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. PREFACE. 

In the preparation of the following work no pains have been spared 

to obtain from the best sources, such as the later treatises in highest 

repute, memoirs of scientific bodies, and mathematical journals in 

English, French, and German, the materials for a book suited to the 

present state of mathematical science and the wants of teachers and f 

students. 

The work contains much that has never before appeared in an Eng¬ 

lish dress, and almost every part will be found to present some new 

feature. No attempt, however, has been made at originality, unless 

for the benefit of the student, and in the belief that the existing exposi¬ 

tions or processes were inferior. The object has simply been, by any 

and all means, to make the best book, without aiming so much at indi¬ 

vidual reputation as at the author’s own convenience and that of others, 

devoted, like himself, to the noble task of guiding the youthful votaries 

of science. 

The French treatises furnish excellent models of the theory of Al¬ 

gebra, the German of ingenuity and brevity of notation and exposi¬ 

tion, the English of practical adaptation and variety of illustration and 

example; and from these, after a careful comparison of many authors 

in each lansfuag-e, demonstrations have been selected and introduced 
O O' 

verbatim when they seemed incapable of improvement; but when¬ 

ever the slightest alteratibn or amalgamation, or the entire remodeling 

of them, could give additional clearness or elegance, the limas labor 

has not been spared. 

The work will be found to contain all that is important in the higher 

parts of Algebra, upon which usually separate treatises are thought 

necessary, as well as the elementary expositions suited to beginners. 

Every variety of symbol and of example has been introduced. 

On page XI. those articles of this volume are indicated which con¬ 

stitute a minimum course of Algebra requisite for the prosecution of 

the higher branches of mathematics. A more extended course, such 

as w’ould ordinarily be advisable, is also pointed out. The rest may 

very well be reserved for reference, as the student’s own discovery of 
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his wants, in the advanced stages of mathematical pursuit, shall call it 

in requisition. 

The author desires to acknowledge the effective assistance which he 

has received, in revising the work and superintending it through the 

press, from Mr. J. J. Elmendorf, to whom it is indebted for many val¬ 

uable suggestions. 
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A MINIMUM COURSE OF ALGEBRA. 
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A MORE ENLARGED COURSE. 

Articles 1-93 inclusive, 101-197, 199-238, 244-258, 298-309, 315-321. 

It may be useful to point out in this connection a course of mathematical 

study. 1°. Algebra; 2°. Geometiy :f these two may be pursued simultane- 

ously; 3°. Plane Trigonometry, with its applications to Surveying and Navi ¬ 

gation ; Spherical Trigonometry, with its applications to Practical and Nautical 

Astronomy and Geodesy;! 4°. Descriptive Geometry;§ 5°. Analytical Ge¬ 

ometry ;11 6°. Theoretic Astronomy ;1I 7°. Differential and Integral Calculus 

and Calculus of Variations ;** 8°. Mechanics ;ff 9°. Optics ;t! 10°. Phys¬ 

ical Astronomy.§§ 

The articles are numbered throughout the hook at the beginnings of paragraphs. 

t Should the present work meet with public favor, it will be followed in the course of a 

few months by a treatise on Geometry. 

t The author has already published a work embracing these subjects, anew and greatly 

improved edition of which will appear in the coarse of the next year. 

$ This branch, though it may be omitted without destroying the connection between those 

which precede and follow it, is of the highest advantage to the general student, and invaluable 

to the engineer. It may be best taken up in the excellent treatise by Professor Davies. In 

the French, Monge, the founder of the science, has^written extensively upon the subject; 

there is also:a treatise by that best of French writers of elementaiy works, Lefebure de 

Fourcy. Professor Davies has published a fine' volume on the application of descriptive 

geometiy to shadows and perspective. 

II On this subject there are numerous writers, Davies, Pierce, and Young, whose work is 

republished here, the author of a treatise in the Libraiy of Useful Knowledge; and in the 

French, among the best, Biot, of whom there is an English translation by Professor Smith, 

of Virginia, and Lefebure de Fourcy, whose work is most generally preferred. 

^ The authors recommended are Norton, Gummery; and in the French, Biot, of whom 

there is a translation in part, known as the Cambridge Astronomy. 

** This is one of the portions of mathematical science on which the author proposes to put 

forth a treatise at no distant day. We have at present on the calculus, Church and Davies, 

in America ; Young, O'Brien, and Walton, in England ; L acroix, Duhamel, and Moigno, who 

may be mentioned among the numerous writers in France. 

tt Courtenay’s Boucharlat; in French, Francoeur and Poisson. 

# Bache, Brewster, Bartlett, and Biot. This branch may be pursued to some extent im¬ 

mediately after Geometry. 
The authors are Lagrange and Laplace, of whose Mecanique Celeste we have the 

translation and notes of Bowditch, but for readers of the French, the Systeme du Monde of 

Pontecouland is to be preferred. 



As Greek letters are frequently used in the following treatise, fpr 

tlie convenience of those unaccustomed to a Greek alphabet, one is 

here inserted. The names of the letters are given in the last column 

A a a ’AA(/)a Alpha 

B id, 6 b Brjra Beta 

r 7 g rdiifia Gamma 

A 6 d 
\ 

AeXra Delta 

E e 
\ 

e short "E^l^lXov Epsilon 

z z Z^ra Zeta 

H V e long Eta 

e ^ d th Orira Theta 

I L 
• 

1 ’Iwra Iota 

K K k KdTTTra Kappa 

A X 1 Adfidda Lambda 

M m Mv Mu 

N V n Nu Nu 
M 

X aI Xi 

0 0 o short *0[j,tKp6v Omicron 

n TT P m Pi 

p P r Tai Rho 
V s Iilypa Sigma 
T T t Tav Tau 
T V u 'ipiXov Upsllon 
<i) 4> ph Phi 

X X ch XI Chi 

•p ps Tt Psi 

^2 0) o long ’12 fxeya Omega 



INTRODUCTION. 

In eveiy question of numbers there are certain conditions which the 

required numbers in connection with the given ones must fulfill, which 

conditions are indicated by the question itself. 

The solution has for its object to determine such required quantities 

as will verify these conditions. It is necessary, therefore, to endeavor 

first to seize the different relations by which all the quantities, known 

and unknown, are connected together, and to find afterward, by means 

of these relations, what operations ought to be performed upon the 

given quantities to obtain those which are required. Such is the ob¬ 

ject proposed in that part of mathematics known by the name of Al¬ 

gebra. 

To show how the use of letters and sigms arises, let the followiim 
O ^ O 

simple problem be proposed. 

To divide 890 dollars between three persons in such a. 7nanner that the 

second shall have 115 more than the first, and the third 180 more than 

the second. 

Now let us see by what deductions the values of the unknown num¬ 

bers may be derived. 

Since the share of the second is 115 more than that of the first, and 

the share of the third 180 more than that of the second, it will be 180 

added to 115, or 295 more than that of the first. 

Then the sum of the three parts will be formed of 3 times the first 

part, increased by 115, and also by 295, or, what is the same thing, of 

3 times the first part increased by 410. 

But this is equal to the sum to be divided, viz., 890. 

Then 3 times the first part, increased by 410, is equal to 890. 

Then 3 times the first part is equal to 890 diminished by 410, or 480 

Then the first part will equal the third of 480, or 160 dollars. 

The first person, therefore, has 160 dollars; the second, who must 

have 115 more, will have 275; and the third, who was to have 180 

moi'e than the second, 455 dollars. These three sums united make 

890 dollars, which confirms the correctness of the result. 

This example exhibits the kind of reasonings necessary to be em¬ 

ployed in the solution of problems in numbers; and. it will be per- 
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ceived that, to express these reasonings, it is necessary to repeat fre 

quently a number of words, designating the quantities, both known and 

unknown, as the first part, the number to be divided, &c., and other words 

expressing the relations of these, as increased by, diminished by, &c. 

To obviate the inconvenience of the periphrases, by means of which 

the quantities which enter into the question are distinguished, it is cus¬ 

tomary to represent these quantities by letters. Ordinarily, the given 

quantities are represented by the first letters of the alphabet, a,b,c ., 

and the required or unknown by the last, x, y, z . . . 

The relations are expressed by signs. Thus, increased by is written 

-f ; diminished by is written —; multiplied by is written X ; or, « mul- 

ti^^lied by b, simply thus, ab ; a divided by b, thus, equal to b, 

thus, a — b. 

The reasoning of the above example may, with the aid of such 

abridgments, if x denote the first share, be written briefly thus: 

X 

x + 115 

x-\-115-^180 

3a; + 410 = 890 

3a;-890—410 

3a; = 480 

480 
X =-=:160 

3 

If the numbers had been different in the above problem, the methoa 

of proceeding would have been precisely the same. 

Thus, if 1250 had been the sum to be divided, 170 the excess of the 

second part over the first, and 220 the excess of the third over the sec¬ 

ond, the reasoning would have had the same form, as seen below. 

a;+170 

.T+170-b220 

33^4-560 = 1250 

3x = 1250—560 

3cc = 690 

690 
X: :230 

share of the 1st, 230 

170 

share of the 2d, 400 

220 

share of the 3d, 620 

Proof. 

230 

400 

620 

1250 

All these individual cases of the same kind may be generalized, thus : 

Let a represent the number to be divided; b the excess of the second 

over the first share ; c that of the third over the second. The reason¬ 

ing will then stand as follows : 
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X 

x-{-h 

x-\-b'\-c 

Zx~\-2h-{-c=a 

‘ix — a—2h—c 

a—2h—c 

The last expression, x—---, shows what operations ought to be 
O 

performed upon the given numbers to produce the required, and may 

be interpreted into the following rule. 

Subtract double the excess of the second share over the first, together 

icith the excess of the third over the second, from the number to be divided, 

and divide the remainder by 3. The result will be the first share re- 

Applying this rule to the first case above, we have 

115x2=:230 890 

180 

' 410 

3)4^ 
160 Ans. 

and to the 2d, 170 

2 

220 1250 

560 

3)^ 
230 Ans. 

The expression x-. 
a—2b—c 

, from which the rule to be applied is 

' derived, is called a general formula, or simply a formula from which, 

instead of from the rule, the answers in the particular cases may be 

obtained by substitution ; thus, 

in’ the 1st case, in the 2d case, 

890—230—180 480 1250—2x170—220 690 
-—-—r=160, X----=-=230. 

3 3 3 3 

The nature and utility of algebra being thus briefly indicated, we 

proceed to give in detail, first, the methods of representing quantities, 

and all possible relations and combinations of them, and afterward the 

use of these methods in the solution of questions. 
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ALGEBRA, 
r*' 

DEFINITIONS AND NOTATION. 

1. Algebra is a species of short-hand writing which, by the aid of certain 

symbols, serves to abridge and generalize propositions relating to numbers.’^ 

A Proposition is any thing propounded as true. If it express the proper¬ 

ties or relations of quantity, it is a mathematical proposition. If it be self- 

evident, it is called an axiom. If it require demonstration, it is called a theorem ; 

and if it propose something to be done, or that some required or unknown 

quantity be found, it is called a prohlem. 

Symbols may be divided into symbols of quantity, and symbols of relation 

commonly called signs. 
2. The principal symbols employed in algebra are the following: 

I. The letters of the alphabet, a, b, c, &c., which are employed to denote 

the numbers which are the object of our reasonings. 

When the Roman letters are exhausted, or when a marked distinction is de¬ 

sirable between the different classes of quantities employed, the Greek letters 

are also used as representatives of quantity. If different quantities of the same 

general nature are used together, it is a common custom to represent them by 

the same letter, distinguishing them from one another by accents, or small 

numbers 'wi’itten below ; thus, a, a', <2", a'", a*'", are representatives of differ¬ 

ent quantities, and are read a, a prime, a second, &c.; and Uj, Us, &c., 

may be read a one subscript, a two subscript, and so on. 

A similar effect is produced by using large and small letters; thus, the di¬ 

ameter of a.small circle being represented by cZ, that of a larger may be by D. 

It is customary, in some cases, to represent quantities by symbols, which 

indicate distinctly the nature of the quantities represented. Thus, the six 

trigonometrical quantities, which are known by the names of sine, tangent, 

secant, cosine, cotangent, cosecant, are represented by the symbols sin, tan, 

sec, cos, cot, cosec ; and the astronomical quantities, the longitude of the 

sun, the longitude of the moon, and the longitude of a node, are represented 

by the symbols ©, ]) , and ^. 

* In the operations of Aritlimetic, with the exception of those which relate to compound 

numbers, quantities are considered as composed of units, but the kind of unit is not noticed, 

only the number. In Algebra, neither the kind nor number of units of which a quantity 

is composed is regarded, and often the quantity is not considered as composed of units at 

all. The idea of number may, however, always be introduced, and it is best to keep it in 

mind in the beginning of Algebra. As in Arithmetic the rules of addition, multiplication, 

proportion, &c., are the same, whatever be the kiird of units which the numbers employed 

represent, so in Algebra these rules are the same, whatever be either the kind or num¬ 

ber of units in the quantities employed (upon which the operations are performed). In 

eveiy part of Algebra, processes analogous to those prescribed by the rules of Arithmetic 

are in use. Hence, and because of its character of generalization, it was called by New 

ton Gfeneral Arithmetic. Algebra, however, presents many relations of quantity of which 

Arithmetic takes no cognizance. 
A 
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These are the symbols of quantity. 

The following are symbols of relations : 

II. The sign -f-? which is named jjIus, and is employed to denote the addi¬ 

tion of two or more numbers. 

Thus, 12-|-30 signifies 12 plus 30, or, 12 augmented hy 30. In like manner, 

a-\- b signifies a plus b, or, the number designated by a augmented by the 

number designated by b, 

III. The sign —, which is named minus, and is employed to denote the 

subtraction of one number from another. 

Thus, 54 — 23 signifies 54 minus 23, or, 54 diminished by 23. In like man¬ 

ner, a — b signifies a minus b, or, the number designated by a diminished by 

the number designated by b. 

The sign ~ is sometimes employed to denote the difference of two num¬ 

bers, when it is not known which is the greater. Thus, signifies the 

difference of a and b, when it is not known whether the number designated by 

a be less or greater than the number designated by b. 

IV. The sign X» which may be read into, is employed to denote the multi¬ 
plication of two or more numbers. 

Thus, 72x26 is read 72 into 26, or, 72 multiplied by 26. In like manner, 

axb signifies a into 6, or, a multiplied by b ; and axbxc signifies the con 

tinned product of the numbers designated by a, b, c ; and so on for any num¬ 

ber of factors. 

The process of multiplication is also frequently indicated by placing a point 

between the successive factors; thus, a . b . c . d signifies the same thing as 

axbxcxd. 

In general, however, when numbers are represented by letters, their multi¬ 

plication is indicated by writing the letters in succession, without the interpo¬ 

sition of any sign. Thus, ab signifies the same thing as a . b, ov axb ; and 

,ab.cd is equivalent to a . b . c. d, ov axb Xcxd. 

Factors expressed by letters are called literal factors, and those expressed 

by numbers numerical factors. 

It must be remarked, that the notation a . b, or ah, can be employed only 

when the numbers are designated by letters; if, for example, we wished to rep¬ 

resent the product of the numbers 5 and 6 in this manner, 5.6 would be con 

founded with an integer followed by a decimal fraction, and 56 would signify 

the number ffLy-six, according to the common system of notation. 

For the sake of brevity, however, the multiplication of numbers is some¬ 

times expressed by placing a point between them in cases where no ambiguity 

can arise from the use of this symbol. Thus, 1.2.3.4, may represent the 

2 7 6 
continued product of the numbers 1, 2, 3, 4; and o • h * TT represent 

o y X J. 

2 7 ,6 
the product of —. 

11 

V. The sign which is named by, and when placed between two num¬ 

bers is employed to denote that the former is to be divided by the latter. 

Thus, 24-V-6 signifies 24 by 6, or, 24 divided by 6. In like manner, a-^b 

signifies a by b, or, a divided by b. 

Two dots without the horizontal line between are also the sign of division. 

This form of the sign is used in proportions, where either of the two quantities 
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between which it is placed may be regarded as the dividend, and the other the 

divisor. It is analogous, in this respect, to the sign ~ in subtraction. 

In general, however, the division of two numbers is indicated by writing the 

dividend above the divisor, and drawing a line between them. Thus, 24-^6 

and a-^h are usually written ^ and 7. 
bo 

Every fraction, then, expresses the quotient of its numerator, divided by its 

denominator. Thus, f of a unit may be regarded as composed of two parts : 

the one, the third of one unit, and the other, the third of another unit; or 

both together, the third of 2 units, or the quotient of 2 divided by 3. This 

reasoning may be generalized. 

VI. The sign =, called the sign of equality, and read is equal to, when 

placed between two numbers denotes that they ai’e equal to each other. 

Thus, 564-6 = 62 signifies that the sum of 56 and 6 is equal to 62. In like 

manner, a = h signifies that a is equal to b, and a-\-h = c — d signifies that a 

plus b is equal to c minus d, or that the sum of the numbers designated by a 

and b is equal to the difference of the numbers designated by c and d. 

VII. The sign <^, which is read is unequal to, and when placed between 

two numbers denotes that one of them is greater than the other, the opening 

of the sign being turned toward the greater number. 

Thus, a'i^b signifies that a is greater than b, and a<^b signifies that a is 

less than b. 

VIII. The coefficient is a sign which is employed to denote that a number 

designated by a letter, or some combination of letters, is added to itself a cer¬ 

tain number of times. 

Thus, instead of writing a-\-a-\-a-\-a-{-a, which represents 5 a’s added 

together, we write ba. In like manner, Ibab will signify the same thing as 

ab-\-ab-{-ab-\-ab-\-ab-\-ab-\-ab-\-ab-\-ab-\-ab, or ten times the product of 

a and b. 

The numbers 5 and 10 here are coefficients. 

The coeffcient, then, is a number, written to the left of another number 

represented by one or more letters, and denotes the number of times that the 

given letter, or combination of letters, is to be repeated. 

Or the coefficient is the numerical factor written before one or more literal 

factors. 

When no coefficient is expressed, the coefficient 1 is always understood ; 

thus, la and a signify the same thing. 

In a more enlarged sense, one literal factor may be regarded as the coeffi¬ 

cient of another, especially when the former is one of the first, and the latter 

one of the last letters of the alphabet. Thus, in the expression ax, a may be 

called the coefficient of x. So, also, in the expression of abxy, ab may be re¬ 

garded as the coefficient of xy. 

IX. The exponent, or index, is a sign which is employed to denote that a 

number designated by a letter is multiplied by itself a certain number of times. 

Thus, instead of writing a X a X a X a X a, or aaaaa, which represents 

five a’s multiplied together, we write a^, where 5 is called the exponent or 

index of a. Similarly, b X b X b X b X b X b X b X b X b X b, or b . b . b , 

b . b.b ,b .b .b .b, or bbbbbbbbbb ; or the contmued product of 10 6’s is written 

more briefly b^^, where 10 is the exponent or index of b. 

The exponent or index of a number is, therefore, a number written a little 
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above a letter to the right, and denotes the number of times which the number 

designated by the letter enters as a factor into a product. When no exponent 

is expressed, the exponent 1 is always understood; thus, and a signify the 

same thing. 

The products thus formed by the successive multiplication of the same 

number by itself, are in general called the powers of that number. Thus, a is 

the first power of a ; a'xa=aa=a‘^ is the second power of «, or the square 

of a ; aaa=a? is the third power, or cube of a; aaaaa-=a^ is the fifth p)ower 

of a, and aaaa.to n factors = is the wth power of a, or the power 

of a designated by the number n. 

, X. The square root of any expression is that quantity which, when multi¬ 

plied by itself, will produce the proposed expression, and is generally denoted 

by the symbol which is called the radical sign. Thus, the square root 

of 9 is VO = 3, and a, is the square root of ; for in the former case 

3X3 = 9, and in the latter aY.a — (f~. 

XI. The cube root of any expression is that quantity which, when multi¬ 

plied twice by itself, will produce the proposed expression. The fourth, or 

biquadrate root of any expression is that quantity which, when multiplied 

three times by itself, produces the given expression; and the nth. root of any 

expression is that quantity which, multiplied [n — 1) times by itself, produces 

the proposed expression. Thus, the cube root of 8 is 2; for 2 X 2x2=8, 

the fourth root of is a ; for a . a . a . a=a^, and the ?^th root of .t" is x ; for 

xXxXx .. .. to n factors =x . x. x . x..., to n factors = a:". 

The roots of expressions are frequently designated by fractional or decimal 

exponents, the figure in the numerator of the fractional exponent denoting the 

power to which the expression is to be raised or involved, and the figure in 

the denominator denoting the root to be extracted or evolved. Thus, the 

symbol of operation for the square root of a is either a or a-; for the cube 

root it is y a, or a^; for the fourth root, y a, or and y a, or u", denotes 

the nth root of a. Also, y a^, or a®, denotes the sixth root of the fifth power 
m 

of a ; and or y a'^, signifies the nth root of the mih power of a.^ 

Xn. A rational quantity is that which has no radical sign or fractional ex¬ 

ponent annexed to it, as 3mn, or bxHfi. 

XIII. An irrational quantity is a root which can not be exactly extracted, 

and is expressed by means of the radical sign Vr or a fractional exponent, as 

V 2 y a-, or x^y^. 

XIV. The reciprocal of any quantity is unity divided by that quantity ; 

1111 
thus, the reciprocals of a^, x^, y^, z^, are respectively -, — _ _ • but the 

a^ x^ y^ zi 
following notation is generally used, as being more commodious : thus, tin? 

fiactions 1, \, \, expressed by a--, x-^, y~^- * * a^ x^ y^ z¥ ^ j ■> j 

It wUl follow from the above, and from the rule for division of fractions, that 

tlie reciprocal of a fraction is the fraction inverted. Thus, the reciprocal of 

a . 1 b 
r IS —. 

b_, 

* The subject of fractional and neg^ative exponents will be fully investigated farther in 
advance. 
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XV^. The following characters are used to connect several quantities to¬ 

gether, viz.: 

vinculum, or bar- 

parentheses ( ) 

braces, or brackets | ^ or [ ] 

Ihus, m-\-n .x, or {m-\-n)x signifies that the quantity denoted by ni-\-n is 

to be multiplied by x, and ^ --j_- > • ^ -—- > signifies that -4-- is to be niulti- 

plied by ~The vinculum or bar is sometimes placed vertically ; thus, 

-j-a X 

signifies that the sum of a, b, and c is multiplied by x. 

XVI. The signs, .•.therefore or consequently, and ••• because, are used to 

avoid the frequent repetition of these words. 

XVII. Every number written in algebraic language, that is, by aid of 

algebraic symbols, is called an algebraic quantity, or, an algebraic expression. 

Thus, 3« is the algebraic expression for three times the number a ; 5a^ is 

the algebraic expression for five times the square of the number a ; 7a^b^ is 

the algebraic expression for seven times the fifth power of a multiplied by the 

cube of 6. 

— Gb^c^ is the algebraic expression for the difference between three 

times the square of a and six times the cube of b multiplied by the fourth 

power of c. 

2a—3b‘^c^-\-4.d‘^ef'^ is the algebraic expression for twice a, diminished 

by three times the square of b multiplied by the cube of c and augmented by 

four times the fourth power of d multiplied by the product of the fifth power 

of e and the sixth power of^'. 

XVIII. An algebraic quantity, which is not combined with an^ T OlllGT by 

the sign of addition or subtraction, is called a monomial, or monome, or, a quantity 

of one term, or simply, a term. Thus, 3a^ 46'^, 6c, are monomials. The de- 

gi’ee of a term is the number of its literal factors, and is found by adding to¬ 

gether the exponents of all the letters contained in the term. Thus, ba^b^c 

is of the sixth degree. 

, An algebraic expression, which is composed of several terms, separated 

from each other by the signs or —, is called generally -Apolynojuicd,* or 2^oly- 

name. Thus, 3a“-\-Ad)’^ — Gc-\-d is a polynomial. A polynomial is said to 

be homogeneous when all its terms are of the same degree. 

A polynomial, consisting of two terms only, is usually called a binomial; 

when consisting of three terms, a trinomial. Thus, a-\-b, 3b^c—xz, are 

binomials, and a + b-c, 3m^n^ — 6p^r-\-9d, are trinomials. 

XIX. Of the different terms which compose a polynomial, some are pre¬ 

ceded by the sign others by the sign —. The former are called additive, 

or positive terms, the latter, subtractive, or negative terras. 

The first term of a polynomial is not, in genei’al, preceded by any sign; in 

that case the sign -f- is always understood. 

* A polynomial is also called a compound quantity. Polynomials, to save the trouble of 

writing them repeatedly, are often represented by a single large letter. Thus, if we have 

two polynomials, and x^—'Sxy'^‘-\-2x^-‘y—y^, we may represent the first 

by A and the second by B, and afterward, in refening to them, may call them the poly¬ 

nomials A and B. 
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Terms composed of the same letters, affected with the same exponents, are 

called similar terms. 

Thus, Hal) and 3a& are similar terms, so are Ga^c and la’^c; also, 

and 2al)^c^d; for they are composed of the same letters, and these letters 

in each are affected with the same exponents. On the other hand, Qab^c 

and 3a^b^c are not similar terms, for, although composed of the same letters, 

these letters are not each affected with the same exponent in each term. 

XX. The numerical value of an algebraic expression is the number which 

results from giving particular values to the letters which cpmpose the ex¬ 

pression, and performing the arithmetical operations indicated by the algebraic 

symbols. This numerical value will, of course, depend upon the particular 

values assigned to the letters. Thus, the numerical value of 2a? is 54 when 

we make a = 3, for the cube of 3 is 27, and twice 27 is 54. The numerical 

value of the same expression will be 250 if we make «=:5; for the cube of 5 

is 125, and twice 125 is 250. 

The numerical value of a polynomial undergoes no change, however we 

may transpose the order of the terms, provided we preserve the proper 

sign of each. Thus, the polynomials \a?—3a'^h-\-bad^. Aa^-^-bac^^—3a^6, 

bad^ — 3a%-\-Aa^, have all the same numerical value. This follows mani¬ 

festly from the nature of arithmetical addition and subtraction, for it is evident 

that if the same amounts be added or taken away, it is immaterial in what 

order. i 

Examples of the numerical values of algebraic expressions : 

Let <2 = 4, b = 3, c = 2; then will 

(1) a_j_6_c=4-l-3—2 = 7—2=5 

(2) //2 = 4‘24-4x3 + 32 = 16-[-12-{-9 = .37 

(3) ac—<2 6-f-6c=4x2—4x3-f 3X2 = 8 —12-f 6=2 
a2_|_^,3_c2 42_^32_22 16-1-9 — 4 21 

^ ^ —flc-f.6c~4x 3-4x24-3 x2~12 — 8-f-6“10 

(5) V{a-Jf-b)c—y{a — b)(?= V(4 + 3)X2—V(4—3)X2=^= v/14—V8 

= 3-7416574 — 2 = 1-7416574 

(6) 
a-\-b a—c a ■ b ■ 7 

'o' 
2 

a — c'^b-]-c~a-\-b~2~^b~T~ 70 

XXL Entire quantities are those which are rational and contain no de¬ 

nominator; such are 47, 2a’^b, 30? — be. 

XXII. An algebraic expression containing a quantity is called a function of 

that quantity. For example, the expression 32-^— x is a function of 2 ; the 

h 
expression a is a function of x-]-7j. 

263 

An entire function of 

a quantity is one in which this quantity does not enter into a denominator. 

A rational function is one in which the quantity does not appear under a 

radical. 

To express, in a general way, a function of x, we write F(2’). Where 

many different functions of x are to be represented, we vary the form of this 

initial: thus, F(2), f{x), <p{x), F'(2), &c., which denote, in a general way, 

different algebraic expressions containing x. 

To express functions of the same form of different quantities, we use the 

same initial before these quantities; thus, F(.r), F(y). 
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% 

To express a function like of two quantities, we write F{x,y)\ 

of three quantities, F{x, y^ z), and so on. 

What follows to equations noay be called the algebraic calculus. 

REDUCTION OF TERMS. 

3. Reduction of similar terms is the collecting of several similar terms into 

one. 

The rule may be divided into two cases; 

(1) When the similar quantities have the same signs. 

(2) When the similar quantities have different signs. 

CASE I. 

When the similar quantities have the same signs. 

Add the coefficients ; affix the letter or letters of the similar terms, and 

prefix the common sign or —.* 

Thus, 2u-|- 3u-j- 4(Z-j— 5u (1 -|- 2-|— 3 4 -f- 5)<2=15<2, 

(_a) + (—2a) + (—3a)4-(—4u) = —(l + 2 + 3+4)u=—10a., 

It is convenient to write the similar terms to be reduced under, instead of 

after one another, they being read in the same order in either way. 

EXAMPLES. 

(1) (2) (3) (4) (5) 
3(2 ahc 2axy — bhx V a-\-x 

la 2ahc 3axy — 2hx 2 V a-|-.T 

2a lahc laxy — hx 5 a-\-x 

a 3ahc baxy — hx a-{-x 

6a ahc axy — Ahx <7 ffa^x 

8a bahc baxy — lQ>hx 4 a-\-x 

27a 19ahc 

CASE II. 

When the similar quantities have different signs. 

Collect into one sum the coefficients affected with the sign -f-» aod also 

those affected with the sign — ; to the difference of these sums affix the com¬ 

mon literal quantity, and prefix the sign or —, according as the sum of the 

or — coefficients is the greater.f 

^ The truth of this rule is evident; for suppose the two terms 3u! and 5a are to be re¬ 

duced to one, then by the definition of a coefficient we have 

5 (2 fZ —h —1“ —|—(2 

3(2=(2-|-a-{-(2 

Hence 5a“^3a^^^a~j~a~j~a-~Fu~j“a“^a~j—a—^a—8a, 

Similarly, — 5a—(—a) -(- (—a) -f - (—a) -j- (—a) -f- (—a) 

—3a=(—a)4-(——d). 
Hence —Sa+f—3a)={—«)-[-(—«)+(—d)-F{—d)-F{—<^)+(—«)+(—«)+(—«) 

=8(—a)=—8a. 
t The truth of this will be obvious ; for to reduce 5a and —3a, we have 

5a^=a-\-n-\-^~]r^~\~'^ 
^ —3a=:(—a)-(~(——d). 
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Thus, a——^a-\-ba = {l-\-2>-\-b)a — (24-4)a=9a—ba=ba. 

' And, bx-\-Ay—2x-\-by=z{2>—2)x-\-{i-\-3)y=x-\-7y^ 

Keduce the terms of the polynomials, 

(6) c-\-2d — 2c—3d-{-3c-\-U—4.c—bd-\-c-{.d 

(7) 3a—2h-\-ba—6c-}-36 — 9c-|-a — 6-}-121c 

a m k m a k m 
(8) k— 

(9) 3a_i&_j_6a—3f6-}-10-’a—22f6—|a 

(10) bxy—iypqr-\-^xy—10a^6^-}-7 y-pqr—9xy-\-3a^l)^. 

ADDITION. 

Addition is the collecting of several polynomials into one. 
% 

RULE. 

"Write the polynomials one after another, and reduce similar terms.* 

EXAMPLES. 

(1) 
3a2 4. 62 

2a2 4- 362 

6a2-}- 562 

a24- 762 

a2-f 662 

(2) 
2^:2— xy 

Ax‘^—Ixy 

3x2—/^xy 

.x2— xy 
8X2-’^y.y 

(3) 
20 {a‘^—b^f—lbyx'^—y^ 

ya^ — h‘^ — lyx^—y^ 

12 y a‘^—62 — y x‘^—y2 

2 \a^—b‘^f— b (x2—^^2)4 

13a2-1-2262 

(4) . (5) (C) 
a-\- 6 xy— ab 'v/3:2-f-t/2 — m^-\- ^2—2inn 

—2a-j-36 2xy-\-3ab —2 'v/x2-}- 7/2 -}- 3m2 — 3 ?i2 ^rnn 

3a—46 —5xy-|-7a6 —byx'^-yy^ — 4??t2-j-5 ^2—7m7i 

—5a-}-66 — xy—3a6 2 (x2-}-y2^i4_ 12/^2—2aw2-|- mn 

7a— 6 8xy — 9a 6 8 (.r2-|-7/2^i- 8/72/2- ^y^2- 

4a-}-56 

In example (4), let a=5 and 6z=3, then a-|- 6= 8 

—2a 4-36 = —1 

3a_46= 3 

—5a-|-66 = —7 ' 

7a— 6= 32 

4a-f56= 35t 

Hence 5<z4-(—|—}-n;—[-<z4~{—^)4”(—^)H~(—d)' 
=a-\-a—2a. 

Similarly, 2a-\-{—5«J=a4'-"-+(—®)+(—«')4"(—^)+{—^)4"(—“) 

=-{-(—a)—«)-}-(—a) 

=3(—a)——3a. 

* For if certain quantities are to be added and subti’acted, it is immaterial in what por¬ 

tions, or what ordei-. 

t Similar substitutions maybe tried in some of the following examples. Let the learner 

substitute any other numbers for a and b, and he will find that the sum of the polynomials 

will be tnily expressed by the result 4ia-\-5h, the correctness of which does not depend on 

the values of a and A This illustrates the general principle stated in the note of Art. I. 
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(7) 
5ax^ — V^-{-y + («—i) 

— 7a^/x-\-2 {x-{-y)^— 2(a — b) 

VZa^Jx—2yx-\-y -\-12{a—b) 

— 3a yx—^ yx-\-y — {a — b) 

— ax^ -f- [x-\-y)^— 3{a — b) 

_(8) ^_ 
2 y xy-\-xz-\-yz y ax-yby 

— 5 yxy-\-xz-\-yz —3 {ax-\-by)^ 

12 {xy-yxz-{-yz)^y-5 {ax-\-byY 

— 3 yxy-\-xz-\-yz —2yax 

{xy-\-xz-\-yz)^-\- {ax + by)i 

(9) 
a-\-b-yc-\-d-\-e—f 

a-\-b-\-c-{-d — e-j-/ 

a-\-b-yc—d-\-e-\-f 

a-{-b—c-\-d-\-e-\-f 

a — b-\-c-\-d-\-e-\-f 

^a-\-b-]-c-\-d-{-e-yf 

_(10) _ 
A:{a-\-b) yx"^—y^ —2{a — b)yx‘^-\-y‘^ 

— 3{a-\-b) yx'^—y'^ -{- {a—b)yx'^-{-y'^ 

— {a-\-b) {x'^—y'^Y-\-3{a—b) 

6{a-\-b) (a:^—y^)^— {a — b) 

10{a-\-b) yx‘^—y'^ —5{a — b) {x^-\-y")^ 

— 2{a-\-b) (a:^—y^)^-\-A{a — b)yx'^-\-y'^ 

4. Dissimilar quantities can only be collected by writing^hem in succession^ 

&nd prefixing to each its respective sign. Thus, 9a:y, —bed, and 3ab are dis 

similar quantities, and their sum is 9xy-\-3ab—bed. In like manner, 2ab, 

3ab^, lab^ are dissimilar quantities, and their sum is 2ab-\-3ab^-\-Aab^; which, 

however, admits of another form of expression, as will be explained in the rule 

of Division. When several polynomials, containing both similar and dissimilar 

quantities, are to be collected into one polynomial, the process of addition will 

be much facilitated by writing all the similar terms under each other in verti¬ 

cal columns. 

This, however, is not absolutely'necessary. The similar terms may be col 

lected together as they stand. 

EXAMPLES. 

(1) Add together ua:-j-2cz ,* yx-{-Vy-yyz; 3y^—2x^-y3z^; Aez 

— 3ax—2by ; 2ax—lyy — 22^. 

ax2byez + V^ 

— 3ax — 2by-\-Aez — 2x^-\-3y^ -j-Sz^ 

2ax —^yy — 2z^ 

bez — y X + 2V z= sum required. 

(2) Add together, 

Aa‘^b -{- 3e^d — dnd'n ; -f- ab‘^ -j- be^d -{-7a^b ; 6nfn — be^d -\-l.mid' — ; 

7mrd‘ b&d—bw?n — bo?b ; 7e^d — lOab^ — Qm^^n — ; and 12u^6 — 6ab^ 

-{-2c^d-{-mn. 

Arranging the similar terms in vertical columns, wo have 

ia‘^b-\- 3e^d— dtn'^n 

7a'^b-{- bc^dy db^ 

— be^dy Qndn— 8u6^-j- Amrd' 

— bd^by be^d— bw?"n 7mrd’ 

-f- 7e^d— Qrrd'n — —lOc/'* 

12a264- 2eH — 6ab^ ymn 

T7a‘^by-18e^d—12m^n — 23ab'^-yilrmd — l0d^-y7nn= sum. 

(3) Add ll&c-f4a(Z —8ac4-5ct/; 8ae-\-7be—2ad-y4:mn; 2ed—3ab-ybaG 

\-an ; and 9a7i — 2be—2ad-\-bed together. 
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(4) Add together, without arranging the similar terms in vertical columns, 

2ah‘^-\-^ad^— 8c.r^-j- — Qhy^—IQky 

ba^ —AalP'— Ihx-— h'^x— Aky^^ — Ibhy 

bky— liy'^-^-^Mx -{-lAlP —22ad^—lOa:^ 

19ac^ — 8&^:r-|- O.r^ + S/ny^-j- 2alP 

ba? —8ca:‘— x"^ — 9/i?/'^-}-14&^ — 2ky’^ — bky — 9% — Ihx^. 

(5) Add together —lP-\-ba‘^h — balP \ — Aa%-\-blP—3a&^; oP-\-}P 

2aP — AlP — bah'^ \ Qa^h-\-10ab'^ \ and —QaP — '7a'^h-\-AalP-\-2lP. 

(6) Add x'^-\-y‘^— Vx"—y'^ — bxy ; — 3{x^ — y^)^ + 8xy — 2(.'r^ -}- y^)^ , 

2^x^-\-y'^—3xy — bx"^—y^ ; 7xy-\-10 ■\/x‘^—2/^ — 12-\/^^+2/^; and xy 

-j- y/x^—2/^+ ^/ x‘^-l^y" together. 

(7) Add 

gether. 

A a 3m^ 

y~ c 

6 ^3(g-t-r) 

z s 
and 

9u 8rrP 12yp 4(^-1-^) 

y'^c z s 

(8) Add together 4A—6—and 7——2A-}-3^. 
CL yy CL O 

* (9) Add together 3 cos a — 4 sin b-\-0 tan c, 2 cos a-|-2 sin h-\-7 tan c, 

and cos a-\-3 sin b — 2 tan c. 

(10) Add together 3.29 0—2.45 ])+1.84 4.56 0+0.59 ])+6.4115, 

and 2.220+3.11 D —4.21t5. 

ANSWERS. 

(3) 165c+5uc+12ccZ+4?n/i — 3ab-{-10an. 

(5) a^+a'^& + a6^+5^. 

(6) 2 y x^—y^ —10 y x'^-}-y‘^-{-8xy. 

(7) 
13u bcrP Oyp (^ + ^) 

y ' c z ' s 

, . A B 
(8) 2A+^+10^. 

(9) 6 cos u+sin & + 11 tan c. 

(10) 10.07 0+1.25 ])+4.04^5. 

5. When the coefficients are literal instead of numerical, that is, denoted by 

letters instead of numbers, their sum may be found by the rules for the addi¬ 

tion of similar and dissimilar terms ; and the sum thus found being enclosed in 

a parenthesis, and prefixed to the common literal quantity, will express the 

sum required. » 

EXAMPLES. 

(1) 
ax-\-by-ycz 

bx-\-cy +U2 

cx + ay + bz 

{a-\-b-\-c)x ^ 
+ (Z> + c+rt)y C 
+ (c+u + /;)2 ) 

(2) 
3ax-\- (u+^) {x-\-y)-\-2mnz’^ 

— ax + 2(a+&) (.T + 2/) — brnnz^ 

Amnz'^-\-b{a-\-b) (a:+2/) + 10a.r • 

2pqz^-Ar ip-^q) (■'g+?) 

sum. (12a + 2y:)).r+ ^ 8(a + 5)+y? + ^, 

+ {mn-\-2pci)z’^ 
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(3) 
[a — h)-y/x-{- {m—'ll) Vy 

{a-\-c) — (m—n) y^-\-2y/2 

{h —c) ^/X -|-3(m — n) y/y —3 y/2 

(c — a) y/X —5(m — 'n)^y —^yj2 

(4) 
(m-j-u) y^ — ( a— h)x‘^-\-axy 

{n—p) y^ — (2a4- 

{p — 2n)y'^—( c—2>a)x^-\-cxy 

{q—m) y'^—( c-\-2d)x'^ — dxy 

(5) Add ax^-\-hy-\-c to dx^-\-hy-\-h. 

(6) Add together -I"*'^2/"i"2/^ ? —axy-\-ay^', and —hy‘^-{-hxy-\-bx^. 

x"4-xy-\-^i^ — .TO 4-7/2 
(7) Add |(.i:4'2/) 2(^—y)' -^Jso,---and---. 

(8) What is the sum of (a-f-Z>).r-f-(c—d)y—xy/2; {a — h)x-\-{3c-\-2d)y 

’]-5xy/2; 2hx-\-3dy — 2xy/2\ and —3hx—dy—^xy/21. 

(9) Kdidi ax-\-hy-\-cz ; a'x — h'y-\-c'z; and a".r-{-&"7/—c"z. 

(10) Add together aa:-|-^2/+ C2:; ayX-\-hiy—CiZ ; and a2.7:—&22/+^22^* 

ANSWERS. 

(3) {a-\-c)y/x—2{m—n)y/y—Q^/2. 

(4) 07/2 — (2c-l-2<i).r2-l- (a — 64-c — d)xy. 

(5) [a-\-d)x^■^r{b-{■h)y-{-c-{-k. 
(6) (l4-o-l-i).r2-f(l_o-|-?,).r7/4-(14-a—&)7/U 

(7) First part, x. Second part, x'^-^y'^. 

(8) (2a — h)x-\-{^c-\-3d)y — 2xy/2. 

(9) {a-\-a'-\-a")x-\- {h — h'-\-b")y-\-{c-\-c'—c^)z. 

(10) a x-\-b y-\-c 

-f-a, — Cl 

”1“ ^2 -^2 ~\~^2 

SUBTRACTION. 

RULE. 

6. Place the quantity to be subtracted under that from which it is to be 

taken; change the signs of all the terms in the lower line from -|- to —, and 

from — to -{-? or else conceive them to be changed, and then proceed as di¬ 

rected in Addition.* 

* The sign —, prefixed to a monomial, serves to intimate that this monomial ought to en¬ 

ter subti’actively into any combination of which it forms a part. If, for example, it be re¬ 

quired to add the subtractive quantity (—d) to c, the sum c-l-(—d) is c—d. 

If the difference between two quantities, as m and s, be required, m and s being both add¬ 

itive, the expression of the difference is m—s. If the difference be required between m, 

an additive, and (—s), a subtractive quantity, let the difference =d; that is, let 

m—(—s)=d. 

Adding (—s) to both these equals, there results 

TO—(—s)-f(—s)=d-|-(—s). 
But TO—(—s)-l-(—s)=m, and d-\-[—s)=d—s. 

Therefore, m=d—s. 

Now TO—(—s)=d, and m=d—s. 

; Hence m—(—s) is greater than to by tlie additive quantity s, oris equal to m-\-s 

The above is the demonstration for isolated tenns. 

For polynomials we have the following: 

It is evident, that if all the temis of the quantity to be subtracted are affected with the 



12 ALGEBRA. 

(1) 
From Aa-\-2>h—2c-{-8fZ 

Take 

Rem. 3ah — 3c-j-3(i 

(3) 
32a-I- 36 

5a4-176 

EXAMPLES. 

From 

Take 

Rem. 

(4) 

(2) 
12xy 4- 3?/^ — 17.r2+3 V 2 

. 5:gy-|-7^2—193:^4.2 V2 

11 xy — 23:^4~ V2 

2QaT^—16a%2 4" 25a^3:—13a‘^ 

18a3:'^4‘20^i^^^ — 24a^3:— 7a‘* 

(5) 
2(a4-6)4-3(a—3:) 

(a4-6) — 3(a—3:) 

(6) 
Goby — ^yx-\-Azx 

■ 2aby-^Qzx ■\-‘^yx 

(V 
•\J —3-3“ + ^ 

3(,r -fy)—2(.r^—/)*+3 {a+x)i 

(8) 
x’^-{-2xy-\-y'^ 

x^—2xy-\-y^ 

(9) 
x"^—2xy-\-y^-\- {x'^—2/^) + 2(-'^2/—V^) 
x^ 4" 2^2/—y^-{- -\-y^) — 2 {xy—2/^) 

(10) 
2a2 4“ CLX-\- x"^ — 12a^3:4-20a3:^— 43:^ — 10a3:® 

—3a3:4-23:^ — lQd^x-\-12ax‘^—12a3:^—43:^ 4“ 2.a^x^ 

(11) _ __ 
4^/3——2a{x-\-y)-{- 6 ^/d-—x^ — 8 yiP- — y'^ 

42’3—422/4-3/^—Aa{x-\-y) —10 yj)^—2/^+4 Vo?'—x^ 

7. In order to indicate the subtraction of a polynomial, without actually per¬ 

forming the operation, we have simply to inclose the polynomial to be sub¬ 

tracted within hraclcets or parentheses, and prefix the sign —. Thus, 2a^ 

sig^i we must take away, in succession, all the parts or terms of the quantity to be sub¬ 

tracted; and this is indicated by affecting all its terms with the sign—. But if some of 

the tenns of the subtrahend are affected with the sign —, as, for instance, if c—d is to be 

subtracted from a-\-b ; then, if c be subtracted, we shall have subtracted too much by d; 

hence the remainder a-\-h—c is too small by d; and therefore, to make up the defect, the 

quantity d must be added, which gives a-\-b—c-\-d; bj^ inspecting which we perceive that 

the signs of the subtrahend have been changed. 

' This reasoning may be generalized by supposing c to represent the sum of the additive 

terms, and d to represent the sum of the subtractive terms of the lower line, or quantity to 

be subtracted. ' 

Another mode of proving the rule for the signs in subtraction is the following: 

By subtraction we solve th-e problem, “ Given one of two quantities, and their algebraical 

sum, to find the other.” 

Let A be any algebraical quantity, simple or compound, from which it is proposed to 

subtract another simple or compound quantity, B. The quantity A may be conceived to be 

the algebraical sum of B, and some other quantity which it is proposed to discover. Call 

it X. As A was obtained by annexing to x the polynomial expressed by B, with its proper 

signs, the effect of this process will be destroyed by annexing to A the polynomial repre¬ 

sented by B, with its signs changed. 
/ 
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— — {a^air) signifies that the quantity is to be 

subtracted from When the operation is actually perform¬ 

ed, we have by the rule, 

2a^—3a^&-f-4u&‘^ — {a^-\-ly^-\-al)^)=z2a?—3a^6-j-4a&2—^3—53—^^3 

= —3a^6-}-3a&^—h^. 

When, therefore, brackets are removed which have the sign — before them, 

the signs of all the terms within the brackets must be changed. 

8. According to this principle, we may make polynomials undergo several 

ti-ansformations, which are of great utility in various algebraic calculations. 

Thus, 

— {3a^h — 3ab^) 

= a^-{-3a¥ — {3a-b-\-¥) 

= — (— a^-{-3a^b — 3ab^-\- b^) 

And x'^—2xy -|- y'^=x'^—{2xy—y^) =1/^ — {2xy —x'^). 

EXAMPLES OF QUANTITIES WITH LITERAL COEFFICIENTS. ' 

(1) _^ 
From ax^-\-byx-\-cy'^ From (a-|-&) 

Take dx^—lixy-\-ky'^ Take {a — b) x^-\-y'^-\- c {a-\-xY 

Rem. {a — d)x'^{b^h)xy{c—k)y'^. Rem. 2b ^x'^-\-y^-\-a{a-\-xY. 

(3) From m^n^x'^ — 2mnpqx-{-p^q‘^ take q^'^q'^x'^ — 2j)qmnx-\-m-7i'^. 

(4) From a{x-\-y) — bxy-\-c{x—y) take 4[x-\-y)-{-{a-\-b)xy—7(.'r—y). 

(5) From {a-\-b) {x-\-y)—(c — d) {x—y)-{-ld' take {a — b) (a:-j-y)-J-(c-}-(fl 

{x—y)-{-k‘^. _ 

(6) From {2a — bb) -/x-\-y-\-{a — b)xy—cz^ take 3bxy—(5-j-c)z- — (3a — b) 

(7) From 2x—y-\-{y — 2a:) — (x—2y) take y — 2x—(2y—x)-\-{x-\-2y) 

(8) To what is a-\-b-\-c — (a — b) — {b—c) — (— b) equal ? 

(9) From Ar‘^-f-B.T2-|-Ca:-|-D take Ai.r^-j-B^.r^-l-C 

ANSWERS. 

(3) or —p^q‘^)x'^—[ndrd—jp^q^), or 

-p^(f) {x^—1). 

(4) («—4) (ar-f y) —(a-f 26).Ty-f(c+7) (a:—y). 

(5) 2b{x-\-y)—2c(a:—y)+^i^—k^^ 

(6) (5a—6b) ^/x-\-y-{-{a—ib)xy-\-5z^. 

(7) y+a:. 

(8) 26-f 2c. 

(9) (A—A0a:"-f(B—Bi).a:2 4-(C —Ci)a:-fD—Dj. 

MULTIPLICATION. 

9. Multiplication is usually divided into three cases : 

I ,(1) When both multiplicand and multiplier are simple quantities. 

(2) When the multiplicand is a compound, and the multiplier a simule 

uantity. 

(3) When both multiplicand and multiplier are compound quantities. 
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CASE I. 

10. When both multiplican cl and multiplier are simjde quantities^ or monomials. 

To the product of the coefficients affix that of the letters.* 

Tlius, to multiply bx by 4y, we have 

5x4=20; xxy=xy; 
.•.5.r X 4y=20 X xyz=20xy= product. 

11. Powers of the same quantity are multiplied by simply adding their in¬ 

dices ; for since, by the definition of a power, ' 

a^-=aaaaa ; a'^z=aaaaaaa, 

.‘.a^ X od—aaaaa X aaaaaaa—aaaaaaaaaaaa=aP=.a^P^. 

Also, a^z=aaa.... to m factors ; a'^—aaa.... to w factors ; 

,'.a'^ X a^=aaa.... to m factors X -to w factors ; 

—aaaaaa.to (w-j-w) factors ; 

=u™+“. 

It is proved, in the same manner, that a™X«"X«’‘X 

* I. The rale is derived in the following manner: We begin by assuming that when 

several letters are written one after another witliout any sign, their continued multiplica¬ 

tion is understood, and that the operation proceeds from left to right. Then abed will sig¬ 

nify a multiplied by h, that pi'oduct by c, and that again by d. We shall now prove that in 

whatever order these letters or simple factors are arranged, their continued product will 

always be the same ;t and, moreover, that they may be grouped into partial products at 

pleasure, provided all the letters be employed each time. Thus the above product may be 

written hade (the multiplication here, as before, going on by each factor successively from 

left to right), and the result will be the same as before ; or it may he written aXbXcd, un¬ 

derstanding the products separated by the sign X as being previously formed and then 

multiplied together. 

The demonstration depends upon three propositions, which we shall first establish ; 

For in the adjoining table of units let h denote the number 

of units in each horizontal row, and a the number of rows, 

then b multiplied by a, or repeated a times, will give the 

number of units in the table. But a, whidi is the number of 

horizontal rows, is also the number of units in each column, 

and h is the number of columns ; then a multiplied by b, or 

repeated b times, will produce the number of units in the 

table again; whence b multiplied by a is equal to a multiplied by b. 

(1) . . . aXb=bXu 
b 

(111 iT^ 
I 1 1 1 1 1 1 

1 1 1 1 1 1 
I 1 1 1 1 1 1 

U 1 1 1 1 1 

a a a a a 
a a a a a 
a a a a a 
a a a a a 

In a similar manner, from the adjoining table, it may be 

proved that 

a.b . c—a .c.b (-2) 

iu,u,u,tcu, Also that a.b. c=a. ibc) (3) 

II. By (1) abcd=bacd= by (2) bcad= by (2) beda. Thus, we perceive that the factor 

a has been made to occupy successively every place from the first to the last. The same 

might now be done with the factor b, and so with all the others. Therefore a product is 

the same, whatever be the order of its factors. 

III. Again. Take aXbXcXdXe. It may be written by (3) aXbcXdXe or by (3) 

aXbcdXe, or, instead, by (3) abXcdXe. From which it appeal’s that the factors of a 

product may be cronped into partial products at pleasure, and then afterward multiplied 

together or conversely. 

IV. Let us now sup[)Ose that the product 2a^b‘^ is to be multiplied by the product oa-Zri. 

Instead of multiplying by the whole product multiply by its factors separately, and wo 

have 5a2^43Qr3j2, Since the order may be changed at pleasure, bring the numerical factors 

togethei’, and the different powers of the same letters; thus, 5XGrouping the 

different powers of the same letters into partial products, as well as the numerical factors, 

the result \s'15a^h^, which has evidently been obtained by multiplying the coefficients and 

adding the exponents of like letters. 

t Such a relation as that of a product to its factors is called a symmetrical relation. 
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• RULE or SIGNS IN MULTIPLICATION. 

The product of quantities with like signs is affected with the sign -j- ; the 

product of quantities with unlike signs is affected with the sign — ; 

or 

-f- multiplied by -f- and — multiplied by — give -f- 5 

-|- multiplied by — and — multiplied by give — ; 

or 

like signs produce and unlike signs —. 

The continued product of an even number of negative factors is positive; of 

an uneven number, negative.* 

EXAMPLES. 

(1) Aa^^^cd X 3abc‘^d^ = 12a^b^c^d^. 

(2) 12 ay X'^bx = A'dbx Vay. 

(3) o^x’^yH* X Qxy*z^ = 33xYz\ 

(4) 13a'^b^x^y X —babxy^ = — bboPb^X'^y^. 

(3)- ■ bx’^y^X—Ax'^oy'^ =-|- 2Qxm+nym+n^ 

(6)- COUPS'! = — lOOu^+P&^+'^ch 

CASE II. 

12. When the multiplicand is a compound^ and the multiplier a simple 

quantity. 

Multiply each term of the multiplicand by the multiplier, beginning at the 

left hand; and these partial products, being connected by their respective signs, 

will give the complete product, f 

(1) 
Multiply a'^-\-ah 

By . 4u 

Product, ^a^Aa^hAah-. 

EXAMPLES. 

(2) 
Multiply —^ah 

By 3.r?/ 

Product, ?>al^xy — Qahxy3h^xy. 

(3) Multiply 5mn-\-3m'^—2w^ by 12ahn. 

(4) Multiply 3ax—5hy-\-7xy by —7ahxy. 

(5) Multiply —15a'^h-\-3ab‘^ — I2b^ by —bab. 

(6) Multiply — bx^-{-cx — dhj —x^. 

(7) Multiply ^/a-\-b-\- x^——3.ry by —2-/.r. 
(8) Multiply a^x^-\-b'^y'^——d^xp by 

* Let w?, m'be two monomial quantities whose product is requmed. If on, m' are both addi¬ 

tive quajitities, the product mm' is an additive quantity. This is the case of arithmetic. 

If the multiplicand m is an additive quantity, and the multiplier m' a subtractive quantity, 

the expi’ession toX(—'cnf) indicates that the multiplicand m is to be subtracted as many 

times as there are units in m', or that m' repetitions of the quantity m are to be subtracted, 

which is expressed by —mm'. 

If on is subtractive and m' additive, —m taken once is —m; taken twice is —tak¬ 

en on' times is —m^on. 

If m and m' are both subtractive, the quantity —m is to be subti'acted m' times. Now 

—m subtracted onceris -\-m, twice is -\-2m ; and m' times is -{-m'm. 

t 1st. Suppose the sitpis to be all plus. The whole multiplicand being to be taken as 

many times as is denoted by the multiplier, each of its parts or terras must be taken so 

many times. 2d. For the case where some of the signs are negative, see the demonsri'a- 

tion in the next note. 
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CASE III. 

13. When both muliiplicand and multiplier are compound quantities. 

Multiply each term of the multiplicand, in succession, by each term of the 

multiplier, and the sum'of these partial products will give the complete prod¬ 

uct.* 

EXAMPLES. 

U) (2) (3)t 

a -j— b a -{-b a — 6 

CL —I" & a —b a — 6 

a^-j- ab od'-\-ab «2— ab 

+ ab-\-b^ —ab — b^ — ab-\-b^ 

«2_|_2a6 + 62 a^—b^ 0?—2a6-|-62 

(4) (5) 

CL 1) Cci a^-\-2a 6-j- 62 

a b —cd a^— 62 

a’^b^-\-abcd 2^364- a^b'^ 

—abed— — a%’^ — 2ab^^b^ 

a‘^b‘^—c^d^^ a‘^-\-2a?b — 2a 6^ — 6^ 

(6) Multiply Aa^—ba?b—Qab'^-\-2b^ by —bab—4&®. 
Aa^— M— 8u&2_j_ 053 

2a2— bab — Ab^ 

Qa^—l^a^b—lQa^¥-\- Aa%^ 
— 12a4j_j_ 15^^352240,2^3_ 6^54 

_ 16^362 20a253_|. 32« _ 8&5 

Qa^—'2'^a^b —11 AQa^h^-\-2Qab'^—86®=: product 

a •—h 

c —d . 

ac—he 

ad- -bd 

* 1st. Suppose all the terms of the multiplier to be affected with the sig^u The mul¬ 

tiplicand, beings to be taken as many times additively as is denoted by the multiplier, must 

be taken as many times as is denoted by each term of the multiplier separately, and the 

separate results added together. Sd. When there are both additive and subtractive terms 

in the multiplier and multiplicand. The rale for the signs may he thus demonstrated. Let 

a—b be multiplied by c—d. First multiplying a by c, the product 

is ac; but b should have been subtracted from a before the multi¬ 

plication ; b units have, therefore, been taken c times in the a, which 

ought not to have been so taken; hence h, taken c times, must be 

subtracted, and there results ac—be as the product of a—h by c. ac—be —ad-\-bd. 

But the multiplier was c—d instead of c; therefore the multiplicand has been taken » 

times too often; d times the multiplicand, which will be of the same form as c times the 

multiplicand, viz., ad—bd, must be subti-acted, and the rule for subtraction is to change the 

signs of the quantity to be subtracted. The result is, therefore, ac—be—ad-\-bd; com¬ 

paring which with the given quantities we perceive that like signs have produced -)- and 

unlike —. To render the demonstration still more general, a may represent the assem¬ 

blage of the additive terms of the multiplicand, and b that of the subtractive; c and d the 

same for the multiplier. 
t The results in examples (1), (2), and (3) show, 1. That the square of the sum of two 

numbers or quantities is equal to the square of the first of the two quantities plus twice 

the product of the first and second, plus the square of the second. 2. That the product of 

the sum and difference is equal to the difference of the squares ; and, 3. That the square of 

the difference is equal to the sum of the squares minus twice the product. 
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(7) Multiply a'h—by h'k—hk''. 
a'b—ah' 
h'k—hk' 
a'hh'k—ah'h'k 

—a'hlik'ah'lik' 
a'hh'k—ah'^h'k—a'hhk' -f- ah'hk' = product. 

(8) Multiply &;c., by x-\-y, 
x^ y -f- x^~'^y^ -|- x^~^y^ -j-. 
X -\-y ' . 

x'^y-\- x’^~^y‘^-{- x'^~^y^-\-. 

x^y-\- x™~'^y^-\- x’^~^y^-\-. 

^.m+i +2x^~^y‘^ -f" 2x™~^y^ -|-. 

(9) Multiply x^-\-y^ by —y^. 

(10) Multiply 4" 2^2/+2/^ ^7 ^—2/* 

(11) Multiply ba"^—2a^h^a^h'^ hj ci?—Aa%-\-2h^. 

(12) Multiply 1 by x^—2x-|-l* 

(13) Multiply ^x'^-^-bax—by 2x2— 

(14) Multiply a2_j_2a&4"^^ *^7 —2ah-\-h‘^. 

(15) Multiply x2-|-xy-|-7^ byx^—xy-\-y'^. 
(16) Multiply x2-}^2/2_j_2;2—xy—xz—yz by x-^-y-^-z. 

(17) Multiply together x—a, x—&, and x—c. 

(18) Multiply together g-\-h, g-\-h, g—h, and g—h. 

(19) Multiply togetherjp-|-2^, and^-|”47* 

(20) Multiply together z—3, z—5, z—7, and z—9. 

(21) {og^—(2"4-<^^) X (<^’"—«)• \* 

(22) (5a®x^—4&^y^) X {ba^x^-{r4.h‘*^y^) as ex. 2. 

ANSWERS. 

(9) x^-y\ 

(10) x^+^^7— 
(11) 5a’'—22a^h-\-12a^h'^—6a^h^—Aa%^-\-8a^¥. 

(12) x6—2X’3+1. 

(13) Sx^+i®^’^— 
(14) a4_2a2&2_}-.&L 

(15) x^^xY+y'^- 
(16) 3^-{-y^-\-z^—3xyz. 

(17) x'^—{a-\-h-\-c)x^-\-{ah-{-ac-{-hc)x—ahc. ' 

(18) g^—2g%^-lrh\ 

(19) ^?‘‘+lOp^g'4*bbjj'^q^■\-b0p(f-\-2iq'^. 
(20) z^—24z3+206z2—744z4-945. 
(21) «2m__^m+n_|_^m+2_^m+l_|_^n+l_^3. 

(22) 25ai°x6—166Y0. 

When <the multiplicand and multiplier are each homogeneous, the product 

will be also ; and the degree of each term of the product will be equal to the 

sum of the degrees of a term in the multiplier, and a term in the multiplicand. 

This serves conveniently to verify the accuracy of the operation. It is ap¬ 

plicable in the above examples to all except the 12th, 20th, 21st, and 22d. 
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In multiplying one polynomial by another, there are always two terms of the 

total product which are not produced by the reduction of similar terms in the' 

partial products. These two terms are the term affected with the highest 

exponent of any letter, and the term affected with the lowest exponent. If 

the terms of the multiplicand, multiplier, and product be arranged in the order 

of the powers of some letter,* as is usual, and as may be seen in the above ex 

amples, then the two terms in question of the product will be the first and 

last, the one being produced by the multiplication of the first of the multipli¬ 

cand by the first of the multiplier, and the other by the multiplication of the 

last of the multiplicand by the last of the multiplier. The first of the multi 

plicand by the second of the multiplier usually produces a terra similar to that 

which is produced from the multiplication of the second of the multiplicand by 

the first of the multiplier. The same is the case with the first and third of 

each, the first and fourth, the second and fourth, the third and fourth, and so on. 

When a polynomial, arranged according to the powers of some letter, con¬ 

tains many terms in which this letter has the same exponent, these terms, 

after suppressing from them the letter of aiTangement, may be placed in a 

parenthesis, or, in a vertical column with a vinculum placed vertically on the 

right, and the letter of arrangement, with its proper exponent, following after. 

The polynomial in the parenthesis, or vertical column, is to be regarded as the 

coefficient of the power of the letter which follows, and is to be operated with 

exactly as we do with a numerical coefficient; i. e., multiply the coefficient 

of the letter of arrangement in the multiplicand by the coefficient of the same 

letter in the multiplier, and afterward add the exponents of this letter. . 

EXAMPLE. 

C 26 a?— 462 a-f 863 
Multiplicand < —1 -f 26 

1 
— 4Z>2 

~ Multiplier 
^ 26 

1 +1 

a — 462 

+ 1 
( 462 d?— a2-}-166^ a 

Product of the —26 4- 462 — 863 
multiplicand by + 26 — 26 -f 863 

2h a — 1 — 462 — 462 

+ 1 4- 26 
_ 1 V 

f 
— &h^ -f 166'' — 3265 

Product of the -f 462 — 863 -f 1664 
multiplicand by -f 26 -f 462 -P 863 

— 462 i — 1 — 462 — 462 

+ 1 + 26 
— 1 

r 462 a^—16b^ a2_|.3264 a —3265 
Total product — 1 + 462 — 863 4-1664 

simplified « 4- 26 — 462 4- 863 
— 2 -f 26 — 462 

.. — 1 

* The letter chosen for this purpose is called the letter of arrangement. 
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r 

MULTIPLICATION BY DETACHED COEFFICIENTS. 
r 

14. In many cases the powers of the quantity or quantities in the multipli¬ 

cation of polynomials may be omitted, and the operation performed by the co¬ 

efficients alone ; for the same powers occupy the same vertical columns, when 

the polynomials are arranged according to the successive powers of the letters; 

and these successive powers, generally increasing or decreasing by a common 

difference, are readily supplied in the final product. 

EXAMPLES. 

(1) Multiply x^-{-x‘^y-^xy‘^-^y^ by a:—y. 

Coefficients of multiplicand 1 -f-1 +1 1 

-multiplier 1 — 1 

l + l + l + l 
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Since the highest power of x is 4, and decreases successively by 

unity, while that of y increases by unity; hence the product is 

x‘^-\-0 -j- 0 ^ —y‘^=x^—2/^ = product. 

(2) Multiply ^oP’-^-Aax—bx^ by 2a^—6ax-\-Ax^. 

3+4—5 

2-16+4 

6+ 8 — 10 ’ 

—18—24 + 30 

_|_12+16—20 

6 — 10—22 + 46—20 

Product =6(2^—lOa^a:—22a^x^-\-A0aj?—20a:^* 

(3) Multiply 2a^—3(Z&^+5&^ by 2a^—56^. 

Here the coefficients of in the multiplicand, and d in the multiplier, are 

each zero; hence 

2+0— 3+ 5 

• 2+0— 5 

- 4 + 0— 6+10 

10— 0 + 15—25 

4_j_0 —16+10 + 15—25 

Hence 4a®—lOa^&^+lOa^&'^+lSaft'*—256®= product. 

The coefficient of being zero in the product, causes that term to dis¬ 

appear. 

(4) Multiply —3x^-{-3x—1 by —2a:+l. 
(5) Multiply y^—ya+^a^ by y‘^-\-ya—\a^. 
(6) Multiply ax—fer^+cr^ by 1—x+.r'^—x?-\-xf^. 
(7) —ar^+6a:—c)x{^^—dx-\-e). 

ANSWERS. 

(4) a:®—5a:4_j_i02:3—10.r2+5.r—1. 
(5) 2/4—aY+ia®2/— 

(6) ax—a' x^+a X?—a x:^-\-a x^—6 3fi-\-CX'' 

—h h —h h — c 

c —c c 

Or, ax—(a+6) x^-\-{a-\-h-\-c) x?—(a + 6+c) x^-\-{a-\-h-{-c) .r®—(6 + c) a.”® 

+ cx"^. 

(7) x^—{a-\-d)x^-\-{h-\-ad-\-e)x^—{c-{-hd-\-ae)x'^-\-{cd-\-eW)x—ce 

DIVISION. ' 
r 

15. The object of algebraic division is to discover one of the factors of a 

given product, the other factor being given; and as multiplication is divided 

into three cases, so, in like manner, is division. 

(1) When both dividend and divisor are monomials. 

(2) When the dividend is a polynomial, and the divisor a monomial. 

(3) When both dividend and divisor are polynomials. 
I 

V 

CASE 

16. When both dividend and divisor are monomials. 

Write the divisor under the dividend, in the form of a fraction; cancel like 
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quantities in both divisor and dividend, and suppress the greatest factor com¬ 

mon to the two coefficients. 

17. Powers of the same quantity are divided by subtracting the exponent 

of the divisor from that of the dividend, and writing the remainder as the ex¬ 

ponent of the quotient.* 

Thus, o? =aaaaaaa; a'^=aaaa 
o? aaaaaaa 
— =-=aaa=o?=cJ~^. 

aaaa 
Generally, a^=aaaa.to m factors ; a^=aaa.... to n factors ; 

=bf)bb .to p factors ; b^ z=bbb ... .to q factors ; 
d^b^ aaa.... to m factors X bbb.... to ^ factors; 

• — - - - . . - - - 

' ' a^b^ aaa.... to n factors X bbb.... to q factors ; ^ 
=aaa... to (m—n) factors X bbb.... to (p—q) factors, 

When a quantity has the same exponent in the dividend and divisor, we hav© 

a™ 'a™ 
—but—-=1. 

a^ 
. ■’ .*. a°=i. 

Hence every quantity whose exponent is O'is equal to 1. 

aaa 

aaaaa aa 

But we may subtract 5, the greater exponent, from 3, the less, and affect 

the difference with the sign — ; hence 

a? , a? 1 

a 
-■=o?-^=or^\ but—=-; 

a^ a^ 

a^ 
\=a~ 

* The rale for division follovs^s from its object, which is, having one of the factors of a 

product given to find the other. As in multiplication we join together the factors of a prod¬ 

uct without any sign, and without regard to order, in division we suppress from the jjrod- 

uctj i. e., the dividend, one of the factors, i. e., the divisor, to obtain the other, which is the 

quotient. Note.—The quotient must contain those factors of the dividend which are not in 

the divisor. Note, also, that dividing one of the factors of a product divides the whole 

product. Thus, dividing a^bc by a^, we divide the single factor a^, and get a^c; so to di¬ 

vide 16X12 by 8, we divide 16 alone, and get 2X12 for the quotient. 

When there are factors in the divisor which are not in the dividend, the quotient may 

be expressed in the form of a fraction, as has been previously shown (2, Y.). Suppressing- 

the common factors in this case amomits to dividing both numerator and denominator by tho 

same quantity. That such a division does not alter the value of the fraction, will be obvious 

from the following considerations : 

1. If the numerator of a fraction be increased any number of times, the fraction itself will 

be increased as mgny times ; and if the denominator be diminished any number of tiipes, 

the fraction must still be increased as many times. 

2. If the denominator of a fraction be increased any number of times, or the numerator 

diminished the same number of times, the fraction itself will, in either case, be diminished 

the same nmnber of times. , 

3. If the numerator of a fraction be increased any number of times, the fraction is in¬ 

creased the same number of times ; and if the denominator be increased as many times, the 

fraction is again diminished the same number of times, and must therefore have its original 

value. Hence botli tenns of a fraction may be multiplied by the same number, and, by 

similar considerations, it will appear, may be divided by the same number without changing 

the value of the fraction. 
Corollary.—Rule. To multiply a fraction by a whole number, multiply the numerator of 

the fi'action, or divide its denominator by the whole number. To divide a fraction, divide 

its numerator, or multiply its denominator. 
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Similarly, ^=(«+x)->; 

and so on. 
(x^+y^Yix"^—2/^)' 

So, also, 

But 

a° 
dZ (jZ-b d ^ ’ 

a° 

a? 
—— ^2 • 
;-» 

a —2 
zaK 

From this it appears that a factor may be transferred from the denominator 

to the numerator, and vice Versa, by changing the sign of its exponent. ' 

EXAMPLES. 1 

(1) Write o^h^c with the factors all in the denominator. 

(2) Write with the factors all in one line, and also all in the denomi¬ 

nator. r- 

For more of the theory of negative exponents, see a subsequent article. 

18. In multiplication, the product of two terms, having the same sign, is 

affected with the sign -j- ; and the product of two terms, having different 

signs, is affected with the sign —; hence we may conclude, 

(1) That if the term of the dividend have the sign -}-, and that of the di¬ 

visor the sign -j-, the resulting term of the quotient must have the sign ; 
4 ' 

because + X + gives + • 

(2) That if the term of the dividend have the sign , and that of the divisor 

the sigh —, the resulting term of the quotient must have the sign — ; because 

— X—gives-f. 

(3) That if the term of the dividend have the sign —, and that of the di¬ 

visor the sign -j-? the resulting term of the quotient must have the sign — ; 

because -4- X — gives —. 

(4) That if the term of the dividend have the sign —, and that of the di 

visor the sign —, the resulting term of the quotient must have the sign 

RUEE OF SIGNS IN DIVISION. 

'. -j- divided by -j-, and — divided by —, give -{-, 

— divided by -j-» a^^id -j- divided by —, give — ; 

' or, ' ■ ‘ • 

like signs give and unlike —, the same as in multiplication. 

-\-ab ^ ^ —ab ^ —ab ^ -\-ab 

“4“ a 
— -4*6; — -j- & ■ a \ ■ -4-a 

EXAMPLES. 

~b; 
—a 

=—&. 

(1) Divide AQa^b^c'^d by 12a&^c. 
AQa^b^c'^d ASaaabbb'ccd 

■=4aabcd=4aP‘bcd. 

(2) 

12a&^c 

IbQa^b^cd^, 

~b^c^¥dF' 

12a6&c 

: 5a^^b^~^cd^~^—ba^b^cd. 

(3)  -7-T—=4u2-i62-ic2-i:=4a6c. 
— 4aoc 
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('^) L = 5«2in-m^3n-2n^n-5n — 

^ —48a™6" 
(5) --^ =-^8a”~P5"~q 

(6) 

6aP6'i 

— 63a^h*c^d''^x'^yz 

— 7 a^bcd'^x^y^z^ 
: -|- 9ah^c'^(Px~^y~^z~^* 

(7) 
(8) «3m5n+lgr-2_^^ra5n^_^2mJ(,r-3, 

(9) 5aP-^3aP+''&c“^=|<z“‘'6“^c. 

(10) a™-“-^aP-q=a™-“-p+q. 

(11) a6-^-«5=: — 1. 

(12) —abc-^^ahc=—1. 
(13) _6m_^-b^=l. 

(14) 96a^b'^c^d'-^8Aab'^c^d^=~-^^. 

(15) 3r'^y~^z~^~^-^x~’^y~^z-P=x‘^y^~'^z^r^~^. 

. CASE II. 

19. When the dividend is a polynomial, and the divisor a monomial 

Divide each of the terms of the dividend separately by the divisor.* 

EXAMPLES. 

(1) Divide Qaxx^y^—'\.'2a^x^y^-\-lba‘^x^y^ by 3a^x^y^. 

6 a'^x'^y^—12 a^x^y^ +15 a*x^y^ 
-=-3^%Y-^ ~ ~ 5a^2:3y. 

(2) Divide 15a^6c—20acy^-\-5cd^ by —babe. Ans. - 
d^ 

.3a + 4j— 

(3) Divide —2:"+^+a:"+3—by x^. <■ Ans. p—x^-\-a^—x‘^. 

(4) Divide b{a-{-bY — 10(«+6)2-j-15(a + 6) by —5(a+6). 

Ans. —(a+5)^+2(a+6)—3* 

(5) Divide 12a'*y® —16a®y^+20a®y^—28a'^y^ by —Aa‘^y^. 

Ans. —3y^-\-Aay^—ba'^y-\-7o?. 

CASE III. 

20. When both dividend and divisor are polynomials. 

1. Arrange the dividend and divisor according to the powers of the same 

letter in both. 

2. Divide the first term of the dividend'by the first term of the divisor, and 

the result will be the first term in the quotient, by which multiply all the terms 

in the divisor, and subtract the product from the dividend. 

, 3. Then to the remainder annex as many of the remaining terihs of the 

dividend as are necessary, and find the next term in the quotient as before. 

(1) Divide —4aa:^+a:^ by a^ — 2«a:+a:^. 

a‘^—2ax-\-x'^) a‘^—Aa^x-\-bci^x^ — 4<2a:^+;r^ (a^—2ax-\-x^ 

a‘^—2a^x-\- o^x'^ 

—^a^x-Yba'^x"—^ax^ 

—2a'^x-\-Aa^x^—2ax^ 

^ — 2<za’^+a;^ 

^ —2ax^-\-x^ 

* This rule follows from that for multiplication, which requires each tenu of the multipli¬ 

cand to be repeated as many tirnes as is expressed by the multiplier. 
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Arranging the terms according to the descending powers of x, we have 
r x^—^ax-^-a"^) x^—‘iaofi-\-Qa?'x'^—4a^a:-{-a‘* (a:^—2aa:-j-a^ 

a^x'^ I , 

—2ax^-\-5a'^x^—ia^x 

—2ax^ia'^x'^—2a^x ^ 
^2^.3—2o?x-\-a'^ , 

o?x^—2(j^x 4- * 

(2) Divide x:^-{-x^y'^-{-y‘^ by x^-^-xyJ^y’^. 
x'^J^xy-^-y’^) x^-{-x’^y'^-\-y‘^ {x'^—^2/+2/^ 

x*-\-x^y -\-x^y'^ 

—x^y +2/" 
—x^y —x^y"^—xy^ 

x^y'^-\-xy^-\-y^ 

x^y^-\-xy^-\-y‘^. 

* It has been shown (13) that when the dividend (which is the product of the divisor and 

quotient) is arranged as directed in the rule, its first tei-m is produced without reduction by 

the multiplication of the'first term of the divisor by thd first of the quotient. Hence the 

rule above for finding the latter. This first tema of the quotient being found, and the di¬ 

visor being taken away from the dividend as many times as is expressed by this term, the 

remainder must contain the divisor as many times as is expressed by the second and re¬ 

maining terms of the quotient. Hence the remainder may be regarded as a new dividend, 

and the object being to find how many times it contains the divisor, it must be arranged in 

the same manner as was the given dividend, and the fii'st step will be the same as before. 

Similar reasoning will apply to the rest of the process. 

Note.—The arrangement of the tenns is for convenience. The term having the highest 

or lowest exponent of some letter might be selected from the dividend and remainders with- 

oxit any arrangement. The operation must always, however, begin with this term, as a 

reference to the last example will show; for if we attempt to connnence with the term 

the third of the dividend, for instance, we perceive that this is produced by reduction 

from the term in the second line, the term in the fourth line, and the term 

in the sixth. The first of these is produced by the multiplication of the first of the quotient 

by the last of the divisor, the second by the multiplication of the second of the quotient by 

the second of the divisor, and the third by the last of the quotient and first of the divisor. 

It is not till the first and second terms of the quotient have beeu found by the rale above 

given, that any portion of the t^rm presents itself to be divided, or that we can know 

what part of it is to be used as a dividend. 

In the same manner, it may be shown that it would be impossible to begin with the second 

term of the dividend until the first term of the quotient has been found, which, multi¬ 

plied by the second of the divisor, produces —2aa;3, a part of —^ax^, and the subtraction 

leaves the other part —2ax3, which now we know is the product of the first of the divisor 

by the second of the quotient, which latter we may then find. 

The first of the divisor multiplied by the second of the quotient, and the second of the 

divisor by the first of the quotient, usually produce the same power of the letter of airange- 

ment, and reduce together; the first and third of each, together with the two second terms 

of each, usually pi'oduce the same power, and so on. It is only the first of the divisor and 

fii’St of the quotient, or last of the divisor and last of the quotient, which always produce a 

tenn that does not,reduce with any other term. 
N.B.—The arrangement may begin with the lowest as well as the highest power of any 

letter, and go on increasing instead of decreasing. When either of these arrangements is 

observed, if the first temiof the divisor in any part of the operation is not contained exactly 

in the first term of the remainder, the division is impossible. By varying the arrangement, 

therefore, or simply considering which terms would come first, using different letters of ar¬ 

rangement, we may often determine beforehand by inspection whether the division is pos¬ 
sible or not. 
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Another form of the work which has the convenience of placing the quotient, 

which is the multiplier, under the divisor, which is the multiplicand, is the 

following. 

Dividend, 4“ ^^2/^ + 2/^ diyisor. 

.'r^-f“^2/ +2^^2/^ —^2/+2/^’ quotient. 

—^"2/ +2/^ 
—x^y -x^y^- ■xy^ 

'' x^y'^-\-xy^-\-y‘^ 

(3) Divide —ab'^-\-h^ by —db-\-l}'^. 

—ab-{-lr^) a®—a^y^-\-2a^h^—(a^+a^fe— 

—a^h (1%'^ 

¥ 

o?—dh~{-¥ 

a'^b —2a^¥-{-2a'^¥ 

a^h — ¥¥-\- 

— a^¥-\- —a¥ 

— a^¥-\- ¥¥—a¥ 
* + 6^ 

Arranging the terms according to powers of 6, we get 

55_^j4_|_2a263_^3j2_^^5 (^3^ ^25_j_ __I_ 

6®—a¥-\- 

.a^¥—a^¥-{-¥ 

a^h^—a^¥-^a^b 

. -—¥b-{-¥. 
-■ - —t j 

The results we have obtained in these two arrangements are apparently 

different; but their equivalence will be established as follows : 

(1) {a^—ab-\-¥) {¥-^a^b—a¥)=a^—a^¥-{-2a‘^¥—a¥ 

Add remainder 

Proof . . . 

(2) {¥—ab-\-a‘^) {¥-{-a'^b) 

Add remainder 

Proof . . . 

-\-¥ 

. o?—a^¥-\-2a%^—a¥-\-¥ 

=.¥—a ¥-\-2a%^ — ¥¥-\-¥b 

= —¥b-\-¥ 

. ¥—a¥-{-2¥¥—¥¥-{-¥. 

The moment we arrive at a term of the quotient in which the exponent of 

the letter of arrangement is less than the difference of the exponents of this 

letter in the last terms of the divisor and dividend, we may be sure that the 

division will not terminate. If the divisor and dividend be arranged in the re¬ 

verse order, that is, beginning with the lowest power of a letter, then the 

division will not terminate when the exponent of this letter in the term of 

the quotient is greater than the difference of its exponents in the last terms of 

the divisor and dividend. , " 

Thus in the following example. 

x^ 4“ 4~ 

x’^ax^ XP — x"^ 

—a:®-}- x'^—2ax^^-{- ax^ 

—x^ x^— ax^ 
2x’^—2ax^-\-2ax^. 

D 
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The last term of the quotient must be in order that, multiplied by a, the 

last of the divisor, it may produce the last of the dividend. If, therefore, the 

division is not completed when this term containing is obtained, it will not be. 

’ EXAMPLES FOR PRACTICE. 

(1) Divide —^ah-\-}y^ by a—&. 
(2) Divide 4.2:2 by a-\-2x. 

(3) Divide 12a;^—192 by ^x—6. 

(4) Divide 6a:®—6i/® by 2a:2—2y^. 
(5) Divide u®—3a'*&2_[_30-254—56 by a®——6®. 

(6) Divide x^-^bx^y-\-bxy'^-\-y^ by x^-\-^xy-\-y'^. 

(7) Divide a^®—y® by x—y. 
(8) Divide by a®-l-a25_j_or52_j_53^ 

(9) Divide cfi — 9^227a:—27 by x—3. 

(10) Divide a::^-j“3/‘‘by 
(11) Divide 48a:®—76ua:2—64a2a:4-105a® by 2a:—3u. 

(12) Divide.ia:®4-a:^+fa:4-f by ■la:4-l* 
(13) Divide b2m^ — —70m®jp2 48m2_p® — 27mp‘^ by 13w2® — 7m^p 

-|-3mjp2. 

(14) Divide 33a®6®—77«254_j_i2io-255 by 3^26_7u62_|_ 11^-5®. 

(15) Divide (6^'*—12pq^—6p^q-\-12q'^) by {p — q). 
(16) Divide (100a®—440u4A:+235a®;b2_30o^2p) by (5a®—2a2A:). 

(17) Divide (g^—4^®/^-!-^^^^^^—igh^-\-h‘^) by (/i2 — 2hg-{-g^). ^ 

(18) Divide [b7o?‘w?—26a®m-|-3a‘‘—14am®) by (3a2—5a??a-^2m2). 

(19) Divide (a®—6®) by (a—h) and (a®+&®) by {a-{-b). 

(20) Divide {a^—h"^) by (a—h) and (a^^'^’^) by {a-\-b)- 
(21) (i—622+272^^) ^ (4+2z+322) = 1_6z + 92:2. 

' ANSWERS. 

(1) a—b. 

(2) a-\-2x. 
(3) 4.-c3+8a:24.16a:4-32. . • 
(4) 3a:4+3a:22/2^_3y4. 

(5) a®+3a26+3a62+63. 

(6) x-\-y. ' 

(7) :j(^-\-x^y-\-x'^y^-\-xy^-\-y‘^> 
(8) a—b. 
(9) X?—6a:+9. , 

(10) a:®—2'22/+a:y2_-y3_^_^. 

(11) 24a:2—2ax—35a2. ' 

(12) - a:2+®. . . ' 

(13) 4m2—bmp—9j?2. 

(14) lla&2. 

(15) 6p® —125®. 
(16) 20a2—80a;c4-15Z:2. 

; (17) g^ — 2gh-\-h^. 
(18) a2—7am* 

(“a® 4- a^b 4- O'^b'^ + "I" ^ 
■' (191 \ -r -r T -I 26' 

' J a® — a^6— a26®-l- a^^ — b^-\-' ^ 4. 
V ^ r d-x-o 

I 
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a^-\-a^h 4“ o?y^ab^-\- and 

^ a®—a^h-\-a^l>'^—a?y^-\-a^h‘^—db^-\-})^—aJ^h' 

EXAMPLES WITH LITERAL EXPONENTS. 

(1) Divide 2a®"—6a^"6"4-6a"62"—26®" by a"—6". 

2a®"—6a2"6"4-6a"62"—26®" (2a2"—4a"6"4-262" 
2a3n_2a2n5n - 

—4a2"6"4-6a"6'^" 

— 4a2"6"4-4a"6-2" 

• 2a"62"—26®". . 

(2) Divide ^7 a:*"+2/™* 
(3) Divide a"—a:" by a -rX. 

(4) Divide 4“by a:^"4-a:"y"4-2/^“* 

(5) Divide a'"+"6" — 4 <2“+“-! 6^" — 27a™+?~^6®"4-42a™+"—•®6'*" by a" 6® 

— 7a"-i62". 

(6) Divide a®'"~2n52pc_o^2m4.n-l51-pgn _|_ a-^b-^C^ 4- ^jrSm-njSp+Zcn _^2in+2a-153 

g2n—1 Jp+lj,m+n—1 Jjy 4“ 

ANSWERS. 

(2) a:4-y. 

a"~®.r®—a:" 
(3) a"“^ 4“ 4- 4- 
' ' ‘ a—X 
(4) ^2"—a;"y"4-y2n. 

(5) a'"4-3a'"-^6"—6a'"-262". 

(6) a®“-"6®P+^c — a2“+2"-i62c"4- 6pc"’. 

EXAMPLES WITH LITERAL COEFFICIENTS.* 
* ; 

(1) Divide by 

ax24“ 6ar4~ 

Arrange the terms of the dividend in the following manner, in order to keep 

the operation within the breadth of the page. 

ax^-\-hx-\-c) ax^-\-a 
6 

a:^4-^ 
6 

a:® 4“ a 
6 

a:24-6 
c 

a:4- c (a:®4-^^4“^+l* 

ax^-\-b a:‘‘4- c a:® 

a a:‘‘4-« a:®4-a x^ 
6 6 

c 

a a:‘*4“^ ar®4- c x^ 

a a:®4-a 
6 

a:24-6 X 

' a a:® 4-6 a:24-c x 

a a:2 4-6 a:4^c 

a a:24-6 x-\-c. 

^ The literal multipliers of each power of the letter of arrangement are to be collected 

together, and regarded as a polynomial coefficient of that power, which is to be treated 

exactly in the process of division as a numerical coefficient would be, observing only the 

four ground rules applicable to polynomials instead of numbers. 
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(2)^ 

2d rem. 
or 3d 
divid. 

Product 
to sub-< 
tract. 

3d rem. 

r 462 a3_l663 ^2+3264 u—3265 
—' c2 . + 462c — 863c + 1664c 

Divid. < + 26c2 — 46‘V + 863c2. 
— 2c3 + 26c3 - 462c3 

— C'l 
r 

Product 
f + 863 

— 462c 
to sub- < — 26c2 
tract. + c3 

f — 863 ^2+3264 u—3265 
1st rem. — c3 — 863c + 166% 
or 2d ^ — 462c2 + m& 
divid. + 2h(? 

— c^ 
— 462c3 

-166^ 

Product 
to sub-«s 
tract. 

+ me 
— 462c2 
+ 462c2 
— 2h(? 

\ + c^ 

+ 166^ 
— 

u—326^ 
4-166-‘c 
-j- 86V 
— 46 V 

+ 3265 . 

— 166‘^c 
— 86V 
+ 46 V 

o. 

26 
+ c 

a —462 
+ C2 

Divis. 

26 a2—462 «-j-863 j 
+ 26c 
— C2 

—462c 1 Quot. 

1st Partial Pivision. 
462— g3 j 26+ c 

—26c ( 26 —c 

—26c—c^ 
+ c^ 

o. 

2d Partial Division. 
—863— c3 j 26+c 

+ 462c I -^46^+26c—c* 

+ 462c- ■ O'* 

■26c2 

—26c^— c^ 
+ c=* 

o. 

3d Partial Division. 
166^—46V f 26+c 

—863c ( 863—462c 

—863c—46‘V 
+ 462c2 

o. 

(3)' Divide V+ (2V+6a:+c by a:—r. 

a:—r) a:3_|_<2a:2+6a:+c (a:2+(r+a)a:+(r2+ur+6) ' 
/ 

V—^3.2 

(r+a)a:2+6a? 

(r+«)a:2i—(r2+ur)ar 

(r2+ar+6)a:+c 

(r»+ ur + 6 )a: — (r3+ar" > hr) 
r3+ur2+6r+c, remainder 

In the preceding and similar examples, the remainder differs only from the 

dividend in having r instead of x. That this is always the case when the 

divisor is x minus some quantity, will be shown hereafter. (Art. 238, Pr. I.) 

(4) Divide a:3—ax'^-\-hx—c by a:—r. ' j 

(5) Divide a:3 — (a+6 + c)a:2+(u6 + 6c+ca)a:—ahc by x—a. 

(6) Divide a:3—(u + 2)a:2+(2a+6)a.*—26 by x—2. 

(7) Divide lla^b—19u6c+10u3—lba‘^c-\-3ah^-\-l^d^—bh'^c by 5a2+3a6 

—56c. 
(8) Divide V—{^a-{-h-\-d)x‘^-{-{ad-\-hd-\-c)x—cd by a:^—(u+6)a:+c. 
(9) Divide a:™+pa;™~^ + 5a:’"“2_j_7-^ra-3_j_^ &c... . + te+w by x—a. 

* N.B. The signs of the products to subti’act are actually changed in this example before 
they are written; a method which is sometimes practised. Their first terms need not be 
written, since they are cancelled by the fii’st terms of the corresponding dividends. 
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(10) Divide < 

yd-\-a^ x^—a^h x'^-{-a^b^ X—a^b^ by 
—0?\) —a^h —2a^b'^ -{■2a^¥ —ab 
+ a262 

—ody^ 
— ab^ \ 

<2^6^. 

When there are negative exponents of the letter of arrangement, they . 

come after the term containing z. e., the term in which x does not appear, 

those which have the greatest absolute value being placed last. 

(11) Divide —x^—x^-|-10a:4-|—by —2a:—2-j-5a:~^ 

ANSWERS. 

(4) a:^-f-(r—d)x-\-{r'^—ar-\-h)^ and remainder is r®—ar^-{-&r—c. 

(5) x^—{h-\-c)x-\-}>c. 

(6) x^-=^ax-\-h. ^ 

(7) 2^4-6—3c. 

(8) X—d. 

(9) a:™“^+« a:™“^+, &c.+ a™~^ 
+ up + a2p ' + d^~^p 

4-? -\-aq + a'^~^q 
+r + a“’“^r 

(10) 

(11) 
+ &2 

x^—a!^h 
— 

x-\-h'^. 

—X—3-j-2ar-h 

21. In those cases in which the division does not terminate, and the quotient 

may be continued to an uhlimited number of terms, the quotient is termed an . 

infinite series, and then the successive terms of the quotient are generally reg¬ 

ulated by a law which, in most cases, is readily discoverable. 

EXAMPLES. 

(1) Divide 1 by 1—x. 

1—x) 1 (14-a:-|-a:°-[“^+^"f'^®+. 
1—X ‘ 

+x 
-{•X—x^ 

-\-x^ 
_La)2—2^ 

The quotient in this case is called an infinite series, and the law of formation 

of this series is, that any term in the quotient is the product of the immedi¬ 

ately preceding term by x. 

(2) Divide 1 by l-j-^* Ans. 1—x-\-x^—x^-]^x!^—.... 

(3) Divide 1+3: by 1—x. Ans. l+2a:+2a:2+2a:^+2a:^+.... 

(4) Divide 1 by a:+l. Ans. a:~^—x~^-\-xr^—x~‘^-\-x~^—... 

(5) Divide x—a by x—&. 
Ans. 1 —(u —6)ar-i^(a—&)6ar-2—(a —6)&2;p-3—. 

(6) Divide 1 by 1—2a:+a:2. Ans. l + 2a:+3a:^+4a:^+5a:^+.... 
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22. When a polynomial is the product of two or more factors, it is often 

requisite to resolve it into the factors of which it is composed, and merely to 

indicate the*multiplication. This can frequently be done by inspection, and 

by the aid of the following formulas : 

.(1) 
{x-\-a){x — l))=x^-\-{a — l))x—ah.(2) • 

" {x—a){x-\-h)=x'^ — {a — h)x—ah.(3) 

{x—a){x—h)=x^-^{a-{-h)x^ah.(4) 

{a-\-h){a——6^.(5) 

.(6) 
{n—\){n—l)=n^—2n\-l.(7) 

r 
EXAMPLES. 

(1) Resolve ax'^-^-hx^—ea;^into its component factors. 

Here ax^-\-hx^—cx'^=x^{a-\-h—c). 

(2) Transform the expression n^-\-2'n?'-\-n into factors. 

Here n^-\-2n‘^-\-n=n{n^-\-2n-\-l) 

=:w(^+l)(w+l) by (6) 

(3) Decompose the expression x"^—x—72 into two factors. 

By inspecting formula (3), we have .— 1 = —9-j-8, and —72=—9X8; 

hence —x—72 = (a:—9)(.r-|-8). 

(4) Decompose baP'hc-^^lQah’^c-\-lbahd^ into two factors. 

(5) Transform 3m.%^—mto i^ctors, 

(6) Transform bh^c—bh(? into factors. 

(7) Decompose x^-\-Qx-\-lb into two factors. 

(8) Decompose a? — 2.r^—15a: into three factors. 

(-9) Decompose a:^—x—30 into factors. 

(10) Transform —h'^-^-^hc—into two factors. 

(11) Transform oP'X—7? into factors. r 

(4) bahc{a-\-2h-\-bc). 

(5) bm?'n\mn—py. 
(6) 3hc{h-\-c){h—c). 

(7) (a:-|-3)(a:-j-5). 

ANSWERS. 
>' 

(8) a:(a:-f3)(a:—5). 

(9) (a:4-5)(.a:-6). 

(10) {a-{-h—c){a — h-[-c). 
(11) x{a-\-x){a—x). 

23. By the usual process of division we might obtain the quotient of a^—h^ 

divided by a — 6, when any particular number is substituted for n; but we 

shall here prove generally that a"—5" is always exactly divisible by a—5, and 

exhibit the quotient. 

Tt is required to divide a"—6" by a — h. 

a — h)a^—h^ (^“-i-f 
h{a^~^—5"~i) 

a—h 

u" — 

Rem. —6";. 

Rem. under another form, 6(a"^^ —6"~^). 

<2"—6" 5(a"“^—6"“^) 
Hence, -+-1- 

' a—h ' a—h 
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Now it appears from this result, that a" — will be exactly divisible by 

d—h, if — 6"“^ be divisible by a — b ; -that is, if the difference of the same 

powers of two quantities is divisible by their difference, then the difference 

of the powers of the next higher degree is also divisible by that difference. 

But is exactly divisible by a—6, and we have 
a^—h^ 
-:r=a4-b 
a—b- ‘ 

And since —52 jg divisible by a — 6, it appears, from what has been just 

proved, that —6^ must be exactly divisible by a—b ; and since o?—6^ is di¬ 

visible, —b'^ must be divisible, and so on ad infinitum. 

Hence, generally, a” — will always be exactly divisible by a—6, and give 

the quotient < 

a^ — b^ 
^ =a^-'^ -f a'^-^b -f -f.a2jn-3_j_a6n-3^5n-i.^5^ 

In a similar manner, we find, when n is an odd number, 

—+ ._}_a25n-3_^5n-2_|_5n-l .... (6) 

And when n is an even number 

a^—b^ 

a-\-b 
= + ._a25n-3_^^5n-3_5n-l .... (7) 

By substituting particular numbers for n, in the formulas (5), (6), (7), we 

may deduce various algebraical formulas, several of which will be found in the 

following deductions from'the rules of multiplication and division. 

■ . USEFUL ALGEBRAIC FORMULAS. 
t 

(1) —b'^={a-]^b){a — b)., 
(2) a'^—b^=la^-\^b%a^—b^) = {a^-{-b%a-\-b){a — b). 
(3) — b^={a^-\-ab-\-b'^){a — b). 
(4) a^-{-b^={a'^—ab-{-b^){a-\-b). 
(5) a^—¥={a^-\-¥){a^ — b^) = {a^-{-b%a‘^-{-ab-{-b%a — b). 

(6) —b^={a^-\-b^){a^—b^)-=z{a?——ab-\-b^){a-{-b). 
(7) a®—b^-=\a?-\-b^){o?—b^) — {aP‘— 
(8) a®—b^=.{a-\-b){a — b){a^-\-ab-\-b’^){a^—ab-\-b^). 
(9) (a^—b^)-^{a — b)=a-\-b. 

(10) [a^—b^) — {d—b)-^a^-\-ab-\-b'^. 

(11) {a^-\-b^)-^{a-\-b)-=a'^—ab-^-b"^. 

(12) —&'^)-^(a-j-’&)=a^—a^b-^-ab^—b^. 

(13) la^—b^).^{a—b)=a‘^^(fb-\-a%^-\-a¥-\-bK 
(14) (a®-f-&^)-4-(a-f-6)=a'^—a%-\-o?'b'^—ab^-\-b‘^. 
(15) {a^—¥)j:S{a^—h^)=a^-\-a%^-\-b\ ' ^ ' ' 

DIVISION BY DETACHED COEFFICIENTS. 

24. Arrange the terms of the divisor and dividend according to the success¬ 
ive powers of the letter, or letters, common to both; write down simply the 
coefficients with their respective signs, supplying the coefficients of the absent 
terms with zeros, and proceed as usual. 'Divide the highest power of the 
omitted letters in the dividend by that of the omitted letters in the divisor, 
and the result will be the literal part of the first term in the quotient. The 
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literal parts of the successive terms follow t^e same law of increase or de¬ 

crease as those in the dividend. The coethcients prefixed to the literal parts 

will give the complete quotient, omitting those terms whose coefficients are 

zero. ■ • 

EXAMPLES. 

(1) Divide 6a‘*—96 by 3a—6. 

3__6) 6+ 0-1-0 + 0—96 (2+4 + 8+16 

6 — 12 

12 

12—24 

24~ 

24—48 

48—96 

48—96 

But a^-4-a=a^, and the literal parts of the successive terms, are, therefore 

a^, a^ ah a®, 'or ah ah a, 1; hence, 2a^+4a2+8a+16= quotient. 

(2) Divide 8a^—4a^x—2a^a:^+a^2:^ by Aa^— 

4_j_0—1) 8—4—2 + 1 (2—1 

8+0 — 2 

_4 + 0+l 
4 0 + l 

Now, a®-^a2=:a^; hence a^ and a^x are the literal parts of the tenus in the 

quotient, for there are only two coefficients in the quotient; therefore 

2a^ — a^x=: quotient required. 

(3) Divide —3ax^—8ah'z:^+18a^.r—8'a^ by x'^-\-2ax—2a^. 

(4) Divide 3y^-\-3xy^—ix'^y — 4.t'^ by .r+y. ^ > 

(5) Divide lOa^—27o?x-\-3^a^x^—18a.T^—8.r‘‘by 2a^—3a.'r+4a:2. 

(6) Divide a^+5a^+a+5 by a^+1. 

ANSWERS. 

(3) x^—bax-\-^o?. , (5) ba^—Qax—2x‘^: 
(4) -4a:2+3y2. ^ (6) a+5. 

SYNTHETIC DIVISION. 

RULE.* 

25. (1) Divide the divisor and dividend by the coefficient of the first term in 

* The rule here given for Synthetic Division is due to the late W. G. Homer, Esq., of' 

Bath, whose researches in science have issued in several elegant and useful processes, 

especially in the higher branches of algebra, and in the evolution of the roots of equation of all 

dimensions. 
In the common method of division, the several terms in the divisor are multiplied by the 

fii’st term in the quotient, and the product subtracted from the dividend; but subtraction is 

performed by changing all the signs of the quantities to be subtracted, and then adding 

the several terms in the lower line to the similar teians in the higher. If, therefore, the 

signs of the terms in the divisor were changed, we should have to add the product of the 

divisor and quotient instead of subtracting it. By this process, then, the second dividend 

would be identically the same as by thp usual method. We may omit altogether the 

products of the first term in the divisor by the successive tenns in the quotient, because 

in the usual method the first term in each successive dividend is cancelled by these prod¬ 

ucts. Omitting, therefore, these products, the coefficient of the first tenn in any dividend 
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the divisor, which will make the leading coefficient of the divisor unity, and 

the first term of the quotient will be identical with that of the dividend. 

(2) Set the coefficients of the dividend in a horizontal line with their proper 

signs, and those of the divisor, with the signs all changed except that of the 

first, in a vertical column on the right or left, drawing a line undel\ the whole, 

underneath which to write the quotient. \ ' 

(3) Multiply all the terms so changed by the first term in the quotient, and 

place the products successively under the corresponding terms of the dividend, 

in a diagonal column. 

(4) Add the results in the second column, which will give the second term 

of the quotient; and multiply the changed terms in the divisor by this, placing 

the products in a diagonal series, as before; 

(5) Add the results in the third column for the next term in the quotient, 

by which, again, multiply the changed terms in the divisor, placing the prod¬ 

ucts as before. 
f 

(6) This process, continued till the last line of products extends as far to the 

right as the dividend, will give the same series of terms as the usual mode of 
division. 

EXAMPLES. 

(1) Divide^a®——10a‘^x^-\-5ax^—a:® by —^ax-^-x"^. 

—10+5 —1 

+ 2— 6+ 6 — 2 

_ 1+ 3 — 3 + 1 
1_3+ 3— 1 * * 

Hence —^a'^x-\-2>ax^—x^= quotient. 

In this example the coefficients of the dividend are written horizontally, and 

those of the divisor vertically, with all the signs of the latter changed, except 

the first. Then +2 and —1, the changed terms in the divisor, are multiplied 

by 1, the first term of the quotient, which is written in the horizontal line at 

the bottom, and is the same as the first term of the dividend; the products 

+ 2 and —1 are placed diagonally, under —5 and +10, the corresponding 

terms of the dividend. Then, by adding the second column, we have —3 for 

the second term in the quotient, and the changed terms +2 and —1 in the 

divisor, multiplied by —3, give —6 and +3, which are placed diagonally un¬ 

der + 10 and —10. The sum of the third column is +3, the next term in 

the quotient, which, multiplied into fhe changed terms of the divisor, gives 

+ 6-3, for the next diagonal column. The sum of the fourth column is —1, 

and by this we obtain the last diagonal column —2+1. The process here 

terminates, and the sums of the fifth and sixth columns are zero, which shows 

that there is n.o remainder. If the last terms did not reduce to zero by addi¬ 

tion, their sum would be the coefficients of the remainder; the quotient is com¬ 

pleted by restoring the letters, as in detached coefficients. 

Having made the coefficient of the first term in the divisor unity, that co¬ 

will be the coefficient of the succeeding tenn in the quotient, the coefficient in the first 

term of the divisor being unity; for in aU cases it can be made unity by dividing both 

divisor and dividend by the coefficient of the first term in the divisor. The operation, thus 

simplified, may, however, be farther abridged by omitting the successive additions, except 

so much only as is necessaryi-to show the first term in each dividend, which, as before re¬ 

marked, is also the coefficient of the succeeding term in the quotient. 
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efficient may be omitted entirely, since it is of no use whatever in continuing 

the operation here described. 

(2) Divide —5a,-^4-15;r*——13x-{-5 by —2:r+l* 

1—5-1-15 —24 + 27 —13-[-5 

+ 2— 6+10 ' ' ' 

— 4 + 12 — 20 

, + 2— 6 + 10 ' ^ 

' - 1+ 3-5 

+ 2 

— 4 

+ 2 
— \ 

1—3+ 5 0 0 0 0 

Hence .r^-3.r+5=: quotient required. 

(3) Divide a®+2a‘‘6 + 3a^6^——2aM—3&® by a2+2a&+36^. 

1 + 2+3 —1 — 2—3 

—2+0 + 0 + 2 

—3+0+0+3 • 

_2 

— 3 

1+0 + 0 —1 

Hence a^+0'a^& + 0'a&^ — h^=a^—quotient.^ 
N 

(4) Divide 1—:r by l+o:. Ans. 1—2x-\-2x’^—2x^-\-j, &c. 

(5) Divide 1 by 1—x. Ans. \-\-x-\-x^-\-x?-\- ^ &c. 

(6) Divide x"^—y'^ by x—y. Ans. :j^-\-x*y-\-x^y'^-\-x^y'^-\-x^y^-\-xy^-\-y^. 

(7) Divide a®—3a^x‘^-{-3a^x^—x^ by, —3a^,r+3aa:^—x?. 

Ans. a^+Oa^x+da.T^+a:®. 

(8) Divide —Sa'^ar+lOa^a:^—lQa^j?-\-bax:^—x^ by —2ax-{-x'^. 

' - Ans. —3a'^x-\-3ax'^—x^. 

(9) Divide ^y^—24y®+60y'‘—80y^+60y^—24^+4 by 2y^—Ay-\-2. 

Ans. 2y*—8y^+12y^—8?/+ 2. 

THE GREATEST COMMON MEASURE. 

26. A-measure of a quantity is any quantity that is contained in it exactly, 

or divides it without a remainder; and, on the other hand, a multijjle of a 

quantity is any quantity that contains it exactly. Thus, 5 is a measure of 15, 

and 15 is a multiple of 5 ; for 5 is contained in 15 exactly 3 times, and 15 con¬ 

tains 5 exactly 3 times, or is produced by multiplying 5. 

27. A common measure, or common divisor, of two or more quantities, is a 

quantity which is contained exactly in each of them. ^ 

28. The greatest common measure, of two or more quantities, is composed 

of all the prime* factors, whether numerical, monomial, or polynomial factors, 

common to each of the quantities ; 3a: is a common measure of 12aa: and 

I8&a:, and 6a: is the greatest common measure of 12«,a: and 186a:. The great¬ 

est common divisor of 2x7a(6 + c)(i and 2x3£tm(6 + c) is composed,of the 

common prime factors 2«(6 + c); the factors Id of the one and 3 of the other 

make no part of the common divisor. 

29. To find the greatest common measure of two polynomials. 
.1 

Arrange the polynomials according to the powers of some letter, and divide 

that which contains the highest power of the letter by the other, as in division; 

then divide the last divisor by the remainder arising from the first division ; 

consider the remainder that arises from this second division as a divisor, and 

* A prime number or a prime algebraic quantity is one which is divisible only by itself 

or unity. 
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the last divisor as the corresponding dividend, and continue this process of di¬ 

vision till the remainder is 0 ; then the last divisor is the greatest common 

measure. 

Note 1. When the highest power of the leading quantity is the same in 

both polynomials, it is indifferent which of the polynomials is made the divisor, 

the only guide being the coefficients of the leading terms of the polynomials. 

Note 2. If the two given polynomials have a monomial factor common to all 

the terms of both, it may be suppressed ; but as it forms part of the common 

measure (28), it must be restored at the end of the process by multiplying it 

into the common measure which is in consequence obtained. 

Note 3. If any divisor contain a factor, which is not a factor also of the divi¬ 

dend, that factor may be rejected, as such factor can form no part of the great¬ 

est common measure, which is composed of the common factors alone. 

Note 4. If the coefficient of the leading term of any dividend be not divisible 

by that of the divisor, it may be rendered so by multiplying every term of the 

dividend by a proper factor, to make it divisible. This new factor thus, intro¬ 

duced, not being a common factor, does not affect the common measure. 

If it were already a factor of the divisor, it could not be thus used ; tho 

remedy, in this case, would be to suppress it in the divisor, according to Note 3. 

In order to prove the truth of this rule, we shall premise two lemmas.* 

Lemma 1. If a quantity measure another quantity, it will also measure 

any multiple of that quantity. Thus, if d measures <z, it will also measure m 

times «, or raa; for, let a=hd^ then ma=mhd, and, therefore, d measures 

ma, the quotient being mli. 

Lemma 2. If a quantity measure two oth.er quantities, it will also measure 

both their sum and difference, or any multiples of them. For, let a=hd, and 

h—kd^ then d measures both a and h ; a^})=:.lid-^kd=d(li^k')^ 

and, therefore, d measures both a-\-h and a—the,quotient being h-]^k in 

the former case, and h—k in the latter : and by lemma 1, d measures any 

multiples of «-j-^ ^ — b. ‘ 
Now, let a and b be two polynomials,, or the terms of a fraction, and let 

a divided by b leave a remainder c 
b.c.d, b) a {m 

c ...... d leave no remainder, as is shown m b 

in the marginal scheme. Then we‘have, by the c) b {n 

nature of division, these six equalities,wiz. : n c 

. (1) a=m&-{-c .... (4) ' d) c {p 

h—n c —d .... (2) b-=znc-\-d .... (5) p d 

Q ~~“P d 0....(3) c —P d ....(6) 

where the equalities marked (4), (5), (6) are not deduced from those marked 

(1), (2), (3), but'from the consideration that the dividend is always equal to 

the product of the divisor and quotient, increased by the remainder. 

Now, by (6) it is obvious that d measures c, since c=pd ; hence (Lemma 

1) d- measures nc, and it likewise measures itself; therefore (Lemma 2) d 

measures nc-\-d^ which by (5) is equal to b ; hence, again, d, measuring b and 

c, measures m6-|-c by the Lemmas 1 and 2. 

^ A lemma is a preparatory proposition, to aid in the demonstration of the main proposi¬ 

tion which follows it. 
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d measures <2, which is equal to 7rib-\-c by (4). 

Hence d measures both the polynomials a and 6, and is consequently a 

common measure of these polynomials; but d is also the gretitest common 

measure of a and h ; for if d' is a greater common measure of a and h than d 

is, it is obvious that by (1) d' measures a—m6, or c ; and d' measuring both b 

and c, it measures h—wc, or d by (2); hence d' measures d^ which is absurd, 

since no quantity measures a quantity less than itself; therefore d is the 

gi’eatest common measure. Q. E. D.* 
i 

30. If the greatest common measure of three quantities be required, find 

the greatest common measure of two of them, and then that of this measure 

and the remaining quantity will be the greatest common measure of all three.f 

31. If the two polynomials be the terms of a fraction, as and d their 

greatest common measure, then we may put az=.da'^ and h-=dh'; hence 

(Z dcd of ' 
- = and, since a', b' contain no common factor (28), by dividing both 
b dh' h' 

numerator and denominator of a fraction by their greatest common measure, 

the resulting fraction will be simplified to its utmost extent, and thus the pro¬ 

posed fraction will be reduced to its lowest terms. ' 

* These letters stand for the Latin vsrords quod erat demonsti*andum, signifying which 

was to he demonstrated. Another mode of demonstrating the same is as follows : Let A 

and B represent the two given quanties, D their greatest common divisor, Q, the quotient 

of A by B, and R the remainder. We shall first prove that the greatest common divisor 

of A and B is the same as the greatest common divisor of B and R. Represent the latter 

by D'. 

Az=Ba-}-R, 
A Ba , R , A Ba , R 

5= D“+D' D'=D^+D'- 
A and B being divisible by D, R must be, because a whole number can not be equal to 

a. whole number plus a fraction. Again, B and R being divisible by D'', A must be, for the 

sum of two whole numbers can not equal a fraction. Finally, D, a common divisor of B 

and R, can not be gi’eater than their greatest common divisor D'; and D', a c.d. of A and 

B, can not be greater than their g .c. d .D •, i. e., D can not be greater than D', and D' can 
not be greater than D. 

Or thus: since 

A=Ba+B>, 
the gi-eatest common divisor D of A and B, must divide R. Represent the three quotients 
by A', B', and R'; then > 

A'=B'a-|-R'. 
B' and R' have no farther common factor, for if they had, it must by this equality divide 

A; then A' and B' would have still a common factor, and D, the greatest common divisor 

of A and B, would not contain all the common factors of these quantities, which is contraiy 

to the definition. Since B' and R', which are the quotients of B and R by D, can have no 

farther common factor, it follows that the greatest common divisor of B and R is equal to 

D ; then it is the same as that' of the quantities A and B. 

In pursuing the rule for finding the g .c.d., we arrive at a remainder which exactly di- 

vides the preceding divisor, and which is, therefore, the g.c.d. of itself and this preced¬ 

ing divisor; also by the above demonstration of that divisor and its dividend, and so on up 

to the given quantities. 
t For suppose we have the three quantities A, B, C; let D be the greatest common di¬ 

visor of A and B, and D' that of D and C. According to the definition, D is the product of 

the common factors of A and B, and D' is that of the common factors of D and C; then D' is 

the product of the common factors of the three quantifies A, B, C; therefore D' is their 

greatest common divisor. 
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EXAMPLES. 

(1) What is the greatest common measure of Ax‘^y^z‘^ and 8x^y^z^l 

Here 4 is the greatest common measure of 4 aud 8, and x^yH^ is that of th© 

literal parts; hence ix^y^z^^ is the greatest common measure required. 

x^^—y^) x^-{-y^ {x 
x^—xy^ 

xy'^-\-y^=zy^[x-{-y); rejecting the factor y^ 

x-l-y) x"^—y'^ {x—y 

x'^-\-xy 

(2) Find the greatest common measure of 
x?-\-y^ 

x'^—y^ 

—xy — y^ 

—xy—y^. 

Hence x-\-y is the greatest common measure sought, and 

x'^-\-y^ {x^-\-y^)-^{x-\-y) x^^—xy-^y'^ 

x-‘ 
= reduced fraction.' 

(3) Required the greatest common measure of the two polynomials 

6a^— 6a'^y-\-2ay^—2y^ . . . • (a) 

12a^ — 15ay +3y^ .... (b). 

Here 6a^— 6a‘^y-\-2ay‘^—2y^=2{3a^—3a^y-\-ay'^—y^) 

' 12<22—15ay-\-3y‘^ =3(4a2—Bay -{-y^); 

And therefore, by suppressing the factors 2 and 3, which have no common 

measure, and which, not being common factors of the two given quantities, do 

not affect the common divisor, we have to find the greatest common measure 

of 

3a^—3a'^y-\-ay^—y^ and 4a^—Bay-\-y'^. 

4a^—5ay-\-y^) 3a^— 3a^y-[- ay’^— y^ 

4 

12a^—12a^y-j-4u2/^— 4y^ {3a 

12a^—lBa^y-{-3ay^ 

3a‘^y-\- ay^— 4y^ 

4 , 

12u^y-|- 4^2/2—167/^ {3y 

12a^y — 3y^ ' 

19«2/^.—197/^=197/^ ( a—y') 
Suppressing 197/^, by note 3, rule, 

a—y) 4a^—Bay-\-y^ {4a—y 

■" 4a^—4ay 

— ^y+y^- 

Hence a—y is the greatest common measure of the polynomials a and b. 

The factor 4 is introduced into the dividend in this example to render it di¬ 

visible by the divisor. This can be done, because 4 is not a factor of every 

term of the divisor, and therefore not a factor of the divisor. The quantities 

employed, after introducing or suppressing factors, are different from the given, 

but as they have the same greatest common divisor, and as the object is to find 

this, the circumstance is immaterial. 

(4) Required the greatest common nteasure of the terms of the fraction 
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op— 

a^-\-a^x——o?:i^' i 

Here a" is a simple factor of the numerator, and d? is a factor of -the denomi- 

nator; hence a? is the greatest common measure of these simple factors, which 

must be Reserved to be introduced into the greatest common measure of the 

othea- factors of the terms of the proposed fraction ; viz.: , 

—xd and c^-\-(jd‘X —ax'^—x^. 

a^J^d^x—ax"^—x^) d—x:^ {a—x 

d-\-dx—dx'^—ax^ 

—dx-\- a-x'^ —x* 

- —a?x—dx'^-\-ax^-\-x‘'^ 

2dx^—2x^=2x^ {d—x^); rejecting 2x^ 

d—x^) d-^-aP'X—ax"^—x? {a-\-x 

d?—ax^ 

dx—X? , 

’ ' ' dx—X? ' 
- \, 

Therefore, restoring a®, the greatest common measure, is o?{d?'—x"'-’'). 

d—dx!^ {d—dxd)-^d'{d—x"^) a^-\-x^ 

^-{-dx—dx^—dx? {d’-\-d’x—dx^—dx?)-^a?[d—x^) d-\-ax' 

ADDITIONAL EXAMPLES. 

(1) Find the greatest common measure of 2dx’^, Ax'^y^^, and 6x^y. 

(2) Find the greatest common measure of the two polynomials d—db 

-j-3«6^—36^ and d—5ah-\-Ab'^. ' ^ 

(3) What is the greatest common measure of x^—xy^^ and x^~\-2xy-\^y^ 1 

(4) Find the greatest common measure of x^—y^ and x^^—y^^. 

(5) Find the greatest common measure of the polynomials 

(6—c)a:^—6(26—c)x -|-6^ .[a) 

(6-j-c)2r*—6(26-|-c)2’^-|-6^a;.(6). 
(6) Find the greatest common measure of the polynomials 

xd— &3^-{-21x'^ — 20^:+4.(a) 

23?—\2x^^21x —10.(6). 

(7) y^—by"z—Ayz'^-\-2z^ and ly'^z-\-l{iyz^-\‘^z^. 

"(8) Also of {x^-\-d‘X^-\-d) and {xd-\-ax?—dx—d). 
(9) Also of (7a2_23a6 + 662) and (5a3_i86u2_j_iia&2_053). 

(10) Also of {bd-\-10db-\-bdh'^) and {dh-\-2d‘h^-\-2ah'^-\-b'^). 

(11) Also of (6a^+15u^6 — Add — 10a-6c2) and (9a^6—27a"6c — Qahd 

*{-186c3). ' ‘ ^ ' 

(12) Also of and {dm-\-'dn-\-b^m-\-'b^n). 

(13) Find the g. c. d. of the three quantities d-\-Zdh-{-^ad-\-dy d‘A^2ah 

•\-ldy and d—6^. 
ANSWERS. 

(1) 22-2. (5) X—6. (8) x^-\-ax-\-d. (11) Zd—2d. 

(2) a — 6. (6) .T—2. (9) u—36. (12) ««+6^^. 

(3) x-\-y. 

(4) x~y. 

(7) y-\-z. (10) «-f 6. (13) <2+6. ^ 

A quantity is said to be independent of a letter when it does not contain this 

letter, and, therefore, does not depend upon it for its value. 

Note.—In seeking for a common divisor, we find ourselves often working with polynomi¬ 

als different from the given, but always with such as have the same common measure with 
the given polynomials. 



GREATEST COMMON MEASURE. 39 

Proposition.—A divisor of a polynomial, which is independent of the letter 

of arrangement of that polynomial, must divide separately each of the multi¬ 

pliers of the different powers of that letter. ^ 

Demonstration.—Let be the polynomial, and 

D the divisor. The quotient must contain every power of the letter of ar¬ 

rangement that the dividend does, since the quotient, multiplied by the divisor, 

must produce the dividend, and the letter of arrangement is not contained in 

the divisor. The quotient must, therefore, be of the form A'a:™-{-B'.r™~i 

multiplying which by the divisor gives DA'a:'®-}-DB'2:'"~^ 
-■1-DC'.t'"^2^ original dividend, the multiplier of each power of x in 

which is evidently divisible by D. Q. E. D. 
N.B.—A' is a different quantity from A, from B, &c. 

EXAMPLES. 

(1) Find a common divisor, independent of the letter a, of the two quantities 

h — ca‘^-\-h^a — c-q-\-h‘^—2hc-\-d^ and 

Collecting together in the first of these two quantities the multipliers of and 

a, and observing that —2hc^d^ is the square of &—c, we have 

{h—c)a?-\- {b^—d^)a-\- {h—c)^, 

and from the second by a similar process, 

{b —cYa^-\- (6^—c^)a^-\-{b'^—c^)a-\- {b—c)^. 

The multipliers of the different powers of a in the two quantities are, there¬ 

fore, b—c, —c^, {b—c)^ {b—c)^ /!>■*—cb and b^—c^. The only number 

which will divide them all is their common divisor b—c, which is, therefore, 

the answer required. 

(2) Find the greatest common divisor of 

{b —c )a^—2b {b —c)a-\-b%b—c) and 

—c^)a^— —c^). , 

Here the common divisor, independent of a, is b—c; suppressing which, we 

have left the two quantities 

— 2ba -}-6^ and 

{b -\.c){a^—b^). 

Suppressing the factor (S-f-c) not common to both, we shall find the common 

divisor of these last two quantities to be a—&, and the greatest common 

divisor of the two original quantities is 

(6—c) {a—b) or ah—'ac—b’^-{-bc. 

Tlie success of the process for finding a greatest common divisor depends upon the fact 

that the quantities being arranged according to the powers of some letter, each division 

leads to a remainder of a degree inferior to the divisor. When the polynomials contain 

many terms of the same degree, a jirecaution is necessary, without which this reduction 

would not always obtain, which consists hi uniting all these terms mider a single multiplier 

Let there be the two polynomials : ' ' 

A—x^ —y'^x-\-‘iyx—y‘^-\-y^ 

B=3/a:2-j-u:2 -\-y'^x-\-yx -\-x -\-y. 

1 write them thus: 

A=x^-\-[y-\-l)x^—(y2—2y)x—y^ "j-y^ 

(y -\-l)x‘^-\-{y^-^y , 
The first tenn, x^, not being divisible by {y-\-l)x^, on account of thq factor I know 

(Prop, above), that if a quantity is airanged like the preceding, every divisor of this quantity, 

independent of x, must divide separately the multiplier of each power of .u. Erom this it 

follows that y-j-l has no common factor with B, because, if it had, this factor would be 

fomid in y'^^y^l and in y ; but it is evident that y has no factor common with y-\-\. 
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We can then multiply: A by y-\-l without affecting the common divisor sought; and as 

It would be necessary to multiply again by y-j-l, we multiply at once by or 

In this manner we arrive at the remainder 

Before passing to the second division, it is necessary to suppress in R the factors com¬ 

mon to the multipliers of the powers of a:. But the two parts of R are evidently divisible 

by ——y^~\-y‘^> ^.nd after this simplification there remains x-\-y. We can then take 
x-\-y for a divisor, a!nd as the division is effected exactly, it follows that the common di¬ 

visor sought is x-\-y. 

The process is not always so easy. To develop the general method to be pursued in 

such cases, let us consider the polynomials A and B, which contain two letters, x and y. 

Take first the greatest monomial common divisor of the tenns of A; let a be ‘this divisor, 

and A' the quotient of A by o: we shall have A—a A'. Airange A according to the pow¬ 

ers of X, taking care to collect all the terms containing a same power of this letter, and let 

us suppose, for example, that we have 

A^=La;2-|-Mx+N. 

All thq factors of A', independent of x, must be factors of the quantities L, M, N, which 

multiply the different powers of x. These quantities containing only the single letter y, it 

will be easy to find their greatest common divisor; let us name this divisor a', and the 

quotient of A' by a', A"; we shall have A'—a'A'\ and, consequently, 

A=aa' A". 

a will be the product of the monomial factors of A, a' the product of the polynomial fac¬ 

tors which do not contain x, and A'^ the product of the factors which contain x. 

Let us effect the same decomposition of the polynomial B, and let 

Then I determine the greatest common divisor of the monomials a and (3, as well as that 

of the polynomials a' and which contain only the letter y; and if I can also find that 

of the polynomials A" and which contain y and x, I shall have three quantities, the 

product of which will be the greatest common divisor of A and B. 

But I say that we can find the greatest common divisor of the quantities A'''' and B'', in 

subjecting them to the same calculus as, the preceding examples. It is clear, indeed, that, 

these quantities having no longer either monomial factors or polynomial independent of x, 

it will be proper to multiply the partial dividends of the first division by the polynomial 

which is placed before the highest power of x in the divisor, and that we shall thus arrive 

at a remainder of a degree less in x than the divisor. It will be easy to take from this re¬ 

mainder all the monomial factors which it contains, as well as the polynomial factors inde¬ 

pendent of X-, and then proceed to a second division, taking for a divisor this remainder sim¬ 

plified. We operate as in the first; then we pass to the third, and continuing always in 

this manner, we are sure of arriving finally at a remainder zero, or independent of x. 

In the first case the quantities A!' and B''' have, for greatest common divisor’, the divisor 
of the last division. 

We have thus seen that the finding of a commoir divisor, when the polynomials contain 

two letters, depends upon finding it when they contain one; so the case where they con¬ 

tain three depends upon that where they contain two, and so on, whatever be the number 

of letters. 

There is, therefore, no case in which the common divisor can not be found by the above 

rules. 

THE LEAST COMMON MULTIPLE. 

32. We have already defined a multiple of a quantity to be any quantity 

that contains it exactly ; and a common multiple of two or more quantities is a 
quantity that contains each of them exactly. 

* Let N be the dividend, D the divisor, c the coefficient of the fii’st term of the divisor. 

Multiplying by the square of this coefficient, the dividend becomes c^N. The first term of 

the quotieirt will contain the first power of c. Multiplying the whole divisor by this term 
of the quotient, every term of the product will contain the first power of c, and the whole 

product may be represented by cP. Subtracting this from the dividend, the remainder is 

c"N—cP, every term of which contains c, and, therefore, its first term is ready for division 
without multiplying agam by c. 
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The least comMon multiple^ of two or more quantities, is, therefore, the least 

quantity that contains each of them exactly. 

N. B. The least common niultiple must, from its nature, contain all the dis¬ 

tinct factors in either of the quantities. 

33. To find the least common multij)le of two quantities. 

(1) Divide the product of the two proposed quantities by their gi’eatest com¬ 

mon measure, and the quotient is the least common multiple of these quanti¬ 

ties ; or divide one of the quantities by their greatest common measure, and 

multiply the quotient by the other. 

Let a and 6 be two quantities, d their greatest common measure, and m 

their least common multiple ; then let ‘ * 

a-=hd^ imdi h-=kd ; , 

and since d is the greatest common measure, 1i and k can have no common 

factor, and hence their least common multiple is lik; therefore, Jikd is the 

least common multiple of hd and kd; hence, 

, , , hkd"^ lidxkd axh ah ^ ^ 
m=hkd-=—=-j—=—j—=-7- Q. E. D. 

d d d d \ 

t2) Also, the least common multiple is composed of the highest powers of all 

the factors which enter into the given quantities.* 

EXAMPLES. , , 

(1) Find the least common multiple of 2a^x and 

ah 2a^x X '^a^x^ 
Here m-. 

d 
-=Qa^x^= least common multiple ; 

or, by (2), the two quantities being 2a^.T and 2^a^x^, 2^a^x^ is the 1. c. m.; be¬ 

cause 2^ is the highest power of 2, a^ the highest power of a, and a? the 

highest power of r, in either of the given quantities. 

(2) Find the least common multiple of 4.r^(a:^—and —y^). 

Here d=Ax'^{x—y), and, therefore, we have 

ah Ax‘^{x^—2/2) X — y^) 
:12x^{x-\-y) {x^—y^); 

d 4a:2(a:—y) 

or, m ■z=12x'‘ -\-l 2x^y — 12x^y^—12x^y‘^; 

or, the two given quantities being,2^x2(.p-j-2/)(-'^^—y) and 2"^ .Zoi^ix—y){x'^-\"^y 

-|-2/2), the 1. c. m. is 22.32^{x-\-y){x—2/)(^^+2^2/4“2/^)* 
(3) Find the least common multiple of x^-\-2xy-\-y'^ and x^—xy^. 

Here d=x-\-y, and, therefore, we get 

a x'^-\- 2xy-\-y^ , 
. mz=-j.h=-;-=—.{ar^—xy"^) '' 

d , ^+2/ 
= (.T+2/) {:i?—x\f) 

=:zx{x-\-y) {x^—2/^)= least common multiple 
or, the two given quantities being {x-\-yY and x{x-\-y) (x—y), the 1. c. m. is 

x{x-\-yY{x—y). 
(4) What is the least common multiple of —5a:^-4-9a:2 —7a:-|-2, and 

a4_6a;2-f 8ar—3 ? 
By the process for finding the greatest common measure, we find 

. tZ=ar‘^ —3.2:24-3a:—1# 

a:4_5.^_|_9a,’3_7a:4-2 
m= .(a:4_6.'c3_|-8.a:—3) 

—3a;2-{-3a:—1 

= (a:—2) (.a:^—Qx'^-\-Qx—3)' 
—x^—2x^_6a:®4-20.r2_19a:4-6, the least common multiple. 

* Th© ordinary arithmetic method depends on this principle. 

F 
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(5) Find the least common multiple of a'^—2ah-\-h'^ and 

(6) Find the least common multiple of and 

(7) Find the least common multiple of and cc^—y". 

(8) Find the least common multiple of y“—Qy-^-^ and y^-\-7y—8. 

ANSWERS. 

(5) (a — h) {a^—¥). (7) {x-\-y) (x^—y^). 

(6) {a — h) (8) y^-~57y-{-56. 

34. Every common multiple of two quantities^ a and b, is a multijjle oj m, 

their least common multiple. 

For let m' be a common multiple of a and &, then, because m' is greater 

than m, if we suppose that m' is not a multiple of m, we have, as in the an¬ 

nexed scheme, 
' m)m' {h 

I m'=lim-\-h ... (1) hm 

m'—hm = 'k . . (2) . k= remainder. 

Now the remainder k is'"always less than m the divisor; hence, since a and 

h measure m and m', it is evident that a and h measure m'—/?-m, or, by (2), k; 

therefore, k is a common multiple of a and 6, and it has been proved to be less 

than the least common multiple, which is absurd ; hence the supposition 

that m' is not a multiple of m is false, or m' is a multiple of m. 
) ' 

35. To find the least common multiple of three or more quantities ■ 

Let a, &, c, d, &c., be the proposed quantities; 

find m, the least common multiple of a and h ; 

find m',.c and m ; 

find m", . . '.d and m'; &c. 

The last, say m", is evidently a multiple of a, h, c, d, &c. 

Then, since every multiple of a'and 6 is a multiple of w, their least common 

multiple (34), the quantity sought, .r, is a multiple of m; but x also is by hy¬ 

pothesis a multiple of c ; therefore, a: is a multiple of both c and m, and, there¬ 

fore, it is (34) a multiple of m'; but x is a multiple of d and w', and, therefore, 

of m"; lienee x can not be less than m", and, therefore, m" is the least com¬ 

mon multiple. ^ 

EXAMPLES. 

(1) Find the least common multiple of 2a^, 4a^&^ and 6ab^. 

Here, taking 2a'^ and 4a%^, we find d=2a'^^ and, therefore, 
ah 2a^ X ^a^h'^ 

m——T=- ■=A.a^h!^. 
d~ 2a? 

Again, taking m, or 4a^6^ and we find d=2ah‘^\ hence 

cm • QaW X 4a^6® 
m 

d 2ah? 
:12a'^6^=^answer required. 

t 

Or, the three given quantities being 2a^, and 2.3«&'^, the 1. 
33 . (2), is 22; 3a363. , , 

(2) Find the least common multiple of «—.r, (T—.r^, and oi?—o?. 

Taking a—x and we have d=a—x; and hence 

ah a—X 

c. m., oy 
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Again, taking and o?—x?^ we find d-=ia—x; h6nce 

cm (cd — — x^) , , , 
:-^=--={a-\-x){a^—x^)= answer sought. 
a a—X \ 

m 

Or, the three given quantities being {a—x), {a—x){a-{-x)^ and {a—x){o?-\-ax 

-{-.T^), the least common multiple is {a—x){a-\-x){a^-\-ax-\~x‘^). 

(3) Find the least common multiple of 12ab^, and Qa%. 

(4) Find the least common multiple of Qa‘^x’^{a—.r), 8r‘^(a2—x^), and 12 

(a—xy. 

(5) Find the least coiiimon multiple of —x"^——x^y-\-xy^—y^^ 

and —y^. 

(6) Find the least common multiple of (a-f-6)^ (a^ — 5^), {a —by, and 
+ 3«26_i-3a62+63. 

(7) Find the least common multiple of 45, 50, and 75, or 3^.5, 2.5^ and 

3.52. 

(3) 60a^bK 

(4) 24:a‘^x^{a—x){a‘^—x'^). 

(5) X®—xy*^— 

ANSWERS. 

(6) (a4-6)(a2 —&2)2. 

(7) 32.2.52=450. 

J ■ I 

OF ALGEBRAIC FRACTIONS. ' 
> 

36. Algebraic fractions differ in no respect from arithmetical fractions, and 

all the rules for the latter apply equally to the former. We shall, therefore, 

merely repeat the rules, adding a few examples of the application of each. It 

may be proper to remind the reader that all operations with regard to frac¬ 

tions are founded upon the three following principles: 

1. In order to multiply a fraction by any number, we must multiply the 

numerator, or divide the denominator of the fraction by that number. 

2. In order to divide a fraction by any number, we must divide the numera¬ 

tor, or multiply the denominator of the fraction by that number. 

3. The value of a fraction is not changed, if we multiply or divide both the 

numerator and denominator by the same number.—See (17, Note). 

REDUCTION OF -FRACTIONS. 

I. To reduce a fraction to its lowest terms. 

37. Rule.—Divide both numerator and denominator by theif greatest com¬ 

mon measure, and the result will be the fraction in its loivest terms. 

When the numerator and denominator are, one or both of them, monomials, 

their greatest common factor is immediately detected by inspection; thus 

a^bc a% X c q 

So, also, • , 

ax^ xy,ax ax 
—-—r=-7—;—r=—;— in its lowest terms. 
ax-fx^ x{a-\-x) a-\-x . 

If, however, both numerator and denominator are polynomials.^ we must 

have recourse to the method of finding the greatest common measure of two 

algebraic quantities, developed in a former article. Thus, let it be required to 

reduce the following fraction to its lowest terms : 
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Qa^—Qa'^y-\-2ay'^— 

12^2—15(27/-j-3^^ ’ I 

The gi'eatest common measure of the two terms of this fraction was found at 

page 37. to be a—y; therefore, dividing both numerator and denominator by 

this quantity, we obtain as our result the fraction in its lowest terms; or, 

Qa'^-\-2y'^ . ' 

12a—3y’ 

In like manner, taking the fraction-—-4a h -\-iah-greatest 
^ 6a^4-4a36 —9a262__3«/,3_^254 

common measure of the two terms is found to be 2a‘^-\-2ab—and, dividing 

both numerator and denominator by this quantity, the reduced fraction is 

2a2—2a64- 

3a2_ ab—2b^' 

EXAMPLES rOP^ PRACTICE. 

2.r3—16a:—6 
(1) Reduce ^ to its lowest terms. 

48a:3_j_36^2_i5 ' 
(2) Reduce 

20.r^-4-^^ — 1 
(3) Reduce ■ _ ^ - -3-- to its lowest terms. 

3m”n——6mn^ 2mnp 
(4) Reduce -777-r^-r—-—-to its lowest terms. 
' ' ^. 12mn—1571^—^mp-\-onp 

Ans. 
m?—2m7i 

Am—bn * 

(51 Reduce ^cficx—Aa^dx-\-2i.a^hcx—2ia%dx-\-2Qah^cx—2Qalftdx 
labcx"^—labdx^-{-lad^xfi—lacdx^ — 'ilb'^dx^-\-'iilb'^cx^-\-21bc‘^X'^—21bcdx^ 

4a(a+35) 
to its lowest terms. Ans. ^ ;—r“« 

7x^{h-\-c) 

38. It frequently happens, however, that when the polynomials which form 

the numerator and denominator of a fraction which can be decomposed are not 

very complicated, we are enabled by a little practice to detect the common 

factor and effect the reduction without performing the operation of finding the 

greatest common measure, which is generally a tedious process. The results 

to which we called the attention of the reader at the end of algebraic division 

(see page 30) will be found particularly useful in simplifications of this nature. 

Thus, for example : 

3.r^7/+32:7/^ 3.Ty(a:-j-^) xy 
3X2+6.T7/+37/2— 3(x+7/)2 —3(:r+7/)(x+7/)~X+7/' 

a'^—&2 —/,)(« + /,) a+6 

a2—2a6+62 ^—/,*. 

5^)r3_|_i0a26+5a62 5a(a2+2a&+&2) 5a(a+&)2 5(a+&) 

8a®+8a2fe 8a2(a + 6) 8a2(a + 5) 8a 

^ o?—(a2+ax+x2)(a—.x) a2+ax+.x2 

a2—2ax+x2“" {a—xf ~~ a—x 

CLc-^hd-^ (id~\~hc (a+&)c+(a +(c+c?)(a+6) c+c? 

a/+ 26x+ 2ax+ &/“ (a+ 6)/+ 2x(a -{-h)~ (/+ 2x)(a+ b) “"/+ 2x’ 

(6) 

(7) 

(8) 

<9) 

(10) 
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(11) 
Qac-{-lOlc-\-^ad-{-lbM^ 3«(2c+ 3^Z)+5&(2c+3c^)__(3a+5i)(2c+ 

6c2+9cc?—2c—3(^~“ 3c(2c+3^^)—(2c-|^3c^) “ (3c—1 K^+W 

3a+56 

' 3c—1 * 

ax^—6x™+^ x^{a—hx) 
(12) 

(13) 

(14) 

x'^{a—hx) X 
,ra—1 

a^hx—b^x^ bx{a‘^—b‘^x^) bx{a^bx){a—bx) b{a-\-bxy 

a^—li a^—b^ 

a^-\-ab^ a 

2xy -{- 3i/^ 4" 2a:2 | ^xy y-}-x 

Qcx-\-12cy — IQdx—Ibdy 4c—bd' 

II. To reduce a mixed quantity to an improper fraction. 

39. Rule.—Multiply the integral part by the denominator of the fraction^ 

and to the product add the numerator with its proper sign; then the result 

placed over the denominator will give the improper fraction required. Thus, 

a a-\-b 
(1) 5+1=-5 

ad'—x^ a’^-\-x^-\-d^— 
(*^) l + ^2i_:..2= 

2a2 

(3) ah-\-cd-\ 

a'^-\-X‘^ 6^2_j_^2 a3_|_^2 

abc—c^d—2c(5?2 abc-\-c'^d-\-2abd-\-2cd'^-\-abc—c^d—2cf/“ 

(4) 1 + 

c-\-2d c-\-2d. 

2abc-\-2abd 

c-\-2d 

2ab{c-\-d) 

c-{-2d 
J2_j_g2-op, 2Jc_|_ J2_j_g2-qP (5_|i.c)2-qP 

2bc 2bc 2hc 

40. It is to be remarked that when a fraction has the sign —, it signifies 

tliat the whole fraction is to be subtracted; the negative sign, therefore, as 

will be shown hereafter, applies to the numerator alone ; when the numerator 

is a polynomial, the negative sign extends to all its terms; the bar which sepa¬ 

rates the numerator from the denominator is to be regarded as a vinculum, and 

if it have the negative sign before it, when removed, all the signs of the numer¬ 

ator must be changed. 

b a — b 
(5) 1—=- 
' ' a a 

ef cd—ef 
(6) 0-^= 

d 

ad—2a64-6^ 
(’') a2_|_p ■ 

adJ^ld—[ad—2ab-{-b^) 2ab 

a^-{-¥ 'od-{-b'^' 

■ 52 I c2_Qr2 26c —(62A_c2_a3) 

26c ~ Wc 
a2—(62—26c-1-c2) 

26c 

—(6—c)^ 

' ^ ' 
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(9) x'^-\-2xy-\-y^ 
x^—^xHl-^-^xy"^—y^ ' 

x-\-y 

-j- ^x’^y -|- ^xy"'-' 4- y^—{x?—^x‘^y+^xy^—y^) 

x-\-y 

Qx^y-\-2'i^ 

2y{^x'^-\-y^) 

x-\-y 

2mn^—2'p qn Tr^n—mpq.A^ m'n?’—npq — (2m'nP‘—^pqri) 
(10) mn—p)q‘ 

f 
m-\-n m-\-n 

TTi^n—mpq—m'n?‘-\-pqn 

mn{m—n)-^pq{m—:n) 

' ' 7n-\-n 

{mn—pq){7n—n) 

m-\-n* 

III. To reverse this process^ or to reduce an improper fraction to a mixed 

quantity. 

Rule.—Divide the numerator hy the denominator ; the quotient obtained as 

far as practicable, will be the entire part, and the remainder, set o'^er the de¬ 

nominator, will be the fractional part. Then the two, joined together ivith the 

proper sign, will form the mixed quantity required. Thus, 

ay-\-b b 
(11) -=a-4--. ■ 
^ ^ y y 

(12) -'z=a-\-x-{-- 
' ' a.—X ' ' 'a — a—X 

20x:r^—10a:4-4 4 

p^-\-2pq-\-q^—r—s r4-5 
(14) ill-■=p+q- 

m^{m‘^—3 
(15) —^-2/T""--=m24-n2+-. 

IV. To reduce fractions to others equivalent, and having a common denomi¬ 
nator. 

41. Rule.—Multipfly each of the numerators, separately, into all the denomi¬ 

nators, except its own, for the new numerators, and all the denominators to¬ 

gether for a common denominator.\ 

a c 
Thus, reduce ^ and ^ to equivalent fractions having a common denominator 

aXd the hew numerator of the first,' 
c X & is the new numerator of the second, 

bxdis, the common denominator; 

ad be 
Therefore^ the fractions required are ^ and 

^ The rationale of the above examples is given in the note on the next page, 

t The numerator and denominator of each fraction will thus be multiplied by the same 

number, viz., the product of the other denominators, and, consequently, its value will be un¬ 
changed. 
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a c e g Tc m 
Reduce ^ j-., y, —, to a common denominator. 

adfhln cbfhln ehdhln ghdfln Jchdfhn mhdflil ^ n ^ , 
o ./ j . j tractions required. 

« 

, to a common denominator. 

hdfhln hdfhln hdfhln hdfhln hdfhln' hdfhln^ 

J lU-a: l + .r^ 
Reduce ‘ ' ' 

l—x 1—x"- 1—x^ 

(l-}-a:)(l—•(l-j-.r^)(l—.r)(l—(14-r:^)(l—a-)(l—:t") 

(l_a:)(l_2:2)(l_a,'3)’ (i_2:)(l—x2)(l—a:'')’ (l_a:)(l_x2)(l—2'“')’ 

fractions required. 

ADDITION OF FRACTIONS. 

42. Rule.—Reduce the fractions to a common dertominator^ add the numera¬ 

tors together, and subscribe the common denominator. Thus, 

a c ad be ad-\-bc 

b"^d bd'^ bd bd 

amp X anqy mbqy pbny xbnq 

b~^ n"^q<^y bnqy~^ bnqy"^bnqy~^bnqy 

anqy mbqy-\-pbnyxbnq 

bnqy 

e adfx^ cbfx^ ebdx^ a c 

bx'^ dx^~^fx!^ bdfx^~^ bdfjfi~^ bdfx^ 
adfx^-\- befx^.-]- bdex^ 

' bdfii' 

l_|_a:2 j 1—22 (14-.22)2 ^ (1—.22)2 

Urj5+14-Xi~(l—x!')(l+x®) + (l— 

(1-22)(1-|-22) 
0(l_j_2:4) . 

I'—x^ 

(5) 
1 

■^1—.1 

■X 

X '(1-|-.2)(1—2) 

1—.r-f-l 

■(1+.2)(1—2) 

(l + a:)(l—2) x' 

1—22 
A 

SUBTRACTION OF FRACTIONS. 

43. Rule.—Reduce the fractions to a common denominator, subtract the 

numerator or the sum of the numerators of the fractions to. be subtracted, from 

the riumerator or the sum of the numerators of the others, and subscribe the com¬ 

mon denominator.* 

a c ad be ' ad—be , 

b d bd bd bd 

CL ^ 'oi (p ^ x\ anqy ^ mbqy pbny xbnq 

b"^ n bnqy~^ bnqy bnqy bnqy ' ^ 

anqy -\-mbqy —pbny—xbnq 

T" bnqy 

* The rules for addition and subti*action of fractions follow from the general principle that 

quantities to be added or subtracted must be of the same denomination. 
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(3) 

a c e g adflix^ bcfhx^ hedhx^ hdfgx^ 

hx dx'^ fx^ hx^ hdfiix^^'^ hdjlix^^ hdfhx^'^ hdfhx 10 

adfhx^ -]-bcfhx'^ —bedhx —bdfg 

bdj'hx^ 

(4) 

(3) 

a-\-b a — b {a-\-bY — {a — by 

a — b~ a-\-b~ {a-Yb)[a—b) 
Aab 

—a‘^ — b‘^' 

14..r2 i-x^ • (1— 

l_a:2 14-x’2“(1—a:2)(l + 3:‘2) (1—x2)(14-.'c2) 
(l_|_.Ta)2_(l_.T2)2 

= (1—3:2^1 _j_2;2) ‘ 

4.t2 

l—x^ 

(6) 

(7) 

1' G" —1 

a m-n gm 

b^d —b^d 
Im—r—l ^ra+l' ^m+1 

44. When the denominators of the fractions which it is required to reduce 

have a common multiple less than their continued product, the result will fre¬ 

quently be much simplified by finding this least common multiple, and then 

reducing the fractions to their least common denominator by multiplying the 

numerator and denominator of each fraetion by the quotient of the least com¬ 

mon multiple, divided by the denominator of that fraction. 

Thus, if we are required to reduce the following fractions : 

a—3a: 3a — 5x 3a—bx 

4~^" 5 "^“20 ' 

The least common multiple of 4 and 5 is 20, the denominator of the third 

fraction ; therefore the fractions, when reduced to their least common denomi¬ 

nator,'are 

3a—bx ha—152:-j-12a—20a:-j-3a—5a: 5a—15a: 12a — 20a: 
4- 20 20 20 20 

20a — 40a: 

“ 20 

=a — 2a:. 

So, also, in 

x^ 
27—9a: 5a:2 

■’12' 

2a:-j-5 29-|-4a: 5—37a: 

4 6 ’12 ■ 3 ‘ 12 12 

the least common multiple of 3, 4, 6 is 12, which will be the least common de¬ 
nominator, and the above fractions become 

8.r+20 29 4-4a: 5—37a: 

'12"^ 12 + 12 

Or, ' ‘ r 

12a: ^81—27a: 10a:-f 4 61 

12 12 12 

' 12a:+81—27a:—10a:—4 — 614:8a:-f20-f-29+4a:—5-f 37a: 24a:+60  ^ ^ 

i 
12 

=2a:-f5. 
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MULTIPLICATION OF FRACTIONS. 

45. Rule.—Multiply all the numerators together for a new numerator^ and 

all the denominators together for a new denominator. Thus,* 

a c ac 

b'^d^bd' 

a m p X 

(2)aX-X-X-: 
ampx 

■bnqy' 

a-\-b e 
'3) T^X 

-/ k-^-l p — q 
X-—-x 

(a-\-b){e—f){k-}-l){p — q) 

' g—h'^m—n'^ r-\-s {<^-\-d){g—h){m—?i)(r-j-s)‘ 

abode a 

- 

abode 

bx ^ OX^ ^ ^ ^ ex‘^ fx^ bcdefx^^ fx^^' 

DIVISION OF FRACTIONS. 

46. Rule.—Invert the divisor and prooeed as in Multiplication.\ 

a 0 a d ad -r. ^ ^ ^.cd a 

b'^lr^b'^irTc' 

/ON g— 

* ' c-\-d ' g—h c-\-d e—f {c-\-d){e—f)' 

l-\-x^ ^ 1—x^ I-f-a:3 (i_|_2:2)2 

1 —2r-2"=" l-{.x^~l —X- ^ 1 —(1 —x‘^f 

X*—b^ x'^ + bx ar*—-6^ x—b 

—2bx-\-b^ ' X—b x'^ — 2bx-\-b'^^x'^-^-bx’ 

(ar^ — b^){x—b) 

(a:^ — 2bx-\-b'^){x^-\-bx) 

^[x^ — b%x^-{-b'^){x—b) 

(a:—by . X .{x-\-b) 

{x-{-b){x—b){x'^-\-b‘^){x — b) 

a:(a:—b){x — b){x-{-b) 

x^-y¥ 
f 

X 

47. Miscellaneous Examples in the operations performed in Algebraic Frac¬ 

tions. 
3a ^ 5f X 4^2aey-\-35bfy—Qbex 

46 56bey 

2a 5df deg 16u6e-|-15cc^—Adeg 

3bc'^S¥c 6b^c^ 24b-^c^ 

g^ f^ 6e/g-(e—/) —3g-4+2/"’+i 

g ^ ^ 2ef'^3eg~ 

a c d a—cxg-dx'^'^^ 
M\--4--=- “ 
V / pii—I 1 —r—s X" 

* To multiply a quantity by the fraction %, for instance, is to take it as many times as is 

expressed by this multiplier, that is, two thirds of a time, or to take two thirds of it, 

which is done by dividing it by 3, and multiplying by 2. If the multiplicand be a fraction, 

this is done, as has been before shown (17, Note), by multiplying its numerator by 2, and 

its denominator by 3, which accords with the rule above given. 

t This rule depends upon the principle that the divisor, multiplied by the quotient, must 

produce the dividend. ' 
D 
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b^c—5ab^c-4-a^ 2ab^—bc^-4-3abc^— 
(5) c+2ab—3ac- 

a-\-b a—b 
(6) -^+—=a. 

62-fjQ 

(7) 

(8) 

2 ' 2 

a-\-b a — b 
= b. 

2 2 

13a—5b 7a —2b 3a 89a—556 

60 

3a—46 2a — b—c 15a—4c 85a—206 
(9) -^7----+ 12 84 

a a—36 a^—6^—ab acd—ib’^-X-a^ 

6+—+■ bed 

(11) 
a'^ ab 

bed 

a^ab"^ ■\-b'^ 

(a+6)^ (a4-6)2 ' a+6 (a-|-6)'^ 

3 3 1 1—X 14-2^+^^ 

4(x—a:)^'^8(l—a:)"^8(14-(*^) 4(l-|-(^^) 1—^—x^-^7^* 

, a^-\-b'^ a — 6 a^4-62 
(13) ^ 

(14) 

^2 _ 62 ^ a _j_ 6—a2 _j_ 2a6 + 62* 

a:2—3x-\-20 —13a:4-42 x^—11x4-28 

x2—6x X x2—5x X‘‘ 

.r24.3x4-2 _ x2 4-5x+4 x-{-2 ^ 

a:2_|_2x4-l^x24-7x4-12~x4-3‘’^ 

(16) 

a c 

b"^ d {ad-\-bc)fh, 

rh 

(17) 

a b 

a4-6"^a—6 

a 
= 1. 

(18) 

a — 6 a+S 

a-l-x a—X 
_L_ I - 

a—X ' a4-a^ a}-\-x^ 

a + X a—X 2ax 

a—X a-\-x 

n—1 
1 + 

(19) 
w4-i 

1— 
n—1 

=n. 

n^l 

am o^x-^ax"^— a^—x^ 

—a2x^4‘^^—^ 
a24-x2 

' a‘^-\-o?x'^-\-x^' 

Tkjh,' >:”i[mples admit of the application of the formulas at the top of page 30 
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ON THE FORMATION OF POWERS, AND THE EXTRACTION 

OF ROOTS OF ALGEBRAIC QUANTITIES. 

48. We begin by considering the case of monomials, and, in order to sim¬ 

plify the subject as much as possible, we shall first treat of the formation of the 

square and the extraction of the square root only, and then proceed to gener¬ 

alize our reasonings in such a manner as to embrace powers and roots of any 

degi-ee whatsoever. 

Definition.—The square root of any expression is that quantity which, 

when multiplied by itself, will produce the proposed expression. Thus, the 

square root of is «, because «, when multiplied by itself, produces ; the 

square root of {a-\-hY is a-\-h, because when multiplied by itself, pro¬ 

duces {a-\-hY ; in like manner, 8 is the square root of 64, 12 of 144, and so on. 

The process of finding the square root of any quantity is called the extractio'r* 

of the square root. 

The extraction of the square root is indicated by prefixing the symbol to 

the quantity whose root is required. Thus, Vsignifies that the square root 

of a^ is to be extracted ; or (a^-}-2a&-|-6^), signifies that the 

square root of is to be extracted, &:c. 

In order to discover the method which we must pursue to extract the square 

root of a monomial, let us consider in what manner we form its square. Ac 

cording to the rule for the multiplication of monomials, 

{hodW'cY—^odh^c X ba^lPc=2ba%^c'^, 

So, 
{Qah'^(?d^Y='^ah'^c^d^ X ^al)’^(?d^-=Qld^h^c^d^. 

A*nd, 
(Aa:*"2/"2'‘—)2=A.r™y"z^— X A2:™y"2'' — = — ; 

i. e., we add the exponent of each letter of the given monomial to itself. 

49. Hence it appears that, in order to square a monomial, we must square 

its coefficient, and multiply the exponents of each of the different letters by 2. 

Therefore, in order to derive the square root of a monomial from its square, 

WjB must, 
I. Extract the square root of its coefficient according to the rules of Arith¬ 

metic. 
H. Divide each of the exponents by 2. 

Thus, we shall have - 

^/ 64a^6^=8a^&^. 

This is manifestly the true result, for 

Similarly, 

Here, also, 

Again, 

Also, 

V625a268c6_25a&A‘3. 

{25ab*cY=i25a¥c^X25ab^(^=625a‘^b^c^. 

V25a6p-18c4t^-32 = 5a3^-9c2^-16_-^. 

V 81 a^'"ar‘'"y6n22p-2 _ 
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Also, 
m n+p—(] 1 

■v/l6c"W’+P-‘i^'=4c^(i 2 gi 

If the given quantity be a fraction, extract the square root of its nurnerator 

and denominator separately. This rule follows from that for multiplication 

of fractions. Thus, 

A9a^b^ 7a^b^ 

V 16 c^d"^ Acd'^ ’ 
Also, 

V 64a2Pc4 8aPc2 ’ 
Also, 

j. a^b^°c‘^ a%^c 

Also, 
V [a-\~xY]d^y'^ {a-^T^h^y^' 

\ 

I /a^x^y'^ 1 \ 

'\J \ in'* ^ a^n^fV 
x'^y^ 

50. It appears, from the preceding rule, that a monomial can not he the squaic 

of another monomial unless its coefficient he a square number, and the exponents 

of the different letters all even numbers. Thus, 98ahi is not a perfect square, 

for 98 is not a square number, and the exponent of a is not an even number. 

In this case we introduce the quantity into our calculations affected with the 

sign , and it is written under the form ■f98ah'^. Expressions of this nature 

are called Surds, or Radicals of the Second Degree.* 

51. Such expressions can frequently be simplified by the application of the 

following principle: The square root of the product of tivo or more factors is 

equal to the product of the square roots of these factors. Or, in algebraic Ian 

guage, _ _ _ _ _ 

abed-z=ffaX V^X Vd-. 
In order to demonstrate this principle, let us remark that, according to our 

definition of the square root of any expression, we have 

( Vabed-Y-=.abcd-. 
Again, 

(V'^X y/~bx Vex 
= abcd-. 

Hence, since the squares of the quantities abed-, and ffa. -fb 

c . d— are equal, the quantities themselves must be equal. 

This being established, the expression given above, ff98ab\ may be put 

(Under the form X 2a=: V 495^ X V 2«, but ^/ A9b‘^ is by (Art. 49) = 762 ; 

hence 

ff98b^a= V4964 x V^=7b^ ff¥a. 

Similarly, 

V Aba^h^c‘^dz= 9a?b'^c^ X bbd= V 9a'^b‘^c^ X ffbbd 

= 3abc -fbbd. 

* Eromthe Latin surdus. They are sometimes called incominensurable, having no com¬ 

mon measure with unity. They are also called irrational, because their ratio with unity 

can not be expressed in numbers. Fractions have both a common measure and ratio with 

unity. Thus the fraction f has i for a common measure with unity, and its ratio with uui- 

!ty is f. t This follows from (10, III., note). 



EXTRACTION OF ROOTS. 53 

So, also, 

V86*4a255^=: V144«26vox65c= ^/lUaFb^^X 

= 12a6^c^ V 66c. 
' Also, 

Also, 
-y/2Aa‘^b=2a y ub. 

Also, 

VbAa^b^c=3ab ■f ioabc. 

Also, 

2 x/8a^'"+^6=4«'" x/ 2ab. 

Also, 
3 V3p. 

Q /48.r2P+3'j/5 36.tp+^?/2 Isx^/ 18.?’P+^?/^ /ra 

In general, therefore, in order to simplify a monomial radical of the second 

degree, separate those factors which are perfect squares^ extract their root (Art. 

49), place the product of all these roots before the radical sign^ and qolace all 

those factors which are not perfect squares under the radical sign. 

In the expressions, 7h‘^-\/2a, 3ahc ^/dbd, 12ab'^c^ 6bc, &c., the quantities 

76^, 3abc, 12ab~c^, are called the coefficients of the radical. 

52. We have not hitherto considered the sign with which the radical may 

be affected. But since, as will be seen hereafter, in the solution of problems 

we are led to consider monomials affected with the sign —, as well as the 

sign it is necessary that we should know how to treat such quantities. 

Now the square of a monomial being the product of the monomial by itself, it 

necessarily follows that, whatever may be the sign of a monomial, its square 

must be affected with the sign -}-• Thus, the square of ■\-ba%^, or of —5a^6^ 

is -\-2ba‘^b^. 

Hence we conclude that, if a monomial be jyositive, its square root may be 

either qjositive or negative. Thus, -f 9a^=z-\-3o?, or —3a^, for either of these 

quantities, when multiplied by itself, produces ; we therefore always affect 

the square root of a quantity with the double sign JL, which is called plus or 

minus,. Thus, ^/^a‘^=.:fz3a^, -v/144a‘^6%^= dz 12a6V.* 

53. If the monomial be affected with a negative sign, the extraction of its 

square root is impossible, since we have just seen that the square of every 

quantity, whether positive or negative, is essentially positive. Thus, —9, 

* The double sign may be omitted, being always understood before -x/. An important 
proposition, not usually noticed, should be demonstrated here; it is, that the quantity A has 
no other square root than the two, -j-'V/A and —■)/A. To prove this, let us observe that 
the different square roots of A are the values of x in the equation x'^=A, or what is the 

same, 
a:2—A=0. 

Instead of x^—A, we may write x‘^—(t/A)2 ; then, decomposing this difference into two 

factors, we have _ 
—A=(x—i/A)(x-l-\/A}. _ _ 

Under this form we perceive that every value of x which is not either -\-\/ A or —i/A, 
will fail to render either of these two factors zero; then it will not r^der the product x^—A 

^zero; therefore the quantity A has no other square root than -t-l/ A. 
The square root of a quantity has, therefore, txoo values, which are equal with contrary 

signs, and it has no other values. 
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■v/ —4a‘2, —5, are algebraic symbols which represent operations which it is 

impossible to execute. Quantities of this nature are called imaginary or im¬ 

possible quantities, and are symbols of absurdity which we frequently meet 

with in resolving quadratic equations. 

By an extension of our principles, however, we perform the same opera- 

tions upon quantities of this nature as upon ordinary surds. Thus, by (Art 

51), 

= v'SX —1 = a/^. V^l =3 
V—4^2 =z^Aa^X—1 ■=-sjAa?'—1 =z2ay/—1 

a/—A/Sxda^x^X—1= y/Aa^^x V^^X V—\=2a ■s/2h 
54. Let us now proceed to consider the formation of powers and extraction 

of roots of any degree in monomial algebraic quantities. 

Definition.—The cube root of any expression is that quantity which, mul 

tiplied twice by itself, or taken three times as a factor, will produce the pro 

posed expression. The fourth, or biquadrate, root of any expression is that 

quantity which, multiplied three times by itself, or taken four times as a file 

tor, will produce the proposed expression; and in general, the n^'^ root of any 

expression is that quantity which, multiplied {n — 1) times by itself, or taken 

n times as a factor, will produce the proposed expression. Thus, the cube 

root of a%^ is ab, because ab, multiplied by itself twice, or taken three times 

as a factor, produces a^b^', for the same reason, {a-\-b) is the 6^^^ root of 

{a-\-by, 2 is the seventh root of 128, and so on. 

55. Let it be required to form the fifth power of 2a?b'^. 

{2a^b^f=2a^b^ X 2a^b‘^ X 2a^b^ X 2a^b^ X 2a^b^ 
=320^5510. 

Where we perceive, 1°. That the coefficient has been raised to the fifth 

power; 2°. That the exponent of each of the letters has been multiplied by 5 

In like manner, 

{8a‘^b^cY=8o^b^c X 8a^b^c X 8a^b^c 
_ +2 j3+3+3(.i+14-1 

=bl2aW. 

So, also, 

{2ab'^c^d^Y=.2ab^(^d^ X 2ab'^(?d^ X.to n factors 

Hence we deduce the following general 

' RULE TO RAISE A MONOMIAL TO ANY POWER. 

Raise the numerical coefficient to the given power, and multiply the exponents 

of each of the letters by the index of the power required.^ 

And hence, reciprocally, we obtain a 

RULE TO EXTRACT THE ROOT, OF ANY DEGREE, OF A MONOMIAL. 

1°. Extract the root of the numerical coefficient according to the rules of 

arithmetic. 

2°. Divide the exponent of each letter by the index of the required root. 

Thus, 

y QAa'^bH^ zzzAa^bd^ 

yiQa^b^^c^^(f=2a^b^c^d 

* When a quantity is positive, all its powers are positive; but if it is negative, all its 

even powers will be positive, and its uneven negative. 
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EXAMPLES. 

(1) (2abcy=32a^b^c^. 

(2) (3aWn^)^=27 

(3) (a:“2/"zP)8=a:8™2/8"28p. 

3\ 7 ^.Tra+T^^Tn—21 

2;n—p+1 / ^ra—7p+7 * 

(5) XX X -OTi.0-05616ji0.56(H2^0.49257^0.0052 

, /aH™ a^m 

W) 

P pn 

(7) (2:i)“=a:‘i. 

El El 
(8) (2/")-=^"“. 

{~d^fS ) =■ 

(10) 

d^CYfli 

lhdb^Yc'^r,\ A 

)■ 

da^CY^ 

A^X&'^PAc™"^ 

\ } DsAyeA^j/X * 

2m7i^ 

^ .V ^15^20 =■ 

(12) T 

V ~ 

P^qi' 

a^jS^ 

0 32 ]) 16 y 34 

256 

04 ]) 2^3 

2 ' 

<■•1 ^/5 

(15) 

sin^0 cos^^ sin^ cos^ 

tan^ip sec®i/) tan'^i/' sec^f' 

310q>—5(a-[-&)i5(a;-|-y)—io(6-{-c—a;)'^o 

32(^-j-5'— 
2i^a—'^[a-\-b)^{x-\-y)—'^{b-\-c—x)*- 

‘^{p-\-q— 

When the root to be extracteci is of an uneven degree, its sign should be that 

of the given quantity ; when of an even degree, it should be . (See last note.) 

56. By the rule for extracting a root, we perceive that, in order that a 

monomial may be a perfect power of that degree whose root is required, its 

coefficient must be a perfect power of that degi’ee, and the exponent of each 

letter must be divisible by the index of the root. 

When the monomial whose root is required is not a perfect power of the re¬ 

quired degree, we can only indicate the operation by placing the radical sign 

V before the quantity, and writing within it the index of the root. Thus, 

if it be required to extract the cube root of Aa^b^, the operation will be indi¬ 

cated by writing the expression. 

Expressions of this nature are called surds, or, irrational quantities, or radi-- 

cals of the second, third, or n^^ degree, according to the index of the root re¬ 

quired. 

57. We can frequently simplify these quantities by the application of the 

following principle, which is merely an extension of that already proved in 

(Art. 51). 

V 
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The root of the product of any number of factors is equal to the producf 

of the roots of the dijferent factors. Or, in algebraic language, 

yabed-= yax y~b X VcX ydx-• 

Raise each of these expressions to the power of the degree n, then 

( y abed-Y=.abcd-. 

And, 

(V«X y'hx Vex Vd---Y={yaYx{yhYx{ycYx{ydY- 

=abcd-. 

Hence, since the powers of the quantities y abed,, and y a .y b .y c. 

yd-are equal, the quantities themselves must be equal. Q. E. D. 

This being established, let us take the expression ydia'^b^c'^, whose root 

can not be exactly extracted, since 54 is not a perfect cube, and the exponents 

of a and c are not exactly divisible by 3. 

We have, 

(1) y^x^^Xa^Xaxb^Xd^ 

= yVi X y~^X X 
by the principle just proved, 

=3ab y 2ad^. 

So, also, 

(2) V48aW= yiQX^Xa^Xaxb^Xc^Xc^ 

— yTQx^^x y~b^x Vc^x V^x V«x 

=2ab‘^c y 3a&. 

(3) y\32d'bc^'^=zy<6^x‘3XCi^X0LXbXc'^ 

= V64X ya^X V^X V^X y~aX Vh 
=2ac‘^y3ab. , 

(4) V192=:4^3.* 

(5) 5 y bQa^b^=10ab y~la^. 

(6) y y z. 

(7\ 8 
V dSfiie ~ (Jes ^ * 

,ox , ^ ./A^ 
(8) U-=z3^C<—. 

\ m \ m 

In the above expressions, the quantities 3ab, 2ab^c, 2ac‘^, &:c., placed before 

the radical sign, are called the coefficients of the radical. 

58. There is another principle which can frequently be employed with ad¬ 

vantage in treating these quantities ; this is. 

The m'^ power of the n‘* power of any quantity is equal to the mn‘^ power of 

that quantity. Or, in algebraic language. 

* A good way of separating a number into factors, some of which are perfect powers, ia 

to try perfect powers upon it as divisors, beginning with powers of the lowest numbers. 

Thus, in the 4th example, 8, the cube of 2, will divide 192, and the quotient is 24; again, 8 

will divide 24, and the original number, 192, may be put under the form 8X8X3=64X3, 

and the cube root will be 2 X 2 X ^^3, or 4 -^3. The cube root of 1080 may be found by first 

dividing by 23, and that quotient by 33, or 27. The result is -<^23 X 33 X 5=2 X 3 ^5=6^5 
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F or we have, 

\ a^Yz=a^ Xa^Xa^Xo? 
— ^34-3+3+3 _ ^12^ 

And, in general, 

— to m factors ; 
+ — to m terms . 

z=a^'\ 

And, reciprocally. 

The mn‘* root of any quantity is equal to the root of the n'^ root of that 

quantity. Or, in algebraic language. 

nn /— 
y a 

For, let 

Va. 

f ya =p ; 

Raise the two quantities to the power m, 

y a=p'^; 

Again, raise both to the power w, 
^—pinn . 

Exti’act the mn^^ root. 

But, by supposition. 

mn# ' 
ya=p; 

'^ya = ^ ya. 

Hence, as often as the index of the root is a number comiposed of two or 

more factors, we may obtain the root required by extracting, in succession, 

the roots whose indices are the factors of that number. Thus, v 

(1) V4a2=3xy4«2^ 

=^Jy4a" by the above principle, 

z=y2a. 

(2) y36a^b^=J y36a^b^ 

= y Gab. 

(3) y'^=yy'^=yi6=2. 

(4) ^y32a^b^= 
(5) ^^16a%22/2m2;4u-4_ ^4a2^ynij.2a-2. 

(6) In general, 

"^ya yd^ 

= ya. 

That is to say, When the index of the radical is multiplied by a certain 

number n, and the quantity under the radical sign is an exact n"* power^ we 

can^ without changing the value of the radical, divide its index by n, and ex¬ 

tract the n‘^‘ root of the quantity under the sign. 
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Thus, _ 

^25a^b^c^ =^baP‘hc^, 

-y = ^3a.r™7/P-'i, 

^ q^p~^r^'^ = V qp~H'^. 

59. This last- proposition is the converse of another not less important, 

which consists in this, that we may multiply the index of a radical hy any num¬ 

ber, provided we raise the quantity under the sign to the power whose degree is 

marked by that number, or, in algebraic language, 

For, if the last rule be applied to the second of these quantities, it will pro¬ 

duce the first. 

60. By aid of this last principle, we can always reduce two or more radi¬ 

cals of different degrees to others which shall have the same index. Let it be 

required, for example, to reduce the two radicals y 2a and y ‘3bc to others 

which shall be equivalent, and have the same index. If we multiply 3, the 

index of the first, by 5, the index of the second, and, at the same time, raise 

2a to the 5th power; if, in like manner, we multiply 5, the index of the 

second, by 3, the index of the first, and, at the same time, raise 3bc to the 3d 

power, we shall not change the value of the two radicals, which wiU thus 

become 

y2a =^^y{2aY = 'y32a^ 

y{3bcf = 

We shall thus have the following general 

RULE. 

Tn order to reduce two or more radicals to others which shall be equivalent 

and have the same index, multiply the index of each radical by the product of 

the indices of all the others, and raise the quantity under the sign to the power 

whose degree is marked by that product. 

Thus, let it be requhed to reduce -^20, ^36^c^ yid^ef^ to the same 

index, 

V2a =:3X6x 

yWc^ =2XoX ^(352c3)3X5 _ 3^310^20^30 

The above rule, which bears a great analogy to that given for the reduction 

of fractions to a common denominator, is susceptible of the same modifications. 

RULE. 

To reduce radicals to their least common index, find the least common multi¬ 

ple of all the indices, divide it by the index of each radical, and raise the 

quantity under the radical to the power expressed by the quotient.^ 

This rule, applied to the radicals y a, y bb, y2c, gives 

\/a=y7\ yTb=zy62bb\ y~3c=y¥r^. 
EXAMPLES. 

(1) Reduce ya"*, ^6“, and ^cp to the same index. 

(2) Reduce ^a, yb, and Vc to the same index. 

(3) Reduce y a^, \/c^, and \/d^ to the same index. 

* This is, in effect, multiplying the index of each radical, and the exponents under that 
radical, by the quotient. 

y'46^465^6—2 X3X 
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(4) 

(5) 

Reduce 

Reduce 

ANSWERS, 

(1) and 

(2) and ”7“"^. 

(3) and 

61. Let us now proceed to execute upon radicals the fundamental opera¬ 

tions of arithmetic. 

ADDITION AND SUBTRACTION OF RADICALS. 

Definition.—Radicals are said to be similar when they have the same in¬ 

dex, and when, also, the quantity under the radical sign is the same in each; 

thus, \^ac^Ja^ 156 7^) are similar radicals, as ai-e, also, 

bl^mn^p^, 2bd^mn'^p^^ &c. 

This being premised, in order to add or subtract two similar radicals we 

have the following 
I X 

RULE. 

Add or subtract their coefficients^ and place the sum or difference as a coeffi¬ 

cient before.the common radical. For example, 

(1) 37^-f 2,^/r=5y6. 

(2) ^^b — 2^bz=z^b. _ 

(3) 2)p)qymn^U%/mn=:{Zpq-\-‘U)^mn.* 

(4) ^cd-fa — Acdfa=bcdfa. 

If the radicals are not similar, we can only indicate the addition or subtrac¬ 

tion by interposing the signs -{- or —. 

It frequently happens that two radicals, which do not at first appear similar, 

may become so by simplification; thus, 

(5) V48a624-&-/^= 73x16X«X&"4-6 V3x25Xii 
=4& 7ba-{-5b 73a 

= 9b f 3a. 

(6) 2 745—3 75=2 7^X 9—3 -/b 

=3 7'5. 

(7) 78a=^6-f 16a-t—76^-f 2a63—7^3(5^_2a) —76=^(6-|-2a) 

= (2a — b)^^a-\-b. 

* When two products, consisting each of several factors, have any common factors, the 

other factors may be regarded as the coefficients of these, since they show how many times 

the common factors are repeated, and the addition may be perfonned by adding the coefil- 

cients, and annexing the common factors to the sum ; thus, abcd-\-mncd=[ah-\~mn)cd, and 

^ah-\/x-\-^ch'\/X, on the same principle as 8a-{-‘la=12a. 
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(8) 3^4a2-f 2^2«=3-y^+2^2a 

=b^'^. 

(9) 78+V50—718=4 VS. 

(10) hyld^^cyl^—d^ad^ = {V^-\-c^—d^)^a. 
(11) 2714- 760-7l5+7f=ffVl5.* 
(12) Aa^a^¥-{-h^Qa^h — ^l2ba^¥=a^h^l. 

(13) ^/{ba^c-{-6abc-\-bWc)=.{a-\-h) 73c. 

(14) -x/ibc^—780c^-j-75^^<^=(^—c) 75c. 

MULTIPLICATION AND DIVISION OE R'ADICALS. 

62. In the first place, with regard to radicals which have the same index, 

let it be requu’ed to multiply or divide ^ahy 7^, then we shall have 

7«X V5= 7^5, and ya-~yh-=\j^. , 

For, if we raise y ay, yh, and y ab, each to the v}^ power, we obtain the 

same result, ab ; hence these two expressions are equal. The same principle 

is demonstrated in (57). 

In like manner, ’ when raised to the power, give ^; hence 

the two expressions are equal. We shall thus have the following 

RULE. 

In order to inultiply or divide two radicals'which have the same index, muU 

tiply or divide the quantities under the sign by each other, and affect the result 

with the common radical sign. If there be any coefficients, we commence by 

multiqdying or dividing them separately. The latter part of this rule depends 

upon the principles set forth and alluded to in 17, note ; the coefficients, or ra¬ 

tional parts, and the radical parts being regarded as factors composing a product. 

(1) = 

ycd 

(2) bayQa‘^y2by4.o?c=babyb2a^c 

= \2o?b 72c. 

(3) 2rt 75c X 35 7abc X « 7 2a = 6a^b 7 '2a^b'^c^ 

=6a^b^cy~2. 

^ayb 5^ 

fb' 
(4) 

2b y c 

I fb 

(5) 
2ba‘^b y-iiv^n 2ba^b jmfn 

V mn"^ bab^ 7mn\ bab‘^ V mn^ 

_ba 

“T vT 

_bam Jl 

~~b~\n 

* The numerator and denominator of each of the two fractions in this example are multi¬ 

plied by its denominator. The denominator becomes thus a perfect square, and may be set 
outside the radical sign. 
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(6) 
ya^b^--\-¥ 

~y2 V ■ ¥ 

86 

(7) (a+6 V—1)X(« —6 V —l)=a‘"+&®* 
(8) yaxV^X yc=yabc. 

(9) a y xxb y y Xcy z=abcy xyz. 

(10) 4X2V^X V72=8y6. 
(11) c y aX d y a=acd. 

(12) 5^8X3 V5=30V10. 

(13) yi8xoyi=ioy9. 

(14) 4V6Xt^5V9=tVV6. _ 
(15) 2^/a>'x3yailx4-^6«5 = 24V«^'^^6<5. 

(16) 

(17) ( V—15+ V—12— V—21)-^ + —3 = 2+ +5— +7. 

If the radicals have not the same index, we must reduce them to others 

having the same index, and then operate upon them as above; thus, 

(1) 3u yb X 56 yYc=z9a y¥ X 56 

= 15a6V86%\ 

(2) ybab(?x +2a‘6c‘^= Vl25a^6VX +4a^6V 

= V500aW=^ 

=uc2 V500a65c. 

(3) m+u X +6 X n %/c=mn ^ 
\ 

a jc X Iz ax Ic^z^ 

b\fd^yyu~by'\l'^^’ 

(5) xym^ X yy—^y W 

8 / ^ w 4/ 43m.. 12/ ^ _24 

(7) V^X +6x yc=""y 

(8) A X B ^6" X C Xja'^^Yb^aydad. 

la'^b It 

cH~\ 

i^m—1^3 Mro(3n—2)+2j3n^^l0—3n 

d^ g6[i +6 

(10) c +a^—.r^-^ V()f+-'J^=c + («—x)^{a‘^—F^). 

\a-\-z 
(11) —2^-i-(« — z)=' 

a—z 

j.ra . lev A, 
(12) A,'”/—~Ar,n l~ — -—-nw —--J-. 

FORMATION OF POWERS AND EXTRACTION OF ROOTS OF RADICALS. 

G3. Let it be required to raise to the wtli power; then, 

{'y ay=y a xV^X+«-tow factors, 
= V+S according to the rule for multiplication just established. 

Hence we have the following 
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RULE. 

In order to raise a radical quantity to any given power, raise the quantity 

under the sign to that power, and place over the result the radical sign with its 

original index. If there he any coefficient, we must raise the coefficient sepa¬ 

rately to the required power. Thus, 

(1) (V^)"= 

’ =2a y a?. 

(2) (3V^r=35V3^ 

=243^^32^5 

3=486u y ^a^. 
When the index of the radical is a multiple of the exponent of the power 

which we wish to form, the operation may be simplified. 

Let it be required, for example, to square ^2a ,* we have seen (Art. 58) that 

— y2a='\J y2a ; but in order to square this quantity, it is sufficient to sup¬ 

press the first radical sign; hence, {y2a)^— y2a. Again, let it be required 

_ _ 
to raise y ahc to the 5th power; now, y ahc^y y abc; but in order to raise 

this quantity to the 5th power, it is sufficient to suppress the first radical sign • 

hence, {^y ahcY=. y abc, and, in general. 

that is to say. 

If the index of the radical he divisible hy the index of the required power, we 

may divide the index of the radical hy the index of the power, and leave the 

quantity under the sign unchanged.* 

64. With regard to the extraction of roots, either by virtue of the principle 

established in (Art. 59), or by reversing the last rule, we shall manifestly have 

the following 

RULE. 

In order to extract any root of a radical quantity, multiply the index of the 

radical hy the index of the root required, and leave the quantity under the sign 

unchanged. If there he a coefficient, we must extract its root separatdy. 
Thus, 

\f8c^\M=2cy~^. 

If the quantity under the sign be a perfect power of the same degree as the 

root required, we may simplify. Thus, 

* It may be -well to note here that the even power of a radical of the second degree is 

rational, and the uneven power irrational, the latter being formed by the multiplication of 
the proposed radical by a rational quantity. 
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\l V8a"~\A/8a3 

= V 

\l 

= ^3a ; 

that is, may extract the root of the quantity under the radical sign, 

MISCELLANEOUS EXAMPLES. 

(1) V^+ V6=4 ve. 

(2) a/I2+2-/'^+3 V'^+9\/^=59 V3- 

(3) —2 V^4- V^+2 V^=8 V3. 

(4) ■v/45c3— ■v/'^+ V5^=(a—c) -y/Sc- 

(5) Vl8a56='4- 'v/50a»63=(3a264.5a&) V2a6. 

(6) %/2^^a^^b^c— V4 X V4 X ^^a¥c 

=i{Qo?h—5a&^c-j-66) •y 4a6c. 

" ><S' 

(8) y54a™+6&3_ ^ie^m-356_|_ .3/2a^‘"+94- y2c3a™ 
262 _ 

= (3^26—— + a”+3+c) y 2a™. 

y3x2«c3/^_^y2y /. 
Vd^g ^S^c^d^p i 3cc;? $ V y2^ 

3 X 

(10) 
Sa'^ 16a®\ 2aa:- 

2^"^ ^2/ =-^y«+26. 

(11) '/4a22/-|-8a6^-|-4622/=2(a4-6) Vy. 

(12) V4a562 — 20a='63+25a6'‘=(2a2—56) 

Va2a:—2aa:2+.T3 _ 
(13) -—7—;— —'rT~Z V 

(14) 

•v/a2-j-2aa:-{-^^ a-|-a: 

a — 6 y ac yac 

ya2—2a6-|-62 a-4-6 

a4-6 la—6 /a 4-6 
^^•VHr6=v^36- 

(16) vax^^x 

(17) V4X ysx y6=^3981312 

(18) a’^xXl>VyXc^z=zahc“"yx^Py’^Pz^^. 

<>•> 65c2 

* It is manifest that, in general, V•v/a= for, by (Art. 58), each of these expres- 
• • mn 1 

Bions IS = \/a. 
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ac Ibcd 1 „ la'^c^ 

(20) WN — X-^^bdm 
65. Let us now inquire with what sign a monomial root is to be affected. 

We have seen (Art. 52) that, whatever may be the sign of a monomial, 

its square is always positive ; and it is evident that, in like manner, every even 

power must be positive, whatever may be the sign of the original monomial, 

and that every uneven power will be affected with the same sign as the original 

monomial. 

Thus, —a, when raised to different powers in succession will give 

—a, 

And -j-a, in like manner, will give 

In fact, every even power 2n may be considered as the square of the n^^ power 

or and must, therefore, be positive; and, in like manner, every 

power of an uneven degree (2n-j-l) may be considered as the product of the 

2w^'‘ power by the original monomial, and must, therefore, have the same sign 

with the monomial. 

Hence it appears, 

I. Hiat every root of an uneven degree of a monomial quantity must be 

affected with the same sign as the quantity itself. Thus, 

V + 8a3=2u; V—8u^=—2a,- ^ —2>2a'^^¥=—2a%. 

II. That every root of an even degree of a positive monomial may be affected 

with the sign or the sign —, indifferently. Thus, 

VMa^=T:3a63; ^64ai8=i2a'. 

III. That every root of an even degree of a negative monomial is an impos¬ 

sible root; for no quantity can be found which, when raised to an even power, 

can give a negative result. Thus, V —V —c,... are symbols of opera¬ 

tions which can not be performed, and are called impossible, or imaginary, 

quantities, as V—a, — b, in (Art. 53). 

66. The different rules which have been established for the calculation of 

radicals are exact so long as we treat of absolute numbers; but are subject to 

some modifications when we consider expressions or symbols which are 

purely algebraical, such as the imaginary expressions just mentioned. 

Let it be required, for example, to determine the product of —a by 

— a ; hy the rule given in (Art. 62), 

V —aX V—a= —aX —« 

_ = 

But ■\-o?‘—-^a, so that there is apparently a doubt as to the sign with 

which a ought to be affected in order to answer the question. However, the 

true result is —a ; because, in general, in order to square m, it is sufficient 

to suppress the radical sign ; but V —aX V —<zis the same thing as ( \/ —ay, 

and, consequently, is equal to —a. 

Next, let it be required to determine the product of —a by —b; by 

the rule (Art. 62) 

—aX V — h= —ax —b 

= -\-ab 

= dr V 
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The true result, however, is — -y/ ab^ so long as we suppose the radicals 

^/ —a, V —6 to be each preceded by the sign ; for we have, according 

to (Art. 53), 

V — a ~ yj a — 1 

yj — h = yj b . yj — 1 

Hence, 

yj —CJX V —6;=:'\/a6(-\/ —1)^ 

= yj abx —1 

= — V ab. 

According to this principle, we shall find for the different powers of V “• 1 

the following results; 

=^y/~l 

( V —1)"=—1 

(v~iy-( v^irxi v~iy 
: =-ix-i 

Since the four following powers will be found by multiplying -f-l by the 

first, the second, the third, and the fourth, we shall again find for the four new 

powers V —1, —1, — V—1, +1 5 that all the powers of V—1 will 

form a repeating cycle of four terms, being successively, y/ —1, —1, — -\/ —1, 

+ 1*^' "_ _ 
Finally, let it be required to determine the product of —a by 4^—5, 

which, according to the rule, would he ^ -\-ab. To determine the true result, 

we must observe that 

■\/—a ■=z\/a.y—1 

And 

y —a X y —b = yab . ( V—1)2. 

But, 

= V-1. 
Hence, 

y —a X V —y ab. y—1. 
The above principles will enable the student to operate upon these quanti¬ 

ties without embarrassment. 

THEORY OF FRACTIONAL AND NEGATIVE EXPONENTS. 

67. This is the proper place to explain a species of notation which is found 

extremely useful in algebraic calculations. 

* This may be expressed in its most general form thus, if n be any whole number : 

(a-v/—1)^“ =a4n)^_|_l —aAn _ 

(«v'^)4“+i=a4"+ix+r/^=«'‘"+^ • i/—1 
(a|/FIl)4n+3—a4n+2X —1 _a!4n+3 _ 

(a-/^^)4n+3=Q-4n+3X-V-1=—• V-1* 
The first in the note corresponds to the last in the text, the second in the note to the first 

in the text, and the third in the note to the second in the text. 

E 
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I. Let it be required to extract the root of a quantity such as a™. We 

have seen by (Art. 55)'that, if m is a multiple of w, we must divide m, the 

index of the power, by n, the index of the root required. But if m is not 

divisible by n, in which case the extraction of the root is algebraically impos¬ 

sible, we may agree to indicate that operation by indicating the division of the 

exponents. We shall thus have 
m 

yaF—a^, 
m 

the expression being understood to signify the root of u™, by a conven¬ 

tion founded upon the rule for the extraction of roots of monomial quantities. 

According to this convention or definition, we shall have 

ya^=a^; ya?=c^. 

It may be observed that the denominator of the fractional exponent is the 

index of the radical, and the numerator the exponent of the quantity under the 

radical. 

II. Let it be required to divide by a". According to the rule in (Art. 

17), we must subtract the index of the divisor from the index of the dividend; 

so that 

a" ’ 

it is to be remarked, however, that here it is supposed that m'^n. But if 

m <^n<, in which case the division is algebraically impossible, we may agree to 

indicate the division by the aid of a negative index equal to the excess of n 

over m. Letp be the absolute difference of m and w, so that n=:m-\-p; we 

shall then have 

a™ 
^ = ^m+p 

(m+p) 

=a-P. 

_ a™ ^1 
But may also be put under the form —, by suppressing the factor a® 

common to both terms of the fraction; we shall then have 

a-p=:-. 
aP 

The expression a“P is then the symbol of a division which can not be executed; 

and the true value of the expression is unity divided by the same letter a 

affected with the exponent p, taken positively. According to this convention, 

we shall have 

a 
1 1 „ 

-3=— ; , (fee. 
aJ 

Again, by supposing the exponent of the numerator to be larger by p than 

the exponent of the denominator, it may be proved in a similar manner that 

1 
flP=- 

a~P 

From these expressions it appears that a factor may be transferred from the 

denominator to the numerator of a fraction, or vice versa, by changing the sign 

of its exponent. 
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EXAMPLES. 

. aP'h^ . 
Write m one line. 

Write —7—— in one line. 

Write 

Write 

2gn 
in one line. 

all in the lower line. 

A«B^C 
Write —^-all in the lower line. 

My 

^6C-4 

Write with all positive exponents. 

aah~^ 
Write with all positive exponents. 

Ans. a'^b'^c~^d~^. 

Ans. 3a™c"c;?~Pe~^. 

Ans. 2 X 3-^^“/i'i-P^. 

1 
Ans. 

Ans. 

a %~^c^d^' 

1 

A5B6 
Ans. 

Ans. 
ao-d^ 

III. By combining the last two conventions, we an’ive at a third notation, 

which is the negative and fractional exponent. 
^ 1 

Let it be required to extract the n^^ root of 
a" 

In the first place, —hence '\J—=z'\/a~’^=a ", substituting the 

fractional exponent for the ordinary sign of the radical. 

As in words, is usually enunciated a to the power m, m being a positive 
m m 

integer ; so by analogy, a", a ° are usually enunciated, a to the power m 

by n, a to the power minus m, and a to the power minus m by n. 

All that has been hitherto said, with regard to fractional and negative ex¬ 

ponents must be considered as a mere matter of definition; in short, that by a 
m 

convention among algebraists a" is understood to mean the same thing as 

_ 1-111/1 
y a^^ a~“ to be the same as —, and a “ as n . We shall now proceed to 

prove that the rules already established for the multiplication, division, forma¬ 

tion of powers, and extraction of roots of quantities affected with positive in¬ 

tegral exponents, are applicable without any modification, when the exponents 

are fractional or negative. We shall examine the different cases in succession. 
3 $ 

68. Multiplication. Let it be required to multiply a^ by ; then it is 

asserted that it will be sufficient to add the twm exponents, and that 
3 2 3 I 

a^ X =a^ ‘ 
i!> 

For, by our definition, 

And, 

3 

= ya\ 

2 
a3 

=arf by definition in (Art. 67, I.). 



68 ALGEBRA. 

Again, let it be required to multiply a ^ by ; then it is asserted that 
_3 I s 

, 4^ ( 

For, 

_3 5 

a ^ X a^—a 
9 I 1 0 _9_ I 1 0 

=a ‘2-1-12 

1 2 

■'i- •V a»' a *z=X and a^= 

_3 5^/1 - 

=\7l5XVa 
I2//7IO 

a 

_12 

” V a9 

= 

=a^- by definition in (Art. 67, 1.) 
m p 

Generally, let it be required to multiply a “ by ; then 
.p 
'q 

For, 

m p la I p 

a”" 
np—mq 

=a “'i . 

“ n/1 
a “ =-\/—and a‘i= 

a ^Xa^=y-^,X V« a' 
_ n^/^np-raq 

np—mq 

= « "q by definition. 

69. Hence we have the following general 

RULE FOR EXPONENTS IN MULTIPLICATION. 

In order to multiply quantities expressed hy the same letter^ add the ex¬ 

ponents of that letter, whatever may he the nature of the exponents. 

This is the same rule as was established in (Art. 11) for quantities affected 

Vith integral and positive exponents. According to this rule, we shall find 
3 _1 _1 23 TI _5. _3 

a'^h Xct‘^h^c^=a '’‘h ^ 

3a~^h^X^ei ^b-c^ =6a ^ b^d^. 

— ^ 
70. Division. Let it be required to divide a‘^ by then it is asserted 

• that it will be sufficient to subtract the index of the divisor from the index of 

the dividend, and that we shall thus have 
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For, 

a-=zy and ■= y a, 

a 4 y a 

=\j- by (Ai-t, 62) 

= y~a^ 

In like manner, we can prove that 

by definition. 

a 
5 
4 

a 
■3=a 

"g 

1 3 

= a ^ . 

Generally, let it be required to divide a" by a'l. 

Then, 

For, 

m p m p 

a''-^a^=a’^ q 
mq—np 

z=a~^. 

«"= yand a^= 

m p 

a“-4-a'i= 
v«p 

mq —np 

=« "'1 by definition. 

71. Hence we have the following general 

RULE FOR EXPONENTS IN DIVISION. 

In order to divide quantities exqiressed hy the same letter, subtract the ex¬ 

ponent of the divisor from the exponent of the dividend, whatever may he the 

nature of the exponents. 

This is the same rule as that established in (Art. 17) for quantities affected 

with integral and positive exponents. According to this rule, we hav^ 
' 2 _3 2_( 3\ 

a^-^a ^ 

II 

3 4 _ 
=a 20. 

2 3 _1 7 _0 _1 

a^h‘^-^a 

72. Formation of powers.—In order to raise a monomial to any power, 

the rule given in the case of positive and integral exponents was, to multiply 

the index of the quantity by the index of the power sought. We have now 

to prove that this holds good, whatever may be the nature of the exponent. 
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Let it be required to raise a'' to the 4^*" power. 

Then, 
5 4 

{aP) = 

or, 

But, 

a’’=. {a’’) =:{ya^y. 

( ya^y= yby (Art. 63) 

Generally, let it be required to raise a" to the power jp. 

Then, 

mp 

The demonstration will manifestly be precisely the same if we suppose one 

or both of the indices to be negative. 

73. Hence we have the following general 

RULE FOR RAISING A MONOMIAL TO ANT POWER. 

Multiply the exponent of the monomial hy the exponent of the power required^ 

whatever may he the nature of the exponents. 

This is the same rule as that established in (Art. 55) for quantities affected 

with positive integral exponents. According to this rule, we have 

3 5 

{a^) = 

2 3 

(a^) =tt' 
rX3 

■=.a^ 

— 3,# 
=64a b^. 

74. Extraction or Roots.—In order to extract the n^^ root of any, quan¬ 

tity according to the rule in (Art. 55), we must divide the exponent of each 

letter by the index n of the root. Let us examine the case of fractional ex¬ 

ponents. 
5 

Let it be required to extract the cube root of 
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Then, 

For, 

But, 

=<z°, by definition. 

Generally, let it be required to exti-act they>‘^ root of 

Then, 

m 

=«"P, by definition. 

75. Hence we have the following 

RULE FOR THE EXTRACTION OF ANY ROOT OF AN ALGEBRAIC MONOMIAL. 

Divide the exponent of the monomial hy the exponent of the root required^ 

whatever may he the nature of the exponents. Thus, 

76. We shall close this discussion by an operation which includes the demon¬ 

stration of every possible variety of the two preceding rules. 

m 

Let it be required to raise an to the power of —-; we must prove that 

■=a 
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If we recur to the origin of this notation, we find that 

. mr 

r=a “% by definition. 

77. The notation above explained can be extended to polynomials, by in¬ 

cluding them within brackets, in the same manner as was explained in the case 

of integral exponents. 
1. __ 

Thus, signifies the same thing as or the square root of 

x-\-a. 

\ 
So, {x-\-a) 2 is equivalent to 

1 

V x-{-a’ 
or unity divided hy the square root 

of x-\-a. 
1 __ 

In like manner, + will be the same as V {x-\-a-{-hY, or the fourth 
_3 

root of the third jpoiver of the quantity x-\-a-\-h, and {x-^a-{-b) will be 

unity divided by the last-mentioned quantity. Since unity is always under¬ 

stood to be the exponent when no other is expressed, {x-\-a)~'^ is the same as 

—;—, and so on. The same rules which have been established for the treat- 
x-\-a 

ment of monomials affected with exponents will also manifestly apply to poly¬ 

nomials under the same restrictions.* 

EXAMPLES. 

_3 

(1) a X « 

(2) a h 

_7 _13 1 
^ — n ^ —-- 

aya^' 
O 5 1 _1_ _3 

2^— C J2 

-nrx 
Z>2c^ 

15 1 _ 
^ V-c 4 

* The calculus of fractional exponents, says Lacroix, is one of the most remarkable ex¬ 

amples of the utility of signs, when they are well chosen. The analogy which exists be¬ 

tween fractional and entire exponents renders the rules to be followed in the calculus of 

the latter apjjlicable to the former, while particular rules are requisite for the calculus of 

radicals. The farther we advance in algebra, the more we perceive the numei'ous advan¬ 

tages which have resulted to that science from the notation of exponents, invented by 

Descartes. 
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(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 

(20) 

_p ^ p m np—mq 

a "=a “q 

1 

ca‘^da^ . a 

3 1 

a^h--^a 

3 
.3. i 

"c=-—. 

a 
9 3 
253 a 

2j) 11 I_1 34 

8 

6^ 

/ 3 2\i 12 

1 2_0 

.1 
-c 

\_1 _1 i JL 
) ^=a 

c'^d ) 3 ^d' 

(a + 6)^> (a + 6) ^ 

/5 i 32 14 5\/l 

+ + + X \<2“- 
/I ii 1\/1 1\ 3 3 

(x^+y'^) X —2)_^2^ —2_|_2_|_ 

—6^ 

>^) =a^—bK 

X 

.1 i * Q O -2/-. 

3 3 3 3 

Cr3-^25 3 - 

=a^—6. 

/3 3\/ii\ 11 1 
(«*—6'‘) : \a*—b'^)=a^-{-b‘^-\-{aby. 

X b~^a^c~^ X a^6^c^=<z®6~^(r*. 

3 5 1 _l'7 _3 qo qqiR 9^ 10 

Xp^^q‘^=ni ^ p 10^ ^ 2 ^ 4 ^ 

1 2J5 

13 2 17 a^d^ 

a^b'*’c~^db^c^d~^ = 5 st 

Vc^ 

(z^ + ezU-f-Oa^') . (vZ + 3 Va3) = (z'4-3a")-^.?V5K 

It may be asked here whetber the rules for the calculus of exponents apply to incom¬ 

mensurable and imaginary exponents. 

With regard to incommensurable exponents, it may be said that they have not absolutely 

of themselves any signification, and that, in order to give them one, it is necessary to con¬ 

ceive them in imagination, replaced by their approximate commensurable values. A formu¬ 

la, therefore, into which incommensurable exponents enter, should be considered as repre¬ 

senting the limit toward which the values deduced from it tend by the substitution of 

commensurable numbers for the exponents, differing from them by as small a quantity as 

we choose to assign ; in this way we perceive that the proposed expression will represent 

exactly this same limit, when the same operations shall have been executed upon the in¬ 

commensurable exponents which it contains, as would be if they were commensurable. 
Thus, for example, m and n being incommensurable quantities, we shall always have 

am X «”=«"’+“• 

For*, if and n' represent their approximate commensurable values, we have 
om/xa"'=am^ + °'. 
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The first members of this equality tend toward the same limit as the second. But 

represents the limit of the one, and that of the other; hence, 

With regard to imaginary exponents, there is necessary here, as every where, a tacit 

admission tliat the general relations of real quantities, represented by letters, hold good when 

these letters are replaced by symbols of quantities which are imaginary. 

This subject will be better understood after tbe student has been over that of extrac¬ 

tion of roots by approximation. 

78. Having thus discussed the formation of powers, and the extraction of 

roots in monomial quantities, we shall now direct our attention to polynomials ; 

and, in the first place, let it be required to determine the square of x-\-a; 

then, 

{x-\-aY=.{x-\-a) X 

=x'^-\-2xa-\-a'^ by rules of multiplication. 

By inspection of this result, it is perceived that the square of a binomial con¬ 

tains the square of each term together with twice the product of the two. 

Next, let it be required to form the square of a trinomial (a:-|-u-|-6). Let 

us represent, for a moment, the two terms, x-j-a, by the single letter z. 

Then, 

{x-{-a-{-hY={z-\-'bY 

=z^-\-2zh-\-h'^.... (1). 
But, 

z^ = {x-\raY 

z=x^-{-2xa-\-a^. 

And, 

2z6=2fe(a:-|-«) 
= 2xh-\-2ah. 

Therefore, substituting for and 2zh their values in (1), we find 

{x-\-a-\-hY=x’^-\-a'^-\-y^-\-2xa-\-2xh-\-2ah. 

Hence it appears that the square of a trinomial is composed of the sum of the 

squares of all the terms, together with the sum of twice the products of all the 

terms 77iultiplied together two and two. 

We shall now prove that this law of formation extends to all polynomials, 

whatever may be the number of terms. In order to demonstrate this, let us 

suppose that it is true for a polynomial consisting of n terms, and then en¬ 

deavor to ascertain whether it will hold good for a polynomial composed of 

(w-j-1) terms. 

Let x-\-a-\-h-\-c-\-\-7c-{-l be a polynomial consisting of n-j-1 terms, 

and let us represent the sum of the first n terms by the single letter z ; then 

{x-{-a-\-b-{-c-\-=(z-j-Z), 

and .'. -+ 
= Z2-f 2Z^-f 

or, putting for z its value, =(2’-j-a4-&-|-c-|-2{x-\-a-\-h 

c -j-j- Jc^l-^P'. 

But the first part of this expression, being the square of a polynomial con¬ 

sisting of n tei-ms, is, by hypothesis, composed of the sum of the squares of 

all the terms, together with twice the sum of the products of all the terms 

multiplied two and two; the second part of the above expression is equal to 

twice the sum of the products of all the first n terms of the proposed poly¬ 

nomial, multiplied by the term 1; and the third part is the square'of 

the term 1. 
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Hence, if the law of formation already enounced holds good for a poly¬ 

nomial composed of n terms, it will hold good for a polynomial composed of 

(n-f-l) terms. 

But we have seen above that it does hold ^ood for a polynomial composed 

of three terms ; therefore it must hold for a polynomial composed of four terms, 

and therefore for a polynomial of five terms, and so on in succession. There¬ 

fore the law rs general, and we have the following 

RULE FOR THE FORMATION OF THE SQUARE OF A POLYNOMIAL. 

The square of any polynomial is composed of the sum of the squares of all 

the terms, together with twice the sum of the products of all the terms multiplied 

together two and two. According to this rule, we shall have, 

(1) (u + &-f c-fc?+e)2=u2_j_&2_|_c2_^^-2_^g2_^2a64-2uc+2u^^-l-2ae4-26c 

■\-2bd-\-2be-\-2cd-\-2ce-\-2de. 

(2) {a — b—c-{-dY=a^-\-b'^-\-c’^-{-d^ — 2ab — '2ac-\-2ad-\-2bc—2bd—2cd. 

If any of the terms of the proposed polynomial be affected with exponents 

or coefficients, we must square these monomials according to the rules already 

established. 

(3) (2a—462c3)2—4a2_j_i654c6_i6a2,2c3. 

(4) (3a2—2a6-f 4i2)2=9a4_^4^2j2_^1054_42a35 

_|_24a262_i6a&3 

=9a'^ — 12a^6-f-28a%^ — 16a6^ -{- 16Z)L aiTanging ac¬ 

cording to powers of a, and reducing. 

(5) {ba%—Aabc-f —ba^f=-f 16aW-f 369a^c^ 

—4:0a^b^c-\-Q0a^b‘^c^ — SOa^bc 

—48a¥c^-\-24a^bc^—36a^bc^. 

=25a^b’^—49a?b^c-\- 76a^bw^—48ab‘^(^ 

-\-36h^c^—30a^bc-\-24a-%c^ 

—3CMc^-Y9a'^c^. 

79. Let us now pass on to the extraction of the square root of algebraic 

quantities. 

Let P be the polynomial whose root is required, and let R represent the 

root which for the moment we suppose to be determined; let us also suppose 

the two polynomials, P and R, to be arranged according to the powers of 

some one of the letters which they contain; a, for example. ^ 

If we reflect upon the law just given of the formation of the square of a 

polynomial, it will be seen that the first twm terms of the polynomial P, when 

thus arranged, are formed without reduction, and will enable us at once to de¬ 

termine the first two terms of the root sought; for, 

1". The square of the first term of R must involve a, affected with an ex¬ 

ponent gi’eater than any that is to be found in the other terms which compose 

the square of R ; because this exponent is double the highest exponent of a in 

R, and must be greater than the double of any lower exponent, or than the re¬ 

sult produced by adding it to one of the lower exponents, or by adding any 

two of them together. 

2°. Twice the product of the first term of R by the second must contain a, 

affected with an exponent greater than any to be found in the succeeding 

terms; for it will be the sum of the highest, and the next to the highest ex¬ 

ponent of a in R. 
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It follows from this, that if P be a peflfect square, 

I. The first term must be a perfect square ; and the square root of this 

term, when extracted according to the rule for monomials (Art. 49), is the first 

term of R. 

II. The second term must be divisible by twice the first term of R thus 

found, and the quotient will be the second term of R. 

III. In order to obtain the remaining terms of R, square the two terms o/R 

already determined^ and subtract the result from P ; we thus obtain a new 

polynomial, P', which contains twice the product of the first term of R by the 

third term, together with a series of other terms. But twice the product of 

the first term of R by the third must contain a, affected with an exponent 

gi'eater than any that is to be found in the succeeding terms, and hence this 

double product must form the first term of P'.* 

IV. The first term of P' must be divisible by twice the first term of R, and 

the quotient will be the third term of R. 

V. In order to obtain the remaining terms of R, square the three terms of 

the root already determined, and subtract the result from the original poly¬ 

nomial P ;f we thus obtain a new polynomial, P", concerning which we may 

reason precisely in the same manner as for P', and continuing to repeat the 

operation until we find no remainder, we shall arrive at the root required. 

The above Observations may be collected and imbodied in the following 

RULE FOR THE EXTRACTION OF THE SQUARE ROOT OF ALGEBRAIC POLY¬ 

NOMIALS. 

10. jflrrange the polynomial according to the powers of some one letter. 

2°. Extract the square root of the first term according to the rule for monomi¬ 

als, and the result will be the first term of the root required. 

3°. Square the first term of the root thus determined, and subtract it from the 

original polynomial. 

4°. Double the first term of the root, and divide by it the first term of the re¬ 

mainder, and annex the result {which will be the second term of the root), with 

its proper sign, to the divisor. 

5°. Multiply the whole of this divisor by the second term of the root, and sub¬ 

tract the product from the first remainder. 

G°. Divide this second remainder by twice the sum of the first two terms of 

the root already found, and annex the result {which will he the third term of 
the root), with its proper sign, to the divisor. 

7°. Multiply the whole of this divisor by the third term of the root, and sub¬ 

tract the product froyn the second remainder ; continue the operation in this 
manner until the whole root is ascertained. 

The above process will be readily understood by attending to the following 

examples: 

EXAMPLE 1. 

Extract the square root of lOad—lOx^ — 12x^-\-5x'^-\-9x^—2.r-|-l. 

Or, arranging according to the powers of x, 

* The square of the second term of R usually contains the same exponent of the letter 
of arrangement, but this is already subtracted from P, and not left in P'. 

t In practice, this operation is dispensed with by following the precepts 5°, 7°, in the fol¬ 

lowing iTile, which evidently come to the same thing. 
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9:c® — 

9x^ 

1 Ox’-t _ 1 0.t3 -j- 5a;2—2.r +1 —2x--\-x—1 

—2x^ 

6x^ 

—12a:°+ lOar^ —103^-^5x^—2x-\-1 

— 12:r®4- 4a:4 
1 +

 

G.r4 _l0a:3_j_5^-3_2a:4-l 

Ga:^ — 4a,’^4- x^ 

6x^ — ^x^-\-2x—1 4“ — 2x-\-l 

G.r^ -\-Ax^—2.T 4“ 1 

0. 
Having arranged the polynomial according to powers of x, we first extract 

the square root of 9x^, the first term; this gives 3x^ for the first term of the 

root required; this we place on the right hand of the polynomial, as in division; 

squaring this quantity, and subtracting it from the whole polynomial, we ob¬ 

tain for a first remainder, — 12x^-\-19x^——2a:4-1; we now double 

Sar^, and place it as a divisor on the left of this remainder, and dividing by it 

— 12a:®, the first term of the remainder, we obPain the quotient —2r^ (the 

second term of the root sought), which we annex, with its proper sign, to the 

double root Ga:^; multiplying the whole of this quantity, Ga:'*—2a:2, by —2x'^ 

(which produces twice the product of the first term of the root by the second, 

together with the square of the second), and subtracting the product from the 

first remainder, we obtain for a second remainder, Qx^—10a:^4“^^^ — 2a:4-1. 

Next, doubling 3a:^—2a;^, the two terms of the root thus found, and dividing 

Ga:^, the first term of the new remainder, by Ga:^, the first term of the double 

root, we obtain x for a quotient (which is the third term of the root sought), 

and annex it to the double root Ga:^—4a:^, multiplying the whole of this quan¬ 

tity Gar^—4a:24-a: by x (which produces twice the first by the third, twice the 

second by the third, and the square of the third), and subtracting the product 

from the second remainder, we obtain a third remainder, —Ga.’^4“4^^ — 2a:4-l; 

we now double 3a:^—2x'^-{-x, the three terms of the root already found, and 

dividing —Ga:^, the first term of the new remainder, by Ga:^, the first term of 

the double root, we obtain —1 for the quotient (which is the fourth term of 

the root sought), and annex it to the double root Ga:^—ix'^-\-2x; multiplying 

the whole of this quantity Ga:'^—4a:^-l-2a:—1 by —1, and subtracting it from 

the third remainder, we find 0 for a new remainder, which shows that the 

root required is 

f 3xi^—2x'^-\-x—1. 
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80. If the proposed polynomial contain several terms affected with the same 

power of the principal letter, we must arrange the polynomial in the manner 

explained in division (Art. 20) ; and in applying the above process we shall be 

obliged to perform several partial extractions of the square roots of the coeffi¬ 

cients of the different powers of the principal letter, before we can arrive at the 

root required. 

Extract the square root of 

{a?—'2ah-\-h~)x^-\-2{a — h) (c—{2{a — h) ■\-2{c—d) 

Ans. {a — —d)x-\-f-\-g. 

Such examples, however, very rarely occur. 

Before quitting this subject, we may make the following remarks : 

I. No binomial can be a perfect square ; for the square of a monomial is a 

monomial, and the square of the most simple polynomial, that is, a binomial, 

consists of three distinct terms, which do not admit of being reduced with 

each other. Thus, such an expression as is not a square; it wants the 

term fi^ab to render it the square of {affb). 

II. In order that a trinomial, when arranged according to the powr/s of 

some one letter, may be a p>erfect square, the two extreme terms must Ie perfect 

squares,* * and the middle term must be equal to twice the product of the square 

roots of the extreme terms. When these conditions are fulfilled, we may obtain 

the square root of a trinomial immediately, by the following 

RULE. 

Extract the square roots of the extreme terms, and connect the two terms thus 

found by the sign , ivhen the second term of the trinomial is qjositive, and by 

the sign —, when the second term of the trinomial is negative. Thus, the ex¬ 

pression 

is a perfect square; for the two extreme terms are perfect squares, and the 

middle term is twice the product of the square roots pf the extreme terms; 

hence the square root of the trinomial is 

Or, 

—Qah^. 

An expression such as Aa?-\-12ab — 96^ can not be a perfect square, although 

4u" and 9&^, considered independently of their signs, are perfect squares, and 

\2ab = 2{2a .ob); for —9i" is not a square, since no quantity, when multi¬ 

plied by itself, can have the sign —. 

III. In performing the operations required by the general rule, if we find 

that the first term of one of the remainders is not exactly divisible by twice 

the first term of the root, we may immediately conclude that the polynomial 

is not a perfect square ; and when we arrive at a term in the root having a 

power of the lettpr of arrangement of a degree less than half that of this letter 

in the last term of the given polynomial, we may be sure that the operation 

will not terminate. This is on the supposition that the given polynomial is ar- 
- 

* In order that any polynomial maybe a perfect square, the two esti'eme terms must be 

perfect squares, if it be aiTanged according to the powers of some letter. 
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ranged according to the decreasing powers of tlie letter. If it be according to 

the increasing powers, substitute the word greater for “less” in the above 
precept. 

IV. We may apply to the square roots of polynomials which are not per¬ 

fect squares the simplifications already employed in the case of monomials 
(Art. 51). Thus, in the expression 

■y/ a^h -|- 

The quantity under the radical sign is not a perfect square, but it may be 
put under the form 

■y/ «6(a2_|_4f2ft_|_45)3. 

The factor within brackets is manifestly the square of a-\-2h; hence 

■y/ a^b-\-^a^b^-\-^.ah^— -y/ ah{a^-\-Aah-\-4:bY 

= y/ ab{a-{-2bY 

= {a-\-2b) y/ab. 

81. Let us next proceed to form the cube of x-\-a. 

(a:_j_a)3_(^_|_rt) {x-{-a) X (a:-f «) 

=x^-\-^x’^a-\-?>xa‘^-\-o? by'rules of multiplication. 

Let it be required to form the cube of a trinomial (a:-|-a-}-6); represent 

the last two terms a-\- \ by the single letter s; then 

{x-\-a-\-bY={x 

=3:3+3a:2(a4-6)-f 3j:(a-l-&)2-f (u-f 6)3 

=a:3_|_3^2 a-\-2>x%-\-^xa'^-\-Qxab-\-2xh^-\-a^ 

4-3a2 

2^1iis expression is comjjosed of the sum of the cubes of all the terms, together 

with three times the sum of the squares of each term, multiplied by the simp>le 

power of each of the others in succession, together with six times the product of 

the simple poiver of all the terms. 

By following a process of reasoning analogous to that employed in (Art. 78), 

we can prove that the above law of formation will hold good for any polynomial 

of wdiatever number of terms. We shall thus find 

(a 6 -f c -}- 6^)3 =a3+ 63 + c3-f 3^25 3^2^ ^ 3^2^ 3^2^ _j_ 3_}_ 3^2^ 

-f 3c2u + 3c26 -f ^c^d + 2dhi + ^d^b ^^dH-\- 6abcd 

(2^2—4a6-f 362)3=8^6 _ 64u3i3 276^ — A8a^b + 36a‘^b^ -f- 96a^¥ -f lUaPh^ 
_|_54a2^4_io8a65—144u363 

=Sa^'—4 8a^b 132a‘^¥—208a^b^ -f 198a^¥—108a¥ -{- 276®. 

In a similar manner, we can obtain the 4th, 5th, &c., powers of any poly¬ 

nomial. 

For more upon this subject, see a subsequent article (105). 

82. We shall now explain the process by which we can extract the cube 

root of any polynomial, a method analogous to that employed for the square 

root, and which may easily be generalized, so as to be applicable to tlie ex¬ 

traction of roots of any degree. 
Let P be the given polynomial, R its cube root. Let these two poly¬ 

nomials be arranged according to the powers of some one letter, a, for example. 

It follows, from the law of formation of the cube of a polynomial, that the cube 

of R contains two terms, which are not susceptible of reduction with any 

others; these are, the cube of the first term, and three times the square of 

F 
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the first term multiplied by the second term; for it is manifest that these two 

terms will involve a affected with an exponent higher than any that is to be 

found in the succeeding terms. Consequently, these two terms must form 

the first two terms of P. Hence, if we extract the cube root of the first term 

of P, we shall obtain the first term of R, and then, dividing the second term 

of P by three times the square of the first term of R thus found, the quotient 

will be the second term of R. Having thus determined the first two terms of 

R, cube this binomial, and subtract it from P. The remainder, P', being ar¬ 

ranged, its first term will be three times the product of the square of the first 

term of R by the third, together with a series of terms involving a, affected 

with a less exponent than that with which it is affected in this product. 

Dividing the first term of P' by three times the square of the first terai of R, 

the quotient will be the third term of R. Forming the cube of the trinomial 

root thus determined, and subtracting this cube from the original polynomial 

P, we obtain a new polynomial, P", which we may treat in the same manner 

as P', and continue the operation till the whole root is determined.* 

EXAMPLES. 

(1) Extract the cube root of —135x'^-\-225x—125. 

(2) ^ (8x6-j- 4—90z^x^-f 108z6^—2726). 

ANSWERS. 

(1) 3x—5. I (2) 2x24-42X—322. 

EXTRACTION OP THE SGUARE ROOT OF NUMBERS. 

83. Rules are given in Arithmetic for exti’acting the square and cube roots of 

any proposed number; we shall now proceed to explain the principles upon 

which these rules are founded. 

The numbers 

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 100, 1000, 

when squared, become 

1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 10000, 1000000, 

and reciprocally, the numbers in the first line are the square roots of the num¬ 

bers in the second. 

Upon inspecting these two lines we perceive that, among numbers expressed 

by one or two figures, there are only nine which are the squares of other 

whole numbers; consequently, the square root of all other numbers consisting 

of one or two figures must be a whole number plus a fraction. 

Thus, the square root of 53, which lies between 49 and 64, is 7 plus a frac¬ 

tion. So, also, the square root of 91 is 9 plus a fraction. 

84. It is, however, very remarkable that the square root of a whole number^ 

which is not a perfect square, can not he expressed by an exact fraction, and is, 

therefore, incommensurable with unity. 
a * . . 

To prove this, let -y a fraction in its lowest terms, be, if possible, the square 

a cP- 
root of some whole number; then the square of -y or -y, must be equal to this 

whole number. But since a and b are, by supposition, prime to each other 

* This subject will be resumed a few pages farther on. 
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{i. e., have no common divisor), and 6^ are also prime to each other;* there¬ 

at 
fore ^ is an hreducible fraction, and can not be equal to a whole number. 

85. The difference between the squares of two consecutive whole mlmbers 

is greater in proportion as the numbers themselves are greater; the expres¬ 

sion for this difference can easily be found. 

Let a and a-j-1 be two consecutive whole numbers; 

Then, 

(a+l)2 =a^-\.2a+l. 

Hence, 

(a-f l)2_a2=2a+l; 

that is to say, the difference of the squares of two consecutive whole numbers is 

equal to twice the less of the two numbers plus unity. 

Thus, the difference between the^ squares of 348 and 347 is equal to 

2 X 347-fl, or 695. 

* This depends upon the principle that, if any prime number, P, vs^ill divide the product 

of two numbers, it must divide one of them, which may be demonstrated as follows: 

Let A and B be the two numbers, and let it be supposed that P will not divide A, we 

are to prove that it must divide B. 

Dividing A by P, and denoting the quotient by d and the remainder by P', we have 

AB P'B 
A—Pd-f-P'" multiplying by B, AB=PdB-|-P^B dividing by P, -p-=dB-|—p-. 

Since by hypothesis AB is divisible by P, P'B must be, else we should have a whole 

number, equal to a whole number plus a fraction, which is impossible. Proceed now with 

P and P' after the method for finding a common divisor, and let P^', &c., be the suc¬ 

cessive remainders, which can none of them be zero, because P is by hypothesis a prime 

number (^. c., a number divisible only by itself and unity): these remainders must go on di¬ 

minishing till the last becomes unity, and we shall have the series of equalities, 

P=P'd'+P''- P'=P''d''-l-P^'', &c.; 
or, multiplying by B and dividing by P, 

„ P^d'B , P''B P'B P'^d^'B , P'^'B 
U-1—-U-=—U-f— 

The first of these equalities shows that if P'B is divisible by P, P^'B must also be divisi¬ 

ble ; and if both these are divisible, the second equality shows that P'^'B is divisible by 

P, and so on. But the remainders, P^^, P''''^, &c., diminish till the last becomes unity, and 

we shall thus have, finally, IXB, or B divisible by P. d. E. D. 

Now, since ig the product of a and a, any prime number which divides must divide 

a, or which divides must divide h, so that any prime number which divides both d and 

must divide a and h. 

Every number is either prime or composed of prime numbers as factors, and if this num¬ 

ber will divide the two tenns of a fraction, its prime factors will successively divide them. 

This follows from (10, I., 2). 

As an addition to this note may be demonstrated the following theorenj: A literal quan¬ 

tity can not be deeomposed into prime factors in different ways. 

Let ABCD... be a product of prime factors, and suppose that it could be equal to an¬ 

other product, abed..., the factors a, h, c, d— being also prime. The factor a, dividing 

abed, must divide the equal ABCD ...; but if the prime quantity a is different from each 

of the quantities A, B, C, D, &c., it can not divide any of them. Not dividing either A or 

B according to the above theorem, it can not divide the product AB. Not dividing either 

AB or C, it will not divide the product ABC, and so on. The factor a must, therefore, 

necessarily be equal to one of the factors A, B, C, &c. Suppose a—K. Dividing the two 

products by A. the remaining products, BCD ... and bed..., are still equal, and applying to 

them the preceding reasoning, we conclude that b ought to be equal to one of the factors of 

the product, BCD..., and so on. The two products, ABCD... and abed..., must, there¬ 

fore, be composed of the same prime factors. Q.. E. D 
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-The squai’e of a number will always consist of twice as many digits, or one 

less than twice as many, as the number itself. Thus, the square of 10 is 100, 

and the square of any number less than 10 must be less than 100, or contain 

not more than two figures. The square of 100 is 10000, and the square of all 

numbers between 10 and 100 must be between 100 and 10000; i. e., consist 

of 3 or 4 figures. In the same way it may be shown that the square of a 

number containing three figures must be one containing five or six figures, and 

so on; i. e., the square of a number consists of twice as many digits as the 

number itself, or one less than twice as many. 

Let us now proceed to investigate a process for the extraction of the square 

root of any number, beginning with whole numbers. 

78 

118'4 
118'4 

0. 

EXTRACTION OF THE SGUARE ROOT OF WHOLE NUMBERS. 

86. If the number proposed consist of one or two figures only, its root may 

be found immediately by inspecting the squares of the nine first numbers in 

(Art. 83). Thus, the square root of 25 is 5, the square root of 42 is 6 plus a 

fraction, or 6 is the approximate square root of 42, and is within one unit of 

the true value ; for 42 lies between 36, which is the square of 6, and 49, which 

is the square of 7. 

Let us consider, then, a number composed of more than two figures, 6084 

for example. 

Since this number consist of four figures, its root must 60'84 

necessarily consist of two figures, that is to say, of tens 49 

and units. Designating the tens in the root sought by a, 148 

and the units by b, we have 

6Q8A = {a-\-hy=a’^-^2ab-\-¥, 

which shows that the square of a number consisting of tens and units is com- 

posed of the square of the tens, qjlus twice the product of the tens by the units, 
plus the square of the units. 

This being premised, since the square of a certain number of tens must be 

a certain number of hundreds, or have two ciphers on the right, it follows that 

the squares of the tens contained in the root must be found in the part 60 (or 

60 hundreds), to the left of the last two figures of 6084 (which written at full 

length is 6000-f-80-|-4), the 84 forming no part of the square of the tens; we, 

therefore, separate the last two figures from the others by a point. The part 

60 is comprised between the two perfect squares 49, and 64, the roots of which 

are 7 and 8; hence 7 is the figure which expresses the number of tens in the 

root sought; for 6000 is evidently comprised between 4900 and 6400, which 

are the squares of 70 and 80, and the root of 6064 must, therefore, be com¬ 

prised between 70 and 80; hence, the root sought is composed of 7 tens and 

a certain number of units less than ten. 

The figure 7 being thus found, we place it on the right of the given number, 

in the place of tens, sepai-ated by a vertical line as in division; we then sub¬ 

tract 49, which is the square of 7, from 60, which leaves as remainder T1 

(which is 11 hundreds), after which we write the remaining figures, 84. 

Having taken away the square of the tens, the remainder, 1184, contains, as 

we have seen above, twice the product of the tens multiplied by the units 

plus the square of the units. But the product of the tens multiplied by the 

units must be tens, or have one cipher on the right, and, therefore, the last 
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figure 4 can not form any part of the product of tlie tens by the units; we, 

therefore, separate it from the others by a point. < 

If we double the tens, which gives 14, and divide the 118 tens by 14, the 

quotient 8 is the figure of units in the root sought, or a figure greater than the 

one required. It may manifestly be greater than the figure sought, for 118 

may contain, in addition to twice the product of the tens by the units, other 

tens arising from the square of the units, which may exceed the denomination 

units. In order to determine whether 8 expresses the real number of units 

in the root, it is sufficient to place it on the right of 14, and then multiply the 

number 148, thus obtained, by 8. In this manner we form, 1°, the square of 

the units ; 2°, twice the product of the units by the tens. This operation 

being effected, the product is 1184; subtracting this product, the remainder is 

0, which shows that 6084 is a perfect square, and 78 the root sought. 

It will be seen, in reviewing the above process, that we have successively 

subtracted from 6084, the square of 7 tens or 70, plus twice the product of 70 

by 8, plus the square of 8, that is, the three parts which enter into the com¬ 

position of the square of 70-{-8, or 78 ; and since the result of this subtraction 

is 0, it follows that 6084 is the square of 78. 

The quotient obtained from dividing by double the tens is a trial figure ; it 

will never be too small, but may be too great, and on tidal may require to be di¬ 

minished by one or two units. 

8'41 
4 

29 

49 44T 
441 

0. 

Take as a second example the number 841. 

This number being comprised between 100 and 10000, its 

root must consist of two figures, that is to say, of tens and 

units. We can prove, %s in the last example, that the root 

of the greatest square contained in 8, or in that portion of the 

number to the left of the last two figures, expresses the number of tens in tlie 

root required. But the greatest square contained in 8 is 4, whose root is 2, 

which is, therefore, the figure of the tens. Squaring 2, and subtracting the 

result from 8, the remainder is 4; bringing down the figures of the second 

period 41, and annexing them on the right of 4, the result is 441, a number ‘ 

which contains twice the product of the tens by the units, plus the square of 

the units. 

AVe may farther prove, as in the last case, that if we point off the last figure 

1, and divide the preceding figures 44 by twice the tens, or 4, the quotient 

will be either the figure which expresses the number of units in the root, or a 

figure greater than the one sought. In this case the quotient is 11, but it is 

manifest that we can not have a number greater than 9 for the units, for other¬ 

wise we must suppose that the figure already found for the tens is incorrect. 

Let us try 9; place 9 to the right of 4, and then multiply this number 49 by 

9; the product is 441, which, when subtracted from the result of the first 

operation, leaves a remainder 0, proving that 29 is the root required. 

Let us take, as a third example, a number which is not a perfect square, 

such as 1287. 

Applying to this number the process described in the pre¬ 

ceding example, we find that the root is 35, with a remainder 

62. This shows that 1287 is not a perfect square, but that 65 

it is comprised between the square of 35 and that of 36. 

Thus, when the number is not a perfect square, the above 

12'87 
9 

35 

387 
325 

62 
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process enables ns at least to determine the root of the greatest square con¬ 

tained in the number, or the integral part of the root of the number, 

87. Let us pass on to consider the extraction of the square root of a num¬ 

ber composed of more than four figures. 

Let 56821444 be the number. 

Since the number is greater than 10000, its root 

must be greater than 100 ; that is to say, it must 

consist of more than two fiffures.* But, whatever 

the number may be, we may always consider it as 

composed of units and of tens, the tens being ex¬ 

pressed by one or more figures. (Thus, any num¬ 

ber such as 37142 may be resolved into 37140-f-2, 

or 3714 tens, plus two units.) 

Now the square of the root sought, that is, the proposed number, contains 

the square of the tens, plus twice the product of the tens by the units, plus 

the square of the units. But the square of the tens must give at least hun¬ 

dreds ; hence the last two figures, 44, can form no part of it, and it is in the 

portion of the number to the left hand that we must look for that square. 

But this portion containing more than two figures, its root will consist of units 

and tens ; it wiU, therefore, be necessary to commence the process for finding 

the root of this portion by cutting off its two right-hand figures, 14, and the 

square of the tens of the tens is to be sought in the figures now remaining at 

the left, 5682. This number being the square of two figures, we again separate 

82, and seek for the square of the tens of the tens of the tens in the two re¬ 

maining figures, 56. The given number is thus separated into periods of two 

figures each, beginning on the right. We then go on to extract the root of 

tlie number 5682, as in the previous examples; this will give the tens of the root 

of the number 568214. We then double these tens for a divisor, and take the 

remainder after the last operation, with 14 annexed for a dividend ; we divide 

this dividend, after cutting oft' the right-hand figure, and the quotient will be 

the units of the root of 568214. All the figures now found of the root will 
• 

constitute the tens of the root of the given number, and we find the units by 

the rule previously given. The detail of the whole operation is as follows : 

Extracting the root of 56, we find 7 for the root of 49, the greatest square 

contained in 56; we place 7 on the right of the proposed number, and squaring 

it, subtract 49 from 56, which gives a remainder 7, to which we annex the fol¬ 

lowing period, 82. Separating the last figure to the right of 782, and then 

dividing 78 by 14, which is twice the root already found, we have 5 for a quotient, 

which we annex to 14; we then multiply the whole number 145 by 5, and 

subtract the product 725 from 782. We next bring down the period 14, an¬ 

nex it to the second remainder 57, and point off the last figure of this number 

5714. Dividing 571 by 150, which is twice the root already found, the quotient 

is 3, which we place to the right of 150, and multiplying the whole number 

1503 by 3, we subtract the product 4509 from 5714. 

Finally, we bring down the last period 44, annex it to the third remaindei 

1205, and point off the last figure of this number 120544. Dividing 12054 by 

* We have seen in the last article that it will consist of four fibres, half as many as the 

given number. Had the given number contained but seven figures, the root would still be 
composed of four. 

56'82'14'44 
49 

145 

7538 

78'2 
725 

1503 571'4 
4509 

15068 12054'4 
120544 

0. 
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1506, which is twice the root already found, the quotient is 8, which we place 

on the right of 1506, and multiplying the whole number 15068 by 8, we sub¬ 

tract the product 120544 from the last result 120544. The remainder is 0; 

hence 7538 is the root sought. 

From what has been said above, it is easy to deduce the rule, ordinarily 

given in Arithmetic, for the extraction of the square root of a number consist¬ 

ing of any number of figures, and which it is unnecessary here to repeat. 

EXTRACTION OP THE SaUARE ROOT BY APPROXIMATION. 

88. When a whole number is not the square of another whole number, we 

have seen (Art. 84) that its root can not be expressed by a whole number and 

an exact fraction; but although it is impossible to determine the precise value 

of the fraction which completes the root sought, we can approximate it as 

nearly as we please. 

Suppose that ct is a whole number which is not a perfect square, and tliat 

. . 1 
we are required to extract the root to within —, that is, to determine a number 

which shall diflfer from the true root of <2, by a quantity less than the fraction —. 
TL 

n‘‘ 

To effect this, let us observe that the quantity a may be put under the form 

; if we designate the integral, or whole number, portion of the root of an^ 

an^ 
by r, this number an^ will be comprised between and (r-|-l)2; hence, 

Ifh 

is comprised between — and 
(r+iy 

, and consequently, the root of a is com¬ 

prised between the roots of — and 
(r+l)< 

, that is, between - and 
n 

r-4-1 

n 
Thus, 

T ..Ip 
it appears that — represents the square root of a within — of the true value. 

^ Ifh n 

From this we derive the following 

RULE. 

To extract the square root of a whole number to within a given fraction^ mul¬ 

tiply the given number by the square of the denominator of the given fraction ; 

extract the integral part of the square root of the product^ and divide this in¬ 

tegral part by the given denominator. 

Let it be required, for example, to find the square root of 59 within of 

the true value. 

Multiply 59 by the square of 12, that is, 144, the product is 8496 ; the in¬ 

tegral part of the root of 8496 is 92. Hence or 7^ is the approximate root 

of 59, the result differing from the true value by a quantity less than jC* 

So, also, 

■ Vll = 3y\ true to 

•v/223=14|^ true to yV* 

89. The method of approximation in decimals, which is the process most 

frequently employed, is an immediate consequence of the preceding rule. 

In order to obtain the square root of a whole number within y^, y^, y/^... 

of the true value, we must, according to the above rule, multiply the proposed 

number by (10)^, (100)^ (1000)^,.or, which comes to the same thing, 
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place to the right of the number, two, four, six,.ciphers, then exti-act 

the integral part of the root of the product, and divide the result by 10, 100, 

1000 . 

Hence, in order to obtain any required number of decimals in the root, we 

must 

Place on the right hand of the proposed number twice as many zeros as we 

wish to have decimal figures ; extract the integral part of the root of this new 

number, and then mark off in the result the required number of decimal places. 

EXAMPLES. 

(1) Extract the square root of 3 to six places of decimals. 

Ans. 1.732050. 

(2) Extract the square root of 5 to six places of decimals. 

Ans. 2.236068. 

(3) Extract the square root of 12 to six places of decimals. 

Ans. 3.464101. 

When half, or one more than half, the figures are found, the rest may be 

found by division. 

(4) Extract the square root of 2 to nine places of decimals. 

The first'five figures of the root found by the ordinary method are 1.4142; 

with the remainder, 3836. The next divisor is 28284. Dividing 3836 by 

28284, according to the ordinary method of division, produces 1356 for a quo¬ 

tient, which, annexed to 1.4142, before found, gives for the root required 

1.41421356.* 

Extract the square root of 11 to six places of decimals. 

.^ns. 3.316624. 

EXTRACTION OF THE SGUARE ROOT OF FRACTIONS. 

fa 
We have seen (Art. 62) that ^ ; hence, in order 

Vo -v/ o ffb' 
to extract the 

square root of a fraction, it is sufficient to extract the square roots of the numer¬ 

ator and denominator, and then divide the former result by the latter. This 

method may be employed with advantage when either one or both of the terms 

of the proposed fraction are. perfect squares; but when this is not the case, it 

wiU be found inconvenient in practice. If, for example, we take the fraction 

3 V3 
3 
3’ 4. 

although (since each of these expressions, when multiplied by it¬ 

self, produces the same quantity, f), we must find an approximate value both 

for ^3 and also for ^/5, and, after all, we shall not be able to determine at 

once the degree of approximation in the result. Under such circumstances 

the following process may be employed: 

<3 ab 
Let the proposed fraction be this may be put under the form ; this 

being premised, let r represent the integral part of the root of the numerator 

^ The reason for this rule may be given thus : Let ^ be the part of the root already 

found, and z the remaining part. Then Jc-\-z will be the whole root, and 
-{-z^ the given number; as z is but a small fraction of k, z2 -will be a still smaller fraction, 

and may be neglected, so that the given number may, without sensible error, be considered 

equal to ^2-|-2Az. But has been taken away, and the remainder, ‘ikz, divided by 2^, 

gives z. 
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ah a , r'^ 
ah; hence -p, oi- p is comprised between ^ and ——; consequently, the 

(r+l)-^ 

a r-f-l 
root of ^ is comprised between ^ and —Thus, it appears' that ^ repre¬ 

sents the root of 7 within 7 of the true value. Hence, in order to obtain the 
o 0 

square root of a fraction, 

Make the denominator of the fraction a perfect square.^ hy multiplying both 

terms of the fraction hy the denominator ; extract the integral part of the root of 

the numerator, and divide the result hy the denominator. 

Let it be requhed to extract the square root of y'^3. 

7X13 91 
This fraction is the same as (1^* integi’al part of the 

9 . 
square root of 91 is 9; hence — is the root sought, a result within J3 of the 

X o 

true value. 

A greater degree of approximation may, perhaps, be required. In this case, 

91 
returning to the number —extract the root of 91 to any required degree 

(13) 
of approximation. Suppose, for example, we wish to find the root of 91 within 

1 
of the real value, it will become by (Art. 88) V91=9.53 .... Hence 

7 91 9.53 . 1 
the root of—, or  -, will be —^—, or a result within  -of the time value. 

13 (13)2 13 1300 

Remark.—It frequently happens that the denominator of the fraction, al¬ 

though not a perfect square, has a perfect square for one of its factors, in 

which case the above operation may be simplified. 

23 
Let the fraction, for example, be —. 48 is equal to 16x3, or (4)2x3; 

23 X 3 
hence, multiplying both terms of the fraction by 3, it becomes —7^, or 

• w) X (3) 
69 

and the denominator is thus made a perfect square. Extracting tlie 

1 8 3 83 
root of 69 to —, which gives 8.3, we find —L. or-for the root required, a 

10 ^ 12 120 , ^ 

result within 
120 

of the true value. 

In general, therefore, whenever the denominator of the fraction involves a 

fa'ctor which is a perfect square, multiply both terms of the fraction hy the factor 

which is not a qierfect square. 

T. , 5 1 
Exti'act the square root of 7 to within -7. x 

b 48 . 

5 5 X 6 X 82 1 9 20 
_ _ -,V 1920=43 .-. ../7=^. 

6 62 X 82 62 X 82’ V 6 48 

EXTRACTION OF THE SaUARE ROOT OF DECIMAL FRACTIONS. 

90. ^This process is an immediate consequence of the preceding remark. 

Required, for example, the square root of 2.36. 



90 ALGEBEA. 

236 
This fraction is the same as ; in this case the denominator is a perfect 

square ; extracting, therefore, the integral part of the root of the numerator, we 

15 1 
have —, a result within — of the true value. 

10 10 

Again, let it be required to extract the square root of 3.425. 

3425 
This fraction is tiie same as But 1000 is not a perfect square ; it is, 

however, equal to 100x10, or (lO)^XlO; thus, in order to render the de¬ 

nominator a perfect square, it is sufficient to multiply both terms of the frac- 

, 34250 34250 ^ ■ . 
tion by 10, which gives j^qqqq^ o*" ^iQQyz' Extracting the integral part oi the 

, . 185 
root 34250, we find 185; hence the root required is or 1.85, a result 

which is within of the true value. 

It appears from the above that the number of decimal places must always 

be made even before the operation commences. 

If we wish to have a greater number of decimal places in the root, we must 

add on the right of 34250 twice as many zeros as we wish to have additional 

decimal figures. 

From what has just been observed, we readily deduce for the extraction of 

the square root of a decimal fraction the following 

RULE. 

Annex ciphers till there are twice as many decimal places as are required in 

the root, and then proceed as in whole numbers; or, beginning at the decimal 

point, point off both ways the usual periods of two figures each. 

EXTRACTION OF THE CUBE ROOT OF NUMBERS. 

91. The numbers 

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 100, 1000, 

when cubed, become 

1, 8, 27, 64, 125, 216, 343, 512, 729, 1000, 1000000, 1000000000; 

and, reciprocally, the numbers in the first line are the cube roots of the num¬ 

bers in the second. 

Upon inspecting the two lines, we perceive that, among the numbers ex¬ 

pressed by one, two, or three figures, there are only nine which are perfect 

cubes ; consequently, the cube root of all the rest must be a whole number plus 

a fraction. 

92. But we can prove, in the same manner as in the case of the square 

root, that the cube root of a whole number, which is not the perfect cube of some 

other whole number, can not be expressed by an exact fraction, and, conse¬ 

quently, its cube root is incommensurable with unity. 

93. The difference between the cubes of two consecutive whole numbers 

is greater in proportion as the numbers themselves are greater; the expression 

for this difference can easily be found. 
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Let 

a and a-|-l be two consecutive whole numbers; 

Then, 

(a+l)3=a3-{-3a24-3a + l; 
Hence, 

(a4-l)3_a3_3^2_j_3^_|_l. 

that is to say, the difference of the cubes of two consecutive whole numbers is 

equal to three times the square of the less of the two numbers, plus three times 
the simple power of the number, plus unity. 

Thus, the difference between the cube of 90 and the cube of 89 is equal to 

3 X (89)2-1-3 X 89-f 1=24031. 

Let us now proceed to investigate a process for the extraction of the cube 

root of any number. 

EXTRACTION OF THE CUBE ROOT. 

94. The cube root of a proposed number, consisting of one, two, or three 

figures only, will be found immediately by inspecting the cubes of the first 

nine numbers in (Art. 91). Thus, the cube root of 125 is 5, and the cube root 

of 54 is 3 plus a fraction, for 3 X 3 X 3=27, and 4 X 4 X 4=64 ; therefore 3 is 

the approximate cube root of 54, within one unit of the true value. 

For the purpose of investigating a new and simple rule for the extraction of 

the cube root, it will be necessary to attend to the composition of a complete 

power of the third degree. Now, since we have 

{a-\-bY—{a-\-b){a-\-b){a-\-b)=a^-\-Za^b-^^ab'^-\-b^, 

it is obvious that the cube of a number, consisting of tens and units, will be al¬ 

gebraically indicated by the polynomial 

a^-^^a’^b-\-^ab^-\-¥, 

where a designates the number of tens, and b the number of units in the root 

sought. The number in the tens’ place will evidently be found by extracting 

the cube root of the monomial a^, for y a^=a, and removing a^ from the poly¬ 

nomial a^-|-3a26-j-3a62_j_ Rave the remainder, 

3a2&4.3a&2_j_53_(3a2^3^6-f 62)5 . 

and the difficulty that has been hitherto experienced in the extraction of the 

cube root entirely consists in the composition of the expression 3a^-f-3a6-{-62, 

which is obviously the true divisor by which to divide the remainder, after 

subtracting a^, or the cube of the tens, for the determination of 6, the figure 

of the root in the place of units. The part 3a2 of the expression 3a2-|-3a6-|-62, 

being independent of 6, the yet unknown part of the root, is employed as a 

trial divisor for the determination of 6 ; but since the expression 3a2_|-3a6-|-62 

involves the unknown part of the root in its composition, it is obvious that the 

ti’ial divisor 3a2, which does not contain 6, will, at the first step of the opera¬ 

tion, give no certain indication of the next figure of the root, unless the figure 

denoted by 6 be very small in comparison with that denoted by a; for the 

trial divisor 3^2 will be considerably augmented by the addend 3a6-|-62 when 

6 is a large number, while the augmentation, when 6 is a small number, will 

not so materially affect the trial divisor. 

When the figure in the tens’ place is a small number, as 1 or 2, it is hence 

obvious that little or no dependence can be placed on the ti’ial divisor; but if a 
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be great and h small, the ti’ial divisor, 3a^, will generally point out the value 

of 6. All this will be evident if we consider that the relative values of a and 

h materially affect the true divisor, In the successive steps, 

however, of the cube root this uncertainty diminishes; for, conceiving a to 

designate a number consisting of tens and hundreds, and 6 the number o 

units, then the value of h being small in comparison with a, the amount of the 

effect of h in the addend 3(^b-^h^ will be very inconsiderable ; hence the trial 

divisor, 3a^, will generally indicate the next figure in the root. 

To remove, in some measure, the difficulty which has hitherto been ex¬ 

perienced in the extraction of the cube root, we shall proceed to point out tico 

methods of composing the true divisor, 3a^-\-3ah-\-h'^, and leave the student 

to select that which he conceives to possess the greater facility of operation.* 

95. First method of composition of 3a'^-\-3ah-{-h^. 

aXo, = a? (a-j-6= root sought. 

a aP'X CL .. o? 

a cd - 

— - 3a^h-\-3a¥-\-h^ 

3a^ 

(3<z-l-5)X&= 3a5-{- 
b- 

b (3a2+3a6-f b^)xh = - • • •^a^b-\-3ab^-{-b^ 

b- _ 

3a-\-3b 3a^-\-6ab-{-3b\ 

Distinguishing the three columns from left to right by first, second, and 

third columns, we write a in the root, and also three times vertically in the 

first column; then aXci produces a^, which WTite, also, three times vertically 

in the second column ; multiply the second a? by a, placing the product, 

under in the third column ; then, subtracting from the proposed quantity, 

we have the remainder, 3a^b-\-3ab'^-\-b^. The sum of the three quantities in 

the second column gives 3a? for the trial divisor, by which find b, the next 

figure of the root, and to 3a, the sum of the last three written quantities in 

the first column, annex b; then the sum, 3a-\-b, is multiplied by b, and the 

product, 3ab-\-b'^, is placed in the second column; then the trial divisor, 3a^ 

and the addend, 3ab-\-b'^, being collected, give the true divisor, 3a^-\-3ab-\-b'^, 

which multiply by b, and place the product, 3a'^b-\-3ab’^-\-b^, under the re¬ 

mainder, 3a'^b-\-3ab'^-\-b^. When there is a remainder after this operation, 

the process may be continued by writing b twice in the first column, under 

3a-}-6, and 6^ once in the second column, under the last true divisor^ then 3a? 

-\-3ab-\-3¥, the sum of the last wi’itten three lines in the second column, will 

be another trial divisor, with which proceed as above. We have written a^ 

in the second column three times in succession, to assimilate the first step in 

the operation to the other successive steps, but the first trial divisor, 3a^, may 

be written at once, and the symmetiy of the disposition of the quantities in 

the first steps disregarded, f 

* These methods may be passed over by the student, as vp-ell as that given for the bi¬ 

quadrate root, and the method employed, which is described at (Art. 112), which is appli¬ 

cable to the extraction of the root of the third and foui-th, as well as of any other degree. 

t Three quantities are added each time ; in the method on next page, two. 
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96. Second method of composing divisor. 

a ad-.od 
_ _]_ 

2a.2a2 :^a%-\-2ah^-{-U^ 

a Zed 

Za-^ h , . . . Zal)-\- 

b 3a2+3a5+ b" . , . . Za’^b-^Zab^-\-b^ 

Za-\-2h .... Zah-\-2b^ 
h - 

- Za^-{-6ab-{-Zh^=: second trial divisor. 
• 3a+36 

In this method we write a under a in the first column, and the sum 2a 

being multiplied by a, gives 2a^ to place under cd in the second column, and 

the sum of 2a^ and a^ is da^ for the trial divisor. Again, under 2a in the first 

column write a, and the sum of 2a and a gives 3a. Now, having found b by 

the trial divisor, annex it to 3a in the first column, making 3a-|-&, which, mul¬ 

tiplied by &, and the product placed in the second column, gives, by addition, 

the true divisor, 3a^-|-3a6-|-6'^, as before. We shall exhibit the operation of 

extracting the cube root by both these methods. 

EXAMPLES. 

(1) What is the cube root of —9:^-\-Z9.Td—993d-{-156x^—144a:-|-64 ? 

By the first method. 
a;2 x^—9x5-{-39x<—993d-\-156x'^—I44.r-1-G4 Gc”—3^-j-4 

.r2 x‘^. 
x’^ x^ 

Zx^ 
3.C-—Zx . . — 9x-'^-{- 9.r2 

—9x^^Z9x^—99x^ 

—3a; 3a;'l— 9.c3-{- 9a;2 .... —9x^-{-27x^—27x^ 
9x‘i -- 

_3.^-12.r4_72a;3-f-156.c2_l44.c-j-C4 
- 3a;4—18a;34-27a:2 

3a:2_9^_j_4 . . . 12x‘2—Z6x-]-16 

3a,-4_l8a;3-j-39a:2—36a;-f 16 . . . 12a;4_72a:3_|_i56a;2_i44ar_j_64. 

(2) What is the cube root of a:®-|-62’®—40.r-‘^-|-96.r—64 ? 

By the second method. 
x^ x*^-\-6x^—40x3-1-96.2;—64 {x’^-\-2x—4 

x2 ad.x6 

2.2:2.2x4 • Qx^—40x3 

X2 - 
- 3x4 
3x2-}-2x . . . 6x3-1- 4.x2 
2x- 

■- 3x4-}- 6x3-}- 4.2;2 .... 

3x2-f 4x . . . 6x3-}- 8x2 

2x - 
- 3.x4-}-12x3-}-12x2 

3x2-|-6x—4 . . ---12x2—24x-}-16 

6x5-}-12x4-}- 8x3 

\ 
—12x4—48x3-}-96.x—64 

—12.x4—48x3-l-96.x—64, 3x4-}-12x3— 24x-}-16 
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(3) What is the cube root of 

Ans. 
(4) Extract the cube root of a:®—6x^-\-15x^——6a:-}-l« 

Ans. —2a:-|-l. 

97. The same process is employed in the extraction of the cube root of 

numbers, as in the subsequent examples. 

EXAMPLES. 

(1) Extract the cube root of 403583419. 

7 . . . .49 403583419 (739 = root 

7 49. 

7 49 

60583 

147 

213 . . .639 

3 

3 15339 . , . . 46017 

9 

14566419 

15987 

2199 . . 19791 

1618491 . , . . 14566419. 

(2) What is the cube root of 115501303 ? 
• • • 

115501303 (487 = root 

4 . . . . .16. 

4 51501 

8 . . . . 

4 48 

128 .. . .1024 

8 

5824 . . . . 46592 

136 .. . .1088 

8 

6912 
4909303 

1447. . . . . 10129 

701329 . 4909303. 

98. The local values of the figures in the root determine the arrangement 

of the figures in the several columns, as is exemplified by working the last ex¬ 

ample as on next page; by omitting the terminal ciphers, the arrangement is 

precisely the same as in the preceding example. > 
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• • • 

115501303 (400+80 + 7 

400 ... . . . . . 160000 . 

400 

51501303 

800 ... . . . . . 320000 

400 

480000 

1200 

80 

1280 .... . . . . 102400 

80 

582400 . 

13fi0 . . . . . . . . 108800 

80 

691200 

4909303 

1440 

1447 . 10129 

701329 . 4909303 

99. Extraction of the fourth root of lohole numbers. 

The investigation of a method for extracting the fourth root of any number 

is similar to that employed for the cube root. Thus, since 

(a+6)‘^=u^+4a'^6 + 6«^6^+4a&^+6^ 

we may conceive a to denote the number of tens, and h the number of units 

in the root of the number expressed by a^+da'^fe + Oa^i^+da^^+fe^. Then 

y a^-=a, the figure in the tens’ place, and the remainder, when is removed, is 

4a=^6+6a2b2+4afe3+ ¥)h. 

The method of composing the divisor A:a?-\-t5a%-\-Aab^-\-b^^ for the deter¬ 

mination of &, the figure in the units’ place, may be illustrated as follows: 

aX« = a^ a‘*+4a^6 + 6a^62+4a6'’+6^ (a+6 

a a^Y^a = 

2aX<a^ =2u^ a^X« 

a 3^2 X« -=^0? 4a^&+6«^6‘^+ 4a&^+ 

3a X« =3a2 da^ 
a -- 
- 6a2 

(4a+6)b=4a& + 6^ 

(6a2+4a& + 6'*)6=6a2& + 4a&2+&3 

(4a^+6a^6 + 4a&'^ + ^^^ ?>=4a^& + 6a^6^+4a63+ 

100. From this mode of composing the complete divisor we easily derive 

the following process for the extraction of the fourth root of any number. 
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EXAMPLE. 

What is tliG fourth root of 1185921 2 

3X3 

3 

= 9 

9X3 = 27 

6X3 = 18 27X3 

3 27X3 r= 81 

9x3 
0 

= 27 108 . . 

54 . . 
123X3 = 369 

5769X3= 17307 

1185921 (33 = root 

81 

375921 

125307 X 3 375921 

In the same manner, the student may readily investigate rules for the ex¬ 

traction of the higher roots of numbers, simply observing to use an additional 

column for each successive root. 

101. To represent a rational quantity as a surd. 

Let it be required to represent a in the form of a surd of the nth. order; 
1 

then, by (Art. 63), the form will be V^"5 or («")’'; for by raising a to the nth 

power, and then extracting the nth root of the nth power of a, we must evi¬ 

dently revert to the proposed quantity, a. Hence we have 

a= yfo? — Vo? = ya^ = ^ a^^ = ya^= Va" 

JL 3 2 6 5 L 

102. When the given quantity is the product of a rational quantity and a 

surd, we must represent the rational quantity in the form of the given sm’d, 

and then express the product with a single radical sign, or fractional index. 

Thus, we have ' 

ay h =.y a? y^yhzzzy a^^h 

3a y5h= ySaX'^^if-X y=y9a^X3h = y45o^b 

ayxy= yaXcLXo,X 'V^’2/= ^cl^X y^y= VaJ^xy 

12 a/7 = V144X = yiAA^ = a/1008 
" 1 JL I 1 _ 

a{i—a-^x-y^= («2)2 {i — a-^xY — (a^—a^x^ =ya^—x^. 

EXAMPLES. 

(1) Pv-epresent a? in the form of a surd, Avhose index is 5. 

(2) Represent 2— y3 in the form of a quadratic surd. 

(3) Transform 6 a/H into the form of a quadratic surd. 

(4) Transform ay a — h into the form of a quadratic surd. 

(5) Represent as a surd the mixed quantity 

(6) Represent as a surd the mixed quantity 

(1) y a}^ or 

(2) a/7 —4 a/3. 

ANSWERS. 

(4) 

(5) 

(C) 

ycd—or —a^^h)-. 

y X?'—or (.r"— 

yx-\-4 or (,r-|-4)-. (3) a/396. 
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10.3. To find multipliers which vnll render binomial surds rational. 

The product of two irrational quantities is, in many instances, a rational 

quantity, and, therefore, an irrational quantity may frequently be found, which, 

employed as a factor to multiply some other given inational quantity, will 

produce a rational result; thus, 

ay, a —a 

yxy yz=.x 

Vyx Vr"'=2/- 

Again, since the product of the sum and difference of two quantities is equal 

to the difference of their squares, we have, evidently, 

{ya—yi)){ya-\-yh)-=a—h • 

(^+ yy){^ —yy)=^^—y 
{yx— y){yx-{- y)—x—y^. 

Hence it is obvious that, in these and similar equalities, if one of the factors 

be given, the other factor or multiplier is readily known, and the proposed 

irrational quantity is thus rendered rational. By a double operation of this 

kind, multiplying {y n-\-yp-{-y q) by we have ( 

+ ypf—q^ or n-\-p—q-\-2y np; and multiplying this by n-\-p—q—2 ynp^ 

the given expression, yn-\- yp-\- y q^ is rationalized. In the same manner, 

since 

{x:^y){x’^^xy-\-y^)=o(?-:^y^ 

{yx^yy){yx‘^^yxy-\-yy'^)=x:izy, 

and the expression •^2/ niay, therefore, be rationalized by multiplying it 

by yx^^yxy-^yy^\ and ^ -|-^2/^, multiplied by yx:^yy, will 

produce a rational result. 

Again, by division [see Art. 23 (5), (6), (7)], 

a:"—2/" 

X- 

x^- 
■y 
.yn 

x^y 

r"-j-2/“ 
x-\-y 

—a:"—1 x'°^y x'^~^y^ + 

,n—1—x°^^y x^~^y^—x^~"^y^ -|- =x‘‘ 

—a:"—1 — x^~^y -j- x^~^y^—x^~*y^ -|- 

+2/"-i 

2/n-i 

+2/“-h 

Put x^=a ; then x-= V ci j 3:"“^ = V ? x'^~^= y a’^~^, 6cc.; 

y'^ = h; then y=yb; y^ z=.yW'^ y^=yb^, &;c.; 

hence, by substitution in the three preceding equalities, we have 

■ b 
y^a—yb^ ya^-^h-\- ya^-^'^-y ya^-^¥-\-yb'^-^. (1) 

a — b 
—r^7T= ya^-^b^— ya^-^b^-\-— • (2) 

•y CL —p y O 

CL —^ & 

y' Va»-i- Va''-^6+ ... + Vi""*. (3) 

Now, the dividend being the product of the divisor and quotient, it is obvi¬ 

ous that a binomial surd of the form y a— yb will be rendered rational by 

multiplying it by n terms of the second side of equation (1), and a binomial 

surd of the form V«+ will be rationalized by employing n terms of the 

second side of equality (2^, or (3), according as n is even or odd, the product 

in the former case being a — b, and in the latter a—b or a-{-b. 

G 
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Note.—When n is an even number, employ equation (2), and when it is an 

odd number, equation (3), in order to rationalize yf a-{- yfb. 

EXAMPLES. 

(1) Find a multiplier to rationalize -^11 — ^7. 

Employing equation (1), we have a=ll, h = 7, and n=3 ; hence required 

multiplier 

And, 

yil —^7_ 

V13314- ^8474- 

9 •“ _ ^847—V343 

11 * * — 7 =4, a rational product. 

(2) Rationalize the binomial surd -^5-{-‘^4. 

Here we have a=5, 6=4, w=3, an odd number; hence by equation (3) 

we have multiplier required, =^25 — ‘^20-j-'^16; by multiplication, 

(^5+^4)(^25 —^204-^'l6)=5+4=9= a rational number. 

(3) What multiplier will render the denominator of the fraction 
1 

V7—V2 
a rational quantity ? 

(4) Change 

(5) Change 

nominator. 

V4—V2 
into a fraction that shall have a rational denominator, 

into a fraction that shall have a rational de- 

■y/u—X—j“ '^o,-—x 
(6) Change ' . } into a fraction that shall have a rational de- 
' ’ ^ ^a-\-x^ yf a-^x 

nominator. 

ANSWERS. 

(3) V7"4- V7^-2+ -v/72.224- ^7.2^4- 

5{Vl6+y8+V4) 
(4) --5-• 

(5) 

(6) 

^x^{yx^ ^y) .r=p yx‘^y 

^4" 

x^y 

X 

104. To extract the square root of a binomial surd. 

Before commencing the investigation of the formula for the extraction of 

the square root of a binomial surd, it will be necessary to premise two or three 

lemmas. 

Lemma 1. The square root of a quantity can not be partly rational and partly 

irrational. 

For, if y/a'=b-\- yc, then, by squaring, we have 

a—6'^—c 
a=.¥-\-c-\-2b yc\ therefore, vc=--; 

that is, an irrational equal to a rational quantity, which is absurd. 
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Lemma 2. If art ■y/l)-=x^ -/?/ be an equation consisting of rational and ir¬ 

rational quantities, then a=;r, and ^Jhz=.^/y ; i. e., the rational and iiTational 

parts of the two members of an equation must be separately equal. 

For, if a be not equal to x, let a—x=d; then we have 

rt V2/T but a—x=d\ therefore 

rt which is impossible ; 

a—x, and, taking away these equals, ■/&= ^/y. 

Lemma 3. If ^/a-{- ■y/h—x-\-y^ then a—^b=x—y; where x and y 

are supposed to be one or both irrational quantities. 

For, since a-\- ^/l>=zx'^-\-y‘^-i^2xy; and since and y^ are both rational, 

2xy must be irrational. By Lemma 2, we have 

a=x^-\-y’^ \ ^J})-=^xy 

.'. a— ■sjh—x'^—^xy-^y’^ 

and a—-\/b=x—y. 

Let it now be required to extract the square root of a-\- ^/b. 

Assume a-\- ^/b=x^\^y ; then —■\/b=x—y 

a-j- ■^b—x'^-\-y'^-\-2xy 

a— b-=x^-\-y'^—2xy 

.*. By addition, 2a z=i2{x^-\-y’^), or a—x^-\-y^. 

Again, y/a-\- yjbx y/a— y/b=.x‘^—y'^, or y/a^—b=x'^-^y^. 

Hence x‘^-{-y"=a 

x^—2/^= V—6=c, suppose. 

Therefore, by addition and subtraction, we have 

a-4-c a—c 

Hence Va-|- ^b 

la-\-c la—c 

••• ^=V“y V 

-J^+4 a—c 

- fa-{-c la — 
yj a y/b = yj — -yj 2 

2 

—c 

(1) 

(2) 

where c= y/ cd—6 ; and, therefore, a^—6 must be a perfect square ; and this 

is the test by which we discover the possibility of the operation proposed.* 

* When the quantity J is not a square, the values of a and h are no longer rational; 

but it is clear that the formulas (1) and (2) will still give true results. As, however, these 

are more complicated than the original expressions themselves, they are rarely employed ; 

yet, when y/h is imaginary, the result merits attention. _ 

In order to examine this case, change h into —52; a-\-y/h becomes a-\-by/—1. The re¬ 

markable circumstance just alluded to is this, that the square root of a-f-^y'—1 has the 

same form as this quantity itself. 

This is shown from the formula (1), for since c—y/when 5 is changed into —Ifl, 

the second member becomes y/ipljg quantity under the 

first radical is positive, and that under the second negative, since yf a2_j_j2 jg greater than 
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EXAMPLES. 

(1) What is the square root oi ll-\- or ll-f-O ? 

Here «=11; &=72; c= ^121—72=7 

-— la-\-c la—c 
\/ll + 6'v/2=y 2 '^\~2 

(2) What is the square root of 23—8 -y/ll 

Ans. 3i -/S. 

Ans. Vlli '\/7. 

Ans. 7-{-3 ^/5. 

Here a=23; &=8^X7=448; c=-y/a^—bz=^/529—448 = 9 

,-r- /«4-c /« — c 
.♦. V23-8 V7=y-^-^—=4- V7. 

(3) What is the square root of 14^6 • 

(4) What is the square root of 18iL2 V77 ? 

(5) What is the square root of 94-j-42 • 

(6) To what is'\/^P+2wi2—2m ^/np-\-nl? equal 1 Ans. ■\/np-{-m^—m. 

(7) Simplify the expression\/l6-{-30—30 ^/ — 1. Ans. 10. 

(8) To what is ^28+10 ■v/3 equal? Ans. 

(9) \lbc-\-2b s/bc 2&-/6C—j[-26 

(10) "sjab-^-^—d^-\-2^/Aabd^ — ob(P— ab-\- 4c‘^—d?, 

(11) What is the square root of —2-/ —1 ? Ans. 1— -y/ —1. 

(12) What is the square root of 3 — 4 —1 ? Ans. 2— —1. 

3'v/3+2v'6 112 + 20yi2^ 
(13) What is square root of 

V3 

Ans. (1+ y/2) . (5+ 3), 

BINOMIAL THEOREM. 

105. It is manifest, from what has been said above, that algebraic polynomials 

may be raised to any power merely by applying the rules of multiplication. 

We can, however, in all cases obtain the desired result without having recourse 

to this operation, which would frequently prove exceedingly tedious. When 

a binomial quantity of the form x-\-a is raised to any power, the successive 

terms are found in all cases to bear a certain relation to each other. This law, 

when expressed generally in algebraic language, constitutes what is called the 

“Binomial Theorem.” It was discovered by Sir Isaac Newton, who seems 

to have arrived at the general principle by examining the results of actual mul¬ 

tiplication in a variety of particular cases, a method which we shall here pursue, 

and give a rigorous demonstration of the proposition in a subsequent article of 

this treatise. 

a; representing the quantity under the fii’st radical hy and that under the second 

by —132, the expression tabes the form a-h/dy/—1; hence 

-y/a-j-^V'—l=a-}-;d-y/—1. 
a. E. D. 
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Let us form the successive powers of x-\-a by actual multiplication. 

X ■\-a 

X a 

-f- xa-\-a? 

x'^-^-^x  2d power. 

X a 

3?-\-2x^a-\- X 

+ x'^a-\- 2xa?-\-o? 

Sara^-j-a^.3d power. 
X a 

r*4-3a:^a+ ^x^aP'-^- xo? 

x*-\-4:3?a-{- 6a:2a2_|_ Axa^-\-a‘^.4th power. 

X a 

x^-\-Ax^a-\- 6a.’^a^-j- Ax^a^-\- x 

4“ ar*a-|- Ay?a?-\- Qx^a^-\- 4ara'*-f-^*^ 

x^-{-bx*a-\-\Qjfia‘^->^\Qx‘^a?-\- bxa‘*‘-\-a^.5th power. 

X 4“ CL 

x^ 4" 4“ 1 Oa'^a^ 4" f 4“ b)X^cC^ 4“ ^ 

4“ x^a 4“ bx^a"^ 4~ 1 Or'^a^ 4“ f 4“ Sa: a® 4" 
xf^-{-Gxf’a-\-lbx^a'^-\-2Qx?a^-{-lbx'^a^-\- bxa^-\-a^.6th power. 

a: 4“ 

x"^-{.Gx^a-{-lbxfia^-\-2Qx^a?-\-lbx^a^^ 6x‘^a^-{- xa^ 

4- x^a-^ bx^a^-\-lbx:^o?-\-2Qx^a^-\-lbx'^a^-\-6xa^-\-a7 

x'^-\-lx^a-\-2l7^a‘^-\-bbx^a^-\-bbi^a^-\‘2\x^a^-\-lxa^-\-a' . . . . 7th power. 

In order that these results may be more clearly exhibited to the eye, we 

shall arrange them in a table. 

TABLE OF THE POWERS OF X-\-a. 

(a; 4-a) a:4-a 

{x-\-aY x'^-\-2xa 4-«^ 

(a:4-G^)^ a:'’4-3a:2a4" ^ara^ 4“^^ 

(ar-fa)" i^-\-^x^CL-{- 6a:%24“ 

{x-\-aY 2’54-5a:%4_i0a:^a24_]^Q^2Q,3_|_ j^q5 

(a:4-<2)® x^-\-Qo^a-\-lbx:*a^-{-2^30^0?■\-lbx^a‘^-\- Qxa^ ■\-a^ 

(a:4-a)7 r74-7a:6a4-21a;5a2_^35a:^a3_j_35^^4_^oi:r2a5_|. -\-o7 

(a:4-a)8 ^34.8a:7a4-28.r6a2 4-56a:5^3_^ 70a:4a'‘4-56a:3a5-f 28ar2a6^ 8a’a74-a«. 

In the above table, the quantities in the left-hand column are called the ex¬ 

pressions for a binomial raised to the^rs^, second, third, &:c., jpoiver; the cor- 
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responding quantities in the right-hand column are called the expansions^ or 

developments, of those in the left. 

106. The developments of the successive powers of x—a are precisely 

the same with those of x-\-a, with this difference, that the signs of the terms 

are alternately -{• and — ; thus, 

{x—aY=x^—5x*a -j-1 Ox^a^—10.r^a'^ -}- 5xa‘^—a®, 

and so for all the others. 

107. On considering the above table, we shall perceive that, 

I. In each case the first term of the expansion is the first term of the bi¬ 

nomial raised to the given power, and the last term of the expansion is the 

second term of the binomial raised to the given power. Thus, in the expan¬ 

sion of {x-\-aY the first term is x^, and the last term is a**, and so for all the 

other expansions. 

II. The quantity a does not enter into the first term of the expansion, but 

appears in the second term with the exponent unity. The powers of x de¬ 

crease by unity, and the powers of a increase by unity in each successive 

term. Thus, in the expansion of we have ofiy x^a, x^od-y x?a?y x^a^y 

xa^y a®. 

III. The coefficient of the first term is unity, and the coefficient of the 

second term is, in every case, the exponent of the power to which the binomial 

is to be raised.. Thus, the coefficient of the second term of {x-\-aY is 2, of 

(.r4-«)® is 6, of is 7. 

IV. The coefficient of any term after the second may be found by multiply¬ 

ing the coefficient of the preceding term by the index of x in that term, and 

dividing by the number of terms preceding the required term. Thus, in the 

expansion of {x-\-aY the coefficient of the second term is 4 ; this multiplied 

by 3, the index of x in that term, gives 12, which, when divided by 2, the num¬ 

ber of terms preceding the third term, gives 6, the coefficient of the third term. 

Again, 6, the coefficient of the third term multiplied by 2, the exponent of x 

in that term, gives 12, which, when divided by 3, the number of terms pre¬ 

ceding the fourth term, gives 4, the coefficient of the fourth term. So, also, 

35, the coefficient of the fifth term in the expansion of {x-\-aYy when multi¬ 

plied by 3, the index of x in that term, gives 105, which, when divided by 5, 

the number of terms preceding the sixth, gives 21, the coefficient of that 

term. 

By attending to the above observations we can always raise a binomial of 

the form to any required power, without the process of actual multi¬ 

plication. 

EXAMPLE I. 

Raise x-\-a to the 9th power. 

The first term is. 

The second term is. 

The third term is. 

The fourth term is. 

x^a^'y 

2x'^a^; 

9X8 
—^-X’^0?=. ^^X’o^'y 

36X7< 
—-—x^a^= 8ix^a^ ; 
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84 V 6 
The fifth teiTn is.—-—\ 

4 

mi • 1 . 126x5 
The sixtli term is.—-—; 

5 

126 X 4 
The seventh term is.—-—x^a^z= Qio(?a^; 

/ 6 

84 X 3 
The eighth term is.. —-—x'^o7= SSx'^a^; 

36 X 2 
The ninth term is.—-—x^a^= 9x^a^; 

8 

9X1 
The tenth term is.—-—3Pa^=z xPa^. 

Hence, 
{x-\-af = a;9+Qx^a^^Qx^a^ -f 84.r6^z3 ^ 126^:5^44- 126:r^a5+ + ^Qx^a^ 

-\-9xa^-\-a^. 

EXAMPLE II. 

In like manner, 
(x—ay°=x^^—\9x^a-\-^ hx^'oP-—12 Ox’^a^+219x^0^—25 2x^a^+21 Qx^a^—120 

x^a? -}- 45a:^a3—l.0a:a^+ 

108. The labor of determining the coefficients may be much abridged by 
attending to the following additional considerations: 

V. The number of terms in the expanded binomial is always greater by 
unity than the index of the binomial. Thus, the number of terms in (x+a)'‘ 
is 4+1, or 5; in (a:+<z)^° is 10+1, or 11. 

VI. Hence, when the exponent is an even number, the number of terms in 
the expansion will be odd, and it will be observed, on examining the examples 
already given, that after we pass the middle term the coefficients are repeated 
in a reverse order ; thus. 

The coefficients of (r+a)^ are 1, 4, 6, 4, 1. . 

The coefficients of (a:+a)® ai’e 1, 6, 15, 20, 15, 6, 1. 

The coefficients of (ar+a)^ are 1, 8, 28, 56, 70, 56, 28, 8, 1. 

VH. When the exponent is an odd number, the number of terms in the 
expansion will be even, and there will be two middle terms, or two contiguous 
terms, each of which is equally distant from the corresponding extremities of 
the series; in this case the coefficient of the two middle terms is the same, 
and then the coefficients of the preceding terms are reproduced in a reverse 
order; thus. 

The coefficients of (r+a)^ are 1, 3, 3, 1. 

The coefficients of (r+a)^ are 1, 5, 10, 10, 5, 1. 

The coefficients of (ar+u)'^ are 1, 7, 21, 35, 35, 21, 7, 1. 

The coefficients of (ar+a)® are 1, 9, 36, 84, 126, 126, 84, 36, 9, 1. 

109. If the terms of the given binomial be affected with coefficients or ex¬ 
ponents, they must be raised to the required powers, according to the princi¬ 
ples already established for the involution of monomials; thus. 
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EXAMPLE III.* 

Raise {2j^-\-boP‘) to the 4th power. 

The first term will be.(2r^)^ ; 

The second term will be .... 4(2a:2)^X =4x8x5^9(22; 

4X3 , 
The third term will be.—^— X X {ba^Y—^ X 4 X ; 

6x2 
The fourth term will be .... —-—(22:9^1 ^ (5^2)3 —4^3^ 1252:9^6. 

O 

4 
The fifth term will be.-(2.2:9^° X =625(2^; 

.-. (22:3^5a2)4_i63.i2_j_i602:9<z2^6002:6a4+10002:3^9_^625a9. 

EXAMPLE IV.* 

In like manner, ^ 

(Y = + 9 {ay X (3a6) + 36(a3)7 x (3a6 Y + 84 {ay X (3a6 Y 
4-126 {ay X {"^abY 4-126(^3)4 x (3a5 f + 84(a9)3 x (3a6 y 

4- 36{ay X {SabyyQa^ X {Sabyy {3abY 
=a27 4-27a25 6 _j_ 324a23 62 _|_ 2268a2i ^ 10206a'9 54 + 30618^1’'&5 

+ 61236^152,6 _|_ 7S732flri3j7_|_ 59049aii684- 19683a959. 

110. We shall now proceed to exhibit the binomial theorem in a general 

form. Let it be required to raise any binomial (2:4-<2) to the power represent¬ 

ed by the general algebraic symbol n. Then, by the preceding principles, we 

shall have 

The first term . 

The second term 

The third term . 

The fourth term 

2:"; 

W2:"~i<2 ; 

n{n—1) 

m(7i—l)(w—2) ^ 
-T^n 0 

1.2.3 

The fifth term 

&c. . . 

The last term. 

n{n—1) {n — 2) {n—3) 
-— ' 

1.2.3.4 

&c. 

a". 

The whole number of terms will be and the coefficients be repeated 

in a reverse order after the or term, according as n is odd 

or even; moreover, the terms will all have the sign +, if the quantity to be 

expanded be of the form x-j-a, and they will have the sign -f and —- alter¬ 
nately, if the quantity be of the form x—a. Hence, generally, 

n{n—1) n(n—IWn 21 
(2:+ aY=x^-\- nx^-^a -f —-Ix^-^a^y. 

n(7i—l)(n—2) ^ 

+— 

n{n — l) 
f —2:2a“-2 4- nxa'^-'^ 4-a'* 

n{n—1) 
(2:—ay—x^—nx^~'^a 4-—-x'^~^a^ 

X •jw 

* The best method of proceeding in these examples is to raise {^/-{-z) to the fourth and 
ninth powers, and then, in the expansions thus obtained, to substitute 2a;3 for y, and 5a^ for 
z in the first, and a?- for y, and Zdb for 5; in the second. 
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In tins last case, if n be an even number, the last term, being one of the odd 

terms, will have the sign -f- ; and if n be an odd number, the last term, being 

one of the even terms, will have the sign —. 

Both forms may be included in one by employing the double sign. 

Thus, 

(a: i a)"=2:“ i -+ 
n{n — 1) 

1 ‘> 

. nin—l)(w—2) 
±.. &c. 

EXAMPLE V. 

To exemplify the application of the theorem in this form, let it be required 

to raise x-\-a to the power 5. 

Here we have w==5, n—1=4, n — 2=3, &:c. 

Hence, 

.t".is = _ a:® 

nx^~^a.is bxl^a = hxi^a 

n{n—1) . 5.4 
— - .IS r—=10r‘^a^ 

L • X. • fC 

n(n—l)(w—2) . 5.4.3 
-l7.n—3/73 le -7’3/73 —1 n'X’2/73 

1.2.3 .1.2.3 “ — 

n{n—l)(?i—2)(n—3) . 5.4.3.2 

-r:2:3:4-.1:2:^“* = 

n{n — l)(w—2)(?i—3)(?i—4) . 5.4.3.2.1 

1.2.3.4.5 .‘S.2.3.4.5''“ - 

EXAMPLE VI. 

Raise Sc^—2yz to the 4th powder^ 

Here, 

x=5c® 

a=2yz 

?i=4 

.•.X".becomes 

wx"”^ a.becomes 

n{n—1) 
-x^~^a^ 

1.2 

nin—l)(7i—2) 

1.2.3 

(5c2)4 ~ 625c8 

4(5c^)^ X (Syz) =1000c®y2 

4.3, 
becomes —(Sc®)^ X (23/2)^= GOOc'^y^z^ 

J. V/W 

xn—3^3 , , , becomes 

nin—1 )(n—2)(w—3) 
xn—4^4 becomes: 

4.3.2 

1.2.3 

4.3.2.1 

{Sd^y X (2y2)^= 160c"y^z^ 

{5c’^fX{2yzy= I6y^z^ 
1.2.3.4 1.2.3.4 

... (5c2—2yz)'‘=625c8—IGOOc^yz+GOOcY^^—ISOcY^^+lSy^^ 

111. We have sometimes occasion to employ a particular term in the ex¬ 

pansion of a binomial, while the remainder of the series does not enter into our 

calculations. Our labor will, in a case like this, be much abridged, if we can 

at once determine the term sought, without reference either to those which 

precede, or to those which follow it. This object will be attained by finding 

what is called the general term of the series. 

If we examine the general formula, we shall soon perceive that a certain 

relation subsists between the coefficients and exponents of each term in the 

expanded binomial, and the place of the term in the series ; thus, 
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The first term is 

which may be put under the form ; 

The second term is 

nx'^~^a r=:wa:’'~2+^a2'"^; 

The third term is 

nin — 1) n(n—34-2) 

1.2 “ “ l.(3-l) ^ ’ 

The fourth term is 

n{n — l)(w —2) ^ , n{n—l){n—4-1-2) 

1.2.3 ^ - 1.2. (4-1) ’ 

The fifth term is 

nin—l)(7i — 2){n—3) n{n — l){n — 2){n—5-4-2) 
—^------ll-ll-Z_V-5+ia5-i; 

1.2.3.4 1.2.3. (5 — 1) 

The sixth term is 

??(w —l)(w —2)(n—3)(n—4) n{n — l){n—2){n--2^){7i — Q-\-2) 

1.2.3.4.5 1.2.3.4.(6 — 1) * 

Observing the connection between the numerical quantities, it is manifest, 

that if we designate the place of any term by the general symbol j?, the 

term is 

n[n-\)(n-<2){n-Z). (»-y + 2) , 

1-2-3-4 . (;>-!) “ • 

This is called the general term, because by giving to p the values 1, 2, 3, 4, 

.we can obtain in succession the different terms of the series for (ar-j-a)". 

EXAMPI/E VII. 

Required the 7^'* term of the expansion of (a:-[-a)^2. 

Here n = 12n—p-\-2=7, n—p-\-l=Q 

p= 7 ) p—1 = 6. 

Substituting these values in the general expression, we find that the term 

sought is 

12.11.10.9.8.7 ' 
-—-—-—-—-—x^'a%* or 924x^a^. 

X • ^ • O 

EXAMPLE VIII. , 

Required the 5^*^ term of (2c‘*— 

Here n=9, p=5, z=:2c\ a=4h^\ 

,'.n—p-|-2 = 6, n—^^?-j-l=5,p—1 = 4; 
9.8.7.6 

.*. the 5^*^ term is 2 3 ^ or 126 X 32 X 256c‘^%^°. 
« 

Since the second term of the proposed binomial has the sign —, all the 

even terms of the expansion will have the sign —, and all the odd terms the 

sign -}- ; therefore the 5*^'* term is 
^ -f 1032192c2o;i2o. 

^ EXAMPLE IX. 

Required the middle term of the expansion of {x—ay^. 

Since the exponent is 18, the whole number of terms will be 19, and hence 

* The operation here to be performed is best effected by canceling the factors. 
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the middle temi will be the ; and since it is an even term, it will have the 
sign — ; hence it will be 

18.17.16.1.5.14.13.12.11.10 

1.2. 3. 4. 5. 6. 7. 8. 9 
or—48620:r%®. 

EXAMPLE X. 

Required the third and the last terms of the expansion of 

21 
Ans. -^x^y^ and 128?/’ 

TO EXTRACT THE ROOT OF A NUMBER. 

112. The power of 10 is 1 with n ciphers, and the power of any 

number below 10 must be less, and can, therefore, be composed of no more 

than n figures. The power of 100 is 1 with 2?i ciphers, and the power 

of any number between 10 and 100 can^not, therefore, contain more than 2?^ 

figures, nor less than n. For a like reason, the power of three figures can 

not contain more than 3?i, nor less than 2n. That of four figures can not con¬ 

tain more than 4w, nor less than 3??., &:c. The root of a number being re¬ 

quired, it is evident from the above that there will be as many figures in the 

root as there are periods of n figures in the given number, counting from right 

to left, and one more if any figures remain on the left. The root may be 

divided into units and tens, and the power of it, or the given number, will 

be equal, according to the Binomial Theorem, to the power of the tens plus 

n times the n—1 power of the tens into the units plus a number of other terms 

which need not be considered. Tens have one cipher on the right, and hence 

the power of tens has n ciphers on the right; the n right-hand significant 

figures, therefore, make no part of the power of the tens; to find the tens 

of the root, then, the root of those figures which remain, after rejecting n on 

the right, must be sought by an independent operation ; but if there are more 

than n of these remaining figures, the tens of the root are expressed by a 

number containing more than one figure, which number may be separated into 

its units and tens, the n'-^ power of the tens of which does not contain the n 

significant figures on the right of that number upon jtvhich the independent 

operation is now performing, and in consequence these n figures are also re¬ 

jected. After rejecting periods of n figures successively, beginning on the 

right until there remains but one period and part or the whole of another 

period on the left, let these be considered an independent number, its root will 

contain two figures, tens and units; the root of the tens is to be sought in 

M'hat is left after rejecting the right-hand period; the n — 1 power of the 

tens has n—1 ciphers on the right; so, also, has any multiple of this, and, 

therefore, n times the n—1 power of the tens into the units; which last 

quantity, therefore, is not to be sought in the n—1 right-hand significant 

figures; after subtracting the power of the tens just found, only one figure 

of the next period, therefore, is to be placed on the right of the remainder, 

which is then divided by n times the n — 1 power of the tens; the quotient 

will not be exactly the units, for the dividend contains also a part of the other 

terms of the power of the binomial which were not considered; this quotient 

may be gi’eater than the units of the root, but never can be less; it must be 

diminished till the power of the two figures found is equal to or less than 
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the independent number under consideration. Annex now to this independent 

number the next period on the right of it, and consider what is thus obtained 

as a new independent number; the two figures of the root already found will 

be the tens of the root of the new number; bringing down one figure of the 

right-hand period of it to the remainder after subtracting the power of the 

two figures of the root just found from the first independent number, and 

dividing by n times the n—1 power of the tens, now composed of two figures, 

a third figure of the root is obtained; proceeding in this manner, the entire root 

of the given number will at length be extracted.* 

EXAMPLES. 

(1) V504321, 2366=8,921. (3) ^233416517309451. 

(2) V1164532, 07234. (4) 282429536481. 

113. By employing the binomial theorem, we can raise any polynomial to 

any power, without the process of actual multiplication. 

For example, let it be required to raise x-\-a-\-h to the power 4. 

Put 

u+b ' =2/; 
Then, 

=a:^-|-4r^2/-f-6r^2/2-f-4r7/^-4-2/‘‘, or putting for y its value, 

=x^J^43p{a-{-b)-\-6x%a-[-bY^Ax{a-\-by-{-{a-{-hY. 

Expanding binomial theorem, and per¬ 

forming the multiplications indicated, we shall arrive at the expansion of 

{x-{-a-\-bY. 

It is manifest that we may apply a similar process to any polynomial. 

The following is a demonstration of a general formula for the 

POWER OF A POLYNOMIAL. 

In the expression 

(u ~j—5 —^ c-j—c?.... j*** 

make xz=b-\-c-\-d... the above power will be equal to (a-f-.r)"', and by the 

binomial theorem the term which contains a" in the development of this may 

be written 

1.2.3.4....mx^ ^ 

1.2.3...WX1.2.3... 

Making y=c-{-d... we have and developing this last power, 
the term containing 5"' may be put under the form 

* If there be decimals in the given number, ciphers must be annexed, if necessary, to 

make exact periods of decimals, on a principle similar to that explained in (Art. 90). 

If the index of the root to be extracted be composed of factors, it can be extracted by 

means of the successive roots, the degrees of which are expressed by these factors. For 

if the be required, we have ^a'^p=a'P, and ^ar=a. 

The best way to extract roots of numbers of a degi-ee higher than the square is by means 
of logarithms. 

+ This may be obtained from the ordinary form of the general tenn of the binomial 
formula 

m(m—1)-(m—" 
1.2.3 .... ’ 

by multiplying both numerator and denominator by 1.2.3 ... [m—n). 
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1.2.3.4.. .. (m—n) X 

1.2.3...7i'xl*2.3.... (m—n—n')' 

It is evident that if this quantity be put in the place of in the ex¬ 

pression [a], the result will represent the assemblage of the terms which 

contain in the power of the given polynomial. This result, after can¬ 

celing common factors, will be 

1.2.3.4 .... 7?i X 

1.2.3...wX 1 • 2.3...w'X 1 *2.3... (m—n—n')’ ^ ■* 

Making z-=.d-\-... we shall have and the term con¬ 

taining c“" will be 

1.2.3...(m —n—n') X 

1.2.3... X 1 • 2.3.... {m—n—n'-—n") ’ 

substituting this expression for in [6], we have 

1.2.3.. . m X 
1.2.3_wX 1 - 2.3...?i'X 1 • 2.3...?i" X 1 - 2.3... (m—n—n'—n")' 

It is evident now, without carrying the reasoning farther, that if V be the 

general term of the development of 

^cL-^b-^c-^d.. 

this term may be represented thus, 

1.2.3.4-wX... 

1.2.3...7iXl*2.3...w'Xl*2.3...7i"X** 

n, w', n"... being any positive whole numbers at pleasure, subjected only to 

the condition that their sum shall be equal to m. So that all the terms of the re¬ 

quired development may be obtained by giving in this formula to n, w', n' 

all the entire positive values which satisfy the condition 

n-\-n'-\-n"... .—m. 

When one of these numbers is made zero, V takes an illusory form. If, for 

example, n=0, the series 1.2.3.. .n placed in the denominator is nonsensical, 

because factors increasing from one will never present us with a factor zero. 

To relieve this difficulty, let us recur to the general term [a] in the development 

a:'" 
of (a-4-^j™, and observe that the hypothesis w=0 reduces it to -—-—-- 

But the hypothesis w=0 ought to give in this development the term which 

does not contain a, and this term is a:™. Then, in order that this term shall be 

deduced from the formula [a], it is sufficient to consider the series 1.2.3... 7i 

as equivalent to 1 in this particular case of n = 0. The same observation 

should be extended to the other series of factors contained in the denominator 

of V, and then V will give, without any exception, all the terms of the power 

of the polynomial &c. 

TO EXTRACT THE ROOT OF A POLYNOMIAL. 

The problem is, having given a polynomial, P, which is the m'''‘ power of 

another polynomial, p, to find the latter. 

Let us consider the two polynomials as airanged according to the decreas¬ 

ing exponents of some letter, x, and call a,b, c, .... the unknown terms of the 

root_p. They must be such that, in raising a-\-b-\-c... to the power m, we 

obtain all the terms which compose P. But if we imagine that we have 

formed this power by successive multiplications, it is clear that, in the result, 
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the term in which x has the highest exponent is the power of a ,* then we 

shall knoiv the first term of the root sought, p^, hy extracting the root of the 

first term of the given polynomial, P. 

The first term of the root being found, it will be easy to obtain the second; 

but I prefer to show at once how, when we know several successive terms of 

the root setting out from the first, we can determine the term which comes 

immediately after. 

Let w represent the sum of the known terms, and v that of the unknown; 

then P=:(w-)-'^)'"i OL developing, 

I have not exhibited the composition of the coefficients k, k'.., this not 

being necessary, as will appear. From this equality, by subtracting w™ from 

both the equals, we obtain 

P — w™=mu^~^v -j- k 4* k'u'^~H^ ^ ^ • 
The first of these equals, P—u^, is a quantity which we can calculate by 

forming the m^^ power of the known quantity u, and subtracting it from the 

polynomial P. The second is a sum of products, by means of which we can 

easily assign the composition of the first term of the remainder P —w™, and, 

consequently, discover the first term of the unknown part, v. 

First, if we develop it is clear, by the rules of multiplication alone, 

that the first term of the development, that is, the one which contains x, with 

the highest exponent, will be ; then, if we call f the first term of v, the 

first term of the product 7nu'^~'^v will be ma^~f. By a similar course of rea¬ 

soning, we perceive that the first terms in the developments of the other prod¬ 

ucts will be respectively kd^~f^, k'a'^~f^,.... These terras, abstraction 

being made of the coefficients which have no influence upon the degree of x, 

can be deduced from the term ma™'~f, by suppressing in it one or more fac¬ 

tors equal to a, and replacing them by as many factors equal to f But/being 

of a degree inferior to a with respect to x, these changes can give only terms 

of a degree inferior to ?na'^~f. Then, after having subtracted from the given 

polynomial P the power of the part u of the root already found, the first 

term of the remainder is equal to the product of m times the power m—1 of 

the first term a of the root by the first of those terms which remain still to be 

found. Therefore, dividing the first term of the remainder by m times tiie 

power m — 1 of the first term of the root, the quotient will be a new term of 

this root. This conclusion furnishes the means of discovering successively all 

the terms of the root as soon as the first is known. T'o have the second term, 

b, subtract from the given polynomial P the power of the first term of the 

root, then divide the first term of the remainder by mu'””!; to have the third 

term, c, of the root, subtract from P the power of a-j-b, then divide the first. 
term of this remainder by raa™~h and so on. 

If in any part of the process, the remainder being arranged according to the 

powers of x, its first term is not divisible by m times the m—1 power of the 

first term of the root, the given polynomial will not have an exact root of the 

degi’ee m. 

Observe, also, that the m^^ root of the last term of the given polynomial 

ought to be the last term of the root. Therefore, if the process leads to a 

terra in the root of a less degree than this, the given polynomial is not an exact 

power of the order m. 

We may arrange according to the ascending powers of a letter, x, as was 
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remarked at (Art. 80, III.), when treating of the square I’oot, and the above 

observation will undergo the same modification as there stated. 

It would be superfluous to speak of the case where the letter of arrangement, 

X, enters, with the same exponent, into several terms. The method of proceed¬ 

ing in such a case has been already sufficiently indicated in previous articles. 

EXAMPLES. 

(1) Extract the 5th root of 32x^——40.r2-j-10.T—1. 

(2) Extract the 5th root of 729 — 2916a:^-|-4860r*—4320a.’®— 

Ans. 3—2x^. 

(3) Extract the fifth root of x~^°-^15x~^^—5x“^^-j-90.r~^2—60a:“^°-|-282.r~® 
— 25’2.r-® 4- 505x-^ — 496ar-2 _j_ 495 — 455^0 

-j-275r^—80a:®-|-15^®—3:^®. 

Ans. a:~^-|-3—x^. 

114. In the observations made upon the expansion of (a:-|-«)", we have sup¬ 

posed w to be a positive integer. The binomial theorem, however, is applica¬ 

ble, whatever may be the nature of the quantity n, whether it be positive or 

negative, integi’al or fractional.* When n is a positive integer, the series con¬ 

sists of n-\-l terms; in every other case the series never terminates, and the 

development of (a:-|-a)" constitutes what is called an infinite series. 

Before proceeding to consider this extension of the theorem, we may re¬ 

mark, that in all our reasonings with regard to a quantity such as (.r-fa)", we 

may confine our attention to the more simple form (l-|-a)", to which the 

former may always be reduced. For, 

... (a:4-a)"= ^:c(l-|-^) ^ 

(a\'^ a 
!-{-—) ? 01’ a:"(l-|-i^)") if we put -= 

XI f Xj 
u 

zX" 
a n{n — 1) o? n{n — l)(?^ —2) a® 

1.2 'x^^ 1.2.3 
n{n—l){n—2){n—3) ? 

1.2.3.4 

Suppose n=-, where r and s are any whole numbers whatever, 
s 

Then {x-\-aY becomes (a:-}-a)®, and substituting - for n in the series, 
s 

(a:-l-«)®=a:®(l4-|)® 

r a 
^r^iH— 

' ‘ s a: ‘ 

s\s ) a? 5\s }\s ) 

1.2 X 5+ 1.2.3. 

a 
1004 J. • /W • C/ • ^ 

„4 + > 

* A perfectly rigorous demons nation of the binomial theorem for any exponent what¬ 

ever, integral or fractional, positive or negative, will be fomid towards the close of this 

treatise. 
t This expansion may be obtained by substituting, in the general form (Art. 110), 1 for 
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Or, reduced, 
E r a r{r—s) o?' r(r—s){r—25) 

M -+1^2.521.2.3.53 

r(r—5)(r—25)(r—85) ^ ^ ^ 

1.2.3.4.54 ’ .r4+’ I 

The binomial theorem, under this form, is extensively employed in analysis 

for developing algebraic expressions in series. 

EXAMPLE I. 

Expand -y/x-\-a in a series. 
_ 1 ' 
x-\-a=.{x-\-aY 

=.r^^l-4-“) Here r=l, 5=2. 

ji . MJ-), .. 
^~^2’x~^ 1.2 ’x^'^ 1.2.3 

5(5-1) Q-2)(M 
+ 1.2.3.4 ' x^'^. 

1' 1 113 

C5,2^“~2 ^2^~‘2^~~2 a? 

11 + 2 • 1.2 * 1.2.3 * 

113 5 
_ gX —gX —2X ”2 ^ 

172.3.4 ' 75+. 

let 1 1.3 a? 1.3.5 

I ^“^2‘7‘“1.2.4*72+i.2.3.8‘73“1.2.3.4.16 
a* ? 
a:^”^.^ 

■which last may be derived at once from [a], and put under the form 

i(;^^la I ^ 1.3 1.3.5 a* 

^ ^^"^2 "a: 2.4 ’ a:2~^2.4.6 ’ ar^ 2.4.6.8’:f^ 
1.3.5.7 ^ 

■^2.4.6.8.10* a:5“’.\ 

whdrfa the law of the series is evident. 

EXAMPLE II. 

Expand -y/a^—in a series. 
_ 1 

yj a^—aH^—{a?—o?e^Y 

=u(l—e^Y Here, r=l, 5=2,- = — 

. ^(5-) 

=“ < 1-5 • '='+nr:T- • -17273— • 

M5-i)(5-)(H 
+ 1.2.3.4 . 
S 1 1 1.3 1.3.5 

—ns 1——e2__—p^—-e®—---— Af* 
“ ^ 2 2.4 2.4.6 2.4.6.8 ’ 
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EXAMPLE III. 

113 

Expand 
m 

m 

in a series. 

=,ni l(l + ^) 
T, a 
Here r=:l, s= —2, -—ji:' 

X 0^ 

m 

6 1 —. 

+ 

+ 
-H-^0 

1.2 

(-i-) 

f! 
• M 

/♦12 

1.2.3 ‘66 

-2-(-5-0(-5-^)(-5-®) (cy 
■f 1 o Q /I • Vjaj 

m 1 c4 

2'¥ 

1.2.3.4 

1 3 

“ 2 ^ “ 2 c8 

• 

&c. 

13 5 

~2^ ~2 ^ “2 

1.2 

3 5 
1.2.3 

,12 2 X 2 X 2 ^16 

* 66^ 1.2.3.4 ‘68 
7a (; 1. 1 . 3 c8 1 . 3 . 5 

~'b } ^“2*^24-2 . 4’^“^ 4 . 6’'P 

j &c. . 

I"') (See* ... 

which last expression might be derived immediately from formula [d\. The 

same remark will apply in the following examples. 

EXAMPLE IV. 

Expand 
n 

m a series. 
-v/6^— 

n _i 
~~z=:n{h'^—c^e^) “ 

r»2/32\ — 1/, CV\_I a cV 
=nb jrj Here r=-l, 5=2,-=-~p- 

P + 2 • 

1 e ® 

62 4" 1 . 2 

/ \ 

‘ \ 62 i 

-H-i-0 (-5-0 
1.2.3 

-K-5-')(-5-2)(-5-4on‘ . 
+--1727374--’ 

^ 1 1 ^ c ^ e 
— h > ^ + o * ~Tr + 

2 2 1.3 c 4 e 4 

6 ^ ^ 2 ‘ 6 2 

1.3.5.7 

"^2.4.6.8 ‘ ”6^' 
H 

2.4 

f, &c. . 

64 + 
1.3.5 c6 e 6 

2.4.6 ‘ 66 
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JEXAMPLE V. 

Expand . ■ = in a series. 
V {7ri^-\-n^Y 

P + 9. —3 

y -{-71+ 

=m i(p+5)(l+^^) 

3 
4 

(i^+9) 

Here, r=—3, 5=4, 

a 

X m3” 

3 

m 

< . 3 ?i5 

) 1 — T * 3 "i” ( 4 m3 ' 

3/3 \ 

-41-4-0 

-K-!-0(-i-0 

1.2 

.r+ 
\m3/ 

• (^y \m3/ 

1.2.3 

'c 3 w® '6.7 3.7 

m^ ( 4 * m3 1.2.4^ m® 1.2. 

3.7.11 
^13 

3.7.11.15 

//t9 1.2.3.4 . 44^12 &c. 

EXAMPLE VI. 

1 1 ( 2a: 6x^ 4a:3 
/ i j ^— “i" 2”— 3*“!“’ {c-{-xY v ^ c ' c3 ' 

EXAMPLE VII. 

3x^3x*5x^7x^ 

¥' 7^~¥‘' ‘ ^ 

EXAMPLE VIII. 

{a^—ax) 
a^l ^10 a 102 

. 3.13.23.33 

X'^ 3.13.23 
1.2 . a2 

x^ 

103 1.2.3 . a3 

10^ 1 * 2.3.4 . 
f, (fee. 

1 
-r=i_f 
(1+a:)^ 5 

EXAMPLE IX. 

6a:2 6.11.a:3 e.ll.ie.ar^ 

5.10 5.10.15"^5.10.15.20 ’ 

EXAMPLE X. 

7 

The eleventh term of the series for {a^—a:3^3 jg 
2618 a:3o 

4782969 ‘ 

115. The.binomial theorem is also employed to determine approximate 

values of the roots of numbers. 

In the formula 

(a:a)"=2’" (1-j-w 
a ^ n{n—1) 

X 1.2 

^ n{n—l)(ri—2) ^ 

1T2T3 
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Let us put n=-, the expression becomes or \/x-\-a^ and we have 

1 a 
yx^a= + 

1.2 

= V^(iH-— 
r X r 2r 

x-‘ 

x"^ 
+ 

1 r- 

1.2.3 

■ 1 2r—1 

-3 + 

2r 3r 

a*’ 
—, &c.) 

If we wished to form a new term, it would manifestly be obtained by mul¬ 

tiplying the fourth by —and —, then changing the sign, and so on for the 

rest, the terms after the first being alternately positive and negative. 

This being premised, let it be required to extract the cube root of 31. The 

greatest cube contained in 31 is 27; in the above formula let us make r=3, 

x=27, a=4, and we shall then have 

•V31= ^27-f4 

^ ^ ^ ^ 1 4 1 1 16 _ 1 1 5 64 
= 3 (1 -f - . ^—3 • 3 • ^+3 • 3 • 9 • 19683 

^ , 4 16 ^ 320 

^ ^ + 531441 

The succeeding term will be found by multiplying 
320 

by 
3r—1 a 

531441 4r x 

24, . 2560 
-. —, and then changing the sign, which will give us —43946721* 

, or 

In like manner, we shall find the next term by multiplying 
2560 

43046721 by 

4r—1 a , , 2560 

br ■ "x' therefore, be 4394^721'' 15'' 27 ~ 17433922005 

11 4 112640 
, and so on 

for any number of terms. 

Let us, however, confine our attention to the first five terms of the series, 

and reduce them to decimals ; we shall have, for the sum of the additive terms, 
r 

{ 

3 = 3.00000 

4 

27 

320 

531441 

= 0.14815 

=0.00060 

And for the sum of the subtractive terms, 

\ 

/ 

=3.14875. 

Hence 

/ 

V. 

16 

“2187~ 

2560 

43046721~ 

— 0.00731 

— 0.00006 

=:_0.00737. 

^31=3.14138. 

a result which we shall proceed to show is within 0.00001 of the truth. 

116. When the expression for a number is expanded in a series of terms, 

the numerical values of which go on decreasing continually, we easily perceive 
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that the greater the number of terms which we take, the more nearly shall we 

approach to the real value of the proposed expression. Such a series is called 

converging. If we suppose the terms of the series alternately positive and 

negative, we can, upon stopping at any particular term, determine precisely 

the degree of approximation at which we have arrived. 

Let there be a series a—h-\-c—d-\-e—fg—li-\-k — l-{-m-composed 

of an indefinite number of terms, in which we suppose that the quantities «, 

c, d go on diminishing in succession, and let us designate by N the number 

represented by this series, we shall prove that the numerical value of N lies 

between any two consecutive suyns of any number of the terms of the above series. 

For let us take any two consecutive sums, 

a — b-\-c—d-\-e—f and a—b-\-c—d-\-e—f-\-g. 

Upon considering the first of these, we perceive that the terms which fol¬ 

low —/are -\-{g—h)-{-{k—1)-{-.; but since the series is a decreasing 

one, the positive differences g—h, k — I, &c., are all positive numbers; hence 

it follows that, in order to obtain the complete value of N, we must add to the 

sum a — b-\-c — d-\-e—f some positive number. Hence 

a — b-\-c—d-\-e—f <CN. 

With regard to the second sum, the terms which follow -\-g are —{h—k)^ 

— [I—m),-; but the partial differences, h—Z:, I—m, &c., are positive; 

hence —{h—k), —{I — m)-, are all negative, and, therefore, in order to 

obtain the complete value of N, we must subtract some positive number from 

the sum a—b-\-c—d-\-e—f -\-g. Hence 

a—b-\-c—d-\-e—f-\-gyN, 
and it has been shown that 

a — b-\-c—d-\~e—f <CN; 

therefore N lies between these two sums. 

From this it follows that, since g is the numerical value of the difference 

of these two sums, the error committed when we assume a certain number of 

terms' a —b-\-c—d-\-e—f for the value of N is numerically less than the term 

which immediately follows that at which we stopped. 

In the preceding example, all the terms after the first being alternately posi¬ 

tive and negative, we may conclude that the numerical value of the first five 

terms 

^ + o'7' 

16 
4- 

320 2560 

27 2187^ 531441 43046721 

differs from the true value of V31 by a quantity less than the value of the 

112640 
sixth term, which was found to be equal to 

17433922005 
; but this fraction is 

• , therefore, when we assume that by mere inspection less than - 
100000' 

V31 = 3.14138, the result is within 0.00001 of the truth. 

117. From what has been said above it will be seen that, in order to obtain 

an approximate value of the n'-^ root of any number N by the method of series, 

we may make use of the following 

KULE. * 

Resolve the given number N into two parts of the form p"-i-q, where p" is the 
1 

highest n‘* power contained in N, and in the development of (x-j-a)" make 
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x=p", a=:q. The number of terms to he taken in the resulting series will 

depend upon the degree of accuracy required^ and can he determined hy the 

principle just explained. Convert all the terms of which account is taken into 

decimals^ and then effect the reduction between the additive and subtractive 

terms. 

This method can not be employed with advantage except when — is a small 

fraction; for unless this be the case, the terms of the series will not diminish 

with sufficient rapidity, and it will be necessaiy to take account of a great 

number of terms in order to arrive at a near approximation. 

It may happen thatjp“ is <^q; we must then modify the above process, for 

then — or — IS greater than unity, and therefore all the powers of — will in- 

crease in numerical value as the degree of the power increases. 

Suppose, for example, that the cube root of 56 is sought, 27 being the 

greatest cube contained in 56, we shall have 

a 29 
a:=27, a = 29 and .*. —=:^, 

and the terms of the series will go on increasing instead of diminishing (we do 

not speak of the coefficients, which are fractions differing but little from unity). 

. 8 1 
But we may resolve 56 into 64—8, or 4®—8; but —, or -, is a small fraction. 

On the other hand, if we substitute —a for a in the expression for y x-\-a., 

we have 

_ 1 

y X—<z=a:n(l — 
1 

n 

a 1 

X n 

n—1 

2n 

a^ 

x^ 

1 n—1 2n—1 a^ 
— • ■ ' • - — - • ■ ' 
n 2n 3n 

If we put r=64, a = 8, we shall obtain a series of terms which will de¬ 

crease with great rapidity. 

Here all the terms, with the exception of the first, are negative, and we can 

not apply to this series the criterion established in (Art. 116) for fixing the de¬ 

gree of approximation. But we shall approach very nearly to the required 

degree of approximation if we take into account such a number of terms that 

the first which we neglect shall be less, by one tenth, for example, than the 

decimal place to which we wish to limit the approximation. 

The student may take the following examples as exercises: * 

(1) = V32 -f7 =2.0807_true to 0.0001. 

(2) = V64 -fl =4.02073 ... true to 0.00001. 

(3) V256-1-4 =4.01553 ... true to 0.00001. 

(4) Vl08= Vl28—20 = 1.95204 . .. true to 0.00001. 

118. Roots of imaginary expressions of thq form —1 ar® extracted 
_1 

by putting the expression under the form (ai& V —l)"^ developing by the 

binomial theorem; a series of terms will thus be obtained, which may be put 

under the form A-^-B A representing the algebraic sum of the rational 

terms, and B the algebraic sum of the coefficients of y—1. Algebra fur¬ 

nishes no other general method for this transformation, but when w is a power 

of 2, it can be effected without the aid of series. 
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Placing 

Let us consider, first, the two radicals y a-\-h -y/ —1 and 

[1] '\jO. 6 "v/— 1 -j- (X — & yj — 1 —X 

[2] a-\-h y/—l—'yja—b V—1=2/, 

and squaring both, there results 

hv 

2a—2 yj 

Whatever may be the sign of u, the value of x"^ is positive, but that of is 

negative. From these equalities we derive 

[3] x=j2a-{-2V~a^^^ 

But the equalities [1 ] and [2] give 

.2a^2Va^+by V ) V-1. 

x—y 

« 

Then, finally, putting for x and y the values [3], we shall have 

: l^2a + 2Va'‘+¥ 

+ ll-2a + ^Va'‘+¥ V~ 

[4] 

[5] 

—■ 

la-b lka + 2Va'‘+¥ 

—\J—2a + 2\fa'‘+¥-\/ — l. 

Now, if we consider the itidical expressions 

—1, itz & a/—1» \/^ dL ^ —1, ”\/^^ itz ^ a/ —1» dt ^ a/—Ij 
we observe that the extraction of a single root which is some power of two, 

can ,be replaced by successive extractions of the square root; consequently, 

the repetition of the formulas [4] and [5] will always reduce the above ex¬ 

pressions to expressions of the form AiB —1* 

Remark.—In each of these formulas the first member, by reason of the 

radicals which it contains, may have four different values, and the same is 

true of the second member. In both, the four values of the first member are 

the same, and this is the case evidently with the second member; so that 

the two formulas make really but one. They present no difference except 

when we use them simultaneously in the same algebraical calculation, because 

then we ought to regard the terms into which a/ — 1 enters as affected with 

contrary signs. But then it is necessary to remark besides, that, by the very 
• ■ ■ 

manner in which we have arrived at these formulas, y/ them repre¬ 

sents the product of yja-{-h yj — 1 "x/a—b yj —1; consequently, the determ¬ 

inations of these two radicals ought always to be supposed associated in such 

a manner that their product should have the sign which is given to 

in the second member. AVithout attention to this the formulas might lead to 

false results. 
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Another remark of importance may be added here. 

The methods of proceeding in certain operations upon imaginary expressions, 

exhibited at (Art. 66), were suited to the restrictions which in ordinary cases 

would be understood as pertaining to the radical sign. If, however, this sign 

have its most general signification, it must be used in its ambiguous sense, 

that is, as having before it. Then ^ —aX —ol would have a more ex¬ 

tended sense than simply the square of —a. It would have, in fact, four 

values, 

-{-V — — O'l — V — — (^-1 "1“V — <^X — V — 

— ^/ —ax — y/ —CL, 
or 

—a, —j-fz, —a» 

These four, in fact, amount to but two, -\-a and —a, which are the values 

obtained by the ordinary rule of multiplication, -y/ —aX V —a—^Ja^=^a. 

If the quantities under the radical are different, the reasoning will be a little 

varied. Let the product be required of 
——— * — 

y/ —ax y/ —h. 

The first of these factors —a may be put under the form a' —1, and 

the second under the form V ^J — 1. The product will then be expressed by 

a'h' X V—1- 

But after what has just been said, if there be no restriction in the meaning 

of the sign -yj , we have -/—IX V—l = rtl- Hence 

a'h' V — lx V — l = =t a'V. 

But since the square of a'V is or ab, we have a'h'-= ^ab, and, there¬ 

fore, 

V —ax yj —&=zt y/ab, 

the result which we should obtain by the ordinary rule for the multiplica¬ 

tion of radicals. We thus perceive that this rule gives us the true product 

in its most general form when there is no restriction in the sense of the radi¬ 

cal sign. 

RATIOS AND PROPORTION. 

119. Numbers may be compared in two ways. 

When it is required to determine by how much one number is greater or 

less than another, the answer to this question consists in stating the difference 

between these two numbers. This difference is called the Arithmetical Ratio 

of the two numbers. Thus, the arithmetical ratio of 9 to 7 is 9 — 7, or 2, and 

if «, b designate two numbers, their arithmetical ratio is represented by a—b. 

When it is required to determine how many times one number contains, or 

is contained in another, the answer to this question consists in stating the 

quotient which arises from dividing one of these numbers by the other. This 

quotient is called the Geometrical Ratio of the two numbers. The term 

Ratio, when used without any qualification, is always understood to signify a 

geometi'ical ratio, and we shall, at present, confine our attention to ratios of 

this description. 
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120. By the ratio of two numbers, tlien, we mean the quotient which arises 

from dividing one of these numbers by the other. Thus, the ratio of 12 to 4 

12 5 1 
is represented by — or 3, the ratio of 5 to 2 is - or 2.5, the ratio of 1 to 3 is - 

4 /i O 

or .333... We here perceive that the value of a ratio can not always be ex¬ 

pressed exactly, except in the form of a vulgar fraction, but that, by taking a 

sufficient number of terms of the decimal, we can approach as nearly as we 

please to the true value. 

121. If u, h designate two numbers, the ratio of u to 6 is the quotient 

a 
arising from dividing a by 6, and will be represented by writing them a:b, or 

122. A ratio being thus expressed, the first term, or a, is called the ante¬ 

cedent of the ratio; the last term, or b, is called the consequent of the ratio. 

123. It appears, therefore, that, in arithmetic and algebra, the theory of 

ratios becomes identified with the theory of fractions, and a ratio may be de¬ 

fined as a fraction whose numerator is the antecedent, and whose denominator 

is the consequent of the ratio. 

124. When the antecedent of a ratio is greater than the consequent, the 

ratio is called a ratio of greater inequality; when the antecedent is less than 

the consequent, it is called a ratio of less inequality; and when the antecedent 

* . . 12 
and consequent are equal, it is called a ratio of equality. Thus, — is a ratio 

12 . . ^ . 3 
of greater inequality, is a ratio of less inequality, - or 1 is a ratio of 

equality. It is manifest that a ratio of equality may always be represented by 

unity. 

125. When the antecedents of two or more ratios are multiplied together 

to form a new antecedent, and their consequents multiplied together to form 

a new consequent, the several ratios are said to be compounded^ and the re¬ 

sulting ratio is called the sum of the compounding ratios. Thus, the ratio ^ 

c 
is compounded with the ratio ^ by multiplying the antecedents a, c for a new 

antecedent, and the consequents 6, d for a new consequent, and the resulting 

o-c „ _ a c 
ratio 1—7 is called the sum of the ratios 7 and 

bd b d 
m p r t 

In like manner, the ratios —, -, -, — are compounded by multiplying all 

the antecedents together for a new antecedent, and all the consequents for a 

mprt 
new consequent, and the resulting ratio,-, is called the sum of the ratios 

^ nqsw 

mprt 

n q s IV 

126. When a ratio is compounded with itself the resulting ratio is called the 

duplicate ratio, or double ratio of the primitive. Thus, if we compound the 

a a . , . a 
ratio with p the resulting ratio, is called the duplicate ratio of 

o? a 
Similarly, ^ is called the triplicate ratio, or triple ratio of 
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And, generally, ^ is called the sum of the n ratios 

a 
According to the same principle, the ratio — is called the suhdujplicate ratio, 

a a- a 
or half ratio of -r; for the duplicate ratio of — is — X “t =t 

62 52 52 ^ 

a'^ 
So, also, the ratio — is called the suhtriplicate ratio, or one third of the ratio 

63 

a «3 ^3 ^3 ^ 

of T. F or the triple ratio of — is — X ~ X “T=T 
63 53 53 0 

a 
And, in general, — is called one n^^'^ of the ratio ^ ,* for n times the ratio 

6“ 

till 

a" . a" «" a 
— IS — X — X — X • • • to 71 terms =^. 

6" 6" 6“ 6” 

a 
Note.—The ratio — is called the sesquiplicate ratio of -r, for it is com- 

6^ 

1 1 <y o a~ a a“ 
pounded of the simple and subduplicate ratio ; thus, — Xt=~* 

62 ^ 62 

127. If the terms of a ratio he both multiplied, or both divided, by the same 

quantity, the value of the ratio remains unchanged. 

The ratio of <z to 6 is represented by the fraction ^ ; and since the value of 

a fraction is not changed, if we multiply, or divide, both numerator and de¬ 

nominator by the same quantity, the truth of the proposition is evident. Thus, 

a 

a ma n r -l ^ ^ ., or a : b—ma : mb=—: 
6 mb 6 

n 

n n 

128. Ratios are compared with each other by reducing the fractions, by 

lohich they are represented, to a common denominator. 

If we wish to ascertain whether the ratio of 2 to 7 is greater or less than 

2 3 
that of 3 to 8, since these ratios are represented by the fractions - and -, 

which are equivalent to — and — ; and since the latter of these is greater than 
^ 5d 60 

the former, it appears that the ratio of 2 to 7 is less than the ratio of 3 to 8. 

129. A ratio of greater inequality is diminished, and a ratio of a less inequal¬ 

ity is increased, by adding the same quantity to both terms. 
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a 
Let ^ represent any ratio, and let x be added to each of its terms. The 

two ratios will then be 

a a-\-x 

V • . ■ 

which, reduced to a common denominator, become 

ab-Jf-ax ab-\-bx 

b{b-{-xy b{b-]-xy 
a 

If a'^b, i. e., if be a ratio of greater inequality, then 

ab-{-ax ab-{-bx 

b{b-\-xy b{b-\-x)’ ( 

and ^ is diminished by the addition of the same quantity to each of its terms. 

a 
Again, if a<[6, i. e., if be a ratio of less inequality, then 

ab-\-ax ab-ybx 

b{b-{-x) ^b{b-\-x) ’ 

a 
and is increased by the addition of the same quantity to each of its terms. 

130. If there he any number of ratios in which the consequent of the first ratio 

is the antecedent of the second, and the consequent of the second the antecedent 

of the third, and so on, the sum of any number of said ratios is the ratio of the 

first antecedent to the last consequent. 

Let the proposed ratios be 

abode 

Then, by (Art. 125), their sum is 

abode 

or 
-b^-c^dX-e^r" 

abode---- 

bcdef-’ ■ . 

i. 

131. Proportion is an equality of ratios. 

Thus, if a, b, c, d be four quantities, such that a, when divided by h, gives the 

same quotient as c when divided by d, then a, h, c, d are said to be in propor¬ 

tion, or to be proportionals; the numbers 20, 5, 36, 9 are proportionals, for 

20 , 36 
-=4,and-g 

When four quantities are proportionals, it is usually enunciated by saying 

that the first is to the second as the third is to the fourth. Thus, if a, b, c, d are 

proportionals, we say that a is to 6 as c is to d, and this is expressed by wri¬ 

ting them 

a:b::c:d, or a:bz=c:d, 

or as fractions, 

■A. 
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The first or second form of notation is usually employed in geometry, the 

last in analytical investigations. The signs :: and = have precisely the same 

meaning. The sign : is the sign of division. 

a c 
132. The expression a:h::c'.d., or is called a proportion, and a, b, c, d 

are se^verally called the terms of the proportion. The first and last are called 

the extreme terms, the second and third the mean terms. The first term is 

called the first antecedent, the second term the first consequent, the third term 

the second antecedent, and the fourth term the second consequent. 

133. When the second and third terms of a proportion are identical, the 

quantity which forms these terms is called a mean proportional between the 

other two; thus, if we have three quantities a, h, c, such that 

AT. ® ^ a:b::b:c, or t=~i 
be 

then b is said to be a mean proportional to a and c, and c is called a third pro¬ 

portional to a and b. 
If, in a series of proportional magnitudes, each consequent be identical with 

the next antecedent, these quantities are said to be in continued proportion ; 

thus, if we have a series of quantities, a, b, c, d, e,f, g, h, such that 

a:b::b:c::c:d::d:e::e:f::f:g::g:h, 

or 

a b c d e f g 

b c d e / g 

then the quantities a, b, c, d, e,f, g, h are in continued proportion. 

A continued proportion is called a progression. 

The following are the most important propositions connected with the sub¬ 

ject of proportion. 

I. If four quantities be proportionals, the product of the extreme terms will he 

equal to the product of the mean terms. 

Let 

a'.b::c:d. 

or 
a 

b—d' 

Multiplying these equals by hd, the expression becomes 

ad —be. 

II. Conversely, If the product of any two quantities he equal to the product 

of any other two, these four^ quantities will constitute a proportion, the terms of 

one of the products being the means, and the terms of the other the extremes. 

Let 

ad=bc. 

Dividing these equals by bd, the expression becomes 

a c c a 

b"^d^ d'^h'^ 

i. e., a:h:: c:d, or c:d::a:h. 

In the first, a and b are the extremes, and b and c the means; in the second, 

b and c are the extremes, and a and d the means. 

III. ]f three quantities he in continued proportion, the product of the extreme 

terms is equal to the square of the mean. 
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This follows immediately from I.; for let a, &, c be three quantities in con¬ 

tinued proportion, then 

a:b:.:b:c, or t=- 
b c 

ac=h X & by I. 
= 62. 

IV. Conversely, If the product of any two quantities he equal to the square 

of a thirds the last quantity ivill be a mean proportional between the other two. 

Thus, if ac=b'^, 6 is a mean proportional between a and c ; for, since 

ac=b^, 

dividing these equals by 6c, 

a b , , 
or a: b::b:c. 

6 c 

V. Quantities which have the same ratio to the same quantity are equal to 

one another^ and those to which the same quantity has the same ratio are equal 

to one another. 

First, let a and 6 have the same ratio to the same quantity c, then <z = 6. 

Since 

a:c::b:Ci 

c c' 

multiply these equals by c .’. a = b. 

Again, let c have the same ratio to each of the quantities a and 6, then a=:b. 

Since 

c:a::c:b, 

or 

a~b^ 

dividing these equals by c, 

1 1 

a 6 

a=6. 

VI. Ratios that are equal to the same are equal to one another. 

Let a:b::x:y 

And c:d::x:y 

This is an axiom. 

Then a:b::c:d. 

VII. If four quantities be proportionals, they will be proportionals also alter- 

nando, that is, the first will have the same ratio to the third that the second has 

to the fourth. 

Let a'.b::c:d, then, also, a:c::b:d. 

CL C 
Since divide each of these equals by c, and multiply each by 6. 

Then ~='j> i-e., u:c: :6:<i. 
c a 

VIII. If four quantities be proportionals, they will be proportionals also 

invertendo, that is, the second will have to the first the same ratio that the 

fourth has to the third. 

I 
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Let a:b::c:d, then, also, h:a::d:c. 
a 

Since divide unity by each of these equals. 

We have 

1 1 

© & 
or 

b d 
-=- ; i. e., 6:a::c?:c. 
a c 

IX. If four quantities be proportionals, they will be proportionals also com- 

ponendo, that is, the first, together with the second, will have to the second the 

same ratio that the third, together with the fourth, has to the fourth. 

Let 

Since 

a’.b'.'.c'.d, then, also, a-\-b'.b'.:c-\-d:d. 

a 
add 1 to each of these equals, then 

c 

6^" d 

a c 
i:+i=:7+i» 

or 

^ ; i. e., a-\-bib::c-\-d:d. 

X. If four quantities be proportionals, they will be proportionals also divi¬ 

dend o, that is, the difference of the first and second will have to the second the 

same ratio that the difference of the third and fourth has to the fourth. 

Let a'.bwc'.d, then, also, a — b:b::c—d:d. 

CL C 
Since subtract unity from each of these equals, then 

0 CL 

a c 

1-^=2-^' 

or 

a—b c—d .,777 
—-—=—ci — b:b::c—a:d. 

b d 

XI. If four quantities be proportionals, they will be proportionals also con- 

vertendo, that is, the first will have to the difference of the first and second the 

same ratio that the third has to the difference of the third and fourth. 

Let a:b'.:c:d, then, also, a: a—b::c'.c—d. 

Since ^=^5 then, by prop. VIII., “=~ » ^ud hence, subtracting these equal 

quantities from unity, 

b d 

a c’ 

or 

or 

a—b c—d 

a 

a 

a — h c — d 
,* i. e., a\a—h’.:c:c—d. 
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XII. If four quantities he proportionals^ the sum of the first and second will 

have to their difference the same ratio that the sum of the third and fourth has 

to their difference. 

Let a'.h iicid^ then, also, a-^h:a—h:'.c-\-d'.c—d. 

Since 
a c 

b^d^ 

by prop. IX., 
a-\- h c-\-d 

h — d ’ 

and, by prop. X., 
a — h c—d 

h — d ' 

dividing these equals by each other. 

a-^h c-^d 

a—h c—d 

~ir ~dr 
or 

a-\-h c-\-d . 1,7 7 
-7=-3,* 1. e., a4-h:a—o::c4-a:c—d. 
a — 0 c—d ' 

XIII. If there he any number of quantities more than two., and as many 

others, which, taken two and. two in order, are proportionals (ex sequali), the 

first will have to the last of the first rank the same ratio that the first of the 

second rank has to the last. 

Let 

and 

Let 

For, since 

a, h, c, d . . . . he any number of quantities, 

€,f,g,h .... as many others. 

a:h ::e :f ^ 

h:c ::f :g \ Then, also, a:d::e:h. 

c :d::g:hJ 

a e 

-J- 
c g 
c__g 
d—h'‘ 

multiplying the first column together, and also the second, 

ahc efg 

or 

hcd fgh* 

^j !• CL • (jL W ^ 

XIV. If there he any number of quantities more than two, and as many 

others, which, taken two and two in a cross order, are proportionals (ex sequali 

peiturbat^), the first will have to the last of the first rank the same ratio that the 

first of the second rank has to the last. 



RATIOS AND PROPORTION. 127 

Let 

and 

Let 

F or, since 

or 

a, b, c, d . . , . be any number of quantities, 

e,f,g,h .... as many others. 

a: b ::g:h 1 
b:c ::f :g \ Then, also, a:d::e:h. 
c :d::e :/ ^ 

a 

b^h 

c g 

c e 

d=r 
abc gfe 

bed hgf^ 

a e 

2—V 
i. e., a:d::e:h. 

XV. If four quantities be proportionals^ any qmwers or roots of these quan¬ 

tities will also be proportionals. 

Let a’.bi'.c'.d; then, also, a": :c“:<Z“. 

Since 

a c /<z\n /c\" 
raising each of these equals to the wth power, \ r] =( j). 

or 

7-=^ ; i. e., a^:b^'.:c^:d^^ 
b^d^ 

where n may be either integral or fractional. 

XVI. If there be any number of proportional quantities, the first will have to 

the second the same ratio that the sum of all the antecedents has to the sum of 

all the consequents. 

Let a, b, c, d, e,f, g, h be any number of proportional quantities, such that 

a’.b'.:c'.d::e:f::g'.h. 

Then 

a lb 11 a-^- c-^ € -j— gib -j— d-j—fA'. 

Since 

a c e g 

h^d"^f~h: 
we have 

ab =ba 
ad=bc 
af=be 
ah =bg, 

and .•. a{b-\-d^f-{-h)=.b{a-\-c-{-e-\-g) 
a a-\-c-\-e-{-g 

}j — b-^d-{-f-^h 

a'.bi'.a-{-c-\-e-\- g’.b-\-d-\~f-\-h. or 
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XVII. If three quantities he in continued proportion^ the first wiU have to 

the third the duplicate ratio of that which it has to the second. 

Let a:h::h:c, then a:c::a^:h^. 

Since 
ah It. ^ 
■^=-, multiply each of these equals by ^; then 

a^ a a a 0 a - - , 
-7XT=~Xr» 1. e., a:c;:a2:&2. 
b b c 0 b^ c 

XVIII. If four quantities he in continued proportion^ the first will have to 

the fourth the triplicate ratio of that which it has to the second. 

Let a, 6, c, d be four quantities in continued proportion, so that 
a:h::h:c::c:d ; then, also, a:d::a^:h^. 

Since 
a h c 
T=-= j, we have 
h c d 

a h 

h c 

a c 

h—d 

a a 

h~h' 

Multiplying these equals together, 
a^ hca 

h^—cdV 

or 
a a 
T^=-;; i. e., a:d::a^:h^. 
O'* a 

XIX. If two proportions he multiplied together, term hy term, the products 

will form a proportion. 

Let ^ a:h:: c :d, 

and e :f::g:h ; 

then ae :hf:: eg: dh. 

for 

hence, multiplying equals. 
ae 

a c , e g 
h—^, and , 

eg 
or ae:hf::eg:dh. 

The compatibility of any change in the order of the terais of a proportion 
may be tested by forming the product of the extremes and means in both the 
original and changed proportion, when, if they agi'ee, the change is correct. 
Thus, a:h::c:d may be written d:h::c:a, for we have ad=he in both. 

EXAMPLES IN PROPORTION. 

(1) The mercurial barometer stands at a height of 30 inches, and the specific 
gravity of quicksilver is 13|^. How high would a water barometer stand ? 

Ans. 33 feet 11^ inches. 
(2) The weights of a lever have the same ratio as the lengths of the oppo¬ 

site arms. The ratio of the weights is 5, and the longer arm 10 inches. 
What is the length of the shorter arm 1 Ans. 2 inches. 
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(3) The weights of a lever are 6 and 8 pounds, and the length of the shorter 

arm 18 inches. What is that of the longer ? Ans. 24 inches. 

(4) At the end of an arm of a lever 5 inches long, what weight can be sup¬ 

ported by 2] pounds acting at the end of an arm 4| inches long? 

Ans. pounds. 

(5) Triangles are to each other as the products of their bases by their alti¬ 

tudes. The bases of two triangles are to each other as 17 arid 18, and their 

altitudes as 21 and 23. What is the ratio of the triangles themselves 1 

Ans. 119:138. 

(6) The force of gi-avitation is inversely as the square of the distance. At 

the distance 1 from the centre of the earth this force is expressed by the 

number 32.16. By what is it expressed at the distance 60 ? 

Ans. 0.0089. 

(7) The motion of a planet about the sun for a short space is proportional 

to unity divided by the duplicate of the distance. If the motion be represented 

by V when the distance is r, by what will it be expressed when the distance is r' 1 

r^v 
Ans. -pj. 

(8) The times of revolution of the planets about the sun are in the sesquipli- 

cate ratio of their mean distances. The mean distance of the earth from the 

sun being expressed by 1, that of Jupiter will be 5.202776 ; the time of revolu¬ 

tion of the earth is 365.2563835 days. What is the time of revolution of 

Jupiter? Ans. 4332.5848212 days. 

EQUATIONS. 

, PRELIMINARY REMARKS. 

134. An equation^ in the most general acceptation of the term, is composed 

of two algebraic expressions which are equal to each other, connected by the 

sign of equality. 

Thus, ax—I, cx'^-\-dx—e, cx^-\-gx’^=ihx-\-'k, mx^-\-nx^-\-px'^-\-qx-^r=(),wce 

equations. 

The two quantities separated by the sign = are called the members of the 

equation, the quantity to the left of the sign = is called the jirst member, the 

quantity to the right the second member. The quantities separated by the 

signs -j- and — are called the terms of the equation. 

135. Equations are usually composed of certain quantities which are known 

and given, and others which are unknown. The known quantities are in 

general represented either by numbers, or by the first letters in the alphabet, 

«, 6, c, &c.; the unknown quantities by the last letters, s, t, x, y, z, &c. 

136. Equations are of different kinds. 

1°. An equation may be such that one of the members is a repetition of the 

other; as, 2x — 5=2:r—5. 
2°. One member may be merely the result of certain operations indicated 

in the other member; as, 5.r-[-16 = 10a:—5 — {5x—21), {x-\-y){x y)=x^ y'^, 

2^- 
-—=x^4-xv-\-y^. 

I 
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3”. All the quantities in each member may be known and given ; as, 25 = 10 

a-\-h=c—d, in which, if we substitute for a, Z>, c, d the known quan¬ 

tities which they represent, the equality subsisting between the two members 

will be self-evident. 

In each of the above cases the equation is called an identical equation. 

4 . Finally, the equation may contain both known and unknown quantities, 

and be such that the equality subsisting between the two members can not be 

made manifest, until we substitute for the unknown quantity or quantities cer¬ 

tain other numbers, the value of which depends upon the known numbers 

which enter into the equation. The discovery of these unknown numbers 

constitutes what is called the solution of the equation. 

When found and put in the place of the letters which represent them, 

if they make the equality of the two members evident, the equation is said to 

be verified, or satisfied. 

The word equation, when used without any qualification, is always under¬ 

stood to signify an equation of this last species ; and these alone are the objects 

of our present investigations. 

X + 4 — 7 is an equation properly so called, for it contains an unknown 

quantity x, combined with other quantities which are knpwn and given, and 

the equality subsisting between the two members of the equation can not be 

made manifest until we find a value for x, such that, when added to 4, the 

result will be equal to 7. This condition will be satisfied if we make x=3 ; 

and this value of x being determined, the equation is solved. 

The value of the unknown quantity thus discovered is called the root of the 

equation, being the radix out of which the equation is formed; the term root 

here has a different sense from that in which we have hitherto used it, viz., 

that of the base of a power. 

137. Equations are divided into degrees according to the highest power of 

the unknown quantity which they contain. Those which involve the simple 

/ or first power only of the unknown quantity are called shnple equations, or 

.equations of the first degree ; those into which the square of the unknown 

squantity enters are called quadratic equations, or equations of the second de¬ 

gree : so we have cubic equations, or equations of the third degree ; biquad¬ 

ratic equations, or equations of the fourth degree ; equations of the fifth, sixth, 
.degree. Thus, 

ax -f-5 =c.r-{-fi^ is a simple equation. 

4.t^—2x =5—x'^ IS a quadratic equation. 

:x^.\-px~-=2q is a cubic equation. 

1_|_ ^^.n—2_|_, =r, is 30 oquatioii of the n^^^ degree. 

138. Numerical equations are those which contain numbers only, in addition 

to the unknown quantities. Thus, x^-^bx'^ = 3x-\-ll and Ax=7y are numer¬ 

ical equations. 

139. Literal equations are those in which the known quantities are repre¬ 

sented by letters only, or by both letters and numbers. Thus, ih-\-px^-\-qx—r, 
oc*—3q)r^y-\-5qx^y^-\-rxy^=:b are literal equations. 

140. Let us now pass on to consider the solution of equations, it being under¬ 

stood that to solve an equation is to firnd the value of the unknown quantity, or 

to find a number which, lohen substituted for the unknown quantity in the equa¬ 

tion. renders the first member identical with the second. 

I 
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The diihculty of solving equations depends upon the degree of the equations 

and the number of unknown quantities. We first consider the most simple 

case. 

ON THE SOLUTION OF SIMPLE EaUATIONS CONTAINING ONE UN¬ 
KNOWN aUANTITY. 

141. The various operations which we perform upon equations, in order to 

arrive at the value of the unknown quantities, are founded upon the following 

axioms : 

Ifdo two equal quantities the saine quantity he added, the sums will he equal. 

If from two equal quantities the same quantity he subtracted, the remainders 
will he equal. 

If two equal quantities he multiplied hy the same quantity, the products loill 

he equal. 

If two equal quantities he divided hy the same quantity, the quotients will he 

equal. 

These axioms, when applied to the two equal quantities which constitute 

the tw'o members of every equation, will enable us to deduce from them new 

equations, which are all satisfied by the same value of the unknown quantity, 

and which will lead us to discover that value. • 

142. The unknown quantity may be combined with the known quantities m 

the given equation by the operations of addition, subtraction, multiplication, 

and division. We shall consider these different cases in succession. 

T. Let it be required to solve the equation 

x-\-a = h. * 

If, from the two equal quantities x-\-a and h, we subti’act the same quantity 

a, the remainders will be equal, and we shall have 

x-\-a—a=h — a, 

or 

x=h—a, the value of x required. 

So, also, in the equation 

a;4-6=24. 

Subtracting 6 from each of the equal quantities .t-fb and 24, the result is 

a:=24 — 6 
= 18, the value of x required. 

II. Let the equation be 

X—a=h. 

If, to the two equal quantities x—a and h, the same quantity a be added, 

the sums will be equal; then we have 

X—a-{-a = h-\-a, 

or 
x—h-\-a, the value of .r required. 

So, also, in the equation 

X—6=24. 

Adding 6 to each of these equal quantities, the result is 

a: = 24-|-6 

=30, the value of x required. 

It follows from (I.) and (II.) that 
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We may transpose any term of an equation from one member to the other by 

changing the sign of that term .* 
We may change the signs of every term in each member of the equation ivith 

out altering the value of the expression.^ 

If the same quantity apptear in each member of the equation affected ivith th 

same sign., it may be suppressed. 

Ill Let the equation be 

ax=b. 

Dividing each of these equals by a, the result is 

b 
3?=-, the value of x required. 

So, also, in the equation 

6.r=24. 

Dividing each of these equals by 6, the result is 

a:=4, the value of x required. 

From this it follows that. 

When one member of an equation contains the unlcnown quantity aionc^ 

affected with a coefficient, and the other member contains known quantities only, 

the value of the unknown quantity is found by dividing each member of the 

equation by the coefficient of the unknown quantity 

IV. Let the equation be 

a 

Multiplying each of these equals by a, the result is 

x=ab, the value of x required. 

So, also, in the equation 

x 
-=24. 

Multiplying each of these equals by 6, the result is 

.r=144. 

From this it follows that. 

When one member of the equation contains the unknown quantity alone, di¬ 

vided by a known quantity, and the other member contains known quantities 

only, the value of the unknown quantity is found by multiplying each member 

of the equation by the quantity which is the divisor of the unknown quantity. 

V. Let the equation be 

ax dx m 

b e n 

In order to solve this equation, we must clear it of fractions ; to effect this, 

reduce the fractions to equivalent ones, having a common denominator (Art. 

41), the equation becomes 

aenx been bdnx bem 

ben ben ben ben ’ 

Multiply these equal quantities by the same quantity ben, or, which is evi- 

* If we transpose a plus tei-m, it subtracts this term from both memhei's; and if we 

transpose a minus term, it adds this term to both. 

t This is, in fact, the same thing as transposing eveiy tei-m in each member of the equa 

tion, or multiplying throughout by —1. 
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dently the same thing, suppress the denominator hen in each of the fractions, 
the result is 

aenx—hcen—hdnx—an equation clear of fractions. 

So, also, in the equation 

2x 2, X 

3 4 '5 

iieducing the fractions to a common denominator 

40.r 45 660 _ 12a: 

Multiplying both members of the equation by 60, the result is 

40a:^45 = 660-j-12a:, an equation clear of fractions. 

If the denominators have common factors, we can simplify the above opera¬ 

tion by reducing them to their least common denominator, which is done (see 

Art. 44) by finding the least common multiple of the denominators. Thus, in 

the equation 

bx ix 7 13a: 

The least common multiple of the numbers 12, 3, 8, 6 is 24, which is, there¬ 

fore, the least common denominator of the above fractions, and the equation 

will become 

10a: 32a: 312 21 52.a: 

yr ~ yr “ “"yf’ 
Multiplying both members of the equation by 24, the result is 

10a:—32a:—312 = 21—52x, an equation clear effractions. 

Hence it appears that, 

In order to clear an equation of fractions^ reduce the fractions to a common 

denominator, and, then multiply each term hy this common denominator. In the 

fractional terms the common denominator will he simply suppressed. 

143. From what lias been said above, we deduce the following general 

RULE FOR THE SOLUTION OF A SIMPLE EQUATION CONTAINING ONE UNKNOWN 

QUANTITY. 

1°. Clear the equation of fractions, and perform in hoth members all the alge¬ 

braic operations indicated. 

2°. Transpose all the terms containing the unknown quantity to one member 

of the equation, and all the terms containing known quantities only to the other 

member, and reduce each member to its most simple form. 

3°. We thus obtain an equation, one member of ivhich contains the unknown 

quantity alone, affected with a coefficient, and the other member contains known 

quantities only ; the value of the unknown quantity will be found by dividing the 

member composed of the known quantities by the coefficient of the unknown 

quantity'. 

The terms containing the unknown quantity are usually collected in the, first 

member of the equation, though they may often be more conveniently col¬ 

lected in the second; the second being afterward written as the first member, 

and the first as the second. 

Sometimes an equation presents itself as one of a degree higher than the 

first, but both members are divisible by such a power of the unknown quan¬ 

tity as to reduce the equation to one of the first degree. 
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In other cases, clearing an equation of fractions reduces it, by the canceling 

of those terms which contain the higher powers of the unknown quantity, to 

the first degree. 

A proportion containing an unknown quantity in any of its terms can be 

thrown into the form of an equation by multiplying the extremes, and also the 

means, and setting the two products thus formed equal to each other. 

EXAMPLE I. 

Given, =59 — ^x. 

Transposing, 19:r-f" 4.r = 59 —13. 

Reducing, 23x=i6. 

Dividing by 23, x=2. ’ 

Verification.—Substitute 2 for x in the given equation, it becomes 

19x2 + 13=59—4x2, or 

38 + 13=59 — 8, an identity. 

Let this process be repeated in some of the following examples. 

EXAMPLE II. 

^. XX XX 

Given, + = 3-2 + “- 

Reducing to least common denominator 12, 

2x 3.r Ax 6x 

Multiplying both members by 12, 

2x—3a:+120 = 4.r—6a:+132. 

Transposing, 2x—3x — 42: + 6a:=132 —120. 

Reducing, x = 12. 

EXAMPLE III. 

Given, 
5a:+3 

+ 7 = 
4a:—10 

10 
+ 10. 

Reducing to least common denominator 20, 

25.r+15 
f7 

8.r—20 + 10. 
20 ' 20 

Multiplying both members by 20, 

25a:+15+140= 8a:—20 + 200. 

Transposing, 25x— 8.a:=200 — 20 —15 —140. 

Reducing, 17a:= 25. ^ 

25 
Dividing by 17, 

17’ 

EXAMPLE IV. 

2a:—5 7a:+10 12a-—10 
Given, —-^ =16- 

Reducing to common denominator, 

30a:—75 140a:+200 144a:—120 

^ ~ 60 =1^— • 

Multiplying both members by 60, 

30a:—75 —140a:—200 =960 —144.r+120. 

Transposing, 30a:—140a:+144.a:=960+ 75 +200 + 120. 
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34a:=1355. 

1355 

Reducing, 

Dividing by 34, 

It is unnecessary to write the common denominator. 

x= 
34 

EXAMPLE V. 

Given, 
12 — Ax 2a: 4-5 7a: 4-60 

^ = 3+ T---—50. 
10 5 ~ ^ ' 2 

Reducing to least common denominator, 10, and neglecting it, we have 

12—4a: —4a: —10 =30+ 35a:+300—500. 

Transposing, —4a:—4a:—35a:=30 + 300 — 12+10—500. 

Reducing, —43a:= —172. 

Changing the signs of both members,* 

43a:= 172. 

x= 4. Dividing by 43, 
■ 

Given, 

Transposing, 

Simplifying, 

Dividing by {a—C), 

EXAMPLE VI. 

ax-\-h =cx-{-d. 

ax—ca:= d—h. 

{a—c)xz= d—5. 

d—h 
X=z - 

a—c 

EXAMPLE VII. 

ax cx gx 

Reducing to a'common denominator, 

adhx helix 
l-Tj7r+«=>4 

hdgx 
■ m. 

hdh hdh 

Multiplying by hdh, 

adhx-\- hchx-\- hdeh = hdfhx-{- hdgx-\- hdhm. 

Transposing, adhx + helix—hdfhx—hdgx=hdhTn—hdeh. 

Simplifying, {adh-{-heh — hdfh—hdg)x=hdhm—hdeh. 

hdhm — hdeh 
Dividing by coefficient of r, adh+hch-hdfh-bdg 

hdliirri'—e) 

' adh + 6c/z — hdfh—hdg 

EXAMPLE VIII. 

T dx 
Given, ~—1— —+ 3a6=0. 

(J/ C 

Reducing to common denominator and neglecting it, 

ex — ae — adx-\-?>a%c = 0. 

Transposing and simplifying, {e—ad)x=ae—3a^he. 

ae{\—3ah) 
Dividing by coefficient of c-ad * 

Verijieation. 

ac{l —3ah) 

' c—ad 

a 

aed{l — 3a6) 
—1—^-^+3a& = 0; 

e{e—ad) 

* Or dividing’ both members by 43, gives x 4. 
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or 
c(]—3ah) ad{\—3ab) 

c — ad c—ad 
-|-3a6=0; 

or 

c—3ahc—c-{-ad—ad-{-3a’^bd-\-3abc — 3a'^bd=.0, 

Given, 

Transposing, 

EXAMPLE IX. 

a:-j-18 = 3a:—5. 

184-5 =3x—x 

23 = 2x 

23 
x=— = lU. 

Given, 

Clearing of fractions. 

EXAMPLE X. 

a b d 

X c e 

ace—bex-\-cdx 

ace={be-\-cd)x 

ace 

^ be-\-cd' 

EXAMPLE XI. 

Given, 3x'^— 

Dividing by a:, 3:2:—10 =8 4“^ 

x=9. 

Given, 

Dividing by 

EXAMPLE XII. 

x^z=ax^~^. 

x=a. 

ax^—a' 

EXAMPLE XIII. 

// a' 
.ra—1 

Given, --—=a—■ 
x'^ X' 

Multiplying by a:™, ax”'—a'—ax”'—a"x. 

Canceling ax”' in both members. 

a' 
■a' — —a 'x x=—. 

a 

Given, 

EXAMPLE XIV. 

ad 
a:bx::c:d bcx=ad .*. x 

be’ 

144. In addition to the axioms in (Art. 141) we may subjoin the following: 

If two equal quantities be raised to the same power, the results will be equal. 

If the same root of two equal quantities be extracted, the results will be equal. 

Hence any equation may bo cleared of a single radical quantity by trans¬ 

posing all the other terms to the opposite side, and then raising each member 

to the power denoted by the index of the radical. If there be more than one 

radical, the operation must be repeated. Thus : 



SIMPLE EaUATIONS. 137 

EXAMPLE XV. 

^iven, V3-i’4-7 = 10. 
Squaring each member of the equation, 

3. t+7 = 100. 
Transposing, 3a:=100—7. 

Reducing, and dividing by 3, 2’=31. 

EXAMPLE XVI. 

Given, Ax-\-2— 

Squaring both sides of the equation, 

4. r+2—4a:-|-10 '/hr+25. 

Reducing, —10'/4:r=23. 

Squaring both sides, 4002’=529. 

529 

EXAMPLE XVII. 

V-'^4-38 
Givgh^ 7^~i a ““ 7 i 7^ • ■y X 4 "y X —6 

Clearing the equation of fractions, 

2’-^ 28 \/2-|- 6's/2—[-168 =2—j— 38 ^2-j- 4 2—152. 

Transposing and reducing, 16 = 8 x. 

Dividing both members by 8, 2= ■\/x. 

Squaring both members, 4= 2. 

EXAMPLE XVIII. 

Given, a-\-x x^^-^-bax-^-l)^. 

Raising both members to the m*'* power, 

a-{-x = ■s/ x‘^-\-bax-\-h^. 

Squaring both members, a'^-\-2ax-{-x"=x’^-{-bax-\-y^. 

Transposing and reducing, —3u2 z=lr — a^. 

Changing the signs, 3<22 —a^ — 

. a^ — h^ 
Dividing by 3a, 2 =—r—. 

*j(L 

EXAMPLE XIX. 

2rtv 
72- ■a 

Since x is the square of ^^x, and is the square of a, we can perform 

the division indicated in the first fraction, and have for a quotient 

-72—a 
272+a = —^—, 

(6 —1)272= — {h-\-l)a, 

2m/ (^ + 1)® 
.*. 272= — 

\ 6 — 1 / 

(20) Given 42-f-36 = 52-|-34. 

(21) Given 42 — 12-f-32-l-l=22+4. 

Ans. 2=2. 

Ans. 2=3. 
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(22) Given — bh-\-'‘2-=lb—a-\-c-\-Q, Ans. 

(23) Given 13|—-=2x—8|. 

777 377 
(24) Given 12j-|-3*'*^—^ 

(25) Given 1+1=1+7. 

(26) Given-+^+- = 13. 

(27) Given x-\--—i;=4a:—17. 
tj 

.r+4 
(28) Given 5— ^^--=a:—3. 

^ 3.r—5 2x—4 
(29) Given a:+—-—=12——-—. 

(30) Given 
a:+l a:+3 a:+4 

■+ 16. 

bx Ax 
(31) Given bx——+12=—+26. 

t5 

X Ax 41.r 
(32) Given 7x+13f — -=y—8| + — . 

(33) Given 8.r—1\—— bx—2| = 0. 

(34) Given 4(5a:+7—f) = f(3.r+9 —4). 

x+^-r+ir 20a:—25 
(35) Given 

01 _4 
—~S 

(36) Given 
X—5 

(37) Given x- 

~ 101 

284—a: 
_ + 6^=__ 

11—X 19—X 

(38) Given 3a;+ 
2.r+6 

=5 + 
11a:—37. 

, 6.r—4 18 — 4a: 
(39) Given —-——2 = —-— + a’ 

(40) Given 21 

3 3 

3a:—11 bx—b 97 —7a: 

16 

(41) Given 3a:———4 = 

8 ' 2 

5.r+14 1 

(42) Given 

(43) Given 

(44) Given 

X—1 23—X 
- I -—7. \ f; ' 

3 12' 

4 + a: 

7a:+5 16 + 4a: 
+ 6 = 

3.r + 9 

3 5 '2 

3.r + 4 7a:—3 a: —16 

17—32: 4a:+2 7.a:+14 
(45) Given—-———=5 —6.r+—-—-. 

3a:—3 20 — x 6x—8 4a: — 4 
(46) Given a:——^+4 = —^ . 

= 126 — 4a + c+4. 

Ans. a: = 9. 

Ans. a:=139L. 

Ans a:=12. 

Ans. a:=12. 

Ans. .a:=6. 

Ans. a:=7. 

Ans. x=b. 

Ans. a:=41. 

Ans. a:=12. 

Ans. a:=9. 

Ans. a:=0, or 8|. 

Ans. x= —1|. 

Ans. a:=2yL. 

^ Ans. x=9. 

Ans. .r=5. 

Ans. x=7. 

Ans. a:=4. 

Ans. .t=9 

Ans. x—7 

Ans. a:=8 

Ans. a:=l 

Ans. a:=2 

Ans. a:=4 

Ans. a:=6 



SIMPLE EaUATIONS. 139 

^ ^ 4.r—21 ^ 57 —3.^ 5.r—96 
^^47) Given--—— -^==241——77;——ll.r. Ans. 2’=21. 

^ ^ 6.r4-18 11—3a: 
(48) Given————4|——77;—==5:^—48' 

XkJ 

12 

13—X 21—2a: 

36 12 18 

(49) Given 21-f 
3a:—11 5x—5 97—7x 

16 “ 

hx d a cx 
(50) Given ———=t—“t- 

a c b d 

8 2 

Ans. a:=10. 

Ans. a:=9. 

ad 
Ans. x= 

he' 

(51) Given 23- 
5.7:—1 3a:—2 11a:—3 13a:—15 8a: —2 

11 12 

1 3a: —13 124-7a: 
(52) Given 4:r+---^=7x-33- 

3 7 * 

Ans. a:=9. 

94-5a: II.7:—17 

ace {a-\-hYx 
(53) Given —7-—-—hx—ae — 36a:. Ans. a:= 

8 

Ans. a:=15. 

a^e{c—d) 

(54) Given 

d a 

«4-3 X la—5a: 

A.a 6b 

9a: X 5x 

^ 4 ab~^ 6 b' 

(a^-f 62)t^* 

Ans. X: 

39a6 —14«2 

■27«6—964-12' 

hx {3hc-\-ad)x Bah '' (36c—ad)x 5a{2h—a) 

(55) iven ^ 2ah{a-\-h) 3c—d 2ah{a—6) a'^ — h'^ 

ba(2h—a) 
Ans. x= 

(56) Given ax-\-c=hx-\-d. 

(57) Given 2ax—6a:4-2a6=4a^—ah—3ax. 

(58) Given {3a—x)(a—h)-^2axz=z4h{a-{-x). 

/ 1 1^ 
(59) Given -ax-\--hx=c. 

X dx 
(60) Given——1——-f-3a6=0. 

Ans. x= 

Ans. x=. 

Ans. a:= 

3c — d 

d—c 

a — b' 

4a^ — 3ah 

5a — 6- 

lah—3a? 

o^x 

Ans. X 

Ans. a:= 

a—36 

6c 

'3«4-26' 

«c(l —3ah) 

(61) Given ^—-^-\-dcz=hx—ac. 

ax mx , 
(62) Given— cz=.— -\-d. 

Ans. a:=: 

c—ad 

ahe—ac^ -{-bed—c'^d 

6^—he—a^ 

hcn-\-hdn 

ax 
(63) Given -—j-{-Ah 

cx 

(64) Given 

a — b~^^^ 3a-\-h' 

3hx X — 6 hx—X 

2a" a-\-h a?—6^ 4d 

Ans. x= 

Ans. a:= 

Ans. xz=. 

• an—hm 

8^62 4-463-12^26 

3«2_|_a5 —<ac4-6c* 

4a2(«2_|_^5 — 52^ 

(a4-^)(^-r. 

(65) Given--—3a—-—^-2a: 

3a^ — 6a^h-\-ah‘^-\-6h'^' 

a? — hx 

a—6 a^b 6 • 

a^J^3a^h-\-4a^h^—6ah^-\-2h^ 

6(4^24- 2a6 — 262) Ans. X— 
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m 

X 

m' k m 

q rx 

m k ’ 

kb-\-kq 
Ans. a:— —, , , , 

ka—kp-\-mc-\-rm 

k{b-{-q) 

k{a—j?)-l-m(c-|-r)' 

mx 

T+P- 

Ans. xz= 
Vl'pk 

(68) Given r{ax-{-h—c)=c{px-\-q—r). 

x-^vx—qx mx—n 
(69) Given-=-. 
' ’ p — q m 

(70) Given {^m-\-p){^x—2r)=.{^m-\-2p){\x—7r). 

12(1 —m) + 2(3a+26) -f 3c' 

cq—r6 
Ans. X—- 

Ans. x= 

ra—cp 

n{q—2i) 

m 

Ans. X: 
r( 952m-1-4 928^) 

9 m-j-208^ 

mP'X Am^x—h^n—8n Va: 
(71) Given ——-\-5nx: 

n g bng 

Ans. x-= 
Anh^ 

13(5a.r—2256) 24(3a.r—20|6) 
(72) Given--. 

bm^g—4m^ 33/i^^' 

Ans. xz 

13m—lx Am—x m-\-p 
(73) Given ^ ^ -=-— kx. 

ni-\-p m—p m—p 

Ans. Xz 

(2041c—4406f/t)6 

11 mp — 16?7i^ 

Qp—Qni-\-k —p"^) ’ 

, ^ ^ahc (2a-}-6)6^0: a^6^ hx 
{7A) Given ———-- -f--——j—=3cx-\-—. 
' ' a-f-6 ‘ a{a-{-hf ' (a-l-6)3 ' a 

3a26c(a-}-6)2-f-a=^62 

(3ac-f-6)(a-}-6)^ — {2a-\-h){a-\-h)lP'' 

6bx—ba^ bx-\-Aa 

Ans. x'= 

s Qp’_, 3 l)x 
(75) Given ax—--—ab‘^-=bx-\ 

a 2a 

Ans. a:=- 
4a6^—10a 

(76) Given ax^-^-bx—cx'^J^dx. 

(77) Given —D.'c™~L 

AAa^—^a’^bx 2la^-\-ba%x 

4a—36 ’ 

d—6 
Ans. .r=- 

Ans. x=. 

a—c 

D + B 

C—A' 

Ans. Xz 
105a'' 

4m(K''—bx^) 
(79) Given 

(80) Given3_^^_^_3^ 

8a: 

24.r® bx^ 

z=.77np-\ 

151a26-|-28611c5m 

bm{g^ — 2a:) 2K^ 
Ans. Xz 

28p-{-bg‘^' 

Ans. a: = 3|f. 

4 
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(81) Given 

(82) Given 

(83) Given 

(84) Given 

(85) Given 

l>-\-cx p-\-qx 
X 

12—a::-::4:l. 

::7:4. 
5.r_j_4 18—X 

”2 ' 4 

2©:1::1:3.1416. 
b 

a:t::-:7c. 
c 

(86) Given r:l;:c:3.1416. 

(87) Given Ax-\-lQ = 12. 

(88) Given y2x-\-2>-\-4.=7. 

(89) Given yi2-{-x=2-\- yx. 

(90) Given •v/2;-|-40 = 10—yx. 

(91) Given yx—16 = 8—y x. 

(92) Given yx—24= yx—2. 

(93) Given yx—a= yx—\ya. 

'(94) Given V^X yx-\-2= ybx-\-2. 

(95) Given y 4:a-\-x=2 yh-\-x—y x. 

(98) Given 

(96) G'wen x-\-a-\-y2ax-\-x:^=b. 

X—ax yx 
(97) Given-^r-=-. 

’ yx ^ 

Vl+28__ ^^+38 

yx-\-4: y x-yQ 

y x-X-2a yx-X-^^a 
(99) Given -= _ -.. 

y x-yh yx-y3b 

3x—i y'^—i 

ax—6^ y dx—b 
(101) Given—=:-=c-j--• 

yax-yb ^ 

(102) Given a:=_^a^-yx yb^-yx^—a. 

(103) Given yb-yx-y yx— 

Ans. X— 
bm—ap 

141 
/ 

aq—cm 

Aris. x=i. 

Ans. x=2. 

Ans. © =0.1591. 

7ac^ 
Ans. t: 

b • 

Ans. r 
3.1416* 

Ans. a:=32. 

Ans. :r=12. 

Ans. a:=4. 

Ans. x=9. 

Ans. x=2b. 

Ans. x=49. 
^ 2ba 
Ans. X 

Ans. x= 

Ans. X 

16 * 
9 

{b—ay 

Ans. x= 

2a—b ’ 

{b-ay 

2b 

Ans. X: 
•a 

Ans 

Ans. x—4 

I ab y 

Ans. x-=3 

l! C2 \ 
Ans. 

Ans. X: 
b^—4a^ 

'' 4a 

15 
Ans. x=4 

yb-yx 

L /V ^ 
A 25 Ans. .r=—. 

16 lx- 

1 4 9 

V a^x^~^x^'' 
Ans. x—2a. 
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(106) Given V 

(107) Given ^/x—32 = 16—x 

5x—9 '\/5x—3 
(108) Given —-—1=^---. 
^ ’ V5x-Jf-3 2 

(109) Given /i V—i>=k y cx-\-dx—f. 

y m. (110) Given 
y d —j— X —j— y CL—X 
y a-\-x— y a—X 

(111) Given ya^-{-c 
V d(:. 

mx 
(112) Given —y^^x^-^q^-[- 

^/(.r+9)‘ 

Ans. x-=- 

Ans. 

Ans. .t=81. 

Ans. x=5. 

hh^ —fk^ 

ah^ — {c-{-d)k^ 

2a y m 
Ans. x=- 

Ans. x~ 

:rx. Ans. x= 

d y a^-\-c 

{nr-\-mq){nr—mq) 

9. 

2mnpr n ^ ' n 

When an equation can never be verified, whatever value we put in the 

place of the unknown quantity, it is said to be impossible ; and when an equa¬ 

tion is always verified, whatever value be put for the unknown quantity, it is 

said to be indeterminate. 

CASES OF IMPOSSIBILITY AND INDETERMINATION IN EGUATIONS 
OF THE FIRST DEGREE. 

I. Problem.—To find a number such that the third of it, augmented by 75, 

and five twelfths of it, diminished by 35, shall make three quarters of it, added 

to 49. 

The equation is 

X 5x 

3+^«+r2- 
■35=7+49, [1] 

X 5x 3x 

3'^12~T“^ 

.*. Ax-\-5x — 9.r=108 

.-. 0 = 108. 

An absurdity. There is, therefore, no value of x which can satisfy the 

equation [1]. 

The impossibility may be rendered evident in the equation [1] itself by re 

ducing the similar terms in the first member; thus, 

. 3a: 3.r 
-+40=--f49. 

It is evident that the two members will always differ by 9, whatever be the 

value of .T. 

II. Problem.—To find a number such that, adding together the half of it in¬ 

creased by 10, two thirds of it increased by 20, and five sixths of it diminish¬ 

ed by 34, the sum shall be equal to twice the excess of this number over 5. 

r+10 , 2(.r4-20) , 5(.r-34) 
2+3 + 6 —2(a:—5), 

.'. 3a:-f 30-f 4.r-4-80 -|-5a: —170 = 12a: —60 

.-. 3a:-i-4a:-f 5.r—12.r=170 —30 —80 —60 

i. c., 0 = 0. 

The unknown x is, therefore, altogether indeterminate; that is to say, it 

may be taken equal to 2 or 3, or any number whatever. 

V. 
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ON THE SOLUTION OP SIMPLE EaUATIONS, CONTAINING TWO OH 
MORE UNKNOWN GUANTITIES. 

145. A single equation, containing two unknown quantities, admits of an in^ 

finite number of solutions; for if we assign any arbitrary value to one of the 

unknown quantities, the equation will determine the corresponding value of 

the other unknown quantity. Thus, in the equation y=.r+10, each value 

which we may assign to x will, when augmented by 10, furnish a correspond- 

ingvalueofy. Thus, if a:=2, y=:12; if a:=3, y = 13, and so on. An equation 

of this nature is called an indeterminate equation^ and since the value of y de¬ 

pends upon that of .r, y is said to be ^function of a:. 

In general, every quantity, whose value depends upon one or more quantities, 

is said to he a function of these quantities. 

Thus, in the equation y=ax-\-h, we say that y is a function of x, and that 

y is expressed in terms of x, and the known quantities a, h. 

If, however, we have two equations between two unknown quantities, and 

if these equations hold good together, then it will be seen presently that we 

can combine them in such a manner as to obtain determinate values for each 

of the unknown quantities; that is to say, each of the unknown quantities will 

have but a single value, which wiU satisfy the equations. The equations in 

this case are called determinate. 

In general, in order that questions may admit of determinate solutions, we 

must have as many separate equations as there are unlcnoivn quantities; a 

group of equations of this nature is called a system of simultaneous equations. 

If the number of equations exceed the number of unknown quantities, un¬ 

less the equations in excess conform to the values of the unknown quantities 

determined by the others, the equations are said to be incompatible. Thus, 

if we have x^y = \0 and x—y = 6, the only values of .r and y which will satisfy 

both these equations are 8 for x, and 2 for -y. Now, if we were to add an¬ 

other equation to these, it must conform to these values, and could not be 

written in any form at pleasure. Thus, we might for a third equation say 

xy = lG‘, but we could not write .Ty = 100, for this third equation would be in¬ 

compatible with the other two.* 

* Equations may be incompatible when the number does not exceed the number of un¬ 

knowns, as the following problem will show: r 

A sportsman was asked how many birds he had taken. He replied, if 5 be added to the 

third of those I took last year, it will make the half of the number taken this year. But if 

from three times this last half 5 be taken, you will have precisely the number taken last 

year. How many did he take in each year? 

Let x= the number this year, and the number last year. 

X y , 3x 
2/=- -O. 

3 ' ' 2 

Substituting in the first the value of y m the second, 

X X 5 

2~ ¥~3 ' ■ 

.-. 307—3a;=:30—10 

0 =20; 
' *. 

an absurd equality, whence we conclude that there exist no values of x and y which satisfy 

the two tquatioirs. 
This is because the conditions of the problem are inconsistent with each other. When, 

however, the two equations are derived from the same problem, and its conditions are not 

contradictory, values for x and y will always be found to satisfy them. 
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146. In order to solve a system of two simple equations contniuing two un¬ 

known quantities, we must endeavor to deduce from them a single equation 

containing only one unknown quantity; we must, therefore, make one of the 

. unknown quantities disappear, or, as it is termed, we must eliminate it. The 

equation thus obtained, containing one unknown quantity only, will give the 

value of the unknown quantity which it involves, and, substituting the value of 

this unknown quantity in either of the equations containing the two unknown 

quantities, we shall arrive at the value of the other unknown quantity. 

The process which most naturally suggests itself for the elimination of one 

of the unknown quantities, is to derive from one of the two equation.^ an ex¬ 

pression for that unknown quantity in terms of the other unknown quantity, 

and then substitute this expression in the other equation. We shall see that 

the elimination may be effected by different methods, which are more or less 

simple according to the nature of the question proposed. 

EXAMPLE I. 

Let it be proposed to solve the system of equations 

y—x=. 6.^ 

2/+.t=12.(2) S 

147. First Method.—From equation (1) we find the value of y in terms 

of X, which gives y=x-\-6 ; substituting the expression T-j-6 for y in equation 

(2), it becomes x-\-Q-\-x=il2, from which we find the determinate value x=3; 

since we have already seen that y=x-\-Q^ we find also the determinate value 

y = 3-|-6 or 9. 

Thus it appears, that although each of the above equations, considered sep¬ 

arately, admits of an infinite number of solutions, yet the system of equations 

admits only one common solution, x=3, y=9. 

148. Second Method.—Deidve from each equation an expression for y in 

terms oi x, we shall then have 

> y— T-j-G 

2/=12 —X. 

These two values of y must be equal to one another, and, by comparing 

them, we shall obtain an equation involving only one unknown quantity, viz., 

a:-j-6 = 12—x. 

Whence 

x—3. 

Substituting the value of .r in the expression y=zx-\-Q, we find y=3. 

The substitution of 3, the value of x, in the second expression, y = 'i-'2—x, 

leads necessarily to the same value of y ; thus, 12—3=9, for we derived the 

value of X from the equation a:-|-6=12—x. 

149. Third Method.—Since the coefficients of y are equal in the two 

equations, it is manifest that we may eliminate y by subtracting the two equa¬ 

tions from each other, which gives 

(2/ + ^’) —(2/—^) = 12 —6. 

Whence 

2x-=Q 

x=3. 

Having thus obtained the value of x, we may deduce that of y by making 

x=3 in either of the proposed equations; we can, however, determine the 
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value of y directly, by observing that, since the coefficients of .r in the proposed 

equations are equal, and have opposite signs, we may eliminate x by adding' 

the two equations together, which gives 

(2/—^) + (2/+^) = 12+6. 
Whence 

2y=18 

y=9. 

If we examine the three above methods, we shall perceive that they con¬ 

sist in expressing that the unhnown quantities have the same values in both 

equations. 

These methods have derived their names from the processes employed to 

effect the elimination of the unknown quantities. 

The first is called the method of elimination by substitution. 

The second is called the method of elimination by comparison. 

The third is called the method of elimination by addition and subtraction. 

The rule for the first is to find the value of one of the unhnoivn quantities in 

one of the equations, and substitute it in the other equation. 

For the second, is to find the value of the same unknown quantity in each of 

the two given equations, and set these values equal. 

And for the third, is to make the coefficient of the unknown quantity to be 

eliminated the same in the two equations, and add or subtract as the case may 

require. Add, if the signs of the equal terms are different, and if they are 

alike, subtract. 

By either of these rules a single equation, containing but one unknown quan 

tity, is obtained. 

EXAMPLE II. 

Take the equations 

2a:-f 32/ = 13.(1) > 

bx^Ay=22.(2) S 

1°. Eliminating by substitution. 

From equation (1), we find 

13—2a: 
»=—3—• 

Substituting the value of y in terms of x in equation (2), it becomes 

13 —2a: 
5a:-j-4 X =22; 

an equation containing x alone, wliich, when solved, gives 

a:=2. 

This value of x, substituted in either of the equations (1) or (2), gives 

2/=3. 

2°. Eliminating by comparison. 

_ . 13—2a: 
From equation (1) y= ^ • 

22—bx 
From equation (2) y=—^-• 

13—03; 22—5a: . . . . 
Equating these values of y,-^” 4 ’ containing .a: only 

K 
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Whence 
x=2. 

Substituting this value for x in either of the preceding expressions tor y, 

we find 

y = 3. 

3°. Eliminating hy subtraction. 

In order to eliminate 3/, we perceive that if we could deduce from the pro¬ 

posed equations two other equations in x and y, in which the coefficients of y 

should be equal, the elimination of y would be effected by subtracting one of 

these new equations from the other. 

It is easily seen that we shall obtain two equations of the form required if 

we multiply all the terms of each equation by the coefficient of y in the other. 

Multiplying, therefore, all the terms of equation (1) by 4, and all the terms of 

equation (2) by 3, they become 

• 8.r-j-123/=52 

15.r-}-123/ = 66. 

Subtracting the former of these equations from the latter, we find 

7.r==:14. 

Whence 

x=2. 

In like manner, in order to eliminate .r, multiply the first lOf the proposed 

equations by 5, and the second by 2, they will then become 

10.r-f 153/=65 

10.r-|- 83/ = 44. 

Subtracting the latter of these two equations from the former, 

73/=:21. 
Whence 

y—3. 

In order to solve a system of three sim2)le equations betiveen three unknown 

quantities, we must first eliminate one of the unknown quantities by one of the 

jmethods explained above; this will lead to a system of two equations, con- 

■taining only two unknown quantities; the value of these two unknown quan- 

.titles may be found by any of the methods described in the last article, and 

substituting the value of these two unknown quantities in any one of the original 

equations, we shall arrive at an equation which will determine the value of the 

third unknown quantity. 

EXAMPLE III. 

Take the system of equations 

3a:_|_23/-f 2 = 16.(1) j 

0xJ^^yJ^2z = l6 . . t.(2) C 

2x-\-2y-\- 2=14.(3) ) 

1°. Eliminating by substitution. 

From equation (1), we find 

2 = 16 — 3a:—2y.. (4). 

Substituting this value of 2 in equations (2) and (3), they become 

2.r-f 23/4-2(16 —3.a:—23/)=18 . . . (5) ? ' 

22:+23/4- (16—S.r—2y) = 14 ... (6) $ 

these last two equations contain x and y only, and, if treated according to any 

of the above methods, will give us 

.a:=2, 3/=3. 
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✓ 

Substituting these values of .r and y in any one of the equations (1), (2), (3), 
4), we find 

2 = 4. 

2°. Eliminating hy comparison. 

In order to eliminate z, derive from each of the three proposed equations a 

value of 2 in terms of x and y ; we then have 

2 = 16—2tX—2y 

2= 9~ X— y 

2 = 14—2.r—2y ; 

equating the first of these values of z with the second and with the ^ird^ m 

succession, we arrive at a system of two equations : ■ ' 

16 — 3:r—2y= 9— x— y ) 

16 — 3.r—2y = 14 — 2.r—2y ^ 

containing x and y only ; these equations give 

x=2, 2/=3; 

these values of x and y, when substituted in any of the three expressions for 

2, give 

2 = 4. 

3°. Eliminating hy subtraction. 

In order to eliminate z between equations (1) and (2), 

Zx-\-2y-\- 2 = 16 

2.r-(-2y+2z = 18 ; 

we perceive that, in order to reduce these equations to two others in which 

the coefficients of z shall be the same, it will be sufficient to divide the two 

members of the second equation by 2, for we thus have 

Subtracting this from the first equation, 

3x-\-2y= 

we find an equation between two unknown quantities, 

22^-|“y^=7.^.(®)* 

In order to eliminate z between equations (1) and (3), 

2x-\-2y-{-z=zXh 

2a:4-2y-|-2 = 14. 

Subtract the latter from the former, which gives 

2’=2 ; 

the substitution of this value of x in equation (a) gives 

and the ^substitution of these values of x and y in any of the proposed equa 

tions gives 

2=4. 

The particular form of the proposed equations enables us to simplify the 

above calculation ; for if we subtract equation (3) from equations (1) and (2) 

in succession, we have 

{2>x-\-2y-{- z) —(2.r4-2y-j-2) = 16 —14, whence a:=2 

(22'+2y+22)~(22:+2y4-z) = 18 —14, whence 2 = 4; 

and substituting these values of x and z m any of the proposed equations, we 

find 

y = 3. 
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In order to solve a system of four equations between four unTenown quantities, 

vve reduce this case to the'last by eliminating one of the unknown quantities. 

We thus arrive at a system of three equations between three unknown quan¬ 

tities, from which the value of these three unknown quantities may be found. 

Substituting these values in any one of the equations which involve the other 

unknown quantity, we deduce from it the value of that unknown quantity. 

EXAMPLE IV. 

Take the system of equations 

^=14 

x-\-y-\-z— t= 4 

x-\-y—z-\-2l-=ll 

X—yJi^Z-\-U = lS 

The first equation gives 

(1) 
(2) 

(3) 
(4) ; 

^=14—X—y—z.(5). 

Substituting this expression for t in the three other equations, we find 

.r-j- y-j- 2= 9.(6) 

2/+32 = 17.(7) 

x-\-2y-\- 2=12.(8). 

In order to solve these three equations between x, y, 2, we find from the 

first 

z = 9—x—y.(9) ; 

and substituting this value of 2 in the two other equations, they become 

x-Jf-y=5.(10) 

2/=3.(11) 
Whence x—2.(12). 

Substituting the values of .r and y in equation (8), we find 

2=4.(13). 

Substituting these values of x, y, z in any of the first five equations, we find 

t—b. 

We can arrive at the same result more simply by subtracting equation (1) 

from the three following in succession ; we shall thus find 

2^_i4_4, 22 — ^=14 — 11, 27/ —2^=14 —18 ; 

the first of these three new equations gives t=.b ; this value of t, substituted 

in the two other equations, gives 2=4, 7/=3 ; and substituting these values of 

y, 2, t in any one of the original equations, we find .r=2. 

By following a process of reasoning analogous to the above, we shall be able 

to resolve a system of any number of equations of the first degree, provided 

there be as many equations as unknown quantities. 

It frequently happens that each of the proposed equations do not involve all 

the unknown quantities. In this case, a little dexterity will enable us to effect 

the elimination very quicldy. 

EXAMPLE V. 

Take the system of equations 

2x—3y-\~2z—13 . . , . . . . (1) 

At —2x—30 . . . . . . (2) 

Ay-\-2z—’14 . . . . . . . (3) 

by^3t—32 . . , . . . . (4) 

Upon examining these equations, we perceive that the elimination of z be- 
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tween equations (1) and (3) will give an equation in x and y, and that the 

elimination of t between equations (2) and (4) will give a second equation in 

X and y. These two unknown quantities may thus be easily determined : 

The elimination of z between (1) and (3) gives .... 7y—2x= 1 

The elimination of t between (2) and (4) gives .... 20y-{-6x=38 

Multiply the first of these equations by 3, and then add 

them, we have. 4l2/ = 41 

Whence. y— 1 

Substituting the value of in 7y—2xz=zl, we have . . . x= 3 

Substitute this value of x in (2), we have. At—6=30 

Whence. ^=9 

Finally, the substitution of the value of ?y in (3) gives . . z= 5 

The following general rule may be given for a system of any number of 

equations : 

Eliminate one of the unknown quantities by combining the first equation 

with each of the others, or by combining them all in any way in separate 

pairs. The number of equations and of unknown quantities is thus made one 

less. Proceed with these in the same way till there is but one equation and 

one unknown quantity. Having found the value of this, substitute it in a pre¬ 

ceding equation containing but two unknown quantities, which will then have 

but one, whose value may be found. Substitute the values of the two un¬ 

known quantities thus found in an equation immediately preceding, containing 

only three, and so on, till all the values of the unknown quantities are obtained. 

We have seen in the method of elimination by subtraction that, in order to 

render the coefficients of the unknown quantity the same in both equations, 

we must multiply each of the equations by the coefficient of the unknown 

quantity, which it is required to eliminate, in the other. If the coefficients of 

the unknown quantity have a common factor, this operation may be simplified; 

thus 

EXAMPLE VI. 

Take the system of equations 

12a:-f322/ = 340 .(1) > 

8.r-f24y=254 .(2) $ 

In order to render the coefficients of y equal, observe that 32 and 24 have a 

common factor, 8 ; it will suffice then to multiply equation (1) by 3, and equa¬ 

tion (2) by 4 ; they then become 

36.r-f96v = 1020 

32z:+962/ = 10 1 6. 

Subtracting the latter from the former, 

4.r=4 

x=l. 

Again, in order to eliminate .r, since 12 and 8 have a common factor, 4, it 

will suffice to multiply equation (1) by 2, and equation (2) by 3 ; we then have 

2 4 .r-f-, 6 4 y = 6 8 0 

24a:-f-72y = 762. 

Subti’acting the former of these two equations from the latter, we have 

8y = S2 

2/ = 10i. 
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(7) Given x-\-y = \b . ... . .(1) 
x—yz= 7 . . . . .(2) 

Ans. a:=ll, y—A. 

(8) Given x-\-y =10 . . . • • • ..(1) 

• • • II 

CO 1 

O
i .(2) 

Ans. a:=7, y = 3. 

(9) Given 2,r-|-3?/ = 13 . . . .(1) 
5x-{-iy — 22. . . . .(2) 

« Ans. a:=2, 2/ = 3. 

(10) Given x=.Ay'. .(1) 
2a:-j-3^ = 44 . . . .(2) 

Ans. a:=16, y=A. 

(11) Given 2x-\-Zy— 70 . . , .(1) 
Ax-\-by —130 . . . .(2) 

Ans. a:=20, y = 10. 

(12) Given 3a:—5y = 13. . . . .(1) 
2.r+72/ —81. . . , .(2) 

4ns. .t=16, y—7. 

(13) Given ll.r-[-3i/ = 100 . . .(1) 

• • II I .(2) 

11 

00 11 m
 

X y 
.(1) (14) Given . . . . , 

1 

X y 

3+l=®. 
.J2) 

Ans. a: = 6, y — 12. 

(15) Given --|-72/=99 ... .(1) 

\+7x=5\ . . . . .(2) 

Ans. x — 7, 7/ = ]4 

(16) Given Zt-\-——22 . . , .(1) 

2t 
11m_-—20 . . , 

5 .(2) 

Ans. 2 = 5, u = 2. 

(17) Given .r4*1 *2/••3:3 . . . .(1) 
7-j--'P 5—y 42 2^-1 ... 

4 2 “12 
4 .... \4,) ' 

Ans. a:=4, y=3. 

2r 45 
(18) Given—-{-■^=04 . . . .(1) 

br 95 
.(2) 

_ I-77 . . . , 
6^10 

Ans. r=60, 5=30 

(19) Given 5p+3cr=131| . .(1) • 

13p a—142J . . .(2) 
• 
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(20) Given 02;^:—l4i/;=5V'+119f.(1) 

7x-[-U0—2f.^2) 

Ans. x=—24.06, ^=—14.2. 
^21) Given 9x=4x'.(1^ 

.r-j--'z;'=26.(2) 

Ans. 2: = 8. a:'=18. 
. 21 14 

(22) Given  -  (1) 
' 14+Zi 84-j-Z2 ^ ' 

21zi4'28z2=334 .(2) 

Ans. Zi=61yVV» Z2 = — 

'V+3 
(23) Given 2x——-—=7.(1) 

8—X , 2'w4-1 
42,-—=241-^.(2) 

Ans. x=5, y=z5. 
X 3/—8 3.r-f4'w4-3 2x4-7—y 

(24) Given 5+^= -^. . . . (i) 

7a:-f-6 9y-\-5x—8 ^-\-y , 

]l ~ 12 4~. 

Ans. x=7, y=9. 

(25) Given (a:+5)(2/4-7) = (a:4-l)(2/—9)4-112 .... (I) 

2^:4-10 = 31/4-1.(2) 

Ans. a:=3, y—5. 

2x 1/31/1 
(26) Given——. 

|-5+2=g-2^+6.(2) 
Ans. x=z2, y—7. 

X—2 10—X y—10 
(27) Given —g—j)—=^—.(1) 

2i/4-4 2x4-y 3:-l-13 
.(2) 

Ans. x-=7, i/=10. 

2y 8a:—2 4-l-i/ x—y 
(28) Given^-—= l-^'+V.« 

a::3i/::4:7.(2) 

Ans. a:=12, y=7. 

4y 

2y—2-\-x 
(29) Given .T-—-=14-—.(1) 

3:^4-2y .7—5 113:4-152 374-1 
6 4 ■“ 12 2 * * • • V ) 

Ans. 3:=8, 7=9. 

25 4-57 73:—6 33:—IO4-77 . ^ 
(30) Given 1 + ^-^-^^ = 10--- • • (1) 

12—3: 144-7 ^ 
—^:5x- (2) 

y o 

Ans. 3:=3, 7=7. 
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4x by 9 
(31) Given*— l 

5 4 7 3 
—4--=-+- 
X ' y X ' 2 

(1) 

{32) Given 5.t+72/=43 

lla:4-92/=69 . 

(33) Given 8x—21y=: 33 

6x+3by=l77 

.(2) 

Ans. x=i, 2/= ^ 

•0)< 

• (2)S 
Ans. x=3, y=4 

• (1)^ 
•(2)S 
Ans. 3:=12, y = 3. 

Qt* oy Q/jy "1 

(34) Given y—4+|+a:=8—^4- — 

y x 1 

6“2+^=6~®*+®- 

(1) 
!• 

(35) Given x 
3x-\-by 

fl7=52/4 
4.r4-7 

17 > > 3 

22 —by bx—7 ar+l 8?/+5 

.(2) 

Ans. x=z2, y=7. 

•(1) 

11 18 (2) 

I 36) Given ax-\- by=c 

fx+gy=h 

(37) Given x-\-y=s 

X—y=d 

Ans. a:=8, y=2. 

.(1)^ 

.(2) S 
eg — bh ah—cf 

Ans. x=L-r-^, y=.-7-7. 

.(1) 
.(2) 

s —j—<3^ s—d 
Ans. .r=—7/=——. 

2 ’ 

(38) Given x-\-yz=zs 

bx=ay . . 
(1) 

(2) 
as bs 

Ans. x=—y= 

(39) Given ax-\-by=zc . 

mx—ny=.d 

(40) Given 7ax=4b . . . 

2cx -\-3dy -=40 

.(1) 

.(2) 
nc-\-bd me—ad 

ns. X y na-\-mb’ 

.(1) 

.(2) 
4b 28ae—8bc 

(41) Given bex=ey — 2b . . . . 

a(e^ — b^) 2b^ 
=—-A-e^x 

e ' 

Ans. x=—, y = nrjy J 

(1) 

(2) 

7d' ^ 21ad 

a a 4” 2b 
Ans. x—Y-1 y—-. 

be e 

^ These equations should not he cleared of fractions, but the unknown fractions be elimi 
nated by making them alike, and subtracting. 
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(42) Given .(1) 

ax-\-2hy=d.(2) 

-3^-’  36”- 

(43) Given a:—- , ^ =zc.(1) 

a—X 
2/-—=<^.(2) 

a — ah-\-l)'^c-\-hd a-\-al} — hc-^-lrd 
Ans. x=--, y=-^-. 

. .N «4-46 2a—36 
(44) Given ^—;—=..(1) 

7n-\-x Sin—y ^ ' 

Bax—2hy=c.(2) 

_6^^ 26^ 
(45) Given 622/-j-^-^-——=c^x.(1) 

b{cx-{-2)=cy.(2) 

^ ^ ^+26 
Ans. x=r~, 7/=--. 

6c c 

33 J) 
(46) Given 17x—^-^+(6 + 10/)7/=/^2: (1) 

96—2/* 
4x+5y=-^^^.(2) 

(47) Given f• • • ;.(1) 

c d 
--l--=fn.. (2) 
X y 

he—ad he—ad 
Ans. x=z—,-y=.-. 

no—md me—na 

48) Given x -^-y =s.'.(1) 

...(2) 

s'^-^-d s"—d 
Ans. x=——, y=—z—• 

2s ^ 2s 

(49) Given x +2/ :a::x—y: &.(1) 
x’i—y^—c.(2) 

a-\-h jc a — 6 Ic 
Ans. :r=—y = —^Jab■ 

(50) Given x-\- ■\/x^-\-y=a.(1) 

x-\-^/—y=h.(2) 
a2_|_53 (ih(^a — 6) 

^=2(^’ y=~xw'' 

(51) Given X^-]-xy=a.(1) 

y'^-^xy — h.(2) 
a 6 

Ans. x=— V—— 
■\/a-\-h -s/a-\-b 
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(52) Given 

^x-{-2y—52= 8 

bx—Qy-\-bz= 6 

(1) 
(2) 
(3) 

Ans. x=b\ 2/=2; 2 = 1. 

(53) Given 5z—Qy-\-^z=lb, 

lx-\-\y—32 = 19 

2:r-j- 2/-f-62 = 46 

1 1 
(54) Given* --\--=za 

X y 

^4-^=6 
X ‘ 2 

(1) 
(2) 
(3) 

1 1 
—-|-~=c 
y 2 

Ans. a:=3 ; \ 2 = 6. 

. . . (1) 

(2) 

(3) 

Ans. xz=- ; y- ; z=- 
a^b — C CL — 6 —j~ ^ b-X-C — CL 

(55) Given a:4-2/=36 ; a:4-2:=49; y-\-z=b‘i. 

Ans. a:=16; y=2Q\ 2=33 

(56) Given'y4-'W^+2:=30 ; v-\-w—2=18; v—w-Xf^-z — lX. 

Ans.'y=16; a^;=8; z=6 

(57) Given w4-^^=164 ; v-{-\w=82] u-\-\iD=lbQ. 

Ans. w=128; v=72; a^;=40. 

(58) Given aa,'4-&2/=c; my-\-nz=p ; fx-\-gz = q. 

Ans. x= 
bnq-\- cgm — bgp 

agm-\-bfn 

agp-\-cfn—anq 

^ agm-\-bfn ’ 

amq-\-bfp—cfm 

agm + bf71 

(59) Given 3(a.T4-%)=2:; by=7{x-{-3a); llr=|24-121. 

48404-189aft 

= 440 —45fit —636 ’ 

67764-1848a —189a'* 

Ans. X: 

y- 440 — 45a — 636 ’ 

14520a4- 5544a6 -j- 203286 

= iTo—45a^^ 

7 5 9 11 13 15 
(60) Given ^=-; T=^7=T3- 

Ans. a: = — 40f^ ] y=— 34/^ *, z = — 32j\\. 

a-\-b 6—c 64-c c—d d-\-Jc k—h 

^ry=7^’ 

, 11 , , 
^ Do not clear of fractions, but make &c., the unknown quantities. 

X y 
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(62) Given 2x—Y-^93—ia:—-y . . . .(1) 

Ix—bz—y -\-x —86 . . . .(2) 
X y z 

2+3 +4 . .(3) 

Ans. 2:=48 ; 2/=54 ; 2=64. 

(63) Given Qx—4y-[-52 — 211 . . . . .(1) 
4.r+3y —72 —1^. .(2) 

122:—Qy — 3z—3]-. .(3) 

Ans. 2:= “2’ y—h’i 

(64) Given 182:—72/—52 — 11. . . . .(1) 
4 

—108 . . . . .(2) 
3l2-|-22/-|-f2: — 80 . . . . .(3) 

Ans. 2:=12; y=2b\ 2=6. 

(65) Given 2/+|=|+5. .(1) 
X—1 y — 2 2-j-3 

/o\ 
4 5 10 ‘ ‘ 

2y—5 2 

" -3 .(3) 

• Ans. x=b 2/ = 7; 2 = -3. 

(66) Given |4-| + y= 58. .(1)' 
bx y z 

4 + 6+ 3~ . .(2) > 

X 32 u 

2+8 + 5 . .(3) 

y z u —248 . .(4) J 
Ans. 2:=12 ; 2/=30 ; 2 = 168; 2^=50. 

(67) Given 72:—2z-\-bu—17. .(1)] 
42/—22+ 11. .(2) 
by—32:—2u— 8. .(3) 
42/—bu-\-2t— 9. .(4) 

32 -j-Sw—33. .(5) J 
Ans. X = 2; 2/=4; 2 = = 3 ; u=3 ; ^=1. 

Elimination may be effected in a general form, and particular cases be re¬ 

solved by substitution in this form. 

We shall illustrate this with a system of three equations. 

, Given ax -\-hy -{-cz -{.k =0, 

a'x -\-h'y -\-c'z -\-k' =0, 

a"x-\-h"y -\-c"z-^k" — Q. 

Eliminating among these three equations by any of the foregoing methods, 

we find 

(6"c' —h'd')k -f {he"—h''c)k' 4- (b'e —hc')k" 
^—(a'b"—a"b')c-\-{a"h-ab"y + {ah' —a'h)c"’ 
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{a'c" — a"c')T{: -j- —ad'^h' («c' —a'c)ik" 

^ The same denominator as in the value of x ’ 

[a"})'—a'h")k-\- {ah" — a"h)k' -\-{a'h—ah')k" 

The same denominator as in the value of x 

To apply this general form to a particular case, take (Example 53) above. 

_(1 X—3—4 X 6)(—15)-|-(—6X 6—1X4) (—19)-{-[4 X 4—(—6 X—3)] (—46)_ 1257_ 

(7 X1—2X 4j4-|-(2X —6—5X1)(—3)4-(5X 4—7 X —6)6 ~ 419 “ ’ 

(424-6)( —15) + (8-30)( —19) + ( —15 —28)(—46) 1676 

y— 419 ~ 419 

(l)(-15)4-( + 17)(-19) + (-62)(-46) 2514 ^ 

-419-=719 =®- 

Changing the signs of k^ k\ k'\ in order that they may be positive in the 

second member of the three proposed equations, and performing the multipli¬ 

cations indicated in the general values of a:, y, and z, they may be written as 

follows : 

kh'c" —kc'h" -\-ck'h" —hk'c" -\-hc'k" — cb'k" 

^ ab'c" —ac'b" -\-cd'b" —ba'c" -{-be/a" — ch'a"' 

ak'c"—ac'k" -\-ca'k" —ka'c"-\-kc'a" —ck'a" 

y The same denominator as that of x ' 

ab'k" —ak'b" -{-ka'b" — ba'k" -|- bk'a" —kb'a" 
2; —— —--——  ——— ^ 

The same denominator as before 

By observing carefully the composition of the formulas for two and three 

equations, we may discover general rules by means of which we can calcu¬ 

late the formulas suitable for any number of equations. 

First Rule.—To find the common denominator in the values of all the 

unknown quantities. With the two letters a and b form the arrangements 

ab and feu, then interpose the sign — between them, thus : 

ab — feu. 

If there are but two equations to resolve, place an accent on the 2° letter 

of each term, and the result, ab' — feu', will be the common denominator of 

the values of x and y. 

If there are three equations, pass the letter c through all the places in each 

term of the expression ab — feu, taking care to alternate the signs ; ab will thus 

give ufec — acb-\-cab ; also, —ba will give —feuc-|-fecu—cfeu, and the whole 

abc—ucfe-j-cufe — feuc-j-fecu—cfeu ; 

then place one accent on the 2° letter of each term, and two on the 3°, and the 

resulting expression will be the common denominator of the values of .r, y, and z. 

If there are four equations, take the letter d, which is the coefficient of the 

fourth unknown u, and pass it through all the places in each term of the sexi- 

nomial above formed, taking care to alternate the signs of the terms furnished 

by each of them, beginning with -j- for those which result from a term pre¬ 

ceded by the sign and with — for those resulting from a term affected 

with the sign — ; finally, place one accent on the 2° letter, two on the 3‘’, and 

three on the 4'^. The resulting polynomial is the common denominator of the 

four unknown quantities x, y, z, u. 

ab'c"d'" — ab'd"c"' -{-ad'b"c"' — da'b"c'" 

—ac'b"d'" -j- ac'd"b'"—ad'd'b'"+da'c"b'" 

4- ca'b"d'"—ca'd"b'" cd'a"b'"—dc'a"b'" 
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— ha'c"d'"+ha'd"c"' — ld'a"c'"+db'a"c"' 

+ lc’a"d'" — he'd" a'" + hd'd'a'"—dh'c"a"' 

— cl'a'UV"+ch'd"d"—cd'b"a"' + dc'b"a"'. 

If there be a greater number of equations, proceed in the same manner. 

Second Rule.—The numerators may be derived from the common de 

nominator. For this purpose, it is only necessary to replace, without touch¬ 

ing the accents, the letter which serves for coefficient of the unknown quanti¬ 

ty we wish to find, by the letter A", which represents the known term in the 

second member. Thus : change a into /»:, to have the numerator of.r; b into 

k, to have that of y ; and so on. 

There remains still a method of elimination to be mentioned, which alone • 

is applicable to equations of higher degrees, as well as to those of the first. It 

is called the method of the common divisor. It consists, where two equations 

are given, in dividing one by the other (after transferring all the terms to the 

first member in both), that divisor by the remainder, and so on till the letter 

of arrangement, which must be one of the unknown quantities, is exhausted 

from the remainders. The last remainder containing but the other unknown 

quantity, being put equal to zero, will present an equation from which the first 

unknown quantity is eliminated. 

If there be three or more equations, eliminate one of the unkjiown quanti¬ 

ties in this way between the first and second, then between the first and third, 

and so on. > 

The reason which may be given for this rule here, though a better one will 

be furnished hereafter, is, that the dividend being zero and the divisor zero, 

the quotient must be zero and the remainder zero. 

Let us apply this method to Example (8) above. The two given equations ai’O 

x-{- y —10 = 0 

2x—3y— 5 = 0. 
Elimination^ 

2x—3y— 5 x-\-y—10 

2.r4-2?/ —20 2 

-52/4-15 -1-5. 

— 2/“l“ ^ ^ 2/—^* 
Substituting this value in x-\-y—10 = 0, we obtain x=7. 

EXAMPLE II. 

Given s^-^^yx^-^-^y'^x—98=0.(1) 

x'^-\~'^y^ ——10=0. 
Elimination, 

x"-\~ 

9y-+10 

a;3-{-3ya;2-{- "iy^x— 98 a;2-|-4ya:—2^/2—10 

^3_|_4^.y2— 2^2^— lOx X —y 

— yx^-\~ ^y’^x-\- 10a;—98 

— yx"^— \y^x-\- 2r4-iQy_ 
9^2^_j_ 10 x— 2;y3—\Qy—98, or» 

(9y2{io) X— 2y3—lOy—98 

(9^2-|-io)a;24-(363/3_|-40y)a?—183/-1—1103/2_i00|a;-fl93/3-^25y-{-49 

(9y24-10)a;2—( 2^3_|_ioy _j_98)a; • 
(383/3-|_50y _j-98)a;— 18y^] 10^2_i00-^2 

(193^3_|_25y _{_49)a;— — 55y2— 50 
9y3_|_ 10 _ 

(9y2_|_io)(19y3_j_25y -)-49)a;— 813/6—585?/'t—1000y2_500 

(93,2-pio)(193^3_j_25y _j_49)a;_ 38.7>3—2403^'i—i960y3—250y2—2940^—4802 

~ _ 43^6_3453/4_|_i960^3_7503r2_|-2940y4-4802' 
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This last remainder, put equal to zero, will make an equation from which x 

is eliminated, and which contains only y. It is called ihe final equation. 

ON THE SOLUTION OF PROBLEMS WHICH PRODUCE SIMPLE 
EaUATIONS. 

150. Every problem which can be solved by Algebra includes in its enun¬ 

ciation a certain number of conditions of such a kind that, in taking at pleasure 

values for the unknown quantities, it is always easy to see whether or not they 

will verify these conditions. In the greater pait of questions in Algebra, these 

verifications consist in this, that, after having effected certain operations upon 

the values of the known and unknown quantities, we ought to arrive at equali¬ 

ties. This being understood, if the unknown quantities be represented by 

letters, algebraic expressions may be formed in which shall be indicated, by 

means of signs, all the calculations necessary to be made, as well upon the un¬ 

known numbers as upon the known, to find the quantities which ought to be 

equal. Consequently, joining these expressions by the sign of equality, we 

shall have one or more equations, which will be satisfied when the true val¬ 

ues of the unknown quantities are substituted in the place of the letters which 

represent them. 

Reciprocally, when all the conditions of the problem are expressed in the 

equations, the values of the unknown quantities which satisfy these equations 

must certainly satisfy the enunciation of the problem. 

It is impossible to give a general rule which will enable us to translate eve¬ 

ry problem into algebraic language ; this is an art which can be acquired by 

reflection and practice alone. Two rules which may be of some service are 

the following: 1. Indicate upon the unknown quantities represented hy letters^ 

and upon the known quantities represented either hy letters or numbers, the same 

operations as would he necessary to verify them if they were known. 2. Form 

two different expressions of the same quantity, and set them equal. We shall 

give a few examples, which will serve to initiate the student, and the rest 

must be left to his own ingenuity. 

PROBLEM 1. 

To find two numbers such that their sum shall be 40, and their difference 

16. 

Let a: denote the least of the two numbers required. 

Then will a:-|-16= the gi-eater. 

And x-j-a:-f-16=40 by the question ; 

That is, 2x=A0 —16=24;^ 

24 
Or x=—=12= less number, ^ 

And ar-}-16 = 12-{-16=28= greater number required. 

PROBLEM 2. 

What number is that, whose ^ part exceeds its | part by 16 ? 

Let X— number required. 

Then will its -t pai’t be hr, and its | part \x ; 

And, therefore, hr—lr = 16 by the question, 

Or, clearing of fractions, 4.r—3.r=192 ; 

Hence r=192, the number required. 
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PROBLEM 3. 

Divide <£1000 among A, B, and C, so that A shall have <£72 more than B 

and C <£100 more than A. 

Let a:= B’s share of the given sum, 

Then will a:4- 72= A’s share, 

And a:4-172= C’s share, 

And the sum of all their shares, a:4-a:4-724-a:4-172, 

3a:-j-244 = 1000 by the question; 

3.r= 1000—244=756, 

756 
=-^=<£252= B’s share ; 

Or 

That is, 

Or 

Hence x-\- 72=2524- 72=66324= A’s share. 

And a:4-172=2524-172=<£424= C’s share; 

B’s share.66252 

A’s share. 324 

C’s share. 424 

Sum of all . . <£1000, the proof. 

PROBLEM 4. 

Out of a cask of wine, which had leaked away L, 21 gallons were drawn, 

and then, being gauged, it appeared to be half full: how much did it hold ? 

Let it be supposed to have held x gallons. 

Then it would have leaked ^x gallons ; 

Consequently, there had been taken away 214-|a: gallons. 

But 214-.^3:=La: by the question. 

Or 126-\-2x=3x; 

Hence 3x—2a:=126, 

Or 'a:=126= number of gallons required. 

PROBLEM 5. 

A hare, pursued by a greyhound, is 60 of her own leaps in advance of tUe 

dog. She makes 9 leaps during the time that the greyhound makes only 6; 

but 3 leaps of the greyhound are equivalent to 7 leaps of the hare. How 

many leaps must the greyhound make before he overtakes the hare ? 

It is manifest, from the enunciation of the problem, that the space which 

must be traversed by the greyhound is composed of the 60 leaps which the 

hare is in advance, together with the space which the hare passes over from 

the time that the greyhound starts in pursuit until he overtakes her. 

Let x= the whole number of leaps made by the greyhound. Since the 

hare makes 9 leaps during the time that the greyhound makes 6, it follows 

9 3 
that the hare will make - or - leaps during the time that the greyhound 

3 V 
makes 1, and she will consequently make — leaps during the time that the 

(C 

greyhound makes x leaps. 

We might here suppose that, in order to obt<ain the equation required, it 

3.27 
would be sufficient to put x equal to 604-—; in doing this, however, we 

should commit a manifest mistake, for the leaps of the greyhound are greater 
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than the leaps of the hare, and we should thus be equating two heterogeneous 

numbers; that is to say, numbers related to a different unit. In order to re¬ 

move this difficulty, we must express the leaps of the hare in terms of the 

leaps of the greyhound, or the contrary. 

According to the conditions of the problem, 3 leaps of the greyhound are 

7 
equal to 7 leaps of the hare; hence 1 leap of the greyhound is equal to — 

, 7.T 
leaps of the hare, and, consequently, x leaps of the greyhound are equal to — 

O 

leaps of the hare ; hence we have at length the equation 

7x 3x 
y=60+^; 

Clearing of fractions, 14r=360-j-9^ 

x= 72. 

Hence the greyhound will make 72 leaps before he reaches the hare, and in 

3 
that time the hare will make 72 oi’ 108 leaps. 

PROBLEM 6. 

Find a number such, that when it is divided by 3 and by 4, and the quo¬ 

tients afterward added, the sum is 63. 

Let X be the number ; then, by the conditions of the problem, we have 

X X 

3+3= 63; 

Clearing of fractions, 7x=z 63 X 12 

.-r=108. 

If we wished to find a number such that, when divided by 5 and by 6, the 

sum of the quotients is 22, we must again translate the problem into algebraic 

language, and then solve the equation ; in this case we have 

X X 

5+ 6=^®’ 

Clearing of fractions ll.r=22 X 30 

a:=60. 

If, however, we desire to solve both these iDroblems at once, and all others 

of the same class, which differ from the above in the numerical values only, 

we must substitute for these particular numbers the symbols a, 6, c, 

which may represent any numbers whatever, and then solve the following 

question. 

Find a number such that, when it is divided by a and by b, and the,quo¬ 

tients afterward added, the sum is p. We have 

X X 

a+b =P' 

(a-f-6).r== abp 

abp 
^=~rT- a-\-b 

151. This expression is not, strictly speaking, the value of the unknown 

quantity in our problems, but it presents to our view the calculations which 

are requisite for the solution of them all. An expression of this nature is call- 
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ed a formula. This formula points out to us that the unknown quantity is ob¬ 

tained by multiplying together the three numbers involved in the question, 

and then dividing their product, ahp, by a-{-h. the sum of the two divisors ; or 

we should rather say, that our formula is a concise method of enunciating the 

above rule.* Algebra, then, may be considered as a language whose object 

‘s to express various processes of reasoning, as also the results or conclusions 

to which they lead. 

Such is the advantage of the above formula, that, by aid of it, the most ig¬ 

norant arithmetician could solve either of the proposed problems as readily as 

the most expert algebraist. The former, however, could only arrive at the 

result by a blind reliance on the rule which the formula expresses ; but differ¬ 

ent kinds of problems require different formulas, and the algebraist alone pos¬ 

sesses the secret by which they can be discovered. 

PROBLEM 7. 

A laborer engaged to serve 40 days upon these conditions : that for every 

day he worked he was to receive 80 cents, but for every day he was idle he 

was to forfeit 32 cents. Now at the end of the time he was entitled to re¬ 

ceive $15.20. It is required to find how many days he worked and how 

many he was idle. 

Let X be the number of days he worked ; 

Then will 40—x be the number of days he was idle ; 

Also .r X 80 = 80.r= the sum earned. 

And (40—x) X 32 = 1280 — 32xz= sum forfeited ; 

Hence 80.r—(1280 — 32.r) = 1520 by the question ; 

That is, 80:r —1280-f 322’=1520, 

Or 1122:=1520-{-1280 = 2800 ; 

2800 
Hence 2’=——=25= number of days he worked, 

X ± • 

And 40—2:=40—25 = 15= number of days he was idle. 

We may generalize the above problem in the following manner : 

Let n= the whole number of days for which he is hired, / 

a = the wages for each day of work, 

h= the forfeit for each day of idleness, 

c= the sum which he receives at the end of n days, 

x= the number of days of work ; 

Then n—x— the number of days of idleness, 

ax-= the sum due to him for the days of work, 

hiji—.t)= the sum he forfeits for the days of idleness. 

We thus find for the equation of the problem, 

ax—h{n—2)= c; 

Whence ax—hn -\-hx= c - 

{a-\-h)x= c-\-bn 

C I J)72f 
X— ■—r-i~- the number of days of work, 

a-f-b ' 

* Let tlie student ti'y this rule upon a variety of numbers ; be will see that the genera, 

formula embraces as many particular examples as he chooses to imagine. 

L 
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c-{- h n 

a-\-b 

an-\- hn — c — hn 

a-{-h 

an — c , 
' =—r-Ti* the number of days of idleness. 

a-{-h 

) By substituting in these general expressions, for the number of days of 

work and number of days of idleness, the particular numerical values of the 

letters, the same result will be obtained as before. 

PROBLEM 8. 

A can perform a piece of work in 6 days, B can perform the same work in 

8 days : in what time will they finish it if both work together ? 

Let a:= the time required. 

Since A can perform the whole work in 6 days, " will denote the quantity 

X 
he can perform in 1 day, and therefore - the quantity he can perform in x 

i 

days ; for the same reason, - will be the quantity which B can perform in x 

days; and we shall thus have 
X X 

14r = 48 ' 

x=3^ days. 

Let us generalize the above problem. 

A can perform a piece of work in a days, B in 6 days, C in c days, D in 

(days ; in what time will they perform it if they all work together ? 

Let X— the time ; 

Then, since A can perform the whole work in a days, - will denote the 
a 

X 
quantity he can perform in 1 day, and, consequently, - will be the quantity he 

a 

X X X 
can perform in x days; for the same reason, ^ will be the quantities 

which B, C, D can perform respectively in x days; we thus have 

X X X X ' 

a+b+-c+d= 

= 1; 
ahcd 

X: 
' ahc-\-ahd-\-acd-\-hcd' 

What is the rule expressed by this formula ? 

* Let tlie student translate the formula for the number of days of idleness, and that for 

the number of days of work, into a rule. 
7) 'p 

t We might represent the piece of work by p; then - and — would express the quantities 

which A and B can perform in one day, and the equation would be I 
px , px 

T+ 8 =f- 

which, divided throughout by p, gives the equation in the text. When the value of a quam 

tity is immaterial, as in this case, it is best represented by 1. 
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PROBLEM 9. 

A courier, who traveled at the rate of 31^ miles in 5 hours, was dispatched 

from a certain city ; 8 hours alter his departure, another courier was sent to 

overtake him. The second courier traveled at the rate of 22^ miles in 3 hours. 

In what time did he overtake the first, and at what distance from the place of 

departure ? , 

Let a:= number of hours that the second courier travels. 

Then, since the first courier travels at the rate of 3lL miles in 5 hours, that 

63 . . 63 . 
IS, — miles in 1 hour, he will travel —x miles in x hours, and, since he stait 

ed 8 hours before the second courier, the whole distance traveled by him will 

be (8+.r)^. 

Again, since the second courier travels at the rate of 22i miles in 3 hours 

1 . 45 . . 45 . 
that IS, — miles in one hour, he will hence travel —x miles in x hours, 

o ^ 0 

The couriers are supposed to be together at the end of the time .r, and 

therefore the distance traveled by each must be the same; hence 

45 63 
-^a;=(8 + .r)- • 

450.i’=(8 + .i’)378 ; 

.-. 72.r = 3024 

.r=42. 

Hence the second courier will overtake the first in 42^ hours, and the whole 

45 
distance ti-aveled by each is —X 42 = 315 miles. 

b 

To generalize the above. 

A B C 

Let a courier, who travels at the rate of m miles in t hours, be dispatched 

from B in the direction C ; and n hours after his departure, let a second 

courier, who travels at the rate of m' miles in t' hours, be sent from A, which 

is distant d miles from B, in order to overtake the first. In what time will he 

come up with h'm. and what will be the whole distance traveled by each ? 

Let a:= number of hours that the second courier travels. 

Then, since the first courier travels at the rate of m miles in t hours, that is, 

m , ni 
— miles in 1 hour, he will travel —x miles in x hours, and, since he started n 
t t 

hours before the second courier, the whole distance traveled by him will be 

m 
{n-\-x)--. 

Again, since the second courier travels at the rate of m' miles in t' hours, 

w/ nd 
that is, 7- miles in 1 hour, he will ti'avel -yx miles in x hours; but since he 

t t 

started from A, which is distant d miles from B, the whole distance traveled 

by the second courier, or will be greater than the whole distance traveled 
L 

by the first cornier, by this quantity d; hence 
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m' m 
—x—d={n-\-x)j 

(m' m\ mn 

{mn-\-td)V 

' ‘ ^ m'i—mt' 

The whole distance traveled by first courier, =— . ^ ^ 
' t ( m't—JTit' !> 

The whole distance traveled by second courier, =— . ^ 
t' m't—mt' 

PROBLEM 10. 

A father, who has three children, bequeaths his property by will in the fol¬ 

lowing manner: To the eldest son he leaves a sum, «, together with the part 

of what remains ; to the second he leaves a sum, 2a, together with the part 

of what remains after the portion of the eldest and 2a have been subtracted; 

to the third he leaves a sum, 3a, together with the part of what remains 

after the portions of the two other sons and 3a have been subtracted. The 

property is found to be entirely disposed of by this arrangement. Required 

the amount of the property. 

Let x= the pi’operty of the father. 

If we can, by means of this quantity, find algebraic expressions for the por¬ 

tions of the three sons, we must subtract their sums from the whole property 

a:, and, putting this remainder =0, we shall determine the equation of the 

problem. . 

Let us endeavor to discover these three portions. 

Since X represents the whole property of the father, x—a is the remainder 

after subtracting a ; hence. 

X—a 
Portion of eldest son, =a-4--- 

n 

an-\-x—a 

n (1) 

X—2a- 
an-\-x—a 

Portion of second son, =2a-f 
n 

n 

=2a-\ 
nx—3an—x-\-a . 

2an?-\-nx—3an—x-{-a 
(2) 

X—3a- 
an-\-x—a 2an^-{-nx—3a?i—x-\-a 

Portion of third son, =3a-^ 
n 

n 

= 3a4 
n'^’X—Qan'^—2nx-\-A:an-\-x—a 

< ^3 

3a'n?-\-iiP'X—fian^—2nx-\-‘ian-\-x—a 
(3) 

According to the conditions of the problem, the property is entirely disposed 
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of. Hence, when the sum of the three portions is subtracted from x. the dif¬ 

ference must be equal to zero ; this gives us the equation 

X- 
OM-\-x—a ^a'ifi-\-nx—3a«—x-\-a 2an?-\-n‘^x—Qan^—2nx-\-4.an-\-x—a 

n 
0; 

' 7i3 

clearing the equation of fractions, and reducing, 

7i\v — Qa'n? — ^n'^x -{-1 —x-{-a-=^Q 

(y/^ —3?22_|_3^—\)x-=Q)an^—\Qan‘^-\-ban — a , ■ 

6«n®—10an^-{-ban—a —10yi^-f-5n — \)a 

^ — = (yi—1)3 ‘ 

Cy reflecting upon the conditions of the problem, we may obtain an equation 

much more simple than the preceding. It is stated that the portion of the 

third son is 3a, together with the of what remains, and that the property 

is thus entirely disposed of; in other words, the portion of the third son is 3a, 

and/the remainder just mentioned is nothing. 

We found the expression for that remainder* to be 

n’^x—6ayi^—2w.r 4- 4ayy-j-^— 
• 

Equating this quantity to zero, we have 

, n^x—ban"—2yya:-j-4ayy-j-a:—a 
. ^ =0 

n* 

.*. n‘^x—6ayy2 — 2yya:-|-4ayy-|-.r—a=0 

(yy® — 2yi-f“ —4ayi-}-a 
Qari^—4a?y-|-a 

X- 
yi'y — 2n-\-l 

(6yy^ — 4yy-}-l)a 

>. (yy — 1)'^ * . • 

This result is, moreover, more simple than the former. We can easily prove 

that the two expressions are numerically identical^ for, applying to the two 

polynomials (Gyi^—10n'^-\-5)i — l)a, and (yy^ — 3yy"-|-3yy-|-l), the process for find¬ 

ing the greatest common measure, we shall find that these two expressions O o 
have a common factor n — 1 ; dividing, therefore, both terms of the first result 

by this common factor, we arrive at the second. 

The above problem will point out to the student the importance of examin¬ 

ing with great attention the enunciation of any proposed question, in order to 

discover those circumstances which may tend to facilitate the solution; he will 

otherwise run the risk of arriving at results more complicated than the nature 

of the case demands. 

The above problem admits of a solution less direct, but more simple and 

elegant than those already given. It is founded on the observation that, after 

having subtracted 3a from the former portions, nothing ought to remain. 

Let us represent by Uj, r^, the three remainders mentioned in the enun¬ 

ciation ; the algebraic expressions for the three portions must be 

’'t ^ , ^3 
a-\~ , 2a-j— , 3a-|- 

' y?. ‘ yy ' yy 

1". By the conditions of the problem, we have r3=0. 

Hence the third portion is 3a. 

* Next above (3). 
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T 
2°. The remainder, after the second son has received 2a-|-“» be rep- 

ro in — l)r2 
resented by -or--—. 

n n 

But this is the portion of the third son ; hence we have 

{n — l)r. 

n 

r. 

’ = 3« 

3an 

n — 1 

' - 3an 3a 
Hence the portion of the second son is 2«4---—n=z2a-\--r> 

^ ‘ n — 1 n — 1 

reducing, 

2an-\-a 

n — 1 

' ' 7* j 

3“. The remainder, after the eldest son has received a-\-—i may be repre 

sented by r, ——i or-. 
^ n n , 

But this remainder forms the portion of the other two sons ; hence we have 

[n — l)ri 2an-\-a 

n 

r 

71 — 1 

ban^—2an 

3a 

1 (n—1)'^ 

Hence the portion of the eldest son is a-f- 
ban^—2an 

or, reducing, 

(n—1)2 

ban — 2a 
•nr=a4--;--TTTi 

(n—1)2 

. an^^-^-ban—a 

n'^—2n-\-1 

Hence the whole property is 

2an-\-a an'^-^-ban—a^ 

n — 1 7^2—2w-|-l ' 

reducing the whole to a common denominator, 

3a{n^—2n-\-l)-\-{2an-\-a){n — l)-\-an'^-^3an—a ^ 

n^ — 2n-}-l ’ 

performing the operations indicated, and reducing, 

(6n2 —4n4-l)a 

n^ — 2n-\-l ’ 

the result obtained above. 

This solution is more complete than the former, for we obtain at the same 

time the property of the father and the expressions for the portions of his 

three sons. 

We shall now solve one or two problems in which it is either necessary or 

convenient to employ more than one unknown quantity. 

PROBLEM 11. 

Required two numbers whose sum is 70 and whose difference is 16. 

Let X and y be the two numbers. 

Then, by the conditions of the problem. 
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^+2/=70.(1) 
'' x—y = lQ.(2), 

which are the two equations required for its solution. 

Adding the two equations, 

22:=86 

a:=43. 

Subtracting the second from the first, 

27/=54 

^ = 27. 

Hence 43 and 27 are the two numbers. 

PROBLEM 12. 

A per-on has two kinds of gold coin, 7 of the larger, together with 12 of the 

smaller, make 288 shillings; and 12 of the larger, together with 7 of the smaller, 

make 358 shillings. Required the value of each kind of coin. 

Let a: be the value of the larger coin expressed in shillings, y that of the 

smaller. ♦ 

Then, by the conditions of the problem, 

7:r+127/ —288 . . . .(1) 

And 

12a:+ 7y=358 .(2). 

Multiplying equation (1) by 7, and equation (2) by 12, 

and subtracting the former product from the latter, . . 95.7:=2280^ 

. .*. 7:= 24. 

Substituting this value of t: in equation (1), it becomes 168-j-12y= 288 

• .•. y~ 10. 

The larger of the two coins is worth 24 shillings, the smaller 10 shillings. 

PROBLEM 13. 

An individual possesses a capital of $30,000, for which he receives interest 

at a certain rate ; he owes, however, $20,000, for which he pays interest at a 

certain rate. The interest he receives exceeds that which he pays by $800. 

Another individual possesses a capital of $35,000, for which he receives inter¬ 

est at the second of the above rates ; he owes, however, $24,000, for which 

he pays interest at the first of the above rates. The interest which he re¬ 

ceives exceeds that which he pays by $310. Required the two rates of in¬ 

terest. 

Let X and y denote the two rates of interest for $100. 

In order to find the interest of $30,000 at the rate x, we have the pro 

portion, 

30,0007: 
100;30,000::7::-=300.r. 

In like manner, to find the interest of $20,000 at the rate of y, 

20,0007/ 
100:20,000:: 7/:-^^^ = 200?/. 

But, by the enunciation of the problem, the difference of these two sums is 

$800 ; hence we shall have, for the first equation, 

3 0 07-—20 07/ = 80 0 .(!)• 

Translating, in like manner, the second condition of the problem into alge¬ 

braic language, we arrive at the second equation. 
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3507/—240:r=310.(2) 

The two members of the first equation are divisible by 100, and those of the 

second by 10 ; they may therefore be replaced by the following : 

32:— 2//= 8.(3) • 

35y_242-=31 .(4) 

In order to eliminate 2:, multiply equation (3) by 8, and then add equation 

(4); hence 

19?/=95 

••• 2/= 5. ‘ 

Substituting this value of y in equation (3), we have 

3ar—10 = 8 

2:=6. 

Then the first rate of interest is 6 per cent., and the second 5 per cent. 

PROBLEM 14. 

An artisan has three ingots composed of different metals melted together. 

A pound of the first contains 7 oz. of silver, 3 oz. of copper, and 6 oz. of tin. 

A pound of the second contains 12 oz. of silver, 3 oz. of copper, and 1 oz. of 

tin. A pound of the third contains 4 oz. of silver, 7 oz. of copper, and 5 oz. 

of tin. How much of each of these three ingots must he take in order to 

form a fourth, each pound of which shall contain 8 oz. of silver, 3| oz. of cop¬ 

per, and 4j oz. of tin ? 

Let .r, y, and z be the number of ounces which he must take in each of the 

ingots respectively, in order to form a pound of the ingot required. 

Since, in the first ingot, there are 7 oz. of silver in a pound of 16 oz., it fol- 

7 
lows that in 1 oz. of the ingot there are — oz. of silver, and, consequently, in x 

lx 
oz. of the ingot there must be -- oz. of silver. In like manner, we shall find 

Id 

12y 4z 
that — represent the number of ounces of silver taken in the second and 

third ingots in order to form the fourth ; but, by the conditions of the prob 

lem, the fourth ingot is to contain 8 oz. of silver ; we shall thus have 

lx 127/ 4z 
‘ —4--^4- — : 

16^ 16 ^16 

And reasoning precisely in the sanje manner for the copper and tin, we find 

;= 8 '(1) 

3.r 37/ 7z 15 

16+ 16 + l6 = 4 * * * 
. . . . (2) 

62: y 5z 17 

16 + 16 + 16 = .4 • • • . . . . (3) 

which are the three equations required for the solution of the problem. 

<piearing them of fractions, they become 

7.r-j-12y-f-4z = 128.(4) 

3a:_|_ 3y-|-7z= 60..(5) 

6.r-|- y-\-bz= 68.(6) 

In these three equations the coefficients of y are most simple ; it will, there¬ 

fore, be convenient to eliminate this unknown quantity first. 
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Multiply equation (5) by 4, and subtract equa¬ 

tion (4) from the product, we have.J 5:r-f-242: = 112 . . (7) 

Multiply equation (6) by 3, and subtract equa¬ 

tion (5) from the product, we have. 15.r-{- 8z = 144 . . (8) 

Multiply equation (8) by 3, and subtract equa¬ 

tion (7) from the product, we have. 40a:=320 

X— 8 

Substitute this value of x in equation (8); it be¬ 

comes . 120-f- 8z = 144 

2= 3 

Substitute these values of x and z in equation 

(6); it becomes.48-j-y-j-15 = 68 

••• y= 5 
Hence, in order to form a pound of the fourth ingot, he must take 8 ounces 

of the first, 5 ounces of the second, and 3 ounces of the third. 

PROBLEM 15. 

There are three workmen. A, B, C. A and B together can perform a cer¬ 

tain piece of labor in a days ; A and C together in h days ; and B and C to¬ 

gether in c days. In what time could each, singly, execute it, and in what 

time could they finish it if all worked together ? 

llet x=z time in which A alone could complete it. 

y— time in which B alone could complete it. 

2= time in which C alone could complete it. 

Since A and B together can execute the whole in a days, the quantity 

. 1 . / 
which they perform in one day is - ; and since A alone could do the whole 

in X days, the quantity he could perform in one day is -; for the same rea- 

son, the quantity which B could perform in one day is - ; the sum of what 
y 

they could do singly must be equal to the quantity they can do together; 

hence 

111 

.(1 
X y a ' ' 

In like manner, we shall have 

111 

. 

111 .3) 
y ' z c 

Subtract equation (3) from (1), 

..(4) 
X z a c 

Add equations (2) and (4), 

2 111 
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In like manner, 

2ahc 

^ ah-\-bc—ac 

2abc 
» X -» 

' ab-\-ac — be' 

Let t be the time in which they could finish it if all worked together; then, 

by Prob. 8, 

/I 1 1\ 
^ ( ““f" “1“ ) ^—I i \x ' y ' z/ 

/I ab-\rac—bc\_^ . 

\a"^ 2abc ) ’ 

2abc 

' ' ^ ab-\-ac-\-bc' 

(16) What two numbers are those whose difference is 7 and sum 33 ? 

Ans. 13 and 20. 
A 

(17) To divide the number 75 into two such parts that three times the 

gieater may exceed 7 times the less by 15. 

Ans. 54 and 21. 

(18) In a mixture of wine and cider, L of the whole iilus 25 gallons was 

wine, and part minus 5 gallons was cider; how many gallons were there of 

. each ? 

Ans. 85 of wine, and 35 of cider. 

(19) A bill of S34 was paid in half dollars and dimes, and the number of 

pieces of both sorts that were used was just 100; how many were there of 

each ? 

Ans. 60 half dollars and 40 dimes. 

(20) Two travelers set out at the same time from New York and Albany, 

whose distance is 150 miles ; one of them goes 8 miles a day, and the other 7 ; 

in what time will they meet ? 

Ans. In 10 days. 

(21) At a ceilain election 375 persons voted, and the candidate chosen had 

a majority of 91; how many voted for each ? 

Ans. 233 for one, and 142 for the other. 

(22) AVhat number is that from wliich, if 5 be subtracted, | of the remain¬ 

der will be 40 ? 
Ans. 65. 

(23) A post is I in the mud, L in the water, and 10 feet above the water; 

what is its whole length ? 
Ans. 24 feet. 

(24) There is a fish whose tail weighs 9 pounds, his head weighs as much 

as his tail and half his body, and his body weighs as much as his head and his 

tail; what is the whole weight of the fish ? 

Ans. 72 pounds. 

(25) After paying away | and ^ of my money, I had 66 guineas left in my 

purse; what was in it at first ? 

Ans. 120 guineas. 
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(26) A’s age is double of B’s, and B’s is ti’iple of C’s, and the sum of all 

their ages is 140; what is the age of each? 

Ans. A’s =84, B’s =42, and C’s =14. 

(27) Two persons, A and B, lay out equal sums of mone^y in trade; A 

gains $630, and B loses $435, and A’s money is now double of B’s; what did 

each lay out ? 

Ans. $1500. 

(28) A person bought a chaise, horse, and harness, for $450; the horse 

came to twice the price of the harness, and the chaise to twice the price of 

the horse and harness ; what did he give for each ? 

Ans. $100 for the horse, $50 for the harness, and $300 for the chaise. 

(29) Two .persons, A and B, have both the same income : A saves 1 of his 

yearly, but B, by spending $250 per annum more than A, at the end of 4 

years finds himself $500 in debt; what is their income ? 

Ans. $625. 

(30) A person has two horses, and a saddle worth $250; now, if the sad¬ 

dle be put on the back of the first horse, it will make his value double that of 

the second ; but if it be put on the back of the second, it will make his value 

triple that of the first; what is the value of each horse ? 

Ans. One $150, and the other $200. 

(31) To divide the number 36 into three such parts that 4 of the first, 4 of 

the second, and 4 of the third may be all equal to each other ? 

Ans. The parts are 8, 12, and 16. 

(32) A footman agreed to serve his master for c£8 a year and a livery, but 

was turned away at the end of 7 months, and received' only X2 13s. id. and 

his livery ; what was its value ? 

Ans. <£i 165. 

(33) A person was desirous of giving 3d. a piece to some beggars, but found 

that he had not money enough in his pocket by Sd.; he therefore gave them 

each 2d., and had then 3d. remaining ; required the number of beggars ? 

Ans. 11. 

(34) A person in play lost 4 of his money, and then won 35.; after which, 

he lost 4 of what he then had, and then won 25.; lastly, he lost \ of what he 

then had; and this done, found he had but 125. remaining; what had he at 

first ? ' 
Ans. 205. 

(35) To divide the number 90 into 4 such parts that if the first be increased 

by 2, the second diminished by 2, the third multiplied by 2, and the fourth 

divided by 2, the sum, difference, product, and quotient shall be all equal to 

each other ? 
Ans. The parts are 18, 22, 10, and 40 respectively. 

(36) The hour and minute hand of a clock are exactly together at 12 o’clock: 

when are they next together ? 
Ans. 1 hour 5/y minutes. 

(37) There is an island 73 miles in circumference, and three footmen all 

start together to travel the same way about it: A goes 5 miles a day, B 8, and 

C 10; when will they all come together again ? 
Ans. 73 days. 
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(38) How much foreign brandy at 8s. per gallon, and domestic spirits at 3s. 

per gallon, must be mixed together, so that, in selling the compound at 9s. per 

gallon, the distiller may clear 30 per cent. ? 

Ans. 51 gallons of brandy, and 14 of spirits. 

(39) A man and his wife usually drank out a cask of beer in 12 days ; but 

when the man was from home, it lasted the woman 30 days ; how many days 

would the man alone be in drinking it ? 

Ans. 20 days. 

(40) If A and B together can perform a piece of work in 8 days; A and C 

together in 9 days ; and B and C in 10 days: how many days will it, take 

each person to perform the same work alone ? 

Ans. A 14^1 days, B 17|f, and C 23^. , 

(41) A book is printed in such a manner that each page contains a certain 

number of lines, and each line a certain number of letters. If each page wei'e 

required to contain 3 lines more, and each line 4 letters more, the number of 

letters in a page would be greater by 224 than before; but if each page were 

required to contain 2 lines less, and each line 3 letters less, the number of let¬ 

ters in a page would be less by 145 than before. Required the number of 

lines in each page, and the number of letters in each line. 

. ' Ans. 29 lines, 32 letters. 
( 

(42) Hiero, king of Syracuse, had given a goldsmith 10 pounds of gold with 

which to make a crown. The work being done, the crown was found to 

weigh 10 pounds; but the king, suspecting that the workman had alloyed it 

with silver, consulted Archimedes. The latter, knowing that gold loses in 

water 52 thousandths of its weight, and silver 99 thousandths, ascertained the 

weight of the crown, plunged in water, to be 9 pounds 6 ounces. This dis¬ 

covered the fraud. Required the quantity of each metal in the crown. 

Ans. 7 pounds 12|| ounces of gold, 2 pounds 3f | ounces of silver. 

(43) To divide a number a into two parts which shall have to each other 

the ratio of m to n. 

Ans. 
ma na 

m + n'm + n 

(44) To divide a number a into three parts which shall be to each other 

as m:n:p. 

ma na 'pa 
Ans. 

7n-\-n-\-p' m-\-n-\-p'' m-\-n-\-p' 

(45) A banker has two kinds of change ; there must be a pieces of the first 

to make a crown, and 6 pieces of the second to'make the same : now a per¬ 

son wishes to have c pieces for a crown. How many pieces of each kind must 

the banker give him ? 
/ a{b—c) 

Ans. -- of the first kind, 
b — a 

h(c—a) 

b — a 
of the second. 

(46) An innkeeper makes this bargain with a sportsman: every day that 

the latter brings a certain quantity of game he is to receive a sum a, but every 

day that he fails to bring it he is to pay a sum b. After a number n of 

days it may happen that neither owes the other, or that the first owes the 

second, or that the second owes the first a sum c. Required a formula which 
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i 

snail express in all three cases the number of days that the sportsman brought 

the game. 

hn dL c 
Ans. x=——r. 

a-\-b 

In the first case c=.0, in tlie second case we must take the positive sign, in 

the third case the negative sign. 

(47) If one of two numbers be multiplied by m, and the other by n, the sum 

of the products is p ; but if the first be multiplied by 7n', and the second by w.', 

the sum of the products is p'. Required the two numbers. 

I 

Ans. 
n'p—np' 

ran'—m'n"' 

mp'—m'p 

ran'—m'n 

(48) An ingot of metal which weighs n pounds loses jp pounds when weigh¬ 

ed in water. This ingot is itself composed of two other metals, which we 

may call M and M'; now n pounds of M loses q pounds when weighed in 

water, and 71 pounds of M' loses r pounds when weighed in water. How 

7nuch of each metal does the original ingot contain ? 

Ans. pounds of 
r — q r — q 

pounds of M'. 

REMARKS UPON EaUATIONS OF THE FIRST DEGREE. 

152. Algebraic formulee ^an offer no distinct ideas to the mind unless they 

represent a succession of numerical operations which can be actually perform¬ 

ed. Thus, the quantity h—<2, when considered by itself alone, can only sig¬ 

nify an absurdity when a'^h. It will be proper for us, therefore, to review 

the preceding calculations, since they sometimes present this difficulty. 

Every equation of the first degree may be reduced to one which has aU its 

signs positive, such as 

ax-\-h=cx-\-d.(1)* 

Subtracting cx-{- h from each member, we then have 

ax—cx=d—h. 

Whence 

This being premised, three different cases present themselves ; 

1°. d'^b and 

2°. One of these conditions only may hold good. ^ 

3°. b'^d and c'^a. 

In the first case the value of x in equation (2) resolves the problem without 

giving rise to any embarrassment; in the second and third cases it does not, at 

first, appear what signification we ought to attach to the value of x; and it is 

this that we propose to examine. 

In the second case one of tire subtractions, d—5, d—c, is impossible; for 

example, let b^d and a'^c; it is manifest that the proposed equation (1) is 

absurd, since the two terms ax and b of the first member are respectively 

greater than the two terms ''cx and d of the second. Hence, when we en¬ 

counter a difficulty of this nature, we may be assured that the proposed prob-‘ 

* We can always change the negative tenns of an equation into positive ones by trans- 

posmg them Lorn the member in which they are found to the other member. 
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lem is absurd, since the equation is merely a faithful expression of its condi¬ 

tions in algebraic language. 

In the third case we suppose h^d and c'^a; here both subtractions are 

impossible ; but let us observe that, in order to solve equation (1), we subtract¬ 

ed from each member the quantity cx-{-b, an operation manifestly impossible, 

since each member <^cx-\-b. This calculation being erroneous, let us sub 

tract ax-{-d from each member ; we then have 

b—d=cx—ax. 

Whence 

' b—d 
x=- 

c — a 

This value of x, when compared with equation (2), differs from it in this 

only, that the signs of both terms of the fraction have been changed, and the 

solution is no longer obscure. We perceive that, when we meet with this 

third case, it points out to us that, instead of transposing all the terms involv¬ 

ing the unknown quantity to the first member of the equation, we ought to 

place them in the second ; and that it is unnecessary, in order to correct this 

error, to recommence the calculation ; it is sufficient to change the signs of 

both numerator and denominator. 

When the equation is absurd, as in the second case, we may nevertheless 

make use of the negative solution obtained in this case ; for if we substitute 

—-'.r for the proposed equation becomes 

—ax-{-h-=—cx-\-d. 

Whence ''x=-r-? ’ 
a—c 

a value equal to that in (2), but positive. If, then, we modify the question m 

such a manner as to agi-ee with this new equation, this second problem, which 

will bear a marked resemblance to the first, will no longer be absurd, and, 

with the exception of the sign, will have the same solution. 

Let us take, for example, the following problem : 

A father, aged 42 years, has a son aged 12 ; in hoiu many years will the agt 

of the son be one fourth of that of the father 1 

Let X— the number of years required. 

42-f-.r 
Then -=12-|-.i:; 

.*. .T= —2. 

Thus the problem is absurd. But if we substitute —x for -j-a:, the equa¬ 

tion becomes 

• . ' 42—.r 
——=12—.r 

4 , 

and the conditions corresponding to this equation change the problem to the 

following: 

A father, aged 42 years, has a son aged 12 ; how many years have elapsed 

since the age of the son was one fourth of that of the father?* 

Here .r=2. 

* As a problem is translated into algebraic language by Ineans of an equation, so an 

equation may be ti'anslated back into a problem, provided the general nature of the problem 

be known. 
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Take another example. 

What number of dollars is that, the sum of the third and fifth parts of which, 

diminished by 7, is equal to the original number ? 

Here 

Whence 

X X 
5+g-7=,r. 

X-. — 15. 

The problem is absurd ; but, substituting —x for -|-x, 

X X 

3 5 ’ 

or 

which gives 

X X 

3+5-^^="' 

x-=zlb; 

and the problem should read, What number of dollars is that, the third and fittli 

parts of which, when increased hy 7, give the original number ? 

153. With regard to the interpretation of negative results in the solution 

of problems, then, we may, from what is seen above, establish the following 

general principle : 

When we find a negative value for the unknown quantity in problems of the 

first degree, it points out an absurdity in the conditions of the problem pro¬ 

posed ; provided the equation be a faithful representation of the problem, and 

of the true meaning of all the conditions. 

The value so obtained, neglecting its sign, may be considered as the answer 

to a problem which differs from the one proposed in this only, that certain cpian- 

tities which were aaditive in the first have become subtractive in the second, and 

reciprocally. 

154. The equation (2) presents still two varieties. If a=c, we have 

d—b » 

in this case the original equation becomes 

ax-\-b = ax-\-d, 

whence b=d ; if, therefore, b be not equal to d, the problem would seem ab¬ 

surd.* 

d—b m 
But the expression ——, or, in general,—, where m may be any quantity, 

m 
represents a number infinitely great. For, if we take a fraction —, the small- 

71/ 

m 
er we make n, the greater will the number represented by — become; thus, 

for Tnnu’ results are 2, 100, 1000 times m. The limit is in- 
/w JLUUk/ 

m . 
finity, which corresponds to w=0. Or, we may say, to prove — infinite, that 

* The absurdity is removed by consideiing that finite quantities have no effect when 

added to infinite ones; that, in comparison with mfinities, finite quantities are aU equal to 

one another, and all equal to zero. 
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a finite quantity evidently contains an infinite number of zeros. The symbol 

for the value of x in this case is 

X=:(X) 

m 
By clearing the expression ■q=® of fractions, we have m=0XcD> from 

, m 
which it appears that the product of zero by infinity is finite. So, also, —=0, 

or the quotient of a finite quantity by infinity, is zero. v 

155. If, in equation (2), a=c, and h=d, we have 

0 

in this case the original equation becomes 

ax-\-b = ax-{-h. 

Here the two members of the equation are equal, whatever may be the value 

of .r, which is altogether arbitrary, and may have any value at pleasure. We 

perceive, then, that a problem, is indeterminate, and is susceptible of an in¬ 

finite number of solutions, when the value of the unknoivn quantity appears 

0 
under the form 

, 0 
It is, however, highly important to observe, that the expression - does not 

always indicate that the problem is indeterminate, but merely the existence of 

a factor common to both terms of the fraction, which factor becomes 0 under 

a particular hypothesis. 

Suppose, for example, that the solution of a problem is exhibited under the 

a? — b^ 
form x=.- 

a^ .62- 

^ 0 
If, in this formula, we make a=b, then 3:=-. 

* u 

m 
* This infinite value of expressions like — may be sometimes positive, sometimes nega¬ 

tive, and sometimes indifferently positive or negative. 

m 
1°. Let there be the formula x=:- , in which m and n are two invariable numbers. 

(%—2r)2 

whieh we suppose positive, and different from zei'O, while z can have all possible values. 

Making z=n, we have But as the denominator, [n.—z)"^, is always positive, what¬ 

ever z may be, the infinity here should be regarded as designating the positive infinity, 

2°. By analogous reasoning, we see that if we have the formula x= 
—m 

should have the negative infinity z=—qo . 

3°. Let there be the formula a: 

{71—zY 
and z—n, we 

m . . -n , 
—. The hypothesis z=n gives still but here 

n—2 0 

the infinity will have an ambiguous sign. Suppose, at first, z<C7i, and cause z to increase, 

the formula will give increasing values, which will be all positive. On the contrary, taking 

zy.n, then diminishing z till it becomes equal to n, the fonnula gives increasing values, 

which are negative. Therefore, the hypothesis z=n ought to be considered as causing the 

formula to take two infinite values, the one positive and the other negative. This is indi¬ 

cated by writing x— | . The co is here the transition value between-}- and—. Zero 
is also a ti’ansition value between-}- and —. For, let x^n—z: if z<C.n, and z increase till 

z>n, the value of x in changing from -}- to — passes through 0. duantities in changing 

sign must always pass through 0 or qo . They may, however, pass through 0 or qo with- 

out changing sign, as in x=:.{n—zp, and —— 
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But we must remark, that — IP may be put under the form {a—h) 

and that —IP is equivalent to [a — h) {a-\-h) ; hence the 

above value of x will be 
{a — h){a^-\-ah-\~ 

X: 
{a—b){a-\-b) 

Now if, before making the hypothesis a = b, we suppress the commog fac¬ 

tor a — b, the value of x becomes 

Xz=- 
a'^-Jf-ab-^b' 

a-\~b 

an expression which, under the hypothesis that a=6, is reduced to 

3(Z^ 3a 
Xz=- 

2a 2 

Take, as a second example, the expression 

aP — 6^ 

^ {a — bf- {a—6)(u — b) ’ 

0 
making a=b, the value of x becomes a:=-, in consequence of the existence 

of the common factor a — b ; but if, in the first instance, we suppress the com¬ 

mon factor a—6, the value of .r becomes 

a-\-b 
x=-r; 

a—b 
✓ 

an expression which, under the hypothesis that « = &, is reduced to 

2a 
x = -=.a,. 

0 
From this it appears that the symbol - in algebra sometimes indicates the 

existence of a factor common to the tivo terms of'the fraction lohich is reduced to 

that form. Hence, before we can pronounce with certainty upon the true 

value of such a fraction, we must ascertain whether its terms involve a com¬ 

mon factor. If none such be found to exist, then we conclude that the equa¬ 

tion in question is really indeterminate. If a common factor be found to exist, 

we must suppress it, and then make anew the particular hypothesis. This 

will now give us the true value of the fraction, which may present itself under 

A A 0 
one of the three forms g, —, 

In the first case, the equation is determinate; in the second, it is hnjiossible 

in finite numbers ; in the third, it is indeterminate. 

0 
There are other forms of indetermination besides - ; for, whatever be the 

values of P and Q, we have 

P ^ 1 Q 
^-PXq-i- 

The first of these equivalents of where P and Q both equal zero, be- 

• CO 

comes 0 X CD? tli® second becomes —, which symbols must, therefore, be 

0 
considered as having the same meaning with 

M 
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DISCUSSIOJ^ OF FORMULAS FURNISHED BY THE GENERAL EQUATIONS OF THE 

FIRST DEGREE, WITH TWO OR MORE UNKNOWN QUANTITIES. 

When the common denominator of the general values of the unknown quan¬ 

tities reduces to zero, it is not readily seen how the given equations are to be 

verified. We shall examine here the particular cases of this kind which may 

OCCUR. 

Resume the two equations, 

ax-\-by—k [1] 

a'x-\-h'yz=k' . [2] 

from which we derive the formulas 

kh' — hk' ak'—ka' 

^ ab' — ba'' ^ ab' — ba'‘ 

First 'particular Case.—Suppose the denominators to be zero and the nu¬ 

merators not; then we have 

kb' — bk' ak'—ka' 
ab' — 6a' = 0, .r=:-r-, y=-r-. - 

. 0 0 

The values of .r and y are then infinite ; that is to say, in order to satisfy the 

two given equations, they must surpass every assignable magnitude. 

ab' 
From the equality ab' — ba' = 0, we derive and, consequently, the 

equation [2], by putting in it this value, becomes 

' ab' 
—^x-\-b'yz=k', .'. b'[ax-\-by) = bk'. 

The first member is the first member of [1] multiplied by b' ; the same re¬ 

lation must subsist between the second members, in order that the value of x 

and y may verify at the same time equations [1] and [2]. Hence bk'=kb', ' 

or, kb' — bk'; %. e., the numerator of x would be equal to zero, which is 

contraly to hypothesis.* 

In this way the impossibility of finding values of x and y, wdiich satisfy at 

the same time the two given equations, is made apparent; but this impossi¬ 

bility is still better characterized by the infinite values, which, at the same time 

that they indicate the impossibility, show besides that it arises from the fact 

that the values of the unknown quantities are too great to be assigned. 

If we su})pose ab' — ba' to be at first a very small quantity, the values of x 

and y will be very great, but they will always satisfy the equations until the 

instant ab' — ba' reduces to zero, when, if we can not effect in a direct manner 

the verification of the equations, it is solely because x and y then surpass all 

assignable magnitude,! 

Second particular Case.—Suppose the denominator to be zero at the same 

time as one of the numerators; lor example, that we have 

ab' — &a' = 0, kb' — bk' = 0. 

I maintain that the other numerator will be also equal to zero; for the 

two equalities above give 

* The note to art. 154 explains this anomaly. The finite quantities kb' and hk! ai'e equal 

■»;hen compared with infinity. 

1 Considered in relation to the que.stion, tlie conditions of wliicli are expressed by the 

pi-oblem, infinite values may l)e sometimes a true solution of the question. The applica 

tion of ale:ebra to geometry furnishes numerous examples of this kind ; among others may 

be cited that where an angle is unknown, and we find for its tangent an infinite value. It 

is clear, then, that the angle must he right. 
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ah' 
<z'=-T-, k'- 

b 

kh' 

b ’ 

and, consequently, the other numerator becomes 

akb' akh' 
ak'—ka'— ——;—=0. 

0 b 

If at first we had supposed this numerator equal to zero, we could have 

proved in a similar manner that of x to be so also. 

Tlie present hypothesis then gives 

0 0 ' ' • 

> ^'=5.»=o- 

Of themselves these symbols indicate indetermination; I shall prove, by going 

back to the equations, that they ought, in fact, to be indeterminate. 

For this purpose, substitute in equation [2] the values of a' and /j', found 

above, and it becomes 

ab' kb' ' b' b' 

Thus we see that it can be formed by multiplying the two members’of equa- 

b' 
tion [1] by y; then all values of x and y which satisfy one of the two equations 

will also satisfy the other. But if we give to x values at pleasure in equation [1], 

we can, by resolving it afterward, find corresponding values of y ; and as these 

same values satisfy the second equation, we conclude that the proposed equa¬ 

tions admit an infinite number of solutions. 

Let it, however, be observed, that the indetermination in this case does not 

permit us to take whatever value of y, and, at the same time, of x, we please, 

because the above explication shows that, when one of these unknown quan¬ 

tities is assumed, the value of the other is determined. 

The case before us comprehends that in which k=0, k' = 0, ab' — ba' = 0, 

0 
because then x and y become -. If we return to the equations proposed, they 

reduce to these. 

They give respectively 

ax-\-by=Q, a'x-\-b'y=0. 

a a 
y=—l^^ 2/=— 

But upon the hypothesis of ab' — ba' — O, we derive ; then the two 

values of y are equal, whatever be that of x, and there is veritable indeter¬ 

mination. 

Yet it is to be observed, that, if we take the relation of y to x, this relation 

is determinate, because we have 

y a a' 

^ h ^ 1) 

a of 
If the condition 7 = 77 had not existed, the two values of y above could wot 

b b 

have been equal, except we suppose .r = 0 ; y would have been then zero, and 

the relation of x and y no longer determinate, but indeterminate. 

A similar discussion to the above might be given to a system of three or more 

equations, with as many unknown quantities. It would, however, be more 

difficult to investigate the cases of impossibility and indeteimination, and it is 
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not worth while to delay upon them. We shall content ourselves with setting 

down here some observations intended to caution the student against certain 

hasty conclusions to which he might naturally be led. 

We have seen, in the case of two equations with two unknown quantities, 

that X and y become infinite and indeterminate simultaneously. 

The first error which might be committed would be that of supposing from 

analogy that, in the case of several equations, the unknown quantities would 

all become, infinite or indeterminate together. Suppose, for example, there 

are under consideration the three equations 

ax -^-hy -|-cz 

a'x -\-h'y -\-c’z =k', 

a"x-\-h"y-\-c"z=k". 

The common denominator of the values of .r, y, 2, is 

R=ah'c" — ac'b" -\-ca'b"—ba'c"-]-bc'a"—cb'a", 

and it may be written in three ways: 

R=a{b'c"—c'b") -^a'icb" —bc")-\-a"{bc'—cb'), 

R=b{c'a"—a'c") -f b'{ac"—ca") + b'ica'—ac/), 

^ R=c{a'b" — b'a")-\-c'{ba"—ab")-\-c"{ab' — ba'). 

Place 

b'c"=c'b", cb"z=bc". 

From these equations we deduce bc'=cb\ and, consequently, R becomes 

zero. Then the numerator of .r, which is formed from R by changing u, 

a" into k, k', k", becomes zero also. But as the numerator of y is formed by 

placing k^ k', k" in R instead of 6, h', b", there is no reason why this numerator 

should become zero, unless we make some new hypothesis. The same may 

be said of that of 2. Thus the value of x can take the indeterminate form 

where the values of y and 2 are infinite. 

But with regard to this indeterminate form, another eiTor still is to be 

avoided, because it may be that the indetermination is only apparent (see 

Art. 155). In order to judge better of it, we shall have regard' only to the 

.single relation 

h'c"=c'h", 
\r 

Substituting this value of c" in the general value of x, it will be seen that 

be/ — cb' becomes a common factor of both numerator and denominator. But 

by hypothesis this factor is zero ; it is its presence, then, which produces the 

appearance of indetermination. Suppressing it, we have the true value of .r, 

which appears no longer indeterminate, unless some new hypothesis be joined 

to those already made.* 

* An important observation should be made before quitting the subject of indetermi- 

nation. 
When the two terms of a fraction decrease so as to become less than any assignable 

quantity, if the sujipositions which cause one of them to decrease indefinitely are entirely 
independent of those which cause the other to do so, the values of these tehns may be 

taken as near zero as we please, and such that their relation, which is the value of the 

fraction, maybe equal to any quantity whatever ; consequently, the symbol at which we 

arrive when the two tenns shall have attained the limit of their decrease, will express 

complete indetennination. But it may happen that the two tenns of the fraction are con 

uected together in such a way, that to a very small value of one there corresponds always 
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156. We shall conclude this discussion with the following problem, which 

will serve as an illustration of the various singularities which may present 

themselves in the solution of a simple equation. 

C' 'B 

PROBLEM. 

Two couriers set off at the same time 

from two points, A and B, in the same — 

straight line, and travel in the same di¬ 

rection, A C. The courier who sets out from A travels m miles an hour, the 

courier who sets out from B travels n miles an hour; the distance from A to 

B is u miles. At what distance from the points A and B will the couriers be 

together ? 

Let C be the point where they are together, and let x and y denote the dis¬ 

tances A C and B C, expressed in miles. 

We have manifestly for the first equation 

3:—y=a.(1) 

^Since m and n denote the number of miles traveled by each in an hour, that 

is, the respective velocities of the two couriers, it follows that the time re¬ 

ar y 
quired to traverse the two spaces, x and y, must be designated by —, : these 

two periods, moreover, are equal; hence we have for our second equation 

X y 

m n. 

The values of ar and y, derived from equations (1) and (2), are 

am an 
X: 

m — n y- m—n 

1°. So long as we suppose or m—n positive, the problem will be 

solved without embarrassment. For, in that case, we suppose the courier who 

starts from A to travel faster than the courier who starts from B; he must, 

therefore, overtake him eventually, and a point C can always be found where 

they will be together. 

2°. Let us now suppose m<^7i, or m—n negative, the values of x and y are 

both negative, and we have 

am an 

^ n—^ n—m' 

The solution, therefore, in this case, points out that some absurdity must exist 

in the conditions of the problem. In fact, if we suppose m<C,n, we suppose 

that the courier who sets out from A travels slower than the courier who sets 

out from B; hence the distance between them augments every instant, and it 

is impossible that the couriers can ever be together if they travel in the di¬ 

rection AC. Let us now substitute —x for -\-x, and —y for -^y, in equa¬ 

tions (1) and (2); when modified in this manner, they become 

a very small value of the other; and that, when they converge toward zero, their relation 

converges toward a determinate limit, which it does not attain till the moment that the 

two tenns vanish, and the fraction presents itself under the fonn -A A particular- exam¬ 

ple of this last case is the vanishing of a common factpr of the numerator and denominator. 

The same remai'k is applicable to the symbol —. 

* This principle is fully exemplified in the differential calculus 
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y—x=a 

X y 

K m n 

equations which, when resolved, give 

am 
x =-, y = 

n—m ‘ 

an 

n—m 

in which the values of x and y are positive. 

These values of x and y give the solution, not of the proposed problem, 

which is absurd under the supposition that m<^n, but of the following, which 

is the translation of the changed equations. 

Two couriers set out at the same time from the points A and B, and travel 

in the direction B C', &c. (the rest as before) ; the values of x and y mark the 

distances A C', B C', of the point C', where the couriers are together, from 

the points of departure A and B, 

From this problem, as well as that of the father and son above, may be de¬ 

duced the following rule, when the value of the unknown quantity is found to 

be negative : 

Change the sign of the unknown quantity in the first equation, or the one 

derived immediately from the problem ; this changed equation, translated into 

common language, ivill furnish the p)Tohlem ivhich will give a positive solution. 

If the problem be at first enunciated in a general manner, then negative 

values of the unknown quantity may be regarded as furnishing a true solution, 

but are to be interpreted in a contrary sense. Thus, if p>ositivc values repre¬ 

sent distance to the right, negative ivill represent distance to the left; if posi¬ 

tive express distance upward, negative distance downward ; if the former in¬ 

dicate time future, the latter must indicate time past; if the one gain, the other 

loss ; if the one a rate of increase, the other a rate of decrease, 

3". Let us next suppose m=n ; the values of .r and y in this case become 

am an 

="0"’ y=' 0’ 

or 

x=ix), y = 00 

that is to say, x and y each represent infinity.' In fiict, if we suppose m=n, 

we suppose the courier who sets out from A to travel exactly at the same rate 

as the courier who sets out fi'om B ; consequently, the original distance, a, by 

which they are separated will always remain the same, and if the couriers 

travel forever, they can never be together, f 

^ Applications of this use of positive and negative quantities constantly occur in trigo¬ 

nometry and analytical geometry. < 

t Since m=n, equation (2) gives x—y, and equation (1), in consequence, a—O. To un¬ 

derstand this, we must recur to the principle stated in (Art. 154). We may here extend a 

little the statement there made. All zeros are equal when compared with finite quantities, 

but not when compared with one another. Thus, 2x is twice as great as x, though a; be 0; 

but 2x-\-a=x^a—a, if a;=0. In the first of these cases one zero, 2x, is compared with 

another, and then they are not equal; in the second, both zeros, 2x and x, are compared 

with the finite quantity, a, and then are equal. 
Again, x-\-a—x^lQa=:^x-\-0=x, if.r=Qo; but 10a is ten times as gi’eat as a, when un 

connected with infinity. Finite quantities are, therefore, all equal to one another, and all 

equal to zero when compared with infinite ones, but not Avhen simply compared with one 

another. It is rare that algebra can be employed to demonstrate moral or religions truth; 

< 
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4°. Let us suppose m=n, and also a = 0 ; the values of x and y in this case 

become 

0 0 ' 

that is to say, the problem is indeterminate^ imdi admits of an infinite number 

of solutions. In fact, if we suppose «r=:0, we suppose that the couriers start 

from the same point, and if we at the same time suppose m=?i, or that they 

travel equally fast, it is manifest they must ahvays he together^ and conse¬ 

quently every point in the line A C satisfies the conditions of the problem. 

5°. Finally, if we suppose a = 0, and m not =zn, the values of x and y in 

this case become 

.r=0, y = 0. 

In fact, if we suppose the couriers to set out from the same point, and 

to travel with different velocities, it is manifest that the point of departure is 

the only point in which they can be together. 

ADDITIONAL PROBLEMS. 

(1) The rent of an estate is greater than it was last year by 8 per cent, of 

the rent of that year ; this year’s rent is 1890. What was last year’s ? 

Ans. 1750. 

(2) A company of 90 persons consists of men, women, and children ; the 

men are 4 in number more than Ae women, and the children 10 more than 

the men and women together. How many of each ? 

Ans. 22 men, 18 women, and 50 children. 

(3) From the first of two mortars in a battery 36 shells are thrown before 

the second is ready for firing. Shells are then thrown from both in the pro¬ 

portion of 8 from the first to 7 of the second, the second mortar requiring as 

much powder for 3 charges as the first does for 4. It is required to deter¬ 

mine after how many discharges of the second mortar the quantity of powder 

consumed by it is equal to the quantity consumed by the first. 

Ans. 189 discharges of the second mortar. 

(4) The fore wheels of a carriage are 5| feet and the hind wheels 7~ feet 

in circumference ; the difilerence of the number of revolutions of the wheels 

is 2000. What is the length of the journey ? 

Ans. 39900 feet, or 7|f miles. 

(5) Three brothers. A, B, and C, buy ,a house for c£2000 ; C can pay the 

whole price if B give him half his money ; B can pay the whole price if A 

give him one third of his money ; A can pay the whole price if C give him 

one fourth of his money. How much has each ? 

Ans. A 661680, B c£1440, C 661280. 

(6) The passengers of a ship were ^ Germans, } French, L English, ^ 

but the objection to the doctrine of the special and immediate superintendence of Provi¬ 

dence in the affairs of men, that it implies an incredible degi’ee of condesceiision in an in¬ 

finite being', finds in the principle above stated a satisfactory refutatiorr. As compared 

with irrfinity, the smallest portion of matter is equal to the gi'eatest, and it is ther'efore no 

more an act of condescension on the part of God to charge himself with the cai'e of an iir- 

Mividual than of a nation—with the revolutions of a satellite tliarr with the movements of 

a system. 
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Dutch, and the residue, amounting to 31, Americans. How many were 

there in the whole ? 
Ans. 120. 

(7) Suppose the sound of a bell to bo heard at the distance of 1142 feet in 

a second in a still atmosphere, and that a wind is blowing sufficient to occa¬ 

sion a delay of | in time. In how many seconds will the sound reach a dis¬ 

tance of 6000 feet ? 
' Ans. 6.304. 

(8) Quicksilver expands, for each degree of the centigrade thermometer, 

sis'o volume. According to this, how high would the barometer stand 

when the temperature is 0°, if, when the temperature is 21°, it stands at a 

height of 27 inches 8^^ lines ? 
. Ans. 27 in. 7yY;^ lines. 

(9) What degi’ee of heat in a centigrade thermometer would be required 

to cause the barometer to rise to 26 inches 8 lines, if 0° raised it to 26 inches 

4 lines ? 
Ans. 70^^. 

(10) A piece of silver, the specific gravity of which is 10^, weighs 84 oz. 

How much weight will it lose in water ? 
Ans. 8 oz. 

I 

(11) In a mass of zinc and copper, weighing 100 pounds, 8 parts are of the 

former and 3 of the latter. How much zinc must be added, that the propor¬ 

tions may bo as 14 :5 ? 
Ans. 311. 

(12) At the extremities of two arms of a balanced lever, whose lengths are 

16 and 21 feet, two weights are suspended, which together amount to 65f 

pounds. How much is suspended at each arm ? 

» Ans. 37y^/5 and 28,^jf5. 

(13) The range of temperature of a thermometer during the year was 

44y^y°. The ratio of the degrees at which it stood at the extreme points 

above and below zero was 7:4. What were the points ? 

Ans. 28above, I6/5 below. 

(14) In 4000 pounds of gunpowder there are 3240 less of sulphur than of 

charcoal and saltpetre, 2760 less of charcoal than of sulphur and saltpetre. 

How much of each of these ? 

Ans. Sulphur 380, charcoal 620, saltpetre 3000. 

(15) It is required to divide the number 99 into five such parts that the first 

may exceed the second by 3, be less thim the third by 10, greater than the 

fourtli by 9, and less than the fifth by 16. 

Ans. The parts are 17, 14, 27, 8, and 33. 

(16) A and B began ti*ade with equal stocks. In the first year A tripled 

his stock, and had <£27 to spare ; B doubled his, and had 66153 to spare. 

Now the amount of both their gains was five times the stock of either. What 

was that stock ? 
Ans. 6690. 

(17) What two numbers are as 2 to 3 ; to each of which, if 4 be added, the 

sums will be as 5 to 7 ? 
Ans. 16 and 24. 

(18) Four places are situated in the order of tlie letters A B, C, D. The 



SIMPLE EaUATIONS. 185 

distance from A to D is 34 miles. The distance from A to B is to the dis¬ 

tance trom C to D as 2 is to 3 ; and one fourth of the distance from A to B, 

added to half the distance from C to D, is three times the distance from B to 

C. What are the respective distances ? 

Ans- AB = 12, BC = 4, CD=18. 

(19) A field of wheat and oats, which contained 20 acres, was put out to a 

laborer to reap for 6 guineas (of 215. each), the wheat at 7 shillings an acre 

and the oats at 5 shillings. The laborer, falling ill, reaped only the wheat. 

How much money ought he to receive, according to the bargain ? 

I Ans. 604 ll5. 

(20) A general having lost a battle, found that he had only half his army 

-|-3600 men left, fit for action, one eighth of his men -|-600 being wounded, 

and the rest, which were one fifth of the whole army, either slain, taken pris¬ 

oners, or missing. Of how many men did his army consist ? 

Ans. 24000. 

(21) A shepherd in time of war was plundered by a party of soldiers, who 

took I of his flock and | of a sheep ; another party took from him 4 of what 

he had left, and \ of a sheep more ; then a third party took 4 of what now re¬ 

mained, and 4 a sheep. After which he had but 25 sheep left. How many 

had he at first ? 

Ans. 103. 

(22) A trader maintained himself for three years at the expense of £50 a 

year, and in each of those years augmented his stock by 4 of what remained 

unexpended. At the end of 3 years his original stock was doubled. What 

was that stock ? 

Ans. 740. 

(23) There is a certain number consisting of two digits, the sum of these 

digits is 5, and if 9 be added to the number, the digits are transposed. What 

is the number ? 

Ans. 23. 

(24) A coach has 4 more outside than inside passengers. Seven outsides 

could travel at 25. less expense than 4 insides. The fare of the whole 

amounted to c£9 ; but at the end of half the journey the coach took up 3 more 

outside and one more inside passenger, in consequence of which the hire of 

the whole became increased in the proportion of 19 to 15. Required the 

number of passengers, and the fare of each kind. 

Ans. 5 inside, 9 outside ; fares, 18 and 10 shillings. 

(25) The hands of a clock are together at 12 : at what times will they be 

together during the next 12 hours ? 

Ans. 5y\ minutes past 1, 1044 minutes past 2, and so on, in each successive 

hour 5j\ later. 

(26) A person sets out from a certain place, and goes at the rate of 11 miles 

in 5 hours ; and 8 hours after another person sets out from the same place, 

and goes after him at the rate of 13 miles in 3 hom’S. How far must the lat¬ 

ter travel to overtake the former ? 
Ans. 35^ miles. 

(27) A reservoir which is full of water may be emptied at two cocks. One 

IS opehed, and } of the water runs out; another is opened, and the two run- 
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ning together, empty the vessel in | of- an hour more than was required for 

the first cock alone to empty the fourth part. If the two cocks had been 

opened at the commencement, the reservoir would have been emptied in i of 

an hour sooner. How long would it have taken the first cock, running alone, 

to empty the reservoir ? 

, Ans. 4 hours. 

INDETERMINATE ANALYSIS OF THE FIRST DEGREE. 

157. If there be proposed for solution one equation of the first degree, con 

taining two unknown quantities, any value at pleasure may be given to one of 

'the unknown quantities, and the equation will make known a corresponding 

value for the other ; fi'om which it appears that the equation admits of an 

infinite number of solutions. The number of solutions will, ho\vever, not be 

so unlimited, if it be required that the values of x and y shall be whole num¬ 

bers ; and still less so, if they must be both entire and positive. 

Let there be the equation 

u.r-f-6y = c, 

a*h, c being any whole numbers whatever, either positive or negative; and as 

all the factors common to these three numbers could be suppressed, suppose 

this to have been done. 

And first, let it be observed, that if there should remain now a common fac¬ 

tor in a and the equation could not admit of a solution in whole numbers ; 

for whatever values might be substituted for x and y, the first member would 

be divisible by this cominon factoi’ of a and fe, while the second member would 

not, and the equality would therefore be impossible : a and h must therefore 

be supposed prime to each other. 

158. Take, for example, the equation 

24.r-|-65y = 243  .(1) 

in which the coefficients 24 and 65 are prime to each other. 

Resolving it, with respect to .r, , 

•24.3 —65y 3 — 17?/ 
x=-—d_io_2y-f 

24 24 

In order that x and ?/ may both be whole numbers, and, at the same time, 

, . . . . 3 —17?/ 
satisfy the given equation, it is necessaiy that —— should be a whole 

24 

number. 

Representing this by i, we have 

^ 3 — 17?/ 
'-=t . 

24 (2) 

and 

x=10—2?/-j-^.(3) 

The solution of the given equation in whole numbers then reduces itself to 

the solution of the equation (2). 

We resolved the given equation with respect to the unknown quantity which 

had the least coefficient: doing the same with (2), 

3 —24^ 
V = 

3 — 7t 

17 ’ 

and proceeding as before. 

17 
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3 —7^ 

-i-=".(') ■ 

y=—.(^) 
The solution of (2) in whole numbers depends on that of (4), which, re¬ 

solved with respect to t, gives 

3 —17r 3—3i' 
j— = —2^ + —^ 

3 — 3t' ' ' 
.(6) 

t=—2t'-\-t".(7) 

Continuing in the same way, 

3—71" t" 
V=-^ = l-2t"-- . , , 

t" 
J=t'".(8) 

t' = l—2t" — t"'.(9) 

Equation (8) gives 

t" = 3t"'.(10) 

The solutions of the given equation in whole numbers are therefore obtained 

by giving to the indeterminate quantity t'" all possible values in whole num¬ 

bers, positive or negative; and for each of these values of V", the equations 

(10), (9), (7), (5), and (3), determine successively the values of the indeter¬ 

minate quantities t", t', t, and of the unknown quantities y and x. The equa¬ 

tion is tlierefore resolved in the manner required. 

Formulas may be obtained which give immediately the values of x and y m 

terms of V". For, substituting the value 3t"' of t" in (9), we find t'z=l—7t"'; 

substituting this value of t' and that of t" in (7), we find t——2-{-17^"'; sub¬ 

stituting this last value and that of t' in equation .(5), we find y=-3 — 24^'", and 

from (3), x=2-\-iibt"’. 

These last two expressions give all the entire solutions of the proposed 

equations by attributing successively to t'" all possible values in entire num¬ 

bers, positive or negative. 

159. The same process with the general form 

, ax -{■hy=c 

would run thus, 

c—ax . • 

y=—ir.(1) 

Dividing a by 5, and calling q the quotient, r the remainder,' 

c—^{bq-\-r)x c—rx 

make 

c — rx c—ht 
x= - .(2) 

Calling q' the quotient of b by r, and r' the remainder, 

c—r't 

make 

c—r't c—rt' 
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And calling q" the quotient of r by r', and r" the remainder, 

c—r"t' 

make 

and so on. The process is now evident, and it will be perceived that the co¬ 

efficients r, ?•', r", Avhich enter into the equations (2), (3), (4), are the suc¬ 

cessive remainders which would be obtained in operating as if to find the com 

mon divisor of a and h. We must at length arrive at a remainder 1, because 

a and h are supposed prime to each other. 

For the sake of being more definite, let r" be supposed to be this remainder 

then equation (4) gives 

r=—rT' + c.(5) 

By means of equations (2), (3), (4), and (5), the values of y, a’, and t' may 

be written as follows : 

y=—qx +« 

x=—q't -\-t' 

t = —q"t'-\-t" 

This series of equations shows that any entire value being assumed for t'\ 

the resulting value of t' substituted in that of t, the values of t, V in that of .r, and 

the values of .r, t in that of y, the proposed equation is resolved in whole numbers. 

160. The success of the method is founded on the progressive diminution 

which division effects upon the coefficients of the indeterminates; there is no 

reason, however, why the constant term, found in the successive equations, 

should not also be divided. In this way the calculation will involve smaller 

numbers, an advantage which is not to be neglected. 

For example, take the equation 

3.r—8y=43. 

As the multiplier of x is less than that of y, resolve the equation with refer¬ 

ence to X, 

8y4-43 
X— ~ . 

Dividing 8 by 3, the quotient is 2, and the remainder 2; and dividing 43 by 

3, the quotient is 14, remainder I; then 

2y4-l 
x=2y + U-\-~^=2y-{-U-[-t 

2y-{-l=3t 

3t — l t — 1 

t—l=2t' 

t = 2t'-^l, 

in which last equality t' may receive all possible entire values. By means of 

this value may be found 

y — t-\-t' = 2t'-{-l-\-t' = 3y-\-l 

x=2y4-14 + « = 2(.3r4-l) + 14-|-2i' + l=:8^' + 17. 

Giving to t' the^values 0, 1, 2, 3,... we find 
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1, 4, 7, 10,... 

a: = 17, 25, 33, 41,.. . 

V may also receive the negative values 

— 1, —2, —3,. .. 

161. In the above example, the values of y and a: form two arithmetical pro¬ 

gressions, the first of which has the common difference 3, the coefficient of x 

in the proposed equation; and the second the common difference 8, the co¬ 

efficient of y taken with the contrary sign. This proposition may be seen to 

be general by effecting the successive substitutions in the general solution, 

but the following demonstration is preferable. 

It appears, from the general investigation already made, that the equation 

ax~\-hy=zc.(1) 

admits of an infinite number of solutions in whole numbers, whatever may be 

the signs of a and b, provided they are prime to e^ch other. Suppose one of 

these solutions to be 

x=A, 2/=B. 

These values must satisfy the given equation (1), thus, ’ 

CL A. Z)II — c. 

Subtracting this equality from (1), we have 

a(a;_A)4-6(y—B) = 
a(A—a:) 

••• +—I—• 

:0 

The values of x are to be whole numbers, and such that y shall also be a 

whole number. Then the product a{A—ar) must be divisible by 6; but a is 

prime with &, (A—x) is, therefore, a multiplier of b (see Art. 84, Note), hence 

we may write 

A—x=.bt ; 

t being some whole number. From whence 

x=A — bt, y=B-\-at. 

These formulas exhibit the law of the values to be obtained for x and y, 

when there are given to t all entire values successively. If t be taken equal 

to 0, 1, 2, 3, .... there results 

x=A, A—6, A—2&, A—35, &c. 

y=B, B-|-u, B-|-2<z, B-|-3c!!, &c. 

In general, when t increases by unity, y increases by a, and x by —6. 

The solutions in whole numbers, then, of the equation ax-fby^c, are the cor 

responding terms of tivo progressions by differences. In the progression be¬ 

longing to each of the indeterminates, x and y, the common difference is equal to 

the coefficient of the other indeterminate. But it is necessary to be careful to 

take one of the coefficients with the same sign that it has in the equation, and 

the other with the contrary sign. 

It is immaterial which of the coefficients is taken with the contrary^ sign, 

because in the formulas which express x and y the signs of bt and at may 

be changed, since t can receive all possible values, positive and negative. 

162. In the general equation, if c=0, so that 

ax-|-5y = 0, 

as one solution is evidently .r=0, 2/=0, the general formulas become 

x=ht, 2/= —a,t. 
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163. Again, suppose c to be a multiple of a or h. Let c=hd, then 

ax-\-hyz=.hd. 

One solution is evidently a:=0, y=d ; hence the general values are - " 

" x=lit, y=d—at. 

Example, 5.r—7y=21. 

The evident solution is .^=0, y=—3, and the general values 

x—7t,y=— 

164. We shall point out two simplifications which may sometimes be made 

in the calculations. An example will explain them. 

80a:—17y=39. 

Resolving it with respect to y, 

80.r—39 

If 80 be divided by 17,- 80 = 17 X 4-[-12 ; but as the remainder, 12, exceeds 

half the divisor, 17, we observe that we may write 

80 = 17x(4 + 1)4-12 —17 = 17X5—5; 

that is, augmenting the quotient by unity, w'e have a negative remainder less 

than half the divisor, which causes a more rapid reduction in the numbers. 

The 39, divided by 17, leaves a remainder -j-5, which it is unnecessary to 

change. W e have then 

(17X5 —5).r —17X2—5 5.r4-5 
y— —2x ^ . 

But another simplification now presents itself, from the fact that 5 is a factoi 

of 5.r-f-5, and this numerator may be written 5(.r-j-l). In order to rendei 

5(a:-|-l) divisible by 17, it is only necessary to take O’-j-lV any multiple what¬ 

ever of 17. Whence the auxiliary equation 

a:+l = 17^- 

.*. x=\7t — l, y = 80t — 7. 

RESOLUTION OF THE EQUATION aX-\-hy = C IN NUMBERS BOTH ENTIRE AND 

POSITIVE. 

165. We begin as if the values of x and y were required to be entire only, 

and thus derive, as before, expressions of the form 

a:=A — ht^ y — '&-\-at. 

But now, instead of attributing to t all possible values in whole numbers, we 

choose only those which will render x and y positive. Hence there result for 

t certain linfitations which are always easy to deterinine. 

First, let us consider the case where a and h have the same sign in the 

equation 
ax-\-hy — c.^.(1) 

Suppose a and h positive; for if they were both negative, they might be 

rendered positive by changing all the signs of the equation. We must also 

suppose c to be positive, otherwise the equation would be impossible in posi¬ 

tive whole numbers. 
f 

Write the general values of .r and y under the following form: 

x 

Then we perceive that, to render x positive, it is necessaiy, and is sufficient, 

A ^ I —B 
to take t<^T-y likewise, in order that y may be positive, to take 

a 
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The signs > and < do not exclude equality ; that is to say, if the first limit 

were a number n, we might make i — n. The corresponding value of .r would 

be .r=0. 

166. Since t must be an entire number between two limits, it follows that 

the number of solutions of the equation is also limited. 

, And this is evident from the equation itself; for a and J) being positive, if 

we substitute for x and y positive numbers, the two terms ax-\-hy will be al¬ 

ways positive; and as their sum has to remain constantly equal to c, it is im¬ 

possible that either of these terms should increase indefinitely. 

■ It may happen that there is no whole number between the limits assigned 

above for t; then we conclude that the equation is impossible. Such a case 

would happen if the limits should be embraced between two consecutive whole 

numbers like these, and i<C4f; or, again, if they were contradictory, 

as, for example, ^^44 and ^<C3f. ' 

167. In the second place, consider the case in which a and h are of contrary 

signs. Suppose the equation in question to be 

ax — by = c.(2) 

in which a and h represent two positive numbers. Then the general values 

of X and y are of the form 

' x=k.-\-ht^ 

But we can write them 

X 
h / " \ a 

And we perceive at once that to have x and y positive, we must have, at the 

same time. 

— and -; r 
0 a 

that is to say, we may attribute to t all entire values above the greatest of 

these limits without excluding equality, if this limit is an entire number. 

By this we perceive that the equation ax—by=c admits always of an infinite 

number of solutions, while the equation ax-\-by = c admits of but a limited 

number, and even may not have any. 

Let us apply w'hat precedes to some problems. 

168. Problem I.—A company of men and ivonien expend at a feast 1000 

francs. The men pay each 19 francs., and the women 11 francs. How many 

men and how many women are there ? 

Ijet X represent the number of men and y the number af women. We 

have to resolve in entire numbers the equation 

. 19.r-4-ll7/ = 1000 .(3) 

In making the calculation, as in (160), and profiting by the simplifications in¬ 

dicated by (Art. 164), we have successively, 

1000 —19.r 3,r—1 
y- 

X: 

11 
3.r—1 

= 91 — 2 .rYY” = 31 — 2a:-f« 

lL+1 
■.it¬ 

'll t 

1—t 
:4t.-j-t' 

3 ' 3 

l_^t=3t' 

Arrived at this point, we return to x and y, and they become 
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'2-=4^+^' = 4(1—3r) + ^' = 4 —Hi' 

2/=±91—2.r+^=91—2(4 —11^') + (1—3^') = 84 + 19^'. 

Thus, the general formulas which express x and y in telms of t' are 

.t=4 —11//, 2/=84-f-19^'. 

In order that x may be positive, it is necessary and sufficient that we have 

ll/'<^4, or /'<CtV i order that y should be also positive, it is necessaiy 

and sufficient that we have 19/'^ —84, or Then we must take 

one of the series of values, 

/'=0, —1, —2, —3, —4. 

To these values con-espond 

a-= 4, 15, 26, 37, 48 

y=8A, 65, 46, 27, 8. 

The number of solutions is limited, as we ought to expect, since, in the 

equation (3), the terms containing x and y are of the same sign. 

There are five solutions in all, to wit; 

1st solution, 4 men and 84 women. 

2d solution, 15 men and 65 women. 

3d solution, 26 men and 46 women. 

4th solution, 37 men and 27 women. 

5th solution, 48 men and 8 women. 

Remark.-—From what has been said at (161), it is sufficient to procure a 

single solution of the equation (3) to form immediately the general values of .r 

and y. Thus, after having found above /=1 —3/', we make /' = 0 ; and if we 

calculate the corresponding values /=1, x—A, y = 84, it is evident that the 

values x=A, y = SA, ought to form one solution of the equation ; then we can 

place immediately a’ = 4 —11/', y = 84-|-19/'. 

169. Problem II.— With two measuring rods of different lengths^ the one 5 

feet, and the other 7, it is required to make, by ffacing them the one after the 

other, a length of 23 feet. 

This problem requires the solution in whole numbers of the equation 

52’-f 72/=23. 

We derive from it successively 

23—ly 24-22/ 
x=-^^=5-y—^=5-y-2t 

1 + 2/ =5/ 

y=5t—l 

x = 6 —7/ 

In order that y may be positive, we must make and that x may be 

positive, /<C|* As no whole number falls between | and we conclude that 

the problem is impossible. 

Remark.—The equation would have had an infinite number of solutions if 

negative values had been admitted. For example, if /=0, we have a:=6, 

y= — 1. This solution indicates that by placing one of the rods, that of 5 feet, 

6 times in succession, and placing afterward the rod of 7 feet, so as to cut off 

its length from the end of the distance thus obtained, the remainder would be 

the required length, 23 feet. 

170. Problem III.—A person qiurchased some hares and sheep. Each 

hare cost him 8 shillings, and each sheep 27. He found that he had paid for 
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the hares 97 shillings more than for the sheep. How many hares did he pur¬ 

chase, and how many sheep ? 
8,r_07^ —97_ 

27^/4-97 ’ 3?/ + l 

,3v+l=8^ 

6^—1 «+l 
2/=-^=3«-^=3^-«' 

^+I=3r 

^=3^' —1. 

By making ^'==0, we have t-= — I, y = —3, a’=2. And the general values 

are 

a-=27^'+2, y = 8t' — 3. 

The values of x and y having to be positive, these formulas show that t' 

ought also to be positive, and large enough to cause 8t'f>3, or t'f>^. We may 

then give to t' all the values t' = l, 2, 3, &c., to infinity ; and we form, conse¬ 

quently, the table, 

t'= 1, 2, 3, 4, &c. 

x=29, 56, 83, 110, &c. 

y= 5, 13, 21, 29, &c. 

The problem admits of an infinite number of solutions; and the answer is, 

that there are 29 hares and 5 sheep, or 56 hares and 13 sheep, or 83 hares 

and 21 sheep, &c. 

171. Problem IV.— To find a number such that, in dividing it hy 11, there 

remains 3, and dividing it hy 17, there remains 10. 

Let the number be represented by N, then 

N = lla:-|-3 and N=:17y-1-10 

lla:4-3 = 17y-l-10 . . ^ . (6) 

Proceeding as before. 

17w4-7 6w-f7 
x=^=y+^--=y+t 

6y-\-7 = llt 

nt — 7 ^+1 

2/=-W-=2^-1—V =z2t—l—t' 

t-\-l=6t' 

t = 6t' — l. 

The hypothesis ^' = 0 gives t= —1, y = —3, x= —4 ; and then we conclude 

immediately that 

.r=17y—4, y=:ll^' —3. 

We can not take t' negative, nor even t' = 0, because x and y would become 

negative; but we may take t'=l, 2, 3, &c., to infinity. 

If we wish formulas in which we can give to the indeterminate all entire 

positive values setting out from zero, all that is necessary is to change t' into 

-\j^d, 6 being the new indeterminate. Then we have 

‘ a:=13-f 170, y=8-f 110. 

By means of these values, we find 

N = llx-f 3 = 11(134-170)+ 3 = 146+1870 

N=:17y+10 = 17( 8+110) + 1O = 146 + 1870. 

These two expressions are equal, and they should be, since equation (6) has 

N 
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been formed by equating the values of N. We perceive that there is an in¬ 

finity of numbers which fulfill the two conditions enunciated, and that they are 

all represented by the formula 

N = 1464-1870, 

in which d is an indeterminate, which may receive all positive values beginning 

with zero. 

It is easy to show that this number N satisfies the enunciation; that is to 

say, that if we divide it by 11, the remainder will be 3, and if by 17, the re¬ 

mainder will be 10 ; for we have 

N ' 3 N 10 
— =170-|-13-|-—, and —=110-|-8-j-—. 

4 

172. Problem V.—To find a number such that, dividing it by 11, there 

remains 3 ; dividing by 17, there remains 10 ; and dividing it by 37, there re¬ 

mains 13. 

In the preceding problem we have found the numbers which fulfill the 

first two conditions. Putting x for 0, which we may do, since 0 can be any 

positive whole number, this formula becomes 

N = 1464-187.r.• (8) 

But in order that the number N may fulfill the third condition, we must 

have N=372/-|-13. Then we have the equation 

37?/4-13 = 146+187a:. 

Then 

187.r-f 133 
y— — =5a:-|-34- 

2.r-j-22 

37“' 
5a: 4-34-2i 

' x+U=37t 

x=37t-^ll. 

In order that X may be positive, we must give to t only positive values above 

zero. But in making ^=l-t-0, we can attribute to 0 all the entire positive 

values beginning by zero. By this change x becomes 

\=264-370. 

And by substituting this value in formula (8), we obtain 

N=5OO84-69190. 

■Such is the general formula of the numbers which satisfy the three condi 

tions enunciated. 

173. The determination of the limits led to the necessity of finding (165) 

the values ^of the final indeterminate t, which render positive expressions of 

the form A4-6^, or, in other terms, which are such as to make 

K-\-bt'fi>-Q. 

Transposing the .term A, 

bty—K. 
If b is positive, dividing by 5, 

But if b is negative, the division by b changes the signs of the inequality, 

and the two members are unequal in the contraiy sense ; i. e., 

Suppose, more generally, that we nave the inequality 

at-^ b ci-p c/. 
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By the transposition of tlie terms, y 

.(a—c)t'^d—b. 

Then, according as a—c is a positive or negative quantity, we derive 

d—h 
or 

d—b 

a — c* 

This process is called resolution of inequalities. The whole subject of in 

equalities will be found treated in a subsequent article. 

174. Resolution in whole numbers of several equations of the 

FIRST DEGREE, WHEN THE NUMBER OF EQUATIONS IS LESS THAN THAT 

OF THE UNKNOWN QUANTITIES. 

Let there be for resolution the equations 

2.T+14y —7z = 341.(1) 

lOar-f- 4y + 92 = 473 .(2) 

If we multiply the first equation by 5, and afterward subtract the second, 

we shall have 

667/—44z = 1232. 

Or, dividing by 22, 

3?/—2z=56.(3) 

But the entire values of y and z, which suit the proposed equations, ought 

also to satisfy this ; consequently, applying to it the method already known, 

we have ^ 

y—2U z=3t—28. 

If we had but equation (3), we should have its solutions in whole numbers, 

by giving to t all the whole-number values possible. But this equation takes 

the place of only one of the proposed, so that it is necessary that the values 

of y and z should be such that, in adding to them certain values of x, which 

must also be entire, one of these proposed equations shall be verified. For 

this reason we substitute the preceding values of y and z in equation (1), and 

seek for the entire values of .r and which belong to the resulting equation. 

The substitution gives 

2.2+7^ = 145; 

and from this we obtain, designating by t' any whole number whatever, 

.2=69 +7^', t = 

'Then place the value /=1 — in those of y and z, and you find the un¬ 

known quantities 2, y, z expressed in terms of l\ to wit: 

2=69 + 7^', 7/ = 2—4i', z=—25 —6t\ 

These formulas make known all the entire values which satisfy the equa¬ 

tions proposed. 

If it be desired besides that these values should be positive, t must be so 

chosen that 

69 + 7^'^0, whence —9f ; 

2—4/'^0, whence t' ^ ; 

— 25 — whence t' —4^. 

From this we find the only values which can be attributed to t' are t'=—5, 

—6, —7, —8, —9. By substituting these numbers, we shall have five solu¬ 

tions in positive whole numbers : 

^ 2 = 34, 27, 20, 13, 6 

2/ = 22, 26, 30, 34, 38 

z= 5, 11, 17, 23, 29. 

1 
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175. The preceding example shows sufficiently the method to be pursued 

m resolving equations of the first degi-ee in positive whole numbers, when the 

number of equations exceeds that of the unknown quantities. But, to leave 

nothing to be desired, I shall indicate the method to be pursued in the case 

of three equations. 

Let there be, then, between the unknowns .t, y, z, u three equations of the 

1st degree, which I will name collectively the equations [A]. 

By the elimination of x we shall find between y, z, and u two equations of 

the 1st degree : I shall name them [B]. 

By the elimination of y we shall deduce from these last an equation of the 

1st degree between z and u: I shall name it [C]. 

From the equation [C] we derive z and u expressed in function of an aux¬ 

iliary indeterminate t. 

These values being substituted in one of the equations [B], we derive from 

It an equation between y and and from this the values of y and / in function 

of a new indeterminate t'; consequently, we can also express z and u in terms 

of t'. 

Finally, these values of y, z, u being carried into one of the equations [A], 

there will result an equation between x and which will enable us to find x 

and f', and, consequently, y, z, and w, in function of a new indeterminate t". 

When the equation is to be resolved in whole numbers of any sign what¬ 

ever, we may attribute to the final indeterminate t" all possible values in 

whole numbers. But when the solutions are to be restricted to such as are 

at the same time entire and positive, there will exist for t" limitations which it 

will be always easy to assign. 

176. When we have two more unknowns than equations, or several more, 

the indetermination is still greater; but the condition of having values which 

shall be at the same time entii'e and positive, may limit considerably the num¬ 

ber of solutions. We shall confine ourselves to two examples, which will suf¬ 

fice to show how the method explained above .should be modified in such cases. 

Given to resolve in positive whole numbers the equation 

10.r+9y + 7z = 58.(4) 

As the unknown z has the smallest coefficient, I derive 

58—9y — 10.r 

and, effecting the division as far as possible, 

2 — 2y—3x 
z = 8-y—---. 

The numerator 2—2y—3x must be a whole number, divisible by 7 ; there¬ 

fore I place 

2 — 2y—3x=7t; 

2—3x — 7t x-if-t 
.•.y=-5-—l—x—3t- 

and, x-{-t being obliged to be a whole number divisible by 2, I place, also, 

x-\-tz=z2t' .-. x=—t-\.2t' ; 

and, going back to y and z, we express these unknowns in function of t and i'. 

We have thus the three formulas 

^+2//, y=l—2^—3^', z = 7-f 4^-f .... (5) 
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In order to have the entire and positive solutions of the proposed equation 

(4), we must give to t and t' all the entire values, which satisfy simultaneously 

the three conditions 

— ^+2r>0, 1—2^ —3i'>0, 7-l-4«+^'>0 .... (6) 

From hence result limitations for t and which will be discovered by em¬ 

ploying for these inequalities operations altogetlier analogous to those of elimi¬ 

nation. For greater neatness, suppose the signs ^ exclude equality; that is 

to say, that none of the three unknowns, .r, y, and z, can be zero. 

First, if we multiply the 1st by 3 and the 2d by 2, they become 

—3^-f 6i'>0, 2 —4^—6r>0 ; 

adding, t' disappears, and we have 

2_7^>0 .-. i<f. 

A similar elimination between the second inequality and the third gives 

22-l-10^>0 .-. 

We see that the indeterminate t is embraced between the limits —2j and 

# ; then we should take only 

t=—2, —1, 0. 

Let us consider each of these values successively. 

1°. If we make t=—2 in the three inequalities (6), they become 

2-f 2^'>0, 5—3r>0, _14.i'>0; 

1, «'<lf, ^'>1. 

As there is no whole number between 1 and 1§, it follows that the value 

t=—2, which furnishes these limits for t', ought to be rejected. 

2°. If we make t=—1, the three inequalities (6) become 

l-[-2r>0, 3 —3i'>0, 3-|-^'>0 ; 

t'< + h 

Between —^ and -j-1 there is no other entire number except 0 ; then we 

can take t=—1 and t' = 0. 

3°. If we make ^=0, the inequalities become 

2^'>0, 1—3r>0, 7-f i'>0 ; 

.-. ^'>0, i'<^, i'>—7. 

Between 0 and i there is no whole number; consequently, the value t=0 

ought also to be rejected. 

The only values of t and V to which positive values in whole numbers of .r, 

y, and z correspond are, then, t=.—1 and i' = 0. By substituting them in 

the formulas (5), we obtain 

x=l, y=3, z=3, 

and this solution is the only one admissible. 

177. For a second example, I propose the two equations 

6x-\- 7y-|-3z-f-2wz=100 

24z:-f 12y + 7z-I-3w = 200. 

Eliminating w, we have 

3 Ox3y-1-10 0' 
As in this equation the terms 30x and 100 are divisible by 5, it will be best 

to take the value of z ; this is 

3w 
z=20—6x—-f-. I 

o 

From which we see that y ought to be a multiple of 5 ; consequently, we have 

y=5« 
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then, by substituting these values in the first of the two proposed equationfi 

it becomes 

6.r+35^4-60—18a:—9^4-2^=100; 

or, rather, 

— 12a:-j-26^4-2w=40; 

w = 20 -l-6a: —13^. 

The three unknowns, y, z, u, are thus found expressed in functions ot x, 

and of the indeterminate auxiliary t. 

In order to resolve the two proposed equations in positive numbers, it is evi¬ 

dently necessary to take x arid t positive, since x is one of the primitive un¬ 

knowns, and since y=bt. But it is necessary to satisfy also the inequalities 

20 —6a: —3i>0, 204-6a: —13i>0. 

In adding them, x disappears, and there remains 

40 —16^>0 «<2|; 

then the values which we ought to give to t are (=0, 1, 2. 

With the value ^ = 0 we should have 

2/ = 0, z = 20'—6a:, w = 20-^6a:; 

and we see that we can make x=0, 1, 2, 3. From whence result for the 

proposed equations 

"x= 0 

, y= 0 
^ z=20 

^ x= 1 

y— 0 

' x= 2 

y= 0 
2= 8 
u = 32 

^a:= 3 

y= 0 
2= 2 
w=38. 

. 2=14 
w = 20 [^ = 26 

With the value t=l we should have 

2/=5, 2 = 17—6a:, w=7-|-6a:,* 

and the only admissible values of x are a;=0, 1, 2. Thence result the three 

solutions 

x= 2 

y= 5 
2= 5 
w = 19. 

X 

Finally, with the value t—2 we should have 

2/=10, 2 = 14—6a:, u=—64-6a:. 

The only admissible values of x are a:=l, 2; and from thence result the 

two further solutions 

f a:= 1 [ x= 2 
y=io 

' x= 0 ''x=. 1 

\y= ^ y= 5 
2 = 17 2=11 

^u= 7 ,w = 13 

y = 10 
2= 2 
'U= 6. 

In all, nine solutions. There would be but three if those were excluded in 

which one of the unknowns is zero. 

EXAMPLES. t 

I*". Two countrymen have together 100 eggs. The one says to the other, 

If I count my eggs by eights, there is a surplus of 7. The second answers. 

If I count mine by tens, I find the same surplus of 7. How many eggs had 

each ? j 

Ans. Number of eggs of the first, =63 or 23 ; of the second, =37 or 77. 

2°. To find three whole numbers such that, if we multiply the first by 3, 

the second by 5, and the third by 7, the sum of the products shall be 560 ; 
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and such, moreover, that if the first be multiplied by 9, the second by 25, and 

the third by 49, the sum of the products shall be 2920. 

Ans. First number, =15 or 50. 

Second number, =82 or 40. 

Third number,. =15 or 30. 

3°. A person purchased 100 animals at 100 dollars; sheep at 3i dollars a 

piece ; calves at 1|^ dollars ; and pigs at | a dollar. How many animals had he 

of each kind ? 

Ans. Sheep, 5, 10, 15. 

Calves, 42, 24, 6. 

Pigs, 53, 66, 79. 

4°. In a foundry two kinds of cannon are cast; each cannon of the first sort 

weighs 1600 lbs., and each of the second 2500 lbs.; and yet for the second 

there are used 100 lbs. of metal less than for the first. How many cannons 

are there of each kind ? 

Ans. Of the first, 11,36...; of the second, 7, 23.... 

Or, of the first, 114-25f; of the second, 74-16^. 

5'’. A farmer purchased 100 head of cattle for 4000 francs, to wit: oxen at 

400 francs apiece, cows at 200, calves at 80, and sheep at 20. How many had 

he of each ? 

Ans. In excluding the solutions which contain a zero the problem admits of 

the ten following : • 

Oxen, 1, 1, 1, 1, 1, 1, 1, 1, 4, 4. 

Cows, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2. 

Calves, 24, 21, 18, 15, 12, 9, 6, 3, 5, 2. 

Sheep, 74, 76, 78, 80, 00
 

00
 CO 

C
O

 00
 

00
 

90, 92. 

QUADRATIC EQUATIONS. 

178. Quadratic equations, or equations of the second degree, are divided 

into two classes. 

I. Equations which involve the square only of the unknown quantity. 

These are termed incomplete or pure quadratics. Of this description are the 

equations 

5 7 259 
ax^ = b ; 3a:2-fl2 = 150—-}-3;r®=—. 

they are sometimes called quadratic equations of hvo terms, because, by trans¬ 

position and reduction, they can always be exhibited under the general form 

ax^ — h. 

Thus the third of the equations given above, 

5 7 259 

when cleared of fractions, becomes 

8a:2 — 10-f 7 2a:2 = 7-f 4 8a:2 4-259, 

or, transposing and reducing, 

32.r2 = 276, 

ax‘^—h. 

which is of the form 
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IT. Equations which involve both the square and the simple power of the 

unknown quantity. These are termed adjected or complete quadratics. Of 

this description are the equations 

5.r2 X 3 2x 273 
ax'^-\-hx—c; 102: = 7 ; ’ 

they are sometimes called quadratic equations of three terms, because, by 

transposition and reduction, they can always be exhibited under the general 

form 

ax^-\-hx=c. 

Thus, the third of the equations given above. 

5.r^ X 3 2.r 
•o + 7=8---a:^+ 

273 

1^’ 6 2 ' 4 

when cleared of fractions, becomes 

10a:2—6a:+9 = 96—8a:—12ar2-}-273, 

or, transposing and reducing, 

22.a:^-|-2a:=360, 

which is of the form 

ax^-^hx=c. 

SOLUTION OF PURE qUADRATICS CONTAINING ONE UNKNOWN qUANTITST. 
r 

179. The solution of the equation 

ax’^ = h 

presents no difficulty. Dividing each meniber by a, it becomes 

x'^=- 
h 

a' 

whence 

x=± I-. 
" V® 

If - be a particular number, either integral or fractional, we can extract its 
a 

square root, either exactly or apjiroximately, by the rules of arithmetic. If 

h 
- be an algebraic expression, ,we must apply to it the rules established for the 
a 

extraction of the square root of algebraic quantities. 

It is to be remarked, that since the square both of -{-m and —m is 

, , / Ihy ( ihy b 
so, in like manner, both \-\-yJ~) and ^is Hence the above 

equation is susceptible of two solutions, or has two roots ; that is, there are 

two quantities which, when substituted for x in the original equation, will ren¬ 

der the two members identical; these are 

X = -{- I-and xz=— I-; 

for, substitute each of these values in thb original equation ax’^ — b, it becomes 

/ lb\^ b 



aUADRATlC EaUATIONS. 201 

Hence it appears that in pure quadratics the two values of the unknown 

quantity are equal with contrary signs.* 

EXAMPLE I. 

Find the values of x which satisfy the equation 

4x2 —7 = 3a:2-f 9. 

Transposing and reducing, - x2=16 

• *« X -y/16 

= zt 4 ; 

hence the two values of x are -j-4 and —4, and either of these, if substituted 

for X in the original equation, will render the two members ideiitical; 

x^ 

3-3- 

EXAMPLE II. 

5x2 7 299 

12^ 24 " ' 24 
Clearing of fractions, 8x2—7.2_|_iq2:2_ 7—24x2-{-299 

Transposing and reducing, 42x2=378 

. 378 

^ — 42 

= 9 

.♦. X = rt3, 

and the two values of x are -{-3 and —3. 

EXAMPLE III. 

3x2=5 

5 

^=^4 ■ 
rh Vl5 • 

~ 3 

Since 15 is not a perfect square, we can only approximate to the two values 

of X. We find the approximate values to be 

x=1.290994, or —1.290994. 

EXAMPLE IV. 

X 

■——^--=m. 
■y/r'^-\-x^—X 

Clearing of fractions, x =?/i x2 ??1X, 

.*. (m-}-l)x =m-\/r2-j-x2. 

Squaring, 

.*. {2m-\-l)x‘^-=ni“r'^ 

mr 
X = rt —- 

, ■y/27n-\-l 

* One might suppose that in extracting the square root of both members of such an equa¬ 

tion as a:2=Z», the double sign should be prefixed to x, the root of x”, also. But it is to 

- be observed, that it is the value of -|-‘r that is required. Besides, suppose we were to write 

-\-x— I \/b; combining these signs in all possible ways, there result the four equations, 

-\'X=—-y/^, —x=:^-\-'\/b, —a:=—^/b, 

the last two of which may be deduced from the first two by changing the signs of the two 

members ; the equation J-a;=d-y'5 expresses nothing more, therefore, than the equation 

x=d--\/&. We might always omit dz' since it is implied before i/ . 
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EXAMPLE V. 

m 2mx -}- x'^ 
zn. 

7n-\-x— "v/ 2mx-\-x'^ 

Render the denominator rational by multiplying both terms of the fraction 

by the numerator, the equation then becomes 

{m-{-x-\- ■\/2mx-{-x‘^Y 
■=n. 

Extracting the root, 

m-\-x-\- •^2mx-\-x‘^z=:^m^n. 

Transposing, ^ 2mx-\-x^= n— 

Squaring, 2mx-\-x'^—m^n'^2m Vn{m-\-x)-\-{m-{-xY 

Transposing and reducing, 

zL2m n{m-{-x)=.rri^{\-\-n)^ 

m-{-x =-j-—y- 
‘ ±2 y/n 

±2 

{y/nAzlf 
= iwi. 

2y/n 

(6) 11(^2—4) = 5(.r2_|-2). 

a:_l_7 x—1 7 

(7) ; —lx a:’^-j-7.r x^—73 
:0. 

Ans. X— JL 3. 

Ans. x= i9. 

m-4- V — x^^ X 
(8) - 
^ ' X 71 

(9) 

(10) 

y/ -j- p 

^ —x^^yf x^ q 
Ans 

Ans. y/2mn — 

. a;——+ 

y/p—X 

y/x 
Ans. a:= i2 

180. In the same manner we may solve all equations*whatsoever, of any 

degree, which involve only one power of the unknown quantity; that is, all 

equations which are included under the general form 

ax'^—h, 

or equation^ of two terms. 

For, dividing each member of the equation by a, it becomes 

h 
x^=-. 

a 

Extracting the root on both sides. 

:r = n - 
a 

h- 

If n be an even number, then the radical must be affected with the double 

sign for, in that case, both will equally pro- 

b 
duce -. 

a 

/ 
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EXAMPLE XI. 

53:6 — 57=20:64.135 

32-6=192 

26=64 

' 2= V64=^ V±8==t2. 

Here +2 and —2 are two of the roots of the above equation 

EXAMPLE XII. 

p-\-x p-\-X X 

V X q 
px \/ 2 

Or, 

Squaring, 

Extracting the cube root. 

— — V 
(P + 2)“=2".-. 

{p+xf=xK-. 

P 
2=- 

P ?-i --1 
—2q =-2® . 
q s 

EXAMPLE XIII. 

EXAMPLE XIV. 

642/6—482/4+12?/2 —1 = 64. 

Extracting the cube root, we have 

i5 a/s 
42/2_1=4 .*. y=^- = —. 

Ans. 2 =( 

EXAMPLE XV. 

xP f — Wl. ■ (1) 

^ —2/ = 3. • • (2) 
Cubing the latter equation. 

but 

26—32^2/+322/"—2/^“ 
2® —2/^'=117. 

.•.by subtraction. 32^2/—322/^ = 90, 

and xy{x—y) = 30; 

dividing by (2), we have .*. xy = 10. 

Now from (2) 2^—2xy-\-y^z=z 9, 

and 

0
 11 

.‘.by addition. 2'^+222/+2/^= 49, 

and 2+2/ =+7, 

but (2) 2—y = 3. 

By addition, 22 = 10, or — 4, 
.’. 2 = 5, or —• 2, 

22/ = 4, or —10, 

2/ = 2, or — 5. 

— 1 Ps—qr. 
pi) 

and by subtraction 

\ 
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(16) 4a.’2—2 = 2.r24.26. 

(17) a:3:(18—.t)2::25:16. 

X 14—X 
(18) -: --: : 16 : 9. 

(19) 

14—x' X 

75(x—7) 48(.t—4) 

X—4 X—7 

(20) —xy = 40, xy—2/^=15. 

(21) (.r—3/)a:=91, {x—yY=:4^. 

(22) {x—y)-^=24, {x—y)^T=Q. 

(23) a:22/=48, xy^=36. 

(24) \xy=. x‘^-\-y‘^-\-x-\-y^ x’^-\-y'^={x-\-yY—\xy'^ 

Ans. x= i ^Jl4. 

Ans. a: = 10. 

Ans. a:=8. 

Ans. .7:= 19. 
I 

Ans. a:= J::8, 2/=i3. 

Ans. a:z=2t:13, 2/= ^LS. 

Ans. a:=24, or —8, 

2/= 12, or 4. 

Ans. xz=4, y=3. 

(25) 
x^-\-y^ 

■^+yi 
yx'^-^-y^x 

xy ■ xy 

(26) x^-\-y^=a, nf'—y^=zh. 

(27) x5_5^4_|_io.r3_iOa:f-f 5a:—1=32. 

(28) 2^4—1=25. 

(29) ijx- V2/=3, yx-if My^l. 

(30) ar*—y^=369, —3/^=9. 

(31) r5_2/3_56, a:—7/=^. 

(32) a:^7/-}-7/^ = 116, a:7/i-{-2/ = 14. 

(33) V^+ ^2/ = ^’ a:+7/ = 72. 

Ans. 2’=6, y = 8. 

Ans. a:=2, y=2. 

Ans. x=3. 

Ans. 2= it V6* 

Ans. a:=625, y = 16. 

Ans. .r=it5, 7/=it4. 

Ans. .•r=4 or —2, 2/=2 or —4.' 

Ans. x=5 or 2 -y/f, y=4 or 10. 

Ans. a:=64 or 8, y—8 or 64. 

(34) a:|-t2/^ = 20, .rl-t2/^=6. Ans. .r=it8 or it -/S, y = 32 or 1024. 

<"35) a:'‘-t2a:27/2-|-7/4 —1296—4xy{x^-\-xy-{-y^)j x—y = 4. 

Ans. x=5 or —1, y = l or —5. 

181. AVe have seen that an equation of the form ax‘^z=h has hvo roots, or 

that there are two quantities which, when substituted for x in the original 

equTition, will render the two members identical. In like- manner, we shall 

find that every equation which involves x in the third power has three roots ; 

an equation which contains x^ has four roots ; and it is a general proposition 

in the theory of equations that an equation has as many roots as it has di¬ 

mensions. 

182. The above method of solving the equation ax^ — h will give us only 

one of the n roots of the equation if n be an odd number, and two roots if n bo 

an even number. Such a solution must, therefore, be considered imperfect, 

and we must have recourse to dilferent processes to obtain the remaining 

roots. This, however, is a subject which we must postpone for the present. 

SOLUTION OF COMPLETE QUADRATICS, CONTAINING ONE UNKNOWN QUANTITY. 

183. In order to solve the general equation 

ax‘^-\-})X-=.c, 

let us begin by dividing both members by a, the coefficient of ; the equa¬ 

tion then becomes 

h c 

a a 



aCJADRATIC EaUATlONS. 205 

or. 
x’^-\-px-=:zq, 

putting, for the sake of simplicity, 

b 

This form of the quadratic equation may be produced by multiplying to¬ 

gether two simple equations. Suppose 

X—a=0, X—h =0; 

{x—a){x—b)z=0, 

which is satisfied by making x=.a, or x=h. 

Multiplying the two factors (a:—a) and {x—6), the equation becomes 

x"^ — {a-\-b)x-\-ab=0 (1) 
Substituting first a, and then 6, for x, this may be written either 

—{a-\-b)a-\-ab = 0, 

or 
b^—{a-\-b)b-{^ab = 0, 

which are identical. 

Putting in equation (1) above in place of —{a-{-b), and —q in place of 

ah, it assumes the form 
—q = 0. 

But 

By subtraction, 

p'^=a^-\-2ah-\-b‘^ 

—4q= Aab 

p^-\-iq=.a:^ — 2ab-\-b^={a — b)^; 

•. a—6= 

<2-1-6= —p. 

hons, tra 

the coe^i 

By addition and subtraction, a= — Ip+i 

6 = —^ ViP-f 4^. 
As a and 6 are the values of and differ only in the sign of the radical part, 

both may be written together thus : 
x= — 

Hence the following rule for resolving a complete or adfected quadratic 

equation. 

Reduc^^^given equation to the for7n x^-|-px — q=0 by clearing of frac- 

\ng all the terms to the first member^ and dividing throughout by 

' the square of the unknown quantity. The equation being thus 

prepared., tWe'value of the unknown quantity uhll be equal to ^ the coefiicient of 

its first power with the sign changed, the square root of the square of this 

coefficient —4 times the known terms of the equation. 

The expression x=—a/jP^-1-4^ may, by passing the 4. under the 

radical, be written x=—IpdL which, translated into a rule, is 

often the more convenient form. 
< 

EXAMPLES. 

(1) a.3_ya;^2 = 0. 

By the rule, 

11 , , //11\2 11 , , /m 11 , , /49 11 7 

-^X2=6-±2V“9 6 9 - g ±g; 

2 
x=3 or -, 

o 
according as we use the upper or lower sign. 
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(2) 3a:—a:^ =2 ; changing all the signs, 

a:^—3a:=—2, or a;^—3a:-|-2 = 0. 

By the rule, 

a:=-±i'/9—2K4=2 or 1. 

Either of these values of x will satisfy the given equation. First substi- 

tilting 2, we have 

3X2—4=2; 

and substituting 1, we have 

3X1 —1=2. 

(3) a:2+6a:=16. 

By the form, 

a:=—Vi^Pf-hq 

x=—3ii: -v/9+16=2 or —8. 

(4) —10a:=—21 

a:=5± V25 —21 

x=7 or 3. 

(5) acx'^-\-l)cx—adx—hd=^. 

Dividing by ac, 
(h d\ hd 

a:‘^+ I -—-]x= —. 
' \a c/ ac 

by the rule. 

X 
ihd 

ac 

.*. X: or —-. 
c a 

(6) a:2-|-6a:=27. 
(7) a:2 —7.r+3l=0 

, lO.r 
(8) x^+—=19. 

, 5 x^ 
(9) ^=3+15- 

(10) a:2 —6.r-|-8 = 80. 

(11) a:2 —102’4-17 = 1 

(12) a:^—.!:—40 = 170. 

(13) 3.r2_9a: —4=80 

(14) 7.r2—21a:+13 = 293. 
x‘^ 4x 

' 3 += 

2.r^ X 

(16) 
_g 

(17) x-\-A-\--= 13. 

(18) 4w— 

(19) 16- 

X 

36 —u 

u 

5 — 

=46. 

9 — 3/1 

o ■3p. 

(20) 
^+3 Ifi—2i// 

Ans. a:=3, or —9. 

Ans. a:=61, or 

Ans. a:=3, or —6]. 

Ans. a:=10, or 2. 

-4. 

-5. 

* 57 
Ans. 3^=9, or ——. 

5 

9 
Ans. a:=3, or — 

4 

Ans. a:=4, or —2. 

Ans. ^=12, or —|. 

Ans. p=6, or f. 

69 
Ans. V^=5, or 

10 
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□ -1-7 94-4G 
(21) i4+4n— 

7A2 2A 11A4-18 
(22) —-^ 

(23) 

(24) 

(25) 

3 ~ 33 

< + 22 4 9<—6 

3 

<p (^ + 1 13 

?+T+-T-=¥* , 

X 7 

X+60~3X—5' 

, 8?; 20 

48 165 

^, + 3—?;^io 

(28) —8:r=14. 

(29) 3x^-^x=7. 

(30) 6r—30=:3.r2. 

—5. 

Ans. □ =9, or 28. 

Ans. A = 2, or —S. 

Ans. <=2, or A|. 

Ans. ^ = 2, or —3. 

Ans. X=14, or —10. 

Ans. 'y=10, or 

Ans. v=5^, or 5. 

Ans. a:=9.4772+, or —1.4772+. 

Ans. x=1.3699 + , or —1.7032+. 

Ans. a:=l + 3 + — 1. 

2 
3* 

(31) (.a:~ Vl42.334)(.r++142.334)=27.22a:. 

Ans. a:=13.61+ +327.566. 

(32) 23 : (140+a:) = (240+:r): 1041. Ans. a:=—27.4 or —352.6. 

(33) (.r+6): (32:+12) = (3a:—12): (a:—6). 

(34) 2122 — 16172 + 20748 = 0. 

(35) 3.5^2_ii.75^_4i.25=0. 

(36) (3a:+l)(4a:—2) = (13a:+7)(5a:—3). 

+ 54 
Ans. X— + 

'Z 

Ans. 2 = 60.72, or 16.27. 

Ans. ^=5.4, or —2.11. 

1+ +1008 

' 53 * 
Ans. X-. 

(37) 

(38) 

X 
; = 0. 

.r+60 3a:—5 

w-\-^ 7—w Aw-\-7 ^ 

3 ~w—3~ 9 “ 
■1. 

Ib — v 12 —3n 23n+60 
(39) -7:?=r—T-„—r=7P' 

(40) 

Ap—5 

a:+l‘l 9 +4a: 

x^ 
=7. 

2n+9 4fl —3 37 — 16 
(«) +^+7TT-, = 3 + '‘9+3 

2.r — 1 8—a:2 x 

3—a: “^^"^2' 

3 6 11 
(43) 

18 

(44) 

6a:—a:2 ' a:2+2a: 5x' 

4.r2+7.r ^ 5x—a:^ 42:^ 

~9' 19 3 + a: 

a++2.r^+8 
(45) 7^—^-=a:2+a:+8. 
' ' a:2+a: — 6 

QC 
(46) cx——^ = {a-[-l)x^ 

(47) (1 + ax): (1 — hx) = (1 + hx): (1 —ax). 

Ans. .r=14, or —10. 

Ans. z^;=21, or 5. 

Ans. ^ = 3, or 

Ans. a:=3, or — 

Ans. 7=6, or —y*. 

Ans. a:=2, or —y. 

Ans. a:=3, or ff-. 

Ans. a:=3, or — 

Ans. a:=4, or —y. 

Ans. x= 
c+ + —iac 

2{a-\-h) 

Ans. 2’=+ +^2 — 52 

I 
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(48) 2(6—c)y —cf'-\-ay‘^. 

-/2(6—c)± \f a^-\-{2—a){h—cf 
Ans. y = -----. 

^ a 
f 

184. If l)=a in the general form {x—a){x—6)=0, it assumes the partic¬ 

ular form {x—ay^x^—2ax-\-a^ = 0. 

If the two values of x be -|-u and —a, the form {x—a){x-Ya)=.x^ — 0^=0. 

185. Recollecting that the value of the unknown quantity is called the root of 

the equation, it is seen that every equation of the second degree has two roots, 

and, by the general form (1), x^ — (a-|-6).r-{-a6 = 0, that their sum is equal to 

the coefficient of the second term with the contrary sign, and that their prod¬ 

uct is equal to the absolute term or known quantity, when ti'ansposed to the 

first member. Thus, in Example 4, above, the sum of the two roots 3 and 

—9 is —6, and the product —27. The same may be seen in other exam¬ 

ples. 

The general form ax’^-\-bx=c is capable of producing all the particular 

forms by the supposition of particular values for the coefficients. Thus, if 

6=0, it assumes the form of pure equations. If c = 0, it may be written 

x(a2r-|-6) = 0, 

which we perceive may be verified by making a:=0, or ax-\-h-=zO .\x=—-. 
CL 

6 
The roots are, therefore, in this case, 0 and ——. Whenever an equation is 

divisible throughout by the unknown quantity, one of its roots is zero. 

When we know that the two roots of the equation of the second degree are 

real, the above relations make known at once the nature of these roots; for 

example, admitting that those of the equation —2x—7 = 0 are real, we 

conclude immediately that they are of different signs, because their product 

is equal to the absolute term —7, and, moreover, that the greater is positive, 

because their sum is -}-2, the coefficient of a: taken with the contrary sign. 

186. Another mode of solution may be derived as follows : 

If we can, by any transformation, render the first member of^^ equation 

= q the perfect square of a binomial, a simple extraction ^Rhe square 

root will reduce the equation in question to a simple equation. ▼ 

But {x-{-lpy is x--\-px-{-^2^^' ' 

In order, therefore, that the first member may be transformed to a perfect 

square, we must add to it the square of ; that is, the square of half the co¬ 

efficient of the second term, or simple power q/’ x ; it thus becomes 

x^-\-px-\-—, 

p 
which is the square of ^’+2' 

• v" 
But since we have added ^ to the left-hand 

4 

member of the equation, in order that the equality between the two members 

may not be destroyed we must add the same quantity to the right-hand mem¬ 

ber also ; the equation thus transformed wiU be 

p’i P'2 
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or 

Extracting the root, 

Transposing, 

the same form for the value of x as we obtained by tlie first method. 

We affix the sign i to because the square both of ~t V? 
\ 

and also of —every quadratic equation must, 

therefore, have two roots. 

From what has just been said, we deduce the following general 

RULE FOR THE SOLUTION OF A COMPLETE QUADRATIC EQUATION. 

1. Transpose all the known quantities, when necessary, to one side of the 

equation, arrange all the terms involving the unknown quantity on the other 

•tide, and reduce the equation to the form ax^-|-bx=c. 

2. Divide each side of the equation hy the coefficient of x^. 

3. Add to each side of the equation the square of half the coefficient of the 

nmple power of x.' 

That member of the equation which involves the unknown quantity will 

thus be rendered a perfect square, and, extracting the root on both sides, the 

equation will be reduced to one of the first degree, which may be solved in 

the usual manner. 

EXAMPLE I. 

12.r—210=205 — 3x2 -j- 5. 

Transposing ^d reducing, 

Jf 3x2-f 12r=420. 

Dividing by the coefficient of x-, 

.r2-|-4x=]40. 

Completing the square by adding to each side the square of half the coefficient 

of the second term, 

a-2-|-4x4-4=:140-|-4, 

or 

Extracting the root, 

(x+2)2=144. 

x+2==t VTii 
= ±12 

.*. x= —2±12. 

Hence 

Cx=—24-12 = 10 

^x=—2 — 12=—14. 

Either of these two numbers, when substituted for x in the original equation, 

will render the two members identical. 

O 

I 
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EXAMPLE II. 

2x‘^-{-3i = 20x-\-2. 

Transposing and reducing, 
2x'^—20x=—32. 

Dividing by 2, —10x= —16. 

Completing the square, 
X^—10.r+25=25 —16, 

(a: — 5)^ = 9. 

X — 5= i V^* 
2:=5 3. 

or 
Extracting the root, 

Hence 

Dividing by'3, 

Completing the square 

.r=5 + 3=8 

x=5—3=2. 

EXAMPLE III. 

3a:^ — 2.r=65. 
2 65 

3 3 

or 

3 ^ \3/ 3 ^ \3/ 

3/ ~ 9 ■ 

. x-i-± 
3 

= ± — ^ 3 

1 14 

Hence 
^ 1 + 14 ^ 

a:=—::— = 5 
■ 3 

1 — 14 
x-=- 

1 

3 ^“^3* 

Transposing, 

EXAMPLE IV. 

x’^-\-x—2=0. 

x'^-^-x =2. 
The coefficient of x in this case is 1; in order to complete the square, 

(ly 1 
add to each side U j , or -. must 
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EXAJMPLE V. 

6.r —30 = 32’A 

Transposing, —= 

Changing the sign on both sides, 

3,r2 — Qx= — 30. 

Dividing by 3, —2.r= —10. 

Completing the square, x'^—2a:-|-1 = 1—10» 

or 

(.r-l)2=_9._ 

X—l = zt V —9* 

Hence 

c a:=14- 

( x=l — \/ —9’ 

In the above example, the values of x contain imaginary quantities, atd the 

roots of the equation are, therefore, said to be impossible. 

EXAMPLE VI. 

-.X .3 _ a:-|-- = 8 — -X—x‘^ 
273 

Q- 2“ ‘ 4 3"' ' 12* 

Clearing of fractions, 

10x2 —6a:-f-9 = 96 —8.r—12a:2+273. 

Transposing and reducing, 

22x2+2x=360. 

Dividing both members by 22, 

2 360 

^'+22'^='22 

Adding (i) to both members, 

X 
^22 ^ \22/ ~ 22 ^ \22/ 

Extracting the root. 

Hence 

^+22-^' 

'360 

22 

_ ^7921 

V (22)2 

4- 

89 

89 

22"^ 22“^ 

1 89_ 45 

22 22 11 

ax .2 

EXAMPLE VII 

ac 

a-\-b 

(a+5)a:2_cx=^^. 

= CX — &x2. 

ac 
Transposing, 
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c ac 
))ividing by a-\-h^ ———r • xz=- 

Completing the square, 

a-\-h ' (a-j-6)2’ 

a 

c ac 

* •^+4(a4-6f“(^'+&y+4(a_j_6^2’ 

or 

X- 
c c^-j-4ac 

2(a-l-6) ) 4{a-\-by‘ 

Extracting the root, 

X— 

c , ^/c^-\-4:ac 

2(a + 6)“^ 2(a+^' 

x=- 

Tlie two values of x here are 

c.dr ^/c^-\-^ac 

2{a-\-b) 

c4-■\/c^4-4uc c—Vc^ + 4«c 

X =--, Xz=: 
2{a-\-b) ’ 2{a-\-b) 

^2_|_^2—26a:-j-.r2—- 

EXAMPLE VIII. 

m^x^ 

Transposing, —2bri?x— — 

Dividing by the coefficient of 

2bn^x  

x-‘ ;= —. 
72,2 — fj-fji- Ji%—Y)V^ 

Completing the square, 

^ 2bn‘^x ^ ^ bn^ ^ bn^ n^{a^-\-b^) 
72,2-7/2,2"^ \72,2-772,2/ \^2-^2/ ^2-^2 ’ 

or 

X- 
bn^ (2 

72,2 — 772,2 ^ 

b^'n? 

—w? ( n?—m2 
(a2^52) 

Extracting the root. 

br^ 

'{n^—m2)2 

n 

m2(a^-j-&2)—772^2 

= ± “i——2 V W2(a2^ fe2) _^2^2 
—m2 7^2—m2 

n 
x=- 

The two values of x are 

—m^ 

n 

bn^ 

72,^—7/2 

n 

—yj2_^2 ^ Vm2(a2-}-62)_y^2^2 

(9) ar24-4.T = 21. 

(10) a:2_9x+41 = 0. 

(11) 622a:—15a:2=i 6384. 

(12) 8.r2_7.r+34=0. 

Ans. a:=:3, .7:=—7. 

Ans. a:=8^, a:=^ 

Ans. a:=22|, .7:=:18 

Ans. X 
_7+7-1039 ^_^y-1039 

16 16 

I 

M
|to
 

20
 I 
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(13) 3:i:2-fa:=ll. 

(14) ^_4— 
O 

Ans. X-. 
-14- ^/l33 

6 ’ 

x=- 
■1— a/133 

6 

—=45—3j^-\-ix. 

Ans. x=7. 12. 

62’2—40 3.'c—10 
(15) 32*---7- —t;—:7t-=2. 
' ' 22: — 1 9 — 22: 

27 
:0. 90 90 

'^~2:+1‘“2:+2' 

, , 3cP‘X 6a^4-a6—26^ h^x 
(17) dbx'^-\--=---—. Ans. 2:= 

X— —5. 73. 

. 23 
Ans. 2:=—, 2:=4. 

Ans. 2:=4, x=.—-. 
O 

2a—6 

ac 

3a+25 

Vc ‘ 

a/ V 
(18) mx"^—2mx\/n=:nx^—mn. Ans. 2’=—^—;—7—, 2=—-7—. 

' s/m—y/n 

(19) Aa^x^-}- AaP’C^x-j- Aahd^x—9cd^x^-\-{ac‘^-^bd^Y=0. 

Ans. 2= 
ac^-\-hd^ 

2a-|-36^ ^/ c 
, 2=. 

ac^-\-hd^ 

2a—3d c 

5a4-10a52 (b^/a-\-h {\-\-2li^)cdc\ cd ,- 

(3_a2)A/«+& 3¥cd^/c 
Ans. 2=-—, 2=---. 

ab{l-\-2h^) ba 

187. The above rule will enable us to solve, not only quadratic equations, 

but all equations which can be reduced to the form 

that is, all equations which contain only two powers of the unknown quantity, 

and in which one of these powers is double of the other. 

For if, in the above equation, we assume y=2", then y^=:x^^j and it be¬ 

comes 

y‘'+py=q- 
Solving this according to the rule. 

Putting for y its value. 

y'- 

.2"= 

^/p^-\-Aq 

—prh -^p^-^-Aq 

2 
Extracting the nth root on both sides, 

■m 

EXAMPLE I. 

2^—2bx^— —144. 

Assume 2^=y, the above becomes 

2/^—2by= —144. 

Whence 2/=16, y=9. 

But since 2^=2/ .*. 2= dL a/^/ > 

2= dL a/ 16, 2= i a/9* 

Thus the four values of 2 are -\-A, —4, -\-3, —3. 
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EXAMPLE II. 

Assume x’^=y, ' y'^ — '^y = ^’ 

Whence 2/ = ®’ V——^ 
And since x^=y x=z i V 2/- 

Whence the foui* roots of the equation are db VS, i —Ij the last two 

of which are impossible roots. 

EXAMPLE III. 

Let ofi—2r‘^=48. 

Assume the above becomes 

2/^—22/=48. 

Whence y=^^ oi’ —6. 

But since 7?=y .*. x= y y. 

Hence two of the roots of the above equation are + and — ^6; the 

remaining four roots can not be determined by this process. 

EXAMPLE IV. 

Let 23:—7 V^=99, 

or 2a:—7a:~99. 

This equation manifestly belongs to this class, for the exponent of £ in the 

first term is 1, and in the second term half as great, or 

In this case assume yx=y^ the equation becomes 

2y^—7y = 99. 

Whence 

But since 

11 

x=y^ 

121 
.’. a:=81, x=——. 

2/=9> 

yx=y , 

To account for the two values of x in this equation, it must be observed that 

one belongs to y x, the other to — y x. 

This will appear clearly in the following example. 

EXAMPLE V. 

ax=h-{- ycx.(1) 

Solving this equation in the same manner as the preceding, we shall find 

Xi 
‘2db-\-c-\-y4:ahc-\-c‘^ 2ah-\-c—yAahc-\-c'^ 

- X—- 
2(2'^ ’ 20? 

If we substitute these two values of x in the original equation, we shall find 

that the first only will verify it; the second belongs to the equation 

ax=b— y cx.(2) 

These two equations, multiplied together, produce the complete quadratic 

equation ’ 

a'^x^—(2«& + c).T-f-&^=0, 
whose roots are the two values of .r given above. 

The explication of this matter is, that yx is always supposed to have the 

double sign dt, and therefore the general form expressed by equation (1) in¬ 

volves covertly that expressed by equation (2). It is necessary, therefore, in 
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examples of this kind, to tiy the answers obtained, by substituting them, in 

order to see which belongs to the given form. 

188. Many other equations of degrees higher than the second may be solved 

by completing the square; although, it must be remarked, we can seldom ob¬ 

tain all the roots in this manner. The transformations to which we subject 

equations of this nature, in order that the rule may become applicable, depend 

upon various algebraic artifices, for which no general rule can be given. The 

following examples will serve to give the student some idea of the course he 

must pursue ; a little practice will soon render him dextrous in the employ 

ment of such devices. 

EXAMPLE VI. 

Let yx-\-l2 = Q 
Assume .T-|-12=y, the equation then becomes 

-\ry^=^1 

which evidently belongs to the same class as the previous examples; completing 

the square, we shall have 
i 

2/'‘=2, or —3. 

R aising both sides of the equation to the power of 4, 

y = 16, or 81 

X, or y —12= 4, or 69. 

EXAMPLE VII. 

Let 2x^-{-y2x^-yi = ll. 
Add 1 to each member of the equation, it becomes 

0.^3^ 1_|_ V 22-2-f 1=12. 

Assume 2x^-\-l=y, then 

Completing the square, and solving, we find 

2/“, or -\/222-j-l = 3, and —4 

2.r2-[-l=9, and 16 

r^=4, and 
. 9 

Hence 
lid ITE 

+ —2, —V~^' 

It may be remarked, that it is in general unnecessary to substitute y, which 

has been done in the above examples for the sake of perspicuity alone. 

Let 

Transposing 

EXAMPLE VIII. 

( 8\2 8 

(r+®)+(-+®)=42. 

8 
Considering quantity, and completing tlie square, 

169 
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8 1 13 

= 6, and —7. 

Hence we have the two equations 

—6.r= —8 

x'^-\-7x— —8. 

Solving the first in the usual manner, we find 

a:=4, and 2, 

and by the second, we have 

X: 
_7^ y'17 _7_ ^17 

—, and — 
2 ’ 2 ’ 

which are the four roots of the proposed equation. If we had reduced this 

equation' by performing the operations indicated, instead of employing the 

above artifice, it would have become 

x*-\-x^—26x^ 4" 8a:-j- 64 = 0, 

a complete equation of the fourth degree. 

The roots of equations of the fourth degi’ee, reducible to the second as above, 

present themselves ordinarily under the form \/a4i V b, and frequently af 

ford an application of the process exhibited at (Art. 104). 

(9) x^-\-4:X^=12. Ans. a:=4i -^2, or i V —6. 

(10) x^—8a:^—513=0. Ans. x=3, or — ^19. 

(11) ar*—13a:2 + 36 = 0. Ans. a:= ±2, a:= ±3. 

(12) (a:*^—2)2=-(a:24-12). Ans. a:= 4:2, a:= 4:^- 

(13) (a:2 — l)(a:2 — 2)4-(-'r® — 3)(a:2 — 4)=a:^4'^* Ans. a:=4zl» a:=4:3. 

^ ^m4: 
(14) a:2"—mx^z=zp. Ans. )“• 

(16) 
^/ 4.r4-2 4— ^/ X 

- • - ***• 

4 4" "y/ X ■\/ X 
Ans. a:=4.* 

(16) 
^ Va^x-\- h a — -y/x 

CL —|— X yj X 

(17) 2 a:=0. 

(18) 'y/X^-\- y/3^ — 6 y/X. 

, a: , y/X 
(19) -=22’-4-^. 

2 

3yf X 

20 

(21) a:^4“^^='^^^* 

(22) a:^—a:2=56. 

1 
^. = 0. 

Ans. r-(-h±V4a^+ia^+by 

\ 2(a-|-l) / ■ 

Ans. a:=4. 

Ans. a:=2. 

Ans. a:=49. 

Ans. xz=25. 

,5 

Ans. a:=243, or ( — 28)^. 
2 

Ans. a:=4, or (— 7)^. 

64 
^ In this and some of the following examples another value, is also found, hut it 

will not satisfy the equation, and is, therefore, to be rejected. [See Ex. 5, p. 214.] 
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(23) 3.T='-f-.'C^=:3104. 

(24) ax‘^■\-hx‘^ = c. 

4 c~3 
(25) '3a:3—— =—592. 

^ 2 

Ans. .t=64, or ^. 

Ans. xz 
( 

it ^h^-\-Aac — h 

2a r- 

( 74\ ^ 
Ans. a:=8, or ^_—j . 

(26) X" — 2ax^^=h. 

(27) 
2.^2 

(28) -= 

5i/a;—a: 3—i/a; 

X . X 

[5l/x—x) (3—i/x) 

b 

Ans. x=(aiii i/a^-^-hy. 

Ans, a;=3. 

l/x-\-i/'’a—X i/ X—i/a—X i/x 

. . x-\-i/x^—9 
(29) —(a;—2)2. 

X—i/ a;2—9 

(30) a)—5—i/a)--|—5—|— 

(31) a;+16—7-v/a;+16=10—4-/a;+16. 

(32) -i/^+12-|-^a;+12=6. 

(33) a:2—2a:+6-/a;2—2a:+5=:ll. 

(34) 2x^-\-3x—5i/2x^-\-3x-\-9-{-3=0. 

(35) [(a;—2)2—a:]2—(a;—2)2=88—(a;—2). 

(36) (a:-}-6)2-{-2a;^(a;+6)=138-{-a;^. 

(37) ^•-1=2+^. 

(38) X‘^—2x^-\-x=132. 

(39) 9a;+-/l6a;2-j-36a;"=15.'c2—4. 

12+8.r^ 
(40) x=- 

X—5 

, , 49.r2 ,48 ,6 

(«) —+;^-«=2+j 

, , x^ , llx^ 
(42) -77+-^- 

, \ / , ( a.^\h a;2 

(44) x^—(2Z»c-|-4«2)a;2-j-&2c2—0. 

(45) a)2—x-\-?)i/2x^—5a:-j-6=—i—. 

(46) 
x-\-i/x-—a2 X 

X—i/a^—a2 a 

Ans. xz 
b-^l/U^—2ab 

Ans. x=5, or 3, or 
Sj-i/—11 

Ans. x=:A. 

Ans. 07=9. 

Ans. a:=:4. 

Ans. a;=l, or 1 j-2y'l5. 

, 9 
Ans. .r=3, or-. 

2 

Ans. x=iQ, or —1, or 
5_j_3-/—3 
" ■ " • 

2 

Ans. a;=4. 

Ans. a:=4. 

Ans. a7=4, or —3, or 
l=tl/-43 

. 4 1 94-r/481 
Ans. x=-, or-, or x=~=-. 

3 3 50 

Ans. a;=9, or 
~3^i/-7 

A ^ 8 —3J--/93 
Ans. a:=2, or-, or---. 

7 7 

Ans. x=-\-^t or —8, or —-. 

Ans. xz = zt^/—TT—• 

Ans. a;=^”\^ bc-l-2a^-^2ai/bc-j-a!^. 

Ans. a7=- - --, and 07=3, and —-. 
4 2 

a. 
Ans. a:=-(i-v/—7—3). 

Note.—In some of tlie above ^xamples we have given answers which will not satisfy 

the equation unless the double sign he understood before the radical. In some cases this 

sign is understood, in other’s not; but whether it is or not will always be known from the 

problem from which the equation is derived. 
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ON THE SOLUTION OF aUADRATIC EGUATIONS CONTAINING TWO 
UNKNOWN aUANTITIES. 

189. An equation containing two unknown quantities is said to be of the 

second degree when it involves terms in which the sum of the exponents of the 

unknown quantities is equal to 2, hut never exceeds 2. Thus, 

3a:2——xy—5?/-|-6 = 0, Ixy—4.r-j-2/=b, 

are equations of the second degree. 

It follows from this that every equation of’the second degi’ee containing 

two unknown quantities is of the form 

-j- -\-cx^-\-dy-\-ex-\-f=Q, 

where a, h, c,.represent known quantities, either numerical or alge¬ 

braical; i. e., the equation contains the second power of each of the unknown 

quantities, the first power of each, and the product of the two. Not that 

every equation of the second degree contains all these, but when any one of 

them is w’^anting the coefficient of that term, in the general form, is said to be 

zero. 

Let it be required to determine the values of x and y, which satisfy the 

equations. 

a y’^-^-h xy-\-c x'^-{-d y-{-e x-]-f =0.(1) ) 

a'y‘^-^h'xy-\-c'x‘^-{-d'y-{-e'x-\-f' = 0.{~)\ 

Arranging these two equations according to the powers of y, they become 

a y^-\-{h x-\-d )3/+(^ x'^-^-ex-^-f )=0.) 

a^y'^y{h'x-\-d')y-\rlc'x’^-\-e'x-^f') = Q.5 
Put hx-\-d =h ; c x'^e x-\-f =k 

h'x-\-d'=h'; c'x'^-\-e'x-ff'zz=k'. 

a y^-\-hy-\-k =0.(3) 

a'y'^-\-h'y-\-k' = 0.(4) 

Multiply (3) and (4) by a' and a respectively, and also by k' and k; then 

' aa'y^-{-a'hy-\-a'k=0.(5) 

aa'y^-^ah'y-\-ak'= 0.(6) 

ak'y'^-\-hk'y-\-kk' = 0.(7) 

a'ky‘^-{-h'ky-{-kk' = 0.(8) 

Subtracting (6) from (5), and also (7) from (8), we have 

{a'h—ah')y-\-a'.k—ak' = 0.(9) 

{a'k—ak')y-\-h'k—hk' = 0.(10) 

Multiplying (9) by h'k—hk', and (10) by a'k—ak', we have 

{a'h—ah'){h'k—hk')y-\-{a'k—ak'){h'k—hk') = Q . . (11) 

{a'k—ak'fy-\-{a'k—ak'){h'k—hk') = 0 . . (12) 

.-. {a'h—ah'){h'k—hk') = {a'k — ak'Y.(13) 

Substituting the values of h', k, k' in equation (13), we have 

I (a;b—ah')x-pa'd—ad’\ . ) (&'c—•&c>3+(&'e—Je'—c'c^+cd')x2+(&y—rftOiH-iZ'/—rf/'( 

— I (jx c—(i^X'pdy-—oy* (^ 
Hence, by multiplying and expanding, the final equation in x is of the fourth 

degree, which will, in general, be the degree of the equation obtained by 

eliminating between the two equations of the second degree; but the general 

form includes a variety of equations, according to the values of the coefficients 

«, i, c, &c.; when d, c,/, d', e',f' are each =0, the solution may be obtain¬ 

ed by quadratics, the resulting equation in x being 

\{a'h—ah')x-\-a'd—ad'\ . \{h'c — hc')x—{c'd—cd')]={a'c—ac'y^x^. 



aUADilATIC EaUATIONS. 219 

Although the principles already established will not enable us to solve equa¬ 

tions of this description generally, yet there are many particular cases in 

which they may be reduced either to pure or adfected quadratics, and the 

roots determined in the ordinary manner. 

EXAMPLE I. 

Required the values of x and y, which satisfy the equations, 

5 ^'+y=p. .(1) 

• • • • • • • • • • II .(2) 
Squaring (1), x'^~\-2xy-Py’^z=.]j‘^. .(3) 
Multiply (2) by 4, • % • • • • • • • II . .... (4) 

Subtract (4) from (3), x'^—2xy -J- =p^—4 

or • 1 II 
C9 1 

Extract the root,. X—y==L pp^ — Aq^ .... .(5) 
x-{-y—p. 

2x=p:^ ^—Aq^. 

But by (1), 

Add (1) to (5), 

Subtract (5) from (1), 2y—p^ pp^ — Aq^. 

Hence the corresponding values of x and y will be 

x-\-yz=a, 

2x = a:P: p‘2b^— 

But by (1), __ 

*. adding and subtracting 

27/=a=p p2b^— 

Hence the corresponding values of x and y will be 

a-p p2¥—a'^^ 
X: 

y- 

a— p2b'^— 

a— p 2b^ — . _ 
and 

y= 
p2¥— I 

p-A- pp^ — 4u2 ' P- 
PP‘2-4^3 ' 

X — o x=- o 
> and * 

p- " PiP"— p-\- pp^—4^^ 
y— 2 J y— 2 J 

EXAMPLE II. 

ix-\-y =«. ..— (1) 

^ .T^-|-y^=:6^ .... .(2) 
Square (1), x'^-\-2xy-\-y- = a^. 

But by (2), X2 _|_y2_52. 

Subtracting, • 2xy = a!^ — b^ . . .(3) 
Subtract (3) from (2), x'^—2xy 4- = 2 6^— 

or {x—yP = 2b^ — a^. ' 

Extracting the root. X — P'2¥- 

Cube (1), 

But by (2), 

Subtracting, 

or 

EXAMPLE III. 

^ X -\-y =m ... 

c x^-\-y^=n^ . . . 

x^ -f- Sx’^y 3.ry 2 -\-y^z= m^. 

x^ 

2x'p-p 3xy'^=m^—n^, 
3xy{x-Py)z= 7n^—n^. 
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Substitute for {x-\-y) its value aerived from (1), 

‘ixy . —'h? 

n?—'n? 

••• ^y=-^ 

4(m^—n^) 

Squaring (1), 

But by (3) 

Subtracting, 

or 

But by (1), 

4xy=. 
3m 

x^ 2xy -j- 

4(m^—n^) 

= 3“- 

— 2xy-\-y'^=m?’ 
4(m^—n^) 

3m 

{x—7jY=- 
Aii?—m^ 

3m 

X—y =::iz^J 

x-\-y =m 

472,3-^3 

3m 

I 

/ 
2y=m=p^ 

Arv^ — m^ 

3 m 

An^—ni^ 

3 m 

Hence the two corresponding values of x and y are 

m jAn^—771^ 

2~^\ 12/71 
X 

m 
y- 

IAtv^ — m^ 

V 12m 

and 

m / 

~~2~\' 

m I 
?/=2 + V 

472,3- 

12m 

Ati^—m^ 

12m 

(3) 

3 3 
A„A 

EXAMPLE IV. 

3 
o 

x^-\-x*y'^-\-y^=a 
3 3 

(1) 

x^-{-x-y^-{-y^ =h .(2) 

Square (1), cfi-\-x~y^-{-y^-\-2x~ . x^y* -\-2x‘^y^-\-2y^ .x'^y*=a^. 
3 3 

But by (2), x^-\-x^y--\-y^ = &.. 

Subtracting, 

or 

3 3 3 3 3 3 3 3 

2x- . x^y^-\-2x^y--{-2y-x^y* —6, 
3 3^ 33 3 

2x^y*{x^-{-x'^y'^ -\-y^)=a'^ — h 

But by (1), 

And by (3), 

Adding, 

or 

3 3 
2x^y^ . a 

3 3 

x‘^y‘^ 

— o?—h 
_— h 

2a 
3 3 

Aoi* x^-^-x'^y* -{-y-—a. 
3 3 

x‘^y‘^ 
cC^ 

2a 
2. 3 3 3 „3_7, 

a:2 + 2.'rV+2/“=«H- 
2a 

^ ’ 2a 

••• a-*+2/' = 
3aP‘ — h 

2a 

(3) 

(4) 
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Again, from (1), 

And from (3), 

Subtracting, 

or 

But by (4), 

3(a2—&) 3 3 
o/T 

2<z 
3 3 3 1 _h\ 

x^ — 2x^y^-\-y^-=a—^ ’ 
2(2 

(3 3\3 

x^—y^) = 
3\3 3&_a2 

3 3 

—y'^ 

x^-]-y^ 

adding and subtracting, x 

2a 

, hh—a 

'3a2_6 

\i~2ir 

_ ha^—b Isb—a^ 

V ~2~^ V ' 2^2 

(5) 

y 
jSa^—b bb—a^ 

2a 

Hence the corresponding values of x and y are 

x=. 
^^a^ — b-{- ■\/^b—a^ > f f ± ^/3a^ — b— ^3b — a^ ) 

X— 5-—- J. 
I -y/Sa S 

y 

V 8a 

^^a^—b— ^/3b^^ } I 

V 8(2 

and 

y= 
J- ^3a^—b-\- ■\/3b—a^ 

V 8a 

The following require the completion of the square : 

EXAMPLE V. 

5 x-\-y-\-x^-^y‘^=a.(1) > 

^ X—y-\-x^—y^=^.(2) 3 
Add (1) and (2), 2x^-\-2x=a-\-b.(3) 

Subtract (2) from (1), 2y^-\-2y — a—b  .(4) 

Equations (3) and (4) are common adfected quadratics; solving these in the 

usual manner, we find 

—Vl + 2a + 26 ' 

—ijr "v/1 “j~2a^—26 

EXAMPLE VI. 

ix-\-y= 6. 

lx*-{-y^=272 . 

Raise (1) to the 4th power. ' 

x^ ix^y Sx'^y^ 4:Xy^ =1296. 

But from (2), x* -|-y*= 272. 

Subtracting 4o[^y-\-6x'^y^ixy^ =1024, 

or 2a:?/(2.r^+3a:y-t-2y'^) = 1024 . 

But by (1), 2xy{2x^-\-4xy-\-2y") = 14ixy . . . . 

Subtracting (3) from (4), 2x~y^=144xy —1024. 

(3) 
(4) 
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Transposing and dividing by 2, 

— 7’ 2xy = — 512. 

Completing the square, —72.ry-|-1296 = 1296—512, 

or (a:y —36)-^= 784. 

First, let us suppose xy = Q. 

By (1), 
And 

Subtracting, 

But 

adding and subtracting, 

.-.xy — m =± v/784 

xy =36d:;28 

=64, and 8. 

-j-2.ry-j-3/^ = ^ ^ 5 
Axy =32. 

a:2_2.ry + /= 4 

•. X—y = i2, 

.r+y =6. 

.^=4 
y = 2 

and 
.t=2 
y = 4 

Secondly, let us take the other value of .ry, or 64. 

By (1), a:^-j-2.ry-|-3/^= 36, 
4.ry = 256. 

Subtracting, x‘^ — 2.ry -j- y^ = — 220, 

But 

.*. adding and subtracting. 

.-. X—y =dr V—220, 

a:+y =6. 

6-f V—220 6^ V —220 ' 
x= 

2 > and 
6— 7—220 

y o y y— 
64- 220 

2 

Hence, in the above equations, two of the roots of x and y are possible, and 

two impossible. 

(7)* 2x 4-3y = 118 

5.r2_7y2=4333 

Ans. 
x=35 

y=16 
and 

(8) 8.r4-23y = 2.^3-f2y^ 

34y4- 6x^—5y^=13.ry-{-24 . 

• (1)? 

• (2)S 
^__ooq_6_ 

y= 192^L 

....'. (1) 

.(2) 

Ans. 
.r=3 

y = 2 

— 181 ' 554= 71114 

133 26 

34 — 9i37lll4 
^ 133 J y— 26 

(9) (a:_y)(x3—y2)=a 
(1) 

(2:4-y)(a:2+y2) = 6.(2) 

Ans. x= 
«dr \/« ■\/26 — 

2 V26. 
y 

■a 2%/2b~a 

^ The following examples, though a valuable exercise, ai-e likely to detain the student 

long, and may, if ziecessaiy, be omitted. 
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(10) xyz 

x-^y 

xyz 

—a 

xyz 

x-\-z' 

(1) 

(2) 

(3) 

Ans. x=±^ 
2abc{ab-\-bc—ac) 

1^11) X -\-y =«, 

x^-{-y^=b. 

(12) 4x7/= 96—x^T/^ 

X+7/ =6. 

(13) x"-j-7/''=2a", 

xy=c^. 

(14) x2-j-x-f-2/ = 18—y^, 

XT/= 6. 

(15) —Sy 

xy—y'^—Q. 

(16) x2-|-^2—X—y=78, 

+x-\-y=39. 

(17) x^y^—7xy^—9i5=.765, 

xy—y=12. 

(18) x—^-\/xy-\-y—\/x-\-\/y=.9, 

■y/x■^^/y=^^. 

, . a;2 ^x 85 

X— y =2. 

xy—{x-\-y)—54. 

(21) ar't—2.x2;y-|-2/2—49 

y 

Ans. x=- 

{ab-{-ac — bc){bc-\-ac — ab)' 

I 2abc{bc-\-ac — ab) 

'\J{ab-\-ac—bc){ab-\-bc—ac)’ 

2abc{ab-\-ac—be) 

{ab-\-bc — ac){bc-\-ac — ab)’ 

a Ub — a Ub — 

~2^\ 12a ’ ^~2^ V 12a * 

Ans. x=4, or 2, or 3i V^l, 

b 

Ans. 

t/ = 2, or 4, or 3=p -y/21. 

5, h//7211_/.Sll 'rt —c^ 

c3 
y=-=- 

^ (a"rt —c2")“‘ 

Ans. x=3, or 2, or —3=t \/3, 

t/=2, or 3, or —3^ 'v/3. 

Ans. x=—9^\/5, y——34-1/5, 
also, a:=6, or 9, y=4, or i. 

Ans. x=9, or 3, or 
-134--/—39 

Ans. x=- 

y—9, or 9, or 

-19 

—134=-/—39 

; also, x-—'o, or 
17=f6/—2 ^ 

y——64:-■/—2; also, 3'=3, or —15. 

25 
Ans. x=9, or 

4 
C)K 

y=A, or 

Ans. x=o, or 

y=2, or 

17 

To' 
—3 

U’ 

Alls. x=6, 

y=l2. 

Ans. x= 4.3, or 4r'l/6, or 4:; 
47 

or or ±7=^’^, 

a;4_Op0y2_|_2/4—a724_2/2=20. 
l4-l/—47 I4-3-/5 

2^=2, or —1, or --, or---, 

or 14:1/—11 
2 
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(22) xy-\-xy'^=\% 

x-\-xy^—lQ. 

(23) X—x^=5—y, 

\—x —y—y^. 

(24) {x^-\-l)y=x y 

{x'^-\-l)y=x'^y'^—7 44. 

\ 

(25) X -\-y +-v/a:4-y=12, 

a:3_j_yi—189. 

(26) ^=132, 

{x'^-\-y'^){x!—2/)=1220. 

(27) x^^—^y-i, 

8a;^—y^=14. 

(28) x^-\-y^=2x (see note, page 217), 
i I i x’^-\-y'^=.x. 

(29) x-^-x^^—-7- 
x^ 

y-\-xy—y^-\-^y. 

1-4. 

(30) 2x-\-y=2Q—1^2x-\-y-\-A, 

^x-\-\/ y_^16_^2a:—-y/ y 

^x—^/y 15 2ar-{-i/3^ 

X 
(31) -Si/a;^—%xy"=-'dy—IQxy, 

5x=4-{-25y^, 

(32) l&x—y^-=Qy^x^, 
x^ 12 X 

(33) 5'\/x-\-5-\/y-\-'\/y=-10—\/x, 

, 275. 

Alls. a-’=2, or 16, 

1: 
3'=2, or 

Aus. a;=4, or 
4 

y=l, or -. 

1 —97J-V/6045 
Alls. x=o, or or — 

5 

y—^, or 150, or 

58 

1682 

97^V6045 

Ans. x=5, or 4, 

y=:4, or 5. 

Ans. »=11, or —1, or 61 j-i/—3716, 

37=1, or—^11, or 61^-/—3716. 

Ans. a;=14l^, or 8, 

3^=98or 4. 

Ans. a:=4, or 1, 

y—%. 

Ans. x—4, or 1, 

y—\ or —2. 

Ans. x=2, or —10, 

^=1, or 25. 

Aus. ir=l, 

y=^l' 

Ans. x=4, or 16, 

y=256, or 25^^. 

Ans. x=9, or 4. 

y=4:, or 9. 

PROBLEMS PRODUCING PURE EGUATIONS. 

(1) What two numbers are those whose sum is to the greater as 10 to 7, 

and whose sum, multiplied by the less, produces 270 ? 

Ans. rt21 and iO 

(2) There are two numbers in the proportion of 4 to 5, and the difierence 

of whose squares is 81. What are the numbers ? 

Ans. :^12 and rLl5. 

(3) A detachment from an army was marching in regular column, with 5 ■ 
men more in depth than in front; but upon the enemy coming in sight, the 

front was increased by 845 men, and by this movement the detachment was 

drawn up in five lines. Required the number of men ? 

Ans. 4550. 

(4) Two workmen, A and B, were engaged to work for a certain number 

of days at difierent rates. At the end of the time, A, who had been idle 4 of 



aUADRATlC EaUATIONS. 225 

those days, had 75 shillings to receive; but B, who had been idle 7 of those 

days, received only 48 shillings. Now, had B been idle only 4 days and A 7, 

they would have received exactly alike. For how many days were they en¬ 

gaged, how many did each work, and what had each per day? 

Ans. A worked 15 and B 12 days. 

A received 5 and B 4 shillings per day. 

(5) A vintner draws a certain quantity of wine out of a full vessel that holds 

256 gallons, and then filling the vessel with water, draws off the same quantitj^ 

of liquid as before, and so on for four draughts, when there were only 81 

gallons of pure wine left. Flow much wine did he draw each time ? 

Ans. 64, 48, 36, and 27 gallons. 

PROBLEMS WHICH PRODUCE ADEECTED OR COMPLETE aUADRATIC 
EaUATIONS. 

PROBLEM 1. 

190. To find a number such that twice its square, augmented by three 

times the number, is equal to 65. 

Let :r be the number required, we have for the equation of the problem, 

2x^-{-3x=65.' 

3 /65 9^ 3 23 
Solving the equation, "“4^ VT"^T6~ 

13 
Hence x=5; x=——. 

The first of these two values satisfies the conditions of the problem, as stated 

in the enunciation ; for, in fact, 

2(5)2+3x5=2x25+15 

= 65. 

In order to interpret the meaning of the second value, let us observe, that 

if w^e substitute —x for +.r in the equation 2x^-\-3x=65, the coefficient of 3x 

alone will change its sign, for (—a:)2 = (+.'r)2=x2. Hence the value of x will 

no longer be 

but will become 

OO 

X: 

X— 
3 . 23 

+i±T- 
13 

Hence x=—; .t=—5, 

where the values of x differ from those already found in sign alone. 

13 
Hence we may conclude that the negative solution ——, considered with- 

out reference to its sign, is the solution of the following problem : 

To find a number such that twice its square, diminished by three times the 

number, is equal to 65. 

In fact, we have 

13\2 13 169 39 
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PROBLEM 2. 

A tailor bought a certain number of yards of cloth for 12 pounds. If he had 

paid the same Sum for 3 yards less of the same cloth, then the cloth would 

have cost 4 shillings a yard more. Required the number of yards purchased. 

Let X be the number of yards purchased. 

240 
Then-is the price of one yard, expressed in shillings. 

X 

If he had paid the same sum for 3 yards less, in that case the price of each 

240 
would be represented by 

X- 

But by the conditions of the problem, this last price is greater than the 

former by 4 shillings; hence the equation of the problem will be 

240 240 
•4, 

or 

X — 3 X 

x^ — 3.r=180. 

Whence 
3 . /9 3 , 27 

.'. x=15 ; x= —12. 

The value of:r=15 satisfies the conditions of the problem, for 

240 
= 16; 

240 = 20, 
15 ’12 

the price of each yard in the first case being 16 shillings, and in the last case 

20, which exceeds the former by 4 shillings. 

With regard to the second solution, we can form a new enunciation to which 

it will correspond. Resuming the original equation, and changing x into —a:, 

it becomes 

240 240 :+4, 
or 

240 240 
■4, 

.T-f-3 X 

an equation Avhich may be considered as the algebraic representation of the 

following problem : 

A tailor bought a certain number of yards of cloth for 12 pounds. If lie had 

paid the same sum for 3 yards 7nore, then the cloth would have cost 4 shillings 

a yard less. Required the number of yards purchased. 

The above equation when reduced becomes 

a:''4-3.r=180, 

instead of x'^—3a;=180, as in the foi-mer case; solving the above, we find 

a; = 12; .t=—15. 

The two preceding problems illustrate the principle explained with regard 

to problems of the first degree. 

PROBLEM 3. 

A merchant purchased two bills; one for $8776, payable in 9 months, the 

other for $7488, payable in 8 months. For the first he paid $1200 more 

than for the second. Required the rate of interest allowed. 
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Let x represent the interest of $100 for 1 month. 

Then 12x, 9x, Sx severally represent the interest of $100 for 1 year, 9 

months, 8 months. 

And lOO-j-9-^'i 100-}-8-^’ represent what a capital of $100 will become at 

the end of 9 and of 8 months respectively. 

Hence, in order to determine the actual value of the two bills, we have the 

following proportions: 

1004-9.r: 100:: 8776: 

\ 
100-f8:r: 100:: 7488: 

8776X100 

100+92’ 

7488X100 

100 + 82 ' 

The fourth terms of the above proportions express the sum paid by tlie 

merchant for each of the bills. 

Hence, by the conditions of the problem, 

877600 748800 

100 + 92—100+^“^^^^’ 

or, dividing each member by 400, 

2194 1872 

100 + 92 —lOO+'to”^* 

Clearing of fractions and reducing, 

21622+43962=2200. 

Whence 

2198 12200 (2198Y ' 

216 ^ V 216 ■^\216/ 

— 2198+ V 5306404 

“ 

— 2198+ V 53064 04 

18 

— 2198 + 2303.5. _ _ 
.-. 122=5.86.; and 122=—250.08. 

The positive solution, 122 = 5.86., i-epresents the required rate of in¬ 

terest per cent, per annum. 

With regard to the negative solution, it can only be considered as connected 

with the Other by the same equation of the second degree. If we resume 

the original equation, and substitute —x for +2, we shall find great difficulty 

in reconciling this new equation with an enunciation analogous to that of the 

proposed problem. 

PROBLEM 4. 

A man purchased a horse, which he afterward sold to disadvantage for 24 

pounds. His loss per cent, by this bargain, upon the original price of the 

horse, is expressed by the number of pounds which he paid for the horse. 

Required the original price. 

Let 2 be the number of pounds which he paid for the horse. 

Then x — 24 will represent his loss ; 

But, by the conditions of the problem, his loss per cent, is represented by the 

number of units in x; 
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• 

His loss per cent, on one pound is 

2’'= 
his loss per cent, on x pounds must be or ^ times as great. 

This gives the equation, 
x^ 

100 
:X — 24 

2:=50i Vl00=50itl0. 
Hence a:=60 ; .'r=40.' 

Both these solutions equally fulfill the conditions of the problem. 

Let us suppose, in the first place, that he paid 60 pounds for the horse; since 
he sold it for 24, his loss was 36. On the other hand, by the enunciation, his 

. .... . p 60 X 60 
loss was 60 per cent, on the original price; i. c., or 60, or ——=36 ; 

thus 60 satisfies the conditions. 
In the second place, let us suppose that he paid 40 pounds; his loss in this 

case was 16. On the other hand, his loss ought to be 40 per cent, on the 
40 40x40 

original price ; i. e., of 40, or —— = 16 ; thus 40 also satisfies the con 
100 

ditions. 

GENERAL DISCUSSION OE THE EQUATION OF THE SECOND DEGREE. 

191. The general form of the equation, the coefficients being considered in 
dependency of their signs, is 

x^-j-j?x-j-q=0. 

pi 
I., II. Let q be positive and <[ 

P jp^ 
I. lip be positive, x-= — giy ——q, and both values are negative.* 

P 
II. If jp be negative, 2:= 4-vy 

(W V 4 

ip^ 
VT~?’ ‘ and both values are positive. 

III., IV. Let be positive and ^ 

\ P III. lip) be positive, 2*=——— q, 

I^IV. If_p be negative, 2: = -f ^ ± —q, 

and both values are imagi- 
nary.f 

* In this and all the following values of 37, calling the tenn - before the radical the ra-' 

tional pai’t, and y —zt? ffi® I'adical part, we perceive that, when q is positive, the radical 

' / P part is greater than the rational, since y — alone equals the rational part; and the sign 

of the whole expression is that of the radical part; but when q is negative, the radical 
part is less than the rational, and the sign of the whole expression is that of the rational 
part. 

t In this case, if we examine the general equation, we shall find that the conditions are 
absurd; for, transposing q, and completing the square, we have 
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P V., VI. Let ^ be negative and , 

r 
<1 

j V. If p be positive, x: 

P I 
VI. If jp be negative, + 

p ^ 

2^V 4 

4‘ 

4-<Z’ 

jji 

VII., VIII. Let q be negative and 

P h^, 
7t+^’ VII. If^ be positive, xz=.——^yj— 

VITI. If^ be negative, + 

and one value is positive, 
the other negative. 

p^ 

> and the two values are equal. 

IX., X. Let and be positive. 

P IX. If be positive, x=. — —. 

P X. If p be negative, 

XL, XII. Let ^ = 0, 

P P XI. If p be positive, x=.—one value =—p, the other =0. 

P P XII. If^ be negative, x:=-{-—±:—, one value =-\-p^ the other =0. 

XIII. Let q be negative. 

IXIII. p=0, a:=i q^ the two values are equal with opposite signs. 

XIV. Let q be positive, 

IXIV. ^;=0, x= i V —5'i both values are imaginary. 

XV. Let q = 0, 

^XV. p—0, then .^=0, or both values are equal to 0. 

but since ^-q is, by hypothesis, a negative quantity, vp-e may represent it by —m, where 

w, is some positive quantity ; then 

x^^^px-\-^=- -m 

(^if) 
that is, the sum of two quantities, each of which is essentially positive, is equal to 0, a 

manifest absurdity. Solving the equation, 

and the s^unbol -y/—w, which denotes absui'dity, serves to distinguish this case. Hence, 

when the roots are imaginary, the problem to tvhich the equation corresponds is absurd. 

We still say, however, that the equation has two roots ; for, subjecting these values of 

'‘x to the same calculations as if they were real, that is, substituting them for x in the pro¬ 

posed equations, we shall find that they render the two members identical. 
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XVI. One case, attended with remarkable circumstances, still remains to be 

examined. Let us take the equation 

ax'^-^hx—c = 0. 

Whence X-. 
— ^/b^-\^Aac 

2a 

Let us suppose that, in accordance with a particular hypothesis made on the 

given quantities in the equation, we have ar=0; the expression for a: then 

becomes 

0 
Xz= 

0 
; whence < 

0 

—2h 
x=- 

0 

The second of the above values is under the form of infinity, and may be con¬ 

sidered as an answer, if the problem proposed be such-as to admit of infinite 

solutions. 

0 
We must endeavor to interpret the meaning of the first, -. 

In the first place, if we return to the equation ax'^-\-hx—c = 0, we perceive 

c 
that the hypothesis a=:0 reduces it to hxz=c, whence we derive ^finite 

and determinate expression, which must be considered as representing the true 

0 
value of - in the case before us. 

That no doubt may remain on this subject, let us assume the equation 

a.r'^-j- hx—c=0, 

and put x=-, the expression will then become 

a h 
~-j- ~ —c=0. 
3/ y 

Whence cjfi — hi/ — a = 0. 

Let a = 0, this last equation will become 

cif — hy=:0, 

from which wo have the two values y = 0, y=-; substituting these values in 

x~~,' we deduce 
y 

1 ^ 
1°. .T=— 5 2°. x=—.* 

0 ' b 

** To show more distinctly how the indeterminate fomi arises, let us resume the general 
value of one of the roots. 

_— 

X -—^, 
2a 

If a were a factor of both the numerator and denominator, it might be suppressed, and 

then a, being put equal to zero, would give the time value of .r. We can not, indeed, 

show the existence of this factor in the two terms of the fraction as it stands ; but if we 

multiply both numerator and denominator by —h—y'b‘^-{-Aac, it becomes 

^ b‘^-\-Aac){—h—■\/b'i-\-Aac) 

—2a{b-\-\/ i--(-4ac) 
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With respect to the value x= 
— 2b 

0 
, it is only to be observed that the 

divisor zero, having to bo regarded as the limit of decreasing magnitudes, either 

positive or negative, it follows that the infinite value ought to have the am¬ 

biguous sign d::. 

Thus the values of x, to recapitulate, become 

x= ± 00. 

Tt is remarkable that, for this particular case, we have three values of x, 

while in the general case there are but two. 

To comprehend how these values truly belong to the equation ax^-\-bx 

—c=0, put it under the form 

— bx-j-c 

When a = 0, the question is to find values which will render 
— bx-\-c 

x^ 
zero. 

We see that will do it; and as the same expression can be written under 

b c 
the form —we perceive that it becomes zero also, from the values 

x= dr CO.* * 

XVII. Let us consider the still more particular case still, where we have, 

0 
at the same time, a=0, b = 0. Then the two general values of x become 

We have seen above that the first may be changed into 

2c 
^--^ 

b-\- ■\/ b'^-\-Aac 

Transforming the second in a similar manner, it becomes 

(— b—y/})^-\-Aac){ — b^b"^Aac) —2c 
^- .-.1 . ■ ' ■ ■ , , - - ■ „ , - I ...—■ I 1^ 

2a{ — b-\- ^b'^-\~Aac). —b-\~ b^-\-Aac 

In which, making a=0, 6 = 0, the values of x, thus transformed, both give 

x = aj; and here, also, the infinity ought to be taken with the sign dr- 

If we suppose « = 0, 6=0, c=0, the proposed equation will become alto¬ 

gether indeterminate. 

The numerator, being the product .of the sum and difference of two quantities, is equal 

to the difference of their squares, to wit: 6^—{h^-\-Aac)=:—Aac. We see, therefore, that 

2a is a comluon factor to the numerator and denominator of the last expression. Suppress¬ 

ing it, we have 

2c 

b‘^-\-4.ac 

in which, if we malie a=0, it gives 

* In the analytic theoiy of curves these values answer to the intersections of the axis 

of abscissas with the curve of the 3° order, the equation of which is yx-\-hx-\-c=i0. If this 

curve be constructed, it will be found to cut the axis of abscissas first at a finite distance 
from tlie origin, and besides lias this axis for an asymptote both on the side of the positive 

and negative abscissas, which amounts to saying that it cuts it at infinity in either di¬ 
rection. 
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192. Let us now proceed to illustrate the principles established in this gen¬ 

eral discussion, by applying them to different problems. 

PROBLEM 5. 

To find in a line, A B, which joins two lights of different intensities, a point 

which is illuminated equally by each. 

Pi B P.. 

(It is a principle in Optics that the intensities of the same light at different 

distances are inversely as the squares of the distances.) 

Let a be the distance A B between the two lights. 

Let & be the intensity of the light A at the distance of one foot from A. 

Let c be the intensity of the light B at the distance of one foot from B. 

Let P 1 be the point required. 

LetAP,=a:; .*. BPi=g!—.r. 

By the optical principle above enunciated, since the intensity of A at the 

distance of 1 foot is 6, its intensity at the distance of 2, 3, 4,.feet must be 

bhb h 
7:1 hence the intensity of A at the distance of x feet must be —. In the 

4 9 1b 

same manner, the intensity of B at the distance a—x must be / -^2^ but (a—x)^ 

according to the conditions of the question, these two intensities are equal; 

hence we have for the equation of the problem 

b c 

X^~~(a—xy' 

Solving this equation, and reducing the result to its most simple form, 

a h 
X: 

Vb± Vc 

We shall now proceed to discuss these two values: 

a^/b ] 
1°. x= 

2°.x= 

•> whence < 
a-y/b 

y/ b— y/ C 

a—X—- 

a—X— 

a yj c 

yjc 

—a yj c 

yj b— y/ c 

I. Let b'^c. 

The first value of .r, ^is positive, and less than «, for ^ 

is a proper fraction; hence this value gives for the point equally illuminated a 

point P1, situated between the points A and B. We perceive, moreover, that 

the point P ^ is nearer to B than to A; for, since b^c, we have 

■y/b-\- 's/b'fi’^ y/c, or 2 b"^ y/b-y/Cy and .*. 
' r" 

ay/b ^ a 

y/b 

yJb-\- yJc- 

and, consequently, y/c^2' manifestly the result at which we 

ought to arrive, for we here suppose the intensity of A to be greater than that 

ofB. 

p. o. yJ C a 

The corresponding value of a—a:, is positive, and less than -. 

ay/b 
The second value of .r, -is positive, and greater than for 

I 
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Vb>Vh-Vc, 
Vh 

•>1, and 
a ■\/h 

• -- 

This second value gives a point Po, situated in the production of A B, and to 

the right of the two lights. In fact, we suppose that the two lights give forth 

rays in all directions ; there may, therefore, be a point in the production of A B 

equally illuminated by each, but this point must be situated in the production 

of A B to the right, in order that it may be nearer to the less powerful of the 

two liglits. 

It is easy to perceive why the two values thus obtained are connected by 

the same equation. If, instead of assuming A Pi for the unknown quantity ar, 

b c 
we take A P2, then B V2=^—thus we have the equation ^ ; but 

since (.r — a)^ is identical with («—a:)^ the new equation is the same as that 

already established, and which, consequently, ought to give A P2 as well as 

A Pi. 

— u V c 
The second value of a—z, -is negative, as it ought to be, being 

estimated in a contraiy direction from the first, on the general principle ah-eady 

established, that quantities estimated in a contrary sense should be represented 

—a c 
with contrary signs ; but changing the signs of the equation a—.r= 

we find X—a\ 
a -\/c 

V 6— c 

Vb-Vc^ 

, and this value of x—a represents the absolute 

length of B P2* 

II. Let b <\C. 

a^/h a 
The first value of x, positive,'and less than -, for 

■yb 1 a-yh a 
> yb, .-. yb-Jr Vc>2yb, .-. Vc^2’ yb^ yc^2' 

O' y c . .. o 
The corresponding value of a—x, is positive, and greater than 

Hence the point Pi is situated between the points A and B, and is nearer 

to A than to B. This is manifestly the true result, for the present hypothesis 

supposes that the intensity of B is greater than the intensity of A. 

ayb —a yb 
The second value of .r, or -is essentially negative. In 

order to interpret the signification of this result, let us resume the original 

b ^ -r> • 
equation, and substitute —x for it thus becomes — But since 

—x) expresses in the first instance the distance of B from the point required, 

«+.r ought still to express the same distance, and, therefore, the point re¬ 

quired must be situated to the left of A, in P3, for example. In fact, since 

the intensity of the light B is, under the present hypothesis, greater than the 

intensity of A, the point required must be neai’er to A than to B. 

—a y c aye 
The corresponding value of a—.r, positive, and 

the reason of this is, that x being negative, a—x expresses, in reality, aa 

arithmetical sum. 
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ILL Let h=c. 

The first two values of .r and of a—x are reduced to —, which gives the 

bisection of A B for the point equally illuminated by each light, a result which 

is manifestly true, upon the supposition that the intensity of the two lights is 

the same. 

The other two values are reduced to 
a ^/h 

^ -, that is, they become infinite , 

that is to say, the second point equally illuminated is situated at a distance 

from the points A and B greater than any which can be assigned. This re¬ 

sult perfectly corresponds with the present hypothesis; for if we suppose 

the difference h—c, without vanishing altogether, to be exceedingly small, the 

second point equally illuminated, exists, but at a great distance from the two 

a^b 
lights , this is indicated by the expression -the denominator of which 

is exceedingly small in comparison with the numerator if we suppose b very 

nearly equal to c. In the extreme case, when 6 = c, or -fb—^c = 0, the 

point required no longer exists, or is situated at an infinite distance. 

IV. Let b = c and a = 0. 

The first system of values of x and a—x in this case become 0, and the 

second system -. This last result is here the symbol of indetermination; for 

if we recur to the equation of the problem 

b c 

x^ {a—xf^ 

or 

(6—c).T^—2abx=z —a‘^b, 

it becomes, under the present hypothesis, 

0 —0 ..r=0, 

an equation which can be satisfied by the substitution of any number whatever 

for X. In fact, since the two lights are supposed to be equal in intensity, and 

to be placed at the same point, they must illuminate every point in the line 

A B equally. 

The solution 0, given by the first system, is one of those solutions, infinite 

in number, of which the problem in this case is susceptible. 

V. Let « = 0, b not being =c. 

Each of the two systems in this case is reduced to 0, which proves that in 

this case there is only one point equally illuminated, viz., the point in which 

the two lights are placed. 

The above discussion affords an example of the precision with which algebra 

answers to all the cii'cumstances included in the enunciation of a problem. 

We shall conclude this subject by solving one or two problems which re 

quire the introduction of more than one unkno\vn quantity. 

TROBLEM 6. 

To find two numbers such that, when multiplied by the numbers a and b 

respectively, the sum of the products may be equal to 2s, and the product of 

the two numbers equal to p. 



aUADRATIC EaUATIOJ^S. 235 

Let x and y be the two numbers souglit, the equations of the problem will 

be 

From (1) 

ax-\-})y=:2s 

xy— p 

2s — ax 

y=—b— 
Substituting this value in (2) and reducing, we have 

ax‘^—2sx-\-hp=0. 

Whence 

5 . 1 
x=-:^- a/6'2—a^^pb, 

a a ^ 

And 

(1) 

(2) 

S 1- 

The problem is, we perceive, susceptible of two direct solutions, for s is 

manifestly ^ s^—o!^hp; but in order that these solutions may be real we 

must have or -oP-bp. ’ 

Let a=b = l; in this case the values of x and y are reduced to 

—P-i 2/=^T —P" 
Here we perceive that the two values of y are equal to those of x taken in 

an inverse order; that is to say, if s-|- —P represent the value of .r, then 

s— —j) will represent the corresponding value of ?/, and reciprocally. 

We explain this circumstance by observing that, in this particular case, the 

equations of the problem are reduced to x-\-y=.2s, xy=p, and the question 

then becomes. Required two numbers whose sum is 2s, and whose product is 

p, or, in other words, To divide a number 2s into two parts, such that their 

product may be equal to p. 

PROBLEM 7. 

To find four numbers in proportion, the sum of the extremes being 2s, the 

sum of the means 2s', and the sum of the squares of the four terms 4c‘^. 

Let a, X, y, z represent the four terms of the proportion; by the conditions 

of the question, and the fundamental property of proportions, we shall have as 

the equations of the problem 

a-\-z-=z2s.(1) 
x-\-y=2s'.(2) 

xy=az.(3) 

a2_|_2.2_j_2^2_|_22 = 4c2.(4) 

Squaring (1) and (2) and adding the results, 

(P -j- -|- 2/^ -f- 2^ 2az -j- 2xy=4 (s^ -{- s'’^). 

But by (4), a^-\-x‘^-\-y‘^-\-z^ =4c2. 

Subtracting, 2az 2xy=4 (s^-|- s'^—c^). 

by (3), 4rtz = 4(s^-f“'5'^—c‘^) = ixy . . (5) 

Squaring (1), a'^-\-2az-\-z^=4s‘^. 

But by (5), 4«2 =4(s2-|-^'^— 

Subtracting, - o?' — 2az-\-z‘^-=:4{c'^—s'"). 

Extracting the root, a—2= ^P—s'^. 

But by (1), a-\-zz=.2s. 
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adding and subtracting, a=s^ —s'"^ 

2=S=p -/c^ — 

Precisely in the same manner we shall find 

.T=s'zt: Vc' — s^ 

.y=s'T 
The four numbers will therefore be 

a=s-\- -y/—s'^, .^=8'-}- V—5^ 

2=5— — y=s'— — 

These four numbers constitute a proportion, for we have 

aZ = {s + 5^^)=5^ —c^4-5^^ 

xy = {s'-\- ){s'— Vc^—s 2)=s'2—c'2 + s2. 

(8) What two numbers are those whose sum is 20, and their product 36 ? 

' Ans. 2 and 18. 

(9) To divide the number 60 into two such parts that their product may 

be to the sum of their squares in the ratio of 2 to 5. 

Ans. 20 and 40. 

(10) The difference of two numbers is 3, and the difference of their cubes 

is 117. What are those numbers ? < 

Ans. 2 and 5. 

(11) A company at a tavern had 668 15s. to pay for their reckoning; but, 

before the bill was settled, two of them left the room, and then those who re¬ 

mained had 10s. apiece more to pay than before. How many were there in 

company ? 
Ans. 7. 

(12) A grazier bought as many sheep as cost him 6£60, and after reserving 

15 out of the number, he sold the remainder for 6654, and gained 2s. a head by 

tliem. How many sheep did he buy ? 

Ans. 75. 
e ‘ 

(13) There are two numbers whose difference is 15, and half their product 

is equal to the cube of the lesser number. What are those numbers ? 

Ans. 3 and 18. 

(14) A person bought cloth for d£33 15s., which he sold again at 6^2 8s. per 

piece, and gained by the bargain as much as one piece cost him. Required the 

number of pieces. 

Ans. 15. 

(15) What number is that, which when divided by the product of its two 

digits, the quotient is 3; and if 18 more be added to it, the digits will be 

transposed ? 

Ans. 24. 

(16) What two numbers are those whose sum, multiplied by the greater, 

is equal to 77, and whose difference, multiplied by the lesser, is equal to 12? 

Ans. 4 and 7. 

(17) To find a number such that, if you subtract it from 10, and multiply the 

remainder by the number itself, the product shall be 21. 

Ans. 7, or 3. 
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(18) To divide 100 into two such parts that tlie sum'of their square roots 

may be 14. ' ; • - 

Ans. 64 and 36. 

(19) 'It is required to divide the number 24 into two such parts tnat their 

product may be equal to 35 times their difference. 

Ans. 10 and 14. 

(20) The sum of two numbers is 8, and the sum of their cubes is 152. 

What are the numbers ? 

Ans. 3 and 5. 

(21) The sum of two numbers is 7, and the sum of their 4th powers is 

641. What are the numbers ? 

, Ans. 2 and 5. 

(22) The sum of two numbers is 6, and the sum of their 5th powers is 

1056. What are the numbers ? 

Ans. 2 and 4. 

(23) Two partners, A,and B, gained c£l40 by trade; A’s money was 3 

months in trade, and his gain was 6660 less than his stock; and B’s money, 

which was 6650 more than A’s, was in trade 5 months. What was A’s stock ? 

Ans. dClOO. 

(24) To find two numbers such that the^difference of their squares may 

be equal to a given number, ; and when the two numbers are multiplied by 

the numbers a and h respectively, the difference of the products may be equal 

to a given number, 

' / . <752 5^54--52\g,2 

Ans.--—-^ 

bs^■^a^J 5“^—(u^ — 

(25) There are two square buildings that are paved with stones a foot 

square each. The side of one building exceeds that of the other by 12 feet, 

and both their pavements taken together contain 2120 stones. What are the 

lengths of them separately ? 

Ans. 26 and 38 feet. 

(26) A and B set out from two towns, which were at the distance of 247 

miles, and traveled the direct road till they met. A went 9 miles a day, and 

the number of days at the end of which they met was greater by 3 than the 

number of miles which B went in a day. How many miles did each go ? 

Ans. A went 117 and B 130 miles. 

(27) The joint stock of two partners was ^2080 ; A’s money was in trade 9 

months, and B’s 6 months ; when they shared stock and gain, A received 

$1140 and B $1260. What was each man’s stock? 

Ans. $960 and $1120. 

(28) A square court-yard has a rectangular gravel walk found it. The side 

of the court wants 2 yards of being 6 times the breadth of the gravel walk, 

and the number of square yards in the walk exceeds the number of yards in 

the periphery of the court by 164. Required the area of the court. 

Ans. 256. 

(29) During the time that the shadow on a sun-dial, which shows true 

time, moves from 1 o’clock to 5, a clock, which is too fast a certain number of 
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hours and minutes, strikes a number of strokes equal to that number of hours 

and minutes and it is observed that the number of minutes is less by 41 than 

the ^quajje of the number which the clock strikes at the last time of striking. 

The clodk does not strike twelve during the time. How much is it too fast? 

Ans. 3 hours and 23 minutes. 

(30) A and B engage to reap a field for c£4 IO5. ; and as A alone could reap 

it in 9 days, they promised to complete it in 5 days. They found, however, 

that they were obliged to call in C, an inferior workman, to assist them for the 

last two days, in consequence of which B received 35. '^d. less than he other¬ 

wise would have done. In what time could B or C alone reap the field ? 

Ans. B could reap it in 15 days, C in 18. 

(31) The fore wheel of a carriage makes 6 revolutions moi’e than the hind 

wheel in going 120 yards; but if the periphery of each wheel be increased 1 

yard, it will make only 4 revolutions more than the hind wheel in the same 

space. Hequired the circumference of each. 

Ans. 4 and 5. 

(32) The intensity of two lights, A and B, is as 7:17, and their distance 

apart 132 feet. Whereabouts between is the point of equal illumination? 

(33) The loudness of a church bell is three times that of another. Now, 

supposing the strength of sound to be inversely as the square of the distance, 

at what place between the two will the bells be equally well heard. 

(34) Supposing the mass of the earth to be 1 and that of the moon 0.017, 

their distance 240 thousand miles, and the force of attraction equal to the mass 

divided by the square of the distance; at what point between will a body be 

held in suspense, attracted toward neither ? 

(35) The hold of a vessel partly full of water (which is uniformly increased 

by a leak) is furnished with two pumps, worked by A and B, of whom A takes 

three strokes to two of B’s; but four of B’s throw out as much water as five 

of A’s. Now B works for the time in which A alone would have emptied 

the hold ; A then pumps out the remainder, and the hold is cleared in 13 hours 

and 20 minutes. Had they worked together, the hold would have been emp¬ 

tied in 3 hours and 45 minutes, and A would have pumped out 100 gallons 

more than he did. Required the quantity of water in the hold at first, and 

the hourly influx of the leak. 

(36) To divide two numbers, a and &, each into two parts, such that the 

product of one part of a by one part of h may be equal to a given number, p, 

and the product of the remaining parts of a and b equal to another given num¬ 

ber, j/. 

26 ^ 

ab-\-{p’ —p)^ V \ab — {p>'—p)\^—Aahp 

■ , 26 

^ —(p*—j^) j= v' \ab — {2}'—p)\'^ — ^abp 

2a ~ 

a6-|-(j>'—j^)=p V \ab — {2)'—p) 5“ — 4«bp 

2a 

(37) To find a number such that its square may be to the product of the 
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differences of that number, and two other given numbers, a and h, in the 

given ratio, p: q. 

f 

Ans. 
{a-{-h)p^ s/{a — bYif‘-{-iabpq 

2{p — q) 

(38) There is a number consisting of two digits, which, when divided by 

the sum of its digits, gives a quotient greater by 2 than the first digit; but if 

the digits be inverted, and the resulting number be divided by a number greater 

by unity than the sum of the digits, the quotient shall be greater by 2 than the 

former quotient. Whdt is the number ? 

Ans. 24. 

(39) A regiment of foot receives orders to send 216 men on garrison duty, 

each company sending the same number of men ; but before the detachment 

marched, three of the companies were sent on another service, and it was then 

found that each company that remained would have to send 12 men additional 

in order to make up the complement, 216. How many companies were in the 

regiment, and what number of men did each of the remaining companies send 

on garrison duty ? 

Ans. There were 9 companies, and each of the remaining 6 sent 36 men. 

DECOMPOSITION OF THE TRINOMIAD x’^-\-pX — q INTO TWO FACTORS OF THE 

FIRST DEGREE. 

193. If we add to this trinomial, in order to complete the square of the first 

two terms, the term and afterward subtract the same, so as not to change 

the quantity, it becomes 

J^px + —q, 
which may be written thus : 

.'. . . . (2) 
But the difference of the squares of two quantities being equal to the prod¬ 

uct of their sum and difference, the expression (2) is equal to the following : 

{x-\-\p-{-^/\p‘^■^q){x-Y\p—^/{p‘'^-\-q). . . (3) 

We perceive from this expression that the two factors of the first degree, 

which compose the trinomial of the second degree, ai-e x minus each of the 

roots of the equation of the second degree, formed by putting this trinomial 

equal to zero. 

Moreover, by equating (3) to zero, we perceive that the only way of satis¬ 

fying the resulting equation is by making one or other of the factors of the 

first degree, of which it is composed, equal to zero. 

The first, 

gives x=:—\p— 

and the second, 

= gives x=:—\p-\- Vhp'+q- 

Hence there are but two values of x which will satisfy the general equation 

x^-\-px — q — 0. 

EXAMPLES. 

1°. Decompose the trinomial x'^ — lx-\-lO into two factors of the first de¬ 

gree. 
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From the equation — 7.t-|-10 = 0 we find the roots x=b and X—2. 

Hence 

x'^—7.T-|-10 = (a:—5)(a:—2). 

2°. 3.r"—5x—2. 

Equating this trinomial to zero, after dividing by 3, we obtain the equation 

—fa;—f=0» the roots of which being .T=r2 and x= — h we have 

3.r2 — 5x — 2z=3(x — 2)(.r-{-|) = (a: — 2)(3.r-j-l)* 

3°. .I’*-|--j-3. Ans. (•'r-j-4—13). 

4°. 4.r2—42’-j-l* Ans. (2.r— 

5'^. x‘^—bx-\-7. Ans. (x—4)^+?* 

194. To complete the analysis of the 2° degree, it would be necessary to 

consider the case where the unknown quantities exceed the equations in num¬ 

ber. The more simple is that when there is but one equation and two un¬ 

known quantities. If it be resolved with respect to one of the unknown quan¬ 

tities, y, for example, an expression is found generally containing x under a 

radical; so that, by giving to x any rational va.lues whatever, irrational values 

would be found for y. It might be proposed to find rational values for x, for 

which the corresponding one of y should be rational also. But the difficulty 

of this problem, unless it be restricted to some very simple cases, is beyond 

mere elements. We add one or two here. For further information upon, 

the subject, the student is referred to the Theory of Numbers, by Legendre, 

a separate and very elegant treatise, in one quarto volume. 

INDETERMINATE ANALYSIS OF THE SECOND DEGREE. 

Resolution in whole numbers of an equation of the second degree, with two 

unknown quantities, which contains hut the first qjoiver of one of the unknowns. 

195. The questions of indeterminate analysis, which depend upon equations 

of a degree superior to the first, go beyond the limits'which we have imposed 

on ourselves in the present work ; but when an equation of the second degree 

contains the second power of but one of the unknown quantities, the solutions 

of this equation in whole numbers may be regarded as a question of indeter¬ 

minate analysis of the first degree. 

Equations of the second degi*ee in two unknown quantities, which do not 

contain the second power of one of these, are represented by the equation 

mxy nx" -fp.r+gy=r.(1) 

Resolving this equation with respect to y, we find 

—nx’^—'px-\-r 

mx-\-q 

We deduce from it, by performing the division. 

(2) 

y- 
n nq — ini') m-r-\-nipq—nq^ 

?n m^ m^{rnx-\- q) 

which gives 

N' 
m^y=--nmxJrnq—nip-{.^^^^^^j— .(3) 

putting to abridge 7n‘^r-\-7npq—ncq^ — N. 

N 
In order that x and y should be whole numbers, it is necessary that-;— 

^ 7nx-\-q 

should be a whole number; we must, therefore, calculate all the divisors of 

* This presents a case of what are called equal roots. 
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the number N, and put mx-\-q equal to each of these divisors successively, 

taken with the sign and with the sign —. If the equations thus obtained 

furnish for x a certain number of entire values, these values are to be substi¬ 

tuted in equation (3); and it is necessary, moreover, in order that y may be a 

whole number, that the second number which becomes a known quantity 

should be divisible by 

It is evident that the member of entire solutions will be very limited, and 

that there may not be even one. 

If this method be applied to each of the following equations, 

2xy — 3:r2-4- y = l 

5xy=2x -|-3?/-j-18 

xy-{- x~=2x-\-3y-\-29, 

considering only the positive solutions, we find 

a:=0, y = l 

x=3, 2/=4. 

x==l, y = lO 

x=3, y=2 

x=7, y = l. 

x=4, y=21 

x=5, y=7. 

If the remainder, after the division of —nx^—p.r-j-r by mx-\-q, should be 

zero, equation (1) would be of the form {mx-\-q){ax-\-by-\-c) = 0 ; and we 

should have all the solutions of this equation by resolving separately the two 

equations wa:-|-g=0, a.r-|-52/-|-cr=0. 

The method which has just been explained is applicable only in case m is 

not zero. ♦ 

Let w=0 ; equation (1) gives 

nx^-\-2'>x—r 

y=--q—.— w 
Suppose that one value of x=a {a being a whole number) gives au entire 

value for y. If we place x=:a-\-qt., t being any entire number whatever, we 

find 

For the first equation 

For the second equation 

For the third equation 

no?-\-na—r 
y= —---— {2nat-\-nqt^-{-yt)\ 

by hypothesis, ncfl-\-pa—r is divisible by q; the value of y, corresponding to 

x=ia-\-qt, will be then a whole number. As this conclusion is true, what¬ 

ever be the sign of i, it follows that, if the equation admits of entire solutions, 

they will be found to be such as answer to a value of x between 0 and q. 

Consequently, to obtain all the solutions in whole numbers, it will be suffi¬ 

cient to substitute for x in the equation the numbers 0, 1, 2, 3, . . . -q — 1, 

and each solution in whole nijmbers corresponding to one of these numbers 

will furnish an infinite number of others. 

Equation (4), in which the object is to find values of x which render the 

polynomial nx'^-^-qrx—r a raulfiple of the given number q, M. Gauss calls con¬ 

gruence of the second degi’ee ; so, also, the equation ax-\-hy = c, in which we 

seek to render ax—c a multiple of 6, is a congruence of the first degi’ee. 

Further matter on the subject of indeterminate analysis will be given in con¬ 

nection with the theory of numbers, for which see a subsequent part of the 

work. 

Q . 
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MAXIMA AND MINIMA. 

196. When a quantity which is capable of changing its value attains such a 

value that, after having been increasing, it begins to decrease, or, having been 

decreasing, it begins to increase, in the first case it is called a maximum, and in 

the second a minimum. The same quantity may have several maximum or 

minimum values. 

EXAMPLE. 

— 2a:-}-2 
To find what value of x will render the fraction —--— a maximum or 

2.r—2 

minimum. 

Equating the given function of x to z, we have 

x'^ — 2x-{-2 

2x—2 
-=2. x = z-\-l:^ z} — 1. 

We perceive at once that by making we have .t=2, and that the 

values of 2, a little less than 1, render x imaginaiy ; hence the given expression 

has a minimum value 1 corresponding to xz=2i 

In a similar manner, making z=—1, we have .r=0; and a negative value 

of z, a little smaller than 1, would render x imaginary. But in algebra, nega¬ 

tive quantities, which, without regard to the sign, go on increasing, ought to be 

regarded, when the sign is prefixed, as decreasing ; we may, therefore, say 

that a value of z, a little greater than —1, renders .r imaginary, then 2 = — 1 is 

a maximum corresponding to 

As the subject of maxima and minima is generally treated by the aid of the 

dilferential calculus, we shall not dwell further upon it here, though it furnishes 

one of the applications of equations of the second degree. 

THE MODULUS OE IMAGINAE.Y aUANTITIES. 

197. We have seen (191) in the equation of the second degree 

x’^-{-px-]-qz=0, 
pZ, 

that when q is positive, and greater than —, the roots are imaginary. Replace 

V 
by —«, to avoid fractions ; and to express that q^-T-> q=a~-{-b-; the 

equation will become 

.1-2—2ax -}- <2^ -j- =0; 

and, by the formula for the solution of equations of the second degree, 

's/—6^, 
or 

X = <2 — 1.(l) 

The absolute vaiue of the square root of the positive quantity ¥ is call¬ 

ed the modulus of the imaginary expression (1). For example, the modulus 

of 3 — 4-v/—1 would be V 9-f-16, or 5. 

Two quantities, such as a-f-b V—1 and a — h —1, which differ from one 

another only in the sign of the imaginary part, are called conjugates of each 

other. Two conjugate quantities have then the same modulus. 

If we make b=0, the expression a-f-b V—1 reduces to a. Thus, the 

formula .T=a-j-b V —1 may represent a,ll quantities real or imaginary, a rep¬ 

resenting the algebraic sum of the real quantities, and b that of the coefificients 
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of —1 in the imaginary terms. When the quantity is real, it has for con¬ 

jugate an equal quantity, and the modulus is nothing else than the quantity 

itself, abstraction being made of the sign. 

Now I shall proceed to establish two propositions relating to moduli, which, 

may be often useful. 

Proposition I.—The sum and difference of any two quantities whatever 

have a modulus comprehended behveen the sum and the difference of their 

moduli. 

Let there be two expressions a-\-l)ff —1, a'—1. Calling r and r' 

their moduli, we have r'^=cd-\-h‘^, Naming R the modulus of 

their sum, we have evidently 

Td={a-\-a'f-\-{h-{-lyf 
=-1-a'2 _j_ 5/2 o 55/) 

But multiplying r" by it is easy to see that 
^2^/2 _ ^2^/2 _j_ 525/2_j^ ^25/2^/252 

— ffa'-\-l}})'Y-\- [ah' — ha'Y ; 

then the numerical value of aa'is less than, or at most equal to, rr'. Con¬ 

sequently, it is clear that R^ is comprehended between the two quantities 

r--\-r''^-\-2rr' and — 2n*', or, what is the same thing, between {r-\-r'Y 

and (r—r'y. Then the modulus R is comprehended between the sum and 

the difference of the moduli r and rh 

The demonstration is precisely the same where, instead of the sum of the 

imaginary expressions, we consider their difference. 

Proposition II.— The product of two quantities has for modulus the product 

of the moduli of these quantities. 

In fact, multiplication gives 

V —V){a'—\)—aa' — hh'-^{ah'-\-ha') —1 ; 

and if we take the modulus of this product, we find, conformably to the enun¬ 

ciation, 

./(aa' —5b')2-f a^a'^ + +a%'^ -f- l^a'^ 

Corollary.—Then the product of any number of factors whatever must 

have for modulus the product 7, the moduli of all the factors. Then the 

power of an imaginary expression has for modulus the power of the modulus 

of that expression. 

The above nomenclature and propositions are from Cauchy, who exhibits in 

a remarkable manner the efficiency of imaginary expressions as instruments iji 

the investigation of the properties of real quantities. The following is a 

specimen; 

If two numbers, of which each is the sum of two squares, be multiplied to¬ 

gether, the product must also be the sum of two squares. 

Let the two numbers be ^ '' 

and a'^-\-h'‘^. 

The first of these may be considered as the product of the factors 

a-\-l) f —1 and a — h —1, 

and the second as the product of the factors, 

a'■\- h' —1 and a'—h' —1 ; 
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so that the product of the proposed nurabers wih be the product of the foul 

factors 

a-\-h —1, a~-h -sj — 1, a'-yj —1, a' — V yj —1. 

Actually multiplying the first and third, and then the second and fourth, we 

have the following pair of conjugate expressions, viz., 

{aa' — yf — 1, {aa'—&5') — {ah'-\-ha') yj —1, 

of which the product is 

(aa' —+ 

which is, therefore, the product of the original numbers, and proves that that 

product must, like each of the proposed factors, be the sum of two squares. 

If we interchange, the numbers a and 6, or the numbers a', the terms of 

the product just deduced will be different; thus, putting a' for 6', and h' for 

a', which produces no essential change in the proposed numbers, we have 

—&a')"+(aa'+&6')2. 

Consequently there are two ways of expressing by the sum of two squares 

the products of two numbers, each of which is itself the sum of two squares; 

thus, 
(52 _|_ 22)(32 02) _ 112 _|_ 102 _ 42 _j_ 192 

(22-1-12)(334-22)= 42_|_ 72_12_|_ 82 

&c., &c. 

3IETHOD PROPOSED EY P/IOUREY FOR AVOIDING IMAGINARY QUANTITIES.* 

198. Objections have been made to results obtained by the calculus of imag¬ 

inary expressions. The rules observed in the calculus, it is said, have only 

been demonsti’ated for real magnitudes; it is by mere analogy that they are ex¬ 

tended to the case of imaginary quantities ; we may, therefore, raise reasonable 

doubts as to the exactitude of the results thus deduced. 

M. Mourey, who has been much occupied with these difficulties, has sought 

to free analysis from them entirely, in a work published in 1828, entitled the 

True. Theory of Negative Quantities and of the so-called Imaginary Quanti¬ 

ties. Without entering into long details, we shall endeavor here to give an 

idea of the methods proposed by this author. 

Let us resume the expression a-\-by/ —1, and give it, at first, the form 

^^^2+^2[ V — 1] 

If we take the sum of the squares of the fractions, which are between the 

brackets, we find that this sum is equal to 1 ; and from thence we conclude that 

these two fractions can be regarded as being the sine and cosin ^5 of a same 

angle a. Designate also the modulus -\/a2-j-62 by A ; the imaginary expres¬ 

sion can be put under the form A(cos a-j- -f — 1 sin o). Considering that 

this expression coi^tains really but two quantities, the modulus A and the 

angle o, M. Mourey proposes to regard the modulus A as expressing the 

length of a right line O A, and a as being 

the angle A O X, which this line makes 

with a fixed axis OX. In other words, 

the modulus A represents a line of a cer¬ 

tain length, which at first lay upon the 

axis O X, and which, by making a move- 

* To understand this, a Imowledge of the &st principles of Trigonometry is necessaiy. 
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ment round the origin O upward, has departed from this axis by an angle a. 

M. Mourey gives the name verser to this angle, or, rather, to the arc which 

measures it; and then, instead of the imaginary expression, he writes simply 

Ac, a notation very suitable to recall at the same time the modulus A and the 

verser a. He proposes even to give the name row^e, ovwayy to the length O A, 

placed in its true position with regard to OX, so that A verser a, or Ac,is the 

route from O toward A. 

As a line can make around the origin O as many revolutions as we please, 

and that, also, as well by commencing its rotation below as well as above O X, 

it follows that the verser may pass through all states of magnitude, and be as 

well negative as positive. It will be positive when the movement of the line 

shall have commenced above ; it will be negative when the movement com¬ 

menced below. From this it follows that the same route can be represented 

with a verser which is positive, or one which is negative, provided that the 

sum of the versers, abstraction being made of the signs, is 3G0°. 

From the preceding conventions it results that a ivay can be represented by 

giving to the length A an infinity of different versers. Suppose, to fix the 

ideas, that O A should be a determinate way, and that then the verser A O X 

should be an acute angle a ; it is evident that the position of O A will undergo 

no change if we add or subti-act from a any number whatever of entire cir¬ 

cumferences. Thus is established this important remark, that if we desig¬ 

nate by 27r an entire circumference, or 360°, and by n any whole number 

whatever, positive or negative, the expression A2Trn-\-a will represent the 

same route as Aa ; this is expressed by the equality 

ASlnn-\-az=k.a. 

When we give to A a verser equal to zero, the length A lies upon the line 

O X. When the verser is equal to tt or 180°, this length is found in the op¬ 

posite direction, OX' ; then it is nothing else than the negative quantity —A. 

Thus we ought to regard as altogether equivalent the two expressions —A 

and Att. 

After these preliminaries, M. Mourey establishes the rules of algebraic 

calculus ; then he passes to equations, and reconstructs algebra thus entirely. 

I shall not follow this author in all his details ; I shall confine myself to the 

developments necessary to explain here what sense the new algebra attaches 

to the old imaginary expression ^/ —A^. I shall seek, first, the rule to be 

followed in the multiplication of any two quantities whatever, Aa and 

Here the two factors are the magnitudes A and B, measured upon two lines 

O A and O B, which make, with a fixed axis 

O X, angles A O X, B O X, represented by the 

' versers a and /3. It is necessaiy, then, first 

of all, to give to the definition of multiplica¬ 

tion the extension suitable to render it appli¬ 

cable to the case in question. But, consider¬ 

ing that the multiplier B,3 indicates a line B, 

which departs from the fixed line O X by an 

angle equal to /3, M. Mourey regards multi¬ 

plication as having for its object to take at 

first the length A in its actual direction as many times as there are units in B, 

and to turn the new line O A' around the point O, to depart from this direc- 
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tioii by an angle equal to /3, and to give it the position O C. From this it fol¬ 

lows that, in designating by A B the product of the two magnitudes, obstruc¬ 

tion being made of all idea of position, the product sought will be (AB)a-4-£ 

Thus we have 

Aa X B/3 = (AB)a-j-/^ i 

that is to say, we multiply the moduli according to the ordinary rules of arith¬ 

metic^ and take the sum of the versers. 

If the two versers are equal to re or 180°, we shall have Att x B7r==(AB)27r. 

But A^r and Btt are nothing else than —A and —B, and (AB)27r is the same 

thing as -j-AB ; then — Ax —B = -f-^®’ This is the known rule, — by —- 

gives • 

According to this rule, the square of Ac will be (A^)2a ; that is to say, we 

take the square of the modulus and double the verser. Then, reciprocally, the 

square root is obtained by extracting the square root of the modulus withoiLt re¬ 

garding the verser ; then take half the verser. 

Let us come now to the interpretation of the imaginary expression V —A^. 

For this purpose, let us observe, first, that it is equivalent to -f (A^)2?i7r-j-7r; 

then extracting the square root, ^ 

V —A?=Kn'K-\-\'rT. 

If n is even, the verser me TT places the length A in the same position as 

> -^Tr ; that is to say, in the position O P, perpendicular to O X. 

If n is uneven, the verser will place the length A in 

a position O P', perpendicular to O X, but below. Thus, in 

X' O X tlie system of M. Mourey, the exju'ession f —A^ offers no 

longer to the mind any idea of impossibility. It represents 

P' two routes, O P and O P', equal and opposite, both perpen¬ 

dicular to the fixed axis O X. 

PERMUTATIONS AND COMBINATIONS. 

199. The Permutations of any number of quantities are the changes which 

these quantities may undergo with respect to their order. 

Thus, if we take the quantities a, &, c; then ette, ach, bac, bca, cab, eba 

are the permutations of these three quantities taken all together; ab, ac, ba, 

be, ca, cb are the permutations of these quantities taken two and two ; a, b, c 

are the permutations of these quantities taken singly, or one and one, &c. 

The problem which we propose to resolve is, 

200. To find the number of the permutations of n quan tities, taken p and p 

together. 

Let <z, b, c, d,.k, be the n quantities. 

Tlie number of the permutations of these n quantities taken singly, or one 

and one, is manifestly n. 

The number of the permutations of these n quantities, taken two and two 

together, will be n{n — 1). For, since there are n quantities, 

a,b,c,d,.k. 

If we remove a there will remain [n — 1) quantities, 

b, c, d,.k. 
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Writing a before each of these {n — 1) quantities, we shall have 

«c, ad^.ak; 

that is, {n—1) permutations of the n quantities taken two and two, in which a 

stands first. Reasoning in the same manner for &, we shall have {n — 1) per¬ 

mutations of the n quantities taken two and two, in which h stands first, and 

so on for each of the n quantities in succession; hence the whole number of 

permutations will be 

n{n — 1). 

The number of the permutations of n quantities, taken three and three to¬ 

gether, is n{n — l)(w — 2). For since there are n quantities, if we remove a 

there will remain {n — 1) quantities; but, by the last case, writing [n — 1) for 

w, the number of the permutations of {n — 1) quantities, taken two and two, is 

{n — l)(a—2); writing a before each of these {n —1)(?2—2) permutations, 

we shall have {n — l)(7i — 2) permutations of the n quantities, taken three and 

three, in which a stands first. Reasoning in the same manner for 6, we shall 

have {n — l){n — 2) permutations of the n quantities, taken three and three, in 

which h stands first, and so on for each of the n quantities in succession ; hence 

the whole number of permutations will be 

n{n — l)(w—2). 

In like manner, we can prove that the number of permutations of n quan¬ 

tities, taken four and four, will be ' 

n{n — l)(?r—2){n—3). 

Upon examining the above results, we readily perceive that a certain rela¬ 

tion exists between the numerical part of the expressions and the class of per¬ 

mutations to which they correspond. 

Thus the number of permutations of n quantities, taken two and two, is 

n[n—1), which may be written under the form n{n—2-j-l)* 

Taken three and three, it is 

n[n — l){n—2), which may be written under the form n{n — l)(7i— 

Taken four and four, it is 

<n{n — l){n—2){n—3), which may be written under the form n{n—l)(n—2) 

{n—4+1). 

Hence, from analogy, we may conclude that the number of permutations 

of n things, taken p and y) together, will be 

n{n — l)(w—2){n — 3).{n—^ + 1). 

In order to demonstrate this, we shall employ the same species of proof 

already exemplified in (Arts. 23 and 78), and show that, if the above law be 

assumed to hold good for any one class of permutations, it must necessarily 

hold good for the class next superior. 

Let us suppose, then, that the expression for the number of the permuta¬ 

tions of n quantities, taken {'p — 1) and {p — 1) together, is 

n{n — l)(7i—2){n — 3) . . . \n — {p — l) + l} . . . (A) 

It is required to prove that the expression for the number of the permuta¬ 

tions of n quantities, taken p and p together, will be 

n{rL — l)(w — 2){n — 3).{n—^p+1). 

Remove a, one of the n quantities a, h, c, d.k, then, by the ex¬ 

pression (A), writing {n — 1) for n, the number of the permutations of the 

(n —1) quantities h, c, d.k, taken —1) and (^ — 1), will be 
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{n — l){n—2){n—3).\{n—1) — [p — 

or * ' ^ ' 

(?^—1)(’^—2)(n — 3).[n— 

- Writing a before each of these {n — l){n—2)(7i — 3).{n— 

permutations, we shall have {n — l)(w—2)(n—3).{n—p-\-^) per¬ 

mutations of the n quantities, in which a stands first. Reasoning in the same 

manner for 6, we shall have [n—l)(w — 2){n—3).{n—per¬ 

mutations of the n quantities, in which h stands first; and so on for each of the 

n quantities in succession ; hence the whole number of permutations will be 

n{n — l)(n — 2){n — 3).{n—.(1) 

Hence it appears that, if the above law of formation hold good for any one 

class of permutations, it must hold good for the class next superior ; but it has 

been proved to hold good when p — 2, or for the permutations of n quantities 

taken two and two ; hence it must hold good when p = 3, or for the permuta¬ 

tion of n quantities taken three and three ; it must hold good when 

and so on. The law is, therefore, general. 

EXAMPLE. 

Required the number of the permutations of the eight letters a, h, c, d, e, 

f gi h, taken 5 and 5 together. 

Here n = 8, |?=5, n—; hence the above formula 

n{n — l)(w—2) .... {n—^?-}-l) = 8 X 7 X 6 X 3 X 4=6720, 

the-number required. 

201. In formula (1) letp=w, it will then become 

n{n—l)(n—2).2.1, 

or 

1.2.3.{n — l)n.(2) 

which expresses the number of the permutations of n quantities taken all 

together.* 

EXAMPLE. 

Required the number of the permutations of the eight letters «, 6, c, e, 

Here 7i = 8 ; hence the above formula (2) in this case becomes 

1.2.3.4.5.6.7.8=40320, 

the number required. 

202. The number of the permutations of n quantities, supposing them all 

different from each other, we have found to be 

1.2.3.{n — l)w. 

But if the same quantity be repeated a certain number of times, then it is 

manifest that a certain number of the above permutations will become identical. 

Thus, if one of the quantities be repeated a times, the number of identical 

permutations will be represented by 1.2.3.a ; and hence, in order to 

* Many writers on algebra confine the term perrmitations to this class where the quan¬ 

tities are taken all together, and give the title of arrangements or variations to the gi'oups 

of the n quantities when taken txoo and two, three and three, four and foxer, &c. The in¬ 
troduction of these additional designations appears unnecessary; but, in using the word 

permutations absolutely, we must always he understood to mean those represented by for¬ 

mula (2), unless the contrary he specified. 
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obtain tlie number of permutations different from each other, we must divide 

(2) by 1.2.3,.a, and it will then become 

1.2.3.(71 — 1)72 . ' 

1.2.3.a 

If one of the quantities he repeated a times, and another of the quantities 

be repeated jS times, then we must divide by 1.2.a X 1 • 2.(3 ; 

and, in general, if among the n quantities tliere be a of one kind, (3 of another 

kind, y of another kind, and so on, the expression for the number of the per¬ 

mutations different from each other of these n quantities will be 

1.2.3.n , 

1.2.aXl.2.iSXl-2.7, &c.. 

EXAMPLE I. '• 

Required the numbers of the permutations of the letters in the word algebra. 

Here 71=7, and the letter a is repeated twice; hence formula (3) becomes 

1.2.3.4.5.6.7 
---z=2520, the number required. 

EXAMPLE II. 

Required the number of the permutations of the letters in the word 

caifacarataddarada. 

Here 77=18, a is repeated eight times, c twice, d thrice, r twice; hence the 

number sought will be 

1.2.3.4.5.6.7.8.9.10.11.12.13.14.15.16.17.18 

1.2.3.4.5.6.7.8X1.2X1.2.3X1.2 
= 6616209600. 

EXAMPLE III. 

Required the number of the permutations of the product a^ wiltten at 

full length. 

Here n=x-\-y-\-z, the letter a is repeated x times, the letter 6, y times, 

and the letter c, z times ; the expression sought will, therefore, be 

1.2.3.yz) 

1.2.3.X X 1.2.3.y X 1.2.3.z 

203. The Combinations'^ of any number of quantities signify the different 

collections which may be formed of these quantities, without regard to the 

order in which they are arranged in each collection. Each combination must, 

therefore, have one letter different from any other of the combinations. 

Thus the quantities a, b, c, when taken all together, will form only one 

combination, abc ; but will form six different permutations, abc, acb, bac, bca, 

cab, cba ; taken two and two, they will form the three combinations ab, ac, be, 

and the six permutations ab, ba, ac, ca, be, cb. 

The problem, which we propose to resolve is. 

To find the number of the combinations of n quantities, taken p and p to¬ 

gether. , 

Each of these combinations of^ quantities being separately peiTnutated, will 

furnish 1.2.3...^ permutations, which, multiplied by the whole number of 

combinations, will give the whole number of permutations of n quantities, taken 
« 

* Where numerical or literal factors are combined, the tenn combination may be con¬ 

sidered as signifying the same as product. 
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and p. Therefore the latter, namely, the whole number of permutations^ 

or n(n—l)(n — 2)....(n — p+f)’ divided by the number of jj^rmutations of 

each combination^ or 1.2.3...p, will give the number of combinations of n 

quantities, talcen p and p. Denoting it by C, we have 

n{n — l){n — 2).(n—p + 1) 

1.2.3. (P —1)P ‘ * *•* ^ ^ 

204. There is a species of notation employed to denote permutations and 

combinations, which is sometimes used with advantage from its conciseness. 

The number of the permutations of n quantities, taken p and p, 

are represented by.{nVp) 

The number of the permutations of n quantities, taken aU together, 

are represented by.[nFn) 

The number of the combinations of n quantities, taken p) and p, 

are represented by.{nQp) 

pid so on. It is manifest that the above proposition may be expressed accord¬ 

ing to this notation by 

(nP v) 
{nCp)=-^^^^. 

M. Cauchy employs the notation (m)„ to express the number of combina¬ 

tions of m letters, taken w at a time. The German notation fpr the same is 
n 

C. 
m 

When the series of natural numbers, or the letters of the alphabet up to 

any required number, are to be permuted or combined, an abbreviated nota¬ 

tion has been employed as follows : 

P(l, 2, 3) stands for 123, 132, 213, 231, 312, 321. 

P(1..4) stands for 12, 13, 14, 21, 23, 24, 31, 32, 34, 41, 42, 43. 

C(«...c) stands for abc, abd, abe, acd, ace, ade, bed, bee, bde, cde. 

If one or more of the numbers or letters may be repeated, this can also be 

expressed in the notation. Thus, 

P(l, 1, 2) = 112, 121, 211. 
o 

P(l, 1, 2, 3) = 11, 12, 13, 21, 23, 31, 32. 

C(l, 1, 2, 2, 3) = 112, 113, 122, 123, 223. 

If all the letters, numbers, or single things may be repeated an equal num¬ 

ber of times, this can be expressed with the aid of an exponent; thus, 

C(l, 2, 3)^ P(0, 1, 2)2, C(1..7)". 

205. If n single things be arranged in combinations of h, or of n—k=r, the 

number of combinations in either case will be the same, i. e., 

^ n{n — 1)... {n—/r+1) ^— I) • • • —'^'+1) 

n iT2.3...^' “ n ~ iT2.3..'.’7 ’ 

for every new combination of k letters must leave a new one of r letters. 

By a similar reasoning, if n be divided into three parts, the first k, the second 

r, and the third s, it may be shown that 
k r k 8 r k 

CxC =CxC =CxC , &c. 
n n—k n n—k n n—r 

206. Cases may occur in which not all possible combinations, but only such 
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as fulfill certain conditions, are required. Many such may be imagined. For 

instance, where the numbers to be combined increase by a common difference, 

or by a common ratio, as 1357, 2468, or 124, or 248. The most useful case 

is where the number in each combination must amount to the same sum. The 

method of proceeding in this case is to fill up all the places except the last with 

the lowest numbers, the last place being occupied by the supplementary num¬ 

ber necessary to produce the given sum; then diminishing the last number: 

and increasing one of the preceding by the same amount, taking care not to 

allow a lower ever to follow a higher number. We give examples of sucli 
k 

combinations, the general formula for which is rC(l.... 7i). 

(1) ioC(i...7) —127, 136^ 145, 235. 

(2) hC(1...8)=1238, 1247, 1256, 1346, 2345. 

(3) 5C(0..5)n=0005, 0014, 0023, 0113, 0122, 1112. 

(4) 2oC(3....)to —33338, 33347, 33356, 33446, 33455, 34445, 44444. 

It is easy to be perceived that in two cases this kind of combination is im¬ 

possible. 1°. When the highest form does not amount to the required sum ; 

and, 2°. When the lowest form exceeds it, as in 

ioC(123)w, or ioC(4...)?i. 

207. Similar conditions may be imposed upon permutations. In order that 

the permutations of a given series of numbers, taken a certain number at a 

time, should amount ahvays to a given sum, the same rule will apply, with this 

difference, that lower numbers may follow higher; in other words, the com¬ 

binations formed by the previous rule may each be permuted. 

The following examples will render this more intelligible: 

(1) 9P(1..8) = 18, 27, 36,45, 54, 63, 72, 81. 

(2) 7P(i...) = 124, 142, 214, 241, 412, 421. 

(3) 6P(l...)w = 1113, 1122, 1131, 1212, 1221, 1311, 2112, 2121, 2211, 3111. 

(4) 4P(d..)n~013, 022, 031, 103, 112, 121, 130, 202, 211, 220, 301, 310. 

Under this head, also, two’contradictory cases occur: 1°. When the high¬ 

est form amounts to too little ; and, 2°. When the lowest form amounts to too 

much. As, for instance, in 
3 2 

9P(1..4)w, or9P(5...)?2. 

208. The applications of the theory of permutations and combinations are 

numerous. One of the most useful is the determination of the coefficients of 

a series of the form 

.. .-\-kx'^. 

especially the coefficients of the binomial formula, the method of determining 

which, by the theory of permutations and combinations, will be given here¬ 

after. 

Another extensive application of the theory of permutations and combina- 

These coefficients ai-e supposed to depend upon some given law. A common case is 

when the number of factors combined in each coefficient is indicated by the exponent of 
the letter of arrangement, x. 
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tions is to be found in geometric relations, such as where the combinations of a 

certain number of points, lines, angles, &c., from among a given number of 

these, are required. 

Not less useful is this theoiy in natural science : as in ciystalography, when 

the manifold forms of crystals are required; in chemistiy, when the various 

combinations of chemical elements; and in music, of consonant tones, &c. 

But perhaps its most important use is in the doctrine of chances, or, as it is 

mathematically named, the 

CALCULUS OF PROBABILITIES. 

The outlines of this extensive subject we shall here briefly indicate, referring 

the student, for further information to the admirable treatises of La Place 

and Lacroix, and to the practical work of De Morgan. 

I. Let there be among m possible cases g, which, as fulfilling certain requi- 
I 

sitions, are considered as favorable, {m—g)=u unfavorable. Then the ratio 

of the favorable to all possible cases is called the mathematical prohahility for 

the occurrence of a favorable case. The ratio of the unfavorable to all possi¬ 

ble cases is the mathematical improbability of the occurrence. If the first be 

expressed by if, the second by f, then 

w=— and v=~.(1.) 
mm ' '' 

The probability is, therefore, the less, the smaller the number of the fa¬ 

vorable in comparison with that of all possible cases, and vice versa. Should 

all possible cases be fiivorable, then if = 1, which is, therefore, the expression 

for certainty. Thus the mathematical probability and improbability of a pic¬ 

tured card, of which there are 12, being drawn from 52, are expressed by 

12 3 40 10 

that of drawing one card from 52, 

52 
«, = - = !. 

II. Let there be among m possible cases g favorable, of different (first, sec¬ 

ond, third, &c.) kinds, expressed by g^., ^3, &c., the partial probabilities 

by If,, ifo. If3, &c. ; then 

+ + /tt ^ ' 
. If =z=lf j -I-lf2 + '^3~h’ m 

that is, the probability of one of several different kinds is equal to the sum of 

their partial probabilities. Thus, for the probability of one of the six faces of 

a die, marked 1, 2, or 3, being thrown, we have 

111- 
lf,=:-,lf,=-,lf3=:-; 

11 1 3 1 

•■•’'’-6+6 + 6 = 6=2- 

III. Let the occurrence be favorable only on the supposition that two or 

more of the single favorable cases concur, then the formula for the compound 

probability is 

^f: :lf 1 
grXg.Xgi 

(III.) 

in which m^, m^i ^^3? &c., express the possible cases of the partial occurren- 
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ces ; that is, the probability of the compound occurrence is equal to the prod¬ 

ucts of the partial probabilities. For as each of the may concur with each 

of the WI2 cases, there will be mi X ^2 possible cases, which, by the super¬ 

vening of m3 new cases, increase to nii and so on. The same 

reasoning applies to the favorable cases g^, go-, g^i from whence, by the 

principles already established, results formula (III.)* Let it be required, for 

example, to draw out of a vase which contains the numbers 1, 2, 3, 4, 5, and 6, 

first 1, then either 2 or 3, and, finally, 4, 5, or 6, in three drawings ; the prob¬ 

ability is expressed by 

^~6^5^4~20' 

If the partial occurrences are equal (that is, repetitions of the same), then 

w— (—] . Thus, if with each of three dice, 6 shall be thrown, 
\m/ 

IV. Should there be m possible cases, of which g are favorable and u un¬ 

favorable, and of these k-\-r are to occur, so that k of the favorable, with r of the 

unfavorable, must come in juxtaposition, then the expression for the probabili¬ 

ty of the occurrence of every such order is 

This depends on (HI.), each of the factors in the above value of w ex¬ 

pressing the partial probability of the single occurrence of a 1st, 2d, ....^Ah 

favorable case, also of a 1st, 2d, ....rth unfavorable case, and the product 

expressing the probability of these occurring in a certain order. 

EXAMPLE. 

If from 20 tickets, 8 of which are prizes and 12 blanks, 6 are to be drawn; 

then, in favor of the requisition that exactly two ^prizes shall be first drawn, or 

shall occupy any given place in the order. 

w = (|)(^)x(l|)(li)(^)(^) = 77 

3230* 

V. Should there be required in the supposition of the last case no particu¬ 

lar order for the single cases which occur, the expression becomes 

g—k—1' 
w =(5 ■ (£)■■■ (^^) ■ (-^)■■■ ( ^)■ . . . (V.) 

k+r \m/ \m—k—1/ \m—k/ \m—k—r-f-1' 

Thus it will be found that, if from 30 appointed numbers out of 90, 5 of the 

whole 90 are to be drawn, so that just 3 of the 30 shall be among those drawn, 

it being immaterial at which three of the five drawings, the expression for the 

probability in this case is 

/5.4.3\ p0\/29\/28\ /60W59\ 20650 

\1.2.3/ * \^/ \^/ fe/ * \87/ \^/ “■126291* 

VI. Should the number of possible cases continue to remain the same, 

while the other circumstances are as in (V.), the formula would be 

k /g\^ / 
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EXAMPLE. 

The probability of throwing the same face three times in 7 casts of a die, 

or one cast of 7 dice, would be expressed by 

• 7.6.5/'l\3 /5\4 21875 

1.2.3\6/ \6/ ~279936‘ 

VII. Let the probability be required that of two different occuiTences the 

first, or, if this does not, the second, shall happen ; if the single probability of 

the first happening be expressed by the probability of its failing will be ex¬ 

pressed by 1 —w; this must be combined with the probability of the second 

happening, according to (III.), giving 

{l—Wi)W2 

for the probability of the second happening, if the first fails : then the com¬ 

pound probability required is expressed (II.) by 

\-\-W2—.W2‘ 

EXAMPLE. 

Required the probability of throwing with two dice, at the first cast 8, and, 

if this does not happen, 9 at the second cast. 

5^ 4/ 5\ 5. 4 31 19 

VIII. Above we have considered the absolute probability of the happening 

of an event; the relative probability of the happening of two events is ex¬ 

pressed by the formula 

w. Wc 

-, or 
IL\ + W2 Wi-\-lV2 

EXAMPLE. 

The relative probability of throwing with two dice rather 7 than 10, is ex- 

, , w’l 6 2 
by 

IX. When money depends on the happening of an event, the product of 

the sum risked, multiplied by the expression for the probability of the event 

on which it depends, is called the mathernatical exjoectation. If there be 

among cases, mi fiivorable for one party, and for the other, the 

sum risked by’the first Ui, and by the second Uj? then for the mathematical 

expectation of each we have 
V 

mi , ’ m2 
. (1) • • • (^) ei-. a2=iviaa 

mi + m^ ’’T'* ' ' ' mi-|-m2 
Therefore, when 61 = 62, it is necessary that ai: aj,—Wi \w.i. This principle 

is important in the subject of annuities and life insurance. For its application, 

and that of all the foregoing theory to which, see De Morgan on Probabilities. 

EXAMPLES. 

(1) How many binary combinations of oxygen, hydrogen, nitrogen, caibon, 

sulphur, and phosphorus ? How many ternary combinations of the same ? 

(2) How many combinations of 5 colors among those of the prism, viz., red, 

orange, yellow, green, blue, indigo, and violet ? 

* 12 and 2 can each be thrown with two dice but in one way, 11 and 3 each in two 
ways, 10 and 4 in three ways, 5 and 9 in four ways, 6 and 8 in five ways, 7 in six ways. 
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(3) What is the probability of throwing with three dice two equal num¬ 

bers ? with five dice, three equal ? 

(4) What of throwing with two dice the faces 2, 4, and 6 ? 

(5) What the probability that a dollar tossed twice will fall head up once ? 

(6) Of which is the probability greater, the drawing at three trials from 

52 cards tlu-ee cards of different colors, of which there are four, or three face 

cards, of which there are 12 ? 

(7) What of drawing out of a vase containing 5 white, 6 red, and 7 black 

balls, in two drawings, 2 red, or else a white and a black ball ? 

(8) What of drawing out of the same vase, in three drawings, 3 of differ¬ 

ent colors, or else 2 black and 1 white ? 

(9) What of throwing with four dice 15, or with three dice 12 ? 

METHOD OF UNDETERMINED COEFFICIENTS. 

209. The method of undetermined coefficients is a method for the expan¬ 

sion or development of algebraic functions into infinite series, arranged accord¬ 

ing to the ascending powers of one of the quantities considered as a variable.* 

The principle employed in this method may be stated in the following 

THEOREM. 

If &c., &c. (1), for all values 

of X, then must the exponents of x in the two members be the same, and the co¬ 

efficients of the same powers of r the same. For, dividing (1) by a:®, we have 

A-fBa:ia-«+Ca:^-a+, &c., =A'a:«-a+B'a:i3-«-f C'.rU-a_^, Ac. (2) 

Since X may have any value, make it zero; the first member thus reduces 

to A, while the second becomes zero, unless we suppose a equal to some one 

of the exponents a', /!', 7', .... Suppose it to be a'. Then we have a = a', 

and .*. A = A'. Suppressing the equal terms A and A'a:®'—« from the two 

^ members of (2), and dividing it by «, it becomes 

BJ^Cxr-PJf, &c., =B'x(i'-l^^Cxy'-(^-\-, &c. 

Making, again, a: = 0, the first member reduces to B, and the second to zero, 

which is absurd, unless we make /I equal to some one of the exponents of x, 

say /3', in tne second member, and then B=B'. Proceeding in this way, the 

exponents of x, and the coefficients of the same powers of x in the one mem¬ 

ber, may be pi’oved equal to those in the other. 

The above theorem may be expressed in a modified form; thus, if all the 

terms of (1) be transposed to the first member, it becomes, collecting the equal 

powers of x, a and a', (3 and /?', &c., 

(A-A')a:a-f(B—B')t^+(C —C').ry+, Ac., =0; 

from which, since A=A', B=B', Ac., we perceive that when a function of 

X is equal to zero for all values of x, the coefficients of the different powers of 

X are equal to zero separately. ; 

EXAMPLES. 
I 

(1)^ Expand the fraction   —- ^ into an infinite series. 

1 
Assume =ABr-j- Cx^ Dx^-f-.... , 

* A variable quantity is one which is either entirely indetenninate, so that it may have 

any value at pleasure, or one which varies in confomiity with certain conditions imposed. 
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in which some of the coeificients A, B, C, &c.-, may be zero, and thus certain 

powers of x be wanting; then, multiplying by 1—we have 

1=A4- B.r-f- Cx^-\- 

—2Ax—2Bx2 — 2Cx^—2Da:^—.... 

-f- A.r2+ Cr^-|-.... 
Hence, by the preceding theorem, we have 

A = 1 .*. A= . . . =1 

B—2A = 0 

C —2B + A = 0 

D_2C-f B=0 

E—2D + C = 0 

&:c. 

B=2A . =2 

C=2B —A=3 

Dr=2C—B=4 » 

E=2D —C=5 

&c. 

Therefore I=12.r-j-3.1’^ 4" + 1 — 2x-\-x'^ 

The equality of a function to a series is hypothetical; and after A, B, C,... 

have been found, the result must be carefully examined. If we put the func¬ 

tion -—-—rzrA-j-B.T+j &c., it gives the absurdity —1=0. We must put 
3:r—x^ 

method of indeterminate coefifi- 
3x—x^ 

cients is to be avoided where other methods will apply. 

(2) Extract the square root of 

Assume V1 -j-a:=A -j-B.r -j- C.r^ -f • • •, and square both sides; 

4-AB.t-}-B^.t'^ ••• 

4- AC.r^ 4- BC.r34- ^ . 

' * 4-AD.r34-BDri4- 

’ 4-ae2**4- 

Hence, equating the coefficients of the like powers of x, we have 

A= 1 A2=l 

2AB=1 

2AC4-B2=0 

2AD4-2BC=0 

B 
1 1 1 

” 2A “■ l-2~ 2 

B2 1 1 

“ 2A ~ 2-4 ~ 8 

BC 1 1 

E = 
2BD4-C3 1 

2A o ) 1 g4 S — 16 
&c. 

2AE4-2BD4-C2 = 0 

6cc. 

Therefore V14-^= i (1—1''^^*+ iV^—-) 

3.r—5 

128’ 

(3) Decompose 

nominators. 

x3_13a:4-40 
into two fractions having simple binomial de- 

By quadratics we find x'^ — 13a:4-40 = (a:—5)(a:—8); hence we may assume 

3x—5 a B A(.r—8)4-B(.r—5) (A4-B).r—8A—5B 

13a:4-40~a:—5 ' a?—8”“ (.r—5)(.r—8) ~ 

.*. 3.r—5t=(A4-B)a:—(8A4-5B) ; 

and by the principle of undetermined coefficients we have 

A4-B=3, and 8A4-5B=5. 

x^—13.r-{-40 
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Whence 
10 19 

A= —— and B=:—; and therefore we get 
O u 

3.T—5 61 3L 19 1 10 

— 13x-|-40 X—8 X—5 3'x—8 3 'x—5* 

Note.—The values of A and B might have been determined in the following 

manner: 

Since 
3.r—5 A B A(2:—8)-f-B(a:—5) 

a:2_13a:+40“.T —5 ' a: —8~ —13.r+40 

3a:—5 = A(a: —8)4-B(a:—5). 

Now this equation must subsist for every value of x ; and therefore, 

^ 15—5 10 
if a:=:5, we have 15—5=A{5 — 8); A = ——— = —; 

24—5 19 
ifa:=8, we have 24 — 5=B(8—5) ; B=z=———. 

' 8 — 5 3 

This method may frequently be employed with advantage, and will be found 

useful in the integration of rational fractions, in the Integral Calculus. 

EXAMPLES FOR EXERCISE. 

1—X 
(1) Expand ——- into an infinite series. 

J. ■’’T™ X ■ 

Ans. 1—2x-\-2x^—2.r^-j-~^—2a:®-|-. 

(2) Expand ■}/in a series. 

(3) Find the development of 

Ans. a- 

1 —X 

5x-« 

2a 8a3 iGa^ \2Qa^ 

14-2:+^^* 

Ans. 1 — 2x-|-x^-|“^^—2x'^-\~x^-\-x^—2x’^-|".^* • • • • 

2x-f 3 
(4) Decompose the fraction ■ -——. 

X I X /^X \ 

o o 
Ans. —— 

2x 6(x4-2)^3(x—1) 

1 —j— 2.77 
(5) Expand the fraction ~ in a series. 

Ans. 14-5x+15x2+45.24+135x1+ 

X2 . 
(6) Resolve ———7—-7—;——- into partial fractions. 
' ' (x+l)(x+2)(x+3) ^ 

Ans. 
2(x+l) x+2^2(x+3)’ 

13+21x+2.x2. 
(7) Resolve —53^2^4^ ' partial fractions. 

Ans. 
16 

1+x 1—x"^l + 2x~^l—2x* 

* When the denominator is composed of equal factors, such as (x+a)3, [x—b)% it will be 
necessary to assume the given function equal to 

A . B . C . D . E 

{x-\-aY~' x-\-aN{x-\-b)^' (x—b)^‘ 

R 
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a — 'bx 
(8) Expand —^-to four terms. 

a-\-cx 

Ans. l_(6+cy^+c(6+c)^_c2(& + c)^-|-, 
'a^ 

x-\-2 
(9) Resolve ——;;; into partial fractions. 

X^—X 

Ans. 
3 2 

2(a:-|-l) ' 2(a;—1) x 

X 
(10) Resolve -jp.-^ into partial fractions. 

^ IX ) \ X " I CC J 

Ans. ^ 
3^ x^ X 2(1—xy 4(1—x) 4(l-j-.T) 

x"^ 
(11) Expand to-four terms. 

2a 3a^ 4a‘’ 

(12) Resolve ——- into partial fractions. 
*c» X 

Ans. 
4(a:—1) 4(.r+l) 2(a;2 4-l)* 

LOGARITHMS. 

210. Logarithms are artificial numbers adapted to natural numbers, in 

order to facilitate numerical calculations; and we shall now proceed to explain 

the theory of these numbers, and illustrate the principles upon which their 

properties depend. 

Definition.—In a system of logarithms, all numbers are considered as the 

powers of some one number, arbitrarily assumed, ivhich is called the base of 

the system, and the exponent of that power of the base which is equal to any 

given number is called the Logarithm of that number. 

Thus, if a be the base of a system of logarithms, N any number, and x such 

that 

N=a*, 
then X is called the logarithm of N, in the system whose base is a. 

The base of the common system of logarithms (called, from their inventor, 

“ Briggs’s Logarithms”) is the number 10. Hence, since 

(10)°= 1, 0 is the logarithm of 1 in this system,- 

(10)^= 10, 1 is the logarithm of 10 in this system, 

(10)^= 100, 2 is the logarithm of 100 in this system, 

(10)°= 1000, 3 is the logarithm of 1000 in this system, 

'(10)'* = 10000, 4 is the logai-ithm of 10000 in this system, 
&c. = &c. &c. .. 

211. In order to have the numbers corresponding to the logarithms 1, L or 

0.5, I or 0.25, &c., it is necessary to extract the square, 4th, and so on, root 

of 10, or to extract the square root successively, as exhibited in the following 

table : 
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Kumher of times that the 
square root is extracted 
successively. 

Numbers. 
V 

Exponents ’ 
or 

Logarithms. 

0 10,000 0000 1,000 0000 
1 3,162 2777 0,500 0000 
2 1,778 2794 , 0,250 0000 
3 1,333 5214 0,125 0000 
4 1,154 7819 0,062 5000 
5 1,074 6078 0,031 2500 
6 1,036 6329 0,015 6250 

7 1,018 1517 0,007 8125 
8 . 1,009 0350 0,003 9062 
9 1,004 5073 0,001 9531 

10 1,002 251.1 0,000 9765 
11 1,001 1249 0,000 4882 
12 1,000 5623 0,000 2441 

13 1,000 2811 0,000 1220 
14 1,000 1405 0,000 0610 
15 1,000 0702 0,000 0305 
16 1,000 0351 0,000 0152 

17 1,000 0175 0,000 0076 

18 1,000 0087 0,000 0038 ! 

19 1,000 0043 0,000 0019 

20 1,000 0021 0,000 0009 

21 1,000 0010 » 0,000 0004 
22 1,000 0005 0,000 0002 

23 1,000 0002 0,000 0001 
24 1,000 0001 0,000 0000 

By means of the above table, to calculate the logarithm of any number (A) 

betvs^een 1 and 10 accurately to 5 places of decimals, take out from tlie second 

column the nearest number to A, but less, and divide A by this. Take out, 

again, the next less number than the quotient B, as a divisor for B, and so on 

until the last quotient contains only millionths ; the logarithm sought is the 

sum of all the exponents or logarithms in the third column corresponding to 

the divisors used from the second. For, calling these exponents a, 

we have 

A _ B C D 

10“ 10^ 10*^ 

A=10“B=10“xlO^Cz=10“xlO^XlO^'D = 10“.10^.1o’'.10^, 

A = 10“+^+^+^-'*. 

Any exponent beyond 6 being added to the others would not affect the 

millionth place, or fifth decimal. Q. E. D. 

Now, inasmuch as all numbers lying between the 1st, 2d, 3d, &c., powers 

of 10 must have broken numbers for logai’ithms, these numbers will be of the 

a+-' a - ( 
form 10 ""rzrlO .10'" ; hence the calculation of their logailthms will in every 

case depend on the calculation of a fractional logarithm such as has been just 

exhibited. 

A table of logarithms is a table containing all numbers from 1 up to 10000 

or 100000, or some high number, with their corresponding logarithms. 

These tables are made with certain abbreviations and conveniences, which 

we shall presently explain. 

From the scheme of numbers in (210) it appears, that in the common sys¬ 

tem the logarithm of every number between 1 and 10 is some number between 
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0 and 1, i. e., is a fraction. The logarithm of every number between 10 and 

100 is some number between 1 and 2, i. e., is 1 plus a fraction. The logarithm 

of every number between 100 and 1000 is some number between 2 and 3, i. e., 

is 2 plus a fi-action, and so on. The whole number, or integral part of the 

logariliim, is called the index, or, more commonly, the characteristic. 

212. In the common tables of logarithms the fractional part alone of the 

logarithm is registered, and from what has been said above, the rule usually 

given for finding the characteristic, or index, will be readily understood, viz. : 

Idle index of the logarithm of any number greater than unity is equal to one 

less than the number of integral figures in the given number; for if the num¬ 

ber be between 10 and 100, it will contain two integral figures ; if between 100 

and 1000, it will contain three, and so on. Thus, in searching for the logarithm 

of such a number as 2970, we find in the tables opposite to 2970 the number 

4727564; but since 2970 is a number between 1000 and 10000, its logarithm 

must be some number between 3 and 4, i. e., must be 3 plus a fraction ; the 

fractional part is the number 4727564, which we have found in the tables; 

prefixing to this the index 3, and interposing a decimal point, we have 3.4727564, 

the logarithm of 2970. 

We must not, however, suppose that the number 3.4727564 is the exact 

logarithm of 2970, or that 
2970 = (10)3-4737564 

accurately. The above is only an approximate value of the logarithm of 2970; 

we can obtain the exact logarithms of very few numbers; but, taking a sufficient 

number of decimals, we can approach as nearly as we please to the true 

logarithms. 

213. It has been shown that in Briggs’s system the logarithm of 1 is 0 ; con¬ 

sequently, if w’e wish to extend the application of logarithms to fractions, we 

must establish a convention by which the logarithms of numbers less than 1 

may be represented by numbers less than zero, i. e., by negative numbers. 

Extending, therefore, the above principles to negative exponents, since 

1 
-- or (10)-i=0.1, —1 is the logarithm of .1 in this system, 

1 
or (10)~2=:0.01, —2 is the logarithm of .01 in this system, 

or (10)-3=o.001, —3 is the logarithm of .001 in this system, 

or (10)“4=r 0.0001, —4 is the logarithm of .0001 in this system, 

&c. . dec. 

It appears, then, from this convention, that the logarithm of every number 

between 1 and .1 is some number between 0 and —1 ; the logarithm of every 

number between .1 and .01 is some number between —1 and —2; the 

logarithm of every number between .01 and .001 is some number between 

'—2 and —3, and so on. 

From this will be luiderstood the rule given in books of tables for finding 

the characteristic, or index, of the logarithm of a decimal fraction, viz.: The in¬ 

dex of any decimal fraction is a negative number, equal to unity, added to the 

number of zeros immediately following the decimal point. Thus, in searching 

for a logarithm of the number such as .00462, we find in the tables opposite to 
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462 the number 6646420; but since .00462 is a number between .001 and .01, 

its logarithm must be some number between —3 and —2, i. e., must b.e —3 

plus a fraction; the fractional part is the number 6646420, which we have 

found in the tables; therefore —3-{-•6646420 is the logarithm of .00462. It 

is customary to write the sign — over tlie characteristic to show that it aftects 

that alone, and not the decimal part of the logarithm, whi( h is positive; thus, 

3.6646420. 

GENERAL PROPERTIES OF LOGARITHMS. 

214. Let N and N' be any two numbers, x and x' their respective logarithms, 

a the base of the system. Then, by definition. 

N =a^.(1) 

N'=a^'.(2) 

I. Multiply equations (1) and (2) together, 

NN' = (2M^' 

.•. by definition, x-{-x' is the logarithm of NN'; that is to say, 

The logarithm of the 'product of two or more factors is equal to the sum of the 

logarithms of those factors. 

II. Divide equation (1) by (2). _ 

N a* 

N 
.’. by definition, x—x' is the logarithm of ; that is to say, 

The logarithm of a fraction, or of the quotient of two numbers, is equal to the 

logarithm of the numerator minus the logarithm of the denominator. 

III. Raise both members of equation (1) to the nXh power. 

.♦. by definition, nx is the logarithm of N"; that is to say. 

The logarithm of any power of a given number is equal to the logarithm 

of the number multiplied by the exponent of the power. 

' IV. Exti-act the n'-^ root of both members of equation (1). 
l X 

N"=u". 

a: 1 
.•. by definition, — is the logarithm of N“; that is to say, 

'TV 

The logarithm of any root of a given number is equal to the logarithm of the 

number dAvided by the index of the root. 

Combining the last two cases, we shall find 
m mx 

m,x ™ 
whence — is the logarithm of N". 

n 

It is of the highest importance to the student to make himself familiar with 

the application of the above principles to algebraic calculations. The following 

examples will afford a useful exercise : 

(1) Log. (a, b,c,d.)= log. «-{- log. 6-j- log. c-f- log. d.... 
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(3) 

(^) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

Log. {a^b^c'P....) =m log. a-\-n log. i-\-p log. c.... 

Log. \—^j=m log. a-\-n log. b—p. log. c. 

Log. (a^—.T^)=log: {a-\-x)x{a—x)= log. (a-f.r)-}- log. {a—x). 

- 1 / 1 / 
Log. log. (a+2r) + - .og. {a—x). 

1 3 15 
Log. (a^ v^^)= log- <^^+4 log. a^=3 log. «4'4 log- l°g* 

-m m 
Log. V(«^—log- {a-x)-^— log. {a^J^ax-\-x'^) 

m j 
=“!log- log- {a-{-x-{-z)-{- log. {a+x—z)l 

where z^z=ax. ' 
/• 

Log. -v/a2_j_^2__|iQg. (^_^x-l-2:)+ log. (a4"^—z)},'where z^=2ax. 

(p_2^^ \ 

^®S--^^=2flog. {a—x) —3 log. (a+z:)}. 

TABLES or LOGARITHMS. 

'^he principal French tables are those of M. Callet, an American edition of 

which has been made by the late Mr. Hasler. The first of these tables, 

marked Chiliade I., occupying only five pages, contains the series of numbers 

from 1 up to 1200, with their logarithms expressed to eight places of decimals, 

the numbers being in the column marked N, and their logarithms in the column 

marked Log.* The second table, which is of far greater bulk, exhibits the 

logarithms ot all entire numbers from 1020 up to 10800. The numbers are in 

the column entitled N, and their logarithms in the following column, marked 0. 

The characteristics of the logarithms are not written in the tables, since they 

may be known without, being always one less than the number of digits of 

which the number to which the logarithm belongs is composed. The logarithms 

of numbers containing one figure more than those in the column N, are found 

by means of the columns marked at top 1, 2, 3, ... 9. Thus, to find the 

logarithm of 27796, seek in the column N the number 2779; run along the 

horizontal line which contains this number to the column marked 6; you find 

there the last four figures of the logarithm sought: the first three figures of it 

are found in the column marked 0, to the left of the period, on the same 

horizontal line, or a little above. You obtain thus, after prefixing the proper 

characteristic, 

log. 27796 = 4.4439823. 

It will be seen, by inspecting the tables, that the differences of the-consecu¬ 

tive logarithms is constantly the same for a considerable number of them, and 

as the differences of the consecutive numbers is also constant, it follows that 

* This table also oontains an aiTangement for reducing- minutes and seconds to seconds 

•without the ti'ouble of multiplying by 60. Thus, on the fourth page, we find 12^ in the first 
of the columns marked log., and against 20, in the fii'st column marked ", we find 740, 

whicli is the number of seconds in 12' 20". By this an-angement we find readily the 

logai-ithm of the seconds in any given number of minutes and seconds, which is often con¬ 

venient in astronomical calculations. It is evident that these nmnbers might be considered 

as degrees and minutes, or hours and minutes, as well as minutes and seconds. 
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the differences of the logarithms are proportional to the differences of the 

numbers. Suppose, then, that the logarithm of 14518469 were required. 

From the tables we find, as before, neglecting for the present the charac¬ 

teristic (see a page of the tables of Callet at the end of this volume), 

log. 14518 = 1619068. 

This is also the logarithm of 14518000, which differs from the logarithm of 

the next number 14519, or 14519000, viz., 1619367 by 299, while the num¬ 

bers themselves differ by 1000. But the number 14518000 differs from the 

given number 14518469 by 469, the last three figures not yet used; hence 

the proportion 
D if. No?. D If. Logs. Dif. Nqs. Dif.ofLogs. 

1000 : 299 :: 469 : .•r=141, 

which result, added to 1619068, gives 7.1619209 for the logarithm required, 7 

being the proper characteristic for the logarithm of a number consisting of 

eight figures. 

299 
The proportion is solved by multiplying the difference 469 by 

2 9 9 
—4--4-—-"-. Now, by inspecting the last column of the page, this difier- 

ence, 299, will be found ready calculated, and its product as nearly as it can be 

12 3^ 
expressed in two or three figures by —, —, —, &:c., or .1, .2, .3, &c., the 

multiplier being in the left hand and the product in the right hand of the two 

small columns of figures under the difference, 299. These multipliers may be 

regarded as hundredths or thousandths, only giving the products their proper 

place. With this explanation, the following calculation will be understood : 

Log. 14518   1619068 

0.4   120 

0.06 .^. 18* 

0.009 .'. 3 

Log. 14518469 .7.1619209 

215. To find the number corresponding to a given logarithm, say 1619209, 

look in the column marked 0 for the nearest less logarithm, and take the cor¬ 

responding number, which is 1451. Run the eye along the-horizontal line till 

the number most nearly approaching 9209, forming the last four figures of the 

given logarithm, is found. This is 9068, which is found in column 8. Sub¬ 

tract this from 9209, and the difference is lll. Find in the right hand of the 

two columns of small figures marked dif. et p., or simply dif., at the top of the 

page, the nearest less number than 141; this is 120, which answers to 4 hi 

the left hand. The difference between 120 and 141 is 21. Multiply 21 by 

10, and seek, as before, in the small column, the number neai’est 210; this is 

209, which answers to 7. The calculation is below. 

Log. x=1619209 

For 1619068 . 14518 

First remainder, 141 . 04 

Second remainder, 21. 007 

a:=1451847. 

The numbers 4 and 7 thus found may be simply annexed to 14518. 

* The numbei' in the table is 179 ; but, as the 9 is rejected, the 7 is increased by 1, since 

179 is nearer 180 than 170. 
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If the characteristic of the logarithm had been 

6, the number would have been 1451847; 

5, the number would have been 145184.7 ; 

4, the number would have been 14518.47 ; 

1, the number would have been 

0, the number would have been 

1, the number would have been 

2, the number would have been 

14.51847; 

1.451847; 

.1451847 ; 

.01451847. 

This table contains in the first three columns an arrangement for reducing 

any number of degrees, minutes, and seconds, or hours, minutes, and seconds, 

to seconds, which is particularly useful in astronomical calculations, where the 

logarithm of the number of seconds in a given number of degrees, minutes, and 

seconds is frequently required. 

EXAMPLE I. 

Reduce 0° or O'* 24' 57" to seconds. In the table (see last page), at the 

head of the first column, find 0°, and immediately under it 24'; descending 

this column to 55", near the bottom, and opposite 57", which is understood to 

be two numbers below, is found 1497, the number of seconds required. 

If the degrees or hours exceed 3, the proceeding is different. 

EXAMPLE II. 

To reduce 4° or 4'* 2' 39" to seconds. Find 4° 0' at the head of the 

second column, and below, in this same column, 2' 30", to which corresponds, 

in the third column, 1455. Thus, 4° 2' 30"=14550" .-.4° 2' 39"=14559". 

EXAMPLES OF THE APPLICATION OF LOGARITHMS. 

(1) To find the value to within 0.01 of the expression 

7340x3549 
x=- 

681.8X593.1 

By the properties of logarithms, 

log. x=. log. 7340-j- log. 3549— log. 681.8— log. 593.1. 

The following is the calculation : 

log. 7340 = 3.8656961 

log. 3549 = 3.5501060 

sum =7.4158021 

log. 681.8 = 2.8336570 

log. 593.1=2.7731279 

sum =5.6067849 

First sum, =7.4158021 

Second sum, =5.6067849 

Diff. or log. r= 1.80901^ 

216. The arithmetical complement of a logarithm is what remains after the 

logarithm is subtracted from 10. Thus, the arithmetical complement of the 

logarithm 2.7190826 is 10 — 2.7190826 = 7.2809174, which is obtained by be¬ 

ginning on the right and subtracting each figure (carrying 1 to all except the 

first) from 10, or beginning on the left and subtracting each figure of the 

logarithm from 9", except the last, which is subtracted from 10. 

217. The operation of subtraction of logaiithms can be replaced by addition, 

if we use the arithmetic complement; for if, to a given logarithm, log. a, we 

add the arithmetical complement of another logarithm, such as 10— log. h 

we have ^ 
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log. ct-j-lO—log- 

from which, rejecting 10, the result is ' 

log. a—log. 6, 

the same as would be obtained by simply subtracting the second logarithm 

from the first. 

We have then the following rule for operating with arithmetical comple¬ 

ments : Add the arithmetical complements of the logarithms of the divisors and 

the logarithms of the multipliers of a formula together, rejecting It) from the 

sum for every arithmetical complement employed. 

The above example would be wrought by this rule as follows ; 

log. 7340 = .3.8656961 

log. 3549 = 3.5501060 

ar. comp. log. 681.8 = 7.1663430 

ar. comp. log. 593.1=7.2268721 

sum rejecting 20 = 1.8090172=log. x, .*. 3: = 64.42. 

We thus obtain the same result as by the other method. The number cor¬ 

responding need be, taken from the tables only to four figures, because, the 

characteristic being 1, the entire part of the number will contain but two 

places, which will leave two places for the decimal part, as required, since the 

value of X was to be obtained to within 0.01. 

(2) To find the value within 0.00001 of the quotient. 

( ^146298)'^ 
x=—-  .. 

(V988789)5 

By the rules, 

log. .r=|log. 146298—flog. 988789, 

and the calculation will bo as follows : 

ilog. 14629R. 

log. 14629   0.1652146 

for 0.8. 238 

log. 146298 . 5.1652384 

product by 4 . 20.6609536 

quotient by 5 . 4.1321907 

I log. 988789. 

log. 98878 ...’.. 0.9950997 

for 0.9. 40 

log. 988789 . 5.9951037 

product by 5 . 29.9755185 

quotient by 6 . 4.9959197 

146298 = 4.1321907 

ar. comp. flog. 988789=5.0040803 

sum —10, or log. x=l.1362710 

.•.a:=0.13686. 

li <5 

(3) Required by means of logarithms. 

13 log. 1.1139434 

27 log. 1.4313638 

11)1.682^796 

.9357149 log. 1.9711436 

I 

The division by 11 is performed by adding —10 to the negative part of the 

logarithm and -j-10 to the positive. 

The logarithm to be divided is viewed as if written thus : 

-ll-f 10.6825796. 
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EXERCISES IN LOGARITHMS. 

(4) Calculate the logarithm of 8 from the table on page 259. 

(5) Also of 7, 70, 700, 7000, 70000. 

(6) Also of 356, 35600, 3560000. 

(7) From the tables find the logarithms of 314, 3.721, 41.2. 

(8) Also of 7315, 8416, 91.75, 34760, 1708000. 

(9) Find the numbers the logarithms of which are 0.13130, 4.56502. 

(10) Also those the logarithms of which are 3.6520528, 7.4891144. 

(11) Those the logarithms of which are 4.49010, 0.66200, 5.72403. 

(12) Find by proportional parts the logarithms of 314761, 440736, 37025400, 

2111768. 

(13) Also of 22.3345, 137.2014, 46.27835. 

(14) Of .75, .341, .7391, .0347, .000536, .0000083. 

(15) Of-, 

(16) Find the logarithm of the product of 9.734 and 5.639. 

(17) Also of 35.98 X 7.433 X 6.543 X 29.78. 

(18) Also of 22.74X31.201 X0.0067X0.9298. 

(19) Divide 3758000 by 4986 by means of logarithms. 

(20) Also 16.87:0.07658 and 1.687:7658. 

(21) Also 14.307:30415, 761.23:0.01871, 3.16:0.942. 

, ^ 7 125 31 734 1 
(22) Find the loganthm of j--, —, —, —, —. 

(23) Find the power (5486)^ by means of logarithms. 

(24) Also the powers (37.49)^, (106.4)5, (0.032)^ (7.0034)^. 
/1\32 /3\4 /l\5 /3\4 /127\13 

(25) Also , \^j , y—j , • 

'-V )/ • 

100 
100/ 

(,+!)•, (,+!)■ ( 

(27) Find the cube root by logarithms of 1728000. 

(28) Also V34-782, ^"23990, V628.73. 

11337 19466 1120300 
(29) Aho ^2239' y887V KJ 7098 ’ \^0-0682. 

(30) Also ='-^7368, '745390000, ^800.9. 

(31) Also '^(1347)8, V(70.44)", 7(8.664)'9. 
1/1722\5 l/0.006\25 l/72.93\7 

(32) ^^so y (3347) 
8.48 ■) .086/ 

(33) Find by means of logarithms, using the arithmetical complement, the 

27630X2678X5428 

value of Y^40x 5302X7013’ 

207.3 X 50.66 X 38.09 X 2713 X 0.098 
(34) Also of 

10.8 
(35) Also of 

344 X 0.763 X 0.4 X 6984 X 7034.2 

85762 X 0.00853 

58913X86.24 ’ 

GAUSS LOGARITHMS. 

218. The common logarithms, or logarirtims of Briggs, are applicable only to 

the operations of multiplication, division, formation of powei’s, or extraction of 

roots, and do not apply when the required operation is that of addition or sub- 
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trnction, indicated in formulas by the quantities to be operated upon being con¬ 

nected by the signs and —. ' 

A system of logarithms has, however, been invented by Gauss,* designed 

exclusively for sums and differences. The arrangement of these tables, which 

contain three columns, marked A, B, C, is founded upon the following simple 

considerations. 

We have for the form of a sum and of a difference p—g, the follow¬ 

ing identities: 

J'+9=i’(^). 

. 

•• log- {p+g)=^og-p+ log- (■^“) 

d log. {p — q)= log. p— log. (-^) 

(1) 

(2) 

(3) 

The logarithms of the siimp-f-^ and the difference p — q appear, therefore, 

in these formulas, equal to the sum or difference of two logarithms, the first 

of which is to be considered as directly given, but the second of which must 

be found by the Gauss tables. They contain, 

T. In the column A logarithms of numbers of the form increasing from 

0.000 to 5.000. 

11. In column B logarithms of numbers of the form (^\ 
from 0.30103 to 0.00000. 

III. In column C logarithms of numbers of the form 

p } 
, decreasing 

, increasing from 

0.30103 to 5.00000. 

Now, therefore, inasmuch as log. P— ?? by the tables of 

common logarithms, the first thing to be done is to take the difference of the 

common logarithms of p) and q, enter with this column A in the Gauss loga¬ 

rithms. and take out the corresponding number from column B. The addition 

of diis number to logarithm will give, according to (3), the logarithm sought 

ofp+<7. ^ ; 
In order to find the logarithm of the difference p — g, by means of the loga¬ 

rithms o^p and g, two cases must be considered : 

p 
1°. Where .•. log. — log. gC^O.30103, it is only necessary to enter 

Avith this difference column B, and to subtract the adjoining logarithm of 

column C from logarithm g?. For, corresponding to the logarithms of numbers 

of the form (—J in B, C contains the logarithms of those of the form (—-—). 
\g/ ^ W —9/ 

V- 2°. If "^>2 .*. log. g?— log. g>0.30103, and, tlierefore, is contained in 

the column C ; subtract the coiresponding logarithm in column B from loga- 

* They are found in the latest edition of the tables of Vega, and those edited by Kohler. 
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P 
rithm p : because, if the numbers in C are considered =—, the corresponding 

P 
numbers in B ai’e =- 

p — q 

The existence of the foregoing relations between B and C is easily per¬ 

ceived if we substitute in II. and III. the value p — q for p, and afterward q 

for^ — q. 

EXAMPLES. 

(1) Let log. p = 3.24502 and log. ^ = 2.74194, to find log. {p-\-q). We 

enter column A with the log. ^— log. gz=0.50308, and the corresponding log. 

in column B = 0.11861, .•. 

log.p-|-B=3.24502-l-0.11861=3.36363= log. 2310. 

(2) From log. p = 3.32675 and log. ^=2.09482, to determine log. {p—q). 

Find by means of proportional parts for the value of log. p— log. q in column 

B the corresponding log. in C = 0.38325; consequently, 

log.^j —0 = 3.32675 —0.38325 = 2.94350= log. 878. 

(3) From log. p = 2.64207 and log. <7 = 1.87640 the log. of {p — q) is found 

by subtracting from the nearest value of log. p)— log. ^=0.76567, in column 

C, the corresponding log. from B =0.08171. Thus, 

log. ^ — 11 = 2.64207—0.08171=2.56036= log. 363.4. 

The Gauss logarithms would be applicable in the solution of the exponentials 

on page 269. 

(4) Find by the Gauss logarithms the log. of ^200-j- ^100. 

(5) Also the log. of [(0.7345f-f (0.2349)^]. 

(6) Also the log. of the difference ( V36— \/27). 

(7) Also of I (1.237)1-*—(0.9864)15 

219. Let us resume the equation 

N=a*. 

1°. If u^l, making .t = 0, we have N = 1 ; the hypothesis .r=l gives 

N = u. As X increases from 0 up to 1, and from 1 up to infinity, N will in¬ 

crease from 1 up to a, and from a up to infinity ; so that x being supposed to 

pass through all intermediate values, according to the law of continuity, N in¬ 

creases also, but with much greater rapidity. If we attribute negative values 

to x, we have N = a~’', or N=—. Here, as x increases, N diminishes, so 

that X being supposed to increase negatively, N will decrease from 1 toward 

0, the hypothesis .^=00 gives N = 0 ; z. e., the logarithm of zero is an infinite 

negative quantity. 

1 ^ <1 
2°. If put a=^, where 6>1, and we shall then have N=^, or 

N = 6^ according as we attribute positive or negative values to x. We here 

arrive at the same conclusion as in the former case, with this difference, that 

when X is positive N<^1, and when x is negative N^l. 

3°. If a = l, then N = l, whatever may be the value of .r. 

From this it appears that, ^ 

I. In every system of Logarithms the logarithm ofl is 0, and the logarithm 

of the base is 1.' 
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II. If the base be ^1, the logarithms of numbers ]>1 are jpositive, and the 

logarithms of numbers <!^1 are negative. The contrary takes 'place if the base 

be -^1. 

III. The base being fixed, any number has only one real logarithm ; but the 

same number has ma,nifestly a different logarithm for each value of the base, so 

that every number has an infinite number of real logarithms. Thus, since 

9^ = 81 <and 3'‘=81, 2 and 4 are the logarithms of the same number 81, accord¬ 

ing as the base is 9 or 3. 

IV. Negative numbers have no real logarithms; for, attributing to x all 

values from- —oo up to -j-oo , fiiid that the corresponding values of N are 

positive numbers only,fro7n Q up to -{-cc . 

220. In order to solve the equation 

c-=:a^, 

where c and a are given, and where x is unknown, we equate the logarithms 

of the two members, which gives us 

log. c=x log. a. 

Whence 

log. c 
x= -. 

log. a 

To determine the value of rr in the equation 

. =P, 

we have 

B C 

+5= +.)=P’ 

or 

Qa* =P, 

substituting Q for the term in the parenthesis. 

log. P— log. Q 
.*. x=. 

log. a 

If we have an equation a’^=b, where z depends upon an unknown quantity, 

X, and we have 

z=k.x^ -|- Ba:"“^ -j-. 

Since z= ^ —K some known number, the problem depends upon the solu- 
log. a 

tion of the equation of the n^^'" degree 

K=Aa:"-|-Ba;”“^-|-.. 
For example, let 

/0\ x2—5X-4-4 

^(3-) 

Hence 

= 9. 

, /2\ / 9 (.r2_5a._^4) ]og. _ log. _ 

.'. x"^—53:-f-4 =—2;* 

an equation of the second degree, from which we find X—2, x=3. 

9 
^ This result may be readily seen by observing that y-J =- 

, 3 , 9 
2 log. -= log. -, and loi 

ii 4 
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To find the value of x from the equation 

1 aking the logarithms of each member, 

^ = ^+(^—T) log-/ 

or 

(m log. c-{- ]og.f)x^—{n log. fe+p log./).r-4-a log. 6 = 0, 

a quadratic equation, from which the value of x may be determined. 

Ill like manner, from the equation 

we find 

log. a— log. 6 
x=- 

'm log. c—n log. 6* 

Equations of this nature are called Exponential Equations. 

To resolve the exponential equation 

/n7y 8493 

\i^/ ~ 73 

By the rule, 

a:(log. 117— log. 337)= log. 8493— log. 73 

log. 8493— log. 73 
x= 

log. 337— log. 117 

8493 log. 3.9290611 337 log. 2.5276299 

117 log. 2.0681859 

Calculation, 

193 ] 

73 log. 1.8633229 

diff. 2.06573f^ . . ... . . log. 0.3150752 

diff. .0.4594440 log. 1.6622326 

4.49616 log. = diff. 0.6528426 

This example admits the use of the Gauss logarithms. 

Let 10’' = —100 .-. a: log. 10= log. (—100) ; log. (—100) here must be re¬ 

garded, like an imaginary quantity, as a symbol of absurdity. It is evident that 

there is no power of 10 equal to —100. 

221. Let N and N-j-1 be two consecutive numbers, the difference of their 

logarithms, taken in any system, will be 

log. (N + 1)— log. N= log. (^^)= log. + 

a quantity which approaches to the logarithm of 1, or zero, in proportion as 

^ decreases, that is, as N increases. Hence it appears that 

The difference of the logarithms of two consecutive numbers is less in propor¬ 

tion as the numbers themselves are greater. 

Let a’' = N and 6^ =N ; then we have ’ 

x= log. N to the base a, or .r= log. aN* 

?/= log. N to the base 6, or y= log. bN. 

Hence log. aN= log. log. ,,6 (Art. 214, HI.) ; 

.-. x=zy log. Jj, 

* Understanding by the notation log. aN the logarithm of N in the system whose base 

is a. 
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and 

^ loff. . X j (■^) 

and by means of this equation we can pass from one system of logs, to another, 

by multiplying .r, the log. of any number in the system whose^base is a, by the 

reciprocal of log. b in the same system; and thus we shall obtain the log. of 

the same number in the system whose base is 6. 

The factor ^-7 is constant for all numbers, and is called the Modulus, 
log.a6 

that is to say, if we divide the logs, of the same number c, taken in two sys¬ 

tems, the quotient will be invariable for these systems, whatever may be the 

value of c, and will be the modulus, the constant multiplier which reduces the 

first system of logs, to the second.* 

If we find it inconvenient to make use of a log. calculated to the base 10, we 

can in this manner, by aid of a set of tables calculated to the base 10, discover 

the logarithm of the given number in any required system. 

For example, let it be required, by aid of Briggs’s tables, to find the log. of 

2 . , 5 
- m a system whose base is -. 

Let X be the log. sought, then by (A) 

2 
log-o 

.r= 
5 

log. 2- log. 3 

’log. 5— log. 7 

Taking these logs, in Briggs’s system, and reducing, we find 

— 0.17609125 
a;=- 

•0.14612804 

2 5 
= 1.2050476= log. - to base -. 

2 3 
Similarly, the log. of -, in the system whose base is is 

O /V 

.T = ; 
log. 2— log. 3 

•1, log. 3— log. 2 

which is manifestly the true result: for in this case the general equation 

N=a’^ becomes -= , and x is evidently =—1. 

In a system whose base is a, we have 

n=a 
log. n 

for, by the definition of a logarithm in the equation x is the log. n. 

In like manner. 

* The term Modiihif;, of a system of logarithms, is generally understood to be the num- 

.ber by whi'di it is necessary to multiply Napierian logarithms of numbers; in order to ob¬ 

tain the logarithms of the system in question. The peculiar character of Napierian loga¬ 

rithms will be presently explained. 
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EXAMPLES FOR EXERCISE. 

(1) Given 2^^-{-2^ = 12 to find the value of x. 

(2) Given x-\-y = a, and 7nS^~'^'> = n to find x and y. 

(3) Given m'^n^z=.a, and hx=zky to find x and y. 

ANSWERS. 

(1) a:=l’584962, ora:=log. (— 4)-^ log. 2. 

(2) .'r=^|a-|-log. 72-^ log. and y = ^\a—log. w4-log. m}. 

(3) X— log. «-^(log. 7n-{- log. n) and 2/=^ log. a-^(log. fn-\- log. n) 

THE EXPONENTIAL THEOREM. 

222. It is required to expand a* in a series ascending hy the jpoioers of x. 

Since a=l-j-a—1, therefore a^=|l-j-(a — and by the binomial theorem 

we have 

c , ) — 1) —1)(3^—2), ll + («-l)|^=l+x(a-l)+A^(a_l).+-L__^L-'(a_i)3+.... 

= l + {(a-l)-i(a-l)3+l(a_l)3_J(«-l)4+....}T+B2:= 

,+C.r3... 

where B, C.... denote the coefficients of x^.; and if we put 
A=(a-l)_i(a_iy^+^(a_l)3+i(«_i)4+. 

Then a=‘ = 14-Aa;-j-B.r2_|-C.r3-}-G.r*-|-Ear®-f-. 

For a: write x-\-h ; then we have 

^x+h _ 1 A (:r+/i) + B (2’+7^)24-C (2’+/i)34- 

= l-f-A2 -f- B.r^ 4“ C23 -j- Dr* 4“ 

4-A/i -\-2^xli-\-3Cx%-\-iDx% 4“ 

4- B;i2^3C.T;i2 4_6D.r2/i2 4. 

4- Ch^ 4“4D2/i3 4- 

4- D¥ 4- 

But a’'+’"=a’'X (14-A24-B224“C.2^4‘ • • • — 
= 1 4- A2+Bx^' 4- C.r3 4- Bx^ 4- 

4- A/i 4“ A'^r/i 4- AB.r^^ + AC.r^/i 4. 

4- B/i2 4- ABxJd4- B^x'^Jd + 

+ C/i3 4-AC.r/i3 4- 

Now these two expansions must be identical; and we must, therefore, have 

the coefficients of like powers of x and h equal; hence 

2B=A2 

3C=AB 

4D = AC 

(fee. &c. 

D 

&c. 

A^.r^ A3.r3 

A? 

~~ 2 

A-B A3 

~ 3 “ '2-3 

AC A* 

Hence a*=:14-A24-Y;^4-Y^4.- 

which is the exponential theorem ; where 

2-3-4 

&c. 

A^x^ 

■2-3*4 + 

A = (a —1)—i(a —1)2 4-J(a—l)3_|(a_l)44.. 
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Let e be the value of a, which renders A = l, then 

(£-i)-i(t-i)=+;(f-if-i(£-i)’+... =1 

Now, since this equation is true for every value of x, let a:=l; then 

^=1 + 1+17 2"^l-2-3~^l-2'3-4 

—l + l + s{l) + j(i.2)+i(i.2.3)+. 

=2-718281828459 

223. We add another method of calculating the logarithm of any given 

number. '■ 
Let N be any given number whose logarithm is x, in a system whose base 

is a; then 

a^ = N and a^^=N\ 

Hence, by the exponential theorem, we have from the last equation 

l-[-A.r2-|-. = Ai2-|-^i^^+ ....; 

and equating the coefficients of z, we get A.r=Ai; hence 

A, (N-l)-i(N-ir-+i(N-l)3-....; 

A ~{a —1)—i(a ’ 

because A =(a -l)-J(a-ir+J( a — 1)^— • • • in the expansion of 

and Ai = (N—1)—|(N — l)2-|-l(N — 1)'^-in the expansion of H- 

224. To find the logarithm of a number in a converging series. 

We have seen that if a*=N, then 

(N-1)-J(N-1)'‘+1(N-1)»-|(N-1)*+... 

^-(a -l)-|(a -l)'+i(a -1)=-M“ -1^+-. 

Now the reciprocal of the denominator is the modulus of the system ;*ai3d, 

representing the modulus by M, we have 

a:= log. N = Mf(N—1)—i(N-l)2+’(N —1)3—i(N —1)4+...} 

Put N = l + ?^; then N — l=n, and we have 

log. (l+?l) = M( + W 1?^2 + |7^3 ^ ^ 

Similarly, log. (1—n)z=M(—n——\n^——\nf^-\-) 

.*. log. (1+w)— log. (1—n)z=z'2M{n-\-\n^-{-\n^-\-\n^-\....) 

\-\-n 
in;; =2M(7i+l#+|ri5+|n7+ ...) • 

^ If, in the expression for a* deduced in (Art. 222), we make we obtain 

\ ,1,1 
qtA—1+r-j f, &c., 

1 ' 1.2 ' 1.2.3 

which is the value of e, given at the end of the same art.: 

~ A 1 1 ^ 1 
a^=iea=e^ .'. A log. e= log. a ~= --= ;-, 

A log. a log. a 

if e be the base of the system of logarithms expressed by log. Therefore — = ^ is, 

oy a previous definition (Art. 221), the modulus for passing from the system whose base is 

to that whose base is a. If log. a refers to the base a, - becomes equal to log. e. 

s 
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1 2P + 2 2P ^ 1-fn P + 1 

”=2P+I' ^ + " = 2P+1' 1-™=2P+I- 

consequently, 

log. (P + 1) log. P_2M ^ 2P + l"*“3(2P + l')=*'^5(2P + l)5"l ( 

.♦. log. (P + l)= log. P + 2M I 2P + l“^3(2P + l)3"^5(2P + r7"^ ^ 

Hence, if log. P be known, the log. of the next greater number can be found 

by this rapidly converging series. 

By substituting the series of natural numbers for N in this formula, the cor¬ 

responding values of x will be their logarithms. 

224. To find the Napierian logarithms of numbers. 

In the preceding series, which we have deduced for log. (P + 1), we find a 

number M, called the modulus of the system ; and we must assign some value 

to this number before we can compute the value of the series. Now, as the 

value of M is arbitrary, we may follow the steps of the celebrated Lord 

Napier, the inventor of logarithms, and assign to M the simplest possible 

value. This value will therefore be unity, and we have 

log. (p+i)=iog. P+2 j 5F:iri+3(2P4.i)3+^pq:iy5+ •• • ^ 

Expounding P successively by 1, 2, 3, 4, &c., we find 

log. 2= 2^- + —3+—5+;^^+...) = *6931472 

log. 3= log. 2+2(+ ++++ + +...) =1-0986123 , 

log. 4=2 log. 2 .=1*3862944 

log. 5= log. 4 +2(-+—3+^;^+;^+ ...) =1*6094379 

log. 6= log. 2+ log. 3 .=1.7917595 

log. 7= log. 6 + 2(—+ —+ —+.) =1*9459101 

log. 8= log. 2+ log. 4, or 3 log. 2 .=2*0794415 

log. 9 = 2 log. 3 .=2*1972*246 

log. 10= log. 2+ log. 5 .=2*3025851 

In this manner the Napierian logarithms of all numbers may be computed. 

225. To find the comm on logarithms of numbers. 

The base of the Napierian system is £ = 2*718281828 ..., and the base of the 

common system is 6 = 10, the base of our common system of ai*ithmetic; then 

we have 6 = 10, and a = e = 2*718281828..., and consequently, if N denote any 

number, we shall have 
1 

log. ioN= . log. ^N ; that is, 

1 
com. log. ^~2*302585T^ Nap. log. N = *43429448 X Nap. log. N ;* 

* To find the value of the Napierian base, obserye that, since com. log^. N=*43429448X 
Nap. log. N., if we make in this expression N=£, the Napierian base, we have 

com. log. £=*43429448. 

From a table of common logs., therefore, we find the number con*esponding to the loga- 
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and the modulus of the common system is, therefore, 

M=—=-43429448 2M = -86858896 
2-30258ol 

t 

Hence, to construct a table of common logarithms, we have 

log. (P + l)= log. P + .86858896 |5^+^-+-^-p^-+ 

Expounding P successively by 1, 2, 3, &;c., we get 

log. 2=-86858896Q+i+^+...) 

= •86858896 X-6931472 .. *3010300 

log. 3= log. 2+-86858896Q+^4-^3H-) . . = -4771213 

log. 4 = 2 log. 2 .. -6020600 

log. 5= log. y= log. 10— log. 2 = 1— log. 2 . . = -6989700 

log. 6= log. 2+ log 3 ... = -7781513 

log. 7= log. 6+-86858896(i+3:^+glj,+ ...)= -8450980 

log. 8= log. 23 = 3 log. 2 .  -9030900 

log. 9= log. 3'^=2 log. 3 .  -9542426 

log. 10= . .'.=1-0000000 

&c. &CC. 

l-\-n 
226. Since log. -—^=2M(n-j-L7i3_|_ iy2^5_|_ ^ 

l^n ^ ^ ' P—1 
let:;-= P ; then 14-71=P(1—n),- or n = ^ • - 

1 — n ' -*^ + 1 

^P —1 1 (V—iy 1 (V — iy > I 
•. log. P=2M^jq;-+5.(pq3^) +5-(jq:3j +•••$ 

and thus we have a series for computing the logs, of all numbers, without 

knowing the log. of the previous number. 

EXAMPLES. 

(1) Given the log. of 2=0-3010300, to find the logs, of 25 and -0125. 

100 102 
Here 25 = —=—; therefore log. 25=2 log. 10 — 2 log. 2 = 1-3979406. 

125 1 1 
‘012^> — JQQQQ=^= ^ 23 

.-. log. -0125= log. 1— log..10 — 3 log. 2= — 1—3 log. 2 = 2-0969100 

(2) Calculate the common logarithm of 17. 

Ans. 1.2304489. 

(3) Given the logs, of 2 and 3 to find the logarithm of 22-5. 

Ans. 1 + 2 log. 3 — 2 log. 2. 

(4) Having given the logs, of 3 and -21, to find the logarithm of 83349. 

Ans. 6 + 2 log. 3 + 3 log. -21. 

ritlun -43429448, which is 2-7182818, the Napierian base. This also furaishes us witli an¬ 

other definition of the modulus of the common (or any other) system of logaritluns ; it is the 

common (or, &c.) logarithm of the Nafierian base. See further note at the end of Progres¬ 

sions. 
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PROGRKSSIONS. 

ARITHMETICAL rROGRESSION. 

227. AVhen ft series of quiintities continiuilly increftso or decrease by the 

addition or subtraction of the same quantity, the quantities are said to be iu 

Arithmetical Progression. A more appropriate name is Progression hy Dif¬ 

ferences. 
Thus the numbei-s 1, 3, 5, 7,.which dirter from each other by the ad¬ 

dition of 2 to each successive term, form what is called an increasing arith¬ 

metical ^progression, or 2^rogression by differences, and the numbers 100, 97, 

94, 91,.which difter from each other by the subtraction of 3 from each 

successive term, form what is called a decreasing ^progression by differences. 

Generall3% if a bo the first term of an arithmetical progression, and 6 the 

common dilference, the successive terms of the series will bo 

a, (Z2(1, (zJcotl,. 

iu which the positive or negative sign will bo employed, according as the series 

is an increasing or decreasing progression. 

Since the coefficient of 6 in the second term is 1, in the third term 2, in the 

fourth term 3, and so on, in the term it will bo n — 1, and the term of 

the series will be of the form 

—l)cl.(1) 

In what follows we shall consider the progression as an increasing one, since 

all the results which we obtain can be immediately appljpd to a decreasing 

series by changing the sign of d. 

228. To find the sum of n terms of a series in arithmetical progression. 
Let a= first term. 

' 1=. last term. 

(1= common diflerence. 

71= number of terms. 

S = sum of the series. 

Then + . 

Write the same series in a reverse order, and we have 

S= I .+ a 

Adding, 2S = ((t4-Z)-l-((z4-4 + («+0 +.4-(«+0 
=n{a-\-l), since the series consists of n terms. 

7i{a-\-l) 
.-. S = 

Or, since lz=a-\-{n—1)(1 (Art. 227), 

2na-\-7i{n —1)(5 
S; 

(2) 

(3) 

Hence, if any three of the five quantities a, I, 6, n, S be given, the remain¬ 

ing two may be found by eliminating between equations (1) and (2). 

It is manifest from the above process that 

The sum of any hvo terms 7uhich are equally distant fr0711 the extreme terms 

IS equal to the sum of the extreme terms, and if the number of terms in the series 

be imeven, the middle term mill be equal to one half the su7n of the extreme terms, 
or of any tux) terms equally distant from the extreme terms. 
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EXAMPLE I. 

Required the sum of 60 terms of an arithmetical series, whose first term is 

5 and common difference 10. 

Here a=5, <1=10, w =60 

Z=u-f(n — l)(5=54-59x 10=595 

(54-595) X 60 
-5- 

= 600 X 30 = 18000 = sum required. 

EXAMPLE II. 

A body descends in vacuo through a space of lOyL feet during the first 

second of its fall, but in each succeeding second 32| feet more than in the one 

immediately preceding. If a body fall during the space of 20 seconds,^how 

many feet will it fall in the last second, and how many in the whole time? 

Here 
193 386 

“=1?’ '’=12 ’ "=2® 

193 386 
Z=—4-19X 

12 

7527 

12 

12 

= 6271 feet 

S = 
(1934-7527) X 20 

2X12 
77200 

~ 12 

= 64331 feet. 

EXAMPLE III. 

To insert m arithmetical means between a and b. 

Here we are required to form an arithmetical series of which the first and 

last terms, a and 6, are given, and the number of terms =m-4-2 ; in order, 

then, to determine the series, we must find the common difference. 

Eliminating S by equations (1) and (2), we have 

—l)d=l-\-a 

I—a 

But here Z = &, a=a, n=m-\-2 

•. the required series will be 

a-\- 
2{b—a)\ , 

+K^)+(^ 

(to41)(^»—a)\ 

m-\-l ) 

or 
h-\-ma 2b-\-{m—l)a mb-{-a , . 

I “+ + „+i +.+ ^ +*• 
(4) Required the sum of the odd numbers 1, 3, 5, 7, 9, &c., continued to 

101 terms ? 

Ans. 10201. 

(5) How many strokes do the clocks of Venice, which go on to 24 o’clock, 

stidke in the compass of a day ? 

Ans. 300. 
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(6) The first term of a decreasing arithmetical series is 10, the common 

diflference L, and the number of terms 21; required the sum of the series. 

Ans. 140. 

(7) One hundred stones being placed on the ground in a straight line, at 

the distance of 2 yards from each other; how far will a person travel who 

shall bring them one by one to a basket which is placed 2 yards from the first 

stone ? 

Ans. 11 miles and 840 yards. 

The relations (1) and (2), in which five quantities, a, S, n, Z, S, enter, will 

serve to determine any two of these when the other three are given. Thus 

they furnish the solution of as many distinct problems as there are ways of 

taking two quantities from among five; and, consequently, the number of 

5-4 
problems will be —or 10. In order that they may be possible, it is necessary 

that the value of n should be not only real, but entire and positive. Without 

entering into the details' of the calculation, we place below the solutions of 

these ten problems. 

I. Given a, d, n. 

Required Z, S. 

II. Given Z, <1, n. 

Required a, S. 

III. Given u, n, Z. 

Required d, S. 

IV. Given 6, w, S. 

Required a, Z. 

V. Given a, n, S. 

Required 6^ Z. 

VI. Given Z, n, S. 

Required 

VII. Given a, d, Z. 

Required n, S. 

VIII. Given a, Z. S. 

Required n, (5. 

IX. Given a, (5, S. 

Required Z, n. 
V 

X. Given Z, d, S. 

Required a, n. 

Z =a-|-(n — l)(i, S=|w[2a-f'(^—I)^] 

Z—(n — l)tl, S=|w[2Z—{n —1)(5]. a 

I —a 
S=|n(a-[-Z). 

n 

a-. 
2S—n{n —1)(1 2S-|-w(w —1)(5 

7 i = 

Z=- 
2S 

2n. 

■a, (1= 

2/i 

2(S—ail) 

n{n — 1) ’ 

% S. ( 2(7iZ—S) 

a, d. ( ^ n ’ ^ n{n — 1) 

I—a 
71=—^ 

6 

2S 
n\ , 

2d 

—a) 

a-\-V 2S — * 

71=.- 

d—2a^ ^{d—2aY-[-QdS 

26 

I =a-{-{7i—1)(5. 

71 = 
(5+2Zdr ^/{6-\-2lY — 86S 

26 

a=l—{ti —1)(5. 

GEOMETRICAL PROGRESSION. 

229. A series of quantities, in which each is derived from that which im¬ 

mediately precedes it, by multiplication by a constant quantity, is called a 

Geometrical Progression, or Progression hy Quotients. 

Thus, the numbers 2, 4, 8, 16, 32,-in which each is derived from the 

preceding by multiplying it by 2, form what is called an increasing geometrical 
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progression ; and the numbers 243, 81, 27, 9, 3, ... in which each is derived 

from the preceding by multiplying it by the number -, form what is called a 
O 

decreasing geometrical progression. « 

The common multiplier in a geometrical progression is called the common 

ratio. 

Generally, if a be the first term and p the common ratio, the successive 

terms of the series will be of the form 

a, ap, ap^, ap^. 

The exponent of p in the second term is 1, in the third term is 2, in the 

fourth term 3, and so on; hence the n^'^ term of a series will be of the form, 

230. To find the sum of n terms of a series in geometrical progression. 

Let a= first term, 

I— last term, , 

p= common ratio, 

nz=. number of terms, 

S = sum of the series. 

Then 

S =a-\-ap-{-ap‘^-\-ap^-\-. 

Multiply both sides of the equation by p. 

Sp— ap-^ ap“ap^-^....up 

Subtract the first from the second, 

S(p — l)=up"—a 

u(p" —1) 

Or, since 

S: 

s= 

P—1 

^n—1 ap'^ 

pi—a 

P-1 

n—1 + ap". 

(1) 

(2) 

If the series be a decreasing one, and consequently p fractional, it will be 

convenient to change the signs of both numerator and denominator in the above 

expressions, which then become 

g_«(l—P”) 

1—P 
a—pi 

S=^. 
1—P 

231. If two progressions have different first terms, but the same ratio, the 

ratio of the sums of the two is equal to the ratio of their first terms. For 

[a-\-ap-\-ap'^-\-ap^-\-., &c.) : {h-\-bp-\-bp‘^-{-bp^-}-, &c.) 

=u(1+p4- P'^+ P^+» : &(1+P + P'^^ p^-{-, ^c.)=a:b 

232. It appears that if any three of the five quantities, a, U Pi n, S, be 

given, the remaining two may be found by eliminating between equations (1) 

and (2). It must be remarked, however, that when it is required to find pfroin 

a, n, S given, or from n, Z, S given, we shall obtain p in an equation of the 

degree, a general solution of which can not be given. If n be required, it will be 

convenient to apply logarithms, as the equation to be resolved will be an expo¬ 

nential. 
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EXAMPLE I. 

Required the sum of 10 terms of the series 1, 2, 4, 8, ... 

Here a=l, p=2, n = \0 

<z(p"—1) 
.-.S 

~ P-1 
=2^0 — 1 

= 1023. 

EXAMPLE II. 

2 4 8 
Required the sum of 10 terms of the series 1, 

3’ 9’ 27’ ' 

Here u=l, p=-, w=10 

.-. S = 
u(l—p") 

1-P 

-Q 

10 

2 

'-3 

174075 

'59049 * 

EXAMPLE III. 

To insert m geometilc means between a and h. 

Here we are required to form a geometric series, of which the first and last 

terms, a and &, are given, and the number of terms =:m-\-2; in order, then, 

to determine the series, we must find the common ratio. 

Eliminating S by equations (1) and (2), 

up"—a=pl—a 

But here 

Z=&, n—m-\-2 

. /& 
.-. p="'+7-. 

^ y a 

Hence the series required will be 

T . V V “ V 

or 

«+«■ y-+a ■ •y-,+-+^ ■ . "7^, 

or 
m—1 2 2 m—1 

u 4" "1“ H” • • • *4" 

233. To find the sum of an infinite series decreasing in geometrical pro¬ 

gression. 

We have already found that the sum of n terms of a decreasing geometrical 

series is 
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S = 
a—<2p" 

which may be put under the form 

a 
S = : 

a 

l-p l-p " 

Since p is a fraction, p" is less than unity, and the greater the number n, the 

smaller will be the quantity p"; if, therefore, we take a very great number of 

• - ap^ 
terms of a decreasing series, the quantity p", and, consequently, the term -, 

■ i 
d 

will be very small in comparison with -—- ; and if we take n greater than any 

assignable number, or make n — co, then p" will be smaller than any assignable 

number, and therefore may be considered =0, and the second term in the 
i 

above expression will vanish. 
I 

Hence we may conclude that the sum of an infinite series, decreasing in 

geometrical progression, is 

a 
S: 

l-p 

a 
Strictly speaking, -is the limit to which the sum of any number of 

terms approaches, and the above expression will approach more or less nearly 

to perfect accuracy, according as the number of terms is greater or smaller. 

Thus, let it be required to find the sum of the infinite series 

^ + 3+9 + 27+’ 

Here a = l, P=3^ w = oo 

.♦. S = 
a 

1—p 

1 

1 

1-3 

3 

=2* 

3 
The eiTor which we should commit in taking - for the sum of the first n 

terms of the above series is determined by the quantity 

ap" 

1—p~2\3/ ’ 
3/1\5 1 1 

Thus, if u=5, then 

n = 6, then 
2\3/ 2.3‘^ 486 

Hence, if we take - as the sum of 5 terms of the above series, the amount 

1C2' 
would be too great by 
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If we take - as the sum of 6 terras, the amount will be too great by 

and so on.* 

^ I. The theory of progressions involves that of logarithms. Let there be two progres¬ 

sions, the one geometric, beginning with 1, the other arithmetical, beginning with 0. 

-ff 1:2:4:8:16:32:64:128, Ac. - 

-f-0.3.6.9.12.15.18. 21, Ac., 

which exhibit a notation sometimes employed. 

If we compare these with each other, we perceive that, multiplying together any two 

terms of the first, and adding the coiresponding terms of the second, we obtain two corre¬ 

sponding tenns, again, of these same progressions. Thus, 4X16=64, 6-1-12=18 ; and we 

perceive that 18 coiresponds to 64. Thus a multiplication is effected by addition. This 

simple observation is, ik) doubt, very ancient; but it was the genius of Napier, a Scottish 

baronet, which derived from it the theory of logarithms, one of the most useful of modern dis¬ 

coveries. It was published in 1644, under the title of Miri/ici Logaritkmorum Descriptio. 

Logarithms, then, according to Napier, were regarded as a series of numbers in arith¬ 

metical progression, while the numbers themselves con*esponding, formed a geometrical 

progression. I proceed to explain his method of constructing them. 

In order that the geometrical progression should embrace all numbers greater than 1, it 

is necessary to conceive it formed of terms which increase in an insensible manner, setting 

out from 1 ; and, to have their logarithms, it is necessary to conceive the arithmetical pro¬ 

gression as composed of terms which vary by insensible degrees, setting out from zero. 

At their origin, tlie simultaneous increments which the termi? 1 and 0 receive are inap¬ 

preciably small; but, however small they may be, we may conceive that there is a certain 

relation established between them, which is entirely arbitrary. Thus, when these incre¬ 

ments begin to arise, we can suppose that that of the logarithm 0 is double, triple, Ac., of 

that of the number 1. This relation is called the modulus of the logarithms, which desig¬ 

nate by M. 

Suppose, now, that to the term 1 of the geometric progression an increment cj, very 

small, but yet appreciable in numbers, is given. The corresponding increment of the term 

zei-o of the arithmetical progression will be very nearly equal to Mw ; and we can take for 

the two progressions these : 

• -fl-l: (1-|-w)2: (l-|-6;)4: Ac. 

-i-0. Mct). 2M(j . 3Ma) . 4M(j .Ac. 

We have said that the relation or modulus M can be taken at pleasure ; consequently, 

according to the values attributed to it, will be obtained different systems of logarithms. 

The logarithms which Napier published were derived from the progressions 

-ffl: : (l-}-w)2: (l-{-w)3: Ac. 

ri-O. (j. 2w . 3w .Ac., '' 

which supposes M=l. 

This avoids the multiplications by M. The logarithms of numbers in Napier’s table 

serve to find those of any other system, by simply multiplying each by the modulus of that 

system. 

The tenns of these two series vary slowly, so that, in prolonging both as far as we please, 

we are sure of finding in the first, tenns equal to the entire numbers 2, 3, Ac., or so near 

them that the difference may be neglected. The coiresponding tenns of the second may 

then be taken for the logarithms of these numbers, and are those written in the tables. 

By this we jierceive that these logarithms are not exactly those of the numbers beside 

which they are written. But there is another cause of inaccuracy, viz., that o) r-epresents 

only approximately the increment, which the logarithm 0 takes when w is tliat talten by 1. 

The smaller u is, however, the greater the exactness. 

II. Let it be proposed to detennine the eiror produced by assuming that the difference of 

the numbers is proportional to the difference of their logarithms, when the number of places 

in the numbers is 5, and their difference not greater than 1. 

If in the series [A], Art. 224, we make w=-, we have 

(]^\ ,-Ac. I, 
\ X > ^ ‘ ix 2.r,'2 '^3.c'5 Ax* 3 
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As in arithmetical progressions, all the questions which can be proposed for 

solution in geometric progressions reduce to 10, the solutions of which are de¬ 

duced from 

l=ap''~^ .(1) 

.(2) 
P-1 ' ' 

from which it appears generally that as the number x increases, the difference of the loga¬ 

rithms of X and l-j-a: diminishes. Also, since - is greater than the whole series, — being 
X X 

diminished by more than it is increased, we have 

M 
l(l4-x)—lx<-. 

X 

If the base be 10, we have seen that M=:0.4342.. .<-. Hence, in this case, 

^ ^ ‘ 2x 

If X consist of five places, its least value is 10000. Therefore the greatest value of 

Z(l-|-a:)—lx is less than-=0.00005. 

Hence we may infer that the logarithms of eveiy two consecutive whole numbers con¬ 

sisting of five places must agree in the first four decimal places at least. 

Now let .v. 

l-|-a; 
A = Z(l-{-a:^)—lx=l- 

X 

A'= Z(2+x)—Z(l-f:r)=Z- 
^-\-x 

l-\-x 

l-\-x’ 

I ^ ) 
x(2-\-x) \ 'x(2-\-x)/ 

Rut by [A], Art. 224, 

^^”^57(24-0:)) \ x{2- (2-|-a7) 2x^{2-\-x)^ 2x'^{2-\-xY 

.*. A—A'<- ^ 

—&c. 

'2x{2-\-xy 

If X consist of five places, its least value is 10000, and, therefore, the greatest value of 

1 1 
A—A' is less than , which, when reduced to a decimal, has no 

20000 X10002 200040000 

significant figure within the first eight places. Hence, in tables which extend only to 

seven places, we may assume that A—A''=0, or A=A^. 

Thus we infer that, under the circumstances which have been supposed, the logaidthms 

of numbers in arithmetical progression will themselves be in arithmetical progression 

Let now « and n-\-l be two consecutive whole numbers, and n-\-^ an intemiediate frac¬ 

tion. These may be looked upon as three terms of an arithmetical progression, whose fii’St 

1 P 
term is n, whose common difference is -, whose (»4-l)^'' term iS n-\—, and whose (?-j-l)^ 

tenn is By what has been already shown, the logarithms of the several tenns of 

this series wiU also be in arithmetical progi-ession. 

Let (5 be their common difference. The (^-f-l)^'' term of this series wiU be 

which wiU be the logailtlim of the term of the former series ; 

.[®1 
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These solutions are contained in the following table: 

I. Given a, p, n. 

Required Z, S. 

II. Given Z, p, n. 

Required u, S. 

Z =«p”“^ S = 

z 

pi—a o{p^ — 1) 

a-. r>n—1’ S=- 

/'—1 p- 

Z(p--i) 

p“ ^ ’p“ Hp—1)’ 

III. Given 71, Z. J _n_,/Z 

Required p, S. c ^ va’ ^ "^Z— 

S(p —1) Sp^-^P —1) IV. Given p, n, S. 

Required u, Z. 

V. Given u, w, S. 

Required p, Z. 

VI. Given Z, n, S. 

Required p, a. 

VII. Given a, p, Z. 

Required 77, S. 

VIII. Given u, Z, S. 

Required p, n. 

IX. Given u, p, S. 

Required > Z, w. 

X. Given I, p, S. 

a=- 
p"—1 ^ Z: 

-.n—1 

j"—1 

s 
+p’^-2...4-l=-, l=ap^-\ 

a 

a=l(^y \ 

y 

pl^a log.Z—log. a 
b=-r, ?7 = 1 + - 

p-1 

S—a ^ S—a 
n\ = 1 + 

log. p 

log. Z— log. a 

7_^+^(P—1) _^ , 
I , 77 _ 1 

log. p 

log. Z— log. a 

log. p 

- log. Z— log. a 
. , s a=:Zp —b(p—1), 77=14--z-. 

Required a, n. i ' ’ ' log. p 

HARMONICAL PROGRESSION. 

234. A series of quantities is called a liarmonical progression when, if any 

three consecutive terms be taken, the first is to the third as the difference of 

the first and second to the difference of the second and third. 

Thus, if u, 6, c, iZ.... be a series of quantities in liarmonical progression, 

we shall have 

a'.c'.ia — h'.h—c; b:d::h—c:c—tZ, &c. 

235. The reciprocals of a series of terms in liarmonical progression are in 

arithmetical progression. 

Let a, 6, c, tZ, e,f.... be a series in liarmonical progression. 

Then, by definition. 

Also, the last term of the latter series, which will be 

will be the logarithm of the last term of the former series ; 

Z(7i4'1)—In—qd. 

But by [B], 

But, also. 

z|n-[-—j—ln=p6, 
I (7i-|-l) —In q 

("4-1) —» 4 

Hence the differences of the logarithms are as the differences of the numbers. 
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a'.cwa — h'.h—c ; b:d::h — c:c—d; c:e::c—did—e, &c. 

ab—ac=ac — be, be — bd—bd—dc, cd—ce=:ce—ed, &c. 

ab ac ac be be bd bd de ed ee ee ed 

or 
abe ahe abe abe' bed bed bed bed' ede ede ede edc' 

111111 

c h b a'd V e d d 

fi’om which it appears that the quantities &c., are in arithmetical 
Q/ 0 C Cv €> 

progi-ession.' 

To insert m harmonic means between a and b. 

Since the reciprocals of quantities in harmonical progression are in arith- 

1 1 
metical progression, let us insert m arithmetic means between - and -y 

Generally, in arithmetical progression, 

l=a-\-{n — l)6 

I—a 

n — 1 

In this case, a-=-, n=m-\-2, and d=-——rr—r* 
ha ' {m-\-l)ab 

The arithmetic series will be 

1 a-\-mb —1)& 

a'^(m-j-l)a6~^ {m-\-\)ab . {rn-\-l)ab {ni-\-l)ab 
_ $ 

Therefore the harmonical series will be 

{m-\-l)ab {m-\-l)ab ' {m-\-\)ab {m-\-l)ab 

a-\-mb —1)6"^.~^(m—1)«-|“2&~^ ma-\-b 

(m—\)a-\-2b ^ 7na-\-b 1 

+6' 

INTEREST AND ANNUITIES. 

236. The solution of all questions connected with interest and annuities 

may be greatly facilitated by the employment of the algebraical formulao. 

In treating of this subject we may employ the following notation: 

Let p dollars denote the principal. 

r the interest of $1 for one year. 

i the interest ofp dollars for t years. 

s the amount of p dollars for t yeai’s at the rate of interest denoted 

by r. 

t the number of years that p is put out at interest. 

SIMPLE INTEREST. 

Problem I.— To find the interest of a sum p for t years at the rate r. 

Since the interest of one dollar for one year is r, the interest p dollars for'. 

one year must be p times as much, or pr ; and for t years t times as much as 

for one year; consequently, 

i=:ptr (1) 
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Problem II.— To find the amount of a sum p laid out for t years at simple 

interest at the rate r. 

The amount must evidently be equal to the principal, together with the in¬ 

terest upon that principal for the given time. 

Hence - s-=p-\-ptr 

=p{l-\.tr).(2) 

EXAMPLE I. 

Required the interest of $873.75 for years at per cent, per annum. 

It will be convenient to reduce broken periods of time to decimals of a year. 

By the formula (1) we have 

i=ptr. 

In the example before us, 

p .=$873.75 

r .=$.0475* 

t =2^ years.=2.5 years. 

.•. i = 873.75 X 2.5 X .0475 dollars. 

= $103.7578125. 

The amount of the above sum at the end of the given time will be 

s=d-{-dtr 

= $873.75-f$103.757. 

PRESENT VALUE AND DISCOUNT AT SIMPLE INTEREST. 

The present value of any sum s due t years hence is the principal which in 

the time t will amount to s. 

The discount upon any sum due t years hence is the difference between that 

sum and its present value. 

Problem III.— To find the present value of s dollars due t years hence, 

simple interest being calculated at the rate r. 

By formula (2) we find the amount of a sum p at the end of t years to be 

s=zp-\-ptr. 

Consequently, p will represent the present value of the sum s due t years 

hence, and we shall have 

.(3) 
for the expression required. 

* r is the interest of $1 for one year. To find the value of r when interest is calculated 

at tlie rate of or $4.75 per cent, per annum, we have the following proportion: 

$100 :$!:: $4.75 :r 

.•.r=$ —=$0.0475. 

In like manner, 

When the rate of interest per cent. is $7, then r= $0.07, 
When the rate of interest per cent. is 6, then r= 0.06. 
When the rate of interest per cent. is 5, then 7-= 0.05. 
When the rate of interest per cent. is 4b then r= 0.0475. 
When the rate of interest per cent. is 41 then ?•= 0.045. 
When the rate of interest per cent. is 4i, then r= 0.0425 
When the rate of interest per cent. is 4, then r= 0.04. 
When the rate of interest per cent. is 3b then r= 0.0375. 

&c. &c. &c. . ■ 
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Problem IV.— To find the discount on s dollo^rs due t years hence, at the 

rate r, simple interest. 

Since the discount on s is the difference between s and its present value, we 

shall have 

d=.s- 

str 

l-\-tr (4) 

EXAMPLE. 

Required the discount on $100, due 3 months hence, interest being calcu¬ 

lated at the rate of 5 per cent, per annum. 

Here s =$100 

t = 3 months = .25 years. 

r= =$ .05. 

Here the present value of p is 

• s 

100 

~l + .25X-05 

100 

“1.0125 

=98.76543 dollars. 

But 5=$100 

p=$98.76543 

.*. s—p or c?i5=$1,235. 

ANNUITIES AT SIMPLE INTEREST. 

Problem V.— To find the amount which must he paid at the end of t years, 

for the enjoyment of an annuity a, simple interest being allowed at the rate r. 

At the end of the first year the annuity a will be due ; at the end of the 

second year a second payment a will become due, together with ar the in¬ 

terest for one year upon the first payment; at the end of the third year a 

third payment a becomes due, together with 2ur the interest for one year 

upon the former two payments, and so on ; the sum of all these will be the 

amount required. 

Thus : 

At the end of the first year, the sum due is a. 

At the end of the second year, the sum due is a-\-ar. 

At the end of the third year, the sum due is u-|-2ur. 

At the end of the fourth year, the sum due is a-\-3ar. 

&c. &c. &c. 

At the end of the year, the sum due is —l)ar. 

Hence, adding these all together for the whole amount, 

5 = ^a-f-(zr(l-|-24-3-|-.{t — !))• 

Or, taking the expression for the sum of the arithmetical series, l-|-2-}-3 

+.(^~1) 
1) 

s-=.ta-\-ra. 
1.2 (5) 
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Problem VI.— To find thej^resent value of an annuity di])ayahle for t years^ 

simple interest being allowed at the rate r. 

* It is manifest thatitlie present value of the annuity must be a sum such that, 

if put out at interest for t years at the rate r, its amount at the end of that 

period will be the same with the amount of the annuity. 

Hence, if we call this present value we shall have, by Problems I. and V., 

p-\-ptr= amount of annuity. 
o > 

— ta-{-ra. 

P 
_ta-{-ra 

ta 

''2 

l-\-tr 

24-(^_l)r 

~l-\-tr 

COMPOUND INTEREST. 
_ \ 

Problem VII.— To find the amount of a sum p laid out for t years, com¬ 

pound interest being allowed at the rate r. 

At the end of the first year the amount will be, by Problem II., 

, p-\-pr, orjp(14.r). 

Since compound interest is allowed, this sum p{l-{-T) now becomes the 

principal, and hence, at the end of the second year, the amount will be 

^(1-}-?'), together with the interest onp{l-\-r) for one year; that is, it will be 

jp(l-|-r)-}-i5r(l-|-r), or 

The sum p{l-\-rY must now be considered as the principal, and hence the 

whole amount, at the end of the third year, will be 

And, in like manner, at the end of the year, we shall have* 

s=_p(l-{-r)‘.' .... (7) 

Any three of the four quantities, s, p, r, t, being given, the fourth may al¬ 

ways be found from tlie, above equation. 

EXAMPLE I. 

Find the amount of $15.50 for 9 years, compound interest being allowed 

at the rate of 3^ per cent, per annum, the interest payable at the end of 

each year. 

By equation (7), 

log. 5= log.p-j-Hog. (1-f-r). 

Hence ^=$15.50 

^=9 years 

r=^.035 

log_p = 1.1903317 

Hog. (l+r) = 0.1344627 

.-. log. 5=1.3247944= log. of 21.12481 

.*. 5 = ^21.12481. 

* It is unnecessary to give any examples under this rule, as the purchase of annuities 
at simple interest can never be of practical utility. 
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KXAMPLK II. 

Find the amount of c£182 12s. Qd. for 18 years, 6 months, and 10 days, at 

the rate of 3^ per cent, per annum, compound interest, the interest being 

payable at the end of each year. 

In this case, it will be convenient, first, to find the amount at compound in¬ 

terest of the above sum for 18 years, and then calculate the interest on the 

result for the remaining period. ' 

By formula (7), 

s=p(l-f-r)‘ 

log. 5=log. log. (1+r) 

Here ^=c£182. 12s. 6cZ.=66182.625 

r= =.,£.035 

t=. =18 years 

log. jp = 2.2615602 

t log. (1+r) = 0.2689254 

log. 5 = 2.5304856+ log. of 339.224. 

Again, to find the interest on this sum for the short period, we have 

i=st'r 

log. i— log. s+ log. log r. 

Here 5 = 663 3 9.224 

r=c€.035 

r=6 months, 10 days= .527402 years 

log. 5 = 2.5304856 

log. r=2.5440680 

log. =1.7221401 

log. 5 «'r=.07966937= log. of 6.2617200 

5 ^'r=666.26172. 
t 

The whole amount required will, therefore, be 

s+s t' r=66339.224 + 666.26172 

=66345 95. ^d. 

EXAMPLE III. 

Required the compound interest upon $410 for 2^ years at 4^ per cent, per 

annum, the interest being payable half yearly. 

In this case the time t must be calculated in half years; and, since we have 

r 
supposed r to be the interest of $1 for one year, we must substitute -, which 

will be the interest of $1 for half a year ; the formula (7) will thus become 

••• log- s = log-P+ 2^ log. (l + u) • 

Here jp=$410 

r=$.045 

2i=5 half years 

.•.log._p=2.6127839 

5 log. 1.0225 = 0.0483165 

log.s=2.6611004=log. of 458.2471 

.•.5=$458.2471. 

T 
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The interest must be the difference between this amount and the original 

principal; 

2: zS—p 

= $458.247—$410 

= $48,247. 

I EXAMPLE IV. 

$400 was put out at compound interest, and at the end of 9 years amounted 

to $569,333 ; required the rate of interest per cent. 

Here s, p, t are given, and r is sought. 

From formula 

s=zp{l-\-ry 

we have log. (1-j-^)=y(log'5—log.jp). 

Here s = $569.3333 

^ = $400 

^=9 years 

log. 5 = 2.7553666 

. log.j9 = 2.6020600 

.•.log.5—log.p= .1533066 

.1533066 
log.(l+r)= --- 

= .0170340 

=log. of 1.04 

.•.r= .04=4 per cent. 

EXAMPLE V. 

In what time will a sum of money double itself, allowing 4 per cent, com¬ 

pound interest ? 

Here 5, p, r are given, and t is sought. 

From the formula (7) we have 

5=j?(l-}-r)L 

But here s=2p 

.*. 2p=p{l-\-ry 

.•.2 = {l+ry 
log. 2 

^~'log.(l+r) 

.3010300, 

~.0170333 

= 17.673 years 

= 17 years, 8 months, 2 days. 

In like manner, if it be required to find in what time a sum will triple itself 

at the same rate, we have 

Jog-3 

log. 1.04 

.4771213 

“.0170333 

= 28.011 years 

=28 years, 0 months, 3 days. 
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PRESENT VALUE AND DISCOUNT AT COMPOUND INTEREST. 

If we call p the present value of a sum s due t years hence, and d its dis¬ 

count, reasoning precisely in the same manner as in the case of simple inter¬ 

est, we shall find 

. 

.(9) 

ANNUITIES AT COMPOUND INTEREST. 

Problem VIII.— To find, the amount of an annuity a continued for t years, 

compound interest being allowed at the rate r. 

At the end of the first year the annuity a will become due ; at the end of 

the second year a second payment a will become due, together with the in 

terest of the first payment a for one year, that is, ar; the whole sum upon 

which interest must now be computed is thus, 2a-\-ar. 

At the end of the third year a further payment a becomes due, together with 

the interest on 2a-\-ar, i. e., 2ar-\-ar^; the whole sum upon which interest 

must now be computed is 3a-\-3ar-\-ar'^. The result will appear evident 

when exhibited under the following form : 

Whole amount at the end of first year, =a. 

Whole amount at the end of second year, ■=:.a-\-a-\-ar 

a —j— a{ \ —J— 7"). 

Whole amount at the end of third year, —a-\-a-\-a{l-\-r)-\-ar-\-ar{\-\-r) 

Whole amount at the end of fourth year, =a-\-a a(l-|-r) -j- a(l-j-7')“ -j- ar 

■ • -|-ar(l-j-r)-j-«r(l-pr)'h 

=a 4-«(1-f r)-f a (1-j-7')"-j-a (1r P 

&c. &c. &c. 

Whole amount at the end of t^^ year, =a-\-a{\.-\-r)-\-a{l-\-rf-{-a (1 + r)^ 

+.a(l-j-7-)‘~h 

Hence the whole amount is, in terms of the sum of a geometric progression, 

5=all-f(l-hr)-f(l-fr)2-h.+ {l + r 
(l_|_r)t —1 

• ' ••••••••••••••• 
T 

Problem IX.—To find the present value of an annuity a payable for t 

years, compound interest being allowed at the rate r. 

It is manifest that the present value of this annuity must be a sum such, 

that if put out at interest for t years at the rate r, its amount at the end of that 

period will be the same as the amount of the annuity. 

Hence, if we call this present value p, we shall have, by Probs. VH. and ' 

VHI., 

p[l-\-ry= amount of annuity 

= a.- 
r 

(l+r)t-l 

P- /II \t * ^ 

a (l-}-r)*—1 

=7’ (l4-r)‘ (11) 
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EXAMPLE. 

What is the present value of an annuity of $500, to last for 40 years, com¬ 

pound interest being allowed at the rate of 2j per cent, per annum. 

By formula (11), 

a (l-{-r)*—1 

^ r* (l-{-r)*' 

Here 

Now 

«=$500 
r=$.025 
^ =40 years; 

... (14.r)‘=:(1.025)'W. 

log. (1.025)^=40 log. 1.025 

=40 X.0107239 

= .4289560 

Also, 

= log. 2.685072 

(1.025)-‘o=2.685072 = (l-f r)L 

a 500 
=20000 

1.685072 
-^=20000 

= 20000 X.62757... 

= 12551.40 dollars. 

REVERSION OF ANNUITIES. 

Problem X..—-To find the present value (P) of an annuity suvhich is to com¬ 

mence after T years, and to continue for t years. 

The present value required is manifestly the present value of a for T-[-^ 

years, minus the present value of a for T years. 

By Problem IX., the present value of a for T-f-^ years 

By Problem IX., the present value of a for T years 

a (l-}-r)T+^—1 

r' (l-|-r)^'+^ 

a (l-|-r)T_l 

r* (l-fr)‘ 

p=;--(12) 

purchase of estates. 

Problem XI.—To find the present value of an estate, or perpetuity, wnose 

annual rental is a, compound interest being calculated at the rate r.' 

The present value of an annuity a, to continue for t years, by Prob. IX., is 

but if the annuity last forever, as in the case of an estate, then i=oo, and 

-:=is=0 ; hence, in the present case, 
(l-f-"^) 00 

a 
JP j. (13) 
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EXAMPLE. 

What is the value of an estate whose rental is ^1000, allowing the pur¬ 

chaser 5 per cent, for his money ? 

Here 

a=$1000 

r=$.05 

1000 

••• ■?'=^ 

= 20000, or 20 years’ purchase. 

REVERSION OF PERPETUITIES. 

Problem XII.—To find the present value of an estate, or perpetuity, whose 

annual rental is a dollars, to a person to whom it will revert after T years, 

compound interest being allowed at the rate r. 

By Problem X., the present value of an annuity, to commence after T years, 

and to continue for t years, is 

In the present case, ^=co , and .•. (1-j-r) ; hence we shall have 

2^=7* (l-fr)T. 

EXAMPLES FOR PRACTICE. 

(1) Find the interest of $555 for 2^ years at per cent, simple interest. 

Ans. $65,906. 

(2) In what time will the interest of $1 amount to 75 cents, allowing 4^ per 

cent, simple interest? 

Ans. 16 years, 8 months. 

(3) What is the amount of $120.50 for 21 years at 41 per cent, simple in¬ 

terest ? 

Ans. $134,809. 

(4) The interest of d625 for 31 years, at simple interest, was found to bo 

d£3 18s. 9<i. ; required the rate per cent, per annum. 

' Ans. 41. 

(5) Find the discount on dGlOO due at the end of 3 months, interest being 

calculated at the rate of 5 per cent, per annum. 

Ans. d£l 4s. 8lc^ 

(6) What is the present value of the compound interest of c^filOO to be re¬ 

ceived five years hence at 5 per cent, per annum ? 

Ans. 6678 7s. O^d, 

(7) What is the amount of <£721 for 21 years at 4 per cent, per annum 

compound interest? 
Ans. 661642 19s. 9\d 

(8) The rate of interest being 5 per cent., in what number of years, at com¬ 

pound interest, will $1 amount to $100 ? 

Ans. 94 years, 141.4 days. 

(9) Find the present value of 66430, due nine months hence, discount being 

allowed at 4i per cent, per annum. 
Ans. 66415 19s. 21^. 
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I 

(10) Find the amount of -^1000 for 1 year at 5 per cent, per annum, com¬ 

pound interest, the interest being payable daily. 
Ans. $1051.288 nearly. 

(11) What sum ought to be given for the lease of an estate for 20 years, of 

the clear annual rental of c£l00, in order that the purchaser may make 8 per 

cent, of his money ? 
Ans. c£981 165. 3fcZ. 

(12) Find the present value of 6620, to be paid at the end of every five years, 

forever, interest being calculated at 5 per cent. 
Ans. 6072 75. 9^d. 

(13) What is the present value of an annuity of ^£20, to continue forever, 

and to commence after two j'^ears, interest being calculated at 5 per cent. ? 

' Ans. c£362 165. 2^d. 

(14) The present value of a freehold estate of 66100 per annum, subject to 

the payment of a certain sum (A) at the end of every two years, is 661000, 

allowing 5 per cent, compound interest. Find the sum (A). 

Ans. A =66102 105. 

(15) What is the present value of an annuity of 6679 45., to commence 7 

years hence and continue forever, interest being calculated at the rate of 4| 

per cent. ? 
Ans. <£1293 55. ll^d. 

INTERPOLATION. 

234. This name is applied to the process of finding intermediate numbers 

between those given in tables. 

Tables are generally calculated from an algebiuic formula in which there 

are two variable quantities, the one of which is called a function of the other, 

the latter being usually called the argument of the function. 

Thus, logarithms are functions of the numbers to which they belong, the 

numbers being the arguments. Several formulas expressing the relation be¬ 

tween a number and its logarithm h<^ve been seen by the student, and will 

serve to exemplify the formulas in general of which we are now speaking. 

The substitution of successive numbers for the argument, the calculating of 

the corresponding values of the function, and writing the results in a table, is 

called tabulating the formula. 

If the formulas which have been derived under our articles upon interest 

and annuities should be tabulated, they would furnish what are called interest 

tables. 

The function frequently depends 'upon two arguments, as in the formula 

for simple interest, 

i='ptr.(1) 

Here the function is t, the interest, and the arguments are, ^ the principal, and 

r the rate. This requires a table of double entry, the usual form of which is 

a table in several columns occupying the whole width of the page, the argu¬ 

ments being placed, the successive values of the one in a horizontal line at the 

heads of the columns, and of the other in a vertical line at the side of the page, 

the corresponding values of the function being placed in the column under one 

of Its arguments, and on the horizontal line of the other. The formula (1) 
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above may employ a table of triple entry, the three arguments'being the prin¬ 

cipal, the rate, and the time. Such a table is formed by giving a whole page 

to the argument of rate, the side and top being occupied by the arguments 

of principal and time. 

235. Where the differences of the functions are proportional to the dif¬ 

ferences of their arguments, then the interpolation is made by simply solving a 

proportion, the first two terms of which are the difference of the tabulated 

functions and the difference of their arguments; the third term being the dif¬ 

ference between one of the tabulated arguments and that whose function is to 

be interpolated; the fourth, or unknown, term of this proportion will be the 

interpolated function required. This is called the method by first differences, 

and has been exemplified in taking out logarithms of large numbers not found 

exactly in the tables. 

When the differences of the functions are not nearly proportional to the 

differences of the arguments, as in the case of the logarithms of small numbers, 

the method of interpolation above described would not be sufficiently accurate. 

The nature of the variation of the function, as the argument varies in value, is 

made sensible by taking the difference between each two of three consecutive 

functions in the table, and comparing the difference between the first and sec¬ 

ond with the difference between the second and third. If these differences 

are the same, we have seen, in the note to (Art. 233), that the method of first 

differences already explained applies ; but if they are not, their difference, 

which is called a second difference, will, by its magnitude, indicate the degi’ee 

of inaccuracy of the method of first differences. This exposition will serve to 

exhibit, in a general way, the nature and office of second differences. We 

proceed to give a more analytic development of the use of second, third, &c., 

differences, the latter holding the same relation to the second differences that 

these do to the first. 

236. Let / and represent two consecutive functions in the table, 

being their first difference. The next consecutive function, if the first differ¬ 

ences were constant, would be expressed by f-\-26i ; but as they are supposed 

not to be, it must be expressed by the form ^2 being the second 

difference, or difference between the two first differences, and ^i + L. 

The scheme below will show the form of the successive functions: 

1st Differences. 2d Differences. 3(1 Differ¬ 
ences. 

(5^-j-^2 

(Jj_|_2(52-j-d3 

(51 + 3(52 +3(53-f (5, 

^2 

(52 + (53 

^2 + '“(5.3 + (54 

(53 

^3 + (54 

Functions. 

/ 
/+<!i 
/■-j-2(51 ^2 
/_|_3(jj_}_3c52 + d3 

4(5 j -j- 6(52 “l~ "^^3 ”f" ^4 

and so on ; from which we perceive that the coefficients are the same as in the 

expansion of a binomial, that of the second terra being the number of the con¬ 

secutive function after the first function. Denoting this number by n, we 

have for the general form of the riith function after the first. 

4tli Dif¬ 
ferences. 

nin — 1) nin —1)(?^ — 2) 

3 
--l“(5n [C] 

Suppose, now, that a value of the function intermediate between the first and 

second of the series in the table be required, n here, instead of being an entire 

number, is a fraction. If the value of the function be required, corresponding 
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to a value of the argument midway between its consecutive values in the table, 

n becomes equal to If the arguments of the tables differ by 24 hours, and 

3 1 
the function be required for 3 hours, n becomes equal to —, or-. If the tabu 

lar arguments differ by 1 hour, or 60 minutes, and the function be required for 

an argument 15 minutes beyond an even hour, w=—=-. 

EXAMPLE. 

Given the logs, of 15, 16, 17, 18, 19, to find that of 17.25. 

Arg.orNo. Func. or Log-. 1st Difs. ^t- 2d Difs. 52’ .Sd Difs. ^3. 54. 
15 
16 
17 
18 
19 

1.17609126 
1.20411998 
1.23044892 
1.25527251 
1.27875360 

2802872 
2632894 
2482359 
2348109 

— 169978 
— 150535 
— 134250 

-f 19443 
-i-16285 

— 3158 

The numbers in the third column are obtained by taking the differences of 

the consecutive numbers in the second. The numbers in the fourth column 

from the second in the same way. 

. 9 . 9 
As 2.25 is - the interval between 15 and 18, we make n=-, and have for 

4 4 

formula (C), taking (5^ = 2802872, d^=z—6997S, d^z=19U3, (5^=—3158. 

The result would be nearly the same by neglecting ^4 and using the mean of the two 

third differences.* 

f= 1.176126 

n6 =-d, = 306462 
' 4 ' 

— 239031 
1.2 32 " 

n{n—l)(w—2)^ 45 
2278 

1.2.3 ^ 384*' 

l)(«-2)(«-3),, _ 135,, _ 
69 

1.2.3.4 ^ 6144^ 

Value of func. required, viz., log. 17.25 = 1.23678904 

The formula for interpolation may be derived very elegantly by the method 

of indeterminate coefficients. Thus, let y represent the value of the interpo¬ 

lated function to be found, A the argument in the table, m the number of parts 

(4ths jj4 example above) between A and the consecutive argument of the 

table, and n the whole number of parts (4 in the above example) between 

these consecutive arguments. It is evident that y, depending on A and ni, 

may be expressed in terms of these. Assume, therefore, 

2/=A-|-B??i-|-Cm2-{-Dw^-|“i 

in which B, C, D, &c., are undetermined coefficients, whose values are to be 

found. 

Now let m have successive values, represented by 0, n, 2n, 3n, &c., then 

the corresponding values of y will be 

* As means are much used in calculations with tables, it may be well to advertise the 

student that a mean of three numbers is obtained by adding them together and dividing by 

3 ; of five numbers, by adding them together and dividing the sum by 5, and so on. 
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A..(1) 
A-}-Bn-|-Cn^-|-Dw^-}-, &c.(2) 

A+B.2w + C(2n)2+D(2n)3-f-,&c. ..(3) 

A+B.3^i + C(3n)2+D(3nf4., &c.(4) 

&c. 

Subtracting successively (1) from (2), (2) form (3), &c., and representing 

the remainders by P', Q', R', &c., and dividing by n, we have 
p/ 

— = B-j-C.n-|-Dn^-|-, &c.(5) 

Q' 
—=B4-C.3w+D7/i2+, &;c.(6) 

Th 

R' 
—=B4-C.5/i4-Dl9n2+, &C.(7) 

&CC. &CC. 

Again, subtracting successively (5) from (6), (6) from (7), &:c., and repre¬ 

senting the remainders by P", Q", &c., and dividing by 2n, we get 

P" 
— =C-4-D.37i-|-» &c.(8) 

~^=C-\-D.6n-{-, &CC.(9) 

&c. &c. 

Next, subtracting (8) from (9), &c., and representing the remainders by P'", 

&c., and dividing by 3n, we have 
p/// 

— =D + ,&c.(10) 

Q"—P" _ R' —Q' O'—P' 
But P'"z=---; also Q" =-and P"=-; 

2n n n 

. y... (R'-Q')-(Q'-P') 

Putting (^3 for the numerator of this fraction, we have by (10), 

‘ P'" do 
D = — =— 

3n 

Substituting this value of D in (8), and transposing, there results 

P" cL 
n__ 

2n 2n'^' 
Q' —P' 

But P"=—-, and putting ^2 for Q' — P', we obtain 
Th 

c=— —— 
2n^ 2'n?‘ 

Again, substituting these values of D and C in (5), and transposing, we have 

P' do d3 dg 
B=—  — • 

n 2n-2n 6n' 

or, putting dj for P', and simplifying, 

B=L_££+il. 
n 2n 3n 

Finally, substituting these values of the coefficients B, C, D ... in the as 

Burned equation, we obtain 

1 w/m ^ ^ 1 3m \ 
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as the formula for interpolation, which coincides with the one obtained before, 

^3 • • being the first, second, and third differences of the functions, as is 

evident from the manner in which they have been assumed above. 

Let us apply it to a table in the Nautical Almanac, which gives the moon’s 

latitude at noon and midnight for every day in the yeai-. 

, EXAMPLE. 

Let it be required to find the moon’s latitude for August 4, 1842, at 16“ 18™ 

mean time at Greenwich, that is, at 4.3 hours after midnight. 

Moon’s Latitude. 52 * Mean Second Difference. 

o' " 

Aug. 4. Noon, -}-0 45 48.1 
Midnight, -}-0 5 54.6 

Aug. 5. Noon,* —0 34 33.1 
Midnight, —1 14 49.4 

t tf 

— 39 53.5 
— 40 27.7 
—40 16.3 

+ 34.2 
— 11.4 

// 
+ 11.4 

Now, to apply the formula, we have 

A = 0° 5' 54".6, di = —40' 27".7, or —40.463 minutes; 

m 4.3 m 
-=—=0.358, -6^ = — U' 29".16; 
n 12 n 

m m/m \ 
(52 = + 11".4, —1 = _0.642, ^ 1 tL = _l".31. 

' n n\n / " 
0 

Therefore, y=—0° 8' 35".87, which, without the sign —, is the moon’s 

correct latitude south at the time for which it was required. 

Second differences will ordinarily insure sufficient accuracy. Third and 

fourth differences are rarely used. 

INEQUATIONS. 

237. In discussing algebraical problems, it is frequently necessary to intro¬ 

duce inequations, that is, expressions connected by the sign Genei’ally 

speaking, the principles already detailed for the transformation of equations 

are applicable to inequations also. There are, however, some important ex¬ 

ceptions which it is necessary to notice, in order that the student may guard 

against falling into error in employing the sign of inequality. These excep¬ 

tions will be readily understood by considering the different transformations in 

succession. 

I. If ive add the same 'quantity to, or subtract it from, the two members of any 

inequation, the resulting inequation will always hold good, in the same sense 

as the original inequation ; that is, if 

a'f>b, then a-\-a''f>b-\-a', and a—a''I>b—a'. 

Thus, if 

8^3, we have still 8-f-5^34-5, and 8—5^3 — 5. 

So, also, if 

— 3<C—2, we have still —3-l-6<C—2-j-6, and —3 — 6<^—2 — 6.f 

* The moon’s latitude is mai'ked -}- when north, — when south. 

t The negative quantity of gi-eater numerical value is always considered less tlran the 

negative quantity'- of less numerical value. 
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The truth of this proposition is evident from what has been said with refer¬ 

ence to equations. 

This principle enables us, as in equations, to transpose any term from one 

member of an inequation to the other by changing its sign. 

Thus, from the inequation 

a2_|_ h^'^3¥—2a\ 

we deduce i. 

or 

3a^y2¥. 

II. If IVe add together the corresponding members of two or more inequations 

which hold good in the same sense, the resulting inequation will always hold 

good in the same sense as the original individual inequations ; that is, if 

a'f>h, c'f>d, e'^f, 

then 

a-\-c-\-ef>b-\-d-\-f 

III. But if we subtract the corresponding members of two or more inequations 

ivhich hold good in the same sense, the resulting inequation w 11.1, not always 

hold good in the same sense as the original inequations. 

Take the inequations 4<^7, 2<C3, we have still 4 — 2<f7 — 3, or2<^4. 

But take 9<^10 and 6<C8, the result is 9 — 6^ (not <^) 10—8, or 3^2. 

We must, therefore, avoid as much as possible making use of a transforma¬ 

tion of this nature, unless we can assure ourselves of the sense in which the 

resulting inequality will subsist. 

IV. If we multiply or divide the two members of an inequation by a positive 

quantity, the resulting inequation will hold, good in the same sense as the original 

inequation. Thus, if 

a b 
a<Ib, then ma<Cmh, —<'— 

m m 

—af>—b, then —na"^—nb, ——^. 
n n 

This principle will enable us to clear an inequation of fractions. 

Thus, if we have 

(p — W &—d"^ 

2d 3a ' 

multiplying both members by 3ad, it becomes 

3a{a?—b^)y2d{c^—d^). 

But, 

V. If we multiply or divide the tivo members of an inequation by a negative 

quantity, the resulting inequation will hold in a sense opposite to that of the 

original inequation. 

Thus, if we take the inequation 8^7, multiplying both members by —3, 

we have the opposite inequation, —24 <]—21. 

^ B /7 8^7 
Similarly, 8>7, but —-<—-. 

V^L We can not change the signs of both members of an inequation unless we 

reverse the sense of the inequation, for this transformation is manifestly the same 

thing as multiplying both members by —1. 
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VII. If both members of an inequation be positive numbers, we can raise them 

to any power without altering the sense of the inequation; that is, if 

af>b, then a" >6". 

Thus, from 5>3 we have {5Y'f>{3y, or 25>9. 

So, also, from (a-|-&)>c, we have {a-\-byf-c‘^. 

But, 

VIII. If both members of an inequation be not positive numbers, we can not 

determine, a priori, the sense in which the resulting inequation will hold good, 

unless the power to which they are raised be of an uneven degree. 

Thus, —2<^3 gives (—2)2<! (3)^ or 4<^9; 

But, —3^—5 gives (—3)'^*\(—5)^ or 9<\25; 

Again, —3^—5 gives (— 3)^^(—5)^ or —27^—125. 

In like manner, 

IX. JVe can extract any root of both m emhers of an inequation without alter¬ 

ing the sense of the inequation ; that is, if 

a'I>b, then ^a'^'\/b. 

If the root be of an even degree, both members of the inequation must 

necessarily be positive, otherwise we should be obliged to introduce imaginaiy 

quantities, which can not be compared with each other. 

EXAMPLES IN INEQUATIONS. 

(1) The double of a number, diminished by 6, is greater than 24 ; and triple 

the number, diminished by 6, is less than double the number increased by 10. 

Required a number which will fulfill the conditions. 

Let X represent a number fulfilling the conditions of the question; then, in 

the language of inequations, we have 

2x—6^24, and 3.r—6<^2.r-|-10. 

From the former of these inequations we have 

2a:^30, or a:>15; 

and from the latter we get 

3.r—2a:<^10-j-6, or :r<^16 ; 

therefore 15 and 16 are the limits, and any number between these limits will 

satisfy the conditions of the question. Thus, if we take the number 15’9, we 

nave 

15-9x2 —6>24 by 1-8, 

while 15-9x3 — 6<^15-9X24-10 by 0-1. 

(2) 3a:—2>-.r—g 

.-. 30a:—20>-253: —8 

30a:—25.a:>20 —8 

5a:^12 

3) 43—5.7: <10 —8a:. 

Ans. a:< —11. 



INEaUATIONS. 301 

12 
In the second example, —, or 2§, is an inferior limit of tlie values of x. 

82 
In the second, —11, and, in the third, —, or 9i, are supeiior limits of the 

value of X. If the second and fourth of the above inequalities must be verified 

simultaneously by the values of x, these values must be comprised between 

2f and 91. If the third and fourth, it is sufificient that it be less than —11. 

Finally, there is no value which will verify at the same time the 2° and 3°. 

(5) 3x—22/]>5, 53:-|-32/>16 ; , 

^ ^5+27/ ^ ^16-37/ 
r.x^—r— and x^--- 

o 5 

We can attribute to y any value whatever, and for each arbitrary value of 

y we can give to x all the values greater than the greatest of the two quan¬ 

tities 

54-27/ 16—37/ 

3 ’ 5 * 

We determine, also, from the proposed inequalities, 

3x—5 . 16—bx 
y<- y>- 2 ' 3 

In order that these last two may be fulfilled, 

3a:—5 16—bx 
—A—>—^; 

.•.a:>i9. 

47 
Thus X can receive only values superior to —, or 2y®g, and for each value 

of X there should be admitted for y but values comprised between the two 

limits above. 

(6) .r2-|-4a:>12 

J:;4 

r>2, or —2. 

The inferior limit of x is 2. 

(7) .T2-}.7a:<30. 

Ans. x<i3 or —10. 

The superior limit of x is —10. 
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GENERAL THEORY OF EQUATIONS. 

THE NATURE AND COMPOSITION OF EClUATIONS. 

238. The valuable improvements recently made in the process for the de¬ 

termination of the roots of equations of all degrees, render it indispensably 

necessary to present tAthe student a view of the present state of this interest¬ 

ing department of analytical investigation. The beautiful theorem of M. Sturm 

for the complete separation of the real and imaginary roots, and for discover¬ 

ing their initial figures, combined with the admirable method of continuous 

approximation as improved by Horner, has given afresh impulse to this branch 

of scientific research, entirely changed the state of the subject, and completed 

the theory and numerical solution of equations of all degrees. 

We recapitulate here two or three 
V 

DEFINITIONS. 

1. An equation is an algebraical expression of equality between two quan¬ 

tities. 

2. A root of an equation is that number, or quantity, which, when substi¬ 

tuted for the unknown quantity in the equation, verifies that equation. 

3. A function of a quantity is any expression involving that quantity; thus, 

ax'^-\-h 
ax^-\-cx-\-d, functions of a:; and also ax^^ — ax 

4x—5y, 
2x-{-3y 

3x—2y' 
y'^-\-yx-]-x‘^-\-a^-\-h-\-2, are all functions of x and y. 

These functions are usually written f{x), and f{x, y). 

4. To express that two members of an equation are identical or true for 

every value of .r, the sign nz is sometimes used. 

PROPOSITION I. 

Any function of x, of tJje form 

.r" -j- qx^~^ rx^~^ -j-. 

when divided hy x—a, will leave a remainder, which is the same function of a 

that the given j^olynomial is of x. 

het f{x)=x^~\-2JX^~^-\-qx'^~^-\-.; and, dividing/(.T) by x — a, let Q de¬ 

note the quotient thus obtained, and R the remainder which does not involve 

X ; hence, by the nature of division, we have 

/(.r).-x:Q(T—a)4-R. 

Now this equation must be true for every value of t, because its truth de¬ 

pends upon a principle of division which is independent of the particular values 

of the letters; hence, if we have 

*/(a) = 0 + R; 

and, therefore, the remainder R is the same function of a that the proposed 

polynomial is of t. , 

EXAMPLES. 

(1) What is the remainder of — 6\r-|-7, divided by a:—2, without actually 

performing the operation ? 

* The student will recollect that f{x) stands for &c., and that, therefore, 

J{a) will stand for 



GENERAL THEORY OF EGUATIONS. 303 

(2) What is the remainder of — 6.r^-}-8.r—19, divided by .r-|-3 ? 

(3) What is the remainder of •4-6.1''’+—4, divided by x—5 ? 

(4) What is the remainder of a:^+p.r^+5a:+r, divided by x—a ? 

ANSWERS. 

(1) R=22—6x2 + 7=—1. 

(2) R = (_3)3_6( —3)2+8( —3) —19=—124. 

(3) 1571. 

(4) a^+pa^+ga+r. 

PROPOSITION II. 

If sl is the root of the equation, 

1^”+^+.An—2.'^^ +An—il^+An = 0, 

the first memher of the equation is divisible by x—a. 

If the division be performed, the remainder, according to the preceding 

proposition, must be of the form 

U"4“Ax<2" ’ 4“ A2<1'' ^ . . . . An—2^^4-''^'1— 

i. €., the same function of a that the first member of the proposed equation is 

of X; and, therefore, since a is a root of the equation, the remainder vanishes, 

and the polynomial, or first member of the equation, is divisible exactly by 

X—a. 

Conversely, if the first member of an equation f(x)=0 be divisible by x—a, 

then a is a root of the equation. 

For, by the foregoing demonsti’ation, the final remainder is f{a) ; but since 

f{x), or the first member of the equation, is divisible by x — a, the remainder 

must vanish ; hence/(a) =0 ; and therefore, a being substituted for x in the 

equation f{x) = 0, verifies the equation, and, consequently, a is a root of the 

equation. 

PROPOSITION III. 

239. The proposition that every equation has a root, has in most treatises 

on Algebra been taken for gi-anted. It has, however, of late years been 

thought to require a demonsti-ation, and we add one which is as brief and clear 

as any of the best modifications of that by Cauchy. 

As it will prove a little tedious, the student may, if he please to admit the 

proposition, pass on to Prop. IV. 

It will be necessary to premise a few lemmas relating to the properties of 

moduli, some of which have been already demonstrated (Art. 197), but we re¬ 

peat them here for convenience of reference. 

Lemma I.— The sum or difference of any two quantities whatever has a 

modulus comprehendedy between the sum and difference of the moduli of the 

tioo quantities. 

Lemma II.— The modulus of a product of two factors is equal to the product 

of their moduli. 

Corollary.—Hence the product of the moduli of any number of factors is 

the modulus of their product, and the modulus of the power of a quantity 

is the power of its modulus. 

Lemma III.—In order that a quantity of the form a+b-/ —1 may be zero, 

it is necessary, and it is sufficient, that its modulus should be z^ro ; for a and 

b being real quantities, let 
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a-f-S ^/ —1 = 0. 

As the real part a can nof destroy the imaginary part —T, we must 

have separately a = 0 and 6 = 0 ■v/«2_j_ 52—0^ 

Lemma IV.—Let there be a polynomial of the form 

' X=a:™——w, 

in which the coefficients of all the terms after the first are essentially nega¬ 

tive. A value of x can always be found sufficiently great to render the first 

term x'^ greater than all the others together, and, consequently, the expression 

X essentially positive, and as great as we please. 

For we can write X thus. 

p q u 

X x^ a:™ 

in which, if x be supposed to increase indefinitely, the negative terms m 

the parenthesis will decrease indefinitely. As soon as x has attained a value 

?i sufficiently great to make these negative terms together equal to 1, the 

value of the expression X will go on increasing indefinitely, and be always 

positive. 

If A be taken negatively instead of positively, X will still be positive, provided 

771 be even; but if m be odd, then, when —1 is put for x, the leading term will 

be negative, and, consequently, X negative. 

Corollary.—If the first term^ of a series &c., be constant, 

X may be taken a sufficiently small fraction to make the sign of the Avhole de¬ 

pend on that of the first term.* 

X =.r"’ 

* From the above it may be shown, that in eveiy equation of an odd degree two values 

can always be found, which, when separately substituted for the unknown quantity, will 

furnish two results with opposite signs, and that in every equation of an even degree 

two such values can also be assigned, whenever the final term or absolute number is 

7iegative; for, in this case, the substitution of zero for x will give a negative result, viz., 

the absolute number itself-'and the substitution of -1-^ or —A will give ^‘positive result. 

From these inferences it may be proved, without difficulty, that every equation of an 

odd degree, without exception, has a i*eal i-oot, and eveiy equation of an even degree, pro¬ 

vided its final temi be negative, has two real roots, the one positive, the other negative. 

This conclusion might be deduced immediately from what has just been established, if it 

be conceded that every polynomial/(a;), which gives results of opposite signs when two 

values a, h are successively given to x, passes from/(a) to f[b) continuously through all in¬ 

termediate values, as x passes continuously from a to b. But this is a principle that re¬ 

quires demonstration. We proceed to establish it with the necessary rigor. 

PROPOSITION. 

If in the polynomial 

.... +A2a;2+Aia;-f-N 

X be supposed to vaiy continuously from x=a to x=b, then the function/(a:) wiU vary 

continuously from/(a) to f[b). 

DEMONSTRATION. 

Let of be anywalue intermediate between a and b. 

nomial. and it will become 

Substitute a'-\-h for x in the poly- 

that is, actually developing, in the second member, by the binomial theorem, and arranging 

the results according to the ascending powers of h, 
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PRELIMINARY DEMONSTRATION. 

240. Each of the,equations 

.1’"’= ± 1, ± V —1 

has a root of the form a-j-6V —1. This is true of the equation = 

whether m be even or odd, since .t=1 always satisfies it. It is also true of 

the equation x^=—1 when m is odd, for then x— — 1 satisfies it. 

When m is even, it must either be some power of 2, or else some power 

of 2 multiplied by an odd number ; if it be a power of 2, then the value of x 

will be obtained after the extraction of the square root repeated as many times 

in succession as there are units in the said power. Now the square root of 

the form a-\-h ■\/ —1 is always of the same form (Art. 118^. Hence, when 

m is a power of 2, each of the equations x'-^=—1, T™=dz V —1 has a root 

of the form announced. AVhen ni is a power of 2 multiplied by an odd num¬ 

ber, then, if we extract the root of this odd degree first, there will remain to 

be extracted only a succession of square roots. 

We have, therefore, merely to show that, when m is odd, a root of i V —1 

is of the predicted form. 

Now the oMpowers^ 1, 3, 5, &c., of V —(Art. 66) 

-f- ■\/ —1, — "v/ —1, -}- -s/ —1.... 

and the same powers of — V —1 are 

_ 
consequently, when m is odd, a root of dr V—1 is either —1 or 

— V —1. Hence the predicted form occurs, whether in be odd or even. 

It follows from this proposition that, whatever positive whole number m 
_! _ j_ _ 

may be, (—1)“ and {^/ —1)™ will always be of the form a-\-h ^/ —1; or, 
n n 

more generally, (—I)"* and ( \/ —1)™ will always bh of this form, n and m be¬ 

ing any integers positive or negative (Cor. to Lemma H.). 

THEOREM. 

241. Every algebraical equation, of whatever degree, has a root of the form 

n—1 

• • • 

-f-Asa'3 

-1-Aia' 

+N 

which may he written 

,n—3 
h -\-n[n—l)a' 

-{-(re—1) («—2) 

/(a^-{-7d=/(aq-h/da0A+/3(a0|+/3(a0^3 • • • 

Now, by what has been above shown, a value so small may be given to li that the sum 

of the terms after/(re') shall be less than any assignable quantity, however small. Hence, 

whatever inteniiediate value a' between a and h be fixed upon for x in/(a;), in proceeding 

to a neighboring value, by the addition to a! of a quantity li ever so minute, we obtain for 

f[of-\-h) a like minute increase of the preceding valuey’fa''). In other words, in proceed¬ 

ing continuously from a to h in our substitutions for x, the results of those substitutions 

must be, in like maimer, continuous, or all comiected together without any unoccupied in¬ 

terval. 

u 
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a-\-}) —1, whether the coefficients of the equation be all real, or any of 

them imaginary and of the same form. 

Lety'(.r)=2’"-{-An_i-'r"~^+* • • .(1) 

represent any equation the coefficients of which are either real or imaginary. 

If in this equation we substitute — 1 for 2, p and q being real, the 

first member will furnish a result of the form P-j-QV — 1, P and Q being 

real (Lemma II.). Should -\/—1 be a root of the equation, this result 

must be zero ; or, which is the same thing, the modulus of P-|-Q, / —1? viz., 

VP^+Q^ must be zero (Lemma III.). And we have now to prove that 

values 'of p and q always exist that will fulfill this latter condition. 

In order to this, it will be sufficient to show that whatever value of 

greater than zero, arises from any proposed values of p and q, 

other values of p) and q necessarily exist, for which becomes still 

smaller, so that the smallest value of which -y/P^-J-Q^ is capable must be zero, 

and the particular expression p-|-^ — 1, whence this value has arisen, niust 

be a root of the equation. 

For the purpose of examining the effect upon any function, ^'(a:), of changes 

introduced into the value of x, the development exhibited at Art. 239, Note, is 

very convenient. By changings: into x-\-h, the altered value of the function is 

thus expressed by 

/(.r-|-/i)=/(2)-j-/1 .2.3’*’^^". 

where/(.r) is the original polynomial, and &c., contain none but 

integral and positive powers of x (Art. 239, Note). 

The first of these functions,/(.r), becomes P-f-Q \/ —1 when p-{-q^/—1 

is substituted for x; the other functions may some of them vanish for the 

same substitution, for aught we know to the contrary ; but all the terms after 

f{x) can not vanish ; the last /i", which does not contain x, must necessarily 

remain. 

Withont assuming any hypothesis as to what terms of f{x-\-h) vanish for 

the value xz=p-\-q^/ —1, which causes the first of those terms,/(a:), to be¬ 

come P-pQ V —1, let us represent by the least power of li for which the 

coefficient does not vanish when 'p-\-q-\/ —1 is put for x. This coefficient 

will be of the form R-[-S -y/ — 1, in which R and S can not hath be zero. 

Whenp-f-^-y/ —1 is put for .r, we have represented f{x) by P-j-Q-y/ —1. 

In like manner, when —l-\-h is put for x, we may represent the 

function by P'-PQ' -y/—1. The development (2) will then be 

p' + Q' = (P + Q ) i-(R + S + terms 

.... h\ 

Now h is quite arbitrary; we may give to it any sign and any'value we 

please, provided only it come under the general form u + fe/ — 1. Leaving 

the absolute value still arbitrary, we may therefore replace it by either -\-k 
1 

or —/»:, or T;( — I)"'/:; and thus render /i"’ either positive or negative, which- 
1 

ever we please, whatever be the value of m; and we have seen that ( —1)™ 
comes within the stipulated form (Art. 240). Hence we may write the fore¬ 

going development thus, the sign of being under our own control: 
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P'+Q' V —l = (P4'Q V —l) + (P'i-S y/ —1)/;™-}- terms in 

A:'"+S .... k^. 

But in any equation of this kind the real terms in one member are together 

equal to those in the other, and the imaginary terms in one to the imaginary 

terms in the other. Consequently, 

P'=P + P'^"'"H- the re«^ terms in . . . . A:“; 

Q' = Q4-real terms involving powers above 

Hence the square of the modulus of P'-f-Q' V —1 is 

P'^-|-Q^* = P^“1“Q^ + 2(PB'4-QS)^™-|^ real terms in . . k^'\ 
Now k may be taken so small that the sum of all the terms after 

may take the same sign as 2(PIl-j-by (239), which sign we can always 

render negative whatever PR-j-QS may be, because, as observed above, k^ 
may be made either positive or negative, as we please. 

Hence we can always render 

P'2_j_ Q/2 p2_|_ Q2^ or y''^2^Q'2 ^P2_|_Q2. 

In other words, whatever values of p and q, in the expression p-{-q yj —1, 

cause the modulus -v/P^+Q.^ to exceed zero, other values exist for which the 

modulus will become smaller; and, consequently, one case at least must exist 

for which the modulus, and, consequently, the expression P + Q V —1> must 

become zero. 

This conclusion presumes, however, that PR-|-QS is not zero. If such 

should be the case, then our having chosen the form of /i, so as to secure a com¬ 

mand over the sign of 2(PR-|-QS), will have been unnecessary. The form 

must then be so chosen that a command may be secured over the sign of the 

first term after 2(PR-|-QS)^™, in the above series, for P^’^-j-Q'^, which does 

not vanish, when the preceding conclusion will follow. 

242. The values of a and & in the expression a-\-h yj —1, which, when put 

for X in/(a:), cause that polynomial to vanish, can never be infinite. 

We may write f{x) as follows, viz., 

or, putting P-j-QV—1 foi’ what f{x) becomes, when pJ^q^J is substi¬ 

tuted for a:, we have 

P^ Q —I == 
_  / An—1 An—2 N \ 

Now the modulus of a quotient is the quotient of the modulus of the divi¬ 

dend by the modulus of the divisor (Lemma IL). In each of the dividends 

An-1, An—2, Ac., above, the modulus is finite by hypothesis. Hence, if either 

p or q be infinite, and, consequently, the modulus of every denominator or 

divisor also infinite, the modulus of each quotient must be zero. Hence, in 

this case, each of the above fractions must itself be zero (Lemma HI.), and 

therefore the modulus of the entire quantity within the parenthesis simply 1; 

and the modulus of a product is the product of the moduli of the factors, so 

that the modulus of the preceding product, viz., -\/P■^-f-Q^ is the modulus of 

i,p-\-qyJ—1)". But the w”' power of p-\-qyJ—1 has for modulus the n''* 

newer of the modulus ofp-{- qy/ —1, that is, the power of yJ p'^-\-cf (Lemma 
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% __ 
11., Cor.), which is infinite; consequently, must be infinite. But 

when 2? 4“ — 1 is a root of the equation/(:i’)==0, VP^+is zero. Hence, 

in this case, neither nor q can be infinite. • 

243. An objection may be brought against the preceding reasoning that 

ought not to be concealed. It may be denied that the modulus of the product 

above referred to is simply the modulus of {p-{-q-y/ —1)" in the case of^? or q 

infinite; for it may be maintained that although in this case all the quantities 

within the parenthesis after the 1 become zero, yet the combination of these 

with {2^-\-qV —1)'\ which involves infinite quantities, may produce quantities 

.also infinite ; and thus the modulus of the product may differ from the modu¬ 

lus of {x>-\-qv —1)" by a quantity infinitely great. It is not to be denied that 

there is weight in this objection. But it is not difficult to see that although 

the true modulus may thus differ from the modulus of —1)" by an 

infinite quantity, yet the modulus of {p^\-q^/ —1)", involving higher powers 

than enter into the part neglected, is infinitely greater than that part. This 

part, therefore, is justly regarded as nothing in comparison to the part pre¬ 

served, the former standing in relation to the latter as a finite quantity to in¬ 

finity. 

But the proposition may be established somewhat differently, as follows; 

Substituting {p-\-q V — 1) for x in f{x), we have 

P4~ Q V —1 = 
{ V—V —. .k.fip■^q^/—l)-}-N. 

Call the aggregate of all these terms after the first P'-j-Q' V —1 ; then it 

is plain that the modulus of the first term, that is, ( must infinitely 

exceed the modulus -v/P'^+Q.'^ of the remaining terms whenever p or q is 

infinite, because in this latter modulus so high a power of the infinite quantity 

p or q can not enter as enters into the former. Now the modulus of the 

whole expression, that is, of the sum of + V — 1)" and P'-f-QW —is 

not less than the difference of the moduli of these quantities themselves 

(Lemma I.), which difference is infinite. Hence, as before, -^/P^-j-Q^ must 

be infinite whenp or q is infinite. 

PROPOSITION IV. 

244. Every equation containing hut one unknown quantity has as many roots 

as there are units in the highest power of the unknown quantity. 

Let/(T) = 0 be an equation of the degree ; then if a^ be a root of this 

equation, we have, by last proposition, 

{x—afiffx)=f{x)=:0, 

where/i(a:) represents the quotient arising from the division off{x) by x—aj, 

and will be a polynomial, arranged according to the powers of x, one degree 

lower than the given polynomial f{x). Now, if ^2 is also a root of the equa¬ 

tion/(a:)=0, it is obvious that/, (t) must be divisible by x—a^, for x—is 

not divisible by x—a^ (see Art. 84, Note); hence, if f2(^)1 a polynomial of a 

degree one lower than fi{x), or of a degree two lower than f{x), represent the 

quotient offfix) divided by x—a2, we have 

{x—ai){x—a2)f2{x)—f{x) = 0. 

Proceeding in this manner, if a^, a^,.are roots of the equation, 
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the degree of the quotient reducing by one each time, the equation will as¬ 

sume the fonn 

(.r—«i)(.r—a.,){x—a^).{x—a„) = 0; 

and, consequently, there are as many roots as factors, that is, as units in the 

highest power of .r, the unknown quantity; for the last equation will be veri¬ 

fied by any one of the n conditions, 

.r=«j, .r=«2, x=za2i x=a^, .... a:=£z„; 

and since the equation, being of the degree, contains n of these factors of 

the 1st degree, {x—a^), &c., there are n roots.” 

Corollary 1. When one root of an equatiqi is known, the depressed equa¬ 

tion containing the remaining roots is readily found by synthetic division. 

Corollary 2. The number of factors of the 2° degree in an equation is n{n — 1) 

-^1.2; of the 3°, n{n—l)(n—2)-^l .2.3, and so on (see Art. 203). 

EXAMPLES. 

(1) One root of the equation —2bx'^-\-G0x—36 = 0 is 3 ; find the equation 

containing the remaining roots. 

1 _|.o —25 -j-60 —36 (3 

3 9 _48-1-36 

1 _j_3 —16 -f 12^ 

Hence .r^-j-3.r^—16.r-|-12 = 0 

is the equation containing the remaining roots. ^ 

(2) Two roots of the equation x*—12x^-{-4:8x'^ — 68a:-j-15 = 0 are 3 and 5; 

find the quadratic containing the remaining roots. 

1 _12 4-48 — 684-15 (3 

3 —27-1-63 — 15 

1 _ 9 -1-21— 5 (5 

5 —20 

1 — 4 -f 1 

.*. x‘^— 4.r4-l=0 

is the equation containing the two remaining roots. 

(3) One root of the cubic equation — 6.r2-|-ll,r — 6=0 is 1; find the 

quadratic containing the other roots. 

Ans. x^—5a:-|-6 = 0 

(4) Two roots of the biquadratic equation 4a,*^—14.25^—5.r2-[-31.r4-6 = 0 are 

2 and 3 ; find the reduced equation: 

Ans. 4a:2 4'6**^"l"l=0. 

(5) One root of the cubic equation x^-^-bx"^ — 16.r-|-12 = 0 is 1; find the re¬ 

maining roots. 

Ans. 2 and —6. 

(6) Two roots of the biquadratic equation x'^—6.r^4-24a:—16=0 are 2 and 

— 2 ; find the other two roots. 
Ans. 3d:; 

PROPOSITION V. 

245. Tlo form the equation whose roots are a^, a^-i «3> . 

The polynomial,/(a:), which constitutes the first member of the equation 

required, being equal to the continued product of x—a^^ x—^••• 

r—a„, by the last proposition, we have 
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{x — a^){x—«2)(^ — ^3).— «u)=0; 

and by performing the multiplication here indicated, we have, when 

w = 2, x’^— 

—a-i 

X —j— aia^2 — = 0 
‘ 

n = 3, x^—«i 
—a:i 

— «3 

x'^ aia^ 

-j-UiUs 

"T d-idz 

X —a^a^a^-z = 0 

u=4, .tr*— x^ —|— a^a^ a:’ — aia^a^ a:-|-<jfi<22<^3«4=0» and so on 

— Ua -\-cL\a^ —a^a^a^ 

— «3 U.2^3 —aia^iUi 

-^4 —^ a^a^ 

-|- <2-2^4 
-\-a^ai 

— 

By continuing the multiplication to the last, the equation will be found 

whose roots are those proposed ; and from what has been done we learn that 

(1) The coefficient of the second term in the resulting polynomial will be 

the sum of all the roots with their signs changed. 

(2) The coefficient of the third term will be the sum of the products of 

every two roots with their signs changed. 

(3) The coefficient of the fourth term will be the sum of the products of 

every three roots with their signs changed. 

(4) The coefficient of the fifth term will be the sum of the products of 

every four roots with their signs changed, and so on ; the last or absolute 

term being the product of all the roots with their signs changed.* 

* I. The generality of this law may be proved as follows : Let us suppose it to hold 

good for the product of n binomial factors, we shall prove that it will for the pi'oduct of 

n-{-l of these. Let 

' &c, drA„ 

represent the product of n binomial factors, in which A^ represents the sum 

&c., of the n second terms of the binomials,'A^ the sum of their products two and 

two, A3 the sum of their pi'oducts three and three, and so on, and A„ the product of all the 

n second tenns a^a^a^, &c., 

Introduce now a new factor [x—Perfonning the multiplication of the above poly¬ 

nomial by this new factor, 

x^——, &c., 

X—a. n+l 

X —AjU:"-j-A2a;‘' —■, &c., -j-A^a; 

&c. 

a;n+i_Aj 

'^n-pi 

^"+A.2 X , &C., T-^n^ri+l 

—A. 
Here the coefficient of the second term is composed of A., the sum of all the 

—«n+i 1 

second tenns of the n binomials {x—af {x—a.^), &c., and the second tenn of the 

binomial, and is, therefore, equal to tlie sum of the second terms of the n-\-l bino- 

~f-A2 
mials. The coefficient of the third term is composed of A , the sum of the prod- 

nets of the n second tenns two and two, and the sum of the n second terms, each 
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Corollary 1.-—If the coefficient of the second term in any equation be 0, 

that is, if the second term be absent, the sum of the positive roots is equal to 

the sum of the negative roots. 

Corollary 2.—If the signs of the terms of the equation be all positive, the 

roots will be all negative, and if the signs be alternately positive and negative, 

the roots will be all positive. 

Corollary 3.—Every root of an equation is a divisor of the last or absolute 

term. 

multiplied by the new second term ; hence 
+•^2 

will be the sum of the products 

of the n-\-\ second terms two and two. 

The last term is the product of A^^, which is the product of all the n second tenns 

multiplied by the new second term so that is the product of all the n-{-l sec¬ 

ond terms. 

We have thus proved that if the law for the fonnation of the coefficients above stated 

liold good for a certain number of binomial factors n, it will hold good for one more, or 

We have seen, by experiment, that it holds good for four, it therefore holds good for five ; 

if for five, it must for six, and so on ad infinitum. 

II. One might imagine, at first view, that the above relations would make known the 

TOOts. They give at once equations into which these roots enter, and which are equal in 
number to the coefficients of the equation (excepting the coefficient of the first term, which 

is unity). The number of these coefficients is equal to the number of the roots of the equa¬ 

tion. Unfortunately, when we seek to resolve these secondary equations, we ai'e led to the 

very equation proposed, so that no progress is made. 

For simplicity, I will take the equation of the 3° degree. 

a;3-j-Pa;2-j-Q,.r-|-R=0.(1) 

Designating the three roots by a, b, c, we have, to detennine the roots, the three re¬ 

lations 
P=—a—h—c 

Qi=ab-\-ac-\-bc.(2) 

i *41^”— 
To deduce from fSem an equation which contains hut the unknown a, the most simple 

mode of proceeding is, to multiply the 1° by the 2° by a, and add tliem to the 3°. 
Thei'e I’esults 

Pa2-{- Q,a-j-R=——at^b— 

-{-a%-\-ai^c-\-abc 

—abc. 

Reducing, and transposing the teinn ~a^, we have 

a3+Pa2_|_ Cla-{-R=0. 

The unknown quantities b and c are thus eliminated, but the equation resulting is of the 

same degi-ee with the proposed. From the symmetrical fonn of the relations (2) we per¬ 

ceive that the elhnination of a and b, or a and c, would have been attended with similar 
consequences. 

III. To find the smn of the squares of the roots of any equation. 

—A]^—(2—6—}—c... —(—Z,' 

A^2—^2_|_J2_pc2... J^li-^‘i[ab-^ac-\-bc-\-_) 

= sum of the squares -j-SAj ; 

.•. sum of squares =rA,2—2A.,. 

To find the sum of the reciprocals of the roots. 

(—1)"-^ A^_i=6c... l-\-ac... l-^ab.. Z-f.. 

(—l)"Ajj=aic...Z; 

4-^- 

■■a + l + c--+T 

A„ 

A„ 
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Corollary 4.—In any equation, when the roots are all real, and the last or 

absolute terai very small compared with the coefficients of the other terais, 

then will tlie roots of such an equation be also veiy small. 
•> 

EXAMPLES. 

(1) Form the equation whose roots are 2, 3, 5, and —6 

Here we have simply to perform the multiplication indicated in the equa¬ 

tion 

{x — 2)(.r—3){x — 5)(.r-j-6)=0 , 

and this is best done by detached coefficients in the following manner: 

1— 2 ( — 3 

-3-1-6 

1_ 5_j_ 6 ( — 5 

_ 5_^25_3o 

l_10-j-31—30 (6 

6-60-1-186 — 180 

1— 4-29-1-156 — 180 

.\x*—Ax^—29.r^4-156a:—180 = 0 is the equation sought. 

(2) Form the equation whose roots are 1, 2, and —3. 

(3) Form the equation whose roots are 3, —4, 2-f- 'v/3, and 2— 

(4) Form the equation whose roots are 3-f- ■\/5, 3— and —6. 

ANSWERS. 

(2) —7a:-f 6 = 0. 

(3) 3.r3 —15a:^-l-49.r —12 = 0. 

(4) a:3_32.r-f24 = 0. 

PROPOSITION VI. 

246. No equation whose coefficients are all integers, and that of the highest 

power of the unknoivn quantity unity, can have a fractional r^qt. 

If possible, let the equation 

... -f-Ai.r-|-N = 0, 

whose coefficients are all integral, have a fractional root, expressed in its low- 

a 
est terms by If we substitute this for x, and multiply the resulting equation 

bv we shall have 

^ An_i(z"-i -I--1- A 3a3Z,n-3_|_ Aa&"-2 4- = 0. 

In this polynomial, every term after the first is integral; hence the first term 

a ^ 
must be integral also. But ^ being a fraction in its lowest terms, must also 

be a fraction in its lowest terms, and can not be an integral. (See Note to 

Art. 84.) Therefore the proposed equation cmi not have a fractional root. 

PROPOSITION VII. 

247. If the signs of the alternate terms in an equation he changed, the signs 

of all the roots will be changed. 

Let a-"-f-Ai.r"-^4-A2.r"-2 4“.An_i,r-|-A„=0 .... (1) 

be an equation ; then, changing the signs of the alternate terms, we have 

x^ — Ai.r"~'-|-Aa-T"”^-'...dr.An_i.rq= An = 0 ... (2) 

or —a:"-]-AiT"”^—.A„_i.i’dr An=0 . . . (3) 
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But equations (2) and (3) are identical, for the sum of tlie positive terms in 

each is equal to the sum of the negative terms, and therefore they arc identi¬ 

cal. Now if rt be a root of equation (1), and if a be substituted for x in equa¬ 

tion (1) and —a in equation (2), if n be an even number, or in equation (3) 

if n be an odd number, the results will be the very same ; and since the for¬ 

mer is verified by such substitution, a being a root, the latter, viz., equation 

(2) or (3), as the case may be, is also verified, and therefore —a is a root of 

the identical equations (2) and (3). 

Corollary.—If the signs of all the terms are changed, the signs of the roots 

remain unchanged. 

EXAMPLES. 

(1) The roots of the equation —6 = 0 are 1, 2, 3. * What are 

the roots of the equation a:^-|-6.i’^-j-ll.r-j-6 = 0 ? 

Ans. —1, —2, —3. 

(2) The roots of the equation — Qx^-\-2Ax —16=0 are 2, —2, 3d: 

Express the equation whose roots are 2, —2, —3-]- and —3— 

Ans. —24a: —16 = 0. 

. PROPOSITION VIII. 

248. Surds and hnpossible roots enter equations hy pairs. 

Let a:"-4-A.2.'c"~2_j_ .... An=0 be an equation liaving a root 

of the form a-\-h —1, then will a — h ^/ —1 be also a root of the equation ; 

for, let a-\-l) —1 be substituted for x in the equation, and we have 

{,a-\-h ^/ —l)"-j-Ai(u-j-&-\/ — 1)" A,i_i(fi^-[- h -yf — 1) -j-A„ = 0. 

Now, by expanding the several terms of this equation, we shall have a series 

of monomials, all of which will be real except the odd powers of 6-/—1, 

which will be imaginary. Let P represent the real and Q-/—1 the imagi¬ 

nary terms of the expanded equation ; then 

P “hQV —1 = 0, 

an equation which can exist only when P=0 and Q=0, for the imaginary 

quantities can not cancel the real ones, but the real must cancel one another, 

and the imaginary one another separately. 

Again, let a — h —1 be substituted for x in the proposed equation ; then 

the only difference in the expanded result will be in the signs of the odd powers 

of 6 V —1, and the collected monomials, by the pi-evious notation, will assume 

the form P—QV —1 but we have seen that P = 0 and Q = 0; 

... p_Q/III=:0, 

and hence a — 6 —1 also verifies the equation, and is therefore a root. 

Such roots are called conjugate. 

In a similar manner, it is proved that if be one root of an equation, 

a— ^/h will also be a root of that equation. 

Corollary 1.—An equation which has impossible roots is divisible by 

\x — {a-\-h^/—l)\\x — {a — l^d—l^, or — 2a X 

and, therefore, eveiy equation may be resolved into rational factors, simple or 

quadratic. 

Corollary 2.—All the roots of an equation of an even degree may be impos- 
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sible, but if they are not all impossible, the equation must have at least two 

real roots. 

Corollary 3.—The product of every pair of impossible roots being of the 

form positive; and, therefore, the'absolute term of an equation 

whose roots are all impossible must be positive. 

Corollary 4.—Every equation of an odd degi'ee has at least one real root, 

and if there be but one, that root must necessarily have a contrary sign to 

that of the last term. 

Corollary 5.—Every equation of an even degree whose last terra is nega¬ 

tive has at least two real roots, and if there be but two, the one is positive, 

and the other negative. 

s’ 

J PROPOSITION IX. 

249. The m roots of the equation X=0, or 

P:r™-^4-Q.r™-2-j-, &c, =0.[A] 

must he of the form a-\-h —1, of which form we have already shown (Art. 

241) that it must have one. 

For, let a-\-h ^/—1 be the root whose existence is demonstrated. We 

know (Prop. II.) that the polynomial .r®-!-, &:c., is divisible by .r — {a-\-h ^ —1); 

but when we effect this division, the quantities a-\-h—1, P, Q, &c., can 

combine only by addition, by subtraction, and by multiplication; then the co¬ 

efficients of the quotient &c., will still be of the form a-\-h f — 1. 

Consequently, the equation will also have at least one root of the 

form a'-\-h' V —1; dividing by x — {a'-\-h' f —1), the coefficients 

of the quotient &c., will be still of the same form. Continuing to 

reason thus, it is evident that the primitive polynomial X will be divided into 

711 factors of the form x—{a-{-h—1), and, consequently, the roots of the 

equation will all be of the form a-\-h —1. 

PROPOSITION X. 

250. The roots of the two conjugate equations., 

Y+Z V’^ = 0.(1) 

Y-ZV“^1 = 0.(2) 

ivill he conjugates of each other. 

Let x—a-\-h y/ —1 be a root of equation (1), and Y'-j-Z' ^/ —1 the quotient 

of its first member, by x — a — h ■f —1, we have the identity 

{Y' + Z' ^'^){x-a-h V~l)=Y+Z .(3) 

Effecting the multiplication in the 1° member, we find 

{x—a)Y'-\-hZ'-J^[{x—a)Z' — hY'] 

Changing now in the two factors Z' into —Z', and h into —h, we see that 

in the product the part which does not contain y—1 remains the same, and 

that that which does contain —1 only changes its sign; by virtue of (3), 

therefore, we have 

{Y'-Z'V~^){x-a-irhV~l)=Y-ZV~^ • • • • (4) 

From whence we conclude that a — h f — 1 is a root of (2); that is, all the roots 

of (2) are obtained by changing in those of (1) the sign of f — 1. The real 

roots, according to this, must be the same in the two equations. 
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AVe may now consider the following beautiful proposition as demonstrated 

from the foregoing. 

PROPOSITION XI. 

An algebraic equation ivhich has real coefficients is ahvays composed of as 

many real factors of the 1° degree as it has real roots, and of as many real 

factors of the 2° degree as it has p)airs of imaginary roots. 

DEPRESSION OR ELEVATION OF ROOTS OF EaUATIONS. 

PROPOSITION. 

251. To transform an equation into another whose roots shall he the roots of 

the qjroposed equation increased or diminished by any given quantity. 

Let +.An = 0, be an equation, and let it 

be required to transform it into an equation whose roots shall be the roots of 

this equation diminished by r. 

This transformation might be effected by substituting y-\-r for x in the pro¬ 

posed equation, and the resulting equation in y would be that required; but 

this operation is generally very tedious, and we must therefore have recourse 

to some more simple mode of forming the transformed equation. If we write 

y-\-r for X in the proposed equation, it will obviously be an equation of the 

very same dimensions, and its form will evidently be 

+ .B„_iy4-Bn = 0.(1)* 

in which Bi, B3, &c., will be polynomials involving r. But y-=x—r, and there¬ 

fore (1) becomes 

—r)"-fBi(.r—.Bn_i(.r—r)-j-Bn=0 . . (2) 

which, when developed, must be identical with the proposed equation; for, 

since y-\-r was substituted for x in the proposed, and then x—r for y in (2), 

the transformed equation, we must necessarily have reverted to the original 

equation; hence we have 

«(2:_r)"-}-Bx(.'r—..B„_i(.r—r)-f-Bn = a.r"-l-A,.T"-i-f .. Ar^^x-\-Ar,. 

^ It will be of the same fonn with the development in the note to (Art. 239). We give 

it again below, arranged according to the powers of r instead of y. After substituting y^-r 

for X, we write the development of each term of the proposed equation in a horizontal line ; 

the first horizontal line is the development of ax^, the second of Aia;*^-!, and so on. 

. n—1 
ay^-\-any' r h 

a7i[n~ 

1.2 

2„ , Al(re—l)(?i—2)_„_3 2 

1.2 -J/ 

+ • • • 

,n—3 A2(«—2)(?z—3) / n—4 2 I 
y 

1.2 

-{-An. 

In which the first column is of the same fonn as the proposed equation; the second 

column, or coefficient of r, is derived from the fiz’st by multiplying the coefficient of each 

tenn by its exponent, and diminishing the exponent hy unity; the third column, or coeffi- 
7-2 

cient of-•, is derived from the second in a similar manner, and so on. 
1.2 _ 

If we designate hy f[x) the first member of the given equation, and by/''(a;) the first de¬ 
rived function, hy/^^(a;) the second derived, and so on, we shall have 

f {x-pr) =f {x)'i72^'^"^’ 
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Now, if we divide the first member by x — r, every term will evidently be divis¬ 

ible, except the last, Bn, which will be the remainder, and the quotient will be 

«(a:—Bi(2:—.Bn_2(.'r—; 

and since tne second member is identical with the first, the very same quotient 

and remainder would arise by dividing this second member also by x—r; 

hence it appears that if the first member of the original equation be divided by 

X—r, the remainder will be the last or absolute term of the sought transformed 

equation. 

Again, if we divide the quotient thus obtained, viz., 

a{x—r)"~^-j-Bj(a:—.... Bn_2(3^—i 

by X—r, the remainder will obviously be Bn_i, the coefficient of the term last 

but one in the transformed equation; and thus, by successive divisions of the 

polynomial in the first member of the proposed equation by x—r, we shall ob¬ 

tain the whole of the coefficients of the required equation. 

RULE. 

Let the polynomial in the first member of the proposed equation be a func- 

'tion of X, and r the quantity by which the roots of the equation are to be di¬ 

minished or increased ; then divide the proposed polynomial by x—r, or x-{-r^ 

according as the roots of the proposed equation are to be diminished or in¬ 

creased, and the quotient thus obtained by the same divisor, giving a second 

quotient, which divide by the same divisor, and so on till the division termi¬ 

nates ; then will the coefficients of the transformed equation, beginning with 

the highest power of the unknown quantity, be the coefficient of the highest 

power of the unknown quantity in the proposed equation, and the several re¬ 

mainders arising from the successive divisions taken in a reverse order, the 

first remainder being the last or absolute term in the required transformed 

equation. 

Note.—When there is an absent term in the equation, its place must be 

supplied with a cipher. 

EXAMPLES. 

(1) Transform the equation 5.r^——5 = 0 into another whose 

roots shall be less than those of the proposed equation by 2. 

X—2) bx^ — 12i^-\-3x^-\-Ax — 5 (5.r^—2x^—x-\-2 

5x^—10x^ 

—2x^-\-3x‘^ 

— 2x^-\-Ax'^ 

— 

—x'^-\-2x 

2x—5 

2.r—4 

— 1. First remainder. 

X—2) bx^—2.r^—x-\-2 (5i'^-|-8a:-|-15 

bx?—l(ix- 

6x^—X 

8x^ — 16.r 

■ r5.r-f 2 

]5.r—30 

32. Second remainder. 
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x—2) 5.^24-S.r-f-15 (5.r+18 

5x^—10.r 

18X+15 

18.r—36 

51. Third remainder. 

x—2) 5j:+18 (5 

5x—10 

28. Fourth remainder. 

Therefore the transformed equation is 

52/^4-28^3 5iy2_|l 322/_ 1 =0. 

This laborious operation can be avoided by Horner''s Synthetic Method of 

division, and its great superiority over the usual method will be at once ap¬ 

parent by comparing the subsequent elegant process with the work above. 

Taking the same example, and writing the modified or changed term of the 

divisor x—2 on the right hand instead of the left, the whole of the work will 

be thus arranged: 

5 — 12 4. 3 4- 4 —5 (2 

10 — 4 — 2 4 

— 2 — 1 2 64=—I 

10 16 30 

8 15 ^ .-. B3=32 

10 36 

18 ^ ... .-. B2=51 

10 

^ .-. Bi = 28 

... by‘^-\-2Sy‘^-\-b\y’^-\-^2y—1—0 is the required equation, as before. 

(2) Transform the equation by'^-\-2'dy^^-\-b\y‘^-{-ti2y—1 = 0 into another 

having its roots greater by 2 than those of the proposed equation. 

54-284- 51 -f 32 -1 (-2 
— 10 - -36 — 30 — 4 

18 15 2 —5 

— 10 - -16 2 

8 - - 1 4 

—10 4 

— 2 3 

—10 

— 12 

.*. bx^ — 12.r^-|-3.'r^-j-^^—5 = 0 is the sought equation, which, from the trans- 

formations we have made, must be the original equation in Example 1. 

(3) Find the equation whose roots are less by 1*7 than those of the equation 
23_2z2_|.32;_4 —0. 4*" 

1—2 + 3 -4(1 

1 — 1 2 

— 1 2 —2 

1 0 

0 

1 

1 

2 
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Now we know the equation whose roots are less by 1 than those of the 

given equation ; it is —2 = 0 ; and by a similar process for *7, re¬ 

membering the localities of the decimals, we have the required equation ; 

thus :' 

1+1 + 2 —2 (-7 

.7 1-19 2-233 

1-7 3-19 •233 

7 1-68 

2-4 4-87 

7 

3-1 

3/^+3'ly2-j-4*87y-{-*233=0 is the required equation. 

This latter operation can be continued from the former without arranging 

the coefficients anew in a horizontal line, recourse being had to this second 

operation merely to show the several steps in the transformation, and to point 

out the equations at each step of the successive diminutions of the roots. 

Combining these two operations, then, we have the subsequent arrange¬ 

ment. 

1—2 + 3 —4 (1-7 

1 — 1 2 

— 1 2 — 2 

1 0 2-233 

0 2 •233 

1 1-19 

1-7 3-19 

•7 1-68 

2-4 4-87 

•7 

3-1 

1—2 + 3 —4 (1-7 

1-7 — -51 4-233 

— -3 2-49 •233 

1-7 2-38 

1-4 4-87 

1-7 

3-1 

We have then the same resulting equation as before, and in the latter of 

these we have used 1*7 at once. It is always better, however, to reduce 

continuously as in the former, to avoid mistakes incident to the multiplier 1*7. 

(4) Find the equation whose roots shall be less by 1 than those of the 

equation 

.r3_7.r4-7 = 0. 

(5) Find the equation whose roots shall be less by 3 than the roots of the 

equation 

a:^_3r'5—15.r24-49.7:—12=0, . 

and transform the resulting equation into another whose roots shall be greater 

by 4. 
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(6) Give the equation whose roots shall be less by 10 than the roots of the 

equation 

4-2:2:3 + 4-4a:—1234 0 = 0. 

(7) Give the equation whose roots shall be less by 2 than those of the 

equation 

—10.r4-8=0. 

(8) Give the equation whose roots shall each be less by L than the roots of 

che equation 

2.r*—4" —2a: 4-1 = 0. 

ANSWERS. 

' —42/4‘1=^.whence a:r=y-|- 1 

(5) — 14y=0.whence a:=2/4- 3 
and 2“^—7234-662—72 = 0.whence a:=2— 1 

(^) 2/^-l-422/34.663y^-|-4664y=0.whence a:=2/4“ 16 

('^) y*^+10y^4"‘1^2/^"l“^6y^4“'^62/-|-12 = 0.whence a:=2/4- 2 

(8) 22/-*—22/3—0^2—3y_j_3_Q.whence a:=2/4- i 

PROPOSITION 
) 

252. If the real roots of an equation, taken in the order of their magnitudes, he 

where a^fs the greatest, a^ the next, and so on ; then if a series of numbers, 

hi, h2^ h^, bb. 
tn which b^ is greater than aj, b2 a number between a^ and aa, bg a number 

between and ag, and so on, be substituted for x in the proposed equation, 

the results will be alternately positive and negative. 

The polynomial in the first member of the proposed equation is the product 

of the simple factors 

{x—Ui)(a:—— ^4). 

and quadratic factors, involving the imaginary roots; but the quadratic factors 

have always a positive value for every real value of x (Art. 248, Cor. 3); there¬ 

fore we may omit these positive factors; and substituting for x the proposed 

series of values, b^, b^-, b^, &c., we have these results: 

(5j — a^fbi — 272^(6j —2Zg)(5^ — ^4) • • • • • ~f-• ~j~• “f-.4“ 

{b2 ““^ 1)(^ 2^2)1^2 ^3)(^2 ^4) • • • • — . —j—.4" • ..... — 

(6g —22!i)(5g —<^2)(^3~^3)(^3 —^4) • • • • — —• —‘“f"*"!".— 

(64—2Zi)(64—a2)(^4—«3)(^^4—^4)----.. . 

&c. &c. Ac. 

Corollary 1.—If two numbers be successively substituted for x in any equa¬ 

tion, and give results with different signs, then between these numbers there 

must be one, three, five, or some odd number of roots. 

Corollary 2.—If the results of the substitution in corollary 1 are affected 

with like signs, then between these numbers there must be two, four, or some 

even number of roots, or no root between these numbers. 

Corollary 3.—If any quantity q, and every quantity greater than q, renders 

the result positive, then q is greater than the greatest root of the equation. 

Corollary 4.—Hence, if the signs of the alternate terms be changed, and if 

p, and every quantity greater than p), renders the result positive, then —p is 

less than the least root. < 



320 ALGEBRA I 

EXAMPLE. 

Find the initial figure in one of the roots of the equation 

.X^3_4a.2_6_^_|_8=:0. 

Here one value of x does not differ gi'eatly from unity, for the value of the 

given polynomial, when .r = l, is —1, and when a:=:*9, it is found thus: 

1_4_6 +8 (-9 

•9 —2-79 —7911 

—^—8^+ -089. 

The value, therefore, when .r=‘9 is (Art. 251) *089. Hence the former 

value being negative, and the latter positive, the initial figure of one root is *9. 

PROPOSITION. 

253. Given an equation of the n*^ degree to determine another of the (n—1)'* 

degree, such that the real roots of the former shall separate those of the latter. 

Let Uj, U2> ^39 • • • • «n be the roots taken in order of the equation 

2’" 4- A. 12““^+A 2 x^~~^ -|--An_i2 -}- An = 0 ; 

then diminishing the roots of this equation by r (Art. 251), we have the fol¬ 

lowing process, viz.: 

+ -^2+ • • 
r rBj ^Bn—3 rBn—2 

Bo Bn—2 —1 

r rCj rCn-3 rCn_2 

c, c^ Cn—2 Cn—1 

+ K (r 

~K~ 

Whence 

Cn—i = An—1-|- r ^ C„_3 

= An—l-j- r(An_2-|- r Bn—r;)-|- ^ (An—2 -|-2 Bn—3-j-rCn—3) 

= An—An—2-|-2r^ Bn—3 -{- Cn—3 

= An—i-f-2r An—2-j-2r^(An—3 -f" r Bn—4)-t-r^(An—3-j-rBn—4-{-?*Cn_4) 

= AnW-f“2?* An—2-j-3r^ An—3 -|-3?*^ Bn—4 Cn—i 

=An-i + 2r An-3-|-3r2 An-3 4-.{n—l)r^-’^Ki-\-nr'^-\ 

or 

Cn_i=«r"-^4-(w—l)Air"-2 4.(w—2)A2r"-24- . . . 2An-2r4-An-i. . . (1) 

Again, the roots of the transformed equation will evidently be 

Cl—r, U2—«3—T, a^—r, .... Un—t, 

and as we have found the coefficient, Cn-i, of the last term but one in the 

transformed equation, by one process, we shall now find the same coefficient, 

Cn-i, by another process (Prop. V., p. 309); it is the product of every (w —1) 

roots of the equation (1) with their signs changed; hence we have 

Cn-i = (^—<2i)(’'—«2)(^—^3)..".to {n—1) factors ' 

4-(r—«i)(’'—«2)(^—.to (w—1) factors 

4_(r_ui)(r —Uz){r—U4).to (n—1) factors 1 

4-(r—an){r—ad){r—a^.to (ti^I) factors 

Now these two expressions which we have obtained for Cn-i are equal to 
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one another, and, therefore, whatever changes arise by substitution in the 

one, the same changes will be produced, by a like substitution, in the other; 

hence, substituting Uj, «3, &c., successively for r in the second member of 

equation (2), we have these results ; 
. • 

-^3)(^1 <^4).“1~ • “h • *4".“1~ 
(<3/2 ~~ Uj) (Uj ^”^3) (^2 ““^4) •••••• • ”4” ••••••• 

(<^3--^2)(<^3-<3^4)...•-•-!“..“h - 

&C. &c. &C. ' 

But when a series of quantities, ^i, «3, U4, &c., are substituted for the 

unknown quantity in any equation, and give results which are alternately -|- 

and —, then, by Art. 352, these quantities, (taken in order, are situated in the 

successive intervals of the real roots of the proposed equation; hence, making 

Cn_i=:0, and changing r into we have from equation (1) 

—2)A2a:’^~'^-j-2A„_2a:-}-A„_i = 0 ... (3) 

an equation whose roots, therefore, separate those of the original equation 

-An-iT-f-An = 0, 

and the manner of deriving it from the proposed equation is to multiply each 

term of the proposed equation by the exponent of x, and to diminish the ex¬ 

ponent one. It is identical with the second column of the development in 

the note to Article 251. It is known by the name of the derived equa¬ 

tion. 

Let Uj, a^, «3, <24, &c., be the roots of the proposed equation, and 61, 63, ^3, 

&:c., those of the derived equation (3), ranged in the order of magnitude ; then 

the roots of both the given, and the derived equation will be represented in 

order of magnitude by the following arrangement, viz. : 

61, G52? ^2i ^3> ^3i ^4i ^5? ^5? &C. . . 

Corollary 1.—then r—will be found as a factor in each of the 

groups of factors in equation (2), which has been shown to be the separating 

equation (3), and, therefore, the separating equation and the original equation 

wall obviously have a common measure of the form x — a^. 

Corollary 2.—If «3=U2=«o then (r—G!i)(r—Uj) will occur as a common 

factor in each group of factors in (2); that is, the separating equation (3) is divis¬ 

ible by {x—Ui)^; and, therefore, the proposed equation and the separating equa¬ 

tion have a common measure of the form [x—a;)^. 

Corollary-^^.—If the proposed equation have also a^—a^^ then it will have a 

common measure with the separating equation of the form [x—a^Y (x—U4), 
and so on. 

Scholium.—When, therefore, we wish to ascertain whether a proposed 

equation has equal roots, we must first find the separating equation, and then find 

the greatest common measure of the polynomials constituting the first mem¬ 

bers of these two equations. If the greatest common measure be of the form 

(a'—Ui)P {x—a^Y . 

then the proposed equation will have (p-Y^) roots =rti, (^-h^) roots =<22? 

(r-j-1) roots =<23, &c. The equation may then be depressed to another of 

lower dimensions, by dividing it by the difference between x and the repeated 

root raised to a power of the degree expressed by the number of times it is 

repeated. 

X 



322 ALGEBRA. 

EXAMPLES. 

Find the equal roots of the equation 

2:7_^5.r64-6.r5 —6.7:4—15^5-. 3.r2+Bar-f-4r=0.(1) 

The derived polynomial is 

7x^-{-30x^-{-3Qxi—24:2f^ — 4:5x^ — 6x-{-8.(2) 

and the common divisor of (1) and (2) 

xi^3x^-\-x^—3x—2.  (3) 

The values of x^ found by putting this equal to zero, would be the repeated 

roots of the proposed equation. This itself will be found to have equal roots, 

for its derived is 

' Ax?^-\-^x’^-\-2x—3, ^ 

and their common divisor 

x-^1. 

Hence, by the rule, ‘ \ 

(^ + 1)".. (4) 
is a factor of (3), and 

(:r+l)3 

a factor of the proposed. 

Divjiding (3) by (4), the quotient is 

x^-\-x—2, 

which, put equal to zero, gives 

V .r=l, or —2. 

Hence (3) may be put under the form 

(:r+l)2 (.r-1) (a:+2), 

and by the rule in the above scholium the given equation may be put under 

. the form 

(a:+l)3 {x—iy (3:+2)2, 
so that in the proposed equation there are three roots equal to —1, two to 

+ 1, and two to —2. 

(2) x^ — 3a'^x—2a’'^=0. 

By the process above it may be transformed into 

{x-\-aY {x—2a) =0, 
so that the three roots are two equal to —a, and the third 2a. 

(3) .x-s — 12x^ -f 33x^ — 92:r5 __ 93;4_|_ 21 2.x:3 _ 153^2 _ 1 o8.r +108 = 0 
decomposes into 

{x—1) (.r—2)2 (,r4-l)2 (.r—3)3=0. 

254. The most satisfactory and unfailing criterion for the determination of 

4he number of imaginary roots in any equation is furnished by the admirable 

theorem of Sturm, which gives the precise number of real roots, and, conse¬ 

quently, the exact number of imaginary ones, since both the real and imagi¬ 

nary roots are together equal to the number denoted by the degree of the 

proposed equation. •' 

PROPOSITION. 

To find the number of real and imaginary roots in any proposed equation. 

The acknowledged difficulty which has hitherto been experienced in the 

important problem of the separation of the real and imaginary roots of any 

proposed equation is now completely removed by the recent valuable re¬ 

searches of the celebrated Sturm ; and we shall now give the demonstration 

of the theorem by which this desirable object has been so fully accomplish- 



THEOREM OF STURM. 323 

ed, nearly as given by the author himself, deeming it far more satisfactory than 

any other version which we have seen. 

f THEOREM OF STURM. 

• 1. Let .-|-Ta:-j-U=0 

be a numerical equation of any degree whatever, of which it is proposed to 

determine all the real roots. 

We begin by performing upon this equation the operation which serves to de¬ 

termine whether or not it has equal roots (Art. 253, Sch.), in a manner which 

we proceed to point out. If V designate the entire function 

&:c., and Vi its derived function (which is formed by multiplying each term 

of V by the exponent of x in this term, and diminishing that exponent by uni¬ 

ty), \ve must seek for the greatest common divisor of the two polynomials V 

and Vi. Divide, at first, V by Vj, and when a remainder is obtained of a 

degree inferior to that of the divisor Vi, change the signs of all the terms of 

this remainder (the signs -f- into — and — into -j-). Designate by V2 what 

this remainder becomes after the change of signs. Divide in the same man¬ 

ner Vi by V2, and, after having changed the signs of the remainder, it becomes 

a new polynomial V3, of a degree inferior to that of V2. The division of 

V’2 fiy V3 conducts, in the same manner, to a function V4, which will be the 

remainder resulting from this division after having changed the signs. This 

series of divisions is to be continued, taking care to change the signs of the 

terms of each remainder. This change of signs, which would be useless if 

our object was to find the greatest common divisor of the polynomials V and 

Vi, is necessary in the theory about to be explained. As the degrees of the 

successive remainders go on diminishing, we arrive finally either at a numeri¬ 

cal remainder independent of x, and diflfeiing from zero, or at a remainder a 

function of x, which exactly divides the preceding remainder. 

We shall exaijiine these two cases separately. 

II. Suppose, in the first place, that, after a certain number of divisions, we 

arrive at a numerical remainder, which may be represented by 

In this case we know that the equation V=0 has no equal roots, since the 

polynomials V and V1 have no common divisor function of x. Representing by 

Qi, Q2-Qr-ii the quotients given by the successive divisions, which leave 

for remainders —V2, —V3-V^, we have this series of equalities : 

V =v,q,-v, 

Y,=v,q,-Y, 

Y: = Y,q,-Y,.(1) 
• • • 

Y,'_,=Y,l,q,_,-Y,. 

Thus much being premised, the consideration of this system of functions 

V, Vi, V2... .Vr furnishes a sure and easy means of knowing how man'll 

roots the equation Y=0 has comprehended between two numbers A and B of 

any magnitude or signs whatever, B being greater than A. The following is 

the rule which attains this object: 

Substitute in place of x the number A in all the functions V, Vi, V2.... 

Vr_i, Vr, then write in order, in one line, the signs of the results, and count 

the number of variations which are found in this succession of signs. AVrite, 

in the same manner, the succession of signs which these same functions take 

by the substitution of the other member B, and count the number of variations 
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which are found in this second succession. The number of variations ivhich it 

has less than the first will he the number of real roots of the equation V = 0 

comprehended between the numbers A and B. If the second succession has as 

many variations as the first, the equation VmO has no real root between A 

and B. 

in. We shall demonstrate this theorem by examining how the number of 

variations formed by the signs of the functions V, Vi, V3. .. V„ for any one 

value whatever of x, can change, when x passes through different states of 

magnitude. 

Whatever may be the signs of these functions for one determinate value of 

r, when x increases by insensible degrees to beyond this value, there can take 

place no change of signs in this succession of signs, unless one of the functions, 

F, Vj ..., changes sign, and, consequently (153, note), becom'es zero. There 

are then two cases to examine, according as the function which vanishes is the 

first, V, or some one of the other functions, V^, V2 . • • Vr_i, intermediate be¬ 

tween V and Vr: the last, V^, can not change sign, since it is a number 

positive or negative. 

IV. Let us see first what alteration the succession of signs experiences when 

X, in increasing in a continuous manner, attains and passes by a value which 

destroys the first function V. Designate this value by c. The function Vj, 

derived from V, can not be zero at the same time with V for x=:c, because 

by the hypothesis the equation V = 0 has not equal roots. We see, besides, 

by the equations (1), without falling back upon the theory of equal roots, that 

if the functions V and were zero for xz=c, all the other functions, Vo, V3 

..., and, finally, V^, would be zero at the same time; but, on the contrary, Vr 

IS by hypothesis a number different from zero. Vj has then for a:=c a value 

different from zero, positive or negative. 

Let us consider values of x veiy little different from c. If in designating by 

n a positive quantity as small as we please, we make by turns x=c—u and 

x—c-\-u, the function V, will have for these two values of x the same sign 

that it has for x=c ; because we can take u sufficiently small, to insure that Vj 

shall have for these two values of x the same sign that it has for xz=c ; since 

we can take u so small that V^ will not vanish, and not change sign, while x 

increases from the value c—u to w.* 

We must now determine the sign of V for x—c-\-u. Designate for a mo¬ 

ment V by f{x), Vi by f'{x), and the other derived functions of V by f"{x), 

f*"{x).. . which are not to be confounded with Vo, V3, &c., these 

latter not being derived functions. When we make xz=c-\-u, V becomes 

f{c-\-u), and we have (see note to Prop. III., Art. 239) 

f"(c\ T"(c) 
f{c-\-u)=f{c)-{-f'{c)u-{- 2"*^"+ 1’ 

or, rather, obsei-ving that f{c) is zero, and that f'{c) is not. 

We see from this expression off{c-\-u), that in attributing to u veiy small 

* The delicate point on which the theorem hinges is the one stated here.^ Let it be diS' 

tinctly seen that since Vi can not be zero at the same time with V when x=c, therefore, 

however little c may differ from a value which reduces V; to zero, u may be taken smaller 

than this difference. 

J 
/ 
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positive values,/(c-f-w) will have the same sign ns and, consequently, 

u) will have also the same sign as since f'{c-\-u) has the same 

sign as f'{c). Thus, V has the same sign as V, for x = c-\-u. 

By changing u into —u in the preceding formula, we have 

/(c—w) = —m[/'(c) —+ , &c.] 

And we perceive, in the same manner, that f{c—u) has a sign contraiy to 

that of f'{c), from whence it follows that for x=c—u the sign of V is contrary 

to that of V1. 

Then, if the sign of f'{c) or of V^, for x=c, is the sign of V will be -f- 

for x=c-\-u, and — for x=.c—u. If, on the contrary, the sign of V^ is — 

for .ri=c, that of V will be — for x=c-\-u, and for x=c—u. Besides, Vj 

has for x=:c-\-u and for x-=.c—u the same sign as it has for a:=c. 

These results are indicated in the following table: 

V-Vi V Vi 

r ar=c—u, — -j-, -j- —, 

For <xz=c, 0 -f"’or else 0 —, 

t x=c-\-u, -j--}-? — —• 
I 

Thus, when the function V vanishes, the sign of V forms with the sign of 

Vj a variation, before x attains the value c, which reduces V to zero, and this 

variation is changed into a permanence after x passes this value. 

As to the other functions, V2, V3, &c., each will have, as V,, either for 

x=c-\-u or for x=c—u, the same sign that it has for x = c, that is, if none of 

them vanish for .r=c at the same time with V. 

The succession of the signs of the functions V, Vj, V2 ... V,, loses then a 

variation, when .r, going on increasing, passes over a value c, which reduces 

the first function V to zero without destroying any of the other functions, V,, 

V2, &c. It is necessary now to examine what happens when one of these 

functions vanishes. 

V. Let there be a function intermediate between V and Vr, which is de- ^ 

stroyed when x becomes equal to b. This value of x can not reduce to.Zero 

either the function Vn_i, which precedes immediately V^, or the function 

Vn+i, which follows Vn- Indeed, we have between the three functions Vn—i, 

Vn, Vn+i, the following equation, which is one of the equations (1). 

V n_i=V’ nQn V n + l. 

It proves that if the two consecutive functions, Vn_,, Vn, were zero for the 
same value of x, Vn^i would be zero at the same time; and as we have also 

Vn-J-l Qn^-l V 

we should have, again, V„4..2 = 0, and so on, so that we should have finally 

V'r = 0, which is contrary to the hypothesis. 

The two functions, Vn_i and Vn+i, have then for x=zb values different 

from zero ; moreover, these values are of contrary signs, because the same 

equation, 

V„_1 = V„Q„_V„+:, 

gives Vn_i = —V„4.i, when we have Vn = 0. 

* This depends upon a principle demonsti’ated at Art. 239, Cor., that if a function of u be 

airanged according to tlie ascending powers of u, u may be taken so small that the sign 

of the whole function shall depend upon tliat of its first term. 
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This being established, substitute in place of x two numbers, h—u and b-^u, 

very little different from h ; the two functions, Vn_] and will have for 

these two values of x the same signs as they have for xz=b, since we can al¬ 

ways take u sufficiently small, to insure that neither Vn_i nor shall change 

sign when x enlarges in the interval from b—u to b-\-u. Whatever may be 

the sign of for x~b—u, as it is placed in the succession of signs between 

those of Vn_i and Vn^i, which are contrary, the signs of these three consecu¬ 

tive functions, V„_i, V,,, for x—.b — u, will form always either a perma¬ 

nence followed by a variatioh, or a variation followed by a permanence, as is 

here seen. ^ 

V„ V„_, V„ 

For x=b—u -f- rh —, or else, — Jr +• 

Similarly, the signs of the three functions, Vn_i, Vn, Vn+i, for x=b-{-u, 

whatever may be that of V„, will form one variation, and will form but one. 

Besides, each of the other functions will have the same sign for x=b—u 

and x = b-\-u^ provided no one of them is found to be zero for x = b at the 

same time as V„. 

Consequently, the succession of the signs of all the functions, V, Vj ... Vr, 

for .r = 6-j-M, will contain precisely as many variations as the succession of 

their signs for x=b—u. Thus, the number of variations in the succession of 

signs is not changed when any intermediate function whatever passes through 

zero. 

One arrives evidently at the same conclusion, if many intermediate functions, 

not consecutive, vanish for the same value of .r. But if this value should de¬ 

stroy also the first function, V, the change of sign of this one would then make 

one variation disappear at the left of the succession of signs, as has been shown 

in IV. 

VI. It is then demonstrated that each time that the variable .r, in increasing 

by insensible degrees, attains and passes a value which renders V equal to 

zero, the series of the signs of the functions V, Vj, V^ ... Vr loses a varia¬ 

tion formed on its left by the signs of V and Vj, which is replaced by a per¬ 

manence, while the changes of signs of the intermediate functions, Vj, V2 

.... Vr-„ can never either augment or diminish the number of variations which 

existed already. Consequently, if we take any number whatever. A, positive 

or negative, and any other'number whatever, B, greater than A, and if we 

make x increase from A to B, as many values of .r as are comprised between A 

and B, which render V equal to zero, so many variations will the succession 

of signs of the functions V, Vj ... V, for .r = B contain less than the suc¬ 

cession of their signs for x=A. This was the theorem to be demonstrated. 

Remark.—In the successive divisions which serve to form the functions V2, 

Vg, &c., we can, before taking a polynomial for a dividend or divisor, multiply 

or divide it by any positive number at pleasure. The functions V, Vj, Vg 

.... Vj, obtained by this operation, will differ only by positive numerical fiic- 

tors from those which we have previously considered, and which appear in 

equations (1), so that they will have respectively the same signs as these for 

each value of x. 

With this modification we can, when the coefficients of the equation V = 0 

are whole numbers, form polynomials V2, V3, &c., the coefficients of which 

shall 1)6 also entire. But it is necessary to take good care that the numerical 

factors thus introduced or sup])ressed be all positive. 
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VII. This tlieorem gives the means of knowing the whole number of real 

roots of the equation V=0. 

In fact, an entire polynomial function of x being given, we can always as¬ 

sign to X sucl^ a positive value as that for this and every greater value the 

polynomial will have constantly the sign of its first tenu (see Art. 239). It is 

the same with all negative values of x below a certain limit. All the real roots 

of the equation V = 0 being comprised between — oo and -|-co, it will be suffi¬ 

cient, in order to know their number, to substitute —co and -f-oo instead of A 

and B, in the functions V, V,, Vo-- - V^, and to note the two successions of 

signs for —co and -|-co. When we make x= + CO, each function is of the 

same sign as its first term. For 2:= —oo, each function of an even degree, in¬ 

cluding Vj, has the same sign that it has for -j- co ; but each function of an un¬ 

even degree takes for x= — co a contrary sign to that which it has for x=z -|- co. 

The excess of the number of variations formed by the signs of the functions V, 

Vi ... Vr, for x= — CO, over the number of variations for x=: + co, will express 

the whole number of real roots of the equation V=0.* 

To determine the initial figures of the roots, we may substitute the suc¬ 

cessive numbers of the series 

0, —1, —2, —3, —4,. 

till we have as many variations as —co produced; and if we substitute the 

numbers of the series 

* One might be cui-ious to know how the succession of signs of the functions V, Vj, 

.. .Vr must undergo change so as that a variation is lost every time that V vanishes. 

We have seen (IV.) that if c is a root of the equation V=0, the two functions V and 

Vi must have contrary signs for a:=c—ii, and the same sign for a.—c-f-w. So that if we 

designate by d the root of the equation V—0, which is next greater than c, so that be¬ 

tween c and d there is no other root; Vj will have for x—d—u a sign contraiy to that of 

V. But V has constantly the same sign for all values of x comprised between c and d; 

and as Vj has the same sign as V for x=c-\-u, and a contrary sign to that of V for x=d 

—u, we see that Vj has two values with contrary signs for x—c-\-u and for x=d—u ; 

then, while x increases from c-\-u to d—m,'V^ must cliange sign once, or an uneven num¬ 
ber of times (I., or Prop, of Art. 252, Cor. l). 

Let y be the only value of x, or the least value of x between c and d, for which V^ 

changes sign. V and will have for x-=.y—u the same common sign that they have for 

x=c-{-u. For x—y-\-u V will have this same sign ; but Vj will have the contraiy sign. 

Vjj will have a sign contrary to that of V for the three values for y—u, y, and y-\-u (V.). If, 

for example, V is positive for x—c-\-u, we have the following table : 

V Vi V2 

For x=^y—u -j—|- 
x=y +0 — 

x=y-\-u -|- 

Thus, before x attained the value c, which destroys V, the signs' of V and Vi formed a 

variation which is changed into a permanence after x has overpassed this value c; this 

permanence subsists until Vj changes sign, then it is anew replac^ed by a variation after 

the change of sign of Vi; but, at the same time, there is a variation fonned by the signs 

of V| and V3 which changes into a permanence, so that the number of variations in the 
total succession of signs is neither increased nor diminished. 

If Vi changes sign a second time for a new value of x comprehended between c and d, 

the variation which the signs of V and Vi form before x attains this value will be again 

replaced by a permanence ; and still, on account of V^, the number of variations will re¬ 

main the same in the succession of signs. As Vi can thus change sign only an uneven 

number of times, after its last change the signs of V and Vi will form a variation which 

will subsist until x attains the value d, which destroys V. We have not to consider here 

tlie case where V vanishes without changing sign. 

( 
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0, 1, 2, 3, 4, . 
till we arrive at a number which produces as many variations as » then 

the numbers thus obtained will be the limits of the roots of the equation, and 

the situation of the roots will be indicated by the signs arising from the sub¬ 

stitution of the intermediate numbers. 

We shall now apply the theorem to a few 

EXAMPLES. 
< 

(1) Find the number and situation of the roots of the equation 

— 4.r^ — 6.r-|-8r=0.* 

Here we have V = xP — — 62:-f-8 

Vi = 3.r2 —8;r —6 ; 

then, multiplying the polynomial V by 3, in order to avoid fractions, 

3.r2_8a;—6) 3.r3—12,r2 —18.r4-24 (;r —1 

3.r^ — 8,r^ — 6.r 

— 42-2 — 12.r-|-24, multiply by f ; 

or — 32:2— 92:-}-18 

>— 32:2-}- 8,2:-|- 6 

— 172:+12 V2 = 17.r—12 

32:2 — 8_^— g 

17 

' ■ 172:—12) 51.r2_l36.r—102 (32: 
51.2:2— 26x 

— 100.r—102. 

It is now unnecessary to continue the division further, since it is very ob¬ 

vious that the sign of the remainder, which is independent of 2:, is — ; and, 

therefore, the series of functions are 

V = — 4.r2—62:-}-8 

Vi= 32:2— 82: —6 

¥2 = 172: —12 

V3=-}-. 

Put -f CO and —go for x in the leading terms of these functions, and the 

signs of the results are 

* The process applied to the general cubic equation afl-{-ax'^-\-bx-\-c=0, gives the fob 

lowing functions, viz.: 

With the second term. 

V = ax'^-\-b.v-\-c. 

Yi='^x~-\-‘i,ax -}-Z>. 

V2=2(«‘'^—'ib)x-\-ab—9c. 
V3=—4a3c-}-«2i2_i8a&c—4^-3—27c3 j 

Ml) 

Without -the second term, or a=0. 

V = x^-\-bx-\-c. 
Vi=3.x-2-i-6.. 

V.2=:—2bx—3c. 

¥3=—463—27e3.'. . . . 

M2) 

These functions in (1) and (2)'will frequently be found useful in the application of Sturm’s 

theorem to equations of the third degree, since the derived functions in any particular ex¬ 

ample may be found by substitution only. In order that all the roots of the equation 

cifl-\-bx-\-c=Q may be real, the first terms of the functions must be positive ; hence —2bx 

and —4^3—27c3 must be positive ; and as —27c2 is always negative, b must be negative, 

in order that —463 and —26 may be positive; therefore, when all the roots are real, 463 
/6\3 /c\2 

must be greater than 27c3, or y-j gi-eater than y-j . When, therefore, 6 is negative and 

> (“) > all tbe roots are real, a criterion which has been long linown, and as simple as 

can be given. 
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For .T=-|- 00, “h “h 4“ "I" no variation, 

x= — CO,-1-j- three variations, 

3 — 0 = 3, the number of real roots in the proposed cubic equation. 

Next, to find the situation of the roots we must employ narrower limits 

than 4" CO and —oc. Commencing at zero, let us extend the limits both ways, 

and, since the proposed equation has only one pei’inanence of sign, one of the 

roots is negative, and the remaining roots are positive. 

V Vi Va Vs Var. ‘ V Vi Va Vs Var. 
For 2=0 ^igns -\-\- 2 For .2= 0 signs 4-h 2 

.2=1 ....-[- 4- 1 .2 — 1.. .. 4“ —j— ”^— 2 
2=2. .;.-h-f 1 2:^ — 2 . . . . —~ 4“-[— 3 
2=3 ....-j- 4-'' 1 
2:iir:4 .... — 4“ 4” -j— 1 
.2=5... •' 4--j--[-4- 1 
2—6 .... 4“ 4 1 [— 0 

AVe perceive, then, by the columns of variations, that the roots are betw'een 

0 and 1, 4 and 5, —1 and —2 ; hence the initial figures of the roots are —1, 

0, and 4 ; and, in order to narrow still further the limits of the root between 

0 and 1, we shall resume the substitutions for x in the series of functions as 

before. But as the substitution of 1 for x, in tlie function V, gives a value 

nearly zero, we shall commence with 1, and descend in the scale of tenths, 

until we arrive at the first decimal figure of the root. 

Let x= 1 signs- 4-4- one variation, 

( ' .r = *9 . . . . 4-1-4- variations ; 

hence the initial figures are —1, -9, and 4. 

(2) Find the number and situation of the real roots of the equation 

x*-\-x^——2:r4“"i = 0. 

Here the several functions are 

V = x^-\- — 2x-{-i 

A^i= Ax^-\-^x^ — 2x —2 

A^2= x^-\-2x —6 

A^3 = — .^4-1 . 

A^=4-. 

Let 2’= 4- 00, signs of leading terms 4-4-4-h variations 

2= —CD.-|-1--|--|- variations ; 

and all the roots of the equation are imaginaiy.' 

AVhen, in seeking for the greatest common divisor of V and Vi, we arrive 

at a polynomial (for example, at that of the second degree), which, put 

equal to zero, will only give imaginary values of 2, it is not necessary to carry 

the divisions further, because this polynomial V„ will be constantly of the same 

sign as its first term for all real values of x ; for if it gave a plus sign for one 

value, and a minus for another, there must be a real root between.* 

(3) Required the number and situation of the real roots of the equation 

2x* —1122 8,^ _ 16 _ 0. 

The first three functions are 

A^ = 22^ — 11224-82—16 

Vj= 42^ — II2 4-4 

A^2 = 1122 —122 -{-32 ; 

* This consideration is of importance, as the calculations for detennining the functions 

V2, V3 are long, especially toward the last, on account of the magnitude of their numerical 

coefficients. 
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and the roots of the quadratic —122’-}-32 = 0 are imaginary, for 11x32 

X4 is greater than 12^; hence V2 must preserve the same sign for eveiy 

value of .r, and the subsequent functions can not change the number of varia¬ 

tions, for a variation is only lost by the change of the sign of V. Hence, 

For a:= -j- CO signs -j- -{- 4- no variation, 

x=i — CO . . . -j-1- two variations ; 

and the proposed equation has two real roots, the one positive and the other 

negative, since the last term is negative. (Prop. VIIL, Cor. 5, p. 314.) 

When a:=0 signs — + 4" x= 0 signs — + + 

.r=:l . . . . j- X= 1.... I--4- 

x==2 . . . . 1-+' —2....-[- 

a:=3 . . ..-f“ 4" 4" 3 . . . . 4 

Hence the initial figures of the real roots are 2 and —2. 

When two roots are nearly equal to each other. 

(4) Find the roots of the equation 

2-34-1 la:2_ 102.r4-181 =0. 
The functions are , , ' 

V = 2:3_j_ii^.2_io224-181 
^ • Vi= 3224-222—102' 

¥2=1222 —393 

V3=4-; 

and the signs of the leading terms are all -j- ; hence the substitution of —uo 

and 4“ GO must give three real roots. 

To discover the situation of the roots, we make the substitutions 

2 = 0 which gives -j-j- two variations. 

2—1 . . . -+ 
2 — 2 . . . ”■4- 
2 — 3 ... — + - —two variations. 

V 2= 4.4" 4* 4“ 4- no variation ; 

hence the two positive roots are between 3 and 4, and we must, therefore, 

transform the several functions into others, in which 2 shall be diminished by 

3. This is effected by Art. 251, p. 315 ; and we get ” 

V' = 7/3 4-207/3— 9?/4-1 

V'i= 37/24-407/—9 

¥'2=1227/ —27 
¥'3 = 4". ■ 

Make the following substitutions in these functions, viz.: 

7/= 0 signs 47-h two variations, 

7/ = T . . .4-[- 

y = ’2 . . .4-[- two variations, 

7/ = *3 . . . 4-4-4-4- no variation; 

hence the two positive roots are between 3*2 and 3*3, and we must, again, 

transform the last functions into others, in which y shall be diminished by *2. 

Effecting this transformation, we have 

¥" = 20*622_.88z4-*008 
¥"i= 3z2 4-41-2z — *88 

¥"2=122z — 2-6 , 

V"3 = + . 
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Let z= 0 then signs are'-j-two variations, 

z = .01.-j-j- two variations, 

z = *02..[- one variation, 

z = '03.-f- -f- -j- + variation ; 

hence we have 3*21 and 3*22 for the positive roots, and the sum of the roots 

is —11 ; therefore, —11—3*21—3*22=—17*4 is the negative root. 

When the equation has equal roots. 

255.' When the equation has equal roots, one of the divisors will divide the 

preceding without a remainder, and the process will thus terminate without a 

remainder, independent of x. In this case, the last divisor is a common meas¬ 

ure of V and Vi; and it has been shown (Art. 253, Scholium 3, p. 321) that if 

{x—ai)(.r — a.2Y be the greatest common measure of V and Vi, then V is di¬ 

visible by (a:—— a^y, and the depressed equation furnishes the distinct 

and separate roots of the equation, for Sturm’s theorem takes no notice of 

the repetition of a root. The several functions may be divided by the great¬ 

est common measure so found, and the depressed functions employed for the 

determination of the distinct roots ; but it is obvious that the original functions 

will furnish the separate roots just as well as the depressed ones, for the for¬ 

mer differ only from the latter in being multiplied by a common factor (29); and 

whether the sign of this factor be or —, the number of variations of sign 

must obviously remain unchanged, since multiplying or dividing by a positive 

quantity does not affect the signs of the functions ; and if the factor or divisor 

be negative, all the signs of the functions will be changed, and the number of 

variations of sign will remain precisely as before. 

Find the number and situation of the real roots of the equation 

a,-5 — -1-13.r5-f — i 6.r 4-4 = 0. 
A 

By tlie usual process, we find 

V = x^— 7x^Jf-13x^-{- 16:r+4 

Vi= 5a:4 —28.1-3 4 392-2-f2.r —16 

V2 = ll.r3—48x2—512 42 

V3= 3.r2— 8244 

V4= 2 —2 

V5 = 0. 

Hence 2—2 is a common measure of V and Vj; and if 

2= —cothe signs are-1-]-four variations, 

2=—2..1-1-four variations, 

2r= —1.0 -|-\-'— 

2= 0.4-hH-three variations, 

2= 1..1--|-— two variations, 

2= 2 . 0 0 0 0 0 

•^’= 3..444 one variation, 

x= 4.4 4 4 4 4 no variation. 

Therefore we infer that there are four distinct and separate roots ; one is —1, 

for V vanishes for this value of .2; another between 0 and 1; a third is 2, and 

a fourth is between 3 and 4. The common measure x—2^ indicates that the 

polynomial V is divisible by (2—2)^; and hence there are two roots equal to 

2 (Art. 253, Cor. 1). 
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It may happen that one of the functions, V,, V2 ... Vr-u shoufd be found 

zero either for x=A or x=B. In this case it is sufficient to count the varia¬ 

tions which are found in the succession of signs of the functions V, Vj, Vg 

... Yf, omitting the function which is zero. This results from the demonstra¬ 

tion in Art. 254,’V, for the case where an hitermediate function vanishes. 

When the number of the auxiliary functions, V^, Y&c., is equal to the 

degree of the equation, as is ordinarily the case, in consequence of each re¬ 

mainder in seeking for the common divisor being one degree less than the pre¬ 

ceding, the number of imaginaiy roots in the equation may be found by the fol¬ 

lowing rule : ^ The equation V = 0 will have as many yairs of imaginary roots 

as there are variations of sign in the succession of the signs of the first terms of 

the functions V^, V2, &c., to the sign of the constant Ym inclusive. 

This follows from the fact that two consecutive functions, V,,—1, Vn, are 

the ona of an even, the other of an odd degree. Then, if the two functions 

have the same sign for a:=-4-cc, they will have contrary for xz= — oo, and vice 

versa. So that if we wiite the succession of signs of V, V^, V2-Vn„ for 

X— — QO and for .r=-}-Qo, each variation in the one succession will coiTespond 

to a permanence in the othei’. Thus, the number of permanences for x-= —oo 

is equal to tlie number of variations for .t£=-|-qo. 

But for .T=-j-co the number of variations will be that of the first terms of 

the functions V, ... Vm, which denote by i. Then there will be i per¬ 

manences for x-=—00 and m—i variations. The excess of the number of 

variations m—i for x=i — oo over the number i for .T=:-{-ao, is m — 2i, which 

is therefore the number of real roots of the equation, and therefore 2i the 

number of imaginaiy roots, the whole number of j-oots being m. 

IIORNER’S method of resolving numerical EqUx4TI0NS OF ALL ORDERS. 

256. The method of approximating to the roots of numerical equations of 

all orders, discovered by W. G. Horner, Esq., of Bath, England, is a process 

of veiy remarkable simplicity and elegance, consisting simply in a succession 

of ti’ansformations of one equation to another, each transformed equation as it 

arises having its roots less or greater than those of the preceding by the cor¬ 

responding figure in the root of the proposed equation. We have shown how 

to discover the initial figures of the roots by the theorerii of Sturm ; and by 

making the penultimate coefficient in each transformation available as a trial 

divisor of the absolute term, we are enabled to discover the succeeding figure 

of the root; and thus proceeding from one transformation to another,'we are 

enabled to evolve, one by one, the figures of the root of the given equation, 

and push it to any degree of accuracy required. 

< GENERAL RULES. 

1. Find the number and situation of the roots by Sturm's theorem, and let 

the root required to be found be positive. 

2. Transform the equation into another whose roots shall be less than those 

of the proposed equation by the initial figure of the root. 

3. .Divide the absolute term of the transformed equation by the trial divisor^ 

or penultimate coefficient, and the next figure of the root will be obtained, by 

which diminish the root of the transformed equation as before, and proceed in 

tliis manner till the root be found to the required accuracy. 
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Note 1.—When a negative root is to be found, change the signs of the alter¬ 

nate terms of the equation, and proceed as for a positive root. 

Note 2.—When three or four decimal places in the root are obtained, the 

operation may be contracted, and much labor saved, as will be seen in the 

following examples: 

EXAMPLES. 

(1) Find all the roots of the cubic equation 

x^ — 7x-\-7 = 0. 

By Sturm’s theorem, the several functions are (Note, p. 328), 

V = x^—7x-\-7 

Y,=3x^—7 

V2=2x —3 

^3 = + 

Hence, for x=-|-qo the signs are variation, 

X— — 00.S'-1-1- three variations ; 

therefore the equation has three real roots, one negative, and two positive. 

To determine the initial figures of these roots, vve have 

for a:=0 signs -j--}- for xz=. 0 signs -j-\- 

3^ = 1 ...  1— X'zzz — \ ... --j— 
Xz:^2 . . . “I-1-1“ Xziz—2 . . . —j-1—^- 

X= —3 . . . -f- -j-1- 
X 4 ~ I' .-1— 

hence there are two roots between 1 and 2, and one between —3 and —4. 

But in order to ascertain the first figures in the decimal parts of the two 

roots situated between 1 and 2, we shall transform the preceding functions into 

others, in which the value of x is diminished by unity. Thus, for the function 

Y we have this operation : 

l_{-0 —7 -f 7 (1 

•1 1 —6 
i. * 

' i SZb f 

1 2 

2 

1 _ t 

3 

And transforming the others in the same way, we obtain the functions 

V'=y^+37/2-42/+l; V\=3/-f6y-4; ¥',=22/-!; ¥'3 = + . 

Let 2/=*l then the signs are -|-1- two variations, 

2/ = ’2.. -|-1- > do. 

y='3.-|-J- do. 

y=’4..1- one variation, 

y *5 .......... — — q— —do. 

2/ = '®.—+ + + 

.4'4"4" + no variation. 

Therefore, the initial figures of the three roots are 1'3, 1*6, and —3. 

The rest of the process, with a repetition of the above, is 'exhibited and 

afterward explained below. 
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l-fO 

1 

7 

1 

6 

-f 7 (1-35G895867 

-6 

n... 
1 0 — 903 

2 —*4 .. *97 . . . 

1 9 9 — 86625 

*33 — 301 *10375.. 

3 10 8 — 9048984 

36 — *1 9 3 *1326016 

3 19 7 5 ' — 1184430 

* 39 5 — 17325 141586 

5 2 0 00 — 1.32923 

40 0 —*1 5 3 25 • • 8663 

5 2 4 3 3 6 —7382 

* 40 56 — 1508164 / 1281 

6 2 4 3 7 2 — 1181 

40 62 — *1 4 8 37 9 2 100 

6 325 4 — 89 

*140168 — 148053 8 11 

3 25 4 — 10 

— 14772 8 1 

3 6 

— 14769 o 

3 6 

- 114171615 

The process here is similar to that on p. 318. The numbers marked with 

stars are the coefficients of the equation having the reduced roots. Thus, *3, 

*4, and *1 are the coefficients of the equation whose roots are 1 less than 

those of the proposed equation. The right-hand 3 of *33 is the 3 tenths add¬ 

ed in the next step of the process, which has for its object to reduce the roots 

by ’3. The coefficients of the resulting equation are *39, —*193, and *97. 

Now, instead of going on in this manner to obtain the following figures, 568, 

&c., of the root, the method of proceeding changes ; the 193, which is the 

penultimate coefficient, becomes a trial divisor, by which dividing the absolute 

term 97, which is .0097, the divisor being 1-93, the quotient is 5, the next fig¬ 

ure of the root, which is .05. This 5 is annexed to the *39, and we proceed 

as before ; that is, multiply the *395 in the first column by this 5, producing 

1975 in the second column, and by addition, 1-7325, and so on. To show that 

the quotient figure 5 is obtained by means of the trial divisor, observe that the 

1*7325 is nearly equal to the *1*93 above, and that the *088625 in the third 

column, which is the product of 1*7325 by the *05, is nearly equal to the **097 

above ; hence the quotient of **097 by 1*93 is nearly this same *05. 

The further we proceed, the more accurate this process becomes, for the 

first figure of each number in the first column being units, this, multiplied by 

the decimal figure found in the root, which is thousandths, tens of thousandths, 

and so on ; that is, soon a very small fraction gives thousandths, ten of thou¬ 

sandths, and so on, or a very small fraction, for the product; and, the first 



NUMERICAL SOLUTION OF ALGEBRAIC EGUATIONS. 335 

figure in the numbers of the second column being also units, these numbers 

are not much affected by the addition of the above-named products.* 

AVhen the number of decimal places in the numbers of the third column 

becomes equal to the number of decimal places required in the root, it will 

not be necessary to obtain any more in the third column; and as each new 

decimal figure in the root, multiplied by the number in the second column, 

would make one more place in the third, it will be necessary to cut off one 

figure in the second column, and, for a similar reason, two figures in the first 

column. As soon as the figures are all cut off in the first column, the process 

becomes simply one of division, the divisor and dividend rapidly diminishing. 

We have thus found one root a.’=1*356895867., and the coefficients 

of the successive transformed equations are indicated by the asterisks 

column. To find another, we have the following : 

1-f 0 —7 4-7 (1*692021471 

1 1 —6 

1 —6 1... 

1 2 —1104 

2 —4 . . — 104.. p 

1 2 16 100809 

36 —18 4 — 3191... 

6 . 25 2 3156888 

42 6 8... — 34112 

6 4 4 0 1 31774 

48 9 ^ V 11201 — 2338 

9 4 4 8 2 , 1589 

49 8 1 5 6 8 3 • • — 749 

9 10144 ' 635 

50 72 , 1578444 — 114 

2 10 14 8 111 

50 74 1 5 885 9 2 3 

2 1 

150176 ]|5|8|8|7| 

Another root is a:=l*692021471 . , 

For the negative root, change the signs of the second and fourth terms. 

To show this in a more general way, let 

.... H-B„_i.r-f B„=0 

be one of the depressed equations which is to furnish the next decimal place of the root of 

the proposed equation; the value of x in this depressed equation will of course be a very 

small fraction ; hence the higher powers of it may, without much error, be neglected. The 

depressed equation thus reduces to ' 

BnJi.T-l-B„=0. ^ • 

Hence the value of x, without regard to its sign, is 

nearly ; that is, it may be obtained by dividing the ultimate by the penultimate coefficient. 
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— 0 — 7 — 7 (3-048917 

3 9 + 6 

3 2 — 1. 

3 1 8 • 814464 

6 2 0.... —185536 ... 

3 3 6 16 166382592 

90 4 203616 — 19153408 

4 • 
> 

3 632 18791228 

90 8 207248 • • — 362180 

4 7 3 0 24 '208875 

91 28 . 20797824 — 153305 

8 7 3 0 8 8 146212 

91 36 . 2087091 2 — 7093 

8 8 2 3 0 6266 

.•191144 2087914 2 — 827 

8 2 3 0 626 

208873 7 —201 

9 188 

208874 6 — 13 

9 12 

210|8181715 1 

Hence tlie three roots of the proposed cubic equation are 

x= 1’356895867 . 

xz= ]-692021471 . 

.r=—3-048917339 . 

(2) Find the roots of the equation — 102.r-{-181=0. 

We have already found the roots to be nearly 3-21, 3-22, and —17. 

Fxainple 4, p. 330.) 

1+11 —102 + 181 (3-21312775 
3 42 — 180 

1 4 — 60 1... 
3 51 — 992 

1 7 — 9 . . 8... 
1 ■ 3 4 04 — 6739 

2 02 — 4 96 1261... 
2 4 0 8. — 1217403 

2 04 — 88 . . 43597 
2 2 0 6 1 —34183 

^ < * 2 06 1 ' — 6739 9414 
1 2 0 6 2 — 6787 

2 06 2 — 4677.. 

CO 

K':' 
• 

Carried to next page. « 

(See 

r 
4. 
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2 06 2 

1 
4677.. 

6 18 9 9 

2 06 33 

3 

— 405801 

6 19 0 8 

2 06 36 

3 

— 34389 

2 06 

3 

4 

1-2106139 O 4 18 2 9 

2 0 6 4 

— 3 3 9 7 

4 

6 

1 

3 3 9 3 

4 

5 

1 

— 3131819 

2627 

—2372 

255 

— 237 

18 

—16 

2 

In a similar manner,' the two remaining roots will be found to be 

a: = 3-22952121 

and , ^ 

a:= —17-44-264896. 

(3) Given —100 = 0, to find the number and situation of 

the real roots. < 

Here we have 

V = x*+ x^-{- 3:2+3:r—100 

Yy = Ai?-\-^x^-{-2x +3 

V2= —5x’^—3ix-{-1603 

¥3= —1132:r+6059 

¥4=-. - - 
* 

Let x=—CO then signs are -j-\-three variations, 

a:=-l-oo . . . .+ +- — one variation ; 

hence two roots are real and two imaginary ; and the real roots must have 

contrary signs, for the last term of the equation is negative. To find the sit¬ 

uation of the roots 

in V ViV2V3V4 

Let x=0 signs - + + + - 

X 1 . . . ^ “ 

x=2 ...-h + H- 

a:=3 • • • + + + H- 

in V ViV2V3V4 

Also, . a:= 0 signs-h + H- 

x= — 1 ... — 0 + H— 

x=—2 . . .-1- -|- " 

r= —3 . . .-j- -{- 

X —— 4 . . . 

In this example the function Vi vanishes for x=—1, and for the same 

value of X the functions V and V2 have contrary signs, agreeably to Lemma 

2, and writing 0^ — for 0 gives the same number of variations. The 

initial figures of the root are, therefore, 2 and —3. 

Y 
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To find the negative root, we have the following operation : 

1—1 + 1 — 3 — 100 (3-43357786336599 

3 6 2 1 54 

2 7 1 8 — 46.... 

3 15 6 6 416896 

5 22 84 . . . — 43104... 

3 24 2 0224 384456501 

8 46 . . 104224 —46583499.. 

3 4 56 2 2 112 390491222121 

11 4 50 56 1 2 6 3 3 6 . . • — 75343767879 

4 4 72 1816167 65189289046 

11 8 55 28 128152167 — 10154478833 

4 4 88 1827561 .9128951421 

12 2 60 16 . . 129979728 • • • — 1025527412 

4 37 89 184012707 912928254 

12 63 60 53 89 130163740707 , — 112599158 

3 37 98 184127241 104335040 

12 66 60 91 87 13034786794 8 — 8264118 

3 38 07 3071014 5 78'25130 

12 69 61 29 94 • • 13037857809 3 — 438988 

3 3 81 69 3071332 5 391256 

12 723 61 33 75 69 1304092914 2 -47732 

3 3 81 78 4 3 O'O 3 1 39126 

12 726 61 37 57 47 1304135917 3 — 8606 

3 3 81 87 4 3 0 0 3 1 7825 

12 729 61 41 39 34 130417892 0 — 781 

3 63 6 4 3 0 0 652 

1*121732 61 42 02 9 13041832 2 — 129 

63 6 4 3 0 117 

61 42 66 5 13041875 2 — 12 

63 6 4 8 11 

161143|30 0 8 0 

4 

] 

For the positive root we have a similar operation, 

1 +1 +1 +3 —100 (2-8028512181582; 

but this we shall leave for the student to perform, and the two roots will be 

found to be 

2-8028512181582 . . . 

a:=—3-4335778633659 . . . 

(4) Find the roots of the equation —20 = 0 

Here we have V = 3x^-\-ix'^-{-5x—20 

Vi=5.r^+ g.r^-fS.r-fb 
V2=—7.r^ —21.r^—42:r+255 

' ¥3= —13.1'+14 

¥4=-. 

For x= — 00 we have signs -h + H- two variations; 

a:= + QO.+H-1- one variation. 
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Hence the difference of variations of sign indicates the existence of one real 

and four imaginaiy roots, the real root being situated between 1 and 2. 

1 + 2 + 3 + 4 + 5 — 20 (1-125790 

1 3 6 10 15 

3 6 1 0 15 ' “ 3 • • • • 

1 4 1 0 20 387171 

4 1 0 20 35 . . . • — 112829 

1 5 1 5 3 7 17 1 87005 

5 1 5 3 5... 38 7 1 7 1 -258-24 

1 6 21 71 3 9 4 1 4 2-2285 

6 2 1.. 3 71 71 42 6 5 8 5 —3539 

1 71 22 43 84 4 3136 

71 2 171 3 94 14 43 5 0 2 5 — 403 

1 72 23 16 85 3 4 ^ 403 

72 2 243 4 17 30 44 3 5 6 

1 73 4, 7 2 1 5 

73 2 316 4 22 0 44 5 7 1 

1 74 4 7 2 1 5 

74 [.. 21390 4 26 7 44 7 8 

1 4 7 2 

75 |.4|31 4418 

Hence the real root is nearly 1 •125790 ; and by using another period of ciphers 

we should have the root correct to ten places of decimals, with veiy little ad¬ 

ditional labor. 

ADDITIONAL EXAMPLES FOR PRACTICE. 

(1) Find all the roots of the equation —3.r—1=0. 

(2) Find all the roots of the equation — 22.r — 24 = 0. 

(3) Find the roots of the equation —500 = 0. 

(4) Find the roots of the equation —100 = 0. 

(5) Find the roots of the equation —Ax —10 = 0. 

(6) Find the roots of the equation x^—12a:^-{-12a:—3 = 0. 

(7) Find the roots of the equation x^ — d)X^-\-\Ax'^-\-Ax—8 = 0. 

(8) Find the roots of the equation x^—x^-\-2x^-\-x — 4 = 0. 

(9) Find the roots of the equation x^—lOr'^-j-Gx-j-1 =0. 

(10) Find the roots of the equation —2=0 

(11) Find all the roots of the equation 

.r6 _|143.5 _ 33^4 _ 16.j;3 _j_ 11 122:—9 = 0. 

(1) 

rx=-fl-879385242 
a:=—1-532088886 
x=— -347296355 

f.r= 4-5-1622776601 
(2) <( .r=—1-1622776601 

• (2:=—4 

(3) a:=7-61727975596 

4) t=4-2644299731 

(5) 2:=1-6248190836 

ANSWERS. 

r 2:=-f 2-858083308163 /p. J xz=z-\- -606018306917 
|.t=4- -443276939605 
[2:=—3-907378554685 

(7) 

(8) 

f 2:= 4-5-2360679775 
2-= 4- -7639320225 

‘ 2:=+2-73-20508075 
.r=— -7320508075 

( 2-=+ 1-146994592 
) 2-=—1-090593586 
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3-0653157912983 (10) .'r=l-059109003461882 
xz=— -6915762804900 f xz= — 1; X——3; x = l 
a:=— -1756747992883 

(11) < x= —3 ; x=l 
x=-{- -8795087084144 
a:z=-i-3-0530581626622 

\ X=zl 

257. The theorem of Sturm gives a simple means of establishing the con 

ditions of the reality of the roots. As the real roots are comprised between 

two limits, —L' and -|-L, the one negative and the other positive, which may 

be chosen as large as we please, the question reduces to seeking the conditions 

necessary, in order that from x=—L' to the series V, Vi, V2, &c., 

should lose a number of variations equal to the degree of the equation. 

Supposing this degree to be m, it must then lose 7n variations. But in order 

that it may have m variations, it is necessary that it should have at least m-\-\ 

terms; and as it can not have more, we are sure that the quantities»V, Vi, Vo, 

&c., exist to the number m-j-l, and that they are respectively of the degree 

r)i, m — 1, m—2, &c. The last, which does not contain a:, will then be repre¬ 

sented by Vm. 

When in the polynomial functions of x we substitute very large numbers, 

positive or negative, for x, we know that the results are of the same sign as if 

each polynomial were reduced to its first term; therefore, in the present in¬ 

vestigation, we need occupy ourselves only with the first term. Let us take 

the equation V = 0 under the ordinary form 

x'^-\-px'^'~^-\-qx'^~^-{-, &c., =0. 

The first term of V is 2:"'; that of the derived polynomial, Vi, will be mx^~^. 

With regard to those of the polynomials V2, V3, &c., they are functions com¬ 

posed of the coefificients q, &c., determined by the successive divisions in 

accordance with the rule. Let us represent these functions by G2, G3 .. . Gm 

and write in order the m-j-1 quantities, 

x^, G23:'"~^, 

The question will be reduced to finding the conditions which will cause the 

loss of m variations from this series when we pass from — L' to x= -fL. 

In order that this may be the case, it must have m variations upon the substi¬ 

tution of —L', and m permanences upon the substitution of -j-L. But in this 

series the powers of x go on decreasing by unity ; consequently, if it has noth¬ 

ing but permanences when .t=-|-L, it will have nothing but variations when 

x= — L'. Thus, the conditions are reduced simply to such as require this 

series to have only positive coefficients, that is to say, to the following, 

G2]>0, G3^0 .... Gni>-0. 

These conditions will never be greater in number than m — 1, but they may 

be less in number, inasmuch as some of the above inequalities may involve the 

others. 
4 

EXAMPLE. 

258. Find the conditions necessary for the reality of the roots of the equa¬ 

tion x!^-\-qx-\-r = 0. 

Here we have m=3, and the conditions are only two in number, G2^0 and 

G3>0. 

To find G2 and' G3, we calculate V2 and V3 by successive divisions, as fol¬ 

lows : 
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First Division. 

3.r^-|~35'^’+3^‘ ^ 
'32'^-f- qx 

2qx -|- 3r 

V2 = —2qx—3r. 

Second Division. 

32^-|" 9. — ^^9^— 
\2q’^x'^-\- Ai(f — Qqx-\- 9r 

l^q'^x^-\-l^qrx 

— Idiqrx -}- 

— IS^ra: —27r'2 

45^-|-27r^ 

.•.V.2=— 423—27r2. 

Consequently, the inequalities Gj^O, Gs^O, become 

—22^0, —42® — 27r2^0; 

observing, however, that the first inequality is embraced in the second, since 

is always positive; and changing the signs of the second, we have for the 

sole condition of the roots of an equation of the third degree, being real, 

4^3_j_27r2<0. 

We have now given so much of the general properties of equations of all 

degrees, and such modes of proceeding, as will insure their numerical solution 

in a manner the most certain and infallible, and ordinarily the best. 

There are, however, many transformations of equations, which, by reducing 

their degree, or by giving them a particular form, serve to facilitate their solu¬ 

tion in certain cases. There are also many general principles applicable to 

the resolution of equations of the higher orders by the methods in use previ¬ 

ous to the discovery of Sturm, which, with these methods themselves, it is de¬ 

sirable to know for many purposes in the application of algebraic analysis to 

the higher branches of both pure and mixed mathematics, for ulterior improve¬ 

ments in the general theory of equations itself, and even for use in the solu¬ 

tion of equations, in some cases, to which they are more conveniently adapted 

than the method of Sturm. A treatise on algebra could scarcely be regarded 

as complete without some notice of these. We shall therefore give as exten¬ 

sive an exhibition of them as can in any way be useful in an elementary work 

like the present, commencing with the well known ^ 

RULE OF DES CARTES. 

259. An equation can not have a greater number of jpositive roots than there 

are variations of sign in the successive terms from -f- to —, or from — to 

nor can it have a greater number of negative roots than there are permanences., 

or successive repetitions of the same sign in the successive terms. 

Let an equation have the following signs in the successive terms, viz. : 

4-1-h4-4—» oi* H-1-1-4“4-* 

Now, if we introduce another positive root, we must multiply the equation by 

X—a, and the signs in the partial and final products will be 

4--4--4-4-4-.- 4--4---I-4-4- 

—1-h 4- -\-h —l--f4-1- 

4-1-i 4= 4" i 4z-\- 4-i i-i-hilt — 

where the ambiguous sign indicates that the sign may be -h or — accord¬ 

ing to the relative magnitudes of the terms with contrary signs in the partial 

products, and where it will be observed the permanences in the proposed ' 
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equation are changed into signs of ambiguity ; hence the permanences, takf 

the ambiguous sign as you will, are not increased in the final product by the in¬ 

troduction of the positiv-e root -\-a; but the number of signs is increased by 

one, and, therefore, the number of variations must be increased by one. Hence 

it is obvious that the introduction of every positive root also introduces one 

additional variation of sign, and, therefore, the whole number of positive roots 

can not exceed the number of variations of signs in the successive terms of the 

proposed equation. 

Again, by changing the signs of the alternate terms, the roots will be changed 

from positive to negative, and vice versa (see Prop. VII.). Moreover, by this 

change the permanences in the proposed equation will be replaced by varia¬ 

tions in the changed equation, and the variations in the former by permanences 

in the latter; and since the changed equation can not have a greater number 

of positive roots than there are variations of sign, the proposed equation can 

not have a greater number of negative roots than there are permanences of 

sign. 

Let be the number of variations, v' the number of variations of the trans¬ 

formed equation obtained by changing x into —x. The number of real roots 

of the equation can not surpass v-^v'. Then, if this sum is less than the de 

gree m, the equation will have imaginary roots. 

The supi v-\-v' i& never greater than the degree, and when it is less the 

difference is an even number. (See Art. 248.) 

EXAMPLES. 

(1) The equation a:6_j_3;y5 — — 872:^-4-400.r2-f-4443: — 720 = 0 has six real 

roots. How many are positive ? 

(2) The equation — 15x'^-\-i9x —12 = 0 has four real roots. How 

many of these are negative ? 

260. We give next the repetition of a principle already presented, but which 

may be derived as a direct consequence of the theorem of Sturm. 

THEOREM OF ROLLE. 

Let F(a:) = 0 be an equation which has no equal roots, F'(.r) its derived 

polynomial. We have seen that as x increases, the series of Sturm loses a 

variation every time that x passes over a root of the equation F(a:) = 0, and 

that it can not lose one in any other way. Moreover, we have seen that this 

variation is lost at the commencement of the series of functions, in conse¬ 

quence of F(.t) changing sign, while F'(.'r) does not; so that F(.r) is always 

of a sign contrary to that of F'(2-) for a value of 2 a little less than the root, 

and always of the same sign for a value a little greater. 

Thus, when we ascend from a root r to a root r', which is immediately 

above r, F(2) must be'of the same sign as F'(2) for a value of 2 a little greater 

than r, and of a sign contrary to F (2) for a value of 2 a little less than r'. But 

in the interval F(2) does not change sign; then F'(2) must change sign at 

least once; therefore the equation F'(2) = 0 has at least one root between r 

and r'. 

Let a,h, c, d ... g be the real roots of F(2) = 0, arranged in order of magni¬ 

tude, beginning with the largest; and let a,, ij, c, .. . be the real roots of 

F'(2)=0, disposed in the same manner. We have just seen that these last 

•are comprised, some between a and b, some between b and c, &c. ; but as the 
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degree of F'(2*), and, consequently, the number of its roots, is one less than 

the degree and number of roots of F(a:) = 0, it follows that the equation 

F(.r) = 0 can have but one root above but one between and . .., and, 

fiiifilly, but one below This property, which has been long known, and of 

which we have given an independent demonstration at (Art. 253), is identical 

with the theorem of Rolle. 

261. The considerations which lead to the theorem of Rolle furnish also 

the means of determining whether the m roots of the equation F(2) = 0 are 

real and unequal. 

Since is between a and 5, hi between b and c, &c., it is easy to see (Art. 

252) that if we substitute successively Ui, bi, &c., in place of x in F(.r), the 

results will be alternately negative and positive ; so that 

For.F(ai), F(6i), F(ci),'&c., 

we have .... —, -{-, —, &:c. 

But we may apply to the function F'(a:) and its derived function F''(2:) all 

that has been said in the preceding article of F(.r) and F'(.r); then. 

For .... F"(ai), F"(5i), F''(ci), &c., 

we have. . —» 4"’ 

Then the products F(«i) X F"(<2i)» F(5i) X F"(6i), &c., of which there are 

m—1, will be all negative. 

But if we make F(2:) X F"(2)=y, and eliminate (as at p. 157) x between 

the two equations, 

F'(.t) = 0, F(.r) X F"(a:)=y.(2) 

the m—1 roots of the final equation in y will be precisely the products above ; 

but since all these products are negative, the equation in y will have only 

negative roots, and, consequently, all its terms will have the sign Thus, 

when the equation F(.r) = 0 has none but real and unequal roots, the theorem 

of Rolle shows that the roots of F'('^)=0 must be real and unequal also; and 

fi'om what has just been said above, it appears that besides this, the signs are 

all plus in the equation in y, resulting from the elimination of x between the 

equations (2). 

262. Conversely, these conditions being fulfilled, we can demonstrate that 

all the roots of F(2) = 0 will be real and unequal. And first, the m—1 roots 

of F'(.r)=0 being real, from what has just been said, those of F"(^’)—^ must 

be real, and the m — 1 values of y, or F(.r)xF"(.7:) real also; and the roots 

of F"(^)=0 being by hypothesis unequal, the theorem of Rolle proves that the 

quantities F"(«i), F"(6i), &c., have their signs alternately -f- —. Again, 

since the equation in y has its signs all -j- > we conclude that it has no positive 

roots; and since all its roots are real, they can only be negative; then the 

m — 1 products 

F(ai)xF"(«i), F(5i)xF"(5i), &c., 

are negative. But the second factors have their signs alternately and — ; 

then the quantities F(«i), F(5i), &c., must have their signs alternately — and 

Then there exists above ai a root of the equation F(2:) = 0, another be¬ 

tween ai and 5i, another between bi and Ci, &c., therefore the m roots of this 

equation are real and unequal. 

The conditions drawn from the equation in y may be regarded as actually 

known, because this equation is obtained by simple elimination. As to the 
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other condition which requires that the roots of F'(a:)=0 be real, let it be ob¬ 

served that this equation is of the degree m — 1, and, applying to it the same 

reasoning as to F(3:)=:0, we reduce the question to determining the reality of 

the roots of F"(a:)=:0, which is only of the degree m—2. Continuing thus, 

we descend to an equation of the second degree, the derived function of which 

being of the first degree, can not have an imaginary root. Then the only con¬ 

dition to fulfill will be that the equation y, which is also of the first degree, 

have its two terms of the same sign. 

Remark.—By recurring to the reasoning which led to the use of the equa¬ 

tion 3/=zF(a:) X F"(a:), it is easily perceived that this may be replaced by 

M X F(a:) X F"(x), M being any positive quantity whatever. We can then in¬ 

troduce or suppress in the polynomials F(.r), F'(.t), F"(.r), &c., such positive 

factors as may be judged suitable to simplify the calculation. 

263. The equation in y, resulting from the elimination of .r in the equations (2), 

being of the degree m—1, will have m — 1 coefficients, thus presenting m—1 

conditions to be fulfilled; the second equation in y, obtained by eliminating x 

between'the two, F"(:r)=0, y r=F'(a:) X F"'(.r), will be of the degree m—2, 

and present m—2 conditions to be fulfilled, and so on, till we arrive at an equa¬ 

tion of the first degree in y, which will give but a single condition; then, 

taking all the conditions in an inverse order, their number will be express¬ 

ed (Art. 228) by 

m 
1 -j— 2-|- 3.. • -j- Tfi—1 

264. For an application of the above, let us take the general equation of the 

second degree, * 

Here we have F(a:)=a;2-|.^a:_j_^, ¥'{x)=2x-\-p, F"(a:)r=2, and we per¬ 

ceive at once that F'(.r) has no imaginary root, since it is of the first degree. 

In order to have the equation in y, the two equations between which we 

must'eliminate x are 

2.T-fy = 0, y = {x^J^pxJ^q)x2. 

The elimination gives 

<7)=0. 

Then, in order that the terms of this equation may have the same sign, we 

1 ^ 

must have 5 is the only condition necessary to insure the 

reality of the roots of the equation of the second degree. It accords with 

what we have seen at (Art. 191). 

265. Let us consider next the general equation of the third degree. The 

second term, it will be seen hereafter, may be made to disappear without 

changing the number of the real roots; we may therefore take it under the 

form 

x^-\-qx-^rz=f). 

In this case F(a:)=a:3-|-9.r-|-r, F'(a:)=3.r2-|-9, F"(.r) = 6,r. It is necessary, 

first, that the derived equation, 3.r2-f-9- = 0, should have only real and unequal 

roots; and for this the condition is evidently q<^{). 
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Secondly, it is necessary to eliminate x between the two equations 

dx‘^-{-q = 0.(1) 

yz={x^-{-qx-\-r) X 6a:, 

y = 6x'*-\-6qx^-\-6rx.(2) 

The first gives 

and (2) becomes 

y= —-q^-\-Qrx 
O 

^y-\-Aq^ 
X 

18r 

Substituting this in (1), we have, after reducing, 

27r2)=0. 

v 

In order that the three terms of this equation may have the same sign, it is 

necessary, «tnd it is sufficient, that the known term should be positive. We 

have already seen that q must be negative, but 9^ in the second term is posi¬ 

tive; then the new condition is iq^-\-2'7r'^<C,0. Finally, as this new condition 

can be fulfilled only when q is negative, it is the only one necessary, in order 

that the roots of tlie equation of the third degree should be real and unequal. 

FOURIER’S METHOD OF SEPARATING THE ROOTS. 

266. We shall now give another method of separating the roots, proposed 

by Fourier, which has the recommendation that the auxiliary functions em¬ 

ployed in it are f{x) and its successive derived functions, which can be form¬ 

ed by inspection so that the method can be applied nearly with equal ease 

to an equation of any degree ; in particular, the intervals in which no real root 

can be situated are, by Fourier’s mbthod, immediately assigned. The objec¬ 

tion to this method is, that by its immediate application we only find a limit 

which the number of real roots in a given interval can not exceed, and not the 

absolute number; and that the subsidiary propositions by which this defect is 

supplied are not of the same simple character as the original theorem. The 

enunciation and proof are as follows. 

THEOREM. 

The number of real roots of f(x)=:0 which lie between two numbers a and b, 

can not exceed the difference between the number of variations of signs in the 

results of the substitutions of a and b for x, in the series formed by f(x) and its 

derived functions: viz.,/(a:),/'(.r),/"(a:), .../"(a:). 

If none of the equations 

/(t)=:0,/'(.t) = 0, &c., 

have a root between a and 6, it is manifest that the substitution of a and &, and 

of any intermediate quantity, in f{x), f'{x), &c., will always produce exactly 

* The method of Stumi employs only the given and first derived function/(.-c) and.f{x), 

which are the same as V and Vj, the other functions in his method,'viz., V2, V3, &:c., be¬ 

ing obtained by the method of the common divisor, which, in practice, is tedious for func¬ 

tions of the higher degi’ees, especially if they have large coefficients. For methods of sim¬ 

plifying these laborious operations, see Young’s Theory and Solution of the higher Equations 
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the same series of signs; but if any of these equations have roots between a 

and then changes in the series of signs will occur in substituting gradually 

ascending quantities from a to h ; our object is to show'that by such substitu¬ 

tions the number of variations of signs can never increase, and that one varia¬ 

tion will be lost every time the substituted quantity passes through a real root 

jr(.r) = 0; this we shall do by examining separately each of the cases in 

which the series of signs can be affected ; namely, 1, when f{x) alone 

vanishes; 2, when some derived function, alone vanishes; 3 and 4, 

when some group of derived functions, of which f{x) either is not or is a 

part, alone vanishes; and lastly, when several or all of these cases of vanish¬ 

ing happen at the same time. 

First, suppose that x=c (c being some quantity between a and b) makes 

f{x) vanish, without making any of the derived functions vanish; then the 

result of substituting c-\-h for x mf{x) and f'{x) is (supposing Ji so small that 

the signs of the whole of the two series which express f{c-\-h) and f'{c-\-h) 

depend upon those of their first terms, and writing down only the first terms) 

h.f'{c) and/'(c), 

which have different or the same signs according as ^ is — or -{- ? therefore, 

in passing from c — h to c-\-h through a root of the equation, a variation of 

signs is lost, but none gained.* 

Secondly, suppose that x=c makes one of the derived functions, /"’(^)> 

vanish, without making any other of the derived functions, or f{x), vanish; then 

the result of substituting c-\-h for x in the three consecutive functions 

(these being the only terms which it is necessary to examine)* is 

/"-■(c), A./“+‘(c),/"+■(<;). 

If, then, the first and third terms have the'same sign, there will be two varia¬ 

tions when h is negative, and two permanences when h is positive; if the 

extreme terms have contrary signs, there will be one variation, and one only, 

whether h be negative or positive; therefore, in passing from c—h to c-\-h 

through a value which makes one of the derived functions vanish, either two 

variations or none will be lost, but none ever gained. 

Thirdly, suppose that x=.c makes r consecutive derived functions vanish, 

without making any other derived function, or/(.r), vanish; then the result of 

the substitution of c-f-Zi for x in the series 

/"-'(X), /"-'+‘(x), .../"-■(a:), /"(x), /“+>(a'), 

(these being the only terras necessary to be examined) is 

/“-'(<■)> • • •’ if/"+'(c), y/'”+'(c), /”+■(<:), 

where \r denotes 1.2.3 .... r. 

If, then, the extremes of this series have the same sign, there will be r or 

r-j-1 changes (according as r is even or odd) when h is negative, and no 

change when li is positive ; if the exti’eme terms have contrary signs, there 

* It is unnecessary to attend to the other functions of the series of derived functions, be¬ 

cause li is supposed so small that not one of them vanishes by the substitution of any 

quantity betw.een c—h and c-\-h, and therefore each has the same sign for c—h as for 

c-\-h. 
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will bo r or r-|-l variations (according as r is odd or even) when h is negative, 

and one change when h is positive; therefore, in passing from c—h to 

through a value which makes r consecutive derived functions vanish, r or r J-1 

changes are lost (according as r is even or odd) but none ever gained. 

Fourthly, suppose the vanishing group to consist of f{x) and the first r—1 

derived functions (which corresponds to r roots z=c iny’(:r)=0) then the re¬ 

sult of the substitution of c + for X mf{x),f'{x), ... f^-\x), p{x), is 

Ir /^c), 
\r—1 

h 

1 
/’^(c),/''(c), 

in which there are r variations when h is negative, and none when h is posl 

tive ; therefore, in passing through a root which occurs r times in the equation, 

r changes are lost, but none gained. 

Lastly, suppose the substitution of x=.c to produce several, or all of the 

above cases at the same time; then, because the conclusions respecting the 

effect of the passage through c upon the series of signs in one part of the 

series of deiived functions are not at all influenced by what happens, in con¬ 

sequence of the same passage, at another distinct part of the series, by what 

has been proved, several variations will be lost, but none ever gained. 

Since then, in substituting gradually ascending values from a to 6, variations 

of signs are generally lost for every passage through a quantity which makes 

one or more of the derived functions vanish, and invariably one for every pass¬ 

age through a root of /(a:) = 0, but none under any circumstances gained, it 

follows that the number of roots of jr(.'r) = 0, which lie^between a and 6, can 

not be greater than the excess of the number of variations given by x=a, above 

that given by x = h. 

267. Hence, if the limits, a and 6, be —co and -f-co, or any two numbers 

the first of which gives only variations, and the second only permanences; and 

if, in the series formed by f{x) and its derived functions, 

f{x),f{x),f"{x), ... p{x), 

c be substituted for x and be then made to assume all values between these 

limits, the series of signs of the results will have the following properties; 

there will at first be n variations of sign, and at last no variation, but n per¬ 

manences; these variations disappear gi'adually as c increases, and when once, 

lost, can never be recovered ; one variation disappears every time c passes 

through a real unequal root of f{x) = 0 ; r variations disappear every time c 

passes through a root which occurs r times in f{x)—0 ; either two or none of 

the variations disappear every time one only of the derived functions vanishes, 

withoutf{x) vanishing at the same time; an even numberp of variations dis¬ 

appears every time an even group of^ functions (not including the first f{x)) 

vanishes ; and an even number g'rLl of variations disappears every time an 

odd group of q functions (not including the firstf{x)) vanishes. Also, if a value 

causes f{x) and the first r—1 derived functions to vanish, and an even group 

of p functions in one part of the series, and an odd group of q functions in an¬ 

other part, to vanish at the same time, the number of variations lost in pass 

ing through that value will be r-\-p-\-q^l. 

268. Hence, if f{x)=0 have all its roots real, no value of x can make any 

of the derived functions vanish, and thereby exterminate variations of signs. 

* See (Art. 253, Schol). 
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without at the same time making/(.r) vanish; for if it could, since those vari¬ 

ations can never be restored, and since a variation must disappear for every 

passage through a real root, the total number of variations lost would surpass 

n, the degree of the equation, which is absurd, since there are but n derived 

functions in all. Whenever, therefore, variations disappear between values of 

X which do not include a root of f(x)=0, there is, corresponding to that oc¬ 

currence, an equal number of imaginary roots of /(.t)=:0. Hence, if x=c 

produces a zero between two similar signs, or if it produces an even number 

p of consecutive zeros either between similar or contrary signs, there will be 

respectively two, or p, imaginary roots corresponding; or if it produces an 

odd number q of consecutive zeros, there will be imaginary roots corre¬ 

sponding, according as they stand between similar or contrary signs ; c, of 

course, not being a root of f{x)z=0. 

Observation.—Since the derivatives which follow any one /"(r) may be 

supposed to arise originally from it, it is manifest that the same conclusions 

respecting the roots of f’^{x) = 0 may be drawn from obseiving the part of the 

series of derived functions 

r{x),p+^{x),...f-{x) 

as were drawn respecting the root off{x)=:0 from the whole series. 

269. Des Cartes’s rule of signs is included in Fourier’s theorem as a par¬ 

ticular case. 

For when, in the series formed by f{x) and its derived functions, we put 

x= — 00, there are n variations ; and when we put .r=0, the signs of the series 

of functions become the same as those of the coefficients of the proposed equa¬ 

tion 

Pm Pn—U " • Pu 

Let the number of variations in this series of coefficients =Jc, and therefore 

the number of permanences (supposing the equation complete) =n — k: if 

we make .rz=-j-co, the signs of the functions are all positive, and the number 

of variations =0. Hence, between x= — co and a:=0, the number of varia¬ 

tions lost is n—k; therefore in a complete equation there can not be more 

than n—k negative roots, i. e., than the number of permanences in the series 

of coefficients ; also, between x = 0 and .r=co, the number of variations lost is 

k, whether the equation be complete or incomplete ; hence in any equation 

there can not be more positive roots than k, i. e., than the number of variations 

in the series of coefficients, which is Des Cartes’s rule of sisns. 
o 

270. Fourier’s theorem may also be presented under the following form : 

If an equation have m real roots between a and 6, then the equation whose 

roots are those of the proposed, each diminished by a, has at least m more 

variations of signs than the equation whose roots are those of the proposed, each 

diminished by 6. 

The transformed equations would be 

/(y-fa) = 0,/{2/-j-6) = 0; 

and if these were arranged according to ascending powers of y, the coefficients 

would be the values assumed by f{x),f'{x), &c., when a and h are respectively 

written for x. Therefore, whatever number of variations of signs is lost in the 

series f{x),f'{x), &c., in passing from a to 6, the same is lost in passing from 

one transformed equation to the other; but the series for a has at least m 
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more variations than that for h ; therefore f{y-\-d) = ^ has at least m more 

variations than f{y-\-h)=iQ. 

271. To apply this method to find the intervals in which the roots of 

f{x) = 0 are to be sought,, we must substitute successively for a:, in the series 

formed by f{x) and its derived functions, the numbers 

— a, ... —10, —1, 0, 1, 10, ..., -|-/3 (1), 

( a and -j-/? being the least negative and least positive number, which give 

respectively only variations and permanences), and observe the number of 

variations of sign in each result. 

Let k and k be the numbers of variations of sign when any two consecutive 

terras in series (1), a and 6, are respectively written for x; therefore h—k is 

the number of real roots that may lie between a and h : if this equals zero, 

/(.t) = 0 has no real root between a and &, and the interval is excluded; if 

h—k = \, or any odd number, there is at least one real root between a and h ; 

if h—k=2, or any even number, there may be two, or some even number, or 

none; the latter case will happen when, as explained above (Art. 268), some 

number between a and b makes two or some even number of variations vanish, 

without satisfying/(.r) = 0. Similarly, we must examine all the other partial 

intervals; and when two or more roots are indicated as lying in any interval, 

their nature must be determined by a succeeding proposition. 

The two former of the following examples are extracted from Fourier’s 

work. 
I 

EXAMPLE I. 

/ (x)= x^— 3X'*— 2ix^-\- 95^2—46a:—101=0 

/' (;r)= 5x^—12x^— 722’2+190.r —46 

/"(a:)= 20a:3 —36x2 —144a:+190 

f"'\x)= 60x2 —72x _i44 

p (x) = 120x —72 

P (x) = 120. 

Hence we have the following series of signs resulting from the substitutions 

0, &c., for X, in the series of quantities 

/ /' f" 
- jnr 

r p 
(-10) - + — + — + 
(-1) + — 4- — — + 
(0) — + — — + 
(1) - + + — + + 
(10) + + + + + 

Hence’all the roots lie between —10 and +10, because five variations have 

disappeared; one root lies in each of the intervals —10 to —1, and —1 to 0, 

because in each of them a single variation is lost; no root lies between 0 and 1, 

because no variation is lost between those limits; and three roots may be sought 

between 1 and 10 (because three variations have disappeared),'one of which is 

certainly real; it is doubtful whether the other two are real or imaginary. 

Observation.—When any value c of x makes one of the derived func¬ 

tions, /"’(t), vanish, we may substitute c + /i instead of c, fi being indefinitely 

small; then all the other functions will have the same sign as when x=c, and 

the sign of /•’’(c + ^) will depend upon that of +/^‘"+^(c); i. e., it will be the 
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same or contrary to that of the following derivative, y’“+^(c), according as h is 

positive or negative, or according as we substitute a quantity a little less or a 

little greater than the value which makes f'“{x) vanish. The use of this re¬ 

mark will be seen in the following example. 

EXAMPLE II. 

/ (.r)= 4.X-3—3a:+23 = 0 

/' (.t)= 4a.-3 —12a:2 —3 

f" (.T) = 12a:‘^ — 24.r 

f'"{x) = 2ix —24 

/' (x)=24. 

/ 
X=:0 -j- 

0 -j— hj —^ 

.r=l 4“ 
x=l=^h, 
'a:=10 + 

/' / 
0 

ft 
f 

/// 

+ + 

0 

T 

+ 

+ 
+ 
+ 
+ 
+ 

Every value less than 0 gives results alternately -}- —, therefore there 

is no real negative root; for a:=0, we have a result zero placed between two 

similar signs, and therefore corresponding to it there is a pair of imaginary 

roots. There is no root between 0 and 1, but there may be two roots be¬ 

tween 1 and 10. 

EXAMPLE III. 

f{x)=x^—6r'^4-402'34“^0^^ — ^—1=0. 

Here there is no root —1; there is one, and there may be three, be¬ 

tween — 1 and 0; there is one root between 0 and 1, and there may be two 

roots between 2 and 3. 

272. The above process will determine the intervals in which the roots are 

to be sought, but not always their nature; when an even number of roots is 

indicated, they may all turn out to be impossible. The series of magnitudes 

between —co and -{-cc, to be substituted for x in the derived functions, has 

been divided into intervals of two sorts, each contained by assigned limits, a 

and h. The first sort of interval is one within which no root is comprehended, 

i. e., the limits of which give the same number of variations of signs in the 

series of derived functions. The second sort is one within which roots may 

lie, i. e., where the number of variations resulting from the substitution of b 

is less than the number resulting from the substitution of a, in the series of 

derived functions. This second sort of interval has two subdivisions, viz., 

cases where the indicated roots do really exist, and others where they are 

imaginary. When we have ascertained that a certain number of roots may 

lie between a and &, we may substitute c (a quantity between a and h) in the 

series of derived functions, and if any variations disappear, our interval is broken 

into two others ; if no variations disappear, we may increase or diminish c, and 

make a second substitution, and it may still happen that no variation is lost, and 

so on continually ; and we may be left, after all, in a state of uncertainty, 

whether the separation of the roots is impossible because they are imaginary, 

or only retarded because their difference is extremely small. This uncer¬ 

tainty is relieved by taking the interval so small ns to be sure to include the 

. real roots, if they exist. 
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One method of arriving at the propdr interval is by means of the so-called 

equation of the squares of the differences of the roots of the given equation, 

which we shall hereafter have occasion to deduce. This process is tedious in 

practice ; and as our object in unfolding the method of Fourier was to pursue 

it only so far as it threw light upon the general theory of equations, we shall 

here leave it. 

AVe should now introduce the theorem of Budan, but it requires a trans¬ 

formation which we have not yet exhibited, and we therefore take this op¬ 

portunity to complete a subject, one proposition of which (Art. 251) we have 

already had occasion to anticipate. 

TRANSFORMATION OF EaUATIONS. 

PROPOSITION I. 

273. To transform an equation into another whose second term shall he removed^ 

Let the proposed equation be 

a:" -{■.A n_i.r -j- A „=0 ; 

and by Art. 245 we know that the sum of the roots of this equation is —Ai; 

therefore, the sum of all the roots must be increased by Ai in order that the 

transformed equation may want its second term; but there are n roots, and 

Ai 
hence each root must be increased by —, and then the changed equation will 

71/ 

have its second term absent. If the sign of the second term of the proposed 

equation be negative, then the sum of all the roots is -j-Ai; and in this case 

we must evidently diminish each root by —and the changed equation will 
71/ 

then have its second term removed. Hence this 

RULE. 

Find the quotient of the coefficient of the second term of the equation 

divided by the highest power of the unknown quantity, and decrease or in¬ 

crease the I'oots of the equation by this quotient, according as the sign of the 

second term is negative or positive. 

EXAMPLES. 

(1) Transform the equation 2=0 into another whose second 

term shall be absent. 

Here Ai = — 6, and n=3 ; .*. we must diminish each root by or 2 

1 _6 +8 —2 (2 

2—8 0 

• 0 

2 —4 

2 

0 

—4-!/—2 = 0 is the changed equation. 

And since the roots are diminished, we must have the relation x=.y-\-2. 

(2) Transform the equation H—ier^ —6^4-15 = 0 into another whose 

second term shall be removed. 

(3) Transform the equation x^-\-15x^-\-12,i^—202’2-|-14.r—25 = 0 into an¬ 

other whose second term shall be absent. 
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(4) Change the equation x"-\-ax-\-l) = Q into another deficient of the second 

term. 

(5) Change the equation x^-\-ax'^-\-hx-\-c = Q into another wanting the 

second term. 

¥ 

ANSWERS. 

'(2) 
(3) 

(4) 

(5) 

2/4_962/2_5182/—777=0. 

7/5_782/3_^4122/2_7572/+401 = 0. 
a? 
4+^ = 0- 

ah 
--+c_0. 

PROPOSITION II. 

274. To tr ansform an equation into another whose roots shall he the recipro - 

cah of the roots of the proposed equation. 

Let + .An=0 be the proposed equa- 

1 1 , ] 
tion, and put y—-\ then x=-, and by writing - for x in the proposed equa- 

X y y 

tion, multiplying by y”, and reversing the order of the terms, we have the 

equation 

An—An—sy""”^-!- • • • • A2y^-|-Aiy-j-^=®> 

whose roots are the reciprocals of the roots of the proposed equation. 

The transformation is then effected by simply changing the order of the co¬ 

efficients of the given equation. 

Corollary 1.—Hence an equation may be transformed into another whose 

roots shall be greater or less than the reciprocals of the roots of the proposed 

equation, simply by reversing the order of the coefficients, and then proceed¬ 

ing as in the Proposition to Art. 251. 

Corollary 2.—If the coefficients of the proposed equation be the same, 

whether taken in reverse or direct order, then it is evident that the trans¬ 

formed equation will be the same as the original one ; and, therefore, the roots 

of such equations must be of the form 

1111 
’‘2^7; ^3,-; r4,-, &c. 

'i "2 rg r^ 

Corollary 3.—If the coefficients of an equation of an odd degree be the 

same whether taken in direct or inverse order, but have conti’ary signs, then, 

also, the roots of the transformed equation will be the same as the roots of the 

proposed equation; for, changing the signs of all the terms, the original and 

transformed equations will be identical, and the roots remain unchanged when 

the signs of all the terms are changed. And this will likewise be the case in 

an equation of an even degree, provided only the middle term be absent, in 

order that the transformed equation, with all its signs changed, may be identical 

with the original equation. 

Equations whose coefficients are the same when taken either in direct or 

reverse order, are, therefore, called recurring equations, or, from the form of 

the roots, reciprocal equations. 

Corollary 4.—If the sign of the last term of a recurring equation of an odd 

degree be one of the roots of such equation will be —1; and if the sign 
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of the last term be —, one root will be -{-1. For the proposed equation and 
the reciprocal have one root, the same in each, and 1 is the only quantity 
whose reciprocal is the same quantity; hence, since each of the other roots 
has the same sign as its reciprocal, the product of each root and its reciprocal 
must be positive; and, therefore, the last term of the equation, being the 
product of all the roots with their signs changed, must have a contrary sign to 
that of the root unity. 

Hence a recurring equation of an odd degree may always bo depressed to 
an equation of the next lower degree by dividing it by .T-j-l, or x—1, accord¬ 
ing as the sign of the last term is -j- or —., 

Corollary 5.—A recurring equation of an even degree may always be de¬ 
pressed to another of half the dimensions. For let the equation be 

+ A -f +.A2x2+Ai.r-f 1 = 0 ; 

dividing by x", and placing the first and last, the second and last but one, &;c., 
in juxtaposition, we have 

x“ + + +^,- • -A-n—1 ^A„ = 0 .... [2] 

1 
Assume y=.x~\--^ then we have 

1 • 
1 

X-|--: 
' X =y .*. X -4-~ =V 

{ 1 1 1 

V+x) 

( 1^ 1 
I==^+J5+3(^+-) 

( . 1^ 1 

V+xJ ^+^=2/"—2)—G 

&c. &c. Ac. — y4_^y‘ZJ^2 ; 
substituting these values of 

1 1 1 
^^“1-“ • • • in [2] 

‘ X ‘ x2 ‘ X" *- -* 

the resulting equation is of the form 

2/"+Bi2/"-i+B22/"-2-f-.B„_i2/4-Bn=:0: 

and the original equation is reduced to an equation of half the dimensions. 

EXAMPLES. 

(1) Transform the equation x^—7x-|-7 = 0 into another whose roots shall 
be less than the reciprocals of those of the given equation by unity. 

7 —7 +0 -f 1 (1 
7 0 0 

~ 0 1 

_7 _7 ^ • 

7 7 
7 

~14 

•. 72^-4-l'i~2-j-7z-|-1=0 is the equation sought, where 24-1=-, or x=—^ 
X 24-1’ 
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(2) Find the roots of the recurring equation 

— 6x^52^ =0. 

By Cor. 4, this equation has one root x=—1, and the depressed equation is 

_ 7.r3 _|_ 12.r2 — 7a: 4-1 = 0. 

Divide by a:^, and arrange the terms as in Cor. 5 ; then 

+^2=0 . . . (A) 

1 
Put x4--=z; 

‘ X 

1 
then ar^-f-—=z^ — 2 ; hence, by substitution, (A) becomes 

or 

and, resolving 

2;2_2_7z4-12 = 0; 

22-72 4-10 = 0; 

the quadratic, we get 

7rlz3 

2 

=5, or 2=2. 

Hence x-l--=5, and a:4-”=2, and the resolution of these two quadratics 
' a: a: 

gives ^ 

a:=|(5rt V21) and a:=4-l, or +1, 

and the five roots are 

, , , , , 5+V21 .5-V21 
— 1? “1-1? ~1“1» 2 ’ 2 ’ 

5—/^ (5—V^l) 5-f-vm 25—21 2 
where--r-=-r-.-==———=r-=-which is the 

2 2 54-V2I 2(54-V21) 5-f ^/21 

5+ 
reciprocal of the root---. 

(3) Give the equation whose roots are the reciprocals of the roots of the 

equation 

a:5—3.7:5 _ 23^14-3.r5 +12a:2 +10.r—8 = 0. 

(4) Find the roots of the recurring equation 

5y5—4^44.37^3 — 3^24.4^ — 5 = 0. 

(5) Find the roots of the recurring equation 

a:^ 4“ ^^ +1 = 0 • 

ANSWERS. 

(3) 8a:®—10a:®—12a:^ — 3r‘^-|-2.r'2-f-3.r—1=0. 

14^113 1——344/Hi 
(4) 1, ^ 1 ^ ^ , and 

—3—4 V—1 

(5) -1. ^1=^—, -7 
-14 V-3 

and 

■\ 

1— /—3 
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PROPOSITION III. 

275. To transform an equation into another whose roots shall he any pro¬ 

posed multiple or suhmultiple of the roots of the given equation. 

Let = ^ equation ; then putting 

y 
y=zmx, we have x=—, and by substituting this value of .r in the given equa- 

711/ 

tion, and multiplying each term by we have 

y" -|- ^^-^13/"“^ + +-An_iy -j- An=0 ; 

an equation whose roots are m times those of the proposed equation. Hence 

we have simply to multiply the second term of the given equation by 7n, the 

third by the fourth by and so on, and the transformation is effected. 

Corollary 1.—If the coefficient of the first term be m, then, suppressing m 

in the first term, making no change in the second, multiplying the third by m, 

the fourth by and so on, the resulting equation will have its roots m times 

those of the given equation. 

Corollary 2.—Hence, if an equation have fractional coefficients, it may he 

changed into another having integral coefficients, by transforming the given 

equation into another whose roots shall be those of the proposed equation 

multiplied by the product of the denominators of the fractions. 

Corollary 3.—If the coefficients of the second, third, fourth, &:c., terms of 

an equation be divisible by m, m^, m^, and so on, respectively, then m is a com¬ 

mon measure of the roots of the equation. 

EXAMPLES. 
) 

(1) Transform the equation ^x^—ix'^-j-lx—3 = 0 into another whose roots 

shall be three times those of the proposed equation. 

(2) Transform the equation4^:^ — 3x^ — 12.r'^-|-5r—1=0 into another w^hose 

roots shall be four times those of the given equation. 

1 1 
(3) Transform the equation a:3-|--;r2—into another w'hose roots 

shall be 12 times those of the given equation. 
t 

ANSWERS. 

(1) 2r3 — 12.r2 -f. 63.r—81 = 0. 

(2) — 3a:^ — 48a:^-}-80a: — 64=0. 

(3) a:3-|-4x-2—36a:-f 3456 = 0. 

PROPOSITION IV. 

276. To transform an equation into another whose roots shall he the s(puares 

of the roots of the proposed equation. 

Let a:"-|-A]a:"~^-|-Asa:"”"-]-.-f-An-i-'^^-h An = 0 be any equation ; then 

a’" — Aia:"“^-4-—.rh An_ia:=p An = 0 is the equation wdiose roots are 

the roots of the former, with contrary signs (Prop. VIL, Art. 247). 

Let «i, &c., be the roots of the former equation, and —ai, —a^-, —az, 

&:c., those of the latter ; then we have 

(a:"4-A3.r"“^-l-)4-(Aia:"-i-f Aaa:"-^.}. .. .) = [x—ai){x — a.j){x—az)- 

(.r“-|-A.2a:"“2-f-) —(Aia:"-i-|-A3.r"-3-|- ...) = (a:-j-ai)(a:-|-«2)(‘r+a3)- 

Hence, by multiplying these two equations, we have , 

(r" -{- Aaa:’'-^ . )2 __ (Aia:"' ’ + A sa:"-^ _j_ ... _ (^2 _ ^^2^ ^ _ ^^2^ . • • 



356 ALGEBRA. 
I * 

Or —(Ai2—2A2).r2"-''+(A,2—2AiA34.2A4).r2"-4-&c., =(a:'2—cti^) 

(x^——«3^) • • • • by actually squaring and arranging according to the 

powers of 2’. Now, for write ?/, and we have 

3/" —(Ai® —2A2)3/"“^+(^2^—2AiA3-l-2A4)y"-2—.. &c., ={y—ai^){y—a2^) 

[y—a^^)... 

... 2/" — (A]2—2A2)3/"~^ + (A2^—2AiA3-f-2A4)3/"”2— .... =0 is an equation 

whose roots are the squares of the roots of the given equation. 

EXAMPLES. 

(1) Transform the equation —8 = 0 into another whose roots 

are the squares of those of the proposed equation. 

Here a:^ — 6a:=—32^4"® by transposition, and by squaring we have 

_ 12.2-4 3 6.-^2 _ 93^ _ 4 8.c2 _j_ 64 

3:6—212-4+84.2-2 —64 = 0, 

or 
y3_2i^2_|_84y_64 = 0 

is the required equation. 

The roots of the given equation are —1, —4, 2; and those of the trans¬ 

formed equation are 1, 4, 16. 

(2) 2:6_|_y3_j_32.2_^i62+15 = 0. 

The transformed equation^ is 

a;5+ 2.2-4+ 33.2-3+2322+1662- — 225 = 0, 

which has (Art. 259) only one positive root, and therefore the proposed has 

only one real root. 

(3) Transform the equation 2-3——72+15 = 0. 

(4) Transform the equation 24 — 62-3+52-2+22—10 = 0. 

(5) Transform the equation 24 — 4.2-3 — 82 + 32 = 0. 

(6) Transform the equation 24—3.23—i5.2;2+49-j;—12=0. 

ANSWERS. 

(3) 2/3_i52y2_|_79^_o25 = 0. ^ 

(4) 2/4—26y3+29y2_i042/+100=0. 

(5) 2/^—162/3—642/+10-24 = 0. 

(6) 2/^—392/^+4 952/2 - 204l2/+144 = 0. 

PROPOSITION V. 

277. To transform an equation into another wanting aiiy given term. 

By recun-ing to the transformed equation in Art. 251, note, in which the 

' roots of the proposed are increased or diminished by a quantity represented 

by it will be seen that in order to know what value r must have to make the 

coefficient of any power of x disappear, it is only necessary to place the column 

of quantities by which that power is multiplied equal to zero, and the result¬ 

ing equation, when resolved, will furnish the proper values of r. This equa¬ 

tion will be of the 1° degree when it is required that the second term shall dis¬ 

appear, it will be of the 2° degree when the third is to disappear, and so on. 

The last term can be made to disappear only by means of an equation of the 

same degree as the proposed. 

By removing the second term from a quadratic equation, we shall be imme¬ 

diately conducted to the well-known formula for its solution. Thus, the equa¬ 

tion being 
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.7;2+A.r-f-N=0, 

tne transformed in x'-\-r will be 

x'^-\-2r x' -\-r^ 

4-A +Ar(=0: 

-j-N ) 

and, that its second term may vanish, we must have 

2r-|-A=0 r=—|A, 

which condition reduces the transformed to 

j:'-2_iA2-|-N = 0 

, ’ a:'= it — N 

a:=a;'+?-= —iArt VIA^—N; 

which is the common formula for the solution of a quadratic equation. 

PROPOSITION VI. 

278. To transform an equation into one whose roots are the squares of the 

differences of the roots of the proposed equation. 

If in the given equation,/(.r) =0, we make x=iai-\-y, a^ being one of the 

roots, y will be the difference between <2i and every other root. If we make 

x=a2-\-y, y will be the difference between a^ and every other root, and so on. 

But since <2i, a^-, &c., are roots off{x) = 0, they must satisfy it; hence 

/(«i) = 0,/(a2)=0, &c.(1) 

If we eliminate «i or a^, &c., between either of these equations (1) and the 

corresponding ones, f{ai-{-y) = 0, f {a.2-{-y)=:0* &cc., the final equation in y 

Avill be in each case the same, and is therefore the equation whose roots are 

the differences of the roots of the proposed equation. It is evidently the same 

thing to eliminate between f{x) and/(r-f-y)* 

The form of the equation f{x-\-y) is (Art. 251), 

/(.r)4-/i(,T)2/-l--^y2^.r- 

The first term is identical with the proposed equation, and vanishes, and the 

whole is divisible by y; we thus deduce 

/i(^’)+.(2) 

The equation (2) is of the m — 1 degree, and by elimination with the pro¬ 

posed equation of the degree m will produce a final equation of the degree 

m{m — 1), as will be hereafter shown. It is evident, indeed, that the roots 

being of the form a^ — a^, a^——a^, az—ax, a.^—a^, Ac., will be equal in 

number to the permutations of m letters, two and two, which ^^is m{m — 1) 

(Art. 200). The factors m and m — 1 will the one be even and the other odd, 

and the product m{m — 1) must therefore necessarily be even ; moreover, since 

if one root, —a.2, be represented by (3, another, a-z—ffi, will be represented 

by —/3, and the equation (2) will be composed of factors of the form {y—/?) 

(y-^(3)=y‘^—/32; and hence will contain only even powers of y. It may 

therefore be written under the form 

&C., +^^ = 0 .... (3) 

and if we make y'^=z, we have 

= 0.(4) 
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as the equation whose roots are the squares of the differences of the roots of 

the proposed equation. 

279. As an application of the foregoing principles, let us find the equation of 

the squares of the differences for the equation of the third degree. In the 

fii’st place, I shall make the general remark, that equations (3) and (4) ought 

not to change when we augment, or when we diminish, by the same quantity 

all the roots of equation (1). Consequently, if the second term of a given 

equation be not wanting, we can cause it to disappear (Art. 273), and then 

find the equation of the differences for the transformed equation; we shall 

thus find the same equation as if we had not made the second term vanish, since 

the differences of the roots will be the same as before, while the calculations 

will be less complicated. This being premised, 1 will suppose that the equa¬ 

tion of the third degree wants its second term, and has the form 

.[A] 

Designate the given equation byy’(a:) = 0, and the derived polynomials of 

f{x) by fiix), fi{x),/^{x) . ...; the rule for finding the equation of the squares 

of the differences is to eliminate between the two equations 

/(r) = 0,/i(.r) + i/2(r)y+^/3(.r)/+ ... =0.[B] 

But in the case before us we have 

f{x)=x^-\-gx-\-r, f,{x) =3x^-\r9^ M^') = M^) = 

Substituting, therefore, these values in equations [B], we shall readily perceive 

that the elimination of .r ought to be performed between equation [A] and the 

following equation, 

3x^+g+3xy + y^ = 0.[C] 

We shall, therefore, arrange this equation with reference to x, and then elimi¬ 

nate X by proceeding as if we had to find the greatest common divisor of equa¬ 

tions [A] and [C]. 

First Division. 

^4" 5-^ 4“ ^ 4* +.7^ 4" 1 

3x^-\-3qx -j-3r x—y 

4- 3^^ 4- ^y-^~ 4- (7" + 

— 3yF — (?/2—2q)X‘\- 3r 

— 3y — qy 

2{yFj^q)x-^ry^ +97 + 3r. 

Second Division. 

3x‘^-{- 3qx-\- y^--\-q 2{y’^-{-q)x-{-y^-{-qy-\-3r 
6(1/2^ 9).r^^4-6(77^4-ry)2/,r4-2(7/+, 

-{-Q{y'^-\-q)x~-\-3{y^-\-qy -fSrfr 

3(7^4- ?.7 — 3r).T-f 2(?/' -\-qf 

3(.7^4- 7) (.7^4- 77 — 3r)x-\-Hjf-\-qf 
Hy^+^lW 4- 77 — 3r).r+ 3(7^4 97 4 3r) {y--\- qy — 3r) 

4(7249)^—3(7'^ 477434(.7"477 —3r)., 

In the last division we have multiplied twice by 7'^47 order to render the 

divisions possible, but if w^e take 724-9 = 0, the divisor reduces to 3r, a quan 

tity in general differing from 0. 
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Making the last remainder equal to zero, and performing the operations in¬ 

dicated, the equation of the differences is 

taking y'^=z, the equation of the squares of the differences becomes 

23 + 6(722_j_ 9f^2r 4^3_j_ 07;.2 _ 0. 

For the equation —7.'r-}-7=0, we have q=—7, r=-j-7; and hence the 

equation in z l)ecomes 

23_4222_j_44l2 —49 = 0. 

BUDAN’S CRITERION 

For determining the number of imaginary roots in any equation. 

280. If the real positive roots of an equation, taken in the order of their 

magnitudes, be «i, <^3, «4-where a^ is the smallest, and if we dimin¬ 

ish the roots of the equation by a number h greater than «i, but less than <23, 

then tlie roots will be —h, a.—/^, o.^—/i, —h, and the first of these 

will now be negative. But the number of positive roots is exactly equal to 

the number of variations of sign in the terms of the equation when the roots 

are all real; and as we have changed one positive root, into a negative one, 

the transformed equation must have one variation less than the proposed 

equation. 

Again, by reducing all the roots by /r, a number greater than <2.21 but less 

than Gs, we shall have two negative roots, Gi—A:, a^—Z:, in the transformed 

equation, and, therefore, we shall have two variations of sign less than in the 

proposed equation, for two positive roots have been reduced so as to become 

negative ones. Hence it is obvious, that if we reduce the roots by a number 

greater than the positive roots will become negative, and the transform¬ 

ed equation, having all its^ roots negative, will have the signs of all its terms 

positive (Art. 259), and all the variations will have entirely disappeared. 

We see, then, that if the roots of an equation be reduced until the signs of 

all the terms of the transformed equation be -f-, we have employed a greater 

number than the greatest positive root of that equation ; and, therefore, its 

reciprocal must be less than the smallest real root of the reciprocal equation. 

Now, if we take the reciprocal equation, and reduce its roots by the reciprocal 

of the former number, we should have as many positive roots left in this trans¬ 

formed reciprocal equation as there were positive roots in the proposed equa¬ 

tion, unless the equation has imaginary roots ; hence the number of variations 

lost in the former case should be exactly equal to the number left in the latter, 

when the roots are all real; and, consequently, if this condition be not fulfill¬ 

ed, the difference of these numbers indicates the number of imaginary roots. 

To explain this reasoning more clearly, we shall suppose that an equation has 

thi'ee positive roots ; as, for instance, 1, 2’5, and 3. Now if the roots of the 

proposed equation be reduced by 4, a number greater than 3, the greatest 

positive root, the three positive roots in the original equation will evidently be 

changed into three negative ones in the transformed one, and hence three va¬ 

riations must be lost. Again, the equation wliose roots are the reciprocals of 

the proposed equation must have three positive roots, 1, |, and ^ ; and it is 

evident that if we reduce the roots of the reciprocal equation by |, the recip¬ 

rocal of the former reducing number 4, we shall not change the character of 

the three positive roots, because | is less than the least of them, and 1— 
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I — 1, L—are all positive ; hence the three variations introduced by the 

three positive roots must still be found in the transformed reciprocal equation, 

and, therefore, three variations are left in the latter ti’ansformation, indicating 

no imaginary roots. The theorem may, therefore, be stated thus ; 

If, in transforming an equation by any number r, there be n variations lost, 

and if, in transforming the reciprocal equation by (the reciprocal of ?•), there 

be ?n variations left, then there will be at least n—m imaginary roots in the 

interval 0, r. 

For there are as many positive roots in the interval 0, r of the direct equa¬ 

tion as there are between ^ and ^ of the reciprocal equation ; hence, if n, the 

number of variations lost in the transformation of the'direct equation by r, be 

gi-eater than ?n, the number of variations left in the transformation of the re¬ 

ciprocal equation by p there will be a contradiction with respect to the charac¬ 

ter of a number of the roots, equal to the difference n—m. Hence thes(r 

roots are imaginary. 

EXAMPLE. 

Find the number of imaginary roots of the equation 

— 4=0. 

Direct. Recfrocal. 

1 _1 -|_2 -fl —4 (1 _4 _|_ 1 _j_ 2 — 1 +1 (1 

1023 _4— 3 — 1—2 

0 o 3 —1 — 3 

rH 1 1 1 

1 1 3 — 4 — 7—8 

1 3 6 — 7 

O
 

rH 1 
C

O
 1 

1 2 — 4 —11 

2 5 -11 — 19 

1 — 4 

3 — 15 

Here two variations are lost in the transformation of the direct equation, 

and no variations are left in the transformation of the reciprocal equation; 

therefore this equation has at least two imaginary roots ; and it has 07ily two, 

for the sign of the absolute term is negative, implying the existence of two 

real roots, the one positive and the other negative. (See Art. 248, Pr. VIIL, 

Cor. 5.) 

EXAMPLE. 

To find the number and situation of the real roots of the equation 

—100 = 0 by Budan’s method. 

If the roots of this equation be all real, the permanences and variation indi¬ 

cate three negative roots and one positive root. 

(1) To find the positive root. 

l-}-l-fl+ 3 — 100(2 1-l-l-f 1+ 3 — 100(3 

' 3_|_7_j_17_ 66 4 + 13-f424- 26 
* » 

In the transformation by 2, one variation is left, and, in transforming by 3, 

there is no variation left; therefore the positive root is between 2 and 3. 

(2) For the negative roots. 
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Direct Equation. 

1 —1-f 1—3 —100 (1 
0-f 1—o_i02 

l_}_2-f.O 

2 + 4 

3 

Reciprocal Equation. 

— 100— 3+ 1— 1+ 1 (1 

— 103 — 102 — 103 — 102 

signs all — 

Here two variations are lost in the direct transformation, and no variations 

are left in the reciprocal transformation ; therefore the two roots in the inter¬ 

val 0 and —1 are imaginary. 

3 — 100 (3 1 — 1+ 1— 3 — 100 (4 

2 + 7+18— 46 * 3 + 13 + 49+ 96 

Hence the negative root is obviously situated between —3 and —4. 

DEGUA’S CRITERION. 

281. In any equation, if we have a cipher-coefficient, or term wanting, and 

if the cipher-coefficient be situated between two terms having the same sign, 

there will be two imaginary roots in that equation. 

Let the order of the signs be 

+ + — 0-1-; 
and for 0 writing + or — we have either 

+ _|-—I-, 01’+ H-1- 
In the former of these we find two permanences and jive variations, and in 

the latter we have four permanences’ and only three variations ; hence, if the 

roots are all real, we must, in the former case, \mvejive positive and two neg¬ 

ative roots, and in the latter, three positive and four negative roots (Art. 259); 

hence we have two roots, both positive and negative., at the same time, and, 

therefore, these two roots can not be real roots. These two roots, which in¬ 

volve the absurdity of being both positive and negative at the same,time, must, 

therefore, be imaginary roots. 

In nearly the same manner it may be shown that 

(1) If between terms having like signs, 2n or 2n — 1 cipher-coefficients in¬ 

tervene, there will be 2n imaginary roots indicated thereby. 

(2) If between terms having different signs, 2w+l or 2n cipher-coefficients 

intervene, there will be 2n imaginary roots indicated thereby. 

EXAMPLE. 

The equation .T4-c-.T^+6.r2+24 = 0 has two imaginary roots, for the absent 

term is preceded and succeeded by terms having like signs ; and the equation 

a:^+l, having the coefficients 1 + 0+ 0 + 1, has also two imaginary roots. 

EXAMPLES FOP., PRACTICE. 

(1) How many imaginary roots are in the equation 

-.'^5+^3 — 2.r'^+2.r —1=0? 

(2) Has the equation —2a:2+6a:+10 = 0 any imaginary roots ? 

THE LIMITS OF THE ROOTS OF EaUATIONS. 

282. The limits of any group of roots of an equation are two quantities be¬ 

tween which the whole group lies; thus, +oo and 0 are limits of the positive 

roots of every equation, and 0 and —cc of the negative roots. Butin practice 

we are required to assign much closer limits than these, usually the two con- 
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secutive*wliole numbers between wliicli each root lies, so that the inferior 

limit is the integral part of the included root. This may be effected without 

knowing any of the roots of the equation, as will be seen in the following prop¬ 

ositions. The roots spoken of in this section are the real roots. 

SUPERIOR AND INFERIOR LIMITS OF THE ROOTS. 

283. The greatest negative coefficient increased by unity is a superior limit 

of the positive roots of iin equation. 

Let —p be the greatest negative coefficient; then any value of x which 

makes 

^ .T"—positive, 

_1 

will, a fortiori, make 

.r" 4--1-pn-ia:+Tn, 

ovf{x) positive, because in the latter, all the terms after x^ will not generally 

be negative, and of the negative terms not one is greater than the correspond¬ 

ing term in the former expression. 

x" —1 
Now the inequality ^ satisfied, if 

or ^2’" 
.r—1’ 

or X- ■1 = or '^p, or x= or f>p-\-l. 

Since, therefore, 1 and every greater number, when substituted for x, 

will make /(.r) positive, the numerical value of the greatest negative coefficient 

increased by unity is a superior limit of the positive roots.f 

284. In any equation, if p^x'^~'^ be the first term which is negative, and —p 

the greatest negative coefficient, I-]-- \/p is a superior limit of the positive 

roots. ^ 

Any value of x which makes 

will of course make • • • positive. 
r+l — I 

Now the inequality x^f>p—~^—, is satisfied if 

—I*"}"! 

or x'^-^{x—l)'i>2^, or if (.r——1) = or or {x—1) = 

or f-p, or x= or Vt- 

Since, therefore, 1-j- Vt f^od every greater number gives a positive result, 

14_ is a superior limit. 

This method may be employed when the first terra is followed by one or 

more positive terras. 

, EXAMPLE. 

. — 25,r — 61=0. 

Here r = 3, and a limit of the positive roots is 

l-\- y 61, or 5, taking the next higher integer. 

285. If each negative coefficient, taken positively, be divided by the sum of 

* See (Art. 23). t This is commonly ktrown as Maclaui-in’s limit. 
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all tlio ])osi{ive coefficients which precede it, the greatest of the fractions thus 

formed, increased by unity, is a superior limit of the positive roots. 

Let the equation be 

^3)^'""^+ • • • 

. . . -j- (-• • • -l“i^n = 0 ; 

then, since (Art. 23), 

if we transform every positive term by this formula, and leave the negative 

terms in their original form, we shall have 

0 = (.r’—1 + f 

, ' —-^p,(.r— 

—p3.r"-=* 

' 4" . 

Now if such a value be assigned to x that every term is positive, that value 

will be the superior limit required ; in the terms where no negative coefficient 

enters, it is sufficient to have I ; in the other terms, each of which in¬ 

volves a negative coefficient, we must have 

-1) &C., 

or 

.r>: 4-1; a:>- 1, &c. 
1 +P1 1 + • • • +Pr-1 

If, then, X be taken equal to the greatest of these fractions increased by 

unity, this value, and every greater value, will make f{x) positive, and there¬ 

fore will be a superior limit of the positive roots. This method gives a limit 

easily calculated, and generally not far from the truth.* 

EXAMPLES. 

(1) 4x^ — 8.r^4- 23.r3 4-105^:2 — 802--f- 3 = 0. 

8 ^ 80 
The fractions are - and . , ;.. 

4 4-}-234-105 

8 80 8 
therefore —-4-1=3 is a 

4 

superior limit. 
(O^ 4,^7 _ Q^6_ _j_ 7.^.3 _03,^2 _ 22a; _ 5 _ 0 ; 

here 3 is a superior limit. 

Observation.—The form of the equation will often suggest artifices, by 

means of which closer limits may be determined than by any of the preceding 

methods ; thus, writing the equation of Example 1 under the form 

4.ri(.r—2) 4- 23.??4-1052(.T-f 3 = 0, 

we see that x= or ]>2 gives a positive result, therefore 2 is a superior limit. 

Similarly, by writing the example of Art. 284 under the form 

2(23—25) 4-11 (.2-2 _ ^) = 0, 

we see that 3 is a superior limit. 

We have seen (Art. 248) that an equation of an even number of dimensions 

with its last term positive may have no real root; but we shall now show that 

* This is the method of Bret. 
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in any equation^ whatever, if the absolute term be small compared with the 

other terms, there will be at least one real root also very small. 

286. In the equation 

—r = 0, 

where r is essentially positive, and which may represent any equation what¬ 

ever, if r “\- where p is numerically the greatest coefficient, then there 
4(l+rf 

is a real positive root, <^2?*. 

By dividing by the coefficient of x, and changing the signs of all the terms, 

and of all the roots, if necessary, every equation may be reduced to the form 

—&c., .... (1) 

where r is essentially positive; let p be numerically the greatest coefficient, 

then any value of :r<Cl which makes 

px-{\—'• • • 
—r-\-x'y-p[x’^-\-x^-\-, &c., 

1—X 

will make the first member of (1) positive ; and this condition is fulfilled by 

because 1^1—or 

px^ 
—r-\-x= or >YZrp 

— (l-|-r)a: 4-^=0, 

or 

2(14-jp).r=(l-fr)— -/(i4-r)2_4r(14-p); 

if, then, 4?'(14-i^) tli© radical will have a real value ^r, and there will be 

for X a real value less than which makes the first member of (1) posi¬ 

tive, while .r=0 makes it negative; therefore, in any equation reduced to the 

1 
above form, if r<^ 

4(l-f-^) 
, there is a real small positive root, <\2r. 

EXAMPLE. 

4-18.r3—2 _ 12i-4-1 = 0 

has a real root between 0 and -. 
o 

287. To find an inferior limit of the positive roots, we must transform the 

equation into one whose roots are the reciprocals of the roots of the former; 

and the reciprocal of the superior limit of the roots of the transformed equa¬ 

tion, found by the preceding methods, will be the quantity required. 

Hence, if _pr denote the greatest coefficient of a contrary sign to the last 
% 

term, pn, an inferior limit of the positive roots is 

equation will be (Art. 274) 
Pn+Pr' 

For the transformed 

Pn-l Pr 1 
— + —^’’4- —h—=0, 

J) ^7) 
of which — is the greatest negative coefficient; therefore — 4~ ^ ^ superior 

pa . Pa 

limit of its roots; and, consequently, 

of the proposed equation. 

pa 

P^-^Pa 
an inferior limit of the positive roots 
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- EXAMPLE. 

2-3_42:i'2-f 441a: —49 = 0. 

Here ^;„ = 49, ^^,=441, .-. 
49 1 , ' . 

or — is an inferior limit of the positive 
49 + 441’ 10 

roots. By putting a:=-, we may discover a limit closer to the roots ; for the 
y 

transformed equation is 

61 6/ 1\ ' 

which evidently has 9 for the superior limit of its positive roots, and, there¬ 

fore, the proposed has - for its inferior limit. 

288. To find superior and inferior limits of the negative roots, we must 

transform the equation into one whose roots are those of the former with con¬ 

trary signs (Art. 247); and if a, /3 be limits, found as above, of the positive 

roots of this equation, then —a and —/3 will bo limits of the negative roots of 

the proposed equation. 

EXAMPLE. 

a55_7a: + 7 = 0 ; 

putting x-=i—y, we get —7y—7 = 0, of which 1+ +7 or 4 is a superior 

limit. 

1 113 
Also, putting y—-, we get 2®+2®—;9==6? oi’ which 

- is a superior limit; therefore the negative root of the proposed lies between 

— 4 and —3. 

newton’s method of finding limits of the roots. 

289. The limits, however, deduced by any of the preceding methods sel¬ 

dom approach very near to the roots; the tentative method, depending upon 

the following proposition, will furnish us with limits which lie much nearer to 

them. 

Every number which, written for x, makes/(:r) and all its derived functions 

positive, is a superior limit of the positive roots. 

For, if we diminish the roots a, 6, c, &c., off{x) = 0 by h, that is (Art. 251), 

substitute y-\-h for x, the result is/(y+/i)=0, or 

Now, if we give such a value to h that all the coefficients of this equation 

are positive, then every value of y is negative ; that is, all the quantities, a— 

h—y, c—h, &c., are negative, and therefore h is greater than the greatest of 

the quantities a, b, c, &c., or is a superior limit of the roots of the proposed 

equation. Similarly, h will be an inferior limit to all the roots, if the coefficients 

be alternately positive and negative. 

example. I 

To find a superior limit of the roots of 

x^—5x^-\-7x—l=z0. 
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The transformed equation, putting for .r, is 

(/i3_5/^2^7/i_l)_|_(3/i2_10/i_}_7)y+(6;i —10)^+2/3=:0; 

in which, if 3 be put for h, all the coefficients are positive; therefore 3 is a su¬ 

perior limit of the positive roots. 

Observation.—This method of finding a superior limit of the roots by de¬ 

termining by trial uhat value of x will make f{x) and all its derived functions 

positive, was proposed by Newton. 

waking’s or Lagrange’s method of separating the roots. 

290. If a series of quantities be substituted for x in f{x), then between every 

two which give results with different signs an odd numbei’ of roots ofy'(.i') = 0 

is situated; and between every two which give results with the same sign an 

even number is situated, or none at all; but we can not assure ourselves that 

in the former case the number does not exceed unity, or that in the latter it 

is zero, and that, consequently, the number and situation of all the real roots 

is ascertained, unless the difference between the quantities successively sub¬ 

stituted be less than the least difference between the roots of the proposed 

equation; since, if it were greater, it is evident that more than one root might 

be intercepted by two of the quantities giving results with different signs, and 

that two roots instead of none might be intercepted by two of the quantities 

giving results with the same sign, and in both cases roots would pass undis- 

covei-ed. We must, therefore, first find a limit leas than the least difference 

of the roots; this may be done by transforming the equation into one whose 

roots are the squares of the differences of the roots of the proposed equation. 

Then, if we find a limit Jc less than the least positive root of the transformed 

equation, ■\/k will be less than the least difference of the roots of the proposed 

equation; and if we substitute successively for x the numbers 5, s— -y/k, 

s — '2-yJk, &c. {s being a superior limit of the roots of the proposed), till we 

come to a superior limit of the negative roots, we are sure that no two real 

roots lying between the numbers substituted have escaped us, and that every 

change of signs in the results of the substitutions indicates only one real root. 

Hence the number of real roots will be known (for it will exactly equal the 

number of changes), as well as the interval in which each of them is contained. 

Observation.—This method of determining the number and situation of 

the real roots of an equation was first proposed by Waring; it is, however, of 

no practical use for equations of a degree exceeding the fourth, on account of 

the great labor of forming the equation of differences for equations of a higher 

order. ^ 

example. 

^■3—7.r4-7 = 0. 

The numbers 1 and 2 give each a positive result, but yet two roots lie be¬ 

tween them. The equation whose roots are the squares of the differences is 

(Ar(;. 279) 'if’ — 423/^-i-441y—49 = 0, an inferior limit of the positive roots of 

1 I 
which is - (Art. 287); therefore, - is less than the least difference of the 

y 
5 4 

roots of x^—7x-^7z=0, and, substituting 2, -, the results are +, —-}-; 
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hence, one value of x lies between 2 and and one between - and —; and, 
o o o 

similarly, we find the negative root, which necessarily exists, to lie between —3 

and —3-. 

METHOD OF DIVISORS. 

291. The commensurable roots of /(.r) = 0, which are necessarily whole 

numbers, may be always found by the following process, called the method of 

divisors, proposed by Newton. 

Suppose a to be an integral root; then, substituting a for x, and reversing 

the order of the terms, we have 

a" = 0 ; 

.*. —-[“Tn—1 “hPn—2<^ “!"••• 
Cv 

Vn 
Hence, — is an integer which we may denote by ; substituting and di¬ 

viding again by a, we get 

(]l 

a 
-a"-2=:0. 

Similarly, ^ is an integer =^3 suppose ; and proceeding in this man¬ 
a 

ner, we shall at last arrive at 

a ‘ 

Hence, that a may be a root of the equation, the last term, p„, must be di¬ 

visible by it, so must the sum of the quotient and next coefficient, qi-\-p^_i ; 

and continuing the uniform operation, the sum of each coefficient and the pre¬ 

ceding quotient must be divisible by a, the final result being always —1. 

If, therefore, we take the quotients of the division of the last term by each 

of the divisors of the last term which are comprised within the limits of the 

roots, and add these quotients to the coefficient of the last term but one; di¬ 

vide these sums, some of which may be equal to zero, by the respective 

divisors, add the new quotients which are integers or zero (neglecting the 

others) to the next coefficient and divide by the respective divisors, and so on 

through all the coefficients (dropping every divisor as soon as it gives a frac¬ 

tional quotient), those divisors of the last term which give —1 for a final re¬ 

sult are the integral roots of the equation; and we shall thus obtain all the in¬ 

tegral roots, unless the equation have equal roots, the test of which will be that 

some of the roots already found satisfy /'(.r)=0, and the number of times that 

any one “is repeated will be expressed by the degree of derivation of the first 

of the derived functions which that root does not reduce to zero, when written 

in it for x (Art. 253). It is best to ascertain by direct substitution whether 

-\-l and —1 are roots, and so to exclude them from the divisors to be tried. 

EXAMPLE I. 

2:3+3.r2 — 8.r+10 = 0. 

8 
Here the roots lie between ^+1 and —11 (Arts. 285, 288), and the divi¬ 

sors of the last term are dL ^2, 5, 101, 

I 
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— 10 

— 1 

— 9 

a = 2 / — 2 — 5 

qi= 5 — 5 — 2 

g^_j-(_8)= —3 —13 —10 

92= . 2 

^3-j-3= 5 

93= —1- 

Therefore —5, being the only one of the divisors which leads to a last quo¬ 

tient — 1, is the only commensurable root, and it is not repeated, since it does 

not satisfy the equation f'(x)=3.v^-\-6x—8 = 0. 

, EXAMPLE II. 

—5x^-\-x^-]-16x'^—20^:4-16 = 0. 

Here limits of the roots are 6 and —4 ; and the commensurable roots are 

4, 2, —2. 

EXAMPLE III. 

x^-{-5x^ — 2a:^—6x4-20 = 0 ; x=—2, or —5. 

292. The number of divisors to be tried may be lessened by observing, that 

if the roots of /(x) = 0 were diminished by any whole number, 7n, the last 

term of the transformed equation,/(y 4-= would be/(m); if, therefore, 

a were an integral value of x, a—m would be an integral value of y, and would 

be, therefore, a divisor of f{m). Hence, any divisor, a, of the last term of 

f{m) 
f{x) is to be rejected which does not satisfy the condition --— = an integer, 

when for m any integer, such as 4;1» ilO, &c., is substituted. 

EXAMPLE I. 

—5x2 — 18x 4- 7 2 = 0. 

Changing the signs of the alternate terms, we have 

/ 18\ 
x^-\-bx^—18x—72 = 0, or x^—724-5x^x——j =0*. 

therefore the roots lie between 19 and —5. 

But ^ /(l}=50,/(-l)=84,/(-3)=54; 

and the only admissible divisors of 72, which, when diminished by 1, divide 

50, are 
R 3 o _4 . 

also, all these divisors, when increased by 1, divide 84; but only 6, 3, —4, 

when increased by 3, divide 54 ; 

.*. 6, 3, —4, 

are the only divisors, which need to be tried; and they will all be found to be 

roots. 

EXAMPLE II. 

2-3—6x24-169x—(42)2=0. x=9. 

293. If a proposed equation have fractional coefficients, or if its first term 

be affected with a coefficient, since (275, Cor. 2) it can be transformed into an¬ 

other equation with first term unity and every coefficient a whole number, 

this method will enable us to find the commensurable roots of every equation 

under a rational form. If the coefficients be whole numbers and the first term 

bepo^’“} and v/e only wish to find the roots which are integers, no transforma- 

f I 
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tion will be necessary, only every divisor of the last term which is a root will 

lead to a result —po instead of —1. 

It is the same as 

EXAMPLE. 

_ 252-3 4- 2 62-2 -f 4a:—8=0. 

(a-—2)432—2) (22+1) = 0. 

newton’s method of approximation. 

294. When we know an approximate value of a root, we may easily obtain 

other values of it, more and more exact, by a method invented by Newton, 

which rapidly attains its object. We shall give this method, first in the form 

in which it was proposed by its author, and afterward with the conditions 

which Fourier has shown to be necessary for its complete success. 

Let4'(2) = 0 be an equation having a root c between a and 6, the difference 

of these limits, b — a, being a small fraction -whose square may be neglected-in 

the process of approximation. 

Let Cl, a quantity between a and be assumed as the first approximation 

to c, then c=Ci + /i, where h is very small; 

.*. ^(ci + /i) = 0, 

or 

• • • +/«'" = 0. 

Now, since h is very small, /i^, &c., are very small compared with h; 

also, none of the quantities &c., can become very great, since they 

result from substituting a finite value in integral functions of 2 ; therefore, pro^ 

vided f'{ci) be not very small (that is, provided f'{x) = Q have no root nearly 

equal to Cl or to c, and, consequently, /(2) = 0 no other root nearly equal to c 

besides the one we are approximating to), all the terras in the series after the 

first two may be neglected in comparison with them ; and we have, to deter¬ 

mine /i, the resulting approximate value of /i, the equation 

/(ci)+/ii/'('^i) = 0 ; 

7 _ /(^O . S f(^) 
' I fix) 

and tlie second approximation is 

^ +h -c 1 ^ f 

Similarly, starting from Ca instead of Ci, the third approximate value will be 

• _ . 
C3_C,- ^ ^ 

and so on ; and if we can be certain that each new value is nearer to the truth 

than the preceding, there is no limit to the accuracy which may be obtained. 

EXAMPLE I. 

2^ — 22 — 5=;0. 

Here one root lies between 2 and 3, and the equation can have only one 

* This notation signifies, that after the division indicated is performed, the particular 
value, Cl, is substituted for x. 

A A 
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positive root; also, upon narrowing the limits, we find that x=2 gives a nega¬ 

tive, and x=2'2 a positive result; therefore, 2’1 differs from the root by a 

quantity less than 0*1, and we may assume Ci = 2’l. Hence 

/x3_2x—5\ 0-061 

11-23’ 

or 

Similarly, 

C2=2-1—0-0054=2-0946. 
> 

C3=2-09455149. 

EXAMPLE II. 

x^—7x—7 = 0. 

There is only one positive root lying between 3 and 3-1, and it equals 

3-048917339. 

Obseryation.—To guard against over correction, that is, against applying 

such a correction to an approximate value as shall make the new value differ 

more from the root by excess than the original approximate value did by de¬ 

fect, oi‘ vice versdi we must be certain that each new value is nearer to the 

•trufdi than the preceding; this gives rise to the following conditions, first no¬ 

ticed by F ourier. 

295. For the complete success of Newton’s method of approximation, the 

following conditions are necessary. 

1. The limits between which the required root is known to lie must be so 

close that no other root o^f{x)=0, and no root off'{x) = 0, or/"(.r) = 0, lies 

between them. 

2. The approximation must be begun and continued from that limit which 

makes/(.'r) and f"{x) have the same sign. 

Let c be a root of/(.t) = 0 which lies between a and b, a<^b, Cj the first ap¬ 

proximate value, and h the whole correction, so that c=Ci-{-h; then 

/(ci-f/z) = 0, or/(ci)+A/'(A) = 0, 

/I being some quantity between q and c (Art. 239, Note). 

Therefore, supposing A = ci, which amounts to neglecting all powers of li 

above the first, and requires that f{x) = 0 have no root besides c in that interval, 

and calling the resulting approximate value of h, hi, we have 

/(^i) "f" (ci) = 0. 

Now the true value is c=ci-}-/i ; 

The first approximate value is Ci with error h ; 

^ The second approximate value is C2 = Ci-\-hi with error h—hi, which (neg- 

Hecting signs) must be less than h, 

i. e., h^ — {h — hiY must be positive, or 2hhi—hi'^=-\^, 

- -IM , 
f'{X) -i-+ ■< 

or —h— -f-r 01’ 

which condition (since 2, is an indeterminate quantity between Ci and c, or be¬ 

tween a and b) can not in all cases be secured unless f'{x) be incapable of 

changing its sign between a and b, i. e., unless/'(,r) = 0 have no root between 

a and b. 

■f{ci).l 
Moreover, we must have or ^1, the latter insuring the former. 

Now, if/"{x) preseiTe an invariable sign between a and b, i. e., iff"{x)=0 

i 
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have no root in that interval, then f'{x) will increase or diminish continually 

from a to h ; therefore Ci must be taken equal to that limit which gives f'{x) 

its greatest numerical value without regard to sign. 

First, let f'{x),f "{x), have the same sign from a to b ; then f'{x) increases 

continually in that interval; therefore we must have Ciz=b, or we must begin 

from the greater limit. But f{b) has the same sign as f{c-\-h)=f{c)-\-hf'{c) 

—hf'{c), or as/'(c): therefore we must have Ci equal to that limit which makes 

f{x) and f"{x) have the same sign. 

Secondly, let f'{x), f"{x), have contrary signs from a to b ; then f'{x) di¬ 

minishes continually in that interval; therefore we must have Ci=a^ or we 

must begin from ^the lesser limit. But /(«) has the same sign as/(r—h) 

=f{c)—hf'{c) = —or as —/'(c); therefore, in this case, equally as in 

the former, we must have Ci equal to that limit which makes f{x) and f"{x) 

have the same sign. 

These conditions being fulfilled, we have 

f'(ci) , , h—ht , j7^-l_ + ,or - _+, 

C —C2 

therefore c.2 lies between c and Ci; hence, the new limit, fulfills the requi¬ 

site conditions, and we may with certainty from it continue the approxima¬ 

tion. 
296. To estimate the rapidity of the approximation, we have 

error in first approximate value Ci, =/^, 

error in second approximate value Co, =h—/^^; 

But /(ci)-|-//'(ci)-j-4/i/"(w)=0, 

/(ci) + /ii/'(c,)=0; 

.-. (/i—/zi)/'(ci)4-P'/"(/i) = 0, 

or h—hi = — 
^ f'ici) 

Let the greatest value which/"(a:) can assume between a and b (which 

will be either/"(a) or f"{b), if f'"{x) = 0 have no root in the interval) be di¬ 

vided by the least value of 2f'{x) in that interval which will be either 2f'{a) or 

2f'{b), and let the quotient be denoted by C ; then, neglecting signs, 

h — 

hence, if the first error h in Ci be a small decimal, the error h—hi with which 

c.2 is affected (since C will not, except in particular cases, be very large) will 

be very small compared with h; and if the quantity C be less than unity, the 

number of exact decimals in the result will be dpubled by each successive 

operation. The quantity C, when thus computed for a given interval, pre¬ 

serves the same value throughout the operations which it may be hecessaiy to 

make in order to approximate to the value of the root lying in that interval; 

and as we thus know a limit to the difference between the approximate value 

already found and the true value, we may always avoid calculating decimals 

which are inexact, and only obtain those which are necessarily correct. 

EXAMPLE. t 

6.^3-1412:4-263 = 0. 

This equation has two positive roots, one between 2*7 and 2*8, and tlie 
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Other between 2*8 and 2*9. Now f'{x) = lQx”—141 = 0 has a root =^/f 
= 2-798, between 2-7 and 2*8, therefore these limits are not sufficiently close ; 

but this root is greater than 2-79 ; also, 2-7 and 2-79, substituted in f{x), give 

results with different signs; and 2-7, substituted in f{x) and f"{x), gives re¬ 

sults with the same sign ; therefore, Ci=2-7. 

With regard to the other interval, 2-8, 2-9,/'(.T) = 0,/"(.'r)=0 have no roots 

between these limits, and 2-9 makes f{x) and f"{x) have the same sign; 

thei-efore, Ci = 2-9; and starting from these values, we are certain in each 

case to get a value nearer to the truth. 

f"{x) 
Again, the greatest value which jv^oTyy assume in the interval 2-7, 

2-79, is nearly equal to 10; hence, if hi, lici, be consecutive eiTors, we have 

h,<\_{hif .1^. 
The same formula will be found to be true for consecutive errors in the in 

terval 2 8, 2-9. 

Lagrange’s method of approximation by continued fractions. 

297. To approximate to the roots of an equation by the method of continued 

fractions. 

Let the equation f{x) = 0 have only one root between the integers a and 

a-fl;* then, writing a-}”" for a:, the first transformed equation will be 

/(^)+/'(«)“+/"(^)]~7^+-= ^ y y- . y , 

and, since only one value of - lies between 0 and 1, y has only one value greater 
y 

than 1 ; if, therefore, we substitute successively 2, 3, 4, &c., for y, stopping 

at the first which gives a positive result, the integer preceding that is the in 

tegral part of the value of y. Let this be 6, and in (1) write b-{-— for y ; then 
z 

the second transformed equation will have only one root greater than unity, 

tl)c integral part of which, as before, will be the whole number next less than 

the one in the series 2, 3, 4, &c., which first gives a positive result when 

written for z let this be c, and in the second transformed equation write 

c-j-- for 2, then the third transformed equation will have only one root greater 

than unity, the integral part of which may be found as before, and so on. 

We thus obtain successively the terms of a continued fraction 

« ‘'+i+- 1 
c+^, &c. 

which expresses the required value of x. The method of reducing such a 

fraction, called a continued fraction, will be hereafter given. 

The roots of the equation may be made to differ by at least unity, if we find by means 

of the equation of the squares of the differences the least limit to the differences of the 

l oots of the proposed equation, and then find a transformed equation whose roots shall be 

that multiple of those of the proposed, which is expressed by the denominator of the least 
limit of the differences. 
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If any of the numbers 6, c, &c., is an exact root of the corresponding 

ti’ansformed equation, the process terminates, and we find the exact value of .r. 

Also, if one of the transformed equations be identical with a preceding one, 

the continued fraction expressing the root is periodical; for, after that, the 

same quotients will recur in the same order ; in this case a finite value, in the 

form of a surd, may be obtained for the root (see Continued Fractions) by solv¬ 

ing a quadratic whose coefficients are rational, both of whose roots will be roots 

of the proposed, since the coefficients of the latter are supposed rational; con¬ 

sequently, the first member of this quadratic will be a factor of the first mem¬ 

ber of the proposed equation, which may, therefore, be depressed two di¬ 

mensions. 

EXAMPLE. 

To find the positive root of —2x—5=0 under the form of a continued 

fraction. 

Comparing this with x^—g.r-|-r=0, we find that 

r2 25 8 
—=y—— isa positive quantity ; 

therefore (Art. 258) the equation has two impossible roots ; and since its last 

term is negative, its third root is positive. Substituting 2 and 3, the results are 

— 1 and 4-16; therefore the root lies between 2 and 3. Assume a: = 2-l-—» 
. . y 

and the transformed equation is 

—lOy^ — 6y —1=0, 

in which 10 and 11 being substituted, give —61, -{-54. Assume 2/=“-104-“» 

and we obtain 

61^3 _ 94^2 _O02; —1=0, 

whose root lies between 1 and 2. Proceeding in this manner, we find 

1 11,1 

^=^+10 + 1 + 1+2 ••• 

the value of the root in a continued fraction; the method of reducing which 

to a common fraction will be hereafter given. 

This method may be combined with Sturm’s theorem. 

Here finishes our recapitulation of the older methods. What follows be¬ 

longs to the present more improved state of algebraic science.* 

We shall here point out a method of finding the equal roots of an equation, which 

avoids the laborious process of seeking the common divisor, and which anay be employed 

when any other than Sturm’s process for discovering the roots of an equation is used. 

1. If an equation whose coefficients are commensurable have a pair of equal roots and no 

greater number, these roots must be commensurable ; for the common measure of the first 

member of this equation, and the function derived from it, will be a binomial expression of 

the first degree with finite coefficients, and which, when equated to zero, will furnish one 

of the equal roots ; these roots, therefore, must be commensurable, that is, either integers 

or fractions. ' 

2. If the leading coefficient in the supposed equation be unity, and the others integral, 

the equal roots must be integral, because no fractional root can exist under these condi¬ 

tions (Art. 246). ' 

3. If an equation with commensurable coefficients have three equal roots, and no more, 

these also must be commensurable; for, in this case, the common measure will be of the 

second degi'ee, and, when equated to zero, will give two of the equal rorts : these roots, as 

just remarked, must be commensurable ; hence all the three roots must be commensurable. 
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BINOMIAL EaUATIONS. 

298. Binomial equations are those which can be reduced to the form 

a:"’ = A ora:"’—A = 0.(1) 

A being any known quantity whatsoever. 

And, as before, if the leadmg' coefficient be unity, and the others integral, the equal roots 

will be integral. 

4. By the same reasoning, if an equation with commensurable coefficients have m equal 

roots, and no other gi'oups'of equal roots, these m roots must be commensurable ; and they 

will be integral if the leading coefficient be unity and the other coefficients integers. 

5. When the leading coefficient is unity, and the other coefficients whole numbers, and 

m equal integral roots enter, we may infer, from the formation of the coefficients (245), that 

the absolute number, and the coefficient of the immediately preceding term, that is, the 

coefficient of x, will admit of a common measure involving m—1 of these roots ; that the 

coefficients of x and will have a common measure involving m—2 of them; and so on 

till we come to the coefficients of a?’"—2 and .-r'"—b which will have a common measure in¬ 

volving the multiple root once. For, if the depressed equation containing only the unequal 

roots be considered, it will involve none but integral coefficients, since its last tenn is form¬ 

ed from the penult coefficient of the proposed divided by one root; so that if the equal roots 

be now inti'oduced, they can combine with none but integi'al factors. Hence, if the root occur 

twice, it will be found among the integral factors of the common measure of the coefficients 

All (the final coefficient) and An—i ; if it occur three times, it will be found among the fac¬ 

tors of the common measure of An, An—i, and An—and so on. And, therefore, by trying 

several factors of the common measure in question, by actually substituting them for x in the 

proposed equation, when from any circumstance multiple roots are suspected to exist, we 

may remove all doubt on the subject. In analyzing an equation, the doubts that may arise 

as to the entrance of equal roots are confined to certain definite intervals, or within deter¬ 

minate numerical limits ; so that, of the factors adverted to above, only those falling within 

these limits need be regarded. 

And further, if the repeated root occur but twice, the square of it must be a factor of ocf^ 

or An; if it occur three times, the cube of it must be a factor of An, and the square of it a 

factor of An—1 ; if it occur four times, the fourth power of it must be a factor of An, the cube 

of it a factor of An—i, and the square of it a factor of An—2, and so on. And thus, of the 

factors of An to be tested, those only need be used whose powers also are factors, entering, 

as here, described, according to the multiplicity of the roots. 

6. These inferences may be easily generalized : they apply, whatever be the integral 

value of the leading coefficient, and whether the repeated root be integral or fractional. 

Thus, let the repeated root be x=y, a and h havin" no common factor; then, if the root en- 
b 

ter m times, the original polynomial will be divisible by {px—a)'", giving a quotient in¬ 

volving the remaining roots, and into which none but integral coefficients enter (253). Let 

us now return to the original polynomial by multiplying this quotient by hx—a m times : 

the first multiplication by bx—a will evidently give a product, into the first term of which 

h must enter as a factor, and into the last of which a must enter; the next multiplication 

must, therefore, give a product, into the first teian of which must enter, into the second 

b, into the last cfi, and into the last but one a; the third multiplication, therefore, must 

give a product whose first three terms involve b^, Ifl, h respectively, and last three a^, a?, 

a, reckoning these last in reverse order, and so on. Hence the coefficients Ai, An, Ay, &c., 

will be divisible by i”', b'^~"^, See., respectively, down to b; and the coefficients An, 

An—1, An—2, &.C., by a'^, a'"—1, down to a. In other words, the coefficients, taken 

in order, reckoning from the beginning, will be divisible by the corresponding decreasing 

powers of the deiiominalor of the repeated root; and the coefficients, reckoning from the 

end, will be divisible by the like powers of the numerator. 

7. The inferences still have place, whatever be the degree of the multiple factor enter¬ 

ing the proj'osed polynomial, so long as this factor, as well as the original polynomial, have 

none but integral coefficients. This is plain, from the reasoning in the preceding case, 

which remains the same, as respects the entrance of the factors h, a, whether the repeated 

multiplier be hx—a or — -f-a. 



BINOMIAL EaUATIONS. 375 

We perceive immediately that the m roots of this equation are different 

from one another; for the first member —A has no common factor with its 

derived function and hence the proposed equation (Art. 253, Schol.) 

can not have equal roots. The roots, if wo raise them to the power m, ought 

each to produce A, since they are the same as the values embraced in the ex¬ 

pression .r=:’yA. We know, then, that this radical has m different values ; 

but we shall recur to this subject again, and more at length. 

299. When m is any composite number, the solution of equation (1) re¬ 

duces itself to the solution of several binomial equations, the degrees of which 

are the factors of m. 

Suppose 7n=jpqr, instead of the equation a:P‘’''=0, we can take the equations 

a:P=x', x'^=x", x''’^=A, 

in which x', x" are new unknowns. 

It is evident that, after we have solved the equation .t"‘‘==A, the preceding 

equation x''i=x" will make known the values of x', and that then the equa¬ 

tion xP=x' will give all the roots of the proposed equation. This agrees with 

the formula demonstrated in the theory of radicals (Art. 63), viz., 

V\/vA=''V“A. 
300. Designate by a quantity whose power is A, and take x‘=zay. 

The equation .r™=A becomes : dividing by a™, 

2/™ = ] ^ 

hence and, consequently, x—a'^l. 

We conclude, therefore, that the roots of the equation .r™ = A can be ob¬ 

tained by multiplying one of them by the roots of the equation y^ = l ; or, in 

general, that the different roots of a quantity can be obtained by multiply¬ 

ing one of them by the roots of unity. 

301. Let us consider more particularly the case in which A is a real quan¬ 

tity ; and, to distinguish the hypothesis of A being positive or negative, write 

the binomial equation in this form : 

.r"’r=±A . .(2) 

These conclusions will greatly simplify the research after equal roots, and will either 

enable us wholly to dispense with the laborious process for the common measure, or wiU, 

at least, render the more tedious steps of it unnecessary 

EXAMPLES. 

2x4—12:c3-fl9a;2—6a7-}-9=:0.(ij 

x7-f-5.r6-j-6a:5_6.x4—15x3—3a;2-f8x-{-4=0 ... (2) 

The first of these can have no fractional repeated roots, because the leading" coefiicient 

2 has no factor a pei’fect power; the equal roots, if any, must, therefore, be integral. 

Unity, which always has claims to be ti’ied, does not succeed ; and from the factors of 9 

and 6, it is ijlain that -{-3 and —3 are the onlj'- other numbers to be tested ; and as no 

higher power of 3 than the square enters 9, we infer that more than two equal roots can 

not have place in the equation. By testing 3, we find this to be one of a pair of equal 

roots. Equal quadratic factors could not possibly enter the equation, since, as the first co¬ 

efficient shows, the polynomial is not a complete square. In the second of the above equa¬ 

tions no fractional roots can enter. Applying, therefore, -j-1 and —1, we discover that 

-pi is twice a root, and —1 three times. The remaining equal roots —2 and —2 are 

found from the resulting quadratic obtained by suppressing from the given equation the 

five factors of the first degree. 
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We can determine, at least by approximation, a positive quantity a such 

that we have a“=A. Take, again, x-=ay, equation (2) will become 

This is the equation to which I shall confine myself exclusively. 

302. The following remarks may be made with regard to this equation : 

1. When m is an odd number, and the equation is ^"^ = 1 or y™ —1=0, il 

evidently has the rooty = l ; and it has no other real root, for every other 

positive value of y will give or y'"<^l, and a negative value will render 

y™ negative. To obtain the equation on which the in — 1 imaginary roots de 

pend, we shall divide y™ — 1 by y — 1, and thus obtain the equation 

ym-. _|_ ^ ^ 1 ^ 0, 

which belongs to the class of equations called reciprocal. 

2. When m is an odd number, and the equation is y™=—1, it has evi 

dently for a root y=—1. By a reasoning analogous to the preceding, 

it may be proved that the other roots are imaginary ; and we obtain the 

equation on which they depend by dividing y™-|-l=0 by y-\-\. But to 

obtain all the roots of the equation y'^=—1, it is vvell to remark that this 

equation can be derived from y"’= —1 by changing y into —y. It will suffice, 

then, to take all the roots of y™ = l with conti’ary signs. 

3. Suppose in is an even number, and let mz=2n, the equation y^" = l, or 

y2n—1=0, has for its roots y = -}-l find y=—1. The other roots are imagin¬ 

ary, and the equation which contains them can be obtained by dividing y^" — ] 

=0 by (y — l)(y-|-l), or y^—1 ; but it will be well to observe that y^" — ] 

= (y" — l)(y"-{-l), and that, consequently, the equation y^" —1=0 can be re¬ 

placed by two others more simple, 

2/n_l = 0, y"-|-l=0. 

4. Finally, when the equation is y^"= — 1, or y"'’-j-l=0, we know that tjie 

even powers of real quantities will always give positive results; we hence 

conclude that all the roots are imaginary. Taking y^=z, the equation reduces 

to the degree n, and becomes simply 2"= — 1. 

303. I now proceed to determine the solutions of the equations y"^ —1 = 0, 

y™4-l=b» some particular cases. 

Let m=2; the equations to be resolved are 

y2—1 = 0, whence y= rt 1; 

y^-\-\=z0, whence y—-:^^/—1. 

Let m=3 ; to resolve the equation y^ —1=0, observe that it has for a root 

y = l; we dhdde it by y — 1, and it becomes 

2/^+2/+whence y= 

Hence, the three roots are 

-li ^/ 

— l-f-V—3 —1— —3 
y = l, y =---, y=---. 

If we take the equation y3-}-l = 0, we shall observe that its roots are the 

same, except as regards sign, with those of y^—1 = 0; consequently, they 

will be 

y=-l, y=-^-, y=—b-. 
2 
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Let 7n = 4 ; the equation —1=0 may be decomposed into two others, 

3/^ —1 = 0, 3/2-j-l = 0 ; and from these equations We derive the four roots 

yi — 1* 

The equation will be resolved differently; by adding 2?/^ to both 

members of the equation, we can write it thus: 

(2/2 + 1)^=23/^ 

we can then decompose it into two others, 

2/"4-l=y'/2, 3/‘2 4.i = _y/.2; 

and, finally, from these we derive the four values of y, 

3/ = lV2dL-|/^, 3/=-lV2iiV^- 

We could have treated the equation 3/^-4“l=0 ^ reciprocal equation. 

We might have observed, also, that it gives y~—^ —I, and that, taking 

successively -{- —I, — —I, we have 

2/—iv-hV — 

We have then only to reduce these values to the form a-j-/?-/ —1 by the 

process in Art. 104. 

By raising the equation 3/"’=]= 1=0 successively to the'10degree, we 

shall find that its resolution depends on that of the preceding cases, or on the 

resolution of reciprocal equations, which reduce it to a degree less than the 5°. 

Let us examine, first, the odd degrees. If we have the equation 3/® —1=0, 

having observed that it has the root 3/=:l, we divide it by 3/ — 1 ; it then be¬ 

comes 

.V''4-2/'+2/'+2/+1 = 0» 
a reciprocal equation, which we shall reduce to the 2° degi^ee. To do this, 

we first write it under the form 

(2/^+^.) + (2/+J)+l=0- 

1 . . 1 
Then take 3/-|--=z, which gives 3/2-f-—=2^—2 ; and, consequently, the 

equation in 3/ will be changed to the following; 

—1=0, whence z = 
— 1 i a/ 5 

1 
These values being known, those of y will be by the relation y-j--=z, for 

y 
this relation gives 

3/=- 
■ zL a/" .2 V 

and Ave have only to substitute instead of z successively each of its tAVO values, 

in order to find the four imaginary values of 3/^ We have then the five values 

3/=l, 

-14- v'5 . \/l 14-v'5 , V 104-2 V5 _ 
y= 4 ±^-a/-1, 

/l0 2 V5 -1-a/5 , \ 
y=-—7—±- »4 

a/-1. 

/ 
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The equation 'if—lz=0 will lead to the equation —2z—1=0, and 
the equation —1 = 0 to the equation z‘^-\-z^ — 32^ — 22-f-l = 0* 

The equations 2/9-j-l = 0 have, except as regards the 
signs, the same roots as if their second terms had been —1. 

Let us examine the even degrees. The equations —1=0, —1 = 0, 
y^° —1=0 do not offer any difficulty, because each of them can be decom 
posed into two others whose roots are known. 

Taking -j-l instead of —1, the analogous equations are 

whence 2/=\/V—L 

whence y=^ V —1» 

^o-|-l = 0, whence y='\J V —1* y 
Bjit we know the values of ^—1, y—1, y—1 ; we have, then, only to 

extract the square roots by the processes in Art. 104. But it will be simpler 
to treat these equations as reciprocal ; for the transformed equations in 2, on 
which they depend, have roots which are real, and are very easy to resolve. 

We add some propositions upon binomial equations, preparatory to giving a 
general method for solving those of all degrees. 

PROPOSITION I. 

304. If a be one of the imaginary roots of the equation x" —1=0, then any 
power of a will be also a root. 

For, since a is one root of the equation .r" —1=0, therefore a" = l, and, con¬ 
sequently, 

c2" = l, a‘^" = l, a^"=:l, &c., also a~"=:l, —a~^" = l, &c., 
the values 

a, a-^, a-^ ., CL -1 „-2 „-3 
u~ 

thus satisfying the conditions of the equation, are roots of it. 
Corollary 1.—It hence appears that the roots of the equation .x" —1=0 may 

be represented under an infinite variety of forms, each term in the following 
series being a root, viz.: 

1, c, o^, a^, .... • • • • 0^"+^ 

in which series, however, there can not be more than n quantities essentially 
different, otherwise the equation would have more than n roots. 

PROPOSITION II. 

305. If a be one of the imaginary roots of the equation x“-|-l=0, then any 
odd power of a will be also a root. 

For, since a is one root of tlie equation .r"=—1, therefore aP=—1 ; and, 
since every odd power, whether positive or negative, of —1 is also —1, 
therefore, > 

, a3"z=—1, — 1, —1, &c., 

also 
a“3"=—1, rt“'®"=—1, a-^n—— 

so that the quantities 
a, . . . ., a~h a~^, . . .., 

are roots oLthe equation. These roots, therefore, assume an infinite variety 
of forms, although tliere can not be more than n essentially different. 
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PROPOSITION III. 

306. To determine the roots of the equation —1=0, when n is the square 

of a prime number jp. 

Put xP=z, then a:?—z=0, and zp —1=0, and let the roots of this last equa¬ 

tion be 1, /3, .... /3p-* ; then, by substitution. 

tp—z= 

'.rP_l =0, 

TP-/3 =0, 
a:P_^2_o, 

x'p—/3'^=0, 

&c. &c. 

Hence the pp values of x, in these p equations, will evidently be all different, 

and will be the roots of the equation xpp—1=0. 

To determine these roots, it will be sufficient to advert to Art. 300, which 

proves that the roots of z’P—/1=0 are equal to the roots of —1 = 0 multi¬ 

plied by y/3; and, in a similar manner, the roots of a:P—/3^=0 are equal to the 

roots of .rP —1=0, multiplied by &c.; therefore, we immediately con- 

’ elude that the roots of 

Z’P — 1 =0 are 1, /3, ./3p~^ 

TP-/? =0 V/?, V/3./3p-^ Vii 

tP—/?2 = 0 /? /?" -V/3^ 

&c. &c. &c. 

the n roots of 

T"—1=0, 

For example, let it be required to find the roots of —1=0. 

The roots of x^—1 = 0 are 

_l_j_ y'—s _i_ V_3 

2 ’ 2 

hence the roots of x'^—1=0 are 

, _i_|_ ./_3 _i_ y'“_3 

2 ’ 2 

V-3 -1+V-3 
V o ’ 2 ^ 

-1-V'=3„-1+/3^ 

2 ^^ 

-1+V-3 

— 1—V—3 

-1+V-3,,-l-V—3 -1-V-3,,—1-V—3 
-2-V-72---2-^-2- 

The foregoing propositions have been devoted chiefly to an examination of 

the properties and relations of these roots, and not to the actual exhibition of 

their values, although, as in the proposition above, one or two examples of the 

solution have been given to illustrate the reasoning. To obtain the imaginary 

roots, however, in their simplest form, that is, in the form a-{-b —1, and 

for all values of the exponent, requires the aid of a theorem, borrowed from 

the science of Trigonometry. 

307. The theorem to which we refer is the well-known formula of De 

Moivre, given in most books on Analytical Trigonometry. 

(cos « dr sin a . -v/ — 1)" = cos na dr sin na . — 1; 

which, if the arc 2^"7r (tt being a semi-circumference, and k any integer) be 

substituted for na, becomes 
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21c t: 2lcTC 
(cos-i sin-. ^J —l)"z= cos 2^7rrt sin ^Ick . a/ —1 : 
^ n n ' 

that is, since 

cos 2A:7rz=l, and sin 2kTc = Q, 

^IcK 2^”7^ - 

(cos sin —1)" = 1 ; 
n n 

so that the expression 

2lcTz 21ctt - 
cos-zh sin-. V — 

n n 

comprehends in it all the n roots of unity, or all the particular values of x, 

w^liich satisfy the equation —1 = 0. 

Although, in this general expression, the value of Ic is quite arbitrary, yet, 

assume it what we will, the expression can never furnish more than n differ¬ 

ent values. These different values will arise from the several substitutions of 

0, 1, 2, 3 .... 

up to the number ——, inclusively, if n is odd, and up to -, if n is even ; and 

for substitutions beyond these limits the preceding results will recur. To 

prove this, let us actually substitute as proposed ; we shall thus have the fol 

lowing series of results, viz.: 

for lc — ^....x— cos 0 zh sin 0 .V —1 = 1 

2tc- 
^ = 1 .... x= cos —zt sin — .V —1 

n n 

Air Atv - 
k=2 .... .T= cos —zt sin — . V—1 

n n 

Gtt Gtt 
^ = 3 .... x-=. cos — zt sin — . V—1 

n n 

n — 1 {n — {n — l)7r- 
k = —. . xz=. COS-zt sin--— . —1. 

n n 

Each of these expressions, except the first, involves two distinct values; so 

that, omitting the value given by Z: = 0, there are n — 1 values, and, consequent¬ 

ly, altogether, there are n values; and that they are all different is plain, be¬ 

cause the arcs 

{n. — l)7r 27r Atc 6tt 
0, —, —, —, 

n n n n 

being all different, and less than tt, have all different cosines. The arcs which 

would arise from continuing the substitutions are 

(w-|-l)7r (w-}-3)7r {n-\-b)n 

’ 71 ’ n 

or, which are the same, 

&c.; 

Jtt- 
(n —1) TT 

Jtt- 
(«-3) TT 

n n 
27V- 

(77 — 5) TV 

n 
-, Ac., 

and the sines and cosines of these are respectively the same as the sines and 

cosines of the arcs 
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{n—l)n- [n—3)7v (n—5)7r 

n n 

which have already occurred.* 

n 
, &c., 

n 
If n is an even number, the final substitution for k must be - instead of 

n — 1 

2 
as above; and, therefore, the final pair of conjugate values for x will be 

X= cos sin TT . -y/ —1 = —1, 

which values of x differ from all the other values, because in them no arc oc¬ 

curs so gi’eat as tt. ^ 

The arcs which would arise from continuing the substitutions beyond 

n 
k—- are 

(n-j-2):r (n-j-4)7r {n-\-6)TT 

n n n 
, &;c. ; 

or, which are the same, 

{n — 2)ir (7^ —4)7r (n —6)7r 
27r —-, 2”—-, 27r—-, ecc., 

n n 71 

and the sines and cosines of these are respectively the same as the sines and 

cosines oi the arcs 

{n — 2)tt {n — 4)7r [n — 6)77 

n 
“, &/C., 

n n 

which have already occurred.* 

It is easy to see that in every pair of conjugate roots, each is the reciprocal 

of the other. In fact, whatever be k^ 

2kn 2k'n‘ - . 2kTT 2k'n 
(cos-4- sin-- .a/ —1) (cos 
' n n ' ^ 71- 

sin 
7h 

.V-1)= 
2k'K 

COS'* 
n 

sin^ 
2kTr 

71 
T, 

which shows that the two factors in the first member are of the form a, -. 
a 

We have proved (Art. 304) that every power of an imaginary root of the 

binomial equation is also a root; but, unless ti- bo a prime number, we could 

not infer that all the roots would ever be produced by involving any one of 

them. Such would not, indeed, be the case. There is always, how^ever, 

one among the imaginary roots of which the involution will furnish all the 

others; it is the first imaginary root, or that due to the substitution A"r=I, in 

the foregoing series of values ; for, by De Moivre’s formula, the powers of this 

produce all the others, thus : 

277 . 277 ' -- 477 477 j- 
(cos —4- sm — .a/ —1)"= cos —4- sin — . v —1 

277 . 277 -- 677 , 077  - 
(cos ■—-4- sin — . v —1)^= cos —4- sin — . y —1 
^ 71 ' 11 ' n ' 71 

277 . 277 - AA ' n — 1 71 — 1 - 
(cos —-4- sm — . y —1)2 _ cQg ---_j_ siQ-7r . y —1. 
' 7i ‘ n ' n 71 

* The szff?is of the sines will, however, be dilferent; but the only effect of this difference 

is evidently to furnish each pair of conjugate roots iri an inverse order. 
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These powers of the first imaginary root, which we may call a, thus fur¬ 

nish one half of the entire number of imaginary roots, and the reciprocals of 

these being the other half, all of them are determined from the first; the 

imaginary roots are, therefore. 
n—1 

a, a^, a?, .... a? 

ill JL 
a’ ‘ ‘ * ilzl' 

When n is even, the last power will be 

277 277 
(cos —-j- — ' V —l)^=cos 77-}- sin tt . ^/ —1; 

n n 

and the imaginary roots are, therefore. 

a, a^, a^, 

111 
1 9? • • • 

• • • d 

1 

0. 

308. By the general formula (Art. 307), we are enabled to determine all the 

roots of the equation v 

a:"-|-l = 0 ; 

for, since 

cos (2^*-|-1)77=—1, and sin (2^-|-1)77 = 0, 

that formula gives 

2^-4-1 2A:-j-l - 
(cos —-—77 rL sin —2—^ • V —1)" = 

n n 

cos {2k-\-1)77sin {2k-\-1)77 . -y/ —1 = — 1; 

hence the n values of x are all comprised in the general expression 

2A--1-1 , . 2^’4-l ,—7 
x=. cos-!—77dr sm-!—77 . y —1; 

n n 

which, by putting for k the values 0, 1, 2, 3, &c., in succession, furnishes the 

following series of separate values, viz. : 

77 77 

for yt=0 .... x=z cos —rt sin — . yf —1 
n n 

377 377 
k~l .... xz= cos — rt sin — . J —1 

n n 

blT 577 
^=2 .... a:= cos —rt sin — . -v/ —1 

n n ' 

n — 1 
k=.—— . . X— cos 77dr sin 77 . -y/ — 1 = —1 ; 

or, when n is even, 

n — 2 { 
= ... 2-= cos (^77—-jd:: sin (77—- . V—!)• 

Now that the foregoing system of n roots are all different is obvious, since 

77 377 577 niT 77 
n 5 » • • • • or TT ■ ^ 

n n n n n 

are all different arcs, of which the greatest does not exceed a semi-circura' 
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ference. If the preceding series be extended, it will be easy to prove, after 

what has been done in Art. 307, that the values formerly obtained will recur. 

As in the former case of the general problem, so here, each root may be 

derived from the first pair of the series; thus, denoting the first root, cos 

^ - 1 ... 
sin - . ^ — 1, by a or -, according as the upper or lower sign is taken, 

^1/ 71/ Qt 

we evidently have, for the preceding series, the following equivalent expres¬ 

sions, viz. : 

a, a®, .... a" ^ 

111 1 > when n is odd, 

a o?' a" S 

and 
t 

a, a^, a^,.^ 

111 1 C when n is even, 

a’ a^’ a®’.) 

For further researches on the theory of binomial equations, the student may 

consult Lagrange’s Traite de la Resolution des Equations Numeriques, Note 

14 ; Legendre’s Theorie des Nombres, Part V. ; the Disquisitiones Arith- 

meticee of Gauss; Barlow’s Theory of Numbers ; and Ivory’s article on Equa 

tions, in the Encyclopaedia Britannica. 

309. AVe have already frequently had occasion to notice multiple values of 

radicals, without fixing the precise number which might exist, except for rad¬ 

icals of the second degree. It is time to introduce the following proposition : 

Every radical has as many values as there are units in its index^ and has 

no more ; in other words^ every quantity has as many roots of a given degree 

as there are units in the index of that degree. 

If the given radical be represented by the general form V-A, this radical 

designates evidently all the quantities, real or imaginary, which, raised to the 

power TO, reproduce A ; consequently they are merely the values of x in the 

equation a.’™=A. But we know, from the general theory of equations, that 

every equation of the degree has m values of the unknown quantity, which 

will each satisfy it; hence the proposition is proved. 

This will serve to explain some paradoxes. Let there be the expression 

^Ja^/—1. By reducing the second radical to the index 4, it becomes 

■y( — 1)^ and the given expression reduces to 9. result which might be 

supposed absurd, because, a being positive, the result represents a real quan¬ 

tity, while the proposed expression appears to be imaginary. 

There is here a confusion of ideas. If in the expression ya-f—1 the 

radical is an arithmetical determination, it is true that this expression is 

imaginary ; but if \/ahe taken in all its generality, and we represent it by a' 

multiplied by the four roots of unity, or 

a', —a', a'y—1, —a'y —1, 

we perceive that some of these values of y a, multiplied by y —1, cause this 

imaginary factor to disappear, and the proposed expression becomes r’eal. 

I shall terminate this article by the explanation of a paradox which presents 

itself in the employment of fractional exponents. Let there be the expres- 
o 2 1 

sion a'. If the fraction | be simplified, the exp.ression a' becomes a^. Th,en, 

in repassing to the radicals, we have ycd= fa. This equality, however, is 
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not wholly true, because the first member has four values, and the second 

but two. ^ 

The difficulty may be presented in a general manner by placing 

‘ mp m 

and in concluding from thence that 

To discover the cause of this error, we must remember that the fractional 

exponent is but a convention, by means of which we express in another way 

that the root of a certain power is to be extracted, and, therefore, this expo¬ 

nent must not be regarded in the light of an ordinary fraction. 

THE DETERMINATION OF THE IMAGINARY ROOTS OF EGUATIONS. 

310. In what relates to the limits of roots at Art. 283 and following, real roots 

uiily were in view. We shall show here how the limits may be obtained 

for the moduli of all roots, whether real or imaginary. Let us consider the 

equation 

+ ... =0.(1) 
in which P, Q... may be real or imaginary. In order that a value of x may 

be a root, it is necessary that, after having,substituted it in the.result, the 

modulus should be zero. 

Call V the modulus of x, and p, q, • • - those of the coefficients P, Q,... Ac¬ 

cording to Art. 239, those of the terms of the equation will be v'^, 

.. ., and that of the part • • • can not surpass the sum 

... Then, if we choose for v a value A such that we have 

^,m—— gym-2—...r=0, or ^0 .... (2) 

we are sure, by virtue of the article just cited, that the modulus of the first 

member of the equation (1) will not be less than the above difference ; and that 

from this point the modulus will not be zero, or, what is the same thing, the 

value substituted in place of x will not be a root of the equation. Every value 

of V above A will render this difference greater; then A is a superior limit of 

the moduli. 

The quantity A will be always easy to determine, because it will be sufficient 

to substitute in the difference (2) in place of v, increasing positive values until 

this difference becomes positive. If the coefficients P, Q . . . are real, the 

moduli p, g,... will be these coefficients themselves, but taken positively; and 

if we designate the greatest of these values by N, we can take at once for the 

superior limit A=N-|-1. 

To have an inferior limit, we make a:=-, determine in the transformed in ■?/ 
y , 

the superior limit of the moduli of the roots, and finally divide unity by this 

limit. 

311. It has already been proved that imaginaiy roots always enter into 

equations in conjugate pairs of the form And this previous 

knowledge of the form which every root must take suggests a method for the 

actual determination of the proper numerical values for a and /? in any proposed 

case. The method is as follows : 

Let An-i.'r''~’-j- .... Aa:-|-N = 0 
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be eT,n equation containing imaginary roots; then, by substituting a-{-/3-y/—i 

for X, we liave 

—!)"-{-An—V—1)" • • A(a-j-/3 "y/—I)-j-N = 0; 

or, by developing the terms by the binomial theorem, and collecting the real 

and imaginary quantities separately, we have the form 

M-f-N V~^ = 0, 

an equation which can not exist except under the conditions 

M = 0, N = 0.(I) 

From these two equations, therefore, in which M, N contain only the quan¬ 

tities «, (3, combined with the given coefficients, all the systems of values of a 

and /? may be determined ; and these, substituted in the expression a-\-l3 ^/ —I, 

will make known all the imjiginary roots of the proposed equation; those that 

are real corresponding to /? = 0. t 

It is obvious from the theory of elimination as developed at page 157, and 

from the method of numerical solution explained in Art. 255, that the labor of 

deducing from this pair of equations the final equation involving only one of the 

unknowns a, /?, and of afterward solving the equation for that unknown, will 

in general be very laborious for equations above the third degree. Lagrange, 

by combining with the principle of this solution the method of the squares of 

the differences explained at Art. 278, avoids both the elimination and subse¬ 

quent solution here spoken of. It is easy to see how this may be brought 

about if we have any independent means of determining one of the unknowns 

/3 : for the adoption of these means would enable us to dispense with the elimi¬ 

nation ; and as the substitution of the value of /3 in both of the equations (1) 

would convert those equations into two simultaneous equations involving but 

one unknown quantity, their first members would necessarily have a common 

factor of the first degree in which, equated to zero, would furnish for a the 

proper value to accompany f3; and thus, instead of solving the final equation 

referred to, we should only have to find the common measure between the 

two polynomials M, N containing the unknown quantity a. 

Now corresponding to every pair of imaginary roots a-j-/? — l,a-l3V-l, 

there necessarily exists, in the equation of the squares of the differences, a 

real negative root —4,5-; so that if all the negative roots of the latter equation 

be found, the quantity —4/3- must n{)pefir among them; finm which the value 

of j3 would be immediately obtained, and thence, by aid of the common meas¬ 

ure as just explained, the corresponding value of a. 

But the equation of the squares of the differences may have a greater num¬ 

ber of negative roots than there are pairs of imaginary roots in the proposed; 

which, however, can not happen except two non-conjugate imaginary roots have 

equal real parts, or except a real root be equal to the real part of an imaginary 

root. Lagrange discusses these peculiarities, and establishes the .exactness 

and generality of the principle in question, as follows : 

When the real parts, a, y, &c., of the imaginaries 

a-}^/3-\/—1, a—/3 —1 

y-f d y-d 

&c. &c. 

are unequal, as well when compared with one another as when compared with 

the real roots a, 6, c, &:c., it is evident that the equation of the squares of the 

Bb 
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differences can not have any other negative roots than those furnished by the 
several pairs of conjugate imaginary roots, and which are 

—il3% _4c52, &c. 

All the other roots, not ai’ising from the differences furnished by the real 

roots, a, h, c, &c., will evidently be imaginary; those between the real and 

imaginary roots supplying the forms 

(a — u-|-/3 -y/ —1)2, (a—a—/? ^/ —1)2 

&c. &c. 

and those between the non-conjugate roots the forms 

SO that in this case every negative root in the auxiliary equation will indicate a 
pair of imaginary roots in the proposed, and will, moreover, supply the value 
of the imaginary part. But if it happen that among the quantities a) 7, &c., 
there be found any equal among themselves, or equal to any of the quantities 
a, b, c, &c., then the auxiliary equation will necessarily have negative roots, 
corresponding to which there can be no imaginary pair in the proposed equa¬ 
tion. 

For let a = a, then the two imaginary roots {a—a-\-[3 ^—1)2, («—a — (3 

V —1)2 will become —and —,52, and, consequently, real and negative ; so 

that if the proposed equation contain only two imaginary roots, a-^(3 — 1 and 
a—/? yj —1, then, in the case of « = a, the equation of the squares of the differ¬ 
ences will contain, besides the real negative root —4(3^, the two —/32, —(3^^ 
both negative and equal. 

We thus see that when the equation of the-squares of the differences has 

three negative roots, of which two are equal to one another, the proposed may 

have either three pairs of imaginary roots, or but a single pair. 

If the proposed contains four imaginary roots, a-f-/?-/—1, a—(3 y/—1, 

y-\-6y/—1, 7 — (5 V—1, then the equation of the squares of the differences 
must contain the two negative roots —4,132 —4(5'2; if a = u, it must also 
contain the two equal negative roots —f3^, —(3^\ and if, moreover, 7 = 6, it 

' must contain, in addition to these, the negative pair —c52, —c52; and lastly, if 
a = 7, the four imaginary roots 

SP' S («-y)-(/3-,i) V'^l p 
{(“ —)') + (/3+<!) V—Ip. po— 

will be converted into the two negative pairs 

-(/3-d)=; -(/J+d)^. 

Hence we may deduce the following conclusions, viz.: 

(1) When all the real negative roots of the equation of the squares of the 

differences are unequal, then the proposed will necessarily have so many pairs 

of imaginary roots. 

If in this case we call any one of these negative roots —lo, we shall have 

18 = -^^ ; and if this value be substituted for [3 in the two equations (1), and the 

operation for the common measure of their first members be carried on till we 
arrive at a remainder of the first degree in «, the proper value of a will be ob- 
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tained by equating this remainder to zero. Thus, each negative root, — 

will furnish two conjugate imaginary roots, a-\-(3 y/ —1, and a—/3 —1. 

(2) If among the negative roots of the equation of the squares of the differences 

equal roots are found, then each unequal root, if any such occur, will, as in 

the preceding case, always furnish a pair of imaginary roots. Each pair of 

equal I'oots may, however, give either two pairs of imaginary roots or no im¬ 

aginary roots, so that two equal roots will give either four imaginary roots or 

none ; three equal roots will give either six imaginary roots or two ; four equal 

roots will give either eight imaginary roots, or four, or none ; and so on. 

Suppose two of the negative roots, ——w?, are equal; then putting, as 

10 
above, (3 = —^, we shall substitute this value of /3 in the two polynomials (1), 

and shall carry on tlie process for the common measure between these poly¬ 

nomials till we arrive at a remainder of the second degree in a ; since the poly¬ 

nomials must have a common divisor of the second degree in a, seeing that the 

equations (1) must have two roots in common, on account of the double value 

ot'fS. 

Equating, then, this quadratic remainder to zero, we shall be furnished with 

two values for a: these may be either both real or both imaginary. In the 

former case call the two values a' and a" ; we shall then have the four imaoin- 

ary roots 

a'-1-/3-/^, a^'a" 

In the second case, the values of a being imaginary, contrary to the condi¬ 

tions by which the fundamental equations (1) are governed, we infer that to 

the equal negative roots —lo, —there can not correspond any imaginary 

roots in the proposed equation. 

If the equation of the squares of the differences have three equal negative 

w 
roots, —w, —wi, —then, putting, as before,/3 = —^, we should operate on 

the polynomials (1), for the common measure, till we reach a remainder of 

the third degree in a; this remainder, equated to zero, will furnish three values 

of a, which will either be ay real, or one real and two imaginary. In the first 

case six imaginary roots will be implied : in the second only two; the imagin¬ 

ary values of a being always rejected, as not coming within the conditions im¬ 

plied in (1). 

It follows from the above, and from what has been established in Art. 259, 

that there are at least as many variations of sign in the equation of the squares 

of differences as there are combinations of two real roots in the proposed 

equation. Also, it must have at least as many permanences of sign as there 

are pairs of conjugate imaginary roots in the proposed equation; or, in other 

words, it can not have a less number of permanences of sign than half the num¬ 

ber of imaginary roots in the proposed equation. 

Hence we may infer, that if the equation of the squares of the differences 

have its terms altei’nately positive and negative, there can be no imaginary 

root in the proposed equation. 

The foregoing principles are theoretically correct; but the practical apjdi- 

cation of them, beyond equations of the third and fourth degrees, is too labo¬ 

rious for them to become available in actual computation. We give the follow¬ 

ing illustration of them from Lagrange. 
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312. To determine tbe imaginary roots of the equation 

— 2.r—5 = 0. 

Computing the equation of the squares of the differences from the general 

formula for the third degree at Art. 279, viz., _|_ 6^22 9^22 4^3 27^2 _ 0, 
i)) whichp=—2 and q——5, we have 

23_-[222_|_36r_}_643 = 0. 

In order to determine the negative roots of this equation, change the alternate 

signs, or put z=—iv, and then change all the signs, converting the equation 

into 

— 643 = 0, 

and seek the positive root, which is found by trial to lie between 5 and 6. 

Adopting Lagrange’s development. Art. 297, this root proves to be 

’"-5 + 6 + 1 1 
5 I 

64-5 &c., 

from which we get the converging fractions (see Continued Fractions) 

31 160 991 

Knowing thus an approximate value of w, we know /?= 
VIV 

In order now to get the equations (1), p. 385, substitute a-{-j3 ^/ —1 for x in 

the proposed equation, and form two equations, one with the real terms of 

the result, the other with the imaginary terms ; we shall thus have the equa¬ 

tions (1) referred to, viz.. 

a3_(3/33+2)a —5=0 

3a2_/32_2 = 0, 

in which (3 is known. 

Seeking now the greatest common measure of the first members of these 

equations, stopping the operation at the remainder of the first degree in a, and 

equating that remainder to zero, we have 

15 
a= —-, 

8fl2 4-4’ 

and thus both a and f3 are determined in approximate numbers. 

313. There is another method of proceeding for the determination of im¬ 

aginary roots, somewhat different from the preceding, being independent of 

the equation of the squares of the differences. It is suggested from the fol¬ 

lowing considerations : 

Since the quadratic, involving a pair of imaginary conjugate roots, is always 

of the form* 

x^ — 2ax -{• [3- = 0, 

every equation into which such roots enter must always be accurately divisible 

l)y a quadratic divisor of this form; that is, the proper values of a and (3 are 

such that the remainder of the first degree in .r, resulting from the division, 

must be zero. This furnishes a condition from which those proper values of 

a and [3 may be determined; the condition, namely, that the remainder spoken 

of, A.-r—B, must be equal to zero, independent of particular values of x; and 

this implies the twofold condition 
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» A = 0, B=:0, ' 

from wliich a and ,5, of which A and B are functions, may be determined. 

As an example, let the equation proposed be 

.T'* + 6x2 4;^ 5—0. 

Dividing the first member by 

x'"- — 2ax-\-aP'-\- /?2, 

we have for quotient 

x:2-j- (4-|-2a)x'-f-6-|-.8a-|-3a2—/32, 

and for the remainder of the first degree in x 

(4_|_12a+12a2+4a3 — 4a,d2_4/32).r— 

(a24-/3'2) (6 4-8a-f 3a2 —/32) + 5, 

which, being equal to zero whatever be the value of x’, furnishes the two equa¬ 

tions 

4 4-12a 4-12a2-f 4 a3 _ 4 c/32—4/32 = 0 

(024-/52) (6 4-8a4-3a2 _/32) 4.5 == 0. 

From the first of these we get 

/52=:(14-a)2 

and this, substituted in the second, gives 

4a4 4-16a34-24a24-16a = 0, 

two roots of which are 0 and —2; the other two are imaginary, and must, 

consequently, be rejected as contrary to the hypothesis as to the form of the 

indeterminate quadratic divisor. 

The two real values of a, substituted in the expression above for /52, give 

for a= 0,/52z=12 

a=—2, /32 = ( —1)2 ... /5=_1 

and, consequently, the component factors of the original quadratic divisor, viz., 

the factors 

X—a—/5 y —1, X—a-\-(3 ^ —1, 

furnish these two pairs of imaginary roots, viz., 

x= V — 1, x=— V —1, 

and 

x=—2— — 1, xz=—24- V—1. 

This method, like that before given, is impracticable beyond very narrow 

limits, because of the high degree to which the final equation in a usually 

rises. And it is further to be observed of both, and, indeed, of all methods 

for determining imaginary roots by aid of the real roots of certain numerical 

equations, that whenever, as is usual, these real roots are obtained only ap¬ 

proximately, our results may, under peculiar circumstances, be erroneous. 

For instance, in the two methods just explained we have two equations, 

f{a) = 0, F(/5) = 0, where.the coefficients of a in the first are functions of /5, 

and the coefficients of /3 in the second functions of a ; hence, whichever of 

these symbols be computed approximately, in order to furnish determinate 

values for the coefficients of the other, these coefficients must vary slightly 

from the true coefficients ; and, consequently, under this slight variation of the 

coefficients, real roots may become converted into imaginaiy, and imaginary 

into real. 
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The terms imaginary and impossible have been thought objectionable when 

applied to the roots of equations, inasmuch as definite algebraic* expressions 

are always possible for these roots. 

A specimen of a strictly impossible equation would be the following: 

2,r —5+ —7 = 0, 

when plus before the sign ^ implies the positive root — 7. No ex¬ 

pression, either real or imaginary, can satisfy the condition or represent a root 

of this irrational equation. 

The terms imaginary and impossible, when used, should be understood 

I'ather as applying to the solutions of the problem from which the equation is 

derived than to the expressions for the roots. The number of solutions which 

the problem admits will ordinarily be expressed by the degree of the equa¬ 

tion, but certain suppositions affecting the values or signs of the coefficients 

may cause some of these solutions to become absurd or impossible, and these 

will be indicated by the form a 4-6 V — 1 for the roots,in which 6 is not zero. 

THEORY OF VANISHING FRACTIONS. 

314. From the principles established in (Art. 253), we readily derive the 

following consequences, viz.: 

Since 

f{x) = {x—ai){x—a2){x — <23) (-^—^4). 

and 

f{x)^{x—a )(x—a2)(x—as) .... 4-(^’——«2)(^—^4) • • • 4“’ 

it follows that 

.m 
■4-; /(x) X—U4 ‘ X—as ' X—«2 ‘ 

In like manner, for any other equation F(.7:) = 0, we have 

F,(x) 1 1 11 

. . . . (1) 

F{a:) X—64"^^:—hs~^ X—X—61 (2) 

Suppose the two equations 

/(^) = 0, F(.r) = 0, 

have a root in common, viz., Ui = 6i, then, dividing (1) by (2), we have 

1 ^ 1 ^ 1 . 1 

f\{x) F(.'r) • • • • ^X—as'^ x—a.^ x—a^ 

Fi(a:) ■ f{x)~ 1,11 ~r~ 

X—64 X—hs'x—b-i'x—61 

Hence, multiplying numerator and denominator of the second member by 

X—fli, and then substituting for x its value x=ai, we have 

/(^i) F(ai) 

Fi(Ui) */(ai)~ 

. /-(^o /(^O . 
" Fi(ai)~F(ai) ’ 

from which we learn, that if any two equations have a common root <2, and 

their derived equations be taken, the ratio of the original polynomials, when a 

is put for X, will be equal to the ratio of the derived polynomials when a is put 

for X. 

This property furnishes us with a ready method of determining the value 
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of a fraction! such as when both numerator and denominator vanish for 
i (x)' 

a particLilai’ value of x, as, for instance, for x=a. For we shall merely have 

to replace the polynomials in numerator and denominator by their derived 

polynomials, and then make the substitution of a for x. If, however, the 

terms of the new fraction should also vanish for this value of x^ we must treat 
\ 

it as we did the original, and so on, till we arrive at a fraction of which the 

terms do not vanish for the proposed value of x. The following examples wil’ 

sufficiently illustrate this method : 

(1) Required the value of ^ 

x^— 

X—a 

when x—a. 

fi{a) 2a 
Here , ;=—-=2g, the required value 

bi(a) 1 ^ 

(2) Required the value of 

— . i.i I I . . . ___ ^ 

when .T=l. 

(1 -xf 

fi{x) n(w-j-l)-'^^" — n{n-\-\)x°^~'^ 

—2(1—.r) 

- 0 
This still becomes - for a:=l. 

f^{x) — n{n -j-1) (« — 1 )x^~^ 

F2(.^’) 

the value sought. 

(3) Required the value of 

when .T=l. 

(4) Required the value of 

fiQ.) «(«4-l) 

'■ F,(l)- 2 ] 

1 —X^ 

l—x' 

/i(l) —n 

Fi(l)--1- 

h{a— V ax) 

\n. 

a—X 

for x—a. 

We may here put x=y^ and thus change the fraction into 

h{a—a-y) 

a—y^ 

— ■ the value required. 
Fi(2/) Sy 

* This is the expression for the sum of w temis of the series 

14-2.'C+3;c2-f 4x'^4-, &c. 
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(5) Required the value of 
m m 

f{y) _ (g+.-r)"— 

'^\y)~ ^—y 
when x=y. 

Put a-\-y=z^, then the fraction is changed into 

X—z'’-|-a 
TTl 

fx{z) —m2™~^ m 2™ m {ci-\-yy^ 

Fi(2) —?^2"“^ n ' 2" 71 ' Ci-\-y ’ 

and, therefore, the value, when x=y, is 
ra 

711 

71 * a-\-x 

ELIMINATION. 

RESOLUTION OF EGUATIONS CONTAINING TWO OR MORE UNKNOWN 
aUANTITIES OF ANY DEGREE WHATEVER. 

315. We have already indicated, at p. 157, the possibility of eliminating one 

of two unknown quantities from two equations by the method of the common 

divisor. The general theory of equations which has since been unfolded will 

alford the means of giving a more full development to this subject. 

The two given equations may be thus expressed : 

F{x, y)=±0,f{x, 7j) = 0.(1) 

They are said to be compatible if they have common values of x and y. This 

is the case with two equations derived from the same problem, the conditions 

of which, for the determination of the required quantities, are expressed by 

the two given equations. 

Suppose now that one of the common values of y were known, and substi¬ 

tuted for y in the two equations (1), the first members of both would become 

furifctions of .r, and known quantities ; the common value of .r, coiTesponding to 

this value of y, must have the property of every root of an equation pointed 

out at Prop. II. of Art. 238 ; that is to say, if a denote this value of x, each 

of the equations (1) must be divisible by {x — a); in other words, they must 

have a common divisor containing x. If, therefore, without knowing and sub¬ 

stituting the value of y, we proceed with the two given equations (1), accord¬ 

ing to the method for finding the greatest common divisor, until we arrive at a 

divisor of the first degree with respect to x, and to a remainder independent 

of X, or containing only y, as this remainder would have been zero if the value 

of y had occupied its place during the process, the value of y ought to be such 

as to reduce this remainder to zero. The values of y which will do this are 

found by putting this last remainder equal to zero, and thus forming what is 

called the final equation in y only. The values of y which satisfy the final 

equation are the only compatible values of this unknown in the two given equa¬ 

tions (1). The corresponding values of x are found by substituting these 

values of y successively in the last divisor, which will ordinarily be of the first 
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degree with respect to x, and setting this equal to zero ; each value of y gives, 

by means of this divisor, the corresponding value of.r, which, substituted with 

' it in the given- equations, will satisfy them. Should this divisor reduce to zero 

by the substitution of the value of ?y, we must go back to the previous one of 

the second degi’ee, which, put equal to zero, will furnish two values of x for 

each of y ; if this reduce to 0, we must go to that of the 3° degree, and so on. 

316. This conclusion may be arrived at in another manner. Denoting by 

A = 0, for simplicity, the first of the two given equations F(.r, 7/)r=0, and by 

B = 0 the second /(.t, ?/) = 0, by Q the quotient of A by B, and by R the re¬ 

mainder, we have 

A=BQ-|-R.(2) 

It follows from this equality that all the values of the unknown quantities x 

and y, which give A=0 and B = 0, must also give R=0, since the quotient 

Q can not become infinite for finite values of .r and y, the given equations be¬ 

ing supposed to be entire functions, or capable of being rendered such with 

respect to x and y. (See Art. 275, Cor. 2.) 

For the same reason, all the values which will give B='0 and R = 0, will 

also give A = 0. The system of equations A = 0, B = 0 may, therefore, be 

replaced by the more simple system B = 0, R=0. 

If now B be divided by R, and a new remainder, R', be reached, it may be 

shown in a similar manner that the system B = 0, R = 0 can be replaced by 

the system R = 0, R' = 0, R' being of a lower degree with respect to x than 

R, and so on, till we arrive at a remainder independent of x. Let R" be this 

remainder. Then the original equations are replaced by the system R' = 0, 

R" = 0, in which R"z=0 is the final equation in y only, and R' generally of 

the 1° degree with respect to x. 

317. The same conclusion could not have been arrived at had y been sup¬ 

posed to enter into any of the denominators in the above process. Suppose, 

for instance, that Q in equation (2) contained denominators functions of y, 

then Q might possibly become infinite by the values of y reducing these de¬ 

nominators to zero, and BQ thus might be finite (see Art. 156, 3°), though B 

were zero. 

318. If, in order to prevent the occurrence of y in the denominator of the 

quotient when affecting the division of A by B, it had been necessary to mul¬ 

tiply the polynomial A by some function of y, foreign roots might thus be in¬ 

troduced, not belonging to the proposed equation. For, call c this function, 

and represent by Q still the quotient obtained after this preparation, and by R 

the remainder, we shall have 

cA=:BQ-}-R. 

This equality proves that the solutions of the equations B = 0, R = 0 are the 

same as those of the equations cA = 0, B = 0. But this last system divides 

itself into two others, A = 0, B = 0, and c=0, B=0, consequently the equa¬ 

tions B = 0, R = 0 will admit all the solutions of the proposed equations ; but 
I 

they will admit, also, all those of the equations c = 0, B = 0, which can not be¬ 

long to the equation A = 0. The same may be shown for any foreign factor 

necessary to be introduced to effect any subsequent division. 

On the oth6r hand, Lictors are sometimes suppressed for convenience in the 

process for finding the common divisor. If these factors were such as M^ould 

reduce to zero on attributing to y its proper values, the process ought to ter- 
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minate, since the whole remainder becomes zero with one of its factors, and 

the preceding divisor would be a common measure of the two polynomials; 

and yet these values of y which produce this common measure would not 

have been presented by the final equation arrived at had the factor in question 

been suppressed without notice. 

From the foregoing considerations wo see that, to obtain the values of y 

which belong to the proposed equations, we must equate to zero the i;emain- 

der which is independent of x, as also each of the factors in y which have 

been suppressed in the course of the operation, and resolve each equation 

separately ; secondly, that among the values thus obtained there may be some 

which, on trial in the proposed equations, prove extraneous, and which must, 

therefore, be rejected. 

319. Simplifications may sometimes be employed, the nature of which is 

explained conveniently by the aid of symbols, as follows : Let the polynomials 

A and B, the first members of the given equations, be put under the form 

A=dcVd"uu'u", B = dd'd"vv'v", 

in which d represents a common divisor of A and B, containing x only ; d' 

another, containing y only ; and d" a third, containing both x and y. The 

other factors, ?/, w', u". v, v', v", have a similar meaning, except that they are 

not common to the two polynomials A and B. The proposed equations may 

be satisfied by placing d = 0 ; this equation contains only x, and, when re¬ 

solved, furnishes a limited number of values of this unknown quantity, to 

which may be joined any value whatever of y, and the given equations A = 0 

and B = 0 will be satisfied. Again, d' = 0 will satisfy them, which gives simi¬ 

larly limited values for y, unlimited for x. Finally, suppose d" = 0 ; as d" 

contains both x and y, an arbitrary value may be given to one of the unknown 

quantities, and this equation will make known a corresponding ona for the 

other. 

The other modes of satisfying the given equations consist in equating to 

zero simultaneously one of the factors u, u\ u" of the first, and one v, v\or 

v", of the other. But ?? and u can not be simultaneously equal to zero, since 

they each contain only x, and are supposed to have no common divisor, d having 

been understood to comprise all the common factors depending on x alone. 

For a similar reason, u' and v' functions of y alone can not at the same time be 

equal to zero. But u" and r", being put equal to zero, are to be proceeded 

with by the method of the common divisor, as already explained, and will fur¬ 

nish a limited number of values for y, and corresponding values limited also 

for X. , 

320. Should the remainder, in seeking for a common divisor, not contain y, 

but only known quantities, it could not be put equal to zero. In this case the 

given equations would be incompatible. 

EXAMPLES. 

(1) Let the equations be 

(_ 2.f2 ^ 2)y3 (.r‘ — 2.r‘^—2x^ -j- 2.r -f 1) y 2 -f (.i-s — 2x^ -f .r )y = 0, 

(—.T-f- l)y'^+ (—x^-\-x)y'^-\- {x^—x'^)if-\- (.r-^—x'^)if = Q. 

There are numerous simplifications of these, for they can be decomposed into 

factors like the following : 

y(.r—l){.r-|-y)X(.T+l)(.'r2 —2y —1)=:0, 

y(.r—l)(2:-l-y) Xy(.i’"—y")=^0. 
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Equating to zero first the common factors, each in its turn, we obtain 

^ y indet., 
\ x=—y; 

next equating to zero the other factors, we have four systems of equations, viz., 

y=o, 
X indet., 

y indet, 

First svstein < ^ ? 

y—^ 

whence 

Second system s ^2 
.2y-l = 0 

yz=Q 
^ X— —1. 

whence 

Third system 
-7y2 — 0 

a- -fi =0 
whence y= 1 52/=—1 

X: — 1. 
r '}*2 q fl,     n 

Fourth system ) 
} 2-2 —2y —1=0 

whence $^ = ^+■^2 _ <y=l+V2 

\ a:=i(l+ V2) ) .T=±(l— -/S) 

In the first three systems, all the solutions, except x——1, y = —1, have 

already been found; in the fourth, those in which we have x-=—y are also 

already known; hence, in reality, we have only determined three new solu¬ 

tions, viz., 

cy=—1 cy = l+V2 cy = l—V2 

( .r=—1, I xz=l-\--\/2, ^ a:=l—^2. 

(2) To resolve the two equations 

2-3—3y2:2_j_(3y2 — 3y-|-l)a:—y^-^-y^ — 22/ = 0, 

x^^—2yx -j-2/2—2/=0. 

These equations can not be decomposed into factors; hence we pass imme¬ 

diately to successive divisions. This remark will apply also to equations 3 and 4. 

First Division. 

x^—3yx2-j- (32/2——■2/3_|_7/2—2y 

-j-.T3 — 2y—x^{ —y^-[-y)x 

x^—2yx-\-y^—y 

x—y 

— 2/^'"+(2y"+i)-r—y"+2/"—22/ 

— yx‘^-\-2y‘^x—2/^-f- 2/2 

.T —2y 

Second Division. 

.t2—2yx -[-2/^—y 

-|-.2’2—2yx 

x—2y 

X 

2/"—2/* 

Hence, the final equations are x—2y = 0, 2/2—2/ = 0. We deduce from 

these 

y = 0 

.r=0 

2/=l 

x=.2 

and as we have neither introduced nor suppressed any factor, these two solu¬ 

tions are those of the proposed equations themselves. 

(3) To resolve the two- equations, 

(2/ — I).r2_|-2a7—52/4-3 = 0, 

yx'^-^-Qx—10y = 0. 

First Division. 

yx^-\-^x—lO-y t {y-l) -by +3 

(.V — 1 )’/■’;’+22/*—oy'‘+by 
4- (2/ — 1 )yx’^—(— 9// 4- 9 ).r—10/y2 4-1 Oy 

(_72/4-9);r4- 5y^— 7y. 

y- 
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t 

As we have multiplied by y, it is necessary to resolve the equations y=0, 

—10y = 0, which give .r=0, y = 0, and to examine whether these 

values make the dividend equal to zero. As this is not the case, it follows that 

they form a foreign solution, which it will be necessary to suppress. 

Second Division. 

' -f- 1 1 (——'^y 

(—— 63y-j-81).r-j-70y2—90^ (—^y^-j-'^y^ — 63y-|-81) 

(—'i'y “h ^ +vypx 
(_ 5^3 7^^1_ 6 3y + 81 ).r -f 7 0?y 2 _ 9 Oy 

(_ 52/3-1-7?/2 _ 63^/+81)( —7y+9).r—490?/3_|_ 1260/_ 81 Oy 
(_ 5/ ^ 72/2 _ 63^ 81) (_ 72/ 9),^ _ 25y^ + 70y^ — 364y^ + 846/_ 5 67y 

25y^— 70y^—l 26/ ■i-414y^—243y. 

The equations which it is necessary to resolve are 

(-7y+9).r+5/-7y=0, 

25/ —70/—126/4-414/—2432/ = 0. 

The second gives the results, which may be readily verified, 

y=0, y=l, y=3, y— 
—343 VlO 

5 ■ 

By substituting these values in the first of the given equations, we obtain for 

X the corresponding values .r = 0, .r = l, x = 2, x=—54 -x/lO. 

In the second division we have been compelled to multiply by —^y-^-d, but 

no foreign solution has been introduced. 

We have, then, only to suppress, in the five solutions above, that which has 

been introduced by the first division. There remain, then, for the given equa¬ 

tions the four following solutions : 

— 343410 r —3 — 3410 
.v=—4- )y=-^5— 

x=—5—410, (2’=—54410. 

(4) Let the equations be 

x"+iSy-13)x+if-7y+V2=0, 

x'‘-(iy+ \)x+y^+5y=0. 

?/=l 5 2/=3 
.r=:l, ^2- = 2, 

First Division. 

224(82/—1344/ —7y412 .r2_(42y41).r4/45y 

4-'?^^—(4y4 ^)^-\-iP-{-^y i 
(’122/ —12).r —12y412 

This remainder can be decomposed into the factors 12(y —l)(a:—1); the 

calculations will be simplified, and we shall have these two systems of equa¬ 

tions : 

y —1=0 ( X —1 = 0 

22—(42/41).r4/45?y=0, ( a:2 —(42/41).r4/45y=0. 

Each of these can be at once resolved, and we find 

y = l ^ y = i ^ y=o 

x=3, } .t=2, i x=l, 

(5) x^-\-2yx'^-\-2y{y—2).r4y^'—4 = 0. 

y=—1 

.T = l. 

y=3 

x——5. 
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—3ijx'^-\-3x'^-\-3y'^x—6yx—x—y^-\-3y^-\-y—3=0, . 

x^+3yx^—3.r2 —^y^—7/ -f- 3 = 0. 

(T?- 4- f ^ 2/=i S y='^^S y—^ T irst system < ^ 
I x=0, ( x=2, i x=—2. 

Alls. Second system 
y=2 

Third system 

y=0 ^y = 0 ^.y=2 
X=l, \ X=i —1, ^2’ = 1, } X= —1. 

y=3 ^y=—l 
x=0, ( x=0. 

(7) r’+T/.r^—(7/2-|-i).r4-7/—7/3=0, 

x^~yx^—{y^-{-6y-{-9)x-{- 7/3+ 6/+97/ = 0. 

The first division gives the remainder 

7/2-2 + (3y+4 ).r—(7/3 + 37/2 + 4^). 

To be able to perform the second division, we multiply the dividend by y, 

in the same way we prepare the first remainder to be divided. We thus ar¬ 

rive at a remainder of the first degree in x, which can be put under the form 

32(y2+3y+2)(2--y). 

Dividing, then, the remainder of the second degree by x—y, we obtain the 

quotient 

2/^+2/"+3y + 4 = 0, 

and there is no remainder. 

From these calculations we conclude that the first members of the proposed 

equations are divisible by x—y, so that they can be verified by all the solutions 

of the indeterminate equation x—y=0. The other solutions are furnished 

by the system of two equations, 

2/"+3i/+2=0, 7/2+y2_|_3^_|_4^0; 

hence we obtain tl e solutions 

7/=—1,2= + 2; 7/=—2, 2-= + 1. 

METHOD OF LABATIE. 

321. Having thus stated the principles on which the ordinary method of 

elimination depends, we shall now proceed to show how this method has 

lately been perfected by Labatie and Sarrus. By the aid of the theory which 

they have introduced, we shall be able to perform the required eliminations 

without introducing any foreign solutions. 

Suppose that A and B represent the quotients which we obtain by dividing 

the first members of the given equations by all of their factors which depend 

only on y. 

' Let c be the factor by which it is necessary to multiply A, in order that we 

may be able to divide it by B ; represent by q the quotient that we obtain in 

this division, and by Rr the remainder, r designating those factors of'this re¬ 

mainder that are not dependent on x. Let Ci be the factor by which we 

must multiply B to render it divisible by R ; represent by qi the quotient, and 

by Riri the quotient that we obtain in this second division, Vi designating the 

product of those factors of this remainder which do not depend on x, and so 

on. Finally, suppose, for the sake of simplicity, that at the fourth division 

we obtain a remainder independent of x^ and designate this remainder by 

We have the equalities 
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(1) 

c A =B -|-R r 

CjB =R^i-|-Ri7'i 

CoR Ri<^2 ~{~ ^2^3 

C3R1 =R3^3~|~^3 

Let d be the greatest common divisor of c and r, di the greatest common 

CCi 7 1 f- ^^1^3 P CC1C.2C3 

divisor of —r and ri, d^ that of -yy- and n, d^ that of -yy-r and r^.' We shall 
ct ctcli ClciyCi^ 

proceed to prove that we can obtain all the solutions of the system A = 0, 

BzizO, without any foreign solution, by resolving the following systems : 

ro ( rs 

^3 i 5 .(2) 
B=0, CR = 0, CRi=0, (R2=0 

To establish this proposition, we shall first pi’ove that the solutions of the 

systems (2) all agree with those of the system A=:0, B = 0; we shall after¬ 

ward show that the solutions of the system A = 0, B = 0, are all comprised in 

those of the systems (2). 

[a\ Dividing by d the two members of the first equation of system (1), it 

becomes 

r ^*1 

car 
^a=2B+^r • (3) 

^ is entire, for c and r, by hypothesis, are divisible by d ; hence, ^B is divisible 

by d ; but B, by hypothesis, is prime with respect to d ; therefore, d divides q. 

Equation (3) shows that the values of x and y, which satisfy the equations 

r c c r 
B = 0, ^ = 0? destroy also ^A; but ^ and ^ are prime with respect to each 

other. Consequently, 1°, all the solutions of the system B =0, ^ = 0, agree with 

those of the-system A = 0, B=0. 

[6] To obtain a relation between A, R, and we multiply equation (3) by 

Cl, and in the resulting equations place, instead of CiB, its value as found in the 

second member of the second equation of system (1); we thus obtain 

C£i 

d 

<'■»■+wAp , q p 
■a 

c-r. . 
The quantity -— is entire, because r and q are divisible by d; more- 

CCi 
over, this quantity is divisible by di; for di divides and ri, and it is prime 

with respect to R. Dividing the two members of the above equation by di, 

^ ^1^4- • 7 7 7^ 
and taking, to abridge, ^=M, ——=Mi, it becomes 

J|a=m.r+m,r.^^ ..(4) 

To obtain a relation between B, R, and y, we first multiply the second 
cLi 

C . , . • CC] C(7i C CCi 
equation of system (1) by which gives -^B = -^R-|-^Riri. Since -g and 
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cqi^ 
Ti are, by hypothesis, divisible by di, it follows that di divides also ? but 

di is prime with respect to R ; hence, d{ divides Dividing all the terms of 

c cq\ 
the equation by di, and taking, to abridge, ^=N, ^^=Ni, it becomes 

||b=n.r+nr.^ ..(5) 

Equations (4) and (5) prove that all the values of .r and y, which reduce the 

Ti CC] CCi CCi Ti 
polynomials R and to zero, destroy also ; but and 

are prime with respect to each other; consequently^ 2°, all the solutions of 
2* j 

the system R=0, ^=:Q, ^^rec with those of the given system, A = 0, Br=0. 

^2 

1. 
[c] We obtain a relation between A, Ri, and -j, by multiplying equation (4) 

(1.2 

by C2, and placing, instead of CaR, its value found in the second member of the 

third equation of system (1); we thus find 

ccic., / r,\ 
’ dd -|-MiR^Tg. 

By hypothesis, divides the first member of this equation, it also divides ra; 

re- it ought, then, to divide Ri^Mi^a+Mca^^; but Ri and d.. are prime with 

spect to each other; cZa then divides the term by which R^ in the above equa¬ 

tion is multiplied. Designating the quotient by Ms the equation becomes 

CC1C2 To 

(fi) 

Multiplying equation (5) by Co, and then placing, instead of c^R, its value 

found in the second member of the third equation of system (1), it becomes 

CC1C2 

dd 
■B=R, (n. ?.,++ N.R#,. 

We can demonstrate as before that the multiplier of Ri is divisible by d.j, 

and, representing the quotient by Ns, we find 

7*2 
^B=N,R.+N,R,y 
ctd\ci<2, (7) 

Equations (6) and (7) show that all the values of x and y, which reduce the 

r2 
polynomials Ri and -j to zero, desti’oy also the first members of these two 

d-i 

CC1C2 ^2 
equations; but ffff prime with respect to each other; conse¬ 

quently, 3°, all the solutions of the system Ri = 0, 'y-=0, suit those of the pro- 
ct.z 

posed systeyii, A = 0, B=0. 

[cZ] The equation which gives a relation between A, Re, and -j-, can be ob¬ 

tained by multiplying equation (6) by C3, and placing, instead of C3R1, its value 

as given in the second member of the fourth equation of system (1) ; we thus 

find 
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= +M,7-3. 

Dividing the two members of this equation by and designating by M3 the quo- 

tient obtained by dividing the entire polynomial M2^3-|-C3Mi-t- oy there 

results 

CC]C.2C3 Ts 

(8) 

L3 
( ( 

To obtain a relation between B, Ro? ^^nd y, we multiply equation (7) by C3, 
U3 

and put in the place of CsR^ the second member of the fourth equation of the 

system (1), which gives 

cCiCoCn ( r.\ 
^^B=RqN.?3+C3N,^) +N37-3. 

Dividing both members by 6^3, and designating by N3 the quotient obtained 

r^i 
by dividing the entire polynomial N35'3-|-C3Niy by (^3, it becomes 

y «2 
cCiC.iCt r3 
2^B=N3R3+N3^.(9) 

Equations (8) and (9)*'show that all the values of x and 3/, which reduce the 

7*3 
polynomials Ro and -y to zero, destroy also the first members of those equa- 

ctz 

CCiCiC:^ 
tions ; but , , , , and -7- are prime with respect to each other; consequent- 

ddid^cl^ dz 

ly, 4°, all the solutions of the system R^rziO, concur with those of the 

proposed system^ A=0, B = 0. 
(11.) It remains still to be proved that any system whatsoever of values 

which satisfy the equations A = 0, B = 0, is a of the systems of values 

which furnish equations (2). 

To form the equations which demonstrate this second part of the theorem, 

c q 
let us first place in equation (3) N instead of and M instead of ; it will 

become, transposing the term MB, 

NA —MB = R^.(10) 

Eliminate now R between equations (4) and (5). We can effect this elim¬ 

ination by subtracting one of these equations from the other, after we have 

multiplied the first by Ni, the second by Mi, remembering the values previ 

ously given to Ni and Mi; but the calculations will be simpler if we multiply 

equation (4) by B and equation (5) by A. Subtracting the two resulting equa¬ 

tions the one from the other, we find 

(MiB-NiA)R-f (MB_NA)Riy = 0. 
di 

T 
Placing instead of MB—NA its value previously determined, —R^, and 

suppressing the factor Ri, this equation becomes 
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Finally, we eliminate Ri between equations (6) and (7). To do this, muh 

tiply equation (6) by B and equation (7) by A ; then subtract the one of the 

resulting equations from the other, we thus obtain 

(M,B—N2A)Ri + (MiB —NiA)R,y = 0. 
(i-l 

Placing in this equation, instead of MiB—NiA, its value, determined in (11), 

rri * ' 1 T-k • 
Rj^^, and suppressing the factor Ri, it becomes 

N2A-M2B=R2 
rrira 

^ddxdi 

In the same manner we obtain the equation 

rrirors 

(12) 

N.,A—M.B = 

:0, 

^ ddididz 

Equation 13 shows that eveiy system of values of x and y which gives 

A=:0, B=0, ought also to satisfy the equation 
{ 

L !1 
d’di'd^d^ 

an equation which requires that one of its factors equal zero, whence it fol¬ 

lows that the equations 

r Ti T-g 

3=°’ 3;=°' 3-3=°’ 

give all the correct values of y. 

This being established, let x=a, y=(3 be a system of correct values of the 

equations A=0, B=0. 

r 
If the value 2/=/? is a root of the equation ^=0, it is clear that the system 

r 
a:=a, y=(3 will be a solution of the system B = 0, ^ = 0* ^ 

r 
If the value y=l3 does not verify the equation ^=0’ and if it is a root of 

ri I 
the equation we perceive, by equation (10), that the system x=.a, 

y=l3 will give R = 0 ; consequently, it will be a solution of the system R=0, 

^1 

di 

^ 7* Ti 
If the value 2/=/3 verifies neither the equation y=0 nor the equation ^=0, 

Ct Co I 

7*2 
and is a root of the equation ^ = 0, we see, by equation (11), that the system 

x=a, y=0 will give Ri = 0 ; consequently, it will be a solution of the system 

Ri = 0, 4=0. 
ct^ ^ ' 

n 
If the value 2/=/5 does not verify any one of the equations 

ra . Tg 
y=0, and is a root of the equation y-=0, we see by equation (12) that the 

sj’^stem x=a, y=(3, will give R2=0; consequently, it will be a solution of the 

system R2=0, -t=0. 

C c 
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Hence, all the systems of values which satisfy the equations A=0, B = 0, 

form part of the values which furnish equations (2). 

r ri r<2 r.-. 
The equation gives all the correct values of y, is 

called the final equation in y. 

REMARKS ON THE PRECEDING METHOD. 

It may chance that in one of the equations of system (2), for example, y 
d\ 

=0, R = 0, a value of y, derived from the first equation, destroys some of the 

coefficients of the powers of x in the second equation, after the highest power 

of X; in this case we only obtain a number of values of x inferior to the de¬ 

gree of the equation R = 0; and if the substitution of the value of y should 

destroy all the multipliers of the powers of x in R, the equation R=0 would 

not give any value of x. In fact, it can be proved, by a method similar to that 

which we have employed with reference to the general equation of the second 

degree (Art. 191), that if in an equation of the form 

-f- ... =0, we suppose that the quantities which enter into the coefficients 

S, H, K, &:c., are of such a nature that we have S = 0, H=0, &c., the equation 

has infinite roots equal in number to the consecutive coefficients which are re¬ 

duced to zero. But it should be remarked that the theory by which we have 

proved that the solutions of systems (2) are the same with those of the system 

A==0, B = 0, only applies to solutions expressed by finite values of .r and y. 

To prove that the solutions of systems (2), in which the value of x is in¬ 

finity, also suit the proposed equations A = 0, B=0, suppose that y=l3, veri- 
^1 

fying the equation -y = 0, causes one or more of the multipliers of the higher 
d\ 

powers of a: in R to vanish. If, in the two members of the equality (4) M^e 

make y=t^, the terra MRjy will be reduced to zero, and the degree of the 
d\ 

terra MiR will be lowered with respect to x one or more units. 

Again, we can not suppose that the terms of MjR, which are reduced to 

Ti 
zero, have been destroyed, until we have made y=i^ in the terms of MR^y 

di 

because the degrees of A, B, R, Rj, &c., are decreasing, and we see without 

difficulty, from the relations which exist between M, M], Mj, &c., that the 

degrees of these quantities with respect to x go on increasing. It will be 

•necessary, then, in order that y may have the value /3, that the degree of yyA 
ctcl\ 

with respect to x be lowered as many units as the degree of R is lowered. 

We can prove, in the same manner, that the value y=i^ ought also to cause 

one or more of the coefficients of the higher powers of .r in B to vanish. The 

equations A = 0, B = 0 will give then for 2/=/3 one or more infinite values of .r. 

As to the reciprocal proposition, that the solutions of the equations A=:0, 

B = 0, in which x is infinite, ought to be found among the solutions of systems 

(2), it is not the fact, as will be seen in the second example following. 

EXAMPLE I. 

(y —l).r“+^{»/+l)x'''+(3/+j/—2).r+2)/ = 0, 

,{y-\)x^+y(y^\)x + 3/-l=C. 
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The first division gives at once the remainder {y — taking this re¬ 

mainder for a divisor, we obtain, without any preparation, the remainder y*—1, 

We shall obtain then all the solutions of the proposed system by resolving the 

equations 

2/2 —1=0, {y — \)x-\-2y—Q. 

The first equation gives y=^l. For the value y=—1 we find .'r=—1, 

and this system will satisfy the proposed equations. For the value y=.-\-\ 

we find a:=ao. This system, also, will satisfy the proposed equations; for 

dividing each of these equations by the highest power of x, and taking i=Qo, 

the two equations will be reduced to y —1=0. 

EXAMPLE II. 

(y — 1 )x2-I-y:r-f y2 _2^ = 0, 

{y — \)x -fy = 0. 
V 

The division gives the remainder y^ — 2y=0 ; the solutions, therefore, of the 

proposed equations depend on the system 

y2_o^ = 0, (y_l).r-f y = 0. ' 

These equations give the two systems 

y = 0, a: = 0; y = 2, xz=—2. 

But the proposed equations possess, besides, another solution, y=l, a:=Qo, 

since the value y=l causes the multiplier of the highest power of x in each 

of these equations to vanish. 

322. The following method of elimination avoids the introduction of foreign 

roots, and enables us to determine the degree of the final equation : 

Let equation A or a:'"-|-P.r'"~^-|-Q.r™~2.V be supposed equal to 

{x—. . . . C ; 

and equation B or • • • +T'2'-j-V' to 

{x — Ac.) . . . . D; 

also, let equation A be multiplied by A'2’"~2_|_g'^n-3^ Ac., and equation 

B be multiplied by it is evident that the products 

must be equal; therefore, 

{x’^ -j- P-j- Q.r'"~2^ Ac.) A'x'^~^ -|“ , &c.) = (2*" -|- P 'x'^~^ 

&c.)(a:"'-i-f A.r’"-2-f-Ba:"’-3-}-,, Ac.).E. 

Performing the multiplications and making equal to each other, the coefifi- 

cients of the same powers of x (Art. 209), 7n-\-n — 1 equations are obtained 

between the indeterminate quantities A, B, C, ... . A', B', C',. Now, 

the number of indeterminate quantities in equation C is m — 1, and in equation 

L, n — 1 ; therefore, the number in equation E is m-\-n—2. Of the m-\-n—T 

equations m-\-n — 2 suffice to determine A, B, C,.. .A', B', C', .. ..; and one 

equation remains between P, Q, R .... P', Q', R'...., which it is necessaiy 

to satisfy in such a manner that the equations C, D may have a common di¬ 

visor, X — a ; this equation of condition is the final equation required. 

Since none of the indeterminate quantities A, B, C ... A', B', C'.... is 

multiplied by itself, the equations by means of which these quantities are de¬ 

termined are of the first degree. 

The final equation being resolved, and the values of y successively substituted 

in A, B, C, . ... A', B', C',. .., the results are obtained from the division of the 

polynomials C, D by the common divisor x—a. 
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If the equations A, B are incomplete, the two products E can not be com¬ 

plete polynomials of the degree m-\-n — 1; but the terms which are deficient 

in the one are found in the other. For, taking the least favorable case, viz., 

^rn_|_p_0; 2.n_|_p/_Q. 

the identity which results from the equality of the two products is 

% 

EXAMPLE. 

Let P a-’-j-Q =0 i 

.T2_pP'a:4-Q' = 0. 

Denoting by a: — a the factor which is to be rendered common to these equa¬ 

tions by the suitable determination of y, the first equation may be considered 

the product of x—a by a factor, r-^-A, of the first degree ; and the second the 

product of X—a by a factor, a:-|-A', also of the first degi'ee. 

a;2_|_p'a:_j_Q' = (.-c—a)(a:-|-A'), 

and (2*2-|-Pa:-f-Q)(a:-{-A') = (a:2-{-P'a:-|-Q')(a:-}-A), 

or a:-4-Q A'=P ^ a:-|-AQ' 

+ A' + PA' + A -fAP' 

Making the coefficients of the same powers of x equal to ea'ch other, 

P + A'=P'-1-A or A—A' = P—P'.(1) 

Q+PA' = Q' + AP'or AP'-PA' = Q —Q'.(2) 

QA'=AQ' or AQ' — QA' = 0.(3) 

By mean of these three equations of the first degree the two indeterminate 

quantities A, A' can be eliminated, and a single equation obtained in terms of 

the quantities P, Q, P', Q'. 

For, if from equation (1), multiplied by P, or AP — PA' = (P — P')P, equa¬ 

tion (2) be subtracted, or AP' — PA' = Q — Q', the remainder is 

AP—AP' = (P—P')P —(Q —Q'). 

(P-P')P-(Q-Q') 
Whence A = - 

P —P' 

\ 

Similarly, 
• (P-P^)P^_(Q_Q^) 

P-P'. 

If these values of A, A' are substituted in equation (3), 

(P-P')P-(Q-Q') 
p—P' 

xQ'- 
(P-P')P'-(Q-Q') 

P —P' 
xQ=o, 

(P-P')PQ'-(Q-Q')Q'-(P-P')QP'+(Q-Q')Q=o, 
(P-P')(PQ'-QP') + (Q-Q')(Q_Q')=:0, 

(P-P')(PQ'-QP') + (Q-Q')2=0. ' - 

The quantities P, P', Q, Q', containing only y and known quantities, this is 

the final equation in y. 

It has been already noticed that, if this equation is identical, the proposed 

equations have at least one common factor of the form x—a, whatever be the 

value of y ; and that, if it contains only known quantities, these equations are 

contradictory. 

When the final equation has the proper form, the factor x—a is obtained by 

dividing the first of the proposed equations by a:-|-A ; thus, 
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A) a;"-j-P:r4-Q (^+P—A 
2'2-|-A.r 

“(F"-rA).r+Q 

(P_A),r+(P—A)A 

Q-(P-A)A. 

The quotient is a:-4-P—A, and the remainder is considered equal to zero, 

because it is reduced to zero by the substitution, for y, of a value deduced 

from the final equation. 

Making the quotient .r-j-P—A equal to zero, the value of x is x=:A—P, 

and by substituting the value of A, 

(P-P')P-(Q-Q') ^ 

or 
_ Q— 

X— p p/ • 

This example is given as an illustration of the general method. From its 

particular form it admits of resolution by another and a much shorter process. 

For if from x^-j-P a:-|-Q =0 

a;2-j-P'.r-pQ'=0 is subtracted, 

the remainder is 
(P-P>+Q-Q'=0; 

Q— 
**• ^p p^* 

OF THE DEGREE OF THE FINAL EaUATION. 

323. The degree of the final equation can not be depressed by the reduction 

of each of the coefficients P, Q, R ... P', Q,', R'... in the equations 

.r'n-j-P + .... -fTz+V =0, 

.r" .... -|-T'a:-j-V' = 0, 

to the term of the highest exponent in y which it contains ; for the degree of 

each of the equations is not changed by the reduction. Therefore, the reason¬ 

ing may be applied to the equations 

.-\-ty'^~'^x-\-vy'^ .... (1) 
a:"..... -\-t'y'^~'^x-\-v'y^ =:Q .... (2) 

which are of the same degree respectively as the preceding equations. The 

latter are reducible to 

X 
.... “1“'^^ :^0 . < . . . (3) 

y/. ^2/ 
11—3 X 

. . . . = 0 
2/ 

(4) 

X 
in which the unknown quantity is -, and a, b, ., .i, v; a', 6',... t', v', are 

numbers. 

Denoting by a, (3, y... the numerical roots of equation (3) 

and by a', (3', y' . .. the numerical roots of equation (4) 

these equations may be decomposed into 

'x 
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Whence {x—ay )(a:—(3y ){x—yy )■, &c. =0.(5) 

{x—ay'){x—^'y){x—y'y)^ .. • • (6) 

Substituting in equation (5) the roots of x from equation (6), viz., a'y, 

(3% &c., 

(a'y — ay)(a'y — t3y)(a'y — yy), 6cc. =0, 

[f3'y^ay){l3'y—l3y){fS'y — yy), &c. =0, 

{y'y — ay){yy—(3y){yy — yy), dec. =0. 

Or, since the number of factors in equation (5) is m, and the number of 

roots in equation (6) is n, 

y^{a' — a){a —/3)(a'—y), 6lc. =0, 

y->{(3'-a){(3'--(3){^'-y), &c. =0, 

yrr^ly —.a){y —f3){y—y), &c. =0. 

Consequently, there are n equations, each of the degree m ; these give all 

the solutions in y. The product of these roots (or solutions) of y is the final 

equation, since it becomes zero for all the values of y which render its factors 

zero, and only for these values. Now, this product is evidently of the degree 

mn. Consequently, the degree of the final equation (unless roots not belong¬ 

ing to the proposed equations are introduced by the process of elimination) 

can not exceed the product of the degrees of the proposed equations. 

It ought to be observed that the numerical values of the roots of y are 

changed by this process, but that their number remains undisturbed by it. 

% 

IRRATIONAL EGUATIONS. 

324. All the direct methods employed for the solution of equations suppose 

that the unknown quantities in them are not affected with any radical sign; 

when, therefore, the unknown is found under a radical sign, it will be neces¬ 

sary, before applying the process of solution, to employ some preparatory 

method of rendering the equation rational. Such a method is at once sug¬ 

gested by the theory of elimination. For, if we equate each of the irrational 

terms with an unknown quantity, and remove the radical from each of these 

new equations by involution, we shall have a series of equations (including the 

original one, with its irrational terms replaced by the new symbols) without 

radicals, from which the quantities, tempoi arily introduced, may be eliminated, 

and thence a rational equation obtained, involving only the original unknown 

quantities. 

The following examples will fully illustrate the mode of proceeding: 

(1) Let the equation be 

X—-\/X—1-}-V^+1=0. 

Put 

2/= yfx—l, Zr= ; 

and we then have the three following rational equations, from which we may 

eliminate y and z, viz., 

y^=x—1, z'^zn.r-l-l, X—y-\-z=.Q. ' 

From the last equation we gely=x-\-z, and, by substituting this value in the 

first, y becomes eliminated, and we have these two equations in x and z, viz., 

z^—.t-4-1=0 ’ 

, z‘^-\-2xz-\-x‘^—.r-|-l=0; 

j 
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and, to eliininate 2 from these, we apply the process explained in the preceding 

articles, and thus get the final equation 

2'6 _ 3x5 ^ 3^4 ^ + 72-3 — 7:r + 2 r= 0. 

(2) Let the equation be 

i{/42-+7 + 2 —4 = 1. 
Putting 

'2/=V42’+7, z—y/x — ^, 

W’e have the system of equations 

2/3=424-7, z'^=x—4, 

2/+22 = 1. 

EXPONENTIAL EaUATIONS. 

325. An exjjcnential equation is an equation in which the unknown appears 

in the form of an exponent or index; thus, the following are exponential equa¬ 

tions : ' •' 

a* = 6, x^=a, x^^=a, &c.*’ ^ 

To resolve the equation 

10"=2 

put then 

10"'=2 10=2"'. 

The value of x' lies evidently between 3 and 4; place it, therefore, equal 

to 3 plus an unknown fraction, and we shall have 

\_ 1 

10=or 10=23 X 2"" 
10 1 /5\"" 

•-ox" . (_ I _O 

• ' 8-- • \4/ 

The value of x" lies evidently between 3 and 4, place 

5\3-t--« 

(D =2, 

and proceed as before. The value of 2 is thus obtained in a continued fraction. 

1 
_1 __1 1 

^~?“34-i ~3-f- 
^34-2'", &c., 

which may be carried to any extent at pleasure, and the value found by the 

method explained hereafter. (See Continued Fractions.) 

When the equation is of the form «" = 6, or =c, the value of 2 is readily 

obtained by logarithms, as we have already seen in Art. 220. But if the equa¬ 

tion be of the form 2"=a, the value of 2 may be obtained by the rule of double 

position, as in the following 

EXAMPLE. 

Given 2" = 100, to find an approximate value of 2. 

* Exponential equations, and those in which logarithms of unknown quantities enter, 
belong to a class called transcendental. 
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The value of x is evidently between 3 and 4, since 3^=27 and 4‘^=256; 

hence, taking the logarithms of both sides of the equation, we have 

X log. 2:= log. 100=2.* 

First, let 2:1= '3-5 ; then 

3*5 log. 3*5= 1-9042380 

ti’ue no. = 2-0000000 

error =—-0957620 

Second, let 2:2= 3-6; then 

3-6 log. 3-6= 2-0026890 

true no.= 2-0000000 

error =4-’0026890 

Then, as the difference of the results is to the difference of the assumed 

numbers, so is the least error to a correction of the assumed number corre¬ 

sponding to the least error; that is, 

-098451 : -1 :: -002689 : -00273; 

hence 2:=3-6 — -00273 = 3-59727, nearly. 

Again, by forming the value of 2:* for 2:=3-5972, we find the error to be 

— -0000841, and for 2:=3-5973, the error is -1-‘9000149; 

hence, as -000099 : -0001 :: -0000149 : -0000151; 

therefore, 2;=3-5973 — -0000151=3-5972849, the value nearly. 

EXAMPLES FOR PRACTICE. 

(1) Find X from the equation x^=5. 

(2) Solve the equation 2:^^ = 123456789. 

(3) Find x from the equation 2:*=2000. 

Ans. 2-129372. 

Ans. 8-6400268. 

Ans. 4-8278226. 

DEMONSTRATION OF^THE BINOMIAL THEOREM. 

CASE I. 

326. If, at Prop. V., Art. 245, we suppose the second terms a^, «3, &:c., of 

the binomials to be all positive instead of negative, and all equal to a, then the 

products two and two will all become ; those three and three, and so 

on ; and, by recurring to Art. 203, we perceive that the number of combina¬ 

tions or products two and two, if we suppose that there are n binomials, will 

,2.3 ’ 

so on. Hence, where ri is a whole number. 

n{n — 1) n{n — 
be expressed by ——-—, the number three and three by-^ 

1. • 

n(n — 1) 
(.2:4-«)"=a:"-j-wa2:”~^-|-—&:c., -j-a", 

S. • />^ 

or 

.(1) 

oy reversing the order of the terms, and disregarding the particular form of 

the coefficients after the second term. 

CASE II. 

If the exponent be fractional, we have 
m_____ 

(a4-.r)n = V{a-\-x)'^= &c. 

* In equations of this kind the following method may be adopted: Let x^=a; then 

X log. x= log. a; put log. x=y, and log. a=zb; then xy—b, and log. x-\- log. y= log b ; 

hence y-\- log. y= log. b. Now y may be found by double position, as above, and then x 

becomes known. When a is less than unity, put x=- and a=-; then we have b'^-=v 
y . b 

y log. b= log. y, and if log. J=c, and log. y=^z ; then cy=z, and log. c-f- log. y= log. z, 

or log. c-\-z= log. z. Hence z may be found by the preceding method, and then y and x 

become known. 
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Applying the rule at Art. 113 for extracting the root of a polynomial, the 
m 

first term of the root will be u" ; the divisor of the second term of the given 

(^\n—1 m—^ 
=na n ; and the quotient or second term of the root 

m 
will be -a 

n 

m m-L-fm--) m '"-1 
— n ^ n'o*- xz=—a^ X. When the two terms of the root thus found 

n 

are raised to the power, and subtracted from the given polynomial accord¬ 

ing to the rule, the first two terms of the latter will be canceled, and the next 

highest power of a to be divided by the constant divisor na " will be a 

multiplied by x'^, and the quotient, which is the third term of the root, will 

/ m\ m 
contain a to the power n — 2— (m—— ) =——2 with x‘^, and so on, so that the 

'■ \ n/ n 

root may be written under the form 

m 1 —3 

a"-}-—x-\-K'a^ x^-\-Wa°^ a:3-^-,&c., 
n 

the same form, so far as regards the exponents, as when the exponent is a 

whole number. The coefficients will be examined for this and the next case 

together. 

CASE III. 

When the exponent is negative, either entire or fractional, as a consequence 

of what has just been demonstrated, we have 

1 ^ 1 
(u-j-a:) {^a-\-x)"^ a™-\-ma'^^~^x-\-, &c. 

But if the division be effected according to the ordinary rules, the quotient 

will be indefinite, and of the form 

—ma~'^~^x-[-A"a~^~^x‘^-\-, &c. ; 

then, whatever be the exponent of a binomial, its development, as to the co¬ 

efficients of the first two terms and the exponents of all, is of the same form, 

viz., that indicated by equation (I). 

Now, to examine the coefficients of the other terms, for the sake of gen¬ 

erality, I shall consider two consecutive terms of any rank whatever, and I 

shall write 

nia^ Ma"” ".r" -|- -j-, &c. 

Let us change throughout x into x-\-y ; as the unknown coefficients con¬ 

tain neither a nor a:, the above expression becomes 

{a-\-x-\-y)'^^=d^-\-ma'^~^{x-\-y).... 

. .-f Mu'"-"(a’-f7/)"4-Nu™-"-Ha:-f2/)”+i + , &c. 

By changing a into a-\-y, we should have found 

{a-{-y-\-Z‘)^ = {a-\-yY^-\-m{a-{-y)"'~'^x... 

... .-j-M(a4-y)'"~".r"-j-N(a-{-y)'"~"~^a:’‘+^-|-, &:c. 

In the two preceding equalities the first members are equal, therefore the 

second members must be equal also ; and this is the case whatever values x 

and y may have. Then, if they be arranged according to the powers of y, 

they must be identical. It is true, they contain binomials, but we know the 

first two terms of each of these binomials, so that we can form the part which, 

in each second member, contains y to the first degi’ee, and that will suffice for 

our purpose. Designating it by Yy in the one and by Y'y in the other, it 

is easy to find 
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Y = nia'^~^-f- N(w + ^)• • • • 
Y' = ma'^~^....-[- M(wi—7z)a"’“"~^a:"-f-N(w—n — . 

These two quantities must be equal, whatever be the value of x; the co¬ 

efficients, therefore, of the same powers of x must be equal. Considering 

only those which pertain to we have 

M(m—n) 
N(w-j-l) = M(m—n) N = ——• 

We see by this according to what law, in the development (1), any coeffi¬ 

cient whatever is formed from the preceding. It is the same that we have 

found for the case of a positive exponent (Art. 107, IV.) ; and as we have 

seen that the first two terms are composed in the same manner, whatever 

be the exponent m, it will be so also with all the other terms. 

An abbreviate notation, sometimes employed to express the coefficients of 

the binomial formula, is the initial letter B of the word binomial, with the ex¬ 

ponent of the power of the binomial before it, and the order of the coefficient 

above. Thus, the coefficient of the 1° term, if the exponent be n, is ex- 
0 1 2 

pressed by "B ; of the 2°, "B ; of the 3°, "B, &c.; of the term 
k 

, by "B, or otherwise simply 
7i{n — 1).. .{n—^+1) 

SERIES. 

RECURRING SERIES. 

327. To develop the expression 
a' 

a-\-bx 
in a series, place 

a' 
^_l_^^_A+B.r+Cx=+, &c.,. 

and proceeding by the method of undeterinined coefficients, explained at Art. 

209, we find 

a' h h h 
A=-, B = —A, C = —B, D = —C, &c. 

a a a a 

From which we perceive that each coefficient is obtained by multiplying the 

& 
pi’eceding by —-. Here the series is a simple geometrical progression. 

Ch 

Proceeding in a similar manner with the fraction 

a'4-6.r ' 
——:—r=A-}-B.r4-Ca:24-, &:c. 
a-\-bx-\-cx^ ' ' ' 

we obtain 

a' h' — Ab ' c b c b 
A=-, B =-, C = —A—B, D=—B—C, &c. 

a a a a a a 

Here e,ach coefficient from the 3° is the sum of the two preceding, multi- 

plied respectively by —- and —-, or each term is the sum of the two pre- 
a a 

cx‘^ bx 
ceding multiplied by —— and ——. 

Again, in the development of 
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a'-j- l)'^x-\-c'x’^ 
&c., 

a-\-hxJf- cx'^-^dx^ 

each term Avill be composed of the three preceding, multiplied respectively by 

dx^ cx’^ hx 

a a a 

Finally, it becomes now evident that in general a fraction of the form 

a' ■^h'x-\-c'x^ . . . •^h'x"'~^ 

a -{-b x-\-c x^ . . . -\-kx'^ 

produces a series, each term of which from the is composed of the 

k h c h 
— —x% —-X. m preceding, multiplied respectively by —-x\ 

CL CJL CL (L 

Series of this form are called recurrent, and the assemblage of quantities by 

which it is necessary to multiply several consecutive terms to obtain the fol¬ 

lowing term, is„ called the scale of relation of the terms. 

328. Problem.—A recurring series being given^ to return to the generating 

fraction. 

In this enunciation it is supposed that the recurring series is arranged with 

respect to an indeterminate x. Let 

S = • • • > 
be such a series, having for a scale of relation [p.r^, qx‘^, rx'\. Since this scale 

contains three terms, the generating fraction is of the form 

a'-\-b'x-\-c'x'^ 

' a -}- 62’ -j- cx- dx^' 
t 

If this fraction had been given, we have seen that the scale of relation would 

Y d c b ~\ 
be I ——-2^, —generating fraction can be written thus, 

a' b' c' 
—-Y-—x-\-—x^ 
a a a 

bed' 
1 —x-\-—x^-\-—x^ 

a a 'a 

and then we perceive that the three terms in x of the denominator can be at 

once obtained by taking those of the scale of relation with contrary signs. 

Thus, we can put the generating fraction under the form 

1 —rx — qx"^—px^' 

and wo shall only have to determine a, (3, yt To do this, place 

a-4-/?.r4-y2® 
I-~ —=A+B2+C.t^+...; 
1—rx—qx^—px^ ' ‘ ‘ 

and since, after clearing it of fractions, the equation ought to be identical in 

form, we derive from it, having regard only to the first three terras. 

a-\-(3x-\-yx'^ = A-\-'B 

—Ar 

x^ x-\-C 

—Br 

—Aq 

Consequently, we shall have for the generating fraction 

A 4- (B — Ar ).r -f (c—Br—A 9) .r* 
S: 

1 —rx — qx‘^—px^ 
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For example, let 8=1 — 2x——5x^-\-4:X^—... be a recurring series, 

whose scale of relation is +4^2, — 2.r]. Taking the above formula, we 

shall have 

A = l, B = —2, c=—= q = r=—2, 

and we shall find 

l—9x^ 

1 

329. Problem.—A series being given, to determine whether it he recurring, 

and, in this case, to return to the generating fraction. 

Let the given series be 

S=A-|-Ba:-4-Ca;2-["I^^+- 

a' 
Let us determine first whether it be equal to a fraction of the form 

a' 
and place S=^q-^. From this equation we derive 

1 a-\-hx a h 

8 a' 

the quotient, therefore, of (1), divided by the series, ought to be exact, and of 

the form jp-|-Then the generating fraction will be expressed thus : 

8= ^ 
p-[-qx 

If the division does not stop at the second term this series will not be recur¬ 

ring, or else it will arise from a more complicated fraction. 

a'-{-h'x 
Place 8=—r-^——x, we shall have 

a-f-bx-\-cx^ 

] a-\-bx-\-cx^ a”x^ 

8 a'-^b'x a' -\-b'x^ 

that is to say, dividing (1) by the series 8, if we stop the division after w’e 

have obtained as a quotient terms of the form the series 8i2’^ which is 

the remainder that we then have, and which is always divisible by x^, will be 

8i a" 
such that, after we have removed this factor, we must have -7; ==———. 

8 a-^b'x 

Hence we derive 

8 a'-\-b'x 
— =Pi + ^ia:; 

O ^ CL 

that is to say, the new division ought to terminate at the second term in the 

quotient; and then, to find the generating fraction, we shall have the two 

equations, 

1 81 8 - , 
g=_p4-5.r4-g.r2, 

whence 

1 8i 1 
8 = 

81 ’ 8 
p-\-qx-^-^x^ ^ 

Consequently, the generating fraction will be 

lh-\-qxX 

{p-\-qx){pv-\-q,x)-\.x'^' 
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Suppose that the quotient of S by Si is not exactly j^i-j-^io:; if the series 

IS recurring, it will be of an order superior to the second. Let us examine if 

a' 
we can have S = ——r—urun- 

a-{-bx-\-cx^-\-dx^ 

We derive from this equation 

, 1 a"-\-h"x 

that is to say, after having obtained the first two terms of the quotient of 1, 

divided by the series Si, we shall find for a remainder a series, all of whose 

terms will contain x'^; and if we designate this remainder by SiO;^, we shall 

have 

Si a"-\-h"x 

S a'-\-b'x-\-c'x'^’ 

This equality gives 

S a'" 

hence, designating by Ss.r^ the series which we find for a remainder after 

having carried the division of the series S by the series Si to the terms of the 

quotient Piwe should have 

^_a'" 

Si a"-\-b"x' 

From this last equality we derive 

0.2 

Here the operations stop ; for, returning to the generating fraction, we shall 

have the equations 

1 Si S S2 Si 
g=p4-pr-f^^=pi+^iX’+^ar^, ^=p2-j-52.r ,• 

and from these equations we derive 

S: 
Si ’ 

p^qx^—x^ 

Si 

s S, ’ 

S2 1 

We have, then, only a few substitutions to make in order to obtain a frac¬ 

tion equal to S. 

Without proceeding further, the reader will doubtless perceive that the 

successive operations for finding the quotients p-\-qx, pi-\-qiX, &c., and for 

returning to the generating fraction, bear a striking analogy to those which are 

necessary in reducing an ordinary fraction to a contirued fraction, and in re¬ 

turning to the ordinary fraction. This observation will take the place of a 

general rule. If we arrive at a division which gives an exact quotient of the 

form p-\-qx, we know that the series is recurring. (See Contin. Fractions.) 

EXAMPLE. 

Suppose we wish to determine whether the series of numbers 1, 2, 3, &c., 

be recurring. It is not this numerical series which we must consider, but the 

equation 

S=:l + 2a:-l-3a:2+4a:3-|- 

We perceive that the operations will be performed as follows : 
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Division ofl hy B 

1 i^_2.r4-3.r2-f4ar^-4- ... 

1 2.r+ 3.1-2+ 4.r3 4--1 —2.r 

— 2x—3.r2—4i'^——.... 

— 2.r — 4i-2 — 6.r^ — 8x*—.... 
j;2+2i:3_j_3j.4_|___ s^^.3. 

Division of S hy Si. 

1 + 2.1 + 312+41-3+ .. 

l + 2i+3.r2+4i3+ .. 

1 + 2,i._|_3,2:2_|_43;3+ ... 

0 

1 S, S 
Hence, the series S is recurring, and we have g = l—2i+-^i^ ^ = 1. 

We derive from this S==- 

1 - 2l+ Q 

^ ,-^ = 1; consequently, S = 

— (l_a:)2’ 

Remark.—In finding a rule to determine whether a series is recurring, we 

have considered the series as derived from a fraction whose numerator is of a 

degree inferior to the denominator. But even if this last condition does not 

have place, it is easy to perceive that the same explications, and, consequently, 

the same rule, will always subsist. 

329. Problem.— To find the general term of a recurring series. 

Suppose that the series has for a generating fraction 

^ «' + &'.!+ ... +///.i'"~^ 

a “p bx ... —^ Jcx^^ 

We can write this fraction thus : 

F = (a'+6'i... +/i'.7:^’-i)(a + &.r+ ... +A"i-™)~h 

It is evident, then, that by developing the power —1, obtaining the product 

of the two fectors in this equation, and taking in this product the part which 

contains i to any power whatsoever, we shall have the general term of the re¬ 

curring series. But the problem is resolved ordinarily by another process, 

which I proceed to exhibit. 

We divide first all the terms of the fraction F by k, and write it under the 

form 

U a'i'^-‘+/3'.i"’-2+ ... 

■ ' V i'"+«.i“‘-i+,Si“-2+.. .* 

The fraction is supposed in all cases to be reduced to its most simple form, 

so that U has no common fiictor with V. 

We decompose, then, the denominator into binomial factors, such as i+«, 

whether it be by equating this denominator to zero, or by some other method, 

and then the fraction is regarded as resulting from the addition of many others, 

which have for denominators these diflerent factors. We determine all these 

partial fractions, and then form the general term of the development of each; 

then, taking the sum of these general terms, we shall have the general term 

of the recurring series. 

[n this decomposition into partial fractions it is necessary carefully to dis- 
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tinguish in V the simple factors from those which are raised to powers J^^or 

each simple factor x-\-a we shall take a fraction of the form 

M 

x-\-a 

For each factor, such as {x-^-hy, we might take one of the form 

{x-{~by ’ 

but it is more convenient to have only fractions with monomial numerators; 

instead, therefore, of a fraction like the preceding, we take n, like the fol¬ 

lowing : 

N - N, 

M, N, Ni... representing quantities independent of x. 

Consequently, if we suppose that Y =z{x + ^)( )“•••» we can place 

U M 
+ 

N Nn; 

V ' x-\-b 

and the question will be reduced, for the present, to the determination of the 

numerators M, N, Ni, &c. But these have been determined in Art. 209, (3). 

The preceding decomposition being effected, the determination of the gen¬ 

eral term of the recurring series does not offer any difficulty. 

Each partial fraction can be put under the form designating by 

X an entire positive number, which can be equal to 1. If we develop this 

power, we readily find that the term affected with a:" is 

—1)(—X —2). . .(—X- 

1.2.3 n 

•w+l) 
-ip^—A-n^n 

It IS the sum of like expressions, all ^containing a:", and resulting from the 

different partial fractions which compose the general term required. 

When the denominator of the generating fraction contains imaginary fac¬ 

tors, these factors introduce imaginary quantities into the general term. If 

we suppose, however, that the coefficients of the numerator and denominator 

of the proposed fraction are all real (and they are always taken so), it is evi¬ 

dent, 'a priori^ that, as we find the development of this fraction by division, the 

general term can not embrace any imaginary factors ; consequently, we are 

sure that all the imaginary quantities which arise from the factors of the de¬ 

nominator will disappear. 

SUMMATION OF SERIES. 

The summation of series is the finding of a finite expression equal to the 

proposed series, even when the series is infinite, and in many cases this finite 

expression is found by subtraction. 

EXAMPLES. 

(1) Required the sum of the series + 
J. • /W • O 

^ 1 1 1 ' 1 1 1 
Let S = j+~+- + j + -+-+ . . . 

1 1 

®~^-2+3 + 4+5 + 6 + 7 + 

3.4 
to infinity, 

ad infinitum. 

ad infinitum. 
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Hence, by subtracting the latter fi’om the former, we have the required sum : 

11111 
-j^ o^~ o 3 4~^ 4 5~^ 5 6~^.—^ * 

111 
(2) Required the sum of the series 7^;+^+:^+.to w terms. 

^ ^ 1 i 1 1 1 
LetS_j + -+- + j+. - .(a) 

... + + —3 + 4 + 5 +0+.w+2. 

Subtracting {h) from (a), we have 

^"^2~n+l—?i + 2“l73"^2^"^^"^4^‘^.n{n-^2) 

1111 1 l(;l/l iw 

■** 1.3"^^"^^"'"476‘^ ‘'w(n + 2')~2 } ^'^2“” U + l”^w + 2/ 
15 11 11 

~2( ^~7i+ n-{-2) 
n n 

~2w+2"^4w4-8* 

When n is infinitely great, then we have 

1111 , . ^ 1'/ 1\ 1 1 3 
—+—4-7r-r4--—r+ ... ad infinitum =-(14--)————=-7. 
1.3^2.4“3.5 ' 4.6^ 2\ ~2/ co oc 4 

/ c. 1 1111' 
(3) Sum the series —-—AT+77 — 77+.infinitum. 

Ans. -7. 
4 

(4) Sum the series + .ad infinitum. 

Ans. i. 

5 6 7 
(5) Sum the series X;^+7^+3X5+.^ 

, 3 2 1 
Ans. -———4-——. 

t 2 n4-l n-\-2 

(6) Sum the series a-\-2ar. ... to n terms. 

( 1—r" nr“ ) 

(7) Sum the series 14-3a:4-5a:^-|-7a:'*4~^^ .... ad infinitum. 

" A ^+^ Ans. 7--~. 
(1— 

DIFFERENCE .SERIES. 

330. Let there be the arithmetical progression 

Ct, CL 4” ^5 CL 4“ 2f^, CL 4“ 34 . . . . 

If we begin with a new term, 6, and add to it successively each term of the 

above, we obtain ^ 

?), &4"^? &4“2^4”*^’ &-{-3(24“34, 64"4u-^64 . .., 

which is called a difference series of the 2° order, and so on, as in the follow- 

' ing scheme ; 
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Ord*;r of 
Series. 

I. 

II. 

III. 

&C. 

1® term. 

a, 

h, 

C, 

&C. 

2“ term. 

b-{-a, 

C-j-J, 

3° term 

[-2(5, . . 

C—j—2^—[—(3/ . . 

nth ter.m. 

. a-[-(?l—1)(5. 

1 ^ J. • All 1.2.3 

EXAMPLE. 

I. order, 2, 5, 8, 11, 14 . . 

II. order, 4, 6, 11, 19, 30 . . 

III. order, 5, 9, 15, 26, 45 . . 

331. From the manner in which these difference series are formed, it is 

evident that if we subtract from one another the successive terms of any or¬ 

der, we obtain the terms of the preceding, and continuing in this way till we 

subtract the successive terms of the first from one another, we obtain between 

them, the constant difference (5. • 

332. If the order of a series be unknown, its order may be found from what 

has been said above. Thus the series 

5,9,15,26,45; 

taking the difference of the consecutive terms, 

4, 6, 11, 19 

2, 5, 8 

3, 3, 3, 

after three subtractions of consecutive terms presents a constant difference, 

and is, therefore, a series of the 3° order. 

333. To separate the roots of an equation hy means of difference series. 

The term of a series of the order m would be expressed by 

k^{x—l)f-{- 
(x—2)(,r—1) 

9 

(x—7n) ... (.r — 2)(x — 1) 
+-tt;-Z-d, 1.2 m 

which, ananged according to the powers of x, would be of the form 

.... -}-Gx-[-K; • - . 

that is, of the form of the first member of an equation of the degree, Xr=0. 

If, now, we give to x the values .. . —4, —3, —2, —1, —0, 1, 2, 3, 4,.... 

representing the values which the polynomial X assumes by 

X_4, X_3, X_2, X_1, Xo, Xi, Xg, &c.(1) 

these quantities will form a difference series, since x denotes the order of the 

term in a series of which X is the general term. There is no objection to x being 

negative, as a series may be continued below as well as above the first term, 

observing the same law in a contrary sense. 

Taking a sufficient number of terms of the series (1) to obtain, by subtiac- 

tion of its successive terms, the series of next lower order, and from this, in 

the same manner, that of the next lower order still, till we arrive at constant 

differences, the terms of the series (1) may be extended indefinitely to the 

right and left by forming them according to (Art. 330), without the trouble of 

substituting numerical values for x, and calculating the corresp.onding values 

of X. Those values of X which have contrary signs will (Art. 252, Cor. 1) 

have one or an odd number of roots between them. 

Take, for example, the equation 

9.r4—3.r3—13 0.r2—17.r-f 260=0. 

D D 
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Giving X the values —2, —1, 0, 1, 2, we have the following results inclosed 

in the parentheses : 

X_4 X_3 X_2 X_1 Xo Xi X2 X3 X4 
_^744_ 49(— 58 +159 +260 +119 —174)—313*+224, • 

forming a series of the fourth order. The series of the third order is 

— 793 — 9( + 217 +101 —141 —293)— 139 + 537 ; 

of the second, +784 +226( —116 —242 _152) + 154 + 676 ; 

of the first, —558 —342( —126 + 90) + 306 + 522 ; 

equal differences, +216 +216( + 216) + 216 + 216. 

By substituting other values, as —3, —4, —5, —6, and +3, +4, +5, +6, 

&c., we may extend the top series to any length. 

To save the time and trouble of substituting consecutive numbers and calcu¬ 

lating the result, the method of difllerence series is employed, thus : 

Substitute a number of consecutive values one more than the degree of the 

equation; the smallest numbers,, being more easily substituted, are preferred. 

In the present example, substituting —2, —1, 0, 1, 2, we obtain that portion 

of the first series which is of the 3° order, included in brackets ; from this, 

by subtracting its consecutive terms, the corresponding portions of the series 

of the 2° order, and so on ; and, finally, the difference, 216. Using this dif¬ 

ference, we may extend the top series at pleasure, according to the method 

in Art. 330. 

The roots of the equation lie between those numbers the substitutions of 

which produce unlike signs in the result; thus, in the above there is one root 

between —3 and —4, one between —1 and —2, one between 1 and 2, and 

one between 3 and 4. 

334. There exists between the coefficients of two consecutive powers of 

x-\-a relations from which many useful consequences may be deduced. 

Suppose the power of x-\-a to be 

Multiplying the polynomial by a:+a, there results 

a:™+i +Aa.r"’ + Ba^a:'"“^+Ca^a:™~2+ . . . 

+ a.T"’+A« .r"’“^ + Ba .r'"~2+ . . . 

From which we conclude that, to obtain the coefficient of any term of the 

(m+ !)■'• ■power of x+a, it is only necessary to add to the coefficient of the term 

of the same rank in the m''‘ power that of the preceding term. 

335. According to this rule, we can form the coefficients of the successive 

powers of x+a, as may be seen in the following table : 

1, 1, 1, 1, 1, 1, 1, 1, 1 . . . 

1, 2, 3, 4, 5, 6, 7, 8 . . . 

' • 1, 3, 6, 10, 15, 21, 28 . . . 

1, 4, 10, 20, 35, 56 . . . 

T 1, .5, 15, 35, 70 . . . I 

1, 6, 21, 56 . . . 

' 1, 7, 28 . . . 

1, 8 . . . 

1 . . . 

The first vertical column of this table is formed of the single number 1. The 

second column is formed of the number 1 written twice. We form the third 
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column by placing at the side of each term'in the second column the number 

obtained by adding it to the term above it; we find thus, for the first term of 

the third column l-j-O or 1; the second term is I-j-l or 2, and the third 

O-j-l or I. The fourth column is deduced from the third in the same manner 

that that is from the second, and so on. The two terms of the second column 

may be considered as the coefficients of the first power of x-\-a. It results 

from the above rule that the terms of the third column are the coefficients of 

the development of those of the fourth column of &:c. 

This table, which may be indefinitely extended, is called the Arithmetical 

Triangle of Pascal. , ' 

336. It is easy to see from the composition of the arithmetical triangle that 

the term of any horizontal line is the sum of the p first terms of the pre¬ 

ceding horizontal line. Because if we consider, for example, the term 56, 

which is the sixth of the fourth line, this term is formed by adding the two 

numbers 21 and 35, which are placed at its left in the third and fourth lines; 

but the second of these two numbers, 35, is the sum of 15 and 20 ; the last 

number, 20, is the sum of 10 and 10, and the last number, 10, the sum of 6 

and 4; finally, 4 is the sum of the two numbers 3 and 1; we have, therefore, 

56 = 21 + 154-104-64-3 + 1. 

THE DIFFERENTIAL METHOD OF SUMMING SERIES. 

337. Let u, c, d, e,.. . . be a series of terms, in which each term is less 

than the succeeding one ; and, taking the successive difierences, we have 

a 

(di) 

{dj) 

ich) 
{d^) 

b c 

b—a c — b 

c—2b-\-a 

d- 

d e, &c,' 
t, ' 

d—c . e—d, &c. 

d—2c+6 e — 2(i + c, (fee. 

■3c+3?»—a e — 3(i+3c—6, &c. 

e—4<i+6c — 46 + u, &c. 

Putting cZi, <^^41.for the first terms of the first, second, third, 

fourth, .... differences, we have 

b— a =.di .*. b=a-\- di 

c —2b-pa .'. c z^a-p2d\p- dj^ 

d—3c + 36—a =d^ .*. d=a-\-^di-p^d^-\- d^ 

e—4(i+6c—4:b-\-a=d4 e =u + 4(i] + 6<i2+4(^3+c/4, 

&c. &;c. 

Hence the (w+l^'' term of the proposed series is evidently 

(n-^1) n{n — l){n — 2) , 
a-pndi-pn—z^ ^ 2 3 ^3+ • • • • 

and, therefore, the term is (by writing n — 1 foV n) 

. / . (”—1)(^ —2), {n — l){n—2){n — 3)^ 
ap.{n-l)d,+ ^--^--d.+ 

1.2.3 

Let a, ' 

and 0, 

338. To find (S) the sum of n terms of a scries, 

b, c, d, e, , 

(3) 

«, a-pb, ap-bp-c. 

dec. 

a-pbp-cp-d. &c., 

be t^vo sei-ies, of which the (7? + !)^'' term of the latter is obviously the^suin of 

n terms of the former; but the first terms of the first, second, third, foiuth, 

.differences in the latter, are 
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a, h — a=di,* c—2h-{-a=d2, d—2c-\-%b—<2, =<^3, &c.; 

hence the term of the latter series, or the sum of n terms of the 

former, is, by (1) in the'last article, 

• ,n{n — l)^ ^ n{n — l){7i — 2)j n{n — l){n — 2){n—^)^ , 
0-\-na-\- - - rfi+ 1 o Q '^2+ 1 o o ^ ®3+ • • •> 

or 

S=?za-|- 

1.2 ' 1.2.3- ' 1.2.3.4 

n{n — 1) n{n—l)(n — 2) n{n—l)(w—2){n—3) 

1.2 
-di- 

1.2.3 ■^3 4' I.2.3.4 
• • • (^) 

EXAMPLES. - 

(1) To what is 1.24-2.3-j-3.4-|-4.54- • • • n{n-\-l) equal? 

2, 6, 12, 20, 30, is tlie given series; 

4, 6, 8, 10, differences of the consecutive terais; 

2, 2, 2, differences of these again, d^; 

0, 0. 
Hence, a=2, (ii=4, d^=2, and dz-, d^, &c. =0; therefore 

n{n — 1) n{n — ])(?i — 2) 
S==na4- -di-\-- 

2.3 

z=2n-\-2n{n — — l)(7i—2) 

=^n(7i+l)(?2+2). 

Proceed always in this way till the differences become the same.f 

(2) Find the sum of n terms of the series 1, 2^, 3^ 4^ 5^ &;c. 

(3) Find the sum of n terms of the series 1, 4, 10, 20, 35, &c. 

(4) To what is 1.2.34-2.3.4-j-3.4.5-}-.w(7i-}-l)(n4-2) equal? 

(5) Sum n terms of the series 1, 3, 5, 7, 9, 11, &c. ... 

(6) Find the sum of 15 terms of the series 1, 4, 8, 13, 19, (fee. 

(7) Sum 8 terms of the series 1, 2^ 3^ 4“*, 5^ 6^ &c. 

ANSWERS. 

?i(n4-1 )(^-h 2) 4" 3) 
1.2.3.4 

(4) |n(w-j-])(7i-{-2)(7i-f 3). 

POWERS OP THE TERMS OP PROGRESSIONS. 

339. If all the terms of a geometrical progression 

-H-«: aq' aqd • _ar^~^ 
\ 

are raised to the same power the result is the series 

. 

which is a geometrical progi’ession, of which the first term is a™, the ratio 

and the number of terms n. 

340. If the terms of a progression by differences, whose first term is a and 

common difference (i, be eaph raised to the power, we have 

* This is the di of the fomier series, but the d.2 of the latter. 

f The terms of tliQ fonnula (2), containing those orders of differences which become zero, 

like dz, di, &c., in example 1, will all vanish, and the expression for S wiU be composed 

only of the preceding terms. 

(5) 7d. 

(6) —1)=785. 

rd" rd td n 

^+2+ 
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, . — 1) 
(a-j- 1<J^+i &c. 

X • /«/ 

) , . mihi — 1) . c ' ’ 
{a——7~o— 

' A. • fC 

mim — 1) ' „ ^ 
(a—3(5)'"=:a™+7wa'"-^3(54-—y-^a”-29(52-|-, &:c. 

&c. &c. 

Taking the differences of the consecutive terms,' 

m(m — 1) 
(a-j- — u™ ——--—-j-? 

< X • 0^ 

, . inim — 1) 
(<z4“2(^)™ — (<2+ (i)™=ma'”“M-|-—-—-—a"*~23(52-j-, &c. 

X • /W 

/ . , Tnim — 1) „ • • 
—1—o, &c. 

1.2 ^ 

These differences being not the same, the same powers of the terms of an 

arithmetical progression do not form’ an arithmetical progression. 

341. To find the sum of the m* powei’s of an arithmetical progi’ession. Let 

• -^a .b.c.d...Jc.l 

be any arithmetical progression, of which the common difference is <5. Then 

&=a-j-(5, c = h-\^(%.^ = ^-|-d. 

Raising these equalities to the power m-j-1, 

----<2"^— 
• X • .‘W 

c^+^ = h'^+^-{-{m-\-l)b^6-3d -f, &c. 
* X • 

X • /w 

Adding all these equalities, suppressing the common terms in the two equa 

sums, viz., 6™+h c'"+l, &c., and transposing we have 

_^m+l _ 1 )(5(am_|_ 5m . . . . _j_ 

J o abridge, let 

(m-\-1)771 

I 1 o X • /w 

“L ? A'C. 

a -\-b ■\-c-\-d--\-k.-\-l =S 
4-62.;._|_52 _s 

^m_^5m_^.4.A:">4-Z“=S„,. 
Then the last expression becomes 

m-1-1 {m-\-\)m 
Z«+i_a"+'=-^d(S„-Z'") + !-pV^<!HS„_,-i"—) + ,&c. 

X ^ X • -w 

The value of Sm deduced from this is 

The law of the unwritten terms is sufficiently apparent, and the series must 

evidently end with the term preceding that which contains the factor m—m 

or 0. 
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By formula (1) the sum can be found, when the sums of the inferior 

powers are known ; for this purpose, make m = 0, the formula gives So ; 

making m = l, it gives Si, and so on to the sum of the powers required. 

If the. progression -^a.a-\-6.a-\-26.... is replaced by -^1.2.S_N (or 

the series of natural numbers from 1 to N), i. e., a = l, dz=l, Z = N, then for¬ 

mula (1) becomes 

N™+i — 1 m mim — 1) 
S„,=N“-h—-TT-—5(S„,_i-NV)-2)-, &c. (2) m-j-1 2 

If m = 0, (2) becomes 

So=No+ 

If m=l, 

If m=:2, 

Si = 

0 + 1 

N(N+1) 

= 1 + 

2.3 

N—1 
-=N (3) 

(4) 

S2=n^+; 
N"—1 

.(Si-N)--(So-No), 

N3—1 /N2+N \ 1 
^N.+__ _ _n) -3(N-1), 

=N2+ 
N3 

2 

1 N2 N N 1 
^ 

N3 N^2 N 2N^+3N2+N 

~ 3 2 6 ~ 6 

S.= 
N(N + 1)(2N + 1) 

-6-T.(5) 

Formula (3) expresses the sum of l°+2°+3'’-to N terms, or of 1 + 1 

+ 1... to N. * ^ t 

EXAMPLES. 

(1) If ??ir=0 and N = 10, So=N = 10. 
Formula (4) expresses the sum of 1+2+3... .+N. 

10(10 + 1) 110 
(2) If w=l and IS =10, Si=-^-=— =55. 

Formula (5) expresses the sum of 1^+2*+ 3^.+ N2. 

^10X11X21 
(3) If ?n = 2 and N = 10, S3=-^-=385. 

PILING OF BALLS AND SHELLS. 

342. Balls and shells are usually piled in'three different forms, called trian¬ 

gular, square, or rectangular, according as the figure on which the pile rests 

is triangular, square, or rectangular. 

(1) A triangular pile is formed by continued horizontal courses of balls or 

shells laid one above another, and these courses or rows are usually equilateral 

triangles whose sides decrease by unity from the bottom to the top row, which 

is composed simply of one shot. 

Denoting by N the number of balls contained in one side o:^" the equilateral 

triangle which forms the. base of the triangular pile, it is evident that the num¬ 

ber of balls in the base will be expressed by 1 + 2+3 . . . +N or Si, which 

by (4) is equal to . . 
N^+N 

2 
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If in this expression N is successively replaced by the numbers 1, 2, 3 ... 

the number of balls in the successive layers, beginning at the top, will be ob¬ 

tained. These are, 

P-f L 
in the first, ' 

in the second, j 

in the third, 

m the fourth, 

2 

22-f 2 

= 1; 

o 

3"-f 3 

o ■ O 

O 

42+4 

:6; 

= 10. 

Whence the sum of the whole number of balls contained in the pile is 

^ 2^+2 _ 32+3 , N2-f N 
o “i” o 9 t ^ /O 

which is sometimes used. A better form may be obtained from this by writing 

it first' 

12_|_22_j_32 . . . 4-N2 l-l-2-f 3 . . . -I-N 

or 

S.2-I-S1 l/2N3-f3N2+N N-2-fN\ N3-|-3N2+2N 

2 ~2\ 6 2 / ~ 6 ’ 

or 

6 ' 2 / 

N(N-l-l)(N-f2) 

' 6 ’ 

the most convenient expression for the number of balls in a triangular pile. 

EXAMPLE. 

How many balls in a triangular jiile, the side of whose base contains 35 ? 

. 35(35+l)(35 + 2) __ 
Ans.--= 7770. 

fa 

‘(2) A square pile is formed by continued horizontal courses of shot laid one 

above another, and these courses are squares whose sides decrease by unity 

from the bottom to the top row, which is also composed simply of one shot; 

and hence the series of balls composing a square pile is ’ • 

N(N-f l)(2N-fl) 
1 + 4 + 9 + 16+25-h.,..+N2=S,=-^^-^^- 

where N denotes the number of courses in a pile. - 

EXAMPLE. 

If a side of the base of a quadrangular pile contains 35 balls, how many in 

the pile ? 

, 35X36X71 
Ans.-7;-= 14910.. 

6 

(3) A rectangular pile is one in which the layers, except the iippermost, are 

an’anged in rectangles. Representing by ?^^ + l the number of balls in the 

top row, the layer below it must contain 2 rows of m+2 balls, the next layer 

3 rows of m + 3 balls, and so on, to the N‘''% which contains N rows of 7?i + N 

balls each ; and the number in this pile is 
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(m4-l) + 2(m-|-2)-j-3(m-f-3) + 4(m-}-4)-f- .... N(w-|-N) 

.... . . . . 
= m(l4-2+34-4+ • • • -N)-}" square pile 

N(N + 1) 
=---. m+ square pile. 

(4) The number of balls in a complete triangular or square pile must evi¬ 

dently depend on the number of courses or rows; and the number of balls in 

a complete rectangular pile depends on the' number of courses, and also on the 

number of shot in the top row, or the amount of shot in the latter pile depends 

on the length and breadth of the bottom row; for the number of courses is 

equal to the number of shot in the breadth of the bottom row of the pile. 

Therefore, the number of shot in a triangular or square pile is a function of N, 

and the number of shot in a rectangular pile is a function of N and m. 

The expression for a rectangular pile, 

N(N+1) N(N + 1)(2N+1) 

—T—“+-6-’ 
may be written 

N(N + l)(3m+2N + l) ^ 
---=:-N(N+l)[2(m+N) + m+l]. 

But m+1 is the number of balls in the top row, N is the number in the smaller 

side of the base, and m+N the number in the greater side, 2(m+N) the 

N(N + 1) 
number in the two parallel greater sides; moreover,---is the number 

of balls in the triangular face of each pile; hence we have also this general 

rule for rectangular or square piles. 

RULE. 

Add to the number of balls or shells in the top row the numbers in its two 

parallels at bottom, and the sum multiplied by one third of the slant end or 

face gives the number of balls in the pile. 

EXAMPLES. 

(1) How many balls are in a triangular pile of 15 courses ? Ans. 680. 

(2) A complete square pile has 14 courses : how many balls are in the pile, 

and how many remain after the removal of 5 courses ? Ans. 609 and 554. 

(3) In an incomplete rectangular pile, the length and breadth at bottom are 

respectively 46 and 20, and the length and breadth at top are 35 and 9 : how 

many balls does it contain ? . Ans. 7190. 

(4) The number of balls in an incomplete square pile is equal to 6 times 

the number removed, and the number of courses left is equal to the number 

of courses taken away: how many balls were in'the complete pile ? 

Ans. 385. 

(5) Let h and k denote the length and breadth at top of a rectangular 

truncated pile, and N the number of balls in each of the slanting edges; then, 

if B bo the number of balls in the- truncated pile, prove that 

I 2N2+3N(/i+^-)+6/i^- —3r/i+^- + N) + l 
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VARIATION. 

343. Let a denote a constant quantity, or one which does not change its 

ralue, and x a variable which is supposed to increase or diminish. 

The product of the quantities a and x being denoted by X, if x is increased 

or diminished, X will be increased or diminished in the same proportion. 

Thus, if a: become .r', and, consequently, X become X', we shall have 

X : x' :: X. : X', 

for 

axz=X and ax'=.X' 
) 

ax X X 
—,=z—=^,, or X : x' ::X: X'. 
ax' x' X' 

Under these circumstances X is said to vary directly as x. 

The symbol of variation is cc ; and the expression X varies directly as x, is 

indicated by the combination of symbols X oc x. 

344. If the product of x and y be constant, and x^ y both variable, since 

xy=x'y' = C, , 

1 1 

In this case as x varies as the reciprocal of y, x is said to vary inversely as y, 

and the symbolical expression is 

1 
X cc -. 

y 
[ixy=X and x'y' = X', then X : X' : : xy : x'y'. 

The variation of X in this case depends on the variation of two quantities 

X and y, which is expressed thus, 

X cc xy. 

X X' XX' 
345. If xv = X and x'y' = X', then, x=— and x'=— x : x' : : — : —. 

y y y' y y , 
In this case x is said to vary as X directly, and as y inversely. The symbol is 

346. Let-rccy,i.e.,.r :.r': 

X 
X cc 

y 
X y 

y: y' or —z=’—, and let yccz, i. e.,y: y': 

X z 
.*. or X :x' ::z : z', i. e., xccz ; 

X z 

uiat is, if one quantity vary as a second and.the second as a third, the first 

varies as the third. 

- . 11' - . ‘ 

347. In like manner, xcc y and y cc x cc 

Again, let xcc y and zee y x cc z, or x:x' ::z:z', or x:z::x' :z'; 

.-. XzizZizr.x'zLz' :z';. or x^z ix'^Lz' ::z: z'. 

But z:z' ::y :y', .♦. : x' :^z' ::y :y', i. e., y x .rrLz- 

Again, since x cc y, x :x' ::y : y', and since zee y, z :z' ::y : y', xz : x'z' 

.. y^: y'^ and -\/xz : ^/x'z':: y : y', or y a ^/xz ; that is, if two quantities vary 

respectively as a third, their sum, difference, or square root of their product, 

varies as this third quantity. 

348. If a: X y and m be a constant quantity, integer or fractional, since x:y :: 
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x': 2/',X :y :: ?nx': my' (Art. 127), i. e., x cc my ; that is, if one quantity vary 

as another, it varies as any multiple or part of this other. 

When X cc y, and, consequently, x cc my, ^o that x'.x'x'. my : my' or x : my 

::x' :7ny', then, if x=7ny, x' -svill be equal to my' in all cases; whence, if x 

viiry as y, x is equal to y multiplied by some constant quantity. 

349. If X and Y are two corresponding values of x, y, 

.. r ''X ' 

X=mY, .‘'.m = Y; 

from which it follows that, when two corresponding values of x, y are known, 

the constant m may be found. 

350., Let xcc y X : x': :y: y'x'^‘: x'’^ :: y''" :y'^ x”'ccy^; 

711 being any exponent integer or fractional. Whence, if one quantity vary as 

another, any power or root of the first quantity will vary as the same power 

or root of the second quantity. 

351. Let xxy, and let t be another quantity, either variable or constant, and 

of which t, t' are either equal or different values. Then, since 

xcc y, x'.x'wy'. y', and 

.*. xt: x't' • yt: y't', or xt ccyt; 

X X 

V 1 
y y X y 

that is, if one quantity vary as another, and if each of them be multiplied or 

divided by any quantity, variable or constant, the products or quotients will 

Vary as each other. 

X y X 
Consequently, ii x cc y, ~ cc or — x 1. 

y y y 
X . 

Whence, if x x y, - is constant. 
y 

352. Let 

by alternation. 

and similarly, 

xy cc X, i. e., xy : x'y':: X : X'; 

a’y : X :: x'y': X'; 

X X' X 
y : — : : y'.*. yx—; 

X X X 

X X 

X 

y 
that is, if the product of two quantities vary as a third quantity, each of the 

two quantities varies as the third directly, and as the other inversely. 

353. If X = X'= constant, xy : 1 : : x'y' : 1; 

11 1 
x:-::X 

y 
-, or xcc- 
y y 

that is, if the product of two variable quantities be constant, these quantities 

vary inversely as each other. 

354. Let « be a constant, and x, y, z variables, and let 
r t 

a : X :: y : z, a : x':: y': z', &c. ; 

az=xy, az'=x'y', &c.; ^ 

az : az':: xy : x'y', or z : z':: xy : x'y' 

.*. z ccxy; 

that is, if four quantities are always proportional, and one or two of ihem are 

constant, the others being variable, it can be found how the latter vary. 

155. Let X, y, z be three quantities, of which, xccy when z is constant, and 3t 
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.i’cc2 when is constant; it is required to determine the variation of .r when 

y, z are botli variable. 

Sup])ose, first, that x is made to vary as y, and that when y becomes y', x 

becomes x'. 

Next, that x' (varied from x by the variation of y) is made further to vary 

as 2, and that when 2 becomes 2', x' becomes x". Then, since 

X :x': :y :y', and x': x" :z:z' 

xx': x'x" ::yz: y'z', 

or X : x" ::yz: y'z'; 

i. e., xccyz. 

Therefore, if^a: vary as y when z is constant, and as z when y is constant, 

when y, z are both variable, x varies as the product yz. 

Similarly, it can be proved, that if t vary as v, x, y, z separately, the others 

being constant when v, x, y, z are all variable, t varies as the product vxyz. 

t 

SYMMETRICAL FUNCTIONS OF THE ROOTS OF AN EQUA¬ 

TION. 

356. There are certain functions of the roots of an equation which may be 

expressecj, in a general manner, by means of the coefficients of that equation, 

without the equation itself being resolved. 

These functions, which form a very extensive class, are termed rational 

and symmetric functions, or simply symmetric functions. 

They are called rational, because the roots do not enter into them under 

the radical sign, nor with fractional exponents ; the roots are combined only 

by addition, subtraction, multiplication, and division. These functions are 

called symmetric, because the roots are combined-in such a way that any two 

of them may be interchanged without altering the value of the function. 

For example, the expressions 

ah ac he 
ac-\-hc-\-ah, a'^-^-h'^f-c^, —3n&c 

are rational and symmetric functions of a, h, c. 

All the coefficients of an equation are symmetric functions of its roots, as 

may be seen in the expressions for the coefficients in Art. 245 ; for, in these 

expressions, if ax were written in every place where a^i occurs, instead of a^i, 

and in every place where ai occurs, instead of ay, or if any other two of 

the roots were interchanged, the values of the expressions would not be 

altered. 

Several quantities, a, h, c, &c., being given, if we arrange them two and 

two, in every possible way, and if in each arrangement, e. g., ah, we give the 

exponent a to the first factor and the exponent /3 to the second, we have a se¬ 

ries of products such as a^hP, whose sum is evidently a symmetric function 

of the quantities a, h, c, &c. This function is called a double function, be¬ 

cause each terra contains two of the given quantities; it is represented, 

abridged, by the letter S being here employed to denote the word 

sum. In like manner, triple, quadruple, &c., symmetric functions are repre¬ 

sented by S{a'^h^c'^), S{a"h^c'^d^), &c. 

In accordance with this notation, simple symmetric functions, as 
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will be represented by S(«'*), which, for the sake of abridgment, 

is ordinarily written Sa. In like manner, we have 

CL C —^ • • • 

S3=-j-6^ 4-. 

f &c. &c. 

The notation of which we have been speaking applies to entire symmetric 

functions ; but when the terms of a symmetric function are fractional, we 

can, by reducing them to a common denominator, express the function by a 

single fraction, whose numerator and denominator- are integral symmetric 

functions. Thus: 

ah ac he 

533+365+3^“^'''”'’ 

wdiich is a fractional symmetric function of a, 6, c, becomes, by reduction. 

^454 ^4^4 J4c4 _ 

■ 

357. An equation being given^ to find the sums Si, S2, &c., of the like and 

entire powers of its roots. 

Let the equation be X = 0, 

or + • * • +Ta:-j-U=0 .... (1) 

and call the m roots a, 6, c, d. 

We can find by Art. 238 the quotients obtained by dividing X by each of its 

factors, X—a, x—6, x — c, &c.; and we know (Art. 253) that by adding these 

m quotients together, the sum must be equal to the derived polynomial X', or 

-f-—3)R2-'"“^ . . . 4-T. 

The coefficients, therefore, of the powers of x, in this sum, must be equal to 

the coefficients of the same powers of af in the derived polynomial X', each to 

each. In this manner the required sums can be determined. 

Let us take, then, the quotient of X divided by x—a, 

a:ra-2_|_^2 .^m-3 _j_ ^^3 .Tm-4 . . . 4-<2^-1 

+ P -\-Pa , +P«' 4-Pa™-2 

+ Q -f-Q« 4- 

+ Il 4-Ila'"-^ 

' +T. 

In order to have the other quotients, it will be sufficient simply to substitute 

for a, in this expression, successively b, c, d, &c. If we add these quotients, 

and put Si, S2, S3, &c., instead of the sums a + 6 + C+ . .a'‘-^h'‘+c'‘+ .. 

we shall have 

ma:™“^-f-Si 

-j-wP 

S2 a:™-3 4_S3 ... 4“ Snj_i 
+ PSi 4-PsJ + PS„,- 
4" wiQ 4-QSi -f- QSm 

4" -|-RSm. 

j 4-wT. 

Hence, equating the coefficients of con-esponding terms in these identical 

expressions, we get 
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Si-f-wP = (m — 1)P» 

Si+PSi-[-mQ=(wi^2)Q, 

S3-|-PS,+QSi + 7?iIl = (m—3)R, 

Sm—1“1-PSm—2“h Q-^m—3 • • • • -T, 
. or, simplifying, 

Si + P = 0, . 

S.2-|-PSi-j-2Q=0, 

Sa-j-PSa-j-QSi-[-3li = 0, (2) 

Sm—i-}-PStn—2~l~Q,Sn,_3 . . . (wi — 1)T = 0. 

By means of these equations it will be easy to calculate successively Si, S^, 

S3, &c., and, finally, S^-i, i e., the sums of all the similar powers of the roots 

whose index is less than the degree of the equation. In order to determine 

the sums of the higher powers, expressed by S,n, S^+i, Sm+2} &c., we substi¬ 

tute successively a, b, c, .. . in equation (1), and thus obtain 

Pan.-: _^Q^m-2 _ _ _|.Ta+U = 0 

5m_|_p5m-l_j_Q^m-2 .... ^T6_|.U=b 

&C. - 1 

We multiply these m equalities respectively by a", 6", &c., and then add 

them; we thus obtain 

^in+n + P Sm+n—1 “h QS m-f-^—2 • • • • -fTS,+i+US„=0. 
AVe can make successively n=:0, 1, 2, &c., and thus determine Sm, Sm+i, 

we find 

Sm -j-PSm—i-j-QSni—2 • • • -f-TSi-}-XJSq = 0 

Sm+l-j-P-Sm -f-Q&m—• • -f-TSa-f-U Si Z= 0 (3) 

S,114-2-j-PSin_f.i ,-|-Q,Sni . . . -|-T83-!-1182 = 0 

In the first of these equations we can put in place of USq, mil, for So 

. . . =m; we shall thus find that these formulas follow the 

same law with those in (2). By means of the first of these we can determine 

Sni, and, passing successively to each of the succeeding formulas, we shall be 

able to determine each new sum by means,of the sums already calculated. 

It may be well to observe that all the sums. Si, S2, S3, &c., may be ex¬ 

pressed without any denominator in functions’of P, Q, R, &c. This results 

fi-om the fact that the first term in each of the relations (2) and (3) has unity 

for its coefficient. 

EXAMPLES. 

(1) For a numerical application take the equation —7x-]-7=0. Here 

P=0, Q=—7, R=7. Since P = 0, the relation Si-f-P=0 gives Si=0. 

The relations, then, which determine the sums Si, Sj,.. • Se, reduce them¬ 

selves to 

Si=0, S2+2Q=0, S3+3R = 0, 

S4-|-QS2=0, S5-1-QS3+RS2=0, S6-fQS4H-RS3=0; 

and, by substituting the values of Q and R, we readily find , 

Si = 0, 82=14, 83=—21, 8^=98, 85=—245, 86=833. 

(2) Calculate the sums of the similar and entire powers of the roots of the 

equation x*—x^—19.r2-|-49.r—30 = 0. 

Ans. Si = l, 82=39, 83=—89, 84=723, 85=—2849, 86=16419, &;c. 
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(3) = 

Ans. Si = 0, S.2=:0, 83=—3r, 84= — 45, 85=0, Sg^Sr?. 

358. In the equation 8m4.n+PSm4.n_i-|-Q8m+^_2-4-T8n+i4-U8„=0, 

n can be a negative number, and thus the sums of the negative powers of the 

roots can be determined. But it will be more simple to change x into - in 

the proposed equation, and to find successively, by means of formulas (2) and 

" (3), the sums of the positive powers of the roots of the transformed equation. 

It is evident that these powers are the negative powers of u, 6, c, .. .. 

359. To determine double, triple, /imdzows, represented by 8(a“i^), 

8(a“6V), &6. 

In order to find S{a%^) we multiply together the two sums 

-=8a, 

we have 

. S„S/j=a“+'’+i“+'’,+ c“+'’4-- 

+ a“6'’+a“c'’+5“/• 

This product contains two series of terms. The first series is the sum of all 

the powers of the roots, and may be expressed by Sa-{-p ; the second 

series is the sum of all the products which are formed by multiplying the 

power a of any root whatsoever by the power (3 of any other root, and may 

be expressed by S{a^b0). We have, then, 

Sa+i}+S(a%l^) = SaSi3; 

and from this equation we derive, for double functions, the formula 

S(a»t'’) = S„S/;-S„+/j. 

To find the triple function S(a%^c^), multiply together the three sums 

a'’4.6“ + c“ + ... = S„ 

d/ . . .=l8y. 

The product is a symmetric function, which evidently comprises all the 

terms contained in each of the five forms 

a’'+h\ ; 

Bence we have 

S<.+/3+r+S{«“+V) + S(«‘‘+>'6‘') ^ „ 

+ 8(a^+^&“) + 8(a“6V) \ ^ 

But the formula for double functions gives 

S(a''+V) = Sa+(,S, - S„+p+y, 

S(a“'*'’'i'^) = Sa+,.S/;—Sc+^+y, _ 

S{J+H'‘) = S0+,Sa-Sa+ll+y. 

By substituting these values in the preceding equality, and then deriving 

from this equality the value of S{a^b^c^), we obtain for triple functions the 

formula 

Sia^b^C^) = S„ SfiSy - S,+nSy - Sa+yS0 - Sg+ySa + 2S„+l,+y. 

In the same manner might the quadmple function S{a%^c^(r), or the sum 

•of any succeeding combinations, be expressed by the sums of the'powers. 
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360. Every rational and symmetric algebraic function of the roots of an 

equation can he e.rpressed '^rationally by the coefficients of that equation. 

Since Si, S.2, S3, &c., can be expressed without denominators (Art. 357) in 

functions of the coefficients of the proposed equation, and the double, triple, 

quadruple, &c., functions can be expressed by the sums of the powers, it fol¬ 

lows that all these symmetrical functions can be expressed by integral func¬ 

tions of the coefficients. And as every symmetrical polynomial in a, b, c... 

must be composed of the assemblage, by addition or subtraction, of several 

symmetric functions of the form S{a"'b^c^d^ ...), it follows that the value of 

every rational symmetric function whatever of the roots of an equation (with¬ 

out the roots being known) can be expressed by the coefficients of the equa¬ 

tion. 

USE OF SYMMETRIC FUNCTIONS IN THE TRANSFORMATION OF EOUA- 
TIONS. 

361. Symmetric functions present themselves in the ti’ansformation of 

equations, whenever the roots of the transformed equation must be rational 

functions of the roots of the given equation. 

Let a, 6, c ... be the roots of the given equation; for the sake of definite¬ 

ness, I suppose that two of its roots enter into the composition of each root 

of the transformed equation, and I represent by F(a, b) the rational function 

which expresses the law of this composition. 

Suppose that, after we have made all these’combinations, two and two, of 

a, b, c . . . we put successively in F(a, b) instead of a and 6, the two roots of 

each arrangement, it is clear that we shall thus have all the roots of the trans¬ 

formed equation, to wit: 

F(a, 6), F(a, c), . . . . , F(6, a), F{b, c) . . . . &c. 

Consequently, this equation, decomposed into factors, will be 

[z—F((2, b)] [z—F(a, c)] . . . . =0i 

This product does not vary in making between a, b, c . . . . the proposed ex¬ 

change ; for, if we make the change, the factors can only place themselves in 

some other order. We are sure, then, that, after the multiplication, the co¬ 

efficients of the diflferent powers of z will be symmetiac and rational functions 

of a, b, c . . . 

Thus, by following the method of procedure hitherto explained, we can 

express these coefficients by means of those of the proposed equation. 

362. But there exists another method, often preferable, of employing sym¬ 

metric functions. 

It is founded on the observation that the relations [2] and [3] in Art. 357, 

existing between the coefficients of an equation and the sums of the similar 

powers of its roots, can be used to discover the coefficients of the equation 

when they are unknown, provided we know these sums as far as that sum of 

the powers whose order is equal to the number of unknown coefficients, i. e., 

to the degree of the equation. 

Hence, to arrive at the transformed equation, we determine, first, of what 

degree this equation is to be. We next find the sums of the first, second, &c., 

powers of its roots, as far as the sum of the powers whose order is equal to 

the degi’ee of this transformed equation; then, by means of these sums, we 

calculate the unknown coefficients. It is clear that these diflferent sums ai’e 
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symmetric functions of the roots of the proposed equation, and that they can 

be expressed by the coefficients of this equation. Hence they can readily be 

determined. 

363. As an illustration of the preceding method, I will resume here the 

question of the equation of the squares of the differences, already treated of 

in Art. 278. Symmetric functions give the most simple and elegant solution 

of which it is susceptible. The question is this : 

To find the equation whose roots are the squares of the differences of the 

roots of a given equation, 

. . . = 0 ........ [A] 

Represent the transformed equation by 

The m roots of [A] being a, h, c . . . those of [B] will be 

(a — bf, (a—cfi, (a—df, . . . (b—c)?, . . . (b—dfi, (c—dfi, . . . Arc. 

The number of these squares is evidently that of the combinations, two and 

two, that can be made with the m quantities, a, b, c . . . ; hence the degree of 

the required transformed equation will be n=\m{m — 1). 

The coefficients p, q,r . . . may easily be found when we know the sums 

of the similar and entire powers of the roots of equation [B] ; since the sum 

of the first powers is equal to that of the n'-^^ powers. Let us designate these 

new sums, then, by fufjfn A:c., and find the general value offa, a being any 

entire and positive number whatsoever. ( 

The roots of the equation [B] are, as has already been stated, (a — bf, &c. 

Raising these foots, then, to the power a, we have 

/« = (« —4-— . . . -f(&_c)2«4-, &c. 

In order to find this sum, consider the expression 

(}x[x) = {x—ay^-\-{x—bY^-\-{x—• • • • 

which contains the m binomials x — a, x—b, x—c. If we make in this 

expression successively x=a, b, c, . . ., and add the m results, we evidently 

obtain 

+ • • • 

If we develop the powers which compose (l>{x), we find 

2a(2a —1) 
—.2aax-^~^ 4- \ ^ 

'1.2 ‘ 

2a(2a — 1) 
2a—1 I __i 52^2a-2_|. 52a 

^ "i"» Acc., 

or, more simply, by using the notation Si, S2, &;c., 

2a(2a—1) 
^{x)=zmx^'^ — 2aSi2’2“ ^4“—^—7,— s . . . 4-S2a‘ 

Substituting u, 6, c ... in this expression instead of x, and adding the re¬ 

sults, we obtain 
2fi(2a—1) 

2/^=75iS2a—2eSiS2a_i4' S2S2a—2 • • • “l“^S2a* X • /W 

In this second member it will be perceived that the terms at an equal dis¬ 

tance from the extremes are equal; consequently, stopping at the middle terra 

of the expression, and taking only the half of that term, we have the general 

va'’ue of fa, to wit. 
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,2a(2a-l)(2a-2)...(.+ l)^ 

^2 1.2.3 . . a 

As the signs are alternately -j- and —, there will never be any uncertainty 

as regards this last term. Let us view, then, the operations which must be 

performed. 

1°. We calculate the sums Si, Sj, S3., up to S^a by means of the known 

relations Si-}-Pzr:0, S.24-PSi + 2Q=0, &c. 

2°. In the formula which expresses we make successively ar=l, 2, 3, 

..n, and we thus have, to determine the n sums 

7,=mS.2—SiSi,/o=m.S4—4S1S3+3S.2S2, &c. 

3°. Finally, the relations existing between these n sums and the n coeffi 

cients q, r, ... will give the values of these coefficients, viz., 

9———5(73+2^/2+71)’ 
364. A method entirely analogous to that which has been employed in find 

mg the equation of the squares of the differences can be employed in a great 

number of cases, and particularly in those where the roots of the transformed 

equation are similar, and entire powers of the difference, of the sum, of the 

product, or of the quotient of any two roots whatsoever of the given equation. 

For example, suppose that each new root is to be the power k of the sum 

a+6 of two roots of equation [A]. Taking nz=\m{m — 1), the transformed 

equation ought to have the form 

2"+jp2“~^+g2"~^+ . .. +f2 + W = 0 . . . i . [CJ 

and if we make 

/«=(«+&)'‘“+(«+c)'‘“+ * • • +(6+7^*+’ 
the calculation will reduce itself to expressing/^ by a general formula. To 

do this, we take the function 

^(a:) = (.r+a)’‘“ + (.r+ &)''®+ (.r+c)'‘“+, &:c., 

the development of which is 

(l){x)=nix^‘^-\-kaSiX^^~^-\--——•^823:’^““^+ .. . + Ska. 
'' X • /W 

But if, before the development, we substitute in (p{x) successively a, 6, c, 

.. ., instead of .r, the sum of the resultants will be equal to 2/a + 2''“Ska; 

hence it is easy to perceive that by making the same substitutions in the 

development, we shall have ^ - 

Finally, we derive from this equation the required formula, 

/a=(m — 2’‘“~^)S]ja + ^taSiSka_i + — - ^S2Ska_2+, &c. 

When ka is even, we stop at the term which contains S with two equal in¬ 

dices, and we take only the half of it; but when ka is uneven, we stop at the 

term in which the two indices are \{ka—1) and 4(2:a+l), and we take the 

entire term. 

aUADRATIC FACTORS OF EQUATIONS. 

365. Every equation of an even degree has at least one real quadratic factor. 

Let the proposed equation be 

E £ 
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2^ ... -|-pQ=0, having roots a, h, c, &c., and let nz=2ji, fi 

being an odd number. Let it be transformed (Art. 362) into an equation 

whose roots are the combinations of every two of its roots, of the form y = ci 

~{-h-\-mab, m being any number; also, let the transformed equation be 

0m(2/) = O; then its coefficients will be symmetrical functions of a, h, c, &c., 

and, therefore, rational and known functions of pi, ps? &c.; and its degree will 

— 1) 
be---, which is odd; therefore, = 0 will have at least one real root. 

whatever be the value of m. Hence, making m=l, 2, 3, . .. 5/“(2/W —1) + ! 

successively, each of the equations 0i(y) = O, 02(3/) = 0, &c., will have at least 

one real root; that is, we shall have /z(2/z—1) + 1 real values for combinations 

of two roots of the proposed equation, of the form a-{-h-^mah ; but there are 

only |u(2/z—1) such combinations which are differently composed of the roots 

a, h, c, &c.; therefore, two of these combinations, for which we have obtain¬ 

ed real values, must involve the same pair of the quantities a, &, c, &c.; let 

this pair of roots be a, h, and a, a', the real roots of the corresponding equa¬ 

tions (l>^{y)—0, i^ni/(y) = 0, so that ‘ 

a-{-h-\-7nah=:a, a-\-b-\-m'ah=ia'; 

therefore, a-\-b and ab are real, and the proposed equation has at least one 

real quadratic factor, and two roots, either real, or of the form adz id-/ —!• 

Hence every equation whose degree is only once divisible by 2 has at least 

one real quadratic factor. 

We shall now prove that if it be true that every equation has at least one 

real quadratic factor when its degree is r times divisible by 2, or when n =2'^u, 

where [i is odd, the same is true when the degi’ee of the equation is r-f-1 

times divisible by 2. For, let ^ = 2'“+^; then the degree of the transformed 

equation will be 2p(2''+i// — 1), which is only r times divisible by 2 ; therefore, 

by supposition, the transformed equation, (bjJ^y) — 0, will have two roots, either 

real or imaginary. If they are real, then, exactly in the same way as for the 

preceding case of the index being only once divisible by 2, it may be shown 

that tlie proposed equation has at least one real quadratic factor. If they are 

imaginary, we shall have —l, each of which expresses the value 

of some one of the combinations a-\-b-\‘mab, u-j-c-j-wiac, &c. Suppose, 

therefore, that we have 'a-\-b-\-mab — aJ^(i —1; then, as shown above, we 

can give m such a value m', that (j)^,{y)z=0 shall have a root coiTesponding to 

the combination of the same letters, so that a-\-b-\-m'ab = a'■—1; from 

which equations we can obtain values of ab and a-\-b under the forms 

a-\-b = y -|-(5 V—1, 

ab = Y-\-6' ^ 

—1 is a factor of/(.T) ; 

but if any real expression have a factor of the foiin M + N •/ —1, it must also 

have one of the form M—N ■\/ — 1; 

— (7 — (5 V —— (5' —1 is a factor of/(,r); 

if, therefore, these two expressions have no simple factor in common, their 

product will be a biquadratic factor of/(,r), 

(a:^ — yx + 7' )^ + ( 

which can always be resolved into two real quadratic factors. (See solution 

of Biquadratics.) If they have a factor in common, since they may be written 
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.t'2—yx-\-y'~ —l((5.r—(5'), —yx-^y'-\- ^—l(f5.r—3'), 

it can only be of the form x—e; and the factors themselves become 

{x — /c-[-A —l)(a: — e), (.r — k—A V —; 

and, therefore, the proposed equation admits the real quadratic factor 

{x-Ky+r^. 

tience an equation whose degree =2''+^ will have a real quadratic factor, 

provided an equation whose degi-ee —2'^fi has one ; but we have proved this 

to be the case when r = l ; therefore it is universally ti’ue that every equa¬ 

tion of an even degree has at least one real quadratic factor. If now this fac¬ 

tor be expelled, the depressed equation will have its coefficients real and its 

degree even, and will, therefore, as before, have one real quadratic factor. 

Hence the first member of every equation of an even degree may be resolved 

into real quadratic factors. 

366. Hence if we divide the first meniber of any equation 

x'^-\-piX^~^-\-p2X^~^-\- . . . •4-Pn = 0 

by x^-{-ax-\-h, admitting no terms into the quotient that have x in the de¬ 

nominator, we shall at last obtain a remainder of the form Aa:-|-B, A and B 

being rational functions of a and h ; and in order that ax-{-h may be a 

quadratic factor of the proposed equation, it is necessaiy and sufficient that 

this remainder should equal zero for all values of x, which requires that we 

separately have A=0, B=0. The different pairs of values, real or imaginaiy^ 

of a and h which satisfy these equations will give all the quadratic factors of 

the proposed; and as the number of these factors is ln{n — 1) (Art. 244, Cor. 

2), the final equation for determining one of the quantities «, 6, obtained by 

eliminating the other between the two preceding equations, will be of the 

degree ■^n{n — 1), which exceeds n, if n^3 ; therefore, the determination of 

the quadratic factors of an equation will generally present greater difficulties 

than the solution of the equation. 

As the proposed equation has necessarily or \{n — 1) real quadratic fac¬ 

tors, according as n is even or odd, there will always exist the same number 

of pairs of real values of a and &, satisfying the equations A = 0, B = 0 ; and 

if any of these pairs of real values be commensurable, they may be easily 

found; and the commensurable quadratic factors being known, the equation 

may be depressed. 

EXAMPLES. 

(1) To resolve x^—Qx'^-ynx—3=0 into its factors. Dividing by x'^-\-ax-\‘h, 

we find a remainder, 

{n^2ab-\-Qa—a^)x—[a^h — ¥ — Ql>-{-2)\ 

therefore, to determine a and 6, we have 

n-{-2ah-\-Qa — a^=0, 
fl25_^2_05_|_3_o. 

Solving the former with respect to 6, and substituting in the latter, we find 

I 
— 4)^ = w"—64, or a = \/4-j-—64; from whence 6, and the other 

quadratic factor, 

x^—a.r-|- — h—6, 

may be determined. 
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(2) The resolution of +5 into its two quadratic factors, 

j!^-\-mx-\-n^ x^^-^-m'x-^-Uy may be effected by the following formulae : 
* . 
m=|(p+ Vz), m'z=l{p— ^z), 

r — r — qnV 
•— pr , ^ i ^7 "/ , 

p—2m ' p—2m 

where z is a root of the equation, 

23 _ (3p2 _ 8^)22 _j_ (3^4 _ 16p2^ _j_ 10'^2_j_ _ 645)z _ (8f—=0, 

wdiich has necessarily a real root. 

ELIMINATION BY SYMMETRIC FUNCTIONS. 
/ 

367. Symmetric functions furnish a method of elimination which has the 

advantage of making known the degree of the final equation. 

Let the two equations be 

= 0.(1) 
a:" P -f" .^.=0.(2) 

m which P, Q..., P', Q'... are functions of y. If we could resolve (1) witn 

respect to x, we would derive from it m values, a, &, c..., of ar, which would 

be functions of y; and, by substituting these values of x in equation (2), we 

would have, for determining the values of y, in equations free from a:, viz., 

Z,n_|_p^6“-^+Q'6"-2+R'6"-L.. = 0 ( . . .'. (3) 

c"+P'c"-i + Q'c"-2-f R'c“-L.. = 0 S 
, &c. &c. 

But, in general, the resolution of equation (1) is impossible, and the prob¬ 

lem is to obtain a final equation which embraces all the values of y without 

distinction. 

We shall have an equation which will fulfill this condition-by multiplying 

logether the m equations (3), for the resulting equation will be satisfied by 

each value of y derived from any one of them, and it can not be satisfied in 

any other way. But the factors of this resultant can only change places, 

whatever permutations we may malie between the quantities a, b, c the 

product, then, will only contain entire and rational symmetric functions of 

these quantities ; hence we shall be able to express these factors by means 

of the coefficients of equation (1), and in this way we shall have the final equa¬ 

tion in y. 

This method of elimination leads, in general, to very tedious calculations , 

but it has the advantage of giving a final equation containing all the roots that 

it ought to embrace, without any complication of foreign roots. 

368. This method has also the advantage of leading to a general theorem 

with respect to the degree of the final equation. In the preceding article the 

first equation is of the degi'ee m, the second of the degree n, and P, Q.. ., P', 

Q'... are any functions whatsoever of y ; but, for the theorem in question, 

these functions must evidently be polynomes, such that the sum of the ex¬ 

ponents of X and y shall be, at most, equal to m in each term of equation (1), 

and, at most, equal to n in each term of equation (2). We have, then, to de¬ 

termine to what degree y can be raised in the symmetric functions which 

compose the product of equations (3). ' * 

Each term of this product is the product of m terms taken respectively from 
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the m equations (3); hence, designating these terms by Y(z“, Y'i^, Y"c^, the 

term of the product will be YY'Y"... ... ^But the product of these m 

equations being symmetric with respect to the quantities a, h, c..., all the 

terms should have the same form with the one that we have given above ; 

consequently, we know that the product embraces all the terms represent¬ 

ed by 

- YY'Y"...xS{a“i'^c>'...) ..(4) 

We have now to determine the degree of y in this expression. Observing 

that the degree of y in Y is, at most, equal to n—o, in Y' to n—/3, in Y'' to 

n—7, (fee., we shall readily see that in YY'Y"... its degree will be, at most, 

equal to mn—a—jS—7.... On the other hand, if we refer back to the rela¬ 

tions (Art. 356) from which the sums Si, S2, S3, &c., are derived, we shall 

see that, P being, at most, of the first degree in y, Q of the second, R of the 

third, and so on, the degree of y in these sums can not surpass the subscript 

number of S ; and, in like manner, if we refer (Art. 359) to the formulas 

which express double, triple, &c., functions, we shall perceive that, in 

S{a^h^c^.,the degree of y can not surpass 0+/3+7*** Hence in expres¬ 

sion (4) the degree of y will be, at most, equal to mn. 

The same remark will apply to all the symmetric functions whose sum 

composes the yjroduct of the m equations (3); therefore, lastly, the final equa¬ 

tion can not he of a degree superior to mn. 

The demonstration seems to require that equation (1)contain m. But we 

can suppose that at first x"' had a coefficient, A, independent of y, and that we 

have divided the whole equation by A. The final equation ought to subsist, 

whatever may be the value of A ; we can make A = 0, and it is evident that 

this supposition will not raise the degree of the final equation. Finally, the 

theorem is to be thus understood : that the elimination between two general 

equations, the one of the degree ?n, the other of the degree n, ought to give a 

final equation of the degree mn ; but that, in particular cases, the degree of 

the final equation can be less than mn. 

EXAMPLES. 

The two equations, x—y™ = 0, x^-{-ay'^-\-by-\-c=0, although veiy simple, 

will give a final equation fully of the degree mn; for, by substituting in the 

second the/value of x derived from the first, it becomes y'^'^-\-ay''-\-by-\-c=.0. 

On the other hand, in eliminating x. between the equations x'^—y^rziO, 

.r“-}-ay"-|-6y-|-c=0, we obtain a final equation of a degree less than mn, viz., 

y'^-[-ay'^-\-by-\-c = 0. 

369. For extending the theorem to any number whatsoever of equations, 

we have the general theorem given by Bezout, viz., that Ifi, between equations 

equal in number to that of the unknowns, we eliminate all the unknowns, except 

one, the degree of the final equation will h e, at most, equal to the produet of the 

degrees of these equations. 

Before Bezout, the theorem had been known for the case of two equations; 

and Cramer, in the appendix to his Introduction to the Analysis of Right 

Lines, has given a very simple demonstration, which, in reality, does not difier 

from that which we have stated. It has been a desideratum that the same 

demonstration should be capable of being applied to all other cases; this has 

been accomplished by Poisson, in a memoir which appeared in the eleventh 

volume of the Journal de VjEcole Poly technique. 
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METHOD OP TSCHIRNHAUSEN FOR SOLVING EaUATIONS. 

375* As another application of the theory of elimination, we shall briefly 

illustrate the principle upon which Tschirnhausen proposed to accomplish the 

general solution of equations, but which, as observed at Art. 277, was soon 

found to be of but very limited application, not extending beyond equations of 

the fourth degree ; and, even within this extent, too laborious for general use. 

The principle consists in connecting with the proposed an auxiliary equation 

of inferior degree with undetermined coefficients, and of as simple a form as 

possible consistently with the office it is to perform, but involving, besides the 

unknown quantity x, a second unknown y. The unknown, common to both 

equations, is then eliminated according to the method at Art. 315, and a final 

equation in y thus obtained, of which the coefficients are functions of the un¬ 

determined coefficients in the auxiliary equation. The arbitrary quantities, 

thus entering the coefficients of the final equation in y, are then determined 

so as to cause certain of these coefficients to vanish ; by which means the 

equation is ultimately reduced to a prescribed form, supposed to be solvable by 

known methods. 

371. As an example, let it be required to reduce the cubic equation 

x^-\-ax’^-\-hx-\-‘c—Q .(1) 

to the binomial form 

2/=+7£==0. 

-\ssume an auxiliary equation 

x--\-a'x-\-h' -[-y^Q.(2) 

and eliminate x from (1) and (2) in the usual way. The remainder arising 

from dividing the first member of (1) by the first member of (2) is 

—aa'-\-h—6'—2/)-'^'+ + 

which, equated to zero, gives - 

{a—a'){h'-\-y)—c , 

^ a'2—aa'-\-h — h' —y ’ 

and this value of x, substituted in the proposed equation, transforms it, after 

reduction, into the form 

.(3) 
where 

h = 3h'—aa'-^a^—2b 

i=3b'^—2b'{aa'—a'^-{-2h)-{-a'^b 

-j- (3c—ah)a'-{-h'^—2ac 

k = h'^ — ah'^a' bh'a'^—ca'^ + —26) 

(3c—ah)a'b'-{-aca'^-\- (6^—2ac)b' — bca'-^-c"^. '' 

Hence, in order to reduce (3) to the prescribed form, we must determine 

the arbiti'ary quantities a', 6' conformably to the conditions 6 = 0, i = 0 ; that 

is, these quantities must satisfy the equations 

3b' — aa'-\-a‘^—2b = 0 

^ 36'2_26'(ua' —a2-}-26)4-a'26-j- 

(3c—ab)a'-\-b'^ — 2ac = 0, 

of which the first is of the first degree with respect to a' and 6', and the other 

of the second degree, so that their values may be determined by a quadratic 

equation. And these values, or, rather, the expression for them in terms of 

{ 
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the given coefficients, being substituted in the preceding expression for k, ren 

der that symbol known ; and thus the required form 

y^-\-k = 0 

is obtained. 

372. In a similar manner may the general equation of the fourth degree 

be transformed into one of the form 

which is virtually a quadratic, by eliminating x from the pair of equations 

X'^ <22’^-{- hx^= 0, 

x^-\-a'x-\-})' -\-y = ^, 

which elimination will conduct to a final equation in y of the form 

from which the second and fourth terms will vanish by the equations of con¬ 

dition 
. ^ = 0, 2 = 0, 

the first of which will be of the first degree as regards the arbitrary quantities 

<z', 6', and the second of the third ; both quantities are, therefore, determina 

ble by means of an equation of the third degree, and thence the quantities 

h, k, which are known functions of them. 

All this is very laborious, but it really does effect the object proposed thus 

far; that is, it reduces the solution of equations of the third and fourth de 

grees to those of inferior degrees ; but beyond this point the method fails, as 

the conditional equations resolve themselves ultimately into a final equation 

that exceeds in degree that which they are intended to simplify. 

On this subject we may add that Mr. Jerrard has greatly extended the prin¬ 

ciple of Tschirnhausen, and has succeeded in reducing the general equation 

of the fifth degree 

2® 4- A4.r^ A^x^ -f AzX^ -j- +N=0 
to the remarkably simple forms 

3^-\-ax^-\-b = 0 

x^-\-ar^-\-h = 0 

x^ax^-\-h =.0 

x^-\-ax -|-5 = 0; 

so that the solution of the general equation of the fifth degree might be con¬ 

sidered as accomplished if either of the above forms could be solved in general 

terms. 

For a very masterly analysis of Mr. Jeirard’s researches, the reader is re¬ 

ferred to the paper of Sir W. R. Hamilton in the Report of the sixth meet¬ 

ing of the British Association. 

METHOD OF LAGRANGE FOR SOLVING EGUATIONS. 

373. A remarkable application of the theory of symmetrical functions is that 

made by Lagrange to the general solution of equations ; by that means he 

solves the general equations of the first four degrees by a uniform process, 

and one which includes all others that have been proposed for that purpose, 

the common relation of which to one another is thus made apparent. 

It consists in employing an auxiliary equation, called a reducing equation, 

whose root is of the form 
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3*1 —O.Tj—j— ... CZ" ^.Tn» 

denoting by .Ti, the n roots of the proposed equation, and by a one of 

the n'-^ roots of unity ; and the principle on which it is based is as follows: 

Let 2/ be the unknown quantity in the reducing equation, and let 

y-=:a^X\-\-a^Xi-\- . . . 

ai, Gg, .. . Gn denoting certain constant quantities ; then, if — 1 values of y, 

and suitable values of the constants Gj, g^, . . . can be found, so that we may 

have n — 1 simple equations, these, together with the equation 

- 

will enable us to determine the n roots. 

Now, supposing the constants in the value of y to preserve an invariable 

order, Gi, Gg, &c., since the number of ways in which the n roots may be com¬ 

bined with them to form the expression ai.ri-|-a.2.r.2-|-5 &c., is the same as the 

number of permutations 'of n things taken all together ; therefore, the expres¬ 

sion for y will have n{n — 1).. . 3.2.1 values, and the equation for detei-mining 

y will rise to the same number of dimensions, or will be of a degree higher 

than that of the proposed equation ; hence the method will be of no use, un¬ 

less such values can be assumed for the constants a^j Gg, . . . Gn as shall make 

the solution of the equatfon in y depend upon that of an equation, at most, of 

n — 1 dimensions. Now this may be done (at least when n does not exceed 

4)'by taking the roots of unity a^, a, o^, . . . g"“^ for Gj, Gg,'... a„, so that 

y izir G®Xi —j—GXg—... G*^ ^ o'^.Tr+i —j~ ... —J—G"^ 

For, in the first place, with this assumption, the reducing equation will 

contain only powers of y which are multiples of n; for, since 0" = !, 

G"-‘'y = G"-’‘a:i-j-a"-''+Lg-{- . .. -j-.rr+i + G.Tr^g-f . . . -|_g"-'^-X, 

or G"~^y = G0rr^]-{-G.rr^2-[- . .. -j-a"-brr, 

wliich is the sarnie tesult as if we had interchanged .ri and arg and 

&;c., so that if y be a root of the reducing equation, G’’“';y is also a root; there¬ 

fore, the reducing equation, since it remains unaltered when G"-''y is written 

for y, contains only powers of y which are multiples of n; if, therefore, we 

make y"'=-Z-> we shall have a reducing equation in 2: of only 1.2.3 ... («— 1 

dimensions, whose roots will be the different values of 2: which result from 

the permutations of the n — 1 roots arg, x^,.. . Xn among themselves. We shall 

now have, expanding and reducing, 

Z ^^y" M^G —J—'UgG^-j— ... —W'n h 

in which Wqi Wi, Wg, . . . Wn—1 are determinate functions of the roots, which will 

be invariable for the simultaneous changes of Xi into aTrq-i, a-g into a’r+g, &c., 

since z — [a^yY ; and when their values are known in terms of the coefficients 

of the proposed equation, we shall immediately know the values of the, roots. 

For let 2o, Zi, Zg, . . . Zn_i be the different values of z, when 1, g, /3, y, ... Pi,, 

the roots of y" —1=0, are substituted for a; then, since y= ^z, we have 

X\-\-x^-\- . . . -|-a’n= V2^0 

a^i-faz’g-j- . . . -f-G"-kr„= Vzi 

... -f-P." ^Xn— 1 ? 

therefore, adding, and taking account of the properties of the sums of the 

powers^pf 1, G, 8, 7, &c., (Art. 357, [2]), we got V 
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nxi—V^o-i"V^i"l“ ••• "1“ V^n—1* 

Again, multiplying the above system of equations respectively by 1, 

we get 

11X2=^Zq-\-^ Zi-\-Z2-\- ••• -j-^" ^ ^Zn_i, 

and so on for the rest. Hence, since —pi='\/zo, and (—piY=:Zo=U() 

+ Wi-j- ... -|-Wn—n the problem is reduced to finding the values of Ui, u.j,... Wn-i* 

374. When w is a composite number, the above general method admits of 

simplifications. For let n have a divisor m, so that n=mp, and let a be a root 

of y'" — lr=0; then, since a™=l, a"’+^=<z^ &;c., 

&c., we have 

2/=ri-l-aa:2 + a"r3+ . . . 

. . . -{-a™~^Xn„ 
' J 

where Xr=a:r-|-2m^r4--'^2m+r+ • • • +3:11—m+n and consists of^ roots; 

.‘. Z Wg—^ • < . —Wjn_lO™ 

where Uq, Wi, &c., are known functions of Xi^ X2, &c.; and when they are 

found in terms of the coefficients of the proposed equation, we shall be able to 

determine immediately the values of Xi, X2, &c., as before. To deduce the 

values of the primitive roots X], x.j, x^, . . . x^, we must regai-d separately those 

which compose each of the quantities X], Xi, &c., as the roots of an equa¬ 

tion of p dimensions. Thus, let the roots whose sum is Xi be those of the 

equation 

a:P—XiXP-i-f L.rP-2 — M2:P-3 + . . . = 0, 

where L, M, &c., are unknown ; then the first member of this equation is a 

divisor of the first member of the proposed, since all its roots belong to the 

latter. Hence, effecting the division and equating to zero the coefficients of 

2P“h .rP“2, &c., in the remainder, we shall have p equations in Xi, L, M, &c., 

of which the first p — 1 will give the values of L, M, &c., in terms of Xj by 

linear equations. It will then remain to solve the equation so formed of p 

dimensions. Similarly, substituting the value of X2 in place of that of Xi, we 

shall have an equation giving the next group of roots .T2, &;c.; and so on 

EXAMPLE I. 

—px'^-\-qx—r=0. 

Let the roots be a, h, c, and let 

y=a-{-ah-\-a'^c ; 

*^0 “1“ • 

But Wi, U2 are roots of the quadratic 

and wi-|-W3=32(^26)r=:3pg — 9r (Arts. 357, 359), 

= ^q^-\-^{p'^—^pq)T-^Qlr’^- 

Hence %, are known, 

and Uo:=p^ — (wj_j_w,^), is known. 

Hence, denoting by Zj, Z2, the values of z when a and are respectivefj 

written for a, we have 
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a-\-h-\-c='p 

a-\-a 6-|-a2c= y 

a-yoP'h-ya c= y ' 

from which we obtain the values of «, 6, and c, viz., 

V _ 

c ^ V 21 + ^2:2)• 

EXAMPLE II. 

ar*—px^-\-qx^—ra:-{-s = 0. 

Since 4=2.2, let a be a root of 3/^—1 = 0, so that a2=l; 

then 2/^1 ~1~ ojr4=XiflXj, 

if Xi -|-a?3, X2=2^2“1"^4? 

••. z=.y'^=.UQ-\-aui 
2 2 

where Wo=X^ + X2» 2^i=2XiX2, and Wo4’^i=2o=p^. ' 

Hence Wi=2(a:i-|-.r3)(a:2+2^4)» by interchanging the roots among themselves, 

will admit the two other values 2(.Ti-|-a:2)(a:3+‘'^^4)i and 2(.ri4-^4)(^2+3:3), and 

will, therefore, be a root of an equation of the form 

— Mw^-j-Nwi—P = 0 ; 

the coefficients being symmetrical functions of Xi, x^-, X3, x^, and, consequently, 

assignable in terms of_p, q, r, s. It is easily seen that if we make Ui=z2q—2uj 

we shall have-an equation in u whose roots are 

3:13:3+2:2.2:4, XiX^-yxsX^, 3:13-4+3:23:3; 

and the transformed equation is (Art. 3G2) 

—qu^-]-{pr—4s) w — {p^—4^)s—r2=0. 

Let u' be a root of this equation, then Ui=z2q — 2u'; hence, making 

a——1, Zi=Wo —Wi=^^ —2wi=+2 — 4g+42^' • 

.-. Xi+X2=^Xi-X2= 

.-. Xi=l(_p+ +ri), X3=+^— 

Hence 3:1, x^ may be regarded as roots of a quadratic —Xia:+L=0; 

dividing the proposed by this, and putting the first term of the remainder equal 

to zero, we find 

, xf-i,X“+9X.-r 

2X,—’ 

therefore, x^, x^ are known; and X2, x^ will result from the same formulas 

by interchanging Xj and X2, or by changing the sign of the radical yz^, 

' EXAMPLE III. 

a:" — 1 
——= n being a prime number. 

If r be one of the roots, and a be a primitive root of the prime number n 

(that is, a number whose several powers from 1 to n — 1, when divided by w, 

leave different remainders), it will be proved hereafter that all the roots of 

this equaition may be represented by 

r, r«, r«2, r«^, ... ?-an-2^ 

2/=r+ar« + aVa2+ . .. + 27-an—s. Let 
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a being a root of the equation 1/““^—1=0. Therefore, observing that a"~^ = l 

andr" = l, 

z=2/“~^=Wo+ “^^2+ • • •••••(!) 

Uq, Wj, &c., being rational and integral functions of r which do not change i>y 

the substitution of r^, r^'^, &c., in the place of r; for these quantities, re¬ 

garded as functions of a:i, x^-, ^3, &c., do not alter by the simultaneous changes 

of .Tj into X2, X2 into x^-, &c., nor by the simultaneous changes of x^ into 0:3, 

X2 into .r4, &c., to which correspond the changes of r into r«, into r«^, &c. 

Now every rational and integral function of r, in which r”=l may be re¬ 

duced to the form 

A-{-Br-f-Cr^-j-Dr^-f- ... -|-Nr“~h 

the coefficients A, B, C, ... N being given quantities independent of r; or,' 

since in this case the powers r, r®, may be represented, although 

in a different order, by r, r«, ra^, . .. we may reduce every rational 

function of r to the form 

A-j-Br-f^Cra-|-Dra2-|- ... 

Therefore, if this function is such that it remains unaltered when r is 

changed into r®, it follows that the new form 

A-j-Bra-f-Cra^-j-Dra^-j-.. .-}-Nr, 
> 

coincides with the preceding; 

B = C, C=D, D=E, &c., N=B, 

and therefore the function is reduced to the form , 

A-f-B(r-j-ra-}-ra2-j- ... -f-ra"-2^^ qj. 

since the sum of the roots =—1; hence each of the quantities Uq, Ui, U2, 

&c., will be of the form A—B, and its value will be found by the actual de¬ 

velopment of 2=7/"“^; so that we have the case where the values of Uq, Ui, U2, 

Ac., are known immediately, without depending upon the solution of any 

equation. Hence, if we denote by 1, a, /3, y, &c., the n — 1 roots of the equa¬ 

tion —1 = 0, and by Zq, Zi, Z2, Ac., the value of 2 answering to the substi¬ 

tution of these roots in the place of a in equation (1), we shall have, as in the 

former cases, 
\ 

-y/2o-|-° V^2-{- • » « 4"” V^n—1 

. n—1 

an expression for one of die roots of the equation a:"—1 = 0; and the other 

roots are r^, Ac. 

Thus, the solution of x°—1=0 is reduced to that of the inferior equation 

—1 = 0, of which 1, a, jS, y, Ac., are the roots ; also, since n — 1 is a com¬ 

posite number, the determination of a, /?, y, Ac., will not require the solution 

of an equation of a higher degree than the greatest prime number in n — 1; 

that is, the solution of —1=0 {n prime) may be made to depend upon the 

solution of equations whose degrees do not exceed the greatest prime number, 

which is a divisor of w — 1. 

EXAMPLE IV. 

.r5_i = 0. 

The least primitive root of 5 is 2; for the powers of 2 from 1 to 4, when 

divided by 5, leave remainders 2, 4, 3, 1 ; 
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also 0^=1, r‘5 = l, and —1; 

.•. z=y'^=—l-j-4a-j-14a2 — 16a®. 

But the four roots of y‘^ —1=0 are 

1, -1, V^'l, 

Zq — I, Zi = 25, Z2= —15-f-20 ^/ —1, 

23= —15 —20 V 

x=}r\—l-\- V5-f-\l —15 

•1; 

Vs + V _15 + 20\/—1 + V—15—20 V—1 j. 
375. For the proof that, in the general equation of the degree, the 

formation of the reducing equation will require the solution of an equation of 

1.2.3..-W 
1.2.3... (n—2) dimensions, when n is prime ; and of -r— 

' ' '' ^ {7n — l)m(l .2.3.. .p)"’ 

dimensions, when w is a composite number, and —nip, where m is prime ; 

and that, consequently, the method fails when n exceeds 4, the reader is 

referred to Lagrange’s Traite de la resolution des equations numeriques, note 

xiii., from which the matter of this section is taken. 

RESOLUTION OF THE GENERAL EGUATIONS OF THE THIRD AND 
FOURTH DEGREES. 

RESOLUTION OF THE EQUATION OF THE THIRD DEGREE. 

376. I shall suppose that we have made the second term of the equation of 

the third degree disappear, and, to avoid fractions, I will write this equation 

under the form 

x^-\-5px-\-2q = ().(1) 

Among the different modes of resolving it, the most simple consists in form¬ 

ing a priori an equation of the third degree, without a second term, which ad¬ 

mits of one known root, but expressed with indeterminates, and to make use 

afterward of these indeterminates to render the equation identical with the 

proposed equation (1). To establish this identity, it will be necessary to 

write two equalities, and for this reason we employ two indeterminates. 

Let there be made x=a-\-b : the cube will he x^=a^-\-b^-\-3ab{a-\-h) ; 

then, replacing «-j-6 by x, and transposing, we shall have 

.r®—3abx—a®—6®='0 ..’... (2) 

an equation which admits the root x=a-\-b, and which it is necessary to ren¬ 

der identical with equation (1). Therefore we place 

ab=—p, a^-\-b^=—2q .... (3) 

The first of these equalities gives a®6®=—p®. Thus we know the sum 

a®-j-&®, and the product a^6®. Then the values of a® and Z)® are roots of an 

equation of the second degree, in which the coefficient of the second term is 

equal to -\-2q, and the last term equal to —(see Art. 191) ; so that this 

equation will be, calling z the unknown, 

z^-{-2qz—p^ = Q. 

This is called the reduQcd equation. 

Its two roots represent the values of a® and 6®; moreover, we can take 

either of them indifferently for the value of because this amounts to chang¬ 

ing a into b, and b into a, in the value x = a-\-b. I will take 
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a^=--q-\- h^=—q— 

3 I 
.*. a = y —( •9-t^ Vq^-\-p^ h = V —q— Vq^+p"^- 

Ii^ach radical of the second degree here has but one value, but each one of 

the third degree has three. If we could satisfy equation (3) without making 

any choice between these values, we could also, by the same values, render 

equation (1) identical with equation (2); and since a-\-b is a root of the sec¬ 

ond, the first ought to be satisfied by taking 

V-?- . . (4) X = '\J  q-^ 

which is the formula of Cardan. 

But an important remark presents itself: it is, that since each radical of the 

third degree has three values, the above expression must have nine, while 

the equation (1) ought to have but three roots. It is necessary to explain, 

then, whence comes this multiplicity of values, and to discern among them 

which ought to be true roots of the equation (1). 

For this purpose, let us observe that, properly speaking, it is not the reso¬ 

lution of equations (3) which has given a and 5, but rather the equations 

^3_|_53_—2q ... (5) 

Now if, we designate by a and the two imaginary cubic roots of unity, 

which, as we know, are the one the square of the other, it will be readily 

seen that the equation a^b^=—result indifferently, from raising to the 

cube these following: 

ab=—p^ ab=—ap, ab = —aP'p. 

Hence it follows that the nine values contained in formula (4) ought to give 

the roots of the three equations, 

x^'\-3px-\-2q=:0, x^-{-3apx-\-2q=:0, x^-\-3a^px-\-2q = 0 .... (6) 

We can, moreover, consider these nine values as the roots of the equation 

of the 9° degree, which would be obtained by multiplying together the three 

equations (6). But it will be more simple, and will amount to the same thing, 

to raise to the cube either one of these equations, after transposing to the 

second member the term which contains y?. In this manner w^e find at once 

(r'^-{-25')®=—21p^x^. 

As to the roots which belong especially to each of the three equations, what 

precedes furnishes the means of distinguishing them; because, according as 

the coefficient of x shall be 3p^ 3ap, or 3a^p, it is clear that we ought to add 

only the values of a and b, for which we have abz=—p, or ab=—ajy, 

or ab= —a'^p. 

By this rule it will be easy to form the roots of the proposed equation 

.r*-I-3p.r-|-25'=0, the only one with which we have to do. Designate by A 

one of the values of the first cubic radical, and by B one of the values of the 

second; the values of a and b will be 

ar=:A,'fiA, a^A; 6 = B, oB, a^B. 

Moreover, suppose, for this is admissible, that A and B represent the values, 

the product of which is —p. From what has just been said we ought to add 

only the values, the product of which is AB ; then, recollecting that a^=l. 

we must take 
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a:=A-f-B, .r=aA-}-a‘-^B, 2’=a2A-|-aB ; 

and, besides, we know (303) that we have _ - 

.. -1-V^ 
a— ^ , a' — 2 . » . 

If we replace A and B by.the two cubic radicals, and a and a® by thoir 

values, we shall have 

x=\l—q-\- -y/—q—. 

^=~^~/~y-?+ v7+?+=Lt_^^^-?- vy+?- 
These are the roots of the proposed equation, but we must take care to at¬ 

tach to the two cubic radicals the same restricted sense as to A and B, with¬ 

out which we should find false roots. 

377. To discuss these values, it will be more convenient to leave A and B 

substituted for the cubic radicals, and to isolate the one which is multiplied by 

V —3. By this means we have 

/ 

a:=A-f-B, 

a+b a—b 
X— — o + 

/o' <W 

A-j-B A—B 

VS, 

V3. 

I shall suppose, also, as is done ordinarily, that the coefficients 3p and 2q 

represent real quantities. Then equation (1), being of an uneven degree, has 

always one real root, and it is admissible to suppose that A and B are the 

values of a and h, which give this root; so that A-j-B will be a real quantity. 

This being premised, 'let us return to the two radicals 

— q+ Vq^+P^ b=-\] — q— 

If ^2-|“p^^0, .eacli of them has one real value ; then we can suppose A and 

B real. Consequently, A-j-B and A — B will be so also; then the first root 

a: = A-j-B is real, and the other two are imaginary. 

If q‘^-\-p^=0, we have A = B, and then the three roots will be ar=2A, 

x=—A, xz=—A. They are all three real, and the last two are equal with 

one another. 

Finally, let q'^-{-p^<C^0, which requires p to be negative. Then a and b 

have no longer any real determination, and, consequently, the three values of 

X are found complicated with imaginary quantities. However, we know that 

one of them must be real, and, indeed, it is evident that the cases in which 

the three roots of equation (1) are real and unequal can only be found on the 

hypothesis in question, that as may be seen by referring to the 

supposition just above of q^-\-p^^0. It would be wrong, then, to affirm that 

the values of x are imaginary. I will prove, in fact, that neither of them are 

so ; and as we can always suppose that A and B are determinations such that 

the sum A-j-B represents the real root, the existence of which is demon¬ 

strated, the whole is reduced to showing that the part |(A — B) V—3, which 



EdUATIONS OF THE THIRD DEGREE. 447 

IS found in the other two values of x, must be real. By the rules of algebra 

alone we have (A—B)(A^-|-AB-j-B2) = A'^—B^; then 

A^—B3 A3—B3 

^“^=A2-|-AB + B2 = (A+B)2—AB' 

But, because of the values of a? and of we have A^—B3z=2 \/ ; and, 

by the manner in which A and B have been chosen, we have AB = —p; 

then, making A4-B==a:', there results A—B = 

A-B — 
2 ^ 

But by hypothesis we have q^-{-p^^0 ; then the quantity above is real; then ' 

the three values of x are also. 

It is thus demonstrated that, upon the hypothesis of q^-pp^K.O, the imag¬ 

inary quantities which alfect the three values of x must destroy one another. 

It would seem, therefore, that analysis ought to furnish the means of making 

them disappear, but as yet it has not been found capable of effecting this re¬ 

duction. For this reason, the case under examination has been called the ir- 

reducible case. Whenever the equation falls under this case, the general ex¬ 

pressions of the roots will be of no use in calculating their numerical values, 

and then we can recur to the methods of Arts. 290-297. 

EXAMPLES. 

(1) 1? — 6x—9 = 0. 

9 7 
Wehave_p = —2, q— — which gives 0 

r 

1 . T /l6 
k=\ J—9+ Vf 

J—q— Pq^-{-2J^=^-=l. 

Thus the three roots are 

x=3, 

x= —1-j- — 1 — V ^ V —= V —1)» 

x=—1— -y/ —1)=^( — 3— 3 ■/—1). 

(2) .r3_2l2:+20 = 0. 

Here — — 7’>9=10; 

x=\/—10 + 9'/^+\/—10—9 

This example is one of the irreducible case. The general value of x ap¬ 

pears in an imaginary form, and yet the roots are real, being the numbers 1, 

4, and —5, which, by substitution, will be found to verify the given equation. 

378. The solution of the irreducible case may be obtained, also, by the help 

of a table of sines and cosines. We subjoin the method, for the benefit of the 

student acquainted with trigonometry. 

Solution of the irreducible case by tiagonometry. 

cos 2fl=2 cos'^ 0 — 1 

cos 30=2 cos 26 cos 6— cos 6 

2 dq^-pp^ 
i consequently 
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Substituting the first expression in the second, 

cos 30=4 cos^ 6—3 cos 6. 
Whence 

3 1 
cos'^ d—t cos 6—7 cos 30=0 

4 4 (1) 

In the proposed cubic equation, which we may write under the form 

x^-\-3px-\-2q = 0.(2) 

X 
put the unknown r cos 0 for x; or, which is the same thing, put - for cos 0, 

and (1) becomes 
3 1 

x!^—-r^x—cos 30=0. 
4 4 

Comparing this with (2), we have 

1 
-r^ cos 30= —2q, 

and 

-r2=—3p r’=2 V —p, which is real, p being negative , 

2q a 
cos'30=— = • 

pr 

Consequently, the trigonometrical solution of the proposed cubic equation, 

that is, the determination of 0, and thence of r cos 0, depends upon the trisec¬ 

tion of an arc, or the determination of cos 0 from cos 30. 

The mode of proceeding by aid of trigonometrical tables is obvious; we are 

to seek in the table of cosines for the angle whose cosine this will 

be the angle 30, and, consequently, one third of it will be 0; and the cosine of 

this, multiplied by r, or 2 V —p, will give-r cos d=x for one of the real roots 

of equation (2). As the given cosine, q-yj—belongs equally to three aVcs, 

viz., 30, 27t-\-3d, and 2Tr—30, by taking the cosine of one third of each of the 

latter two, we shall have the values of the remaining roots. Thus all the 

three roots will be expressed as follows : 

2 V —p cos d, 2 ■f —p cos -(27r-}-30), 2 —p cos -(27r—30). 
o o 

Or, using the supplements "of the two latter arcs instead of the arcs themselves, 

and remembering that the cosine of an arc is equal to minus the cosine of its 

supplement, we have somewhat more simply the three values of a: in the fol¬ 

lowing form : 

2 ^/ —p cos 0, —2 ^/ —p cos (60°—0), —2 •v/ —p cos (60°-{-0-). 

This method, with a single exception, applies to the irreducible case; for, 

as the trigonometrical cosine of an arc is always less than unity, except when 

that arc is a multiple of 180°, we must have 

or • 

When 30 is a multiple of 180°, two roots must be equal. 

The reducible case may also employ the aid of trigonometry. 
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379. If in the expression 

we put cot , it becomes cot cosec 

Hence, reducing, the real root of a.’^-|-5'.r-f-r=0 is 

(j) 
which, by putting tan -= tan'^ 6, may be further transformed into 

—2-^1 cot 26. 

Cp 
Similarly, the real root of —g'.r-|-r=0, becomes (by putting cosec 

r/3\l ^ 

^=2V ’ 2= 

•2acosec 26. 

380. The following method of arriving at a new and valuable formula for the 

solution of cubic equations will be found an excellent exercise for the student :* 

Let the given equation be 

3pj^px-\-q — 0. .(1) 
Placing 

X—m-\-y.. .(2) 
we obtain 

y^-\-2>my^-\-{3rn?-\-p)y-\-w?-\-pni-\-q—0 . . . . , .(3) 
Taking 

1 

^ z .(4) 

we obtain 

which gives 

(-) +2^^© ^-(3m2+p)i+7?^3+pm+^=0; 

37712 I ^ 3771 

‘ w?-\-pm-\-q ^7n?-\-pm-\-q 
= 0 

Placing 

z=w- 
37772 

3(777^_|_j7777_j_g) 

we find 

3^777,2 _j_ 9 ^772,—p2 ^ —27^77^^-^-18J5^77^2-|-27Jp^77^-|-275^-}-2p^ 

27{m^-\-pm-^qY 

(5) 

(6) 

=0 . . (7) 

* It is the production of an old pupil of the author’s, Mr. James S. Woolley, whom ill 

health, and other discouraging circumstances, have not prevented from making some im¬ 

portant discoveries in algebra, which it would be premature at present to publish to tlie 

world. 



450 ALGEBRA. 

The value of m, which renders the coefficient of zero, may be found thus 

— 

Then 

mz 
H , 3 __4- — V 

V 4 
-_p3_j_ 

27^ ' 4 (8) 

The value of lo in (7), substituting the value of m, found in (8), is expressed 

in the following four equations, (9), (9, a), (9, b), (9, c), the last three being 

obtained by decomposing (9) into factors. 

w=- 
8lq^ 

2p^ ■6?±(8l|+12)^+| 
• ••••• (9) 

■\/+(^29|+108?) 
w=- 

(8i|-:+12)(-|±7^1^3+|) 
(9, a) 

i' 729^3+108? )(-|±7r7 
W: 

27!^"+T 

1 q 

27 :(-i) 

(81^3+12) (-|±^i^3 + g 

(9,6) 

(8i|-:+12)(-|±.^^^^3+£) 

(9,c) 

Substituting in (6) the values of w and w, found in (8) and (9, c), we shall 

have 

.(10) 

Substituting in (4) the values of z, given in (10), and decomposing one more 

of its terms into factors, we shall have 

y=- 
T 

Hence 

T 

r.(n) 

X: 

(continuing the numerator) .(12) 
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But the first term in the numerator of (12) may be transformed thus; 

And the last term in the numerator of equation (12) is 

(sip+is; 

Therefore the sum of the first and last terms of the numerator of (12) is 

Therefore, i 

x=- 

54 
5\5^(-|±7^P’+t) Tx/l2i’+8lJ(-|±V^i'’+?)' 

Dividing both numerator and denominator by ^ 
54 

pAJ 27^ +4’ 

27-' ' 4 

we have 

( lx U~s,lV t 
\ 2^V27-^‘^4/ 9 

{-l^^27P"+^) + 3i~2^'J^P’‘+l) 27 P^'^' 

The numerator of this value of a: is equal to 

[{-l^^^P'+^) +l] • "s] 

The denominator is equal to 

■ +l] • 
Dividing numerator and denominator by the common factor, we have 

x=- 

/ /i ,,fY p‘ 

i-UsISM)’ 

This formula may be reduced to that of Cardan by dividing the numerator 

by the denominator, and observing that 

we thus obtain 

~(-I±4.'-+9*+(-|t4.'+9*- 

But the first form is preferable, as it gives only the three values which satisfy 



452 ALGEBRA. 

equation (1), whereas Cardan’s formula gives nine values, six of which have 

to be rejected. 

A partial division gives 
1 

which is an advantageous form, inasmuch as but one third root has to be ex¬ 

tracted, both radicals haying the same form. 

A shorter solution of the above might be given, but we have already extend¬ 

ed our article on cubics sufficiently far. 

IRRATIONAL EXPRESSIONS ANALOGOUS TO THOSE OBTAINED IN THE RESO¬ 

LUTION or EQUATIONS OF THE THIRD DEGREE. 
I _ 

381. One of these expressions is V^Ai -/B ; but it frequently happens 

that A and B are rational numbers, and then it may be possible to reduce 

these radicals to simpler expressions, in which there are no longer radicals 

over radicals. This problem has already been resolved for radicals of the 

second degree, and it is now proposed to resolve it with reference to radicals 

of the higher degrees. 

= / = I shall commence with the cubic radical YA-f- VB. We can not suppose 

for this root a quantity of the form ^/a-\- for we have 

(-/a-j- ■\/hYz=a y/a-\-^a -s/a-\-l> ^/h 

= («-{-36) 

a result which contains the radicals a and -s/h. But the preceding calcula¬ 

tion shows that we should have a result of the form A-\- -y/B, by raising to 

the third power the expression a-\- -yjh and («-}- V6) y c. I will choose this 

last expression as the more general; we shall then have 

A^A-f- •\/B = (a-|- yh)\/c.(1) 

Raising both members to the third power, it becomes A-f yB=:zc{a^-{-Zah) 

-\-c{3a^-\-h) yb; equating the rational parts together, and the irrational parts 

by themselves, 

A=c(a^-}-3a6).(2) 

yB=c{3a^-\-b) yh.(3) 

The problem, then, is, to find for a, 6, c rational values which satisfy these 

two equations. But squaring these equations, and then subtracting the one 

from the other, we have 

A^—B=c2(a®—3a^6-|-3a262_53^_^2(^2_ly . 

hence 
, c 

Since a and h ought to be rational, it will be necessaiy to take c such that 

(A2—B)c be an entire or fractional cube, which is always possible. Calling 

the second member of the above equation M, we shall have —6 = M, 

whence M. By substituting this value of h in equation (2), it will 

become 
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^cd?—3Mca—A = 0.(4) 

This equation must give for a at least a commensurable value, without 
which the transformation (1) will be impossible. 

3/ z '3/ I 

If, instead of '\/^+ we should have to reduce Y A— it wotild 

suffice to change throughout in the preceding method the sign of V h. 

31 - 
For example, let the expression be Y 14 it We shall have A = 14, 

B=200, A^—B = —4; hence (A^—B)c=—4c,* we shall then have the 
perfect cube —8, by taking c=2. Consequently, M=—1, 6 = a^-|-l» 
equation (4) becomes Qa^-\-Qa —14=0. It can be satisfied by the commen¬ 
surable value a=.l, which gives 6=2. Again, we have ah*eady obtained 
c = 2 ; hence, finally. 

\/ 14 i V200 = (l± V2) 

Again, let the expression beY —\/—1. We will pass 2 under Itie 
radical of the second degree ; we shall then have A = —11, B=—4, A^—B 
= 125. As 125 is already the cube of 5, it will suffice to make c = l. Con¬ 
sequently, we have M=5, b=a^—5, and equation (4) becomes Aa?—15a 
-|-11 = 0. But this equation is satisfied by the value a=l ; hence 6=—4, 
and, consequently. 

—11±2V—1 = (1± V—4) Vl- 

382. Let us consider the more general expression a/azL VB, and take 

Art •/B = (a± Vc.(5) 
The problem, again, is to determine rational numbers for a, 6, c, if it be 

possible. 
Raising (5) to the power n, and equating separately the rational parts, w’e 

obtain 
nin—l){n—2)(n—3) 

■—(6) 
nin — 1) 

A=c [a" ;—-~cd~^h ■ 
1.2 

— n{n — l){n—2) — 
'v/B=c[ria"-^+-g-^a“-36-j-, &c.]-v/^ • • • (7) 

We can, as in the case of the cubic radical, square these two equalities, and 
subti'act the one from the other; but the reductions will be immediately per¬ 
ceived by obsei'ving that we ought to have, at the same time, 

A-\- A—VB=c(a—Vby; 

and that, consequently, 

A^—B=c2(a-f- ^/bY{a-^ ■\/b)‘'=c^{a^—6)“; 

whence —6 = 
V(A2—B)c"-2 

We see from this that it will be necessary to tal^e c of such a value that the 
second member of this last equation shall be rational. Calling this second 
member M, we shall have 6=M, whence 6=a2—M; substituting tliis 
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value of h in (6), the resulting equation in a will have a commensurable root 

every time that the transformation (5) is possible. 

383. In the resolution of equations of the third degree, what renders the ir¬ 

reducible case so remarkable is, that although we are assured that the three 

roots are real, it is, nevertheless, impossible to make the imaginary quantities 

disappear otherwise than by means of series. This difficulty is not confined 

to the equation of the third degree ; it will be encountered equally in the gen¬ 

eral formula 

a+b V—1+Va—B V—1.(8j 

which formula I shall stop to consider for a moment. 

To consider this expression in its most general sense, we ought to combine 

the n determinations of the first part with the n determinations of the second, 

so that we shall have, in all, values. But the expression is rarely taken in 

so general a sense, and I proceed to define that which we ordinarily attach 

to it. 

As the two radicals which have the index n represent the roots of the bi¬ 

nomial equation, their determinations are equal in number to the quantities 

which have the form V —1. Moreover, it is manifest that to each de¬ 

termination of the first radical there corresponds one of the second, which 

only differs by the sign of —1. But we suppose that these corresponding 

values are those which ought to be added in formula (8) ; and, with these re¬ 

strictions, the values of .r are all real, and only n in number. 

The product of these two radical values, thus taken in a same pair, is real 

and positive ; but for the product of the two ra'dicals we have, in general. 

A-j-BV—1 X 

and the radical which expresses this product can only have a single real and 

positive value ; hence, if we represent it by K^, we ought to be able to charac¬ 

terize the conjugate values, which must be added in formula (8), by the con¬ 

dition that their product be equal to K^. 

Formula (8) can be regarded as a general expression of the roots of an equa¬ 

tion whose degree is marked by the number of values of which the equation 

is susceptible ; hence, provided that it be taken in its greatest extension, or 

with the restriction which we have just mentioned, the degree of the equa¬ 

tion must be either or w. 

This last remark leads us to explain how we form an equation, when we 

know the expression for its root; that is to say, that an equation being given, 

susceptible of taking diflierent values, by reason of the multiple values of the 

radicals which it contains, it is required to find an equation free from radicals 

which has these values for roots. I will take, for example, the same expres¬ 

sion (8). 

To abridge, let us make 

A-f-B -v/ — l=a. A—B —1=6 ; 

the problem reduces itself to eliminating y and z between the three equations 

y-\-z-=x, y^=a^ z^=zh. . ' 

But here the elimination can be conducted according to a very siinjif pro- 

\/ A—B V—1 = VA‘^-fB-^ 
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cess, analogous to that which has been employed for reciprocal equations. By 

the rules of multiplication we have 

But y-{-z=x and yz=y ah ; hence, making y ah=c^ the equation will 

become 

' ^ni+i _j_ 4- 2:'") — c{y'^~^ 4“ • 

By means of this formula we express, in function of x and c, successively all 

the quantities y‘^-\- 22, y^-\-z\ &;c. When we have aiTived at y^-yz'^ we re¬ 

place 2/"-j-2” by «-}-6, and then we shall have the required equation, which 

will be of the degree n in x. 

This equation contains c ; but we have c= yah= VA24-B2; hence, c is, 

in general, susceptible of n different values. By putting in the equation each 

of these n values in its turn, we shall have n equations, and, consequently, 

nXn, or values of x. This, in fact, ought to be the case, from what has 

been said at the close of the preceding article. If we should wish to have a 

single equation which has all these values for roots, it would be still necessary 

to eliminate c between the equation of the degree n in x and the equation 

c^=ab. 

But if in formula (8) we only wish to associate the radical values whose 

product is real, it is this real value solely which we must choose for c, and we 

shall only have a single equation of the degi'ee n for determining all the values 

of X. 

RESOLUTION OF THE EQUATION OF THE FOURTH DEGREE. 

384. After having made the second term disappear, the general equation of 

the 4° degi’ee is 

x^-\-px^-\-qx-\-r=0.(1) 

If we make x—a-\-h-{-c, squaring, there results 

x^—a^-\-h'^-\-c^-{-2{ab-]-ac~\-hc), 

or, transposing, 

—{a^-\-b'^-{-c'^)=2{ab-{-ac-{-bc); 

raising anew to the square, we have 

_2(a24-624. c2)t24-(a2^ _j_ c2)2 _ 2(0^252^ V4-4_ 8«6c(a-f 6 4-c); 

then, replacing a-|-64-c by x, and transposing, we obtain 

:c4_2(a2 4_ 624-c2)a:2—8u6c.r4- (a2 4- 62_|_c2)2 

— 4 (a262 4-a2c2 52^2^ _ 0. 

This equation is without a second term, and by the manner in which it has 

been formed, we know that it admits of the root x =a+h-^c. Thus, we re¬ 

solve equation (1) in determining a, 6, c, by the condition that it shall be iden¬ 

tical with the preceding, which gives 

— 2(a2-{-624-c2)=p 

—'Qabc — q 
(a2 -j- 62 c2)2 _ 4 (^2 ^2^2 ^2^2) _ 

These equalities show that, by taking a2^ ?,2^ ^2 for unknowns, these three 

quantities are the roots of an equation of the 3° degree, the coefficients of 

which are (see Art. 245)^ 
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— (a=+6“+c=)=| 

-4^ 
^252 ^ flr2^2 52^2 = ^ - - 

Consequently, this equation of the 3° degree is 

p p^—4r 
23 I A22 I A-2——=0. 
^2 ^ 16 64 (2) 

Such is the reduced equation upon which the solution of equation (1) depends. 

Suppose that the three values of z have been determined, which designate 

by 2', 2", z"\ we shall have 

«=db c=i yfz"\ 

If the signs be combined in all possible ways, there will result eight values 

for a-[-h-\-c or x. But as the last term of the reduced equation (2) was 

formed by squaring the equation ahc= — -g, it follows that the values contain 

rsot only the roots of the proposed equation, but also those of an equation 

which would differ from it in the sign of q. 

At the same time it may be perceived that, to have only the roots of the 

proposed, it is necessary to add only the values of a, h, c, for which ahc= —-q, 
o 

and the product of which has, consequently, the conti'ary sign to q. In each 

particular case it will be easy to determine for the radicals three values, A, B, 

C, which shall fulfill this condition; and afterward, with these values, we 

form the four roots of the proposed, to wit, 

a:=-|-A-f-B4-C, 2:=:-j-A—B—C, 

x=—A-|-B — C, x=—A—B-4-C. 

Generally, instead of A, B, C, the three radicals are placed, and tlie values 

of X are written thus : 

r=4- x=-\- vv— V2^, 

X= — ^/z'-\- Vz"~{- Vz"\ X-=.-^Jz'— -\Jz"— 'sjz'". 

But it is necessary to understand that in applying these formulas to particu¬ 

lar cases there must be taken for z\ ■y/z", -yjz'" three determinations, the 

product of which shall be of the same sign as q. This observation is im¬ 

portant ; failing to have regard to it, we might find false roots. 

385. The nature of the roots of the reduced equation will make known the 

nature of the roots of the proposed. But the reduced having its last term 

negative, has always one positive root (see Art. 248, Prop. VIII., Cor.A), and 

the product of the other two roots should be positive ; then, if these last are 

not imaginary, they will be both positive or both negative. I pass over the 

case in which q — 0, because then the proposed would be solved by the rules for 

the second degree. Consequently, there are three cases only to be examined.* 

1°. Case where the three roots of the reduced equation are positive. There 

the four values of x are evidently real, and if the radicals -fz', -fz", yjz"’ be 

regarded as representing positive determinations, their product will be positive; 

* This explains an operation in Art. 365. 
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then the preceding formulas will be specially applicable to the case of ^'^0. 

For q<^0 it would be necessary to change the sign of one of the radicals. 

2°. Case where the reduced has one root positive^ and two z", z'" negative. 

The radical -y/z' will be real, but the radicals ■\Jz" and Vwill be imagi¬ 

nary ; consequently, the four values of x will be imaginary also, unless z"-=.z'". 

When z"r=2"', one of the two quantities z"z'" and yf z"— ^Jz'" will 

become zero, and supposing it to be the latter, the values of x will be simply 

x=. Vz', X— s/z", x-= — '\Jz'z'\ x=. — Vz'—2 Vz". 

The first two are real, since z' is positive, and the other two are imagi- 

naiy, since z" is negative. Besides, as in the reduction, we have supposed 

z" ■= yjz"'we ought to have here ^Jz' z" z'"=z" -s/z' \ so that this 

product can only have the sign of q by choosing for z' a sign contrary to 

that of g, since, by hypothesis, z" is negative. 

3°. Case in which the reduced has one root z' positive, and two roots z", z"' 

imaginary. The positive root z' being known, we can divide the reduced by 

X—z*, and we shall have an equation of the second degree, which will give for 

z" and z'" imaginary values of the form 

1, g-V—1* " 
Consequently, two of the values of .r will contain the sum 

I I Z+g'V—1+V/—g" V —1; 
and the other two will contain the difference 

Vz+gZ—1—\//—g'V—1- 

THE DIOPHANTINE ANALYSIS. 

386. This branch of analysis derives its name from its inventor, Diophan- 

tus, of Alexandria, in Egypt, who flourished about the year 360, A.D. It 

relates chiefly to the finding of square and cube numbers. 

The solutions of the questions must frequently be left, notwithstanding the 

various rules that have been given for this purpose, to the talents and ingenui¬ 

ty of the learner, who, in pursuing these inquiries, will soon perceive that 

nothing less than the most refined algebra, applied with great skill and judg¬ 

ment; can surmount the various difficulties which attend them ; and, in this 

respect, no one, perhaps, has ever excelled Diophantus, or discovered a gi’eater 

knowledge of the extent and resources of the analytic art. 

When we consider his work with attention, we are at a loss which to ad¬ 

mire most, his singular sagacity, and the peculiar artifices he employs in form¬ 

ing such positions as the nature of the problems requii-es, or the more than 

ordinary subtilty of his reasoning upon them. 

Every particular question puts us upon a new way of thinking, and fur¬ 

nishes a fresh vein of analytical treasure, which can not but prove highly use¬ 

ful to the mind in conducting it through other difficulties of this kind when¬ 

ever they occur, and also in enabling it to encounter more readily those that 

may arise in subjects of a different nature. 

The following directions for resolving questions in the Dipphantine analysis 
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will be found useful; but no general rule can be given, and, therefore, the 

student must often be left to depend solely upon his own ingenuity and skill. 

RULE. 

Substitute for the root of the square or cube required, one or more letters, 

such, that, when they are involved, either the given number or the highest 

power of the unknown quantity may vanish from the equation ; and then, if 

the unknown quantity be of the first degree, the problem will be solved by 

reducing the equation. But if the unknown quantity be still a square or a 

higher power, some other new letters must be assumed to denote the root, 

with which proceed as before, and so on till the unknown quantity is but of the 

first degree, and from this all the rest will be determined. 

EXAMPLES.* 

(1) To find two square numbers whose sum is a square. ‘ 

Let and be the two squares ; let 3z and be the roots. 

Then 25z^= n\—n—bzy=.n’^—10nz-\-2bz^ \ 

z—Y^ ; if w=10, z = l, then z X 3=:3 and z X 4=4 5 

and the two squares are 9 and 16, whose sum is 25, a square, if 7i=20, z=2; 

and from this we get another value of .r and y, and so on. 

(2) ,To find two square numbers whose difierence is a square. 

Let and be the two squares. ' , 

Assume .r”—y^={x—nyY=x'^—2nxy -j- 

Then —y’^——2n.'ry-}-^^y^, 

or 2nx = (-|-1). y ; 

Suppose y=2n, then xz='n?-\-l. If w = 2, y=4, and x=b ; also —y^ 

= 25 —16 = 9, a square number. If n=3, y = 6, and .r=10 ; also x^—y^ 

= 100 — 36 = 64, a square number. 

(3) To change the sum of two squares into the sum of two others any num¬ 

ber of ways at pleasure ; for example, in three different ways. 

Let and 6“ be the given squares, and let a—x and cx — h be the roots of 

the required squares; then, by the question, we get 

/ a—.rl^-|-c.r—; 

by involution,-^ —2ax-\-x?-\-c^x'^—26c.r-|-5'^=u2-|-62. 

by transposing and dividing, 

— 2a-\-x-\- d^x — 2cb = 0, 

2bc-X-2a 
or c'^x-\-x = 2bc-\-2a and x=- , 

1 —I— 

where c may be taken at pleasure ; for example, 

c = 2, 3, and 4 ; 

then. 
Ab-\-2a Gb-\-2a Sb-\-2a 

X—-^—, and 
10 17 

^ ISIany of these problems are selected from the Arithmetical Guestions of Diophantus, 

of which six out of thirteen books now remain. The best edition is that published at 
Pai'is, by Backet, in tlie year 1G70, with notes by Fermat. 

f This sign □ denotes that the number placed equal to it is a perfect square. 
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(4) To divide a number which is the product of the sum of two squares by 

the sum of two others, into two squares two different ways. 

Let be the sum of two squares, and the sum of two others, 

whose product = “h —adf'=.{ac—hdY{be 

as required. 

(5) To find a number,a:,such,that .r-f-l and x—1 shall be squares. 

Let X 1 — 6^2, 

and X — 1 =62 

.*. 2=^2 — py subtraction 

2xl = («+^)(« — ^)) 

or 
3 

3=26!, and «=-, 
2 

9 
and -’ 

Or thus : 

take 

9 5 
a:4-l=T, and x=-. 

x-{-l=y'^ 

X =2/' —1 _ 

X—1=2/^—2= □ =5—y\^z=d^—2s2/+2/^ 
.*. s®—2sy— —2 

252/=5^+2, and y= 
524-2 

2s 

9 5 
s = l .•. 2/=|» and x—y"^—^“4 — ^~4’ before. 

(6) Required to find four square numbers whose sum shall be a □ . 

Let 1, 4, 9, and be the required squares; then, by the question, we get 

and 

14-|-2:^= □ —x\^—^—2nx-\-x-, 
fd — U 

2n~' 

1 
1 225 15 

16 ~ 16 ~ 4 

^ 5 25 
where n may be any number at pleasure, if w=3, x= —-, x^=~^ or if n=4, 

o 00 

1 1 
a:=-, and the numbers are 1, 4, 9, and — 

as required. 

(7) Divide 2 into three rational squares. 

Let X, 2x—1, and 3a:—1 be the roots of the three squares respectively; 

then x'^-\-4x‘^—4x-\-l-\-9x'^ — 6a: 4-1=2; 

by transposing and dividing, 

5 3 8 
x=~, 2x—1=-, 3a:—1=-, the roots; 

and the □ ’s will be 

25 64 

^'=49’ = ^^“^''=49’ 

25 9 64 98 
the sum of which is—4- —4-— = —=2, the proof. 

Or thus: 

Let 1, a:2, and be the squares; then 



460 ALGEBRA. 

2^3 — 0 and xP'-\-y'^ = l, 

or a;^=l—?/2= □ =1—ny^—l—2ny-{-n‘^y'^ 

2n 

4 
where n may be taken any number greater than 1; if n=2, then y = -p and 

o 

16 
2/2=— ; then will 

/io 

9 
and the sum of these plus 1 is evidently 2. 

(8) Divide — into three rational squai’es. 

Let X, 2x—and 3x—be the roots of the rational squares, and their 

squares are 

and 

1 1 
x^, 4^:2 — 2x-\--, 9x‘^—3a:4-T» 

1 11 
x^-\-ix^—2x-\---\-9x’^—3.T-j-^=2» 

and X will be found to be —, from which we get the three squares, viz., 

9 64 1 ^ 
7777:? tttt:? and their sum is evidently -, as required. 
196 195 2 

25 

1%’ 

(9) To divide a given square, number, 100, into two such parts, that each 

of them may be a square number. 

Let a:2 be one of the parts, then 100—the other part, will be a square 

number. 

Assume 100—x^=:{2x—10)2=4a:2—402:-f-100. 

.*. a:=8, and 2x—10 = 6 ; hence 64 and 36 are the parts required. 

The same problem may be resolved generally in. the following manner: 

Let be the given square, x^= one of its parts, and the other. 

Assume —x^={nx—aY=n'^x^—2anx-[-a'^; 

Then —a:2=n'^x'^—2anx ; 

are the two squares required; in which expressions a and n may be any whole 

numbers whatever, provided n be greater than unity. 

(10) To find a number,a:,such,that a:+128 and a:-|-192 shall be both square 

numbers. 

Assume x-\-\2Q=z’^ .*. x=z^—128, which is one condition answered; then 

z2 —128-|- 192 = z‘^-{-6i= □ =^2 z^ = a^ — 64 ; then we have only to assume 

such a value for a as will make — 64 a square; but it is plain that if a be 

taken =10, then a’^ — 64 = 36 = □ , and 22 —3(5 ; this would make the value 

of X negative ; then, in order to find values for z that will make x positive, take 

a = 17, and then ^2 = 289, and .*. o? — 64=225= □ .*. 22 — 225 and .•. x=225 

—128 = 97, the value required. 

(11) To divide a given number, 13, consisting of two known squares, 9 and 

4, into two other square numbers.* 

* In the solution given of tlie above problem, n and w may be taken equal to any num- 
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Let nx—3 be tlie root of the first square sought, and nix—2 the root of 

the other square. 

Then 

or 

nx——2|2=13, 

{n^-\-rn?) . a’^=(4m-{-6») . x; 

X = 

whence 

and 

nx—6 = 

mx—2 = 

3n^ -j- Amn— 

6mn — 2n^ 2m^ 

n^-\-m^ 

= the root of the first square, 

the root of the second. 

If ?i=2 and ni~l, we have 
^n'^-^-Amn—3ni? 17 

7^2 2 =—z= the root of one square, 

6mn — 2n^ -j- 2m^ 6 
and-——-•=-= the root of the other square. 

n^-j-m^ 5 ^ 

(12) Let 14 be divided into three rational squares. It is well known that 

the least three squares in whole numbers are 1, 4, and 9, which will answer 

the question; but to give a general solution, 

Let 1, 3a:—2, 2a:—3, be the roots of the required squares; 

, . .. . 24 
then 

then 

then 

then 

14-(3a:—2)^-|“(2^—3)'^=14, ora:=—; 
-Lo 

24 72 
— X 3=—, from which subtract 2 ; 
XfJ JlO 

46\2 2116 24 __ ^ 

TT7) = TTTT i T^X 2=—, from which subtract 3; 
13/ iby 13 ( 

81 

48 

'Is’ 

2116 81 

169 169 "^169~^^‘ 

(13) To find two square numbers whose difference shall be equal to any- 

given number. 

Let X be the root of the lesser square sought; and let the given difference 

of the squares, be resolved into any two unequal factors a and 6, of which a is 

the greater. 

Let 0:4- b be the root of the greater square ; 

then (a:-j-b)^—x‘^=d-=.ab, 

i. c., 2a:-|-b=a* 

a—h 
Whence 

and 

x——^—= the root of the lesser □ , 

a-\-h 
x-\-o = —^—= the root of the greater. 

If <;?=:60, and aX b=30x 2, we have 

30—2 30 + 2 
—^ = 14, and ——=16 ; 

whence 16^ and 14^ are the squares required whose difference =60. 

bers whatever, provided their ratio be not that of 3 : 2. For if n were to m as 3 to 2, the 

roots of the squares sought would be found tlie same as the roots of the known squares. 

If it were required to divide a given square, into two other squares, 
Since (w3+?i2)3——ra3)3_j_(27nre)2, 

.•. (w2+?i2j2 . a;2=(w2-7i2)2 . a;3_|_(2m7^)2 . ar2, 

f 7n2-7i2 J 3 C 2m7i 3 2 
a:2= \ - > . x^-\- s ——;—- \ 

( m2+«2 ) ' ( «2,2_|_7i3 S 

where m and n may be assmned at pleas^ure, m being greater than n. 
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(14) To find two numbers, such, that if either of them be added to the 

square of the other, the sum shall be a square number. 

Let x’'^-\-2xy and y be the required numbers ; 
then a;2-j-22:?/-f-7/2= □ —x-\-y\^; 
hence it only remains to make 

y-\-2xy-\-x"\^= □ = x‘^ -\-ny\^=.x^-\- ^nx'^y -f- 
— 2nx- 

' * ^ 

3 19 
If n — 2\, and xz=l, then y=:^ and x’^-\-2xy=i—^ which are two numbers 

13 

that win answer the conditions ; for 

3 

13 

3 ^ 19 256’ 16 

"^13“r^~l3 

3 19 
and- 

3 400 

13 ■“169" “131 
Or thus: 

1 

4' 

1 1 /I \3 
Put ~—X and x for the numbers; then -—^ square, and 

4-^ 

X X 

+^=l6-2+^+-^’=16+2+^'=J+^ 
= □ , where x may be taken 

at pleasure, provided it be less than 

(15) To find two numbers whose sum and difference shall be both square 

numbers. 

Let X and y be the two numbers ; then, by the question, 

x-{-y= □ =a3 and x—y= □ =£3; 

add both squares, and we get 
2x=a^-\-h^; 

03-1-63 
hence 

Again, by subtraction, 

x=- 

2y=a^—63 and y-. 
oP-—63 

where a and 6 may be taken at pleasure, provided a be greater than 6 ; if 

9 + 1 9 — 1 
0 = 3 and 6 = 1, then —-—=5 and 

/w 
:4, whose sum and difference are 

both squares. Or thus : 

Let X and a:®—x be the numbers. 

It is evident that their sum is a square ; and, in order to satisfy the other 

condition in the question. 

Assume 

whence 

2’—7213=0:3—22, the difference of the numbers ; 

2= 
2n —2’ 

2 

••• \ ^2 ] 2n — 2* 

Hence the two numbers are 
2n- 

— and 
( 2n—2 j 

—, in which n may 

9 
be taken at pleasure, provided it be greater than 1. If 7i=3, x—-^ and 

45 
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(16) Find two numbers whose sum is a square, the sum of their squares a 

square, and either added to the square of the other a square. 

^ 1 11 
Let -—X and x be the numbers ; then their sum ^ is a square, and -—x 

□ ~^—x 
X i2 

a square, and — —--{-x-{-x^z= u~j-{-x a square ; and. 

in order to satisfy the other condition, we assume 

1 nx : 72,2^3- 
16’ 

which, solved, gives x-. 
n—1 ^ 31 4,4 

if ™=4, x=-, and so that gg 

and — are numbers that answer the conditions as follows : 
28 

3 2 4 2 25 5 3 3 
and - 

4 _ 9 112 

also. 
4 

28l^ 28 

84 100 10 

'^28~^3+^3—-^12 28 

121 11 

T8 

16 

(17) Find two such numbers, that if their product be added to the sum of 

their squares, the sum shall be a square. 

Let 2x be their sum and 2y be their difference ; then the greater will be 

x-{-y and the less x—y; hence x'^—2/^= their product, and 2x' -\-2y'^=. the 

sum of their squares; then, by the question, 8x'^-\-y^=i u =nx—y\^ and 

2ny 
x=——r ; if n=2 and '11 = 2, . . a’=8, which will answer the conditions. 

(18) To find two square numbers, such, that the difference of their cube 

roots shall be a square number. 

Let sfi and y^ be the required numbers. Then x^—y^= □ i consequently, x 

and y may be any two numbers which are the hypotenuse and one leg of a 

ifight-angled triangle, and the least numbers of this description are 5 and 3, and 

the numbers themselves 15625 = 125^ and 729 = 27^. 

(19) Find three numbers,such,that not only the sum of all three of them, 

but also the sum of every two, shall be a □ . 

Put 4,r, x’^—4.r, and 2:r-f-l ^^r the three numbers ; then it only remains to 

render 6a:-j-l= □ • 

Assume its root n—1 ; 

then Qx-\-l=ifi——2n-j-li - 

—2n 
whence x=——, 

D 

if n = 12, x=20, which will answer the conditions of the problem. 

(20) Find two numbers, such,that the sum of their squares and the sum of 

their cubes shall be both squares. 

Let be the base, p the perpendicular, and h the hypotenuse of a rational 

right-angled triangle, x any ruultiplier of 6,p, and h ; then {bxY-\-{px)^ = [hxy, 

but (6.r)^-f-^ rational square ; hence {b^-]-p^).x=r^, or 

r2 
; now if • • x=b^-^2^^ i'^ = b{b^-{-p^), px=pX 
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{b^-\-p^)\ now let & = 3, ^:>=4; then is x=91, &.rz=273, and ^.r = 364. If 

b = 6 andp = 8, then x=z728, &r=4368, and^x=5824, and so on in general. 

(21) Find a number to which if 8 be added, the sum shall be a cube, and 

from which if 1 be subtracted, the remainder shall be a cube. 

Let X be the number; 6=2, c = l; then x-\-b^= a cube and x—c^= a 

cube ; 

hence x-{-b^={b-\-y^af=¥-\- Sc^a+; 

3c4 c6 
.*. .r=3c2a-f 

Assume x—c^=.{a—c)3= a cube =a^—3a^c-f-3ac^—c^, and x=a^ 

— Sa^c-f-Sac^; and, equating both values of x, we get 

2c* c® 

—3a^c-{-3ac^=3ac^-|~'p'^^+p<^^ 

3c6^ 
whence a=3c6==:p—- ; 

and, putting the right-hand member of this equation into numbers, we get 

3X8 24 

hence 

a. 
‘8 — 1' 

5256 

34^’ 

7 ’ 

(22) To find three square numbers,such, that the sum of every two of them 

shall be a square number. 

Let x^^ 2/^ and be the numbers sought. 

Then x‘^-{-z^, and x^-\-y^ are the three numbers; i. e., 

x^ x'^ 
55+1. ^+1. 

are three square numbers. 

X rn?—1 
Assume -= 

z 

we have 

y 72,3 — 1 
--, and -=—-—, 
2m z 2n 

X'^ 77i4_|_ 2772,2 _|_1 ^ y2 ^ ^ 774_j_ 27l2_|_ 1 

^2 + 1—' 4m2 ■’and ^+1 — 4712 

which are evidently two squares; 

square number. 

Now 

and therefore it remains to make 
a:2-j-2/2 

1 I “ (m2—1)2 (7i2—1)3 

z2 *“ ( 2m ) \ 2n } ~ ~4m~ 4^ “ 

a square number. 

Hence 

(m2 —1)2.772 ■^(72,2 _ 1^2^ 

Ajin^n^ 

(7772 —1)2. 772^(7^2_ 1)2. Oj. (m-}-l)2.(777 —1)2.7724-(774.1)2. (77 — 1)2. 7772= 

a square number. 

Let m-|-l=?7—1 .*. ?7=m-j-2. 
Hence (777+1)2. (m —1)2. (777+2)2+7772. tm-J-3)2 x (w- + l)^ 



DIOPHiVNTINE ANALYSIS. 465 

or 

or 

is a square number. 

(m — 1)®. . (m-j-3)*, 

Let the root of this quantity be assumed == ■7?i—^ 2. 

Then 

whence 

Also, 

hence 

/5m2 \3 
—7n-\-2j 

m=—24, and n=—22. 

X — 1 575 

z 2m 

4832 

_ y —1 483 

==iS’ *‘"'5 z=^= 44’ 

5752 
x=-~^,^ndy=. 

48 ’ " ^ 44 

To obtain the answer in whole numbers, let z=528 ;* then x=.—6325, and 

y=—5796. Hence 528, —5796, —6325 are the roots of the squares, and 

528^, 5796^ 6325^ are the squares I’equired. 

(23) To find three cube numbers,such, that if from every one of them a 

given number 1, be subtracted, the sum of the remainders shall be a square. 

Let 2 — r, and 2 represent the required roots. 

Then, per question, (1-j--'^^)'^ —1 + (2 — —1 + 8 — 1= □ ; 

or (l+.r)3+(2 —.r)3 + 8 —3= □ ; 

—122’+6a:2 —x-3+8 —3= □ ; 

Qx^—92+14= □ , ={a—Sxy—a^—6a2+9.2^; 

14—9x=a^—6(22; 

—14 
and 6(22—92=«^—14 .*. x—- 

Suppose a=4 ; then 2= 

6a —9' 

16-14 2 ^ 17 , 28 
, and 1+2=77^ and 2—2= 

15 15 15 15’ 

, 4913 , /28\3 21952 
.-. (1+2)3=—, (2—2)3=(^—j and 8 

3375’ ' ' \15/ 3375 

are the numbers. 

(24) It is required to find three integral square numbers, such,that the dif¬ 

ference of every two of them shall be a square number. 

Let the roots of the required numbers be denoted by 

—2/^ and 2^+2^. 

Assume —2^=s^+y^; 

then —2^—s^=y‘^= □ 

and yi=r^—2r'^x^ — 2r^s^+2^ + 2x^s^+5^; 

but (2^+2^)^—{s^—□ 

= (2‘3 + 2^)® — — 2^ + 2^ + S^)^ = 2^ + 22^2^ + 2^—+ 22^5^ — 2s^2^ — 2s^—2* 

+ 22^2^+ 22^5^ — 2^ — 25^2^ — S‘^=' □ 

= 42'^2‘3+42^S^—4s^2^ — 4s^= □ 
= 4 (2^22 + 2252 —523.2 _ 54) — □ ^ 

2222+2252—5222—5^^= □ =a2, 

(r2—52j • 22=a2—2252+5^ 

<2^-7^ 225^+5^ a2 

and 

and 

take 

22=- 
rP'—s'‘‘ —52 

•52; 

2i=21 and 5 = 13, >■* ' 

The leagt common multiple of the denominators, 48 and 44; 

Go 
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then .T^ = 
441 — 169 

•169 

169. 
272 

a = 340, 

.t^=256 and y’^z=zr^——3:2=441—256 —169=16, 

Take 

then 

(r2-j-a:2)2 = (441-4-256)2 = (697)2= number, 

and (r2—3:2)2 —(s2_|_2^2^2_^44]^—256)2=(185)2= the second number; 

and (52—2/^)2r=(169—16)2=(153)2, which is the other number. 

(25) To find three square numbers such, that their sum, being severally 

added to their three roots, shall make square numbers. 

Let 23:, 63:, and 93: denote the three roots; .*. by the question, 

1213:2-}-23:= □ ^ 

1213:2-}-63:= □ , 

1213:2-}-93:= □ . 

Assume 3:= 

2y 

y 
121 

I 
+ 121* 

Hence, we get 

3/2 3/2 
then 121x=:y; and .-. 1213:2=:;^, and 1213:2-}-23:=-— 

^ ’ 121 ' 121 

3/2+23/= □, 

3/2+63/= □, 

3/2+93/= □. 
/22_1\2 

Assume 3/2+23/= ; and .-. 3/2+23/+1 

+ 1: 

2z 
24 222 + 4;2;2^1 Z4 j 22;2+1 

=e¥) 

2 _ ^ z*—2z^-\-l 

+ 4z2 ■ 

22+1 

422 

22+1 
=y- 

4^2 

22 2;2+1 (2 — 1)2 

22 22 

/22+1\2 
= ; and, consequently, 3/ + I 

; hence, by substitution in the 

second equation above, wo have 

(^—1)4 (2 — 1)2 
^ +6X ^ 

22 

(2^ 

■ 422 

(2-1)2 

+ i22x-^^=n. 422 . 22 

But 422 jg square number; 

... (Z —1)4+122 X (2 — 1)2= □ 

= (2-1)2x(2-1)2+122. (;2-1)2 = (2-1)2X {(2-l)2+122i. 

But (2 — 1)^ is □ , 

••• (2 —1)2+122= □ =22+102 + 1= □ . 

Again, by substitution in the third, we have 

(z_l)4 (2 — 1)2 
+ 9X^ 

(2 — 1)4 182 X (2 —1)2 

°=-^+-ib—=°- 422 I 2z 

... (2 —1)4+182 X (2 —1)2= □, and .-. (2—1)2. (2 —1)2+182 . (2 — 1)2= □ 

Hence (2 —l)2x f (2-1)2+182! =□ , 

and .-.4(2 —1)2+182= □ =22+162 + 1; 

hence (22^162 + 1) —(22+102 + l) = 62=32 X 2, 

1 1 . 32 + 2 32 
the - sum of which factors is —-—=—+ 1, the root of the greater □ . 

... .e»+16z+l = (|+l)'=^+3j:+l, 
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and A:z'^-\-QAz=:.^z^-\-l'2z, 

and 
. 52 

4z-\-64:=9z-{-12, 5z=52, and z=—- ; 

r.y: 

/52 \2 /47\ 

(l-V (t) 
3 2209 2209 

25 25 

52 52 52 104 

we see that 

2209 y 2209 

“yo “62920’ 

4418 13254 , 19881 
and are the roots. 

62920’ 62920’ 62920 

QUESTIONS FOR EXERCISE. 

(1) Required six numbers whose sum and product shall be equal. 

Ans. 1, 2, 3, 4, 5, and 
15 

Ti9* 

(2) Required five square numbers whose sum shall be a square. 

Ans. 1, 4, 9, 16, and L. 

(3) Divide the number 3 into four rational squares. 
^ 16 1 9 49 
Ans. —, —, —, and —. 

(4) Divide unity into three rational squares. 
25’ 25’ 25’ 25 

36 4 49- 

(5) Find two numbers whose sum is a cube, and difference a square. 

Ans. 1512 and 216. 

(6) Find two numbers whose product plus their sum or difference is each 

a square. 

Ans. ^ and 4^ 

(7) To find two numbers,such, that when each is multiplied into the cube 

of the other, the products will be squares. 
Ans. 2 and 8. 

(8) To find two square numbers whose difference is 40. 

Ans. 49 and 9. 

(9) To find t^vo square numbers, such, that their sum added to their prod¬ 

uct may be a square number. 
1 4 

Ans. - and -. 

(10) It is required to find two whole numbers, such, that their difference, 

the difference of their squares, and the difference of their cubes shall be squares. 

Ans. 10 and 6. 

(11) Find two numbers, such, that the sum of their squares shall be both 

a square and a cube. 
Ans. 75 and 100. 

(12) Find two numbers whose sum shall be a cube, but their product and 

quotient squares. 
Ans. 25 and 100. 
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(13) It is required to find three integral square numbers that shall be in 

arithmetical progression. 

Ans. 1, 25, and 49. 

(14) To find three square integral numbers in harmonical progression. 

Ans. 1225, 49, and 25. 

(15) To find three numbers, such, that if to the square of each of them the 

sum of the other two be added, the three sums shall be all squares. 

8 16 
Ans. 1, -, and y. 

(16) It is required to find three whole numbers,such, that if to the square of 

each of them the product of the other two be added, the sums shall be squares. 

Ans. 9, 73, and 328. 

(17) It is required to find three whole numbers in geometrical progression, 

such, that the difference of every two of them shall be a square number. 

Ans. 567, 1008, and 1792. 

(18) It is required to find three integral square numbers, such, that the dif¬ 

ference between every two of them and the third shall be a square number. 

Ans. 1492, 2412, and 2692. 

(19) To find three square numbers, such, that the sum of their squares 

shall also be a square number. 
144 

/ Ans. 9, 16, and —7-. 
' 25 

(20) To find three biquadrate numbers the sum of which shall be a square. 

Ans. 12^ 15% and 20h 

For generalization of Diophantine problems in certain cases, see Bonny- 

castle’s Algebra. See, also. Theory of Numbers. 

THEORY OF NUMBERS. 

387. We have already had occasion to demonstrate some propositions which 

fall under this head, and which would have been reserved for this place had 

tliey not been required for the elucidation of previous parts of the work. 

We recur to one or two of these for the purpose of exhibiting some of the 

other methods by which they may be established. 

I. To prove that « X & = i X Suppose a)>5 and c their difference ; 

.*. a X Z> = (5-|-c)5z=62-}-c6 ; 

e., h taken h times and c taken h times, and 

h X « = 6(i-j-c) = 62_j_5c; 

i. e., b taken b times and also c times. 

We perceive that the product axb will be the same as 5 X if the partial 

product cxb is equal to & X c. But, by similar reasoning, the equality of cb 

and be will be proved by . the equality of two smaller products, ccl and and 

continuing thus, we arrive necessarily at the case where the two fiictors are 

equal, or at the case where one of them is equal to unity. In the first case, 

the equality is manifest; in the second, it will follow, from the fact that hxi 

is h as well as 1 Xh- Then the product axb is always equal to the product 

bxa. . 
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II. To demonstrate that N X a X X a6, I observe, first, that the prod¬ 

uct ah is nothing else than , &c., the number of these terms being b. 

Then N X a6=Na4-N<2"-|-I'Ja4-i &c., to b terms, =:Na X h. Q. E. D. 

III. Nah=Nba ; for N6t=N-j-N-|-N-{- ... to a terms ; then, to multiply 

Na by 6, it is necessary to take each of the term's h times, 

thus Nab = N6-|-N6-4-N& . . . =N&a. Q. E. D. . 

Corollary 1.—If all the factors of N be 1, then Ix^hzzzlxha, or ah=zha, 

according to I. 

Corollary ,2.—The above reasoning applies only to entire factors. The prin¬ 

ciple is equally true, however, when some of the factors are fractions; because, 

if the entire factors, which are combined with the fractional ones, be written 

in a fractional form by placing unity under them, all the factors to be multi¬ 

plied together will be fi-actions ; the product of these, we know, is obtained by 

taking the product' of the numerators and denominators separately, which are 

entire numbers, and therefore the order is immaterial, from what has been 

proved above. 

Corollary 3.—If the factors be incommensurable, it is to be observed that 

the product of two incommensurable quantities has no precise meaning. 

But by regarding the incommensurables as limits to which approximating 

commensurables tend, since the above reasoning applies to the latter, and their 

order is immaterial, we may infer that the order is immaterial also in a prod¬ 

uct of incommensurable factors. 

Corollary 4.—We have seen that, from the above proposition, it follows that 

the order of factors in a product is immaterial; hence it follows that if a 

number, P, contains the factors a, b, c, &c., it is divisible by their product. 

Corollary 5.—If a number, P, is divisible by another, Q=:a6c, then is P 

divisible by each of the factors a, h, c. 

THE FORMS AND RELATIONS OF INTEGRAL NUMBERS, AND OF THEIR 
SUMS, DIFFERENCES, AND PRODUCTS. 

388. I. The sum or difference of any two even numbers is an even num- , 

ber. For, let A=2n and B = 27i' be any two even numbers ; then 

A rh B=2n i 2n'=2(w i w')=2«.", 

which, being of the form 2n, is an even number. 

II. The sum or difference of two odd numbers is even, but the sum of three 

odd numbers is odd. 

Let A=2ri-j-l, B=:2?i'-4-l, and C=.2n"-\-l, be three odd numbers; tlien 

A + B = 2w-f-2n'+2=2?i", 

and A-f B-f C = 2w-}-2?i'-f 2w"-f 3=2n'"-f 1; 

the former having the form of an even, and the latter of an odd number. 

In a similar way it may be shown, 

(1) That the sum of any number of even numbers is even. 

(2) That any even number of odd numbers is even, but that any odd num¬ 

ber of odd numbers is an odd number., , • 

(3) That the sum of an even and odd number is an odd number. 

(4) That the product of any number of factors, one of which is even, will 

be an even number, but the product of any number of odd numbers is odd; 

and hence, again. 
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(5) Every power of an even number is even, and eveiy power of an odd 

number is an odd number. r 

(6) Hence the sum and difference of any power and its root is an even 

number. 

For the power and root will be either both even or both odd, and the sum 

or difference in either case is an even number. 

III. If an odd number divide an even number, it will also divide the half 

of it. 

Let K—2n, 'Q-=t2n'-\-l be any even and odd number, such that B is a 

divisor of A ; let the division be made, and call the quotient p ; then we have 

2n=p{2n'-\-l); 

consequently (4), p is even, or of the form 2n” ; 

hence 2ri=27i"(2/i'-{-l), 

and 
n 

27i'4-l' 
; 

that is, n—^k. is divisible by B, if A itself be so. 

DEFINITIONS. 

389. (1) A perfect number is that which is equal to the sum of all its ali¬ 

quot parts, or of all its divisors. 

6 6 G 
Thus, 6=--|-2+0’ therefore, a perfect number. 

(2) Amicable numbers are those pairs of numbers each of which is equal to 

all the aliquot parts of the other. Thus, 284 and 220 are a pair of amicable 

numbers, for it will be found that all the aliquot parts of 284 are equal to 220, 

and all the aliquot parts of 220 are equal to 284. 

(3) Figurate numbers are all those that fall under the general expression 

)(w-|-2)(w-|-3)... 

1.2.3.4....(m-f 1) ’ 

and they are said to be of the 1°, 2°, 3°, &c., order, according as m=l, 

2, 3, &c. 

(4) Polygonal numbers are the sums of different and independent arith¬ 

metical series, and are termed lineal or natural, triangular, quadrangular 

or square, pentagonal, &c., according to the series from which they are 

generated. 

(5) Natural numbers are formed from a series of units ; thus : 

Units, 1, 1, 1, 1, 1, &c. 

Natural numbers, 1, 2, 3, 4, 5, &c. 

(6) Triangular numbers are the successive sums of an arithmetical series, 

beginning with unity, the common difference of which is 1; thus : 

Arithmetical series, 1, 2, 3, 4, 5, &c. 

Triangular numbers, 1, 3, 6, 10, 15, (fee. 

(7) Quadrangular or square numbers are the sums of an arithmetical se 

ries, beginning with unity, and the common difference of which is 2 ; thus : 

Arithmetical series, 

Quadrangular or j 

square numbers, * 

1, 3, 5, 7, 9, 11, dec. 

1, 4, 9, 16, 25, 36, dec. 
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(8) Pentagonal numbers are the sums of an arithmetical series, beginning 

with unity, the common difference of which is 3 ; thus : 

Arithmetical series, 1, 4, 7, 10, 13, 16, &c. 

Pentagonal numbers, 1, 5, 12, 22, 35, 51, &c. 

And, universally, the m—gonal series of numbers is formed from the suc¬ 

cessive sums of an arithmetical progression, beginning with unity, the com¬ 

mon difference of which is 7n—2. 

DIVISIBILITY OF NUMBERS. 

390. I. The product of two numbers, a and b, is divisible by every number 

which exactly divides one of the two factors a and b. 

For let 0 be a number which divides b, so that b=cd, we have by the fore¬ 

going ab=acX Then ab, divided by 6, gives the Wact quotient ac. 

Corollary.—To divide a product of several factors, divide one of the factors 

and multiply the quotient by the others. 

On this subject we must observe that a number may sometimes divide a 

product when it will not divide any factor. Thus, 20 divides neither 12 nor 

15, but does their product, 180. This is because 20 is composed of factors 

some of which are found in 12 and others in 15. But if the number 20 had 

no common factor with one of the factors, it must divide the other. (See 

Art. 84, note.) 

II If there be n numbers, each of them divisible by k, then is their product 

divisible by k". 

For ' a—kq, b—kf, c—kq". . . .*. abc . . .=.k^ .w, 

w being equal to qXq' X q" X • • • 

III. The sum of several numbers, a-|-b-}-c-|-d, is divisible by a number, k, 

ivhen the sum of the remainders obtained by dividing each by k is divisible by 

this number. 
For a-=.kq-\-r, bzzzkq'■\-r', cz=zkq"-\-r", &C. 

.•. a-\-b-\-c-\-d=zk{q-\-q'-\-q"&c.)-|-r-|-r'-|-r"4-» 

Whence it is evident that a-\-b-\-c, &c., is divisible by k when r-\-r'-\-r", 

&c., is * 

IV. The difference of two numbers, a and b, is divisible by a number, k, 

ivhen, if each be divided by k, the remainders are equal. 

For a=zkq-\-r, and b — kq'-\-r 

a — b=k{q—q'). 

V. Every number consisting of units, tens, hundreds, is divisible by a 

number, k, when the sum of the products of the number of units, tens, Sfc., by 

the remainder, after dividing the units, tens, &pc., each by k, is divisible by this 

number. 
For, representing by A, B, C, &c., the quotients, and by a, j3, y, Sec., the 

remainders of the units, tens, &:c., by k, we have 

10" z=zk.k-\-a .•. a . 10" =iaKk-\-aa 

10"-^=BA:-|-/3 b . 10"-^= bBk-\-b^ 

10"-" = C/i:-|-7 c . 10"--2= cCk-\-cy 

102 

10^ =EA:4-e 
10° = . . . 1 

d . 102 —dUk-^dd 

e . 10^ =cE^-|-e£ 

/. 10° =-/ 
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V^I. The 'product^ P, of several numbers, a, b, c, d, . . . is divisible by a 

number, k, only when the product of the remainders, after dividing each of the 

factors by k, is so divisible. , ' 

For, let a=i'kq-\-a, b—kq'-{-jS, cz='kq"-\-y, 6cc., 

' ab=kz-{-a.(3. 

abc = kz-\-a(3 .-y, &c. 

VII. The product, P, of several factors, a, b, c, d, . . . is divisible by a prime 

number, k', only when one of the factors is divisible by this prime number. 

For, let a=k'q-\-a, bzzzk'q'cz^k'q"-{-y, &Cc,., 

V =.k'z-\-a.^. y . . . 

Therefore, if k' divide P, it must divide a, 8, y . . . 

But k' is not found among the factors a, {3, y, . . . since, being remainders 

to the divisor k', they are all less than it. Neither is k' any combination of 

them, since it is supposed to be a prime number. Hence a, jS, y, . . . and 

therefore P is divisible by k' only when one of the remainders =0. 

VIII. If the factors, a, b, c, . . product, P, are prime to k, then is the 

product not divisible by k. 

For, if k be an absolute prime number, this follows from VII. Again, if 

^ be a multiple of a prime number, as p'v; then, if P be divisible by k, we 

have 

P a.b .c... 

k p' .V 
=m a . b . c . =.mp'v; 

therefore a .b . c .... must be divisible hy p', which by VII. is impossible. 

391. I. Problem.— To find all the divisors of any number whatever. The 

first thought which presents itself is to try successively as divisors each of the 

numbers 1, 2, 3, &c., to N. But this groping process may be abridged. Let 

D be a divisor of N, and D' the quotient, we have I)D' = N, or, under anoth¬ 

er form, 'DD'= -/N X VN ; then, if D is <] -/N, D' will be > VN. TJien, 

after having found all the divisors V N, the quotients which shall have been 

obtained in dividing N by these divisors will be the divisors > -/N. 

For example, let N=360. The square root of 360 is comprised between 

18 and 19; thus, we divide 360 only by the numbers 1, 2, 3 . . . 18. In this 

manner we find all the divisors of 360, to wit: 

1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 18. 

360, 180, 120, 90, 72, 60, 45, 40, 36, 30, 24, 20. 

392. II. Problem.— To form a table of 2^rime numbers. When the above 

proceeding produces no divisor, the number is a prime number. To avoid 

the long calculations necessary in these cases, tables have been constructed 

which contain the prime numbers up to certain limits.* 

The most simple manner of constructing it is to write in succession the 

series of uneven numbers 3, 5, 7, &:c., to such a limit as we seek, and to efface 

all the multiples of 3, of 5, of 7, &cc. It is evident that the prime numbers 

are all that remain. At the head of these numbers it must not be forgotten to 

place 1 and 2. •’ 

Nothing is easier than to know, what multiples to efface. Those of 3 are 

* The student is refeired to the tables of Burckliardt, in which the prime numbers ex¬ 
tend to 3036000. 
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found by counting the numbers 3, 5, 7, &c., in threes, setting out from 5; 

those of 5 in counting them in fives, beginning with 7, and so on.^ 

393. Remark I.—The series of prime numbers is unlimited. For, suppose 

it to be otherwise, and that n is the gi'eatest: if we form the product 

P=2.3.5 . . . n, which contains all the prime numbers, then P-j-1, which 

}>n, must be divisible by some one of these numbers ; but this is impossible, 

because there will always be the remainder 1. Then it is impossible that the 

series of prime numbers should be limited. 

II. In comparing all numbers with multiples of the same number, we are 

led to present them under different forms, of which use is often made. For 

example, if we compare them with multiples of 6, they may be represented 

first, by one of the six formulas, 

Qx, 62’-|-1, 62:-}-2, 6a:4-3, 6a:4-4, 6a:4-5, 

in which a: is any whole number whatever. 

But if we wish to consider only prime numbers, it is necessary to pi'eseiye 

only the two formulas, 

62’4" 1 624-5 ; 

because the others give numbers divisible by 2 or by 3. 

We can also, in place of 624-6, write 6(24-!) — 1 or 62—1, since 2 is any 

entire number whatever. Thus all the prime numbers except 2 and 3, which 

are divisors of 6, are comprised in the formula 

N=62il. 

The reasoning would be analogous for any other.number than 6. 

394. III. Problem.—To decom'pose a number into prime factors^ and to find 

afterward all its divisors. 

A number N, if it be not a prime number, can be represented by the product 

of several prime numbers a, &, c, &c., raised each to a certain power, so that 

we can always suppose N=(Z’"Z)"cp . . . This is the decomposition which it is 

required to effect. 

Take, for example, the number 504. Divide it first by 2 as many times as 

possible ; we find thus, 

504 = 252X2 = 126X2X2 = 63X2X2X2. 

Then divide 63 as many times as possible by 3, which is the smallest prime 

number greater than 2 : 

63=21X3=7X3X3. 
Then we have 

504=7X3X3X2X2X2, 

or, rather, under another form, 

504 = 2^x32x7. 

The divisions by 3 have led to the quotient 7. If the quotient had not been 

a prime number, we should have continued the operations by trying success¬ 

ively the other prime numbers, 5, 7, &:c. 

We can now readily form all the divisors of 504. They are, in fact, the 

numbers which we obtain in taking all the pilme factors one by one, two by 
^ . ■ 

* Conceive a board pierced with boles in which the umnhers 3, 5, 7, &c., are placed in 

order. Then, as we ai'rive, in counting them by threes, fives, &c., at the multiples, to be 

effaced, suppose these multiples to fall tlirough the holes, there will remain only prime 

numbers. Such was the famous sieve of Eratosthenes, of Alexandria, who lived 280 B.C. 
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two, &CC. That we may be sure not to omit any divisor, we adopt the fol¬ 

lowing arrangement: 

1, 
504 2 2, 

252 2 4, 

126 2 8, 

63 3 3, 6, 12, 24, 

21 3 9, 1—
* 

00
 

36, 72, - 

7 7 7, 14, 28, 56, 21, 42, 

84, 168, 63, 3 26, 252, 504 

The first column on the left contains the given number and the quotient of 

the successive divisions. By the side of these numbers, in a second column, 

are written the prime numbers, which we employ as divisors, and which 

are the prime factors of the number 504. Finally, we place at the right of 

this column all the divisors of 504; and I now proceed to state how we obtain 

them. 

At the top of the third column, but on the line above that which contains 

504, we write unity, which may be regarded as the first divisor of 504. We 

multiply this unity by the first number of the second column, and thus obtain 

the divisor 2, which we write by the side of this first prime number. We 

next multiply 1 and 2, the divisors already found, by the second number of the 

second column, and, neglecting the product 1 X 2, or 2, which has already been 

found, we obtain the new divisor 4, which is written on^a line with the last 

multiplier. We proceed in the same manner, multiplying the number of the 

second column on the horizontal line which we are forming by each of the 

numbers above it in the third column successively, until we multiply, finally, 

by the last number of the second column, which gives a last series of divisors, 

which series will always be terminated by the given number. 

When we know the prime factors of a number, we can find its divisors by 

another process. Suppose that a number N, when decomposed into prime 

factors, gives 

N=a“5"cP . ..; 

the divisors of N will be represented by the formula a'"'6"'cP'..., in which the 

exponents m', n\ p'... can not surpass m, n, p ... 

Hence we know that these divisors will be the different terms which we 

obtain in effecting the product 

P (1 -j- u-j- -j- h -j- 5®-j- . .. -j- c^- c^-j- . . . cP). 

395. Remarks.—The multiplication of the first two polynoraes gives a 

number of terms equal to l)(r2,-j-1); consequently, that of the first three 

polynomes gives a number equal to (7R-|-l)(w4-l)(j;-j-l), and so oir; hence, 

the number of all the divisors of N is expressed by the formula 

(m+l)(w+l)(p4.1). 

We also see tliat P is the sum of all these divisors. But we know that the 

_1 
polynomes which compose P are respectively equal (Art. 23) to-, 

Jn+l-1 
, &C.; hence, the sum of all the divisors of N can be expressed by the 

formula 
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P = 
—1 

a- 

Jn+l-1 cP+^-1 

For example, taking N=504=2'^X 3^X 7, we shall have m=3, n=2, 

^ = 1. Hence the number of divisors of 504 will be 4x3x2=24, and the 

sum of all the divisors will be 

24—1 33_i 73_i 

-033; 3z:t X tUT = X ® 

396. IV. Problem.—How many times is a prime number^ 6, factor in a 
series of natural numbers^ from 1 ton?; or, in other words, what is the highest 

power of d which divides the product 1.2.3 ... n ? 

Let n' be the entire part of the quotient of n by d. In the proposed series 

of natural numbers we find the n' factors, 6, 26, 36...., of the product 

6.26.36... n'6; and it is clear that they are the only numbers of the series 

which are divisible by 6. This product can be written thus : 

1.2.3 . .. n' X 6^'. 

Hence we shall obtain the required power of 6 by multiplying 0"' by the high¬ 

est power of 6, contained in the product 1.2.3 .. . n'. 

The same reasoning may be repeated with reference to this product; 

hence, calling n'' the entire part of the quotient of n' by 6, we readily perceive 

that the highest power of 6 contained in the last of the above products is com¬ 

posed of the power d''^" multiplied by the highest power of 6 which is contain¬ 

ed in the series 1.2.3 . . . n". 

In like manner, calling n'" the entire part of the quotient of n" by 6, we are 

led to seek the highest power of 6 contained in the product 1.2.3 . . . n'". 

We continue this process till we arrive at a quotient <f6. For the sake of 

definiteness, suppose that n'" is this quotient; then we conclude that the 

highest power of 6 contained in the given product 1.2.3 . . . w is 

For example, suppose we wish to know what is the highest power of 7 

which divides the product 1.2.3 . . . 1000. 

We make w = 1000, and taking only tht, entire parts of the quotients, wo 

shall have 
1000 142 20 
-y- = 142, — = 20, y=2. 

The sum of these quotients being 164, it follows that the required power is 7^®^. 

397. Corollary.—Let m, n, p, q be entire numbers, such that we have 

m=n-\-p-\-q-\- . . . ; the expression 

1.2.3.4 m 
(1) 1.2....nXl-2-pXl-2....5'X, &c. 

will always represent an entire number. To prove this, let 0 be a prime factor 

of the denominator ; wo shall have 1 

m n p a 

Calling these entire quotients m', n', p', </'... ., we shall have also 

m'= or f>n'-{-p't-{-q'&c. 

If we divide again by 6, and call the new entire quotients m", n" , . . ., we 

shall, in like manner, have 

m"= or f>n" -\-2y' q" , &c. 

We continue tliis process as long as the quotients are not all less than 6. 
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Then adding, we shall have 

+ or >K + n"+...) + (^'+p" + ...) + (g'-f + &c. 

But these different sums make known the highest powers of 6, by which we 

can divide the products which compose expression (1); hence there is no 

prime factor in the denominator which does not bxist of a power at least equal 

in the numerator of the fraction. This expression, therefore, represents an 

entire number. 

398. Perfect numbers are expressed or determined as follows : 

Find 2"—1, a prime number, then will N=:2"~^(2"—1) be a perfect number. 

For, from what has been demonstrated in the preceding section, the sum of 

2"—1 (2"—IP—l 
all the divisors of this formula will be represented by ——^ x ^ ; 

because 2"—1 is a prime by hypothesis. But in this expression 1 is included 

as a divisor, which must be excluded in the case of perfect numbers ; exclu¬ 

sive of this, therefore, the formula will be 

2"—! (2n_l)2_l 

.1) X (2" —l + l) —2"-i(2“—1) = 

2- 

(2" 

2(2"—l)2"+i—2"-i(2" —1)=2"-H2"—1) = N, 

that is, the sum of all the aliquot parts of N, exclusive of itself, or of 1 as a 

divisor, is equal to N, and is, therefore, by the definition a perfect number. 

The only perfect numbers known are the following eight: 

6, 33550336, 

28, 8589869056, 

'496, 137438691328, 

' 8128, 2305843008139952128. 

399. To find a pair of amicable numbers N and M, or such a pair that each 

shall be respectively equal to all the divisors of the other. 

Make N=a“6"cP, &c., and M=:a^/3’'y’^; then, according to the definition and 

from what has been demonstrated in the last section, we must have 

— 1 6"+' — 1 cP+^ — 1 

a —I X 

X 

6 — 1 
/jv+i —1 

X 

X 

c—1 
:N-f M, 

=M+N. 
a —1 '' fS — l '' 7—1 

Find, therefore, such a power of 2, as 2% that 

3.2'-—1, 6.2'-—1, and 18.2^—1 

may be all prime numbers ; then will 

N=2‘'+^<i and M=2''+^6c 

be the pair of amicable numbers sought. 

The least three pair of amicable numbers are 

284, 220, 

17296, 18416, 

9363583, 9437056. - 

400. AVe shall here introduce the student to the nomenclature and notation 

of Gauss, given in his Disquisitiones Arithmeticse, which is now generally 

adopted by writers upon the theory of numbers. 
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I 
CONGRUOUS NUMBERS IN GENERAL. 

401. If a number a divide the difference of the numbers h and c, h and c are 

said to be congruous with reference to a ; if not, incongruous. The quantity 

a is called the modulus ; each of the numbers h and c a residue of the other in 

the first case, a non-residue in the second. 

The numbers may be either positive or negative, but entire. As to the 

modulus, it ought evidently to be taken without regard to the sign. 

Thus, —9 and -j-16 are congruous with reference to the modulus 5; —7 

is a residue of 15 with reference to tlie modulus 11, and not a residue with 

reference to the modulus 3. 

Zero being divisible by all numbers, every number may be regarded as con¬ 

gruous with itself with reference to any modulus whatever. ' 

All the residues of a given number, a, with reference to a given number, wi, 

are comprised in the formula a-{-km, k being an entire indeterminate num¬ 

ber. This is self-evident. 

The congruence of two numbers is expressed by the sign joining to it 

the modulus, when necessary, in a parenthesis, thus :* 

— 16=i:9(mod. 5), —7 — 15(mod. 11). 

402. Theorem.—Let there he m entire successive numbers^ a, a-f-l, a-j-2, 

...a-j-m—1, and another., A; one of the former will he congruous with A, 

with reference to the modulus m, and hut one. 
^^ 

For if- is entire, a = A; if it is fractional, let k be the nearest entire 
m 

a—A 
number; above, if-- be positive; below, if it be negative; A-\-km will 

Tfh 

fall between a and a-j-m,f and will be the number sought; but it is evident 

a — A ct—j—1—A 
that the quotients -, -, &c., are comprised between k — 1 and 

^ m m 

A:-f-1,$; therefore one of them only can be entire. 

403. It follows from this that every number will have a residue as well 

in the series 0, 1, 2...m — 1, as in the series 0, —1, —2...—[m — 1). 

They are called minima residues; and it is evident that, unless zero is the 

residue, there will be two, the one positive and the other negative. If they 

are unequal, the one will be <.77; if they are equal, each of them =^, with- 

out regard to the sign; from which it follows, that any number whatever has 

a residue which does not surpass the half of the modulus; this is called the 

absolute minimum residue. 

For example : —13 relative to the modulus 5, has for a positive minimum res¬ 

idue 2, which is at the same time its absolute minimum, and —3 for its nega¬ 

tive minimuin residue; -\-5, with reference to the modulus 7, is itself its 
■ ---—■—' ~* I ’ *    -—— 

*■ The analogy between equality and congruence led Legendre to employ the sign of 

equality itself. This modification of it has been introduced by Gauss to avoid ambiguity. 

a ^'V 

t This may be seen from the equality-=k—n, where ?i<m. 
m 

. . , 7 . , a-|-l—A a—A ,1 ... 
t Tins may be seen by observing that —^-=-—, and it is not till the nume- 

m m m 

ratorof— increases to m that the quotient k increases to 
m 
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positive minimum residue; —2 is the negative minimum residue, and, at the 
sf^ine time, the absolute minimum. , 

404. The following consequences follow from the above : 
Numbers which are congruous with reference to a composite modulus are so 

with reference to any of its divisors. 
If several numbers are congruous with the same number with reference to the 

same modulus, they will be congruous with each other with reference to this 
modulus. 

The same modulus must be supposed in what follows : 
Congruous numbers have the same minima residues ; incongruous have 

different. 
405. If the numbers A, B, C, &c.; a, 6, c, &c., are congruous each to each, 

i. e., A^a, B = 6, &c, we shall have 
A-j-B-fC . . . = a-{-b-\-c . . . 

If A^ a, B ^ b, we have also A—B^ a—b. 
406. If A ~ a, we have also kA = ka. 
If k is positive, this is but a particular case of the preceding article, in 

which A = B . . . and a = b^c . . . 
If k is negative, —k will be positive; then —kA^ ka .•. kA^ka. 
If A^a, B^6, then AB^u6; because A B — AB — Ab — ba. 
407. If the numbers A, B, C . . . ^ u, 6, c . . ., each to each, then 

ABC . . . ^ abc . . . 
for, by the preceding article, AB = a6; for the same reason, ABC=: abc, 
and so on. 

By taking all the terms. A, B, C . . . equal, and a, b, c . . . also equal, if 
A^a, A^=a*. 

408. Let N. be a function of the indeterminate x of the form 
&c., 

A, B, C . . . being any entire numbers whatever. If we give to x congruous 
values with reference to a certain modulus, the resulting values for X will be 
congruous also. 

Let f and g be congruous values of x ; by the preceding articles,= 
and A/“^A^“ ; in the same way we have B/*=Bg'5 &c. 

This theorem may be easily extended to functions of several indetermi- 
nates. 

409. If, then, we substitute in place of x all entire consecutive numbers, 
and seek the minima residues of the values of X, they will form a series in 
which, after an interval of m terms (m being the modulus), the same terms 
will be again presented; that is to say, this series will be formed of a period 
of m terms repeated indefinitely. 

Let there be, for example, X.=x^—8.r4-6, and m=5; for .t = 0, 1, 2,*3, 
&c.; the values of X give for positive minima residues 1, 4, 3, 4, 3, 1; 4, &c., 
or the five, 1, 4, 3, 4, 3, are repeated indefinitely ; and if we continue the 
series in the contrary direction, that is, if we give to x negative values, the 
same period will reappear in an inverse order; whence it follows that the 
series contains no other terms than those which compose the period. 

410. Then, in this example, X can not become EE 0, nor ^2(mod. 5); and 
still less =0 or =2; from which it follows that the equations x^ — 8.r-|-6 = 0 
and x^ — 8.r-|-4 = 0 have not entii'e roots, and, consequently, not rational roots. 
We see, in general, that when X is of the form 
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X"+A.7:"-i+Ba:"-2-|-, &c., +N, 

A, B, C. .. being entire quantities, and n entire and positive, the equation 

X=0 (a form to which every algebraic equation may be reduced) will have no 

rational root, if it happen that, for a certain modulus, the congi-uence X = 0 be 

not satisfied. 

411. Many arithmetic theorems may be demonsti'ated by the aid of the 

foregoing principles, as, for instance, the rule for determining whether a num¬ 

ber is divisible by 9, 11, or any other number. 

With reference to the modulus 9, all the powers of 10 are congruous with 

unity; then, if the number is of the form a-|-106-|-100c-|-1000(^-4-, &c., it 

will have, with reference to the modulus 9, the same minimum residue as 

&c. It is clear from this, that if we add the figures of the number 

without regarding their place value, the sum obtained and the proposed num¬ 

ber will have the same minimum residue. If, then, this last is divisible by 9, 

the sum of the figures will be also, and only in this case. It is the same with 

the divisor 3. 

Many of the properties of prime numbers, the divisibility of products already 

given, &c., may be demonstrated by the aid of this system, but we shall not 

repeat them. 

412. The term congruence is analogous to equation, and the determination 

of such values, for an indeterminate x, as to produce congruence in expression, 

is called resolving them. There are congruences resolvable and irresolvable. 

Congruences are also divided, like equations, into algebraic and transcend¬ 

ental. Those which are algebraic are divided, again, into congruences of the 

fii’st, second, and higher degrees. There are congruences, also, containing 

different unknown quantities, of the elimination of which Gauss treats. 

413. The congruence ax-\-b~c may be solved when its modulus m is 

prime with a ; thus, let e be the positive minimum residue of c — b. We find 

necessarily a value of x<^m, such that the minimum residue of the product 

ax, with reference to the modulus m, shall be e. Call v this value, and we 

shall have 

av~e = c — b; 

then m). 

Here v is called the root of the congruence. It is evident that all the num¬ 

bers congruous with v, with reference to the modulus of the congruence, will 

also be roots (Art. 408). It is also evident that all the roots should be con¬ 

gruous with v; in fact, if t be another root, we have av-{-b = at-\-b; then 

at^av; and therefore v = t. We may therefore conclude that the congru¬ 

ence .r = t’(mod. m) gives the complete resolution of the congruence ax-{-b~c. 

The foregoing exposition will serve to show how the algorithm of Gauss 

connects itself with the indeterminate analysis, and we shall here quit the 

subject. 

414. No algebraical formula can contain prime numbers only. 

Let 

represent any general algebraical formula. It is to be demonstrated that such 

values may be given to x, that the formula in question shall not with that value 

produce a prime number, ^whatever values are given top, q, r, &c. 

For suppose, in the first place, that by making x=m, the formula 
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V &c., 

is a prime number. 
/ 

A^nd if now we assume we have 

P=.P 
qx=. 

rx^=.rm^-]-2rm(j>P 

sx^=.sm^-{-3sm‘^<j>P -^3sm(j)^P^-\-s(l>^P^ 

6cc. &c. 
Or 

p-\-qx-{-rx^-{-s3:^={p-{-qm-Jf-rmP + &c., ) + 

P {q^-\-2rm(j)-{-3snP<p) -f- P^{T(j>^-{-3sm(l>^)-{-s<l>^P^ 

=P -f" P (9^+2n?i0 4* ^s'm?(j)) 4“ 
P2(7'^2 4. _j_ 5^3p3^ 

But this last quantity is divisible by P; and, consequently, the equal quantity 

p-\-qx-\-rx'^-\-S3?y &c., 

is also divisible by P, and can not, therefore, be a prime number. 

Hence, then, it appears, that in any algebraical formula such a value may 

be given to the indeterminate quantity as will render it divisible by some other 

number; and, therefore, no algebraical formula can be found that contains 

prime numbers only. * 

But,although no algebraical formula can be found that contains prime num¬ 

bers only, there are several remarkable ones that contain a great many; thus, 

by making successively a:=0, 1, 2, 3, 4, &:c., will give a series 

41, 43, 47, 53, 61, 71, &c., the first forty terms of which are prime numbers. 

The above formula is mentioned by Euler in the Memoirs of Berlin (1772, 

p. 36). 

To the above we may add the following: x^-\-x-\-ll and 2x^-\-29; the 

former has 17 of its first terms prime, and the latter 29. 

Fermat asserted that the formula 2'"-{-l was always a prime, while was 

taken any term in the series 1, 2, 4, 8, 16, &c.; but Euler found that 

2'^24*l=b41 X 6700417 was not a prime. 

415. If a and h be any two numbers prime to each other, and each of the 

terms of the series 

6, 26, 3b, 46, Sec., (a—1)6 

be divided by a, they will each leave a different remainder. For if any two 

of these terms, when divided by a, leave the same remainder, let them be rep¬ 

resented by xb, yb ; then it is obvious that xb—yb would be divisible by a, or 

{x—y)b would be divisible by «. But this is impossible, because a is prime to 

6, and x—y is less than u; therefore b{x—y) is not divisible by a, but it 

would be so divisible if the terms xb, yb left the same remainder; these do 

not, th^erefore, leave the same remainder; consequently, every term-of the 

series 

6, 2b, 36, Sec., {a—1)6, 

divided by a, will leave a different remainder. 

DEDUCTIONS. 

416. Since the remainders arising from the division of each term in the series 

6, 2b, 3b, &c., (a —1)6 

by a are different from each other, and a — 1 in number, and each of them 
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necessarily less than it follows that these remainders include all numbers 

from 1 to a — 1. 

417. Hence, again, it appears that some one of the above terms will leave 

a remainder 1 ; and that, therefore, if h and a be any two numbers prime to 

each other, a number x<^a may be found that will render hx—1 divisible by 

a, or the equation hx—CLy = '^ is always possible if a and b are numbers prime 

to each other. 

And it is always impossible if a and h have any common measure, as is evi¬ 

dent, because one side of the equation hx—CLy = l would be divisible by this 

common measure, but the other side, 1, would not be so; therefore, in this 

case the equation is impossible. 

418. If a be any prime number, then will the formula 

1.2.3.4.5, &c., (a —1) + 1 

be divisible by a; for it is demonstrated in our preceding second deduction, 

that if a and b be any two numbers prime to each other, another number x 

may be found <^a, that renders the product bx—or, which is the 

same thing, bx=ya-{-l; and that there is only one such value of x<C,a, may 

be shown as follows : 

The foregoing equation gives, by transposition, 

bx—ay=l; 

and, if it be possible, let also 

bx'—ay'=l; 

vnd make x'—X:^m and y'=y:^n, where m is necessarily less than a, be- 

rause both x and x' are so by the supposition. 

Now, by this substitution, we have 

— {ay■^an) = l; 

out bx—ay = l\ 

therefore 2L&wi==pari, or bm-^a; but this is impossible, since b is prime to 

SL and m<C,a, as in Art. 415. There can not, therefore, be two values of x less 

than a, that render the equation bx—ciy=zl possible. 

But, in the series of integers 

1.2.3.4.5...*..^ —1, >t , 

eveiy term is prime to a except the first, a being itself a prime ; if, therefore, 

we write successively 6=2, 6'=3, 6"=4, &c., a corresponding term x^ in 

the same series, may be found for each distinct value of 6, that renders the 

product xbzaay-{-l^ x'b':r.ay'-{-I, x"b"znay"-{-1, &c.; and it is evident that 

no one of these values of x can be equal either to 1 or a — 1 ; for, in the first 

case, we should have 1 X b=ay-\-l, which is impossible, because b<^a ; and 

the second would give {a — l)b=ay-\-l, or a{b—y)=b-\-l; that is, 64-1-f^a, 

which can only be when 6=<2 — 1, or when b=x, which case is excepted, be¬ 

cause we suppose two different terms of the series. In fact, since {a — 1)® 

□cay-j-l, there can be no other term in the same series that is of this form; 

for if x^znay' + 1. then {a — 1)^—-would be divisible by a, or {a — l+ar) 

X {a — 1—which is impossible, since each of these factors is prime to 

* To save the repetition of the words “ divisible by/’ which frequently occur, the sign 

-n- is used to express them; and, for the same reason, the symbol nr is introduced, to ex¬ 

press the words “ of the fonn of,” which are also of frequent occurrence. 

Hh 
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a, as is evident, because x<C.a, and a is a prime number. Hence our product 

1.2.3.4.5....(<z 1) 

becomes 1 .bx .b'x'.b"x" ... .a—1; 

but each of these products, bx, b'x', .b"x", &cc., is, as we have seen, of the 

form ay-{-l; therefore their continued product will have the same form, and 

the whole product, including 1 and a—1, will be 

i^y X *^^y “1“ ^^» 

to which if unity be added, the result will be evidently divisible by a ; that 

is, the formula 
1.2.3.4.5.{a !)-{- • 

is always divisible by a when a is a prime number. 

(1) The product 

is the same as 

DEDUCTIONS. 

1.2.3.4.5.{a 1) 

l(a—l)2(a—2)3(a—3), &c., ; 

and this product, as regards remainder, when divided by a, is the same as 

iP.22.3^.4*, 

the ambiguous sign being -f- when a — 1 is even, and — when a — 1 is odd ; i. e., 

-}- when a is a prime of the form 4n-j-1» and — when a is a prime of the form 

4n—1; also, this last product is the same as 

. / a—iy 
\1 • 2.3.4.— J ; 

therefore, from what is said above relating to the ambiguous sign, we shall have 

1 (i-2-3.4.+l^-H-a 

when ain4^4-1; and 

\ •2*3.4.-y-) —1 ^ -ffa 

when azjiin—1. 

Hence every prime of the form 4n4-1 is a divisor of the sum of two squares. 

Again, the latter form may be resolved into the two factors 

. 

1 •2*3.4.^ , 

which product being divisible by a, it follows that a is a divisor of one or other 

of these factors when it is a prime number of the form 4n — 1. 

(2) From the first product, which we have shown to be divisible by a, viz., 

1.2.3.4, &c., (a —1) + 1 

a 
:e, an integer. 

we may derive a great many others, as 

H . 2^. 3.4, &c., (a—3)(u —1)4-1 

a ~ 

H.2^.3^.4.5, &c., (g—4)(a —1)4-1 

a 

and so on till we arrive at the same form as that in the first deduction. 

■.e, an integer. 

:e, an integer. 



PRIMITIVE ROOTS. 483 

PRIMITIVE ROOTS. 

419. Theorem.—If p, a number prime to a, divide the successive powers 1, 

a, a®, a'^ . . . there will be one at least, before arriving at aP, which loill leave 

the remainder 1. 

The remainders being each less than p, there can be but p — 1 different 

ones, and, therefore, in the p first terms of the series 1, a, a?, a^ . . . aPr\ 

there are at least two which will give the same remainder. Representing 

them by a™, a™', and their common remainder by r, suppose 

a^ — 'Ep-^-r, a'"'=E'p-j-r.(1) 

... aJ^'—a'"=(E'—E)p, or —1) = (E' — E)jp; 

and, asp is prime to a, it must divide a^'-^ — 1. Therefore we have unity 

for remainder in dividing byp the power which is <^a^. Q. E. D. 

420. Let a" designate the lowest power other than which gives the re¬ 

mainder 1. All the preceding remainders are unequal. For, if for two 

powers, a™, a™' less than a", we could have the equalities (1), we might con¬ 

clude, as just now, that would give the remainder 1. Consequently,' 

a" would not be the lowest power to which this property belonged. 

THEOREM OF FERMAT. 

421. If ^ be a prime number which will not divide a, the division of aP“^ by 

p will give 1 for a remainder. In other words, aP“^ — 1 is exactly divisible 

p. 

It must be carefully observed that p is an absolute prime number, and not 

simply prime to a. 

Call q, q', q", . . ., and r, r', r", . . . the quotients and remainders of the 

p — 1 quantities a, 2a, 3a ... {p — l)a, divided by p. If we multiply these 

quantities, and suppose E to be an entire number, we have 

a . 2a . 3a ... . (p — l)« = (^p+’')(9'p + ^')(9'"p-f-?'") . . . 

=E-j-rr'r" . . . 

The first member is equal to ’ 

1.2.3.... (p—l)aP~’ 

and, as the remainders r, r', r" . . . are all different (Art. 415), the product 

rr'r" . . . must evidently be that of the whole series of natural numbers, 1, 2, 

3 . . . (p — 1), from 1 to (p — 1). Hence the above equality becomes 

1.2.3.... (p — 1) X «P"^=Ep-|-l .2.3... (p—1) 

.-. 1.2.3... (p —l)(aP-i —l)=Ep. 

The 1° member of this equality is, therefore, divisible by p ; but since p is 

a prime number, it can not divide any of the factors 1.2.3... (p — 1); it 

must, therefore, divide «p~^ — 1. Q. E. D. . 

Suppose that we take for p only prime numbers ; if we wish that the pow¬ 

ers oP, a^ . . . a^~^ should give for remainders all the numbers inferior to p, it 

is necessary to choose a, such that aP~^ should be the lowest power above a^, 

which gives the remainder 1 ; and if, among those which fulfill this condi¬ 

tion, we take for a only numbers below p, we have those which Euler calls 

primitive roots. 

For the best method of calculating them, the student is referred to the 

article by Mr. Ivory, in the fourth volume of Supplement to Encyclopedia 

Britannica. We shall limit ourselves to setting down here the primitive roots 

of numbers as far as 37. 
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Numbers p. Primitive roots of p. 

3 2 

5 2 . 3 

7 3 . 5 

11 2 . 6 . 7 . 8 

13 2 . 6 . 7 . 11 

17 3 . 5 . 6 . 7 

19 2 . 3 . 10 . 13 

23 5 . 7 . 10 . 11 

-29 2.3. 8 . 10 

31 3 . 11 . 12 . 13 

37 2 . 5 . 13 . 15 

7 . 10 . 11 . 12 . 14 

4 . 15 

THE EORMS OP SGUARE NUMBERS. 

422. Every square number is of one of the forms An or An-\-l. 

Every number is either even or odd; that is, every number is of one of the 

forms 2n or 2n-\-l; and, consequently, every square is of one of the forms 

An^-\-An-\-l^An-\-l, 

DEDUCTIONS. 

(1) Every even square number is divisible by 4. 

(2) Since every odd square by the above is of the form A{n'^-\-n)-\-l, and 

since is necessarily even, it follows that every odd square is of the form 

Sw+f ? consequently, no number of the forms 

can be a square number. 

(3) The sum of two odd squares can not be a square ; for 

(8w-f 1) +(8/1 + 1) =n 4^ + 2, 

which is an impossible form. 

423. Every square number is of one of the forms bn or 5/i + l. For all 

numbers, compared by the modulus 5, are of one of the forms 

5w, 5/1 + 1, 5/1 + 2; 

and all squares, therefore, are of one of the forms 

25//* =1= bn, 

25n*+10// + l3=5//+l, 

25/i*+20//+4 ::3=5//+4 or bn — 1. 

Therefore all squares are of one of the forms bn or 5//+1. 

DEDUCTIONS. 

(1) If a square number be divisible by 5, it is also divisible by 25; and if a 

number be divisible by 5 and not by 25, it is not a square. 

(2) No number of the form 5//+2 or 5/i+3 is a square number. 

(3) If the sum of two squares be a square, one of the three is divisible by 

5, and, consequently, also by 25 ; for all the possible combinations of the three 

forms bn, 5n+l, and bn — 1 are as follows : 

(5r/+1) + (5//'+1) HI 5//+ 2, 

' (5// —1) + (5//' —l)in5/i__2Hr5/j + 3, 

bn + bn' ^bn, 

bn +(5//''+l)iti5//+i, 

bn +(5//'—l)H=5/i_i, 

(5/i+l) + (5/i' —l)rn5//. 
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Now, of these six forms, the latter four have one of the squares divisible by 

5, and, therefore, also by 25. And the first two are each impossible forms 

for square numbers ; that is, neither of tliese two combinations can produce 

squares; therefore, if the sum of two squai’es be a square, one of the three 

squares is divisible by 25. 

(4) In a similar way, it may be shown that all square numbers compared by 

modulus 10 are of one of the forms 

lOn, lOw+S, lO/i-fl, 10«.-j-6, 10w-|-4, or lOri-j-^- 

Therefore, all square numbers terminate with one of the digits 0, 1, 4, 5, 6, 

or 9; and hence, again, no number terminating with 2, 3, 7, or 8 can be a 

square number. 

(5) By examining, in like manner, the forms of squares to modulus 100, we 

may deduce the following properties : 

(6) A square number can not terminate with an odd number of ciphers. 

(7) If a square number terminate with a 4, the last figure but one must be 

even. 

(8) If a square number terminate with a 5, it must terminate with 25. 

(9) If the last digit of a square be odd, the last digit but one must be even; 

and if it terminate with any even digit except 4, the last but one must be odd. 

(10) A square number can not terminate with more than three equal digits, 

unless they are O’s; nor can it terminate with three, unless they are 4’s. 

424. All square numbers are of the same form with regard to any modulus, 

(Z, as the squares 

0^, 1^, 2^ 3^ &c. (|a)^, a being even; 
and as 

/a—iy 
0^ 1^ 2^ 3^ &c. ^—-— j , a being odd. 

For every number may be represented by the formula an^r, in which r 

shall never exceed ^a. 

Now {an:^rY=ahi‘^:^2arn-\-r’^, 

where it is obvious that and will leave the same remainder when 

divided by a; therefore, {anz^ry arid will be of the same form compared 

by modulus a; but r never exceeds therefore aU numbers compared by 

modulus a are of the same forms as 

02, P, 22, 32, (fee., r2, 

or, as the squares, 

02, 12, 22, 32, &c., (|a)2, when a is even, 
and as 

02, 12, 22, 32, &:c., ^^ , when a is odd. 

DEDUCTIONS. 

(1) When a is even, the general formula 

becomes ^a''^n^:^Aa'nr-\-r^ 

Therefore, all square numbers are of the same form to modulus 4a as the squares 

02, 12, 22, 32, &c., a2; 

and hence we see immediately that all square numbers to modulus 8 must be 

of the same forais as the squares 



486 ALGEBUA. 

02, 12, 22 

that is, they are all of the form 

8w, 8n-{-l, 8w,-j-4, 

as we have already demonstrated. 

(21 The following tables exhibit the possible and impossible forms of square 

numbers for all moduli from 2 to 10. 

Possible Formulis. 

2n, 277-1-1, 

3w, 377-1-1, 

471, 477-|- 1, 

bill 577^11, 

671, 677-f-1. 677-1-3, 677-1-4, 

777., 777-1- 1, 777-1-2, 777-1-4, 

877, 877-1-1, 877-1-4, 

077, 077-1- 1, 077-1-4, 077.-1-7, 

1077, 1077 T: 1, 1—
‘ 

0
 

if
 

1077dz5. 

Impossible Formula. 

377, 

477, 477-1-3, 

577, 577-1-3, 

677, 677-1-5, 
y 

777, 777-1-5, 777-f 6, 

8/7, 877 dz 3, 877-1-7, 

077, 077 dz 3, 077-1-5, 077-1-8, 

1077, 1077 dz3. 

CONTINUED FRACTIONS. 

425. The name continued fraction is given to an expression of the form 

1 

2 + j 1 
^ + 6 + 1 

^8 

or - , 1 
CL —j— — 1 

d-\-, &c., 

i. c., a fraction whose denominator is a whole number and a fraction, and 

which latter fraction has also for its denominator a whole number plus a frac¬ 

tion, and so on. 

An expression whose numerators and denominators are any quantities what¬ 

ever, may have the form of a continued fraction ; but continued fractions, of 

which the numerators are 1 and the denominators whole positive numbers, are 

the kind which most usually occur. 

These expressions arise in various ways, and are of great use in finding the 

^approximate values of fractions and ratios that are expressed in large numbers, 

as well as in the resolution of certain unlimited problems of the first and second 

degrees ; in the latter of which the answer can not be easily obtained in whole 

numbers by any other method. 

* « 
Thus, in order to represent the iiTeducible fraction or ratio - by a continued 
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traction, let h be contained in a, p times with a remainder c ; also, let c be con¬ 

tained in &, q times with a remainder and so on, according to the following 

scheme : 
h)_o^p 

c) ^ (g 
d) c {r 

e) d {s 

and we shall have, by the principles of division, 

a c b d c e 

c d c 
q, r, &c., are called partial quotients, and p-\-~^i 

quotients. 

By taking the reciprocals of the second, third, &c., of the above equations, 

we have 
cl d 1 
T=- , d , e „ 

•■■l=P+l=P+\^d=p+^- 1 ^ 

Whence, by extending the number of terms and generalizing the formula, we 

shall have 

<2 1 a 1 
Y=p4-- , 1 or T=— , 1 
b ■^~q-\— , 1 b p-\-- 1 

r+-&c., «+? + ^,&c., 
s 

iccording as the numerator is greater or less than the denominator; for in the 

latter case we should invert the first as well as the second, third, &c., equations. 

To convert a given irreducible fraction into a continued one, we have the 

Following 

RULE. 

Divide the greater of the two terms of the fraction by the less, and the last 

divisor continually by the last remainder, till nothing remains, as in finding their 
I 

greatest common measure ; then the successive quotients thus found will be 

\,he denominators of the several terms of the continued fraction, the numera¬ 

tors of which are always 1. 

EXAMPLES. 

2431 
(1) Reduce to a continued fraction. 

xUOl 

1051) 2431 (2 
2102 

329) 1051 (3 
987 

64) 329 (5 
320 

9) 64 (7 
63 

1) 9 (9. 
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Hence 

(2) 

(3) 

2431 1 

r^ = ^ + 3 + i 1 
5 + - 1 

^ + 9* 

1096 1 

9119“84-i 1 
34— 1 

8+- 1 
6+-. 

7 
421 1 

^“24-i 1 

1 

As the fraction in every case of this kind, is supposed to he in-educible, or in its low- 
b 

est terms, it is evident, by following the above process (which is similar to the method 

used for findmg the common measure of true numbers), that we shall necessarily arrive at 

a remainder equal to 1; or otherwise a and b would have a common divisor, which is con 

trary to the hypothesis. 
The continued fraction obtained will consist of a greater or less number of terms, accord¬ 

ing as the fraction ^ is more or less complicated; but they will always terminate when - 
b b 

is rational. 

426. A continued fraction may be converted into a series of vulgar fractions 

by finding the successive sums of its several terms, after the manner of redu¬ 

cing complex fractions to simple ones, in common arithmetic; and the result 

will be more or less accurate, according to the number of terms of the con¬ 

tinued fraction employed. 

Each of these results is called a convergent and they are numbered in 

order. 

Thus, if it were required to reduce the following continued fraction, 

1 
a-\-T . 1 

64— 1 
^ + ^1 &c., 

to a series of common vulgar fractions, the operation will stand thus : 

a 1 ab-\-l 1 1 c crJc-f-u-j-c 

or 

(«6-f-l)c-f-fl: /o\ I ^ 7 cd-\-l 
7 . (^)i ^“1“ J. I ^ I, I ^ 7 i 1 i-7 DC-\-l ' 6-f-- ^ 1 'b-\-. ^bcd-{-b-{-d 

c-\- 
d 

cd-\-l 

abcd-\-ab-{-ad-{-cd-\-l 

bcd-\-b-\-d (4) (6c-f 

(1), (2), (3), and (4) are called the first, second, third, and fourth convergents. 

427. By inspecting the above convergents, wo perceive that each may be 

formed from the preceding by the following 

RULE. 

Add the product of the numerator of the convergent already found by the 

denominator of the next term of the continued fraction, to the preceding 
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numerator, for the next numerator and follow the same process for the de¬ 

nominator.* 

EXAMPLE I. 

denominators or quotients 3, 5, 2, 7, arranged in horizontal line ; 

3 16 35 261 
convergents 1’ 5 ’ 11’ 82* 

3 16 
After having formed the convergents - and —, the rule applies. Then mul- 

tiply 16, the second numerator, by 2, the third quotient, and add 3, the pre¬ 

ceding numerator, it gives 35; and multiplying 5, the second denominator, by 

the same quotient 2, and adding 1, the preceding denominator, it gives 11 ; 

and so on. This method may proceed from the commencement, if we write 

- before the first convergence. 

Thus, 3, 

1 3 

0 1 

5, 

16 

y 

2, 

11 

7, 

261 

When the continued fraction is not terminated, the numerators and denom¬ 

inators form two series increasing to infinity. 

428. The convergents are alternately less and greater than the value of the 

continued fraction; for the first in the general form is equal to a, and as the 

fractional part which is added is neglected, this is too small. The second 

1 . . 1 , 1 , 
convergent is since b is too small by -, the fraction ^ is too great, 

and, consequently, the whole convergent; and so on. 

EXAMPLE II. 

It is shown in geometry that the ratio of the circumference of a circle to 

31415926535 
its diameter is -, which, by being converted into a continued frac- 

10000000000’ 

tion, and the successive convergents found, will be as follows : 

3 22 333 355 103993 

1’ y’ I^’ 113’ 33102’ 

* The generality of this rule may be proved as follows : 

N N' N'' 
Let —, —, — be three consecutive convergents, m the quotient, of the same rank as 

N" 1 . , 1 
the convergent —, and - the partial fraction which follows —; and let N'''=:N'm-l-N and 

D' n m 
N'' 

D''''=D''to-1-D, according to the mle. The convei’gent which follows is foimed by sub- 

N'/ N'?ft+N 
stituting m-\— for m in Making this substitution in its equivalent ——yjr, we have 

n D D'm+D' 

DW 
D' 

(D'm+D)?i-fD' D"?i-1-D' 

22 
t The second, was the ratio assigned by Archimedes; the third, which is much 

more accurate, that by Metius. 
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and either of these will be the approximate value of the ratio, more and more 

accurate as we advance. 

429. The difference between two convergents is equal to 1 divided by the 

product of the denominators of the two convergents. Thus, in the above ex¬ 

ample, the difference between the first and second convergents is -, between 

the second and third it is y between the third and fourth ; 

and as the true value of the continued fraction is somewhere between any 

two consecutive convergents, we have its value to within less than the fraction 

I'll 
or r—r—&c., according to the convergent which we take. 

7’ 742 11978 

To prove this in a general way, let 

N N' N" 

D’ D'’ W' 

be three consecutive convergents, and m the quotient, of the same rank as the 

N" 
convergent ^77; then N"=N'm-{-N ; D"=D'm-j-D. 

But 
N' N DN'—D'N 

W'' 

N' N'm+N N' N'D'm+D'N—N'D'm—DN' 

D'(D'm+D) 

D'N —DN' D'N~DN' 
• -<2) 

~D'(D'™+D)“ D'D" 

The numerators of (1) and (2) are the same, with contrary signs ; and, to 

a 
find its value, we have only to go back to the first two convergents - and 

—7^, the difference of which is r. 
6 0 

430. Since the denominators of the convergents increase to infinity if the 

series continue sufficiently fai', it is possible to take two consecutive convergents 

whose difference shall be less than any assignable number ; wherefore, as.two 

consecutive convergents comprehend between them the value of the continued 

fraction, it follows that a convergent can be found whose value shall differ from 

that of the fraction by less than any assigned number. 

For example, if the value of a continued fraction be required to within 

—, the convergents must be continued till the product of the denominators 

of the last and last but one is at least 1000. The last convergent will then 

have the degree of approximation required. 

N 
The convergents are fractions in the lowest terms ; for if a convergent 

admits of lower terms, some quantity q must be a common measure of N and 

D. Whence (Art. 29) q must be a measure of the multiples N'D and ND', 

and of (Art. 29) DN' — ND', or if, which is impossible. 

431. Each convergent is a nearer approximation to the true value of the con- 
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1 /• • -I 1 -r^ N'm-|-N 
tinued fraction than that which precedes. For, let be a conver- 

gent in which m is the last quotient employed ; then, if the complete quotient 

1 
&c., be denoted by y, and y be substituted for m in the expression 

of it is evident (employing x to denote the value of the continued fraction) 

that 

N'y-f“N 

N N' 
Subtracting each of the convergents p, ^ from this value of a:, 

N'y-I-N N (DN'—ND')y ±2/ ^ 

and 

D'y+D 

N'2/-|~N 

D D(D'2/-|-D) D(D'2/-|-D)’ 

N' ND'—DN' =pl 

But 2/]>l and D'^D ? 

y - 1 

N' N 

D{D'y + D)>D'(D'2/ + D)- 

Whence is a nearer approximation to the value of x than 

432. Among continued fractions those have been particularly distinguished in 

which the denominators, after a certain number of changes, are continually 

repeated in the same order, in which the continued fraction so formed is said 

to be periodic^ and may then always be considered as the root of a quadratic 

equation or a surd. 

To prove this, take a continued fraction entirely periodic. 

1 
xz= - 1 

PJr— 1 

■^+^+, &c. 

Then, since the number of these fractions is unlimited, it follows that the 

sum of all after the first is also x ; whence 

1 
X: 

~p-\-X 
x’^-\-px-=l 

x=—\p^l V’^2_j_4. 

in which case the above continued fraction serves to determine the value of 

y^p2_|_4^ since we have, by transposition, 

^+^+,&c.; 

and if p in this last expression be put equal to 2, we shall have 

^■^=1+5+1 1 

®+24.1 
■^2+, &c. 

A continued fraction is also called periodic when the denominators occur 

periodically in pairs, threes, fours, &c.; thus. 
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1 1 
- 1 or - 1 

1 P+- 1 

P+- 1 
^+r- 

^+? + , &c. 

Again, a fraction may be irregular in some of its first terms, and only become 

periodic at a certain distance from its commencement. 

In either of these cases, as above, the value of x, the sum of all the terms, 

may be obtained by the resolution of an equation of the second degree. To 

prove this in a general manner, let 

a, &c., be the quotients which form the non-periodic part, 

p, ... . 6cc., be the quotients which fonn the periodic part; 

1 
then x=a-\-- 

^6-f 

: 1 

and, representing by y the value of the periodic part, 

1 

■^"^^4-, &c., 

we have and y=zp-\- 

1 1 
4"~* 

y 
Consider these continued fractions as terminating with the partial fraction 

-, and deduce the convergents; we have (Art. 426) two equations of the fol- 
y 
lowing form: 

■'"“Q'2/+Q’^“S’2,+ S- 
The value of y, given by the first of these equations, is 

P —Qa: 

which substituted in the second, gives, after reduction, 

P—Q.r R'(P — Q.r)-|-R(Q'.r—P') 

Q'a:—P'=S'(P-Q,r)4-S(Q'.r—P')’ 

which is an equation of the second degree in x. 

By way of illustration, take the following fraction : 

P P 
x—a-\-- , p (1) or X—a—- , p 

q 

X—a=- 
P ; or, resolving the equation, x= 

(2) 

2u—q-\- ^/q'^■\^^p 

q -f-.r—a 

26? 
If we transpose — or a, and substitute for x—a its value (2), we have 

' 7 p 

2 ~~^+“ . P 
q -\—, &c.; 

9 
or, making q=2a, 
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P 

V 

2a, &c. 

A similar mode of solution may be applied to continued surds or expressions 

of the form 

^”1“ "v/Oy, &C.} 

the value of which, though appai-ently infinite, is always determinable by a cer¬ 

tain equation, and in some cases in a real integral or fractional quantity ; for, 

putting 

x=^a-{- ^/ a, &c., 

we shall have, by squaring both numbers, 

x^=a-\-'\Ja-\- a-\-, &:c., 

the latter part of which is evidently equal to the original surd; whence 

x^=a-\-x, or —x=a x=\^ 

where, if a=2, the expression becomes 

•\/2+\/2-f V2T> =2 or —1. 

433. The process for developing any quantity, a:, in a continued fraction, 

1 7 1 1 ^ 

consists in making successively x=a-{-—, x't=b-\-—, x"=c-\-—, ccc., a be- 

mg the greatest whole number contained in x, b the greatest whole number 

contained in x', c the greatest whole number contained in x", &c. 

The numbers a, b, c, &c., being found, it is evident that if x', x", &c., are 

ceplaced by their values, the required development is obtained, viz., 

1 
x=a-^T , 1 

'+7+1 
' d-\-, &CC. 

EXAMPLE. 

Let it be required to convert ^/l9 into a continued fraction. 

VT9=4+i +^ + ^ * 
V19—4' 

V19 + 4 
=zX^z=.2-\-- 

. ^11_ 
• • vO I 

Vl9-f2 

3 V19—2 ^ 

By proceeding in this way we shall obtain the following : 

^• = V'i9=4+U 

riii 

“ 3 -^+a'"’ 

VT9-f2 1 

5 — l“h^m 

VT94-3 
— 3 + ...1V • 

* Multiplying both numerator and denominator by 
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IV _ X 

x^' = 

VTi+s 
5 

VT9+2 

— 1 + 
X V ’ 

= 2- 
X VI ’ 

x^^ = Vl9 + 4 = 8 + - vii ’ 

V19 + 4 ^ 1 
Q —"“r-,,vui‘ 

Hence •v/19 = 44-o 1 1 * 

■‘‘1+- 1 

^+T+i 1 
^+8- 

being the same as a:^, it is evident that, omitting the 4, the greatest in¬ 

tegral part of -\/19, the quotients 2, 1, 3, 1, 2, 8, already found, will always 

return again in the same order to infinity. 

Should it be required to convert the square root of 19 into a series of con¬ 

verging fractions without first reducing it to the continued form, they may be 

obtained, after the method before employed, from the integral parts of the 

above results only. 

Quotients, 4, 2, 1, 3, 1, 2, 8, 2. 

1 4 9 13 48 61 170 1421 

0’ V 2’ T’ IT’ 14’ 326 * 

EXAMPLES. 

(1) 
251 

7M' 

1769 

5^' 

(3) 

(4) 

(5) 

Ans. Quotients, -, 22, 1, 4, 2. 

1 22 23 114 251 
Convergents, 5, 

Ans. Quotients, -, 7, 1, 2, 4, 5, 1, 2. 

1 7 8 23 100 523 623 1769 
Convergents, -, —, —, —, —, 5^- 

Ans. The quotients are 5, 1, 1, 3, 5, 3, &c. 

^ , 5 6 11 39 206 657 
And the convergents, -, -, y, yy, yy, &c. 

Ans. The quotients are 5, 3, 2, 3, 10, &c. 

^ , 5 16 37 127 1307 
And the convergents, -, y, —, &c. 

Ans. Quotients, 6, 1, 2, 2, 2, 1, 12, &c. 

^ 6 7 20 47 '114 161 2046 
Convergents, j, j, -, —, —, —. 

434. The converse of the proposition stated in Art. 432 is true, viz., that the 

root of an equation of the second degree may be expressed in functions of the 

coefficients of the, equation by continued fractions. 

The general form of the equation of the second degree may be written 

—bx—c = 0.(1) 

in which b and c may be essentially negative. This may be put under t)m 

form 
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^ o- 
ax—b-\--. 

c 
Multiplying the fraction - above and below by a, it becomes 

ac ac 
=^+-r , 

ax 0 dc 

’’ +y+“ 
b -f-» &c. 

1 / ac 
2:=-l o4--7- . ac 

' 0 4-7- , ac 
b +-r,ac 

'' +T+, &c.) 

If ct=l, this becomes ' 

If 6 = 0, 

^ + 64-, &c. 

x'^=c, 

^=^+0 + - 
^0 + ,&c., 

which has no signification. But if we make 

. x'^ = {z—a)2, 

being the greatest square contained in c, we have 

x^—7?—2az-{-a'^=c; 

z^—2az=c—; 

or, putting c—a^z=y, 
z^—2az = y, 

7 
z —2a =- 

and 
7 

* -2" +2a+, &c. 

7 
But since x=z—a, a:=a-4-— y 

'“+27+, &c. 

To apply this, let the equation be 

x^=S a=2, 7=4, 

4 
a:=24-7 4 

^+4 ^ 
"*~4 + , &c.. 

or 

Q. E. D. 

x=2+- 1 

+T+i ^ 
^ 14-, &C. 

The above result may be obtained in a more simple manner; thus, put 

x'^=cz=:a^-\-[3 x"^ — a’^=f3 (a; — a){x-^a)z=zj3 

(3 (3 
x=a-i-'—— =a4-— 0 

a-X-x ^2aJL.— 
^2a-|-, &c., 

which shows that the square root of any number which is the sum of a 

square, and of another number, is a continued fraction. 
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Thus, if we have a=2, /3=3, 

- 3 
V7 = 2 + - 3 

■•■4 + , (fee. 

435. Continued fractions furnish a method of resolving in whole numbers 

the indeterminate equation 

ax-\-hy—c.(1) 

In this equation <z, &, c are whole numbers, and the first two are supposed 

to have no common factor. Let us conceive that we have developed the rela¬ 

tion 7- into a continued fraction, and that we have calculated all the con- 
0 ^ 

vergents; the last will be equal to this relation itself. Let us subtract from 

a' 
it the next to the last, which I represent by The numerator of the differ¬ 

ence will be aV — ha\ and by the property of Art. 430 we have 

ah'—6a'=zl=l.(2) 

Multiplied by ic, this equality becomes 

«X X ^a'c=c; 

then equation (1) is satisfied by taking x=:^h'c, y-=.-^a'c. 

This solution being known, we know (Art. 161) that all the others are given 

by the formulas 

.t=J:;6'c—ht^ y—'=^a'c-\-o.U 

t designating any whole number whatever. We take the upper or lower sign 

according as we have -f- or — in the equality (2), or, what is the same thing, 

according as the convergent is of an even or uneven rank. 

Let there be the equation 

261 

EXAMPLE. 

261a:—822/=117. 

If we reduce to a continued fraction, we find 

Quotients, 3, 5, 2, 7. 

^ 3 16 35 261 
Convergents, . 

If we take the numerator of the difference and observe that — 
82 11 82 

is a convergent of an even rank, we have 

261X11—82x35 = -t-l. 

Then, multiplying by 117, 

261X11X117 — 82X35X117 = 117. 

The equation, then, is satisfied by making a:=ll x 117=1287 and y=35 

X 117=4095 ; then, finally, the general values of .r and y are 

a:=1287-1-82/, 2/=40954-261/. 

If we divide 1287 by 82, and 4095 by 261, we find 1287 = 82x15-1-57 and 

4095=261 X 15-fl80r Then, observing that t is any whole number what¬ 

ever, we can write more simply 

a:=57-f 82/, 2/=180-1-261/. 
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436. The following theorem will be found useful in the resolution of inde¬ 

terminate equations of the second degree. 

Let 2^^—A(/=ztD be an indeterminate equation, in which D<C VA. I 

P 
assert, that if this equation is resolvable, the fraction will be found among 

the fractions which converge toward ^/ A.. 

— 

From the above equation we derive ^5—g A=-and, therefore. 

2^ — rt i D 
—— -v/A, which I represent by —- 
? ^ q{p+qVA) 

then 
Dg 

p-j-c/VA 

J) p 
Let — be the converging fraction which precedes A and which is of such a 

^0 _ q 
nature that the sign of ^ will be the same with that of D ; it will remain to 

be proved that we have-VA. 
i^+?VA q+qo 

— <5 
In the second member, instead of jp, I put its value, g'-v/AdL"; the in¬ 

equality to be proved can then be written thus : 

6 
(^+^o)( VA—D) + (? —g-o) V Ai->0. 

But this inequality is manifest, since we have -/A^D, q'^qo, and since 
__ ^ 

the part {g—go) VA, which is at least equal to VA, by itself surpasses 

P 
which is less than unity. -, then, will always be found in the fractions which 

converge toward V A, so that it will only be necessary to develop -v/A in a 

continued fraction, and to calculate the converging fractions which result, in 

order to have all the solutions in entire numbers of the equation 

— Ay^rr: iD, 

D being ^/A. 

METHOD OF RESOLVING IN RATIONAL NUMBERS INDETERMINATE 

EaUATIONS OF THE SECOND DEGREE. 

437. Let the proposed general equation be 

ax^ -f- hxy -|- cy^ -j- dx-\- ey 4-/= 0i 

in which x and y are the indeterminates, and «, 6, c, d, e,f the given entire 

numbers, positive or negative. We first derive from this equation the fol¬ 

lowing : 

2ax-{-hy-\-d= V [{iy+dY—ia{cy^--\-ey-{-f)]. 

If we make, to abridge, the radical =t, —4ac=A, hd—2ae=g^ 

—iaf=h, we shall have the two equations 

Sax-f- hy-\-d=.t, 

Ay‘^-Y2gy-Yh=zt^. 

If we multiply the last of these equations by A, and make, again, Ay-|-^ 

gi — A/i=B, we shall have the transformed equation 

—Af^=B. 

Reciprocally, if Ave can find values of v and t which satisfy the equation 

I I 



498 ALGEBRA. 

if'—Ai2=B, we deduce from it the values of the indetermiuates x and y in 

the proposed equation, viz., 

V—g t—ly—d 

in which we should observe that both v and t may be taken with either sign, 

as we may desire. 

If we find the solution of the proposed equation in rational numbers, it will 

suffice to resolve, by means of these numbers, the transformed —A^^ = B ; 

but if we wish to resolve the proposed in entire numbers, it will not only be 

necessary that t and v be entire numbers, hut that the values of t and v, sub¬ 

stituted in those of .r and y, give for these indeterminates entire numbers. At 

present we will only occupy ourselves with the resolution in rational numbers. 

438. Every indeterminate equation of the second degree can be reduced, 

as we have just seen, to the form — Ai2 = B; but, whatever may be the 

rational numbers t and y, we can suppose that they are reduced to a common 

X y 
denominator. Hence, making v=-, t=-, we shall have to 'resolve the 

° 2 2 

equation 

x^—Aif=Bz^ 

in which now .r, y, 2 are entire numbers. 

We can suppose that these three numbers have not a same common divisor; 

for if they had had one, we could have made it disappear by division. 

In the same manner, we can suppose that the numbers A and B have no 

square divisors ; for if we had had, for example, A = A'^'^, B = B'^^ we might 

have made ky=y', lz=z', and the equation to be resolved would have become 

.r3_A'y'2=B'2'2, 

in which A' and B' have no longer a square factor. 

The equation — Ay^=:Bz‘^ being thus prepared, we shall observe that any 

two of the indeterminates .r, y, 2 can not have a common divisor; for if 6^, for 

example, should divide x^ and y^, it must necessarily divide also B2^; but it 

can xjot divide 2^, since the three numbers .r, y, z have no common divisors ; 

neither can 6'^ divide B, since B has no square factor, x and y, therefore, are 

prime with respect to each other; for the same reason, x and z are primes 

with respect to each other, as well as y and 2. 

I assert, moreover, that A and B can be supposed to be positive ; for we 

can only have, as regards the signs of the terms of one equation, the following 

three suppositions : 

—Ay2 = -|- B22, 

—Ay'^= —Bz% 

x‘^-\-Aif—-\-Bz^. 

(I omit the supposition x'^-\-Ay"——B2^ since it is evidently impossible.) 

Of these three combinations the second coincides with the third by a simple 

transposition ; but if we multiply the third by B, and mak® B2=2', AB=A', 

we shall have 

2'^—A'if=B.r^. 

The equation to be resolved, therefore, can always be reduced to the form 

X" — B7/^ = A2^, 

in which A and B are positive numbers, and do not contain any square factor. 
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439. The method which w'e shall proceed to follow for the resolution of 

this equation is that given by Lagrange, in the Memoires de Berlin, 17G7. It 

consists in producing, by means of transformations, the successive diminution 

of the coefficients A and B until one of them becomes equal to zero, in which 

case the solution can be immediately deduced from known formulas. 

The equation thus reduced is of the form —y^=Az^, or , 

but these two formulas do not differ, and it will suffice to give the solution of 

the first, x^—y^=Az‘^. To do this, decompose A into two factors a, /? (which 

wall always be prime with regard to each other, since A has no square factor), 

and suppose that 2 also is decomposed into two factors p, q, such that we 

have A = aj3, z=pq, we shall have the equation {x~\-y){x—y)—a(ip‘^q^, which 

we can, in general, satisfy by taking x-\-y=.ap'^, x—y=(3q‘^; this supposition 

gives 
ap’^ -f" 

x=-^-, y=--—-, z=pq ; 

hence the three indeterminates x, y, z will be expressed by means of two 

arbiti'ary quantities p and q; if it should happen that the values of x and y 
contain the fraction T, x, y, z must each be multiplied by two. 

Such is the general solution of the equation —y^=Az^, a solution which 

will comprise as many particular formulas as there are ways of decomposing 

A into two factors. 

For example, if A = 30; there are four ways of decomposing 30 into two 

factors, viz., 1.30, 2.15, 3.10, 5.6; hence will result these four solutions of the 

equation x^—2/"=302^ 

1°. x=. p^-^-ZOq"^, y= p^ — 3O52, z = 2pq, 

2°. x=2p^-^15q^, y = 2p'^ —15^^, z = 2pq, 

3°. x=3p'^-\~^^9^^ y^Sp’^ — lOf/'^, z = 2pq, 

4°. x=bp^-\- y = 5p^— 6q^, z — 2pq, 

440. Let us proceed to the general equation — By^^^Az"^; observe that 

this equation, being the same with a:® — Az^=Bif, we can, without diminish¬ 

ing the generality of the theorem, suppose that the coefficient of the second 

member is the greater of the two. In case of equality, the reduction that we 

shall indicate would always be employed. 

Let, then, the proposed equation be x’^—Bif—Az^^, in which we suppose, 

at the same time, A^B, A and B positive, and free from any square factor. 

We have already proved that x and y are primes as regards each other; y 

and A, therefore, are equally prime to one another ; for if jjud A had a 

common divisor 6, x^ also must, necessarily, be divisible by 0, and x and y 

would not then be primes to one another. 

But since y~and A are primes to one another, if we suppose that the 

proposed equation is resolvable, and that we can, therefore, find determinate 

values of x and y, .r=M, 2/=N, we shall also be able to satisfy the equation 

of the first degree, 

M=wN —y'A, 

in which M, N, A will be given numbers prime to one another, and n, y' two 

indeterminates. 

Hence, in general, without knowing the particular solutions .•r=M, y=N, 

we can suppose x—ny — Ay', n and y' being two indeterminates; and, sub¬ 

stituting this value of x in the proposed equation, we shall have, after having 

divided by A, ' 
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—B\ 
^ ) t—^nyy'+=^2. 

But since y and A are prime to one another, this equation can not subsist 

71^ — B 
unless —7— be an entire number. Let this entire number =A.'Jc^, being 

A 

the greatest square which can be a divisor of it, we shall have 

7^2—B=AA'^^, 

and the equation to be resolved will become 

A'^2^2—2nyy' Ay'^= 

,We perceive that if there be any value whatsoever of n which renders 7i2B 

divisible by A, this value can be augmented or diminished by any multiple of 

A, without ^2—B ceasing to be divisible by A ; hence, we can suppose that 

its’value is comprised between the limits 0 and A, or even between the more 

extended limits —^A and 

We conclude from this, that in trying successively for n all the entire num¬ 

bers from —^A to -j-^A, we shall encounter, necessarily, one or more values 

which will render — B divisible by A, provided, however, the equation is 

resolvable ; and in case these values will not render 72.2—B divisible by A, we 

can conclude with certainty that the proposed equation is not resolvable. 

441. Suppose, then, that w^e have found one or more values of n which 

fulfill the required condition, it will be necessary with each of these values to 

continue the calculation in the following manner : 

Resume the equation A'k^y'^ — 2nyy'; if we multiply it by A'k^, 

and if we make, to abridge. 

A'k'^y—ny'=x\ kz=z', 

the transformed will be 

x'x'—By'y' z= A'z'z'. 

This transformed could be resolved, if we could determine the solution of 

the proposed equation, since the values of .r', y', z' are easily deduced from 

those of .r, 7/, z ; reciprocally, the proposed will be resolved, if we find the solu- 

tipn of its transformed. For, from the known values of x', y', z', we can 

equally deduce those of x, y, z; and it matters little whether these last value' 

be under an entire or fractional form, since we have regard only to the resolu¬ 

tion in rational numbers, and since, after we have found any fractional values 

of X, y, z, we can reduce them to a common denominator and suppress it. 

Since we can suppose the number n<C.\A, it is clear that 
7^2 — B 

Ak^ 
or A' will 

be <[|A, and, at the same time, positive ; for n can not be < -v/B, since 

otherwise 7^2—B would be <CB, and could not be divisible by A. The 

proposed equation, therefore, will be reduced to an equation in every respect 

similar, in which the coefficient A', which takes the place of A, is less than 

442. If we have, again, A'^B, we can, in like manner, from the equation 

x'^—B7/'2=:A'z'2, deduce a second transformed, 

2:"2_B2/"2 = A"z"2, 

in which A" will be <C1A', and always positive. To obtain this second trans¬ 

formed, there will be no new condition to be fulfilled, for having already found 
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—if we make n=fiA'and if we take the indeterminate ^ in 

n''^—B 
such a way that n' it is easy to see that —-r-^— will be an entire positive 

number less than lA'; we have, consequently, 

n'2—B = A'A"7r'2, 

A" being less than lA', and not containing any square factor. 

If it should happen that A", again, were greater than B, we should continue 

this system of transformed equations, in which B is constant, until we arrive 

at one of this form 

— B2/2=:Cz^ 

in which C will be positive and <CB. 

443. But after we have passed into the second member of this equation the 

term which has the greatest coefficient, which gives 

C22=:By2, 

we can proceed in a similar manner to the reduction of the coefficient B by a 

second system of transformed equations 

&c. &c., 

in which the coefficients B', B", &c., will be positive, and will diminish in at 

least a quadruple ratio, and thus we shall soon arrive at a transformed 

in which the coefficient D will be less than C. 

But the series of positive and decreasing numbers A, B, C, D will not go 

on ad infinitum; it will terminate necessarily at unity, and when we shall 

have arrived at this term, the resolution of the last transformed, which is given 

at once, will make known those of a!W the preceding equations, and, consequent¬ 

ly, that of the proposed. 

GAUSS’S METHOD OF SOLVING BINOMIAL EGUATIONS. 

444. The solution of a:" — 1=0, it has been proved (Art. 299), can al¬ 

ways be reduced to the case where n is prime; and the case of n a prime 

number, by a method invented by Gauss, may be made to depend upon the 

solution of equations whose degrees do not exceed the greatest prime number 

which is a divisor of n—1. The leading feature of Gauss’s method is to rep¬ 

resent the imaginary roots by a series of powers of any one of them, whose 

indices form a geometrical instead of an arithmetical progression. Thus, if m 

be a number (and such, called primitive roots of n, can always be found) whose 

several powers from 1 to n — 1, when divided by n, leave different remainders, 

and a be any imaginary root, then all the roots may manifestly be represent¬ 

ed by 

o'”, . . . a'"'*'*; 

or, since m“~^=|UW-f-l, where [i is an integer, by a, a™, &:c., 

445. The advantage of this mode of representing the roots is, (1) that they 

can be distributed into periods, each of which, when continued, will produce 

the roots of that period in the same order; and (2) that the product of any 
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mimber of sucli periods will be equal to the sum of a certain number of periods, 

the importance of which properties will be seen in the use made of them. 

(1) Let n — l=r5, r being a prime factor of n — 1, and let ; then the 

roots may be written in vertical columns, each consisting of r terms, as follows : 

a 

a" 

m a mh a a mh 8—1 

3. 3, 3 h h ... a' S—1 m h 

a" 
.,r—1 

a' 
r—1, 

m h a m u 

and if any one of the periods formed by the horizontal rows be continued, tno 

roots in that period will be produced in the same order ; thus, if the first 

row were continued, the indices would be 

~{nn-\-l)7n'^=ziJ.nh-{-h, &c., and the corresponding roots, c, &c. 

(2) Let any two of the above periods be represented by 

+ &c., 

■ &c., ^ 

and let us multiply them together, using each term of the lower line in suc¬ 

cession as a multiplier, and starting at that term of the upper line which stands 

over it, and producing the upper line so as to supply the terms neglected at 

the beginning, the result is 

a^+b 4-a«b+b -l-a’^'^^+b &c., +a=‘b®~^+b 

a(a+b)li _|_a(ab+b)h ^ a^ah2+b)h ^ a(ah®-^+b)h 

a(a+b)h2 _|_^(ah+b)h2 ^ -f a('‘^®~^ + b)b^ 

a(a4-b)b® '^a("^+b)b” '-j_a(^bV)b"“^4-, &c., + a(«b®"Vb)b®-L 

and therefore, collecting the vertical columns into periods, we get 

S(a^)2(ab) = 2(a^+b)_|.2(aab+b)_|_2(aab"+b^_|._|-S(a'‘b®-4bj^ 

or the product of two periods is equal to the sum of s periods ; and, conse¬ 

quently, the product of any number of periods will be equal to the aggi-egate 

of a certain number of periods. 

EXAMPLE I. 

—1=0 ; 6=3.2, r=3, 5=2; also, 3, 3^, 3^ 3b 3b when divided by 7, 

leave different remainders, viz., 3, 2, 6, 4, 5 ; .*. 7ii=3, and the roots are 

y?i = a -|-ab 

p2 = ci^-\-oA 

2^3 — 

and j:'i+jp2+p3=—1- 

Also, piP2=^'^-\-<^^-\-0'^-\-oP==2^'2-\-P3 
^2i?3=ab-}-ab-f a 

••• PiPsi+p-^P3+PiP3= —2, I 
and PiPi2h —P -\-pi-\-Pi=2+^3 4-_pi —1. 

Therefore the cubic which has pi, po, pz for its roots, isp^-f-j?^—2p —1=0. 
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EXAMPLE II. 

—1=0 ; 16=2.8 ; also, the powers of 3 from 0 to 15, when divided by 17, 

leave remainders 

1 3 9 10 13 5 15 11 16 14 8 7 4 12 2 6, 
]) = a -|-a9 _|_q;2 
^ = a3-j-a^0-j-a^ _j_a^i_|_a^4_j_Q,7_|_Qi2_j_Q,6. 

thenp-}-g=—1, and 

=i5+? +i^+JP+^ +? +g=—4; 

therefore, p and q are roots of z^-\-z—4 = 0. 

Next, the periods q may be resolved respectively into the periods 

7*=a -j-ai3_|_Q,i6_|_(;^4 ) t-=a^ -j-a® -j_a’4_j_| ,12 

and 

s = a9-}-a^®-|-a® -j-a^ y 'M = a^°-|-a^^-|-a^ -|-a^ 

.*. r-\-s=p, 

rs — CL^^-\-a^ -|-a® _j_ai3' 

a^^-j-a^4_j_(j2 _j_(2i6 

j>=p + (7= —1; 

-j-a^ 

therefore, r, 5 are roots of 2^—pz —1 = 0; and, similarly, t, u are roots of z’* 

— qz —1 = 0. 

Lastly, the periods ?*, 5, u may be resolved respectively into 

ri = a +ai6^ 5i = a9+a8 ) t^ = a-a}^Wi = aio+a7 ) 

r3=a’9_|_Q,4 ^ ’ 5^_Q,i5_j_Q,2 ^ ’ ^2_a5_j_^i2 ^ —aii_|_a6 ^ ’ 

then • ri4-’*2='^» 

'I'll are roots of z^—r2-|-^=0 ; 

1 TT 
and ri, the gi’eatest root of this equation, =a-|- -=2 cos —. 

For further information upon the theory of numbers,the student is referred 

to the Theorie des Nombres of Legendre, the Disquisitiones Aritlimeticce of 

Gauss, of which there is an excellent French translation {Recherches Arith- 

metiques) by Poullet-Delisle ; to Barlow’s Theory of Numbers ; to the article 

of Ivory in the fourth volume of the supplement of the Encyc. Britan,; and 

to the Memoirs by Libri, in tome v., 1838 {Etrangcres), and by Cauchy, in 

tome xvii., 1840, of the Alemoires of the French Academy of Sciences. 



S. 4,685 5713; V. —0,51 : T. 5819 ; V. +1,00. 

4d N. 0 1 2 3 4 5 6 7 8 9 

O' 1440 158. 3625 3927 4228 4530 4831 5133 5434 5736 603? 6338 
10 41 6640 6941 7243 7544 7845 8146 8448 8749 9050 9351, 
20 42 9653 9954 

159. 0255 0556 0857 1158 1459 1760 2061 2362 
30 43 2663 2964 3265 3566 3867 4168 4469 4770 5070 5371 
40 44 5672 5973 6273 6574 6875 7175 7476 7777 8077 8378 
50 1445 8678 8979 9280 9580 9881 

160 0181 0481 0782 1082 1383 
I 46 ■ 1683 1983 2284 2584 2884 3184 3485 3785 4085 4385 
10 47 4685 4985 5286 5586 5886 6186 6486 6786 7086 7386 
20 48 7686 7986 8285 8585 8885 9185 9485 9785 

161. 0084 0384 
30 4,9 0684 0984 1283 1583 1883 2182 2482 2781 3081 3380 
40 1450 3680 3980 4279 4578 4878 5177 5477 5776 6075 6375 
50 51 6674 6973 7273 7572 7871 8170 8470 8769 9068 9367 

2 52 9666 9965 
162. 0264 0563 0862 1161 1460 1759 2058 2357 

10 53 2656 2955 3254 3553 3852 4150 4449 4748 5047 5345 
20 54 5644 5943 6241 6540 6839 7137 7436 7734 8033 8331 
30 1455 8630 8928 9227 9525 9824 

163. 0122 0420 0719 1017 1315 
40 56 1614 1912 2210 2508 2807 3105 3403 3701 3999 4297 
50 57 4596 4894 5192 5490 5788 6086 6384 6682 6979 7277 

3 58 7575 7873 8171 8469 8767 9064 9362 9660 9958 
164. 0255 

10 59 0553 0851 1148 1446 1743 2041 2339 2636 2934 3231 
20 1460 3529 3826 4123 4421 4718 5016 5313 5610 5908 6205 
30 61 6502 6799 7097 7394 7691 7988 8285 8.582 8880 9177 
40 62 9474 9771 

165. 0068 0365 0662 0959 1256 1553 18.50 2146 
50 63 . 2443 2740 3037 3334 3631 3927 4224 4521 4817 5114 

64 5411 5707 6004 6301 6597 6894 7190 7487 7783 8080 
10 1465 8376 8673 8969 9265 9562 9858 

166. 0155 0451 0747 1043 
20 66 1340 1636 1932 2228 2525 2821 3117 3413 3709 4005 
30 67 4301 4597 4893 5189 5485 5781 6077 6373 6669 6965 
40 68 7261 7556 7852 8148 8444 8740' 9035 9331 9627 9922 

50 69 167.0218 0514 0809 1105 1400 1696 1991 2287 2582 2878 
5 1470 3173 3469 3764 4060 4355 4650 4946 5241 5536 5831 

10 71 6127 6422 6717 7012 7308 7603 7898 8193 8488 8783 
20 72 9078 9373 9668 9963 

168. 0258 0553 0848 1143 1438 1733 
30 73 2027 2322 2617 2912 3207 3501 3796 4091 4386 4680 
40 74 4975 5269 5564 5859 6153 6448 6742 7037 7331 7626 
50 1475 7920 8215 8509 8803 9098 9392 9686 9981 

169. 0275 0569 
6 76 0864 1158 1452 1746 2040 2335 2629 2923 3217 3511 

10 77 3805 4099 4393 4687 4981 5275 5569 5863 6157 6450 
20 78 6744 7038 7332 7626 7920 8213 8507 8801 9094 9388 
30 79 9682 9975 

170. 0269 0563 0856 1150 1443 1737 2030 2324 
40 1480 2617 2911 3204 3497 3791 4084 4377 4671 4964 5257 
50 81 5551 5844 6137 6430 6723 7017 7310 7603 7896 8189 

7 82 8482' 8775 9068 9361 9654 9947 
171. 0240 0533 0826 1119 

10 83 1412 1704 1997 2290 2583 2876 3168 3461 3754 4046 
20 84 4339 4632 4924 5217 5509 5802 6095 6387 6680 6972 
30 1485 7265 7557 7849 8142 8434 8727 9019 9311 9604 9896 

40 86 172. 0188 0480 0773 1065 1357 1649 1941 2233 2526 2818 
50 87 3110 3402 3694 3986 4278 4570 4862 5154 5446 5737 

3 88 6029 6321 6613 6905 7197 7488 7780 8072 8364 8655 
10 89 8947 9239 9530 9822 

173. 01131 0405 0697 0988 1280 1571 
20 1490 1863 2154 2446 2737 3028 3320 3611 3903 4194 4485 
30 91 4776 5068 5359 5650 5941 6233 6524 6815 7106 7397 
40 92 7688 7979 8270 8561 8852 9143 9434 9725 

174. 0016 0307 
50 93 0598 0889 1180 1471 1761 2052 2343 2634 2925 3215 

9 94 3506 3797 4087 4378 4669 4959 5250 5.540 5831 6121 
10 1495 6412 6702 6993 7283 7574 7864 8155 8445 8735 9026 
20 96 9316 9606 9897 

175. 0187 0477 0767 1057 1348 If 38 1928 
30 97 2218 2.508 2798 3088 3378 3668 3958 4248 4538 4828 
40 98 5118 5408 5698 5988 6278 6567 6857 7147 743. 7727 
50 99 8016 8306 8596 8885 9175 9465 9754 

176. 0044 0333 0623 
// N. 0 1 2 3 4 5 6 7 8 9 

O'J 

24 

10 

15 

20 

30 

35 

40 

45 

50 

55 

n 

dif. et p. 

301 
1 80 
2 60 
3 90 
4 120 
5 151 
6 181 
7 211 
8 241 
9 271 

299 
1 30 
2 60 
3 90 
4 120 
5 150 
6 179 
7 209 
8 239 
9 269 

297 
1 30 
2 59 
3 89 
4 119 
5 149 
6 178 
7 208 
8 2;8 
9 267 

295 
1 30 
2 59 
3 89 
4 118 
h 148 
6 177 
7 207 
8 236 
9 2(i6 

293 
1 29 
2 59 
3 88 
4 117 

147 
fi 176 
7 205 
8 2.!4 
9 264 

291 
1 29 
'-2 58 
3 87 
4 116 
h 146 
6 175 
7 204 
8 233 
0 262 

6 181 
7 21] 
8 242 
9 272 

300 
1 30 
2 60 
3 90 
4 120 
5 1.50 
6 180 
7 210 
8 240 
9 270 

298 
1 30 
2 60 
3 89 
4 119 
6 149 
6 179 
7 209 
8 233 
9 268 

296 
1 30 
2 59 
3 89 
4 118 
5 148 
6 178 
7 207 
8 237 
9 266 

294 
1 29 
2 59 
3 88 
4 118 
6 147 
6 176 
7 206 
8 235 
9 265 

292 
1 29 
2 68 
3 88 
4 117 
5 146 
6 175 
7 204 
8 234 
9 363 



|)rof. l^a£klci)’0 larger treatise on Algebra. 
1 VOL. 8V0, SHEEP. PRICE $1 50. 

EXTRACTS FROM CRITICAL NOTICES. 
I deem it a work of great value to the mathematical student, and better suited to 

the wants of private learners, and all others who wish to obtain a thorough knowl¬ 
edge of the science, than any other work with which I am acquainted.—Elijah A. 
Smith, Corresponding Secretary of Queen's County Common School Association. 

I am sure that it will be very acceptable to every student who desires to become 
thoroughly acquainted with the higher departments of the science. Your labor, 
therefore, is opportune, and deserves well of the republic of letters.—Prof. A. Cas¬ 
well, Brown University, 

I have devoted some time to the examination of the work, and find it the most 
complete treatise on Algebra that I have ever seen. My opinion of its merits is 
such that I shall be most happy to recommend it to all who wish to gain a thorough 
knowledge of the science.—Thomas Sherwin, Boston English High School. 

This is a work to delight the eye of a teacher—it is so full and comprehensive, 
at the same time that it is so simple, clear, and elementary. It contains many 
things that are not to be found in any single English treatise, and every thing that 
can serve to give a student a complete knowledge of modern analysis. Among the 
subjects entirely new, or which, if found in other books, are here treated in a much 
more ample and elegant manner—are Interpolation, the Elements of the Calculus of 
Probabilities, and some American improvements, never before published, in the 
methods for the Solution of Cubic Equations. The article upon the theory and use 
of logarithms is uncommonly full and clear; while the important subject of the 
Theory of Numbers, generally left out of school-books, is treated in a very elaborate 
and detailed manner.—Democratic Review. 

What particularly pleases me in it is its fullness and apparent completeness. It 
meets a great want. It seems a store-house of algebraic knowledge ; the pupil who 
uses it at school, and becomes interested, may pursue the study by himself, and 
learn to enter into the spirit of Analysis.—Prof. Tillinghast, Principal of the 
Bridgewater, Massachusetts, Normal School. 

The slightest examination is sufficient to convince any one at all acquainted with 
the subject, that this is by far the best treatise upon Algebra that has yet appeared 
in an English dress. It is elaborate and comprehensive,' containing every thing to 
be found in the latest German, French, and English works, with some things entire¬ 
ly new, and, at the same time, it is exceedingly simple and elementary. The defini¬ 
tions and rules are full and perspicuous ; illustration is piled upon illustration ; ex¬ 
amples of every possible kind of notation are given, and explanatory notes abound. 
It is thus eminently a book for beginners, while, at the same time, it contains every 
thing that the more advanced student can desire in order to acquire a perfect knowl¬ 
edge of modern analysis.—New York Courier and Enquirer. 

Professor Hackley’s book is the most complete work on Algebra that has ever 
appeared in our country. In it will be found all that is contained in our best text¬ 
books, treated with unusual clearness and fullness; and in addition to this, many 
ino-enious methods, and much valuable matter, which have never before been offered 
to°the American student, and which the author has collected from the wide field of 
modern French, German, and English publications. He has not only given the the¬ 
ory of Algebra, but has also fully introduced the student to the applications of the 
theory. The examples in Equations, and the problems, are mostly to be found in 
the books already in our schools, but in this treatise frequently improved in the 
language and manner of solution. It is the happy combination of theoretical and 
practical Algebra which will render this book so w^elcome to teachers and private 
students, and so serviceable to the cause of thorough instruction.—Prof Stephens, 
of the Western University of Pennsylvania {a resident for some years at several of the 
German Universities.) 



2 Critical Notices of Hacldefs Algehra. 

I regard it as a very valuable accession to mathematical science. I find it re¬ 
markably full and complete.—E. S. Snell, Professor of Mathematics, Amherst CoU 
lege, Massachusetts. 

I have examined your work, and am highly pleased with it. Your management 
of the roots is admirable, as also of many other topics which I might mention.—N. 
T. Clarke, Canandaigua, New York. 

I have looked over it, and like the plan, the arrangement, the method, and sub¬ 
stance ; they are all good, and the work is an admirable one for students.—M. F. 
Maury, Astronomer of the National Observatory at Washington. 

Your Algebra is the most complete work of the kind which has come under my 
observation, and if the rising generation will study it, as I hope they will, they can 
not fail to understand fully that interesting department of the mathematics. I trust 
the demand will be equal to its merits; in which case, the benefits of the publica¬ 
tion will be shared by both parties.—Captain Andrew Talcott, late Commissioner 
of the Maine Boundary. 

We can only say, therefore, that this Algebra is magnificent far beyond all that 
we had seen before ; and we have been a pretty diligent collector of those which 
have appeared, either originally or by translation, in the Queen’s English ; and we 
feel considerable satisfaction in presuming, at least, that in the work before us we 
possess the completest treatise in the field of Algebraic Analysis that has been 
written in any language. When, therefore, an American professor comes to us in 
the garb of an author of a school-book, we pay to him, a priori, a greater deference 
than any revised and corrected Englishman, or translated Frenchman or German. 
Hackley’s Algebra, we opine, will rank first among great works in the department 
of analysis to which it belongs. For comprehensiveness of plan, propriety of ar¬ 
rangement, ingenuity of symbolic exposition, precision and elegance of verbal 
statement, variety and interest of practical exercise for the student—and, in justice 
to the publishers, let it be said, that in typographic execution it can not be excelled. 
We deem it due alike to American enterprise and to science to give this book our 
almost unqualified commendation ; and trust that its success will be such, at least, 
as to encourage its learned author to the publication of a treatise on Geometry, 
which, on that condition, he promises shall soon be forthcoming.—Southern Meth¬ 
odist Quarterly Review. 

For the preparation of such a work there is required a high and peculiar order of 
talent; a thorough mathematical discipline ; a power of grasping the whole science 
as a clear and distinct unity, into which all the parts flow harmoniously; a happy 
tact in arranging and presenting the parts, so that the consecution shall strike the 
learner luminously; a logical readiness in explaining abstruse points, so as to 
awaken in the mind of the learner the process of ratiocination, as if it grew out of 
his own thoughts ; and a certain simplicity and colloquiality of style which can be 
acquired only by long familiarity with teaching in the lecture-room. This desider¬ 
atum Professor Hackley, in the work before us, has undertaken to supply. From 
an examination of his Algebra we are led to believe, what we indeed anticipated 
from the known character of his mind, the extent of his attainments, and the habits 
of his life, that he has been eminently successful; and has proved himself to pos¬ 
sess that very order of talent which we have just described. The feature of the 
book which.first strikes us upon opening it, js its completeness. There is scarcely 
any subject in Algebra which is not treated of with a fullness and clearness to af¬ 
ford satisfaction even to a ripe scholar. The various subjects are arranged with 
particular reference to convenience and clearness, and the analyses are happily ap¬ 
plied to practical uses. We are decidedly of opinion, also, that a candid and thor¬ 
ough examination of the work will bring before the mind so much to admire and 
commend, that, as in our own case, there will be little disposition to mark faults, 
which the author’s own judgment and skill are adequate to correct in subsequent 
editions.—Methodist Quarterly Review. 

Professor Hackley, in the work before us, has presented the American public with 
the most complete Treatise on Algebra in the English language. The elementary 
principles are treated in a simple and easy style, and from these the student is con¬ 
ducted to the higher branches of the subject, in which all that is important is lucidly 
detailed.—Silliman'’s Journal. 



0anta iTc, etc.. Jpopular iDcii'ks on ittcjcico, 
PUBLISHED BY 

essi's. Harper & Brothers, New York. 

With Engravings. l2mo, Muslin, SI 00 ; Paper, 75 cents. 

CAMPAIGN SKETCHES OF THE WAR WITH MEXICO. 

33 s ffl a j) t. E®. S. 30 c n r a, 
U. S. ARMY. 

The best book to which the Mexican war has yet 
given rise. Captain Henry bore a glorious and heroic 
part in the engagement he describes, and he therefore 
writes with all the freshness and enthusiasm which 
personal observation alone can give. Captain Henry 
writes with great vigor and clearness, embodies per¬ 
sonal incidents, amusing stories, and graphic sketches 
with great skill, and thus presents a narrative in the 
highest degree attractive and interesting. His book 

contains a number of very spirited engravings, with 
full and accurate plans of every battle fought..—Cou¬ 
rier and Enquirer. 

Of this book we are happy to be able to speak with 
the highest praise. Apart from its authenticity, which 
is unquestionable, it is spirited, graphic, and pictur¬ 
esque; and his narrative rapid and well connected. 
The campaign sketches are evidently the work of a 
gentleman, a scholar, and a soldier.—Literary World. 

Portrait and Maps. 3 vols. 8vo, Sheep extra, $6 75 ; Muslin, $6 00. 

HISTORY OF THE CONQUEST OF MEXICO, 
With the Life of the Conqueror, Hernando Cortez, and a View of the Ancient Mexi¬ 

can Civilization. 

332 2!l5Utnfam “M. ^Prescott, 
AUTHOR OF “history OF THE CONQUEST OF PERU,” “HISTORY OP FERDINAND AND ISA¬ 

BELLA,” “biographical AND CRITICAL MISCELLANIES.” 

The history of Spain can not boast of a more useful 
and admirable contribution siuce the publication of 
the great work of Robertson.—British and Foreign Re- 
vievj. 

Eminently successful. On such works we are con¬ 

tent to rest the literary reputation of the country.— 
North American Review. 

One of the most remarkable historical compositions 
that has appeared for a long time.—Bibliotheque Uni 
verselle de Geneve. 

With a Map and Illustrations. 2 vols. 8vo, Muslin. $2 00. 

NARRATIVE OF THE SANTA FE EXPEDITION^ 
Comprising a Description of a Tour through Texas, and across the great Southwestern 

Prairies, the Camanche and Caygiia Hunting-grounds, &c. 

33g ©feotfie 
The narrative itself is interesting, not only on ac- 

tount of its personal adventui-e, but for its minute 
descriptions and voluminous information concerning 

places and manners which are almost equally strange 
on both sides of the Atlantic. The style is exceedingly 
racy and captivating.—Athenaeum. 

\2mo, Muslin, 65 cents; Paper, 35 cents. 

THE RAMBLER IN MEXICO. 

332 diaries S* 58.atroIje, 
author of “the rambler in north AMERICA.” 

A work of deep interest and value.—Eclectic Review, picture of the impressions made on his senses by these 
Of recent tourists, no one has given a more gorgeous sunny regions than Latrobe.—William H. Prescott. 

With Drawings taken from Life by C. McLaughlin, a Fellow-prisoner. 8vo, Muslin. 82 00 

JOURNAL OF THE EXPEDITION AGAINST MIER: 
Subsequent Imprisonment of the Author; his Sufferings, and final Escape from the 

Castle of Perote. With Reflections upon the present Political and probable future 
Relations of Texas, Mexico, and the United States. 

33 2 STiiomas S* €?reen. 
A work of startling interest; graphic in description, 

it gives examples of personal daring such as to bring 
back the remembrance of the fields of Cressy and Agia^ 
court, for odds in the encounters.— Anglo-American. 



WEBSTER’S OCTAVO DICTIONARY, REVISED, 
EMBRACING ALL THE WORDS IN THE QUARTO EDITION, AND ALSO AN 

ARRANGEMENT OF SYNONYMS UNDER THE LEADING WORDS. 

MAIEIPIIIE is mMW 
HAVE RECENTLY PUBLISHED, 

In one handsome Volume, of nearly 1400 yages, Sheep extra, Price $3 50, y ' 

IDr. iDcbstcr’e American. IDictionarg 
OF THE ENGLISH LANGUAGE, 

EXHIBITING THE ORIGIN, ORTHOGRAPHY, PRONUNCIATION, AND DEFINITION OP WORDS, ETC. 

THOROUGHLY REVISED AND CONSIDERABLY ENLARGED, 
ISj IProt. ffitjauntes 0. ffiooJirfcii, 

OF YALE COLLEGE. 

ASSISTED BY A NUMBER OF GENTLEMEN DISTINGUISHED FOR THEIR HIGH ATTAINMENTS IN THE 

VARIOUS DEPARTMENTS OF LEARNING, WHOSE NAMES WILL BE FOUND IN THE PREFACE. 

The entire work has been re-stereotyped, and is now beautifolly printed upon a new 
set of plates. Several thousand additional words have been incorporated in this edition, 
embracing all the terms given in the recent edition in the quarto form. 

The Synopsis and Walker's Key to the classical pronunciation of Greek, Latin, and 
Scripture proper names have been revised with much care and greatly improved. 

A complete Vocabulary, giving the pronunciation of modern Geographical names, has 
been added to this edition. 

Great attention has been given in the revision to the prommeiation. A large number 
of words having been respelled, it will now be found to be a complete Pronouncing Dic¬ 
tionary. 

This edition has been made a Synonymous Dictionary: a new and very important fea¬ 
ture, not to be found incorporated in the same form into any similar work. 

The utmost care has been given in every department of the work to render it the 
most perfect and satisfactory ever offered to the public. Considering its comprehen¬ 
siveness, its numerous essential improvements, and its general utility, it will be found 
one of the most indispensable and cheapest books of the times. 

For a more particular statement of the principles on which the revision has been con¬ 
ducted, reference is made to the preface of the work. 

EXTRACTS FROM CRITICAL NOTICES. 

The most complete and thorough manual of our lan¬ 
guage yet offered to the public: it can not fail to come 
into universal use, not only in all schools and acade¬ 
mies, hut with every practical person and general read¬ 
er.— Literary World. _ 

Every part of the work has'been submitted to the 
most careful scrutiny. It is the most compact, com¬ 
prehensive, and useful lexicon now before the public. 
It is, in fact, an almost indispensable work.—Neioark 
Advertiser. 

This edition of Webster is all that could be desired. 
It is superior to any that has preceded it, and is a 
monument of learning and research.—New York Com¬ 
mercial Advertiser. 

Undoubtedly the best English dictionary ever pub¬ 
lished. It is complete in all its parts, and in every 
possible way the work has been adapted to the wants 
of the great body of the people. It will find its way 
not only into all the schools and academies of the coun¬ 
try, but to the desk of every student and the fireside 
of every family.—Mirror. 

It appears under new editorial auspices, and shows 
some marked changes that will add greatly to its val¬ 
ue, and place it foremost among all works of the kind 
among us. We can safely say that, for a dictionary 

for common use, it has no superior—in our judgment 
no ec\\x0i\.— Evangelist. 

The whole work has been thoroughly revised by 
Prof. Goodrich, of Yale College, and several important 
and most valuable improvements introduced, which 
will give to this edition a pre-eminent advantage over 
any that has been previously published.—Observer. 

This is beyond all doubt the most complete and per¬ 
fect edition of Webster's well-known dictionary that 
has ever been published.—Sun. 

The best English dictionary extant. Many of the 
original errors of Dr. Webster have been "corrected, 
while a few only of his corrections of the old defective 
orthography have been abandoned, and the work, on 
the whole, is better than he left it.~Tribune. 

It must be the standard English dictionary through¬ 
out this country. It conforms more nearly than any 
other to the usage of the best authors, and is in every 
respect the best work of its kind, for general use, now 
before the public.—New York Courier and Enquirer. 

The laliors of Professor Goodrich have materially 
added to the value of this dictionary. He has been 
engaged in them for three years past, and the applica¬ 
tion of his acute philological faculties to this task ha* 
not been without ample fruit.—N. Y. Evening Post. 



w. ;i-”i 3 ^ 

'W 

M ••flT L 

. w. 
>•; 

V 

'' ■' .'.• -ii ' 

% 

* T ’ 

f; • ^ \ 
I 

r ‘ t 

t 

h ■" 

^ r 
Ajb / A 

tr-» 

*, , •» ‘ « 
.'- V • 

I *• " 

' J '•• 

»■ 
' * 

* •* r* " 

^. 

V “ 

•-■*, ^ # 

y 

r 

/ 

' t^ 

, • 

■nr ■ .^1 

« .'ll (. 
A ' ^' % 

Cfr,?: ’ » • ■ ■”:u •'.■"* 
• ’ '‘ ’ ' %• % ' •• •.• -V' 
'• ■ * V •* '. « . • 

■ 

r , 
.k 

*r. 

X, 

3'- 

P':' 

't ▼ o • 1 /• 

• y* 

*■ 'S 

.v ' 

»» 

• » ■ n 
■X 

A 

* 
% 

« 
■ V 

t 

*• *< 

'4» • > 

, ‘ - 

'to 

•, H 
.\ 

^ ' 

■'• d- 

I • 

• % 
>■ 

^ ■ W 

t 
K 

*r • 
** \^ • 

\ »■' ^ 

.f.' •i* 

L:*- 
▼v ♦ , 

• € 

^ 0 

■.*••' M 

. 
¥ r 

- 
'^V' 

'fiM 
r K 

m 

* 



■ *!Jf - ♦ *^' ' 

r' ">'' 

'• - ' !' •> ■•. **- —‘-^v ■—M ^ 'i 7»"* *^V ' ■■ .<^ .- *1- 

r ' / It i • - ''i(, 
‘ ^ ' u •,’ .■■^', ■' y' >%' 'V- -s. ♦ “ ■■.'•.,*!*“. o c I 

> ., •“ • •' 4 •.» '-' 'sk.- , , . ^ V ' ^ «• k • ' . ' 
■^ ■ . ♦ ■ /'#*#»'• 7J-r MX'. - 'J-.. ‘ . .'''r»5.v>. 

W ■ < .. .1' • '•« 

■* * 

. ^ 

.K.- 
•^* 

. -i. -y •»^w 

,• ■ ♦ • o »'• ‘j' • '. ■ ' u-*'. '■ ■ - ' t' ' *- ’ • 
^ 4 . > • , -'JsA : M ^ 

^ . Jt.am :'K • , 

• • . ' • ' *.• i 

• i ■-<. • I 
*A« f 

. / .. 

■r 

‘ 
M. . i^"'' 

• «> • 

. 
y U' 

• ‘ I 

>i- r’. 

,•;.. ■. xh9 •> 1^ ^ ‘ "y, t ■<• 7 r 
. • V , 

V 

V . 

& ^ 
i " 

^ " >■'--^221'“=^ •%! 

t 

», 1 •.... 

ft’ 

•# * ■ * 

.♦* -f, x^'if' 'm 

' > _ ■ . • -y' f 
V-- ♦ , «•» * ^ 

♦ % 

^ I 

it ■■%' ‘" 

f,’--. I. ». ./ . 
.ft :y 

^ 4 •:•■. = > Th {f Tril 

.■ I -l.i' '■ ' 

’ .. . . 4 ' i 
7,'*^ 

<»n,- 

n.'j, ■> i 

it V-'f.*! ■ > . ■’ 'I 

r > ‘. ■-.*t‘ '.V 
.<4‘, 'r* • 

I?- 

V ' 

' *■/ k-', 
i 

• , I 

‘ ■-#> •■ 

4? ;^i- • *• .-■v- 

‘y* 

t. ) 

'1 
7 • «l 

, A i 4^-' ^ 

* A 
J F 

I .' • 
i 

^ 4 

'. f/ 1 < f' ' 

« <,,. .; 4,yt- '' .1, . •■ ■ f"jJ^ 
, r. 

'• • > 

f ' 

^ J 

> 

' • J 

*•'■ * ; > • • c ' 

1^, 
. S' / 

■■i' 
T 1 

* 

i.*- ’ r vtiVi, .T '{sjMv . * 
, * ' ^ . , * 

* • ' ^ f 

’. . •* '■ :• 

F» • ■<* V 

v-> 

J ' i 

♦ 
5 . 4 

■k * lA k'J- •• O 

• »iv V. 
') Fftfr 1 ■' ■ 
^ ' ■f • 

tT' 

V 

"< ’ 

W ■* 

% 

t \ *Cf 

't t • 
4 

ir 

• m 
y t 

‘’ "■ ' |[^‘ • ‘ft.' i 

•- 

■* j. ■' iy ' 

i . 

*. ‘k 

,■ r*. ■.-. 'j 

.. 4. . > 

. I .*.V4>. . V .,' 

I •' '-• ■' » 

> '■' !/■>.> •; 

'S’; 
.,,. r < iF^ ■ 

■ V '. . • ' 
^ y. 7 ' ’ ■* Ift 

’ • —*8 ■ >ir 
■. u *. 

40' wt pvt- ■ ' y 

'’■■‘■'•4y Vi 

■• ^. 4 . n 

-• 6. 

>■ 

..y t % i^. 
' A' 

• ., > F . 

>r :f -7% • ^<’- 
' ^« - .4^ m , 

W- # 
. •\ ■ ♦ 

e. 

.4 ’'V'^ 

k r 

' I 
’.•. I ■ /• 

' 0 ' % 

0 

.;r.' 









.» 
•r 

i ■, 
^K. 

1 

3» 

'C' . 

r 

•» 

4 
I 

• 
• 

4 ^ • 










