayed at random positions within the 

grid and left in full view for 5 seconds. Then a blank grid was displayed and children marked an 

X in the previously filled positions. Stimuli were presented on a laptop computer and children 

responded in paper test booklets. The test was introduced with two or three practice items, 

depending on grade, for which children received feedback and were allowed to compare their 

responses to the stimulus display. The test trials (n = 15-29, based on grade) were group-

administered and began immediately after the final practice trial (kindergarten a = .77; third 

grade a = .66, and sixth grade a = .81). 

Test of Visual Motor Integration. (VMI, 6th ed., Beery & Beery, 2010). On each trial, 

children copied a line drawing of a geometric shape on a blank sheet of paper. There were 18-24 

trials, depending on the age of the child, over which the figures became increasingly complex. 

We administered the test in small groups. The reliability of the VMI based on a split-half 

correlation (reported in the test manual) was .93.  
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Block Design Subtest. (WISC-IV) (Wechsler, Kaplan, Fein, Kramer, et al., 2004). 

On each trial, children were shown a printed figure comprised of white and red sections, and they 

produced a matching figure using small cubes with red and white sides. The test was individually 

administered following the instructions in the WISC-IV manual. Children completed different 

numbers of items depending on their basal and ceiling performance. The reliability coefficient 

reported in the WISC-IV manual is between .83 and .87 depending on age.  

 Map Reading. (adapted from Liben & Downs, 1989). Children were shown a location on 

a model and then indicated where it would appear in a corresponding map. Kindergarten and 

third grade students completed 14 test trials in which the model was a full color 3-dimensional 

model town with buildings, roads, a river, and trees. Sixth grade students completed 8 trials in 

which the model was a full-color screenshot of a virtual model town. Children marked the 

corresponding location on a black and white, 2-dimensional, scale map. In the sixth grade task 

we also manipulated the presence of landmarks. Feedback was given on the first three test 

questions to ensure that children understood the task. Sixth graders completed the test in groups 

whereas younger children were tested individually (kindergarten a = .62; third grade a = .69; 

sixth grade a = .56).  

Perspective Taking (adapted from Frick, Mohring, & Newcombe, 2014). In this 

individually-administered task, kindergarten and third grade children were shown a set of Play 

Mobil figures and asked which of four pictures was taken from each figure’s perspective. The 27 

test questions were preceded by 4 practice items with feedback (kindergarten a = .64; third grade 

a =.87). Sixth grade children saw six to eight figures arranged in a circle and indicated their 

angle of view from a particular position, by drawing an arrow toward the center object 

(Kozhevnikov & Hegarty, 2001). There were two practice items with feedback and 12 test items. 
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Scores were based on the number of degrees children’s responses deviated from the correct angle 

on each item (a = .83). 

Place Value. Kindergarten and third grade students completed a set of 20 items that 

required them to compare, order, and interpret multi-digit numerals (e.g., Which number is in the 

ones place?"), as well as match multi-digit numerals to their expanded notation equivalents (342 

= 300 + 40 + 2) (kindergarten a = .77; third grade a = .81). Sixth grade students completed the 

Rational Numbers subtest from the Comprehensive Mathematics Ability Test (CMAT) (Hresko, 

Schlieve, Herron, Swain, & Sherbenou, 2003). These items similarly required them to compare, 

order, and interpret written numbers, but the numbers were a mixture of multi-digit whole 

numbers, fractions, and decimals (a = .83). These measures were individually-administered in all 

three grades. 

 Word Problems. Kindergarten and third grade students were assessed using 12 word 

problems included in the Test of Early Mathematics Ability-Third Edition (TEMA-3, Ginsburg 

& Baroody, 2003) (kindergarten a = .73; third grade a = .65). The test was individually 

administered following the instructions in the test manual. Sixth grade students completed the 

Problem Solving subtest from the CMAT (a = .76). 

Calculation. We used a group-administered test consisting of age-appropriate arithmetic 

problems (kindergarten: a = .76; third grade: a = .70; sixth grade: a = .76). In kindergarten, the 

problems were one- to four-digit whole number addition and subtraction problems. In third 

grade, whole number multiplication and division problems (one to three digits) were added. The 

sixth grade calculation test was similar but included both whole numbers and decimals. 

 Missing Term Problems/Algebra. In missing term problems, children find the solution 

to a calculation problem where the missing value is not the sum or difference (e.g., 7 + X = 15).  
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Kindergarten and third grade students completed 8 such problems (kindergarten: a = .62; third 

grade: a = .71). To increase the difficulty level for sixth grade students, the CMAT Algebra 

Subtest was administered (a = .68). 

Number Line Estimation. (Siegler & Opfer, 2003). All children were tested in small 

groups (n = 4-6). Children were asked to mark where a written numeral would go on a number 

line, anchored with a written numeral at each end. The anchor points and the stimulus values 

varied by grade. Specifically, kindergarteners placed the numerals 4, 17, 33, 48, 57, 72 and 96 on 

a 0-to-100 number line (split half reliability: r = 0.39); third graders placed 3, 103, 158, 240, 297, 

346, 391, 907 on a 0-to-1000 number line (split half reliability: r = .48); and sixth graders placed 

25,000, 61,000, 49,000, 5,000, 11,000, 2,000, 15,000, 73,000, 8,000, 94,000 on a 0-to-100,000 

number line (split half reliability: r = .61). Children's performance was evaluated based on the 

linearity of their placements. That is, we regressed each child's responses against the 

measurements for the correct placements and used the R2 values for these regressions as their 

number line estimation scores in subsequent analyses. 

Fraction Concepts. Fraction items were not included in the kindergarten test battery. In 

third grade, there were four items that tested fraction equivalence and simple calculation with 

common denominators (a =.57). In sixth grade, children completed both a 22-item test with 

fraction comparisons, calculation with and without common denominators, and calculation with 

mixed numbers (a =.73), and a version of the number line estimation task in which the anchors 

are 0 and 1, and the stimulus quantities are all fractions (i.e., ¼, 1/19, 2/3, 7/9, 1/7, 3/8, 5/6, 4/7, 

12/13, ½) (split half reliability: r = .46) (Siegler, Thompson, & Schneider, 2011). 

Supplemental Sixth Grade Tests. To assess the breadth of mathematics skills in older 

children, sixth grade students completed two additional measures: CMAT Charts and Graphs (a 
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=.79) and CMAT Geometry (a =.66). For Charts and Graphs, students are shown data in graphic 

form and asked questions that require them to interpret the information. For Geometry, they 

defined geometric terms, determined unknown angles, identified shapes, and so forth. 

General Cognitive Ability. To estimate and control for children's general cognitive 

ability, children completed the Picture Vocabulary subtest from the Woodcock-Johnson Test of 

Achievement-3 (WJ-3). Although not a comprehensive cognitive assessment, previous studies 

have demonstrated a strong relation between vocabulary and intelligence scores, suggesting that 

vocabulary is a reasonable proxy for general cognitive ability (e.g., Woodcock, McGrew, & 

Mather, 2001; Sattler, 2001). On each item, children were asked to point to or name a picture. 

The test was individually administered according to the instructions in the test manual 

(kindergarten: a = .73; third grade: a = .77; sixth grade: a = .74-79). 

Analysis Approach 

 The present study is a series of secondary data analyses aimed at addressing three 

questions. First, to determine whether performance on either spatial or mathematics tasks 

differed based on income, sex, or both, in any of the three grades tested, we used analyses of 

covariance (ANCOVA). Effect sizes are reported using partial eta squared (η2p), where a small 

effect corresponds to η2p = .01, a medium effect corresponds to η2p = .06, and a large effect 

corresponds to η2p = .14 (Faul, Erdfelder, Lang, & Buchner, 2007). Later in the report, we 

repeated these analyses using potentially more sensitive factor analysis. Analyses conducted 

within a factor analytic model allow us to relax several important measurement assumptions—

namely the assumption of no measurement error on the observed measures and the assumption 

that the latent factor is identically indicated by each observed measure—which thus allowed us 

to generate unbiased estimates of the relations among the latent factors as well as their reliability 
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(Dunn, Baguley, & Brunsden, 2013; McNeish, 2018; Raykov, 2001; Reuterberg & Gustafsson, 

1992). Effect sizes in this section are reported using standardized mean differences and can be 

categorized as small (δ = 0.2), medium (δ = 0.5), or large (δ = 0.8), as discussed in Cohen 

(1992). 

 Second, to determine whether spatial skill was a significant mediator, we used the 

PROCESS model 4 macro for SPSS (Hayes, 2017). These analyses determined whether level of 

spatial skill mediated the effects of either SES or sex on children’s composite mathematics 

scores. 

 Third, to determine whether the latent factor model reported in previous studies (Mix et 

al., 2016; Mix et al., 2017) accurately characterized the data for specific SES and sex subgroups, 

we tested the configural invariance of the mathematics and spatial skill constructs using a multi-

group confirmatory factor analysis (MGCFA). Specifically, we asked whether the mean structure 

and covariance matrices were statistically equivalent across SES and sex at each grade level 

(French & Finch, 2009; Sass, 2011), and we checked the validity of the hypothesized factor 

structure by applying it to various groups simultaneously (Byrne, Shavelson, & Muthen, 1989; 

van de Schoot, Lugtig, & Hox, 2012). By evaluating the differences in factor loadings and item 

intercepts in the combined model (Van de Schoot, Lugtig, & Hox, 2012), we were able to then 

compare the means and variances of the latent math and spatial factors across subgroups. 

 Children were grouped for sex based on family report recorded on the informed consent 

form. Children’s sex was reported by 100% of families. To determine children’s SES, we used 

estimates of household income1 derived from two sources. One source was family responses to 

 
1 Unfortunately, we did not query parental education level on our questionnaire, which might have provided a more 
accurate estimate of SES than income levels alone. However, because income level and education level are strongly 
correlated (Hauser & Warren, 1997), it is unlikely that our main findings would have been significantly altered. 
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an optional demographic questionnaire attached to the informed consent. On this questionnaire, 

families were asked to report their household income on a 1 to 6 scale where 1 = < $15,000, 2 = 

$15,000 to 34,999; 3 = $35,000 to 49,999; 4 = $50,000 to 74,999; 5 = $75,000 to 99,999; and 6 = 

$100,000 or more. Of the 1592 families, 1119 (70%) reported their income on this scale. A 

second source of SES information was the percentage of children at each school receiving free or 

reduced price lunch. By using rates of free or reduced school lunch, we could estimate SES for 

100% of the children in the sample; however, these estimates were specific to schools, not 

specific to individual children and thus, were less precise than parent report. Preliminary 

analyses indicated that the two measures of SES were highly but not perfectly correlated (r = 

.44). However, we found that the pattern of results was similar for either coding approach in the 

analyses we conducted. Also, previous meta-analyses have reported similar effect sizes for both 

ways of estimating SES, though it was also noted that family reported SES yielded larger effects 

than secondary estimates (Sirin, 2005; but see Perry & McConney, 2010). Thus, we report below 

only the results for the analyses based on the income codes provided for a subset of children. 

Children for whom income data were not reported were excluded (n = 473). Power estimates 

indicated that this sample size was adequate to detect a medium effect size (η2p = .06). 

Results 

Aim 1: Group Differences in Mean Performance 

To assess differences in skill level across grade, sex, and income level, we computed 

composite variables by averaging z-scores (i.e., standardized scores) for the six spatial measures, 

and the five to nine (depending on grade) mathematics measures. Measures for which lower 

scores represented better performance were reverse-coded prior to computing the composite 

variables. Scores on these variables represent students’ overall performance relative to other 
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students within their respective grades by setting the means of each grade to approximately zero 

(see Table 1). Graphs depicting the spatial and mathematics composite scores of girls versus 

boys are presented in Figures 1 and 2. The correlation between spatial and mathematics 

performance was positive and statistically significant in kindergarten (r = .52, p < .001), third 

grade (r = .64, p < .001), and sixth grade (r = .61, p < .001). 

INSERT TABLE 1 ABOUT HERE 

INSERT FIGURE 1 ABOUT HERE 

INSERT FIGURE 2 ABOUT HERE 

 
 We next conducted separate three-way ANCOVAs with spatial skill and mathematics 

skill as dependent measures, children’s WJ-3 Vocabulary subtest scores as the covariate, and sex, 

income, and grade as between-subjects factors. We also compared children’s performance across 

grades by sex using two-tailed t-tests. In some cases, we used these t-tests to understand group 

differences in the absence of significant interactions, following Hsu (1999). 

Spatial skill. There were significant main effects of sex and income on spatial tasks such 

that boys outperformed girls (F(1, 1082) = 16.265, p < .001, η2p = .015) and children from higher 

income families outperformed children from lower income families (F(5, 1082) = 11.011, p < 

.001, η2p = .048). The main effect of grade was not significant (F(2, 1082) = 0.012, p = .988, η2p 

= .000), which was expected because the composite variable for spatial skill set the means for 

each grade to zero. Interestingly, the sex × grade interaction was not significant (F(2, 1082) = 

0.090, p = .914, η2p = .000), indicating that the magnitude of sex differences in spatial skill did 

not differ across grades. This pattern was supported by t-tests showing that boys significantly 

outperformed girls on spatial measures in all three grades (kindergarten: t(376) = 2.470, p = .014, 

d = .25; third grade: t(347) = 3.066, p = .002, d = .33; sixth grade: t(390) = 2.236, p = .026, d = 
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.23). Sex differences in spatial skill remained significant in all three grades after adjusting for a 

false discovery rate of Q = .05 (Benjamini & Hochberg, 1995). Neither the income × grade 

interaction (F(10, 1082) = 0.662, p = .760, η2p = .006), nor the income × sex interaction (F(5, 

1082) = 1.963, p = .082, η2p = .009) was significant. Thus, the same advantage for higher income 

children on spatial measures was apparent across grades and for both boys and girls.  

Mathematics skill. Children from higher income families outperformed children from 

lower income families (F(5, 1082) = 11.678, p < .001, η2p = .051) on mathematics tasks but there 

was not a significant sex difference (F(1, 1082) = 2.936, p = .087, η2p = .003). As expected, the 

main effect of grade was not significant (F(2, 1082) = 0.140, p = .869, η2p = .000), because the 

composite variable for mathematics skill set the mean to zero for each grade. Similar to the 

results for spatial skill, the sex × grade interaction was not significant (F(2, 1082) = 1.760, p = 

.172, η2p = .003); however, t-tests revealed that boys significantly outperformed girls on 

mathematics measures in kindergarten (t(376) = 2.735, p = .007, d = .28), but not in either third 

grade (t(347) = 1.311, p = .191, d = .14) or sixth grade (t(390) = 0.298, p = .766, d = .03; see 

Figure 2). The same pattern of results was obtained after adjusting for a false discovery rate of Q 

= .05. The income × grade interaction did not reach significance but generated a small effect 

(F(10, 1082) = 1.219, p = .274, η2p = .011) that reflected a widening gap across grades. There 

was no interaction of sex × income (F(5, 1082) = 1.210, p = .302, η2p = .006).  

Aim 2: Mediation of Income and Sex Differences in Mathematics by Spatial Skill 

Next, we tested whether the effect of income on mathematics was mediated by spatial 

skill (see Figure 3). We included participants from all three grades in this analysis because there 

was a significant effect of income on mathematics skill at each grade level. In the full model (R2 

= .40, F(3, 1115) = 243.90, MSE = .33, p < .001), which included income and spatial skill as 
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predictors of mathematics with WJ-3 Picture Vocabulary as a covariate, the direct effect of 

income on mathematics was statistically significant (β = .11, b = .048, SE = .011, t = 4.327, p 

< .001), as was the effect of spatial skill on mathematics (β = .48, b = .503, SE = .027, t = 18.695, 

p < .001) and the effect of vocabulary scores on mathematics (β = .19, b = .140, SE = .019, t = 

7.384, p < .001). The effect of income on spatial skill was also significant (β = .19, b = .084, SE 

= .012, t = 6.938, p < .001). As a test of mediation, the indirect effect of income on mathematics 

through spatial skill was b = .042 (SE = .007) and the 95% confidence interval based on 

bootstrapping with 5,000 random samples did not include zero (95% CI [.029, .056]). The 

significant indirect effect coupled with the significant direct effect indicates that spatial skill 

partially mediated the effect of income on mathematics. Supplemental analyses revealed that 

children’s vocabulary scores also mediated the effect of income on mathematics skill, when 

controlling for spatial skill (indirect effect: b = .015, SE = .003, 95% CI [.009, .023]). 

Subsequently, we tested a mediation model in which both spatial skill and vocabulary scores 

were simultaneously specified as mediators of the relationship between income and mathematics 

skill. The results revealed that spatial skill (indirect effect: b = .063, SE = .007, 95% CI 

[.049, .078]) and vocabulary scores (indirect effect: b = .024, SE = .004, 95% CI [.015, .033]) 

both partially mediated the effect of income on mathematics skill, while the direct effect of 

income on mathematics skill still remained significant (β = .11, b = .048, SE = .011, t = 4.327, p 

< .001). This pattern of results indicates that both spatial skill and a verbal measure that is related 

to general cognitive ability partly explain the effect of income on mathematics skill.  

INSERT FIGURE 3 ABOUT HERE 

We also tested whether the effect of sex on mathematics skill in kindergarten was 

mediated by spatial skill (see Figure 4). We restricted this analysis to kindergarten participants 
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because only in kindergarten was there a significant effect of sex on mathematics skill. In the full 

model (R2 = .31, F(3, 374) = 55.73, MSE = .39, p < .001), which included sex and spatial skill as 

predictors of mathematics skill with WJ-3 Picture Vocabulary as a covariate, the direct effect of 

sex on mathematics was not statistically significant (β = -.15, b = -.108, SE = .064, t = -1.68, p 

= .093). However, there were significant effects of both spatial skill on mathematics (β = .43, b 

= .487, SE = .052, t = 9.38, p < .001), and sex on spatial skill (β = -.21, b = -.140, SE = .064, t = -

2.21, p = .028). There also was a significant effect of vocabulary scores on mathematics (β = .20, 

b = .152, SE = .034, t = 4.44, p < .001). As a test of mediation, the indirect effect of sex on 

mathematics through spatial skill was b = -.068 (SE = .032) and the 95% confidence interval 

based on bootstrapping with 5,000 random samples did not include zero (95% CI [-.134, -.009]). 

The significant indirect effect coupled with the non-significant direct effect indicates that spatial 

skill fully mediated the effect of sex on mathematics in kindergarten.  

In contrast, supplemental analyses revealed that vocabulary scores did not mediate the 

effect of sex on mathematics skill in kindergarten when controlling for spatial skill (indirect 

effect: b = -.004, SE = .015, 95% CI [-.035, .026]), indicating that spatial skill, and not a measure 

of general cognitive ability, accounted for the effect of sex on mathematics skill in kindergarten. 

INSERT FIGURE 4 ABOUT HERE 

In summary, analyses related to our first aim revealed large effects of income level in all 

three grades, favoring children from high income families on both spatial and mathematics 

measures, a small effect favoring boys on the spatial measures in all grades, and a small effect 

favoring boys on mathematics in kindergarten only. With regard to our second aim, we found 

that spatial skill was a significant mediator of the observed effects of income (partial mediation) 

and sex (full mediation) on mathematics performance. 
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Aim 3: Group Differences in Latent Structure 

 Configural Invariance Model. In previous exploratory and confirmatory factor analyses 

of the current data set (Mix et al., 2016; Mix et al., 2017), the best fitting model suggested two 

highly correlated factors—one comprised of spatial measures and the other comprised of 

mathematics measures—and the same structure was evident at all three grade levels. This pattern 

has been reported for a similar dataset comprised of 4- to 11-year-olds (Hawes, Moss, Caswell, 

Seo & Ansari, 2019). Thus, a third aim of the present paper was to determine whether this same 

two-factor structure characterized the data for children from different SES groups, as well as 

boys versus girls. 

 In order to assess group differences on the latent constructs, we followed a stepwise 

model-building procedure (Anderson & Gerbing, 1988). We began by estimating single-factor 

models for each grade level individually. Once models were deemed to have adequate fit, the 

two-factor models were estimated at each grade level, allowing the factors to correlate with one 

another without imposing a causal direction. As in previously published analyses, the effect of 

general cognitive ability was controlled by partialling out the effect of WJ-3 Vocabulary subtest 

scores (Mix et al., 2016; Mix et al., 2017), and using the residualized variables in subsequent 

analyses. All models were estimated using Satorra-Bentler scaled maximum likelihood (MLR) to 

correct for non-normality within the observed items. Models were estimated using Mplus version 

8.2 (Muthén & Muthén, 2017). 

Single-factor models were specified following results from previous analyses (Mix et al., 

2016; Mix et al., 2017). At all three grade levels (kindergarten, third grade, & sixth grade), the 

spatial factor was measured by all six of the spatial tasks, and the mathematics factor was 

measured by all of the grade-appropriate mathematics tasks. This finding replicates the unitary 
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within-domain structure reported by Mix and colleagues (Mix et al., 2016; Mix et al., 2017), as 

one might expect given that we are using the same dataset. Also as expected, model fit to the 

data was found to be adequate across all models, as assessed by the root mean squared error of 

approximation (RMSEA – at or below 0.07) and the standardized root mean square residual 

(SRMR – at or below 0.08) following recommendations by Hu and Bentler (1999) and Steiger 

(2007). 

 We next specified a series of two-factor configural invariance models, separately 

estimating parameters for each subgroup (i.e., low income vs. high income2; boys vs. girls) at 

each grade level, in which both the mathematics and spatial factors were estimated. Across all 

six models, the fit indices were within acceptable ranges, indicating that the same correlated two-

factor spatial and mathematics structure previously found in the whole group analyses also held 

for these sex and SES subgroups (see Table 2). Thus, with regard to our third aim, we found that 

the latent structure of spatial skill and mathematics did not differ for any of the SES- and sex-

related subgroups at any of the three grade levels. 

INSERT TABLE 2 ABOUT HERE 
 
 Structured Means Models. Having established configural invariance in the two-factor 

multiple group models, we used structured means modeling (Thompson & Green, 2013) to 

revisit our first aim regarding potential group differences in mean spatial and mathematics 

performance within grade levels. The ANCOVA models reported above are helpful for 

 
2 In the ANCOVA analyses reported above, the ordered income scale (1 = < $15,000, 2 = $15,000 to 34,999; 3 = 
$35,000 to 49,999; 4 = $50,000 to 74,999; 5 = $75,000 to 99,999; and 6 = $100,000 or more) was used to assess the 
effect of income on mathematics and spatial skill. In the multiple group factor analysis models, a dichotomized 
version of income was used, such that individuals reporting $50,000 or greater annual income were considered “high 
income” while individuals reporting under $50,000 annual income were considered “low income.” The split was 
based on definitions of low income, not a median split. The National Center for Children in Poverty defines low 
income as less than twice the poverty line. According to the NCCP, the federal poverty line in 2016 was $24,300 (in 
2020 it is $26,200) for a family of four with two children. By that definition, low income would be $48600 (or 
$52400 in 2020). http://www.nccp.org/profiles/US_profile_6.html 
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identifying patterns of effects in the data, but they require strong assumptions about a lack of 

measurement error and about the equivalent measurement quality of the items used to form the 

mathematics and spatial composites (McNeish & Wolf, 2019). In contrast, structured means 

modeling allows us to estimate subgroups’ measurement parameters with testable constraints, 

potentially reducing bias in estimates of the subgroups’ means and increasing power to detect 

mean differences (Thompson & Green, 2013). In this way, we can ask whether subgroup 

differences that yielded only small or non-significant effects using ANCOVA might emerge 

using these less restrictive tests (Jung & Yoon, 2016; Thompson & Green, 2013). 

Taking this more sensitive approach, we replicated the overall pattern of results indicated 

by the ANCOVA models (Table 3). That is, we found (1) sex differences in spatial skill were 

apparent within each grade level but only apparent for kindergarteners in mathematics skill, and 

(2) income differences were apparent in both spatial and mathematics skills within all grade 

levels. However, the effect sizes estimated in the ANCOVA models were attenuated compared to 

the effects estimated in the structured means models. For example, the results of the ANCOVA 

indicated that the overall effect of sex on spatial skill was small (η2p = 0.015, p < 0.01), while the 

structured means model indicated that the effect approached a medium effect size within each 

grade level (δKdg,sex = 0.46, p < 0.01; δ3rd,sex = 0.48, p < 0.01; δ6th,sex = 0.46, p < 0.01). One 

possible explanation for the discrepant effect sizes is that the ANCOVA models included both 

sex and income as covariates, whereas the structured means models included one covariate at a 

time; additionally, the income variable was dichotomized for the purposed of the structured 

means model but was treated as ordinal in the ANCOVA model. Regardless, given that both the 

ANCOVA models and the structured means models failed to detect evidence of a gap in 
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mathematics skill between boys and girls in third and sixth grades strengthens the conclusion that 

sex difference in mathematics skills were not present at these grade levels. 

In addition to comparing group differences in the factor means, we assessed the reliability 

of the structured means models using McDonald’s coefficient omega (McDonald, 1978; Raykov 

& Shrout, 2002) in order to determine how well our two-factor models measured mathematics 

and spatial abilities. The multidimensional (i.e., two-factor) and unidimensional (i.e., single-

factor) reliabilities ranged between 0.66-0.90, with the lowest reliabilities in measuring the 

spatial factor among three kindergarten subgroups (ωSpatial,boys = 0.66; ωSpatial,girls = 0.69; 

ωSpatial,low-inc = 0.68) and two sixth grade subgroups (ωSpatial,girls = 0.68; ωSpatial,high-inc. = 0.67), and 

the highest reliabilities in measuring the mathematics factor among all subgroups in sixth grade 

(ωMath,boys = 0.90; ωMath,girls = 0.87; ωMath,low-inc. = 0.90; ωMath,high-inc. = 0.88). These reliabilities well 

exceed the minimum recommendations, establishing our structured means models as reliable 

measures of latent mathematics and spatial skills across grade levels and subgroups (Gagne & 

Hancock, 2006). Using this model, we also found evidence that the mathematics and spatial 

factors correlated strongly with one another within each grade level and subgroup (see Figure 5 

for a visualization using factor scores). Estimates of the interfactor correlations between 

mathematics and spatial skills ranged between 0.52-0.74 across subgroups providing strong 

evidence for a processing link between mathematics and spatial skills across developmental 

stages, SES, and sex. The full tables of results are available in the Appendix A. 

INSERT FIGURE 5 ABOUT HERE 

 Subgroup Differences. We next used the two-group structured means models described 

above to compare standardized mean differences for each of the subgroups separately. Overall, 

the performance gaps in spatial skill shown in the ANCOVA models were replicated in the 
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structured means models, with boys generally outperforming girls in spatial skills and high-

income students consistently outperforming low-income students within each grade level (Table 

3). In general, using the structured means models, which account for measurement error and 

measurement non-invariance, revealed stronger effect sizes than the ANCOVA models. 

First, unlike the ANCOVAs that showed mostly nonsignificant and small-to-medium 

performance gaps, the structured means comparisons showed larger performance gaps in the 

moderate-to-medium range. For spatial skill, this was the case in both subgroups, sex and 

income, and these gaps persisted at a similar effect size across all age groups (sex: δKdg; boys vs. girls 

= 0.46, p < 0.01; δ3rd; boys vs. girls = 0.48, p < 0.01; δ6th; boys vs. girls = 0.46, p < 0.01; income: δKdg; high 

vs. low = 0.40, p < 0.01; δ3rd; high vs. low = 0.55, p < 0.01; δ6th, high vs. low = 0.39, p < 0.01). For 

mathematics skill, we also found moderate-to-medium performance gaps between high-income 

and low-income students at all three ages. Finally, recall that although the ANCOVA had shown 

no significant grade x sex interaction for mathematics, pairwise comparisons suggested that boys 

might have outperformed girls in kindergarten only. This effect was replicated in the analyses 

using structured means comparisons, and, in fact, there was evidence of a moderate performance 

gap in mathematics performance between boys and girls in kindergarten (δKdg, boys vs. girls = 0.35, p 

< 0.01); however, no difference was detected in third and sixth grades (δ3rd, boys vs. girls = 0.16, n.s.; 

δ6th, boys vs. girls = 0.10, n.s.). These patterns are evident in the factor score distributions presented in 

Figure 6, which depict moderate and persistent gaps between subgroup distributions of spatial 

performance (Panel B), while the sex subgroup distributions of mathematics performance nearly 

perfectly overlap by sixth grade (Panel A). Note that the present model analyzed sex and income 

separately due to considerations of power and model complexity, thus preventing the testing of 

interactions between groups. To determine whether the performance gaps between girls and boys 
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and high-income and low-income students are additive, that is, whether low-income girls are the 

lowest performing group and high-income boys are the highest, further work is recommended 

with larger sample sizes. 

Second, whereas the ANCOVA model indicated that the income by grade interaction on 

mathematics skill yielded a small but non-significant effect (η2p = 0.011, p = 0.274), the results 

of the structured means models suggest a mathematics performance gap between high-income 

and low-income students that is larger in later grades. Astonishingly, the effect size of the 

income level on mathematics in sixth grade was nearly twice that in kindergarten (δKdg; high vs. low = 

0.30, p = 0.01; δ3rd; high vs. low = 0.40, p < 0.01; δ6th; high vs. low = 0.59, p < 0.01). Of course, these 

results are based on cross-sectional rather than longitudinal data, so must not be interpreted as 

increasing over time in the same children. Still, the discrepancy between older and younger 

students is considerable, adding to the literature focused on the importance of early intervention 

(e.g., Claessens, Duncan, & Engel, 2008; Raudenbush, Hernandez, Goldin-Meadow, Carrazza, et 

al., 2020). In contrast, as shown in Table 3, we did not find a widening income-related gap across 

the grades for spatial skill. 

This discrepancy may seem surprising given that spatial skill and mathematics skill are 

significantly related in sixth grade, and indeed, the magnitude of this relation is stable across the 

three grades we tested (kindergarten, third, and sixth) (Mix et al., 2016). If the two skills are 

highly correlated, then why does the income-gap increase in one domain and not the other? 

One reason may be that spatial skill plays a larger role in mathematics learning when 

children are acquiring novel concepts or grounding unfamiliar symbols (Mix et al., 2016; Mix et 

al., 2017). Perhaps these early deficits in grounding basic mathematics concepts snowball into 

larger differences in mathematics achievement later on, even if variation in spatial skill remains 
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stable over time. Alternatively, the widening mathematics achievement gap may be due to other 

sources of variation that are linked to sex, such as verbal skills that are important for solving 

word problems, the quality of schooling, and/or neighborhood resources (Boonen, de Koning, 

Jolles, & van der Schoot, 2016; Entwhistle, Alexander & Olson, 1997; McLoyd, 1998; Sirin, 

2005). These explanations are not mutually exclusive. 

INSERT TABLE 3 ABOUT HERE 

INSERT FIGURE 6 ABOUT HERE 

Discussion 

The present study offers a secondary analysis of data measuring spatial and mathematics 

skill in kindergarten, third grade, and sixth grade students (Mix et al., 2016; Mix et al., 2017). 

Our specific aims were to determine whether (1) spatial performance, mathematics performance, 

or both varied as a function of sex or income, (2) mathematics performance differences were 

mediated by spatial skill, and (3) the latent structures observed previously for children grouped 

by grade also held true for subgroups based on income and sex within each grade. 

With regard to the first aim, we obtained strong evidence for better performance among 

children from higher income backgrounds on both spatial and mathematics tasks, with medium 

to large effect sizes for both (spatial η2p = .092; mathematics η2p = .098). This income advantage 

was evident in both the analyses of variance examining differences in performance levels, and in 

the significance tests used to evaluate differences in the factor means for these groups. These 

findings are robust and consistent with previous research reporting similar SES advantages for 

spatial and mathematics skill (Claessens et al., 2008; Jirout & Newcombe, 2015; Levine, 

Vasilyeva, Lourenco, Newcombe, & Huttenlocher, 2005; Sirin, 2005). 
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A novel contribution of the present study is that structured means comparisons yielded 

evidence of increasing income subgroup differences in mathematics performance across grade 

levels, suggesting that the mathematics performance gap between high-income and low-income 

students increases with development, consistent with prior longitudinal work (Denton & West, 

2002). However, this pattern differed from what we found with spatial skill income-related gaps, 

where the disparities among income groups did not change across development. It is interesting 

that mathematics and spatial skill diverge in this way, given that they remain equally correlated 

across the same age range—a pattern that may seem, at first, to be paradoxical. 

One possible explanation could be that there is a minimum threshold for the spatial skill 

needed to support superior performance in mathematics, beyond which additional spatial skill 

does not contribute to the variance in mathematics achievement (Freer, 2019). If the spatial skill 

of children from low-income families falls below that threshold, they may experience worse 

mathematics outcomes early in development that could snowball into larger deficits under the 

pressure of acquiring more advanced mathematics without a strong foundation of basic skills. In 

contrast, children who meet the threshold for minimal spatial skill may perform better in 

mathematics throughout development, and never show major deficits in prerequisite skill 

development. In this way, it may not be necessary to have increasingly greater spatial skill in 

order to show increasingly greater mathematics outcomes. Alternatively, this divergence could 

reflect underlying educational disparities between income groups that may be overlooked in the 

ANCOVAs we carried out. Quality of schooling would not be expected to have as strong an 

effect on spatial skill development partly because it is not commonly taught (Levine et al., 2016). 

It is also possible that mathematics outcomes are more sensitive to differences in parenting and 

family resources than spatial outcomes. 
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As in prior research (Lauer et al., 2019; Levine et al., 2005), we obtained evidence for a 

significant sex difference favoring boys over girls on spatial tasks, both collapsing across the 

grades (η2p = .018) and when examined within grade. Also consistent with prior research (Bakker 

et al., 2019; Lachance & Mazzocco, 2006), we did not observe a significant sex difference on 

mathematics tasks when collapsing across grades (η2p = .005). However, follow-up tests within 

grades revealed a male advantage for mathematics in kindergarten only. This outcome was 

unexpected given that when sex differences in mathematics have been reported, they tend to be 

restricted to older children (Lindberg et al., 2010; Reilly et al., 2015), though not always (see 

Penner & Paret, 2008). 

A possible explanation for this early sex difference in mathematics might be that the 

mathematics measures we chose were unfamiliar or challenging to the specific kindergarten 

children we tested. For example, children in our sample may not have been exposed to missing 

term problems or place value questions. In support of this, an inspection of the kindergarten 

factor loadings indicates that the correlations between spatial skill and performance on these 

specific mathematics subskills were stronger for boys than for girls (See Table A1). Recall that 

previous research has shown a male advantage on complex or novel problem-solving tasks where 

invented strategies are more important (Lindberg et al., 2010; Reilly et al., 2015). In contrast, a 

female advantage for mathematics has been demonstrated in course grades (Duckworth & 

Seligman, 2006; Pomerantz, Altermatt & Saxon, 2002; Kenney-Benson, Pomerantz, Ryan, & 

Patrick, 2006) and for routinized skills, such as counting (Hutchinson et al., 2019; Hyde et al, 

2009). Although we did not intentionally manipulate novelty in our measures, it is possible that 

for the children we tested, the balance of novel problems was greater in kindergarten than in the 

other grades, perhaps creating a situation where boys could outperform girls on average. This 
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explanation is consistent with evidence showing that, among the highest performing mathematics 

students in kindergarten, boys outperform girls (Penner & Paret, 2008), perhaps because the 

mathematics content that differentiates these groups is novel and challenging. 

Some may find it surprising that our results did not reveal sex differences among older 

children, given that previous research has shown that when there are significant sex differences 

in mathematics, these are more apparent in older students (e.g., Ceci et al., 2009). However, such 

research has focused on adolescents and adults, who are much older than even the oldest children 

in our sample. If we had tested older children, we might have expected to replicate those sex 

differences in mathematics, but the fact that we did not find such differences in third and sixth 

grade children seems consistent with the literature on elementary-aged children (e.g., Bakker et 

al., 2019; Kersey et al., 2019). 

Our second aim was to test whether spatial skill mediated performance differences in 

mathematics for specific subgroups. Few studies have examined these relations (e.g., Casey et 

al., 2011) and ours is the first to demonstrate that spatial skill mediates the relation between 

income and mathematics (albeit partially) across three elementary grades using comparable 

measures. These relations between income and mathematics also were partially mediated by 

verbal skill, suggesting there are multiple contributors. As noted above, one contributor may be 

disparities in school quality, which could explain why the relations between income and 

mathematics are not fully mediated by spatial skill, verbal skill, or a combination of the two. 

Other possibilities include access to informal mathematics activities or homework support. For 

the portion of variance mediated by spatial skill, a potential explanation is that spatial 

visualization may be particularly helpful when children are attacking novel problems or choosing 

among potential solutions. As Mix (2019) argued, one major function of spatial processing for 
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mathematics may be grounding mathematics symbols and operations (i.e., connecting them to a 

physical or imagined referent). It has also been hypothesized that spatial visualization, being 

relatively effortful, is recruited more often for novel or challenging content (Lowrie & Kay, 

2001; Mix, 2019; Mix et al., 2016; Uttal & Cohen, 2012). If so, then we might expect income-

related differences in spatial skill to mediate only part of the income-related differences in 

mathematics skill—that is, the part measured by novel or challenging problems. The portion of 

variance mediated by verbal skill could be rooted in differences in general cognitive ability, 

differences in verbal strategy use, or both. 

Alternatively, this mediation effect could be viewed as reflecting variation in general 

cognitive skill that has both a verbal and spatial component. Studies have demonstrated that fluid 

reasoning (e.g., matrix reasoning) and spatial skill are overlapping (Ackerman, Beier & Boyle, 

2002; Colom, Contreras, Botella, & Santacreu, 2002; Lohman, 2000), and recent work 

demonstrates that when fluid reasoning, verbal skill, and spatial skill are included in the same 

model, only fluid reasoning predicts children’s subsequent mathematics outcomes (Green, 

Bunge, Chiongbian, Barrow & Ferrer, 2017). Thus, it is possible our spatial measures tapped 

fluid reasoning and the observed effects may reflect variation in this domain general skill to 

some extent. Unfortunately, we were unable to test this possibility with our existing dataset 

because we did not include a measure of fluid intelligence, but this could be an important control 

in future work. 

We also found that spatial skill fully mediated the male advantage we observed for 

kindergarteners in mathematics. This is a striking finding given that our income effects on 

mathematics were only partially mediated by spatial skill and seemed to have multiple origins. 

The finding suggests that in the case of this sex difference, the entire effect can be attributed to 
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differences in spatial skill. In contrast to the effects involving income, this sex difference was 

small and limited to the youngest age group tested, so it appears to be a much narrower and 

potentially specific finding. As we argued in our interpretation of the sex difference itself, it 

seems possible that the mathematics problems we chose were novel or challenging for the 

kindergarten children in our sample. If that is the case, then boys may have fared better because 

they tend to do well when attacking novel problems and inventing solutions, whereas girls tend 

to do well when they are encountering more familiar mathematics content. However, this 

mediation finding goes further to suggest that the cognitive processing boys use to attack novel 

problems may be spatial, consistent with what others have hypothesized (Lowrie & Kay, 2001; 

Mix, 2019; Mix et al., 2016; Uttal & Cohen, 2012). These interpretations are speculative because 

we do not have a direct measure of novelty or the strategies used to solve problems in this 

dataset. Also, just as for the mediation of relations involving income, the mediation effect for sex 

may reflect differences in fluid reasoning to some extent. However, the proposed mechanism of 

spatial skill being recruited to attack novel or challenging problems seems plausible and bears 

testing in future research. 

Although we did not test causality or training effects, our findings are consistent with the 

possibility that spatial training can be useful in closing performance gaps such as these. If spatial 

processing mediates the relations between income and mathematics outcomes, and between sex 

and mathematics outcomes, it stands to reason that improving spatial skill could lead to better 

mathematics outcomes, particularly in the more vulnerable subgroups (i.e., low-income children, 

young girls with respect to novel problems) (Levine et al., 2016; Mix & Cheng, 2012; 

Newcombe, 2017). Recall that several studies have reported positive effects of spatial training on 

mathematics outcomes in the elementary school age ranges (Cheng & Mix, 2014; Cheung, Sung, 
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& Lourenco, 2019; Lowrie, Logan & Ramful, 2017). The present results suggest that these 

effects may be greatest among children who are not already high performing in both domains but 

may have little effect on those who are (i.e., high income boys). Perhaps future spatial training 

studies should focus on low-income students, where the potential for growth in both spatial skills 

and mathematics achievement may be greater. These interventions may be particularly effective 

early in development, before the expansion of the mathematics achievement gap observed in this 

study and reported previously (Denton & West, 2002; Raudenbush et al., 2020). 

Our final aim was to determine whether the latent structure of spatial and mathematics 

skills differed depending on SES, sex, or both. Recall that in previous factor analyses of the same 

dataset analyzed here (Mix et al., 2016; Mix et al., 2017), spatial and mathematics performance 

formed unitary factors that were separate but significantly correlated. In the present analysis, we 

used multi-group confirmatory factor analysis to see whether the same structure was evident in 

income and sex subgroups. The results confirmed that it is. Although there were differences in 

performance levels for these subgroups, the basic two-factor, separate but correlated structure of 

the relations was the same. 

This finding is interesting because it was possible that for certain subgroups, spatial and 

mathematics performance may have related differently. For example, among high income 

students who tended to outperform the other subgroups on spatial tasks and mathematics tasks, it 

was possible spatial and mathematics performance might form a single factor, or that there were 

multiple factors with different combinations of spatial and mathematics measures loadings. That 

these other patterns were not obtained, and the two-factor, separate but correlated structure was 

evident across all subgroups instead, suggests that this structure is stable and deeply rooted in 

core processing differences between the two domains, despite their clear overlap. Defining this 
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overlap and distinguishing it from the aspects of processing that are non-overlapping remains 

will help to elucidate how, specifically, spatial processes are related to mathematical thought. 

Getting to the bottom of this will require understanding precisely how the two domains do and 

do not overlap and how this partial overlap is manifested in various facets of mathematical 

performance. 

In conclusion, the present study sought to examine subgroup differences in mathematics 

and spatial performance, and investigate whether the factor structure identified by Mix et al., 

(2016) and Mix et al. (2017) was replicated in income and sex subgroups. Our findings add to 

the literature that documents the intertwined nature of spatial and mathematical development by 

examining these relations in specific subgroups, and by demonstrating advantages based on 

income and sex, as well as evidence that spatial skill mediates these group differences. Our 

findings indicate that despite these group differences, the latent structure of spatial skill and 

mathematics skill is consistent across age, income level, and sex. Taken together, these findings 

suggest that interventions aimed at increasing spatial skill may have positive effects on student 

learning in mathematics, particularly among early elementary aged children and those from 

lower SES backgrounds. 

  



 38 

References 
 
Ackerman, P. L., Beier, M. E., & Boyle, M. D. (2002). Individual differences in working 

memory within a nomological network of cognitive and perceptual speed 

abilities. Journal of Experimental Psychology: General, 131(4), 567-589. 

Anderson, J. C., & Gerbing, D. W. (1988). Structural equation modeling in practice: A review 

and recommended two-step approach. Psychological Bulletin, 103(3), 411-423. 

Bakker, M., Torbeyns, J., Wijns, N., Verschaffel, L., & De Smedt, B. (2019). Gender equality in 

4-to 5-year-old preschoolers’ early numerical competencies. Developmental Science, 

22(1), e12718. doi: 10.111/desc.12718 

Beery, K. E., & Beery, N. A. (2010). The Beery-Buktenica developmental test of visual-motor 

integration: Beery VMI with supplemental developmental tests of visual perception and 

motor coordination: Administration, scoring, and teaching manual (6th edition). 

Minneapolis, MN: NCS Pearson Inc. 

Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and 

powerful approach to multiple testing. Journal of the Royal Statistical Society, 57, 289-

300. doi: 10.111/j.2517-6161.1995.tb02031.x 

Benjamini, Y., & Yekutieli, D. (2005). False discovery rate—Adjusted multiple confidence 

intervals for selected parameters. Journal of the American Statistical Association, 100, 

71-81. doi: 10.1198/016214504000001907 

Boonen, A. J., de Koning, B. B., Jolles, J., & van der Schoot, M. (2016). Word problem solving 

in contemporary mathematics education: A plea for reading comprehension skills 

training. Frontiers in Psychology, 7, 191. doi: 10.3389/fpsyg.2016.00191  



 39 

Byrne, B. M., Shavelson, R. J., & Muthén, B. (1989). Testing for the equivalence of factor 

covariance and mean structures: The issues of partial measurement invariance. 

Psychological Bulletin, 105(3), 456-466. doi: 10.1037/0033-2909.105.3.456 

Casey, B. M., Dearing, E., Vasilyeva, M., Ganley, C. M., & Tine, M. (2011). Spatial and 

numerical predictors of measurement performance: The moderating effects of community 

income and gender. Journal of Educational Psychology, 103(2), 296-311. doi: 

10.1037/a0022516 

Casey, M. B., Nuttall, R. L., & Pezaris, E. (1997). Mediators of gender differences in 

mathematics college entrance test scores: A comparison of spatial skills with internalized 

beliefs and anxieties. Developmental Psychology, 33(4), 669-680. doi: 10.1037/0012-

1649.33.4.669 

Casey, M. B., Nuttall, R. L., & Pezaris, E. (2001). Spatial-mechanical reasoning skills versus 

mathematics self-confidence as mediators of gender differences on mathematics subtests 

using cross-national gender-based Items. Journal for Research in Mathematics 

Education, 32(1), 28–57. doi: 10.2307/749620 

Casey, M. B., Nuttall, R. L., Pezaris, E. & Benbow, C. (1995). Spatial-mechanical reasoning 

skills versus mathematics self-confidence as mediators of gender differences on 

mathematics subtests using cross-national gender-based items. Journal for Research in 

Mathematics Education, 32(1), 28-57. doi: 10.2307/749620 

Ceci, S. J., Williams, W. M., & Barnett, S. M. (2009). Women’s underrepresentation in science: 

Sociocultural and biological considerations. Psychological Bulletin, 135(2), 218-261. 



 40 

Cheng, Y.-L., & Mix, K. S. (2014). Spatial training improves children’s mathematics ability. 

Journal of Cognition and Development, 15(1), 2–11. doi: 

10.1080/15248372.2012.725186 

Cheung, C.-N., Sung, J. Y., & Lourenco, S. F. (2019). Does training mental rotation transfer to 

gains in mathematical competence? Assessment of an at-home visuospatial intervention. 

Psychological Research, 1-18. doi: 10.1007/s00426-019-01202-5 

Claessens, A., Duncan, G., & Engel, M. (2008). Kindergarten skills and fifth-grade achievement: 

Evidence from the ECLS-K. Economics of Education Review, 28(4), 415-427. 

doi.org/10.1016/j.econedurev.2008.09.003. 

Cobb-Clark, D. A., & Moschion, J. (2017). Gender gaps in early educational achievement. 

Journal of Population Economics, 30(4), 1093-1134. doi:10.1007/s00148-017-0638-z 

Cohen, J. (1992). A power primer. Psychological bulletin, 112(1), 155-159. 

Colom, R., Contreras, M. J., Botella, J., & Santacreu, J. (2002). Vehicles of spatial 

ability. Personality and Individual Differences, 32(5), 903-912. 

Crane, J. (1996). Effects of home environment, SES, and maternal test scores on mathematics 

achievement. The Journal of Educational Research, 89(5), 305-314. doi: 

10.1080/00220671.1996.9941332 

Cronbach, L. J. (1951). Coefficient alpha and the internal structure of tests. Psychometrika, 

16(3), 297–334. doi: 10.1007/BF02310555 

Dearing, E., Casey, B. M., Ganley, C. M., Tillinger, M., Laski, E., & Montecillo, C. (2012). 

Young girls’ arithmetic and spatial skills: The distal and proximal roles of family 

socioeconomics and home learning experiences. Early Childhood Research Quarterly, 

27(3), 458-470. doi: 10.1016/j.ecresq.2012.01.002 



 41 

Demir, Ö. E., Prado, J., & Booth, J. R. (2015). Parental socioeconomic status and the neural 

basis of arithmetic: differential relations to verbal and visuo-spatial 

representations. Developmental Science, 18(5), 799-814. doi: 10.1111/desc.12268 

Denton, K., & West, J. (2002). Children's reading and mathematics achievement in kindergarten 

and first grade. National Center for Education Statistics, Office of Educational Research 

and Improvement, US Department of Education. 

Duckworth, A. L., & Seligman, M. E. (2006). Self-discipline gives girls the edge: Gender in self-

discipline, grades, and achievement test scores. Journal of Educational Psychology, 

98(1), 198-208. 

Dunn, T. J., Baguley, T., & Brunsden, V. (2013). From alpha to omega: A practical solution to 

the problem of internal consistency estimation. British Journal of Psychology, 105, 399-

412. doi: 10.1111/bjop.12046 

Elliott, L., & Bachman, H. J. (2018). SES disparities in early mathematics abilities: The 

contributions of parents’ mathematics cognitions, practices to support mathematics, and 

mathematics talk. Developmental Review, 49, 1–15. doi: 10.1016/j.dr.2018.08.001 

Fennema, E., Carpenter, T. P., Jacobs, V. R., Franke, M. L., & Levi, L. W. (1998). A 

longitudinal study of gender differences in young children’s mathematical thinking. 

Educational Researcher, 27(5), 6–11. doi: 10.2307/1176733 

Fennema, E., & Tartre, L. A. (1985). The use of spatial visualization in mathematics by girls and 

boys. Journal for Research in Mathematics Education, 16(3), 184-206. doi: 

10.2307/748393 



 42 

Farah, M. J., Shera, D. M., Savage, J. H., Betancourt, L., Giannetta, J. M., Brodsky, N. L., ... & 

Hurt, H. (2006). Childhood poverty: Specific associations with neurocognitive 

development. Brain Research, 1110(1), 166-174. doi: 10.2307/748393 

Faul, F., Erdfelder, E., Lang, A.-G., & Buchner, A. (2007). G*Power 3: A flexible statistical 

power analysis program for the social, behavioral, and biomedical sciences. Behavior 

Research Methods, 39, 175-191. doi: 10.2307/748393 

French, B. F., & Finch, W. H. (2006). Confirmatory factor analytic procedures for the 

determination of measurement invariance. Structural Equation Modeling, 13(3), 378-402. 

doi: 10.1207/s15328007sem1303_3 

Frick, A. (2018). Spatial transformation abilities and their relation to later mathematics 

performance. Psychological Research, 1-20. doi: 10.1207/s15328007sem1303_3 

Frick, A., Möhring, W., & Newcombe, N. S. (2014). Picturing perspectives: development of 

perspective-taking abilities in 4-to 8-year-olds. Frontiers in Psychology, 5, 386. doi: 

10.3389/fpsyg.2014.00386 

Fritz, C. O., Morris, P. E., & Richler, J. J. (2012). Effect size estimates: Current use, calculations, 

and interpretation. Journal of Experimental Psychology, 141(1), 2–18. 

Gagne, P., & Hancock, G. R. (2006). Measurement model quality, sample size, and solution 

propriety in confirmatory factor models. Multivariate Behavioral Research, 41(1), 65-83. 

Geer, E. A., Quinn, J. M., & Ganley, C. M. (2019). Relations between spatial skills and 

mathematics performance in elementary school children: A longitudinal investigation. 

Developmental Psychology, 55(3), 637–652. doi: 10.1037/dev0000649 



 43 

Geiser, C., Lehmann, W., Corth, M., & Eid, M. (2008). Quantitative and qualitative change in 

children's mental rotation performance. Learning and Individual Differences, 18(4), 419-

429. doi: 10.1016/j.lindif.2007.09.001 

Gilligan, K. A., Flouri, E., & Farran, E. K. (2017). The contribution of spatial ability to 

mathematics achievement in middle childhood. Journal of experimental child 

psychology, 163, 107-125. doi: 10.1016/j.jecp.2017.04.016 

Ginsburg, H., & Baroody, A. J. (2003). TEMA-3: Test of early mathematics ability. Austin, TX: 

Pro-Ed.  

Green, C. T., Bunge, S. A., Chiongbian, V. B., Barrow, M. & Ferrer, E. (2017). Fluid reasoning 

predicts future mathematical performance among children and adolescents. Journal of 

Experimental Child Psychology, 157, 125-143. doi: 10.1016/j.jecp.2016.12.005 

Hackman, D. A. & Farah, M. J. (2009). Socioeconomic status and the developing brain. Trends 

in Cognitive Science, 13(2), 65-73. doi: 10.1016/j.tics.2008.11.003 

Hawes, Z., Moss, J., Caswell, B., Seo, J., & Ansari, D. (2019). Relations between numerical, 

spatial, and executive function skills and mathematics achievement: A latent-variable 

approach. Cognitive Psychology, 109, 68–90. doi: 10.1016/j.cogpsych.2018.12.002 

Hayes, A. F. (2017). Introduction to mediation, moderation, and conditional process analysis: A 

regression-based approach (2nd ed.). New York: The Guilford Press. 

Heil, M., & Jansen-Osmann, P. (2008). Sex differences in mental rotation with polygons of 

different complexity: Do men utilize holistic processes whereas women prefer piecemeal 

ones? Quarterly Journal of Experimental Psychology: Human Experimental Psychology, 

61, 683-689. doi: 10.1080/17470210701822967 



 44 

Herts, J.B. & Levine, S. C. (2020). Gender and mathematics development. Oxford Research 

Encyclopedia of Education.  

Holmes, J., Adams, J. W., & Hamilton, C. J. (2008). The relationship between visuospatial 

sketchpad capacity and children's mathematical skills. European Journal of Cognitive 

Psychology, 20(2), 272-289. doi:10.1080/09541440701612702 

Hresko, W., Schlieve, P. L., Herron, S. R., Sawain, C., & Sherbenou, R. (2003). Comprehensive 

mathematics abilities test. Austin, TX: Pro-Ed. 

Hsu, J. C. (1999). Multiple comparisons: Theory and methods. Boca Raton, FL: Chapman & 

Hall/CRC. 

Hu, L-T & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: 

Conventional criteria versus new alternatives. Structural Equation Modeling: A 

Multidisciplinary Journal, 6, 1-55. doi: 10.1080/10705519909540118 

Huber, P. J. (1967), “The Behavior of Maximum Likelihood Estimates under Nonstandard 

Conditions,” in Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics 

and Probability, Vol. I, pp. 221–233. 

Hutchison, J. E., Lyons, I. M., & Ansari, D. (2019). More similar than different: Gender 

differences in children’s basic numerical skills are the exception not the rule. Child 

Development, 90(1), e66–e79. doi: 10.1111/cdev.13044 

Hyde, J. S., Fennema, E., & Lamon, S. (1990). Gender differences in mathematics performance: 

A meta-analysis. Psychological Bulletin, 107, 139-155. doi.org/10/1037/0033-

2909.107.2.139 



 45 

Jirout, J. J., & Newcombe, N. S. (2015). Building blocks for developing spatial skills: Evidence 

from a large, representative US sample. Psychological Science, 26(3), 302-310. doi: 

10.1177/0956797614563338 

Jung, E., & Yoon, M. (2016). Comparisons of three empirical methods for partial factorial 

invariance: Forward, backward, and factor-ratio tests. Structural Equation Modeling: A 

Multidisciplinary Journal, 23(4), 567-584. 

Kaufman, A. S., & Kaufman, N. L. (1983). Kaufman assessment battery for children. Wiley 

Online Library.  

Kenney-Benson, G. A., Pomerantz, E. M., Ryan, A. M., & Patrick, H. (2006). Sex differences in 

mathematics performance: The role of children’s approach to schoolwork. Developmental 

Psychology, 42(1), 11–26. doi: 10.1037/0012-1649.42.1.11 

Kersey, A.J., Csumitta, K.D., & Cantlon, J.F. (2019). Gender similarities in the brain during 

mathematics development. npj Sci. Learn. 4, 19 (2019). doi: 10.1038/s41539-019-0057  

Klein, P. S., Adi-Japha, E., & Hakak-Benizri, S. (2010). Mathematical thinking of kindergarten 

boys and girls: Similar achievement, different contributing processes. Educational 

Studies in Mathematics, 73(3), 233–246. doi: 10.1007/s10649-009-9216-y 

Kozhevnikov, M., & Hegarty, M. (2001). A dissociation between object manipulation spatial 

ability and spatial orientation ability. Memory & Cognition, 29(5), 745-756. doi: 

10.3758/BF03200477 

Lachance, J. A., & Mazzocco, M. M. (2006). A longitudinal analysis of sex differences in 

mathematics and spatial skills in primary school age children. Learning and Individual 

Differences, 16(3), 195-216. doi: 10.1016/j.lindif.2005.12.001 



 46 

Lance, C. E., Butts, M. M., & Michels, L. C. (2006). The sources of four commonly reported 

cutoff criteria: What did they really say? Organizational Research Methods, 9(2), 202–

220. doi: 10.1177/1094428105284919 

Lauer, J. E., & Lourenco, S. F. (2016). Spatial processing in infancy predicts both spatial and 

mathematical aptitude in childhood. Psychological Science, 27(10), 1291–1298. doi: 

10.1177/0956797616655977 

Lauer, J. E., Yhang, E., & Lourenco, S. F. (2019). The development of gender differences in 

spatial reasoning: A meta-analytic review. Psychological Bulletin, 145(6), 537.doi: 

10.1037/bul0000191.  

Levine, S. C., Foley, A., Lourenco, S., Ehrlich, S., & Ratliff, K. (2016). Sex differences in spatial 

cognition: Advancing the conversation. Wiley Interdisciplinary Reviews: Cognitive 

Science, 7(2), 127–155. doi: 10.1002/wcs.1380 

Levine, S. C., Vasilyeva, M., Lourenco, S. F., Newcombe, N. S., & Huttenlocher, J. (2005). 

Socioeconomic status modifies the sex difference in spatial skill. Psychological Science, 

16(11), 841-845. doi:10.1037/bul0000191 

Liben, L. S., & Downs, R. M. (1989). Understanding maps as symbols: The development of map 

concepts in children. Advances in Child Development and Behavior, 22, 145-201. doi: 

10.1016/S0065-2407(08)60414-0 

Lindberg, S. M., Hyde, J. S., Petersen, J. L., & Linn, M. C. (2010). New trends in gender and 

mathematics performance: a meta-analysis. Psychological Bulletin, 136(6), 1123-1135. 

doi:10.1037/a0021276 



 47 

Linn, M. C., & Petersen, A. C. (1985). Emergence and characterization of sex differences in 

spatial ability: A meta-analysis. Child Development, 56(6), 1479–1498. doi: 

10.2307/1130467 

Lippa, R. A., Collaer, M. L., & Peters, M. (2010). Sex differences in mental rotation and line 

angle judgments are positively associated with gender equality and economic 

development across 53 nations. Archives of Sexual Behavior, 39(4), 990-997. doi: 

10.1007/s10508-008-9460-8 

Lohman, D. F. (2000). Complex information processing and intelligence. In R. J. Sternberg 

(Ed.), Handbook of human intelligence (pp. 285-340). Cambridge, MA: Cambridge 

University Press. 

Lowrie, T., Logan, T., & Ramful, A. (2017). Visuospatial training improves elementary students’ 

mathematics performance. British Journal of Educational Psychology, 87(2), 170–186. 

doi: 10.1111/bjep.12142 

McDonald, R. P. (1978). Generalizability in factorable domains: Domain validity and 

generalizability. Educational and Psychological Measurement, 38(1), 75–

79. https://doi.org/10.1177/001316447803800111 

McGraw, R., Lubienski, S. T., & Strutchens, M. E. (2006). A closer look at gender in NAEP 

mathematics achievement and affect data: Intersections with achievement, race/ethnicity, 

and socioeconomic status. Journal for Research in Mathematics Education, 129-150. doi: 

10.2307/30034845 

McNeish, D. (2018). Thanks Coefficient Alpha, we’ll take it from here. Psychological Methods, 

23(3), 412-433. doi: 10.1037/met0000144 



 48 

McNeish, D., & Wolf, M. G. (2019). Thinking twice about sum scores. Behavior Research 

Methods, 1-19. 

Miller, D. I., & Halpern, D. F. (2014). The new science of cognitive sex differences. Trends in 

Cognitive Sciences, 18(1), 37–45. doi: 10.1016/j.tics.2013.10.011 

Mix, K. S. (2019). Why are spatial skill and mathematics related? Child Development 

Perspectives, 13(2), 121–126. doi: 10.1111/cdep.12323 

Mix, K. S., & Cheng, Y.-L. (2012). The relation between space and mathematics: Developmental 

and educational implications. In J. B. Benson (Ed.), Advances in Child Development and 

Behavior (Vol. 42, pp. 197–243). Waltham, MA: Academic Press. 

Mix, K. S., Levine, S. C., Cheng, Y.-L. Stockton, J. D., & Bower, C. (2020). Does spatial 

training improve mathematics performance? A comparison of training type, age, and 

mathematics outcome. Journal of Educational Psychology, Advance online 

publication. https://doi.org/10.1037/edu0000494. 

Mix, K. S., Levine, S. C., Cheng, Y., Young, C., Hambrick, D. Z., Ping, R. & Konstantopolous, 

S. (2016). Separate but correlated: The latent structure of space and mathematics across 

development. Journal of Experimental Psychology: General, 145(9), 1206-1227. doi: 

10.1037/xge0000182 

Mix, K. S., Levine, S. C., Cheng, Y.-L., Young, C. J., Hambrick, D. Z., & Konstantopoulos, S. 

(2017). The latent structure of spatial skills and mathematics: Further evidence from 

Wave 2. Journal of Cognition and Development, 18(4), 465-492. doi: 

10.1080/15248372.2017.1346658 



 49 

Moè, A. (2018). Mental rotation and mathematics: Gender-stereotyped beliefs and relationships 

in primary school children. Learning and Individual Differences, 61, 172–180. doi: 

10.1016/j.lindif.2017.12.002 

Moore, D. S., & Johnson, S. P. (2008). Mental rotation in human infants: A sex difference. 

Psychological Science, 19(11), 1063-1066. doi: 10.1111/j.1467-9280.2008.02200.x 

Morel, J. G., Bokossa, M. C., & Neerchal, N. K. (2003). Small sample correction for the variance 

of GEE estimators. Biometrical Journal: Journal of Mathematical Methods in 

Biosciences, 45(4), 395-409. doi: 10.1002/bimj.200390021 

Muthén, L. K., & Muthén, B. O. (1998-2017). Mplus User's Guide. 8th Edition. Los Angeles, 

CA: Muthén & Muthén. 

Neuburger, S., Jansen, P., Heil, M., & Quaiser-Pohl, C. (2011). Gender differences in pre-

adolescents’ mental-rotation performance: Do they depend on grade and stimulus type? 

Personality and Individual Differences, 50(8), 1238-1242. doi: 

10.1016/j.paid.2011.02.017 

Newcombe, N. (2017). Harnessing spatial thinking to support stem learning. OECD Library. 

Noble, K. G., McCandliss, B. D., & Farah, M. J. (2007). Socioeconomic gradients predict 

individual differences in neurocognitive abilities. Developmental science, 10(4), 464-480. 

doi: 10.1111/j.1467-7687.2007.00600.x 

Nunnally, J. C. (1978). Psychometric theory (2nd ed.). New York: McGraw-Hill. 

Parker, M. C., Solomon, A., Pritchett, B., Illingworth, D. A., Marguilieux, L. E., & Guzdial, M. 

(2018, August). Socioeconomic Status and Computer Science Achievement: Spatial 

Ability as a Mediating Variable in a Novel Model of Understanding. In Proceedings of 



 50 

the 2018 ACM Conference on International Computing Education Research (pp. 97-105). 

ACM. 

Perry, L. B., & McConney, A. (2010). Does the SES of the school matter? An examination of 

socioeconomic status and student achievement using PISA 2003. Teachers College 

Record, 112(4), 1137-1162. 

Peters, M., Laeng, B., Latham, K., Jackson, M., Zaiyouna, R., & Richardson, C. (1995). A 

redrawn Vandenberg and Kuse mental rotations test-different versions and factors that 

affect performance. Brain and Cognition, 28(1), 39-58. doi: 10.1006/brcg.1995.1032 

Pezaris, E., & Casey, M. B. (1991). Girls who use “masculine” problem-solving strategies on a 

spatial task: Proposed genetic and environmental factors. Brain and Cognition, 17(1), 1-

22. doi: 10.1016/0278-2626(91)90062-D 

Pomerantz, E. M., Altermatt, E. R., & Saxon, J. L. (2002). Making the grade but feeling 

distressed: Gender differences in academic performance and internal distress. Journal of 

Educational Psychology, 94(2), 396-404. 

Pruden, S. M., Levine, S. C., & Huttenlocher, J. (2011). Children’s spatial thinking: Does talk 

about the spatial world matter?. Developmental Science, 14(6), 1417-1430. doi: 

10.1111/j.1467-7687.2011.01088.x 

Quinn, P. C., & Liben, L. S. (2008). A sex difference in mental rotation in young infants. 

Psychological Science, 19(11), 1067–1070. doi: 10.1111/j.1467-9280.2008.02201.x 

Raudenbush, S. W., Hernandez, M., Goldin-Meadow, S., Carrazza, C., Foley, A., Leslie, D., 

Sorkin, J. E., & Levine, S. C. (2020). Longitudinally adaptive assessment and instruction 

to increase numerical skills of preschool. Proceedings of the National Academy of 

Sciences, 117(45), 27945-27953. 



 51 

Raykov, T. (2001). Bias of Coefficient α for fixed congeneric measures with correlated errors. 

Applied Psychological Measurement, 25(1), 69-76. doi: 10.1177/01466216010251005 

Raykov, T., & Shrout, P. E. (2002). Reliability of scales with general structure: Point and 

interval estimation using a structural equation modeling approach. Structural Equation 

Modeling, 9(2), 195-212. 

Reardon, S. F. (2011). The widening academic achievement gap between the rich and the poor: 

New evidence and possible explanations. In G. J. Duncan & R. Murnane (Eds.), Whither 

Opportunity? Rising Inequality, Schools, and Children’s Life Chances (pp. 91–116). 

Russell Sage Foundation. 

Reilly, D., Neumann, D. L., & Andrews, G. (2015). Sex differences in mathematics and science 

achievement: A meta-analysis of National Assessment of Educational Progress 

assessments. Journal of Educational Psychology, 107(3), 645-662. doi: 

10.1037/edu0000012 

Reuterberg, S-E., & Gustafsson, J-E. (1992). Confirmatory factor analysis and reliability: 

Testing measurement model assumptions. Educational and Psychological Measurement, 

52, 795-811. doi: 10.1177/0013164492052004001 

Sass, D. A. (2011). Testing measurement invariance and comparing latent factor means within a 

confirmatory factor analysis framework. Journal of Psychoeducational Assessment, 

29(4), 347-363. doi: 10.1177/0734282911406661 

Sattler, J. M. (2001). Assessment of children: Cognitive applications (4th ed.). San Diego, CA: 

Jerome M Sattler, Publisher, Inc. 

Schmitt, N. (1996). Uses and abuses of coefficient alpha. Psychological Assessment, 8(4), 350–

353. doi: 10.1037/1040-3590.8.4.350 



 52 

Silverman, I., Choi, J., Mackewn, A., Fisher, M., Moro, J., & Olshansky, E. (2000). Evolved 

mechanisms underlying wayfinding: Further studies on the hunter-gatherer theory of 

spatial sex differences. Evolution and Human Behavior, 21(3), 201-213. doi: 

10.1016/S1090-5138(00)00036-2 

Siegler, R. S., & Opfer, J. E. (2003). The development of numerical estimation: Evidence for 

multiple representations of numerical quantity. Psychological Science, 14(3), 237-250. 

doi: 10.1111/1467-9280.02438 

Siegler, R. S., Thompson, C. A., & Schneider, M. (2011). An integrated theory of whole number 

and fractions development. Cognitive Psychology, 62(4), 273-296. doi: 

10.1016/j.cogpsych.2011.03.001 

Sirin, S. R. (2005). Socioeconomic status and academic achievement: A meta-analytic review of 

research. Review of Educational Research, 75(3), 417–453. doi: 

10.3102/00346543075003417 

Spelke, E. S., Gilmore, C. K., & McCarthy, S. (2011). Kindergarten children’s sensitivity to 

geometry in maps. Developmental Science, 14(4), 809-821. doi: 10.1111/j.1467-

7687.2010.01029.x 

Steiger, J. H. (2007). Understanding the limitations of global fit assessment in structural equation 

modeling. Personality and Individual differences, 42(5), 893-898. 

Thompson, M. S., & Green, S. B. (2013). Evaluating between-group differences in latent 

variable means. In G. R. Hancock & R. O. Mueller (Eds.) Quantitative methods in 

education and the behavioral sciences: Issues, research, and teaching. Structural 

equation modeling: A second course (pp. 163-218). IAP Information Age Publishing. 



 53 

Uttal, D. & Cohen, C. A. (2012). Spatial thinking and STEM education: When, why, and how?. 

In B. Ross (Ed.) Psychology of learning and motivation (Vol. 57, pp. 147-181). New 

York: Elsevier. doi:10.1016/B978-0-12-394293-7.00004-2 

Van de Schoot, R., Lugtig, P., & Hox, J. (2012). A checklist for testing measurement invariance. 

European Journal of Developmental Psychology, 9(4), 486-492. 

doi:10.1080/17405629.2012.686740 

Verdine, B. N., Golinkoff, R. M., Hirsh-Pasek, K., & Newcombe, N. S. (2017). Links between 

spatial and mathematics skills across the preschool years. Monographs of the Society for 

Research in Child Development, 82(1). doi: 10.1111/mono.12263 

Voyer, D., Voyer, S., & Bryden, M. P. (1995). Magnitude of sex differences in spatial abilities: a 

meta-analysis and consideration of critical variables. Psychological Bulletin, 117(2), 250. 

doi: 10.1037/0033-2909.117.2.250 

Wai, J., Lubinski, D., & Benbow, C. P. (2009). Spatial ability for STEM domains: Aligning over 

50 years of cumulative psychological knowledge solidifies its importance. Journal of 

Educational Psychology, 101(4), 817–835. doi: 10.1037/a0016127 

Wang, L., & Carr, M. (2014). Working memory and strategy use contribute to gender differences 

in spatial ability. Educational Psychologist, 49(4), 261-282. doi: 

10.1080/00461520.2014.960568 

Wechsler, D., Kaplan, E., Fein, D., Kramer, J., Morris, R., Delis, D., & Maerlender, A. (2004). 

Wechsler Intelligence Scale for Children-Integrated. San Antonio, TX: The 

Psychological Corporation. 

White, H. (1980), A heteroskedasticity-consistent covariance matrix estimator and a direct test 

for heteroskedasticity. Econometrica, 48, 817–838. doi: 10.2307/1912934 



 54 

Woodcock, R. W., McGrew, K. S., & Mather, N. (2001). Woodcock-Johnson III Tests of 

Achievement. Itasca, IL: Riverside. 

 

  



 55 

Figure 1 

Spatial Performance for Girls and Boys Within Each Grade 

 

Note. Error bars represent ± 1 standard error of the mean. * p < .05. 
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Figure 2 

Mathematics Performance for Girls and Boys Within Each Grade 

 

Note. Error bars represent ± 1 standard error of the mean. * p < .05. 
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Figure 3 

Spatial Skill Fully Mediated the Effect of Sex on Math Skill in Kindergarten 

 

Note. The indirect effect from sex through spatial skill to math skill was significant, b = -.068 

(SE = .032), 95% CI = -.134, -.009. 
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Figure 4 

Spatial Skill Partially Mediated the Effect of Income on Math Skill  

 

Note. The indirect effect from income through spatial skill to math skill was significant, b = .042 

(SE = .007), 95% CI = [.029, .056]. 
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Figure 5 

Visualization of Interfactor Relations Across Grade Levels by Sex (a) and Income (b) 

(a) 

 

(b) 

 

Note. Scatterplots are based on factor scores generated from the final partial invariance models 

for each grade level and grouping variable. Panel A shows the strength of interfactor (math and 

spatial) relations across grade levels and within sex groupings. Panel B shows the same 

correlations across grade and income. Figures are annotated with the estimated interfactor 

correlation and standard error (in parentheses) by subgroup, though there was no evidence of 

significant differences between inter-factor correlations. Full parameter estimates are available in 

Appendix A. 
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Figure 6 

Visualization of Between-Group Differences in Mathematics Skill by Sex (a) and Income (b) as 

well as Spatial Skill by Sex (c) and Income (d) 

(a) 

 

(b) 
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(c) 

 

(d) 

 

Note. Distributions are based on factor scores generated from the final partial invariance models 

for each grade level and grouping variable. Visualizations of between-group differences in each 

factor are broken down by sex and income groupings across grade levels. 
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Table 1 
 
Mean Spatial and Mathematics Performance by Income Level and Sex, within Each Grade Level 
 

Variable  Kindergarten Third Grade Sixth Grade 
  Spatial Mathematics Spatial Mathematics Spatial Mathematics 
Income 
level 

1 -.27 (.53) -.21 (.67) -.42 (.56) -.48 (.62) -.43 (.75) -.53 (.76) 
2 -.31 (.58) -.26 (.59) -.33 (.74) -.23 (.72) -.28 (.68) -.35 (.71) 
3 -.09 (.60) -.17 (.64) -.18 (.72) -.13 (.72) -.05 (.68) -.10 (.66) 
4 -.01 (.59) -.02 (.67) -.01 (.74) -.07 (.78) .09 (.68) .10 (.60) 
5 .09 (.62) .11 (.72) .26 (.60) .21 (.66) .18 (.70) .10 (.67) 
6 .22 (.75) .22 (.86) .17 (.69) .17 (.66) .22 (.77) .42 (.74) 

Sex Boys .08 (.71) .10 (.82) .14 (.76) .06 (.70) .09 (.72) .01 (.72) 
 Girls -.08 (.61) -.10 (.65) -.10 (.68) -.04 (.74) -.08 (.74) -.01 (.76) 

 
Note. Standard deviations are presented in parentheses. 
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Table 2 
 
Configural Model Results for Sex and Income Across Grade Levels 
 

Model 𝜒! df p-value RMSEA (LB"#%CI, UB"#%CI) SRMR 
Kindergarten        

  Sex        

    Full Model (n=526) 152.71 86 <0.01 0.05 (0.04, 0.07) 0.04 
    Boys Only (n=263) 84.48 43 <0.01 0.06 (0.04, 0.08) 0.04 
    Girls Only (n=263) 67.95 43 0.01 0.05 (0.02, 0.07) 0.05 
  SES        
    Full Model (n=378) 135.06 86 <0.01 0.06 (0.04, 0.07) 0.06 
    High Income Only (n=138) 64.99 43 0.02 0.06 (0.03, 0.09) 0.06 
    Low Income Only (n=240) 69.84 43 0.01 0.05 (0.03, 0.07) 0.05 
Third Grade        
  Sex        
    Full Model (n=537) 214.52 106 <0.01 0.06 (0.05, 0.07) 0.05 
    Boys Only (n=238) 83.90 53 <0.01 0.05 (0.03, 0.07) 0.04 
    Girls Only (n=299) 130.03 53 <0.01 0.07 (0.06, 0.09) 0.05 
  SES        
    Full Model (n=349) 199.89 106 <0.01 0.07 (0.06, 0.09) 0.05 
    High Income Only (n=117) 86.45 53 <0.01 0.07 (0.04, 0.10) 0.06 
    Low Income Only (n=232) 113.94 53 <0.01 0.07 (0.05, 0.09) 0.05 
Sixth Grade        
  Sex        
    Full Model (n=529) 297.79 178 <0.01 0.05 (0.04, 0.06) 0.05 
    Boys Only (n=252) 156.48 89 <0.01 0.06 (0.04, 0.07) 0.05 
    Girls Only (n=277) 141.37 89 <0.01 0.05 (0.03, 0.06) 0.04 
  SES        
    Full Model (n=392) 239.17 178 <0.01 0.04 (0.03, 0.06) 0.05 
    High Income Only (n=152) 110.58 89 0.06 0.04 (0.00, 0.06) 0.05 
    Low Income Only (n=240) 128.57 89 <0.01 0.04 (0.03, 0.06) 0.05 

 
Note. χ2 = Model chi-square. df = Model degrees of freedom. RMSEA = Root mean square error of approximation. 
LB90%CI and UB90%CI = Lower and upper bounds, respectively, of the 90% confidence interval for the RMSEA. 
SRMR = Standardized root mean square residual. 
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Table 3 
 
Standardized Subgroup Mean Differences 
 

Parameter 
Kindergarten Third Grade Sixth Grade 

Est. (SE) Est. (SE) Est. (SE) 
Mathematics Skill       
  Sex (Boys – Girls) 0.35  * (0.10) 0.16  ‡  (0.10) 0.10  ‡ (0.10) 
  Income (High – Low) 0.30  * (0.11) 0.40  * (0.13) 0.59  * (0.12) 
Spatial Skill       
  Sex (Boys – Girls) 0.46  * (0.11) 0.48*‡ (0.11) 0.46*‡ (0.10) 
  Income (High – Low) 0.40  * (0.12) 0.55  * (0.13) 0.39  * (0.12) 

 
Note. Est. = Point estimate. SE = Standard error. Estimates marked with an asterisk (*) are statistically significant 
based on an alpha level of 0.05. Within grade level, standardized effect estimates marked with a double trident (‡) 
differ significantly from one another. Standardized effects were compared across factors within grade level and 
subgroup by constructing bias-corrected bootstrapped confidence intervals for the difference. 
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Table A1 
 
Standardized Reliabilities, Interfactor Correlations, and Factor Loadings for the Two-Factor Multiple Group 
Models (Sex) 
 

Parameter 

Kindergarten Third Grade Sixth Grade 
Boys 

(n = 263) 
Girls 

(n = 263) 
Boys 

(n = 238) 
Girls 

(n = 299) 
Boys 

(n = 252) 
Girls 

(n = 277) 
Est. (SE) Est. (SE) Est. (SE) Est. (SE) Est. (SE) Est. (SE) 

Reliabilities       
    Multidimensional 0.78 (0.03) 0.76 (0.03) 0.83 (0.02) 0.82 (0.02) 0.82 (0.02) 0.77 (0.02) 
    Mathematics 
(Unidimensional) 0.80 (0.02) 0.71 (0.03) 0.79 (0.03) 0.79 (0.02) 0.90 (0.01) 0.87 (0.01) 
    Spatial (Unidimensional) 0.66 (0.04) 0.69 (0.03) 0.78 (0.03) 0.75 (0.03) 0.75 (0.03) 0.68 (0.03) 
Interfactor Correlations       
    Mathematics with Spatial 0.68 (0.06) 0.57 (0.07) 0.65 (0.06) 0.68 (0.05) 0.61 (0.05) 0.65 (0.05) 
Factor Loadings       
  Mathematics Factor       
    Place Value 0.70 (0.05) 0.58 (0.04) 0.70 (0.04) 0.69 (0.04) 0.83 (0.02) 0.78 (0.02) 
    Word Problems 0.77 (0.03) 0.71 (0.04) 0.75 (0.04) 0.73 (0.04) 0.83 (0.02) 0.77 (0.03) 
    Calculation 0.75 (0.03) 0.72 (0.04) 0.62 (0.05) 0.62 (0.04) 0.68 (0.04) 0.60 (0.04) 
    Missing Terms 0.62 (0.05) 0.45 (0.05) 0.63 (0.04) 0.66 (0.04) 0.66 (0.04) 0.63 (0.03) 
    Number Line Est. 0.57 (0.04) 0.43 (0.04) 0.43 (0.06) 0.46 (0.05) 0.32 (0.06) 0.26 (0.05) 
    Fractions * * 0.56 (0.04) 0.58 (0.04) 0.72 (0.03) 0.67 (0.03) 
    Number Line Est. (0-to-1) * * * * 0.52 (0.04) 0.49 (0.04) 
    Charts * * * * 0.79 (0.03) 0.81 (0.02) 
    Geometry * * * * 0.68 (0.03) 0.64 (0.03) 
  Spatial Factor       
    Mental Rotation 0.44 (0.06) 0.45 (0.05) 0.59 (0.04) 0.55 (0.04) 0.62 (0.04) 0.58 (0.04) 
    Visual-Spatial Working 
Memory 0.58 (0.04) 0.53 (0.05) 0.57 (0.04) 0.60 (0.04) 0.63 (0.04) 0.64 (0.03) 
    Visual Motor Integration 0.56 (0.04) 0.56 (0.05) 0.52 (0.04) 0.52 (0.04) 0.67 (0.04) 0.63 (0.04) 
    Block Design 0.61 (0.05) 0.66 (0.04) 0.76 (0.04) 0.72 (0.04) 0.78 (0.03) 0.75 (0.03) 
    Map Reading 0.67 (0.04) 0.61 (0.05) 0.56 (0.04) 0.56 (0.04) 0.55 (0.04) 0.52 (0.04) 
    Perspective Taking 0.31 (0.06) 0.36 (0.06) 0.57 (0.04) 0.56 (0.04) 0.70 (0.04) 0.63 (0.04) 

 
Note. Est. = Parameter estimate. SE = Standard error. McDonald’s coefficient omega reliabilities are calculated as 
%&%!

%&%!'(
, where Λ is the factor loading matrix, Ψ is the factor variance-covariance matrix, and Θ is the residual 

variance-covariance matrix (matrices are restricted to include only mathematics or spatial item and factor parameters 
in the unidimensional case). Standard errors for reliabilities are calculated using the delta method. * indicates that a 
particular measure was not assessed within the given grade level. 
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Table A2 
 
Standardized Reliabilities, Interfactor Correlations, and Factor Loadings for the Two-Factor Multiple Group 
Models (Income) 
 

Parameter 

Kindergarten Third Grade Sixth Grade 
Low-

Income 
(n = 138) 

High-
Income 

(n = 240) 

Low-
Income 

(n = 117) 

High-
Income 

(n = 232) 

Low-
Income 

(n = 152) 

High-
Income 

(n = 240) 
Est. (SE) Est. (SE) Est. (SE) Est. (SE) Est. (SE) Est. (SE) 

Reliabilities       
    Multidimensional 0.77 (0.04) 0.78 (0.03) 0.87 (0.02) 0.81 (0.02) 0.80 (0.03) 0.75 (0.03) 
    Mathematics 
(Unidimensional) 0.71 (0.04) 0.77 (0.03) 0.76 (0.05) 0.79 (0.02) 0.90 (0.01) 0.88 (0.01) 
    Spatial (Unidimensional) 0.68 (0.05) 0.70 (0.04) 0.84 (0.03) 0.74 (0.03) 0.70 (0.04) 0.67 (0.04) 
Interfactor Correlations       
    Mathematics with Spatial 0.66 (0.09) 0.52 (0.07) 0.63 (0.08) 0.74 (0.06) 0.68 (0.06) 0.55 (0.05) 
Factor Loadings       
  Mathematics Factor       
    Place Value 0.55 (0.06) 0.63 (0.06) 0.63 (0.07) 0.71 (0.04) 0.83 (0.03) 0.79 (0.03) 
    Word Problems 0.68 (0.05) 0.73 (0.04) 0.71 (0.06) 0.72 (0.04) 0.82 (0.03) 0.76 (0.03) 
    Calculation 0.70 (0.05) 0.76 (0.04) 0.61 (0.07) 0.62 (0.04) 0.66 (0.04) 0.60 (0.04) 
    Missing Terms 0.58 (0.06) 0.63 (0.04) 0.62 (0.06) 0.65 (0.05) 0.61 (0.06) 0.70 (0.04) 
    Number Line Est. 0.43 (0.05) 0.51 (0.05) 0.46 (0.07) 0.41 (0.06) 0.28 (0.06) 0.27 (0.06) 
    Fractions * * 0.62 (0.05) 0.56 (0.05) 0.75 (0.03) 0.65 (0.04) 
    Number Line Est. (0-to-1) * * * * 0.57 (0.05) 0.48 (0.04) 
    Charts * * * * 0.82 (0.03) 0.77 (0.03) 
    Geometry * * * * 0.64 (0.06) 0.69 (0.04) 
  Spatial Factor       
    Mental Rotation 0.50 (0.07) 0.44 (0.06) 0.65 (0.05) 0.60 (0.04) 0.60 (0.05) 0.57 (0.04) 
    Visual-Spatial Working 
Memory 0.49 (0.07) 0.59 (0.05) 0.60 (0.06) 0.57 (0.05) 0.69 (0.04) 0.60 (0.04) 
    Visual Motor Integration 0.46 (0.06) 0.51 (0.05) 0.56 (0.07) 0.46 (0.05) 0.66 (0.06) 0.61 (0.04) 
    Block Design 0.65 (0.06) 0.68 (0.05) 0.83 (0.04) 0.71 (0.04) 0.80 (0.04) 0.76 (0.04) 
    Map Reading 0.60 (0.07) 0.63 (0.05) 0.64 (0.05) 0.54 (0.04) 0.52 (0.05) 0.52 (0.05) 
    Perspective Taking 0.41 (0.08) 0.39 (0.07) 0.62 (0.05) 0.56 (0.05) 0.65 (0.05) 0.61 (0.04) 

 
Note. Est. = Parameter estimate. SE = Standard error. McDonald’s coefficient omega reliabilities are calculated as 
%&%!

%&%!'(
, where Λ is the factor loading matrix, Ψ is the factor variance-covariance matrix, and Θ is the residual 

variance-covariance matrix (matrices are restricted to include only mathematics or spatial item and factor parameters 
in the unidimensional case). Standard errors for reliabilities are calculated using the delta method. * indicates that a 
particular measure was not assessed within the given grade level. 
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Table B1 
 
Means and Correlations for the Observed Items for Kindergarten Males (n = 263) 
 

  Means (Top Row), Variances (Diagonal), and Correlations (Lower Triangle) 

Items WJR MR VSWM VMI BD MapR PerT PlaV WorP Cal MisT NLR2 

(Means) 18.47 4.94 9.07 16.40 14.16 5.89 11.54 6.67 3.60 2.56 1.63 0.52 
WJR 9.83            
MR 0.32 12.17           
VSWM 0.20 0.34 9.71          
VMI 0.22 0.31 0.29 3.73         
BD 0.38 0.47 0.33 0.46 78.91        
MapR 0.29 0.34 0.47 0.31 0.49 3.19       
PerT 0.23 0.23 0.20 0.22 0.32 0.31 11.66      
PlaV 0.40 0.46 0.32 0.23 0.38 0.35 0.19 12.12     
WorP 0.40 0.40 0.33 0.20 0.43 0.40 0.22 0.68 4.80    
Cal 0.27 0.39 0.29 0.30 0.37 0.31 0.23 0.54 0.60 5.83   
MisT 0.25 0.31 0.26 0.25 0.37 0.27 0.23 0.40 0.49 0.60 2.35  
NLR2 0.22 0.29 0.30 0.22 0.29 0.22 0.12 0.50 0.45 0.41 0.40 0.10 

Note. MR = Mental Rotation. VSWM = Visual Spatial Working Memory. VMI = Visual Motor Integration. BD = 
Block Design. MapR = Map Reading. PerT = Perspective Taking. PlaV = Place Value. WorP = Word Problems. Cal 
= Calculations. MisT = Missing Terms. NLR2 = Number Line Estimation (R2). Frac = Fractions. FNLR2 = Number 
Line Estimation 0-to-1 (R2). Charts = Charts and Graphs. Geom = Geometry. WJR = Woodcock Johnson 
Vocabulary. 
  



 69 

Table B2 
 
Means and Correlations for the Observed Items for Kindergarten Females (n = 263) 
 

  Means (Top Row), Variances (Diagonal), and Correlations (Lower Triangle) 

Items WJR MR VSWM VMI BD MapR PerT PlaV WorP Cal MisT NLR2 

(Means) 18.09 4.08 8.29 16.74 12.50 5.23 10.65 5.44 3.11 2.01 1.42 0.46 
WJR 7.77            
MR 0.24 7.19           
VSWM 0.26 0.25 10.18          
VMI 0.16 0.26 0.42 3.32         
BD 0.23 0.25 0.39 0.39 43.47        
MapR 0.24 0.21 0.37 0.45 0.50 3.19       
PerT 0.14 0.02 0.24 0.12 0.18 0.26 6.05      
PlaV 0.38 0.19 0.26 0.21 0.25 0.21 0.19 7.33     
WorP 0.31 0.27 0.37 0.32 0.31 0.34 0.24 0.43 2.61    
Cal 0.20 0.26 0.24 0.32 0.20 0.24 0.14 0.43 0.54 2.95   
MisT 0.21 0.13 0.19 0.13 0.20 0.13 0.23 0.24 0.39 0.43 2.18  
NLR2 0.25 0.10 0.25 0.28 0.16 0.16 0.08 0.39 0.36 0.36 0.22 0.09 

Note. MR = Mental Rotation. VSWM = Visual Spatial Working Memory. VMI = Visual Motor Integration. BD = 
Block Design. MapR = Map Reading. PerT = Perspective Taking. PlaV = Place Value. WorP = Word Problems. Cal 
= Calculations. MisT = Missing Terms. NLR2 = Number Line Estimation (R2). Frac = Fractions. FNLR2 = Number 
Line Estimation 0-to-1 (R2). Charts = Charts and Graphs. Geom = Geometry. WJR = Woodcock Johnson 
Vocabulary. 
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Table B3 
 
Means and Correlations for the Observed Items for Kindergarteners from Low-Income Families (n = 138) 
 

  Means (Top Row), Variances (Diagonal), and Correlations (Lower Triangle) 

Items WJR MR VSWM VMI BD MapR PerT PlaV WorP Cal MisT NLR2 

(Means) 17.28 3.96 8.10 16.04 11.16 5.22 10.43 5.30 2.99 1.99 1.20 0.45 
WJR 8.34            
MR 0.27 6.35           
VSWM 0.24 0.39 11.06          
VMI 0.18 0.16 0.39 2.74         
BD 0.30 0.36 0.41 0.36 45.39        
MapR 0.26 0.30 0.43 0.31 0.40 2.70       
PerT 0.15 0.22 0.24 0.13 0.22 0.33 6.23      
PlaV 0.35 0.23 0.34 0.07 0.24 0.32 0.12 7.09     
WorP 0.29 0.35 0.31 0.07 0.32 0.27 0.20 0.47 2.25    
Cal 0.22 0.40 0.24 0.16 0.38 0.37 0.32 0.37 0.50 3.81   
MisT 0.14 0.31 0.11 0.07 0.31 0.24 0.32 0.28 0.33 0.54 1.77  
NLR2 0.19 0.15 0.24 0.14 0.21 0.20 0.10 0.40 0.33 0.27 0.21 0.09 

Note. MR = Mental Rotation. VSWM = Visual Spatial Working Memory. VMI = Visual Motor Integration. BD = 
Block Design. MapR = Map Reading. PerT = Perspective Taking. PlaV = Place Value. WorP = Word Problems. Cal 
= Calculations. MisT = Missing Terms. NLR2 = Number Line Estimation (R2). Frac = Fractions. FNLR2 = Number 
Line Estimation 0-to-1 (R2). Charts = Charts and Graphs. Geom = Geometry. WJR = Woodcock Johnson 
Vocabulary. 
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Table B4 
 
Means and Correlations for the Observed Items for Kindergarteners from High-Income Families (n = 240) 
 

  Means (Top Row), Variances (Diagonal), and Correlations (Lower Triangle) 

Items WJR MR VSWM VMI BD MapR PerT PlaV WorP Cal MisT NLR2 

(Means) 18.74 4.87 8.96 16.81 14.29 5.84 11.38 6.42 3.77 2.55 1.75 0.52 
WJR 8.29            
MR 0.23 11.92           
VSWM 0.21 0.28 9.94          
VMI 0.12 0.31 0.29 3.53         
BD 0.19 0.35 0.37 0.39 62.47        
MapR 0.17 0.24 0.39 0.31 0.51 3.54       
PerT 0.25 0.15 0.29 0.13 0.31 0.33 10.88      
PlaV 0.33 0.35 0.30 0.21 0.24 0.18 0.29 8.94     
WorP 0.33 0.29 0.33 0.20 0.26 0.26 0.27 0.55 3.70    
Cal 0.15 0.30 0.22 0.33 0.21 0.15 0.21 0.48 0.55 4.92   
MisT 0.26 0.21 0.25 0.16 0.26 0.18 0.22 0.37 0.53 0.53 2.58  
NLR2 0.16 0.22 0.30 0.21 0.16 0.12 0.13 0.41 0.37 0.41 0.33 0.10 

Note. MR = Mental Rotation. VSWM = Visual Spatial Working Memory. VMI = Visual Motor Integration. BD = 
Block Design. MapR = Map Reading. PerT = Perspective Taking. PlaV = Place Value. WorP = Word Problems. Cal 
= Calculations. MisT = Missing Terms. NLR2 = Number Line Estimation (R2). Frac = Fractions. FNLR2 = Number 
Line Estimation 0-to-1 (R2). Charts = Charts and Graphs. Geom = Geometry. WJR = Woodcock Johnson 
Vocabulary. 
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Table B5 
 
Means and Correlations for the Observed Items for 3rd Grade Males (n = 238) 
 

  Means (Top Row), Variances (Diagonal), and Correlations (Lower Triangle) 

Items WJR MR VSW
M VMI BD Map

R PerT PlaV Wor
P Cal Mis

T 
NLR

2 
Fra
c 

(Means
) 

23.9
4 

10.2
1 10.53 

21.1
1 29.07 9.21 

18.5
5 

15.8
4 

10.3
1 

8.0
1 4.41 0.77 

1.7
1 

WJR 
10.9
5             

MR 0.29 
18.3
5            

VSWM 0.19 0.31 6.29           
VMI 0.16 0.32 0.31 8.73          

BD 0.33 0.53 0.46 0.43 
134.6
5         

MapR 0.26 0.36 0.38 0.27 0.51 6.30        

PerT 0.33 0.42 0.30 0.27 0.47 0.43 
30.5
9       

PlaV 0.32 0.37 0.31 0.28 0.42 0.33 0.35 9.14      
WorP 0.30 0.27 0.33 0.27 0.38 0.28 0.35 0.60 2.47     

Cal 0.25 0.28 0.30 0.25 0.29 0.25 0.36 0.49 0.50 
5.5
1    

MisT 0.28 0.39 0.22 0.25 0.36 0.24 0.32 0.50 0.51 
0.5
4 3.63   

NLR2 0.10 0.16 0.17 0.19 0.32 0.22 0.13 0.35 0.42 
0.2
3 0.19 0.07  

Frac 0.22 0.31 0.31 0.22 0.39 0.36 0.37 0.35 0.40 
0.4
0 0.40 0.30 

1.4
2 

Note. MR = Mental Rotation. VSWM = Visual Spatial Working Memory. VMI = Visual Motor Integration. BD = 
Block Design. MapR = Map Reading. PerT = Perspective Taking. PlaV = Place Value. WorP = Word Problems. Cal 
= Calculations. MisT = Missing Terms. NLR2 = Number Line Estimation (R2). Frac = Fractions. FNLR2 = Number 
Line Estimation 0-to-1 (R2). Charts = Charts and Graphs. Geom = Geometry. WJR = Woodcock Johnson 
Vocabulary. 
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Table B6 
 
Means and Correlations for the Observed Items for 3rd Grade Females (n = 299) 
 

  Means (Top Row), Variances (Diagonal), and Correlations (Lower Triangle) 

Items WJR MR VSW
M VMI BD Map

R PerT PlaV Wor
P Cal Mis

T 
NLR

2 
Fra
c 

(Means
) 

23.4
7 8.69 9.86 

21.0
7 25.40 8.35 

17.0
9 

15.5
2 9.81 

8.0
5 4.22 0.67 

1.5
1 

WJR 
11.5
9             

MR 0.40 
17.4
8            

VSWM 0.20 0.37 4.70           
VMI 0.32 0.38 0.35 7.54          

BD 0.35 0.47 0.50 0.43 
113.3
8         

MapR 0.26 0.32 0.37 0.34 0.42 4.41        

PerT 0.36 0.42 0.34 0.43 0.50 0.44 
25.5
6       

PlaV 0.41 0.39 0.40 0.38 0.42 0.35 0.43 
11.0
9      

WorP 0.37 0.40 0.44 0.38 0.48 0.38 0.36 0.64 3.28     

Cal 0.25 0.34 0.31 0.33 0.33 0.15 0.23 0.42 0.47 
6.1
7    

MisT 0.35 0.33 0.27 0.29 0.36 0.23 0.26 0.49 0.51 
0.5
8 3.69   

NLR2 0.19 0.28 0.29 0.23 0.28 0.20 0.08 0.35 0.42 
0.2
5 0.29 0.07  

Frac 0.36 0.34 0.29 0.39 0.39 0.26 0.26 0.45 0.43 
0.4
8 0.57 0.31 

1.6
3 

Note. MR = Mental Rotation. VSWM = Visual Spatial Working Memory. VMI = Visual Motor Integration. BD = 
Block Design. MapR = Map Reading. PerT = Perspective Taking. PlaV = Place Value. WorP = Word Problems. Cal 
= Calculations. MisT = Missing Terms. NLR2 = Number Line Estimation (R2). Frac = Fractions. FNLR2 = Number 
Line Estimation 0-to-1 (R2). Charts = Charts and Graphs. Geom = Geometry. WJR = Woodcock Johnson 
Vocabulary. 
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Table B7 
 
Means and Correlations for the Observed Items for 3rd Graders from Low-Income Families (n = 117) 
 

  Means (Top Row), Variances (Diagonal), and Correlations (Lower Triangle) 

Items WJR MR VSW
M VMI BD Map

R PerT PlaV Wor
P Cal Mis

T 
NLR

2 
Fra
c 

(Means
) 

22.4
7 7.76 9.32 

20.5
3 23.44 8.05 

15.2
7 

14.5
8 9.67 

7.3
7 3.96 0.71 

1.3
8 

WJR 
10.1
1             

MR 0.30 
18.3
7            

VSWM 0.09 0.30 4.86           
VMI 0.18 0.48 0.39 7.98          

BD 0.31 0.61 0.55 0.51 
118.5
2         

MapR 0.18 0.46 0.43 0.47 0.53 5.22        

PerT 0.42 0.49 0.15 0.35 0.53 0.50 
26.2
9       

PlaV 0.24 0.35 0.26 0.30 0.38 0.31 0.35 
11.4
7      

WorP 0.20 0.40 0.31 0.38 0.46 0.30 0.34 0.55 3.00     

Cal 0.20 0.31 0.17 0.28 0.32 0.30 0.32 0.36 0.43 
6.5
3    

MisT 0.25 0.20 0.07 0.27 0.30 0.13 0.24 0.35 0.43 
0.5
4 3.54   

NLR2 -0.01 0.30 0.30 0.24 0.38 0.25 0.02 0.36 0.43 
0.1
8 0.19 0.06  

Frac 0.37 0.27 0.21 0.35 0.39 0.29 0.31 0.47 0.41 
0.4
6 0.45 0.31 

1.4
6 

Note. MR = Mental Rotation. VSWM = Visual Spatial Working Memory. VMI = Visual Motor Integration. BD = 
Block Design. MapR = Map Reading. PerT = Perspective Taking. PlaV = Place Value. WorP = Word Problems. Cal 
= Calculations. MisT = Missing Terms. NLR2 = Number Line Estimation (R2). Frac = Fractions. FNLR2 = Number 
Line Estimation 0-to-1 (R2). Charts = Charts and Graphs. Geom = Geometry. WJR = Woodcock Johnson 
Vocabulary. 
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Table B8 
 
Means and Correlations for the Observed Items for 3rd Graders from High-Income Families (n = 232) 
 

  Means (Top Row), Variances (Diagonal), and Correlations (Lower Triangle) 

Items WJR MR VSW
M VMI BD Map

R PerT PlaV Wor
P Cal Mis

T 
NLR

2 
Fra
c 

(Means
) 

24.0
4 

10.0
1 10.62 

21.1
2 28.86 9.06 

18.1
2 

16.3
2 

10.2
6 

8.5
4 4.68 0.73 

1.8
1 

WJR 
10.0
6             

MR 0.35 
17.3
1            

VSWM 0.26 0.38 5.14           
VMI 0.22 0.33 0.28 9.02          

BD 0.35 0.50 0.48 0.35 
137.8
8         

MapR 0.24 0.32 0.36 0.20 0.42 5.68        

PerT 0.28 0.46 0.32 0.31 0.50 0.41 
27.3
0       

PlaV 0.37 0.33 0.40 0.35 0.43 0.36 0.40 8.30      
WorP 0.36 0.31 0.45 0.30 0.43 0.39 0.36 0.63 2.87     

Cal 0.19 0.25 0.29 0.39 0.32 0.12 0.28 0.44 0.46 
5.6
1    

MisT 0.33 0.41 0.29 0.29 0.40 0.27 0.32 0.49 0.52 
0.5
3 3.43   

NLR2 0.20 0.22 0.22 0.14 0.27 0.27 0.12 0.31 0.41 
0.2
3 0.27 0.07  

Frac 0.28 0.41 0.38 0.30 0.45 0.36 0.32 0.40 0.39 
0.4
1 0.52 0.28 

1.6
3 

Note. MR = Mental Rotation. VSWM = Visual Spatial Working Memory. VMI = Visual Motor Integration. BD = 
Block Design. MapR = Map Reading. PerT = Perspective Taking. PlaV = Place Value. WorP = Word Problems. Cal 
= Calculations. MisT = Missing Terms. NLR2 = Number Line Estimation (R2). Frac = Fractions. FNLR2 = Number 
Line Estimation 0-to-1 (R2). Charts = Charts and Graphs. Geom = Geometry. WJR = Woodcock Johnson 
Vocabulary. 
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Table B9 
 
Means and Correlations for the Observed Items for 6th Grade Males (n = 252) 
 

  Means (Top Row), Variances (Diagonal), and Correlations (Lower Triangle) 
Item
s 

WJ
R 

M
R 

VS
WM 

V
MI BD Ma

pR 
Per
T 

Pla
V 

Wo
rP Cal Mi

sT 
NL
R2 

Fra
c 

FNL
R2 

Ch
art 

Ge
om 

(Mea
ns) 

26.
56 

5.4
6 7.56 

23.
14 

36.7
1 

-
33.2
3 

-
67.9
9 

18.
51 

13.
05 

12.
00 

4.9
1 

0.8
7 

9.6
7 0.66 

16.
16 

8.0
4 

WJR 
14.
95                

MR 
0.2
5 

10.
30               

VS
WM 

0.2
8 

0.4
3 

22.2
8              

VMI 
0.2
3 

0.4
3 0.45 

9.7
9             

BD 
0.2
8 

0.5
2 0.61 

0.5
6 

142.
48            

Map
R 

0.2
5 

0.3
9 0.38 

0.3
1 0.43 

307.
47           

PerT 
0.3
1 

0.5
6 0.51 

0.4
6 0.57 0.39 

975.
18          

PlaV 
0.3
2 

0.4
0 0.46 

0.4
0 0.45 0.34 0.51 

20.
25         

Wor
P 

0.3
3 

0.3
2 0.47 

0.3
5 0.40 0.25 0.44 

0.7
2 

9.9
5        

Cal 
0.1
9 

0.2
2 0.35 

0.2
2 0.25 0.11 0.32 

0.5
7 

0.5
6 

11.
99       

MisT 
0.3
3 

0.3
9 0.42 

0.3
5 0.52 0.32 0.46 

0.6
1 

0.6
3 

0.5
0 

4.0
6      

NLR
2 

0.1
0 

0.0
5 0.11 

-
0.0
1 0.01 

-
0.01 0.08 

0.2
5 

0.2
8 

0.2
2 

0.1
7 

0.0
4     

Frac 
0.3
0 

0.2
6 0.38 

0.3
1 0.36 0.16 0.34 

0.6
3 

0.6
2 

0.5
5 

0.5
7 

0.1
7 

13.
70    

FNL
R2 

0.1
7 

0.1
8 0.21 

0.1
8 0.16 0.16 0.31 

0.4
9 

0.4
2 

0.3
4 

0.4
2 

0.2
0 

0.4
0 0.13   

Char
t 

0.2
8 

0.3
5 0.38 

0.2
8 0.37 0.35 0.43 

0.6
8 

0.7
2 

0.5
4 

0.5
5 

0.2
2 

0.5
7 0.41 

16.
15  

Geo
m 

0.4
1 

0.3
9 0.43 

0.3
7 0.42 0.29 0.46 

0.6
0 

0.5
8 

0.5
8 

0.5
5 

0.1
2 

0.5
6 0.32 

0.5
8 

6.2
0 

Note. MR = Mental Rotation. VSWM = Visual Spatial Working Memory. VMI = Visual Motor Integration. BD = 
Block Design. MapR = Map Reading. PerT = Perspective Taking. PlaV = Place Value. WorP = Word Problems. Cal 
= Calculations. MisT = Missing Terms. NLR2 = Number Line Estimation (R2). Frac = Fractions. FNLR2 = Number 
Line Estimation 0-to-1 (R2). Charts = Charts and Graphs. Geom = Geometry. WJR = Woodcock Johnson 
Vocabulary. 
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Table B10 
 
Means and Correlations for the Observed Items for 6th Grade Females (n = 277) 
 

  Means (Top Row), Variances (Diagonal), and Correlations (Lower Triangle) 

Items 
WJ
R 

M
R 

VS
WM 

V
MI BD Map

R 
Per
T 

Pla
V 

Wo
rP Cal Mi

sT 
NL
R2 

Fra
c 

FNL
R2 

Ch
art 

Ge
om 

(Mea
ns) 

26.
42 

4.
44 6.73 

23.
18 

35.2
7 

-
39.5
6 

-
76.7
0 

17.
84 

12.
71 

12.
26 

4.8
8 

0.8
3 

10.
00 0.57 

16.
29 

8.1
3 

WJR 
14.
14                

MR 
0.3
6 

9.
11               

VSW
M 

0.3
8 

0.
42 

15.9
6              

VMI 
0.2
7 

0.
43 0.45 

10.
38             

BD 
0.4
3 

0.
49 0.55 

0.5
3 

137.
09            

Map
R 

0.2
8 

0.
39 0.35 

0.4
2 0.55 

320.
15           

PerT 
0.3
7 

0.
48 0.47 

0.5
1 0.53 0.41 

936.
18          

PlaV 
0.4
6 

0.
37 0.43 

0.4
8 0.48 0.35 0.37 

21.
08         

Wor
P 

0.4
5 

0.
34 0.45 

0.4
6 0.52 0.36 0.39 

0.6
6 

11.
07        

Cal 
0.3
2 

0.
29 0.44 

0.4
4 0.43 0.28 0.39 

0.5
0 

0.5
2 

13.
89       

MisT 
0.4
4 

0.
37 0.39 

0.3
4 0.43 0.26 0.35 

0.5
6 

0.6
0 

0.3
7 

3.6
6      

NLR
2 

0.2
3 

0.
16 0.22 

0.2
5 0.24 0.17 0.17 

0.3
1 

0.3
4 

0.3
1 

0.2
5 

0.0
5     

Frac 
0.3
3 

0.
26 0.35 

0.4
0 0.35 0.23 0.29 

0.6
1 

0.5
5 

0.5
6 

0.4
6 

0.2
6 

13.
68    

FNL
R2 

0.3
4 

0.
31 0.29 

0.3
9 0.41 0.30 0.29 

0.5
4 

0.4
7 

0.2
6 

0.4
4 

0.2
6 

0.3
8 0.14   

Chart 
0.5
0 

0.
35 0.49 

0.4
8 0.51 0.38 0.36 

0.7
2 

0.7
2 

0.5
8 

0.5
5 

0.3
3 

0.6
4 0.48 

16.
05  

Geo
m 

0.4
9 

0.
32 0.47 

0.4
7 0.47 0.29 0.36 

0.5
9 

0.6
5 

0.5
1 

0.5
5 

0.2
8 

0.5
5 0.36 

0.6
1 

6.5
8 

Note. MR = Mental Rotation. VSWM = Visual Spatial Working Memory. VMI = Visual Motor Integration. BD = 
Block Design. MapR = Map Reading. PerT = Perspective Taking. PlaV = Place Value. WorP = Word Problems. Cal 
= Calculations. MisT = Missing Terms. NLR2 = Number Line Estimation (R2). Frac = Fractions. FNLR2 = Number 
Line Estimation 0-to-1 (R2). Charts = Charts and Graphs. Geom = Geometry. WJR = Woodcock Johnson 
Vocabulary. 
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Table B11 
 
Means and Correlations for the Observed Items for 6th Graders from Low-Income Families (n = 152) 
 

  Means (Top Row), Variances (Diagonal), and Correlations (Lower Triangle) 

Items 
WJ
R 

M
R 

VS
WM 

V
MI BD Map

R 
Per
T 

Pla
V 

Wo
rP Cal Mi

sT 
NL
R2 

Fra
c 

FNL
R2 

Ch
art 

Ge
om 

(Mea
ns) 

25.
36 

4.
32 5.76 

22.
08 

33.2
8 

-
40.9
9 

-
80.3
5 

16.
20 

11.
50 

10.
74 

4.2
0 

0.8
0 

8.3
9 0.53 

14.
47 

7.2
0 

WJR 
12.
14                

MR 
0.2
1 

7.
88               

VSW
M 

0.3
4 

0.
45 

14.1
9              

VMI 
0.1
7 

0.
43 0.51 

9.6
4             

BD 
0.3
7 

0.
50 0.60 

0.5
8 

120.
64            

Map
R 

0.1
8 

0.
35 0.35 

0.3
7 0.45 

311.
15           

PerT 
0.2
8 

0.
44 0.47 

0.4
9 0.55 0.37 

796.
85          

PlaV 
0.3
7 

0.
33 0.47 

0.4
5 0.51 0.39 0.47 

25.
82         

Wor
P 

0.3
8 

0.
34 0.47 

0.3
6 0.52 0.31 0.38 

0.7
1 

11.
22        

Cal 
0.1
4 

0.
27 0.35 

0.3
1 0.42 0.23 0.27 

0.4
9 

0.5
2 

11.
93       

MisT 
0.2
5 

0.
37 0.48 

0.3
3 0.52 0.28 0.43 

0.5
3 

0.5
8 

0.3
3 

3.4
5      

NLR
2 

0.3
1 

0.
15 0.22 

0.1
1 0.25 0.15 0.14 

0.3
4 

0.4
2 

0.3
1 

0.2
3 

0.0
6     

Frac 
0.1
8 

0.
30 0.37 

0.3
6 0.43 0.18 0.41 

0.6
6 

0.5
9 

0.5
1 

0.4
8 

0.2
3 

10.
90    

FNL
R2 

0.3
1 

0.
21 0.34 

0.3
5 0.35 0.35 0.29 

0.6
5 

0.5
0 

0.2
6 

0.3
8 

0.2
1 

0.4
6 0.14   

Chart 
0.3
1 

0.
34 0.44 

0.3
6 0.47 0.39 0.44 

0.7
5 

0.7
4 

0.5
1 

0.5
1 

0.4
1 

0.6
1 0.58 

17.
20  

Geo
m 

0.3
2 

0.
27 0.45 

0.3
8 0.45 0.30 0.31 

0.6
1 

0.5
6 

0.5
3 

0.4
7 

0.2
8 

0.5
0 0.37 

0.5
7 

3.9
9 

Note. MR = Mental Rotation. VSWM = Visual Spatial Working Memory. VMI = Visual Motor Integration. BD = 
Block Design. MapR = Map Reading. PerT = Perspective Taking. PlaV = Place Value. WorP = Word Problems. Cal 
= Calculations. MisT = Missing Terms. NLR2 = Number Line Estimation (R2). Frac = Fractions. FNLR2 = Number 
Line Estimation 0-to-1 (R2). Charts = Charts and Graphs. Geom = Geometry. WJR = Woodcock Johnson 
Vocabulary. 
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Table B12 
 
Means and Correlations for the Observed Items for 6th Graders from High-Income Families (n = 240) 
 

  Means (Top Row), Variances (Diagonal), and Correlations (Lower Triangle) 
Item
s 

WJ
R 

M
R 

VS
WM 

V
MI BD Ma

pR 
Per
T 

Pla
V 

Wo
rP Cal Mi

sT 
NL
R2 

Fra
c 

FNL
R2 

Ch
art 

Ge
om 

(Mea
ns) 

27.
23 

5.2
8 7.62 

23.
53 

37.6
4 

-
33.3
6 

-
68.5
9 

19.
20 

13.
42 

12.
63 

5.3
0 

0.8
7 

10.
43 0.68 

16.
72 

8.5
0 

WJR 
14.
83                

MR 
0.3
0 

10.
00               

VS
WM 

0.3
0 

0.3
9 

17.7
2              

VMI 
0.2
1 

0.3
7 0.30 

9.7
0             

BD 
0.3
0 

0.5
0 0.53 

0.5
0 

132.
81            

Map
R 

0.1
9 

0.3
5 0.32 

0.2
5 0.49 

293.
22           

PerT 
0.3
1 

0.4
8 0.45 

0.4
0 0.48 0.34 

929.
30          

PlaV 
0.3
6 

0.3
4 0.39 

0.3
6 0.41 0.24 0.36 

16.
97         

Wor
P 

0.3
7 

0.2
6 0.41 

0.3
0 0.38 0.22 0.35 

0.6
3 

10.
07        

Cal 
0.2
3 

0.2
3 0.39 

0.2
6 0.32 0.07 0.34 

0.4
7 

0.5
1 

12.
18       

MisT 
0.3
9 

0.3
6 0.39 

0.2
6 0.42 0.20 0.35 

0.5
9 

0.6
0 

0.5
1 

3.8
3      

NLR
2 

0.0
4 

0.0
8 0.12 

0.0
6 0.07 

-
0.01 0.08 

0.1
5 

0.2
0 

0.1
6 

0.1
8 

0.0
4     

Frac 
0.3
4 

0.2
1 0.29 

0.3
1 0.32 0.10 0.19 

0.5
9 

0.5
8 

0.4
9 

0.5
6 

0.1
0 

12.
77    

FNL
R2 

0.2
1 

0.2
1 0.16 

0.2
3 0.22 0.18 0.28 

0.4
6 

0.4
2 

0.2
9 

0.3
5 

0.2
4 

0.3
7 0.13   

Char
t 

0.4
1 

0.3
1 0.37 

0.3
1 0.39 0.28 0.29 

0.6
8 

0.6
8 

0.5
2 

0.5
8 

0.0
8 

0.5
6 0.40 

13.
58  

Geo
m 

0.4
8 

0.3
3 0.42 

0.3
7 0.39 0.17 0.37 

0.6
1 

0.6
4 

0.5
3 

0.5
9 

0.1
5 

0.5
4 0.32 

0.5
9 

6.9
2 

Note. MR = Mental Rotation. VSWM = Visual Spatial Working Memory. VMI = Visual Motor Integration. BD = 
Block Design. MapR = Map Reading. PerT = Perspective Taking. PlaV = Place Value. WorP = Word Problems. Cal 
= Calculations. MisT = Missing Terms. NLR2 = Number Line Estimation (R2). Frac = Fractions. FNLR2 = Number 
Line Estimation 0-to-1 (R2). Charts = Charts and Graphs. Geom = Geometry. WJR = Woodcock Johnson 
Vocabulary. 
 

 

 

 


